WorldWideScience

Sample records for major hydrogeological zone

  1. Fault zone hydrogeology

    Science.gov (United States)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and address remaining challenges by co-locating study areas, sharing approaches and fusing data, developing conceptual models from hydrogeologic data, numerical modeling, and training interdisciplinary scientists.

  2. Hydrogeology of the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Montazer, P.; Wilson, W.E.

    1985-01-01

    The unsaturated volcanic tuff beneath Yucca Mountain, Nevada, is being evaluated by the US Department of Energy as a host rock for a potential mined geologic repository for high-level radioactive waste. Assessment of site suitability needs an efficient and focused investigative program. A conceptual hydrogeologic model that simulates the flow of fluids through the unsaturated zone at Yucca Mountain was developed to guide the program and to provide a basis for preliminary assessment of site suitability. The study was made as part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy. Thickness of the unsaturated zone is about 1640 to 2460 feet (500 to 750 meters). Based on physical properties, the rocks in the unsaturated zone are grouped for the purpose of this paper into five informal hydrogeologic units. From top to bottom these units are: Tiva Canyon welded unit, Paintbrush nonwelded unit. Topopah Spring welded unit, Calico Hills nonwelded unit, and Crater Flat unit. Welded units have a mean fracture density of 8 to 40 fractures per unit cubic meter, mean matrix porosities of 12 to 23%, matrix hydraulic conductivities with geometric means ranging from 6.5 x 10 -6 to 9.8 x 10 -6 foot per day (2 x 10 -6 to 3 x 10 -6 meter per day), and bulk hydraulic conductivities of 0.33 to 33 feet per day (0.1 to 10 meters per day). The nonwelded units have a mean fracture density of 1 to 3 fractures per unit cubic meter, mean matrix porosities of 31 to 46%, and saturated hydraulic conductivities with geometric means ranging from 2.6 x 10 -5 to 2.9 x 10 -2 foot per day (8 x 10 -6 to 9 x 10 -3 meter per day). 15 refs., 4 figs., 1 tab

  3. Hydrogeologic Characterization of the U-3bl Collapse Zone

    International Nuclear Information System (INIS)

    NSTec Geotechnical Services

    2006-01-01

    The U-3bl collapse crater was formed by an underground nuclear test in August 1962. This crater and the adjoining U-3ax crater were subsequently developed and used as a bulk low-level radioactive waste disposal cell (U-3ax/bl), which is part of the Area 3 Radioactive Waste Management Site at the Nevada Test Site (NTS). Various investigations have been conducted to assess the hydrogeologic characteristics and properties in the vicinity of the U-3ax/bl waste disposal cell. This report presents data from one of these investigations, conducted in 1996. Also included in this report is a review of pertinent nuclear testing records, which shows that the testing operations and hydrogeologic setting of the U-3ax/bl site were typical for the period and location of testing. Borehole U-3bl-D2 is a 45-degree-angle hole drilled from the edge of the crater under the waste cell to intercept the U-3bl collapse zone, the disturbed alluvium between the crater (surface collapse sink) and the nuclear test cavity. A casing-advance system with an air percussion hammer was used to drill the borehole, and air was used as the drilling fluid. Properties of the U-3bl crater collapse zone were determined from cores collected within the interval, 42.1 to 96.6 meters (138 to 317 feet) below the ground surface. Selected core samples were analyzed for particle density, particle size, bulk density, water retention, hydraulic conductivity, water content, water potential, chloride, carbonate, stable isotopes, and tritium. Physical and hydraulic properties were typical of alluvial valley sediments at the NTS. No visual evidence of preferential pathways for water transport was observed in the core samples. Soil parameters showed no trends with depth. Volumetric water content values ranged from 0.08 to 0.20 cubic meters per cubic meter, and tended to increase with depth. Water-retention relations were typical for soils of similar texture. Water potentials ranged from -1.9 MegaPascals at a depth of 42

  4. HYDROGEOLOGIC CHARACTERIZATION OF THE U-3bl COLLAPSE ZONE

    International Nuclear Information System (INIS)

    Bechtel Nevada and National Security Technologies, LLC

    2006-01-01

    The U-3bl collapse crater was formed by an underground nuclear test in August 1962. This crater and the adjoining U-3ax crater were subsequently developed and used as a bulk low-level radioactive waste disposal cell (U-3ax/bl), which is part of the Area 3 Radioactive Waste Management Site at the Nevada Test Site (NTS). Various investigations have been conducted to assess the hydrogeologic characteristics and properties in the vicinity of the U-3ax/bl waste disposal cell. This report presents data from one of these investigations, conducted in 1996. Also included in this report is a review of pertinent nuclear testing records, which shows that the testing operations and hydrogeologic setting of the U-3ax/bl site were typical for the period and location of testing

  5. Hydrogeology of the unsaturated zone, North Ramp area of the Exploratory Studies Facility, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, J.P.; Kwicklis, E.M.; Gillies, D.C. [eds.

    1999-03-01

    Yucca Mountain, in southern Nevada, is being investigated by the US Department of Energy as a potential site for a repository for high-level radioactive waste. This report documents the results of surface-based geologic, pneumatic, hydrologic, and geochemical studies conducted during 1992 to 1996 by the US Geological Survey in the vicinity of the North Ramp of the Exploratory Studies Facility (ESF) that are pertinent to understanding multiphase fluid flow within the deep unsaturated zone. Detailed stratigraphic and structural characteristics of the study area provided the hydrogeologic framework for these investigations. Shallow infiltration is not discussed in detail in this report because the focus in on three major aspects of the deep unsaturated-zone system: geologic framework, the gaseous-phase system, and the aqueous-phase system. However, because the relation between shallow infiltration and deep percolation is important to an overall understanding of the unsaturated-zone flow system, a summary of infiltration studies conducted to date at Yucca Mountain is provided in the section titled Shallow Infiltration. This report describes results of several Site Characterization Plan studies that were ongoing at the time excavation of the ESF North Ramp began and that continued as excavation proceeded.

  6. INVESTIGATION OF HYDROGEOLOGIC MAPPING TO DELINEATE PROTECTION ZONES AROUND SPRINGS: REPORT OF TWO CASE STUDIES

    Science.gov (United States)

    Methods commonly used to delineate protection zones for water-supply wells are often not directly applicable for springs. This investigation focuses on the use of hydrogeologic mapping methods to identify physical and hydrologic features that control ground-water flow to springs...

  7. Hydrogeological monitoring (0-15 km of the Chernobyl' station affected zone)

    International Nuclear Information System (INIS)

    Sitnikov, A.B.; Dzheko, S.P.

    1992-01-01

    Hydrogeological monitoring (HM) is aimed at finding out the regularities of formation of subsurface water, as well as unfavorable phenomena and parameters used for forecasts. To the main objects of HM belong: surface storm run-off; soil moisture of the aeration zone; underground water; water-bearing horizons in Buchak and Senomazh depositions. Criteria for grounding the system of monitoring and control are presented. The elements of the system for tracking local HM in 10-15 km zone are given. Potential centres of unfavorable phenomena, as well as the objects to be protected are noted. 3 figs

  8. Hydrogeology of the unsaturated zone, North Ramp area of the Exploratory Studies Facility, Yucca Mountain, Nevada

    Science.gov (United States)

    Rousseau, Joseph P.; Kwicklis, Edward M.; Gillies, Daniel C.; Rousseau, Joseph P.; Kwicklis, Edward M.; Gillies, Daniel C.

    1999-01-01

    Yucca Mountain, in southern Nevada, is being investigated by the U.S. Department of Energy as a potential site for a repository for high-level radioactive waste. This report documents the results of surface-based geologic, pneumatic, hydrologic, and geochemical studies conducted during 1992 to 1996 by the U.S. Geological Survey in the vicinity of the North Ramp of the Exploratory Studies Facility (ESF) that are pertinent to understanding multiphase fluid flow within the deep unsaturated zone. Detailed stratigraphic and structural characteristics of the study area provided the hydrogeologic framework for these investigations. Multiple lines of evidence indicate that gas flow and liquid flow within the welded tuffs of the unsaturated zone occur primarily through fractures. Fracture densities are highest in the Tiva Canyon welded (TCw) and Topopah Spring welded (TSw) hydrogeologic units. Although fracture density is much lower in the intervening nonwelded and bedded tuffs of the Paintbrush nonwelded hydrogeologic unit (PTn), pneumatic and aqueous-phase isotopic evidence indicates that substantial secondary permeability is present locally in the PTn, especially in the vicinity of faults. Borehole air-injection tests indicate that bulk air-permeability ranges from 3.5x10-14 to 5.4x10-11 square meters for the welded tuffs and from 1.2x10-13 to 3.0x10-12 square meters for the non welded and bedded tuffs of the PTn. Analyses of in-situ pneumatic-pressure data from monitored boreholes produced estimates of bulk permeability that were comparable to those determined from the air-injection tests. In many cases, both sets of estimates are two to three orders of magnitude larger than estimates based on laboratory analyses of unfractured core samples. The in-situ pneumatic-pressure records also indicate that the unsaturated-zone pneumatic system consists of four subsystems that coincide with the four major hydrogeologic units of the unsaturated zone at Yucca Mountain. In

  9. Vadose Zone Hydrogeology Data Package for Hanford Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Last, George V.; Freeman, Eugene J.; Cantrell, Kirk J.; Fayer, Michael J.; Gee, Glendon W.; Nichols, William E.; Bjornstad, Bruce N.; Horton, Duane G.

    2006-06-01

    This data package documents the technical basis for selecting physical and geochemical parameters and input values that will be used in vadose zone modeling for Hanford assessments. This work was originally conducted as part of the Characterization of Systems Task of the Groundwater Remediation Project managed by Fluor Hanford, Inc., Richland, Washington, and revised as part of the Characterization of Systems Project managed by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy, Richland Operations Office (DOE-RL). This data package describes the geologic framework, the physical, hydrologic, and contaminant transport properties of the geologic materials, and deep drainage (i.e., recharge) estimates, and builds on the general framework developed for the initial assessment conducted using the System Assessment Capability (SAC) (Bryce et al. 2002). The general approach for this work was to update and provide incremental improvements over the previous SAC data package completed in 2001. As with the previous SAC data package, much of the data and interpreted information were extracted from existing documents and databases. Every attempt was made to provide traceability to the original source(s) of the data or interpretations.

  10. Karst system vadose zone hydrodynamics highlighted by an integrative geophysical and hydrogeological monitoring

    Science.gov (United States)

    Watlet, A.; Van Camp, M. J.; Francis, O.; Poulain, A.; Hallet, V.; Rochez, G.; Kaufmann, O.

    2015-12-01

    The vadose zone of karst systems plays an important role on the water dynamics. In particular, temporary perched aquifers can appear in the subsurface due to changes of climate conditions, diminished evapotranspiration and differences of porosity relative to deeper layers. It is therefore crucial, but challenging, to separate the hydrological signature of the vadose zone from the one of the saturated zone for understanding hydrological processes that occur in the vadose zone. Although many difficulties are usually encountered when studying karst environments due to their heterogeneities, cave systems offer an outstanding opportunity to investigate vadose zone from the inside with various techniques. We present results covering two years of hydrogeological and geophysical monitoring at the Rochefort Cave Laboratory (RCL), located in the Variscan fold-and-thrust belt (Belgium), a region that shows many karstic networks within Devonian limestone units. Hydrogeological data such as flows and levels monitoring or tracer tests performed in both vadose and saturated zones bring valuable information on the hydrological context of the studied area. Combining those results with geophysical measurements allows validating and imaging them with more integrative techniques. A microgravimetric monitoring involves a superconducting gravimeter continuously measuring at the surface of the RCL. Early in 2015, a second relative gravimeter was installed in the underlying cave system located 35 meters below the surface. This set up allows highlighting vadose gravity changes. These relative measurements are calibrated using an absolute gravimeter. 12 additional stations (7 at the surface, 5 in the cave) are monitored on a monthly basis by a spring gravimeter. To complete these gravimetric measurements, the site has been equipped with a permanent Electrical Resistivity Tomography (ERT) monitoring system comprising an uncommon array of surface, borehole and cave electrodes. Although such

  11. Hydrogeologic Framework Model for the Saturated Zone Site Scale flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    T. Miller

    2004-11-15

    The purpose of this report is to document the 19-unit, hydrogeologic framework model (19-layer version, output of this report) (HFM-19) with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results in accordance with AP-SIII.10Q, Models. The HFM-19 is developed as a conceptual model of the geometric extent of the hydrogeologic units at Yucca Mountain and is intended specifically for use in the development of the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]). Primary inputs to this model report include the GFM 3.1 (DTN: MO9901MWDGFM31.000 [DIRS 103769]), borehole lithologic logs, geologic maps, geologic cross sections, water level data, topographic information, and geophysical data as discussed in Section 4.1. Figure 1-1 shows the information flow among all of the saturated zone (SZ) reports and the relationship of this conceptual model in that flow. The HFM-19 is a three-dimensional (3-D) representation of the hydrogeologic units surrounding the location of the Yucca Mountain geologic repository for spent nuclear fuel and high-level radioactive waste. The HFM-19 represents the hydrogeologic setting for the Yucca Mountain area that covers about 1,350 km2 and includes a saturated thickness of about 2.75 km. The boundaries of the conceptual model were primarily chosen to be coincident with grid cells in the Death Valley regional groundwater flow model (DTN: GS960808312144.003 [DIRS 105121]) such that the base of the site-scale SZ flow model is consistent with the base of the regional model (2,750 meters below a smoothed version of the potentiometric surface), encompasses the exploratory boreholes, and provides a framework over the area of interest for groundwater flow and radionuclide transport modeling. In depth, the model domain extends from land surface to the base of the regional groundwater flow model (D'Agnese et al. 1997 [DIRS 100131], p 2). For the site

  12. Hydrogeologic Framework Model for the Saturated Zone Site Scale flow and Transport Model

    International Nuclear Information System (INIS)

    Miller, T.

