WorldWideScience

Sample records for major ion transport

  1. Metal ion transporters and homeostasis.

    OpenAIRE

    Nelson, N

    1999-01-01

    Transition metals are essential for many metabolic processes and their homeostasis is crucial for life. Aberrations in the cellular metal ion concentrations may lead to cell death and severe diseases. Metal ion transporters play a major role in maintaining the correct concentrations of the various metal ions in the different cellular compartments. Recent studies of yeast mutants revealed key elements in metal ion homeostasis, including novel transport systems. Several of the proteins discover...

  2. Chamber transport for heavy ion fusion

    International Nuclear Information System (INIS)

    Olson, Craig L.

    2014-01-01

    A brief review is given of research on chamber transport for HIF (heavy ion fusion) dating from the first HIF Workshop in 1976 to the present. Chamber transport modes are categorized into ballistic transport modes and channel-like modes. Four major HIF reactor studies are summarized (HIBALL-II, HYLIFE-II, Prometheus-H, OSIRIS), with emphasis on the chamber transport environment. In general, many beams are used to provide the required symmetry and to permit focusing to the required small spots. Target parameters are then discussed, with a summary of the individual heavy ion beam parameters required for HIF. The beam parameters are then classified as to their line charge density and perveance, with special emphasis on the perveance limits for radial space charge spreading, for the space charge limiting current, and for the magnetic (Alfven) limiting current. The major experiments on ballistic transport (SFFE, Sabre beamlets, GAMBLE II, NTX, NDCX) are summarized, with specific reference to the axial electron trapping limit for charge neutralization. The major experiments on channel-like transport (GAMBLE II channel, GAMBLE II self-pinch, LBNL channels, GSI channels) are discussed. The status of current research on HIF chamber transport is summarized, and the value of future NDCX-II transport experiments for the future of HIF is noted

  3. Transport of negative hydrogen and deuterium ions in RF-driven ion sources

    International Nuclear Information System (INIS)

    Gutser, R; Wuenderlich, D; Fantz, U

    2010-01-01

    Negative hydrogen ion sources are major components of neutral beam injection systems for plasma heating in future large-scale fusion experiments such as ITER. In order to fulfill the requirements of the ITER neutral beam injection, a high-performance, large-area RF-driven ion source for negative ions is being developed at the MPI fuer Plasmaphysik. Negative hydrogen ions are mainly generated on a converter surface by impinging neutral particles and positive ions under the influence of magnetic fields and the plasma sheath potential. The 3D transport code TrajAn has been applied in order to obtain the total and spatially resolved extraction probabilities for H - and D - ions under identical plasma parameters and the realistic magnetic field topology of the ion source. A comparison of the isotopes shows a lower total extraction probability in the case of deuterium ions, caused by a different transport effect. The transport calculation shows that distortions of the spatial distributions of ion birth and extraction by the magnetic electron suppression field are present for both negative hydrogen and deuterium ions.

  4. Human-accelerated weathering increases salinization, major ions, and alkalinization in fresh water across land use

    Science.gov (United States)

    Human land use increases transport of dissolved inorganic carbon and major ions in watersheds due to the combination of easily weathered materials in watersheds and anthropogenic inputs. Here, we show that dissolved inorganic carbon (DIC), alkalinity, and major ions are significa...

  5. Majority ion heating near the ion-ion hybrid layer in tokamaks

    International Nuclear Information System (INIS)

    Phillips, C.K.; Hosea, J.C.; Ignat, D.; Majeski, R.; Rogers, J.H.; Schilling, G.; Wilson, J.R.

    1995-08-01

    Efficient direct majority ion heating in a deuterium-tritium (D-T) reactor-grade plasma via absorption of fast magnetosonic waves in the ion cyclotron range of frequencies (ICRF) is discussed. Majority ion heating results from resonance overlap between the cyclotron layers and the D-T ion-ion hybrid layer in hot, dense plasmas for fast waves launched with high parallel wavenumbers. Analytic and numerical models are used to explore the regime in ITER plasmas

  6. Ion transport restriction in mechanically strained separator membranes

    Science.gov (United States)

    Cannarella, John; Arnold, Craig B.

    2013-03-01

    We use AC impedance methods to investigate the effect of mechanical deformation on ion transport in commercial separator membranes and lithium-ion cells as a whole. A Bruggeman type power law relationship is found to provide an accurate correlation between porosity and tortuosity of deformed separators, which allows the impedance of a separator membrane to be predicted as a function of deformation. By using mechanical compression to vary the porosity of the separator membranes during impedance measurements it is possible to determine both the α and γ parameters from the modified Bruggeman relation for individual separator membranes. From impedance testing of compressed pouch cells it is found that separator deformation accounts for the majority of the transport restrictions arising from compressive stress in a lithium-ion cell. Finally, a charge state dependent increase in the impedance associated with charge transfer is observed with increasing cell compression.

  7. Changes in ion transport in inflammatory disease

    Directory of Open Access Journals (Sweden)

    Eisenhut Michael

    2006-03-01

    Full Text Available Abstract Ion transport is essential for maintenance of transmembranous and transcellular electric potential, fluid transport and cellular volume. Disturbance of ion transport has been associated with cellular dysfunction, intra and extracellular edema and abnormalities of epithelial surface liquid volume. There is increasing evidence that conditions characterized by an intense local or systemic inflammatory response are associated with abnormal ion transport. This abnormal ion transport has been involved in the pathogenesis of conditions like hypovolemia due to fluid losses, hyponatremia and hypokalemia in diarrhoeal diseases, electrolyte abnormalites in pyelonephritis of early infancy, septicemia induced pulmonary edema, and in hypersecretion and edema induced by inflammatory reactions of the mucosa of the upper respiratory tract. Components of membranous ion transport systems, which have been shown to undergo a change in function during an inflammatory response include the sodium potassium ATPase, the epithelial sodium channel, the Cystic Fibrosis Transmembrane Conductance Regulator and calcium activated chloride channels and the sodium potassium chloride co-transporter. Inflammatory mediators, which influence ion transport are tumor necrosis factor, gamma interferon, interleukins, transforming growth factor, leukotrienes and bradykinin. They trigger the release of specific messengers like prostaglandins, nitric oxide and histamine which alter ion transport system function through specific receptors, intracellular second messengers and protein kinases. This review summarizes data on in vivo measurements of changes in ion transport in acute inflammatory conditions and in vitro studies, which have explored the underlying mechanisms. Potential interventions directed at a correction of the observed abnormalities are discussed.

  8. Suprathermal ion transport in turbulent magnetized plasmas

    International Nuclear Information System (INIS)

    Bovet, A. D.

    2015-01-01

    Suprathermal ions, which have an energy greater than the quasi-Maxwellian background plasma temperature, are present in many laboratory and astrophysical plasmas. In fusion devices, they are generated by the fusion reactions and auxiliary heating. Controlling their transport is essential for the success of future fusion devices that could provide a clean, safe and abundant source of electric power to our society. In space, suprathermal ions include energetic solar particles and cosmic rays. The understanding of the acceleration and transport mechanisms of these particles is still incomplete. Basic plasma devices allow detailed measurements that are not accessible in astrophysical and fusion plasmas, due to the difficulty to access the former and the high temperatures of the latter. The basic toroidal device TORPEX offers an easy access for diagnostics, well characterized plasma scenarios and validated numerical simulations of its turbulence dynamics, making it the ideal platform for the investigation of suprathermal ion transport. This Thesis presents three-dimensional measurements of a suprathermal ion beam injected in turbulent TORPEX plasmas. The combination of uniquely resolved measurements and first principle numerical simulations reveals the general non-diffusive nature of the suprathermal ion transport. A precise characterization of their transport regime shows that, depending on their energies, suprathermal ions can experience either a super diffusive transport or a subdiffusive transport in the same background turbulence. The transport character is determined by the interaction of the suprathermal ion orbits with the turbulent plasma structures, which in turn depends on the ratio between the ion energy and the background plasma temperature. Time-resolved measurements reveal a clear difference in the intermittency of suprathermal ions time-traces depending on the transport regime they experience. Conditionally averaged measurements uncover the influence of

  9. Faster Heavy Ion Transport for HZETRN

    Science.gov (United States)

    Slaba, Tony C.

    2013-01-01

    The deterministic particle transport code HZETRN was developed to enable fast and accurate space radiation transport through materials. As more complex transport solutions are implemented for neutrons, light ions (Z heavy ion (Z > 2) transport algorithm in HZETRN is reviewed, and a simple modification is shown to provide an approximate 5x decrease in execution time for galactic cosmic ray transport. Convergence tests and other comparisons are carried out to verify that numerical accuracy is maintained in the new algorithm.

  10. Turbulent transport of energetic ions

    International Nuclear Information System (INIS)

    Dannert, Tilman; Hauff, Thilo; Jenko, Frank; Guenter, Sibylle

    2006-01-01

    Approaching ITER operation, the issue of anomalous transport of fast particles becomes more and more important. This is partly because the ITER heating and current drive system relies heavily on neutral beam injection. Moreover burning plasmas are heated by fast fusion α particles.Fusion α particles are characterised by a fixed energy and an isotropic velocity distribution. Therefore they have gyroradii one magnitude larger than the thermal ions. The dependency of the particle diffusion of α test particles on the Kubo number K = VExBτc/λc (VExB mean E x B velocity, τc, λc correlation time and length of the turbulent potential) is presented. For different turbulent regimes, different dependency of the diffusion on the gyroradius is found. For large Kubo numbers, the transport is found to remain constant for gyroradii up to the correlation length of the potential, whereas it is drastically reduced in the small Kubo number regime.In the second part, a model for beam ions injected along the equilibrium magnetic field is described. The beam ions are treated gyrokinetically in a self-consistent way with the equilibrium distribution function taken as a shifted Maxwellian. The implications of such a model for the Vlasov equation, the field equations, and the calculation of moments and fluxes are discussed. Linear and nonlinear results, obtained with the gyrokinetic flux tube code GENE show the existence of a new instability driven by fast beam ions. The instability has a maximum growth rate at perpendicular wave numbers of kyρs ∼ 0.15 and depends mainly on the beam velocity and the density gradient of the beam ions. This instability leads to a replacement of bulk ion particle transport by fast ion particle transport, connected to a strongly enhanced heat flux. In the presence of this instability, the turbulent particle and heat transport is dominated by fast ions

  11. Transport of intense ion beams

    International Nuclear Information System (INIS)

    Lambertson, G.; Laslett, L.J.; Smith, L.

    1977-01-01

    The possibility of using intense bursts of heavy ions to initiate an inertially confined fusion reaction has stimulated interest in the transport of intense unneutralized heavy ion beams by quadrupole or solenoid systems. This problem was examined in some detail, using numerical integration of the coupled envelope equations for the quadrupole case. The general relations which emerge are used to develop examples of high energy transport systems and as a basis for discussing the limitations imposed by a transport system on achievable intensities for initial acceleration

  12. Parametric variations of ion transport in TFTR

    International Nuclear Information System (INIS)

    Scott, S.D.; Ernst, D.

    1993-01-01

    This paper is divided into three roughly independent sections. The first is a historical review of the twenty year history of experimental ion heat transport measurements from many tokamaks. The second is a study of ion heat transport in Ohmic TFTR plasmas which shows that χi ∼ χe ∼ 15χi neo . Thus, ion heat transport is demonstrated to be strongly anomalous even the absence of auxiliary heating. The third section describes the variation of χi with local ion temperature in TFTR during auxiliary heating, with emphasis on characterizing the differecens between transport in the L-mode and supershot regimes. The results are consistent with the conjecture that improved ion energy confinement in supershot plasmas is caused by a high ratio of T 1 /T e

  13. Workshop on transport for a common ion driver

    International Nuclear Information System (INIS)

    Olson, C.C.; Lee, E.; Langdon, B.

    1994-01-01

    This report contains research in the following areas related to beam transport for a common ion driver: multi-gap acceleration; neutralization with electrons; gas neutralization; self-pinched transport; HIF and LIF transport, and relevance to common ion driver; LIF and HIF reactor concepts and relevance to common ion driver; atomic physics for common ion driver; code capabilities and needed improvement

  14. Ion transport in stellarators

    International Nuclear Information System (INIS)

    Ho, D.D.M.; Kulsrud, R.M.

    1985-09-01

    Stellarator ion transport in the low-collisionality regime with a radial electric field is calculated by a systematic expansion of the drift-Boltzmann equation. The shape of the helical well is taken into account in this calculation. It is found that the barely trapped ions with three to four times the thermal energy give the dominant contribution to the diffusion. Expressions for the ion particle and energy fluxes are derived

  15. δf simulation of ion neoclassical transport

    International Nuclear Information System (INIS)

    Wang, W.; Nakajima, N.; Okamoto, M.; Murakami, S.

    1999-07-01

    Ion neoclassical transport with finite orbit width dynamics is calculated over whole poloidal cross section by using accurate δf method which employs an improved like-particle collision operator and an accurate weighting scheme to solve drift kinetic equation. Ion thermal transport near magnetic axis shows a great reduction from its conventional neoclassical level due to non-standard orbit topology, like that of previous δf simulation. On other hand, the direct particle loss from confinement region may strongly increase ion energy transport near the edge. It is found that ion parallel flow near the axis is also largely reduced due to non-standard orbit topology. In the presence of steep density gradient, ion thermal conductivity is significantly reduced, and an ion particle flux is driven by self-collision alone. (author)

  16. Light ion beam transport research at NRL

    International Nuclear Information System (INIS)

    Hinshelwood, D.D.; Boller, J.R.; Cooperstein, G.

    1996-01-01

    Transport of light ion beams through low-pressure background gas is under investigation at NRL in support of the light-ion ICF program at Sandia National Laboratories. Scaling experiments and the field solver/orbit code ATHETA have been used to design and construct a focusing, extraction applied-B diode for transport experiments. An active anode source has been developed to provide a high proton fraction in the ion beam and a fast ion turn-on time. A very sensitive Zeeman diagnostic is being developed to determine the net current distribution in the beam/transport system. Both analytical and numerical techniques using several codes are being applied to transport modeling, leading to the capability of full system studies. (author). 1 tab., 5 figs., 10 refs

  17. Light ion beam transport research at NRL

    Energy Technology Data Exchange (ETDEWEB)

    Hinshelwood, D D; Boller, J R; Cooperstein, G [Naval Research Lab., Washington, DC (United States). Plasma Physics Div.; and others

    1997-12-31

    Transport of light ion beams through low-pressure background gas is under investigation at NRL in support of the light-ion ICF program at Sandia National Laboratories. Scaling experiments and the field solver/orbit code ATHETA have been used to design and construct a focusing, extraction applied-B diode for transport experiments. An active anode source has been developed to provide a high proton fraction in the ion beam and a fast ion turn-on time. A very sensitive Zeeman diagnostic is being developed to determine the net current distribution in the beam/transport system. Both analytical and numerical techniques using several codes are being applied to transport modeling, leading to the capability of full system studies. (author). 1 tab., 5 figs., 10 refs.

  18. Theory of ion heat transport in tokamaks

    International Nuclear Information System (INIS)

    Gott, Y.V.; Yurchenko, E.I.

    1987-01-01

    Experiments which have been carried out in several tokamaks to determine the ion thermal conductivity show that it is several times the value predicted by the neoclassical theory. A possible explanation for this discrepancy is proposed. When the finite width of a banana is taken into account, there are substantial increases in the heat fluxes which stem from the important contribution of superthermal ions to the transport. If the electron diffusive flux is zero, a systematic account of the ions with E>T leads to an ion heat flux with a finite banana width which is two to four times the neoclassical prediction. The effect of the anomalous nature of the electron flux on the ion heat transport is analyzed. An expression is derived for calculating the ion heat transport over the entire range of collision rates

  19. Numerical Simulation of Ion Transport in a Nano-Electrospray Ion Source at Atmospheric Pressure

    Science.gov (United States)

    Wang, Wei; Bajic, Steve; John, Benzi; Emerson, David R.

    2018-03-01

    Understanding ion transport properties from the ion source to the mass spectrometer (MS) is essential for optimizing device performance. Numerical simulation helps in understanding of ion transport properties and, furthermore, facilitates instrument design. In contrast to previously reported numerical studies, ion transport simulations in a continuous injection mode whilst considering realistic space-charge effects have been carried out. The flow field was solved using Reynolds-averaged Navier-Stokes (RANS) equations, and a particle-in-cell (PIC) method was applied to solve a time-dependent electric field with local charge density. A series of ion transport simulations were carried out at different cone gas flow rates, ion source currents, and capillary voltages. A force evaluation analysis reveals that the electric force, the drag force, and the Brownian force are the three dominant forces acting on the ions. Both the experimental and simulation results indicate that cone gas flow rates of ≤250 slph (standard liter per hour) are important for high ion transmission efficiency, as higher cone gas flow rates reduce the ion signal significantly. The simulation results also show that the ion transmission efficiency reduces exponentially with an increased ion source current. Additionally, the ion loss due to space-charge effects has been found to be predominant at a higher ion source current, a lower capillary voltage, and a stronger cone gas counterflow. The interaction of the ion driving force, ion opposing force, and ion dispersion is discussed to illustrate ion transport mechanism in the ion source at atmospheric pressure. [Figure not available: see fulltext.

  20. Twin boundary-assisted lithium-ion transport

    KAUST Repository

    Nie, Anmin

    2015-01-14

    With the increased need for high-rate Li-ion batteries, it has become apparent that new electrode materials with enhanced Li-ion transport should be designed. Interfaces, such as twin boundaries (TBs), offer new opportunities to navigate the ionic transport within nanoscale materials. Here, we demonstrate the effects of TBs on the Li-ion transport properties in single crystalline SnO2 nanowires. It is shown that the TB-assisted lithiation pathways are remarkably different from the previously reported lithiation behavior in SnO2 nanowires without TBs. Our in situ transmission electron microscopy study combined with direct atomic-scale imaging of the initial lithiation stage of the TB-SnO2 nanowires prove that the lithium ions prefer to intercalate in the vicinity of the (101¯) TB, which acts as conduit for lithium-ion diffusion inside the nanowires. The density functional theory modeling shows that it is energetically preferred for lithium ions to accumulate near the TB compared to perfect neighboring lattice area. These findings may lead to the design of new electrode materials that incorporate TBs as efficient lithium pathways, and eventually, the development of next generation rechargeable batteries that surpass the rate performance of the current commercial Li-ion batteries.

  1. Heat and momentum transport of ion internal transport barrier plasmas on Large Helical Device

    International Nuclear Information System (INIS)

    Nagaoka, K.; Ida, K.; Yoshinuma, M.

    2010-11-01

    The peaked ion-temperature profile with steep gradient so called ion internal transport barrier (ion ITB) was formed in the neutral beam heated plasmas on the Large Helical Device (LHD) and the high-ion-temperature regime of helical plasmas has been significantly extended. The ion thermal diffusivity in the ion ITB plasma decreases down to the neoclassical transport level. The heavy ion beam probe (HIBP) observed the smooth potential profile with negative radial electric field (ion root) in the core region where the ion thermal diffusivity decreases significantly. The large toroidal rotation was also observed in the ion ITB core and the transport of toroidal momentum was analyzed qualitatively. The decrease of momentum diffusivity with ion temperature increase was observed in the ion ITB core. The toroidal rotation driven by ion temperature gradient so called intrinsic rotation is also identified. (author)

  2. Mathematical Model of Ion Transport in Electrodialysis Process

    Directory of Open Access Journals (Sweden)

    F.S. Rohman

    2010-10-01

    Full Text Available Mathematical models of ion transport in electrodialysis process is reviewed and their basics concept is discussed. Three scales of ion transport reviewed are: 1 ion transport in the membrane, where two approaches are used, the irreversible thermodynamics and modeling of the membrane material; 2 ion transport in a three-layer system composed of a membrane with two adjoining diffusion layers; and 3 coupling with hydraulic flow system in an electrodialysis 2D and 3D cell, where the differential equation of convectivediffusion is used. Most of the work carried out in the past implemented NP equations since relatively easily coupled with other equations describing hydrodynamic conditions and ion transport in the surrounding solutions, chemical reactions in the solutions and the membrane, boundary and other conditions. However, it is limited to point ionic transport in homogenous and uniformly - grainy phases of structure. © 2008 BCREC UNDIP. All rights reserved.[Received: 21 January 2008, Accepted: 10 March 2008][How to Cite: F.S. Rohman, N. Aziz (2008. Mathematical Model of Ion Transport in Electrodialysis Process. Bulletin of Chemical Reaction Engineering and Catalysis, 3(1-3: 3-8. doi:10.9767/bcrec.3.1-3.7122.3-8][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.3.1-3.7122.3-8 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/7122 ] 

  3. High-powered pulsed-ion-beam acceleration and transport

    Energy Technology Data Exchange (ETDEWEB)

    Humphries, S. Jr.; Lockner, T.R.

    1981-11-01

    The state of research on intense ion beam acceleration and transport is reviewed. The limitations imposed on ion beam transport by space charge effects and methods available for neutralization are summarized. The general problem of ion beam neutralization in regions free of applied electric fields is treated. The physics of acceleration gaps is described. Finally, experiments on multi-stage ion acceleration are summarized.

  4. High-powered pulsed-ion-beam acceleration and transport

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Lockner, T.R.

    1981-11-01

    The state of research on intense ion beam acceleration and transport is reviewed. The limitations imposed on ion beam transport by space charge effects and methods available for neutralization are summarized. The general problem of ion beam neutralization in regions free of applied electric fields is treated. The physics of acceleration gaps is described. Finally, experiments on multi-stage ion acceleration are summarized

  5. Ion heat transport studies in JET

    DEFF Research Database (Denmark)

    Mantica, P; Angioni, C; Baiocchi, B

    2011-01-01

    Detailed experimental studies of ion heat transport have been carried out in JET exploiting the upgrade of active charge exchange spectroscopy and the availability of multi-frequency ion cyclotron resonance heating with 3He minority. The determination of ion temperature gradient (ITG) threshold a...

  6. Dynamic model of ion and water transport in ionic polymer-metal composites

    Directory of Open Access Journals (Sweden)

    Zicai Zhu

    2011-12-01

    Full Text Available In the process of electro-mechanical transduction of ionic polymer-metal composites (IPMCs, the transport of ion and water molecule plays an important role. In this paper, the theoretical transport models of IPMCs are critically reviewed, with particular emphasis on the recent developments in the latest decade. The models can be divided into three classes, thermodynamics of irreversible process model, frictional model and Nernst-Planck (NP equation model. To some extent the three models can be transformed into each other, but their differences are also obvious arising from the various mechanisms that considered in different models. The transport of ion and water molecule in IPMCs is compared with that in membrane electrode assembly and electrodialysis membrane to identify and clarify the fundamental transport mechanisms in IPMCs. And an improved transport model is proposed and simplified for numerical analysis. The model considers the convection effect rather than the diffusion as the major transport mechanism, and both the self-diffusion and the electroosmosis drag are accounted for in the water flux equation.

  7. Neoclassical transport of energetic minority tail ions generated by ion-cyclotron resonance heating in tokamak geometry

    International Nuclear Information System (INIS)

    Chang, C.S.; Hammett, G.W.; Goldston, R.J.

    1990-01-01

    Neoclassical transport of energetic minority tail ions, which are generated by high powered electromagnetic waves of the Ion Cyclotron Range of Frequencies (ICRF) at the fundamental harmonic resonance, is studied analytically in tokamak geometry. The effect of Coulomb collisions on the tail ion transport is investigated in the present work. The total tail ion transport will be the sum of the present collision-driven transport and the wave-driven transport, which is due to the ICRF-wave scattering of the tail particles as reported in the literature. The transport coefficients have been calculated kinetically, and it is found that the large tail ion viscosity, driven by the localized ICRF-heating and Coulomb slowing-down collisions, induces purely convective particle transport of the tail species, while the energy transport is both convective and diffusive. The rate of radial particle transport is shown to be usually small, but the rate of radial energy transport is larger and may not be negligible compared to the Coulomb slowing-down rate. 18 refs., 2 figs

  8. Mass transport and chloride ion complexes in occluded cell

    International Nuclear Information System (INIS)

    Tsuru, T.; Hashimoto, K.; Nishikata, A.; Haruyama, S.

    1989-01-01

    Changes in the transport and the concentration of ions in a model occluded cell are traced during galvanostatic anodic polarization of a mild steel and a stainless steel. Apparent transport numbers of anions and cations, which were estimated from chemical analysis of solution, were different from those calculated from known mobility data. At the initial stage of the polarization, the transport number of chloride ion was almost unity, and then decreased gradually. For the mild steel, the concentration of total chloride ion accumulated in the occluded compartment increased with the anodic charge passed, and the amount of chloride ion complexed with cations also increased. The chloride complex was estimated as FeCl + . For SUS304 stainless steel, the total chloride ion increased, however, the free chloride ion, which responded to an Ag/AgCl electrode remained approximately 2 mol/dm 3 . Therefore, most of the chloride ions transferred into the occluded cell formed complex ions, such as CrCl n 3-n . The number of chloride ion coordinated to ferrous and chromic ions was estimated from the data fo mass transport for the case of the mild steel and the stainless steel. (author) 9 refs., 14 figs

  9. Self-pinched transport of intense ion beams

    International Nuclear Information System (INIS)

    Ottinger, P.F.; Neri, J.M.; Stephanakis, S.J.

    1999-01-01

    Electron beams with substantial net currents have been routinely propagated in the self-pinched mode for the past two decades. However, as the physics of gas breakdown and beam neutralization is different for ion beams, previous predictions indicated insufficient net current for pinching so that ion beam self-pinched transport (SPT) was assumed impossible. Nevertheless, recent numerical simulations using the IPROP code have suggested that ion SPT is possible. These results have prompted initial experiments to investigate SPT of ion beams. A 100-kA, 1.2-MeV, 3-cm-radius proton beam, generated on the Gamble II pulsed-power accelerator at NRL, has been injected into helium in the 30- to 250-mTorr regime to study this phenomenon. Evidence of self-pinched ion beam transport was observed in the 35- to 80-mTorr SPT pressure window predicted by IPROP. Measured signals from a time- and space-resolved scattered proton diagnostic and a time-integrated Li(Cu) nuclear activation diagnostic, both of which measure protons striking a 10-cm diameter target 50 cm into the transport region, are significantly larger in this pressure window than expected for ballistic transport. These results are consistent with significant self-magnetic fields and self-pinching of the ion beam. On the other hand, time-integrated signals from these same two diagnostics are consistent with ballistic transport at pressures above and below the SPT window. Interferometric electron line-density measurements, acquired during beam injection into the helium gas, show insignificant ionization below 35 mTorr, a rapidly rising ionization fraction with pressure in the SPT window, and a plateau in ionization fraction at about 2% for pressures above 80 mTorr. These and other results are consistent with the physical picture for SPT. IPROP simulations, which closely model the Gamble II experimental conditions, produce results that are in qualitative agreement with the experimental results. The advantages of SPT for

  10. Twin boundary-assisted lithium-ion transport

    KAUST Repository

    Nie, Anmin; Gan, Liyong; Cheng, Yingchun; Li, Qianqian; Yuan, Yifei; Mashayek, Farzad; Wang, Hongtao; Klie, Robert F.; Schwingenschlö gl, Udo; Shahbazian-Yassar, Reza

    2015-01-01

    With the increased need for high-rate Li-ion batteries, it has become apparent that new electrode materials with enhanced Li-ion transport should be designed. Interfaces, such as twin boundaries (TBs), offer new opportunities to navigate the ionic

  11. Particle and heavy ion transport code system; PHITS

    International Nuclear Information System (INIS)

    Niita, Koji

    2004-01-01

    Intermediate and high energy nuclear data are strongly required in design study of many facilities such as accelerator-driven systems, intense pulse spallation neutron sources, and also in medical and space technology. There is, however, few evaluated nuclear data of intermediate and high energy nuclear reactions. Therefore, we have to use some models or systematics for the cross sections, which are essential ingredients of high energy particle and heavy ion transport code to estimate neutron yield, heat deposition and many other quantities of the transport phenomena in materials. We have developed general purpose particle and heavy ion transport Monte Carlo code system, PHITS (Particle and Heavy Ion Transport code System), based on the NMTC/JAM code by the collaboration of Tohoku University, JAERI and RIST. The PHITS has three important ingredients which enable us to calculate (1) high energy nuclear reactions up to 200 GeV, (2) heavy ion collision and its transport in material, (3) low energy neutron transport based on the evaluated nuclear data. In the PHITS, the cross sections of high energy nuclear reactions are obtained by JAM model. JAM (Jet AA Microscopic Transport Model) is a hadronic cascade model, which explicitly treats all established hadronic states including resonances and all hadron-hadron cross sections parametrized based on the resonance model and string model by fitting the available experimental data. The PHITS can describe the transport of heavy ions and their collisions by making use of JQMD and SPAR code. The JQMD (JAERI Quantum Molecular Dynamics) is a simulation code for nucleus nucleus collisions based on the molecular dynamics. The SPAR code is widely used to calculate the stopping powers and ranges for charged particles and heavy ions. The PHITS has included some part of MCNP4C code, by which the transport of low energy neutron, photon and electron based on the evaluated nuclear data can be described. Furthermore, the high energy nuclear

  12. Numerical modelling of ion transport in flames

    KAUST Repository

    Han, Jie

    2015-10-20

    This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model\\'s predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018. © 2015 Taylor & Francis.

  13. Radial transport of high-energy oxygen ions into the deep inner magnetosphere observed by Van Allen Probes

    Science.gov (United States)

    Mitani, K.; Seki, K.; Keika, K.; Gkioulidou, M.; Lanzerotti, L. J.; Mitchell, D. G.; Kletzing, C.

    2017-12-01

    It is known that proton is main contributor of the ring current and oxygen ions can make significant contribution during major magnetic storms. Ions are supplied to the ring current by radial transport from the plasma sheet. Convective transport of lower-energy protons and diffusive transport of higher-energy protons were reported to contribute to the storm-time and quiet-time ring current respectively [e.g., Gkioulidou et al., 2016]. However, supply mechanisms of the oxygen ions are not clear. To characterize the supply of oxygen ions to the ring current during magnetic storms, we studied the properties of energetic proton and oxygen ion phase space densities (PSDs) for specific magnetic moment (μ) during the April 23-25, 2013, geomagnetic storm observed by the Van Allen Probes mission. We here report on radial transport of high-energy (μ ≥ 0.5 keV/nT) oxygen ions into the deep inner magnetosphere during the late main phase of the magnetic storm. Since protons show little change during this period, this oxygen radial transport is inferred to cause the development of the late main phase. Enhancement of poloidal magnetic fluctuations is simultaneously observed. We estimated azimuthal mode number ≤5 by using cross wavelet analysis with ground-based observation of IMAGE ground magnetometers. The fluctuations can resonate with drift and bounce motions of the oxygen ions. The results suggest that combination of the drift and drift-bounce resonances is responsible for the radial transport of high-energy oxygen ions into the deep inner magnetosphere. We also report on the radial transport of the high-energy oxygen ions into the deep inner magnetosphere during other magnetic storms.

  14. P.I.A.F.E project: long distance transport of low energy exotic ions; Projet P.I.A.F.E: transport d`ions exotiques de basse energie sur longue distance

    Energy Technology Data Exchange (ETDEWEB)

    Nibart, V.

    1996-01-17

    The aim of the PIAFE project is the long distance (400 m) transport of a low energy radioactive ion beam from the ILL (Institut Laue Langevin) to the ISN (Institut des Sciences Nucleaires) of Grenoble (France). The production, extraction, ionization and mass separation of ions is performed by the ILL, while the transformation of ions into multicharged ions, their stripping and acceleration is carried out at the ISN. Theoretical and experimental studies for a simple an original guidance solution have shown that such a long transport, even delicate, should not encounter any major difficulty. The main objectives of this thesis is the technical realization of a 18 m section of this transport line. The problem of supports and focalizing elements alignment has been solved together with the other problems such as: the central trajectory deviation due to alignment defects and to the Earth`s magnetic field; the particle losses due to charge exchange with the residual gas and the emittance increase by Coulomb scattering. It has been demonstrated that a 90% transmission can be obtained using a 25 keV energy and a 10{sup -7} mbar vacuum. Experimental measurements using a rubidium ion source have allowed to validate a theoretical model of emittance increase due to the residual gas-ions interactions. The increase of emittance with respect to the pressure has been measured using four residual gases of different mass. (J.S.). 29 refs., 61 figs., 19 tabs., 8 photos., 4 appends.

  15. 78 FR 19024 - Lithium Ion Batteries in Transportation Public Forum

    Science.gov (United States)

    2013-03-28

    ... NATIONAL TRANSPORTATION SAFETY BOARD Lithium Ion Batteries in Transportation Public Forum On Thursday and Friday, April 11-12, 2013, the National Transportation Safety Board (NTSB) will convene a forum titled, ``Lithium Ion Batteries in Transportation.'' The forum will begin at 9:00 a.m. on both...

  16. Neoclassical transport of energetic beam ions in the Large Helical Device

    International Nuclear Information System (INIS)

    Murakami, Sadayoshi; Yamada, Hiroshi; Kaneko, Osamu

    2000-01-01

    The neoclassical (collisional) transport of energetic ions is investigated by the global neoclassical transport simulation in the Large Helical Device (LHD). The steady state distributions of energetic ions are evaluated assuming an energetic particle source by NBI heating (tangentally injected). Significant radial transport of energetic ions can be seen due to the radial motion of trapped particles in the velocity region below near critical velocity. Our simulation results show relatively good agreements with the experimental results of fast particle measurements in the LHD. This suggests an important role of neoclassical transport in the radial transport process of energetic ions in heliotrons. (author)

  17. Integrated heat transport simulation of high ion temperature plasma of LHD

    International Nuclear Information System (INIS)

    Murakami, S.; Yamaguchi, H.; Sakai, A.

    2014-10-01

    A first dynamical simulation of high ion temperature plasma with carbon pellet injection of LHD is performed by the integrated simulation GNET-TD + TASK3D. NBI heating deposition of time evolving plasma is evaluated by the 5D drift kinetic equation solver, GNET-TD and the heat transport of multi-ion species plasma (e, H, He, C) is studied by the integrated transport simulation code, TASK3D. Achievement of high ion temperature plasma is attributed to the 1) increase of heating power per ion due to the temporal increase of effective charge, 2) reduction of effective neoclassical transport with impurities, 3) reduction of turbulence transport. The reduction of turbulence transport is most significant contribution to achieve the high ion temperature and the reduction of the turbulent transport from the L-mode plasma (normal hydrogen plasma) is evaluated to be a factor about five by using integrated heat transport simulation code. Applying the Z effective dependent turbulent reduction model we obtain a similar time behavior of ion temperature after the C pellet injection with the experimental results. (author)

  18. Ion transport in circulatory and/or septic shock

    International Nuclear Information System (INIS)

    Sayeed, M.M.

    1987-01-01

    This review surveys investigations of membrane ion transport in animals in hemorrhagic, endotoxic, or bacteremic shock. The focus of the review is on ion transport studies in the skeletal muscle and liver. Skeletal muscle Na + -K + transport alterations have been shown during the induction of shock via hemorrhage, endotoxin, or live Gram-negative bacteria in the rodent, canine, and primate species. These alterations include impairment of active cellular K + accumulation, increased permeability to 24 Na + and Cl - , and membrane depolarization. The ion transport alterations in the skeletal muscle are compatible with movement of extracellular fluid into the intracellular compartment. Such fluid movements can potentially lead to decreases in circulating plasma volume and thus to circulatory deficits in shock. Studies in the liver of rats subjected to hemorrhagic or endotoxic shock indicated the failure of electrogenic Na + pump. Although the hepatic cellular membrane permeability to Na + relative to permeability to K + appeared unaltered in hemorrhagic shock, endotoxic shock caused an increase in permeability to Na + . Hepatic cellular 45 Ca + regulation also appeared to be adversely affected during endotoxic shock. Alterations in hepatic Na + -K + transport and Ca + regulation could contribute to impairment in hepatic glucose production during shock. Although mechanisms of altered membrane ion transport during shock states remain unknown, such changes could occur prior to any substantial loss of cellular metabolic energy

  19. Fast ions and momentum transport in JET tokamak plasmas

    International Nuclear Information System (INIS)

    Salmi, A.

    2012-01-01

    Fast ions are an inseparable part of fusion plasmas. They can be generated using electromagnetic waves or injected into plasmas as neutrals to heat the bulk plasma and to drive toroidal rotation and current. In future power plants fusion born fast ions deliver the main heating into the plasma. Understanding and controlling the fast ions is of crucial importance for the operation of a power plant. Furthermore, fast ions provide ways to probe the properties of the thermal plasma and get insight of its confinement properties. In this thesis, numerical code packages are used and developed to simulate JET experiments for a range of physics issues related to fast ions. Namely, the clamping fast ion distribution at high energies with RF heating, fast ion ripple torque generation and the toroidal momentum transport properties using NBI modulation technique are investigated. Through a comparison of numerical simulations and the JET experimental data it is shown that the finite Larmor radius effects in ion cyclotron resonance heating are important and that they can prevent fast ion tail formation beyond certain energy. The identified mechanism could be used for tailoring the fast ion distribution in future experiments. Secondly, ASCOT simulations of NBI ions in a ripple field showed that most of the reduction of the toroidal rotation that has been observed in the JET enhanced ripple experiments could be attributed to fast ion ripple torque. Finally, fast ion torque calculations together with momentum transport analysis have led to the conclusion that momentum transport in not purely diffusive but that a convective component, which increases monotonically in radius, exists in a wide range of JET plasmas. Using parameter scans, the convective transport has been shown to be insensitive to collisionality and q-profile but to increase strongly against density gradient. (orig.)

  20. Fast ions and momentum transport in JET tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Salmi, A.

    2012-07-01

    Fast ions are an inseparable part of fusion plasmas. They can be generated using electromagnetic waves or injected into plasmas as neutrals to heat the bulk plasma and to drive toroidal rotation and current. In future power plants fusion born fast ions deliver the main heating into the plasma. Understanding and controlling the fast ions is of crucial importance for the operation of a power plant. Furthermore, fast ions provide ways to probe the properties of the thermal plasma and get insight of its confinement properties. In this thesis, numerical code packages are used and developed to simulate JET experiments for a range of physics issues related to fast ions. Namely, the clamping fast ion distribution at high energies with RF heating, fast ion ripple torque generation and the toroidal momentum transport properties using NBI modulation technique are investigated. Through a comparison of numerical simulations and the JET experimental data it is shown that the finite Larmor radius effects in ion cyclotron resonance heating are important and that they can prevent fast ion tail formation beyond certain energy. The identified mechanism could be used for tailoring the fast ion distribution in future experiments. Secondly, ASCOT simulations of NBI ions in a ripple field showed that most of the reduction of the toroidal rotation that has been observed in the JET enhanced ripple experiments could be attributed to fast ion ripple torque. Finally, fast ion torque calculations together with momentum transport analysis have led to the conclusion that momentum transport in not purely diffusive but that a convective component, which increases monotonically in radius, exists in a wide range of JET plasmas. Using parameter scans, the convective transport has been shown to be insensitive to collisionality and q-profile but to increase strongly against density gradient. (orig.)

  1. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.

    Science.gov (United States)

    Guo, Wei; Tian, Ye; Jiang, Lei

    2013-12-17

    Both scientists and engineers are interested in the design and fabrication of synthetic nanofluidic architectures that mimic the gating functions of biological ion channels. The effort to build such structures requires interdisciplinary efforts at the intersection of chemistry, materials science, and nanotechnology. Biological ion channels and synthetic nanofluidic devices have some structural and chemical similarities, and therefore, they share some common features in regulating the traverse ionic flow. In the past decade, researchers have identified two asymmetric ion transport phenomena in synthetic nanofluidic structures, the rectified ionic current and the net diffusion current. The rectified ionic current is a diode-like current-voltage response that occurs when switching the voltage bias. This phenomenon indicates a preferential direction of transport in the nanofluidic system. The net diffusion current occurs as a direct product of charge selectivity and is generated from the asymmetric diffusion through charged nanofluidic channels. These new ion transport phenomena and the elaborate structures that occur in biology have inspired us to build functional nanofluidic devices for both fundamental research and practical applications. In this Account, we review our recent progress in the design and fabrication of biomimetic solid-state nanofluidic devices with asymmetric ion transport behavior. We demonstrate the origin of the rectified ionic current and the net diffusion current. We also identify several influential factors and discuss how to build these asymmetric features into nanofluidic systems by controlling (1) nanopore geometry, (2) surface charge distribution, (3) chemical composition, (4) channel wall wettability, (5) environmental pH, (6) electrolyte concentration gradient, and (7) ion mobility. In the case of the first four features, we build these asymmetric features directly into the nanofluidic structures. With the final three, we construct

  2. Transmural expression of ion channels and transporters in human nondiseased and end-stage failing hearts

    DEFF Research Database (Denmark)

    Soltysinska, Ewa; Olesen, Søren-Peter; Christ, Torsten

    2009-01-01

    The cardiac action potential is primarily shaped by the orchestrated function of several different types of ion channels and transporters. One of the regional differences believed to play a major role in the progression and stability of the action potential is the transmural gradient of electrica...... cardiac ion channels and transporters which may in part explain the increased susceptibility to arrhythmia in end-state failing hearts....... activity across the ventricular wall. An altered balance in the ionic currents across the free wall is assumed to be a substrate for arrhythmia. A large fraction of patients with heart failure experience ventricular arrhythmia. However, the underlying substrate of these functional changes is not well......-established as expression analyses of human heart failure (HF) are sparse. We have investigated steady-state RNA levels by quantitative polymerase chain reaction of ion channels, transporters, connexin 43, and miR-1 in 11 end-stage HF and seven nonfailing (NF) hearts. The quantifications were performed on endo-, mid...

  3. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes.

    Science.gov (United States)

    Volkov, Vadim

    2015-01-01

    Ion transport is the fundamental factor determining salinity tolerance in plants. The Review starts from differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes. The comparison provides introductory information for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion fluxes. Further steps require knowledge about mechanisms of ion transport and individual genes of ion transport proteins. Initially, the Review describes methods to measure ion fluxes, the independent set of techniques ensures robust and reliable basement for quantitative approach. The Review briefly summarizes current data concerning Na(+) and K(+) concentrations in cells, refers to primary thermodynamics of ion transport and gives special attention to individual ion channels and transporters. Simplified scheme of a plant cell with known transport systems at the plasma membrane and tonoplast helps to imagine the complexity of ion transport and allows choosing specific transporters for modulating ion transport. The complexity is enhanced by the influence of cell size and cell wall on ion transport. Special attention is given to ion transporters and to potassium and sodium transport by HKT, HAK, NHX, and SOS1 proteins. Comparison between non-selective cation channels and ion transporters reveals potential importance of ion transporters and the balance between the two pathways of ion transport. Further on the Review describes in detail several successful attempts to overexpress or knockout ion transporters for changing salinity tolerance. Future perspectives are questioned with more attention given to promising candidate ion channels and transporters for altered expression. Potential direction of increasing salinity tolerance by modifying ion channels and transporters using single point mutations is discussed and

  4. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes

    Directory of Open Access Journals (Sweden)

    Vadim eVolkov

    2015-10-01

    Full Text Available Ion transport is the fundamental factor determining salinity tolerance in plants. The Review starts from differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes. The comparison provides introductory information for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion fluxes. Further steps require knowledge about mechanisms of ion transport and individual genes of ion transport proteins. Initially, the Review describes methods to measure ion fluxes, the independent set of techniques ensures robust and reliable basement for quantitative approach. The Review briefly summarises current data concerning Na+ and K+ concentrations in cells, refers to primary thermodynamics of ion transport and gives special attention to individual ion channels and transporters. Simplified scheme of a plant cell with known transport systems at the plasma membrane and tonoplast helps to imagine the complexity of ion transport and allows to choose specific transporters for modulating ion transport. The complexity is enhanced by the influence of cell size and cell wall on ion transport. Special attention is given to ion transporters and to potassium and sodium transport by HKT, HAK, NHX and SOS1 proteins. Comparison between nonselective cation channels and ion transporters reveals potential importance of ion transporters and the balance between the two pathways of ion transport. Further on the Review describes in detail several successful attempts to overexpress or knockout ion transporters for changing salinity tolerance. Future perspectives are questioned with more attention given to promising candidate ion channels and transporters for altered expression. Potential direction of increasing salinity tolerance by modifying ion channels and transporters using single point mutations is

  5. Hydrogen peroxide scavenger, catalase, alleviates ion transport dysfunction in murine colitis.

    Science.gov (United States)

    Barrett, Kim E; McCole, Declan F

    2016-11-01

    Reactive oxygen species (ROS) such as hydrogen peroxide (H 2 O 2 ) contribute to epithelial damage and ion transport dysfunction (key events in inflammatory diarrhoea) in inflammatory bowel disease (IBD). The aim of this study was to identify if H 2 O 2 mediates suppression of colonic ion transport function in the murine dextran sulfate sodium (DSS) colitis model by using the H 2 O 2 degrading enzyme, catalase. Colitis was induced by administering DSS (4%) in drinking water for 5 days followed by 3 days on normal H 2 O. Mice were administered either pegylated catalase or saline at day -1, 0 and +1 of DSS treatment. Ion transport responses to the Ca 2+ -dependent agonist, carbachol (CCh), or the cAMP-dependent agonist, forskolin, were measured across distal colonic mucosa mounted in Ussing chambers. Parameters of DSS-induced inflammation (loss in body weight, decreased colon length, altered stool consistency), were only partially alleviated by catalase while histology was only minimally improved. However, catalase significantly reversed the DSS-induced reduction in baseline ion transport as well as colonic I sc responses to CCh. However, ion transport responses to forskolin were not significantly restored. Catalase also reduced activation of ERK MAP kinase in the setting of colitis, and increased expression of the Na + -K + -2Cl - cotransporter, NKCC1, consistent with restoration of ion transport function. Ex vivo treatment of inflamed colonic mucosae with catalase also partially restored ion transport function. Therefore, catalase partially prevents, and rescues, the loss of ion transport properties in DSS colitis even in the setting of unresolved tissue inflammation. These findings indicate a prominent role for ROS in ion transport dysfunction in colitis and may suggest novel strategies for the treatment of inflammatory diarrhoea. © 2016 John Wiley & Sons Australia, Ltd.

  6. Vacuum system control for the Heavy Ion Transport Line

    International Nuclear Information System (INIS)

    Stattel, P.; Feigenbaum, I.; Hseuh, H.C.; Robinson, T.; Skelton, R.; Wong, V.

    1987-01-01

    The Brookhaven AGS, 807 m in circumference, and the Tandem Van de Graaff are now joined together by a transport line, 600 m in length. This now allows heavy ions from the Tandem, up to fully stripped sulfur (M = 32) to be transported into the AGS and accelerated to 15 GeV/A. With the addition of a booster between the Tandem and the AGS in the near future, heavy ions such as gold (M = 200) can be accelerated to 30 Z/A GeV/A. This paper describes the HITL (Heavy Ion Transport Line) vacuum control system design and implementation

  7. Silicon transport in sputter-deposited tantalum layers grown under ion bombardment

    International Nuclear Information System (INIS)

    Gallais, P.; Hantzpergue, J.J.; Remy, J.C.; Roptin, D.

    1988-01-01

    Tantalum was sputter deposited on (111) Si substrate under low-energy ion bombardment in order to study the effects of the ion energy on the silicon transport into the Ta layer. The Si substrate was heated up to 500 0 C during growth. For ion energies up to 180 eV silicon is not transported into tantalum and the growth temperature has no effect. An ion bombardment energy of 280 eV enhances the transport of silicon throughout the tantalum layer. Growth temperatures up to 300 0 C have no effect on the silicon transport which is mainly enhanced by the ion bombardment. For growth temperatures between 300 and 500 0 C, the silicon transport is also enhanced by the thermal diffusion. The experimental depth distribution of silicon is similar to the theoretical depth distribution calculated for the case of an interdiffusion. The ion-enhanced process of silicon transport is characterized by an activation energy of 0.4 eV. Silicon into the layers as-grown at 500 0 C is in both states, amorphous silicide and microcrystalline cubic silicon

  8. Toroidal ripple transport of beam ions in the mega-ampère spherical tokamak

    International Nuclear Information System (INIS)

    McClements, K. G.; Hole, M. J.

    2012-01-01

    The transport of injected beam ions due to toroidal magnetic field ripple in the mega-ampère spherical tokamak (MAST) is quantified using a full orbit particle tracking code, with collisional slowing-down and pitch-angle scattering by electrons and bulk ions taken into account. It is shown that the level of ripple losses is generally rather low, although it depends sensitively on the major radius of the outer midplane plasma edge; for typical values of this parameter in MAST plasmas, the reduction in beam heating power due specifically to ripple transport is less than 1%, and the ripple contribution to beam ion diffusivity is of the order of 0.1 m 2 s –1 or less. It is concluded that ripple effects make only a small contribution to anomalous transport rates that have been invoked to account for measured neutron rates and plasma stored energies in some MAST discharges. Delayed (non-prompt) losses are shown to occur close to the outer midplane, suggesting that banana-drift diffusion is the most likely cause of the ripple-induced losses.

  9. Generation and transport of laser accelerated ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Peter; Boine-Frankenheim, Oliver [Technische Univ. Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Kornilov, Vladimir; Spaedtke, Peter [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Collaboration: LIGHT-Collaboration

    2013-07-01

    Currently the LIGHT- Project (Laser Ion Generation, Handling and Transport) is performed at the GSI Helmholtzzentrum fuer Schwerionenforschung GmbH Darmstadt. Within this project, intense proton beams are generated by laser acceleration, using the TNSA mechanism. After the laser acceleration the protons are transported through the beam pipe by a pulsed power solenoid. To study the transport a VORPAL 3D simulation is compared with CST simulation. A criterion as a function of beam parameters was worked out, to rate the importance of space charge. Furthermore, an exemplary comparison of the solenoid with a magnetic quadrupole-triplet was carried out. In the further course of the LIGHT-Project, it is planned to generate ion beams with higher kinetic energies, using ultra-thin targets. The acceleration processes that can appear are: RPA (Radiation Pressure Acceleration) and BOA (Break-Out Afterburner). Therefore the transport of an ion distribution will be studied, as it emerges from a RPA acceleration.

  10. P.I.A.F.E project: long distance transport of low energy exotic ions

    International Nuclear Information System (INIS)

    Nibart, V.

    1996-01-01

    The aim of the PIAFE project is the long distance (400 m) transport of a low energy radioactive ion beam from the ILL (Institut Laue Langevin) to the ISN (Institut des Sciences Nucleaires) of Grenoble (France). The production, extraction, ionization and mass separation of ions is performed by the ILL, while the transformation of ions into multicharged ions, their stripping and acceleration is carried out at the ISN. Theoretical and experimental studies for a simple an original guidance solution have shown that such a long transport, even delicate, should not encounter any major difficulty. The main objectives of this thesis is the technical realization of a 18 m section of this transport line. The problem of supports and focalizing elements alignment has been solved together with the other problems such as: the central trajectory deviation due to alignment defects and to the Earth's magnetic field; the particle losses due to charge exchange with the residual gas and the emittance increase by Coulomb scattering. It has been demonstrated that a 90% transmission can be obtained using a 25 keV energy and a 10 -7 mbar vacuum. Experimental measurements using a rubidium ion source have allowed to validate a theoretical model of emittance increase due to the residual gas-ions interactions. The increase of emittance with respect to the pressure has been measured using four residual gases of different mass. (J.S.). 29 refs., 61 figs., 19 tabs., 8 photos., 4 appends

  11. The molecular mechanism of ion-dependent gating in secondary transporters.

    Directory of Open Access Journals (Sweden)

    Chunfeng Zhao

    2013-10-01

    Full Text Available LeuT-like fold Na-dependent secondary active transporters form a large family of integral membrane proteins that transport various substrates against their concentration gradient across lipid membranes, using the free energy stored in the downhill concentration gradient of sodium ions. These transporters play an active role in synaptic transmission, the delivery of key nutrients, and the maintenance of osmotic pressure inside the cell. It is generally believed that binding of an ion and/or a substrate drives the conformational dynamics of the transporter. However, the exact mechanism for converting ion binding into useful work has yet to be established. Using a multi-dimensional path sampling (string-method followed by all-atom free energy simulations, we established the principal thermodynamic and kinetic components governing the ion-dependent conformational dynamics of a LeuT-like fold transporter, the sodium/benzyl-hydantoin symporter Mhp1, for an entire conformational cycle. We found that inward-facing and outward-facing states of Mhp1 display nearly the same free energies with an ion absent from the Na2 site conserved across the LeuT-like fold transporters. The barrier separating an apo-state from inward-facing or outward-facing states of the transporter is very low, suggesting stochastic gating in the absence of ion/substrate bound. In contrast, the binding of a Na2 ion shifts the free energy stabilizing the outward-facing state and promoting substrate binding. Our results indicate that ion binding to the Na2 site may also play a key role in the intracellular thin gate dynamics modulation by altering its interactions with the transmembrane helix 5 (TM5. The Potential of Mean Force (PMF computations for a substrate entrance displays two energy minima that correspond to the locations of the main binding site S1 and proposed allosteric S2 binding site. However, it was found that substrate's binds to the site S1 ∼5 kcal/mol more favorable

  12. Ion anomalous transport and feedback control. Final technical report, September 1, 1987 - August 31, 1997

    International Nuclear Information System (INIS)

    Sen, A.K.

    1998-01-01

    This final report is comprised of the following six progress reports: Ion Temperature Gradient Instability and Anomalous Transport, July 1989; Ion Temperature Gradient Instability and Anomalous Transport, August 1991; Ion Temperature Gradient Instability and Anomalous Transport, July 1993; Ion Anomalous Transport and Feedback Control, May 1994; Ion Anomalous Transport and Feedback Control, April 1995; and Ion Anomalous Transport and Feedback Control, December 1997

  13. Dust particle diffusion in ion beam transport region

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, N.; Okajima, Y.; Romero, C. F.; Kuwata, Y.; Kasuya, T.; Wada, M., E-mail: mwada@mail.doshisha.ac.jp [Graduate school of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)

    2016-02-15

    Dust particles of μm size produced by a monoplasmatron ion source are observed by a laser light scattering. The scattered light signal from an incident laser at 532 nm wavelength indicates when and where a particle passes through the ion beam transport region. As the result, dusts with the size more than 10 μm are found to be distributed in the center of the ion beam, while dusts with the size less than 10 μm size are distributed along the edge of the ion beam. Floating potential and electron temperature at beam transport region are measured by an electrostatic probe. This observation can be explained by a charge up model of the dust in the plasma boundary region.

  14. Lateral charge transport from heavy-ion tracks in integrated circuit chips

    Science.gov (United States)

    Zoutendyk, J. A.; Schwartz, H. R.; Nevill, L. R.

    1988-01-01

    A 256K DRAM has been used to study the lateral transport of charge (electron-hole pairs) induced by direct ionization from heavy-ion tracks in an IC. The qualitative charge transport has been simulated using a two-dimensional numerical code in cylindrical coordinates. The experimental bit-map data clearly show the manifestation of lateral charge transport in the creation of adjacent multiple-bit errors from a single heavy-ion track. The heavy-ion data further demonstrate the occurrence of multiple-bit errors from single ion tracks with sufficient stopping power. The qualitative numerical simulation results suggest that electric-field-funnel-aided (drift) collection accounts for single error generated by an ion passing through a charge-collecting junction, while multiple errors from a single ion track are due to lateral diffusion of ion-generated charge.

  15. The role of space charge compensation for ion beam extraction and ion beam transport (invited)

    International Nuclear Information System (INIS)

    Spädtke, Peter

    2014-01-01

    Depending on the specific type of ion source, the ion beam is extracted either from an electrode surface or from a plasma. There is always an interface between the (almost) space charge compensated ion source plasma, and the extraction region in which the full space charge is influencing the ion beam itself. After extraction, the ion beam is to be transported towards an accelerating structure in most cases. For lower intensities, this transport can be done without space charge compensation. However, if space charge is not negligible, the positive charge of the ion beam will attract electrons, which will compensate the space charge, at least partially. The final degree of Space Charge Compensation (SCC) will depend on different properties, like the ratio of generation rate of secondary particles and their loss rate, or the fact whether the ion beam is pulsed or continuous. In sections of the beam line, where the ion beam is drifting, a pure electrostatic plasma will develop, whereas in magnetic elements, these space charge compensating electrons become magnetized. The transport section will provide a series of different plasma conditions with different properties. Different measurement tools to investigate the degree of space charge compensation will be described, as well as computational methods for the simulation of ion beams with partial space charge compensation

  16. Ion transporters involved in acidification of the resorption lacuna in osteoclasts

    DEFF Research Database (Denmark)

    Henriksen, K.; Sorensen, M.G.; Jensen, V.K.

    2008-01-01

    Osteoclasts possess a large amount of ion transporters, which participate in bone resorption; of these, the vacuolar-adenosine trisphosphatase (V-ATPase) and the chloride-proton antiporter ClC-7 acidify the resorption lacuna. However, whether other ion transporters participate in this process is ......, including carbonic anhydrase II, the NHEs, and potassium-chloride cotransporters, are all involved in resorption but do not seem to directly be involved in acidification of the lysosomes Udgivelsesdato: 2008/9......Osteoclasts possess a large amount of ion transporters, which participate in bone resorption; of these, the vacuolar-adenosine trisphosphatase (V-ATPase) and the chloride-proton antiporter ClC-7 acidify the resorption lacuna. However, whether other ion transporters participate in this process...

  17. The Hydrogen Peroxide Scavenger, Catalase, Alleviates Ion Transport Dysfunction in Murine Colitis

    Science.gov (United States)

    Barrett, Kim E.; McCole, Declan F.

    2016-01-01

    Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) contribute to epithelial damage and ion transport dysfunction (key events in inflammatory diarrhea) in inflammatory bowel disease (IBD). The aim of this study was to identify if H2O2 mediates suppression of colonic ion transport function in the murine dextran sulfate sodium (DSS) colitis model by using the H2O2 degrading enzyme, catalase. Colitis was induced by administering DSS (4%) in drinking water for 5 days followed by 3 days on normal H2O. Mice were administered either pegylated-catalase or saline at day −1, 0 and +1 of DSS treatment. Ion transport responses to the Ca2+-dependent agonist, carbachol (CCh), or the cAMP-dependent agonist, forskolin, were measured across distal colonic mucosa mounted in Ussing chambers. Parameters of DSS-induced inflammation (loss in body weight, decreased colon length, altered stool consistency), were only partially alleviated by catalase while histology was only minimally improved. However, catalase significantly reversed the DSS-induced reduction in baseline ion transport as well as colonic Isc responses to CCh. However, ion transport responses to forskolin were not significantly restored. Catalase also reduced activation of ERK MAP kinase in the setting of colitis, and increased expression of the Na+-K+-2Cl− cotransporter, NKCC1, consistent with restoration of ion transport function. Ex vivo treatment of inflamed colonic mucosae with catalase also partially restored ion transport function. Therefore, catalase partially prevents, and rescues, the loss of ion transport properties in DSS colitis even in the setting of unresolved tissue inflammation. These findings indicate a prominent role for ROS in ion transport dysfunction in colitis and may suggest novel strategies for the treatment of inflammatory diarrhea. PMID:27543846

  18. Assessing toxicity of varying major ion concentrations to marine organisms

    International Nuclear Information System (INIS)

    Mount, D.R.; Quast, W.

    1993-01-01

    Recent regulatory developments have required that produced waters discharged in the Gulf of Mexico be monitored for toxicity to marine organisms. While produced water may contain a variety of indigenous and introduced chemicals, virtually all have moderate to high concentrations of major ions. Although seawater is also rich in these ions, excessive salinity can cause toxicity to marine organisms. Perhaps more importantly, toxicity to marine organisms can be caused by deviations from normal ion ratios even if the total salinity is within organism tolerances. To provide a better understanding of marine organism responses to variations in major ion concentrations, the authors conducted a series of laboratory experiments to quantify the responses of mysid shrimp (Mysidopsis bahia) and sheepshead minnows (Cyprinodon variegatus) to modifications of normal seawater chemistry. Acute testing included both increasing and decreasing the concentrations of individual ions relative to seawater, as well as altering total salinity. Results show these organisms can be adversely affected by this altered chemistry and their sensitivity is dependent upon the individual ions that are manipulated. Results from these studies are being incorporated into an overall strategy for evaluating the influence of major ion chemistry on produced water toxicity tests

  19. Transport of Zn(OH)4(-2) ions across a polyolefin microporous membrane

    Science.gov (United States)

    Krejci, Ivan; Vanysek, Peter; Trojanek, Antonin

    1993-04-01

    Transport of ZN(OH)4(2-) ions through modified microporous polypropylene membranes (Celgard 3401, 350140) was studied using polarography and conductometry. Soluble Nafion as an ion exchange modifying agent was applied to the membrane by several techniques. The influence of Nafion and a surfactant on transport of zinc ions through the membrane was studied. A relationship between membrane impedance and the rate of Zn(OH)4(2-) transport was found. The found correlation between conductivity, ion permeability and Nafion coverage suggests a suitable technique of membrane preparation to obtain desired zinc ion barrier properties.

  20. Transport theory of dissipative heavy-ion collisions

    International Nuclear Information System (INIS)

    Norenberg, W.

    1979-01-01

    The lectures present the formulation of a transport theory, the derivation of a practicable transport equation (Fokker-Planck equation) and the evaluation of transport coefficients for dissipative (or deeply inelastic) heavy-ion collisions. The applicability of the theoretical concept is tested with remarkable success in the analyses of various experimental information (mass transfer, angular-momentum dissipation and energy loss). Some critical remarks on the present situation of transport theories are added. Future developments are outlined. (author)

  1. Development of general-purpose particle and heavy ion transport monte carlo code

    International Nuclear Information System (INIS)

    Iwase, Hiroshi; Nakamura, Takashi; Niita, Koji

    2002-01-01

    The high-energy particle transport code NMTC/JAM, which has been developed at JAERI, was improved for the high-energy heavy ion transport calculation by incorporating the JQMD code, the SPAR code and the Shen formula. The new NMTC/JAM named PHITS (Particle and Heavy-Ion Transport code System) is the first general-purpose heavy ion transport Monte Carlo code over the incident energies from several MeV/nucleon to several GeV/nucleon. (author)

  2. Synthetic organic agrochemicals in the lower Mississippi River and its major tributaries: Distribution, transport and fate

    Science.gov (United States)

    Pereira, W.E.; Rostad, C.E.; Leiker, T.J.; ,

    1992-01-01

    The Mississippi River and its major tributaries transport herbicides and their degradation products from agricultural areas in the mid-western U.S.A. These compounds include atrazine and its degradation products (desethyl- and desisopropylatrazine), simazine, cyanazine, metolachlor, and alachlor and its degradation products (2-chloro-2',6'-diethylacetanilide, 2-hydroxy-2',6'-diethylacetanilide and 2,6-diethylaniline). These compounds were identified and confirmed by gas chromatography-ion trap mass spectrometry. Loads of these compounds were determined during five sampling trips in 1987-1989. Stream loads of these compounds indicated that atrazine and metolachlor were relatively conservative in downstream transport. Alachlor and its degradation products were generated from point and non-point sources. Seasonal variations and hydrologic conditions controlled the loads of these compounds in the Mississippi River. Cross-channel mixing was slow downstream from major river confluences, possibly requiring several hundred kilometers of downriver transit for completion. The annual transport of these compounds into the Gulf of Mexico was estimated to be < 2% of the annual application of each herbicide in the Midwest.The Mississippi River and its major tributaries transport herbicides and their degradation products from agricultural areas in the mid-western U.S.A. These compounds include atrazine and its degradation products (desethyl- and desisopropylatrazine), simazine, cyanazine, metolachlor, and alachlor and its degradation products (2-chloro-2???,6???-diethylacetanilide, 2-hydroxy-2???,6???-diethylacetanilide and 2,6-diethylaniline). These compounds were identified and confirmed by gas chromatography-ion trap mass spectrometry. Loads of these compounds were determined during five sampling trips in 1987-1989. Stream loads of these compounds indicated that atrazine and metolachlor were relatively conservative in downstream transport. Alachlor and its degradation products

  3. Ion Transport across Biological Membranes by Carborane-Capped Gold Nanoparticles.

    Science.gov (United States)

    Grzelczak, Marcin P; Danks, Stephen P; Klipp, Robert C; Belic, Domagoj; Zaulet, Adnana; Kunstmann-Olsen, Casper; Bradley, Dan F; Tsukuda, Tatsuya; Viñas, Clara; Teixidor, Francesc; Abramson, Jonathan J; Brust, Mathias

    2017-12-26

    Carborane-capped gold nanoparticles (Au/carborane NPs, 2-3 nm) can act as artificial ion transporters across biological membranes. The particles themselves are large hydrophobic anions that have the ability to disperse in aqueous media and to partition over both sides of a phospholipid bilayer membrane. Their presence therefore causes a membrane potential that is determined by the relative concentrations of particles on each side of the membrane according to the Nernst equation. The particles tend to adsorb to both sides of the membrane and can flip across if changes in membrane potential require their repartitioning. Such changes can be made either with a potentiostat in an electrochemical cell or by competition with another partitioning ion, for example, potassium in the presence of its specific transporter valinomycin. Carborane-capped gold nanoparticles have a ligand shell full of voids, which stem from the packing of near spherical ligands on a near spherical metal core. These voids are normally filled with sodium or potassium ions, and the charge is overcompensated by excess electrons in the metal core. The anionic particles are therefore able to take up and release a certain payload of cations and to adjust their net charge accordingly. It is demonstrated by potential-dependent fluorescence spectroscopy that polarized phospholipid membranes of vesicles can be depolarized by ion transport mediated by the particles. It is also shown that the particles act as alkali-ion-specific transporters across free-standing membranes under potentiostatic control. Magnesium ions are not transported.

  4. Beamline for low-energy transport of highly charged ions at HITRAP

    International Nuclear Information System (INIS)

    Andelkovic, Z.; Herfurth, F.; Kotovskiy, N.; König, K.; Maaß, B.; Murböck, T.; Neidherr, D.; Schmidt, S.; Steinmann, J.; Vogel, M.; Vorobjev, G.

    2015-01-01

    A beamline for transport of highly charged ions with energies as low as a few keV/charge has been constructed and commissioned at GSI. Complementary to the existing infrastructure of the HITRAP facility for deceleration of highly charged ions from the GSI accelerator, the new beamline connects the HITRAP ion decelerator and an EBIT with the associated experimental setups. Therefore, the facility can now transport the decelerated heavy highly charged ions to the experiments or supply them offline with medium-heavy highly charged ions from the EBIT, both at energies as low as a few keV/charge. Here we present the design of the 20 m long beamline with the corresponding beam instrumentation, as well as its performance in terms of energy and transport efficiency

  5. Radial transport of storm time ring current ions

    Science.gov (United States)

    Lui, A. T. Y.