    2004-01-01

    The purpose of this report is to document the 19-unit, hydrogeologic framework model (19-layer version, output of this report) (HFM-19) with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results in accordance with AP-SIII.10Q, Models. The HFM-19 is developed as a conceptual model of the geometric extent of the hydrogeologic units at Yucca Mountain and is intended specifically for use in the development of the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]). Primary inputs to this model report include the GFM 3.1 (DTN: MO9901MWDGFM31.000 [DIRS 103769]), borehole lithologic logs, geologic maps, geologic cross sections, water level data, topographic information, and geophysical data as discussed in Section 4.1. Figure 1-1 shows the information flow among all of the saturated zone (SZ) reports and the relationship of this conceptual model in that flow. The HFM-19 is a three-dimensional (3-D) representation of the hydrogeologic units surrounding the location of the Yucca Mountain geologic repository for spent nuclear fuel and high-level radioactive waste. The HFM-19 represents the hydrogeologic setting for the Yucca Mountain area that covers about 1,350 km2 and includes a saturated thickness of about 2.75 km. The boundaries of the conceptual model were primarily chosen to be coincident with grid cells in the Death Valley regional groundwater flow model (DTN: GS960808312144.003 [DIRS 105121]) such that the base of the site-scale SZ flow model is consistent with the base of the regional model (2,750 meters below a smoothed version of the potentiometric surface), encompasses the exploratory boreholes, and provides a framework over the area of interest for groundwater flow and radionuclide transport modeling. In depth, the model domain extends from land surface to the base of the regional groundwater flow model (D'Agnese et al. 1997 [DIRS 100131], p 2). For the site-scale SZ flow model, the HFM

  13. Hydrogeological characterisation and modelling of deformation zones and fracture domains, Forsmark modelling stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven (SF GeoLogic AB, Taeby (SE)); Leven, Jakob (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE)); Hartley, Lee; Jackson, Peter; Joyce, Steve; Roberts, David; Swift, Ben (Serco Assurance, Harwell (GB))

    2007-09-15

    The work reported here collates the structural-hydraulic information gathered in 21 cored boreholes and 32 percussion-drilled boreholes belonging to Forsmark site description, modelling stage 2.2. The analyses carried out provide the hydrogeological input descriptions of the bedrock in Forsmark needed by the end users Repository Engineering, Safety Assessment and Environmental Impact Assessment; that is, hydraulic properties of deformation zones and fracture domains. The same information is also needed for constructing 3D groundwater flow models of the Forsmark site and surrounding area. The analyses carried out render the following conceptual model regarding the observed heterogeneity in deformation zone transmissivity: We find the geological division of the deterministically modelled deformation zones into eight categories (sets) useful from a hydrogeological point of view. Seven of the eight categories are steeply dipping, WNW, NW, NNW, NNE, NE, ENE and EW, and on is gently dipping, G. All deformation zones, regardless of orientation (strike and dip), are subjected to a substantial decrease in transmissivity with depth. The data gathered suggest a contrast of c. 20,000 times for the uppermost one kilometre of bedrock, i.e. more than four orders of magnitude. The hydraulic properties below this depth are not investigated. The lateral heterogeneity is also substantial but more irregular in its appearance. For instance, for a given elevation and deformation zone category (orientation), the spatial variability in transmissivity within a particular deformation zone appears to be as large as the variability between all deformation zones. This suggests that the lateral correlation length is shorter than the shortest distance between two adjacent observation points and shorter than the category spacing. The observation that the mean transmissivity of the gently-dipping deformation zones is c. one to two orders of magnitude greater than the mean transmissivities of all

  14. Hydrogeological study

    International Nuclear Information System (INIS)

    Massa, E.; Carrion, R.

    1987-01-01

    This work refers to the hydrogeological study about underground water to domestic uses. It was required by Artigas intendence of Uruguay, in the rural school 10, located belongs to the Chiflero zone around the capital of the Artigas Province.

  15. Hydrogeological impact of fault zones on a fractured carbonate aquifer, Semmering (Austria)

    Science.gov (United States)

    Mayaud, Cyril; Winkler, Gerfried; Reichl, Peter

    2015-04-01

    Fault zones are the result of tectonic processes and are geometrical features frequently encountered in carbonate aquifer systems. They can hamper the fluid migration (hydrogeological barriers), propagate the movement of fluid (draining conduits) or be a combination of both processes. Numerical modelling of fractured carbonate aquifer systems is strongly bound on the knowledge of a profound conceptual model including geological and tectonic settings such as fault zones. In further consequence, numerical models can be used to evaluate the conceptual model and its introduced approximations. The study was conducted in a fractured carbonate aquifer built up by permomesozoic dolo/limestones of the Semmering-Wechsel complex in the Eastern Alps (Austria). The aquifer has an assumed thickness of about 200 m and dips to the north. It is covered by a thin quartzite layer and a very low permeable layer of quartz-phyllite having a thickness of up to several hundred meters. The carbonate layer crops out only in the southern part of the investigation area, where it receives autogenic recharge. The geological complexity affects some uncertainties related to the extent of the model area, which was determined to be about 15 km². Three vertical fault zones cross the area approximately in a N-S direction. The test site includes an infrastructural pilot tunnel gallery of 4.3 km length with two pumping stations, respectively active since August 1997 and June 1998. The total pumping rate is about 90 l/s and the drawdown data were analysed analytically, providing a hydraulic conductivity of about 5E-05 m/s for the carbonate layer. About 120 m drawdown between the initial situation and situation with pumping is reported by piezometers. This led to the drying up of one spring located at the southern border of the carbonates. A continuum approach using MODFLOW-2005 was applied to reproduce numerically the observed aquifer behaviour and investigate the impact of the three fault zones. First

  16. Water balance in the Guarani Aquifer outcrop zone based on hydrogeologic monitoring

    Science.gov (United States)

    Wendland, E.; Barreto, C.; Gomes, L. H.

    2007-09-01

    SummaryMain objective of this work was the study of the infiltration and recharge mechanisms in the Guarani Aquifer System (GAS) outcrop zone. The study was based on hydrogeologic monitoring, evapotranspiration and water balance in a pilot watershed. The pilot watershed (Ribeirão da Onça) is situated in the outcrop zone of the Guarani Aquifer between parallels 22°10' and 22°15' (south latitude) and meridians 47°55' and 48°00' (west longitude). For the execution of the research project, a monitoring network (wells, rain gauge and linigraph) was installed in the watershed. Data have been systematically collected during the period of a hydrological year. Water level fluctuation has been used to estimate deep recharge and subsurface storage variation. The method used to estimate the direct recharge adopted the hypothesis that the recession of the groundwater level obeys a function of power law type. Direct recharge is obtained through the difference between the actual level of an unconfined aquifer and the level indicated by extrapolation of the recession curve, in a given period. Base outflow is estimated through a mixed function (linear and exponential). Outflow in the creek has been measured with current meter and monitored continuously with a linigraph. The annual infiltration in 2005 was estimated to be 350 mm, while the deep recharge, based on water balance, appears to be 3.5% of the precipitation (1410 mm). These results indicate that the estimated long term water availability of the Guarani Aquifer System should be studied more carefully.

  17. Hydrogeologic Framework Model for the Saturated-Zone Site-Scale Flow

    Energy Technology Data Exchange (ETDEWEB)

    Z. Peterman

    2003-03-05

    Yucca Mountain is being evaluated as a potential site for development of a geologic repository for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Ground water is considered to be the principal means for transporting radionuclides that may be released from the potential repository to the accessible environment, thereby possibly affecting public health and safety. The ground-water hydrology of the region is a result of both the arid climatic conditions and the complex geology. Ground-water flow in the Yucca Mountain region generally can be described as consisting of two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick, generally deep-lying, Paleozoic carbonate rock sequence. Locally within the potential repository area, the flow is through a vertical sequence of welded and nonwelded tuffs that overlie the carbonate aquifer. Downgradient from the site, these tuffs terminate in basin fill deposits that are dominated by alluvium. Throughout the system, extensive and prevalent faults and fractures may control ground-water flow. The purpose of this Analysis/Modeling Report (AMR) is to document the three-dimensional (3D) hydrogeologic framework model (HFM) that has been constructed specifically to support development of a site-scale ground-water flow and transport model. Because the HFM provides the fundamental geometric framework for constructing the site-scale 3D ground-water flow model that will be used to evaluate potential radionuclide transport through the saturated zone (SZ) from beneath the potential repository to down-gradient compliance points, the HFM is important for assessing potential repository system performance. This AMR documents the progress of the understanding of the site-scale SZ ground-water flow system framework at Yucca Mountain based on data through July 1999. The

  18. Scoping studies on the effect of quaternary climate change on the hydrogeology in the Sellafield potential repository zone

    Energy Technology Data Exchange (ETDEWEB)

    Heathcote, J.A. [Entec UK Ltd., Shrewsbury (United Kingdom)

    1997-04-01

    The present investigations in the vicinity of the Sellafield potential repository zone have provided data on groundwater pressure and salinity to a depth of some 2000 m, for a section extending from the hills to the east of the zone, to the coast. As part of the process of demonstrating the suitability of the site for a deep repository, work has been undertaken to reconcile these observations of pressure and salinity with an understanding of the hydrogeology of the site. It is considered possible that the long glacial history of the site may in part be responsible for present observations. This work documents some preliminary studies to determine the possible magnitude of such glacial effects. 4 refs, 2 figs.

  19. Scoping studies on the effect of quaternary climate change on the hydrogeology in the Sellafield potential repository zone

    International Nuclear Information System (INIS)

    Heathcote, J.A.

    1997-01-01

    The present investigations in the vicinity of the Sellafield potential repository zone have provided data on groundwater pressure and salinity to a depth of some 2000 m, for a section extending from the hills to the east of the zone, to the coast. As part of the process of demonstrating the suitability of the site for a deep repository, work has been undertaken to reconcile these observations of pressure and salinity with an understanding of the hydrogeology of the site. It is considered possible that the long glacial history of the site may in part be responsible for present observations. This work documents some preliminary studies to determine the possible magnitude of such glacial effects. 4 refs, 2 figs

  20. Sampling and Hydrogeology of the Vadose Zone Beneath the 300 Area Process Ponds

    International Nuclear Information System (INIS)

    Bjornstad, Bruce N.

    2004-01-01

    Four open pits were dug with a backhoe into the vadose zone beneath the former 300 Area Process Ponds in April 2003. Samples were collected about every 2 feet for physical, chemical, and/or microbiological characterization. This reports presents a stratigraphic and geohydrologic summary of the four excavations

  1. Characterization of unsaturated zone hydrogeologic units using matrix properties and depositional history in a complex volcanic environment

    Science.gov (United States)

    Flint, Lorraine E.; Buesch, David C.; Flint, Alan L.