    1993-01-01

    Radial transport of energetic ions for the development of the main phase of geomagnetic storms is investigated with data from the medium energy particle analyzer (MEPA) on the Charge Composition Explorer spacecraft, which monitored protons, helium ions, and the carbon-nitrogen-oxygen group, which is mostly dominated by oxygen ions. From a study of four geomagnetic storms, we show that the flux increase of these ions in the inner ring current region can be accounted for by an inward displacement of the ring current population by 0.5 to 3.5 R(E). There is a general trend that a larger inward displacement occurs at higher L shells than at lower ones. These results are in agreement with previous findings. The radially injected population consists of the prestorm population modified by substorm injections which occur on a much shorter time scale than that for a storm main phase. It is also found that the inward displacement is relatively independent of ion mass and energy, suggesting that the radial transport of these energetic ions is effected primarily by convective motion from a large electric field or by diffusion resulting from magnetic field fluctuations.

  6. Ion transport in sub-5-nm graphene nanopores

    International Nuclear Information System (INIS)

    Suk, Myung E.; Aluru, N. R.

    2014-01-01

    Graphene nanopore is a promising device for single molecule sensing, including DNA bases, as its single atom thickness provides high spatial resolution. To attain high sensitivity, the size of the molecule should be comparable to the pore diameter. However, when the pore diameter approaches the size of the molecule, ion properties and dynamics may deviate from the bulk values and continuum analysis may not be accurate. In this paper, we investigate the static and dynamic properties of ions with and without an external voltage drop in sub-5-nm graphene nanopores using molecular dynamics simulations. Ion concentration in graphene nanopores sharply drops from the bulk concentration when the pore radius is smaller than 0.9 nm. Ion mobility in the pore is also smaller than bulk ion mobility due to the layered liquid structure in the pore-axial direction. Our results show that a continuum analysis can be appropriate when the pore radius is larger than 0.9 nm if pore conductivity is properly defined. Since many applications of graphene nanopores, such as DNA and protein sensing, involve ion transport, the results presented here will be useful not only in understanding the behavior of ion transport but also in designing bio-molecular sensors

  7. Simulation of Chamber Transport for Heavy-Ion-Fusion Drivers

    International Nuclear Information System (INIS)

    Sharp, W.M.; Callahan, D.A.; Tabak, M.; Yu, S.S.; Peterson, P.F.; Rose, D.V.; Welch, D.R.

    2003-01-01

    The heavy-ion fusion (HIF) community recently developed a power-plant design that meets the various requirements of accelerators, final focus, chamber transport, and targets. The point design is intended to minimize physics risk and is certainly not optimal for the cost of electricity. Recent chamber-transport simulations, however, indicate that changes in the beam ion species, the convergence angle, and the emittance might allow more-economical designs

  8. Chamber-transport simulation results for heavy-ion fusion drivers

    International Nuclear Information System (INIS)

    Sharp, W M; Callahan, D A; Tabak, M; Yu, S S; Peterson, P F; Rose, D V; Welch, D R

    2004-01-01

    The heavy-ion fusion (HIF) community recently developed a power-plant design that meets the various requirements of accelerators, final focus, chamber transport, and targets. The point design is intended to minimize physics risk and is certainly not optimal for the cost of electricity. Recent chamber-transport simulations, however, indicate that changes in the beam ion species, the convergence angle, and the emittance might allow more-economical designs

  9. SIMULATION OF CHAMBER TRANSPORT FOR HEAVY-ION FUSION DRIVERS

    International Nuclear Information System (INIS)

    Sharp, W M; Callahan, D A; Tabak, M; Yu, S S; Peterson, P F; Rose, D V; Welch, D R

    2004-01-01

    The heavy-ion fusion (HIF) community recently developed a power-plant design that meets the various requirements of accelerators, final focus, chamber transport, and targets. The point design is intended to minimize physics risk and is certainly not optimal for the cost of electricity. Recent chamber-transport simulations, however, indicate that changes in the beam ion species, the convergence angle, and the emittance might allow more-economical designs

  10. Plasma flow between equipotential electrodes in an ion current transport mode

    International Nuclear Information System (INIS)

    Zimin, A.M.; Morozov, A.I.

    1995-01-01

    The paper deals with calculation of parameters in accelerator channel and near electrodes, when realizing ion current transport mode. Model on the basis of two-dimensional two-liquid nondissipative magnetohydrodynamics was formulated, and its solution for isomagnetic flow in smooth channel approximation was conducted. Change of parameters near anode surface was considered in detail. It is shown that regular joining of flow with equipotential electrodes without large near-electrode jumps is performed during ion current transport. Current distribution along accelerator length was calculated when determining ion intake through anode surface due to inertial-drift emission. It is shown that this mechanism can provide rather high current density in ion current transport. 10 refs.; 6 figs

  11. Lithium-ion transport in inorganic solid state electrolyte

    International Nuclear Information System (INIS)

    Gao Jian; Li Hong; Zhao Yu-Sheng; Shi Si-Qi

    2016-01-01

    An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and designing better electrolyte materials. Ionic conductivity is one of the most important indices of the performance of inorganic solid state electrolytes. The general definition of solid state electrolytes is presented in terms of their role in a working cell (to convey ions while isolate electrons), and the history of solid electrolyte development is briefly summarized. Ways of using the available theoretical models and experimental methods to characterize lithium-ion transport in solid state electrolytes are systematically introduced. Then the various factors that affect ionic conductivity are itemized, including mainly structural disorder, composite materials and interface effects between a solid electrolyte and an electrode. Finally, strategies for future material systems, for synthesis and characterization methods, and for theory and calculation are proposed, aiming to help accelerate the design and development of new solid electrolytes. (topical review)

  12. A synthetic ion transporter that disrupts autophagy and induces apoptosis by perturbing cellular chloride concentrations

    Science.gov (United States)

    Busschaert, Nathalie; Park, Seong-Hyun; Baek, Kyung-Hwa; Choi, Yoon Pyo; Park, Jinhong; Howe, Ethan N. W.; Hiscock, Jennifer R.; Karagiannidis, Louise E.; Marques, Igor; Félix, Vítor; Namkung, Wan; Sessler, Jonathan L.; Gale, Philip A.; Shin, Injae

    2017-07-01

    Perturbations in cellular chloride concentrations can affect cellular pH and autophagy and lead to the onset of apoptosis. With this in mind, synthetic ion transporters have been used to disturb cellular ion homeostasis and thereby induce cell death; however, it is not clear whether synthetic ion transporters can also be used to disrupt autophagy. Here, we show that squaramide-based ion transporters enhance the transport of chloride anions in liposomal models and promote sodium chloride influx into the cytosol. Liposomal and cellular transport activity of the squaramides is shown to correlate with cell death activity, which is attributed to caspase-dependent apoptosis. One ion transporter was also shown to cause additional changes in lysosomal pH, which leads to impairment of lysosomal enzyme activity and disruption of autophagic processes. This disruption is independent of the initiation of apoptosis by the ion transporter. This study provides the first experimental evidence that synthetic ion transporters can disrupt both autophagy and induce apoptosis.

  13. PHITS-a particle and heavy ion transport code system

    International Nuclear Information System (INIS)

    Niita, Koji; Sato, Tatsuhiko; Iwase, Hiroshi; Nose, Hiroyuki; Nakashima, Hiroshi; Sihver, Lembit

    2006-01-01

    The paper presents a summary of the recent development of the multi-purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS. In particular, we discuss in detail the development of two new models, JAM and JQMD, for high energy particle interactions, incorporated in PHITS, and show comparisons between model calculations and experiments for the validations of these models. The paper presents three applications of the code including spallation neutron source, heavy ion therapy and space radiation. The results and examples shown indicate PHITS has great ability of carrying out the radiation transport analysis of almost all particles including heavy ions within a wide energy range

  14. Nano and Mesoscale Ion and Water Transport in Perfluorosulfonic AcidMembranes

    Science.gov (United States)

    2017-10-01

    Nano- and Mesoscale Ion and Water Transport in Perfluorosulfonic-Acid Membranes A. R. Crothers a,b , C. J. Radke a,b , A. Z. Weber a a...Berkeley, CA 94720, USA Water and aqueous cations transport along multiple length scales in perfluorosulfonic-acid membranes. Molecular interactions...as a function of hydration. A resistor network upscales the nanoscale properties to predict effective membrane ion and water transport and their

  15. Ion Transport by Ameloblasts during Amelogenesis.

    Science.gov (United States)

    Bronckers, A L J J

    2017-03-01

    Hypomineralization of developing enamel is associated with changes in ameloblast modulation during the maturation stage. Modulation (or pH cycling) involves the cyclic transformation of ruffle-ended (RE) ameloblasts facing slightly acidic enamel into smooth-ended (SE) ameloblasts near pH-neutral enamel. The mechanism of ameloblast modulation is not clear. Failure of ameloblasts of Cftr-null and anion exchanger 2 ( Ae2)-null mice to transport Cl - into enamel acidifies enamel, prevents modulation, and reduces mineralization. It suggests that pH regulation is critical for modulation and for completion of enamel mineralization. This report presents a review of the major types of transmembrane molecules that ameloblasts express to transport calcium to form crystals and bicarbonates to regulate pH. The type of transporter depends on the developmental stage. Modulation is proposed to be driven by the pH of enamel fluid and the compositional and/or physicochemical changes that result from increased acidity, which may turn RE ameloblasts into SE mode. Amelogenins delay outgrowth of crystals and keep the intercrystalline space open for diffusion of mineral ions into complete depth of enamel. Modulation enables stepwise removal of amelogenins from the crystal surface, their degradation, and removal from the enamel. Removal of matrix allows slow expansion of crystals. Modulation also reduces the stress that ameloblasts experience when exposed to high acid levels generated by mineral formation or by increased intracellular Ca 2+ . By cyclically interrupting Ca 2+ transport by RE ameloblasts and their transformation into SE ameloblasts, proton production ceases shortly and enables the ameloblasts to recover. Modulation also improves enamel crystal quality by selectively dissolving immature Ca 2+ -poor crystals, removing impurities as Mg 2+ and carbonates, and recrystallizing into more acid-resistant crystals.

  16. Particle modeling of transport of α-ray generated ion clusters in air

    International Nuclear Information System (INIS)

    Tong, Lizhu; Nanbu, Kenichi; Hirata, Yosuke; Izumi, Mikio; Miyamoto, Yasuaki; Yamaguchi, Hiromi

    2006-01-01

    A particle model is developed using the test-particle Monte Carlo method to study the transport properties of α-ray generated ion clusters in a flow of air. An efficient ion-molecule collision model is proposed to simulate the collisions between ion and air molecule. The simulations are performed for a steady state of ion transport in a circular pipe. In the steady state, generation of ions is balanced with such losses of ions as absorption of the measuring sensor or pipe wall and disappearance by positive-negative ion recombination. The calculated ion current to the measuring sensor agrees well with the previous measured data. (author)

  17. Mechanisms involved in the transport of mercuric ions in target tissues

    Science.gov (United States)

    Bridges, Christy C.; Zalups, Rudolfs K.

    2016-01-01

    Mercury exists in the environment in various forms, all of which pose a risk to human health. Despite guidelines regulating the industrial release of mercury into the environment, humans continue to be exposed regularly to various forms of this metal via inhalation or ingestion. Following exposure, mercuric ions are taken up by and accumulate in numerous organs, including brain, intestine, kidney, liver, and placenta. In order to understand the toxicological effects of exposure to mercury, a thorough understanding of the mechanisms that facilitate entry of mercuric ions into target cells must first be obtained. A number of mechanisms for the transport of mercuric ions into target cells and organs have been proposed in recent years. However, the ability of these mechanisms to transport mercuric ions and the regulatory features of these carriers have not been characterized completely. The purpose of this review is to summarize the current findings related to the mechanisms that may be involved in the transport of inorganic and organic forms of mercury in target tissues and organs. This review will describe mechanisms known to be involved in the transport of mercury and will also propose additional mechanisms that may potentially be involved in the transport of mercuric ions into target cells. PMID:27422290

  18. Transport of Carbonate Ions by Novel Cellulose Fiber Supported Solid Membrane

    Directory of Open Access Journals (Sweden)

    A. G. Gaikwad

    2012-06-01

    Full Text Available Transport of carbonate ions was explored through fiber supported solid membrane. A novel fiber supported solid membrane was prepared by chemical modification of cellulose fiber with citric acid, 2′2-bipyridine and magnesium carbonate. The factors affecting the permeability of carbonate ions such as immobilization of citric acid-magnesium metal ion -2′2-bipyridine complex (0 to 2.5 mmol/g range over cellulose fiber, carbon-ate ion concentration in source phase and NaOH concentration in receiving phase were investigated. Ki-netic of carbonate, sulfate, and nitrate ions was investigated through fiber supported solid membrane. Transport of carbonate ions with/without bubbling of CO2 (0 to 10 ml/min in source phase was explored from source to receiving phase. The novel idea is to explore the adsorptive transport of CO2 from source to receiving phase through cellulose fiber containing magnesium metal ion organic framework. Copyright © 2012 BCREC UNDIP. All rights reserved.Received: 25th November 2011; Revised: 17th December 2011; Accepted: 19th December 2011[How to Cite: A.G. Gaikwad. (2012. Transport of Carbonate Ions by Novel Cellulose Fiber Supported Solid Membrane. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (1: 49– 57.  doi:10.9767/bcrec.7.1.1225.49-57][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.1225.49-57 ] | View in 

  19. Parallel Transport Quantum Logic Gates with Trapped Ions.

    Science.gov (United States)

    de Clercq, Ludwig E; Lo, Hsiang-Yu; Marinelli, Matteo; Nadlinger, David; Oswald, Robin; Negnevitsky, Vlad; Kienzler, Daniel; Keitch, Ben; Home, Jonathan P

    2016-02-26

    We demonstrate single-qubit operations by transporting a beryllium ion with a controlled velocity through a stationary laser beam. We use these to perform coherent sequences of quantum operations, and to perform parallel quantum logic gates on two ions in different processing zones of a multiplexed ion trap chip using a single recycled laser beam. For the latter, we demonstrate individually addressed single-qubit gates by local control of the speed of each ion. The fidelities we observe are consistent with operations performed using standard methods involving static ions and pulsed laser fields. This work therefore provides a path to scalable ion trap quantum computing with reduced requirements on the optical control complexity.

  20. Ion transport analysis of a high beta-poloidal JT-60U discharge

    International Nuclear Information System (INIS)

    Horton, W.; Tajima, T.; Dong, J.-Q.; Kim, J.-Y.; Kishimoto, Y.

    1997-01-01

    The high beta-poloidal discharge number 17110 in JT-60U (JT-60 Team, IAEA, Vienna, 1993) that developes an internal transport barrier is analysed for the transport of ion energy and momentum. First, the classical ion temperature gradient stability properties are calculated in the absence of sheared plasma flows to establish the L-mode transport level prior to the emergence of the transport barrier. Then the evolving toroidal and poloidal velocity profiles reported by Koide et al (1994 Phys. Rev. Lett. 72 3662) are used to show how the sheared mass flows control the stability and transport. Coupled energy-momentum transport equations predict the creation of a transport barrier. The balance of the steep ion temperature gradient against the magnetic shear and sheared mass flow is calculated for the profiles in the 17110 discharge. (Author)

  1. Transport of negative ions across a double sheath with a virtual cathode

    International Nuclear Information System (INIS)

    McAdams, R; King, D B; Surrey, E; Holmes, A J T

    2011-01-01

    A one-dimensional analytical model of the sheath in a negative ion source, such as those proposed for heating and diagnostic beams on present and future fusion devices, has been developed. The model, which is collisionless, describes the transport of surface produced negative ions from a cathode, across the sheath to a plasma containing electrons, positive ions and negative ions. It accounts for the situation where the emitted flux of negative ions is greater than the space charge limit, where the electric field at the cathode is negative, and a virtual cathode is formed. It is shown that, in the presence of a virtual cathode, there is a maximum current density of negative ions that can be transported across the sheath into the plasma. Furthermore, for high rates of surface production the virtual cathode persists regardless of the negative bias applied to the cathode, so that the current density transported across the sheath is limited. This is a significant observation and implies that present negative ion sources may not be exploiting all of the surface production available. The model is used to calculate the transported negative ion flux in a number of examples. The limitations of the model and proposed future work are also discussed.

  2. Vocal fold ion transport and mucin expression following acrolein exposure.

    Science.gov (United States)

    Levendoski, Elizabeth Erickson; Sivasankar, M Preeti

    2014-05-01

    The vocal fold epithelium is exposed to inhaled particulates including pollutants during breathing in everyday environments. Yet, our understanding of the effects of pollutants on vocal fold epithelial function is extremely limited. The objective of this study was to investigate the effect of the pollutant acrolein on two vocal fold epithelial mechanisms: ion transport and mucin (MUC) synthesis. These mechanisms were chosen as each plays a critical role in vocal defense and in maintaining surface hydration which is necessary for optimal voice production. Healthy, native porcine vocal folds (N = 85) were excised and exposed to an acrolein or sham challenge. A 60-min acrolein, but not sham challenge significantly reduced ion transport and inhibited cyclic adenosine monophosphate-dependent, increases in ion transport. Decreases in ion transport were associated with reduced sodium absorption. Within the same timeline, no significant acrolein-induced changes in MUC gene or protein expression were observed. These results improve our understanding of the effects of acrolein on key vocal fold epithelial functions and inform the development of future investigations that seek to elucidate the impact of a wide range of pollutant exposures on vocal fold health.

  3. Ballistic-neutralized chamber transport of intense heavy ion beams

    International Nuclear Information System (INIS)

    Rose, D.V.; Welch, D.R.; Oliver, B.V.; Clark, R.E.; Sharp, W.M.; Friedman, A.

    2001-01-01

    Two-dimensional particle-in-cell simulations of intense heavy ion beams propagating in an inertial confinement fusion (ICF) reactor chamber are presented. The ballistic-neutralized transport scheme studied uses 4 GeV Pb +1 ion beams injected into a low-density, gas-filled reactor chamber and the beam is ballistically focused onto an ICF target before entering the chamber. Charge and current neutralization of the beam is provided by the low-density background gas. The ballistic-neutralized simulations include stripping of the beam ions as the beam traverses the chamber as well as ionization of the background plasma. In addition, a series of simulations are presented that explore the charge and current neutralization of the ion beam in an evacuated chamber. For this vacuum transport mode, neutralizing electrons are only drawn from sources near the chamber entrance

  4. Ion transport in turbulent edge plasmas

    International Nuclear Information System (INIS)

    Helander, P.; Massachusetts Inst. of Tech., Cambridge, MA; Hazeltine, R.D.; Catto, P.J.

    1996-02-01

    Edge plasmas, such as the tokamak scrape-off layer, exist as a consequence of a balance between cross-field diffusion and parallel losses. The former is usually anomalous, and is widely thought to be driven by strong electrostatic turbulence. It is shown that the anomalous diffusion affects the parallel ion transport by giving rise to a new type of thermal force between different ion species. This force is parallel to the magnetic field, but arises entirely because of perpendicular gradients, and could be important for impurity retention in the tokamak divertor. (author)

  5. Ion sampling and transport in Inductively Coupled Plasma Mass Spectrometry

    Science.gov (United States)

    Farnsworth, Paul B.; Spencer, Ross L.

    2017-08-01

    Quantitative accuracy and high sensitivity in inductively coupled plasma mass spectrometry (ICP-MS) depend on consistent and efficient extraction and transport of analyte ions from an inductively coupled plasma to a mass analyzer, where they are sorted and detected. In this review we examine the fundamental physical processes that control ion sampling and transport in ICP-MS and compare the results of theory and computerized models with experimental efforts to characterize the flow of ions through plasma mass spectrometers' vacuum interfaces. We trace the flow of ions from their generation in the plasma, into the sampling cone, through the supersonic expansion in the first vacuum stage, through the skimmer, and into the ion optics that deliver the ions to the mass analyzer. At each stage we consider idealized behavior and departures from ideal behavior that affect the performance of ICP-MS as an analytical tool.

  6. Effects of cyclooxygenase and lipoxygenase inhibition on basal- and serotonin-induced ion transport in rat colon

    DEFF Research Database (Denmark)

    Engelmann, Bodil Elisabeth; Bindslev, Niels; Poulsen, Steen Seier

    2002-01-01

    basal conditions. Furthermore, data suggest neither the COX-1 nor the COX-2 enzyme to be of major importance for 5-HT-induced ion transport in rat colon in vitro. In conclusion, this study supports 5-HT as a mediator of chloride secretion by activating several receptor subtypes and the LOX enzyme...

  7. Analysis of the ion energy transport in ohmic discharges in the ASDEX tokamak

    International Nuclear Information System (INIS)

    Simmet, E.E.; Fahrbach, H.U.; Herrmann, W.; Stroth, U.

    1996-10-01

    An analysis of the local ion energy transport is performed for more than one hundred well documented ohmic ASDEX discharges. These are characterized by three different confinement regimes: the linear ohmic confinement (LOC), the saturated ohmic confinement (SOC) and the improved ohmic confinement (IOC). All three are covered by this study. To identify the most important local transport mechanism of the ion heat, the ion power balance equation is analyzed. Two methods are used: straightforward calculation with experimental data only, and a comparison of measured and calculated profiles of the ion temperature and the ion heat conductivity, respectively. A discussion of the power balance shows that conductive losses dominate the ion energy transport in all ohmic discharges of ASDEX. Only inside the q=1-surface losses due to sawtooth activity play a role, while at the edge convective fluxes and CX-losses influence the ion energy transport. Both methods lead to the result that both the ion temperature and the ion heat conductivity are consistent with predictions of the neoclassical theory. Enhanced heat losses as suggested by theories eg. on the basis of η i modes can be excluded. (orig.)

  8. Global transport and localized layering of metallic ions in the upper atmospherer

    Directory of Open Access Journals (Sweden)

    L. N. Carter

    1999-02-01

    Full Text Available A numerical model has been developed which is capable of simulating all phases of the life cycle of metallic ions, and results are described and interpreted herein for the typical case of Fe+ ions. This cycle begins with the initial deposition of metallics through meteor ablation and sputtering, followed by conversion of neutral Fe atoms to ions through photoionization and charge exchange with ambient ions. Global transport arising from daytime electric fields and poleward/ downward di.usion along geomagnetic field lines, localized transport and layer formation through de- scending convergent nulls in the thermospheric wind field, and finally annihilation by chemical neutralization and compound formation are treated. The model thus sheds new light on the interdependencies of the physical and chemical processes a.ecting atmospheric metallics. Model output analysis confirms the dominant role of both global and local transport to the ion's life cycle, showing that upward forcing from the equatorial electric field is critical to global movement, and that diurnal and semidiurnal tidal winds are responsible for the forma- tion of dense ion layers in the 90±250 km height region. It is demonstrated that the assumed combination of sources, chemical sinks, and transport mechanisms actually produces F-region densities and E-region layer densities similar to those observed. The model also shows that zonal and meridional winds and electric fields each play distinct roles in local transport, whereas the ion distribution is relatively insensitive to reasonable variations in meteoric deposition and chemical reaction rates.Key words. Ionosphere (ion chemistry and composition; ionosphere-atmosphere interactions.

  9. Metal ion transport quantified by ICP-MS in intact cells

    Science.gov (United States)

    Figueroa, Julio A. Landero; Stiner, Cory A.; Radzyukevich, Tatiana L.; Heiny, Judith A.

    2016-01-01

    The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions. PMID:26838181

  10. Ion-neutral transport through quadrupole interfaces of mass-spectrometer systems

    International Nuclear Information System (INIS)

    Jugroot, M.; Groth, C.P.T.; Thomson, B.A.; Baranov, V.; Collings, B.A.; French, J.B.

    2004-01-01

    The transport of free ions through highly under-expanded jet flows of neutral gases and in the presence of applied electric fields is investigated by continuum-based numerical simulations. In particular, numerical results are described which are relevant to ion flows occurring in quadrupole interfaces of mass spectrometer systems. A five-moment mathematical model and parallel multi-block numerical solution procedure is developed for predicting the ion transport. The model incorporates the effects of ion-neutral collision processes and is used in conjunction with a Navier-Stokes model and flow solver for the neutral gas to examine the key influences controlling the ion motion. The effects of the neutral gas flow, electric fields (both dc and rf), and flow field geometry on ion mobility are carefully assessed. The capability of controlling the charged particle motions through a combination of directed neutral flow and applied electric field is demonstrated for these high-speed, hypersonic, jet flows. (author)

  11. Transport of secondary electrons and reactive species in ion tracks

    Science.gov (United States)

    Surdutovich, Eugene; Solov'yov, Andrey V.

    2015-08-01

    The transport of reactive species brought about by ions traversing tissue-like medium is analysed analytically. Secondary electrons ejected by ions are capable of ionizing other molecules; the transport of these generations of electrons is studied using the random walk approximation until these electrons remain ballistic. Then, the distribution of solvated electrons produced as a result of interaction of low-energy electrons with water molecules is obtained. The radial distribution of energy loss by ions and secondary electrons to the medium yields the initial radial dose distribution, which can be used as initial conditions for the predicted shock waves. The formation, diffusion, and chemical evolution of hydroxyl radicals in liquid water are studied as well. COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy.

  12. Literature study of volatile radioiodine release from ion-exchange resins during transportation

    International Nuclear Information System (INIS)

    Wren, J.C.

    1991-02-01

    A transport package is currently being developed by Ontario Hydro to carry used filters and ion-exchange columns from the Pickering and Darlington Nuclear Generating Stations to the Bruce Nuclear Generating Station for disposal. The main reason that the transport package must be licensed is the possibility that volatile radionuclides being transported in the package might be released during transport accidents. Of particular concern is the iodine that might become volatile due to the degradation of the ion exchange resin. This report reviews the literature on the thermal and radiolytic degradation of ion exchange resins and provides calculations to estimate the fraction of volatile iodine as a function of time under postulated accident conditions

  13. Synthetic organic agrochemicals in the lower Mississippi River and its major tributaries--Distribution, transport and fate

    Science.gov (United States)

    Pereira, W.E.; Rostad, C.E.; Leiker, T.J.

    1992-01-01

    The Mississippi River and its major tributaries transport herbicides and their degradation products from agricultural areas in the mid-western U.S.A. These compounds include atrazine and its degradation products (desethyl- and desisopropylatrazine), simazine, cyanazine, metolachlor, and alachlor and its degradation products (2-chloro-2′,6′-diethylacetanilide 2-hydroxy-2′,6′-diethylacetanilide and 2,6-diethylaniline). These compounds were identified and confirmed by gas chromatography-ion trap mass spectrometry. Loads of these compounds were determined during five sampling trips in 1987–1989. Stream loads of these compounds indicated that atrazine and metolachlor were relatively conservative in downstream transport. Alachlor and its degradation products were generated from point and non-point sources. Seasonal variations and hydrologic conditions controlled the loads of these compounds in the Mississippi River. Cross-channel mixing was slow downstream from major river confluences, possibly requiring several hundred kilometers of downriver transit for completion. The annual transport of these compounds into the Gulf of Mexico was estimated to be < 2% of the annual application of each herbicide in the Midwest.

  14. Simulation of Electron and Ion Transport in Methane-Air Counterflow Diffusion Flames

    Science.gov (United States)

    Choi, Sangkyu; Bisetti, Fabrizio; Chung, Suk Ho

    2010-11-01

    The spatial distribution of charged species in a methane-air counterflow diffusion flame is simulated with a detailed ion chemistry. The electric field induced by the distribution of charged species is calculated and compared to that obtained invoking the ambipolar diffusion assumption. The two calculations showed identical profiles for charged species and electric field. The profiles of ion mole fractions show two peaks: one near the maximum temperature and a second peak on the oxidizer side. The major ions near the maximum temperature are electron, C2H3O+ and H3O+. CHO3- and H3O+ contribute to the second peak. These profiles are quite different from those adopting a simplified three-step mechanism based solely on E-, CHO+ and H3O+, which shows only a single peak. Reaction pathway analyses showed that near the flame region, the proton is transferred by the path of CHO+ -> H3O+ -> C2H3O+ -> CHO+ in a circulating manner. In the second peak, CHO3- is produced though the pathway of E- -> O- -> OH- -> CHO3-. The sensitivity of the charged species profiles to transport properties is investigated, and it is found that the variation of charged species profiles near peak temperature is relatively small, while on the oxidizer side, it is quite sensitive to transport properties.

  15. Physics of gas breakdown for ion beam transport in gas

    International Nuclear Information System (INIS)

    Olson, C.L.; Poukey, J.W.; Hinshelwood, D.D.; Rose, D.V.; Hubbard, R.F.; Lampe, M.; Neri, J.M.; Ottinger, P.F.; Slinker, S.P.; Stephanakis, S.J.; Young, F.C.; Welch, D.R.

    1993-01-01

    Detailed analysis, experiments, and computer simulations are producing a new understanding of gas breakdown during intense ion beam transport in neutral gas. Charge neutralization of beam micro clumps is shown to limit the net clump potentials to a non-zero value π min , which can lead to divergence growth and axial energy spreading. At pressures approx-gt 1 Torr, plasma shielding should substantially reduce this effect Current neutralization has been studied in experiments on the GAMBLE II accelerator. The importance of fast electrons (knockons and runaways) has been established in IPROP simulations, which are in agreement with the experiments. For light ion fusion parameters with pressures approx-gt 1 Torr, very small net current fractions (much-lt 1%) appear feasible, permitting ballistic transport in gas. Self-pinched requires higher net current fractions (≥ 2%) and preliminary IPROP code results indicate that this appears achievable for small-radius intense beams in lower pressure gases (approx-gt Torr). Several self-pinched transport concepts look promising. The importance of these results for both light ion fusion and heavy ion fusion is discussed

  16. Numerical modelling of ion transport in flames

    KAUST Repository

    Han, Jie; Belhi, Memdouh; Bisetti, Fabrizio; Sarathy, Mani

    2015-01-01

    that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect

  17. Global transport and localized layering of metallic ions in the upper atmospherer

    Directory of Open Access Journals (Sweden)

    L. N. Carter

    Full Text Available A numerical model has been developed which is capable of simulating all phases of the life cycle of metallic ions, and results are described and interpreted herein for the typical case of Fe+ ions. This cycle begins with the initial deposition of metallics through meteor ablation and sputtering, followed by conversion of neutral Fe atoms to ions through photoionization and charge exchange with ambient ions. Global transport arising from daytime electric fields and poleward/ downward di.usion along geomagnetic field lines, localized transport and layer formation through de- scending convergent nulls in the thermospheric wind field, and finally annihilation by chemical neutralization and compound formation are treated. The model thus sheds new light on the interdependencies of the physical and chemical processes a.ecting atmospheric metallics. Model output analysis confirms the dominant role of both global and local transport to the ion's life cycle, showing that upward forcing from the equatorial electric field is critical to global movement, and that diurnal and semidiurnal tidal winds are responsible for the forma- tion of dense ion layers in the 90±250 km height region. It is demonstrated that the assumed combination of sources, chemical sinks, and transport mechanisms actually produces F-region densities and E-region layer densities similar to those observed. The model also shows that zonal and meridional winds and electric fields each play distinct roles in local transport, whereas the ion distribution is relatively insensitive to reasonable variations in meteoric deposition and chemical reaction rates.

    Key words. Ionosphere (ion chemistry and composition; ionosphere-atmosphere interactions.

  18. Light-induced modification of plant plasma membrane ion transport.

    Science.gov (United States)

    Marten, I; Deeken, R; Hedrich, R; Roelfsema, M R G

    2010-09-01

    Light is not only the driving force for electron and ion transport in the thylakoid membrane, but also regulates ion transport in various other membranes of plant cells. Light-dependent changes in ion transport at the plasma membrane and associated membrane potential changes have been studied intensively over the last century. These studies, with various species and cell types, revealed that apart from regulation by chloroplasts, plasma membrane transport can be controlled by phytochromes, phototropins or channel rhodopsins. In this review, we compare light-dependent plasma membrane responses of unicellular algae (Eremosphaera and Chlamydomonas), with those of a multicellular alga (Chara), liverworts (Conocephalum), mosses (Physcomitrella) and several angiosperm cell types. Light-dependent plasma membrane responses of Eremosphaera and Chara are characterised by the dominant role of K(+) channels during membrane potential changes. In most other species, the Ca(2+)-dependent activation of plasma membrane anion channels represents a general light-triggered event. Cell type-specific responses are likely to have evolved by modification of this general response or through the development of additional light-dependent signalling pathways. Future research to elucidate these light-activated signalling chains is likely to benefit from the recent identification of S-type anion channel genes and proteins capable of regulating these channels.

  19. Transport of Ions Across the Inner Envelope Membrane of Chloroplasts

    International Nuclear Information System (INIS)

    McCarty, R. E.

    2004-01-01

    The technical report outlines the results of nine years of research on how ions cross the inner envelope membrane of chloroplasts. The ions include protons, nitrite, calcium and ferrous iron. Bicarbonate transport was also studied

  20. Behavior of electron and ion transport in discharges with an internal transport barrier in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Greenfield, C.M.; Staebler, G.M.; Rettig, C.L.

    1999-01-01

    We report results of experiments to further determine the underlying physics behind the formation and development of internal transport barriers (ITB) in the DIII-D tokamak. The initial ITB formation occurs when the neutral beam heating power exceeds a threshold value during the early stages of the current ramp in low-density discharges. This region of reduced transport, made accessible by suppression of long-wavelength turbulence by sheared flows, is most evident in the ion temperature and impurity rotation profiles. In some cases, reduced transport is also observed in the electron temperature and density profiles. If the power is near the threshold, the barrier remains stationary and encloses only a small fraction of the plasma volume. If, however, the power is increased, the transport barrier expands to encompass a larger fraction of the plasma volume. The dynamic behavior of the transport barrier during the growth phase exhibits rapid transport events that are associated with both broadening of the profiles and reductions in turbulence and associated transport. In some, but not all, cases, these events are correlated with the safety factor q passing through integer values. The final state following this evolution is a plasma exhibiting ion thermal transport at or below neoclassical levels. Typically, the electron thermal transport remains anomalously high. Recent experimental results are reported in which rf electron heating was applied to plasmas with an ion ITB, thereby increasing both the electron and ion transport. Although the results are partially in agreement with the usual E-vector x B-vector shear suppression hypothesis, the results still leave questions that must be addressed in future experiments. (author)

  1. Behavior of electron and ion transport in discharges with an internal transport barrier in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Greenfield, C.M.; Staebler, G.M.; Rettig, C.L.

    1998-12-01

    The authors report results of experiments to further determine the underlying physics behind the formation and development of internal transport barriers (ITB) in the DIII-D tokamak. The initial ITB formation occurs when the neutral beam heating power exceeds a threshold value during the early stages of the current ramp in low-density discharges. This region of reduced transport, made accessible by suppression of long-wavelength turbulence by sheared flows, is most evident in the ion temperature and impurity rotation profiles. In some cases, reduced transport is also observed in the electron temperature and density profiles. If the power is near the threshold, the barrier remains stationary and enclosed only a small fraction of the plasma volume. If, however, the power is increased, the transport barrier expands to encompass a larger fraction of the plasma volume. The dynamic behavior of the transport barrier during the growth phase exhibits rapid transport events that are associated with both broadening of the profiles and reductions in turbulence and associated transport. In some, but not all, cases, these events are correlated with the safety factor q passing through integer values. The final state following this evolution is a plasma exhibiting ion thermal transport at or below neoclassical levels. Typically, the electron thermal transport remains anomalously high. Recent experimental results are reported in which rf electron heating was applied to plasmas with an ion ITB, thereby increasing both the electron and ion transport. Although the results are partially in agreement with the usual rvec E x rvec B shear suppression hypothesis, the results still leave questions that must be addressed in future experiments

  2. Shear flow effects on ion thermal transport in tokamaks

    International Nuclear Information System (INIS)

    Tajima, T.; Horton, W.; Dong, J.Q.; Kishimoto, Y.

    1995-03-01

    From various laboratory and numerical experiments, there is clear evidence that under certain conditions the presence of sheared flows in a tokamak plasma can significantly reduce the ion thermal transport. In the presence of plasma fluctuations driven by the ion temperature gradient, the flows of energy and momentum parallel and perpendicular to the magnetic field are coupled with each other. This coupling manifests itself as significant off-diagonal coupling coefficients that give rise to new terms for anomalous transport. The authors derive from the gyrokinetic equation a set of velocity moment equations that describe the interaction among plasma turbulent fluctuations, the temperature gradient, the toroidal velocity shear, and the poloidal flow in a tokamak plasma. Four coupled equations for the amplitudes of the state variables radially extended over the transport region by toroidicity induced coupling are derived. The equations show bifurcations from the low confinement mode without sheared flows to high confinement mode with substantially reduced transport due to strong shear flows. Also discussed is the reduced version with three state variables. In the presence of sheared flows, the radially extended coupled toroidal modes driven by the ion temperature gradient disintegrate into smaller, less elongated vortices. Such a transition to smaller spatial correlation lengths changes the transport from Bohm-like to gyrobohm-like. The properties of these equations are analyzed. The conditions for the improved confined regime are obtained as a function of the momentum-energy deposition rates and profiles. The appearance of a transport barrier is a consequence of the present theory

  3. ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT, AND SYSTEM DYNAMICS IN HALL EFFECT THRUSTERS

    Science.gov (United States)

    2017-06-30

    NUMBER (Include area code) 30 June 2017 Briefing Charts 26 May 2017 - 30 June 2017 ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT, AND SYSTEM DYNAMICS ...Robert Martin N/A ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT, AND SYSTEM DYNAMICS IN HALL EFFECT THRUSTERS Robert Martin1, Jonathan Tran2 1AIR FORCE...Approved for Public Release; Distribution is Unlimited. PA# 17394 1 / 13 OUTLINE 1 INTRODUCTION 2 TRANSPORT 3 DYNAMIC SYSTEM 4 SUMMARY AND CONCLUSION

  4. Heavy-ion transport codes for radiotherapy and radioprotection in space

    International Nuclear Information System (INIS)

    Mancusi, Davide

    2006-06-01

    Simulation of the transport of heavy ions in matter is a field of nuclear science that has recently received attention in view of its importance for some relevant applications. Accelerated heavy ions can, for example, be used to treat cancers (heavy-ion radiotherapy) and show some superior qualities with respect to more conventional treatment systems, like photons (x-rays) or protons. Furthermore, long-term manned space missions (like a possible future mission to Mars) pose the challenge to protect astronauts and equipment on board against the harmful space radiation environment, where heavy ions can be responsible for a significant share of the exposure risk. The high accuracy expected from a transport algorithm (especially in the case of radiotherapy) and the large amount of semi-empirical knowledge necessary to even state the transport problem properly rule out any analytical approach; the alternative is to resort to numerical simulations in order to build treatment-planning systems for cancer or to aid space engineers in shielding design. This thesis is focused on the description of HIBRAC, a one-dimensional deterministic code optimised for radiotherapy, and PHITS (Particle and Heavy- Ion Transport System), a general-purpose three-dimensional Monte-Carlo code. The structure of both codes is outlined and some relevant results are presented. In the case of PHITS, we also report the first results of an ongoing comprehensive benchmarking program for the main components of the code; we present the comparison of partial charge-changing cross sections for a 400 MeV/n 40 Ar beam impinging on carbon, polyethylene, aluminium, copper, tin and lead targets

  5. Transport due to ion pressure gradient turbulence

    International Nuclear Information System (INIS)

    Connor, J.W.

    1986-01-01

    Turbulent transport due to the ion pressure gradient (or temperature drift) instability is thought to be significant when etasub(i)=d(ln Tsub(i))/d(ln n)>1. The invariance properties of the governing equations under scale transformations are used to discuss the characteristics of this turbulence. This approach not only clarifies the relationships between earlier treatments but also, in certain limits, completely determines the scaling properties of the fluctuations and the consequent thermal transport. (author)

  6. Angular neutron transport investigation in the HZETRN free-space ion and nucleon transport and shielding computer program

    International Nuclear Information System (INIS)

    Singleterry, R.C. Jr.; Wilson, J.W.

    1997-01-01

    Extension of the high charge and energy (HZE) transport computer program HZETRN for angular transport of neutrons is considered. For this paper, only light ion transport, He 4 and lighter, will be analyzed using a pure solar proton source. The angular transport calculator is the ANISN/PC program which is being controlled by the HZETRN program. The neutron flux values are compared for straight-ahead transport and angular transport in one dimension. The shield material is aluminum and the target material is water. The thickness of these materials is varied; however, only the largest model calculated is reported which is 50 gm/cm 2 of aluminum and 100 gm/cm 2 of water. The flux from the ANISN/PC calculation is about two orders of magnitude lower than the flux from HZETRN for very low energy neutrons. It is only a magnitude lower for the neutrons in the 10 to 20 MeV range in the aluminum and two orders lower in the water. The major reason for this difference is in the transport modes: straight-ahead versus angular. The angular treatment allows a longer path length than the straight-ahead approximation. Another reason is the different cross section sets used by the ANISN/PC-BUGLE-80 mode and the HZETRN mode. The next step is to investigate further the differences between the two codes and isolate the differences to just the angular versus straight-ahead transport mode. Then, create a better coupling between the angular neutron transport and the charged particle transport

  7. Quantifying Ion Transport in Polymers Using Electrochemical Quartz Crystal Microbalance with Dissipation

    Science.gov (United States)

    Lutkenhaus, Jodie; Wang, Shaoyang

    For polymers in energy systems, one of the most common means of quantifying ion transport is that of electrochemical impedance spectroscopy, in which an alternating electric field is applied and the resultant impedance response is recorded. While useful, this approach misses subtle details in transient film swelling, effects of hydration or solvent shells around the transporting ion, and changes in mechanical properties of the polymer. Here we present electrochemical quartz crystal microbalance with dissipation (EQCMD) monitoring as a means to quantify ion transport, dynamic swelling, and mechanical properties of polymers during electrochemical interrogation. We focus upon EQCMD characterization of the redox-active nitroxide radical polymer, poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate) (PTMA). Upon oxidation, PTMA becomes positively charged, which requires the transport of a complementary anion into the polymer for electroneutrality. By EQCMD, we quantify anion transport and resultant swelling upon oxidation, as well as decoupling of contributions attributed to the ion and the solvent. We explore the effect of different lithium electrolyte salts in which each salt gives different charge storage and mass transport behavior. This is attributed to varied polymer-dopant and dopant-solvent interactions. The work was supported by the Grant DE-SC0014006 funded by the U.S. Department of Energy, Office of Science.

  8. Ion transport mechanisms in lamellar phases of salt-doped PS–PEO block copolymer electrolytes

    KAUST Repository

    Sethuraman, Vaidyanathan; Mogurampelly, Santosh; Ganesan, Venkat

    2017-01-01

    We use a multiscale simulation strategy to elucidate, at an atomistic level, the mechanisms underlying ion transport in the lamellar phase of polystyrene–polyethylene oxide (PS–PEO) block copolymer (BCP) electrolytes doped with LiPF6 salts. Explicitly, we compare the results obtained for ion transport in the microphase separated block copolymer melts to those for salt-doped PEO homopolymer melts. In addition, we also present results for dynamics of the ions individually in the PEO and PS domains of the BCP melt, and locally as a function of the distance from the lamellar interfaces. When compared to the PEO homopolymer melt, ions were found to exhibit slower dynamics in both the block copolymer (overall) and in the PEO phase of the BCP melt. Such results are shown to arise from the effects of slower polymer segmental dynamics in the BCP melt and the coordination characteristics of the ions. Polymer backbone-ion residence times analyzed as a function of distance from the interface indicate that ions have a larger residence time near the interface compared to that near the bulk of lamella, and demonstrates the influence of the glassy PS blocks and microphase segregation on the ion transport properties. Ion transport mechanisms in BCP melts reveal that there exist five distinct mechanisms for ion transport along the backbone of the chain and exhibit qualitative differences from the behavior in homopolymer melts. We also present results as a function of salt concentration which show that the mean-squared displacements of the ions decrease with increasing salt concentration, and that the ion residence times near the polymer backbone increase with increasing salt concentration.

  9. Ion transport mechanisms in lamellar phases of salt-doped PS–PEO block copolymer electrolytes

    KAUST Repository

    Sethuraman, Vaidyanathan

    2017-10-23

    We use a multiscale simulation strategy to elucidate, at an atomistic level, the mechanisms underlying ion transport in the lamellar phase of polystyrene–polyethylene oxide (PS–PEO) block copolymer (BCP) electrolytes doped with LiPF6 salts. Explicitly, we compare the results obtained for ion transport in the microphase separated block copolymer melts to those for salt-doped PEO homopolymer melts. In addition, we also present results for dynamics of the ions individually in the PEO and PS domains of the BCP melt, and locally as a function of the distance from the lamellar interfaces. When compared to the PEO homopolymer melt, ions were found to exhibit slower dynamics in both the block copolymer (overall) and in the PEO phase of the BCP melt. Such results are shown to arise from the effects of slower polymer segmental dynamics in the BCP melt and the coordination characteristics of the ions. Polymer backbone-ion residence times analyzed as a function of distance from the interface indicate that ions have a larger residence time near the interface compared to that near the bulk of lamella, and demonstrates the influence of the glassy PS blocks and microphase segregation on the ion transport properties. Ion transport mechanisms in BCP melts reveal that there exist five distinct mechanisms for ion transport along the backbone of the chain and exhibit qualitative differences from the behavior in homopolymer melts. We also present results as a function of salt concentration which show that the mean-squared displacements of the ions decrease with increasing salt concentration, and that the ion residence times near the polymer backbone increase with increasing salt concentration.

  10. Ion and solvent Transport in Polypyrrole: Experimental Test of Osmotic Model

    DEFF Research Database (Denmark)

    Velmurugu, Yogambigai; Skaarup, Steen

    2005-01-01

    Ion and solvent transport in the conjugated polymer actuator material, polypyrrole, doped with the immobile anion dodecyl benzene sulphonate, has been investigated by simultaneous cyclic voltammetry and Electrochemical Quartz Crystal Microbalance measurements. The purpose was to elucidate the pre...... from almost pure cation transport to ca. equal amount of anion transport; exchanging Br- for Cl- ions has only negligible effect at lower concentrations at equal osmotic pressures. Ca. 4 H2O molecules are tightly bound to each Na+ ion at concentrations ... the precise nature of the mobile species during redox cycling, and to seek confirmation for the osmotic mechanism of actuation. Three testable aspects of the model were confirmed: The number of inserted H2O molecules decreases with electrolyte concentration; at the same time the mechanism gradually changes...

  11. Separation of some metal ions using coupled transport supported liquid membranes

    International Nuclear Information System (INIS)

    Chaudhary, M.A.

    1993-01-01

    Liquid membrane extraction processes has become very popular due to their superiority in many ways over other separation techniques. In coupled transport membranes the metal ions can be transported across the membrane against their concentration gradient under the influence of chemical potential difference. Liquid membranes consisting of a carrier-cum-diluent, supported in microporous polymeric hydrophobic films have been studied for transport of metal ions like U(VI), Cr(VI), Be(II), V(V), Ti(IV), Zn(II), Cd(II), Hf(IV), W(VI), and Co(II). The present paper presents basic data with respect to flux and permeabilities of these metal ions across membranes based on experimental results and theoretical equations, using different carriers and diluents and provides a brief reference to possibility of such membranes for large scale applications. (author)

  12. Regulation of the glutamine transporter SN1 by extracellular pH and intracellular sodium ions

    International Nuclear Information System (INIS)

    Broeer, A.; Broeer, S.; Setiawan, I.; Lang, F.

    2001-01-01

    Full text: SN1 has recently been identified as one of the major glutamine transporters in hepatocytes and brain astrocytes. It appears to be the molecular correlate of the system N amino acid transporter. Two different transport mechanisms have been proposed for this transporter. Either an electroneutral mechanism, in which glutamine uptake is coupled to an exchange of 1Na + and 1H + , or an electrogenic mechanism coupled to the exchange of 2Na + against 1H + . This study was performed to solve the discrepancies and to investigate the reversibility of the transporter. When expressed in Xenopus laevis oocytes glutamine uptake activity increased strongly with increasing pH. In agreement with the pH-dependence we found that uptake of glutamine was accompanied by an alkalization of the cytosol, indicating that SN1 mediates Glutamine/H + -Antiport. Uptake of glutamine into oocytes was Na + -dependent. Analysis of the Na + -dependence of glutamine transport and Flux studies using 22 Na + indicated that two or more sodium ions were cotransported together with glutamine. However, at the same time intracellular Na + was exchanged against extracellular Na + . Taken together with the results of the pH-dependence it is proposed that SN1 mediates a Na + /Na + -exchange and a Na + /H + -exchange, both being coupled to the transport of glutamine. In agreement with this mechanism we found that acidic pH caused a reversal of the transporter. To investigate the source of the glutamine-induced inward currents, we compared inward currents generated by the 1Na + /glutamine cotransporter ATA1 with those generated by SN1. Currents induced by glutamine uptake in SN1 expressing oocytes were only a fraction of the currents induced by glutamine in ATA1 expressing oocytes, indicating that they were not generated by a stoichiometric uptake of ions. It is concluded that SN1 is tightly regulated by pH and intracellular Na + -ions and is capable of mediating glutamine uptake and release

  13. Ion Transport in Organic Electrolyte Solution through the Pore Channels of Anodic Nanoporous Alumina Membranes

    International Nuclear Information System (INIS)

    Fukutsuka, Tomokazu; Koyamada, Kohei; Maruyama, Shohei; Miyazaki, Kohei; Abe, Takeshi

    2016-01-01

    Highlights: • Ion transport in organic electrolyte solution in macro- and meso-pores was focused. • Anodic nanoporous alumina membrane was used as a porous material. • The specific ion conductivities drastically decreased in macro- and meso-pores. - Abstract: For the development of high energy density lithium-ion batteries with the high rate performance, the enhancement of the ion transport in the electrolyte solutions impregnated in the porous electrodes is a key. To study the ion transport in porous electrodes, anodic nanoporous alumina (APA) self-standing membranes with macro- or meso-pores were used as model porous materials. These membranes had nearly spherical pore channels of discrete 20–68 nm in diameters. By using the geometric shape of the pores, we attempted to evaluate the specific ion conductivities of the organic electrolyte solution dissolving lithium salt simply. AC impedance spectroscopy measurement of a four-electrode cell with membranes showed one depressed semi-circle in the Nyquist plots and this semi-circle can be assigned as the ion transport resistance in the pores. The specific ion conductivities evaluated from the ion transport resistances and the geometric parameters showed very small values, even in the macro-pores, as compared with that of the bulk electrolyte solution.

  14. Heavy-ion transport codes for radiotherapy and radioprotection in space

    Energy Technology Data Exchange (ETDEWEB)

    Mancusi, Davide

    2006-06-15

    Simulation of the transport of heavy ions in matter is a field of nuclear science that has recently received attention in view of its importance for some relevant applications. Accelerated heavy ions can, for example, be used to treat cancers (heavy-ion radiotherapy) and show some superior qualities with respect to more conventional treatment systems, like photons (x-rays) or protons. Furthermore, long-term manned space missions (like a possible future mission to Mars) pose the challenge to protect astronauts and equipment on board against the harmful space radiation environment, where heavy ions can be responsible for a significant share of the exposure risk. The high accuracy expected from a transport algorithm (especially in the case of radiotherapy) and the large amount of semi-empirical knowledge necessary to even state the transport problem properly rule out any analytical approach; the alternative is to resort to numerical simulations in order to build treatment-planning systems for cancer or to aid space engineers in shielding design. This thesis is focused on the description of HIBRAC, a one-dimensional deterministic code optimised for radiotherapy, and PHITS (Particle and Heavy- Ion Transport System), a general-purpose three-dimensional Monte-Carlo code. The structure of both codes is outlined and some relevant results are presented. In the case of PHITS, we also report the first results of an ongoing comprehensive benchmarking program for the main components of the code; we present the comparison of partial charge-changing cross sections for a 400 MeV/n {sup 40}Ar beam impinging on carbon, polyethylene, aluminium, copper, tin and lead targets.

  15. Beam-transport study of an isocentric rotating ion gantry with minimum number of quadrupoles

    International Nuclear Information System (INIS)

    Pavlovic, Marius; Griesmayer, Erich; Seemann, Rolf

    2005-01-01

    A beam-transport study of an isocentric gantry for ion therapy is presented. The gantry is designed with the number of quadrupoles down to the theoretical minimum, which is the feature published for the first time in this paper. This feature has been achieved without compromising the ion-optical functions of the beam-transport system that is capable of handling non-symmetric beams (beams with different emittances in vertical and horizontal plane), pencil-beam scanning, double-achromatic optics and beam-size control. Ion-optical properties of the beam-transport system are described, discussed and illustrated by computer simulations performed by the TRANSPORT-code

  16. Transport of radioactive ions in soil by electrokinetics

    International Nuclear Information System (INIS)

    Buehler, M.F.; Surma, J.E.; Virden, J.W.

    1994-10-01

    An electrokinetic approach is being evaluated for in situ soil remediation at the Hanford Site in Richland, Washington. This approach uses an applied electric field to induce transport of both radioactive and hazardous waste ions in soil. The work discussed in this paper involves the development of a new method to monitor the movement of the radioactive ions within the soil during the electrokinetic process. A closed cell and a gamma counter were used to provide iii situ measurements of 137 Cs and 60 Co movement in Hanford soil. Preliminary results show that for an applied potential of 200 V over approximately 200 hr, 137 Cs and 60 60 were transported a distance of 4 to 5 in. The monitoring technique demonstrated the feasibility of using electrokinetics for soil separation applications

  17. Physics of electron and lithium-ion transport in electrode materials for Li-ion batteries

    International Nuclear Information System (INIS)

    Wu Musheng; Xu Bo; Ouyang Chuying

    2016-01-01

    The physics of ionic and electrical conduction at electrode materials of lithium-ion batteries (LIBs) are briefly summarized here, besides, we review the current research on ionic and electrical conduction in electrode material incorporating experimental and simulation studies. Commercial LIBs have been widely used in portable electronic devices and are now developed for large-scale applications in hybrid electric vehicles (HEV) and stationary distributed power stations. However, due to the physical limits of the materials, the overall performance of today’s LIBs does not meet all the requirements for future applications, and the transport problem has been one of the main barriers to further improvement. The electron and Li-ion transport behaviors are important in determining the rate capacity of LIBs. (topical review)

  18. Ion Transport and Structure in Polymer Electrolytes with Applications in Lithium Batteries

    Science.gov (United States)

    Chintapalli, Mahati

    When mixed with lithium salts, polymers that contain more than one chemical group, such as block copolymers and endgroup-functionalized polymers, are promising electrolyte materials for next-generation lithium batteries. One chemical group can provide good ion solvation and transport properties, while the other chemical group can provide secondary properties that improve the performance characteristics of the battery. Secondary properties of interest include non-flammability for safer lithium ion batteries and high mechanical modulus for dendrite resistance in high energy density lithium metal batteries. Block copolymers and other materials with multiple chemical groups tend to exhibit nanoscale heterogeneity and can undergo microphase separation, which impacts the ion transport properties. In block copolymers that microphase separate, ordered self-assembled structures occur on longer length scales. Understanding the interplay between structure at different length scales, salt concentration, and ion transport is important for improving the performance of multifunctional polymer electrolytes. In this dissertation, two electrolyte materials are characterized: mixtures of endgroup-functionalized, short chain perfluoropolyethers (PFPEs) and lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt, and mixtures of polystyrene-block-poly(ethylene oxide) (PS- b-PEO; SEO) and LiTFSI. The PFPE/LiTFSI electrolytes are liquids in which the PFPE backbone provides non-flammability, and the endgroups resemble small molecules that solvate ions. In these electrolytes, the ion transport properties and nanoscale heterogeneity (length scale 1 nm) are characterized as a function of endgroup using electrochemical techniques, nuclear magnetic resonance spectroscopy, and wide angle X-ray scattering. Endgroups, especially those containing PEO segments, have a large impact on ionic conductivity, in part because the salt distribution is not homogenous; we find that salt partitions

  19. Acceleration of beam ions during major radius compression in TFTR

    International Nuclear Information System (INIS)

    Wong, K.L.; Bitter, M.; Hammett, G.W.

    1985-09-01

    Tangentially co-injected deuterium beam ions were accelerated from 82 keV up to 150 keV during a major radius compression experiment in TFTR. The ion energy spectra and the variation in fusion yield were in good agreement with Fokker-Planck code simulations. In addition, the plasma rotation velocity was observed to rise during compression

  20. Structure, Ion Transport, and Rheology of Nanoparticle Salts

    KAUST Repository

    Wen, Yu Ho; Lu, Yingying; Dobosz, Kerianne M.; Archer, Lynden A.

    2014-01-01

    particles into medium and high dielectric constant liquids yields electrolytes with unique structure and transport properties. We find that electrostatic repulsion imparted by ion dissociation can be tuned to control the dispersion state and rheology through

  1. Realistic modeling of chamber transport for heavy-ion fusion

    International Nuclear Information System (INIS)

    Sharp, W.M.; Grote, D.P.; Callahan, D.A.; Tabak, M.; Henestroza, E.; Yu, S.S.; Peterson, P.F.; Welch, D.R.; Rose, D.V.

    2003-01-01

    Transport of intense heavy-ion beams to an inertial-fusion target after final focus is simulated here using a realistic computer model. It is found that passing the beam through a rarefied plasma layer before it enters the fusion chamber can largely neutralize the beam space charge and lead to a usable focal spot for a range of ion species and input conditions

  2. Multigroup Boltzmann-Fokker-Planck approach for ion transport in amorphous media

    Energy Technology Data Exchange (ETDEWEB)

    Keen, N.D.; Prinja, A.K.; Dunham, G.D. [New Mexico Univ., Albuquerque, NM (United States). Chemical and Nuclear Engineering Dept.

    2001-07-01

    We present a MGMC approach for the transport of arbitrary mass ions having energies up to a few MeV. Specifically, we consider interactions with target atoms through Coulomb mediated elastic nuclear and inelastic electronic collisions and restrict considerations to ion implantation and energy deposition of primary ions in amorphous media. (orig.)

  3. Considerations from the viewpoint of neoclassical transport towards higher ion temperature heliotron plasmas

    International Nuclear Information System (INIS)

    Yokoyama, M.; Matsuoka, S.; Funaba, H.; Ida, K.; Nagaoka, K.; Yoshinuma, M.; Takeiri, Y.; Kaneko, O.

    2010-01-01

    The neoclassical (NC) transport analyses have been performed to elucidate the plausible approaches towards higher ion-temperature heliotron plasmas. Avoidance of the ripple transport is the key issue, for which the neoclassical ambipolar radial electric field (E r ) can be utilized. The ion-root scenario and the electron-root scenario are expected to be effective according to the experimental situation (especially, the temperature ratio between ions and electrons). The impact of the ion mass on the neoclassical ambipolar E r is also investigated to reveal the easier realization of electron-root E r in heavier ion plasmas. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Multivariate analysis of the transport in an ion exchange membrane bioreactor for removal of anionic micropollutants from drinking water.

    Science.gov (United States)

    Ricardo, A R; Velizarov, S; Crespo, J G; Reis, M A M

    2011-01-01

    The present study focuses on investigating the effects of biological compartment conditions on the transport of nitrate and perchlorate in an Ion Exchange Membrane Bioreactor (IEMB). In this hybrid process, the transport depends not only on the membrane properties but also on the biological compartment conditions. The experiments were planned according to the Plackett-Burman statistical design in order to cover a broader range of experimental conditions, under which a previously developed mechanistic transport model was not able to predict correctly the transport fluxes of the target pollutants. Using Principal Component Analysis, it was possible to identify not only the concentrations of target (nitrate and perchlorate) and of major driving counter-ion (chloride) but also those of some biomedium components (e.g. ammonia, ethanol and sulphate) as variables that affect the transport rate of micropollutants across the membrane. These conclusions are based on the loadings of the two first principal components that describe 84% of the data variance. The present study also revealed that the hydraulic retention time and the hydrodynamic conditions in the biocompartment have a minor contribution to the micropollutants transport. The results obtained are important for process optimization purposes.

  5. Creation and dynamical co-evolution of electron and ion channel transport barriers

    International Nuclear Information System (INIS)

    Newman, D.E.

    2002-01-01

    A wide variety of magnetic confinement devices have found transitions to an enhanced confinement regime. Simple dynamical models have been able to capture much of the dynamics of these barriers however an open question has been the disconnected nature of the electron thermal transport channel sometimes observed in the presence of a standard ('ion channel' barrier. By adding to simple barrier model an evolution equation for electron fluctuations we can investigate the interaction between the formation of the standard ion channel barrier and the somewhat less common electron channel barrier. Barrier formation in the electron channel is even more sensitive to the alignment of the various gradients making up the sheared radial electric field than the ion barrier is. Electron channel heat transport is found to significantly increase after the formation of the ion channel barrier but before the electron channel barrier is formed. This increased transport is important in the barrier evolution. (author)

  6. Ion and metabolite transport in the chloroplast of algae: lessons from land plants.

    Science.gov (United States)

    Marchand, Justine; Heydarizadeh, Parisa; Schoefs, Benoît; Spetea, Cornelia

    2018-06-01

    Chloroplasts are endosymbiotic organelles and play crucial roles in energy supply and metabolism of eukaryotic photosynthetic organisms (algae and land plants). They harbor channels and transporters in the envelope and thylakoid membranes, mediating the exchange of ions and metabolites with the cytosol and the chloroplast stroma and between the different chloroplast subcompartments. In secondarily evolved algae, three or four envelope membranes surround the chloroplast, making more complex the exchange of ions and metabolites. Despite the importance of transport proteins for the optimal functioning of the chloroplast in algae, and that many land plant homologues have been predicted, experimental evidence and molecular characterization are missing in most cases. Here, we provide an overview of the current knowledge about ion and metabolite transport in the chloroplast from algae. The main aspects reviewed are localization and activity of the transport proteins from algae and/or of homologues from other organisms including land plants. Most chloroplast transporters were identified in the green alga Chlamydomonas reinhardtii, reside in the envelope and participate in carbon acquisition and metabolism. Only a few identified algal transporters are located in the thylakoid membrane and play role in ion transport. The presence of genes for putative transporters in green algae, red algae, diatoms, glaucophytes and cryptophytes is discussed, and roles in the chloroplast are suggested. A deep knowledge in this field is required because algae represent a potential source of biomass and valuable metabolites for industry, medicine and agriculture.

  7. Simulation study of energetic ion transport due to Alfven eigenmodes in LHD plasma

    International Nuclear Information System (INIS)

    Todo, Yasushi; Nakajima, Noriyoshi; Osakabe, Masaki; Yamamoto, Satoshi; Spong, Donald A.

    2008-01-01

    The creation of holes and clumps in an energetic ion energy spectrum associated with Alfven eigenmodes was examined using the neutral particle analyzer (NPA) on the LHD shot no.47645. The difference in slowing-down times between the holes and clumps suggested that the energetic ions were transported over 10% of the plasma minor radius. The spatial profile and frequency of the Alfven eigenmodes were analyzed with the AE3D code. The phase space structures of the energetic ions on the NPA line-of-sight were investigated with Poincare plots, where an oscillating Alfven eigenmode was employed for earth plot. The phase space regions trapped by the Alfven eigenmodes appeared as islands in the Poincare plots. The radial width of the islands corresponded to the transport distance of the energetic ions. Since island width depends on Alfven eigenmode amplitude, it was found that Alfven eigenmodes with amplitude δB r /B - 10 -3 transported energetic ions over 10% of the minor radius. (author)

  8. Towards a heavy-ion transport capability in the MARS15 Code

    International Nuclear Information System (INIS)

    Mokhov, N.V.; Gudima, K.K.; Mashnik, S.G.; Rakhno, I.L.; Striganov, S.

    2004-01-01

    In order to meet the challenges of new accelerator and space projects and further improve modelling of radiation effects in microscopic objects, heavy-ion interaction and transport physics have been recently incorporated into the MARS15 Monte Carlo code. A brief description of new modules is given in comparison with experimental data. The MARS Monte Carlo code is widely used in numerous accelerator, detector, shielding and cosmic ray applications. The needs of the Relativistic Heavy-Ion Collider, Large Hadron Collider, Rare Isotope Accelerator and NASA projects have recently induced adding heavy-ion interaction and transport physics to the MARS15 code. The key modules of the new implementation are described below along with their comparisons to experimental data.

  9. Water-transporting proteins

    DEFF Research Database (Denmark)

    Zeuthen, Thomas

    2010-01-01

    . In the K(+)/Cl(-) and the Na(+)/K(+)/2Cl(-) cotransporters, water is entirely cotransported, while water transport in glucose uniporters and Na(+)-coupled transporters of nutrients and neurotransmitters takes place by both osmosis and cotransport. The molecular mechanism behind cotransport of water...... transport. Epithelial water transport is energized by the movements of ions, but how the coupling takes place is uncertain. All epithelia can transport water uphill against an osmotic gradient, which is hard to explain by simple osmosis. Furthermore, genetic removal of aquaporins has not given support...... to osmosis as the exclusive mode of transport. Water cotransport can explain the coupling between ion and water transport, a major fraction of transepithelial water transport and uphill water transport. Aquaporins enhance water transport by utilizing osmotic gradients and cause the osmolarity...

  10. Heavy ion transport in the core of ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Odstrcil, Tomas [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany); Physik-Department E28, Technische Universitaet Muenchen, 85747 Garching (Germany); Puetterich, Thomas; Angioni, Clemente; Bilato, Roberto; Gude, Anja; Vezinet, Didier [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany); Mazon, Didier [CEA, IRFM F-13108 Saint Paul-lez-Durance (France); Collaboration: ASDEX Upgrade Team

    2016-07-01

    High impurity concentration in the core of the future fusion reactors can lead to the serious degradation of the achievable fusion gain. Therefore, a better understanding of the underlying impurity transport processes is necessary for higher performance, more efficient power exhaust and avoidance of impurity accumulation. Radial impurity transport is mainly driven by neoclassical and turbulent particle fluxes. Both these components show substantial variation depending on the poloidal angle. Consequently, an asymmetry in the poloidal distribution of impurities leads to significant changes in the radial impurity flow and the total content of the plasma core. The aim of this contribution is to experimentally verify a model describing the poloidal asymmetry of heavy impurities using measurements from ASDEX Upgrade. The observed asymmetries are caused mainly by the centrifugal force and poloidal electric force created by the fast particles produced by intensive ion-cyclotron heating. Finally, a change in the radial transport of the tungsten ions will be presented in the case of large inboard and outboard impurity accumulation.