    2006-01-01

    Characterization of the physical and unsaturated hydrologic properties of subsurface materials is necessary to calculate flow and transport for land use practices and to evaluate subsurface processes such as perched water or lateral diversion of water, which are influenced by features such as faults, fractures, and abrupt changes in lithology. Input for numerical flow models typically includes parameters that describe hydrologic properties and the initial and boundary conditions for all materials in the unsaturated zone, such as bulk density, porosity, and particle density, saturated hydraulic conductivity, moisture-retention characteristics, and field water content. We describe an approach for systematically evaluating the site features that contribute to water flow, using physical and hydraulic data collected at the laboratory scale, to provide a representative set of physical and hydraulic parameters for numerically calculating flow of water through the materials at a site. An example case study from analyses done for the heterogeneous, layered, volcanic rocks at Yucca Mountain is presented, but the general approach for parameterization could be applied at any site where depositional processes follow deterministic patterns. Hydrogeologic units at this site were defined using (i) a database developed from 5320 rock samples collected from the coring of 23 shallow (deep (500–1000 m) boreholes, (ii) lithostratigraphic boundaries and corresponding relations to porosity, (iii) transition zones with pronounced changes in properties over short vertical distances, (iv) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (v) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. Model parameters developed in this study, and the relation of flow properties to porosity, can be used to produce detailed and accurate

  2. Hydrogeologic controls on the transport and fate of nitrate in ground water beneath riparian buffer zones: Results from thirteen studies across the United States

    Science.gov (United States)

    Puckett, L.J.

    2004-01-01

    During the last two decades there has been growing interest in the capacity of riparian buffer zones to remove nitrate from ground waters moving through them. Riparian zone sediments often contain organic carbon, which favors formation of reducing conditions that can lead to removal of nitrate through denitrification. Over the past decade the National Water Quality Assessment (NAWQA) Program has investigated the transport and fate of nitrate in ground and surface waters in study areas across the United States. In these studies riparian zone efficiency in removing nitrate varied widely as a result of variations in hydrogeologic factors. These factors include (1) denitrification in the up-gradient aquifer due to the presence of organic carbon or other electron donors, (2) long residence times (>50 years) along ground-water flow paths allowing even slow reactions to completely remove nitrate, (3) dilution of nitrate enriched waters with older water having little nitrate, (4) bypassing of riparian zones due to extensive use of drains and ditches, and (5) movement of ground water along deep flow paths below reducing zones. By developing a better understanding of the hydrogeologic settings in which riparian buffer zones are likely to be inefficient we can develop improved nutrient management plans. ?? US Government 2004.

  3. Assessment on major livestock health problems in southern zone of ...

    African Journals Online (AJOL)

    A cross sectional study was conducted to identify the major livestock health problems in southern zone of Tigray, northern Ethiopia from July 2014 to June 2016. Questionnaire survey and case observational study were employed for data collection. A total of 120 respondents were interviewed for the questionnaire survey.

  4. Hydric results in Guarani Aquifer System formation zone through by hydrogeological monitoring in representative basin

    International Nuclear Information System (INIS)

    Wendland, E.; Barreto, C.; Gomes, L.; Dias Paiva, J.

    2007-01-01

    This work describes the direct and deep recharge in the Guarani Aquifer System, based on the evaluation of data acquired at the Ribeirao da Onca watershed, which is located at the outcrop zone of the GAS in Sao Paulo State, Brazil. During one year hydrological data (precipitation, temperature, discharge etc) have been monitored at the watershed. Using water level fluctuation measured in 23 monitoring wells, the direct recharge, the free aquifer storage and the base flow could be evaluated.The direct recharge of the system at the watershed has been estimated to 29% of the total precipitation in the period. Due to the drainage by the Ribeirao da Onca, the deep recharge, which effectively reaches the GAS, is reduced to 3,5% of the annual precipitation

  5. Contribution of the geophysical and radon techniques to characterize hydrogeological setting in the western volcanic zone of Yarmouk basin: Case study Deir El-Adas

    International Nuclear Information System (INIS)

    Al-Fares, W.; Soliman, E.; Al-Ali, A.

    2009-01-01

    The aim of this study is to illustrate the geophysical and radon techniques in characterizing ''at local scale'' a hydrogeological setting in the volcanic zone of Yarmouk basin. And to employ the obtained results to understand and explain similar hydrogeological situation related to particular subsurface geologic and tectonic structure. Based on the field observations and failed wells drilled at Deir El-Adas, and the occurrence of successful well out of that zone, all these reasons, have given us the incentive to verify and provide realistic explanation of this phenomena in the basaltic outcrops of Yarmouk basin. The interpretation of the vertical electrical surveys (VES), indicates to the presence of local faulted anticline structure of Palaeogene located under the volcanic outcrops. This structure has led to complex hydrogeological conditions, represented by limited recharge in this area which occurs through fractures and secondary faults in addition to the low direct precipitation. Piezometric map indicates to water divide in the north-west of Deir El-Adas related to the tectonic setting. Meanwhile, discharge map show low reproducibility of drilled wells in Deir El-Adas and its periphery. Due to limited radon data, it was difficult to draw concrete conclusions from this technique. (author)

  6. Vulnerability and hydrogeologic risk of SAG in the outcroupping zone of Rivera Uruguay

    International Nuclear Information System (INIS)

    Collazo, P.; Montano, J.; Auge, M.; jmont@fcien.edu.uy mpauge@ciudad.com.ar

    2007-01-01

    The studied area belongs to the outcroupping zone of the Guarani Aquifer in the Department of Rivera, Uruguay. It comprises an approximate area of 2900 Km2. The outcropping Guarani Aquifer (AGa) is formed by two sections, an upper one corresponding to the Rivera Unit (UR) and a lower one corresponding to the Tacuarembo Unit (UT), both with vertical hydraulic continuity. The Rivera Unit is entirely represented by the homonymous formation and it consists of medium to fine sandstones with a mean effective porosity of 14% and mean Transmissivity of 88 m2/dia. The Tacuarembo Unit is constituted by fine to very fine sandstone levels interbedded with pelitic sandstone and shales. This unit behaves like unconfined aquifer in the upper section, where it contains the phreatic layer and it passes to semi-confined as the depth increases. The effective porosity is approximatelly of 9% and mean T 24 m2/dia. Chemically, both units are classified as calcicbicarbonated and magnesic-bicarbonated. To determine the vulnerability, it was applied the GOD method yielding high vulnerability for levels lower than 10m and moderate for levels of water larger than 10m. From the study of risk the conclusions are: high risk of groundwater contamination due to the lack of sewage systems and to the rubbish dump leakage. The industrial activity, cemeteries and mining activity represents moderated risks in most of the cases

  7. Joint seismic, hydrogeological, and geomechanical investigations of a fracture zone in the Grimsel Rock Laboratory, Switzerland

    International Nuclear Information System (INIS)

    Majer, E.L.; Myer, L.R.; Peterson, J.E. Jr.; Karasaki, K.; Long, J.C.S.; Martel, S.J.; Bluemling, P.; Vomvoris, S.

    1990-06-01

    This report is one of a series documenting the results of the Nagra-DOE Cooperative (NDC-I) research program in which the cooperating scientists explore the geological, geophysical, hydrological, geochemical, and structural effects anticipated from the use of a rock mass as a geologic repository for nuclear waste. From 1987 to 1989 the United States Department of Energy (DOE) and the Swiss Cooperative for the Storage of Nuclear Waste (Nagra) participated in an agreement to carryout experiments for understanding the effect of fractures in the storage and disposal of nuclear waste. As part of this joint work field and laboratory experiments were conducted at a controlled site in the Nagra underground Grimsel test site in Switzerland. The primary goal of these experiments in this fractured granite was to determine the fundamental nature of the propagation of seismic waves in fractured media, and to relate the seismological parameters to the hydrological parameters. The work is ultimately aimed at the characterization and monitoring of subsurface sites for the storage of nuclear waste. The seismic experiments utilizes high frequency (1000 to 10,000 Hertz) signals in a cross-hole configuration at scales of several tens of meters. Two-, three-, and four-sided tomographic images of the fractures and geologic structure were produced from over 60,000 raypaths through a 10 by 21 meter region bounded by two nearly horizontal boreholes and two tunnels. Intersecting this region was a dominant fracture zone which was the target of the investigations. In addition to these controlled seismic imaging experiments, laboratory work using core from this region were studied for the relation between fracture content, saturation, and seismic velocity and attenuation. In-situ geomechanical and hydrologic tests were carried out to determine the mechanical stiffness and conductivity of the fractures. 20 refs., 90 figs., 6 tabs

  8. Paleohydrogeological implications from fracture calcites and sulfides in a major hydrogeological zone HZ19 at Olkiluoto

    International Nuclear Information System (INIS)

    Sahlstedt, E.; Karhu, J.; Rinne, K.

    2009-08-01

    30 samples of fracture mineral fillings in or near water conducting fractures at Olkiluoto were collected from 10 drill cores for fracture mineral studies. The aim of the study was to obtain information about past hydrogeochemical conditions at Olkiluoto using the calcite morphology, the chemical characteristics and the isotopic composition of carbon and oxygen in calcite. The chemical composition of fracture calcites at Olkiluoto is nearly stoichiometric CaCO 3 . Most variation in the composition of calcite is due to differences in the Mn content, which could indicate variations in groundwater redox conditions. Meaningful REE patterns were obtained for the calcites. REE patterns showed generally negative Eu anomalies, but one fracture calcite specimen had a distinct positive Eu anomaly. This positive anomaly could be related to ancient hydrothermal conditions, although derivation of the anomaly from the host rock cannot be excluded. Preliminary results for calcite U-Th dating of fracture calcites are reported. The isotopic composition of U and Th were analysed by a new multiple collector LA-ICPMS instrument. U and Th concentrations in fracture calcites are generally 18 O values of calcite range from -17 to -7 per mille. Most of the calcites may have been precipitated in the presence of waters with oxygen isotope ratios similar to those in the present-day groundwaters at Olkiluoto. Two samples with an oxygen isotopic composition highly depleted in 18 O were interpreted to have been precipitated at elevated temperatures. The δ 13 C values of calcite showed a wide range of values from -26 to +35 per mille. Multiple sources for carbon are implied. The highest δ 13 C values indicate methanic conditions in the fracture at the time of calcite precipitation. It appears that the methanic environment has earlier extended to shallower depths compared to the location of the methanic environment in the present-day fracture system (> 300 m). Ten pyrite samples were analysed for δ 34 S. A wide range of δ 34 S values from -7 to +28 per mille was observed. Based on δ 34 S values and the characteristics of associated calcite fillings, two potential sulfur sources could be identified. One sulfide type is related to hydrothermal carbonate fillings. Another sulfide type is associated with late-stage carbonate fillings, interpreted possibly to represent influx of marine waters from the Baltic Sea. (orig.)

  9. Hydrogeology, chemical characteristics, and water sources and pathways in the zone of contribution of a public-supply well in San Antonio, Texas

    Science.gov (United States)

    Musgrove, MaryLynn; Fahlquist, Lynne; Stanton, Gregory P.; Houston, Natalie A.; Lindgren, Richard J.

    2011-01-01

    In 2001, the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey initiated a series of studies on the transport of anthropogenic and natural contaminants (TANC) to public-supply wells (PSWs). The main goal of the TANC project was to better understand the source, transport, and receptor factors that control contaminant movement to PSWs in representative aquifers of the United States. Regional- and local-scale study areas were selected from within existing NAWQA study units, including the south-central Texas Edwards aquifer. The local-scale TANC study area, nested within the regional-scale NAWQA study area, is representative of the regional Edwards aquifer. The PSW selected for study is within a well field of six production wells. Although a single PSW was initially selected, because of constraints of well-field operation, samples were collected from different wells within the well field for different components of the study. Data collected from all of the well-field wells were considered comparable because of similar well construction, hydrogeology, and geochemistry. An additional 38 PSWs (mostly completed in the confined part of the aquifer) were sampled throughout the regional aquifer to characterize water quality. Two monitoring well clusters, with wells completed at different depths, were installed to the east and west of the well field (the Zarzamora and Timberhill monitoring well clusters, respectively). One of the monitoring wells was completed in the overburden to evaluate potential hydrologic connectivity with the Edwards aquifer. Geophysical and flowmeter logs were collected from one of the well-field PSWs to determine zones of contribution to the wellbore. These contributing zones, associated with different hydrogeologic units, were used to select monitoring well completion depths and groundwater sample collection depths for depth-dependent sampling. Depth-dependent samples were collected from the PSW from three different

  10. Hydrogeological study

    International Nuclear Information System (INIS)

    Massa, E.; Heinzen, W.; Santana, J.

    1987-01-01

    This work shows the hydrogeological study and well drilling carried out in the Teaching Formation Institute San Jose de Mayo Province Uruguay. It was developed a geological review in the National Directorate of Geology and Mining data base as well as field working, geology and hydrogeology recognition and area well drilling inventory.

  11. Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina

    Science.gov (United States)

    Williams, Lester J.; Dixon, Joann F.