  11. Design and characterization of a neutralized-transport experiment for heavy-ion fusion

    Directory of Open Access Journals (Sweden)

    Enrique Henestroza

    2004-08-01

    Full Text Available In heavy-ion inertial-confinement fusion systems, intense beams of ions must be transported from the exit of the final-focus magnet system through the fusion chamber to hit spots on the target with radii of about 2 mm. For the heavy-ion-fusion power-plant scenarios presently favored in the U.S., a substantial fraction of the ion-beam space charge must be neutralized during this final transport. The most effective neutralization technique found in numerical simulations is to pass each beam through a low-density plasma after the final focusing. To provide quantitative comparisons of these theoretical predictions with experiment, the Virtual National Laboratory for Heavy Ion Fusion has completed the construction and has begun experimentation with the neutralized-transport experiment. The experiment consists of three main sections, each with its own physics issues. The injector is designed to generate a very high-brightness, space-charge-dominated potassium beam, while still allowing variable perveance by a beam aperturing technique. The magnetic-focusing section, consisting of four pulsed quadrupoles, permits the study of magnet tuning, as well as the effects of phase-space dilution due to higher-order nonlinear fields. In the final section, the converging ion beam exiting the magnetic section is transported through a drift region with plasma sources for beam neutralization, and the final spot size is measured under various conditions of neutralization. In this paper, we discuss the design and characterization of the three sections in detail and present initial results from the experiment.

  12. Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2012-01-01

    Ion transport membrane (ITM) based reactors have been suggested as a novel technology for several applications including fuel reforming and oxy-fuel combustion, which integrates air separation and fuel conversion while reducing complexity

  13. Relationships determining the toxicity of major ion mixtures to Ceriodaphnia dubia

    Science.gov (United States)

    Significant impacts to aquatic systems can occur due to increases in major ions (Na, K, Ca, Mg, Cl, SO4, HCO3) from various anthropogenic activities, these impacts varying with both the specific combination of ions that are elevated and the chemistry of the background water. A s...

  14. Electron and ion beam transport to fusion targets

    International Nuclear Information System (INIS)

    Freeman, J.R.; Baker, L.; Miller, P.A.; Mix, L.P.; Olsen, J.N.; Poukey, J.W.; Wright, T.P.

    1979-01-01

    ICF reactors have been proposed which incorporate a gas-filled chamber to reduce x-ray and debris loading of the first wall. Focused beams of either electrons or ions must be transported efficiently for 2-4 m to a centrally located fusion target. Laser-initiated current-carrying plasma discharge channels provide the guiding magnetic field and the charge- and current-neutralizing medium required for beam propagation. Computational studies of plasma channel formation in air using a 1-D MHD model with multigroup radiation diffusion have provided a good comparison with the expansions velocity and time dependent refractivity profile determined by holographic interferometry. Trajectory calculations have identified a beam expansion mechanism which combines with the usual ohmic dissipation to reduce somewhat the transported beam fluence for electrons. Additional trajectory calculations have been performed for both electrons and light ions to predict the limits on the particle current density which can be delivered to a central target by overlapping the many independently-generated beams. Critical features of the use of plasma channels for transport and overlap of charged particle beams are being tested experimentally with up to twelve electron beams from the Proto II accelerator

  15. High current transport experiment for heavy ion inertial fusion

    Directory of Open Access Journals (Sweden)

    L. R. Prost

    2005-02-01

    Full Text Available The High Current Experiment at Lawrence Berkeley National Laboratory is part of the U.S. program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density ∼0.2  μC/m over long pulse durations (4  μs in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo, and electron and gas cloud effects. We present the results for a coasting 1 MeV K^{+} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius for which the transverse phase space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor (≈80% is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  16. Studies of heavy ion beam transport in a magnetic quadrupole channel

    International Nuclear Information System (INIS)

    Klabunde, J.; Reiser, M.; Schonlein, A.; Spadtke, P.; Struckmeier, J.

    1983-01-01

    In connection with the West German Heavy Ion Fusion Program the first stage (six periods) of a magnetic quadrupole channel (FODO type) to study the transport of intense ion beams was built at GSI. Different ion beams can be used and the variation of the brightness of these beams (hence of the tune depression sigma/sigma /SUB o/ ) is sufficiently large that regions of theoretically predicted instabilities can be covered. The initial studies are being carried out with a high-brightness beam of 190 keV Ar+ ions and currents of a few mA. Since the pulse length is > 0.5 ms and the pressure is between 10 -6 and 10 -7 torr partial space charge neutralization occurs. Clearing electrodes can be used to remove the electrons from the beam. Results of theoretical studies, measurements of charge neutralization effects and first results of transport experiments are reported

  17. Ion age transport: developing devices beyond electronics

    Science.gov (United States)

    Demming, Anna

    2014-03-01

    There is more to current devices than conventional electronics. Increasingly research into the controlled movement of ions and molecules is enabling a range of new technologies. For example, as Weihua Guan, Sylvia Xin Li and Mark Reed at Yale University explain, 'It offers a unique opportunity to integrate wet ionics with dry electronics seamlessly'. In this issue they provide an overview of voltage-gated ion and molecule transport in engineered nanochannels. They cover the theory governing these systems and fabrication techniques, as well as applications, including biological and chemical analysis, and energy conversion [1]. Studying the movement of particles in nanochannels is not new. The transport of materials in rock pores led Klinkenberg to describe an analogy between diffusion and electrical conductivity in porous rocks back in 1951 [2]. And already in 1940, Harold Abramson and Manuel Gorin noted that 'When an electric current is applied across the living human skin, the skin may be considered to act like a system of pores through which transfer of substances like ragweed pollen extract may be achieved both by electrophoretic and by diffusion phenomena' [3]. Transport in living systems through pore structures on a much smaller scale has attracted a great deal of research in recent years as well. The selective transport of ions and small organic molecules across the cell membrane facilitates a number of functions including communication between cells, nerve conduction and signal transmission. Understanding these processes may benefit a wide range of potential applications such as selective separation, biochemical sensing, and controlled release and drug delivery processes. In Germany researchers have successfully demonstrated controlled ionic transport through nanopores functionalized with amine-terminated polymer brushes [4]. The polymer nanobrushes swell and shrink in response to changes in temperature, thus opening and closing the nanopore passage to ionic

  18. A reduced model for ion temperature gradient turbulent transport in helical plasmas

    International Nuclear Information System (INIS)

    Nunami, M.; Watanabe, T.-H.; Sugama, H.

    2013-07-01

    A novel reduced model for ion temperature gradient (ITG) turbulent transport in helical plasmas is presented. The model enables one to predict nonlinear gyrokinetic simulation results from linear gyrokinetic analyses. It is shown from nonlinear gyrokinetic simulations of the ITG turbulence in helical plasmas that the transport coefficient can be expressed as a function of the turbulent fluctuation level and the averaged zonal flow amplitude. Then, the reduced model for the turbulent ion heat diffusivity is derived by representing the nonlinear turbulent fluctuations and zonal flow amplitude in terms of the linear growth rate of the ITG instability and the linear response of the zonal flow potentials. It is confirmed that the reduced transport model results are in good agreement with those from nonlinear gyrokinetic simulations for high ion temperature plasmas in the Large Helical Device. (author)

  19. Net ion fluxes and ammonia excretion during transport of Rhamdia quelen juveniles

    Directory of Open Access Journals (Sweden)

    Luciano de Oliveira Garcia

    2015-10-01

    Full Text Available The objective of this study was to verify net ion fluxes and ammonia excretion in silver catfish transported in plastic bags at three different loading densities: 221, 286 and 365g L-1 for 5h. A water sample was collected at the beginning and at the end of the transport for analysis of water parameters. There was a significant positive relationship between net ion effluxes and negative relationship between ammonia excretion and loading density, demonstrated by the following equations: Na+: y-24.5-0.27x, r2=0.99, Cl-: y=40.2-0.61x, r2=0.98, K+: y=8.0-27.6x, r2=0.94; ammonia excretion: y=-11.43+0.017x, r2=0.95, where y: net ion flux (mmol kg-1 h-1 or ammonia excretion (mg kg-1h-1 and x: loading density (g. Therefore, the increase of loading density increases net ion loss, but reduces ammonia excretion during the transport of silver catfish, indicating the possibility of ammonia accumulation

  20. Isolation of ionospheres from ion transport systems and their role in energy transduction

    Energy Technology Data Exchange (ETDEWEB)

    Shamoo, A E; Goldstein, D A

    1977-01-01

    In the past twenty-five years cell membrane transport has been studied from the point of view of kinetics and the biochemical correlation of enzyme function with that of transport. Artificial lipid bilayers have been used as a model for cell membrane transport. Antibiotics, such as valinomycin have also been studied as models of ion-transport mediators. Much effort has been invested on the study of model compounds as the possible molecular bases of transport. Information derived from the study of model systems throughout the years has been valuable and worthwhile. However, if the aim is to elucidate the mechanism of cell membrane transport, the time has come to merge the two lines of research into one and to shift emphasis from the study of model systems to the study of isolated transport machine components before and after reconstitution of its components into model membranes. These studies should be augmented at all times with the biochemical correlates of the transport proteins. A review is presented of the new avenues employed to elucidate the molecular mechanism of active transport. The new avenues are those of isolation of ion-transport mediators (ionophores) from membrane transport proteins. Reconstitution of ionophores and the various membrane transport proteins into artificial systems such as bilayers and vesicles presents a powerful tool to elucidate the molecular mechanism of active transport. More importantly, the new approach provides the first glimpse of evidence for a reasonable investigation of energy transduction from ATP hydrolysis to transport of an ion.

  1. Investigations on transport and storage of high ion beam intensities

    International Nuclear Information System (INIS)

    Joshi, Ninad Shrikrishna

    2009-01-01

    In the framework of this thesis the intense low energy ion beam transport was investigated. Especially, the beam transport in toroidal magnetic field configurations was discussed, as it may allow the accumulation of high intensive beams in the future. One of the specific tasks is to design an injection system that can be used for the proposed low energy accumulator ring. A simulation code (TBT) was written to describe the particle motion in curved segments. Particle in Cell techniques were utilized to simulate a multi particle dynamics. A possibility of reading an external data file was made available so that a measured distribution can be used to compare simulation results with measured ones. A second order cloud in cell method was used to calculate charge density and in turn to solve Poisson's equation. Further simulations were performed to study the self field effects on beam transport. Experiments were performed to compare the simulation results and gain practical experience. The preparatory experiments consisted of building and characterization of the ion source in a first step. Along with the momentum spectrometer and emittance scanner the beam properties were studied. Low mass ion beams He + and mixed p, H 2+ , H 3+ beams were analyzed. In the second stage, beams were transported through a solenoid and the phase space distribution was measured as a function of the magnetic field for different beam energies. The phase-space as distributions measured in a first stage were simulated backward and then again forward transported through the solenoid. The simulated results were then compared with the measured distribution. The LINTRA transport program was used. The phase-space distribution was further simulated for transport experiments in a toroidal magnetic field. The transport program that was used to simulate the beam in the toroid was also used to design the injection system. The injection system with its special field configurations was designed to perform

  2. Investigations on transport and storage of high ion beam intensities

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ninad Shrikrishna

    2009-08-25

    In the framework of this thesis the intense low energy ion beam transport was investigated. Especially, the beam transport in toroidal magnetic field configurations was discussed, as it may allow the accumulation of high intensive beams in the future. One of the specific tasks is to design an injection system that can be used for the proposed low energy accumulator ring. A simulation code (TBT) was written to describe the particle motion in curved segments. Particle in Cell techniques were utilized to simulate a multi particle dynamics. A possibility of reading an external data file was made available so that a measured distribution can be used to compare simulation results with measured ones. A second order cloud in cell method was used to calculate charge density and in turn to solve Poisson's equation. Further simulations were performed to study the self field effects on beam transport. Experiments were performed to compare the simulation results and gain practical experience. The preparatory experiments consisted of building and characterization of the ion source in a first step. Along with the momentum spectrometer and emittance scanner the beam properties were studied. Low mass ion beams He{sup +} and mixed p, H{sup 2+}, H{sup 3+} beams were analyzed. In the second stage, beams were transported through a solenoid and the phase space distribution was measured as a function of the magnetic field for different beam energies. The phase-space as distributions measured in a first stage were simulated backward and then again forward transported through the solenoid. The simulated results were then compared with the measured distribution. The LINTRA transport program was used. The phase-space distribution was further simulated for transport experiments in a toroidal magnetic field. The transport program that was used to simulate the beam in the toroid was also used to design the injection system. The injection system with its special field configurations was

  3. Major ion chemistry of the Son River, India

    Indian Academy of Sciences (India)

    The chemistry of major ions in the surface water of the Son River was studied in detail to determine various source(s) and processes controlling its water chemistry, seasonal and spatial variations in water chemistry, dissolved fluxes and chemical denudation rate (CDR). The study shows that Ca2+, Mg2+ and HCO 3 − are ...

  4. Ion Binding Energies Determining Functional Transport of ClC Proteins

    Science.gov (United States)

    Yu, Tao; Guo, Xu; Zou, Xian-Wu; Sang, Jian-Ping

    2014-06-01

    The ClC-type proteins, a large family of chloride transport proteins ubiquitously expressed in biological organisms, have been extensively studied for decades. Biological function of ClC proteins can be reflected by analyzing the binding situation of Cl- ions. We investigate ion binding properties of ClC-ec1 protein with the atomic molecular dynamics simulation approach. The calculated electrostatic binding energy results indicate that Cl- at the central binding site Scen has more binding stability than the internal binding site Sint. Quantitative comparison between the latest experimental heat release data isothermal titration calorimetry (ITC) and our calculated results demonstrates that chloride ions prefer to bind at Scen than Sint in the wild-type ClC-ec1 structure and prefer to bind at Sext and Scen than Sint in mutant E148A/E148Q structures. Even though the chloride ions make less contribution to heat release when binding to Sint and are relatively unstable in the Cl- pathway, they are still part contributors for the Cl- functional transport. This work provides a guide rule to estimate the importance of Cl- at the binding sites and how chloride ions have influences on the function of ClC proteins.

  5. Controlling the transport of an ion: classical and quantum mechanical solutions

    International Nuclear Information System (INIS)

    Fürst, H A; Poschinger, U G; Schmidt-Kaler, F; Singer, K; Goerz, M H; Koch, C P; Murphy, M; Montangero, S; Calarco, T

    2014-01-01

    The accurate transport of an ion over macroscopic distances represents a challenging control problem due to the different length and time scales that enter and the experimental limitations on the controls that need to be accounted for. Here, we investigate the performance of different control techniques for ion transport in state-of-the-art segmented miniaturized ion traps. We employ numerical optimization of classical trajectories and quantum wavepacket propagation as well as analytical solutions derived from invariant based inverse engineering and geometric optimal control. The applicability of each of the control methods depends on the length and time scales of the transport. Our comprehensive set of tools allows us make a number of observations. We find that accurate shuttling can be performed with operation times below the trap oscillation period. The maximum speed is limited by the maximum acceleration that can be exerted on the ion. When using controls obtained from classical dynamics for wavepacket propagation, wavepacket squeezing is the only quantum effect that comes into play for a large range of trapping parameters. We show that this can be corrected by a compensating force derived from invariant based inverse engineering, without a significant increase in the operation time. (paper)

  6. Transport and acceleration of the high-current ion beam in magneto-isolated gap

    International Nuclear Information System (INIS)

    Karas', V.I.; Kornilov, E.A.; Manuilenko, O.V.; Fedorovskaya, O.V.; Tarakanov, V.P.

    2015-01-01

    The possibility of transportation and acceleration of the high-current ion beam in the magneto-isolated gap has been demonstrated. Found the parameters of the system and beams (the magnetic field produced by the coils with opposing currents, the size of the system, and the parameters of the beams), under which the uniform acceleration of the high-current ion beam all along the gap length is realized. It is shown that the quality of the ion beam, during transport and acceleration, at the exit of the gap is acceptable for many technological applications.

  7. Development of particle and heavy ion transport code system

    International Nuclear Information System (INIS)

    Niita, Koji

    2004-01-01

    Particle and heavy ion transport code system (PHITS) is 3 dimension general purpose Monte Carlo simulation codes for description of transport and reaction of particle and heavy ion in materials. It is developed on the basis of NMTC/JAM for design and safety of J-PARC. What is PHITS, it's physical process, physical models and development process of PHITC code are described. For examples of application, evaluation of neutron optics, cancer treatment by heavy particle ray and cosmic radiation are stated. JAM and JQMD model are used as the physical model. Neutron motion in six polar magnetic field and gravitational field, PHITC simulation of trace of C 12 beam and secondary neutron track of small model of cancer treatment device in HIMAC and neutron flux in Space Shuttle are explained. (S.Y.)

  8. Fast-ion transport studies using FIDA spectroscopy at the ASDEX Upgrade tokamak

    International Nuclear Information System (INIS)

    Geiger, Benedikt

    2013-01-01

    A good confinement of fast-ions, i.e. ions with energies above the thermal energy, is essential for the success of fusion devices as it determines, amongst others, the plasma performance and the heating and current drive efficiencies. In case of a turbulent or magneto-hydrodynamic (MHD) active background plasma, various mechanisms have to be considered in order to estimate the spatial distribution of the fast-ions: the slowing down and radial diffusion by Coulomb collisions on electrons and ions, the effect of potential fluctuations and the effect of perturbations of the magnetic field structure. These can lead to a broadening of the fast-ion distribution function which is not yet completely understood. At the fusion experiment ASDEX Upgrade, the fast-ions are generated by heating sources such as neutral beam injection (NBI). Their transport properties can be studied by a fast-ion D-alpha (FIDA) spectroscopy diagnostic which has been built in the framework of this thesis. Through charge exchange reactions with neutrals, fast-ions can receive a bound electron and emit Balmer alpha line radiation. This so-called FIDA radiation can be measured with large Doppler shifts and is localized along the NBI path where a high density of neutrals is present. The FIDA diagnostic uses radially distributed lines of sight that intersect, in the horizontal and in the vertical plane, the path of a 2.5 MW NBI heating source. Thereby different parts of the fast-ion phase space above 25 keV can be analyzed. To interpret the FIDA radiation quantitatively, a forward modelling code has been implemented, tested and further developed. The code calculates, based on theoretical fast-ion distribution functions, synthetic FIDA spectra that can be compared to the measurement. In MHD-quiescent plasmas, the possible effect of turbulence on the fast-ion transport has been investigated with the FIDA diagnostic. The measurements obtained under different experimental conditions, such as during on- and

  9. Transport and error sensitivity in a heavy-ion recirculator

    International Nuclear Information System (INIS)

    Sharp, W.M.; Barnard, J.J.; Yu, S.S.

    1991-05-01

    An envelope code has been developed to facilitate the design of a recirculating accelerator for a heavy-ion fusion reactor. A novel feature of the model is the treatment of the beam charge density as a Lagrangian fluid in the axial direction. Transport results for a preliminary recirculator design are presented, and sensitivity of the transport to errors in the magnet strength is discussed. 4 refs., 4 figs

  10. Transport of a multiple ion species plasma in the Pfirsch--Schluter regime

    International Nuclear Information System (INIS)

    Hirshman, S.P.

    1976-10-01

    The classical parallel friction coefficients, which relate the collisional friction forces to the flow of particles and heat along the magnetic field, are calculated for a multiple ion species plasma. In the short mean free path regime, the neoclassical Pfirsch--Schlueter transport coefficients for a toroidally confined multispecies plasma are computed in terms of the classical friction coefficients. The dependence of the neoclassical cross-field transport on the equilibration of the parallel ion temperature profiles is determined

  11. The wondrous world of transport and acceleration of intense ion beams

    International Nuclear Information System (INIS)

    Siebenlist, F.

    1987-01-01

    A theoretical and experimental study of the transport, bunching and acceleration of intense ion beams in periodic focusing channels is described. The aim is to show the feasibility of accelerating high current ion beams with a Multiple Electrostatic Quadrupole Array Linear ACcelerator (MEQALAC). 83 refs.; 51 figs.; 3 tabs

  12. Effect of Neoclassical Transport Optimization on Energetic Ion Confinement in LHD

    International Nuclear Information System (INIS)

    Murakami, S.; Yamada, H.; Sasao, M.

    2004-01-01

    Confinement of energetic ions from neutral beam injection heating is investigated by changing the magnetic field configuration of the Large Helical Device from a classical heliotron configuration to an optimized neoclassical transport configuration to a level typical of ''advanced stellarators.'' The experimental results show the highest count rate of fast neutral particles not in the optimized configuration but in the inward-shifted one. The GNET simulation results show a relatively good agreement with the experimental results, and they also show a lower energy loss rate in the optimized configuration. This contradiction can be explained by the radial profile of the energetic ions. The relatively good agreement between experimental and simulation results suggest that ripple transport (neoclassical) dominates the energetic ion confinement and that the optimization process is effective in improving confinement in helical systems

  13. Quasi-equilibrium analysis of the ion-pair mediated membrane transport of low-permeability drugs.

    Science.gov (United States)

    Miller, Jonathan M; Dahan, Arik; Gupta, Deepak; Varghese, Sheeba; Amidon, Gordon L

    2009-07-01

    The aim of this research was to gain a mechanistic understanding of ion-pair mediated membrane transport of low-permeability drugs. Quasi-equilibrium mass transport analyses were developed to describe the ion-pair mediated octanol-buffer partitioning and hydrophobic membrane permeation of the model basic drug phenformin. Three lipophilic counterions were employed: p-toluenesulfonic acid, 2-naphthalenesulfonic acid, and 1-hydroxy-2-naphthoic acid (HNAP). Association constants and intrinsic octanol-buffer partition coefficients (Log P(AB)) of the ion-pairs were obtained by fitting a transport model to double reciprocal plots of apparent octanol-buffer distribution coefficients versus counterion concentration. All three counterions enhanced the lipophilicity of phenformin, with HNAP providing the greatest increase in Log P(AB), 3.7 units over phenformin alone. HNAP also enhanced the apparent membrane permeability of phenformin, 27-fold in the PAMPA model, and 4.9-fold across Caco-2 cell monolayers. As predicted from a quasi-equilibrium analysis of ion-pair mediated membrane transport, an order of magnitude increase in phenformin flux was observed per log increase in counterion concentration, such that log-log plots of phenformin flux versus HNAP concentration gave linear relationships. These results provide increased understanding of the underlying mechanisms of ion-pair mediated membrane transport, emphasizing the potential of this approach to enable oral delivery of low-permeability drugs.

  14. Electric Field-Controlled Ion Transport In TiO2 Nanochannel.

    Science.gov (United States)

    Li, Dan; Jing, Wenheng; Li, Shuaiqiang; Shen, Hao; Xing, Weihong

    2015-06-03

    On the basis of biological ion channels, we constructed TiO2 membranes with rigid channels of 2.3 nm to mimic biomembranes with flexible channels; an external electric field was employed to regulate ion transport in the confined channels at a high ionic strength in the absence of electrical double layer overlap. Results show that transport rates for both Na+ and Mg2+ were decreased irrespective of the direction of the electric field. Furthermore, a voltage-gated selective ion channel was formed, the Mg2+ channel closed at -2 V, and a reversed relative electric field gradient was at the same order of the concentration gradient, whereas the Na+ with smaller Stokes radius and lower valence was less sensitive to the electric field and thus preferentially occupied and passed the channel. Thus, when an external electric field is applied, membranes with larger nanochannels have promising applications in selective separation of mixture salts at a high concentration.

  15. Ion transport in thin cell electrodeposition: modelling three-ion electrolytes in dense branched morphology under constant voltage and current conditions

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, G. [Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States) and Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina)]. E-mail: marshalg@mail.retina.ar; Molina, F.V. [INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Soba, A. [Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina)

    2005-05-30

    Electrochemical deposition (ECD) and spatially coupled bipolar electrochemistry (SCBE) experiments in thin-layer cells are known to produce complex ion transport patterns concomitantly with the growth of dendrite-like structures. Here we present a macroscopic model of ECD and SCBE with a three-ion electrolyte in conditions of dense branched morphology. The model describes ion transport and deposit growth through the one-dimensional Nernst-Planck equations for ion transport, the Poisson equation for the electric field and, for ECD, a growth law for deposit evolution. We present numerical simulations for typical electrochemical deposition experiments: dense branched morphology in ECD and the incubation period in SCBE. In ECD the model predicts cation, anion and proton concentration profiles, electric field variations and deposit growth speed, that are in qualitative agreement with experiments; the predicted evolution and collision of the deposit and proton fronts reveal a time scaling close to those observed in experiments. In SCBE, the model predicts that the inverse of the incubation time scales linearly with the applied voltage. Such behaviour was observed in experiments.

  16. Modulation and Functional Role of the Orientations of the N- and P-Domains of Cu+ -Transporting ATPase along the Ion Transport Cycle.

    Science.gov (United States)

    Meng, Dan; Bruschweiler-Li, Lei; Zhang, Fengli; Brüschweiler, Rafael

    2015-08-18

    Ion transport of different P-type ATPases is regulated similarly through the interplay of multiple protein domains. In the presence of ATP, binding of a cation to the ion binding site in the transmembrane helices leads to the phosphorylation of the P-domain, allowing ion transfer across the membrane. The details of the mechanism, however, are not clear. Here, we report the modulation of the orientation between the N- and P-domains of Cu(+)-transporting ATPase along the ion transport cycle using high-resolution nuclear magnetic resonance spectroscopy in solution. On the basis of residual dipolar coupling measurements, it is found that the interdomain orientation (relative openness) of the N- and P-domains is distinctly modulated depending on the specific state of the N- and P-domains along the ion translocation cycle. The two domains' relative position in the apo state is semiopen, whereas it becomes closed upon binding of ATP to the N-domain. After phosphorylation of the P-domain and the release of ADP, the opening, however, becomes the widest among all the states. We reason such wide opening resulting from the departure of ADP prepares the N- and P-domains to accommodate the A-domain for interaction and, hence, promote ion transport and allow dephosphorylation of the P-domain. Such wide interdomain opening is abolished when an Asn to Asp mutation is introduced into the conserved DXXK motif located in the hinge region of the N- and P-domains of Cu(+)-ATPase, suggesting the indispensible role of the N- and P-interdomain orientation during ion transportation. Our results shed new light on the structural and mechanistic details of P-type ATPase function at large.

  17. Neutralization principles for the Extraction and Transport of Ion Beams

    CERN Document Server

    Riege, H

    2000-01-01

    The strict application of conventional extraction techniques of ion beams from a plasma source is characterized by a natural intensity limit determined by space charge.The extracted current may be enhanced far beyond this limit by neutralizing the space charge of the extracted ions in the first extraction gap of the source with electrons injected from the opposite side. The transverse and longitudinal emittances of a neutralized ion beam, hence its brightness, are preserved. Results of beam compensation experiments, which have been carried out with a laser ion source, are resumed for proposing a general scheme of neutralizing ion sources and their adjacent low-energy beam transport channels with electron beams. Many technical applications of high-mass ion beam neutralization technology may be identified: the enhancement of ion source output for injection into high-intensity, low-and high-energy accelerators, or ion thrusters in space technology, for the neutral beams needed for plasma heating of magnetic conf...

  18. Kinetic Simulation of Fast Electron Transport with Ionization Effects and Ion Acceleration

    International Nuclear Information System (INIS)

    Robinson, A. P. L.; Bell, A. R.; Kingham, R. J.

    2005-01-01

    The generation of relativistic electrons and multi-MeV ions is central to ultra intense (> 1018Wcm-2) laser-solid interactions. The production of energetic particles by lasers has a number of potential applications ranging from Fast Ignition ICF to medicine. In terms of the relativistic (fast) electrons the areas of interest can be divided into three areas. Firstly there is the absorption of laser energy into fast electrons and MeV ions. Secondly there is the transport of fast electrons through the solid target. Finally there is a transduction stage, where the fast electron energy is imparted. This may range from being the electrostatic acceleration of ions at a plasma-vacuum interface, to the heating of a compressed core (as in Fast Ignitor ICF).We have used kinetic simulation codes to study the transport stage and electrostatic ion acceleration. (Author)

  19. Purinergic signalling in epithelial ion transport

    DEFF Research Database (Denmark)

    Novak, Ivana

    2011-01-01

    , including ion transport. In this review, I will first introduce the main components of the extracellular ATP signalling, which have become known as the purinergic signalling system. With more than 50 components or processes, just at cell membranes, it ranks as one of the most versatile signalling systems......-regulators of secretion. On an organ level, both receptor types can exert physiological functions and together with other partners in the purinergic signalling, integrated models for epithelial secretion and absorption are emerging....

  20. Intestinal ion transport in rats with spontaneous arterial hypertension.

    Science.gov (United States)

    Lübcke, R; Barbezat, G O

    1988-08-01

    1. Ion balance, intestinal ion transport in vivo with luminal Ringer, and direct voltage clamping in vivo with luminal Ringer and sodium-free choline-Ringer were studied in young (40 days old) and adult (120 days old) spontaneously hypertensive rats (SHR) and age-matched normotensive controls (Wistar-Kyoto rats, WKY). 2. Faecal sodium output was significantly higher in SHR compared with WKY in both young (+67%) and adult (+43%) rats. 3. Small-intestinal sodium absorption was equal in young SHR and WKY, but significantly greater net sodium absorption was found in the ileum of adult SHR. In contrast, net sodium absorption was reduced from the colon of both young and adult SHR. 4. In adult SHR, the colonic transepithelial short-circuit current (Isc) and the transepithelial potential difference (PD) were significantly higher, whereas the transepithelial membrane resistance (Rm) was significantly lower than in WKY. There was an identical drop in Isc in both strains when luminal sodium was replaced by choline. These data cannot be explained by increased electrogenic cation (sodium) absorption in the SHR, but would favour chloride secretion. 5. It is suggested that in SHR membrane electrolyte transport abnormalities may also be present in the epithelial cells of the small and large intestine, as have been demonstrated already in blood cells by several investigators. The SHR may become an interesting experimental animal model for the study of generalized ion transport disorders.

  1. Transport due to ion temperature gradient mode vortex turbulence

    International Nuclear Information System (INIS)

    Pavlenko, V.P.; Weiland, J.

    1991-01-01

    The ion energy transport due to an ensemble of nonlinear vortices is calculated in the test particle approximation for a strongly turbulent plasma. A diffusion coefficient proportional to the root of the stationary turbulence level is obtained. (au)

  2. Ion transporters for fluid reabsorption in the rooster (Gallus domesticus) epididymal region.

    Science.gov (United States)

    Bahr, J M; Dalponte, M; Janssen, S; Bunick, D; Nakai, M

    2006-10-01

    Testicular fluid is highly condensed during its passage through the epididymal region in the avian species. In the present study, major ion transporters that are responsible for condensation mainly by water resorption in the reproductive tract as identified in the mammalian epididymis were localized within the rooster (Gallus domesticus) epididymis by immunohistochemistry. The results show that the efferent ductule epithelium expressed sodium-potassium ATPase (Na(+),K(+)-ATPase), carbonic anhydrase II (CAII) and sodium hydrogen exchanger isoform 3 (NHE3) and that the connecting ductule and epididymal duct epithelia expressed Na(+),K(+)-ATPase and CAII. These data suggest that a model proposed for reabsorption in mammalian efferent ductules can be applied to avian efferent ductules.

  3. Transport of intense particle beams with application to heavy ion fusion

    International Nuclear Information System (INIS)

    Buchanan, H.L.; Chambers, F.W.; Lee, E.P.; Yu, S.S.; Briggs, R.J.; Rosenbluth, M.N.

    1979-01-01

    An attractive feature of the high energy (> GeV) heavy ion beam approach to inertial fusion, as compared with other particle beam systems, is the relative simplicity involved in the transport and focusing of energy on the target inside a reactor chamber. While this focusing could be done in vacuum by conventional methods with multiple beams, there are significant advantages in reactor design if one can operate at gas pressures around one torr. In this paper we summarize the results of our studies of heavy ion beam transport in gases. With good enough charge and current neutralization, one could get a ballistically-converging beam envelope down to a few millimeters over a 10 meter path inside the chamber. Problems of beam filamentation place important restrictions on this approach. We also discuss transport in a self-focused mode, where a relatively stable pressure window is predicted similar to the observed window for electron beam transport

  4. Solvent effect on the extraction and transport of lithium ions by polyethylene glycols

    International Nuclear Information System (INIS)

    Mishra, D; Sharma, U

    1999-01-01

    Extraction of lithium picrate, 2,4-dinitrophenolate and 2-nitrophenolate and their transport through membranes by di-, tri- and tetraethylene glycols as carriers are studied. Organic solvents considered as extractants and liquid membranes in terms of lithium ions extraction and transfer are arranged in the following series: methylene chloride ≥ dichloroethane ≥ chloroform ≥ carbon tetrachloride. Diethylene glycol proved the most effective solvent for lithium ions extraction and transport [ru

  5. Energetic and frictional effects in the transport of ions in a cyclic peptide nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Yongil; Song, Yeon Ho; Hwang, Hyeon Seok [Dept. of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon (Korea, Republic of); Schatz, George C. [Dept. of Chemistry, Northwestern University, Evanston (United States)

    2017-01-15

    The effects of geometric restraints and frictional parameters on the energetics and dynamics of ion transport through a synthetic ion channel are investigated using molecular dynamics (MD) simulations for several different ions. To do so, potential of mean force profiles and position-dependent diffusion coefficients for Na{sup +}, K{sup +}, Ca{sup 2+}, and Cl{sup −} transport through a simple cyclic peptide nanotube, which is composed of 4× cyclo[−(D-Ala-Glu-D-Ala-Gln){sub 2−}] rings, are calculated via an adaptive biasing force MD simulation method and a Baysian inference/Monte Carlo algorithm. Among the restraints and parameters examined in this work, the radius parameter used in the flat-bottom half-harmonic restraint at the entrance and exit to channel has a great effect on the energetics of ion transport through the variation of entropy in the outside of the channel. The diffusivity profiles for the ions show a strong dependence on the damping coefficient, but the dependence on the coefficient becomes minimal inside the channel, indicating that the most important factor which affects the diffusivity of ions inside the channel is local interactions of ions with the structured channel water molecules through confinement.

  6. Diagnostics of discharge channels for neutralized chamber transport in heavy ion fusion

    International Nuclear Information System (INIS)

    Niemann, C.; Penache, D.; Tauschwitz, A.; Rosmej, F.B.; Neff, S.; Birkner, R.; Constantin, C.; Knobloch, R.; Presura, R.; Yu, S.S.; Sharp, W.M.; Ponce, D.M.; Hoffmann, D.H.H.

    2002-01-01

    The final beam transport in the reactor chamber for heavy ion fusion in preformed plasma channels offers many attractive advantages compared to other transport modes. In the past few years, experiments at the Gesellschaft fuer Schwerionenforschung (GSI) accelerator facility have addressed the creation and investigation of discharge plasmas, designed for the transport of intense ion beams. Stable, self-standing channels of 50 cm length with currents up to 55 kA were initiated in low-pressure ammonia gas by a CO 2 -laser pulse along the channel axis before the discharge is triggered. The channels were characterized by several plasma diagnostics including interferometry and spectroscopy. We also present first experiments on laser-guided intersecting discharges

  7. Innovative alpha radioactivity monitor for clearance level inspection based on ionized air transport technology (2). CFD-simulated and experimental ion transport efficiencies for uranium-attached pipes

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Nakahara, Katsuhiko; Sano, Akira; Sato, Mitsuyoshi; Aoyama, Yoshio; Miyamoto, Yasuaki; Yamaguchi, Hiromi; Nanbu, Kenichi; Takahashi, Hiroyuki; Oda, Akinori

    2007-01-01

    An innovative alpha radioactivity monitor for clearance level inspection has been developed. This apparatus measures an ion current resulting from air ionization by alpha particles. Ions generated in the measurement chamber of about 1 m 3 in volume are transported by airflow to a sensor and measured. This paper presents computational estimation of ion transport efficiencies for two pipes with different lengths, the inner surfaces of which were covered with a thin layer of uranium. These ion transport efficiencies were compared with those experimentally obtained for the purpose of our model validation. Good agreement was observed between transport efficiencies from simulations and those experimentally estimated. Dependence of the transport efficiencies on the region of uranium coating was also examined, based on which anticipated errors arising from unclear positions of contamination are also discussed. (author)

  8. The Structure and Transport of Water and Hydrated Ions Within Hydrophobic, Nanoscale Channels

    International Nuclear Information System (INIS)

    Holt, J.K.; Herberg, J.L.; Wu, Y.; Schwegler, E.; Mehta, A.

    2009-01-01

    The purpose of this project includes an experimental and modeling investigation into water and hydrated ion structure and transport at nanomaterials interfaces. This is a topic relevant to understanding the function of many biological systems such as aquaporins that efficiently shuttle water and ion channels that permit selective transport of specific ions across cell membranes. Carbon nanotubes (CNT) are model nanoscale, hydrophobic channels that can be functionalized, making them artificial analogs for these biological channels. This project investigates the microscopic properties of water such as water density distributions and dynamics within CNTs using Nuclear Magnetic Resonance (NMR) and the structure of hydrated ions at CNT interfaces via X-ray Absorption Spectroscopy (XAS). Another component of this work is molecular simulation, which can predict experimental measurables such as the proton relaxation times, chemical shifts, and can compute the electronic structure of CNTs. Some of the fundamental questions this work is addressing are: (1) what is the length scale below which nanoscale effects such as molecular ordering become important, (2) is there a relationship between molecular ordering and transport?, and (3) how do ions interact with CNT interfaces? These are questions of interest to the scientific community, but they also impact the future generation of sensors, filters, and other devices that operate on the nanometer length scale. To enable some of the proposed applications of CNTs as ion filtration media and electrolytic supercapacitors, a detailed knowledge of water and ion structure at CNT interfaces is critical.

  9. SEPARATION OF Fe (III, Cr(III, Cu(II, Ni(II, Co(II, AND Pb(II METAL IONS USING POLY(EUGENYL OXYACETIC ACID AS AN ION CARRIER BY A LIQUID MEMBRANE TRANSPORT METHOD

    Directory of Open Access Journals (Sweden)

    La Harimu

    2010-06-01

    Full Text Available Fe (III, Cr(III, Cu(II, Ni(II, Co(II, and Pb(II  metal ions had been separated using poly(eugenyl oxyacetic acid as an ion carrier by bulk liquid membrane transport method. The effect of pH, polyeugenyl oxyacetic acid ion carrier concentration, nitric acid concentration in the stripping solution, transport time, and metal concentration were optimized. The result showed that the optimum condition for transport of metal ions was at pH 4 for ion Fe(III and at pH 5 for Cr(III, Cu(II, Ni(II, Co(II, and Pb(II ions. The carrier volumes were optimum with concentration of 1 x 10-3 M at 7.5 mL for Cr(III, Cu (II,  Ni(II, Co(II ions and at 8.5 mL for Fe(III and Pb(II ions. The concentration of HNO3 in stripping phase was optimum at 2 M for Fe(III and Cu(II ions, 1 M for Cr(III, Ni(II and Co(II ions, and 0.5 M for Pb(II ion. The optimum transport times were 36 h for Fe(III and Co(II ions, and 48 h for Cr(III, Cu (II, Ni(II, and Pb(II ions. The concentration of metal ions accurately transported were 2.5 x 10-4 M for Fe(III and Cr(III ions, and 1 M for Cu (II, Ni(II, Co(II, and Pb(II ions. Compared to other metal ions the transport of Fe(III was the highest with selectivity order of Fe(III > Cr(III > Pb(II > Cu(II > Ni(II > Co(II. At optimum condition, Fe(III ion was transported through the membrane at 46.46%.   Keywords: poly(eugenyl oxyacetic acid, transport, liquid membrane, Fe (III, Cr(III, Cu(II, Ni(II, Co(II, and Pb(II ions

  10. Numerical assessment of the ion turbulent thermal transport scaling laws

    International Nuclear Information System (INIS)

    Ottaviani, M.; Manfredi, G.

    2001-01-01

    Numerical simulations of ion temperature gradient (ITG) driven turbulence were carried out to investigate the parametric dependence of the ion thermal transport on the reduced gyroradius and on the local safety factor. Whereas the simulations show a clear proportionality of the conductivity to the gyroradius, the dependence on the safety factor cannot be represented as a simple power law like the one exhibited by the empirical scaling laws. (author)

  11. Ion beam transport and focus for LMF using an achromatic solenoidal lens system

    International Nuclear Information System (INIS)

    Olson, C.L.

    1990-01-01

    The light ion LMF (Laboratory Microfusion Facility) requires an ion beam transport length for bunching and standoff to be about four meters from the diode to the target. The baseline LMF transport scheme uses an achromatic two lens system consisting of the diode (a self-field lens) and a solenoidal lens. Charge and current neutralization are provided by a background gas. A detailed analysis of this system is presented here. The effects of additional magnetic fields are examined, including those produced by non-zero net currents, applied B effects near the diode, and diamagnetic effects in the solenoidal lens. Instabilities are analyzed including the filamentation instability, the two-stream instability (beam ions, plasma electrons), the plasma two-stream instability (plasma electrons, plasma ions), and the ion acoustic instability. Scattering in the foil and gas are shown to be negligible. Gas breakdown processes are analyzed in detail, including ion impact ionization, electron avalanching, and ohmic heating. Special diode requirements are examined, including voltage accuracy, energy spread, and aiming tolerances. The neutral gas and gas pressure are chosen to satisfy several constraints, one being that the net current must be small, and another being that the filamentation instability should be avoided. With the present choice of 1 Torr He, it is concluded that the complete achromatic lens system appears to be viable, simple, and efficient transport and focusing system for LMF

  12. Strong dopant dependence of electric transport in ion-gated MoS2

    NARCIS (Netherlands)

    Piatti, Erik; Chen, Qihong; Ye, Jianting

    2017-01-01

    We report modifications of the temperature-dependent transport properties of MoS2 thin flakes via field-driven ion intercalation in an electric double layer transistor. We find that intercalation with Li+ ions induces the onset of an inhomogeneous superconducting state. Intercalation with K+ leads

  13. Barodiffusion phenomena at active transport of na+ and K+ ions through the cell membrane

    International Nuclear Information System (INIS)

    Khrapijchuk, G.V.; Chalyi, A.V.; Nurishchenko, N.Je.

    2010-01-01

    The influence of ultrasound as the significant motive force of barodiffusion phenomena at the processes of active transport of Na + and K + ions through the cell membrane is considered. The dependence of membrane potential is theoretically estimated at active transport of natrium and potassium ions on the ultrasound intensity and pressure overfall between external and internal medium of the cell.

  14. Feed gas contaminant control in ion transport membrane systems

    Science.gov (United States)

    Carolan, Michael Francis [Allentown, PA; Minford, Eric [Laurys Station, PA; Waldron, William Emil [Whitehall, PA

    2009-07-07

    Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

  15. Fast-ion transport and neutral beam current drive in ASDEX upgrade

    DEFF Research Database (Denmark)

    Geiger, B.; Weiland, M.; Jacobsen, Asger Schou

    2015-01-01

    The neutral beam current drive efficiency has been investigated in the ASDEX Upgrade tokamak by replacing on-axis neutral beams with tangential off-axis beams. A clear modification of the radial fast-ion profiles is observed with a fast-ion D-alpha diagnostic that measures centrally peaked profiles...... during on-axis injection and outwards shifted profiles during off-axis injection. Due to this change of the fast-ion population, a clear modification of the plasma current profile is predicted but not observed by a motional Stark effect diagnostic. The fast-ion transport caused by MHD activity has been...

  16. A multiscale-compatible approach in modeling ionic transport in the electrolyte of (Lithium ion) batteries

    NARCIS (Netherlands)

    Salvadori, A.; Grazioli, D.; Geers, M.G.D.; Danilov, D.L.; Notten, P.H.L.

    2015-01-01

    A novel approach in modeling the ionic transport in the electrolyte of Li-ion batteries is here resented. Diffusion and migration processes govern the transport of ions in solution in the absence of onvection. In the porous electrode theory [1] it is common to model these processes via mass balance

  17. Early vertebrate origin and diversification of small transmembrane regulators of cellular ion transport.

    Science.gov (United States)

    Pirkmajer, Sergej; Kirchner, Henriette; Lundell, Leonidas S; Zelenin, Pavel V; Zierath, Juleen R; Makarova, Kira S; Wolf, Yuri I; Chibalin, Alexander V

    2017-07-15

    Small transmembrane proteins such as FXYDs, which interact with Na + ,K + -ATPase, and the micropeptides that interact with sarco/endoplasmic reticulum Ca 2+ -ATPase play fundamental roles in regulation of ion transport in vertebrates. Uncertain evolutionary origins and phylogenetic relationships among these regulators of ion transport have led to inconsistencies in their classification across vertebrate species, thus hampering comparative studies of their functions. We discovered the first FXYD homologue in sea lamprey, a basal jawless vertebrate, which suggests small transmembrane regulators of ion transport emerged early in the vertebrate lineage. We also identified 13 gene subfamilies of FXYDs and propose a revised, phylogeny-based FXYD classification that is consistent across vertebrate species. These findings provide an improved framework for investigating physiological and pathophysiological functions of small transmembrane regulators of ion transport. Small transmembrane proteins are important for regulation of cellular ion transport. The most prominent among these are members of the FXYD family (FXYD1-12), which regulate Na + ,K + -ATPase, and phospholamban, sarcolipin, myoregulin and DWORF, which regulate the sarco/endoplasmic reticulum Ca 2+ -ATPase (SERCA). FXYDs and regulators of SERCA are present in fishes, as well as terrestrial vertebrates; however, their evolutionary origins and phylogenetic relationships are obscure, thus hampering comparative physiological studies. Here we discovered that sea lamprey (Petromyzon marinus), a representative of extant jawless vertebrates (Cyclostomata), expresses an FXYD homologue, which strongly suggests that FXYDs predate the emergence of fishes and other jawed vertebrates (Gnathostomata). Using a combination of sequence-based phylogenetic analysis and conservation of local chromosome context, we determined that FXYDs markedly diversified in the lineages leading to cartilaginous fishes (Chondrichthyes) and bony

  18. Effect of lithium and sodium ion adsorption on the electronic transport properties of Ti3C2 MXene

    International Nuclear Information System (INIS)

    Berdiyorov, G.R.

    2015-01-01

    Highlights: • Effect of Li and Na ion adsorption on the electronic transport in Ti 3 C 2 MXene is studied. • Fluorinated, oxidized and hydroxylated surfaces are considered. • Enhanced charge transport is obtained for fluorinated and hydroxylated samples. • Electronic transmission is reduced in the oxidized sample. • The pristine and oxidized MXene samples are found to be sensitive to the ions adsorption. - Abstract: MXenes are found to be promising electrode materials for energy storage applications. Recent theoretical and experimental studies indicate the possibility of using these novel low dimensional materials for metal-ion batteries. Herein, we use density-functional theory in combination with the nonequilibrium Green's function formalism to study the effect of lithium and sodium ion adsorption on the electronic transport properties of the MXene, Ti 3 C 2 . Oxygen, hydroxyl and fluorine terminated species are considered and the obtained results are compared with the ones for the pristine MXene. We found that the ion adsorption results in reduced electronic transport in the pristine MXene: depending on the type of the ions and the bias voltage, the current in the system can be reduced by more than 30%. On the other hand, transport properties of the oxygen terminated sample can be improved by the ion adsorption: for both types of ions the current in the system can be increased by more than a factor of 4. However, the electronic transport is less affected by the ions in fluorinated and hydroxylated samples. These two samples show enhanced electronic transport as compared to the pristine MXene. The obtained results are explained in terms of electron localization in the system.

  19. Transportation of ions through cement based materials

    International Nuclear Information System (INIS)

    Chatterji, S.

    1994-01-01

    Transportation of ions, both anions and cations, through cement based materials is one of the important processes in their durability and as such has been studied very extensively. It has been studied from the point of view of the reinforcement corrosion, alkali-silica reaction, sulfate attack on cement and concrete, as well as in the context of the use of the cement based materials in the disposal of nuclear waste. In this paper the fundamental equations of diffusion, i.e. Fick's two equations, Nernst and Nernst-Planck equations have been collected. Attention has been drawn to the fact that Fick's two equations are valid for non-ionic diffusants and that for ions the relevant equations are those of Nernst and Nernst-Planck. The basic measurement techniques have also been commented upon

  20. Modeling of ion transport through a porous separator in vanadium redox flow batteries

    Science.gov (United States)

    Zhou, X. L.; Zhao, T. S.; An, L.; Zeng, Y. K.; Wei, L.

    2016-09-01

    In this work, we develop a two-dimensional, transient model to investigate the mechanisms of ion-transport through a porous separator in VRFBs and their effects on battery performance. Commercial-available separators with pore sizes of around 45 nm are particularly investigated and effects of key separator design parameters and operation modes are explored. We reveal that: i) the transport mechanism of vanadium-ion crossover through available separators is predominated by convection; ii) reducing the pore size below 15 nm effectively minimizes the convection-driven vanadium-ion crossover, while further reduction in migration- and diffusion-driven vanadium-ion crossover can be achieved only when the pore size is reduced to the level close to the sizes of vanadium ions; and iii) operation modes that can affect the pressure at the separator/electrode interface, such as the electrolyte flow rate, exert a significant influence on the vanadium-ion crossover rate through the available separators, indicating that it is critically important to equalize the pressure on each half-cell of a power pack in practical applications.

  1. Additional transport channel of carbon ions for biological research at the Nuclotron of JINR

    International Nuclear Information System (INIS)

    Yudin, I.P.; Panasik, V.A.; Tyutyunnikov, S.I.

    2011-01-01

    The paper deals with the construction of the 12 C +6 beam transport line for biomedical research at the Nuclotron accelerator complex, JINR. We have studied the scheme and modes of magneto-optical elements of the channel. The results of calculations of the investigated beam transport of carbon ions are presented. The algorithms to control the carbon ion beam in the transportation system are discussed. The choice of the magneto-optical system is motivated. The graphs of the beam envelopes in the channel are given. The scanning control beam functions are considered

  2. Additional transport channel of carbon ions for biological research at the Nuclotron of JINR

    International Nuclear Information System (INIS)

    Yudin, I.P.; Panasik, V.A.; Tyutyunnikov, S.I.

    2012-01-01

    The paper deals with the construction of the beam 12 C +6 transport line for biomedical research at the Nuclotron accelerator complex, JINR. We have studied the scheme and modes of magneto-optical elements of the channel. The results of calculations of the investigated beam transport of carbon ions are presented. The algorithms to control the carbon ion beam in the transportation system are discussed. The choice of the magneto-optical system is motivated. The graphs of the beam envelopes in the channel are given. The scanning control beam functions are considered

  3. Connection of a He-jet recoil transport system to an ion source

    International Nuclear Information System (INIS)

    Sheppard, G.A.

    1977-02-01

    In an effort to make non-gaseous fission products available for on-line separation and study with the TRISTAN facility, an investigation of the operational characteristics of a He-jet recoil transport system and a TRISTAN-type ion source was conducted after interfacing them with a skimmer. So that experimental results could be understood and controlled, studies of the dynamics of choked flow in a capillary and of the transport characteristics were made. Satisfactory performance of the He-jet system was obtained, but large temperature and pressure gradients thwarted early attempts to efficiently couple the He-jet to the ion source. The pressure-related difficulties have been overcome by employing a skimmer to remove extraneous gases before injection of the activities into the ion source, but efforts to conquer the temperature-related problems continue

  4. High security ion-lithium batteries with rapid recharge for the terrestrial transport and energy storage; Batteries de type ion-lithium de haute securite a recharge rapide pour le transport terrestre et le stockage d'energie

    Energy Technology Data Exchange (ETDEWEB)

    Zaghib, Karim; Dontigny, M.; Charest, P.; Guerfi, A.; Trotier, J.; Mathieu, M.C.; Zhu, W.; Petitclerc, M.; Veillette, R.; Serventi, A.; Hovington, P.; Lagace, M.; Trudeau, M.; Vijh, A.

    2010-09-15

    Electrical terrestrial transport is today a hub of innovation and growth for Hydro-Quebec. In the perspective of electrification of terrestrial transports, battery remains the critical factor of future success of rechargeable electrical vehicles. For nearly 20 years, Hydro-Quebec, via its research institute, has worked at developing battery material for the lithium-ion technology. Two types of Li-ion batteries have been developed: the energy battery and the power battery. [French] Le transport terrestre electrique est aujourd'hui un pole d'innovation et de croissance pour Hydro-Quebec. Dans la perspective de l'electrification des transports terrestres, la batterie demeure le facteur critique du succes futur des vehicules electriques rechargeables. Depuis pres de 20 ans, Hydro-Quebec, par le biais de son Institut de recherche, travaille au developpement de materiaux de batteries destinees a la technologie lithium-ion. Deux types de batteries Li-ion ont ete mises au point : la batterie d'energie et la batterie de puissance.

  5. Current neutralization in ballistic transport of light ion beams

    International Nuclear Information System (INIS)

    Hubbard, R.F.; Slinker, S.P.; Lampe, M.; Joyce, G.; Ottinger, P.

    1992-01-01

    Intense light ion beams are being considered as drivers to ignite fusion targets in the Laboratory Microfusion Facility (LMF). Ballistic transport of these beams from the diode to the target is possible only if the beam current is almost completely neutralized by plasma currents. This paper summarizes related work on relativistic electron beam and heavy ion beam propagation and describes a simple simulation model (DYNAPROP) which has been modified to treat light ion beam propagation. DYNAPROP uses an envelope equation to treat beam dynamics and uses rate equations to describe plasma and conductivity generation. The model has been applied both to the high current, 30 MeV Li +3 beams for LMF as well as low current, 1.2 MeV proton beams which are currently being studied on GAMBLE B at the Naval Research Laboratory. The predicted ratio of net currents to beam current is ∼0.1--0.2 for the GAMBLE experiment and ∼0.01 for LMF. The implications of these results for LMF and the GAMBLE experiments art discussed in some detail. The simple resistive model in DYNAPROP has well-known limitations in the 1 torr regime which arise primarily from the neglect of plasma electron transport. Alternative methods for treating the plasma response are discussed

  6. Resonant ion transport in EBT

    International Nuclear Information System (INIS)

    Hastings, D.E.; Jaeger, E.F.; Hedrick, C.L.; Tolliver, J.S.

    1983-05-01

    We use a model for the ELMO Bumpy Torus as a bumpy cylinder with a toroidally induced vertical drift imposed on the plasma. With this model we obtain the neoclassical plasma-transport coefficients for ions in both the banana and plateau resonant regimes. The problem of solving the linearized bounce-averaged drift kinetic equation is formulated as a variational principle, which is shown to be valid for both the banana and plateau regimes. We use limiting forms of this principle to obtain a continuous collisionality approximation to the energy-dependent flux. We then use this approximation to obtain analytic formulae for the particle- and energy-diffusion coefficients. These are shown to give excellent agreement with numerical results

  7. Major ion chemistry of the Son River, India: Weathering processes ...

    Indian Academy of Sciences (India)

    Major ion chemistry of the Son River, India: Weathering processes, dissolved fluxes and water quality assessment. Chinmaya Maharana, Sandeep Kumar Gautam,. Abhay Kumar Singh and Jayant K Tripathi. J. Earth Syst. Sci. 124(6) cO Indian Academy of Sciences. Supplementary data ...

  8. Simulation and modeling of the Gamble II self-pinched ion beam transport experiment

    International Nuclear Information System (INIS)

    Rose, D.V.; Ottinger, P.F.; Hinshelwood, D.D.

    1999-01-01

    Progress in numerical simulations and modeling of the self-pinched ion beam transport experiment at the Naval Research Laboratory (NRL) is reviewed. In the experiment, a 1.2-MeV, 100-kA proton beam enters a 1-m long, transport region filled with a low pressure gas (30--250 mTorr helium, or 1 Torr air). The time-dependent velocity distribution function of the injected ion beam is determined from an orbit code that uses a pinch-reflex ion diode model and the measured voltage and current from this diode on the Gamble II generator at NRL. This distribution function is used as the beam input condition for numerical simulations carried out using the hybrid particle-in-cell code IPROP. Results of the simulations will be described, and detailed comparisons will be made with various measurements, including line-integrated electron-density, proton-fluence, and beam radial-profile measurements. As observed in the experiment, the simulations show evidence of self-pinching for helium pressures between 35 and 80 mTorr. Simulations and measurements in 1 Torr air show ballistic transport. The relevance of these results to ion-driven inertial confinement fusion will be discussed

  9. Computational simulation of lithium ion transport through polymer nanocomposite membranes

    International Nuclear Information System (INIS)

    Moon, P.; Sandi, G.; Kizilel, R.; Stevens, D.

    2003-01-01

    We think of membranes as simple devices to facilitate filtration. In fact, membranes play a role in chemical, biological, and engineering processes such as catalysis, separation, and sensing by control of molecular transport and recognition. Critical factors that influence membrane discrimination properties include composition, pore size (as well as homogeneity), chemical functionalization, and electrical transport properties. There is increasing interest in using nanomaterials for the production of novel membranes due to the unique selectivity that can be achieved. Clay-polymer nanocomposites show particular promise due to their ease of manufacture (large sheets), their rigidity (self supporting), and their excellent mechanical properties. However, the process of lithium ion transport through the clay-polymer nanocomposite and mechanisms of pore size selection are poorly understood at the ionic and molecular level. In addition, manufacturing of clay-polymer nanocomposite membranes with desirable properties has proved challenging. We have built a general membrane-modeling tool (simulation system) to assist in developing improved membranes for selection, electromigration, and other electrochemical applications. Of particular interest are the recently formulated clay-polymer membranes. The transport mechanisms of the lithium ions membranes are not well understood and, therefore, they make an interesting test case for the model. In order to validate the model, we synthesized polymer nanocomposites membranes.

  10. Comparisons of theoretically predicted transport from ion temperature gradient instabilities to L-mode tokamak experiments

    International Nuclear Information System (INIS)

    Kotschenreuther, M.; Wong, H.V.; Lyster, P.L.; Berk, H.L.; Denton, R.; Miner, W.H.; Valanju, P.

    1991-12-01

    The theoretical transport from kinetic micro-instabilities driven by ion temperature gradients is a sheared slab is compared to experimentally inferred transport in L-mode tokamaks. Low noise gyrokinetic simulation techniques are used to obtain the ion thermal transport coefficient X. This X is much smaller than in experiments, and so cannot explain L-mode confinement. Previous predictions based on fluid models gave much greater X than experiments. Linear and nonlinear comparisons with the fluid model show that it greatly overestimates transport for experimental parameters. In addition, disagreements among previous analytic and simulation calculations of X in the fluid model are reconciled

  11. Experimental study of the transport limits of intense heavy ion beams in the HCX

    International Nuclear Information System (INIS)

    Prost, L.R.; Bieniosek, F.M.; Celata, C.M.; Dugan, C.C.; Faltens, A.; Seidl, P.A.; Waldron, W.L.; Cohen, R.; Friedman, A.; Kireeff Covo, M.; Lund, S.M.; Molvik, A.W.; Haber, I.

    2004-01-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high space-charge intensity (line charge density up to ∼ 0.2 (micro)C/m) over long pulse durations (4 (micro)s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. The experiment also contributes to the practical baseline knowledge of intense beam manipulations necessary for the design, construction and operation of a heavy ion driver for inertial fusion. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and beam steering, matching, image charges, halo, electron cloud effects, and longitudinal bunch control. We first present the results for a coasting 1 MeV K + ion beam transported through the first ten electrostatic transport quadrupoles, measured with optical beam-imaging and double-slit phase-space diagnostics. This includes studies at two different radial fill factors (60% and 80%), for which the beam transverse distribution was characterized in detail. Additionally, beam energy measurements will be shown. We then discuss the first results of beam transport through four pulsed room-temperature magnetic quadrupoles (located downstream of the electrostatic quadrupoles), where the beam dynamics become more sensitive to the presence of secondary electrons

  12. Estimates of Ionospheric Transport and Ion Loss at Mars

    Science.gov (United States)

    Cravens, T. E.; Hamil, O.; Houston, S.; Bougher, S.; Ma, Y.; Brain, D.; Ledvina, S.

    2017-10-01

    Ion loss from the topside ionosphere of Mars associated with the solar wind interaction makes an important contribution to the loss of volatiles from this planet. Data from NASA's Mars Atmosphere and Volatile Evolution mission combined with theoretical modeling are now helping us to understand the processes involved in the ion loss process. Given the complexity of the solar wind interaction, motivation exists for considering a simple approach to this problem and for understanding how the loss rates might scale with solar wind conditions and solar extreme ultraviolet irradiance. This paper reviews the processes involved in the ionospheric dynamics. Simple analytical and semiempirical expressions for ion flow speeds and ion loss are derived. In agreement with more sophisticated models and with purely empirical studies, it is found that the oxygen loss rate from ion transport is about 5% (i.e., global O ion loss rate of Qion ≈ 4 × 1024 s-1) of the total oxygen loss rate. The ion loss is found to approximately scale as the square root of the solar ionizing photon flux and also as the square root of the solar wind dynamic pressure. Typical ion flow speeds are found to be about 1 km/s in the topside ionosphere near an altitude of 300 km on the dayside. Not surprisingly, the plasma flow speed is found to increase with altitude due to the decreasing ion-neutral collision frequency.

  13. Performance of a shallow-focus applied-magnetic-field diode for ion-beam-transport experiments

    Energy Technology Data Exchange (ETDEWEB)

    Young, F.C.; Neri, J.M.; Ottinger, P.F. [Naval Research Lab., Washington, DC (United States); Rose, D.V. [JAYCOR, Vienna (Vatican City State, Holy See); Jones, T.G.; Oliver, B.V.

    1997-12-31

    An applied-magnetic-field ion diode to study the transport of intense ion beams for light-ion inertial confinement fusion is being operated on the Gamble II generator at NRL. A Large-area (145-cm{sup 2}), shallow-focusing diode is used to provide the ion beam required for self-pinched transport (SPT) experiments. Experiments have demonstrated focusing at 70 cm for 1.2-MV, 40-kA protons. Beyond the focus, the beam hollows out consistent with 20--30 mrad microdivergence. The effect of the counter-pulse B-field on altering the ion-beam trajectories and improving the focus has been diagnosed with a multiple-pinhole-camera using radiachromic film. This diagnostic is also used to determine the radial and azimuthal uniformity of ion emission at the anode for different B-field conditions. Increasing the diode voltage to 1.5 MV and optimizing the ion current are planned before initiating SPT experiments. Experiments to measure the spatial beam profile at focus, i.e., the SPT channel entrance, are in progress. Results are presented.

  14. Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries

    KAUST Repository

    Tu, Zhengyuan

    2017-09-21

    Substrates able to rectify transport of ions based on charge and/or size are ubiquitous in biological systems. Electrolytes and interphases that selectively transport electrochemically active ions are likewise of broad interest in all electrical energy storage technologies. In lithium-ion batteries, electrolytes with single- or near-single-ion conductivity reduce losses caused by ion polarization. In emergent lithium or sodium metal batteries, they maintain high conductivity at the anode and stabilize metal deposition by fundamental mechanisms. We report that 20- to 300-nm-thick, single-ion-conducting membranes deposited at the anode enable electrolytes with the highest combination of cation transference number, ionic conductivity, and electrochemical stability reported. By means of direct visualization we find that single-ion membranes also reduce dendritic deposition of Li in liquids. Galvanostatic measurements further show that the electrolytes facilitate long (3 mAh) recharge of full Li/LiNi0.8Co0.15Al0.05O2 (NCA) cells with high cathode loadings (3 mAh cm−2/19.9 mg cm−2) and at high current densities (3 mA cm−2).

  15. A new approach for understanding ion transport in glasses; example ...

    Indian Academy of Sciences (India)

    †Department of Physics, Government College for Women, Chintamani 563 125, India .... Our attention here is focused on understanding how ion transport takes ...... Almond D P, West A R and Grant R J 1982 Solid State Commun. 44. 1277.

  16. Formation of core transport barrier and CH-Mode by ion Bernstein wave heating in PBX-M

    International Nuclear Information System (INIS)

    Ono, M.; Bell, R.; Bernabei, S.; Gettelfinger, G.; Hatcher, R.; Kaita, R.; Kaye, S.; Kugel, H.; LeBlanc, B.; Manickam, J.

    1995-01-01

    Observation of core transport barrier formation (for particles, ion and electron energies, and toroidal momentum) by ion Bernstein wave heating (IBWH) in PBX-M plasma is reported. The formation of a transport barrier leads to a strong peaking and significant increase of the core pressure (70%) and toroidal momentum (20%), and has been termed the core-high confinement mode (CH-Mode). This formation of a transport barrier is consistent, in terms of the expected barrier location as well as the required threshold power, with a theoretical model based on the poloidal sheared flow generation by the ion Bernstein wave power. The use of ion Bernstein wave (IBW) induced sheared flow as a tool to control plasma pressure and bootstrap current profiles shows a favorable scaling for the use in future reactor grade tokamak plasmas

  17. Toxicological perspective on the osmoregulation and ionoregulation physiology of major ions by freshwater animals: Teleost fish, crustacea, aquatic insects, and Mollusca.

    Science.gov (United States)

    Griffith, Michael B

    2017-03-01

    Anthropogenic sources increase freshwater salinity and produce differences in constituent ions compared with natural waters. Moreover, ions differ in physiological roles and concentrations in intracellular and extracellular fluids. Four freshwater taxa groups are compared, to investigate similarities and differences in ion transport processes and what ion transport mechanisms suggest about the toxicity of these or other ions in freshwater. Although differences exist, many ion transporters are functionally similar and may belong to evolutionarily conserved protein families. For example, the Na + /H + -exchanger in teleost fish differs from the H + /2Na + (or Ca 2+ )-exchanger in crustaceans. In osmoregulation, Na + and Cl - predominate. Stenohaline freshwater animals hyperregulate until they are no longer able to maintain hypertonic extracellular Na + and Cl - concentrations with increasing salinity and become isotonic. Toxic effects of K + are related to ionoregulation and volume regulation. The ionic balance between intracellular and extracellular fluids is maintained by Na + /K + -adenosine triphosphatase (ATPase), but details are lacking on apical K + transporters. Elevated H + affects the maintenance of internal Na + by Na + /H + exchange; elevated HCO 3 - inhibits Cl - uptake. The uptake of Mg 2+ occurs by the gills or intestine, but details are lacking on Mg 2+ transporters. In unionid gills, SO 4 2- is actively transported, but most epithelia are generally impermeant to SO 4 2- . Transporters of Ca 2+ maintain homeostasis of dissolved Ca 2+ . More integration of physiology with toxicology is needed to fully understand freshwater ion effects. Environ Toxicol Chem 2017;36:576-600. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the

  18. The beam bunching and transport system of the Argonne positive ion injector

    International Nuclear Information System (INIS)

    Den Hartog, P.K.; Bogaty, J.M.; Bollinger, L.M.; Clifft, B.E.; Pardo, R.C.; Shepard, K.W.

    1989-01-01

    A new positive ion injector (PII) is currently under construction at Argonne that will replace the existing 9-MV tandem electrostatic accelerator as an injector into ATLAS. It consists of an electron-cyclotron resonance-ion source on a 350-kV platform injecting into a superconducting linac optimized for very slow (β ≤ .007 c) ions. This combination can potentially produce even higher quality heavy-ion beams than are currently available from the tandem since the emittance growth within the linac is largely determined by the quality of the bunching and beam transport. The system we have implemented uses a two-stage bunching system, composed of a 4-harmonic gridded buncher located on the ECR high-voltage platform and a room temperature spiral-loaded buncher of novel design. A sinusoidal beam chopper is used for removal of tails. The beam transport is designed to provide mass resolution of M/ΔM > 250 and a doubly-isochronous beamline is used to minimize time spread due to path length differences. 4 refs., 2 figs

  19. The beam bunching and transport system of the Argonne positive ion injector

    Energy Technology Data Exchange (ETDEWEB)

    Den Hartog, P.K.; Bogaty, J.M.; Bollinger, L.M.; Clifft, B.E.; Pardo, R.C.; Shepard, K.W.

    1989-01-01

    A new positive ion injector (PII) is currently under construction at Argonne that will replace the existing 9-MV tandem electrostatic accelerator as an injector into ATLAS. It consists of an electron-cyclotron resonance-ion source on a 350-kV platform injecting into a superconducting linac optimized for very slow (..beta.. less than or equal to .007 c) ions. This combination can potentially produce even higher quality heavy-ion beams than are currently available from the tandem since the emittance growth within the linac is largely determined by the quality of the bunching and beam transport. The system we have implemented uses a two-stage bunching system, composed of a 4-harmonic gridded buncher located on the ECR high-voltage platform and a room temperature spiral-loaded buncher of novel design. A sinusoidal beam chopper is used for removal of tails. The beam transport is designed to provide mass resolution of M/..delta..M > 250 and a doubly-isochronous beamline is used to minimize time spread due to path length differences. 4 refs., 2 figs.

  20. Ion transport membrane module and vessel system with directed internal gas flow

    Science.gov (United States)

    Holmes, Michael Jerome; Ohrn, Theodore R.; Chen, Christopher Ming-Poh

    2010-02-09

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

  1. A three-scale model for ionic solute transport in swelling clays incorporating ion-ion correlation effects

    Science.gov (United States)

    Le, Tien Dung; Moyne, Christian; Murad, Marcio A.

    2015-01-01

    A new three-scale model is proposed to describe the movement of ionic species of different valences in swelling clays characterized by three separate length scales (nano, micro, and macro) and two levels of porosity (nano- and micropores). At the finest (nano) scale the medium is treated as charged clay particles saturated by aqueous electrolyte solution containing monovalent and divalent ions forming the electrical double layer. A new constitutive law is constructed for the disjoining pressure based on the numerical resolution of non-local problem at the nanoscale which, in contrast to the Poisson-Boltzmann theory for point charge ions, is capable of capturing the short-range interactions between the ions due to their finite size. At the intermediate scale (microscale), the two-phase homogenized particle/electrolyte solution system is represented by swollen clay clusters (or aggregates) with the nanoscale disjoining pressure incorporated in a modified form of Terzaghi's effective principle. At the macroscale, the electro-chemical-mechanical couplings within clay clusters is homogenized with the ion transport in the bulk fluid lying in the micro pores. The resultant macroscopic picture is governed by a three-scale model wherein ion transport takes place in the bulk solution strongly coupled with the mechanics of the clay clusters which play the role of sources/sinks of mass to the bulk fluid associated with ion adsorption/desorption in the electrical double layer at the nanoscale. Within the context of the quasi-steady version of the multiscale model, wherein the electrolyte solution in the nanopores is assumed at instantaneous thermodynamic equilibrium with the bulk fluid in the micropores, we build-up numerically the ion-adsorption isotherms along with the constitutive law of the retardation coefficients of monovalent and divalent ions. In addition, the constitutive law for the macroscopic swelling pressure is reconstructed numerically showing patterns of

  2. Majority of Solar Wind Intervals Support Ion-Driven Instabilities

    Science.gov (United States)

    Klein, K. G.; Alterman, B. L.; Stevens, M. L.; Vech, D.; Kasper, J. C.

    2018-05-01

    We perform a statistical assessment of solar wind stability at 1 AU against ion sources of free energy using Nyquist's instability criterion. In contrast to typically employed threshold models which consider a single free-energy source, this method includes the effects of proton and He2 + temperature anisotropy with respect to the background magnetic field as well as relative drifts between the proton core, proton beam, and He2 + components on stability. Of 309 randomly selected spectra from the Wind spacecraft, 53.7% are unstable when the ion components are modeled as drifting bi-Maxwellians; only 4.5% of the spectra are unstable to long-wavelength instabilities. A majority of the instabilities occur for spectra where a proton beam is resolved. Nearly all observed instabilities have growth rates γ slower than instrumental and ion-kinetic-scale timescales. Unstable spectra are associated with relatively large He2 + drift speeds and/or a departure of the core proton temperature from isotropy; other parametric dependencies of unstable spectra are also identified.

  3. Energetic ion driven Alfven eigenmodes in Large Helical Device plasmas with three-dimensional magnetic structure and their impact on energetic ion transport

    International Nuclear Information System (INIS)

    Toi, K; Yamamoto, S; Nakajima, N; Ohdachi, S; Sakakibara, S; Osakabe, M; Murakami, S; Watanabe, K Y; Goto, M; Kawahata, K; Kolesnichenko, Ya I; Masuzaki, S; Morita, S; Narihara, K; Narushima, Y; Takeiri, Y; Tanaka, K; Tokuzawa, T; Yamada, H; Yamada, I; Yamazaki, K

    2004-01-01

    In the Large Helical Device (LHD), energetic ion driven Alfven eigenmodes (AEs) and their impact on energetic ion transport have been studied. The magnetic configuration of the LHD is three-dimensional and has negative magnetic shear over a whole plasma radius in the low beta regime. These features introduce the characteristic structures of the shear Alfven spectrum. In particular, a core-localized type of toroidicity-induced AE (TAE) is most likely because the TAE gap frequency rapidly increases towards the plasma edge. Moreover, helicity-induced AEs (HAEs) can be generated through a toroidal mode coupling as well as poloidal one in the three-dimensional configuration. The following experimental results have been obtained in LHD plasmas heated by tangential neutral beam injection: (1) observation of core-localized TAEs having odd as well as even parity, (2) eigenmode transition of the core-localized TAE to global AEs (GAEs), which phenomenon is very similar to that in a reversed shear tokamak, (3) observation of HAEs of which the frequency is about eight times higher than the TAE gap frequency, (4) enhanced radial transport/loss of energetic ions caused by bursting TAEs in a relatively high beta regime, and (5) seed formation of internal transport barriers induced by TAE-induced energetic ion transport. These results will be important and interesting information for AE physics in toroidal plasmas

  4. Plant Transporter Identification

    DEFF Research Database (Denmark)

    Larsen, Bo

    Membrane transport proteins (transporters) play a critical role for numerous biological processes, by controlling the movements of ions and molecules in and out of cells. In plants, transporters thus function as gatekeepers between the plant and its surrounding environment and between organs......, tissues, cells and intracellular compartments. Since plants are highly compartmentalized organisms with complex transportation infrastructures, they consequently have many transporters. However, the vast majority of predicted transporters have not yet been experimentally verified to have transport...... activity. This project contains a review of the implemented methods, which have led to plant transporter identification, and present our progress on creating a high-throughput functional genomics transporter identification platform....

  5. Electric Field Mediated Ion Transport Through Charged Mesoporous Membranes

    NARCIS (Netherlands)

    Schmuhl, R.; de Lint, W.B.S.; Keizer, Klaas; van den Berg, Albert; ten Elshof, Johan E.; Burganos, Vasilis N.; Noble, Richard D.; Asaeda, Masashi; Ayral, Andre; LeRoux, Johann D.

    2003-01-01

    The transport of ions from aqueous solutions through a stacked Au/alpha-alumina/gamma-alumina/Au membrane under the influence of a dc potential difference is reported. The membrane shows high cation permselectivity at ionic strengths of ~1 mM at pH 4.3-6.5, which is associated with a combination of

  6. Nitrogen transport during ion nitriding of austenitic stainless steel

    International Nuclear Information System (INIS)

    Parascandola, S.

    2001-09-01

    The work is structured as follows: In Chapter 2 fundamental transport concepts and phenomena and approaches to transport modeling are introduced. In Chapter 3 details are presented concerning the material under investigation, the material modification process, and the ion beam analytical techniques. In Chapter 4 experimental and modeling results are presented and discussed. Issues that are directly addressed include: The structural nature of the nitrogen enriched layer. The diffusion mechanism of nitrogen. The role of potential incorporation and release mechanisms. The evolution of the thickness of the nitrogen enriched layer. The role of the surface oxide layer. (orig.)

  7. A Hierarchy of Transport Approximations for High Energy Heavy (HZE) Ions

    Science.gov (United States)

    Wilson, John W.; Lamkin, Stanley L.; Hamidullah, Farhat; Ganapol, Barry D.; Townsend, Lawrence W.

    1989-01-01

    The transport of high energy heavy (HZE) ions through bulk materials is studied neglecting energy dependence of the nuclear cross sections. A three term perturbation expansion appears to be adequate for most practical applications for which penetration depths are less than 30 g per sq cm of material. The differential energy flux is found for monoenergetic beams and for realistic ion beam spectral distributions. An approximate formalism is given to estimate higher-order terms.

  8. Ion thermal conductivity and convective energy transport in JET hot-ion regimes and H-modes

    International Nuclear Information System (INIS)

    Tibone, F.; Balet, B.; Cordey, J.G.

    1989-01-01

    Local transport in a recent series of JET experiments has been studied using interpretive codes. Auxiliary heating, mainly via neutral beam injection, was applied on low-density target plasmas confined in the double-null X-point configuration. This has produced two-component plasmas with high ion temperature and neutron yield and, above a threshold density, H-modes characterised by peak density and power deposition profiles. H-mode confinement was also obtained for the first time with 25 MW auxiliary power, of which 10 MW was from ion cyclotron resonance heating. We have used profile measurements of electron temperature T e from electron cyclotron emission and LIDAR Thomson scattering, ion temperature T i from charge-exchange recombination spectroscopy (during NBI), electron density n e from LIDAR and Abel-inverted interferometer measurements. Only sparse information is, however, available to date concerning radial profiles of effective ionic charge and radiation losses. Deuterium depletion due to high impurity levels is an important effect in these discharges, and our interpretation of thermal ion energy content, neutron yield and ion particle fluxes needs to be confirmed using measured Z eff -profiles. (author) 4 refs., 4 figs

  9. Solenoidal Fields for Ion Beam Transport and Focusing

    International Nuclear Information System (INIS)

    Lee, Edward P.; Leitner, Matthaeus

    2007-01-01

    In this report we calculate time-independent fields of solenoidal magnets that are suitable for ion beam transport and focusing. There are many excellent Electricity and Magnetism textbooks that present the formalism for magnetic field calculations and apply it to simple geometries (1-1), but they do not include enough relevant detail to be used for designing a charged particle transport system. This requires accurate estimates of fringe field aberrations, misaligned and tilted fields, peak fields in wire coils and iron, external fields, and more. Specialized books on magnet design, technology, and numerical computations (1-2) provide such information, and some of that is presented here. The AIP Conference Proceedings of the US Particle Accelerator Schools (1-3) contain extensive discussions of design and technology of magnets for ion beams - except for solenoids. This lack may be due to the fact that solenoids have been used primarily to transport and focus particles of relatively low momenta, e.g. electrons of less than 50 MeV and protons or H- of less than 1.0 MeV, although this situation may be changing with the commercial availability of superconducting solenoids with up to 20T bore field (1-4). Internal reports from federal laboratories and industry treat solenoid design in detail for specific applications. The present report is intended to be a resource for the design of ion beam drivers for Inertial Fusion Energy (1-5) and Warm Dense Matter experiments (1-6), although it should also be useful for a broader range of applications. The field produced by specified currents and material magnetization can always be evaluated by solving Maxwell's equations numerically, but it is also desirable to have reasonably accurate, simple formulas for conceptual system design and fast-running beam dynamics codes, as well as for general understanding. Most of this report is devoted to such formulas, but an introduction to the Tosca(copyright) code (1-7) and some numerical

  10. Internal Transport Barrier Driven by Redistribution of Energetic Ions

    International Nuclear Information System (INIS)

    Wong, K.L.; Heidbrink, W.W.; Ruskov, E.; Petty, C.C.; Greenfield, C.M.; Nazikian, R.; Budny, R.

    2004-01-01

    Alfven instabilities excited by energetic ions are used as a means to reduce the central magnetic shear in a tokamak via redistribution of energetic ions. When the central magnetic shear is low enough, ballooning modes become stable for any plasma pressure gradient and an internal transport barrier (ITB) with a steep pressure gradient can exist. This mechanism can sustain a steady-state ITB as demonstrated by experimental data from the DIII-D tokamak. It can also produce a shear in toroidal and poloidal plasma rotation. Possible application of this technique to use the energetic alpha particles for improvement of burning plasma performance is discussed

  11. Beam-transport system for high-resolution heavy-ion spectroscopy

    International Nuclear Information System (INIS)

    Roussel, P.; Kashy, E.

    1980-01-01

    A method is given to adjust a beam-transport system to the requirements of high-energy resolution heavy-ion spectroscopy. The results of a test experiment performed on a MP tandem with a 12 C beam are shown. A drastic improvement in energy resolution is obtained for a kinematical factor K=1/p dp/dtheta=0.12 [fr

  12. Ion confinement and transport in a toroidal plasma with externally imposed radial electric fields

    Science.gov (United States)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Kim, Y. C.; Hong, H. Y.

    1979-01-01

    Strong electric fields were imposed along the minor radius of the toroidal plasma by biasing it with electrodes maintained at kilovolt potentials. Coherent, low-frequency disturbances characteristic of various magnetohydrodynamic instabilities were absent in the high-density, well-confined regime. High, direct-current radial electric fields with magnitudes up to 135 volts per centimeter penetrated inward to at least one-half the plasma radius. When the electric field pointed radially toward, the ion transport was inward against a strong local density gradient; and the plasma density and confinement time were significantly enhanced. The radial transport along the electric field appeared to be consistent with fluctuation-induced transport. With negative electrode polarity the particle confinement was consistent with a balance of two processes: a radial infusion of ions, in those sectors of the plasma not containing electrodes, that resulted from the radially inward fields; and ion losses to the electrodes, each of the which acted as a sink and drew ions out of the plasma. A simple model of particle confinement was proposed in which the particle confinement time is proportional to the plasma volume. The scaling predicted by this model was consistent with experimental measurements.

  13. The gyro-radius scaling of ion thermal transport from global numerical simulations of ITG turbulence

    International Nuclear Information System (INIS)

    Ottaviani, M.; Manfredi, G.

    1998-12-01

    A three-dimensional, fluid code is used to study the scaling of ion thermal transport caused by Ion-Temperature-Gradient-Driven (ITG) turbulence. The code includes toroidal effects and is capable of simulating the whole torus. It is found that both close to the ITG threshold and well above threshold, the thermal transport and the turbulence structures exhibit a gyro-Bohm scaling, at least for plasmas with moderate poloidal flow. (author)

  14. Modeling of multi-species ion transport in cement-based materials for radioactive waste container

    International Nuclear Information System (INIS)

    Pang, X.Y.; Li, K.F.; Dangla, P.

    2015-01-01

    Through the conservations of heat and ions mass, a thermo-hydro-ionic model is established for radionuclide ions transport in cement-based porous barrier materials in radwaste disposal. This model is applied to the design and the safety assessment of a high-integrity container (HIC) used for near surface disposal of low- and intermediate-level radwaste. Five working cases are investigated in the safety assessment considering the internal nuclide ion release, internal heating and pressure accumulation, and external leaching. Comparative analysis shows that leaching increases concrete porosity from external side of container, internal heating of 10 K increase can considerably accelerate the nuclide transport process, and the internal pressure increases the transport rate to limited extent. It is shown that each increment of 10 mm in wall thickness will reduce the radioactivity release by 1.5 to 2 times. Together with the mechanical resistance of HIC under impact actions, the thickness of 100 mm is finally retained for design

  15. Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pinch

    International Nuclear Information System (INIS)

    Lin, L.; Brower, D. L.; Ding, W. X.; Anderson, J. K.; Capecchi, W.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Nornberg, M. D.; Reusch, J.; Sarff, J. S.; Liu, D.

    2014-01-01

    Multiple bursty energetic-particle (EP) driven modes with fishbone-like structure are observed during 1 MW tangential neutral-beam injection in a reversed field pinch (RFP) device. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of EP instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport. Density fluctuations exhibit a dynamically evolving, inboard-outboard asymmetric spatial structure that peaks in the core where fast ions reside. The measured mode frequencies are close to the computed shear Alfvén frequency, a feature consistent with continuum modes destabilized by strong drive. The frequency pattern of the dominant mode depends on the fast-ion species. Multiple frequencies occur with deuterium fast ions compared to single frequency for hydrogen fast ions. Furthermore, as the safety factor (q) decreases, the toroidal mode number of the dominant EP mode transits from n=5 to n=6 while retaining the same poloidal mode number m=1. The transition occurs when the m=1, n=5 wave-particle resonance condition cannot be satisfied as the fast-ion safety factor (q fi ) decreases. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growth phase arising from the beam fueling followed by a rapid drop when the EP modes peak, indicating that the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced with the onset of multiple EP modes

  16. Theory of Ion and Water Transport in Reverse-Osmosis Membranes

    Science.gov (United States)

    Oren, Y. S.; Biesheuvel, P. M.

    2018-02-01

    We present a theory for ion and water transport through reverse-osmosis (RO) membranes based on a Maxwell-Stefan framework combined with hydrodynamic theory for the reduced motion of particles in thin pores. We take into account all driving forces and frictions both on the fluid (water) and on the ions including ion-fluid friction and ion-wall friction. By including the acid-base characteristic of the carbonic acid system, the boric acid system, H3O+/OH- , and the membrane charge, we locally determine p H , the effective charge of the membrane, and the dissociation degree of carbonic acid and boric acid. We present calculation results for an experiment with fixed feed concentration, where effluent composition is a self-consistent function of fluxes through the membrane. A comparison with experimental results from literature for fluid flow vs pressure, and for salt and boron rejection, shows that our theory agrees very well with the available data. Our model is based on realistic assumptions for the effective size of the ions and makes use of a typical pore size of a commercial RO membrane.

  17. Fully-kinetic Ion Simulation of Global Electrostatic Turbulent Transport in C-2U

    Science.gov (United States)

    Fulton, Daniel; Lau, Calvin; Bao, Jian; Lin, Zhihong; Tajima, Toshiki; TAE Team

    2017-10-01

    Understanding the nature of particle and energy transport in field-reversed configuration (FRC) plasmas is a crucial step towards an FRC-based fusion reactor. The C-2U device at Tri Alpha Energy (TAE) achieved macroscopically stable plasmas and electron energy confinement time which scaled favorably with electron temperature. This success led to experimental and theoretical investigation of turbulence in C-2U, including gyrokinetic ion simulations with the Gyrokinetic Toroidal Code (GTC). A primary objective of TAE's new C-2W device is to explore transport scaling in an extended parameter regime. In concert with the C-2W experimental campaign, numerical efforts have also been extended in A New Code (ANC) to use fully-kinetic (FK) ions and a Vlasov-Poisson field solver. Global FK ion simulations are presented. Future code development is also discussed.

  18. Critical role of bicarbonate and bicarbonate transporters in cardiac function

    OpenAIRE

    Wang, Hong-Sheng; Chen, Yamei; Vairamani, Kanimozhi; Shull, Gary E

    2014-01-01

    Bicarbonate is one of the major anions in mammalian tissues and extracellular fluids. Along with accompanying H+, HCO3- is generated from CO2 and H2O, either spontaneously or via the catalytic activity of carbonic anhydrase. It serves as a component of the major buffer system, thereby playing a critical role in pH homeostasis. Bicarbonate can also be utilized by a variety of ion transporters, often working in coupled systems, to transport other ions and organic substrates across cell membrane...

  19. Fast-ion transport in qmin>2, high-β steady-state scenarios on DIII-D

    International Nuclear Information System (INIS)

    Holcomb, C. T.; Heidbrink, W. W.; Collins, C.; Ferron, J. R.; Van Zeeland, M. A.; Garofalo, A. M.; Bass, E. M.; Luce, T. C.; Pace, D. C.; Solomon, W. M.; Mueller, D.; Grierson, B.; Podesta, M.; Gong, X.; Ren, Q.; Park, J. M.; Kim, K.; Turco, F.

    2015-01-01

    Results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-q min confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β N and the noninductive current drive. However, in scenarios with q min >2 that target the typical range of q 95 = 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. This enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable β N . In contrast, similar plasmas except with q min just above 1 have approximately classical fast-ion transport. Experiments that take q min >3 plasmas to higher β P with q 95 = 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-q min scenario, the high β P cases have shorter slowing-down time and lower ∇β fast , and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β N , and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q 95 , high-q min plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes

  20. The influence of collisional and anomalous radial diffusion on parallel ion transport in edge plasmas

    International Nuclear Information System (INIS)

    Helander, P.; Hazeltine, R.D.; Catto, P.J.

    1996-01-01

    The orderings in the kinetic equations commonly used to study the plasma core of a tokamak do not allow a balance between parallel ion streaming and radial diffusion, and are, therefore, inappropriate in the plasma edge. Different orderings are required in the edge region where radial transport across the steep gradients associated with the scrape-off layer is large enough to balance the rapid parallel flow caused by conditions close to collecting surfaces (such as the Bohm sheath condition). In the present work, we derive and solve novel kinetic equations, allowing for such a balance, and construct distinctive transport laws for impure, collisional, edge plasmas in which the perpendicular transport is (i) due to Coulomb collisions of ions with heavy impurities, or (ii) governed by anomalous diffusion driven by electrostatic turbulence. In both the collisional and anomalous radial transport cases, we find that one single diffusion coefficient determines the radial transport of particles, momentum and heat. The parallel transport laws and parallel thermal force in the scrape-off layer assume an unconventional form, in which the relative ion-impurity flow is driven by a combination of the conventional parallel gradients, and new (i) collisional or (ii) anomalous terms involving products of radial derivatives of the temperature and density with the radial shear of the parallel velocity. Thus, in the presence of anomalous radial diffusion, the parallel ion transport cannot be entirely classical, as usually assumed in numerical edge computations. The underlying physical reason is the appearance of a novel type of parallel thermal force resulting from the combined action of anomalous diffusion and radial temperature and velocity gradients. In highly sheared flows the new terms can modify impurity penetration into the core plasma

  1. Universal method for effusive-flow characterization target ion source/vapor transport systems for radioactive ion beam generation (abstract)

    International Nuclear Information System (INIS)

    Alton, G.D.; Bilheux, J.-C.; Liu, Y.; Cole, J. A.; Williams, C.

    2004-01-01

    Worldwide interest in the use of accelerated radioactive ion beams (RIBs) for exploring reactions important in understanding the structure of the nucleus and nuclear astrophysical phenomena has motivated the construction of facilities dedicated to their production and acceleration. Many facilities utilize the isotope-separator-on-line (ISOL) method in which species of interest are generated within a solid or liquid target matrix. Experimentally useful RIBs are often difficult to generate by this technique because of the times required for diffusion from the interior of the target material, and to effusively transport the species of interest to the ion source following diffusion release in relation to its lifetime. Therefore, these delay times must be minimized. We have developed an experimental method that can be used to determine effusive-flow times of arbitrary geometry target/vapor transport systems. The technique utilizes a fast valve to measure effusive-flow times as short as 0.1 ms for any chemically active or inactive species through any target system, independent of size, geometry and materials of construction. In this report, we provide a theoretical basis for effusive flow through arbitrary geometry vapor transport systems, describe a universal experimental apparatus for measuring effusive-flow times, and provide time spectra for noble gases through prototype RIB target/vapor-transport systems

  2. New Trends in Cancer Therapy: Targeting Ion Channels and Transporters

    Directory of Open Access Journals (Sweden)

    Annarosa Arcangeli

    2010-04-01

    Full Text Available The expression and activity of different channel types mark and regulate specific stages of cancer establishment and progression. Blocking channel activity impairs the growth of some tumors, both in vitro and in vivo, which opens a new field for pharmaceutical research. However, ion channel blockers may produce serious side effects, such as cardiac arrhythmias. For instance, Kv11.1 (hERG1 channels are aberrantly expressed in several human cancers, in which they control different aspects of the neoplastic cell behaviour. hERG1 blockers tend to inhibit cancer growth. However they also retard the cardiac repolarization, thus lengthening the electrocardiographic QT interval, which can lead to life-threatening ventricular arrhythmias. Several possibilities exist to produce less harmful compounds, such as developing specific drugs that bind hERG1 channels in the open state or disassemble the ion channel/integrin complex which appears to be crucial in certain stages of neoplastic progression. The potential approaches to improve the efficacy and safety of ion channel targeting in oncology include: (1 targeting specific conformational channel states; (2 finding ever more specific inhibitors, including peptide toxins, for channel subtypes mainly expressed in well-identified tumors; (3 using specific ligands to convey traceable or cytotoxic compounds; (4 developing channel blocking antibodies; (5 designing new molecular tools to decrease channel expression in selected cancer types. Similar concepts apply to ion transporters such as the Na+/K+ pump and the Na+/H+ exchanger. Pharmacological targeting of these transporters is also currently being considered in anti-neoplastic therapy.

  3. Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion

    KAUST Repository

    Hong, Jongsup

    2012-07-01

    Ion transport membrane (ITM) based reactors have been suggested as a novel technology for several applications including fuel reforming and oxy-fuel combustion, which integrates air separation and fuel conversion while reducing complexity and the associated energy penalty. To utilize this technology more effectively, it is necessary to develop a better understanding of the fundamental processes of oxygen transport and fuel conversion in the immediate vicinity of the membrane. In this paper, a numerical model that spatially resolves the gas flow, transport and reactions is presented. The model incorporates detailed gas phase chemistry and transport. The model is used to express the oxygen permeation flux in terms of the oxygen concentrations at the membrane surface given data on the bulk concentration, which is necessary for cases when mass transfer limitations on the permeate side are important and for reactive flow modeling. The simulation results show the dependence of oxygen transport and fuel conversion on the geometry and flow parameters including the membrane temperature, feed and sweep gas flow, oxygen concentration in the feed and fuel concentration in the sweep gas. © 2012 Elsevier B.V.

  4. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hyojae, E-mail: lkcom@ibs.re.kr; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-02-15

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  5. Electronic transport in helium-ion-beam etched encapsulated graphene nanoribbons

    NARCIS (Netherlands)

    Nanda, G.; Hlawacek, Gregor; Goswami, S.; Watanabe, Kenji; Taniguchi, Takashi; Alkemade, P.F.A.

    2017-01-01

    We report the etching of and electronic transport in nanoribbons of graphene sandwiched between atomically flat hexagonal boron nitride (h-BN). The etching of ribbons of varying width was achieved with a focused beam of 30 keV He+ ions. Using in-situ electrical measurements, we

  6. Solenoidal Fields for Ion Beam Transport and Focusing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Edward P.; Leitner, Matthaeus

    2007-11-01

    In this report we calculate time-independent fields of solenoidal magnets that are suitable for ion beam transport and focusing. There are many excellent Electricity and Magnetism textbooks that present the formalism for magnetic field calculations and apply it to simple geometries [1-1], but they do not include enough relevant detail to be used for designing a charged particle transport system. This requires accurate estimates of fringe field aberrations, misaligned and tilted fields, peak fields in wire coils and iron, external fields, and more. Specialized books on magnet design, technology, and numerical computations [1-2] provide such information, and some of that is presented here. The AIP Conference Proceedings of the US Particle Accelerator Schools [1-3] contain extensive discussions of design and technology of magnets for ion beams - except for solenoids. This lack may be due to the fact that solenoids have been used primarily to transport and focus particles of relatively low momenta, e.g. electrons of less than 50 MeV and protons or H- of less than 1.0 MeV, although this situation may be changing with the commercial availability of superconducting solenoids with up to 20T bore field [1-4]. Internal reports from federal laboratories and industry treat solenoid design in detail for specific applications. The present report is intended to be a resource for the design of ion beam drivers for Inertial Fusion Energy [1-5] and Warm Dense Matter experiments [1-6], although it should also be useful for a broader range of applications. The field produced by specified currents and material magnetization can always be evaluated by solving Maxwell's equations numerically, but it is also desirable to have reasonably accurate, simple formulas for conceptual system design and fast-running beam dynamics codes, as well as for general understanding. Most of this report is devoted to such formulas, but an introduction to the Tosca{copyright} code [1-7] and some

  7. Fast-ion transport in the presence of magnetic reconnection induced by sawtooth oscillations in ASDEX Upgrade

    NARCIS (Netherlands)

    Geiger, B.; M. García-Muñoz,; Dux, R.; Ryter, F.; Tardini, G.; Orte, L. B.; Classen, I.G.J.; Fable, E.; Fischer, R.; Igochine, V.; McDermott, R. M.

    2014-01-01

    The transport of beam-generated fast ions has been investigated experimentally at the ASDEX Upgrade tokamak in the presence of sawtooth crashes. After sawtooth crashes, phase space resolved fast-ion D-alpha measurements show a significant reduction of the central fast-ion density-more than

  8. DATA QUALIFICATION REPORT: MAJOR ION AND PH DATA FOR USE ON THE YUCCA MOUNTAIN PROJECT

    International Nuclear Information System (INIS)

    C. WILSON; D.M. JENKINS; T. STEINBORN; R. WEMHEUER

    2000-01-01

    This data qualification report uses technical assessment and corroborating data methods according to Attachment 2 of AP-SIII.2Q, Rev. 0, ICN 2, ''Qualification of Unqualified Data and the Documentation of Rationale for Accepted Data'', to qualify major ion and pH data. This report was prepared in accordance with Data Qualification Plan TDP-NBS-GS-00003 1, Revision 2. Additional reports will be prepared to address isotopic and precipitation-related data. Most of the data considered in this report were acquired and developed by the U.S. Geological Survey (USGS). The data qualification team considers the sampling and analytical protocols employed by the USGS over the time period of data acquisition to be state-of-the-art. The sample collection methodologies have evolved with no significant change that could affect the quality of the data considered in this report into the currently used Hydrologic Procedures that support the Yucca Mountain Project-approved USGS Quality Assurance Program Plan. Consequently, for USGS data, the data collection methods, documentation, and results are reasonable and appropriate in view of standard practice at the time the data were collected. A small number of data sets were collected by organizations other than the USGS and were reviewed along with the other major ion and pH data using corroborating data methods. Hydrochemical studies reviewed in this qualification report indicate that the extent and quality of corroborating data are sufficient to support qualification of both USGS and non-USGS major ion and pH data for generalized hydrochemical studies. The corroborating data included other major ion and pH data, isotope data, and independent hydrological data. Additionally, the analytical adequacy of the major ion data was supported by a study of anion-cation charge balances. Charge balance errors for USGS and non-USGS data were under 10% and acceptable for all data. This qualification report addresses the specific major ion data sets

  9. Production, transport and charge capture measurements of highly charged recoil ions

    International Nuclear Information System (INIS)

    Trebus, U.E.

    1989-05-01

    An experiment is described to study highly charged recoil ions on-line to the heavy ion accelerator UNILAC at GSI. The highly charged recoil ions are produced by heavy ion bombardment of a gas target. Subsequently the slow highly charged recoil ions are extracted from the ionization volume, and guided through a beam transport line to a Wien filter for charge state selection and to a collision region to study charge transfer processes. Several experiments were carried out to show the efficient charge state separation. Charge states up to q=15 were observed. When using a retarding field analyzer cross sections for single electron capture were determined for different charge states of Xe q+ for q=4 to 11 and He gas. The experiments demonstrated increasing charge transfer cross sections with increasing charge state q and indicated the effect of near resonant charge capture for q=6. The flexible data acquisition system used, is described and other future experiments, such as for instance in flight ion-trapping are indicated in the appendix. (orig.)

  10. Cell Membrane Transport Mechanisms: Ion Channels and Electrical Properties of Cell Membranes.

    Science.gov (United States)

    Kulbacka, Julita; Choromańska, Anna; Rossowska, Joanna; Weżgowiec, Joanna; Saczko, Jolanta; Rols, Marie-Pierre

    2017-01-01

    Cellular life strongly depends on the membrane ability to precisely control exchange of solutes between the internal and external (environmental) compartments. This barrier regulates which types of solutes can enter and leave the cell. Transmembrane transport involves complex mechanisms responsible for passive and active carriage of ions and small- and medium-size molecules. Transport mechanisms existing in the biological membranes highly determine proper cellular functions and contribute to drug transport. The present chapter deals with features and electrical properties of the cell membrane and addresses the questions how the cell membrane accomplishes transport functions and how transmembrane transport can be affected. Since dysfunctions of plasma membrane transporters very often are the cause of human diseases, we also report how specific transport mechanisms can be modulated or inhibited in order to enhance the therapeutic effect.

  11. Plant ion channels: gene families, physiology, and functional genomics analyses.

    Science.gov (United States)

    Ward, John M; Mäser, Pascal; Schroeder, Julian I

    2009-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization- and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide-gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport.

  12. Ion transport by the amphibian primary ureter

    DEFF Research Database (Denmark)

    Møbjerg, Nadja

    2008-01-01

    putative ion transport mechanisms in the primary ureter of the freshwater amphibian Ambystoma mexicanum (axolotl). Primary ureters isolated from axolotl larvae were perfused in vitro and single cells were impaled across the basal cell membrane with glass microelectrodes. In 42 cells the membrane potential......+] steps from 3 to 20 mmol/l and a hyperpolarization of Vm upon lowering [Na+] from 102 to 2 mmol/l, indicating the presence of luminal K+ and Na+ conductances. This study provides the first functional data on the vertebrate primary ureter. The data show that the primary ureter of axolotl larvae...

  13. VIVITRON beam transport

    International Nuclear Information System (INIS)

    Nadji, A.

    1989-07-01

    The VIVITRON is a new 35 MV particle accelerator which presents a great number of innovations. One of the major problem is the beam transport in this electrostatic machine of 50 m length for ions with masses between 1 and 200. Our work consisted in the study of various experimental and theoretical aspects of the beam transport in Tandem accelerators from the ion source to the analysing magnet. Calculations of the beam optics were performed with a Strasbourg version of the computer code Transport. They allowed us to optimize the beam transport parameters of the VIVITRON elements. Special attention has been focused on the design of the charge state selector to be installed in the terminal of the new machine. Beam transmission measurements were carried out in the Strasbourg MP 10 Tandem accelerator for ions beams of masses between 1 and 127 and for terminal voltages from 9 to 15 MV. Partial and total transmissions were obtained and explanations of the beam losses were proposed in terms of the vacuum pressure and/or the optics of the beam accelerator system. The results have been extrapolated to the VIVITRON for which the best working conditions are now clearly defined [fr

  14. Ion Transport through Diffusion Layer Controlled by Charge Mosaic Membrane

    Directory of Open Access Journals (Sweden)

    Akira Yamauchi

    2012-01-01

    Full Text Available The kinetic transport behaviors in near interface of the membranes were studied using commercial anion and cation exchange membrane and charge mosaic membrane. Current-voltage curve gave the limiting current density that indicates the ceiling of conventional flux. From chronopotentiometry above the limiting current density, the transition time was estimated. The thickness of boundary layer was derived with conjunction with the conventional limiting current density and the transition time from steady state flux. On the other hand, the charge mosaic membrane was introduced in order to examine the ion transport on the membrane surface in detail. The concentration profile was discussed by the kinetic transport number with regard to the water dissociation (splitting on the membrane surface.

  15. Performance test results of ion beam transport for SST-1 neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Jana, M R; Mattoo, S K [Institute for Plasma Research Bhat, Gandhinagar-382428, Gujarat (India); Uhlemann, R, E-mail: mukti@ipr.res.i [Forschungszentrum Juelich, Institute fur Energieforschung IEF-4, Plasmaphysik D-52425 Juelich (Germany)

    2010-02-01

    A neutral beam injector is built at IPR to heat the plasma of SST-1 and its upgrade. It delivers a maximum beam power of 1.7 MW for 55 kV Hydrogen beam or 80 kV Deuterium beam. At lower beam voltage, the delivered power falls to 500 kW at 30 kV Hydrogen beam which is adequate to heat SST-1 plasma ions to {approx} 1 keV. Process of acceleration of ions to the required beam voltage, conversion of ions to neutrals and removal of un-neutralized ions and the beam diagnostic systems occupy a large space. The consequence is that linear extent of the neutral beam injector is at least a few meters. Also, port access provides a very narrow duct. Even a very good injector design and fabrication practices keep beam divergence at a very low but finite value. The result is beam transport becomes an important issue. Since a wide area beam is constructed by hundreds of beam lets, it becomes essential they be focused in such a way that beam transport loss is minimized. Horizontal and vertical focal lengths are two parameters, in addition to beam divergence, which give a description of the beam transport. We have obtained these two parameters for our injector by using beam transport code; making several hundred simulation runs by varying optical parameters of the beam. The selected parameters set has been translated into the engineering features of the extractor grid set of the ion source. Aperture displacement technique is used to secure the horizontal beam focusing at 5.4 m. Combination of both aperture displacement and inclining of two grid halves to {approx} 17 mrad are secured for vertical beam focusing at 7 m from earth grid of the ion source. The gaps between the design, engineered and performance tested values usually arise due to lack of exercising control over fabrication processes or due to inaccuracies in the assumption made in the model calculations of beam optics and beam transport. This has been the case with several injectors, notably with JET injector. To overcome

  16. An initial study on atmospheric pressure ion transport by laser ionization and electrostatic fields.

    OpenAIRE

    Peralta Conde, Álvaro; Romero, Carolina; Boyero, Juan; Apiñaniz Aginako, Jon Imanol; Raposo Funcia, Cesar; Roso Franco, Luis; Padilla Moreno, Carlos Manuel

    2014-01-01

    Laser ionization of mixtures of gases at atmospheric pressure and the subsequent transport through electrostatic field is studied. A prototype is designed to perform the transport and detection of the ions. Relevance of the composition of the mixture of gases and ionization parameters is shown

  17. Object oriented programming in simulation of ions transport

    International Nuclear Information System (INIS)

    Zhang Wenyong; Wang Tongquan; Xiao Yabin; Dai Hongyi; Chen Yuzhong

    2001-01-01

    Using Object Oriented Programming (OOP) method can make our program more reliable and easier to read, debug, maintain and upgrade. This paper compared FORTRAN90-the language widely used in science computing with C ++ --An Object Oriented Language, and the conclusion was made that although FORTRAN90 have many deficiencies, it can be used in Object Oriented programming. Then OOP method was used in programming of Monte Carlo simulation of ions transport and the general process of OOP was given

  18. Ion transport property studies on PEO-PVP blended solid polymer electrolyte membranes

    International Nuclear Information System (INIS)

    Chandra, Angesh; Agrawal, R C; Mahipal, Y K

    2009-01-01

    The ion transport property studies on Ag + ion conducting PEO-PVP blended solid polymer electrolyte (SPE) membranes, (1 - x)[90PEO : 10AgNO 3 ] : xPVP, where x = 0, 1, 2, 3, 5, 7, 10 (wt%), are reported. SPE films were caste using a novel hot-press technique instead of the traditional solution cast method. The conventional solid polymeric electrolyte (SPE) film, (90PEO : 10AgNO 3 ), also prepared by the hot-press method and identified as the highest conducting composition at room temperature on the basis of PEO-AgNO 3 -salt concentration dependent conductivity studies, was used as the first-phase polymer electrolyte host into which PVP were dispersed as second-phase dispersoid. A two-fold conductivity enhancement from that of the PEO host could be achieved at room temperature for PVP blended SPE film composition: 98(90PEO : 10AgNO 3 ) : 2PVP. This has been referred to as optimum conducting composition (OCC). The formation of SPE membranes and material characterizations were done with the help of the XRD and DSC techniques. The ion transport mechanism in this SPE OCC has been characterized with the help of basic ionic parameters, namely ionic conductivity (σ), ionic mobility (μ), mobile ion concentration (n) and ionic transference number (t ion ). Solid-state polymeric batteries were fabricated using OCC as electrolyte and the cell-potential discharge characteristics were studied under different load conditions.

  19. Hippocampal volume and serotonin transporter polymorphism in major depressive disorder

    DEFF Research Database (Denmark)

    Ahdidan, Jamila; Foldager, Leslie; Rosenberg, Raben

    2013-01-01

    Objective: The main aim of the present study was to replicate a previous finding in major depressive disorder (MDD) of association between reduced hippocampal volume and the long variant of the di- and triallelic serotonin transporter polymorphism in SLC6A4 on chromosome 17q11.2. Secondarily, we...... that we aimed to replicate, and no significant associations with the serotonin transporter polymorphism were found. Conclusions: The present quantitative and morphometric MRI study was not able to replicate the previous finding of association between reduced hippocampal volume in depressed patients...... and the serotonin transporter polymorphism....

  20. Fluid transport and ion fluxes in mammalian kidney proximal tubule: a model analysis of isotonic transport

    DEFF Research Database (Denmark)

    Larsen, E.H.; Møbjerg, N.; Sørensen, Jens Nørkær

    2006-01-01

    transport similar to rat proximal tubule. Na+ recirculation is required for truly isotonic transport. The tonicity of the absorbate and the recirculation flux depend critically on ion permeabilities of interspace basement membrane. Conclusion: Our model based on solute-solvent coupling in lateral space......Aim: By mathematical modelling, we analyse conditions for near-isotonic and isotonic transport by mammalian kidney proximal tubule. Methods: The model comprises compliant lateral intercellular space (lis) and cells, and infinitely large luminal and peritubular compartments with diffusible species......: Na+, K+, Cl and an intracellular non-diffusible anion. Unknown model variables are solute concentrations, electrical potentials, volumes and hydrostatic pressures in cell and lis, and transepithelial potential. We used data mainly from rat proximal tubule to model epithelial cells and interspace...

  1. Relationship between ion transport and the failure behavior of epoxy resin coatings

    International Nuclear Information System (INIS)

    Dong, Yuhua; Zhou, Qiong

    2014-01-01

    Highlights: •An epoxy resin-Q345 system with a sandwich structure was prepared. •Cl − ions permeated into epoxy resin coating prior to K + ions. •Free volume size and PAL increased when the coating was immersed into the solution. -- Abstract: An epoxy resin coating with a sandwich structure was prepared to investigate ion transport behavior in the coating. The macro- and micro- appearance of the coating immersed in 5 wt.% KCl solutions was observed by stereomicroscopy, scanning electron microscopy equipped with an energy dispersive spectrometer. The electrochemical property of the coating was characterized by electrochemical impedance spectroscopy, and change of free volume after immersion was characterized by positron annihilation lifetime spectroscopy. The results indicated that Cl − ions permeated into the coating prior to K + ions, the free volume size and positron annihilation lifetime of the coating increased during immersion

  2. Elucidating the Performance Limitations of Lithium-ion Batteries due to Species and Charge Transport through Five Characteristic Parameters

    Science.gov (United States)

    Jiang, Fangming; Peng, Peng

    2016-01-01

    Underutilization due to performance limitations imposed by species and charge transports is one of the key issues that persist with various lithium-ion batteries. To elucidate the relevant mechanisms, two groups of characteristic parameters were proposed. The first group contains three characteristic time parameters, namely: (1) te, which characterizes the Li-ion transport rate in the electrolyte phase, (2) ts, characterizing the lithium diffusion rate in the solid active materials, and (3) tc, describing the local Li-ion depletion rate in electrolyte phase at the electrolyte/electrode interface due to electrochemical reactions. The second group contains two electric resistance parameters: Re and Rs, which represent respectively, the equivalent ionic transport resistance and the effective electronic transport resistance in the electrode. Electrochemical modeling and simulations to the discharge process of LiCoO2 cells reveal that: (1) if te, ts and tc are on the same order of magnitude, the species transports may not cause any performance limitations to the battery; (2) the underlying mechanisms of performance limitations due to thick electrode, high-rate operation, and large-sized active material particles as well as effects of charge transports are revealed. The findings may be used as quantitative guidelines in the development and design of more advanced Li-ion batteries. PMID:27599870

  3. Ammonium ion transport by the AMT/Rh homolog TaAMT1;1 is stimulated by acidic pH

    DEFF Research Database (Denmark)

    Søgaard, Rikke; Alsterfjord, Magnus; Macaulay, Nanna

    2009-01-01

    It is unclear how ammonia is transported by proteins from the Amt/Mep/Rh superfamily. We investigated this for the ammonium transporter TaAMT1;1 from wheat expressed in Xenopus oocytes by two-electrode voltage clamp and radio-labeled uptakes. Inward currents were activated by NH (4......) (+) or methylammonium ions (MeA(+)). Importantly, currents increased fivefold when the external pH was decreased from 7.4 to 5.5; this type of pH dependence is unique and is a strong indication of NH (4) (+) or MeA(+) transport. This was confirmed by the close correlation between the uptake of radio-labeled Me......A(+) and MeA(+)-induced currents. Homology models of members of the Amt/Mep/Rh superfamily exhibited major divergences in their cytoplasmic regions. A point mutation in this region of TaAMT1;1 abolished the pH sensitivity and decreased the apparent affinities for NH (4) (+) and MeA(+). We suggest a model...

  4. Simulation studies of the ion beam transport system in a compact electrostatic accelerator-based D-D neutron generator

    Directory of Open Access Journals (Sweden)

    Das Basanta Kumar

    2014-01-01

    Full Text Available The study of an ion beam transport mechanism contributes to the production of a good quality ion beam with a higher current and better beam emittance. The simulation of an ion beam provides the basis for optimizing the extraction system and the acceleration gap for the ion source. In order to extract an ion beam from an ion source, a carefully designed electrode system for the required beam energy must be used. In our case, a self-extracted penning ion source is used for ion generation, extraction and acceleration with a single accelerating gap for the production of neutrons. The characteristics of the ion beam extracted from this ion source were investigated using computer code SIMION 8.0. The ion trajectories from different locations of the plasma region were investigated. The simulation process provided a good platform for a study on optimizing the extraction and focusing system of the ion beam transported to the required target position without any losses and provided an estimation of beam emittance.

  5. Electron transport effects in ion induced electron emission

    Energy Technology Data Exchange (ETDEWEB)

    Dubus, A. [Universite Libre de Bruxelles, Service de Metrologie Nucleaire (CP 165/84), 50 av. FD Roosevelt, B-1050 Brussels (Belgium)]. E-mail: adubus@ulb.ac.be; Pauly, N. [Universite Libre de Bruxelles, Service de Metrologie Nucleaire (CP 165/84), 50 av. FD Roosevelt, B-1050 Brussels (Belgium); Roesler, M. [Karl-Pokern-Str. 12, D-12587 Berlin (Germany)

    2007-03-15

    Ion induced electron emission (IIEE) is usually described as a three-step process, i.e. electron excitation by the incident projectile, electron transport (and multiplication) and electron escape through the potential barrier at the surface. In many cases, the first step of the process has been carefully described. The second step of the process, i.e. electron transport and multiplication, has often been treated in a very rough way, a simple decreasing exponential law being sometimes used. It is precisely the aim of the present work to show the importance of a correct description of electron transport and multiplication in a theoretical calculation of IIEE. A short overview of the electron transport models developed for IIEE is given in this work. The so-called 'Infinite medium slowing-down model' often used in recent works is evaluated by means of Monte Carlo simulations. In particular, the importance of considering correctly the semi-infinite character of the medium and the boundary condition at the vacuum-medium interface is discussed. Quantities like the electron escape depth are also briefly discussed. This evaluation has been performed in the particular case of protons (25keV

  6. Selective transport of metal ions through cation exchange membrane in the presence of a complexing agent

    Energy Technology Data Exchange (ETDEWEB)

    Tingchia Huang; Jaukai Wang (National Cheng Kung Univ., Tainan (Taiwan, Province of China))

    1993-01-01

    Selective transport of metal ions through a cation exchange membrane was studied in stirred batch dialyzer for the systems Ni[sup 2+]-Cu[sup 2+] and Cu[sup 2+]-Fe[sup 3+]. Oxalic acid, malonic acid, citric acid, glycine, and ethylenediaminetetraacetic acid were employed as the complexing agents added in the feed solution in order to increase the permselectivity of metal ions. The experimental results show that the selective transport behavior of metal ions depends on the valence and the concentration of metal ions, the stoichiometric ratio of complexing agent to metal ions, and the pH value of the feed solution, but is independent of the concentration of counterion in the stripping phase. A theoretical approach was formulated on the basis of the Nernst-Planck equation and interface quasi-equilibrium. Theoretical solutions obtained from numerical calculation were in agreement with the experimental data.

  7. Trapped-ion quantum simulation of excitation transport: Disordered, noisy, and long-range connected quantum networks

    Science.gov (United States)

    Trautmann, N.; Hauke, P.

    2018-02-01

    The transport of excitations governs fundamental properties of matter. Particularly rich physics emerges in the interplay between disorder and environmental noise, even in small systems such as photosynthetic biomolecules. Counterintuitively, noise can enhance coherent quantum transport, which has been proposed as a mechanism behind the high transport efficiencies observed in photosynthetic complexes. This effect has been called "environment-assisted quantum transport". Here, we propose a quantum simulation of the excitation transport in an open quantum network, taking advantage of the high controllability of current trapped-ion experiments. Our scheme allows for the controlled study of various different aspects of the excitation transfer, ranging from the influence of static disorder and interaction range, over the effect of Markovian and non-Markovian dephasing, to the impact of a continuous insertion of excitations. Our paper discusses experimental error sources and realistic parameters, showing that it can be implemented in state-of-the-art ion-chain experiments.

  8. Impact of beam transport method on chamber and driver design for heavy ion inertial fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Rose, D.V.; Welch, D.R.; Olson, C.L.; Yu, S.S.; Neff, S.; Sharp, W.M.

    2002-12-01

    In heavy ion inertial fusion energy systems, intense beams of ions must be transported from the exit of the final focus magnet system through the target chamber to hit millimeter spot sizes on the target. In this paper, we examine three different modes of beam propagation: neutralized ballistic transport, assisted pinched transport, and self-pinched transport. The status of our understanding of these three modes is summarized, and the constraints imposed by beam propagation upon the chamber environment, as well as their compatibility with various chamber and target concepts, are considered. We conclude that, on the basis of our present understanding, there is a reasonable range of parameter space where beams can propagate in thick-liquid wall, wetted-wall, and dry-wall chambers.

  9. Characterization of ion heat conduction in JET and ASDEX Upgrade plasmas with and without internal transport barriers

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, R C [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM/FZJ, Trilateral Euregio Cluster, D-52425 Juelich (Germany); Baranov, Y [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Garbet, X [Association EURATOM-CEA sur la fusion, CEA Cadarache, F-13108 St Paul lez Durance (France); Hawkes, N [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Peeters, A G [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Challis, C [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Baar, M de [FOM Instituut voor Plasmafyisica Rijnhuizen, Association EURATO-FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Giroud, C [FOM Instituut voor Plasmafyisica Rijnhuizen, Association EURATO-FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Joffrin, E [Association EURATOM-CEA sur la fusion, CEA Cadarache, F-13108 St Paul lez Durance (France); Mantsinen, M [Helsinki University of Technology, Association-EURATOM Tekes, FIN-02015 HUT (Finland); Mazon, D [Association EURATOM-CEA sur la fusion, CEA Cadarache, F-13108 St Paul lez Durance (France); Meister, H [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Suttrop, W [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Zastrow, K-D [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)

    2003-09-01

    In ASDEX Upgrade and JET, the ion temperature profiles can be described by R/L{sub Ti} which exhibits only little variations, both locally, when comparing different discharges, and radially over a wide range of the poloidal cross-section. Considering a change of the local ion heat flux of more than a factor of two, this behaviour indicates some degree of profile stiffness. In JET, covering a large ion temperature range from 1 to 25 keV, the normalized ion temperature gradient, R/L{sub Ti}, shows a dependence on the electron to ion temperature ratio or toroidal rotational shear. In particular, in hot ion plasmas, produced predominantly by neutral beam heating at low densities, in which large T{sub i}/T{sub e} is coupled to strong toroidal rotation, the effect of the two quantities cannot be distinguished. Both in ASDEX Upgrade and JET, plasmas with internal transport barriers (ITBs), including the PEP mode in JET, are characterized by a significant increase of R/L{sub Ti} above the value of L- and H-mode plasmas. In agreement with previous ASDEX Upgrade results, no increase of the ion heat transport in reversed magnetic shear ITB plasmas is found in JET when raising the electron heating. Evidence is presented that magnetic shear directly influences R/L{sub Ti}, namely decreasing the ion heat transport when going from weakly positive to negative magnetic shear.

  10. Ultrahigh vacuum system of the heavy ion transport line at Brookhaven

    International Nuclear Information System (INIS)

    Hseuh, H.C.; Feigenbaum, I.; Manni, M.; Stattel, P.; Skelton, R.

    1985-01-01

    Heavy ions with an energy up to 8 MeV/A for S +16 and 1 MeV/A for Au +34 from the 16 MV Tandem will be injected into the AGS for further acceleration to less than or equal to 15 GeV/A. A 600-meter beam transport line between the Tandem and the AGS has been designed and is under construction. This paper describes the design of the vacuum system of this transport line and the performance of the prototype vacuum sectors

  11. Production, transport and charge capture measurements of highly charged recoil ions

    International Nuclear Information System (INIS)

    Trebus, U.E.

    1989-01-01

    An experiment is described to study highly charged recoil ions on-line to the heavy accelerator UNILAC at GSI. The highly charged recoil ions are produced by heavy-ion bombardment of a gas target. Subsequently the slow highly charged recoil ions are extracted from the ionization volume, and guided through a beam transport line to a Wien filter for charge state selection and to a collision region to study charge transfer processes. Several experiments were carried out to show the efficient charge state separation. Charge states up to q = 15 were observed. When using a retarding field analyzer cross sections for single electron capture were determined for different charge states of Xe q+ for q = 4 to 11 and He gas. The experiments demonstrated increasing charge transfer cross sections with increasing charge state q and indicated the effect of near resonant charge capture for q = 6. The flexible data acquisition system used, is described and other future experiments, such as for instance in flight ion-trapping are indicated in the appendix

  12. Mesocosm Community Response Sensitivities to Specific Conductivity Comprised of Different Major Ions

    Science.gov (United States)

    Traditional toxicity test assays have been used to evaluate the relative sensitivity to different major ion mixtures as a proxy for understanding what the response of aquatic species growing in their natural environment would be during exposure to specific conductivity stress ema...

  13. Temperature fields occurring in dielectric capillaries for the transport of of ion beams

    International Nuclear Information System (INIS)

    Urbanovich, A.I.

    2012-01-01

    This paper presents the results of computing the temperature fields occurring in dielectric capillaries of glass for the transport of accelerated charged particles. It is shown that on the transport of ion beams with a power of several watts the capillary is heated intensively, whereas heat stresses may approach the lower bound associated with a real strength of glass. (authors)

  14. Transport of energetic ions by low-n magnetic perturbations

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1992-10-01

    The stochastic transport of MeV ions induced by low-n magnetic perturbations is studied, focussing chiefly on the stochastic mechanism operative for passing particles in low frequency perturbations. Beginning with a single-harmonic form for the perturbing field, it iii first shown numerically and analytically that the stochastic threshold of energetic particles can be much lower than that of the magnetic field, contrary to earlier expectations, so that MHD perturbations could cause appreciable loss of energetic ions without destroying the bulk confinement. The analytic theory is then extended in a number of directions, to darity the relation of the present stochaistic mechanism to instances already found, to allow for more complex perturbations, and to consider the more general relationship between the stochasticity of magnetic fields, and that of particles of differing energies (and pitch angles) moving in those fields. It is shown that the stochastic threshold is in general a nonmonotonic function of energy, whose form can to some extent be tailored to achieve desired goals (e.g., burn control or ash removal) by a judicious choice of the perturbation. Illustrative perturbations are exhibited which are stochastic for low but not for high-energy ions, for high but not for low-energy ions, and for intermediate-energy ions, but not for low or high energy. The second possibility is the behavior needed for burn control; the third provides a possible mechanism for ash removal

  15. Ion transport by gating voltage to nanopores produced via metal-assisted chemical etching method

    Science.gov (United States)

    Van Toan, Nguyen; Inomata, Naoki; Toda, Masaya; Ono, Takahito

    2018-05-01

    In this work, we report a simple and low-cost way to create nanopores that can be employed for various applications in nanofluidics. Nano sized Ag particles in the range from 1 to 20 nm are formed on a silicon substrate with a de-wetting method. Then the silicon nanopores with an approximate 15 nm average diameter and 200 μm height are successfully produced by the metal-assisted chemical etching method. In addition, electrically driven ion transport in the nanopores is demonstrated for nanofluidic applications. Ion transport through the nanopores is observed and could be controlled by an application of a gating voltage to the nanopores.

  16. Low-energy ion beam extraction and transport: Experiment--computer comparison

    International Nuclear Information System (INIS)

    Spaedtke, P.; Brown, I.; Fojas, P.

    1994-01-01

    Ion beam formation at low energy (∼1 keV or so) is more difficult to accomplish than at high energy because of beam blowup by space-charge forces in the uncompensated region within the extractor, an effect which is yet more pronounced for heavy ions and for high beam current density. For the same reasons, the extracted ion beam is more strongly subject to space charge blowup than higher energy beams if it is not space-charge neutralized to a high degree. A version of vacuum arc ion source with an extractor that produces low-energy metal ion beams at relatively high current (∼0.5--10 kV at up to ∼100 mA) using a multi-aperture, accel--decel extractor configuration has been created. The experimentally observed beam extraction characteristics of this source is compared with those predicted using the AXCEL-INP code, and the implied downstream beam transport with theoretical expectations. It is concluded that the low-energy extractor performance is in reasonable agreement with the code, and that good downstream space charge neutralization is obtained. Here, the code and the experimental results are described, and the features that contribute to good low-energy performance are discussed

  17. Modeling of Low Frequency MHD Induced Beam Ion Transport In NSTX

    International Nuclear Information System (INIS)

    Gorelenkov, N.N.; Medley, S.S.

    2004-01-01

    Beam ion transport in the presence of low frequency MHD activity in National Spherical Tokamak Experiment (NSTX) plasma is modeled numerically and analyzed theoretically in order to understand basic underlying physical mechanisms responsible for the observed fast ion redistribution and losses. Numerical modeling of the beam ions flux into the NPA in NSTX shows that after the onset of low frequency MHD activity high energy part of beam ion distribution, E b > 40keV, is redistributed radially due to stochastic diffusion. Such diffusion is caused by high order harmonics of the transit frequency resonance overlap in the phase space. Large drift orbit radial width induces such high order resonances. Characteristic confinement time is deduced from the measured NPA energy spectrum and is typically ∼ 4msec. Considered MHD activity may induce losses on the order of 10% at the internal magnetic field perturbation (delta)B/B = Ο (10 -3 ), which is comparable to the prompt orbit losses

  18. Materials Genomics Screens for Adaptive Ion Transport Behavior by Redox-Switchable Microporous Polymer Membranes in Lithium-Sulfur Batteries.

    Science.gov (United States)

    Ward, Ashleigh L; Doris, Sean E; Li, Longjun; Hughes, Mark A; Qu, Xiaohui; Persson, Kristin A; Helms, Brett A

    2017-05-24

    Selective ion transport across membranes is critical to the performance of many electrochemical energy storage devices. While design strategies enabling ion-selective transport are well-established, enhancements in membrane selectivity are made at the expense of ionic conductivity. To design membranes with both high selectivity and high ionic conductivity, there are cues to follow from biological systems, where regulated transport of ions across membranes is achieved by transmembrane proteins. The transport functions of these proteins are sensitive to their environment: physical or chemical perturbations to that environment are met with an adaptive response. Here we advance an analogous strategy for achieving adaptive ion transport in microporous polymer membranes. Along the polymer backbone are placed redox-active switches that are activated in situ, at a prescribed electrochemical potential, by the device's active materials when they enter the membrane's pore. This transformation has little influence on the membrane's ionic conductivity; however, the active-material blocking ability of the membrane is enhanced. We show that when used in lithium-sulfur batteries, these membranes offer markedly improved capacity, efficiency, and cycle-life by sequestering polysulfides in the cathode. The origins and implications of this behavior are explored in detail and point to new opportunities for responsive membranes in battery technology development.

  19. Materials Genomics Screens for Adaptive Ion Transport Behavior by Redox-Switchable Microporous Polymer Membranes in Lithium–Sulfur Batteries

    Science.gov (United States)

    2017-01-01

    Selective ion transport across membranes is critical to the performance of many electrochemical energy storage devices. While design strategies enabling ion-selective transport are well-established, enhancements in membrane selectivity are made at the expense of ionic conductivity. To design membranes with both high selectivity and high ionic conductivity, there are cues to follow from biological systems, where regulated transport of ions across membranes is achieved by transmembrane proteins. The transport functions of these proteins are sensitive to their environment: physical or chemical perturbations to that environment are met with an adaptive response. Here we advance an analogous strategy for achieving adaptive ion transport in microporous polymer membranes. Along the polymer backbone are placed redox-active switches that are activated in situ, at a prescribed electrochemical potential, by the device’s active materials when they enter the membrane’s pore. This transformation has little influence on the membrane’s ionic conductivity; however, the active-material blocking ability of the membrane is enhanced. We show that when used in lithium–sulfur batteries, these membranes offer markedly improved capacity, efficiency, and cycle-life by sequestering polysulfides in the cathode. The origins and implications of this behavior are explored in detail and point to new opportunities for responsive membranes in battery technology development. PMID:28573201

  20. Energetic O+ and H+ Ions in the Plasma Sheet: Implications for the Transport of Ionospheric Ions

    Science.gov (United States)

    Ohtani, S.; Nose, M.; Christon, S. P.; Lui, A. T.

    2011-01-01

    The present study statistically examines the characteristics of energetic ions in the plasma sheet using the Geotail/Energetic Particle and Ion Composition data. An emphasis is placed on the O+ ions, and the characteristics of the H+ ions are used as references. The following is a summary of the results. (1) The average O+ energy is lower during solar maximum and higher during solar minimum. A similar tendency is also found for the average H+ energy, but only for geomagnetically active times; (2) The O+ -to -H+ ratios of number and energy densities are several times higher during solar maximum than during solar minimum; (3) The average H+ and O+ energies and the O+ -to -H+ ratios of number and energy densities all increase with geomagnetic activity. The differences among different solar phases not only persist but also increase with increasing geomagnetic activity; (4) Whereas the average H+ energy increases toward Earth, the average O+ energy decreases toward Earth. The average energy increases toward dusk for both the H+ and O+ ions; (5) The O+ -to -H+ ratios of number and energy densities increase toward Earth during all solar phases, but most clearly during solar maximum. These results suggest that the solar illumination enhances the ionospheric outflow more effectively with increasing geomagnetic activity and that a significant portion of the O+ ions is transported directly from the ionosphere to the near ]Earth region rather than through the distant tail.

  1. Assessment of respiratory and ion transport potential of Penaeus japonicus gills in response to environmental pollution

    Directory of Open Access Journals (Sweden)

    H.A. ABDEL-MOHSEN

    2009-06-01

    Full Text Available The present study aims to pinpoint the respiratory and ion transport potential of gills of Penaeus japonicus living in Abu-Qir Bay, East of Alexandria, Egypt. Our results revealed clear histological impairments in gill structure. These alterations were mainly represented by the presence of large vacuoles in gill axis and gill lamellae. In addition, narrow, disrupted gill lamellae with wavy cuticle and shrunk pillar cells were detected. Moreover, some cells clearly showed pyknosis. Gill ultrastructure also showed abnormal chromatin condensation inside the nucleus. Obvious alterations in the typical shape and structure of mitochondria were observed. Noticeably, the main characteristics of ion regulating gill epithelium were absent thus suggesting a low ion transport activity of P. japonicus gills. Statistically, this was further proved by the significantly higher activity levels of respiratory enzymes, namely, lactate dehydrogenase (LDH and succinate dehydrogenase (SDH compared to those of the ion transport enzymes, namely, adenosine triphosphatase (ATPase and carbonic anhydrase (CA in gills and haemolymph. SDH activity levels were higher than the corresponding levels of LDH in gills and its own level in haemolymph, indicating a contradictory effect of pollution on respiratory enzyme activity levels.

  2. Heavy ion beam transport through liquid lithium first wall ICF reactor cavities

    International Nuclear Information System (INIS)

    Stroud, P.D.

    1985-01-01

    This analysis addresses the critical issue of the final transport of a heavy ion beam in an inertial confinement fusion reactor. The beam must traverse the reaction chamber from the final focusing lens to the target without being disrupted. This requirement has a strong impact on the reactor design. It is essential to the development of ICF fusion reactor technology, that the restrictions placed on the reactor engineering parameters by final beam transport consideration be understood early on

  3. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

    2009-01-19

    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  4. Program for calculating multi-component high-intense ion beam transport

    International Nuclear Information System (INIS)

    Kazarinov, N.Yu.; Prejzendorf, V.A.

    1985-01-01

    The CANAL program for calculating transport of high-intense beams containing ions with different charges in a channel consisting of dipole magnets and quadrupole lenses is described. The equations determined by the method of distribution function momenta and describing coordinate variations of the local mass centres and r.m.s. transverse sizes of beams with different charges form the basis of the calculation. The program is adapted for the CDC-6500 and SM-4 computers. The program functioning is organized in the interactive mode permitting to vary the parameters of any channel element and quickly choose the optimum version in the course of calculation. The calculation time for the CDC-6500 computer for the 30-40 m channel at the integration step of 1 cm is about 1 min. The program is used for calculating the channel for the uranium ion beam injection from the collective accelerator into the heavy-ion synchrotron

  5. Transport of long-pulse relativistic electron beams in preformed plasma channels in the ion focus regime

    International Nuclear Information System (INIS)

    Miller, J.D.