    2015-01-01

    Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part of the U.S. Geological Survey Groundwater Resources Program. The dataset contains structural surfaces depicting the top and base of the aquifer system, its major and minor hydrogeologic units and zones, geophysical marker horizons, and the altitude of the 10,000-milligram-per-liter total dissolved solids boundary that defines the approximate fresh and saline parts of the aquifer system. The thicknesses of selected major and minor units or zones were determined by interpolating points of known thickness or from raster surface subtraction of the structural surfaces. Additional data contained include clipping polygons; regional polygon features that represent geologic or hydrogeologic aspects of the aquifers and the minor units or zones; data points used in the interpolation; and polygon and line features that represent faults, boundaries, and other features in the aquifer system.

  12. Hydrogeological Modelling of the Geothermal Waters of Alaşehir in the Continental Rift Zone of the Gediz, Western Anatolia, Turkey

    Science.gov (United States)

    Ӧzgür, Nevzat; Bostancı, Yesim; Anilır Yürük, Ezgi

    2017-12-01

    In western Anatolia, Turkey, the continental rift zones of the Büyük Menderes, Küçük Menderes and Gediz were formed by extensional tectonic features striking E-W generally and representing a great number of active geothermal systems, epithermal mineralizations and volcanic rocks from Middle Miocene to recent. The geothermal waters are associated with the faults which strike preferentially NW-SE and NE-SW and locate diagonal to general strike of the rift zones of the Menderes Massif. These NW-SE and NE-SW striking faults were probably generated by compressional tectonic regimes which leads to the deformation of uplift between two extensional rift zones in the Menderes Massif. The one of these rift zones is Gediz which is distinguished by a great number of geothermal waters such as Alaşehir, Kurşunlu, Çamurlu, Pamukkale and Urganlı. The geothermal waters of Alaşehir form the biggest potential in the rift zone of Gediz with a capacity of about 100 to 200 MWe. Geologically, the gneisses from the basement rocks in the study area which are overlain by an Paleozoic to Mesozoic intercalation of mica schists, quartzites and marbles, a Miocene intercalation of conglomerates, sandstones and clay stones and Plio-Quaternary intercalation of conglomerates, sandstones and clay stones discordantly. In the study area, Paleozoic to Mesozoic quartzites and marbles form the reservoir rocks hydrogeologically. The geothermal waters anions with Na+K>Ca>Mg dominant cations and HCO3>Cl> dominant anions are of Na-HCO3 type and can be considered as partial equilibrated waters. According to the results of geochemical thermometers, the reservoir temperatures area of about 185°C in accordance with measured reservoir temperatures. Stabile isotopes of δ18O versus δ2H of geothermal waters of Alaşehir deviate from the meteoric water line showing an intensive water-rock interaction under high temperature conditions. These data are well correlated with the results of the

  13. Hydrogeological studies in the water-saturated and unsaturated zone of the calcareous strata in the Wackersdorf region

    International Nuclear Information System (INIS)

    Heinemann, J.M.

    1987-01-01

    The investigation cerves an area of 58.5 km 2 . It is a locally important groundwater reservoir with numerous fountains and waterworks. The investigations were conducted in the unsaturated zone and in the topmost ground-water horizon in the chalky layers. Emphasis is laid on questions of infiltration and groundwater dynamics. The hydrological situation is covered in its entirety, and basic data are collected from field and laboratory tests. (DG) [de

  14. Hydrogeological Investigation and Groundwater Potential ...

    African Journals Online (AJOL)

    The paper assesses groundwater quality and productivity in Haromaya watershed, eastern. Ethiopia. ... zones, quantity and quality of plant and animal life (Tamire H., 1981). Steep to very ... Present research work was proposed to conduct hydrogeological investigation and assess ...... Water Balance of Haromaya basin,.

  15. Hydrogeology, water chemistry, and transport processes in the zone of contribution of a public-supply well in Albuquerque, New Mexico, 2007-9

    Science.gov (United States)

    Bexfield, Laura M.; Jurgens, Bryant C.; Crilley, Dianna M.; Christenson, Scott C.

    2012-01-01

    The National Water-Quality Assessment Program (NAWQA) of the U.S. Geological Survey began a series of groundwater studies in 2001 in representative aquifers across the Nation in order to increase understanding of the factors that affect transport of anthropogenic and natural contaminants (TANC) to public-supply wells. One of 10 regional-scale TANC studies was conducted in the Middle Rio Grande Basin (MRGB) in New Mexico, where a more detailed local-scale study subsequently investigated the hydrogeology, water chemistry, and factors affecting the transport of contaminants in the zone of contribution of one 363-meter (m) deep public-supply well in Albuquerque. During 2007 through 2009, samples were collected for the local-scale study from 22 monitoring wells and 3 public-supply (supply) wells for analysis of major and trace elements, arsenic speciation, nutrients, dissolved organic carbon, volatile organic compounds (VOCs), dissolved gases, stable isotopes, and tracers of young and old water. To study groundwater chemistry and ages at various depths within the aquifer, the monitoring wells were divided into three categories: (1) each shallow well was screened across the water table or had a screen midpoint within 18.3 m of the water level in the well; (2) each intermediate well had a screen midpoint between about 27.1 and 79.6 m below the water level in the well; and (3) each deep well had a screen midpoint about 185 m or more below the water level in the well. The 24-square-kilometer study area surrounding the "studied supply well" (SSW), one of the three supply wells, consists of primarily urban land within the MRGB, a deep alluvial basin with an aquifer composed of unconsolidated to moderately consolidated deposits of sand, gravel, silt, and clay. Conditions generally are unconfined, but are semiconfined at depth. Groundwater withdrawals for public supply have substantially changed the primary direction of flow from northeast to southwest under predevelopment

  16. Final Technical Report - Integrated Hydrogeophysical and Hydrogeologic Driven Parameter Upscaling for Dual-Domain Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Shafer, John M

    2012-11-05

    The three major components of this research were: 1. Application of minimally invasive, cost effective hydrogeophysical techniques (surface and borehole), to generate fine scale (~1m or less) 3D estimates of subsurface heterogeneity. Heterogeneity is defined as spatial variability in hydraulic conductivity and/or hydrolithologic zones. 2. Integration of the fine scale characterization of hydrogeologic parameters with the hydrogeologic facies to upscale the finer scale assessment of heterogeneity to field scale. 3. Determination of the relationship between dual-domain parameters and practical characterization data.

  17. Undergraduate Education in Hydrogeology.

    Science.gov (United States)

    Tinker, John Richard, Jr.

    1989-01-01

    Discusses a course at the University of Wisconsin-Eau Claire which improved instruction in physical hydrogeology, chemical hydrogeology, and water resources. Describes 14 laboratory activities including objectives, methods, and a list of equipment needed. (Author/MVL)

  18. Structural analysis and magmatism characterization of the Major Gercino shear zone, Santa Catarina State, Brazil

    International Nuclear Information System (INIS)

    Passarelli, Claudia Regina

    1996-01-01

    This work describes the geometric and kinematic characteristics of the Major Gercino Shear Zone (MGSZ) in the Canelinha-Garcia area. This shear zone is one of the major lineaments that affect all southern Brazilian precambrian terrains. In Santa Catarina State, it separates, along its whole extension, the supracrustal rocks of the Brusque belt (northern part) from the Granitoid belt (southern). This zone is characterized by a regional NE trend and a dextral sense of movement where ductile-brittle structures predominate. The MGSZ is composed of two mylonitic belts separated by granitoid rocks probably associated to the development of the shear zone. Both shear zones show cataclastic to ultra mylonitic rocks, but mylonites and protomylonites conditions at high strain rate. The calc-alkaline granitoids present in the area can be grouped in two granitoid associations with meta to peraluminous affinities. The Rolador Granitoid Association is characterized by grayish porphyritic biotite-monzogranites and the Fernandes Granitoid Association by coarsed-grained to porphyritic pinkish amphibole-syenogranites. The U-Pb and Rb-Sr ages range from 670 to 590 Ma with the Sr 87 / Sr 86 initial ratios suggesting a crustal contribution in the generation of these rocks. The importance of the pure shear component is also emphasized by the results of the Fry method. Many z axes of the strain ellipses are at high angle to the shear foliation. Symmetric porphyroclasts also corroborate this hypothesis. The micaceous minerals formed during the shear development indicate K-Ar ages around 555 ± 15 Ma. Brittle reactivations of the shear zone have been placed by K-Ar in fine-fraction materials at Triassic time (215 ± 15 Ma.)

  19. Bedrock Hydrogeology - Site investigation SFR

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Johan [Geosigma AB, Stockholm (Sweden); Bockgaard, Niclas [Golder Assoes AB, Stockholm (Sweden); Follin, Sven [SF GeoLogic AB, Taeby (Sweden)

    2012-06-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations for a planned extension of the existing final repository for short-lived radioactive waste (SFR). This report presents an integrated analysis and interpretation of the historic data from the existing SFR (1980 - 1986), as well as, from the recent investigations for the planned extension of SFR (2008 - 2009). The primary objective is to establish a conceptual hydrogeological model of the bedrock for safety assessment and design analyses. Analyses and interpretations of all (old and new) hydraulic data are analysed with regard to the recently developed geological deformation zone model of the SFR model domain (Curtis et al. 2011). The methodology used by Curtis et al. (2011) has focussed on magnetic anomalies and deformation zone intercepts with ground surface greater than 300 m. In the hydrogeological modelling, however, it has been considered important to also explore the occurrence and characteristics of shallow horizontal to sub-horizontal structures (sheet joints) inside the SFR model domain. Such structures are of considerable importance for the hydrogeology in the uppermost c. 150 m of bedrock in SDM-Site Forsmark; hence the term Shallow Bedrock Aquifer was used to emphasise their hydraulic significance. In this study, the acronym SBA-structure is used for horizontal structures identified in the hydrogeological modelling. In addition to the predominantly steeply dipping geological deformation zones, eight so-called SBA-structures are modelled deterministically in the hydrogeological model. The SBA-structures are envisaged as hydraulically heterogeneous and composed of clusters of minor gently dipping to horizontal fractures rather than extensive single features. A type of structures that is partly included in the definition of the SBA-structures is the Unresolved Possible Deformations Zone (Unresolved PDZ) intercepts identified by Curtis et al. (2011). The Unresolved

  20. Factors affecting the income from major crops in rice-wheat ecological zone

    International Nuclear Information System (INIS)

    Ashfaq, M.; Naseer, M.Z.; Hassan, S.

    2008-01-01

    Agriculture is an important sector of our economy. About twenty-two percent of national income and 44.8 percent of total employment is generated by this sector. About 66 percent of country's population is living in rural areas and is directly or indirectly linked with agriculture for their livelihood. It also supplies raw materials to industry. The rice-wheat zone of Punjab covers 1.1 million hectare, 72% of wheat is grown in rotation with rice. The main purpose of this paper was to determine the effect of different factors on the productivity and ultimately on income from of major crops (wheat, rice and sugar-cane) in rice-wheat ecological zone. The results show that for wheat crop, land preparation, use of fertilizer and chemicals, for Sugarcane crop, area under cultivation, fertilizer and chemical costs and for rice crop, applications of chemicals, irrigation and land holding were the main determinants of productivity and crop income. (author)

  1. Economics of milk production of major dairy buffalo breeds by agro-ecological zones in pakistan

    International Nuclear Information System (INIS)

    Aujla, K.M.

    2014-01-01

    This study was designed to compare costs of rearing and returns received from major dairy buffalo breeds (Nili-Ravi and Kundhi) in various agro-ecological zones of Pakistan. For this purpose, 219 buffalo farmers were randomly selected from mixed and rice-wheat cropping zones of Punjab and Sindh provinces, mixed cropping zone of Khyber Pakhtunkhwa (KPK) province, coastal zone of Sindh and mountainous-AJK. Of these, 155 and 64 were Nili-Ravi and Kundhi buffalo breed farmers, respectively. The study revealed that among the structure of cost components, feed cost occupied the major share in total cost of milk production. Milk production of buffaloes of Nili-Ravi and Kundhi breeds were 2889 and 2375 liter per annum, respectively. Total costs of milk production of Nili-Ravi and Kundhi buffalo breeds were Rs.96155 and Rs.90604 per annum, respectively. Net income per liter from milk of Nili-Ravi and Kundhi breeds was Rs.12 and Rs.11, and benefit-cost ratios were 1.4 and 1.3, respectively. Hence, Nili-Ravi buffalo breed is more productive and yields better returns over Kundhi breed. Moreover, buffalo milk production is a profitable business in the country except in coastal areas of Sindh, where investment in milk production just covers the cost of production due to comparatively higher feed prices and low milk prices. Econometric analysis of milk production in the country revealed that use of green fodder and concentrates contribute positively and significantly to milk production. (author)

  2. Hydrogeological structure model of the Olkiluoto Site. Update in 2010

    International Nuclear Information System (INIS)

    Vaittinen, T.; Ahokas, H.; Nummela, J.; Paulamaeki, S.