    1989-01-01

    Experiments have been performed demonstrating efficient transport of long-pulse (380 ns), high-current (200 A), relativistic electron beams (REBs) in preformed plasma channels in the ion focus regime (IFR). Plasma channels were created by low-energy ( e , and channel ion mass, in agreement with theoretical values predicted for the ion hose instability. Microwave emission has also been observed indicative of REB-plasma electron two-stream instability. Plasma channel density measurements indicate that the two-stream instability can become dominant for measured f e values slightly above unity. The author has introduced a theoretical analysis for high-current REB transport and modulation in axially periodic IFR plasma channels. Analytic expression for the electric field are found for the case of a cosine modulation of the channel ion density. Two different types of channels are considered: (i) periodic beam-induced ionization channels, and (ii) periodic plasma slab channels created by an external source. Analytical conditions are derived for the matched radius of the electron beam and for approximate beam envelope motion using a 'smooth' approximation. Numerical solutions to the envelope equation show that by changing the wavelength or the amplitude of the space-charge neutralization fraction of the ion channel density modulation, the beam can be made to focus and diverge, or to undergo stable, modulated transport

  6. Benchmarking Heavy Ion Transport Codes FLUKA, HETC-HEDS MARS15, MCNPX, and PHITS

    Energy Technology Data Exchange (ETDEWEB)

    Ronningen, Reginald Martin [Michigan State University; Remec, Igor [Oak Ridge National Laboratory; Heilbronn, Lawrence H. [University of Tennessee-Knoxville

    2013-06-07

    Powerful accelerators such as spallation neutron sources, muon-collider/neutrino facilities, and rare isotope beam facilities must be designed with the consideration that they handle the beam power reliably and safely, and they must be optimized to yield maximum performance relative to their design requirements. The simulation codes used for design purposes must produce reliable results. If not, component and facility designs can become costly, have limited lifetime and usefulness, and could even be unsafe. The objective of this proposal is to assess the performance of the currently available codes PHITS, FLUKA, MARS15, MCNPX, and HETC-HEDS that could be used for design simulations involving heavy ion transport. We plan to access their performance by performing simulations and comparing results against experimental data of benchmark quality. Quantitative knowledge of the biases and the uncertainties of the simulations is essential as this potentially impacts the safe, reliable and cost effective design of any future radioactive ion beam facility. Further benchmarking of heavy-ion transport codes was one of the actions recommended in the Report of the 2003 RIA R&D Workshop".

  7. Coulombic interactions during advection-dominated transport of ions in porous media

    DEFF Research Database (Denmark)

    Muniruzzaman, Muhammad; Stolze, Lucien; Rolle, Massimo

    2017-01-01

    bench-scale experiments and numerical simulations. The investigation aims at quantifying the key role of small-scale electrostatic interactions in flow-through systems, especially when advection is the dominant mass-transfer process. Considering dilute solutions of strong electrolytes (e.g., MgCl2......Solute transport of charged species in porous media is significantly affected by the electrochemical migration term resulting from the charge-induced interactions among dissolved ions and with solid surfaces. Therefore, the characterization of such Coulombic interactions and their effect...... on multicomponent ionic transport is of critical importance for assessing the fate of charged solutes in porous media. In this work we present a detailed investigation of the electrochemical effects during conservative multicomponent ionic transport in homogeneous and heterogeneous domains by means of laboratory...

  8. Unbiased simulations reveal the inward-facing conformation of the human serotonin transporter and Na(+ ion release.

    Directory of Open Access Journals (Sweden)

    Heidi Koldsø

    2011-10-01

    Full Text Available Monoamine transporters are responsible for termination of synaptic signaling and are involved in depression, control of appetite, and anxiety amongst other neurological processes. Despite extensive efforts, the structures of the monoamine transporters and the transport mechanism of ions and substrates are still largely unknown. Structural knowledge of the human serotonin transporter (hSERT is much awaited for understanding the mechanistic details of substrate translocation and binding of antidepressants and drugs of abuse. The publication of the crystal structure of the homologous leucine transporter has resulted in homology models of the monoamine transporters. Here we present extended molecular dynamics simulations of an experimentally supported homology model of hSERT with and without the natural substrate yielding a total of more than 1.5 µs of simulation of the protein dimer. The simulations reveal a transition of hSERT from an outward-facing occluded conformation to an inward-facing conformation in a one-substrate-bound state. Simulations with a second substrate in the proposed symport effector site did not lead to conformational changes associated with translocation. The central substrate binding site becomes fully exposed to the cytoplasm leaving both the Na(+-ion in the Na2-site and the substrate in direct contact with the cytoplasm through water interactions. The simulations reveal how sodium is released and show indications of early events of substrate transport. The notion that ion dissociation from the Na2-site drives translocation is supported by experimental studies of a Na2-site mutant. Transmembrane helices (TMs 1 and 6 are identified as the helices involved in the largest movements during transport.

  9. Experimental investigations of plasma lens focusing and plasma channel transport of heavy ion beams

    International Nuclear Information System (INIS)

    Tauschwitz, T.; Yu, S.S.; Eylon, S.; Reginato, L.; Leemans, W.; Rasmussen, J.O.; Bangerter, R.O.

    1995-04-01

    Final focusing of ion beams and propagation in a reactor chamber are crucial questions for heavy ion beam driven Fusion. An alternative solution to ballistic quadrupole focusing, as it is proposed in most reactor studies today, is the utilization of the magnetic field produced by a high current plasma discharge. This plasma lens focusing concept relaxes the requirements for low emittance and energy spread of the driver beam significantly and allows to separate the issues of focusing, which can be accomplished outside the reactor chamber, and of beam transport inside the reactor. For focusing a tapered wall-stabilized discharge is proposed, a concept successfully demonstrated at GSI, Germany. For beam transport a laser pre-ionized channel can be used

  10. Molecular mechanisms of water transport in the eye

    DEFF Research Database (Denmark)

    Hamann, Steffen

    2002-01-01

    The four major sites for ocular water transport, the corneal epithelium and endothelium, the ciliary epithelium, and the retinal pigment epithelium, are reviewed. The cornea has an inherent tendency to swell, which is counteracted by its two surface cell layers, the corneal epithelium...... and endothelium. The bilayered ciliary epithelium secretes the aqueous humor into the posterior chamber, and the retinal pigment epithelium transports water from the retinal to the choroidal site. For each epithelium, ion transport mechanisms are associated with fluid transport, but the exact molecular coupling...... sites between ion and water transport remain undefined. In the retinal pigment epithelium, a H+-lactate cotransporter transports water. This protein could be the site of coupling between salt and water in this epithelium. The distribution of aquaporins does not suggest a role for these proteins...

  11. Solution of the Boltzmann equation for primary light ions and the transport of their fragments

    Directory of Open Access Journals (Sweden)

    J. Kempe

    2010-10-01

    Full Text Available The Boltzmann equation for the transport of pencil beams of light ions in semi-infinite uniform media has been calculated. The equation is solved for the practically important generalized 3D case of Gaussian incident primary light ion beams of arbitrary mean square radius, mean square angular spread, and covariance. The transport of the associated fragments in three dimensions is derived based on the known transport of the primary particles, taking the mean square angular spread of their production processes, as well as their energy loss and multiple scattering, into account. The analytical pencil and broad beam depth fluence and absorbed dose distributions are accurately expressed using recently derived analytical energy and range formulas. The contributions from low and high linear energy transfer (LET dose components were separately identified using analytical expressions. The analytical results are compared with SHIELD-HIT Monte Carlo (MC calculations and found to be in very good agreement. The pencil beam fluence and absorbed dose distributions of the primary particles are mainly influenced by an exponential loss of the primary ions combined with an increasing lateral spread due to multiple scattering and energy loss with increasing penetration depth. The associated fluence of heavy fragments is concentrated at small radii and so is the LET and absorbed dose distribution. Their transport is also characterized by the buildup of a slowing down spectrum which is quite similar to that of the primaries but with a wider energy and angular spread at increasing penetration depths. The range of the fragments is shorter or longer depending on their nuclear mass to charge ratio relative to that of the primary ions. The absorbed dose of the heavier fragments is fairly similar to that of the primary ions and also influenced by a rapidly increasing energy loss towards the end of their ranges. The present analytical solution of the Boltzmann equation

  12. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Valerio-Lizarraga, Cristhian A., E-mail: cristhian.alfonso.valerio.lizarraga@cern.ch [CERN, Geneva (Switzerland); Departamento de Investigación en Física, Universidad de Sonora, Hermosillo (Mexico); Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard [CERN, Geneva (Switzerland); Leon-Monzon, Ildefonso [Facultad de Ciencias Fisico-Matematicas, Universidad Autónoma de Sinaloa, Culiacan (Mexico); Midttun, Øystein [CERN, Geneva (Switzerland); University of Oslo, Oslo (Norway)

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  13. Electrical Resistance and Transport Numbers of Ion-Exchange Membranes Used in Electrodialytic Soil Remediation

    DEFF Research Database (Denmark)

    Hansen, Henrik; Ottosen, Lisbeth M.; Villumsen, Arne

    1999-01-01

    Electrodialytic soil remediation is a recently developed method to decontaminate heavy metal polluted soil using ion-exchange membranes. In this method one side of the ion-exchange membrane is in direct contact with the polluted soil. It is of great importance to know if this contact with the soil...... different electrodialytic soil remediation experiments. The experiments showed that after the use in electrodialytic soil remediation, the ion-exchange membranes had transport numbers in the same magnitude as new membranes. The electrical resistance for six membranes did not differ from that of new...

  14. Transport, charge exchange and loss of energetic heavy ions in the earth's radiation belts - Applicability and limitations of theory

    Science.gov (United States)

    Spjeldvik, W. N.

    1981-01-01

    Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.

  15. On fast-ion transport and burn control in Tokamaks

    International Nuclear Information System (INIS)

    Wising, F.

    1994-01-01

    Fast ions, generated by e.g. neutral beam injection (NBI), radio frequency (RF) heating or nuclear reactions, play an important role in all large tokamaks. Several issues related to fast ions and burning fusion plasmas are addressed in this thesis. Firstly, a new model of sawtooth oscillations is developed which explains the recent observations that q 0 remains below unity during the entire sawtooth cycle. The model features full reconnection in two current layers and provides a self-consistent description of the plasma states before and after the sawtooth crash. It is applied to the redistribution of fast NBI-ions in JET and comparisons are made with global as well as line-of-sight integrated D-D neutron measurements. Both the new model and the classical Kadomtsev model are found to be in agreement with the measurements. A simplified redistribution model is developed and applied to the redistribution of tritons and thermal ions, again giving reasonable agreement with D-T/D-D neutron measurements. Using a separate method, earlier results on expulsion of NBI-ions are confirmed. Secondly, a numerical study has been carried out of the coupled nonlinear evolution of alpha-particle driven kinetic Alfven wave turbulence and associated alpha transport. The saturated fluctuation spectrum consists of two peaks and results from nonlinear ion Compton scattering-induced transfer of energy from longer to shorter wavelengths. An analytical solution of the saturated spectrum, and estimates of the anomalous alpha diffusion coefficient, are given. The final paper addresses the problem of determining whether an initial temperature profile, established by e.g. auxiliary heating, will evolve to thermonuclear burn or quench under the influence of alpha particle heating and thermal conduction. Explicit burn criteria are presented and the beneficial effects of density and temperature peaking are discussed. 110 refs

  16. Positron emission tomography quantification of serotonin transporter in suicide attempters with major depressive disorder.

    Science.gov (United States)

    Miller, Jeffrey M; Hesselgrave, Natalie; Ogden, R Todd; Sullivan, Gregory M; Oquendo, Maria A; Mann, J John; Parsey, Ramin V

    2013-08-15

    Several lines of evidence implicate abnormal serotonergic function in suicidal behavior and completed suicide, including low serotonin transporter binding in postmortem studies of completed suicide. We have also reported low in vivo serotonin transporter binding in major depressive disorder (MDD) during a major depressive episode using positron emission tomography (PET) with [(11)C]McN5652. We quantified regional brain serotonin transporter binding in vivo in depressed suicide attempters, depressed nonattempters, and healthy controls using PET and a superior radiotracer, [(11)C]DASB. Fifty-one subjects with DSM-IV current MDD, 15 of whom were past suicide attempters, and 32 healthy control subjects underwent PET scanning with [(11)C]DASB to quantify in vivo regional brain serotonin transporter binding. Metabolite-corrected arterial input functions and plasma free-fraction were acquired to improve quantification. Depressed suicide attempters had lower serotonin transporter binding in midbrain compared with depressed nonattempters (p = .031) and control subjects (p = .0093). There was no difference in serotonin transporter binding comparing all depressed subjects with healthy control subjects considering six a priori regions of interest simultaneously (p = .41). Low midbrain serotonin transporter binding appears to be related to the pathophysiology of suicidal behavior rather than of major depressive disorder. This is consistent with postmortem work showing low midbrain serotonin transporter binding capacity in depressed suicides and may partially explain discrepant in vivo findings quantifying serotonin transporter in depression. Future studies should investigate midbrain serotonin transporter binding as a predictor of suicidal behavior in MDD and determine the cause of low binding. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. The influence of magnetic field strength in ionization stage on ion transport between two stages of a double stage Hall thruster

    International Nuclear Information System (INIS)

    Yu Daren; Song Maojiang; Li Hong; Liu Hui; Han Ke

    2012-01-01

    It is futile for a double stage Hall thruster to design a special ionization stage if the ionized ions cannot enter the acceleration stage. Based on this viewpoint, the ion transport under different magnetic field strengths in the ionization stage is investigated, and the physical mechanisms affecting the ion transport are analyzed in this paper. With a combined experimental and particle-in-cell simulation study, it is found that the ion transport between two stages is chiefly affected by the potential well, the potential barrier, and the potential drop at the bottom of potential well. With the increase of magnetic field strength in the ionization stage, there is larger plasma density caused by larger potential well. Furthermore, the potential barrier near the intermediate electrode declines first and then rises up while the potential drop at the bottom of potential well rises up first and then declines as the magnetic field strength increases in the ionization stage. Consequently, both the ion current entering the acceleration stage and the total ion current ejected from the thruster rise up first and then decline as the magnetic field strength increases in the ionization stage. Therefore, there is an optimal magnetic field strength in the ionization stage to guide the ion transport between two stages.

  18. Electron and ion heat transport with lower hybrid current drive and neutral beam injection heating in ASDEX

    International Nuclear Information System (INIS)

    Soeldner, F.X.; Pereverzev, G.V.; Bartiromo, R.; Fahrbach, H.U.; Leuterer, F.; Murmann, H.D.; Staebler, A.; Steuer, K.H.

    1993-01-01

    Transport code calculations were made for experiments with the combined operation of lower hybrid current drive and heating and of neutral beam injection heating on ASDEX. Peaking or flattening of the electron temperature profile are mainly explained by modifications of the MHD induced electron heat transport. They originate from current profile changes due to lower hybrid and neutral beam current drive and to contributions from the bootstrap current. Ion heat transport cannot be described by one single model for all heating scenarios. The ion heat conductivity is reduced during lower hybrid heated phases with respect to Ohmic and neutral beam heating. (author). 13 refs, 5 figs

  19. Ion Transport in Human Pancreatic Duct Epithelium, Capan-1 Cells, Is Regulated by Secretin, VIP, Acetylcholine, and Purinergic Receptors

    DEFF Research Database (Denmark)

    Wang, Jing; Novak, Ivana

    2013-01-01

    OBJECTIVES: The objective of the study was to establish a solid model of polarized epithelium for human pancreatic ducts, where electrical parameters could be measured as indicators of ion transport. Further, we aimed to determine functional expression of several receptors, in particular, puriner...... transport in human pancreatic duct epithelium, Capan-1 cells, is regulated by secretin, VIP, acetylcholine, adenosine, and purinergic P2 receptors; and this human model has a good potential for studies of physiology and pathophysiology of pancreatic duct ion transport....

  20. Branchial osmoregulation in the euryhaline bull shark, Carcharhinus leucas: a molecular analysis of ion transporters.

    Science.gov (United States)

    Reilly, Beau D; Cramp, Rebecca L; Wilson, Jonathan M; Campbell, Hamish A; Franklin, Craig E

    2011-09-01

    Bull sharks, Carcharhinus leucas, are one of only a few species of elasmobranchs that live in both marine and freshwater environments. Osmoregulation in euryhaline elasmobranchs is achieved through the control and integration of various organs (kidney, rectal gland and liver) in response to changes in environmental salinity. However, little is known regarding the mechanisms of ion transport in the gills of euryhaline elasmobranchs and how they are affected by osmoregulatory challenges. This study was conducted to gain insight into the branchial ion and acid-base regulatory mechanisms of C. leucas by identifying putative ion transporters and determining whether their expression is influenced by environmental salinity. We hypothesised that expression levels of the Na(+)/K(+)-ATPase (NKA) pump, Na(+)/H(+) exchanger 3 (NHE3), vacuolar-type H(+)-ATPase (VHA) and anion exchanger pendrin (PDN) would be upregulated in freshwater (FW) C. leucas. Immunohistochemistry was used to localise all four ion transporters in gills of bull sharks captured in both FW and estuarine/seawater (EST/SW) environments. NHE3 immunoreactivity occurred in the apical region of cells with basolateral NKA expression whereas PDN was apically expressed in cells that also exhibited basolateral VHA immunoreactivity. In accordance with our hypotheses, quantitative real-time PCR showed that the mRNA expression of NHE3 and NKA was significantly upregulated in gills of FW-captured C. leucas relative to EST/SW-captured animals. These data suggest that NHE3 and NKA together may be important in mediating branchial Na(+) uptake in freshwater environments, whereas PDN and VHA might contribute to Cl(-)/HCO(3)(-) transport in marine and freshwater bull shark gills.

  1. Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport

    KAUST Repository

    Choudhury, Snehashis; Tu, Zhengyuan; Stalin, Sanjuna; Vu, Duylinh; Fawole, Kristen; Gunceler, Deniz; Sundararaman, Ravishankar; Archer, Lynden A.

    2017-01-01

    Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes.

  2. Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport

    KAUST Repository

    Choudhury, Snehashis

    2017-08-17

    Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes.

  3. Surface oxygen vacancy and oxygen permeation flux limits of perovskite ion transport membranes

    KAUST Repository

    Hunt, Anton; Dimitrakopoulos, Georgios; Ghoniem, Ahmed F.

    2015-01-01

    © 2015 Elsevier B.V. The mechanisms and quantitative models for how oxygen is separated from air using ion transport membranes (ITMs) are not well understood, largely due to the experimental complexity for determining surface exchange reactions

  4. Status of the SNS H- ion source and low-energy beam transport system

    International Nuclear Information System (INIS)

    Keller, R.; Thomae, R.; Stockli, M.; Welton, R.

    2002-01-01

    The ion source and Low-Energy Transport (LEBT) system that will provide H - ion beams to the Spallation Neutron Source (SNS) Front End and the accelerator chain have been developed into a mature unit that will satisfy the operational needs through the commissioning and early operating phases of SNS. The ion source was derived from the SSC ion source, and many of its original features have been improved to achieve reliable operation at 6% duty factor, producing beam currents in the 35-mA range and above. The LEBT utilizes purely electrostatic focusing and includes static beam-steering elements and a pre-chopper. This paper will discuss the latest design features of the ion source and LEBT, give performance data for the integrated system, and report on relevant commissioning results obtained with the SNS RFQ accelerator. Perspectives for further improvements will be outlined in concluding remarks

  5. Evolution of thermal ion transport barriers in reversed shear/ optimised shear plasmas

    International Nuclear Information System (INIS)

    Voitsekhovitch, I.; Garbet, X.; Moreau, D.; Bush, C.E.; Budny, R.V.; Gohil, P.; Kinsey, J.E.; Talyor, T.S.; Litaudon, X.

    2001-01-01

    The effects of the magnetic and ExB rotation shears on the thermal ion transport in advanced tokamak scenarios are analyzed through the predictive modelling of the evolution of internal transport barriers. Such a modelling is performed with an experimentally validated L-mode thermal diffusivity completed with a semi-empirical shear correction which is based on simple theoretical arguments from turbulence studies. A multi-machine test of the model on relevant discharges from the ITER Data Base (TFTR, DIII-D and JET) is presented. (author)

  6. Ion turbulence and thermal transport in laser-produced plasmas

    International Nuclear Information System (INIS)

    Barr, H.C.; Boyd, T.J.M.

    1982-01-01

    In the interaction of high-intensity lasers with target plasmas the transport of thermal energy from the region in which the radiation is absorbed, to the cold dense plasma in the interior of the target, is an issue of central importance. The role of ion turbulence as a flux limiter is addressed with particular regard to recent experiments in which target plasmas were irradiated by 1.06 μm neodymium laser light at irradiances of 10 15 W cm - 2 and greater. Saturation levels of the ion-acoustic turbulence driven by a combination of a suprathermal electron current and a heat flux are calculated on the basis of perturbed orbit theory. The levels of turbulence are found to be markedly lower than those commonly estimated from simple trapping arguments and too low to explain the thermal flux inhibition observed in the experiments used as a basis for the model. (author)

  7. Transport of ions through a (6,6) carbon nanotube under electric fields

    Science.gov (United States)

    Shen, Li; Xu, Zhen; Zhou, Zhe-Wei; Hu, Guo-Hui

    2014-11-01

    The transport of water and ions through carbon nanotubes (CNTs) is crucial in nanotechnology and biotechnology. Previous investigation indicated that the ions can hardly pass through (6,6) CNTs due to their hydrated shells. In the present study, utilizing molecular dynamics simulation, it is shown that the energy barrier mainly originating from the hydrated water molecules could be overcome by applying an electric field large enough in the CNT axis direction. Potential of mean force is calculated to show the reduction of energy barrier when the electric field is present for (Na+, K+, Cl-) ions. Consequently, ionic flux through (6,6) CNTs can be found once the electric field becomes larger than a threshold value. The variation of the coordination numbers of ions at different locations from the bulk to the center of the CNT is also explored to elaborate this dynamic process. The thresholds of the electric field are different for Na+, K+, and Cl- due to their characteristics. This consequence might be potentially applied in ion selectivity in the future.

  8. Monte Carlo modelling of impurity ion transport for a limiter source/sink

    International Nuclear Information System (INIS)

    Stangeby, P.C.; Farrell, C.; Hoskins, S.; Wood, L.

    1988-01-01

    In relating the impurity influx Φ I (0) (atoms per second) into a plasma from the edge to the central impurity ion density n I (0) (ions·m -3 ), it is necessary to know the value of τ I SOL , the average dwell time of impurity ions in the scrape-off layer. It is usually assumed that τ I SOL =L c /c s , the hydrogenic dwell time, where L c is the limiter connection length and c s is the hydrogenic ion acoustic speed. Monte Carlo ion transport results are reported here which show that, for a wall (uniform) influx, τ I SOL is longer than L c /c s , while for a limiter influx it is shorter. Thus for a limiter influx n I (0) is predicted to be smaller than the reference value. Impurities released from the limiter form ever large 'clouds' of successively higher ionization stages. These are reproduced by the Monte Carlo code as are the cloud shapes for a localized impurity injection far from the limiter. (author). 23 refs, 18 figs, 6 tabs

  9. Beam instability during high-current heavy-ion beam transport

    International Nuclear Information System (INIS)

    Kikuchi, T.; Someya, T.; Kawata, S.; Nakajima, M.; Horioka, K.

    2005-01-01

    In driver system for heavy ion inertial fusion, beam dynamics is investigated by particle-in-cell simulations during final beam bunching. The particle simulations predict that the beam is transported with the localized transverse charge distribution induced by the strong space charge effect. The calculation results also show that the emittance growth during the longitudinal bunch compression for various particle distributions at the initial conditions and with two types of transverse focusing model, which are a continuous focusing and an alternating gradient focusing lattice configurations. (author)

  10. Observation of enhanced radial transport of energetic ion due to energetic particle mode destabilized by helically-trapped energetic ion in the Large Helical Device

    Science.gov (United States)

    Ogawa, K.; Isobe, M.; Kawase, H.; Nishitani, T.; Seki, R.; Osakabe, M.; LHD Experiment Group

    2018-04-01

    A deuterium experiment was initiated to achieve higher-temperature and higher-density plasmas in March 2017 in the Large Helical Device (LHD). The central ion temperature notably increases compared with that in hydrogen experiments. However, an energetic particle mode called the helically-trapped energetic-ion-driven resistive interchange (EIC) mode is often excited by intensive perpendicular neutral beam injections on high ion-temperature discharges. The mode leads to significant decrease of the ion temperature or to limiting the sustainment of the high ion-temperature state. To understand the effect of EIC on the energetic ion confinement, the radial transport of energetic ions is studied by means of the neutron flux monitor and vertical neutron camera newly installed on the LHD. Decreases of the line-integrated neutron profile in core channels show that helically-trapped energetic ions are lost from the plasma.

  11. Cross Sections and Transport Properties of BR- Ions in AR

    Science.gov (United States)

    Jovanovic, Jasmina; Stojanovic, Vladimir; Raspopovic, Zoran; Petrovic, Zoran

    2014-10-01

    We have used a combination of a simple semi-analytic theory - Momentum Transfer Theory (MTT) and exact Monte Carlo (MC) simulations to develop Br- in Ar momentum transfer cross section based on the available data for reduced mobility at the temperature T = 300 K over the range 10 Td higher energies based on behavior of similar ions in similar gases and by the addition of the total detachment cross section that was used from the threshold around 7.7 eV. Relatively complete set was derived which can be used in modeling of plasmas by both hybrid, particle in cell (PIC) and fluid codes. A good agreement between calculated and measured ion mobilities and longitudinal diffusion coefficients is an independent proof of the validity of the cross sections that were derived for the negative ion mobility data. In addition to transport coefficients we have also calculated the net rate coefficients of elastic scattering and detachment. Author acknowledge Ministry of Education, Science and Technology, Proj. Nos. 171037 and 410011.

  12. Noninvasive microelectrode ion flux estimation technique (MIFE) for the study of the regulation of root membrane transport by cyclic nucleotides

    KAUST Repository

    Ordoñ ez, Natalia Maria; Shabala, Lana; Gehring, Christoph A; Shabala, Sergey Nikolayevich

    2013-01-01

    Changes in ion permeability and subsequently intracellular ion concentrations play a crucial role in intracellular and intercellular communication and, as such, confer a broad array of developmental and adaptive responses in plants. These changes are mediated by the activity of plasma-membrane based transport proteins many of which are controlled by cyclic nucleotides and/or other signaling molecules. The MIFE technique for noninvasive microelectrode ion flux measuring allows concurrent quantification of net fluxes of several ions with high spatial (μm range) and temporal (ca. 5 s) resolution, making it a powerful tool to study various aspects of downstream signaling events in plant cells. This chapter details basic protocols enabling the application of the MIFE technique to study regulation of root membrane transport in general and cyclic nucleotide mediated transport in particular. © Springer Science+Business Media New York 2013.

  13. Noninvasive microelectrode ion flux estimation technique (MIFE) for the study of the regulation of root membrane transport by cyclic nucleotides

    KAUST Repository

    Ordoñez, Natalia Maria

    2013-09-03

    Changes in ion permeability and subsequently intracellular ion concentrations play a crucial role in intracellular and intercellular communication and, as such, confer a broad array of developmental and adaptive responses in plants. These changes are mediated by the activity of plasma-membrane based transport proteins many of which are controlled by cyclic nucleotides and/or other signaling molecules. The MIFE technique for noninvasive microelectrode ion flux measuring allows concurrent quantification of net fluxes of several ions with high spatial (μm range) and temporal (ca. 5 s) resolution, making it a powerful tool to study various aspects of downstream signaling events in plant cells. This chapter details basic protocols enabling the application of the MIFE technique to study regulation of root membrane transport in general and cyclic nucleotide mediated transport in particular. © Springer Science+Business Media New York 2013.

  14. Control of alpha-particle transport by ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Chang, C.S.; Imre, K.; Weitzner, H.; Colestock, P.

    1990-01-01

    In this paper control of radial alpha-particle transport by using ion cyclotron range of frequency (ICRF) waves is investigated in a large-aspect-ratio tokamak geometry. Spatially inhomogeneous ICRF wave energy with properly selected frequencies and wave numbers can induce fast convective transports of alpha particles at the speed of order v α ∼ (P RF /n α ε 0 )ρ p , where R RF is the ICRF wave power density, n α is the alpha-particle density, ε 0 is the alpha-particle birth energy, and ρ p is the poloidal gyroradius of alpha particles at the birth energy. Application to International Thermonuclear Experimental Reactor (ITER) plasma is studied and possible antenna designs to control alpha-particle flux are discussed

  15. Structure, Ion Transport, and Rheology of Nanoparticle Salts

    KAUST Repository

    Wen, Yu Ho

    2014-07-08

    Above a critical surface chemistry-dependent particle loading associated with nanoscale interparticle spacing, ligand-ligand interactions-both electrostatic and steric-come into play and govern the structure and dynamics of charged oligomer-functionalized nanoparticle suspensions. We report in particular on the structure, ion transport, and rheology of suspensions of nanoparticle salts created by cofunctionalization of silica particles with tethered sulfonate salts and oligomers. Dispersion of the hairy ionic particles into medium and high dielectric constant liquids yields electrolytes with unique structure and transport properties. We find that electrostatic repulsion imparted by ion dissociation can be tuned to control the dispersion state and rheology through counterion size (i.e., Li+, Na+, and K+) and dielectric properties of the dispersing medium. Analysis of small-angle X-ray scattering (SAXS) structure factors and the mechanical modulus shows that when the interparticle spacing approaches nanometer dimensions, weakly entangled anchored ligands experience strong and long-lived topological constraints analogous to those normally found in well-entangled polymeric fluids. This finding provides insight into the molecular origins of the surprisingly similar rubbery plateau moduli observed in hairy nanoparticle suspensions and entangled polymers of the same chemistry as the tethered ligands. Additionally, we find that a time-composition superposition (TCS) principle exists for the suspensions, which can be used to substantially extend the observation time over which dynamics are observed in jammed, soft glassy suspensions. Application of TCS reveals dynamical similarities between the suspensions and entangled solutions of linear polymer chains; i.e., a hairy particle trapped in a cage appears to exhibit analogous dynamics to a long polymer chain confined to a tube. © 2014 American Chemical Society.

  16. New scope covered by PHITS. Particle and heavy ion transport code system

    International Nuclear Information System (INIS)

    Nakamura, Takashi; Niita, Koji; Iwase, Hiroshi; Sato, Tatsuhiko

    2006-01-01

    PHITS is a general high energy transport calculation code from hadron to heavy ions, which embedded in NMTC-JAM with JQMD code. Outline of PHITS and many application examples are stated. PHITS has been used by the shielding calculations of J-PARC, GSI, RIA and Big-RIPS and the good results were reported. The evaluation of exposure dose of astronauts, airmen, proton and heavy ion therapy, and estimation of error frequency of semiconductor software are explained as the application examples. Relation between the event generator and Monte Carlo method and the future are described. (S.Y.)

  17. Ameloblast modulation and transport of Cl-, Na+, and K+ during amelogenesis

    NARCIS (Netherlands)

    Bronckers, A.L.J.J.; Lyaruu, D.; Jalali, R.; Medina, J.F.; Zandieh-Doulabi, B.; DenBesten, P.K.

    2015-01-01

    Ameloblasts express transmembrane proteins for transport of mineral ions and regulation of pH in the enamel space. Two major transporters recently identified in ameloblasts are the Na+K+-dependent calcium transporter NCKX4 and the Na+-dependent HPO42- (Pi) cotransporter NaPi-2b. To regulate pH,

  18. 2nd-order optical model of the isotopic dependence of heavy ion absorption cross sections for radiation transport studies

    Science.gov (United States)

    Cucinotta, Francis A.; Yan, Congchong; Saganti, Premkumar B.

    2018-01-01

    Heavy ion absorption cross sections play an important role in radiation transport codes used in risk assessment and for shielding studies of galactic cosmic ray (GCR) exposures. Due to the GCR primary nuclei composition and nuclear fragmentation leading to secondary nuclei heavy ions of charge number, Z with 3 ≤ Z ≥ 28 and mass numbers, A with 6 ≤ A ≥ 60 representing about 190 isotopes occur in GCR transport calculations. In this report we describe methods for developing a data-base of isotopic dependent heavy ion absorption cross sections for interactions. Calculations of a 2nd-order optical model solution to coupled-channel solutions to the Eikonal form of the nucleus-nucleus scattering amplitude are compared to 1st-order optical model solutions. The 2nd-order model takes into account two-body correlations in the projectile and target ground-states, which are ignored in the 1st-order optical model. Parameter free predictions are described using one-body and two-body ground state form factors for the isotopes considered and the free nucleon-nucleon scattering amplitude. Root mean square (RMS) matter radii for protons and neutrons are taken from electron and muon scattering data and nuclear structure models. We report on extensive comparisons to experimental data for energy-dependent absorption cross sections for over 100 isotopes of elements from Li to Fe interacting with carbon and aluminum targets. Agreement between model and experiments are generally within 10% for the 1st-order optical model and improved to less than 5% in the 2nd-order optical model in the majority of comparisons. Overall the 2nd-order optical model leads to a reduction in absorption compared to the 1st-order optical model for heavy ion interactions, which influences estimates of nuclear matter radii.

  19. Transport analysis of rf drift-velocity filter employing crossed DC and AC electric fields for ion swarm experiments

    International Nuclear Information System (INIS)

    Iinuma, K.; Takebe, M.

    1995-01-01

    The operational characteristics of the RF drift-velocity filter developed to separate a mixture of gaseous ions are examined theoretically. The solutions of the appropriate transport equations provide an analytical formula for the transmission efficiency of the filter in terms of the mobility and diffusion coefficient of the ions, the electric field strength, the RF frequency and the filter dimension. Using the experimental transport data for Li + /Xe and Cs + /Xe, the formula was tested and it was found that it adequately accounts for the degree of ion separation achieved by the filter at high gas pressures. The variation of the profiles of the arrival time spectra for Li + , Na + and Cs + ions in CO 2 , obtained by drift-tube experiments, also supports this analysis. 4 refs., 10 figs

  20. A Deterministic Electron, Photon, Proton and Heavy Ion Radiation Transport Suite for the Study of the Jovian System

    Science.gov (United States)

    Norman, Ryan B.; Badavi, Francis F.; Blattnig, Steve R.; Atwell, William

    2011-01-01

    A deterministic suite of radiation transport codes, developed at NASA Langley Research Center (LaRC), which describe the transport of electrons, photons, protons, and heavy ions in condensed media is used to simulate exposures from spectral distributions typical of electrons, protons and carbon-oxygen-sulfur (C-O-S) trapped heavy ions in the Jovian radiation environment. The particle transport suite consists of a coupled electron and photon deterministic transport algorithm (CEPTRN) and a coupled light particle and heavy ion deterministic transport algorithm (HZETRN). The primary purpose for the development of the transport suite is to provide a means for the spacecraft design community to rapidly perform numerous repetitive calculations essential for electron, proton and heavy ion radiation exposure assessments in complex space structures. In this paper, the radiation environment of the Galilean satellite Europa is used as a representative boundary condition to show the capabilities of the transport suite. While the transport suite can directly access the output electron spectra of the Jovian environment as generated by the Jet Propulsion Laboratory (JPL) Galileo Interim Radiation Electron (GIRE) model of 2003; for the sake of relevance to the upcoming Europa Jupiter System Mission (EJSM), the 105 days at Europa mission fluence energy spectra provided by JPL is used to produce the corresponding dose-depth curve in silicon behind an aluminum shield of 100 mils ( 0.7 g/sq cm). The transport suite can also accept ray-traced thickness files from a computer-aided design (CAD) package and calculate the total ionizing dose (TID) at a specific target point. In that regard, using a low-fidelity CAD model of the Galileo probe, the transport suite was verified by comparing with Monte Carlo (MC) simulations for orbits JOI--J35 of the Galileo extended mission (1996-2001). For the upcoming EJSM mission with a potential launch date of 2020, the transport suite is used to compute

  1. The enduring legacy of the “constant-field equation” in membrane ion transport

    Science.gov (United States)

    2017-01-01

    In 1943, David Goldman published a seminal paper in The Journal of General Physiology that reported a concise expression for the membrane current as a function of ion concentrations and voltage. This body of work was, and still is, the theoretical pillar used to interpret the relationship between a cell’s membrane potential and its external and/or internal ionic composition. Here, we describe from an historical perspective the theory underlying the constant-field equation and its application to membrane ion transport. PMID:28931632

  2. Cisterna magna microdialysis of 22Na to evaluate ion transport and cerebrospinal fluid dynamics

    International Nuclear Information System (INIS)

    Knuckey, N.W.; Fowler, A.G.; Johanson, C.E.; Nashold, J.R.; Epstein, M.H.

    1991-01-01

    Microdialysis is used in vivo for measuring compounds in brain interstitial fluid. The authors describe another application of this technique to the central nervous system, namely microprobe dialysis in the cisterna magna to study the dynamics of ion transport and cerebrospinal fluid (CSF) formation in the rat. The choroid plexus is the major source of CSF, which is produced by active transport of Na from blood into the cerebral ventricles. Formation of CSF is directly proportional to the blood-to-CSF transport of Na. By injecting 22 Na into the systemic circulation and quantifying its movement into CSF by microdialysis, one can reliably estimate alterations in the rate of CSF formation. The sensitivity of this system was determined by administering acetazolamide, a standard inhibitor of CSF production. Because acetazolamide is known to decrease CSF formation by 40% to 50%, the cisternal microdialysis system in animals treated with this drug should detect a corresponding decrease in the amount of 22 Na dialyzed. This hypothesis is supported by the 22 Na uptake curves for control versus treated animals: that is, by the acetazolamide-induced average diminution of about 45% in both the rate and extent of tracer accession to dialysate. Bumetanide, a loop diuretic, reduced by 30% the 22 Na entry into dialysate. Microprobe dialysis of fluid in the cisterna magna is thus a minimally invasive and economical method for evaluating effects of drugs and hormones on the choroid plexus-CSF system

  3. Radioprotector modifying influence upon the ion transport ATPase activities

    International Nuclear Information System (INIS)

    Dvoretsky, A.I.; Egorova, E.G.; Ananieva, T.V.; Kulikova, I.A.

    1993-01-01

    The effects of aminothiol and biogenic amine radioprotectors (β-mercaptoethylamine, AET, serotonin, dopamine, histamine) on the basic ion transport enzymes, such as Na, K-ATP ase and Mg, Ca-ATPase activities were investigated in the tissues of numerous organs, with different radiosensitivity in the wistar rats. Experimental results showed that intraperitoneal injection of the used radioprotectors caused preliminary inhibition of the Na, K-ATPase activity in tissues from organs with different radioresistance, but had no influence on the Mg, Ca-ATPase activity in membranes of erythrocytes and rat brain cells. (2 tabs.)

  4. [Major ion chemistry of surface water in the Xilin River Basin and the possible controls].

    Science.gov (United States)

    Tang, Xi-Wen; Wu, Jin-Kui

    2014-01-01

    Under the increasing pressure of water shortage and steppe degradation, information on the hydrological cycle in the steppe region in Inner Mongolia is urgently needed. Major ions are widely used to identify the hydrological processes in a river basin. Based on the analysis results of 239 river water samples collected in 13 sections along the Xilin River system during 2006 to 2008, combined with data from groundwater and precipitation samples collected in the same period and the meteorological and hydrological data in the Xilin River Basin, hydrochemical characteristics and the chemistry of major ions of the Xilin River water have been studied by means of Piper triangle plots and Gibbs diagrams. The results showed that: (1) the total dissolved solid (TDS) in river water mainly ranged between 136.7 mg x L(-1) and 376.5 mg x L(-1), and (2) it had an increasing trend along the river flow path. (3) The major cations and anions of river water were Ca2+ and HCO3-, respectively, and the chemical type of the river water varied from HCO3- -Ca2+ in the headwater area to HCO(3-)-Ca2+ Mg2+ in the lower part. (4) The variation in the concentration of major irons in surface water was not significant at the temporal scale. Usually, the concentration values of major irons were much higher in May than those in other months during the runoff season, while the values were a bit lower in 2007 than those in 2006 and 2008. Except for SO4(2-), the concentrations of other ions such as Ca2+, Na+, Mg2+, K+, Cl- and HCO3- showed a upward trend along the river flow path. Comparing major ion concentrations of the river water with those of local groundwater and precipitation, the concentration in river water was between those of precipitation and groundwater but was much closer to the concentration of groundwater. This indicated that the surface water was recharged by a mixture of precipitation and groundwater, and groundwater showed a larger impact. The Gibbs plot revealed that the chemical

  5. Acceleration ion focusing (IFR) and transport experiments with the recirculating linear accelerator (RLA)

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Smith, D.L.; Puokey, J.W.; Bennett, L.F.; Wagner, J.S.; Olson, W.R.; George, M.; Turman, B.N.; Prestwich, K.R.; Struve, K.W.

    1992-01-01

    The focusing and transport of intense relativistic electron beams in the Sandia Laboratories Recirculating Linear Accelerator (RLA) is accomplished with the aid of an ion focusing channel (IFR). We report here experiments evaluating the beam generation in the injector and its subsequent acceleration and transport through the first post-accelerating cavity. Two injectors and one type of post-accelerating cavity were studied. Beams of 6-20 kA current were injected and successfully transported and accelerated through the cavity. The transport efficiencies were 90% - 100%, and the beam Gaussian profile (4 MeV injector) and radius (5 mm) remained the same through acceleration. We describe the RLA, present the experimental results and compare them with numerical simulations. (Author) 3 refs., 7 figs

  6. Electron density measurements during ion beam transport on Gamble II

    International Nuclear Information System (INIS)

    Weber, B.V.; Hinshelwood, D.D.; Neri, J.M.; Ottinger, P.F.; Rose, D.V.; Stephanakis, S.J.; Young, F.C.

    1999-01-01

    High-sensitivity laser interferometry was used to measure the electron density created when an intense proton beam (100 kA, 1 MeV, 50 ns) from the Gamble II generator was transported through low-pressure gas as part of a project investigating Self-Pinched Transport (SPT) of intense ion beams. This measurement is non-perturbing and sufficiently quantitative to allow benchmarking of codes (particularly IPROP) used to model beam-gas interaction and ion-beam transport. Very high phase sensitivity is required for this measurement. For example, a 100-kA, 1-MeV, 10-cm-radius proton beam with uniform current density has a line-integrated proton density equal to n b L = 3 x 10 13 cm -2 . An equal electron line-density, n e L = n b L, (expected for transport in vacuum) will be detected as a phase shift of the 1.064 microm laser beam of only 0.05degree, or an optical path change of 1.4 x 10 -4 waves (about the size of a hydrogen atom). The time-history of the line-integrated electron density, measured across a diameter of the transport chamber at 43 cm from the input aperture, starts with the proton arrival time and decays differently depending on the gas pressure. The gas conditions included vacuum (10 -4 Torr air), 30 to 220 mTorr He, and 1 Torr air. The measured densities vary by three orders of magnitude, from 10 13 to 10 16 cm -2 for the range of gas pressures investigated. In vacuum, the measured electron densities indicate only co-moving electrons (n e L approximately n b L). In He, when the gas pressure is sufficient for ionization by beam particles and SPT is observed, n e L increases to about 10 n b L. At even higher pressures where electrons contribute to ionization, even higher electron densities are observed with an ionization fraction of about 2%. The diagnostic technique as used on the SPT experiment will be described and a summary of the results will be given. The measurements are in reasonable agreement with theoretical predictions from the IPROP code

  7. Present status on the ion collective acceleration and high-current beam transport in the Lebedev's Physical Institute USSR

    International Nuclear Information System (INIS)

    Kolomenskij, A.A.

    1982-01-01

    The results of investigations into the ion collective acceleration and transport of high-current electron beams (HCEB) in vacuum channels with dielectric walls (VCDW) are presented. The physical principle of transport is in the partial neutralization of spatial charge of electrons with ions escaped from the prewall plasma and the compression of the beam with its own magnetic field. A problem of obtaining the intensive beams of negative ions in diode with magnetic isolation is considered. The mechanism of ion acceleration in VCDW is considered. It is shown that there are two regions with different mechanisms of acceleration. In the first region (''plasma'') ion acceleration in the quasipotential HCEB field up to energy of the order of the electron energy takes place. In the second region (''beam'') the acceleration takes place in the wave fields that can be excited due to the mechanism of the two-beam type instability. The mechanism of ion acceleration in direct electron beams is considered. This mechanism is based on the concept of relaxation oscillations of the virtual cathode and corresponding the reconstruction of the spatial charge distribution

  8. Selective transport and incorporation of highly charged metal and metal complex ions in self-assembled polyelectrolyte multilayer membranes

    International Nuclear Information System (INIS)

    Toutianoush, Ali; Tieke, Bernd

    2002-01-01

    The transport of aqueous salts containing mono-, di- and trivalent metal and tetravalent metal complex ions across ultrathin polyvinylammonium/polyvinylsulphate (PVA/PVS) membranes is described. The membranes were prepared by electrostatic layer-by-layer (LBL) assembly of the two polyelectrolytes. Using spectroscopic measurements and permeability studies, it is demonstrated that the transport of copper(II) chloride, lanthanum(III) chloride, barium chloride and potassium hexacyanoferrate(II) is accompanied by the permanent incorporation of the metal and metal complex ions in the membrane. Upon the uptake of copper, lanthanum and hexacyanoferrate ions, the membranes become cross-linked so that the permeation rates of other salts not taken up by the membrane, e.g. sodium chloride, potassium chloride and magnesium chloride, are decreased. The uptake of barium ions leads to a decrease of the cross-linking density of the membrane so that the permeation rate of NaCl is increased. Possible mechanisms for the ion uptake are discussed

  9. Electroless formation of hybrid lithium anodes for fast interfacial ion transport

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Snehashis; Stalin, Sanjuna; Vu, Duylinh; Fawole, Kristen; Archer, Lynden A. [School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY (United States); Tu, Zhengyuan [Department of Material Science and Engineering, Cornell University, Ithaca, NY (United States); Gunceler, Deniz [Department of Physics, Cornell University, Ithaca, NY (United States); Sundararaman, Ravishankar [Material Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY (United States)

    2017-10-09

    Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Role of external torque in the formation of ion thermal internal transport barriers

    Science.gov (United States)

    Jhang, Hogun; Kim, S. S.; Diamond, P. H.

    2012-04-01

    We present an analytic study of the impact of external torque on the formation of ion internal transport barriers (ITBs). A simple analytic relation representing the effect of low external torque on transport bifurcations is derived based on a two field transport model of pressure and toroidal momentum density. It is found that the application of an external torque can either facilitate or hamper bifurcation in heat flux driven plasmas depending on its sign relative to the direction of intrinsic torque. The ratio between radially integrated momentum (i.e., external torque) density to power input is shown to be a key macroscopic control parameter governing the characteristics of bifurcation.

  11. The Acute Toxicity of Major Ion Salts to Ceriodaphnia Dubia. Ii. Empirical Relationships in Binary Salt Mixtures

    Science.gov (United States)

    Many human activities increase concentrations of major geochemical ions (Na+, K+, Ca+2, Mg+2, Cl, SO42, and HCO3/CO32) in fresh water systems, and can thereby adversely affect aquatic life. Such effects involve several toxicants, multiple mechanisms of toxicity, various ion inte...

  12. Fast ion stabilization of the ion temperature gradient driven modes in the Joint European Torus hybrid-scenario plasmas: a trigger mechanism for internal transport barrier formation

    Energy Technology Data Exchange (ETDEWEB)

    Romanelli, M; Zocco, A [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Crisanti, F, E-mail: Michele.Romanelli@ccfe.ac.u [Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, Frascati (Italy)

    2010-04-15

    Understanding and modelling turbulent transport in thermonuclear fusion plasmas are crucial for designing and optimizing the operational scenarios of future fusion reactors. In this context, plasmas exhibiting state transitions, such as the formation of an internal transport barrier (ITB), are particularly interesting since they can shed light on transport physics and offer the opportunity to test different turbulence suppression models. In this paper, we focus on the modelling of ITB formation in the Joint European Torus (JET) [1] hybrid-scenario plasmas, where, due to the monotonic safety factor profile, magnetic shear stabilization cannot be invoked to explain the transition. The turbulence suppression mechanism investigated here relies on the increase in the plasma pressure gradient in the presence of a minority of energetic ions. Microstability analysis of the ion temperature gradient driven modes (ITG) in the presence of a fast-hydrogen minority shows that energetic ions accelerated by the ion cyclotron resonance heating (ICRH) system (hydrogen, n{sub H,fast}/n{sub D,thermal} up to 10%, T{sub H,fast}/T{sub D,thermal} up to 30) can increase the pressure gradient enough to stabilize the ITG modes driven by the gradient of the thermal ions (deuterium). Numerical analysis shows that, by increasing the temperature of the energetic ions, electrostatic ITG modes are gradually replaced by nearly electrostatic modes with tearing parity at progressively longer wavelengths. The growth rate of the microtearing modes is found to be lower than that of the ITG modes and comparable to the local E x B-velocity shearing rate. The above mechanism is proposed as a possible trigger for the formation of ITBs in this type of discharges.

  13. Ion transport membrane reactor systems and methods for producing synthesis gas

    Science.gov (United States)

    Repasky, John Michael

    2015-05-12

    Embodiments of the present invention provide cost-effective systems and methods for producing a synthesis gas product using a steam reformer system and an ion transport membrane (ITM) reactor having multiple stages, without requiring inter-stage reactant injections. Embodiments of the present invention also provide techniques for compensating for membrane performance degradation and other changes in system operating conditions that negatively affect synthesis gas production.

  14. Colonic epithelial ion transport is not affected in patients with diverticulosis

    Directory of Open Access Journals (Sweden)

    Tilotta Maria C

    2007-09-01

    Full Text Available Abstract Background Colonic diverticular disease is a bothersome condition with an unresolved pathogenesis. It is unknown whether a neuroepithelial dysfunction is present. The aim of the study was two-fold; (1 to investigate colonic epithelial ion transport in patients with diverticulosis and (2 to adapt a miniaturized Modified Ussing Air-Suction (MUAS chamber for colonic endoscopic biopsies. Methods Biopsies were obtained from the sigmoid part of the colon. 86 patients were included. All patients were referred for colonoscopy on suspicion of neoplasia and they were without pathological findings at colonoscopy (controls except for diverticulosis in 22 (D-patients. Biopsies were mounted in MUAS chambers with an exposed area of 5 mm2. Electrical responses to various stimulators and inhibitors of ion transport were investigated together with histological examination. The MUAS chamber was easy to use and reproducible data were obtained. Results Median basal short circuit current (SCC was 43.8 μA·cm-2 (0.8 – 199 for controls and 59.3 μA·cm-2 (3.0 – 177.2 for D-patients. Slope conductance was 77.0 mS·cm-2 (18.6 – 204.0 equal to 13 Ω·cm2 for controls and 96.6 mS·cm-2 (8.4 – 191.4 equal to 10.3 Ω·cm2 for D-patients. Stimulation with serotonin, theophylline, forskolin and carbachol induced increases in SCC in a range of 4.9 – 18.6 μA·cm-2, while inhibition with indomethacin, bumetanide, ouabain and amiloride decreased SCC in a range of 6.5 – 27.4 μA·cm-2, and all with no significant differences between controls and D-patients. Histological examinations showed intact epithelium and lamina propria before and after mounting for both types of patients. Conclusion We conclude that epithelial ion transport is not significantly altered in patients with diverticulosis and that the MUAS chamber can be adapted for studies of human colonic endoscopic biopsies.

  15. Modelling of ion thermal transport in ergodic region of collisionless toroidal plasma

    International Nuclear Information System (INIS)

    Kanno, Ryutaro; Nunami, Masanori; Satake, Shinsuke; Ohyabu, Nobuyoshi; Takamaru, Hisanori; Okamoto, Masao

    2009-09-01

    In recent tokamak experiments it has been found that so-called diffusion theory based on the 'diffusion of magnetic field lines' overestimates the radial energy transport in the ergodic region of the collisionless plasma affected by resonant magnetic perturbations (RMPs), though the RMPs induce chaotic behavior of the magnetic field lines. The result implies that the modelling of the transport should be reconsidered for low collisionality cases. A computer simulation study of transport in the ergodic region is required for understanding fundamental properties of collisionless ergodized-plasmas, estimating the transport coefficients, and reconstructing the modelling of the transport. In this paper, we report the simulation study of thermal transport in the ergodic region under the assumption of neglecting effects of an electric field, impurities and neutrals. Because of the simulations neglecting interactions with different particle-species and saving the computational time, we treat ions (protons) in our numerical-study of the transport. We find that the thermal diffusivity in the ergodic region is extremely small compared to the one predicted by the theory of field-line diffusion and that the diffusivity depends on both the collision frequency and the strength of RMPs even for the collisionless ergodized-plasma. (author)

  16. Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling.

    Science.gov (United States)

    Pottosin, Igor; Shabala, Sergey

    2014-01-01

    Polyamines are unique polycationic metabolites, controlling a variety of vital functions in plants, including growth and stress responses. Over the last two decades a bulk of data was accumulated providing explicit evidence that polyamines play an essential role in regulating plant membrane transport. The most straightforward example is a blockage of the two major vacuolar cation channels, namely slow (SV) and fast (FV) activating ones, by the micromolar concentrations of polyamines. This effect is direct and fully reversible, with a potency descending in a sequence Spm(4+) > Spd(3+) > Put(2+). On the contrary, effects of polyamines on the plasma membrane (PM) cation and K(+)-selective channels are hardly dependent on polyamine species, display a relatively low affinity, and are likely to be indirect. Polyamines also affect vacuolar and PM H(+) pumps and Ca(2+) pump of the PM. On the other hand, catabolization of polyamines generates H2O2 and other reactive oxygen species (ROS), including hydroxyl radicals. Export of polyamines to the apoplast and their oxidation there by available amine oxidases results in the induction of a novel ion conductance and confers Ca(2+) influx across the PM. This mechanism, initially established for plant responses to pathogen attack (including a hypersensitive response), has been recently shown to mediate plant responses to a variety of abiotic stresses. In this review we summarize the effects of polyamines and their catabolites on cation transport in plants and discuss the implications of these effects for ion homeostasis, signaling, and plant adaptive responses to environment.

  17. Membrane Anchoring and Ion-Entry Dynamics in P-type ATPase Copper Transport

    DEFF Research Database (Denmark)

    Grønberg, Christina; Sitsel, Oleg; Lindahl, Erik

    2016-01-01

    Cu(+)-specific P-type ATPase membrane protein transporters regulate cellular copper levels. The lack of crystal structures in Cu(+)-binding states has limited our understanding of how ion entry and binding are achieved. Here, we characterize the molecular basis of Cu(+) entry using molecular-dynamics...... simulations, structural modeling, and in vitro and in vivo functional assays. Protein structural rearrangements resulting in the exposure of positive charges to bulk solvent rather than to lipid phosphates indicate a direct molecular role of the putative docking platform in Cu(+) delivery. Mutational analyses...... and simulations in the presence and absence of Cu(+) predict that the ion-entry path involves two ion-binding sites: one transient Met148-Cys382 site and one intramembranous site formed by trigonal coordination to Cys384, Asn689, and Met717. The results reconcile earlier biochemical and x-ray absorption data...

  18. Energy landscapes for mobile ions in ion conducting solids

    Indian Academy of Sciences (India)

    molecular dynamics (MD) simulations yields quantitative predictions of the ion transport characteristics. As ... Solid electrolytes; bond valence analysis; ion transport in glasses. 1. .... clusters are considered to contribute only to a.c. conduc-.

  19. Alfvenic Instabilities and Fast Ion Transport in the DIII-D Tokamak

    International Nuclear Information System (INIS)

    Van Zeeland, M.; Heidbrink, W.; Nazikian, R.; Austin, M.; Berk, H.; Gorelenkov, N.; Holcomb, C.; Kramer, G.; Lohr, J.; Luo, Y.; Makowski, M.; McKee, G.; Petty, C.; Prater, R.; Solomon, W.; White, R.

    2008-01-01

    Neutral beam injection into reversed magnetic shear DIII-D plasmas produces a variety of Alfvenic activity including Toroidicity and Ellipticity induced Alfven Eigenmodes (TAE/EAE, respectively) and Reversed Shear Alfven Eigenmodes (RSAE) as well as their spatial coupling. These modes are typically studied during the discharge current ramp phase when incomplete current penetration results in a high central safety factor and strong drive due to multiple higher order resonances. During this same time period Fast-Ion D α (FIDA) spectroscopy shows that the central fast ion profile is flattened, the degree of which depends on the Alfven eigenmode amplitude. Interestingly, localized electron cyclotron heating (ECH) near the mode location stabilizes RSAE activity and results in significantly improved fast ion confinement relative to discharges with ECH deposition on axis. In these discharges, RSAE activity is suppressed when ECH is deposited near the radius of the shear reversal point and enhanced with deposition near the axis. To simulate the observed neutral beam ion redistribution, NOVA calculations of the 3D eigenmode structures are matched with experimental measurements and used in combination with the ORBIT guiding center following code. For fixed frequency eigenmodes, it is found that ORBIT calculations cannot explain the observed beam ion transport with experimentally measured mode amplitudes. Possible explanations are considered including recent simulation results incorporating eigenmodes with time dependent frequencies

  20. Trace and major element pollution originating from coal ash suspension and transport processes.

    Science.gov (United States)

    Popovic, A; Djordjevic, D; Polic, P

    2001-04-01

    Coal ash obtained by coal combustion in the "Nikola Tesla A" power plant in Obrenovac, near Belgrade, Yugoslavia, is mixed with water of the Sava river and transported to the dump. In order to assess pollution caused by leaching of some minor and major elements during ash transport through the pipeline, two sets of samples (six samples each) were subjected to a modified sequential extraction. The first set consisted of coal ash samples taken immediately after combustion, while the second set was obtained by extraction with river water, imitating the processes that occur in the pipeline. Samples were extracted consecutively with distilled water and a 1 M solution of KCl, pH 7, and the differences in extractability were compared in order to predict potential pollution. Considering concentrations of seven trace elements as well as five major elements in extracts from a total of 12 samples, it can be concluded that lead and cadmium do not present an environmental threat during and immediately after ash transport to the dump. Portions of zinc, nickel and chromium are released during the ash transport, and arsenic and manganese are released continuously. Copper and iron do not present an environmental threat due to element leaching during and immediately after the coal ash suspension and transport. On the contrary, these elements, as well as chromium, become concentrated during coal ash transport. Adsorbed portions of calcium, magnesium and potassium are also leached during coal ash transport.

  1. A dendrite-suppressing composite ion conductor from aramid nanofibres.

    Science.gov (United States)

    Tung, Siu-On; Ho, Szushen; Yang, Ming; Zhang, Ruilin; Kotov, Nicholas A

    2015-01-27

    Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. Here we demonstrate that these properties can be attained in a composite made from Kevlar-derived aramid nanofibres assembled in a layer-by-layer manner with poly(ethylene oxide). Importantly, the porosity of the membranes is smaller than the growth area of the dendrites so that aramid nanofibres eliminate 'weak links' where the dendrites pierce the membranes. The aramid nanofibre network suppresses poly(ethylene oxide) crystallization detrimental for ion transport, giving a composite that exhibits high modulus, ionic conductivity, flexibility, ion flux rates and thermal stability. Successful suppression of hard copper dendrites by the composite ion conductor at extreme discharge conditions is demonstrated, thereby providing a new approach for the materials engineering of solid ion conductors.

  2. Improved formulas for trapped-ion anomalous transport in tokamaks without and with shear

    International Nuclear Information System (INIS)

    Sardei, F.; Wimmel, H.K.

    1980-12-01

    More refined numerical calculations of trapped-ion anomalous transport in a 2-D slab, trapped-fluid model suggest an anomalous diffusion coefficient D approx. 3.5 x 10 -2 delta 0 a 2 νsub(i)sup(e)sup(f)sup(f) for a tokamak plasma without shear. This supersedes earlier results. The new formula is independently confirmed by two different analytical calculations. One of them uses a similarity analysis of unabridged Kadomtsev-Pogutse-type trapped-fluid equations and the multiperiodic spatial structure of the saturated trapped-ion wave found in both the earlier and the recent numerical calculations. The other calculation yields a class of exact nonlinear solutions of the trapped-fluid equations. The new shearless result is used to derive the anomalous diffusion with shear effect by a method described in an earlier paper. The new transport formulas have been numerically evaluated for several tokamaks in an IPP report, where the results are shown in graph form. (orig.)

  3. Permeating disciplines: Overcoming barriers between molecular simulations and classical structure-function approaches in biological ion transport.

    Science.gov (United States)

    Howard, Rebecca J; Carnevale, Vincenzo; Delemotte, Lucie; Hellmich, Ute A; Rothberg, Brad S

    2018-04-01

    Ion translocation across biological barriers is a fundamental requirement for life. In many cases, controlling this process-for example with neuroactive drugs-demands an understanding of rapid and reversible structural changes in membrane-embedded proteins, including ion channels and transporters. Classical approaches to electrophysiology and structural biology have provided valuable insights into several such proteins over macroscopic, often discontinuous scales of space and time. Integrating these observations into meaningful mechanistic models now relies increasingly on computational methods, particularly molecular dynamics simulations, while surfacing important challenges in data management and conceptual alignment. Here, we seek to provide contemporary context, concrete examples, and a look to the future for bridging disciplinary gaps in biological ion transport. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A deterministic electron, photon, proton and heavy ion transport suite for the study of the Jovian moon Europa

    International Nuclear Information System (INIS)

    Badavi, Francis F.; Blattnig, Steve R.; Atwell, William; Nealy, John E.; Norman, Ryan B.

    2011-01-01

    A Langley research center (LaRC) developed deterministic suite of radiation transport codes describing the propagation of electron, photon, proton and heavy ion in condensed media is used to simulate the exposure from the spectral distribution of the aforementioned particles in the Jovian radiation environment. Based on the measurements by the Galileo probe (1995-2003) heavy ion counter (HIC), the choice of trapped heavy ions is limited to carbon, oxygen and sulfur (COS). The deterministic particle transport suite consists of a coupled electron photon algorithm (CEPTRN) and a coupled light heavy ion algorithm (HZETRN). The primary purpose for the development of the transport suite is to provide a means to the spacecraft design community to rapidly perform numerous repetitive calculations essential for electron, photon, proton and heavy ion exposure assessment in a complex space structure. In this paper, the reference radiation environment of the Galilean satellite Europa is used as a representative boundary condition to show the capabilities of the transport suite. While the transport suite can directly access the output electron and proton spectra of the Jovian environment as generated by the jet propulsion laboratory (JPL) Galileo interim radiation electron (GIRE) model of 2003; for the sake of relevance to the upcoming Europa Jupiter system mission (EJSM), the JPL provided Europa mission fluence spectrum, is used to produce the corresponding depth dose curve in silicon behind a default aluminum shield of 100 mils (∼0.7 g/cm 2 ). The transport suite can also accept a geometry describing ray traced thickness file from a computer aided design (CAD) package and calculate the total ionizing dose (TID) at a specific target point within the interior of the vehicle. In that regard, using a low fidelity CAD model of the Galileo probe generated by the authors, the transport suite was verified versus Monte Carlo (MC) simulation for orbits JOI-J35 of the Galileo probe

  5. Transport of ions in presence of induced electric field and electrostatic turbulence - Source of ions injected into ring current

    Science.gov (United States)

    Cladis, J. B.; Francis, W. E.

    1985-01-01

    The transport of ions from the polar ionosphere to the inner magnetosphere during stormtime conditions has been computed using a Monte Carlo diffusion code. The effect of the electrostatic turbulence assumed to be present during the substorm expansion phase was simulated by a process that accelerated the ions stochastically perpendicular to the magnetic field with a diffusion coefficient proportional to the energization rate of the ions by the induced electric field. This diffusion process was continued as the ions were convected from the plasma sheet boundary layer to the double-spiral injection boundary. Inward of the injection boundary, the ions were convected adiabatically. By using as input an O(+) flux of 2.8 x 10 to the 8th per sq cm per s (w greater than 10 eV) and an H(+) flux of 5.5 x 10 to the 8th per sq cm per s (w greater than 0.63 eV), the computed distribution functions of the ions in the ring current were found to be in good agreement, over a wide range in L (4 to 8), with measurements made with the ISEE-1 satellite during a storm. This O(+) flux and a large part of the H(+) flux are consistent with the DE satellite measurements of the polar ionospheric outflow during disturbed times.

  6. Ion current prediction model considering columnar recombination in alpha radioactivity measurement using ionized air transportation

    International Nuclear Information System (INIS)

    Naito, Susumu; Hirata, Yosuke; Izumi, Mikio; Sano, Akira; Miyamoto, Yasuaki; Aoyama, Yoshio; Yamaguchi, Hiromi

    2007-01-01

    We present a reinforced ion current prediction model in alpha radioactivity measurement using ionized air transportation. Although our previous model explained the qualitative trend of the measured ion current values, the absolute values of the theoretical curves were about two times as large as the measured values. In order to accurately predict the measured values, we reinforced our model by considering columnar recombination and turbulent diffusion, which affects columnar recombination. Our new model explained the considerable ion loss in the early stage of ion diffusion and narrowed the gap between the theoretical and measured values. The model also predicted suppression of ion loss due to columnar recombination by spraying a high-speed air flow near a contaminated surface. This suppression was experimentally investigated and confirmed. In conclusion, we quantitatively clarified the theoretical relation between alpha radioactivity and ion current in laminar flow and turbulent pipe flow. (author)

  7. Azimuthal anisotropy in heavy-ion collisions using non-extensive statistics in Boltzmann transport equation

    International Nuclear Information System (INIS)

    Tripathy, S.; Tiwari, S.K.; Younus, M.; Sahoo, R.

    2017-01-01

    One of the major goals in heavy-ion physics is to understand the properties of Quark Gluon Plasma (QGP), a deconfined hot and dense state of quarks and gluons existed shortly after the Big Bang. In the present scenario, the high-energy particle accelerators are able to reach energies where this extremely dense nuclear matter can be probed for a short time. Here, we follow our earlier works which use non-extensive statistics in Boltzmann Transport Equation (BTE). We represent the initial distribution of particles with the help of Tsallis power law distribution parameterized by the nonextensive parameter q and the Tsallis temperature T, remembering the fact that their origin is due to hard scatterings. We use the initial distribution (f in ) with Relaxation Time Approximation (RTA) of the BTE and calculate the final distribution (f fin ). Then we calculate ν 2 of the system using the final distribution in the definition of ν2

  8. Interactive ion-mediated sap flow regulation in olive and laurel stems: physicochemical characteristics of water transport via the pit structure.

    Science.gov (United States)

    Ryu, Jeongeun; Ahn, Sungsook; Kim, Seung-Gon; Kim, TaeJoo; Lee, Sang Joon

    2014-01-01

    Sap water is distributed and utilized through xylem conduits, which are vascular networks of inert pipes important for plant survival. Interestingly, plants can actively regulate water transport using ion-mediated responses and adapt to environmental changes. However, ionic effects on active water transport in vascular plants remain unclear. In this report, the interactive ionic effects on sap transport were systematically investigated for the first time by visualizing the uptake process of ionic solutions of different ion compositions (K+/Ca2+) using synchrotron X-ray and neutron imaging techniques. Ionic solutions with lower K+/Ca2+ ratios induced an increased sap flow rate in stems of Olea europaea L. and Laurus nobilis L. The different ascent rates of ionic solutions depending on K+/Ca2+ ratios at a fixed total concentration increases our understanding of ion-responsiveness in plants from a physicochemical standpoint. Based on these results, effective structural changes in the pit membrane were observed using varying ionic ratios of K+/Ca2+. The formation of electrostatically induced hydrodynamic layers and the ion-responsiveness of hydrogel structures based on Hofmeister series increase our understanding of the mechanism of ion-mediated sap flow control in plants.