    2011-09-01

    As part of the programme for the final disposal of spent nuclear fuel, a hydrogeological structure model containing the hydraulically significant zones on Olkiluoto Island has been compiled. The structure model describes the deterministic site scale zones that dominate the groundwater flow. The main objective of the study is to provide the geometry and the hydrogeological properties related to the groundwater flow for the zones and the sparsely fractured bedrock to be used in the numerical modelling of groundwater flow and geochemical transport and thereby in the safety assessment. Also, these zones should be taken into account in the repository layout and in the construction of the disposal facility and they have a long-term impact on the evolution of the site and the safety of the disposal repository. The previous hydrogeological model was compiled in 2008 and this updated version is based on data available at the end of May 2010. The updating was based on new hydrogeological observations and a systematic approach covering all drillholes to assess measured fracture transmissivities typical of the site-scale hydrogeological zones. New data consisted of head observations and interpreted pressure and flow responses caused by field activities. Essential background data for the modelling included the ductile deformation model and the site scale brittle deformation zones modelled in the geological model version 2.0. The GSM combine both geological and geophysical investigation data on the site. As a result of the modelling campaign, hydrogeological zones HZ001, HZ008, HZ19A, HZ19B, HZ19C, HZ20A, HZ20B, HZ21, HZ21B, HZ039, HZ099, OL-BFZ100, and HZ146 were included in the structure model. Compared with the previous model, zone HZ004 was replaced with zone HZ146 and zone HZ039 was introduced for the first time. Alternative zone HZ21B was included in the basic model. For the modelled zones, both the zone intersections, describing the fractures with dominating groundwater

  3. Extraterrestrial hydrogeology

    Science.gov (United States)

    Baker, Victor R.; Dohm, James M.; Fairén, Alberto G.; Ferré, Ty P. A.; Ferris, Justin C.; Miyamoto, Hideaki; Schulze-Makuch, Dirk

    2005-03-01

    Subsurface water processes are common for planetary bodies in the solar system and are highly probable for exoplanets (planets outside the solar system). For many solar system objects, the subsurface water exists as ice. For Earth and Mars, subsurface saturated zones have occurred throughout their planetary histories. Earth is mostly clement with the recharge of most groundwater reservoirs from ample precipitation during transient ice- and hot-house conditions, as recorded through the geologic and fossilized records. On the other hand, Mars is mostly in an ice-house stage, which is interrupted by endogenic-driven activity. This activity catastrophically drives short-lived hydrological cycling and associated climatic perturbations. Regional aquifers in the Martian highlands that developed during past, more Earth-like conditions delivered water to the northern plains. Water was also cycled to the South Polar Region during changes in climate induced by endogenic activity and/or by changes in Mars' orbital parameters. Venus very likely had a warm hydrosphere for hundreds of millions of years, before the development of its current extremely hot atmosphere and surface. Subsequently, Venus lost its hydrosphere as solar luminosity increased and a run-away moist greenhouse took effect. Subsurface oceans of water or ammonia-water composition, induced by tidal forces and radiogenic heating, probably occur on the larger satellites Europa, Ganymede, Callisto, Titan, and Triton. Tidal forces operating between some of the small bodies of the outer solar system could also promote the fusion of ice and the stability of inner liquid-water oceans. Les processus de subsurface impliquant l'eau sont communs pour les corps planétaires du système solaire et sont très probables sur les exoplanètes (planètes en dehors du système solaire). Pour plusieurs objets du systèmes solaire, l'eau de subsurface est présente sous forme de glace. Pour la Terre et Mars, les zones saturées de

  4. Hydrogeology of Gypsum formations

    Directory of Open Access Journals (Sweden)

    Klimchouk A.

    1996-01-01

    Full Text Available Detailed explanation of hydrogeological characteristics of gypsum aquifers is given in various situations: deep-seated karst-confined conditions, subjacent, entrenched and denuded karst types-semi-confined, phreatic and vadose conditions. The hydrogeological evolution of barren exposed gypsum karst and flow velocities in gypsum karst aquifers is also discussed.

  5. Contaminant Hydrogeology, 2nd Edition

    Science.gov (United States)

    Smith, James E.

    Groundwater is a valuable resource that has received much attention over the last couple of decades. Extremely large sums of money have been and will be spent on groundwater contamination problems and the public has become increasingly sensitive to groundwater issues. Groundwater contamination has even become the subject of a major Hollywood movie with the recent release of A Civil Action starring John Travolta. The high profile of groundwater contaminant problems, the associated relatively strong job market over the last 20 years, and the general shift toward an environmental emphasis in science and engineering have resulted in a sustained high demand for senior undergraduate courses and graduate programs in hydrogeology Many voice the opinion that we have seen the peak demand for hydrogeologists pass, but the placement of graduates from hydrogeology programs into career-oriented positions has remained very high.

  6. Design of a three-dimensional site-scale model for the unsaturated zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Wittwer, C.S.; Bodvarsson, G.S.; Chornack, M.P.; Flint, A.L.; Lewis, B.D.; Spengler, R.W.; Flint, L.E.; Rautman, C.A.

    1992-01-01

    A three-dimensional model of moisture flow within the unsaturated zone at Yucca Mountain is being developed. This site-scale model covers an area of about 30 km 2 and is bounded by major faults to the east and west. A detailed numerical grid has been developed based on location of boreholes, different infiltration zones, hydrogeological units and their outcrops, major faults, and water level data. Different maps, such as contour maps and isopachs maps, are presented for the different infiltration zones, and for the base of the Tiva Canyon, the Paintbrush, and the Topopah Spring hydrogeological units

  7. Editors' message--Hydrogeology Journal in 2003

    Science.gov (United States)

    Voss, Clifford; Olcott, Perry; Schneider, Robert

    2004-01-01

    Hydrogeology Journal appeared in six issues containing a total of 710 pages and 48 major articles, including 31 Papers and 14 Reports, as well as some Technical Notes and Book Reviews. The number of submitted manuscripts continues to increase. The final issue of 2003 also contained the annual volume index. Hydrogeology Journal (HJ) is an international forum for hydrogeology and related disciplines and authors in 2003 were from about 28 countries. Articles advanced hydrogeologic science and described hydrogeologic systems in many regions worldwide. These articles focused on a variety of general topics and on studies of hydrogeology in 24 countries: Afghanistan, Algeria, Argentina, Australia, Bangladesh, Belgium, Canada, Chile, China, Denmark, France, India, Italy, Mexico, Netherlands, New Zealand, Nigeria, Norway, Portugal, Russia, South Africa, Switzerland, Turkey, and U.S.A. The Guest Editor of the 2003 HJ theme issue on “Hydromechanics in Geology and Geotechnics”, Ove Stephansson, assembled a valuable collection of technical reviews and research papers from eminent authors on important aspects of the subject area.

  8. Hydrogeology of Virginia

    Science.gov (United States)

    Nelms, David L.; Harlow, George; Bruce, T. Scott; Bailey, Christopher M.; Sherwood, W. Cullen; Eaton, L. Scott; Powars, David S.

    2016-01-01

    The hydrogeology of Virginia documented herein is in two parts. Part 1 consists of an overview and description of the hydrogeology within each regional aquifer system in the Commonwealth. Part 2 includes discussions of hydrogeologic research topics of current relevance including: 1. the Chesapeake Bay impact structure, 2. subsidence/compaction in the Coastal Plain, 3. groundwater age and aquifer susceptibility, 4. the occurrence of groundwater at depth in fractured-rock and karst terrains, and 5. hydrologic response of wells to earthquakes around the world.

  9. Use of induced polarization to characterize the hydrogeologic framework of the zone of surface‐water/groundwater exchange at the Hanford 300 Area, WA

    Science.gov (United States)

    Slater, Lee; Ntarlagiannis, Dimitrios; Day-Lewis, Frederick D.; Mwakanyamale, Kisa; Lane, John W.; Ward, Andy; Versteeg, Roelof J.

    2010-01-01

    An extensive continuous waterborne electrical imaging (CWEI) survey was conducted along the Columbia River corridor adjacent to the U.S. Department of Energy (DOE) Hanford 300 Area, WA, in order to improve the conceptual model for exchange between surface water and U‐contaminated groundwater. The primary objective was to determine spatial variability in the depth to the Hanford‐Ringold (H‐R) contact, an important lithologic boundary that limits vertical transport of groundwater along the river corridor. Resistivity and induced polarization (IP) measurements were performed along six survey lines parallel to the shore (each greater than 2.5 km in length), with a measurement recorded every 0.5–3.0 m depending on survey speed, resulting in approximately 65,000 measurements. The H‐R contact was clearly resolved in images of the normalized chargeability along the river corridor due to the large contrast in surface area (hence polarizability) of the granular material between the two lithologic units. Cross sections of the lithologic structure along the river corridor reveal a large variation in the thickness of the overlying Hanford unit (the aquifer through which contaminated groundwater discharges to the river) and clearly identify locations along the river corridor where the underlying Ringold unit is exposed to the riverbed. Knowing the distribution of the Hanford and Ringold units along the river corridor substantially improves the conceptual model for the hydrogeologic framework regulating U exchange between groundwater and Columbia River water relative to current models based on projections of data from boreholes on land into the river.

  10. HYDROGEOLOGIC CASE STUDIES

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  11. SRP baseline hydrogeologic investigation: Aquifer characterization

    Energy Technology Data Exchange (ETDEWEB)

    Strom, R.N.; Kaback, D.S.

    1992-03-31

    An investigation of the mineralogy and chemistry of the principal hydrogeologic units and the geochemistry of the water in the principal aquifers at Savannah River Site (SRS) was undertaken as part of the Baseline Hydrogeologic Investigation. This investigation was conducted to provide background data for future site studies and reports and to provide a site-wide interpretation of the geology and geochemistry of the Coastal Plain Hydrostratigraphic province. Ground water samples were analyzed for major cations and anions, minor and trace elements, gross alpha and beta, tritium, stable isotopes of hydrogen, oxygen, and carbon, and carbon-14. Sediments from the well borings were analyzed for mineralogy and major and minor elements.

  12. Euphotic zone bacterioplankton sources major sedimentary bacteriohopanepolyols in the Holocene Black Sea

    Science.gov (United States)

    Blumenberg, Martin; Seifert, Richard; Kasten, Sabine; Bahlmann, Enno; Michaelis, Walter

    2009-02-01

    Bacteriohopanepolyols (BHPs) are lipid constituents of many bacterial groups. Geohopanoids, the diagenetic products, are therefore ubiquitous in organic matter of the geosphere. To examine the potential of BHPs as environmental markers in marine sediments, we investigated a Holocene sediment core from the Black Sea. The concentrations of BHPs mirror the environmental shift from a well-mixed lake to a stratified marine environment by a strong and gradual increase from low values (˜30 μg g -1 TOC) in the oldest sediments to ˜170 μg g -1 TOC in sediments representing the onset of a permanently anoxic water body at about 7500 years before present (BP). This increase in BHP concentrations was most likely caused by a strong increase in bacterioplanktonic paleoproductivity brought about by several ingressions of Mediterranean Sea waters at the end of the lacustrine stage (˜9500 years BP). δ 15N values coevally decreasing with increasing BHP concentrations may indicate a shift from a phosphorus- to a nitrogen-limited setting supporting growth of N 2-fixing, BHP-producing bacteria. In sediments of the last ˜3000 years BHP concentrations have remained relatively stable at about 50 μg g -1 TOC. The distributions of major BHPs did not change significantly during the shift from lacustrine (or oligohaline) to marine conditions. Tetrafunctionalized BHPs prevailed throughout the entire sediment core, with the common bacteriohopanetetrol and 35-aminobacteriohopanetriol and the rare 35-aminobacteriohopenetriol, so far only known from a purple non-sulfur α-proteobacterium, being the main components. Other BHPs specific to cyanobacteria and pelagic methanotrophic bacteria were also found but only in much smaller amounts. Our results demonstrate that BHPs from microorganisms living in deeper biogeochemical zones of marine water columns are underrepresented or even absent in the sediment compared to the BHPs of bacteria present in the euphotic zone. Obviously, the assemblage of

  13. Determination of the relationship between major fault and zinc mineralization using fractal modeling in the Behabad fault zone, central Iran

    Science.gov (United States)

    Adib, Ahmad; Afzal, Peyman; Mirzaei Ilani, Shapour; Aliyari, Farhang

    2017-10-01

    The aim of this study is to determine a relationship between zinc mineralization and a major fault in the Behabad area, central Iran, using the Concentration-Distance to Major Fault (C-DMF), Area of Mineralized Zone-Distance to Major Fault (AMZ-DMF), and Concentration-Area (C-A) fractal models for Zn deposit/mine classification according to their distance from the Behabad fault. Application of the C-DMF and the AMZ-DMF models for Zn mineralization classification in the Behabad fault zone reveals that the main Zn deposits have a good correlation with the major fault in the area. The distance from the known zinc deposits/mines with Zn values higher than 29% and the area of the mineralized zone of more than 900 m2 to the major fault is lower than 1 km, which shows a positive correlation between Zn mineralization and the structural zone. As a result, the AMZ-DMF and C-DMF fractal models can be utilized for the delineation and the recognition of different mineralized zones in different types of magmatic and hydrothermal deposits.

  14. Geology and structure of major uranium-bearing zones in India and their exploration

    International Nuclear Information System (INIS)

    Nagabhushana, J.C.; Vasudeva Rao, M.; Sahasrabudhe, G.H.; Krishnamoorthy, B.; Suryanarayana Rao, C.; Rama Rao, Y.N.

    1976-01-01

    Radiogeologic, lithostratigraphic, tectonic, and crustal evolutionary considerations have enabled the recognition of three major uranium provinces in India: the Singhbhum Province in the north-east; the Rajasthan Province in the north-west; and the Madhya Pradesh Province in central India. The paper describes the salient features of the three uranium provinces, with particular emphasis on their structural set-up, magmatectonics, and the controls of uranium mineralization, and presents a few recent case histories of individual deposits (Bagjata and Turamdih in Singhbhum, and Dhabi-Dumhat in Madhya Pradesh) discovered by integrated exploration techniques. The three uranium provinces are related to major deep-seated faults: the Singhbhum Province lies at the arcuate north-east end of the deep fault of the Eastern Ghats; the Rajasthan Province parallels the great boundary fault; and the Madhya Pradesh Province aligns with the Mahanadi-Son rift system. Some of the plausible explanations for these remarkable features are: localization of uranium ore during episodes of crustal fracturing in Precambrian times; reactivation and rejuvenation of favourable basement structures; and the role of local 'hot spots' (aided by compressional and vertical tectonics) in crustal zones anomalously enriched in the heat-producing elements. Uranium exploration strategy in India during the last three decades reveals two significant trends - the application of conventional radiometric techniques during the period 1950-65; and introduction of sophisticated methodology comprising non-radiometric geophysical techniques, emanometry, aerial and car-borne gamma-ray spectrometry, geochemical surveys, and photogeological techniques as supplements to conventional radiometry, during the period 1965-75. It is concluded that extension of such integrated exploration techniques to favourable virgin terrains in India would lead to newer and richer uranium ore discoveries. (author)

  15. Structural analysis and magmatism characterization of the Major Gercino shear zone, Santa Catarina State, Brazil; Analise estrutural e caracterizacao do magmatismo da zona de cisalhamento Major Gercino, SC

    Energy Technology Data Exchange (ETDEWEB)

    Passarelli, Claudia Regina

    1996-12-31

    This work describes the geometric and kinematic characteristics of the Major Gercino Shear Zone (MGSZ) in the Canelinha-Garcia area. This shear zone is one of the major lineaments that affect all southern Brazilian precambrian terrains. In Santa Catarina State, it separates, along its whole extension, the supracrustal rocks of the Brusque belt (northern part) from the Granitoid belt (southern). This zone is characterized by a regional NE trend and a dextral sense of movement where ductile-brittle structures predominate. The MGSZ is composed of two mylonitic belts separated by granitoid rocks probably associated to the development of the shear zone. Both shear zones show cataclastic to ultra mylonitic rocks, but mylonites and protomylonites conditions at high strain rate. The calc-alkaline granitoids present in the area can be grouped in two granitoid associations with meta to peraluminous affinities. The Rolador Granitoid Association is characterized by grayish porphyritic biotite-monzogranites and the Fernandes Granitoid Association by coarsed-grained to porphyritic pinkish amphibole-syenogranites. The U-Pb and Rb-Sr ages range from 670 to 590 Ma with the Sr{sup 87} / Sr{sup 86} initial ratios suggesting a crustal contribution in the generation of these rocks. The importance of the pure shear component is also emphasized by the results of the Fry method. Many z axes of the strain ellipses are at high angle to the shear foliation. Symmetric porphyroclasts also corroborate this hypothesis. The micaceous minerals formed during the shear development indicate K-Ar ages around 555 {+-} 15 Ma. Brittle reactivations of the shear zone have been placed by K-Ar in fine-fraction materials at Triassic time (215 {+-} 15 Ma.) 220 refs., 107 figs., 18 tabs., 4 maps

  16. 77 FR 40513 - Safety Zone; Major Motion Picture Filming, Atlantic Intracoastal Waterway; Southport, NC

    Science.gov (United States)

    2012-07-10

    ... filming of a movie involving explosions and other dangerous stunts on water. The temporary safety zone is... filming of the movie, a delay in enacting this safety zone would be contrary to public interest. Under 5 U... Planning and Review This rule is not a significant regulatory action under section 3(f) of Executive Order...

  17. Hydrogeologic investigations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hawkins, W.L.; Trudeau, D.A.; Drellack, S.L.

    1992-01-01

    The Nevada Test Site was established in 1950 as a continental area for testing nuclear devices and, since 1963, all nuclear detonations there have been underground. Most tests are conducted in vertical shafts with a small percentage conducted in tunnels. The majority of detonation points are above the water table, primarily in volcanic rocks or alluvium. In the testing areas the water table is 450--700 m below the surface. Pre- and post- event geologic investigations are conducted for each test location and long-term studies assess the impact of underground testing on a more regional scale. Studies in progress have not identified any impact on the regional ground water system from testing, but some local effects have been recognized. In some areas where several large tests have been conducted below the water table, water levels hundreds of meters above the regional water table have been measured and radioactivity has been discovered associated with fractures in a few holes. Flow-through and straddle packer testing has revealed unexpectedly high hydraulic pressures at depth. Recently, a multiple completion monitoring well installed to study three zones has confirmed the existence of a significant upward hydraulic gradient. These observations of local pressurization and fracture flow are being further explored to determine the influence of underground nuclear testing on the regional hydrogeologic system

  18. Hydrogeology of Mors

    International Nuclear Information System (INIS)

    Joshi, A.V.

    1982-01-01

    The covering layers protect the salt in the dome. Ground water velocities are small and the chalk exhibits good retention properties for the radionuclides. As ground water velocities below 500 m are small, knowledge of hydrogeology over only a small area over the dome is necessary (1 km horizontal transport takes about 15 mill. years). Additionally if the retention properties of the chalk together with radioactive decay are taken into account, it becomes obvious that the nuclides can travel only a few metres into the chalk, before they have decayed to safe radioactive levels. Therefore it does not appear to be necessary to investigate the hydrogeology beyond a few metres from the disposal area. The hydrogeological investigations that have been carried out, although they cover only a limited area, thus give an excellent and sufficient basis for a safety evaluation for determining the suitability of the Mors salt dome for waste disposal. (EG)

  19. Bedrock Hydrogeology - Groundwater flow modelling. Site investigation SFR

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Johan [Geosigma AB, Uppsala (Sweden); Follin, Sven [SF GeoLogic AB, Taeby (Sweden); Oden, Magnus [SKB, Stockholm (Sweden)

    2013-05-15

    The hydrogeological model developed for the SFR extension project (PSU) consists of 40 geologically modelled deformation zones (DZ) and 8 sub-horizontal structural-hydraulic features, called SBAstructures, not defined in the geological model. However, some of the SBA-structures coincide with what is defined as unresolved possible deformation zones (Unresolved PDZ) in the geological modelling. In addition, the hydrogeological model consists of a stochastic discrete fracture network (DFN) model intended for the less fractured rock mass volumes (fracture domains) between the zones and the SBA-structures, and a stochastic fracture model intended to handle remaining Unresolved PDZs in the geological modelling not modelled as SBA-structures in the hydrogeological modelling. The four structural components of the bedrock in the hydrogeological model, i.e. DZ, SBA, Unresolved PDZ and DFN, are assigned hydraulic properties in the hydrogeological model based on the transmissivities interpreted from single-hole hydraulic tests. The main objective of the present work is to present the characteristics of the hydrogeological model with regard to the needs of the forthcoming safety assessment SR-PSU. In concrete words, simulated data are compared with measured data, i.e. hydraulic heads in boreholes and tunnel inflow to the existing repository (SFR). The calculations suggest that the available data for flow model calibration cannot be used to motivate a substantial adjustment of the initial hydraulic parameterisation (assignment of hydraulic properties) of the hydrogeological model. It is suggested that uncertainties in the hydrogeological model are studied in the safety assessment SR-PSU by means of a large number of calculation cases. These should address hydraulic heterogeneity of deterministic structures (DZ and SBA) and realisations of stochastic fractures/fracture networks (Unresolved PDZ and DFN) within the entire SFR Regional model domain.

  20. Bedrock Hydrogeology-Groundwater flow modelling. Site investigation SFR

    International Nuclear Information System (INIS)

    Oehman, Johan; Follin, Sven; Oden, Magnus

    2013-05-01

    The hydrogeological model developed for the SFR extension project (PSU) consists of 40 geologically modelled deformation zones (DZ) and 8 sub-horizontal structural-hydraulic features, called SBAstructures, not defined in the geological model. However, some of the SBA-structures coincide with what is defined as unresolved possible deformation zones (Unresolved PDZ) in the geological modelling. In addition, the hydrogeological model consists of a stochastic discrete fracture network (DFN) model intended for the less fractured rock mass volumes (fracture domains) between the zones and the SBA-structures, and a stochastic fracture model intended to handle remaining Unresolved PDZs in the geological modelling not modelled as SBA-structures in the hydrogeological modelling. The four structural components of the bedrock in the hydrogeological model, i.e. DZ, SBA, Unresolved PDZ and DFN, are assigned hydraulic properties in the hydrogeological model based on the transmissivities interpreted from single-hole hydraulic tests. The main objective of the present work is to present the characteristics of the hydrogeological model with regard to the needs of the forthcoming safety assessment SR-PSU. In concrete words, simulated data are compared with measured data, i.e. hydraulic heads in boreholes and tunnel inflow to the existing repository (SFR). The calculations suggest that the available data for flow model calibration cannot be used to motivate a substantial adjustment of the initial hydraulic parameterisation (assignment of hydraulic properties) of the hydrogeological model. It is suggested that uncertainties in the hydrogeological model are studied in the safety assessment SR-PSU by means of a large number of calculation cases. These should address hydraulic heterogeneity of deterministic structures (DZ and SBA) and realisations of stochastic fractures/fracture networks (Unresolved PDZ and DFN) within the entire SFR Regional model domain

  1. Hydrogeologic characterization of a fractured granitic rock aquifer, Raymond, California

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Andrew J.B. [Univ. of California, Berkeley, CA (United States)

    1993-10-01

    The hydrogeologic properties of a shallow, fractured granitic rock aquifer in the foothills of the Sierra Nevada, California were investigated via the analysis of borehole geophysical logs and pumping tests. The drawdowns produced during these tests are not indicative of any simple conceptual aquifer model, and borehole logs show that the granite is intensely fractured. These observations are suggestive of a complex fracture-flow geometry which is extremely difficult to decipher. However, through the measurement of orientations of individual subsurface fractures from acoustic televiewer logs, and correlation between particular fractures and electrical resistivity and thermal-pulse flowmeter logs, it was found that the aquifer is, in general, comprised of two subhorizontal and nearly parallel zones of unloading fractures. Downhole flowmeter measurements taken in several wells provide further evidence for the inferred dual-layer structure of the aquifer, as well as yield quantitative measures of the contribution of flow from each zone. Analysis of drawdowns in pumped wells reveals that there are zones of relatively high transmissivity immediately around them. It was found that these properties, as well as a nearby zone of lower transmissivity, can account for their observed drawdowns. A numerical model was constructed to test whether these major heterogeneities could also account for the drawdowns in observation wells. This stepwise analysis of both the geophysical and hydrological data resulted in the formulation of a conceptual model of the aquifer which is consistent with observations, and which can account for its behavior when subjected to pumping.

  2. Stochastic hydrogeologic units and hydrogeologic properties development for total-system performance assessments. Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Schenker, A.R.; Guerin, D.C.; Robey, T.H.; Rautman, C.A.; Barnard, R.W.