  9. Determination of major sodium iodide symporter (NIS) inhibitors in drinking waters using ion chromatography with conductivity detector.

    Science.gov (United States)

    Cengiz, Mehmet Fatih; Bilgin, Ayse Kevser

    2016-02-20

    Goiter is an important health problem all over the world and iodine deficiency is its most common cause. Perchlorate, thiocyanate and nitrate (called as major NIS inhibitors) are known to competitively inhibit iodide uptake by the thyroid gland and thus, human exposure to major NIS inhibitors is a public health concern. In this study, an ion chromatographic method for the determination of most common NIS inhibitor ions in drinking waters was developed and validated. This is the first study where an analytical method is used for the determination of major NIS inhibitors in drinking water by an ion chromatography system in a single run. Chromatographic separations were achieved with an anion-exchange column and separated ions were identified by a conductivity detector. The method was found to be selective, linear, precise accurate and true for all of interested ions. The limits of the detections (LOD) were estimated at 0.003, 0.004 and 0.025mgL(-1) for perchlorate, thiocyanate and nitrate, respectively. Possible interference ions in drinking waters were examined for the best separation of NIS inhibitors. The excellent method validation data and proficiency test result (Z-score for nitrate: -0.1) of the FAPAS(®) suggested that the developed method could be applied for determination of NIS inhibitor residues in drinking waters. To evaluate the usefulness of the method, 75 drinking water samples from Antalya/Turkey were analyzed for NIS inhibitors. Perchlorate concentrations in the samples ranged from not detected (less than LOD) to 0.07±0.02mgL(-1) and the range of nitrate concentrations were found to be 3.60±0.01mgL(-1) and 47.42±0.40mgL(-1). No thiocyanate residues were detected in tested drinking water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Biomimetic hydrogels gate transport of calcium ions across cell culture inserts.

    Science.gov (United States)

    Kotanen, Christian N; Wilson, A Nolan; Wilson, Ann M; Ishihara, Kazuhiko; Guiseppi-Elie, Anthony

    2012-06-01

    Control of the in vitro spatiotemporal availability of calcium ions is one means by which the microenvironments of hematopoietic stem cells grown in culture may be reproduced. The effects of cross-linking density on the diffusivity of calcium ions through cell culture compatible poly(2-hydroxyethyl methacrylate) [poly(HEMA)]-based bioactive hydrogels possessing 1.0 mol% 2-methacryloyloxyethyl phosphorylcholine (MPC), 5 mol% N,N-(dimethylamino)ethylmethacrylate (DMAEMA) and ca. 17 mol% n-butyl acrylate (n-BA) have been investigated to determine if varying cross-link density is a viable approach to controlling transport of calcium across hydrogel membranes. Cross-linking density was varied by changing the composition of cross-linker, tetraethyleneglycol diacrylate (TEGDA). The hydrogel membranes were formed by sandwich casting onto the external surface of track-etched polycarbonate membranes (T = 10 μm, φ = 0.4 μm pores) of cell culture inserts, polymerized in place by UV light irradiation and immersed in buffered (0.025 HEPES, pH 7.4) 0.10 M calcium chloride solution. The transport of calcium ions across the hydrogel membrane was monitored using a calcium ion selective electrode set within the insert. Degree of hydration (21.6 ± 1.0%) and void fraction were found to be constant across all cross-linking densities. Diffusion coefficients, determined using time-lag analysis, were shown to be strongly dependent on and to exponentially decrease with increasing cross-linking density. Compared to that found in buffer (2.0-2.5 × 10⁻⁶ cm²/s), diffusion coefficients ranged from 1.40 × 10⁻⁶ cm²/s to 1.80 × 10⁻⁷ cm²/s and tortuosity values ranged from 1.7 to 10.0 for the 1 and 12 mol% TEGDA cross-linked hydrogels respectively. Changes in tortuosity arising from variations in cross-link density were found to be the primary modality for controlling diffusivity through novel n-BA containing poly(HEMA)-based bioactive hydrogels.

  11. Important atomic physics issues for ion beam fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1985-01-01

    This paper suggests several current atomic physics questions important to ion beam fusion. Among the topics discussed are beam transport, beam-target interaction, and reactor design. The major part of the report is discussion concerning areas of research necessary to better understand beam-target interactions

  12. Ion transport studies on the PLT tokamak during neutral beam injection

    International Nuclear Information System (INIS)

    Suckewer, S.; Cavallo, A.; Cohen, S.

    1983-12-01

    Radial transport of ions during co- and counter-neutral beam heating in the PLT tokamak has been studied, using molybdenum and scandium ions as tracer elements. The time evolution of the radial profiles of several ionization stages of both elements, injected by laser blowoff during the neutral beam heating, were measured under three significantly different beam-plasma combinations. No noticeable differences in the radial profiles attributable to the beam direction were observed. However, a given injected amount resulted in considerably larger interior concentrations of the tracer element in the counter-beam heating cases, suggesting larger penetration of the plasma periphery. Computer simulation with the MIST code suggests a net inward drift of the order 10 3 cm/sec superposed to a diffusion coefficient of the order 10 4 cm 2 /sec for both scandium and molybdenum ions. Injection of larger amounts of the tracer element, sufficient to cause measurable central electron temperature changes, resulted in dramatic changes in ion-state distributions, making some appear peaked in the center while others disappeared. This effect could be produced with both co- and counter-beam heating, but with lesser amounts in the latter case. It is interpreted as rearrangement of the ionization balance, rather than any preferential accumulation of the injected element

  13. Activation of ion transport systems during cell volume regulation

    International Nuclear Information System (INIS)

    Eveloff, J.L.; Warnock, D.G.

    1987-01-01

    This review discusses the activation of transport pathways during volume regulation, including their characteristics, the possible biochemical pathways that may mediate the activation of transport pathways, and the relations between volume regulation and transepithelial transport in renal cells. Many cells regulate their volume when exposed to an anisotonic medium. The changes in cell volume are caused by activation of ion transport pathways, plus the accompanying osmotically driven water movement such that cell volume returns toward normal levels. The swelling of hypertonically shrunken cells is termed regulatory volume increase (RVI) and involves an influx of NaCl into the cell via either activation of Na-Cl, Na-K-2Cl cotransport systems, or Na + -H + and Cl - -HCO 3 - exchangers. The reshrinking of hypotonically swollen cells is termed regulatory volume decrease (RVD) and involves an efflux of KCl and water from the cell by activation of either separate K + and Cl - conductances, a K-Cl cotransport system, or parallel K + -H + and Cl - -HCO 3 - exchangers. The biochemical mechanisms involved in the activation of transport systems are largely unknown, however, the phosphoinositide pathway may be implicated in RVI; phorbol esters, cGMP, and Ca 2+ affect the process of volume regulation. Renal tubular cells, as well as the blood cells that transverse the medulla, are subjected to increasing osmotic gradients from the corticomedullary junction to the papillary tip, as well as changing interstitial and tubule fluid osmolarity, depending on the diuretic state of the animal. Medullary cells from the loop of Henle and the papilla can volume regulate by activating Na-K-2Cl cotransport or Na + -H + and Cl - -HCO 3 - exchange systems

  14. Beam diagnostics and data acquisition system for ion beam transport line used in applied research

    International Nuclear Information System (INIS)

    Skuratov, V.A.; Didyk, A.Yu.; Arkhipov, A.V.; Illes, A.; Bodnar, K.; Illes, Z.; Havancsak, K.

    1999-01-01

    Ion beam transport line for applied research on U-400 cyclotron, beam diagnostics and data acquisition system for condensed matter studies are described. The main features of Windows-based real time program are considered

  15. Human Enteroids as a Model of Upper Small Intestinal Ion Transport Physiology and Pathophysiology

    NARCIS (Netherlands)

    J. Foulke-Abel (Jennifer); J. In (Julie); Yin, J. (Jianyi); N.C. Zachos (Nicholas C.); O. Kovbasnjuk (Olga); M.K. Estes (Mary K.); H.R. de Jonge (Hugo); M. Donowitz (Mark)

    2016-01-01

    textabstractBackground & Aims Human intestinal crypt-derived enteroids are a model of intestinal ion transport that require validation by comparison with cell culture and animal models. We used human small intestinal enteroids to study neutral Na+ absorption and stimulated fluid and anion secretion

  16. Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Science.gov (United States)

    Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

    2014-01-28

    Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  17. Transport of carbon ion test particles and hydrogen recycling in the plasma of the Columbia tokamak ''HBT'' [High Beta Tokamak

    International Nuclear Information System (INIS)

    Wang, Jian-Hua.

    1990-01-01

    Carbon impurity ion transport is studied in the Columbia High Beta Tokamak (HBT), using a carbon tipped probe which is inserted into the plasma (n e ∼ 1 - 5 x 10 14 (cm -3 ), T e ∼ 4 - 10 (eV), B t ∼ 0.2 - 0.4(T)). Carbon impurity light, mainly the strong lines of C II (4267A, emitted by the C + ions) and C III (4647A, emitted by the C ++ ions), is formed by the ablation or sputtering of plasma ions and by the discharge of the carbon probe itself. The diffusion transport of the carbon ions is modeled by measuring the space-and-time dependent spectral light emission of the carbon ions with a collimated optical beam and photomultiplier. The point of emission can be observed in such a way as to sample regions along and transverse to the toroidal magnetic field. The carbon ion diffusion coefficients are obtained by fitting the data to a diffusion transport model. It is found that the diffusion of the carbon ions is ''classical'' and is controlled by the high collisionality of the HBT plasma; the diffusion is a two-dimensional problem and the expected dependence on the charge of the impurity ion is observed. The measurement of the spatial distribution of the H α emissivity was obtained by inverting the light signals from a 4-channel polychromator, the data were used to calculate the minor-radial influx, the density, and the recycling time of neutral hydrogen atoms or molecules. The calculation shows that the particle recycling time τ p is comparable with the plasma energy confinement time τ E ; therefore, the recycling of the hot plasma ions with the cold neutrals from the walls is one of the main mechanisms for loss of plasma energy

  18. Storm runoff analysis using environmental isotopes and major ions

    International Nuclear Information System (INIS)

    Fritz, P.; Cherry, J.A.; Sklash, M.; Weyer, K.U.

    1976-01-01

    At a given locality the oxygen-18 content of rainwater varies from storm to storm but within broad seasonal trends. Very frequently, especially during heavy summer storms, the stable isotope composition of rainwater differs from that of the groundwater in the area. This isotopic difference can be used to differentiate between 'prestorm' and 'rain' components in storm runoff. This approach to the use of natural 18 O was applied in four hydrogeologically very different basins in Canada. Their surface areas range from less than 2km 2 to more than 700km 2 . Before, during and after the storm events samples of stream water, groundwater and rain were analysed for 18 O and in some cases for deuterium, major ions and electrical conductance. The 18 O hydrograph separations show that groundwater was a major component of the runoff in each of the basins, and usually exceeded 50% of the total water discharged. Even at peak stream flow most of discharge was subsurface water. The identification of geographic sources rather than time sources appears possible if isotope techniques are used in conjunction with chemical analyses, hydrological data - such as flow measurements - and visual observations. (author)

  19. Ion transport and phase transformation in thin film intercalation electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wunde, Fabian; Nowak, Susann; Muerter, Juliane; Hadjixenophontos, Efi; Berkemeier, Frank; Schmitz, Guido [Stuttgart Univ. (Germany). Inst. fuer Materialwissenschaft

    2017-11-15

    Thin film battery electrodes of the olivine structure LiFePO{sub 4} and the spinel phase LiMn{sub 2}O{sub 4} are deposited through ion-beam sputtering. The intercalation kinetics is studied by cyclo-voltammetry using variation of the cycling rate over 4 to 5 orders of magnitude. The well-defined layer geometry allows a detailed quantitative analysis. It is shown that LiFePO{sub 4} clearly undergoes phase separation during intercalation, although the material is nano-confined and very high charging rates are applied. We present a modified Randles-Sevcik evaluation adapted to phase-separating systems. Both the charging current and the overpotential depend on the film thickness in a systematic way. The analysis yields evidence that the grain boundaries are important short circuit paths for fast transport. They increase the electrochemical active area with increasing layer thickness. Evidence is obtained that the grain boundaries in LiFePO{sub 4} have the character of an ion-conductor of vanishing electronic conductivity.

  20. Transport and emittance study for 18 GHz superconducting-ECR ion source at RCNP.

    Science.gov (United States)

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Kibayashi, M; Morinobu, S; Tamii, A

    2012-02-01

    As the upgrade program of the azimuthally varying field (AVF) cyclotron is at the cyclotron facility of the RCNP, Osaka University for the improvement of the quality, stability, and intensity of accelerated beams, an 18 GHz superconducting (SC) ECR ion source has been installed to increase beam currents and to extend the variety of ions, especially for highly charged heavy ions which can be accelerated by RCNP AVF cyclotron. The production development of several ions such as B, O, N, Ne, Ar, Ni, Kr, and Xe has been performed by Yorita et al. [Rev. Sci. Instrum. 79, 02A311(2008); 81, 02A332 (2010)]. Further studies for the beam transport have been done in order to improve the beam current more for injection of cyclotron. The effect of field leakage of AVF main coil is not negligible and additional steering magnet has been installed and then beam transmission has been improved. The emittance monitor has also been developed for the purpose of investigating correlation between emittance of beam from ECR ion sources and injection efficiency. The monitor consists with BPM82 with rotating wire for fast measurement for efficient study.

  1. Electrochemical-mechanical coupled modeling and parameterization of swelling and ionic transport in lithium-ion batteries

    Science.gov (United States)

    Sauerteig, Daniel; Hanselmann, Nina; Arzberger, Arno; Reinshagen, Holger; Ivanov, Svetlozar; Bund, Andreas

    2018-02-01

    The intercalation and aging induced volume changes of lithium-ion battery electrodes lead to significant mechanical pressure or volume changes on cell and module level. As the correlation between electrochemical and mechanical performance of lithium ion batteries at nano and macro scale requires a comprehensive and multidisciplinary approach, physical modeling accounting for chemical and mechanical phenomena during operation is very useful for the battery design. Since the introduced fully-coupled physical model requires proper parameterization, this work also focuses on identifying appropriate mathematical representation of compressibility as well as the ionic transport in the porous electrodes and the separator. The ionic transport is characterized by electrochemical impedance spectroscopy (EIS) using symmetric pouch cells comprising LiNi1/3Mn1/3Co1/3O2 (NMC) cathode, graphite anode and polyethylene separator. The EIS measurements are carried out at various mechanical loads. The observed decrease of the ionic conductivity reveals a significant transport limitation at high pressures. The experimentally obtained data are applied as input to the electrochemical-mechanical model of a prismatic 10 Ah cell. Our computational approach accounts intercalation induced electrode expansion, stress generation caused by mechanical boundaries, compression of the electrodes and the separator, outer expansion of the cell and finally the influence of the ionic transport within the electrolyte.

  2. PHYSIOLOGY OF ION TRANSPORT ACROSS THE TONOPLAST OF HIGHER PLANTS.

    Science.gov (United States)

    Barkla, Bronwyn J.; Pantoja, Omar

    1996-06-01

    The vacuole of plant cells plays an important role in the homeostasis of the cell. It is involved in the regulation of cytoplasmic pH, sequestration of toxic ions and xenobiotics, regulation of cell turgor, storage of amino acids, sugars and CO2 in the form of malate, and possibly as a source for elevating cytoplasmic calcium. All these activities are driven by two primary active transport mechanisms present in the vacuolar membrane (tonoplast). These two mechanisms employ high-energy metabolites to pump protons into the vacuole, establishing a proton electrochemical potential that mediates the transport of a diverse range of solutes. Within the past few years, great advances at the molecular and functional levels have been made on the characterization and identification of these mechanisms. The aim of this review is to summarize these studies in the context of the physiology of the plant cell.

  3. Scalable error correction in distributed ion trap computers

    International Nuclear Information System (INIS)

    Oi, Daniel K. L.; Devitt, Simon J.; Hollenberg, Lloyd C. L.

    2006-01-01

    A major challenge for quantum computation in ion trap systems is scalable integration of error correction and fault tolerance. We analyze a distributed architecture with rapid high-fidelity local control within nodes and entangled links between nodes alleviating long-distance transport. We demonstrate fault-tolerant operator measurements which are used for error correction and nonlocal gates. This scheme is readily applied to linear ion traps which cannot be scaled up beyond a few ions per individual trap but which have access to a probabilistic entanglement mechanism. A proof-of-concept system is presented which is within the reach of current experiment

  4. Light ion driven inertial fusion reactor concepts

    International Nuclear Information System (INIS)

    Cook, D.L.; Sweeney, M.A.; Buttram, M.T.; Prestwich, K.R.; Moses, G.A.; peterson, R.R.; Lovell, E.G.; Englestad, R.L.

    1980-01-01

    The possibility of designing fusion reactor systems using intense beams of light ions has been investigated. concepts for beam production, transport, and focusing on target have been analyzed in light of more conservative target performance estimates. Analyses of the major criteria which govern the design of the beam-target-cavity tried indicate the feasibility of designing power systems at the few hundred megawatt (electric) level. This paper discusses light ion fusion reactor (LIFR) concepts and presents an assessment of the design limitations through quantitative examples

  5. Ischemia - reperfusion induced changes in levels of ion transport proteins in gerbil brain

    International Nuclear Information System (INIS)

    Lehotsky, J.; Racay, P.; Kaplan, P.; Mezesova, V.; Raeymaekers, L.

    1998-01-01

    A quantitative Western blotting was used to asses the levels of ion transport proteins in gerbil brain in control and in animals after ischemic-reperfusion injury (IRI). The gene products of plasma membrane Ca 2+ pump (PMCA) were detected in the hippocampus, cerebral cortex and cerebellum. However, they showed a distinct distribution pattern. Inositol 1,4,5-triphosphate (Ins 3 ) receptor and reticular Ca 2+ pump are the most abundant in cerebellum and hippocampus. The IRI leads to a selective decrease in content of PMCA and InsP 3 receptor I isoforms. The levels of α 3 isoform of Na + pump and reticular proteins: Ca 2+ pump and calreticulin remained constant. InsP 3 receptor and organellar Ca 2+ (SERCA) are the most abundant in cerebellum and hippocampus. Ischemia and reperfusion up to 10 days leads to a signal decrease of PMCA immuno-signal. We suppose that alteration of number of ion transport proteins, can contribute to changes which participate or follow the delayed death of neurons in hippocampus. (authors)

  6. Ion and impurity transport in turbulent, anisotropic magnetic fields

    International Nuclear Information System (INIS)

    Negrea, M; Petrisor, I; Isliker, H; Vogiannou, A; Vlahos, L; Weyssow, B

    2011-01-01

    We investigate ion and impurity transport in turbulent, possibly anisotropic, magnetic fields. The turbulent magnetic field is modeled as a correlated stochastic field, with Gaussian distribution function and prescribed spatial auto-correlation function, superimposed onto a strong background field. The (running) diffusion coefficients of ions are determined in the three-dimensional environment, using two alternative methods, the semi-analytical decorrelation trajectory (DCT) method, and test-particle simulations. In a first step, the results of the test-particle simulations are compared with and used to validate the results obtained from the DCT method. For this purpose, a drift approximation was made in slab geometry, and relatively good qualitative agreement between the DCT method and the test-particle simulations was found. In a second step, the ion species He, Be, Ne and W, all assumed to be fully ionized, are considered under ITER-like conditions, and the scaling of their diffusivities is determined with respect to varying levels of turbulence (varying Kubo number), varying degrees of anisotropy of the turbulent structures and atomic number. In a third step, the test-particle simulations are repeated without drift approximation, directly using the Lorentz force, first in slab geometry, in order to assess the finite Larmor radius effects, and second in toroidal geometry, to account for the geometric effects. It is found that both effects are important, most prominently the effects due to toroidal geometry and the diffusivities are overestimated in slab geometry by an order of magnitude.

  7. Ion and impurity transport in turbulent, anisotropic magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Negrea, M; Petrisor, I [Department of Physics, Association Euratom-MEdC, Romania, University of Craiova, A.I. Cuza str. 13, Craiova (Romania); Isliker, H; Vogiannou, A; Vlahos, L [Section of Astrophysics, Astronomy and Mechanics, Department of Physics, University of Thessaloniki, Association Euratom-Hellenic Republic, 541 24 Thessaloniki (Greece); Weyssow, B [Physique Statistique-Plasmas, Association Euratom-Etat Belge, Universite Libre de Bruxelles, Campus Plaine, Bd. du Triomphe, 1050 Bruxelles (Belgium)

    2011-08-15

    We investigate ion and impurity transport in turbulent, possibly anisotropic, magnetic fields. The turbulent magnetic field is modeled as a correlated stochastic field, with Gaussian distribution function and prescribed spatial auto-correlation function, superimposed onto a strong background field. The (running) diffusion coefficients of ions are determined in the three-dimensional environment, using two alternative methods, the semi-analytical decorrelation trajectory (DCT) method, and test-particle simulations. In a first step, the results of the test-particle simulations are compared with and used to validate the results obtained from the DCT method. For this purpose, a drift approximation was made in slab geometry, and relatively good qualitative agreement between the DCT method and the test-particle simulations was found. In a second step, the ion species He, Be, Ne and W, all assumed to be fully ionized, are considered under ITER-like conditions, and the scaling of their diffusivities is determined with respect to varying levels of turbulence (varying Kubo number), varying degrees of anisotropy of the turbulent structures and atomic number. In a third step, the test-particle simulations are repeated without drift approximation, directly using the Lorentz force, first in slab geometry, in order to assess the finite Larmor radius effects, and second in toroidal geometry, to account for the geometric effects. It is found that both effects are important, most prominently the effects due to toroidal geometry and the diffusivities are overestimated in slab geometry by an order of magnitude.

  8. Ion and impurity transport in turbulent, anisotropic magnetic fields

    Science.gov (United States)

    Negrea, M.; Petrisor, I.; Isliker, H.; Vogiannou, A.; Vlahos, L.; Weyssow, B.

    2011-08-01

    We investigate ion and impurity transport in turbulent, possibly anisotropic, magnetic fields. The turbulent magnetic field is modeled as a correlated stochastic field, with Gaussian distribution function and prescribed spatial auto-correlation function, superimposed onto a strong background field. The (running) diffusion coefficients of ions are determined in the three-dimensional environment, using two alternative methods, the semi-analytical decorrelation trajectory (DCT) method, and test-particle simulations. In a first step, the results of the test-particle simulations are compared with and used to validate the results obtained from the DCT method. For this purpose, a drift approximation was made in slab geometry, and relatively good qualitative agreement between the DCT method and the test-particle simulations was found. In a second step, the ion species He, Be, Ne and W, all assumed to be fully ionized, are considered under ITER-like conditions, and the scaling of their diffusivities is determined with respect to varying levels of turbulence (varying Kubo number), varying degrees of anisotropy of the turbulent structures and atomic number. In a third step, the test-particle simulations are repeated without drift approximation, directly using the Lorentz force, first in slab geometry, in order to assess the finite Larmor radius effects, and second in toroidal geometry, to account for the geometric effects. It is found that both effects are important, most prominently the effects due to toroidal geometry and the diffusivities are overestimated in slab geometry by an order of magnitude.

  9. Copper-transporting P-type ATPases use a unique ion-release pathway

    DEFF Research Database (Denmark)

    Andersson, Magnus; Mattle, Daniel; Sitsel, Oleg

    2014-01-01

    Heavy metals in cells are typically regulated by PIB-type ATPases. The first structure of the class, a Cu(+)-ATPase from Legionella pneumophila (LpCopA), outlined a copper transport pathway across the membrane, which was inferred to be occluded. Here we show by molecular dynamics simulations...... that extracellular water solvated the transmembrane (TM) domain, results indicative of a Cu(+)-release pathway. Furthermore, a new LpCopA crystal structure determined at 2.8-Å resolution, trapped in the preceding E2P state, delineated the same passage, and site-directed-mutagenesis activity assays support...... a functional role for the conduit. The structural similarities between the TM domains of the two conformations suggest that Cu(+)-ATPases couple dephosphorylation and ion extrusion differently than do the well-characterized PII-type ATPases. The ion pathway explains why certain Menkes' and Wilson's disease...

  10. The Effusive-Flow Properties of Target/Vapor-Transport Systems for Radioactive Ion Beam Applications

    CERN Document Server

    Kawai, Yoko; Liu, Yuan

    2005-01-01

    Radioactive atoms produced by the ISOL technique must diffuse from a target, effusively flow to an ion source, be ionized, be extracted, and be accelerated to research energies in a time commensurate with the lifetime of the species of interest. We have developed a fast valve system (closing time ~100 us) that can be used to accurately measure the effusion times of chemically active or inactive species through arbitrary geometry and size vapor transport systems with and without target material in the reservoir. The effusive flow times are characteristic of the system and thus serve as figures of merit for assessing the quality of a given vapor transport system as well as for assessing the permeability properties of a given target design. This article presents effusive flow data for noble gases flowing through a target reservoir and ion source system routinely used to generate radioactive species at the HRIBF with and without disks of 6 times and 10 times compressed Reticulated Vitreous Carbon Foam (RVCF) with...

  11. Alfv?nic Instabilities and Fast Ion Transport in the DIII-D Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Van Zeeland, M; Heidbrink, W; Nazikian, R; Austin, M; Berk, H; Gorelenkov, N; Holcomb, C; Kramer, G; Lohr, J; Luo, Y; Makowski, M; McKee, G; Petty, C; Prater, R; Solomon, W; White, R

    2008-10-14

    Neutral beam injection into reversed magnetic shear DIII-D plasmas produces a variety of Alfvenic activity including Toroidicity and Ellipticity induced Alfven Eigenmodes (TAE/EAE, respectively) and Reversed Shear Alfven Eigenmodes (RSAE) as well as their spatial coupling. These modes are typically studied during the discharge current ramp phase when incomplete current penetration results in a high central safety factor and strong drive due to multiple higher order resonances. During this same time period Fast-Ion D{sub {alpha}} (FIDA) spectroscopy shows that the central fast ion profile is flattened, the degree of which depends on the Alfven eigenmode amplitude. Interestingly, localized electron cyclotron heating (ECH) near the mode location stabilizes RSAE activity and results in significantly improved fast ion confinement relative to discharges with ECH deposition on axis. In these discharges, RSAE activity is suppressed when ECH is deposited near the radius of the shear reversal point and enhanced with deposition near the axis. To simulate the observed neutral beam ion redistribution, NOVA calculations of the 3D eigenmode structures are matched with experimental measurements and used in combination with the ORBIT guiding center following code. For fixed frequency eigenmodes, it is found that ORBIT calculations cannot explain the observed beam ion transport with experimentally measured mode amplitudes. Possible explanations are considered including recent simulation results incorporating eigenmodes with time dependent frequencies.

  12. Earliest Results in the Use of Activated Composite Membranes for the Transport of Silver Ions from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Yucundo Mendoza-Tolentino

    2014-01-01

    Full Text Available This paper presents the results concerning the first use of activated composite membranes (ACMs for the facilitated transport of silver ions containing di-(2-ethylhexyl-dithiophosphoric acid (DTPA as the carrier. DTPA was immobilized by interfacial polymerization in a dense layer that was deposited in a porous layer, which was prepared on a nonwoven fabric support by phase inversion. The influence of fundamental parameters affecting the transport of silver ion as the carrier concentration in the membrane phase and stripping agent variation of the stripping solution have been studied. In the optimal conditions, the amount of silver transported across the ACMs was greater than 50%, whereas if the content of the carrier is modified, more than the 90% of the initial silver is removed from the feed phase.

  13. [Effect of high magnesium ion concentration on the electron transport rate and proton exchange in thylakoid membranes in higher plants].

    Science.gov (United States)

    Ignat'ev, A R; Khorobrykh, S A; Ivanov, B N

    2001-01-01

    The effects of magnesium ion concentration on the rate of electron transport in isolated pea thylakoids were investigated in the pH range from 4.0 up to 8.0. In the absence of magnesium ions in the medium and in the presence of 5 mM MgCl2 in the experiments not only without added artificial acceptors but also with ferricyanide or methylviologen as an acceptor, this rate had a well-expressed maximum at pH 5.0. It was shown that, after depression to minimal values at pH 5.5-6.5, it gradually rose with increasing pH. An increase in magnesium ion concentration up to 20 mM essentially affected the electron transfer rate: it decreased somewhat at pH 4.0-5.0 but increased at higher pH values. At this magnesium ion concentration, the maximum rate was at pH 6.0-6.5 and the minimum, at pH 7.0. Subsequent rise upon increasing pH to 8.0 was expressed more sharply. The influence of high magnesium ion concentration on the rate of electron transport was not observed in the presence of gramicidin D. It was found that without uncoupler, the changes in the electron transfer rate under the influence of magnesium ions correlated to the changes in the first-order rate constant of the proton efflux from thylakoids. It is supposed that the change in the ability of thylakoids to keep protons by the action of magnesium ions is the result of electrostatic interactions of these ions with the charges on the external surface of membranes. A possible role of regulation of the electron transport rate by magnesium ions in vivo is discussed.

  14. The Acute Toxicity of Major Ion Salts to Ceriodaphnia dubia. III. Mathematical models for mixture toxicity

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset concerns the development of models for describing the acute toxicity of major ions to Ceriodaphnia dubia using data from single salt tests and binary...

  15. Simulation of charge generation and transport in semi-conductors under energetic-particle bombardment

    International Nuclear Information System (INIS)

    Martin, R.C.

    1990-01-01

    The passage of energetic ions through semiconductor devices generates excess charge which can produce logic upset, memory change, and device damage. This single event upset (SEU) phenomenon is increasingly important for satellite communications. Experimental and numerical simulation of SEUs is difficult because of the subnanosecond times and large charge densities within the ion track. The objective of this work is twofold: (1) the determination of the track structure and electron-hole pair generation profiles following the passage of an energetic ion; (2) the development and application of a new numerical method for transient charge transport in semiconductor devices. A secondary electron generation and transport model, based on the Monte Carlo method, is developed and coupled to an ion transport code to simulate ion track formation in silicon. A new numerical method is developed for the study of transient charge transport. The numerical method combines an axisymmetric quadratic finite-element formulation for the solution of the potential with particle simulation methods for electron and hole transport. Carrier transport, recombination, and thermal generation of both majority and minority carriers are included. To assess the method, transient one-dimensional solutions for silicon diodes are compared to a fully iterative finite-element method. Simulations of charge collection from ion tracks in three-dimensional axisymmetric devices are presented and compared to previous work. The results of this work for transient current pulses following charged ion passage are in agreement with recent experimental data

  16. Establishing the transport properties of QCD with heavy ion reactions. Final Scientific Report for DE-FG02-07ER41524

    International Nuclear Information System (INIS)

    Teaney, Derek

    2008-01-01

    During the time period from 9/1/07 - 3/1/08 the principle investigator was awarded a federal grant from the Department of Energy (DE-FG02-07ER41524) to establish the transport properties of QCD through heavy ion reactions. A relativistic viscous hydrodynamic computer code was developed in 2+1 dimensions which is suitable for extracting the shear viscosity from available heavy ion data. In addition, the transport coefficients of heavy mesons in strongly coupled N = 4 plasmas were determined using the gauge gravity duality. These transport coefficients are suppressed by 1/N c 2 which stymied previous efforts to determine the kinetics of these mesons.

  17. Role of sodium ion transporters and osmotic adjustments in stress alleviation of Cynodon dactylon under NaCl treatment: a parallel investigation with rice.

    Science.gov (United States)

    Roy, Swarnendu; Chakraborty, Usha

    2018-01-01

    Comparative analyses of the responses to NaCl in Cynodon dactylon and a sensitive crop species like rice could effectively unravel the salt tolerance mechanism in the former. C. dactylon, a wild perennial chloridoid grass having a wide range of ecological distribution is generally adaptable to varying degrees of salinity stress. The role of salt exclusion mechanism present exclusively in the wild grass was one of the major factors contributing to its tolerance. Salt exclusion was found to be induced at 4 days when the plants were treated with a minimum conc. of 200 mM NaCl. The structural peculiarities of the salt exuding glands were elucidated by the SEM and TEM studies, which clearly revealed the presence of a bicellular salt gland actively functioning under NaCl stress to remove the excess amount of Na + ion from the mesophyll tissues. Moreover, the intracellular effect of NaCl on the photosynthetic apparatus was found to be lower in C. dactylon in comparison to rice; at the same time, the vacuolization process increased in the former. Accumulation of osmolytes like proline and glycine betaine also increased significantly in C. dactylon with a concurrent check on the H 2 O 2 levels, electrolyte leakage and membrane lipid peroxidation. This accounted for the proper functioning of the Na + ion transporters in the salt glands and also in the vacuoles for the exudation and loading of excess salts, respectively, to maintain the osmotic balance of the protoplasm. In real-time PCR analyses, CdSOS1 expression was found to increase by 2.5- and 5-fold, respectively, and CdNHX expression increased by 1.5- and 2-fold, respectively, in plants subjected to 100 and 200 mM NaCl treatment for 72 h. Thus, the comparative analyses of the expression pattern of the plasma membrane and tonoplast Na + ion transporters, SOS1 and NHX in both the plants revealed the significant role of these two ion transporters in conferring salinity tolerance in Cynodon.

  18. Effect of salinity on expression of branchial ion transporters in striped bass (Morone saxatilis)

    DEFF Research Database (Denmark)

    Tipsmark, Christian Kølbaek; Madsen, Steffen Søndergaard; Borski, Russell John

    2004-01-01

    The time course of osmoregulatory adjustments and expressional changes of three key ion transporters in the gill were investigated in the striped bass during salinity acclimations. In three experiments, fish were transferred from fresh water (FW) to seawater (SW), from SW to FW, and from 15-ppt b...

  19. Fast-ion transport induced by Alfvén eigenmodes in the ASDEX Upgrade tokamak

    DEFF Research Database (Denmark)

    Garcia-Munoz, M.; Classen, I.G.J.; Geiger, B.

    2011-01-01

    A comprehensive suite of diagnostics has allowed detailed measurements of the Alfvén eigenmode (AE) spatial structure and subsequent fast-ion transport in the ASDEX Upgrade (AUG) tokamak [1]. Reversed shear Alfvén eigenmodes (RSAEs) and toroidal induced Alfvén eigenmodes (TAEs) have been driven u...

  20. Major signal suppression from metal ion clusters in SFC/ESI-MS - Cause and effects.

    Science.gov (United States)

    Haglind, Alfred; Hedeland, Mikael; Arvidsson, Torbjörn; Pettersson, Curt E

    2018-05-01

    The widening application area of SFC-MS with polar analytes and water-containing samples facilitates the use of quick and simple sample preparation techniques such as "dilute and shoot" and protein precipitation. This has also introduced new polar interfering components such as alkali metal ions naturally abundant in e.g. blood plasma and urine, which have shown to be retained using screening conditions in SFC/ESI-TOF-MS and causing areas of major ion suppression. Analytes co-eluting with these clusters will have a decreased signal intensity, which might have a major effect on both quantification and identification. When investigating the composition of the alkali metal clusters using accurate mass and isotopic pattern, it could be concluded that they were previously not described in the literature. Using NaCl and KCl standards and different chromatographic conditions, varying e.g. column and modifier, the clusters proved to be formed from the alkali metal ions in combination with the alcohol modifier and make-up solvent. Their compositions were [(XOCH 3 ) n  + X] + , [(XOH) n  + X] + , [(X 2 CO 3 ) n  + X] + and [(XOOCOCH 3 ) n  + X] + for X = Na + or K + in ESI+. In ESI-, the clusters depended more on modifier, with [(XCl) n  + Cl] - and [(XOCH 3 ) n  + OCH 3 ] - mainly formed in pure methanol and [(XOOCH) n  + OOCH] - when 20 mM NH 4 Fa was added. To prevent the formation of the clusters by avoiding methanol as modifier might be difficult, as this is a widely used modifier providing good solubility when analyzing polar compounds in SFC. A sample preparation with e.g. LLE would remove the alkali ions, however also introducing a time consuming and discriminating step into the method. Since the alkali metal ions were retained and affected by chromatographic adjustments as e.g. mobile phase modifications, a way to avoid them could therefore be chromatographic tuning, when analyzing samples containing them. Copyright © 2018 Elsevier

  1. Transport properties of gaseous ions over a wide energy range, IV

    International Nuclear Information System (INIS)

    Viehland, L.A.; Mason, E.A.

    1995-01-01

    This paper updates three previous papers entitled open-quotes Transport Properties of Gaseous Ions over a Wide Energy Range.close quotes. These papers referred to as Parts I, II, and III, were by H.W.Ellis, P.Y. Pai, E.W. McDaniel, E.A. Mason, and L.A. Viehland, S.L. Lin, M.G. Thackston. Part IV contains compilations of experimental data on ionic mobilities and diffusion coefficients (both longitudinal and transverse) for ions in neutral gases in an externally applied electrostatic field, at various gas temperatures; the data are tabulated as a function of the ionic energy parameter E/N, where E is the electric field strength and N is the number density of the neutral gas. Part IV also contains a locator key to ionic mobilities and diffusion coefficients compiled in Parts I-IV. The coverage of the literature extends into 1994. The criteria for selection of the data are; (1) the measurements must cover a reasonably wide range of E/N; (2) the identity of the ions must be well established; and (3) the accuracy of the data must be good. 26 refs., 6 tabs

  2. A Pulse of Mercury and Major Ions in Snowmelt Runoff from a Small Arctic Alaska Watershed.

    Science.gov (United States)

    Douglas, Thomas A; Sturm, Matthew; Blum, Joel D; Polashenski, Christopher; Stuefer, Svetlana; Hiemstra, Christopher; Steffen, Alexandra; Filhol, Simon; Prevost, Romain

    2017-10-03

    Atmospheric mercury (Hg) is deposited to Polar Regions during springtime atmospheric mercury depletion events (AMDEs) that require halogens and snow or ice surfaces. The fate of this Hg during and following snowmelt is largely unknown. We measured Hg, major ions, and stable water isotopes from the snowpack through the entire spring melt runoff period for two years. Our small (2.5 ha) watershed is near Barrow (now Utqiaġvik), Alaska. We measured discharge, made 10 000 snow depths, and collected over 100 samples of snow and meltwater for chemical analysis in 2008 and 2009 from the watershed snowpack and ephemeral stream channel. Results show an "ionic pulse" of mercury and major ions in runoff during both snowmelt seasons, but major ion and Hg runoff concentrations were roughly 50% higher in 2008 than in 2009. Though total discharge as a percent of total watershed snowpack water equivalent prior to the melt was similar in both years (36% in 2008 melt runoff and 34% in 2009), it is possible that record low precipitation in the summer of 2007 led to the higher major ion and Hg concentrations in 2008 melt runoff. Total dissolved Hg meltwater runoff of 14.3 (± 0.7) mg/ha in 2008 and 8.1 (± 0.4) mg/ha in 2009 is five to seven times higher than that reported from other arctic watersheds. We calculate 78% of snowpack Hg was exported with snowmelt runoff in 2008 and 41% in 2009. Our results suggest AMDE Hg complexed with Cl - or Br - may be less likely to be photochemically reduced and re-emitted to the atmosphere prior to snowmelt, and we estimate that roughly 25% of the Hg in snowmelt is attributable to AMDEs. Projected Arctic warming, with more open sea ice leads providing halogen sources that promote AMDEs, may provide enhanced Hg deposition, reduced Hg emission and, ultimately, an increase in snowpack and snowmelt runoff Hg concentrations.

  3. Transport channel of secondary ion beam of experimental setup for selective laser ionization with gas cell GALS

    Science.gov (United States)

    Gulbekyan, G. G.; Zemlyanoy, S. G.; Bashevoy, V. V.; Ivanenko, I. A.; Kazarinov, N. Yu; Kazacha, V. I.; Osipov, N. F.

    2017-07-01

    GALS is the experimental setup intended for production and research of isobaric and isotopically pure heavy neutron-rich nuclei. The beam line consists of two parts. The initial part is used for transport of the primary 136Xe ion beam with the energy of 4.5-9.0 MeV/amu from the FLNR cyclotron U-400M to the Pb target for production of the studying ion beams. These beams have the following design parameters: the charge Z = +1, the mass A = 180-270 and the kinetic energy W = 40 keV. The second part placed after the target consists of the SPIG (QPIG) system, the accelerating gap, the electrostatic Einzel lens, 90-degree spectrometric magnet (calculated value of the mass-resolution is equal to 1400) and the beam line for the transportation of the ions from the magnet focal plane to a particle detector. The results of simulation of the particle dynamics and the basic parameters of all elements of the beam line are presented.

  4. Transport of oxygen ions in Er doped La2Mo2O9 oxide ion conductors: Correlation with microscopic length scales

    Science.gov (United States)

    Paul, T.; Ghosh, A.

    2018-01-01

    We report oxygen ion transport in La2-xErxMo2O9 (0.05 ≤ x ≤ 0.25) oxide ion conductors. We have measured conductivity and dielectric spectra at different temperatures in a wide frequency range. The mean square displacement and spatial extent of non-random sub-diffusive regions are estimated from the conductivity spectra and dielectric spectra, respectively, using linear response theory. The composition dependence of the conductivity is observed to be similar to that of the spatial extent of non-random sub-diffusive regions. The behavior of the composition dependence of the mean square displacement of oxygen ions is opposite to that of the conductivity. The attempt frequency estimated from the analysis of the electric modulus agrees well with that obtained from the Raman spectra analysis. The full Rietveld refinement of X-ray diffraction data of the samples is performed to estimate the distance between different oxygen lattice sites. The results obtained from such analysis confirm the ion hopping within the spatial extent of non-random sub-diffusive regions.

  5. Turbulent transport stabilization by ICRH minority fast ions in low rotating JET ILW L-mode plasmas

    Science.gov (United States)

    Bonanomi, N.; Mantica, P.; Di Siena, A.; Delabie, E.; Giroud, C.; Johnson, T.; Lerche, E.; Menmuir, S.; Tsalas, M.; Van Eester, D.; Contributors, JET

    2018-05-01

    The first experimental demonstration that fast ion induced stabilization of thermal turbulent transport takes place also at low values of plasma toroidal rotation has been obtained in JET ILW (ITER-like wall) L-mode plasmas with high (3He)-D ICRH (ion cyclotron resonance heating) power. A reduction of the gyro-Bohm normalized ion heat flux and higher values of the normalized ion temperature gradient have been observed at high ICRH power and low NBI (neutral beam injection) power and plasma rotation. Gyrokinetic simulations indicate that ITG (ion temperature gradient) turbulence stabilization induced by the presence of high-energetic 3He ions is the key mechanism in order to explain the experimental observations. Two main mechanisms have been identified to be responsible for the turbulence stabilization: a linear electrostatic wave-fast particle resonance mechanism and a nonlinear electromagnetic mechanism. The dependence of the stabilization on the 3He distribution function has also been studied.

  6. Experimental aspects of ion acceleration and transport in the Earth's magnetosphere

    International Nuclear Information System (INIS)

    Young, D.T.

    1985-01-01

    Major particle population within the Earth's magnetosphere have been studied via ion acceleration processes. Experimental advances over the past ten to fifteen years have demonstrated the complexity of the processes. A review is given here for areas where composition experiments have expanded perception on magnetospheric phenomena. 64 refs., 6 figs., 1 tab

  7. Impurity ion transport studies on the PLT tokamak during neutral-beam injection

    International Nuclear Information System (INIS)

    Suckewer, S.; Cavallo, A.; Cohen, S.

    1984-01-01

    Radial transport of medium- and high-Z ions during co- and counter-neutral-beam heating in the PLT tokamak is studied, using molybdenum and scandium ions as tracer elements. The time evolution of the radial profiles of several ionization stages of both elements, injected by laser blowoff during the neutral-beam heating, is measured under three significantly different beam-plasma combinations. No noticeable differences in the radial profiles attributable to the beam direction are observed. However, a given injected amount resulted in considerably larger interior concentrations of the tracer element in the counter-beam heating cases, suggesting larger penetration of the plasma periphery. Computer simulation with the MIST code suggests a net inward drift of the order 10 3 cm.s -1 superposed to a diffusion coefficient of the order 10 4 cm 2 .s -1 for both scandium and molybdenum ions. Injection of larger amounts of the tracer element, sufficient to cause measurable central electron temperature changes, resulted in dramatic changes in ion-state distributions, making some appear peaked in the centre while others disappeared. This effect could be produced with both co- and counter-beam heating, but with lesser amounts in the latter case. It is interpreted as rearrangement of the ionization balance, rather than any preferential accumulation of the injected element. (author)

  8. Fast-ion transport during repetitive burst phenomena of toroidal Alfven eigenmodes in the Large Helical Device

    International Nuclear Information System (INIS)

    Nishiura, M.; Isobe, M.; Yamamoto, S.

    2008-10-01

    Alfven instabilities induced fast-ion losses have been directly observed for the first time by a newly developed scintillator lost ion probe (SLIP) in the Large Helical Device (LHD). The SLIP can measure the pitch angle and gyro radius of escaped fast ions toward loss region. Neutral beam driven Alfven Eigenmodes (AEs) are excited under the reactor relevant conditions: the ratio of fast ion (beam) speed υ b and Alfven speed υ A is more than 0.3 - 4.0. The beta value for fast ions is considered roughly to be ∼10%. Non-linear phenomena related to Alfven instabilities are observed under such conditions. During repetitive Toroidal Alfven Eigenmode (TAE) bursts, synchronized fast ion losses are observed by SLIP. From the orbit calculation the measured fast ion with pitch angle of 130 degrees and beam energy of 150 keV surely pass through the locations of TAE gaps. The orbit analysis found that the observed fast ions interact strongly with the excited TAEs. This result becomes the first experimental evidence of radial transport of fast ions predicted theoretically during TAE activities. In addition, from the correlation between stored energy degradation and fast-ion loss rate, it is found that fast-ion losses induced by TAE activities with low toroidal mode numbers categorize two phenomena without and with fast- ion loss enhancements, which indicate the fast-ion redistribution and loss. (author)

  9. Investigation of Generation, Acceleration, Transport and Final Focusing of High-Intensity Heavy Ion Beams from Sources to Targets

    International Nuclear Information System (INIS)

    Chiping Chen

    2006-01-01

    Under the auspices of the research grant, the Intense Beam Theoretical Research Group at Massachusetts Institute of Technology's Plasma Science and Fusion Center made significant contributions in a number of important areas in the HIF and HEDP research, including: (a) Derivation of rms envelope equations and study of rms envelope dynamics for high-intensity heavy ion beams in a small-aperture AG focusing transport systems; (b) Identification of a new mechanism for chaotic particle motion, halo formation, and beam loss in high-intensity heavy ion beams in a small-aperture AG focusing systems; (c) Development of elliptic beam theory; and (d) Study of Physics Issues in the Neutralization Transport Experiment (NTX)

  10. Investigation of Generation, Acceleration, Transport and Final Focusing of High-Intensity Heavy Ion Beams from Sources to Targets

    Energy Technology Data Exchange (ETDEWEB)

    Chiping Chen

    2006-10-26

    Under the auspices of the research grant, the Intense Beam Theoretical Research Goup at Massachusetts Institute of Technology's Plasma Science and Fusion Center made significant contributions in a number of important areas in the HIF and HEDP research, including: (a) Derivation of rms envelope equations and study of rms envelope dynamics for high-intensity heavy ion beams in a small-aperture AG focusing transport systems; (b) Identification of a new mechanism for chaotic particle motion, halo formation, and beam loss in high-intensity heavy ion beams in a small-aperture AG focusing systems; Development of elliptic beam theory; (d) Study of Physics Issues in the Neutralization Transport Experiment (NTX).

  11. Deconstructing the Effects of Flow on DOC, Nitrate, and Major Ion Interactions Using a High-Frequency Aquatic Sensor Network

    Science.gov (United States)

    Koenig, L. E.; Shattuck, M. D.; Snyder, L. E.; Potter, J. D.; McDowell, W. H.

    2017-12-01

    Streams provide a physical linkage between land and downstream river networks, delivering solutes derived from multiple catchment sources. We analyzed high-frequency time series of stream solutes to characterize the timing and magnitude of major ion, nutrient, and organic matter transport over event, seasonal, and annual timescales as well as to assess whether nitrate (NO3-) and dissolved organic carbon (DOC) transport are coupled in catchments, which would be expected if they are subject to similar biogeochemical controls throughout the watershed. Our data set includes in situ observations of NO3-, fluorescent dissolved organic matter (DOC proxy), and specific conductance spanning 2-4 years in 10 streams and rivers across New Hampshire, including observations of nearly 700 individual hydrologic events. We found a positive response of NO3- and DOC to flow in forested streams, but watershed development led to a negative relationship between NO3- and discharge, and thus a decoupling of the overall NO3- and DOC responses to flow. On event and seasonal timescales, NO3- and DOC consistently displayed different behaviors. For example, in several streams, FDOM yield was greatest during summer storms while NO3- yield was greatest during winter storms. Most streams had generalizable storm NO3- and DOC responses, but differences in the timing of NO3- and DOC transport suggest different catchment sources. Further, certain events, including rain-on-snow and summer storms following dry antecedent conditions, yielded disproportionate NO3- responses. High-frequency data allow for increased understanding of the processes controlling solute variability and will help reveal their responses to changing climatic regimes.

  12. Transport properties of gaseous ions over a wide energy range. Part III

    International Nuclear Information System (INIS)

    Ellis, H.W.; Thackston, M.G.; McDaniel, E.W.; Mason, E.A.

    1984-01-01

    This paper updates and extends in scope our two previous papers entitled ''Transport Properties of Gaseous Ions over a Wide Energy Range.'' The references to the earlier publications (referred to as ''Part I'' and ''Part II'') are I, H. W. Ellis, R. Y. Pai, E. W. McDonald, E. A. Mason, and L. A. Viehland, ATOMIC DATA AND NUCLEAR DATA TABLES 17, 177--210 (19876); and II, H. W. Ellis, E. W. McDaniel, D. L. Albritton, L. A. Veihland, S. L. Lin, and E. A. Mason, ATOMIC DATA AND NUCLEAR DATA TABLES 22, 179--217 (1978). Parts I and II contained compilations of experimental data on ionic mobilities and diffusion coefficients (both longitudinal and transverse) for ions in neutral gase (almost exclusively at room temperature) in an externally applied electric field

  13. Water chemistry in Kuji river. Its spatial and seasonal variations in major ions and organic substances

    International Nuclear Information System (INIS)

    Niina, Toshiaki; Matsunaga, Takeshi; Amano, Hikaru

    1996-02-01

    As a basic research with a aim to clarify the migration behavior of radionuclides in rivers, the characteristics of dissolved ions and organic substances in river water, which characteristics may affect the behavior, was investigated. The investigation was carried out for the Kuji river in the northern Kanto district (Japan) comprising four sampling campaigns in 1994 for 10 locations from the upstream to the downstream. Concentrations of major ions, iron and manganese species and organic substances were analyzed in laboratory. Values of temperature of the water, pH, conductivity, dissolved oxygen were measured in the field. This investigation was conducted mainly under low water flow conditions of the river, while a limited number of campaigns were under high flow conditions due to precipitation events. The concentrations of major inorganic ions increased steadily toward the down-stream, resulting in approximately two times increase for the traveling distance of 100 km. They showed a seasonal variation that they were highest in the spring and lowest in the autumn when there were most concentrated precipitation events in a year. The constituents were mainly Na + , Ca 2+ , SO 4 2- and HCO 3 - , and were similar for every sampling locations and seasons. Concentrations of dissolved organic substances (carbon compounds) were lowest in the upstream and increased about twice in the downstream as well as major inorganic ions. Their level was 1-3 mg/l, which can be ranked as relatively lower in general values for fresh water environments. They were highest in the spring (average over the locations: 2.2 mg/l) and lowest in the autumn (1.3 mg/l) and also in the winter (1.3 mg/l). These results will be useful as a basic understanding of spatial and seasonal variations of river water chemistry, especially related to the organic substances which can bind with radionuclides to make a mobile complex. (author)

  14. Control of alpha particle transport by spatially inhomogeneous ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Chang, C.S.; Imre, K.; Weitzner, H.; Colestock, P.

    1990-02-01

    Control of the radial alpha particle transport by using Ion Cyclotron Range of Frequency waves is investigated in a large-aspect-ratio tokamak geometry. It is shown that spatially inhomogeneous ICRF-wave energy with properly selected frequencies and wave numbers can induce fast convective transport of alpha particles at the speed of order υ alpha ∼ (P RF /n α ε 0 ) ρ p , where P RF is the ICRF-wave power density, n α is the alpha density, ε 0 is the alpha birth energy, and ρ p is the poloidal gyroradius of alpha particles at the birth energy. Application to ITER plasmas is studied and possible antenna designs to control alpha particle flux are discussed. 8 refs., 3 figs

  15. Nernst-Planck modeling of multicomponent ion transport in a Nafion membrane at high current density

    NARCIS (Netherlands)

    Moshtari Khah, S.; Oppers, N.A.W.; de Groot, M.T.; Keurentjes, J.T.F.; Schouten, J.C.; van der Schaaf, J.

    A mathematical model of multicomponent ion transport through a cation-exchange membrane is developed based on the Nernst–Planck equation. A correlation for the non-linear potential gradient is derived from current density relation with fluxes. The boundary conditions are determined with the Donnan

  16. Space Charge Compensation in the Linac4 Low Energy Beam Transport Line with Negative Hydrogen Ions

    CERN Document Server

    Valerio-Lizarraga, C; Leon-Monzon, I; Lettry, J; Midttun, O; Scrivens, R

    2014-01-01

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Tranport (LEBT) using the package IBSimu1, which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H- beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  17. Expression of biomineralization-related ion transport genes in Emiliania huxleyi.

    Science.gov (United States)

    Mackinder, Luke; Wheeler, Glen; Schroeder, Declan; von Dassow, Peter; Riebesell, Ulf; Brownlee, Colin

    2011-12-01

    Biomineralization in the marine phytoplankton Emiliania huxleyi is a stringently controlled intracellular process. The molecular basis of coccolith production is still relatively unknown although its importance in global biogeochemical cycles and varying sensitivity to increased pCO₂ levels has been well documented. This study looks into the role of several candidate Ca²⁺, H⁺ and inorganic carbon transport genes in E. huxleyi, using quantitative reverse transcriptase PCR. Differential gene expression analysis was investigated in two isogenic pairs of calcifying and non-calcifying strains of E. huxleyi and cultures grown at various Ca²⁺ concentrations to alter calcite production. We show that calcification correlated to the consistent upregulation of a putative HCO₃⁻ transporter belonging to the solute carrier 4 (SLC4) family, a Ca²⁺/H⁺ exchanger belonging to the CAX family of exchangers and a vacuolar H⁺-ATPase. We also show that the coccolith-associated protein, GPA is downregulated in calcifying cells. The data provide strong evidence that these genes play key roles in E. huxleyi biomineralization. Based on the gene expression data and the current literature a working model for biomineralization-related ion transport in coccolithophores is presented. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  18. Sawtooth-free Ohmic discharges in ASDEX and the aspects of neoclassical ion transport

    International Nuclear Information System (INIS)

    Stroth, U.; Fussmann, G.; Krieger, K.; Mertens, V.; Wagner, F.; Bessenrodt-Weberpals, M.; Buechse, R.; Giannone, L.; Herrmann, H.; Simmet, E.; Steuer, K.H.

    1991-05-01

    Sawtooth-free Ohmic discharges can serve as a model case for a quiescent Tokamak plasma. We report on the properties and the global parameters of these discharges observed in ASDEX and make comments on the mechanism which seems to be responsible for the stabilization of the sawtooth instability. Stationary Ohmic discharge were used to investigate particle, impurity and energy transport in the absence of the sawtooth instability. Particular emphasis has been devoted to a comparison with the predictions of neoclassical theories. We find that the ion energy transport is on the level predicted by neoclassical theory and can explain particle and impurity transport with neoclassical inward drift velocities and diffusion coefficients with the same small anomalous contribution. In the central region of the plasma, where the power flux is low, very small values were found for the electron heat conductivity. (orig.)

  19. The theory and simulation of relativistic electron beam transport in the ion-focused regime

    International Nuclear Information System (INIS)

    Swanekamp, S.B.; Holloway, J.P.; Kammash, T.; Gilgenbach, R.M.

    1992-01-01

    Several recent experiments involving relativistic electron beam (REB) transport in plasma channels show two density regimes for efficient transport; a low-density regime known as the ion-focused regime (IFR) and a high-pressure regime. The results obtained in this paper use three separate models to explain the dependency of REB transport efficiency on the plasma density in the IFR. Conditions for efficient beam transport are determined by examining equilibrium solutions of the Vlasov--Maxwell equations under conditions relevant to IFR transport. The dynamic force balance required for efficient IFR transport is studied using the particle-in-cell (PIC) method. These simulations provide new insight into the transient beam front physics as well as the dynamic approach to IFR equilibrium. Nonlinear solutions to the beam envelope are constructed to explain oscillations in the beam envelope observed in the PIC simulations but not contained in the Vlasov equilibrium analysis. A test particle analysis is also developed as a method to visualize equilibrium solutions of the Vlasov equation. This not only provides further insight into the transport mechanism but also illustrates the connections between the three theories used to describe IFR transport. Separately these models provide valuable information about transverse beam confinement; together they provide a clear physical understanding of REB transport in the IFR

  20. Hierarchically porous carbon with high-speed ion transport channels for high performance supercapacitors

    Science.gov (United States)

    Lu, Haoyuan; Li, Qingwei; Guo, Jianhui; Song, Aixin; Gong, Chunhong; Zhang, Jiwei; Zhang, Jingwei

    2018-01-01

    Hierarchically porous carbons (HPC) are considered as promising electrode materials for supercapacitors, due to their outstanding charge/discharge cycling stabilities and high power densities. However, HPC possess a relatively low ion diffusion rate inside the materials, which challenges their application for high performance supercapacitor. Thus tunnel-shaped carbon pores with a size of tens of nanometers were constructed by inducing the self-assembly of lithocholic acid with ammonium chloride, thereby providing high-speed channels for internal ion diffusion. The as-formed one-dimensional pores are beneficial to the activation process by KOH, providing a large specific surface area, and then facilitate rapid transport of electrolyte ions from macropores to the microporous surfaces. Therefore, the HPC achieve an outstanding gravimetric capacitance of 284 F g-1 at a current density of 0.1 A g-1 and a remarkable capacity retention of 64.8% when the current density increases by 1000 times to 100 A g-1.

  1. Power dependence of ion thermal diffusivity at the internal transport barrier in JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Yoshiteru; Suzuki, Takahiro; Ide, Shunsuke [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    2002-09-01

    The formation properties of an internal transport barrier (ITB) were investigated in a weak positive magnetic shear plasma by changing the neutral beam heating power. The ion thermal diffusivity in the core region shows L-mode state, weak ITB, and strong ITB, depending upon the heating power. Two features of ITB formation were experimentally confirmed. Weak ITB was formed in spite of the absence of an apparent transition in an ion temperature profile. On the other hand, strong ITB appeared after an apparent transition from the weak ITB. In addition, the ion thermal diffusivity at the ITB is correlated to the radial electric field shear. In the case of the weak ITB, ion thermal diffusivity decreased gradually with increases in the radial electric field shear. There exists a threshold in the radial electric field shear, which allows for a change in state from that of weak to strong ITBs. (author)

  2. Membrane potential and ion transport in lung epithelial type II cells

    International Nuclear Information System (INIS)

    Gallo, R.L.

    1986-01-01

    The alveolar type II pneumocyte is critically important to the function and maintenance of pulmonary epithelium. To investigate the nature of the response of type II cells to membrane injury, and describe a possible mechanism by which these cells regulate surfactant secretion, the membrane potential of isolated rabbit type II cells was characterized. This evaluation was accomplished by measurements of the accumulation of the membrane potential probes: [ 3 H]triphenylmethylphosphonium ([ 3 H]TPMP + ), rubidium 86, and the fluorescent dye DiOC 5 . A compartmental analysis of probe uptake into mitochondrial, cytoplasmic, and non-membrane potential dependent stores was made through the use of selective membrane depolarizations with carbonycyanide M-chlorophenylhydrazone (CCCP), and lysophosphatidylcholine (LPC). These techniques and population analysis with flow cytometry, permitted the accurate evaluation of type II cell membrane potential under control conditions and under conditions which stimulated cell activity. Further analysis of ion transport by cells exposed to radiation or adrenergic stimulation revealed a common increase in Na + /K + ATPase activity, and an increase in sodium influx across the plasma membrane. This sodium influx was found to be a critical step in the initiation of surfactant secretion. It is concluded that radiation exposure as well as other pulmonary toxicants can directly affect the membrane potential and ionic regulation of type II cells. Ion transport, particularly of sodium, plays an important role in the regulation of type II cell function

  3. Chamber transport

    International Nuclear Information System (INIS)

    Olson, Craig L.

    2001-01-01

    Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system

  4. Transport through dissipative trapped electron mode and toroidal ion temperature gradient mode in TEXTOR

    International Nuclear Information System (INIS)

    Rogister, A.; Hasselberg, G.; Waelbroeck, F.; Weiland, J.

    1987-12-01

    A self-consistent transport code is used to evaluate how plasma confinement in tokamaks is influenced by the microturbulent fields which are excited by the dissipative trapped electron (DTE) instability. As shown previously, the saturation theory on which the code is based has been developed from first principles. The toroidal coupling resulting from the ion magnetic drifts is neglected; arguments are presented to justify this approximation. The numerical results reproduce well the neo-Alcator scaling law observed experimentally - e.g. in TEXTOR - in non detached ohmic discharges, the confinement degradation which results when auxiliary heating is applied, as well as a large number of other experimental observations. We also assess the possible impact of the toroidal ion temperature gradient mode on energy confinement by estimating the ion thermal flux with the help of the mixing length approximation. (orig./GG)

  5. Effect of acute hyperglycemia on erythrocyte membrane ion transport in offspring of hypertensive parents

    Czech Academy of Sciences Publication Activity Database

    Suchánková, G.; Vlasáková, Z.; Zicha, Josef; Vokurková, Martina; Dobešová, Zdenka; Pelikánová, T.

    2003-01-01

    Roč. 21, č. 7 (2003), s. 1325-1330 ISSN 0263-6352 R&D Projects: GA ČR GA305/00/1638; GA MZd NB6682 Institutional research plan: CEZ:AV0Z5011922 Keywords : ion transport * hypertension * insulin resistance Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 3.572, year: 2003

  6. Simulation of a relativistic heavy ions beam transport in the matter: contribution of the fragmentation process and biological implications; Simulation du transport d`un faisceau d`ions lourds relativistes dans la matiere: contribution du processus de fragmentation et implication sur le plan biologique

    Energy Technology Data Exchange (ETDEWEB)

    Ibnouzahir, M

    1995-03-01

    The study of relativistic heavy ion collisions permit an approach of the properties of dense and not hadronic matter, and an analysis of the reaction mechanisms. Such studies are also interesting on the biological point of view, since there exist now well defined projects concerning the radiotherapy with high LET particles as neutrons, protons, heavy ions. It is thus necessary to have a good understanding of the processes which occur in the propagation of a relativistic heavy ion beam (E{>=} 100 A.MeV) in matter. We have elaborated a three dimensional transport code, using a Monte Carlo method, in order to describe the propagation of Ne and Ar ions in water. Violent nuclear collisions giving fragmentation process have been taken into account by use of the FREESCO program. We have tested the validity of our transport model and we show an important change of the energy deposition at the vicinity of the Bragg peak; such a distortion, due mainly to fragmentation reactions, is of a great interest for biological applications. (author).

  7. Numerical simulations of self-pinched transport of intense ion beams in low-pressure gases

    International Nuclear Information System (INIS)

    Rose, D.V.; Ottinger, P.F.; Welch, D.R.; Oliver, B.V.; Olson, C.L.

    1999-01-01

    The self-pinched transport of intense ion beams in low-pressure background gases is studied using numerical simulations and theoretical analysis. The simulations are carried out in a parameter regime that is similar to proton beam experiments being fielded on the Gamble II pulsed power generator [J. D. Shipman, Jr., IEEE Trans. Nucl. Sci. NS-18, 243 (1971)] at the Naval Research Laboratory. Simulation parameter variations provide information on scaling with background gas species, gas pressure, beam current, beam energy, injection angles, and boundaries. The simulation results compare well with simple analytic scaling arguments for the gas pressure at which the effective net current should peak and with estimates for the required confinement current. The analysis indicates that the self-pinched transport of intense proton beams produced on Gamble II (1.5 MeV, 100 kA, 3 cm radius) is expected to occur at gas pressures between 30 and 80 mTorr of He or between 3 and 10 mTorr of Ar. The significance of these results to ion-driven inertial confinement fusion is discussed. copyright 1999 American Institute of Physics

  8. Numerical simulation of advective-dispersive multisolute transport with sorption, ion exchange and equilibrium chemistry

    Science.gov (United States)

    Lewis, F.M.; Voss, C.I.; Rubin, Jacob

    1986-01-01

    A model was developed that can simulate the effect of certain chemical and sorption reactions simultaneously among solutes involved in advective-dispersive transport through porous media. The model is based on a methodology that utilizes physical-chemical relationships in the development of the basic solute mass-balance equations; however, the form of these equations allows their solution to be obtained by methods that do not depend on the chemical processes. The chemical environment is governed by the condition of local chemical equilibrium, and may be defined either by the linear sorption of a single species and two soluble complexation reactions which also involve that species, or binary ion exchange and one complexation reaction involving a common ion. Partial differential equations that describe solute mass balance entirely in the liquid phase are developed for each tenad (a chemical entity whose total mass is independent of the reaction process) in terms of their total dissolved concentration. These equations are solved numerically in two dimensions through the modification of an existing groundwater flow/transport computer code. (Author 's abstract)

  9. Block Copolymer Electrolytes: Thermodynamics, Ion Transport, and Use in Solid- State Lithium/Sulfur Cells

    Science.gov (United States)

    Teran, Alexander Andrew

    Nanostructured block copolymer electrolytes containing an ion-conducting block and a modulus-strengthening block are of interest for applications in solid-state lithium metal batteries. These materials can self-assemble into well-defined microstructures, creating conducting channels that facilitate ion transport. The overall objective of this dissertation is to gain a better understanding of the behavior of salt-containing block copolymers, and evaluate their potential for use in solid-state lithium/sulfur batteries. Anionically synthesized polystyrene-b-poly(ethylene oxide) (SEO) copolymers doped with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt were used as a model system. This thesis investigates the model system on several levels: from fundamental thermodynamic studies to bulk characterization and finally device assembly and testing. First, the thermodynamics of neat and salt-containing block copolymers was studied. The addition of salt to these materials is necessary to make them conductive, however even small amounts of salt can have significant effects on their phase behavior, and consequently their iontransport and mechanical properties. As a result, the effect of salt addition on block copolymer thermodynamics has been the subject of significant interest over the last decade. A comprehensive study of the thermodynamics of block copolymer/salt mixtures over a wide range of molecular weights, compositions, salt concentrations and temperatures was conducted. Next, the effect of molecular weight on ion transport in both homopolymer and copolymer electrolytes were studied over a wide range of chain lengths. Homopolymer electrolytes show an inverse relationship between conductivity and chain length, with a plateau in the infinite molecular weight limit. This is due to the presence of two mechanisms of ion conduction in homopolymers; the first mechanism is a result of the segmental motion of the chains surrounding the salt ions, 2 creating a liquid

  10. K+ channel openers restore verapamil-inhibited lung fluid resolution and transepithelial ion transport

    Directory of Open Access Journals (Sweden)

    Su Xue-Feng

    2010-05-01

    Full Text Available Abstract Background Lung epithelial Na+ channels (ENaC are regulated by cell Ca2+ signal, which may contribute to calcium antagonist-induced noncardiogenic lung edema. Although K+ channel modulators regulate ENaC activity in normal lungs, the therapeutical relevance and the underlying mechanisms have not been completely explored. We hypothesized that K+ channel openers may restore calcium channel blocker-inhibited alveolar fluid clearance (AFC by up-regulating both apical and basolateral ion transport. Methods Verapamil-induced depression of heterologously expressed human αβγ ENaC in Xenopus oocytes, apical and basolateral ion transport in monolayers of human lung epithelial cells (H441, and in vivo alveolar fluid clearance were measured, respectively, using the two-electrode voltage clamp, Ussing chamber, and BSA protein assays. Ca2+ signal in H441 cells was analyzed using Fluo 4AM. Results The rate of in vivo AFC was reduced significantly (40.6 ± 6.3% of control, P Ca3.1 (1-EBIO and KATP (minoxidil channel openers significantly recovered AFC. In addition to short-circuit current (Isc in intact H441 monolayers, both apical and basolateral Isc levels were reduced by verapamil in permeabilized monolayers. Moreover, verapamil significantly altered Ca2+ signal evoked by ionomycin in H441 cells. Depletion of cytosolic Ca2+ in αβγ ENaC-expressing oocytes completely abolished verapamil-induced inhibition. Intriguingly, KV (pyrithione-Na, K Ca3.1 (1-EBIO, and KATP (minoxidil channel openers almost completely restored the verapamil-induced decrease in Isc levels by diversely up-regulating apical and basolateral Na+ and K+ transport pathways. Conclusions Our observations demonstrate that K+ channel openers are capable of rescuing reduced vectorial Na+ transport across lung epithelial cells with impaired Ca2+ signal.

  11. Energy transport requirements for tokamak reactors in the second ballooning stability regime

    International Nuclear Information System (INIS)

    Potok, R.E.; Bromberg, L.; Cohn, D.R.

    1986-01-01

    The authors present an analysis of ignition confinement constraints on a tokamak reactor operating in the second regime of ballooning stability. This regime is characterized by flat plasma pressure profiles, with a sharp pressure gradient near a conducting first wall at the plasma edge. The energy confinement time is determined by transport processes across the pressure gradient region. The authors have found that the required transport needed for ignition in the edge region is very close to the value predicted by neoclassical ion conductivity scaling. Only by carefully tailoring the conductivity scaling across the flux coordinate were the authors able to match both the kink stability and ignition requirements. With optimistic assumptions, R/sub o/ ≅ 7 m appears to be the minimum major radius for an economical tokamak reactor in the second ballooning stability regime. This paper presents a base design case at R/sub o/ = 7 m, and shows how the reactor design varies with changes in major radius, ion transport scaling, and electron transport scaling

  12. Reaching for highest ion beam intensities through laser ion acceleration and beam compression

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Dennis; Brabetz, Christian; Blazevic, Abel; Bagnoud, Vincent; Weih, Simon [GSI Helmholtzzentrum fuer Schwerionenforschung (Germany); Jahn, Diana; Ding, Johannes; Roth, Markus [TU Darmstadt (Germany); Kroll, Florian; Schramm, Ulrich; Cowan, Tom [Helmholtzzentrum Dresden Rossendorf (Germany); Collaboration: LIGHT-Collaboration

    2016-07-01

    Laser ion acceleration provides access to ion sources with unique properties. To use these capabilities the LIGHT collaboration (Laser Ion Generation Handling and Transport) was founded. The aim of this collaboration is the beam transport and manipulation of laser accelerated ions with conventional accelerator structures. Therefor a dedicated beam line has been build up at GSI Helmholtzzentrum fuer Schwerionenforschung. With this beam line the manipulation of the transversal and also the longitudinal beam parameters has been achieved. It has been shown that laser generated ion beams can be transported over more than 6 meters and pulses shorter than 300 ps can be generated at this distance. This Talk will give an overview over the recent developments and plans of the LIGHT collaboration.

  13. Recent progress in understanding of the ion composition in the magnetosphere and some major question mark

    International Nuclear Information System (INIS)

    Hultqvist, B.

    1981-06-01

    The observations of the energetic ion composition in the magnetosphere are reviewed with the emphasis on the recent measurements by means of GEOS-1 and -2, ISEE-1 and 2, PROGNOZ-7 and SCATHA. The observations are compared with the predictions of the open magnetosphere model. One of the major conclusions is that there are processes in the magnetosphere which play a much larger part than the model, as hitherto presented, predicts. Direct ejection of ionospheric ions, in combination with acceleration, along closed as well as open field lines may even be the dominating source process for the ring current/inner plasma sheet in magnetic storms. In very disturbed conditions this ejection mechanism must work over most of the hemispheres poleward of say 50degrees. Circulation of the ionospheric ions through the tail of the magnetosphere is not likely to be of primary importance for the energization of these ions in very disturbed conditions. (author)

  14. Simulation of a relativistic heavy ions beam transport in the matter: contribution of the fragmentation process and biological implications

    International Nuclear Information System (INIS)

    Ibnouzahir, M.

    1995-03-01

    The study of relativistic heavy ion collisions permit an approach of the properties of dense and not hadronic matter, and an analysis of the reaction mechanisms. Such studies are also interesting on the biological point of view, since there exist now well defined projects concerning the radiotherapy with high LET particles as neutrons, protons, heavy ions. It is thus necessary to have a good understanding of the processes which occur in the propagation of a relativistic heavy ion beam (E≥ 100 A.MeV) in matter. We have elaborated a three dimensional transport code, using a Monte Carlo method, in order to describe the propagation of Ne and Ar ions in water. Violent nuclear collisions giving fragmentation process have been taken into account by use of the FREESCO program. We have tested the validity of our transport model and we show an important change of the energy deposition at the vicinity of the Bragg peak; such a distortion, due mainly to fragmentation reactions, is of a great interest for biological applications. (author)

  15. Electron and ion transport equations in computational weakly-ionized plasmadynamics

    International Nuclear Information System (INIS)

    Parent, Bernard; Macheret, Sergey O.; Shneider, Mikhail N.

    2014-01-01

    A new set of ion and electron transport equations is proposed to simulate steady or unsteady quasi-neutral or non-neutral multicomponent weakly-ionized plasmas through the drift–diffusion approximation. The proposed set of equations is advantaged over the conventional one by being considerably less stiff in quasi-neutral regions because it can be integrated in conjunction with a potential equation based on Ohm's law rather than Gauss's law. The present approach is advantaged over previous attempts at recasting the system by being applicable to plasmas with several types of positive ions and negative ions and by not requiring changes to the boundary conditions. Several test cases of plasmas enclosed by dielectrics and of glow discharges between electrodes show that the proposed equations yield the same solution as the standard equations but require 10 to 100 times fewer iterations to reach convergence whenever a quasi-neutral region forms. Further, several grid convergence studies indicate that the present approach exhibits a higher resolution (and hence requires fewer nodes to reach a given level of accuracy) when ambipolar diffusion is present. Because the proposed equations are not intrinsically linked to specific discretization or integration schemes and exhibit substantial advantages with no apparent disadvantage, they are generally recommended as a substitute to the fluid models in which the electric field is obtained from Gauss's law as long as the plasma remains weakly-ionized and unmagnetized

  16. Space-charge limits on the transport of ion beams in a long alternating gradient system

    International Nuclear Information System (INIS)

    Tiefenback, M.G.

    1986-11-01

    We have experimentally studied the space-charge-dominated transport of ion beams in an alternating-gradient channel, without acceleration. We parameterize the focusing strength in terms of the zero-current ''betatron'' oscillation phase advance rate, σ 0 (degrees per focusing period). We have investigated the conditions for ''stability'', defined as the constancy of the total current and phase space area of the beam during transport. We find that the beam may be transported with neither loss of current nor growth in phase area if σ 0 0 . In this regime, the space-charge repulsive force can counter 98-99% of the externally applied focusing field, and the oscillation frequency of the beam particles can be depressed by self-forces to almost a factor of 10 below the zero-current value, limited only by the optical quality of our ion source. For σ 0 > 90 0 , we find that collective interactions bound the maintainable density of the beam, and we present a simple, semi-empirical characterization for stability, within our ability to distinguish the growth rate from zero in our apparatus. Our channel comprises 87 quadrupole lenses, 5 of which are used to prepare the beam for injection into the non-azimuthally-symmetric focusing channel

  17. Transport of heavy ions through matter within ion optical systems

    International Nuclear Information System (INIS)

    Schwab, T.

    1991-04-01

    In this thesis for the first time higher-order ion-optical calculations were connected with the whole phase-space changes of the heavy ions in passing through matter. With the developed programs and the newly proposed analytical methods atomic and nuclear interactions of the heavy ions within ion optical systems can be described realistically. The results of this thesis were applied to the conception of the fragment separator (FRS) and to the planning and preparation of experiments at the new GSI accelerator facility. Especially for the description of the ion-optical combination of FRS and the storage ring ESR the developed programs and methods proved to be necessary. A part of the applied theories on the atomic stopping could be confirmed in the framework of this thesis in an experiment with the high-resolving spectrometer SPEC at GANIL. The method of the isotopically pure separation of projectile fragments by means of magnetic analysis and the electronic energy loss could be also experimentally successfully tested at several energies (60-400 MeV/u). Furthermore in this thesis also application-related problems regarding a tumor therapy with heavy ions were solved. A concept for a medical separator (BMS) was developed, which separates light diagnosis beams isotopically purely and beyond improves the energy sharpness by means of an especially shaped (monoenergetic) stopper so that an in-situ range determination is possible with an accuracy of about one millimeter. (orig./HSI) [de

  18. Intense heavy-ion beam transport with electric and magnetic quadrupoles

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Hopkins, H.S.

    1995-08-01

    As part of the small induction recirculator development at LLNL, the authors are testing an injector and transport line that delivers 4 micros beams of potassium with repetition rates up to 10 Hz at a nominal current of 2 mA. The normalized K-V equivalent emittance of the beams is near 0.02 π mm-mrad and is mostly determined by the temperature of the source (0.1 eV). K + ions generated at 80 keV in a Pierce diode are matched to an alternating gradient transport line by seven electric quadrupoles. Two additional quads have been modified to serve as two-axis steerers. The matching section is followed by a transport section comprised of seven permanent magnet quadrupoles. Matching to this section is achieved by adjusting the voltages on the electric quadrupoles to voltages calculated by an envelope matching code. Measurements of beam envelope parameters are made at the matching section entrance and exit as well as at the end of the permanent magnet transport section. Beam current waveforms along the experiment are compared with results from a one-dimension longitudinal dynamics code. Initial experiments show particle loss occurring at the beam head as a result of overtaking. The apparatus is also being used for the development of non or minimally intercepting diagnostics for future recirculator experiments. These include capacitive monitors for determining beam line-charge density and position in the recirculator; flying wire scanners for beam position; and gated TV scanners for measuring beam profiles and emittance

  19. FINAL REPORT:Observation and Simulations of Transport of Molecules and Ions Across Model Membranes

    Energy Technology Data Exchange (ETDEWEB)

    MURAD, SOHAIL [University of Illinois at Chicago; JAMESON, CYNTHIA J [University of Illinois at Chicago

    2013-10-22

    During the this new grant we developed a robust methodology for investigating a wide range of properties of phospho-lipid bilayers. The approach developed is unique because despite using periodic boundary conditions, we can simulate an entire experiment or process in detail. For example, we can follow the entire permeation process in a lipid-membrane. This includes transport from the bulk aqueous phase to the lipid surface; permeation into the lipid; transport inside the lipid; and transport out of the lipid to the bulk aqueous phase again. We studied the transport of small gases in both the lipid itself and in model protein channels. In addition, we have examined the transport of nanocrystals through the lipid membrane, with the main goal of understanding the mechanical behavior of lipids under stress including water and ion leakage and lipid flip flop. Finally we have also examined in detail the deformation of lipids when under the influence of external fields, both mechanical and electrostatic (currently in progress). The important observations and conclusions from our studies are described in the main text of the report

  20. Spectroscopic and transport studies of Cu 2 ion doped in (40–x ...

    Indian Academy of Sciences (India)

    The preparation of (40 – )Li2O–LiF–60Bi2O3 glassy system and spectroscopic and transport studies of this system are reported. IR results show that this glass consists of [BiO3] units and indicate formation of Bi–F bonds with the addition of LiF. From the ESR spectra of Cu2+ ion, the effective values are found to vary ...

  1. Chemical disorder and charge transport in ferromagnetic manganites

    International Nuclear Information System (INIS)

    Pickett, W.E.; Singh, D.J.

    1997-01-01

    Disorder broadening due to randomly distributed La 3+ and A 2+ (A=Ca,Sr,Ba) cations is combined with a virtual-crystal treatment of the average system to evaluate the effects on both majority and minority transport in the ferromagnetic La 2/3 A 1/3 MnO 3 system. The low-density minority carriers which lie in the band tail are localized by disorder, while the majority carriers retain long mean free paths reflected in the observed strongly metallic conductivity. In addition to obtaining transport parameters, we provide evidence that local distortions are due to nearby ionic charges rather than to ion size considerations. copyright 1997 The American Physical Society

  2. Quantum Information Experiments with Trapped Ions at NIST

    Science.gov (United States)

    Wilson, Andrew

    2015-03-01

    We present an overview of recent trapped-ion quantum information experiments at NIST. Advancing beyond few-qubit ``proof-of-principle'' experiments to the many-qubit systems needed for practical quantum simulation and information processing, without compromising on the performance demonstrated with small systems, remains a major challenge. One approach to scalable hardware development is surface-electrode traps. Micro-fabricated planar traps can have a number of useful features, including flexible electrode geometries, integrated microwave delivery, and spatio-temporal tuning of potentials for ion transport and spin-spin interactions. In this talk we report on a number of on-going investigations with surface traps. Experiments feature a multi-zone trap with closely spaced ions in a triangular arrangement (a first step towards 2D arrays of ions with tunable spin-spin interactions), a scheme for smooth transport through a junction in a 2D structure based on switchable RF potentials, and a micro-fabricated photo-detector integrated into a trap. We also give a progress report on our latest efforts to improve the fidelity of both optical and microwave 2-qubit gates. This work was supported by IARPA, ONR and the NIST Quantum Information Program. The 3-ion and switchable-RF-junction traps were developed in collaboration with Sandia National Laboratory.

  3. Serotonin transporter gene promoter polymorphisms modify the association between paroxetine serotonin transporter occupancy and clinical response in major depressive disorder

    NARCIS (Netherlands)

    Ruhé, Henricus G.; Ooteman, Wendy; Booij, Jan; Michel, Martin C.; Moeton, Martina; Baas, Frank; Schene, Aart H.

    2009-01-01

    BACKGROUND: In major depressive disorder, selective serotonin reuptake inhibitors target the serotonin transporter (SERT). Their response rates (30-50%) are modified by SERT promotor polymorphisms (5-HTTLPR). OBJECTIVES: To quantify the relationship between SERT occupancy and response, and whether

  4. Multicomponent ion transport in a mono and bilayer cation-exchange membrane at high current density

    NARCIS (Netherlands)

    Moshtari Khah, S.; Oppers, N.A.W.; de Groot, M.T.; Keurentjes, J.T.F.; Schouten, J.C.; van der Schaaf, J.

    2017-01-01

    This work describes a model for bilayer cation-exchange membranes used in the chlor-alkali process. The ion transport inside the membrane is modeled with the Nernst–Planck equation. A logistic function is used at the boundary between the two layers of the bilayer membrane to describe the change in

  5. Trace and major element pollution originating from coal ash suspension and transport processes

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, A.; Djordjevic, D.; Polic, P. [University of Belgrade, Belgrade (Yugoslavia). Faculty of Science, Dept. of Chemistry

    2001-07-01

    Coal ash obtained from Nikola Tesla A power plant in Obrenovac, near Belgrade, Yugoslavia, is mixed with water of the Sava river and transported to the dump. In order to assess pollution caused by leaching of some minor and major elements during ash transport through the pipeline, two sets of samples (six samples each) were subjected to a modified sequential extraction. The first set consisted of coal ash samples taken immediately after combustion, while the second set was obtained by extraction with river water, imitating the processes that occur in the pipeline. Samples were extracted consecutively with distilled water and a 1 M solution of KCl, pH 7, and the differences in extractability were compared in order to predict potential pollution. It is concluded that lead and cadmium do not present an environmental threat during and immediately after ash transport to the dump. Portions of zinc, nickel and chromium are released during the ash transport, and arsenic and manganese are released continuously. Copper and iron do not present an environmental threat due to element leaching during and immediately after the coal ash suspension and transport. On the contrary, these elements, as well as chromium, become concentrated during coal ash transport. Adsorbed portions of calcium, magnesium and potassium are also leached during coal ash transport.

  6. Resolving the mystery of transport within internal transport barriers

    Energy Technology Data Exchange (ETDEWEB)

    Staebler, G. M.; Belli, E. A.; Candy, J.; Waltz, R. E.; Greenfield, C. M.; Lao, L. L.; Smith, S. P. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Kinsey, J. E. [CompX, P.O. Box 2672, Del Mar, California 92014-5672 (United States); Grierson, B. A. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Chrystal, C. [University of California-San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States)

    2014-05-15

    The Trapped Gyro-Landau Fluid (TGLF) quasi-linear model [G. M. Staebler, et al., Phys. Plasmas 12, 102508 (2005)], which is calibrated to nonlinear gyrokinetic turbulence simulations, is now able to predict the electron density, electron and ion temperatures, and ion toroidal rotation simultaneously for internal transport barrier (ITB) discharges. This is a strong validation of gyrokinetic theory of ITBs, requiring multiple instabilities responsible for transport in different channels at different scales. The mystery of transport inside the ITB is that momentum and particle transport is far above the predicted neoclassical levels in apparent contradiction with the expectation from the theory of suppression of turbulence by E×B velocity shear. The success of TGLF in predicting ITB transport is due to the inclusion of ion gyro-radius scale modes that become dominant at high E×B velocity shear and to improvements to TGLF that allow momentum transport from gyrokinetic turbulence to be faithfully modeled.

  7. Development of alpha radioactivity measurement using ionized air transportation technology

    International Nuclear Information System (INIS)

    Kanemoto, Shigeru; Naito, Susumu; Sano, Akira; Sato, Mitsuyoshi; Fukumoto, Masahiko; Miyamoto, Yasuaki; Nanbu, Kenichi; Takahashi, Hiroyuki

    2005-01-01

    Alpha radioactivity Measurement using ionized Air Transportation technology (AMAT) is developed to measure alpha contaminated wastes with large and complex surfaces. An outline of this project was described in this text. A major problem of AMAT technology is that the theoretical relation between alpha radioactivity and observed ion current is unclear because of the complicated behavior of ionized air molecules. An ion current prediction model covering from ionization of air molecules to ion detection was developed based on atmospheric electrodynamics. This model was described in this text, too. (author)

  8. Hall-Effect Thruster Simulations with 2-D Electron Transport and Hydrodynamic Ions

    Science.gov (United States)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard H.; Goebel, Dan M.

    2009-01-01

    A computational approach that has been used extensively in the last two decades for Hall thruster simulations is to solve a diffusion equation and energy conservation law for the electrons in a direction that is perpendicular to the magnetic field, and use discrete-particle methods for the heavy species. This "hybrid" approach has allowed for the capture of bulk plasma phenomena inside these thrusters within reasonable computational times. Regions of the thruster with complex magnetic field arrangements (such as those near eroded walls and magnets) and/or reduced Hall parameter (such as those near the anode and the cathode plume) challenge the validity of the quasi-one-dimensional assumption for the electrons. This paper reports on the development of a computer code that solves numerically the 2-D axisymmetric vector form of Ohm's law, with no assumptions regarding the rate of electron transport in the parallel and perpendicular directions. The numerical challenges related to the large disparity of the transport coefficients in the two directions are met by solving the equations in a computational mesh that is aligned with the magnetic field. The fully-2D approach allows for a large physical domain that extends more than five times the thruster channel length in the axial direction, and encompasses the cathode boundary. Ions are treated as an isothermal, cold (relative to the electrons) fluid, accounting for charge-exchange and multiple-ionization collisions in the momentum equations. A first series of simulations of two Hall thrusters, namely the BPT-4000 and a 6-kW laboratory thruster, quantifies the significance of ion diffusion in the anode region and the importance of the extended physical domain on studies related to the impact of the transport coefficients on the electron flow field.

  9. Water chemistry in Kuji river. Its spatial and seasonal variations in major ions and organic substances

    Energy Technology Data Exchange (ETDEWEB)

    Niina, Toshiaki; Matsunaga, Takeshi; Amano, Hikaru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-02-01

    As a basic research with a aim to clarify the migration behavior of radionuclides in rivers, the characteristics of dissolved ions and organic substances in river water, which characteristics may affect the behavior, was investigated. The investigation was carried out for the Kuji river in the northern Kanto district (Japan) comprising four sampling campaigns in 1994 for 10 locations from the upstream to the downstream. Concentrations of major ions, iron and manganese species and organic substances were analyzed in laboratory. Values of temperature of the water, pH, conductivity, dissolved oxygen were measured in the field. This investigation was conducted mainly under low water flow conditions of the river, while a limited number of campaigns were under high flow conditions due to precipitation events. The concentrations of major inorganic ions increased steadily toward the down-stream, resulting in approximately two times increase for the traveling distance of 100 km. They showed a seasonal variation that they were highest in the spring and lowest in the autumn when there were most concentrated precipitation events in a year. The constituents were mainly Na{sup +}, Ca{sup 2+}, SO{sub 4}{sup 2-} and HCO{sub 3}{sup -}, and were similar for every sampling locations and seasons. Concentrations of dissolved organic substances (carbon compounds) were lowest in the upstream and increased about twice in the downstream as well as major inorganic ions. Their level was 1-3 mg/l, which can be ranked as relatively lower in general values for fresh water environments. They were highest in the spring (average over the locations: 2.2 mg/l) and lowest in the autumn (1.3 mg/l) and also in the winter (1.3 mg/l). These results will be useful as a basic understanding of spatial and seasonal variations of river water chemistry, especially related to the organic substances which can bind with radionuclides to make a mobile complex. (author).

  10. Effects of nitrogen seeding on core ion thermal transport in JET ILW L-mode plasmas

    NARCIS (Netherlands)

    Bonanomi, N.; Mantica, P.; Citrin, J.; Giroud, C.; Lerche, E.; Sozzi, C.; Taylor, D.; Tsalas, M.; Van Eester, D.; JET Contributors,

    2018-01-01

    A set of experiments was carried out in JET ILW (Joint European Torus with ITER-Like Wall) L-mode plasmas in order to study the effects of light impurities on core ion thermal transport. N was puffed into some discharges and its profile was measured by active Charge Exchange diagnostics, while ICRH

  11. Effects of the weak magnetic field and electron diffusion on the spatial potential and negative ion transport in the negative ion source

    International Nuclear Information System (INIS)

    Sakurabayashi, T.; Hatayama, A.; Bacal, M.

    2004-01-01

    The effects of the weak magnetic field on the negative ion (H - ) extraction in a negative ion source have been studied by means of a two-dimensional electrostatic particle simulation. A particle-in-cell model is used which simulates the motion of the charged particles in their self-consistent electric field. In addition, the effect of the electron diffusion across the weak magnetic field is taken into account by a simple random-walk model with a step length Δx per time step Δt; Δx=√(2D perpendicular )Δt)·ξ x , where D perpendicular ) and ξ x are the perpendicular diffusion coefficient and normal random numbers. Under this simple diffusion model, the electron diffusion has no significant effects on the H - transport. Most electrons are magnetized by the weak magnetic field and lost along the field line. As a result, more H - ions arrive instead of electrons in the region close to the plasma grid in order to ensure the plasma neutrality

  12. Plasma transport simulation modeling for helical confinement systems

    International Nuclear Information System (INIS)

    Yamazaki, K.; Amano, T.

    1991-08-01

    New empirical and theoretical transport models for helical confinement systems are developed based on the neoclassical transport theory including the effect of radial electric field and multi-helicity magnetic components, and the drift wave turbulence transport for electrostatic and electromagnetic modes, or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with CHS (Compact Helical System) experimental data, which indicates that the central transport coefficient of the ECH plasma agrees with the neoclassical axi-symmetric value and the transport outside the half radius is anomalous. On the other hand, the transport of NBI-heated plasmas is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these flat-density-profile discharges. For the detailed prediction of plasma parameters in LHD (Large Helical Device), 3-D(dimensional) equilibrium/1-D transport simulations including empirical or drift wave turbulence models are carried out, which suggests that the global confinement time of LHD is determined mainly by the electron anomalous transport near the plasma edge region rather than the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase of the global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to the half level of the present scaling, like so-called 'H-mode' of the tokamak discharge, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius is effective for improving plasma confinement and raising more than 50% of the fusion product by reducing this neoclassical asymmetric ion transport loss and increasing 10% in the plasma radius. (author)

  13. Major Ion Concentrations in WDC05Q and WDC06A Ice Cores (WAIS Divide), Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains major ion concentrations from the chemical analysis of two WAIS Divide ice cores (WDC05Q, 0-114 m; WDC06A, 0-129 m). The analytical technique...

  14. Plasma lens focusing and plasma channel transport for heavy ion fusion

    International Nuclear Information System (INIS)

    Tauschwitz, A.; Yu, S.S.; Bangerter, R.O.

    1996-01-01

    The final focus lens in an ion beam driven inertial confinement fusion reactor is important since it sets limiting requirements for the quality of the driver beam. Improvements of the focusing capabilities can facilitate the construction of the driver significantly. A focusing system that is of interest both for heavy ion and for light ion drivers is an adiabatic, current carrying plasma lens. This lens is characterized by the fact that it can slowly (adiabatically) reduce the envelope radius of a beam over several betatron oscillations by increasing the focusing magnetic field along a tapered high current discharge. A reduction of the beam diameter by a factor of 3 to 5 seems feasible with this focusing scheme. Such a lens can be used for an ignition test facility where it can be directly coupled to the fusion target. For use in a repetitively working reactor chamber the lens has to be located outside of the reactor and the tightly focused but strongly divergent beam must be confined in a high current transport channel from the end of the lens into the immediate vicinity of the target. Laser preionization of a background gas is an efficient means to direct and stabilize such a channel. Experiments have been started to test both, the principle of adiabatic focusing, and the stability of laser preionized high current discharge channels. (author). 4 figs., 7 refs

  15. Plasma lens focusing and plasma channel transport for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Tauschwitz, A; Yu, S S; Bangerter, R O [Lawrence Berkeley Lab., CA (United States); and others

    1997-12-31

    The final focus lens in an ion beam driven inertial confinement fusion reactor is important since it sets limiting requirements for the quality of the driver beam. Improvements of the focusing capabilities can facilitate the construction of the driver significantly. A focusing system that is of interest both for heavy ion and for light ion drivers is an adiabatic, current carrying plasma lens. This lens is characterized by the fact that it can slowly (adiabatically) reduce the envelope radius of a beam over several betatron oscillations by increasing the focusing magnetic field along a tapered high current discharge. A reduction of the beam diameter by a factor of 3 to 5 seems feasible with this focusing scheme. Such a lens can be used for an ignition test facility where it can be directly coupled to the fusion target. For use in a repetitively working reactor chamber the lens has to be located outside of the reactor and the tightly focused but strongly divergent beam must be confined in a high current transport channel from the end of the lens into the immediate vicinity of the target. Laser preionization of a background gas is an efficient means to direct and stabilize such a channel. Experiments have been started to test both, the principle of adiabatic focusing, and the stability of laser preionized high current discharge channels. (author). 4 figs., 7 refs.

  16. Low Z impurity transport in tokamaks. [Neoclassical transport theory

    Energy Technology Data Exchange (ETDEWEB)

    Hawryluk, R.J.; Suckewer, S.; Hirshman, S.P.

    1978-10-01

    Low Z impurity transport in tokamaks was simulated with a one-dimensional impurity transport model including both neoclassical and anomalous transport. The neoclassical fluxes are due to collisions between the background plasma and impurity ions as well as collisions between the various ionization states. The evaluation of the neoclassical fluxes takes into account the different collisionality regimes of the background plasma and the impurity ions. A limiter scrapeoff model is used to define the boundary conditions for the impurity ions in the plasma periphery. In order to account for the spectroscopic measurements of power radiated by the lower ionization states, fluxes due to anomalous transport are included. The sensitivity of the results to uncertainties in rate coefficients and plasma parameters in the periphery are investigated. The implications of the transport model for spectroscopic evaluation of impurity concentrations, impurity fluxes, and radiated power from line emission measurements are discussed.

  17. Influence of ion transport on discharge propagation of nanosecond dielectric barrier discharge plasma actuator

    Science.gov (United States)

    Hua, Weizhuo; Koji, Fukagata

    2017-11-01

    A numerical study has been conducted to understand the streamer formation and propagation of nanosecond pulsed surface dielectric barrier discharge of positive polarity. First we compared the result of different grid configuration to investigate the influence of x and y direction grid spacing on the streamer propagation. The streamer propagation is sensitive to y grid spacing especially at the dielectric surface. The streamer propagation velocity can reach 0.2 cm/ns when the voltage magnitude is 12 kV. A narrow gap was found between the streamer and dielectric barrier, where the plasma density is several orders of magnitude smaller than the streamer region. Analyses on the ion transport in the gap and streamer regions show the different ion transport mechanisms in the two different region. In the gap region, the diffusion of electron toward the dielectric layer decreases the seed electron in the beginning of voltage pulse, resulting that ionization avalanche does not occur. The streamer region is not significantly affected by the diffusion flux toward the dielectric layer, so that ionization avalanche takes place and leads to dramatic increase of plasma density.

  18. Characterization of active ion transport across primary rabbit corneal epithelial cell layers (RCrECL) cultured at an air-interface.

    Science.gov (United States)

    Chang-Lin, Joan-En; Kim, Kwang-Jin; Lee, Vincent H L

    2005-06-01

    Previously, we reported the development of a primary culture model of tight rabbit corneal epithelial cell layers (RCrECL) characterizing bioelectric parameters, morphology, cytokeratin, and passive permeability. In the present study, we specifically evaluated the active ion transport processes of RCrECL cultured from either pigmented or albino rabbits. Primary cultured RCrECL were grown at an air-interface on Clear-Snapwells precoated with collagen/fibronectin/laminin and mounted in a modified Ussing-type chamber for the evaluation of their active ion transport processes under short-circuited conditions. Contribution of active Na(+) and Cl(-) transport to overall short-circuit current (I(sc)) was evaluated by removing Na(+) and Cl(-), respectively, from bathing fluids of RCrECL and measurements of net fluxes of Na(+) and Cl(-) using (22)Na and (36)Cl, respectively. Amiloride and benzamil were used to determine the role of apical Na(+)-channel activities to net Na(+) fluxes. N-phenylanthranilic acid (NPAA), ouabain, BaCl(2) and bumetanide were used to determine the role of basolateral Na,K-ATPase, apical Cl(-)-channel, and basolateral K(+)-channel and Na(+)(K(+))2Cl(-)-cotransporter activities, respectively, in active ion transport across RCrECL. I(sc) of RCrECL derived from pigmented rabbits was comprised of 64+/-2% and 44+/-5% for active Na(+) and Cl(-) transport, respectively, consistent with net Na(+) absorption and Cl(-) secretion of 0.062+/-0.006 and 0.046+/-0.008 muEq/cm(2)/hr estimated from radionuclide fluxes. Apical amiloride and benzamil inhibited I(sc) by up to approximately 50% with an IC(50) of 1 and 0.1 microm, respectively, consistent with participation of apical epithelial Na(+)-channels to net Na(+) absorption across RCrECL cultured from pigmented rabbits. Addition of ouabain to the basolateral, NPAA to the apical, BaCl(2) to the basolateral and bumetanide to basolateral fluid decreased I(sc) by 86+/-1.5%, 53+/-3%, 18+/-1.8% and 13+/-1.9% in RCr

  19. Ion-batterier - "The Next Generation"

    DEFF Research Database (Denmark)

    Søndergaard, Martin; Becker, Jacob; Shen, Yanbin

    2014-01-01

    Lithium-ion batterier er strømkilden, der har revolutioneret vores transportable elektronik. Familien af ion-batterier er imidlertid større end som så og har meget, meget mere at byde på.......Lithium-ion batterier er strømkilden, der har revolutioneret vores transportable elektronik. Familien af ion-batterier er imidlertid større end som så og har meget, meget mere at byde på....

  20. Major ions, nutrients, and trace elements in the Mississippi River near Thebes, Illinois, July through September 1993

    Science.gov (United States)

    Taylor, Howard E.; Antweiler, Ronald C.; Brinton, Terry I.; Roth, David A.; Moody, John A.

    1994-01-01

    Extensive flooding in the upper Mississippi River Basin during summer 1993 had a significant effect on the water quality of the Mississippi River. To evaluate the change in temporal distribution and transport of dissolved constituents in the Mississippi River, six water samples were collected by a discharge-weighted method from July through September 1993 near Thebes, Illinois. Sampling at this location provided water-quality information from the upper Mississippi, the Missouri, and the Illinois River Basins. Dissolved major constituents that were analyzed in each of the samples included bicarbonate, calcium (Ca), carbonate (C03), chloride (Cl), dissolved organic carbon, magnesium (Mg), potassium (K), silica NOD, sodium (Na), and sulfate (S04). Dissolved nutrients included ammonium ion (NH4), nitrate (N03), nitrite (N02), and orthophosphate (P04) . Dissolved trace elements included aluminum (Al), arsenic (As), barium (Ba), boron (B), beryllium (Be), bromide (Br), cadmium (Cd), chromium (Cr), cobalt, (Co), copper (Cu), fluoride (F), iron (Fe), lead, lithium (Li), manganese (Mn), mercury (Hg), molybdenum (Mo), nickel (Ni), strontium (Sr), thallium, uranium (U), vanadium (V), and zinc (Zn). Other physical properties of water that were measured included specific conductance, pH and suspended-sediment concentration (particle size, less than 63 micrometers). Results of this study indicated that large quantities of dissolved constituents were transported through the river system. Generally, pH, alkalinity, and specific conductance and the concentrations of B, Br, Ca, Cl, Cr, K, Li, Mg, Mo, Na, S04, Sr, U, and V increased as water discharge decreased, while concentrations of F, Hg, and suspended sediment sharply decreased as water discharge decreased after the crest of the flood. Concentrations of other constituents, such as Al, As, Ba, Be, Co, Cu, Ni, N03, N02, NH4, P04, and Si02, varied with time as discharge decreased after the crest of the flood. For most constituents

  1. An induction Linac driven heavy-ion fusion systems model

    International Nuclear Information System (INIS)

    Zuckerman, D.S.; Driemeyer, D.E.; Waganer, L.M.; Dudziak, D.J.

    1988-01-01

    A computerized systems model of a heavy-ion fusion (HIF) reactor power plant is presented. The model can be used to analyze the behavior and projected costs of a commercial power plant using an induction linear accelerator (Linac) as a driver. Each major component of the model (targets, reactor cavity, Linac, beam transport, power flow, balance of plant, and costing) is discussed. Various target, reactor cavity, Linac, and beam transport schemes are examined and compared. The preferred operating regime for such a power plant is also examined. The results show that HIF power plants can compete with other advanced energy concepts at the 1000-MW (electric) power level [cost of electricity (COE) -- 50 mill/kW . h] provided that the cost savings predicted for Linacs using higher charge-state ions (+3) can be realized

  2. Investigation of the lithium ion mobility in cyclic model compounds and their ion conduction properties

    Energy Technology Data Exchange (ETDEWEB)

    Thielen, Joerg

    2011-07-27

    combination to changes in glass transition temperatures. Though the glass transition temperatures of the blends are low, their conductivities are only in the range of typical polymer electrolytes. The highest {sigma}{sub dc} obtained at ambient temperatures was 6.0 x 10{sup -6} S.cm{sup -1}, strongly suggesting a rather tight coordination of the lithium ions to the solvating 2-oxo-1,3-dioxolane moieties, supported by the increased {sigma}{sub dc} values for the oligo(ethylene oxide) based analogues. Further insights into the mechanism of lithium ion dynamics were derived from {sup 7}Li and {sup 13}C Solid-State NMR investigations. While localized ion motion was probed by i.e. {sup 7}Li spinlattice relaxation measurements with apparent activation energies E{sub a} of 20 to 40 kJ/mol, long-range macroscopic transport was monitored by Pulsed-Field Gradient (PFG) NMR, providing an E{sub a} of 61 kJ/mol. The latter is in good agreement with the values determined from bulk conductivity data, indicating the major contribution of ion transport was only detected by PFG NMR. However, the {mu}m-diffusion is rather slow, emphasizing the strong lithium coordination to the carbonyl oxygens, which hampers sufficient ion conductivities and suggests exploring 'softer' solvating moieties in future electrolytes.

  3. Magnetic fusion with high energy self-colliding ion beams

    International Nuclear Information System (INIS)

    Restoker, N.; Wessel, F.; Maglich, B.; Fisher, A.

    1993-01-01

    Field-reversed configurations of energetic large orbit ions with neutralizing electrons have been proposed as the basis of a fusion reactor. Vlasov equilibria consisting of a ring or an annulus have been investigated. A stability analysis has been carried out for a long thin layer of energetic ions in a low density background plasma. There is a growing body of experimental evidence from tokamaks that energetic ions slow down and diffuse in accordance with classical theory in the presence of large non-thermal fluctuations and anomalous transport of low energy (10 keV) ions. Provided that major instabilities are under control, it seems likely that the design of a reactor featuring energetic self-colliding ion beams can be based on classical theory. In this case a confinement system that is much better than a tokamak is possible. Several methods are described for creating field reversed configurations with intense neutralized ion beams

  4. Magnetic fusion with high energy self-colliding ion beams

    International Nuclear Information System (INIS)

    Rostoker, N.; Wessel, F.; Maglich, B.; Fisher, A.

    1992-06-01

    Field-reversed configurations of energetic large orbit ions with neutralizing electrons have been proposed as the basis of a fusion reactor. Vlasov equilibria consisting of a ring or an annulus have been investigated. A stability analysis has been carried out for a long thin layer of energetic ions in a low density background plasma. There is a growing body of experimental evidence from tokamaks that energetic ions slow down and diffuse in accordance with classical theory in the presence of large non-thermal fluctuations and anomalous transport of low energy (10 keV) ions. Provided that major instabilities are under control, it seems likely that the design of a reactor featuring energetic self-colliding ion beams can be based on classical theory. In this case a confinement system that is much better than a tokamak is possible. Several methods are described for creating field reversed configurations with intense neutralized ion beams

  5. Particle and heavy ion transport code system, PHITS, version 2.52

    International Nuclear Information System (INIS)

    Sato, Tatsuhiko; Matsuda, Norihiro; Hashimoto, Shintaro; Iwamoto, Yosuke; Noda, Shusaku; Ogawa, Tatsuhiko; Nakashima, Hiroshi; Fukahori, Tokio; Okumura, Keisuke; Kai, Tetsuya; Niita, Koji; Iwase, Hiroshi; Chiba, Satoshi; Furuta, Takuya; Sihver, Lembit

    2013-01-01

    An upgraded version of the Particle and Heavy Ion Transport code System, PHITS2.52, was developed and released to the public. The new version has been greatly improved from the previously released version, PHITS2.24, in terms of not only the code itself but also the contents of its package, such as the attached data libraries. In the new version, a higher accuracy of simulation was achieved by implementing several latest nuclear reaction models. The reliability of the simulation was improved by modifying both the algorithms for the electron-, positron-, and photon-transport simulations and the procedure for calculating the statistical uncertainties of the tally results. Estimation of the time evolution of radioactivity became feasible by incorporating the activation calculation program DCHAIN-SP into the new package. The efficiency of the simulation was also improved as a result of the implementation of shared-memory parallelization and the optimization of several time-consuming algorithms. Furthermore, a number of new user-support tools and functions that help users to intuitively and effectively perform PHITS simulations were developed and incorporated. Due to these improvements, PHITS is now a more powerful tool for particle transport simulation applicable to various research and development fields, such as nuclear technology, accelerator design, medical physics, and cosmic-ray research. (author)

  6. Effect of Ion Concentration Changes in the Limited Extracellular Spaces on Sarcolemmal Ion Transport and Ca2+ Turnover in a Model of Human Ventricular Cardiomyocyte

    Czech Academy of Sciences Publication Activity Database

    Hrabcová, D.; Pásek, Michal; Šimurda, J.; Christé, G.

    2013-01-01

    Roč. 14, č. 12 (2013), s. 24271-24292 E-ISSN 1422-0067 Grant - others:GA MZd(CZ) NT14301 Institutional support: RVO:61388998 Keywords : human heart * cardiac cell * t-tubule * intercellular clefts * calcium * ion transport * computer model Subject RIV: BO - Biophysics Impact factor: 2.339, year: 2013

  7. Major ion toxicity in effluents: A review with permitting recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Goodfellow, W.L.; Ausley, L.W.; Burton, D.T.; Denton, D.L.; Dorn, P.B.; Grothe, D.R.; Heber, M.A.; Norberg-King, T.J.; Rodgers, J.H. Jr.

    2000-01-01

    Effluent toxicity testing methods have been well defined, but for the most part, these methods do not attempt to segregate the effects of active ionic concentrations and ion imbalances upon test and species performances. The role of various total dissolved solids in effluents on regulatory compliance has emerged during the last few years and has caused confusion in technical assessment and in permitting and compliance issues. This paper assesses the issue of ionic strength and ion imbalance, provides a brief summary of applicable data, presents several case studies demonstrating successful tools to address toxicity resulting from salinity and ion imbalance, and provides recommendations for regulatory and compliance options to manage discharges with salinity/ion imbalance issues. Effluent toxicity resulting from inorganic ion imbalance and the ion concentration of the effluent is pervasive in permitted discharge from many industrial process and municipal discharges where process streams are concentrated, adjusted, or modified. This paper discusses procedures that use weight-of-evidence approaches to identify ion imbalance toxicity, including direct measurement, predictive toxicity models for freshwater, exchange resins, mock effluents, and ion imbalance toxicity with tolerant/susceptible test species. Cost-effective waste treatment control options for a facility whose effluent is toxic because of total dissolved solids (TDS) or because of specific ion(s) are scarce at best. Depending on the discharge situation, TDS toxicity may not be viewed with the same level of concern as other, more traditional, toxicants. These discharge situations often do not require the conservative safety factors required by other toxicants. Selection of the alternative regulatory solutions discussed in this paper may be beneficial, especially because they do not require potentially expensive or high-energy-using treatment options that may be ineffective control options. The information

  8. Ion transport properties of mechanically stable symmetric ABCBA pentablock copolymers with quaternary ammonium functionalized midblock

    Energy Technology Data Exchange (ETDEWEB)

    Ertem, S. Piril [Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive Amherst Massachusetts 01003; Caire, Benjamin R. [Department of Chemical and Biological Engineering, Colorado School of Mines, Golden Colorado 80401; Tsai, Tsung-Han [Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive Amherst Massachusetts 01003; Zeng, Di [Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive Amherst Massachusetts 01003; Vandiver, Melissa A. [Department of Chemical and Biological Engineering, Colorado School of Mines, Golden Colorado 80401; Kusoglu, Ahmet [Energy Conversion Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley California 94720; Seifert, Soenke [Energy Conversion Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley California 94720; Hayward, Ryan C. [Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive Amherst Massachusetts 01003; Weber, Adam Z. [Energy Conversion Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley California 94720; Herring, Andrew M. [Department of Chemical and Biological Engineering, Colorado School of Mines, Golden Colorado 80401; Coughlin, E. Bryan [Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive Amherst Massachusetts 01003; Liberatore, Matthew W. [Department of Chemical Engineering Department, University of Toledo, 2801 W Bancroft Street MS305 Toledo Ohio 43606

    2017-02-07

    Anion exchange membranes (AEMs) are a promising class of materials for applications that require selective ion transport, such as fuel cells, water purification, and electrolysis devices. Studies of structure–morphology–property relationships of ion-exchange membranes revealed that block copolymers exhibit improved ion conductivity and mechanical properties due to their microphase-separated morphologies with well-defined ionic domains. While most studies focused on symmetric diblock or triblock copolymers, here, the first example of a midblock quaternized pentablock AEM is presented. A symmetric ABCBA pentablock copolymer was functionalized to obtain a midblock brominated polymer. Solution cast films were then quaternized to obtain AEMs with resulting ion exchange capacities (IEC) ranging from 0.4 to 0.9 mmol/g. Despite the relatively low IEC, the polymers were highly conductive (up to 60 mS/cm Br2 at 90 8C and 95%RH) with low water absorption (<25 wt %) and maintained adequate mechanical properties in both dry and hydrated conditions. Xray scattering and transmission electron microscopy (TEM) revealed formation of cylindrical non-ionic domains in a connected ionic phase.

  9. Temperature modulates the effects of ocean acidification on intestinal ion transport in Atlantic cod, Gadus morhua

    Directory of Open Access Journals (Sweden)

    Marian Yong-An Hu

    2016-06-01

    Full Text Available CO2-driven seawater acidification has been demonstrated to enhance intestinal bicarbonate secretion rates in teleosts, leading to an increased release of CaCO3 under simulated ocean acidification scenarios. In this study, we investigated if increasing CO2 levels stimulate the intestinal acid–base regulatory machinery of Atlantic cod (Gadus morhua and whether temperatures at the upper limit of thermal tolerance stimulate or counteract ion regulatory capacities. Juvenile G. morhua were acclimated for four weeks to three CO2 levels (550, 1,200 and 2,200 μatm covering present and near-future natural variability, at optimum (10°C and summer maximum temperature (18°C, respectively. Immunohistochemical analyses revealed the subcellular localization of ion transporters, including Na+/K+-ATPase (NKA, Na+/H+-exchanger 3 (NHE3, Na+/HCO3- cotransporter (NBC1, pendrin-like Cl-/HCO3- exchanger (SLC26a6, V-type H+-ATPase subunit a (VHA and Cl- channel 3 (CLC3 in epithelial cells of the anterior intestine. At 10°C, proteins and mRNA were generally up-regulated for most transporters in the intestinal epithelium after acclimation to higher CO2 levels. This supports recent findings demonstrating increased intestinal HCO3- secretion rates in response to CO2 induced seawater acidification. At 18°C, mRNA expression and protein concentrations of most ion transporters remained unchanged or were even decreased, suggesting thermal compensation. This response may be energetically favorable to retain blood HCO3- levels to stabilize pHe, but may negatively affect intestinal salt and water resorption of marine teleosts in future oceans.

  10. Highly Stripped Ion Sources for MeV Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, Ady

    2009-06-30

    manufacturing industry by lowering power consumption by as much as 30 kW per ion implanter. Major problem was meeting commercialization goals did not succeed for the following reasons (which were discovered after R&D completion): record output of high charge state phosphorous would have thermally damage wafers; record high charge state of antimony requires tool (ion implanting machine in ion implantation jargon) modification, which did not make economic sense due to the small number of users. High fraction boron ion was delivered to PVI client Axcelis for retrofit and implantation testing; the source could have reduced beam preinjector power consumption by a factor of 3.5. But, since the source generated some lithium (though in miniscule amounts); last minute decision was made not to employ the source in implanters. An additional noteworthy reason for failure to commercialize is the fact that the ion implantation manufacturing industry had been in a very deep bust cycle. BNL, however, has benefited from advances in high-charge state ion generation, due to the need high charge state ions in some RHIC preinjectors. Since the invention of the transistor, the trend has been to miniaturize semiconductor devices. As semiconductors become smaller (and get miniaturized), ion energy needed for implantation decreases, since shallow implantation is desired. But, due to space charge (intra-ion repulsion) effects, forming and transporting ion beams becomes a rather difficult task. A few small manufacturers of low quality semiconductors use plasma immersion to circumvent the problem. However, in plasma immersion undesired plasma impurity ions are also implanted; hence, the quality of those semiconductors is poor. For high quality miniature semiconductor manufacturing, pure, low energy ion beams are utilized. But, low energy ion implanters are characterized by low current (much lower than desirable) and, therefore, low production rates. Consequently, increasing the current of pure low energy

  11. Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle

    Science.gov (United States)

    Feng, Liang; Campbell, Ernest B.; Hsiung, Yichun; MacKinnon, Roderick

    2011-01-01

    CLC proteins transport Cl− ions across cell membranes to control the electrical potential of muscle cells, transfer electrolytes across epithelia, and control the pH and electrolyte composition of intracellular organelles. Some members of this protein family are Cl− ion channels, while others are secondary active transporters that exchange Cl− ions and H+ with a 2:1 stoichiometry. We have determined the structure of a eukaryotic CLC transporter at 3.5 Å resolution. Cytoplasmic CBS domains are strategically positioned to regulate the ion transport pathway, and many disease-causing mutations in human CLCs reside on the CBS-transmembrane interface. Comparison with prokaryotic CLC shows that a gating glutamate changes conformation and suggests a basis for 2:1 Cl−/H+ exchange and a simple mechanistic connection between CLC channels and transporters. PMID:20929736

  12. A novel approach for predicting the uptake and toxicity of metallic and metalloid ions

    Science.gov (United States)

    Wang, Peng

    2011-01-01

    Electrostatic nature of plant plasma membrane (PM) plays significant roles in the ion uptake and toxicity. Electrical potential at the PM exterior surface (ψ0o) influences ion distribution at the PM exterior surface, and the depolarization of ψ0o negativity increases the electrical driving force for cation transport, but decreases the driving force for anion transport across the PMs. Assessing environmental risks of toxic ions has been a difficult task because the ion concentration (activity) in medium is not directly corrected to its potential effects. Medium characteristics like the content of major cations have important influences on the bioavailability and toxicity of ions in natural waters and soils. Models such as the Free Ion Activity Model (FIAM) and the Biotic Ligand Model (BLM), as usually employed, neglect the ψ0o and hence often lead to false conclusions about interaction mechanisms between toxic ions and major cations for biology. The neglect of ψ0o is not inconsistent with its importance, and possibly reflects the difficulty in the measurement of ψ0o. Based on the dual effects of the ψ0o, electrostatic models were developed to better predict the uptake and toxicity of metallic and metalloid ions. These results suggest that the electrostatic models provides a more robust mechanistic framework to assess metal(loid) ecotoxicity and predict critical metal(loid) concentrations linked to a biological effect, indicating its potential utility in risk assessment of metal(loid)s in water and terrestrial ecosystems. PMID:21386661

  13. Alkylsulfonates as probes of uncoupling protein transport mechanism. Ion pair transport demonstrates that direct H(+) translocation by UCP1 is not necessary for uncoupling

    Czech Academy of Sciences Publication Activity Database

    Jabůrek, M.; Vařecha, M.; Ježek, Petr; Garlid, K. D.

    2001-01-01

    Roč. 276, č. 34 (2001), s. 31897-31905 ISSN 0021-9258 R&D Projects: GA AV ČR IAA5011106 Grant - others:NIH(US) DK56273 Institutional research plan: CEZ:AV0Z5011922 Keywords : mitochondrial uncoupling proteins * alkylsulfonates * ion pair transport Subject RIV: CE - Biochemistry Impact factor: 7.258, year: 2001

  14. Intense electron-beam transport in the ion-focused regime through the collision-dominated regime

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Poukey, J.W.; Welch, D.R.; Mock, R.C.

    1993-01-01

    This paper reviews the transport of the 19-MeV, 700-kA, 25-ns Hermes-III electron beam in long gas cells filled with N 2 gas spanning six decades in pressure from 10 3 to ∼10 3 Torr. We show through measurements and theoretical analyses that the beam has two windows of stable transport: a low-pressure window (between ∼1 and ∼100 mTorr) that is dominated by propagation in the semi-collisionless IFR (ion-focused regime), and a high-pressure window (between ∼1 and ∼100 Torr) that is dominated by propagation in the resistive CDR (collision-dominated regime). In the CDR, 79±1.5% of the beam energy is transported over 11 m at 20 Torr. In the IFR, we show that intense radiation fields with controllable rise times and pulse widths can be generated on axis at a bremsstrahlung target. In summary, the measurements and analyses presented here provide a quantitative description of the Hermes-III beam transport over six decades in pressure

  15. Lens ion transport: from basic concepts to regulation of Na,K-ATPase activity

    Science.gov (United States)

    Delamere, Nicholas A.; Tamiya, Shigeo

    2009-01-01

    In the late 1960s, studies by George Duncan explained many of the basic principles that underlie lens ion homeostasis. The experiments pointed to a permeability barrier close to the surface of the lens and illustrated the requirement for continuous Na,K-ATPase-mediated active sodium extrusion. Without active sodium extrusion, lens sodium and calcium content increases resulting in lens swelling and deterioration of transparency. Later, Duncan's laboratory discovered functional muscarinic and purinergic receptors at the surface of the lens. Recent studies using intact lens suggest purinergic receptors might be involved in short-term regulation of Na,K-ATPase in the epithelium. Purinergic receptor agonists ATP and UTP selectively activate certain Src family tyrosine kinases and stimulate Na,K-ATPase activity. This might represent part of a control mechanism capable of adjusting, perhaps fine tuning, lens ion transport machinery. PMID:18614168

  16. Investigations of Atomic Transport Induced by Heavy Ion Irradiation

    Science.gov (United States)

    Banwell, Thomas Clyde

    The mechanisms of atomic transport induced by ion irradiation generally fall into the categories of anisotropic or isotropic processes. Typical examples of these are recoil implantation and cascade mixing, respectively. We have measured the interaction of these processes in the mixing of Ti/SiO(,2)/Si, Cr/SiO(,2)/Si and Ni/SiO(,2)/Si multi-layers irradiated with Xe at fluences of 0.01 - 10 x 10('15)cm('-2). The fluence dependence of net metal transport into the underlying layers was measured with different thicknesses of SiO(,2) and different sample temperatures during irradiation (-196 to 500C). There is a linear dependence at low fluences. At high fluences, a square-root behavior predominates. For thin SiO(,2) layers (primary recoils is quite pronounced since the gross mixing is small. A significant correlation exists between the mixing and the energy deposited through elastic collisions F(,D ). Several models are examined in an attempt to describe the transport process in Ni/SiO(,2). It is likely that injection of Ni by secondary recoil implantation is primarily responsible for getting Ni into the SiO(,2). Secondary recoil injection is thought to scale with F(,D). Trends in the mixing rates indicate that the dominant mechanism for Ti and Cr could be the same as for Ni. The processes of atomic transport and phase formation clearly fail to be separable at higher temperatures. A positive correlation with chemical reactivity emerges at higher irradiation temperatures. The temperature at which rapid mixing occurs is not much below that for spontaneous thermal reaction. Less Ni is retained in the SiO(,2) at high irradiation temperatures. Ni incorporated in the SiO(,2) by low temperature irradiation is not expelled during a consecutive high temperature irradiation. The Ni remains trapped within larger clusters during a sequential 500C irradiation. (Abstract shortened with permission of author.).

  17. Solar Ion Processing of Major Element Surface Compositions of Mature Mare Soils: Insights from Combined XPS and Analytical TEM Observations

    Science.gov (United States)

    Christoffersen, R.; Dukes, C.; Keller, L. P.; Baragiola, R.

    2012-01-01

    Solar wind ions are capable of altering the sur-face chemistry of the lunar regolith by a number of mechanisms including preferential sputtering, radiation-enhanced diffusion and sputter erosion of space weathered surfaces containing pre-existing compositional profiles. We have previously reported in-situ ion irradiation experiments supported by X-ray photoelectron spectroscopy (XPS) and analytical TEM that show how solar ions potentially drive Fe and Ti reduction at the monolayer scale as well as the 10-100 nm depth scale in lunar soils [1]. Here we report experimental data on the effect of ion irradiation on the major element surface composition in a mature mare soil.

  18. Position of the third Na+ site in the aspartate transporter GltPh and the human glutamate transporter, EAAT1.

    Directory of Open Access Journals (Sweden)

    Turgut Bastug

    Full Text Available Glutamate transport via the human excitatory amino acid transporters is coupled to the co-transport of three Na(+ ions, one H(+ and the counter-transport of one K(+ ion. Transport by an archaeal homologue of the human glutamate transporters, Glt(Ph, whose three dimensional structure is known is also coupled to three Na(+ ions but only two Na(+ ion binding sites have been observed in the crystal structure of Glt(Ph. In order to fully utilize the Glt(Ph structure in functional studies of the human glutamate transporters, it is essential to understand the transport mechanism of Glt(Ph and accurately determine the number and location of Na(+ ions coupled to transport. Several sites have been proposed for the binding of a third Na(+ ion from electrostatic calculations and molecular dynamics simulations. In this study, we have performed detailed free energy simulations for Glt(Ph and reveal a new site for the third Na(+ ion involving the side chains of Threonine 92, Serine 93, Asparagine 310, Aspartate 312, and the backbone of Tyrosine 89. We have also studied the transport properties of alanine mutants of the coordinating residues Threonine 92 and Serine 93 in Glt(Ph, and the corresponding residues in a human glutamate transporter, EAAT1. The mutant transporters have reduced affinity for Na(+ compared to their wild type counterparts. These results confirm that Threonine 92 and Serine 93 are involved in the coordination of the third Na(+ ion in Glt(Ph and EAAT1.

  19. Metal impurity transport control in JET H-mode plasmas with central ion cyclotron radiofrequency power injection

    DEFF Research Database (Denmark)

    Valisa, M.; Carraro, L.; Predebon, I.

    2011-01-01

    The scan of ion cyclotron resonant heating (ICRH) power has been used to systematically study the pump out effect of central electron heating on impurities such as Ni and Mo in H-mode low collisionality discharges in JET. The transport parameters of Ni and Mo have been measured by introducing...

  20. Colonic epithelial ion transport is not affected in patients with diverticulosis

    DEFF Research Database (Denmark)

    Osbak, Philip S; Bindslev, Niels; Poulsen, Steen S

    2007-01-01

    BACKGROUND: Colonic diverticular disease is a bothersome condition with an unresolved pathogenesis. It is unknown whether a neuroepithelial dysfunction is present. The aim of the study was two-fold; (1) to investigate colonic epithelial ion transport in patients with diverticulosis and (2) to adapt...... a miniaturized Modified Ussing Air-Suction (MUAS) chamber for colonic endoscopic biopsies. METHODS: Biopsies were obtained from the sigmoid part of the colon. 86 patients were included. All patients were referred for colonoscopy on suspicion of neoplasia and they were without pathological findings at colonoscopy...... with diverticulosis and that the MUAS chamber can be adapted for studies of human colonic endoscopic biopsies. Udgivelsesdato: 2007-null...

  1. Purine Restriction Induces Pronounced Translational Upregulation of the NT1 Adenosine/Pyrimidine Nucleoside Transporter in Leishmania major

    OpenAIRE

    Ortiz, Diana; Valdés, Raquel; Sanchez, Marco A.; Hayenga, Johanna; Elya, Carolyn; Detke, Siegfried; Landfear, Scott M.

    2010-01-01

    Leishmania and other parasitic protozoa are unable to synthesize purines de novo and are reliant upon purine nucleoside and nucleobase transporters to import preformed purines from their hosts. To study the roles of the four purine permeases NT1-NT4 in Leishmania major, null mutants in each transporter gene were prepared and the effect of each gene deletion on purine uptake was monitored. Deletion of the NT3 purine nucleobase transporter gene or both NT3 and the NT2 nucleoside transporter gen...

  2. STM and transport measurements of highly charged ion modified materials

    International Nuclear Information System (INIS)

    Pomeroy, J.M.; Grube, H.; Perrella, A.C.; Gillaspy, J.D.

    2007-01-01

    Careful measurements of highly charged ions (HCIs) colliding with gases and surfaces have provided glimpses of intense electronic interactions, but a comprehensive model for the interaction mechanisms, time scales, and resultant nano-features that bridges materials systems is yet to be realized. At the National Institute of Standards and Technology (NIST) electron beam ion trap (EBIT) facility, new apparatus is now connected to the HCI beamline to allow preparation of clean, atomically flat surfaces of single crystals, e.g. gold, tungsten and silicon, and deposition and patterning of thin films, e.g. high resistivity oxides, ferromagnetic metals, normal metals and superconductors. Experiments reported here focus on the electronic and morphological structure of HCI induced nano-features. Current activities are focused on using in situ scanning tunneling microscope (STM) on Au(1 1 1) and (separately) ex situ transport measurements to study electronic properties within HCI modified magnetic multilayer systems. Specifically, we are fabricating magnetic multilayers similar to magnetic tunnel junctions (MTJs) (important in advanced magnetic field sensors and superconducting Josephson junction devices) and using HCIs to adjust critical electronic properties. The electrical response of the tunnel junction to HCIs provides a novel approach to performing HCI-induced nanostructure ensemble measurements

  3. Ion transport Modeling in a Bipolar Membrane

    International Nuclear Information System (INIS)

    Kim, Jung Soo; Park, Kwang Heon; Kim, Kwang Wook

    2010-01-01

    The COL(Carbonate-based Oxidative Leaching) process is an environmentally-friendly technique for collecting only uranium from spent fuel with oxidation leaching/ precipitation of carbonate solution. The bipolar membrane used for the electrolyte circulation of the salt used in the COL process is a special form of ion exchange membrane which combines CEM(cation exchange membrane) and AEM(anion exchange membrane). After arranging positive ion exchange layer toward negative terminal and positive ion exchange layer toward positive terminal, then supply electricity, water molecules are decomposed into protons and hydroxyl ions by a strong electric field in the transition region inside bipolar membrane.1) In this study, a theoretical approach to increase the efficiency of Na + and NO3 - ion collecting device using bipolar membrane was taken and simulating using the COMSOL program was tried. The details of results are also discussed

  4. Structure of a Eukaryotic CLC Transporter Defines an Intermediate State in the Transport Cycle

    International Nuclear Information System (INIS)

    Feng, Liang; Campbell, Ernest B.; Hsiung, Yichun; MacKinnon, Roderick

    2010-01-01

    CLC proteins transport chloride (Cl - ) ions across cell membranes to control the electrical potential of muscle cells, transfer electrolytes across epithelia, and control the pH and electrolyte composition of intracellular organelles. Some members of this protein family are Cl - ion channels, whereas others are secondary active transporters that exchange Cl - ions and protons (H + ) with a 2:1 stoichiometry. We have determined the structure of a eukaryotic CLC transporter at 3.5 angstrom resolution. Cytoplasmic cystathionine beta-synthase (CBS) domains are strategically positioned to regulate the ion-transport pathway, and many disease-causing mutations in human CLCs reside on the CBS-transmembrane interface. Comparison with prokaryotic CLC shows that a gating glutamate residue changes conformation and suggests a basis for 2:1 Cl - /H + exchange and a simple mechanistic connection between CLC channels and transporters.

  5. Ion transport in roots of cotton seedlings under the effect of gamma-radiation

    International Nuclear Information System (INIS)

    Kasymov, A.K.

    1976-01-01

    It has been found that small doses (0.1 to 0.5kR) increase the ion transport (K + and Na + ) in seedling roots, and relatively high radiation doses (25 to 100 kR) markedly decrease it. ATPase activity varied with the dose. Mgsup(++)-, Na + - and K + -activated ATPases were more sensitive than a background ATPase. It is suggested that high radiation doses destroy the work of the sodium-potassium pump of cotton root cells inhibiting the activity of the transfer ATPase

  6. Induction accelerator development for heavy ion fusion

    International Nuclear Information System (INIS)

    Reginato, L.L.

    1993-05-01

    For approximately a decade, the Heavy Ion Fusion Accelerator Research (HIFAR) group at LBL has been exploring the use of induction accelerators with multiple beams as the driver for inertial fusion targets. Scaled experiments have investigated the transport of space charge dominated beams (SBTE), and the current amplification and transverse emittance control in induction linacs (MBE-4) with very encouraging results. In order to study many of the beam manipulations required by a driver and to further develop economically competitive technology, a proposal has been made in partnership with LLNL to build a 10 MeV accelerator and to conduct a series of experiments collectively called the Induction Linac System Experiments (ILSE). The major components critical to the ILSE accelerator are currently under development. We have constructed a full scale induction module and we have tested a number of amorphous magnetic materials developed by Allied Signal to establish an overall optimal design. The electric and magnetic quadrupoles critical to the transport and focusing of heavy ion beams are also under development The hardware is intended to be economically competitive for a driver without sacrificing any of the physics or performance requirements. This paper will concentrate on the recent developments and tests of the major components required by the ILSE accelerator

  7. Induction accelerator development for heavy ion fusion

    International Nuclear Information System (INIS)

    Reginato, L.L.

    1993-05-01

    For approximately a decade, the Heavy Ion Fusion Accelerator Research (HIFAR) group at LBL has been exploring the use of induction accelerators with multiple beams as the driver for inertial fusion targets. Scaled experiments have investigated the transport of space charge dominated beams (SBTE), and the current amplification and transverse emittance control in induction linacs (MBE-4) with very encouraging results. In order to study many of the beam manipulations required by a driver and to further develop economically competitive technology, a proposal has been made in partnership with LLNL to build a 10 MeV accelerator and to conduct a series of experiments collectively called the Induction Linac System Experiments (ILSE).The major components critical to the ILSE accelerator are currently under development. We have constructed a full scale induction module and we have tested a number of amorphous magnetic materials developed by Allied Signal to establish an overall optimal design. The electric and magnetic quadrupoles critical to the transport and focusing of heavy ion beams are also under development. The hardware is intended to be economically competitive for a driver without sacrificing any of the physics or performance requirements. This paper will concentrate on the recent developments and tests of the major components required by the ILSE accelerator

  8. The ELIMED transport and dosimetry beamline for laser-driven ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F., E-mail: francesco.romano@lns.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Schillaci, F.; Cirrone, G.A.P.; Cuttone, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Scuderi, V. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); ELI-Beamlines Project, Institute of Physics ASCR, v.v.i. (FZU), 182 21 Prague (Czech Republic); Allegra, L.; Amato, A.; Amico, A.; Candiano, G.; De Luca, G.; Gallo, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Giordanengo, S.; Guarachi, L. Fanola [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, Torino (Italy); Universita' di Torino, Dipartimento di Fisica, Via P. Giuria 1, Torino (Italy); Korn, G. [ELI-Beamlines Project, Institute of Physics ASCR, v.v.i. (FZU), 182 21 Prague (Czech Republic); Larosa, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Leanza, R. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Universita' di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Manna, R.; Marchese, V. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Marchetto, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, Torino (Italy); Margarone, D. [ELI-Beamlines Project, Institute of Physics ASCR, v.v.i. (FZU), 182 21 Prague (Czech Republic); and others

    2016-09-01

    A growing interest of the scientific community towards multidisciplinary applications of laser-driven beams has led to the development of several projects aiming to demonstrate the possible use of these beams for therapeutic purposes. Nevertheless, laser-accelerated particles differ from the conventional beams typically used for multiscipilinary and medical applications, due to the wide energy spread, the angular divergence and the extremely intense pulses. The peculiarities of optically accelerated beams led to develop new strategies and advanced techniques for transport, diagnostics and dosimetry of the accelerated particles. In this framework, the realization of the ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) beamline, developed by INFN-LNS (Catania, Italy) and that will be installed in 2017 as a part of the ELIMAIA beamline at the ELI-Beamlines (Extreme Light Infrastructure Beamlines) facility in Prague, has the aim to investigate the feasibility of using laser-driven ion beams for multidisciplinary applications. In this contribution, an overview of the beamline along with a detailed description of the main transport elements as well as the detectors composing the final section of the beamline will be presented.