    1995-09-01

    A stochastic representation of the lithologic units and associated hydrogeologic parameters of the potential high-level nuclear waste repository are developed for use in performance-assessment calculations, including the Total-System Performance Assessment for Yucca Mountain-SNL Second Iteration (TSPA-1993). A simplified lithologic model has been developed based on the physical characteristics of the welded and nonwelded units at Yucca Mountain. Ten hydrogeologic units are developed from site-specific data (lithologic and geophysical logs and core photographs) obtained from the unsaturated and saturated zones. The three-dimensional geostatistical model of the ten hydrogeologic units is based on indicator-coding techniques and improves on the two-dimensional model developed for TSPA91. The hydrogeologic properties (statistics and probability distribution functions) are developed from the results of laboratory tests and in-situ aquifer tests or are derived through fundamental relationships. Hydrogeologic properties for matrix properties, bulk conductivities, and fractures are developed from existing site specific data. Extensive data are available for matrix porosity, bulk density, and matrix saturated conductivity. For other hydrogeologic properties, the data are minimal or nonexistent. Parameters for the properties are developed as beta probability distribution functions. For the model units without enough data for analysis, parameters are developed as analogs to existing units. A relational, analytic approach coupled with bulk conductivity parameters is used to develop fracture parameters based on the smooth-wall-parallel-plate theory. An analytic method is introduced for scaling small-core matrix properties to the hydrogeologic unit scales

  3. Urban hydrogeology in Indonesia: A highlight from Jakarta

    Science.gov (United States)

    Lubis, R. F.

    2018-02-01

    In many cities in the developing countries, groundwater is an important source of public water supply. The interaction between groundwater systems and urban environments has become an urgent challenge for many developing cities in the world, Indonesia included. Contributing factors are, but not limited to, the continuous horizontal and vertical expansion of cities, population growth, climate change, water scarcity and groundwater quality degradation. Jakarta as the capital city of Indonesia becomes a good example to study and implement urban hydrogeology. Urban hydrogeology is a science for investigating groundwater at the hydrological cycle and its change, water regime and quality within the urbanized landscape and zones of its impact. The present paper provides a review of urban groundwater studies in Jakarta in the context of urban water management, advances in hydrogeological investigation, monitoring and modelling since the city was established. The whole study emphasizes the necessity of an integrated urban groundwater management and development supporting hydrogeological techniques for urban areas.

  4. Hydrogeological investigation of Melendiz basin (Aksaray)

    International Nuclear Information System (INIS)

    Dogdu, M.S.

    1995-01-01

    Within the scope of this M.Sc, study entitled Hydrogeologic Investigation of Melendiz basin, the geological, hydrological, hydrogeological and hydrochemical features of a 600 km2 area have been studied and, 1/100.000 scale geological and hydrogeological maps have been prepared. Tetriary-Guaternary aged young volkanic rocks occupy nearly 80% (480 km2 ) of the area. The major aquifers are alluvium and andesite and basalt which are extensively fractured and jointed. Aquitard units comprise of ignimbirite, some of the andesites-basalts and formations that composes of limestone-sandstone-marl intercalations. The youngest geologic unit of the area, Hasandag volcanic ash formation, and also the tuffs have been indentified as aquiclude units. Mean areal precipitation, potential and real evapotranspiration rates and mean annual streamflow have been calculated on the basis of available data and, a hydrologic budget of the basin has been established. Hydrogeologic units have been classified as aquifer, aquitard and aquiclude with respect to their geohydrologic properties, field observations and the results of the pumping tests. On the other hand, hydrodynamic mechanism of the groundwater flow reaching major cold and thermal water discharges have also been explained. A hydrogeologic budget for the area covering Ciftlik township and its vicinity where extensively joint and fractured andesite-basalt and alluvial aquifers outcrop has been established. Major water points as thermal and cold springs, wells and streams have been sampled for major ion analysis. Beyond this, some water points have also been sampled for organic, trace,metal ald environmental isotropic analyses. Environmental isotope data of thermal springs point out a long-deep groundwater flow path

  5. Weathering of the New Albany Shale, Kentucky, USA: I. Weathering zones defined by mineralogy and major-element composition

    Science.gov (United States)

    Tuttle, M.L.W.; Breit, G.N.

    2009-01-01

    Comprehensive understanding of chemical and mineralogical changes induced by weathering is valuable information when considering the supply of nutrients and toxic elements from rocks. Here minerals that release and fix major elements during progressive weathering of a bed of Devonian New Albany Shale in eastern Kentucky are documented. Samples were collected from unweathered core (parent shale) and across an outcrop excavated into a hillside 40 year prior to sampling. Quantitative X-ray diffraction mineralogical data record progressive shale alteration across the outcrop. Mineral compositional changes reflect subtle alteration processes such as incongruent dissolution and cation exchange. Altered primary minerals include K-feldspars, plagioclase, calcite, pyrite, and chlorite. Secondary minerals include jarosite, gypsum, goethite, amorphous Fe(III) oxides and Fe(II)-Al sulfate salt (efflorescence). The mineralogy in weathered shale defines four weathered intervals on the outcrop-Zones A-C and soil. Alteration of the weakly weathered shale (Zone A) is attributed to the 40-a exposure of the shale. In this zone, pyrite oxidization produces acid that dissolves calcite and attacks chlorite, forming gypsum, jarosite, and minor efflorescent salt. The pre-excavation, active weathering front (Zone B) is where complete pyrite oxidation and alteration of feldspar and organic matter result in increased permeability. Acidic weathering solutions seep through the permeable shale and evaporate on the surface forming abundant efflorescent salt, jarosite and minor goethite. Intensely weathered shale (Zone C) is depleted in feldspars, chlorite, gypsum, jarosite and efflorescent salts, but has retained much of its primary quartz, illite and illite-smectite. Goethite and amorphous FE(III) oxides increase due to hydrolysis of jarosite. Enhanced permeability in this zone is due to a 14% loss of the original mass in parent shale. Denudation rates suggest that characteristics of Zone C

  6. On the combination of isotope hydrogeology with regional flow and transport modelling

    International Nuclear Information System (INIS)

    Barmen, G.A.

    1992-01-01

    Many different methods and tools can be used when trying to improve the information basis on which decisions are made for maintaining a quantitatively and qualitatively safe, long-term use of groundwater resources. In this thesis, classical hydrogeological examinations, hydrochemical investigations, environmental isotope studies, computerized groundwater flow modelling and radioisotope transport modelling have been applied to the large system of reservoirs in the sedimentary deposits of southwestern Scania, Sweden. The stable isotopes 2 H, 18 O and 13 C and the radioactive 3 H and 14 C have been measured and the results obtained can improve the estimations of the periods of recharge and the average circulation times of the groundwater reservoirs studied. A groundwater flow model based on finite difference techniques and a continuum approach has been modified by data from traditional hydrogeological studies. The computer code, NEWSAM, has been used to simulate steady-state and transient isotope transport in the area studied, taking into account advective transport with radioactive decay. The interacting groundwater resevoirs studied have been represented by a three-dimensional system of grids in the numerical model. A major merit of this combination of isotope hydrogeology and regional flow and transport modelling is that the isotope transport simulations help to demonstrate where zones particularly vulnerable to pollution are situated. These locations are chiefly the results of the hydrogeological characteristics traditionally examined, but they are revealed by means of the transport model. Subsequent, more detailed investigations can then be focussed primarily on these vulnerable zones. High contents of radioisotopes in the main aquifer of southwestern Scania may indicate that groundwater withdrawals have stimulated recharge from shallow aquifers and surface waters and that the risk of pollution has increased. (196 refs.) (au)

  7. Risk zoning around nuclear power plants in comparison to other major hazardous industrial installations

    International Nuclear Information System (INIS)

    Kirchsteiger, Christian

    2006-01-01

    The background and current status of the information basis leading to the definition of risk and emergency zones around Nuclear Power Plants (NPPs) in different countries in Europe and beyond are analysed. Although dependable plant-specific Probabilistic Safety Assessment (PSA) of Level 2 and/or Level 3 could in principle provide sufficiently detailed input to define the geographical dimension of a NPP's risk and emergency zones, the analysis of the status in some European and other countries shows that other, 'deterministic' approaches using a Reference Accident are actually used in practice. Regarding use of Level 2 PSA for emergency planning, the approach so far has been to use the Level 2 PSA information retrospectively to provide the justification for the choice of Reference Accident(s) used to define the emergency plans and Emergency Planning Zones (EPZs). There are significant differences in the EPZs that are defined in different countries, ranging from about 1 km to 30 km. Further, there is a striking contrast in the extent of using probabilistic information to define emergency zones between the nuclear and other high risk industry sectors, such as the chemical process industry, and the reasons for these differences are not entirely clear, but seem to be more related to risk perception than actual risk potential. Finally, based on consensus discussions at a recent JRC/OECD International Seminar on Risk and Emergency Zoning around NPPs, recommendations are given in the areas of more comprehensive use of available risk information for risk zoning purposes, risk communication and comparative risk assessment. (author)

  8. Hydrogeology of the Potsdam Sandstone in northern New York

    Science.gov (United States)

    Williams, John H.; Reynolds, Richard J.; Franzi, David A.; Romanowicz, Edwin A.; Paillet, Frederick L.

    2010-01-01

    The Potsdam Sandstone of Cambrian age forms a transboundary aquifer that extends across northern New York and into southern Quebec. The Potsdam Sandstone is a gently dipping sequence of arkose, subarkose, and orthoquartzite that unconformably overlies Precambrian metamorphic bedrock. The Potsdam irregularly grades upward over a thickness of 450 m from a heterogeneous feldspathic and argillaceous rock to a homogeneous, quartz-rich and matrix-poor rock. The hydrogeological framework of the Potsdam Sandstone was investigated through an analysis of records from 1,500 wells and geophysical logs from 40 wells, and through compilation of GIS coverages of bedrock and surficial geology, examination of bedrock cores, and construction of hydrogeological sections. The upper several metres of the sandstone typically is weathered and fractured and, where saturated, readily transmits groundwater. Bedding-related fractures in the sandstone commonly form sub-horizontal flow zones of relatively high transmissivity. The vertical distribution of sub-horizontal flow zones is variable; spacings of less than 10 m are common. Transmissivity of individual flow zones may be more than 100 m2/d but typically is less than 10 m2/d. High angle fractures, including joints and faults, locally provide vertical hydraulic connection between flow zones. Hydraulic head gradients in the aquifer commonly are downward; a laterally extensive series of sub-horizontal flow zones serve as drains for the groundwater flow system. Vertical hydraulic head differences between shallow and deep flow zones range from 1 m to more than 20 m. The maximum head differences are in recharge areas upgradient from the area where the Chateauguay and Chazy Rivers, and their tributaries, have cut into till and bedrock. Till overlies the sandstone in much of the study area; its thickness is generally greatest in the western part, where it may exceed 50 m. A discontinuous belt of bedrock pavements stripped of glacial drift extends

  9. Yield gap determinants for wheat production in major irrigated cropping zones of punjab, pakistan

    International Nuclear Information System (INIS)

    Hussain, A.; Aujla, K.M.; Badar, N.

    2014-01-01

    Yield gap is useful measurement for crop productivity and the extent to which crop productivity falls below some potential level. The study was carried out to analyze the yield gap and determinants of wheat production in the Punjab province of Pakistan. It is based on cross sectional data from 210 farmers for the crop year 2009-10. Results suggest that farm level wheat yields are less than the potential yield level by 33.0%, 43.0% and 50.6% in the mixed-cropping, cotton-wheat and rice-wheat zones of the province, respectively. Ordinary least square regression analysis of wheat production by assuming Cobb-Douglas specification reveals that the number of irrigations, usage of farm yard manure and fertilizers contribute positively and significantly to wheat crop production. Coefficients of dummy variables for cropping zones indicate that farmers in the mixed cropping zone are obtaining better yield of the wheat crop as compared to their counterparts in other selected cropping zones. These results suggested that farmers can increase wheat productivity by increasing the use of factor inputs; however, poverty may be a constraint on realizing these gains. Thus, wheat production can be increased in the country by helping resource poor farmers through suitable support mechanisms. (author)

  10. Magnetic expression of some major lineaments and cretaceous quiet zone in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Subrahmanyam, A.S.; Murthy, K.S.R.; Lakshminarayana, S.; Rao, M.M.M.; Venkateswarlu, K.; Rao, T.C.S.

    anomaly due to the 85¡E ridge abutting the continental shelf of Chilka Lake in ECMI. Studies by Mukhopadhyay and Krishna (1992) and Murthy et al. (1993) indicate that the landward limit of this quite zone is bounded by the COB at the foot...