  9. Zymosan-induced immune challenge modifies the stress response of hypoxic air-breathing fish (Anabas testudineus Bloch): Evidence for reversed patterns of cortisol and thyroid hormone interaction, differential ion transporter functions and non-specific immune response.

    Science.gov (United States)

    Simi, S; Peter, Valsa S; Peter, M C Subhash

    2017-09-15

    Fishes have evolved physiological mechanisms to exhibit stress response, where hormonal signals interact with an array of ion transporters and regulate homeostasis. As major ion transport regulators in fish, cortisol and thyroid hormones have been shown to interact and fine-tune the stress response. Likewise, in fishes many interactions have been identified between stress and immune components, but the physiological basis of such interaction has not yet delineated particularly in air-breathing fish. We, therefore, investigated the responses of thyroid hormones and cortisol, ion transporter functions and non-specific immune response of an obligate air-breathing fish Anabas testudineus Bloch to zymosan treatment or hypoxia stress or both, to understand how immune challenge modifies the pattern of stress response in this fish. Induction of experimental peritonitis in these fish by zymosan treatment (200ngg -1 ) for 24h produced rise in respiratory burst and lysozomal activities in head kidney phagocytes. In contrast, hypoxia stress for 30min in immune-challenged fish reversed these non-specific responses of head kidney phagocytes. The decline in plasma cortisol in zymosan-treated fish and its further suppression by hypoxia stress indicate that immune challenge suppresses the cortisol-driven stress response of this fish. Likewise, the decline in plasma T 3 and T 4 after zymosan-treatment and the rise in plasma T 4 after hypoxia stress in immune-challenged fish indicate a critical role for thyroid hormone in immune-stress response due to its differential sensitivity to both immune and stress challenges. Further, analysis of the activity pattern of ion-dependent ATPases viz. Na + /K + -ATPase, H + /K + -ATPase and Na + /NH 4 + -ATPase indicates a functional interaction of ion transport system with the immune response as evident in its differential and spatial modifications after hypoxia stress in immune-challenged fish. The immune-challenge that produced differential

  10. Ion Elevators and Escalators in Multilevel Structures for Lossless Ion Manipulations

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Yehia M.; Hamid, Ahmed M.; Cox, Jonathan T.; Garimella, Venkata BS; Smith, Richard D.

    2017-01-19

    We describe two approaches based upon ion ‘elevator’ and ‘escalator’ components that allow moving ions to different levels in structures for lossless ion manipulations (SLIM). Guided by ion motion simulations we designed elevator and escalator components providing essentially lossless transmission in multi-level designs based upon ion current measurements. The ion elevator design allowed ions to efficiently bridge a 4 mm gap between levels. The component was integrated in a SLIM and coupled to a QTOF mass spectrometer using an ion funnel interface to evaluate the m/z range transmitted as compared to transmission within a level (e.g. in a linear section). Mass spectra for singly-charged ions of m/z 600-2700 produced similar mass spectra for both elevator and straight (linear motion) components. In the ion escalator design, traveling waves (TW) were utilized to transport ions efficiently between two SLIM levels. Ion current measurements and ion mobility (IM) spectrometry analysis illustrated that ions can be transported between TW-SLIM levels with no significant loss of either ions or IM resolution. These developments provide a path for the development of multilevel designs providing e.g. much longer IM path lengths, more compact designs, and the implementation of much more complex SLIM devices in which e.g. different levels may operate at different temperatures or with different gases.

  11. Ion Elevators and Escalators in Multilevel Structures for Lossless Ion Manipulations.

    Science.gov (United States)

    Ibrahim, Yehia M; Hamid, Ahmed M; Cox, Jonathan T; Garimella, Sandilya V B; Smith, Richard D

    2017-02-07

    We describe two approaches based upon ion "elevator" and "escalator" components that allow moving ions to different levels in structures for lossless ion manipulations (SLIM). Guided by ion motion simulations, we designed elevator and escalator components based upon ion current measurements providing essentially lossless transmission in multilevel designs. The ion elevator design allowed ions to efficiently bridge a 4 mm gap between levels. The component was integrated in a SLIM and coupled to a QTOF mass spectrometer using an ion funnel interface to evaluate the m/z range transmitted as compared to transmission within a level (e.g., in a linear section). The analysis of singly charged ions of m/z 600-2700 produced similar mass spectra for both elevator and straight (linear motion) components. In the ion escalator design, traveling waves (TW) were utilized to transport ions efficiently between two SLIM levels. Ion current measurements and ion mobility (IM) spectrometry analysis illustrated that ions can be transported between TW-SLIM levels with no significant loss of either ions or IM resolution. These developments provide a path for the development of multilevel designs providing, e.g., much longer IM path lengths, more compact designs, and the implementation of much more complex SLIM devices in which, e.g., different levels may operate at different temperatures or with different gases.

  12. Time evolution of ion guiding through nanocapillaries in a PET polymer

    International Nuclear Information System (INIS)

    Stolterfoht, N.; Hellhammer, R.; Pesic, Z.D.; Hoffmann, V.; Bundesmann, J.; Petrov, A.; Fink, D.; Sulik, B.; Shah, M.; Dunn, K.; Pedregosa, J.; McCullough, R.W.

    2004-01-01

    The time evolution of transmitting 1.6 keV H + and 3 keV Ne 7+ ions through nanocapillaries (100 nm diameter and 10 μm length) in PET insulators was studied. By measuring the angular distribution of the transmitted projectiles it is shown that the majority of ions are transported in their initial charge state along the capillary axis even when the capillaries are tilted with respect to the incident beam direction. The results indicate ion guiding effects, which are produced by charge-up effects influencing the ion trajectories in a self-organizing manner. The data analysis reveals that a certain fraction of capillaries is inclined with respect to the foil normal. Emphasis is given to unravel the influence of the capillary inclination on the guided transmission of the different ions species

  13. Unified solution of the Boltzmann equation for electron and ion velocity distribution functions and transport coefficients in weakly ionized plasmas

    Science.gov (United States)

    Konovalov, Dmitry A.; Cocks, Daniel G.; White, Ronald D.

    2017-10-01

    The velocity distribution function and transport coefficients for charged particles in weakly ionized plasmas are calculated via a multi-term solution of Boltzmann's equation and benchmarked using a Monte-Carlo simulation. A unified framework for the solution of the original full Boltzmann's equation is presented which is valid for ions and electrons, avoiding any recourse to approximate forms of the collision operator in various limiting mass ratio cases. This direct method using Lebedev quadratures over the velocity and scattering angles avoids the need to represent the ion mass dependence in the collision operator through an expansion in terms of the charged particle to neutral mass ratio. For the two-temperature Burnett function method considered in this study, this amounts to avoiding the need for the complex Talmi-transformation methods and associated mass-ratio expansions. More generally, we highlight the deficiencies in the two-temperature Burnett function method for heavy ions at high electric fields to calculate the ion velocity distribution function, even though the transport coefficients have converged. Contribution to the Topical Issue "Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

  14. The Role of Dopant Ions on Charge Injection and Transport in Electrochemically Doped Quantum Dot Films.

    Science.gov (United States)

    Gudjonsdottir, Solrun; van der Stam, Ward; Kirkwood, Nicholas; Evers, Wiel H; Houtepen, Arjan J

    2018-05-16

    Control over the charge density is very important for implementation of colloidal semiconductor nanocrystals into various optoelectronic applications. A promising approach to dope nanocrystal assemblies is charge injection by electrochemistry, in which the charge compensating electrolyte ions can be regarded as external dopant ions. To gain insight into the doping mechanism and the role of the external dopant ions, we investigate charge injection in ZnO nanocrystal assemblies for a large series of charge compensating electrolyte ions with spectroelectrochemical and electrochemical transistor measurements. We show that charge injection is limited by the diffusion of cations in the nanocrystal films as their diffusion coefficient are found to be ∼7 orders of magnitude lower than those of electrons. We further show that the rate of charge injection depends strongly on the cation size and cation concentration. Strikingly, the onset of electron injection varies up to 0.4 V, depending on the size of the electrolyte cation. For the small ions Li + and Na + the onset is at significantly less negative potentials. For larger ions (K + , quaternary ammonium ions) the onset is always at the same, more negative potential, suggesting that intercalation may take place for Li + and Na + . Finally, we show that the nature of the charge compensating cation does not affect the source-drain electronic conductivity and mobility, indicating that shallow donor levels from intercalating ions fully hybridize with the quantum confined energy levels and that the reorganization energy due to intercalating ions does not strongly affect electron transport in these nanocrystal assemblies.

  15. The Role of Dopant Ions on Charge Injection and Transport in Electrochemically Doped Quantum Dot Films

    Science.gov (United States)

    2018-01-01

    Control over the charge density is very important for implementation of colloidal semiconductor nanocrystals into various optoelectronic applications. A promising approach to dope nanocrystal assemblies is charge injection by electrochemistry, in which the charge compensating electrolyte ions can be regarded as external dopant ions. To gain insight into the doping mechanism and the role of the external dopant ions, we investigate charge injection in ZnO nanocrystal assemblies for a large series of charge compensating electrolyte ions with spectroelectrochemical and electrochemical transistor measurements. We show that charge injection is limited by the diffusion of cations in the nanocrystal films as their diffusion coefficient are found to be ∼7 orders of magnitude lower than those of electrons. We further show that the rate of charge injection depends strongly on the cation size and cation concentration. Strikingly, the onset of electron injection varies up to 0.4 V, depending on the size of the electrolyte cation. For the small ions Li+ and Na+ the onset is at significantly less negative potentials. For larger ions (K+, quaternary ammonium ions) the onset is always at the same, more negative potential, suggesting that intercalation may take place for Li+ and Na+. Finally, we show that the nature of the charge compensating cation does not affect the source-drain electronic conductivity and mobility, indicating that shallow donor levels from intercalating ions fully hybridize with the quantum confined energy levels and that the reorganization energy due to intercalating ions does not strongly affect electron transport in these nanocrystal assemblies. PMID:29718666

  16. The two Na+ sites in the human serotonin transporter play distinct roles in the ion coupling and electrogenicity of transport.

    Science.gov (United States)

    Felts, Bruce; Pramod, Akula Bala; Sandtner, Walter; Burbach, Nathan; Bulling, Simon; Sitte, Harald H; Henry, L Keith

    2014-01-17

    Neurotransmitter transporters of the SLC6 family of proteins, including the human serotonin transporter (hSERT), utilize Na(+), Cl(-), and K(+) gradients to induce conformational changes necessary for substrate translocation. Dysregulation of ion movement through monoamine transporters has been shown to impact neuronal firing potentials and could play a role in pathophysiologies, such as depression and anxiety. Despite multiple crystal structures of prokaryotic and eukaryotic SLC transporters indicating the location of both (or one) conserved Na(+)-binding sites (termed Na1 and Na2), much remains uncertain in regard to the movements and contributions of these cation-binding sites in the transport process. In this study, we utilize the unique properties of a mutation of hSERT at a single, highly conserved asparagine on TM1 (Asn-101) to provide several lines of evidence demonstrating mechanistically distinct roles for Na1 and Na2. Mutations at Asn-101 alter the cation dependence of the transporter, allowing Ca(2+) (but not other cations) to functionally replace Na(+) for driving transport and promoting 5-hydroxytryptamine (5-HT)-dependent conformational changes. Furthermore, in two-electrode voltage clamp studies in Xenopus oocytes, both Ca(2+) and Na(+) illicit 5-HT-induced currents in the Asn-101 mutants and reveal that, although Ca(2+) promotes substrate-induced current, it does not appear to be the charge carrier during 5-HT transport. These findings, in addition to functional evaluation of Na1 and Na2 site mutants, reveal separate roles for Na1 and Na2 and provide insight into initiation of the translocation process as well as a mechanism whereby the reported SERT stoichiometry can be obtained despite the presence of two putative Na(+)-binding sites.

  17. The Two Na+ Sites in the Human Serotonin Transporter Play Distinct Roles in the Ion Coupling and Electrogenicity of Transport*

    Science.gov (United States)

    Felts, Bruce; Pramod, Akula Bala; Sandtner, Walter; Burbach, Nathan; Bulling, Simon; Sitte, Harald H.; Henry, L. Keith

    2014-01-01

    Neurotransmitter transporters of the SLC6 family of proteins, including the human serotonin transporter (hSERT), utilize Na+, Cl−, and K+ gradients to induce conformational changes necessary for substrate translocation. Dysregulation of ion movement through monoamine transporters has been shown to impact neuronal firing potentials and could play a role in pathophysiologies, such as depression and anxiety. Despite multiple crystal structures of prokaryotic and eukaryotic SLC transporters indicating the location of both (or one) conserved Na+-binding sites (termed Na1 and Na2), much remains uncertain in regard to the movements and contributions of these cation-binding sites in the transport process. In this study, we utilize the unique properties of a mutation of hSERT at a single, highly conserved asparagine on TM1 (Asn-101) to provide several lines of evidence demonstrating mechanistically distinct roles for Na1 and Na2. Mutations at Asn-101 alter the cation dependence of the transporter, allowing Ca2+ (but not other cations) to functionally replace Na+ for driving transport and promoting 5-hydroxytryptamine (5-HT)-dependent conformational changes. Furthermore, in two-electrode voltage clamp studies in Xenopus oocytes, both Ca2+ and Na+ illicit 5-HT-induced currents in the Asn-101 mutants and reveal that, although Ca2+ promotes substrate-induced current, it does not appear to be the charge carrier during 5-HT transport. These findings, in addition to functional evaluation of Na1 and Na2 site mutants, reveal separate roles for Na1 and Na2 and provide insight into initiation of the translocation process as well as a mechanism whereby the reported SERT stoichiometry can be obtained despite the presence of two putative Na+-binding sites. PMID:24293367

  18. PHITS: Particle and heavy ion transport code system, version 2.23

    International Nuclear Information System (INIS)

    Niita, Koji; Matsuda, Norihiro; Iwamoto, Yosuke; Sato, Tatsuhiko; Nakashima, Hiroshi; Sakamoto, Yukio; Iwase, Hiroshi; Sihver, Lembit

    2010-10-01

    A Particle and Heavy-Ion Transport code System PHITS has been developed under the collaboration of JAEA (Japan Atomic Energy Agency), RIST (Research Organization for Information Science and Technology) and KEK (High Energy Accelerator Research Organization). PHITS can deal with the transport of all particles (nucleons, nuclei, mesons, photons, and electrons) over wide energy ranges, using several nuclear reaction models and nuclear data libraries. Geometrical configuration of the simulation can be set with GG (General Geometry) or CG (Combinatorial Geometry). Various quantities such as heat deposition, track length and production yields can be deduced from the simulation, using implemented estimator functions called 'tally'. The code also has a function to draw 2D and 3D figures of the calculated results as well as the setup geometries, using a code ANGEL. Because of these features, PHITS has been widely used for various purposes such as designs of accelerator shielding, radiation therapy and space exploration. Recently PHITS introduces an event generator for particle transport parts in the low energy region. Thus, PHITS was completely rewritten for the introduction of the event generator for neutron-induced reactions in energy region less than 20 MeV. Furthermore, several new tallis were incorporated for estimation of the relative biological effects. This document provides a manual of the new PHITS. (author)

  19. Comparison of heavy-ion transport simulations: Collision integral in a box

    Science.gov (United States)

    Zhang, Ying-Xun; Wang, Yong-Jia; Colonna, Maria; Danielewicz, Pawel; Ono, Akira; Tsang, Manyee Betty; Wolter, Hermann; Xu, Jun; Chen, Lie-Wen; Cozma, Dan; Feng, Zhao-Qing; Das Gupta, Subal; Ikeno, Natsumi; Ko, Che-Ming; Li, Bao-An; Li, Qing-Feng; Li, Zhu-Xia; Mallik, Swagata; Nara, Yasushi; Ogawa, Tatsuhiko; Ohnishi, Akira; Oliinychenko, Dmytro; Papa, Massimo; Petersen, Hannah; Su, Jun; Song, Taesoo; Weil, Janus; Wang, Ning; Zhang, Feng-Shou; Zhang, Zhen

    2018-03-01

    Simulations by transport codes are indispensable to extract valuable physical information from heavy-ion collisions. In order to understand the origins of discrepancies among different widely used transport codes, we compare 15 such codes under controlled conditions of a system confined to a box with periodic boundary, initialized with Fermi-Dirac distributions at saturation density and temperatures of either 0 or 5 MeV. In such calculations, one is able to check separately the different ingredients of a transport code. In this second publication of the code evaluation project, we only consider the two-body collision term; i.e., we perform cascade calculations. When the Pauli blocking is artificially suppressed, the collision rates are found to be consistent for most codes (to within 1 % or better) with analytical results, or completely controlled results of a basic cascade code. In orderto reach that goal, it was necessary to eliminate correlations within the same pair of colliding particles that can be present depending on the adopted collision prescription. In calculations with active Pauli blocking, the blocking probability was found to deviate from the expected reference values. The reason is found in substantial phase-space fluctuations and smearing tied to numerical algorithms and model assumptions in the representation of phase space. This results in the reduction of the blocking probability in most transport codes, so that the simulated system gradually evolves away from the Fermi-Dirac toward a Boltzmann distribution. Since the numerical fluctuations are weaker in the Boltzmann-Uehling-Uhlenbeck codes, the Fermi-Dirac statistics is maintained there for a longer time than in the quantum molecular dynamics codes. As a result of this investigation, we are able to make judgements about the most effective strategies in transport simulations for determining the collision probabilities and the Pauli blocking. Investigation in a similar vein of other ingredients

  20. Classical convective energy transport in large gradient regions

    International Nuclear Information System (INIS)

    Hinton, F.L.

    1996-01-01

    Large gradients in density and temperature occur near the edge in H-mode plasmas and in the core of tokamak plasmas with negative central shear. Transport in these regions may be comparable to neoclassical. Standard neoclassical theory does not apply when the gradient lengths are comparable to an ion orbit excursion, or banana width. A basic question for neoclassical transport in large gradient regions is: do ion-ion collisions drive particle transport? Near the plasma edge in H-mode, where ion orbit loss requires that the ion energy transport be convective, neoclassical particle transport due to ion-ion collisions may play an important role. In negative central shear plasmas, where transport is inferred to be near neoclassical, it is important to have accurate predictions for the neoclassical rate of energy and particle transport. A simple 2-D slab model has been used, with a momentum-conserving collision operator, to show that ion-ion collisions do drive particle transport. When the gradients are large, the open-quotes field particleclose quotes contribution to the particle flux is non-local, and does not cancel the open-quotes test particleclose quotes contribution, which is local. Solutions of the kinetic equation are found which show that the steepness of the density profile, for increasing particle flux, is limited by orbit averaging. The gradient length is limited by the thermal gyroradius, and the convective energy flux is independent of ion temperature. This will allow an ion thermal runaway to occur, if there are no other ion energy loss mechanisms

  1. Enhanced Lithium Ion Transport by Superionic Pathways Formed on the Surface of Two-dimensional Structured Li0.85Na0.15V3O8 for High-Performance Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Lu, Xuena; Shang, Yu; Zhang, Sen; Deng, Chao

    2015-01-01

    Highlights: • Li 0.85 Na 0.15 V 3 O 8 nanosheet with superionic conductive layer was constructed. • Li x V 2 O 5 surface layer provides facile pathways for lithium migration. • Li x V 2 O 5 -Li 0.85 Na 0.15 V 3 O 8 composite displays good high rate capability. - Abstract: Poor ion transport and rate capability are the main challenges for LiV 3 O 8 as cathode material for lithium ion batteries. Here we report a novel strategy for enhancing lithium ion transport by building superionic pathways on the surface of Li 0.85 Na 0.15 V 3 O 8 nanosheet. The two-dimensional Li 0.85 Na 0.15 V 3 O 8 nanoparticle with an ion conductive layer of Li x V 2 O 5 on its surface is constructed by a modified sol–gel strategy with carefully controlled sodium incorporation and elements stoichiometry. Ultrathin Li x V 2 O 5 surface layer not only provides facile pathways for lithium migration, but also increases the structure stability during cycling. The Li x V 2 O 5 -Li 0.85 Na 0.15 V 3 O 8 composite displays good high rate capability of 172.3 mAh g −1 at 5C and excellent cycling stability of 98.9% over fifty cycles. This superior electrochemical property is attributed to the occupation of lithium site by Na + in LiV 3 O 8 host crystals and the surface superionic pathways of Li x V 2 O 5 phase. Therefore, the advantages of both high ion transport and the structure stabilization in present study put forward a new strategy for achieving high-performance LiV 3 O 8 electrode material with tailored nanoarchitecture

  2. Divalent Metal Ion Transport across Large Biological Ion Channels and Their Effect on Conductance and Selectivity

    Directory of Open Access Journals (Sweden)

    Elena García-Giménez

    2012-01-01

    Full Text Available Electrophysiological characterization of large protein channels, usually displaying multi-ionic transport and weak ion selectivity, is commonly performed at physiological conditions (moderate gradients of KCl solutions at decimolar concentrations buffered at neutral pH. We extend here the characterization of the OmpF porin, a wide channel of the outer membrane of E. coli, by studying the effect of salts of divalent cations on the transport properties of the channel. The regulation of divalent cations concentration is essential in cell metabolism and understanding their effects is of key importance, not only in the channels specifically designed to control their passage but also in other multiionic channels. In particular, in porin channels like OmpF, divalent cations modulate the efficiency of molecules having antimicrobial activity. Taking advantage of the fact that the OmpF channel atomic structure has been resolved both in water and in MgCl2 aqueous solutions, we analyze the single channel conductance and the channel selectivity inversion aiming to separate the role of the electrolyte itself, and the counterion accumulation induced by the protein channel charges and other factors (binding, steric effects, etc. that being of minor importance in salts of monovalent cations become crucial in the case of divalent cations.

  3. Cathodic delamination: Quantification of ionic transport rates along coating-steel interfaces

    DEFF Research Database (Denmark)

    Sørensen, P.A.; Dam-Johansen, Kim; Weinell, C.E.

    2010-01-01

    So-called cathodic delamination is one of the major modes of failure for organic coatings immersed in electrolyte solutions (e.g. seawater). Cathodic delamination occurs as a result of the electrochemical reactions, which takes place on a corroding steel surface. This means that reactants must...... continuously be transported from the bulk solution to the cathodic areas. The transport of sodium ions from a defect in the coating to the cathodic areas is generally considered the rate-determining step for cathodic delamination because the transport of oxygen and water through the coating is sufficient...... for the corrosion processes. In this work, a novel practical method, which allows direct estimation of the apparent diffusion coefficient of sodium ions in the ultrathin aqueous layer at the coating-steel interface, is described. The apparent diffusion coefficients estimated are of similar magnitude as previously...

  4. Development of intestinal ion-transporting mechanisms during smoltification and seawater acclimation in Atlantic salmon Salmo salar

    Science.gov (United States)

    Sundh, Henrik; Nilsen, Tom O.; Lindström, Jenny; Hasselberg-Frank, Linda; Stefansson, Sigurd O.; McCormick, Stephen D.; Sundell, K.

    2014-01-01

    This study investigated the expression of ion transporters involved in intestinal fluid absorption and presents evidence for developmental changes in abundance and tissue distribution of these transporters during smoltification and seawater (SW) acclimation of Atlantic salmonSalmo salar. Emphasis was placed on Na+, K+-ATPase (NKA) and Na+, K+, Cl− co-transporter (NKCC) isoforms, at both transcriptional and protein levels, together with transcription of chloride channel genes. The nka α1c was the dominant isoform at the transcript level in both proximal and distal intestines; also, it was the most abundant isoform expressed in the basolateral membrane of enterocytes in the proximal intestine. This isoform was also abundantly expressed in the distal intestine in the lower part of the mucosal folds. The protein expression of intestinal Nkaα1c increased during smoltification. Immunostaining was localized to the basal membrane of the enterocytes in freshwater (FW) fish, and re-distributed to a lateral position after SW entry. Two other Nka isoforms, α1a and α1b, were expressed in the intestine but were not regulated to the same extent during smoltification and subsequent SW transfer. Their localization in the intestinal wall indicates a house-keeping function in excitatory tissues. The absorptive form of the NKCC-like isoform (sub-apically located NKCC2 and/or Na+, Cl−co-transporter) increased during smoltification and further after SW transfer. The cellular distribution changed from a diffuse expression in the sub-apical regions during smoltification to clustering of the transporters closer to the apical membrane after entry to SW. Furthermore, transcript abundance indicates that the mechanisms necessary for exit of chloride ions across the basolateral membrane and into the lateral intercellular space are present in the form of one or more of three different chloride channels: cystic fibrosis transmembrane conductance regulator I and II and chloride channel

  5. Diacetyl and 2,3-pentanedione exposure of human cultured airway epithelial cells: Ion transport effects and metabolism of butter flavoring agents

    Energy Technology Data Exchange (ETDEWEB)

    Zaccone, Eric J. [Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV (United States); Goldsmith, W. Travis [Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV (United States); Shimko, Michael J. [Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV (United States); Wells, J.R.; Schwegler-Berry, Diane; Willard, Patsy A.; Case, Shannon L.; Thompson, Janet A. [Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV (United States); Fedan, Jeffrey S. [Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV (United States); Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV (United States)

    2015-12-15

    Inhalation of butter flavoring by workers in the microwave popcorn industry may result in “popcorn workers' lung.” In previous in vivo studies rats exposed for 6 h to vapor from the flavoring agents, diacetyl and 2,3-pentanedione, acquired flavoring concentration-dependent damage of the upper airway epithelium and airway hyporeactivity to inhaled methacholine. Because ion transport is essential for lung fluid balance, we hypothesized that alterations in ion transport may be an early manifestation of butter flavoring-induced toxicity. We developed a system to expose cultured human bronchial/tracheal epithelial cells (NHBEs) to flavoring vapors. NHBEs were exposed for 6 h to diacetyl or 2,3-pentanedione vapors (25 or ≥ 60 ppm) and the effects on short circuit current and transepithelial resistance (R{sub t}) were measured. Immediately after exposure to 25 ppm both flavorings reduced Na{sup +} transport, without affecting Cl{sup −} transport or Na{sup +},K{sup +}-pump activity. R{sub t} was unaffected. Na{sup +} transport recovered 18 h after exposure. Concentrations (100–360 ppm) of diacetyl and 2,3-pentanedione reported earlier to give rise in vivo to epithelial damage, and 60 ppm, caused death of NHBEs 0 h post-exposure. Analysis of the basolateral medium indicated that NHBEs metabolize diacetyl and 2,3-pentanedione to acetoin and 2-hydroxy-3-pentanone, respectively. The results indicate that ion transport is inhibited transiently in airway epithelial cells by lower concentrations of the flavorings than those that result in morphological changes of the cells in vivo or in vitro. - Highlights: • Butter flavoring vapor effects on human cultured airway epithelium were studied. • Na transport was reduced by a 6-h exposure to 25 ppm diacetyl and 2,3-pentanedione. • Na transport recovered 18 h after exposure. • > 60 ppm transepithelial voltage and resistance were abolished; cells were damaged. • Cells metabolized diacetyl and 2,3-pentanedione

  6. Diacetyl and 2,3-pentanedione exposure of human cultured airway epithelial cells: Ion transport effects and metabolism of butter flavoring agents

    International Nuclear Information System (INIS)

    Zaccone, Eric J.; Goldsmith, W. Travis; Shimko, Michael J.; Wells, J.R.; Schwegler-Berry, Diane; Willard, Patsy A.; Case, Shannon L.; Thompson, Janet A.; Fedan, Jeffrey S.

    2015-01-01

    Inhalation of butter flavoring by workers in the microwave popcorn industry may result in “popcorn workers' lung.” In previous in vivo studies rats exposed for 6 h to vapor from the flavoring agents, diacetyl and 2,3-pentanedione, acquired flavoring concentration-dependent damage of the upper airway epithelium and airway hyporeactivity to inhaled methacholine. Because ion transport is essential for lung fluid balance, we hypothesized that alterations in ion transport may be an early manifestation of butter flavoring-induced toxicity. We developed a system to expose cultured human bronchial/tracheal epithelial cells (NHBEs) to flavoring vapors. NHBEs were exposed for 6 h to diacetyl or 2,3-pentanedione vapors (25 or ≥ 60 ppm) and the effects on short circuit current and transepithelial resistance (R t ) were measured. Immediately after exposure to 25 ppm both flavorings reduced Na + transport, without affecting Cl − transport or Na + ,K + -pump activity. R t was unaffected. Na + transport recovered 18 h after exposure. Concentrations (100–360 ppm) of diacetyl and 2,3-pentanedione reported earlier to give rise in vivo to epithelial damage, and 60 ppm, caused death of NHBEs 0 h post-exposure. Analysis of the basolateral medium indicated that NHBEs metabolize diacetyl and 2,3-pentanedione to acetoin and 2-hydroxy-3-pentanone, respectively. The results indicate that ion transport is inhibited transiently in airway epithelial cells by lower concentrations of the flavorings than those that result in morphological changes of the cells in vivo or in vitro. - Highlights: • Butter flavoring vapor effects on human cultured airway epithelium were studied. • Na transport was reduced by a 6-h exposure to 25 ppm diacetyl and 2,3-pentanedione. • Na transport recovered 18 h after exposure. • > 60 ppm transepithelial voltage and resistance were abolished; cells were damaged. • Cells metabolized diacetyl and 2,3-pentanedione into acetoin and 2-OH-3-pentanone.

  7. High-ion temperature experiments with negative-ion-based NBI in LHD

    International Nuclear Information System (INIS)

    Takeiri, Y.; Morita, S.; Tsumori, K.; Ikeda, K.; Oka, Y.; Osakabe, M.; Nagaoka, K.; Goto, M.; Miyazawa, J.; Masuzaki, S.; Ashikawa, N.; Yokoyama, M.; Narihara, K.; Yamada, I.; Kubo, S.; Shimozuma, T.; Inagaki, S.; Tanaka, K.; Peterson, B.J.; Ida, K.; Kaneko, O.; Komori, A.; Murakami, S.

    2005-01-01

    High-Z plasmas have been produced with Ar- and/or Ne-gas fuelling to increase the ion temperature in the LHD plasmas heated with the high-energy negative-ion-based NBI. Although the electron heating is dominant in the high-energy NBI heating, the direct ion heating power is much enhanced effectively in low-density plasmas due to both an increase in the beam absorption (ionisation) power and a reduction of the ion density in the high-Z plasmas. Intensive Ne- and/or Ar-glow discharge cleaning works well to suppress dilution of the high-Z plasmas with the wall-absorbed hydrogen. As a result, the ion temperature increases with an increase in the ion heating power normalized by the ion density, and reaches 10 keV. An increase in the ion temperature is also observed with an addition of the centrally focused ECRH to the low-density and high-Z NBI plasma, suggesting improvement of the ion transport. The results obtained in the high-Z plasma experiments with the high-energy NBI heating indicate that an increase in the direct ion heating power and improvement of the ion transport are essential to the ion temperature rise, and that a high-ion temperature would be obtained as well in hydrogen plasmas with low-energy positive-NBI heating which is planed in near future in LHD. (author)

  8. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Friedman, A.

    1991-01-01

    This report describes the research status in the following areas of research in the field of heavy ion inertial fusion: (1) RF accelerators, storage rings, and synchrotrons; (2) induction linacs; (3) recirculation induction accelerator approach; (4) a new accelerator concept, the ''Mirrortron''; (5) general issues of transport, including beam merging, production of short, fat quadrupoles with nearly linear focusing, calculations of beam behaviour in image fields; 3-D electrostatic codes on drift compression with misalignments and transport around bends; (6) injectors, ion sources and RFQs, a.o., on the development of a 27 MHz RFQ to be used for the low energy portion of a new injector for all ions up to Uranium, and the development of a 2 MV carbon ion injector to provide 16 C + beams of 0.5 A each for ILSE; (7) beam transport from accelerator to target, reporting, a.o., the feasibility to suppress third-order aberrations; while Particle-in-Cell simulations on the propagation of a non-neutral ion beam in a low density gas identified photo-ionization by thermal X-rays from the target as an important source of defocusing; (9) heavy ion target studies; (10) reviewing experience with laser drivers; (11) ion cluster stopping and muon catalyzed fusion; (12) heavy ion systems, including the option of a fusion-fission burner. 1 tab

  9. Intense ion beams for inertial confinement fusion

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.

    1997-01-01

    Intense beams of light of heavy ions are being studied as inertial confinement fusion (ICF) drivers for high yield and energy. Heavy and light ions have common interests in beam transport, targets, and alternative accelerators. Self-pinched transport is being jointly studied. This article reviews the development of intense ion beams for ICF. Light-ion drivers are highlighted because they are compact, modular, efficient and low cost. Issues facing light ions are: (1) decreasing beam divergence; (2) increasing beam brightness; and (3) demonstrating self-pinched transport. Applied-B ion diodes are favored because of efficiency, beam brightness, perceived scalability, achievable focal intensity, and multistage capability. A light-ion concept addressing these issues uses: (1) an injector divergence of ≤ 24 mrad at 9 MeV; (2) two-stage acceleration to reduce divergence to ≤ 12 mrad at 35 MeV; and (3) self-pinched transport accepting divergences up to 12 mrad. Substantial progress in ion-driven target physics and repetitive ion diode technology is also presented. Z-pinch drivers are being pursued as the shortest pulsed power path to target physics experiments and high-yield fusion. However, light ions remain the pulsed power ICF driver of choice for high-yield fusion energy applications that require driver standoff and repetitive operation. 100 refs

  10. A novel ion transport membrane reactor for fundamental investigations of oxygen permeation and oxy-combustion under reactive flow conditions

    KAUST Repository

    Kirchen, Patrick; Apo, Daniel J.; Hunt, Anton; Ghoniem, Ahmed F.

    2013-01-01

    Ion transport membrane (ITM) reactors present an attractive technology for combined air separation and fuel conversion in applications such as syngas production, oxidative coupling or oxy-combustion, with the promise of lower capital and operating

  11. Progress in understanding heat transport at JET

    International Nuclear Information System (INIS)

    Mantica, P.; Garbet, X.; Angioni, C.

    2005-01-01

    This paper reports recent progress in understanding heat transport mechanisms either in conventional or advanced tokamak scenarios in JET. A key experimental tool has been the use of perturbative transport techniques, both by ICH power modulation and by edge cold pulses. The availability of such results has allowed careful comparison with theoretical modelling using 1D empirical or physics based transport models, 3D fluid turbulence simulations or gyrokinetic stability analysis. In conventional L- and H-mode plasmas the issue of temperature profile stiffness has been addressed. JET results are consistent with the concept of a critical inverse temperature gradient length above which transport is enhanced by the onset of turbulence. A threshold value R/L Te ∼5 has been found for the onset of stiff electron transport, while the level of electron stiffness appears to vary strongly with plasma parameters, in particular with the ratio of electron and ion heating: electrons become stiffer when ions are strongly heated, resulting in larger R/L Ti values. This behaviour has also been found theoretically, although quantitatively weaker than in experiments. In plasmas characterized by Internal Transport Barriers (ITB), the properties of heat transport inside the ITB layer and the ITB formation mechanisms have been investigated. The plasma current profile is found to play a major role in ITB formation. The effect of negative magnetic shear on electron and ion stabilization is demonstrated both experimentally and theoretically using turbulence codes. The role of rational magnetic surfaces in ITB triggering is well assessed experimentally, but still lacks a convincing theoretical explanation. Attempts to trigger an ITB by externally induced magnetic reconnection using saddle coils have shown that MHD islands in general do not produce a sufficient variation of ExB flow shear to lead to ITB formation. First results of perturbative transport in ITBs show that the ITB is a narrow

  12. Sensitive and specific fluorescent probes for functional analysis of the three major types of mammalian ABC transporters.

    Science.gov (United States)

    Lebedeva, Irina V; Pande, Praveen; Patton, Wayne F

    2011-01-01

    An underlying mechanism for multi drug resistance (MDR) is up-regulation of the transmembrane ATP-binding cassette (ABC) transporter proteins. ABC transporters also determine the general fate and effect of pharmaceutical agents in the body. The three major types of ABC transporters are MDR1 (P-gp, P-glycoprotein, ABCB1), MRP1/2 (ABCC1/2) and BCRP/MXR (ABCG2) proteins. Flow cytometry (FCM) allows determination of the functional expression levels of ABC transporters in live cells, but most dyes used as indicators (rhodamine 123, DiOC(2)(3), calcein-AM) have limited applicability as they do not detect all three major types of ABC transporters. Dyes with broad coverage (such as doxorubicin, daunorubicin and mitoxantrone) lack sensitivity due to overall dimness and thus may yield a significant percentage of false negative results. We describe two novel fluorescent probes that are substrates for all three common types of ABC transporters and can serve as indicators of MDR in flow cytometry assays using live cells. The probes exhibit fast internalization, favorable uptake/efflux kinetics and high sensitivity of MDR detection, as established by multidrug resistance activity factor (MAF) values and Kolmogorov-Smirnov statistical analysis. Used in combination with general or specific inhibitors of ABC transporters, both dyes readily identify functional efflux and are capable of detecting small levels of efflux as well as defining the type of multidrug resistance. The assay can be applied to the screening of putative modulators of ABC transporters, facilitating rapid, reproducible, specific and relatively simple functional detection of ABC transporter activity, and ready implementation on widely available instruments.

  13. ZnO nanoparticles modulate the ionic transport and voltage regulation of lysenin nanochannels.

    Science.gov (United States)

    Bryant, Sheenah L; Eixenberger, Josh E; Rossland, Steven; Apsley, Holly; Hoffmann, Connor; Shrestha, Nisha; McHugh, Michael; Punnoose, Alex; Fologea, Daniel

    2017-12-16

    The insufficient understanding of unintended biological impacts from nanomaterials (NMs) represents a serious impediment to their use for scientific, technological, and medical applications. While previous studies have focused on understanding nanotoxicity effects mostly resulting from cellular internalization, recent work indicates that NMs may interfere with transmembrane transport mechanisms, hence enabling contributions to nanotoxicity by affecting key biological activities dependent on transmembrane transport. In this line of inquiry, we investigated the effects of charged nanoparticles (NPs) on the transport properties of lysenin, a pore-forming toxin that shares fundamental features with ion channels such as regulation and high transport rate. The macroscopic conductance of lysenin channels greatly diminished in the presence of cationic ZnO NPs. The inhibitory effects were asymmetrical relative to the direction of the electric field and addition site, suggesting electrostatic interactions between ZnO NPs and a binding site. Similar changes in the macroscopic conductance were observed when lysenin channels were reconstituted in neutral lipid membranes, implicating protein-NP interactions as the major contributor to the reduced transport capabilities. In contrast, no inhibitory effects were observed in the presence of anionic SnO 2 NPs. Additionally, we demonstrate that inhibition of ion transport is not due to the dissolution of ZnO NPs and subsequent interactions of zinc ions with lysenin channels. We conclude that electrostatic interactions between positively charged ZnO NPs and negative charges within the lysenin channels are responsible for the inhibitory effects on the transport of ions. These interactions point to a potential mechanism of cytotoxicity, which may not require NP internalization.

  14. Plasma transport simulation modelling for helical confinement systems

    International Nuclear Information System (INIS)

    Yamazaki, K.; Amano, T.

    1992-01-01

    New empirical and theoretical transport models for helical confinement systems are developed on the basis of the neoclassical transport theory, including the effect of the radial electric field and of multi-helicity magnetic components as well as the drift wave turbulence transport for electrostatic and electromagnetic modes or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with experimental data from the Compact Helical System which indicate that the central transport coefficient of a plasma with electron cyclotron heating agrees with neoclassical axisymmetric value and the transport outside the half-radius is anomalous. On the other hand, the transport of plasmas with neutral beam injection heating is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these discharges with flat density profiles. For a detailed prediction of the plasma parameters in the Large Helical Device (LHD), 3-D equilibrium/1-D transport simulations including empirical or drift wave turbulence models are performed which suggest that the global confinement time of the LHD is determined mainly by the electron anomalous transport in the plasma edge region rather than by the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase in global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to half of the value used in the present scaling, as is the case in the H-mode of tokamak discharges, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius improves the plasma confinement and increases the fusion product by more than 50% by reducing the neoclassical asymmetric ion transport loss and increasing the plasma radius (10%). (author). 32 refs, 7 figs

  15. Molecular Dynamics Investigation of Cl− and Water Transport through a Eukaryotic CLC Transporter

    Science.gov (United States)

    Cheng, Mary Hongying; Coalson, Rob D.

    2012-01-01

    Early crystal structures of prokaryotic CLC proteins identified three Cl– binding sites: internal (Sint), central (Scen), and external (Sext). A conserved external GLU (GLUex) residue acts as a gate competing for Sext. Recently, the first crystal structure of a eukaryotic transporter, CmCLC, revealed that in this transporter GLUex competes instead for Scen. Here, we use molecular dynamics simulations to investigate Cl– transport through CmCLC. The gating and Cl–/H+ transport cycle are inferred through comparative molecular dynamics simulations with protonated and deprotonated GLUex in the presence/absence of external potentials. Adaptive biasing force calculations are employed to estimate the potential of mean force profiles associated with transport of a Cl– ion from Sext to Sint, depending on the Cl– occupancy of other sites. Our simulations demonstrate that protonation of GLUex is essential for Cl– transport from Sext to Scen. The Scen site may be occupied by two Cl– ions simultaneously due to a high energy barrier (∼8 Kcal/mol) for a single Cl– ion to translocate from Scen to Sint. Binding two Cl– ions to Scen induces a continuous water wire from Scen to the extracellular solution through the side chain of the GLUex gate. This may initiate deprotonation of GLUex, which then drives the two Cl– ions out of Scen toward the intracellular side via two putative Cl– transport paths. Finally, a conformational cycle is proposed that would account for the exchange stoichiometry. PMID:22455919

  16. Methods for using novel cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Science.gov (United States)

    Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae

    2016-01-12

    Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  17. Structure and dynamics of aqueous solution of uranyl ions

    International Nuclear Information System (INIS)

    Chopra, Manish; Choudhury, Niharendu

    2014-01-01

    The present work describes a molecular dynamics simulation study of structure and dynamics of aqueous solution of uranyl ions in water. Structural properties of the system in terms of radial distribution functions and dynamical characteristics as obtained through velocity autocorrelation function and mean square displacements have been analyzed. The results for radial distribution functions show the oxygen of water to form the first solvation shell at 2.4 Å around the uranium atom, whereas the hydrogen atoms of water are distributed around the uranium atom with the major peak at around 3.0 Å. Analyses of transport behaviors of ions and water through MSD indicates that the diffusion of the uranyl ion is much less as compared to that of the water molecules. It is also observed that the dynamical behavior of water molecules gets modified due to the presence of uranyl ion. The effect of increase in concentration of uranyl ions on the structure and dynamics of water molecules is also studied

  18. Transport of heavy ions in inertial confinement fusion

    International Nuclear Information System (INIS)

    Parvazian, A.; Shahbandari Gouchani, A.

    2007-01-01

    In this article we have investigated the interaction of heavy ions (U) with a target (Au). In inertial confinement fusion method Interaction between heavy ion beam and target was simulated, Numerical analysis of the Boltzmann Fokker Planck equation used in order to optimize the material of the target and Energy deposition of ion beam to electrons and ions of target and The thickness of the target were calculated.

  19. Momentum transport during reconnection events in the MST reversed field pinch

    Science.gov (United States)

    Kuritsyn, Alexey

    2008-11-01

    During reconnection events in the MST reversed field pinch momentum parallel to the magnetic field is observed to be suddenly transported from the core to the edge. This occurs simultaneous with a surge in multiple resistive tearing instabilities. From measurements of the plasma flow and the forces arising from tearing instability (Maxwell and Reynolds stresses) we have established that tearing instabilities induce strong momentum transport. Comparison with nonlinear MHD computation of tearing fluctuations supports this conclusion, although it also indicates that effects beyond single-fluid MHD are likely to be important. The radial profile of the parallel velocity is reconstructed from a combination of diagnostics: Rutherford scattering of injected neutral atoms (for majority ions), charge exchange recombination spectroscopy (for minority ions), and Mach probes (for edge majority ion flow). Maxwell stress has been measured previously in the core by laser Faraday rotation, and both stresses are measured in the edge with probes. A surprising observation is that both the Maxwell and Reynolds stresses are each ten times larger than needed to account for the observed momentum transport (i.e., larger than the inertial and viscous terms in the momentum balance equation). However, they are oppositely directed such that their difference is approximately equal to the rate of change of plasma momentum. The large magnitude of the individual stresses is not predicted by MHD theory; the Maxwell stress also produces a Hall dynamo effect, implying that a two-fluid theory might be necessary for a complete description of momentum transport. To test further the relation between momentum transport and tearing fluctuations, momentum transport was measured perturbatively, by altering plasma rotation with inserted biased electrodes. Biasing is applied in plasmas with large tearing activity and improved confinement plasmas in which tearing activity is reduced by inductive current profile

  20. Regulation of ion transport via apical purinergic receptors in intact rabbit airway epithelium

    DEFF Research Database (Denmark)

    Poulsen, Asser Nyander; Klausen, Thomas Levin; Pedersen, Peter Steen

    2005-01-01

    and unidirectional Cl- fluxes decreased significantly. The results suggest that nucleotides released to the airway surface liquid exert an autocrine regulation of epithelial NaCl absorption mainly by inhibiting the amiloride-sensitive epithelial Na+ channel (ENaC) and paracellular anion conductance via a P2Y......We investigated purinergic receptors involved in ion transport regulation in the intact rabbit nasal airway epithelium. Stimulation of apical membrane P2Y receptors with ATP or UTP (200 microM) induced transient increases in short-circuit current (Isc) of 13 and 6% followed by sustained inhibitions...

  1. Mass transport of heavy metal ions and radon in gels used as sealing agents in containment technologies

    International Nuclear Information System (INIS)

    Lakatos, I.; Bauer, K.; Lakatos-Szabo, J.; Kretzschmar, H.J.

    1997-01-01

    The diffusion and hydrodynamic mass transport of multivalent cations, mostly Cr(III) and Cr(VI) ions and radon in polymer/silicate gels and Montanwax emulsions were studied. It was concluded that the self-conforming gels may decrease the hydrodynamic mass transport in porous and fractured media by 4-6 orders of magnitude. In water saturated systems, however, the diffusion transport can be restricted by hydrogels only to a moderate extent. On the other hand, the high and selective retention capacity of gels towards different diffusing species may open new vistas in the sealing technologies. Similar results were obtained for transport phenomena of radon. The almost perfect quenching process of radon and its nuclides in gels and emulsions further enhances the positive effects of the encapsulation methods. The laboratory experiments provided valuable new information to design the different containment technologies

  2. Mass transport of heavy metal ions and radon in gels used as sealing agents in containment technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, I.; Bauer, K.; Lakatos-Szabo, J. [Research Lab. for Mining Chemistry, Miskolc-Egyetemvaros (Hungary); Kretzschmar, H.J. [DBI Gas- und Umwelttechnik GmbH, Feiberg (Germany)

    1997-12-31

    The diffusion and hydrodynamic mass transport of multivalent cations, mostly Cr(III) and Cr(VI) ions and radon in polymer/silicate gels and Montanwax emulsions were studied. It was concluded that the self-conforming gels may decrease the hydrodynamic mass transport in porous and fractured media by 4-6 orders of magnitude. In water saturated systems, however, the diffusion transport can be restricted by hydrogels only to a moderate extent. On the other hand, the high and selective retention capacity of gels towards different diffusing species may open new vistas in the sealing technologies. Similar results were obtained for transport phenomena of radon. The almost perfect quenching process of radon and its nuclides in gels and emulsions further enhances the positive effects of the encapsulation methods. The laboratory experiments provided valuable new information to design the different containment technologies.

  3. Intense ion beam transport in magnetic quadrupoles: Experiments on electron and gas effects

    International Nuclear Information System (INIS)

    Seidl, P.A.; Molvik, A.W.; Bieniosek, F.M.; Cohen, R.H.; Faltens, A.; Friedman, A.; Kireef Covo, M.; Lund, S.M.; Prost, L.; Vay, J-L.

    2004-01-01

    Heavy-ion induction linacs for inertial fusion energy and high-energy density physics have an economic incentive to minimize the clearance between the beam edge and the aperture wall. This increases the risk from electron clouds and gas desorbed from walls. We have measured electron and gas emission from 1 MeV K + incident on surfaces near grazing incidence on the High-Current Experiment (HCX) at LBNL. Electron emission coefficients reach values >100, whereas gas desorption coefficients are near 10 4 . Mitigation techniques are being studied: A bead-blasted rough surface reduces electron emission by a factor of 10 and gas desorption by a factor of 2. We also discuss the results of beam transport (of 0.03-0.18 A K + ) through four pulsed room-temperature magnetic quadrupoles in the HCX at LBNL. Diagnostics are installed on HCX, between and within quadrupole magnets, to measure the beam halo loss, net charge and expelled ions, from which we infer gas density, electron trapping, and the effects of mitigation techniques. A coordinated theory and computational effort has made significant progress towards a self-consistent model of positive-ion beam and electron dynamics. We are beginning to compare experimental and theoretical results

  4. Guiding of slow neon and molecular hydrogen ions through nanocapillaries in PET

    International Nuclear Information System (INIS)

    Stolterfoht, N.; Hellhammer, R.; Sobocinski, P.; Pesic, Z.D.; Bundesmann, J.; Sulik, B.; Shah, M.B.; Dunn, K.; Pedregosa, J.; McCullough, R.W.

    2005-01-01

    The transmission profiles of atomic 3keV Ne 7+ ions and molecular 1keV H 2 + and H 3 + ions passing through nanocapillaries were studied. Capillaries with a diameter of 100nm and a length of 10μm in insulating PET polymers were used. The high aspect ratio of 100 is achieved by the method of etching ion tracks produced by high-energy xenon impact. The angular distributions of the transmitted projectiles show that the majority of ions are transported in their initial charge state along the capillary axis even when the capillaries are tilted with respect to the incident beam direction. This result indicates ion-guiding, which is produced by charge-up effects influencing the ion trajectories in a self-supporting manner. The guiding effects are found to be different for highly charged neon and singly charged molecular hydrogen. Negligible fragmentation of the molecular ions was observed

  5. Transition flow ion transport via integral Boltzmann equation

    International Nuclear Information System (INIS)

    Darcie, T.E.

    1983-10-01

    A new approach is developed to solve the Integral Boltzmann Equation for the evolving velocity distribution of a source of ions, undergoing electrostatic acceleration through a neutral gas target. The theory is applicable to arbitrarily strong electric fields, any ion/neutral mass ratio greater than unity, and is not limited to spatially isotropic gas targets. A hard sphere collision model is used, with a provision for inelasticity. Both axial and radial velocity distributions are calculated for applications where precollision radial velocities are negligible, as is the case for ion beam extractions from high pressure sources. Theoretical predictions are tested through an experiment in which an atmospheric pressure ion source is coupled to a high vacuum energy analyser. Excellent agreement results for configurations in which the radial velocity remains small. Velocity distributions are applied to predicting the efficiency of coupling an atmospheric pressure ion source to a quadrupole mass spectrometer and results clearly indicate the most desirable extracting configuration. A method is devised to calculate ion-molecule hard sphere collision cross sections for easily fragmented organic ions

  6. Analysis of the current–voltage curves and saturation currents in burner-stabilised premixed flames with detailed ion chemistry and transport models

    KAUST Repository

    Belhi, Memdouh

    2018-05-22

    Current-voltage, or i–V, curves are used in combustion to characterise the ionic structure of flames. The objective of this paper is to develop a detailed modelling framework for the quantitative prediction of the i–V curves in methane/air flames. Ion and electron transport coefficients were described using methods appropriate for charged species interactions. An ionic reaction mechanism involving cations, anions and free electrons was used, together with up-to-date rate coefficients and thermodynamic data. Because of the important role of neutral species in the ion production process, its prediction by the detailed AramcoMech 1.4 mechanism was optimised by using available experimental measurements. Model predictions were evaluated by comparing to i–V curves measured in atmospheric-pressure, premixed, burner-stabilised flames. A detailed evaluation of the reliability of ion kinetic and transport parameters adopted was performed. The model provides good quantitative agreement with experimental data for various conditions.

  7. Suppression of adenosine-activated chloride transport by ethanol in airway epithelia.

    Directory of Open Access Journals (Sweden)

    Sammeta V Raju

    Full Text Available Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (I(SC in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR, a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A(2B adenosine receptor (A(2BAR, largely abolished the adenosine-stimulated chloride transport, suggesting that A(2BAR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A(2BAR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections.

  8. Polymorphism of the serotonin transporter gene (5-HTTLPR) in major depressive disorder patients in Malaysia.

    Science.gov (United States)

    Mohamed Saini, Suriati; Muhamad Radzi, Azizah; Abdul Rahman, Abdul Hamid

    2012-06-01

    The serotonin transporter promoter (5-HTTLPR) is a potential susceptibility locus in the pathogenesis of major depressive disorder. However, data from Malaysia is lacking. The present study aimed to determine the association between the homozygous short variant of the serotonin transporter promoter gene (5-HTTLPR) with major depressive disorder. This is a candidate gene case-control association study. The sample consists of 55 major depressive disorder probands and 66 controls. They were Malaysian descents and were unrelated. The Axis I diagnosis was determined using Mini International Neuropsychiatric Interview (M.I.N.I.). The control group comprised healthy volunteers without personal psychiatric history and family history of mood disorders. Participants' blood was sent to the Institute Medical Research for genotyping. The present study failed to detect an association between 5-HTTLPR ss genotype with major depressive disorder (χ(2)  = 3.67, d.f. = 1, P = 0.055, odds ratio 0.25, 95% confidence interval = 0.07-1.94). Sub-analysis revealed that the frequency of l allele in healthy controls was higher (78.0%) than that of Caucasian and East Asian population. However, in view of the small sample size this study may be prone to type II error (and type I error). This preliminary study suggests that the homozygous short variant of the 5-HTTLPR did not appear to be a risk factor for increasing susceptibility to major depressive disorder. Copyright © 2012 Blackwell Publishing Asia Pty Ltd.

  9. Heavy ion inertial fusion: interface between target gain, accelerator phase space and reactor beam transport revisited

    International Nuclear Information System (INIS)

    Barletta, W.A.; Fawley, W.M.; Judd, D.L.; Mark, J.W.K.; Yu, S.S.

    1984-01-01

    Recently revised estimates of target gain have added additional optimistic inputs to the interface between targets, accelerators and fusion chamber beam transport. But it remains valid that neutralization of the beams in the fusion chamber is useful if ion charge state Z > 1 or if > 1 kA per beamlet is to be propagated. Some engineering and economic considerations favor higher currents

  10. Experimental study of high current negative ion sources D- / H-. Analysis based on the simulation of the negative ion transport in the plasma source

    International Nuclear Information System (INIS)

    Riz, D.

    1996-01-01

    In the frame of the development of a neutral beam injection system able to work the ITER tokamak (International Thermonuclear Experimental Reactor), two negative ion sources, Dragon and Kamaboko, have been installed on the MANTIS test bed in Cadarache, and studies in order to extract 20 mA/cm 2 of D - . The two production modes of negative ions have been investigated: volume production; surface production after cesium injection in the discharge. Experiments have shown that cesium seeding is necessary in order to reach the requested performances for ITER. 20 mA/cm 2 have been extracted from the Kamaboko source for an arc power density of 2.5 kW/liter. Simultaneously, a code called NIETZSCHE has been developed to simulate the negative ions transport in the source plasma, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3D motion equation, while the atomic processes of destruction, of elastic collisions H - /H + and of charge exchange H - /H 0 are handled at each time step by a Monte Carlo procedure. The code allows to obtain the extraction probability of a negative ion produced at a given location. The calculations performed with NIETZSCHE have allowed to explain several phenomena observed on negative ion sources, such as the isotopic effect H - /D - and the influence of the polarisation of the plasma grid and of the magnetic filter on the negative ions current. The code has also shown that, in the type of sources contemplated for ITER, working with large arc power densities (> 1 kW/liter), only negative ions produced in volume at a distance lower that 2 cm from the plasma grid and those produced at the grid surface have a chance of being extracted. (author)

  11. Transport of radioactive ion beams and related safety issues: The {sup 132}Sn{sup +} case study

    Energy Technology Data Exchange (ETDEWEB)

    Osswald, F., E-mail: francis.osswald@iphc.cnrs.fr; Bouquerel, E.; Boutin, D.; Dinkov, A.; Sellam, A. [IPHC/IN2P3/CNRS, University of Strasbourg, 67037 Strasbourg (France); Kazarinov, N. [JINR/FLNR, 141980 Dubna (Russian Federation); Perrot, L. [IPNO/IN2P3/CNRS, University of Paris-Sud-11, 91406 Orsay (France)

    2014-12-15

    The transport of intense radioactive ion beam currents requires a careful design in order to limit the beam losses, the contamination and thus the dose rates. Some investigations based on numerical models and calculations have been performed in the framework of the SPIRAL 2 project to evaluate the performance of a low energy beam transport line located between the isotope separation on line (ISOL) production cell and the experiment areas. The paper presents the results of the transverse phase-space analysis, the beam losses assessment, the resulting contamination, and radioactivity levels. They show that reasonable beam transmission, emittance growth, and dose rates can be achieved considering the current standards.

  12. Temperature dependent dielectric properties and ion transportation in solid polymer electrolyte for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sengwa, R. J., E-mail: rjsengwa@rediffmail.com; Dhatarwal, Priyanka, E-mail: dhatarwalpriyanka@gmail.com; Choudhary, Shobhna, E-mail: shobhnachoudhary@rediffmail.com [Dielectric Research Laboratory, Department of Physics, Jai Narain Vyas University, Jodhpur – 342 005 (India)

    2016-05-06

    Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF{sub 4}) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governed by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10{sup −6} S cm{sup −1} which suggests the suitability of the SPE film for rechargeable lithium batteries.

  13. Ion transport properties of lithium ionic liquids and their ion gels

    International Nuclear Information System (INIS)

    Shobukawa, Hitoshi; Tokuda, Hiroyuki; Susan, Md. Abu Bin Hasan; Watanabe, Masayoshi

    2005-01-01

    A new series of lithium ionic liquids were prepared by introducing of two electron-withdrawing trifluoroacetyl groups in borate salts containing two methoxy-oligo(ethylene oxide) groups in the structures. Successive substitution reactions of oligo-ethylene glycol monomethyl ether and trifluroacetic acid from LiBH 4 yielded the lithium salts, which were clear and colorless liquids at room temperature. The fundamental physicochemical properties, such as density, thermal property, viscosity, ionic conductivity, self-diffusion coefficients, and electrochemical stability, were measured. The lithium ionic liquids had self-dissociation ability and conducted ions even in the absence of organic solvents. New polymer electrolytes, named 'ion gels', were prepared by radical cross-linking reactions of a poly(ethylene oxide-co-propylene oxide)tri-acrylate macromonomer in the presence the lithium ionic liquid. An increase in the glass transition temperatures (T g ) of the ion gels was very small even with increasing lithium ionic liquid concentration, and the T g 's were lower than that of the ionic liquid itself. The ionic conductivity of the ion gels surpassed that of the lithium ionic liquid in the bulk at certain compositions

  14. Novel Nanocomposite Materials for Advanced Li-Ion Rechargeable Batteries

    Directory of Open Access Journals (Sweden)

    Chuan Cai

    2009-09-01

    Full Text Available Nanostructured materials lie at the heart of fundamental advances in efficient energy storage and/or conversion, in which surface processes and transport kinetics play determining roles. Nanocomposite materials will have a further enhancement in properties compared to their constituent phases. This Review describes some recent developments of nanocomposite materials for high-performance Li-ion rechargeable batteries, including carbon-oxide nanocomposites, polymer-oxide nanocomposites, metal-oxide nanocomposites, and silicon-based nanocomposites, etc. The major goal of this Review is to highlight some new progress in using these nanocomposite materials as electrodes to develop Li-ion rechargeable batteries with high energy density, high rate capability, and excellent cycling stability.

  15. Ion-temperature-gradient-driven modes in bi-ion magnetoplasma

    Energy Technology Data Exchange (ETDEWEB)

    Batool, Nazia; Mirza, Arshad M [Theoretical Plasma Physics Group, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Qamar, Anisa [Department of Physics, Peshawar University, NWFP 25120 (Pakistan)], E-mail: nazia.batool@ncp.edu.pk

    2008-12-15

    The toroidal ion-temperature-gradient (ITG)-driven electrostatic drift waves are investigated for bi-ion plasmas with equilibrium density, temperature and magnetic field gradients. Using Braginskii's transport equations for the ions and Boltzmann distributed electrons, the mode coupling equations are derived. New ITG-driven modes are shown to exist. The results of the present study should be helpful to understand several wave phenomena in space and tokamak plasmas.

  16. Membrane Transporters: Structure, Function and Targets for Drug Design

    Science.gov (United States)

    Ravna, Aina W.; Sager, Georg; Dahl, Svein G.; Sylte, Ingebrigt

    Current therapeutic drugs act on four main types of molecular targets: enzymes, receptors, ion channels and transporters, among which a major part (60-70%) are membrane proteins. This review discusses the molecular structures and potential impact of membrane transporter proteins on new drug discovery. The three-dimensional (3D) molecular structure of a protein contains information about the active site and possible ligand binding, and about evolutionary relationships within the protein family. Transporters have a recognition site for a particular substrate, which may be used as a target for drugs inhibiting the transporter or acting as a false substrate. Three groups of transporters have particular interest as drug targets: the major facilitator superfamily, which includes almost 4000 different proteins transporting sugars, polyols, drugs, neurotransmitters, metabolites, amino acids, peptides, organic and inorganic anions and many other substrates; the ATP-binding cassette superfamily, which plays an important role in multidrug resistance in cancer chemotherapy; and the neurotransmitter:sodium symporter family, which includes the molecular targets for some of the most widely used psychotropic drugs. Recent technical advances have increased the number of known 3D structures of membrane transporters, and demonstrated that they form a divergent group of proteins with large conformational flexibility which facilitates transport of the substrate.

  17. Unbiased simulations reveal the inward-facing conformation of the human serotonin transporter and Na+ ion release

    DEFF Research Database (Denmark)

    Koldsø, Heidi; Noer, Pernille Rimmer; Grouleff, Julie

    2011-01-01

    transporter has resulted in homology models of the monoamine transporters. Here we present extended molecular dynamics simulations of an experimentally supported homology model of hSERT with and without the natural substrate yielding a total of more than 1.5 µs of simulation of the protein dimer....... The simulations reveal a transition of hSERT from an outward-facing occluded conformation to an inward-facing conformation in a one-substrate-bound state. Simulations with a second substrate in the proposed symport effector site did not lead to conformational changes associated with translocation. The central...... substrate binding site becomes fully exposed to the cytoplasm leaving both the Na+-ion in the Na2-site and the substrate in direct contact with the cytoplasm through water interactions. The simulations reveal how sodium is released and show indications of early events of substrate transport. The notion...

  18. Simulation of the CERN GTS-LHC ECR ion source extraction system with lead and argon ion beams

    CERN Document Server

    Toivanen, V; Küchler, D; Lombardi, A; Scrivens, R; Stafford-Haworth, J

    2014-01-01

    A comprehensive study of beam formation and beam transport has been initiated in order to improve the performance of the CERN heavy ion injector, Linac3. As part of this study, the ion beam extraction system of the CERN GTS-LHC 14.5 GHz Electron Cyclotron Resonance Ion Source (ECRIS) has been modelled with the ion optical code IBSimu. The simulations predict self-consistently the triangular and hollow beam structures which are often observed experimentally with ECRIS ion beams. The model is used to investigate the performance of the current extraction system and provides a basis for possible future improvements. In addition, the extraction simulation provides a more realistic representation of the initial beam properties for the beam transport simulations, which aim to identify the performance bottle necks along the Linac3 low energy beam transport. The results of beam extraction simulations with Pb and Ar ion beams from the GTS-LHC will be presented and compared with experimental observations.

  19. The obtaining and properties of asymmetric ion transport membrane for separating of oxygen from air

    Science.gov (United States)

    Solovieva, A. A.; Kulbakin, I. V.

    2018-04-01

    The bilayer oxygen-permeable membrane, consisting of a thin-film dense composite based on Co3O4 - 36 wt. % Bi2O3, and of a porous ceramic substrate of Co2SiO4, was synthesized and characterized. The way for obtaining of porous ceramic based on cobalt silicate was found, while the microstructure and the mechanical properties of porous ceramic were studied. Layered casting with post-pressing was used to cover the surface of porous support of Co2SiO4 by the Co3O4 - 36 wt. % Bi2O3 - based film. Transport properties of the asymmetric membrane have been studied, the kinetic features of oxygen transport have been established, and the characteristic thickness of the membrane has been estimated. The methods to prevent the high-temperature creep of ion transport membranes based on solid/molten oxides, which are the promising ones for obtaining of pure oxygen from air, are proposed and discussed.

  20. Operando XRD studies as a tool for determination of transport parameters of mobile ions in electrode materials

    Science.gov (United States)

    Kondracki, Łukasz; Kulka, Andrzej; Świerczek, Konrad; Ziąbka, Magdalena; Molenda, Janina

    2017-11-01

    In this work a detailed operando XRD investigations of structural properties of LixMn2O4 manganese spinel are shown to be a complementary, successful method of determination of diffusion coefficient D and surface exchange coefficient k in the working electrode. Kinetics of lithium ions transport are estimated on the basis of rate of structural changes of the cathode material during a relaxation stage after a high current charge, i.e. during structural relaxation of the material. The presented approach seems to be applicable as a complementary method of determination of transport coefficients for all intercalation-type electrode materials.