  11. Bedrock Hydrogeology-Site investigation SFR

    International Nuclear Information System (INIS)

    Oehman, Johan; Bockgaard, Niclas; Follin, Sven

    2012-06-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations for a planned extension of the existing final repository for short-lived radioactive waste (SFR). This report presents an integrated analysis and interpretation of the historic data from the existing SFR (1980 - 1986), as well as, from the recent investigations for the planned extension of SFR (2008 - 2009). The primary objective is to establish a conceptual hydrogeological model of the bedrock for safety assessment and design analyses. Analyses and interpretations of all (old and new) hydraulic data are analysed with regard to the recently developed geological deformation zone model of the SFR model domain (Curtis et al. 2011). The methodology used by Curtis et al. (2011) has focussed on magnetic anomalies and deformation zone intercepts with ground surface greater than 300 m. In the hydrogeological modelling, however, it has been considered important to also explore the occurrence and characteristics of shallow horizontal to sub-horizontal structures (sheet joints) inside the SFR model domain. Such structures are of considerable importance for the hydrogeology in the uppermost c. 150 m of bedrock in SDM-Site Forsmark; hence the term Shallow Bedrock Aquifer was used to emphasise their hydraulic significance. In this study, the acronym SBA-structure is used for horizontal structures identified in the hydrogeological modelling. In addition to the predominantly steeply dipping geological deformation zones, eight so-called SBA-structures are modelled deterministically in the hydrogeological model. The SBA-structures are envisaged as hydraulically heterogeneous and composed of clusters of minor gently dipping to horizontal fractures rather than extensive single features. A type of structures that is partly included in the definition of the SBA-structures is the Unresolved Possible Deformations Zone (Unresolved PDZ) intercepts identified by Curtis et al. (2011). The Unresolved

  12. Characterization of aquifer heterogeneity in a complex fluvial hydrogeologic system to evaluate migration in ground water

    International Nuclear Information System (INIS)

    Baker, F.G.; Pavlik, H.F.

    1990-01-01

    The hydrogeology and extent of ground water contamination were characterized at a site in northern California. Wood preserving compounds, primarily pentachlorophenol (PCP) and creosote, have been detected in the soil and ground water. A plume of dissolved PCP up to 1.5 miles long has been identified south of the plant. The aquifer consists of a complex multizonal system of permeable gravels and sands composed of units from four geologic formations deposited by the ancestral Feather River. Fluvial channel gravels form the principal aquifer zones and contain overbank clay and silt deposits which locally form clay lenses or more continuous aquitards. The geometric mean horizontal hydraulic conductivities for channel gravels range between 120 to 530 feet/day. Mean vertical aquitard hydraulic conductivity is 0.07 feet/day. Ground water flow is generally southward with a velocity ranging from 470 to 1000 feet/year. The spatial distribution of dissolved PCP in the aquifer documents the interactions between major permeable zones. Hydrostratigraphic evidence pointing to the separation of aquifer zones is supported by the major ion chemistry of ground water. The sodium and calcium-magnesium bicarbonate-rich water present in the upper aquifer zones is significantly different in chemical composition from the predominantly sodium chloride-rich water present in the deeper permeable zone. This indicates that hydrodynamic separation exists between the upper and lower zones of the aquifer, limiting the vertical movement of the PCP plume. A numerical ground water model, based on this conceptual hydrogeologic model, was developed to evaluate groundwater transport pathways and for use in the design of a ground water extraction and treatment system. (9 refs., 7 figs., tab.)

  13. Hydrogeology of Rome

    Directory of Open Access Journals (Sweden)

    Roberto Mazza

    2015-12-01

    Full Text Available In this paper the hydrogeological setting of Rome is figured out. This setting has been strongly influenced by different factors as tectonic activity, volcanism and seal level variations. The conceptual model of the groundwater flow in the roman area is represented by four aquifers, three of which being overlappingones. These aquifers flow from peripheral sectors of the study area toward Tiber and Aniene Rivers and the Sea.

  14. Comparative abundance and distribution of major filter-feeders in the Antarctic pelagic zone

    Science.gov (United States)

    Voronina, N. M.

    1998-11-01

    The filter-feeding plankton, herbivorous copepods, salps and euphausiids, form the basic level of metazoans in the Antarctic pelagic trophic web. This paper sets out to determine the comparative share of these taxonomic groups in the total biomass and annual production. Their most abundant representatives, four copepod species ( Calanus propinquus, Calanoides acutus, Rhincalanus gigas and Metridia gerlachei), all salps and krill Euphausia superba were studied. For the first two groups net samples from six Russian expeditions in different sectors of the Antarctic were used. In total 752 samples from 118 stations were considered. The mean fresh biomass of filter-feeding copepods in the 0-1500 m layer was 18.0 g m -2 and in the entire Antarctic 576 10 6 t. The biomass of salps in comparatively restricted rich regions exceeded 500 g m -2 and in the remaining area was 1.2±0.8 g m -2, giving a total quantity of 882 10 6 t. The krill abundance estimation was based on published data, using a map of its quantitative distribution compiled from commercial trawling made by Soviet fishing and scientific ships during 17 seasons [Parfenovich, S.S., 1980. O zakonomernostyakh razmeshcheniya i regionalnoi differentsiatsii mestoskoplenii krilya v Yuzhnom Okeane. VNIRO, Moskva, in Russian.]. Three main zones based on commercial characteristics were determined by this author: (1) zone of regular occurrence of dense concentrations; (2) zone of rare occurrence of concentrations; (3) zone of low-abundance dispersed krill. All available data on E. superba biomass in the Antarctic were grouped together according to these zones and their means were calculated. The biomass of krill was found to be 60.1±11.2, 3.3±1.3 and 0.8±0.4 g m -2 fresh mass in zones 1, 2 and 3, respectively, with a total of 272 10 6 t. All estimates are compared with the literature data and their validity is discussed. For the annual production determinations the obtained biomass characteristics were multiplied by

  15. Conflicts in Africa and Major Powers: Proxy Wars, Zones of Influence or Provocative Instability

    Directory of Open Access Journals (Sweden)

    Jerry Rowlings Tafotie

    2016-12-01

    Full Text Available The article analyses the different nature of conflicts that have occurred in Africa since the end of Cold War. A special attention is given to the role of external factors in the process of conflict evolution and the escalation of violence on the African continent. In effect, this paper demonstrates through a critical examination of the meaning of proxy war as, zone of influence or provocation of instability as a strategy and an analysis of its employment by the United States and China, France etc. in Africa. The new potential confrontation between the United States and China as in Sudan, France in its former coloniesis not only based on a clash of world views about the structure and nature of international relations and security but largely over the control of strategically vital energy resources based in Africa. The authors conclude that this ultimately creates permanent tensions or bitter conflicts between the actors and African populations as a factor that have negative impact on the peace and stability of continent. According to the context of superpower conflict strategies, this paper critically examines, zone of influence, provoking of instability or proxy war as a viable national strategy of nuclear armed great powers in advancing and/or defending their global national interests in a bipolar/multipolar international system.

  16. Subsoil Characteristics and Hydrogeology of the Export Processing ...

    African Journals Online (AJOL)

    The subsoil characterization and hydrogeological investigation of the Export Processing Zone (EPZ), Calabar Southeastern Nigeria was undertaken using geotechnical analysis of soils and water level monitoring. Geotechnical analysis of soils in the EPZ show that the grain size range from poorly graded (well sorted) to well ...

  17. Colloid dynamics and transport of major elements through a boreal river - brackish bay mixing zone

    DEFF Research Database (Denmark)

    Gustafsson, Ö.; Widerlund, A.; Andersson, P.

    2000-01-01

    km in the spring.. During the dynamic springflood conditions studied, small 238U–234Th disequilibria, low sediment trap fluxes, laboratory mixing experiments, as well as results from an independent two-box, two-dimensional mixing model combine to suggest that no significant removal of Fe, Si......A range of biogeochemical methodologies were applied to investigate how aggregation processes affected the phase distribution and mixing of Fe, Si, and organic carbon between the Kalix River and the Bothnic Bay, northernmost Baltic Sea salinityF3; the low-salinity zone LSZ. was stretching over 60...... similar to that of neighboring Russian Arctic rivers, is hypothesized to result from a comparatively high organic-to-detrital matter characteristic of the aggregates. While first principles would indeed suggest that decreasing electrostatic repulsion during mixing lead to aggregation, a low specific...

  18. Education and Employment in Hydrogeology.

    Science.gov (United States)

    Pederson, Darryll T.

    1987-01-01

    Reports on a study of position descriptions in the field of hydrogeology appearing in want ads, published studies describing the working professional, and published descriptions of hydrogeology programs. Results indicate an increase in positions of ten times that of five years ago. Suggests basic training requirements for beginning…

  19. Synthetic Study on the Geological and Hydrogeological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Su; Koh, Yong Kwon; Choi, Jong Won

    2011-01-01

    To characterize the site specific properties of a study area for high-level radioactive waste disposal research in KAERI, the several geological investigations such as surface geological surveys and borehole drillings were carried out since 1997. Especially, KURT (KAERI Underground Research Tunnel) was constructed to understand the further study of geological environments in 2006. As a result, the first geological model of a study area was constructed by using the results of geological investigation. The objective of this research is to construct a hydrogeological model around KURT area on the basis of the geological model. Hydrogeological data which were obtained from in-situ hydraulic tests in the 9 boreholes were estimated to accomplish the objective. And, the hydrogeological properties of the 4 geological elements in the geological model, which were the subsurface weathering zone, the log angle fracture zone, the fracture zones and the bedrock were suggested. The hydrogeological model suggested in this study will be used as input parameters to carry out the groundwater flow modeling as a next step of the site characterization around KURT area

  20. Hydrogeology of the West Siberian Basin

    International Nuclear Information System (INIS)

    Foley, M.G.; Bradley, D.J.; Cole, C.R.

    1996-01-01

    Nuclear fuel cycle activities of the former Soviet Union (FSU) have resulted in extensive radioactive contaminant releases to the environment in western Siberia. We are developing three-dimensional numerical models of the hydrogeology and potential contaminant migration in the West Siberian Basin. We have assumed that ground-water flow in the West Siberian Basin is topographically driven, with recharge to the basin occurring in the highlands on the west, east, and south, and internal discharge localized in numerous river valleys and lakes that ultimately discharge north to the ocean. We are modeling the regional hydrogeology as three-dimensional, steady-state, saturated flow that is recharged from above. We acquired topographic, geologic, hydrostratigraphic, hydrogeologic, and water-balance data for the West Siberian Basin and constructed a regional water table. We correlated and combined 70 different rock types derived from published descriptions of West Siberian Basin rocks into 17 rock types appropriate for assignment of hydrogeologic properties on the basis of spatial heterogeneity and constituent (i.e., sand, silt, and clay) diversity. Examination of resulting three-dimensional assemblages of rock types showed that they were consistent with published and inferred paleogeography and depositional processes. Calibrating the basin's moisture balance (i.e., recharge and discharge) to the derived water table determined plausible input parameter values for unknowns such as hydraulic conductivities. The general directions of calculated ground-water flow suggest that major rivers act as discharge areas, with upwelling below the rivers extending down into the basement rocks, and that ground-water divides that penetrate the entire thickness of the model are evident between major rivers

  1. Hydrogeologic characterization and evolution of the 'excavation damaged zone' by statistical analyses of pressure signals: application to galleries excavated at the clay-stone sites of Mont Terri (Ga98) and Tournemire (Ga03)

    International Nuclear Information System (INIS)

    Fatmi, H.; Ababou, R.; Matray, J.M.; Joly, C.

    2010-01-01

    Document available in extended abstract form only. This paper presents methods of statistical analysis and interpretation of hydrogeological signals in clayey formations, e.g., pore water pressure and atmospheric pressure. The purpose of these analyses is to characterize the hydraulic behaviour of this type of formation in the case of a deep repository of Mid- Level/High-Level and Long-lived radioactive wastes, and to study the evolution of the geologic formation and its EDZ (Excavation Damaged Zone) during the excavation of galleries. We focus on galleries Ga98 and Ga03 in the sites of Mont Terri (Jura, Switzerland) and Tournemire (France, Aveyron), through data collected in the BPP- 1 and PH2 boreholes, respectively. The Mont Terri site, crossing the Aalenian Opalinus clay-stone, is an underground laboratory managed by an international consortium, namely the Mont Terri project (Switzerland). The Tournemire site, crossing the Toarcian clay-stone, is an Underground Research facility managed by IRSN (France). We have analysed pore water and atmospheric pressure signals at these sites, sometimes in correlation with other data. The methods of analysis are based on the theory of stationary random signals (correlation functions, Fourier spectra, transfer functions, envelopes), and on multi-resolution wavelet analysis (adapted to nonstationary and evolutionary signals). These methods are also combined with filtering techniques, and they can be used for single signals as well as pairs of signals (cross-analyses). The objective of this work is to exploit pressure measurements in selected boreholes from the two compacted clay sites, in order to: - evaluate phenomena affecting the measurements (earth tides, barometric pressures..); - estimate hydraulic properties (specific storage..) of the clay-stones prior to excavation works and compare them with those estimated by pulse or slug tests on shorter time scales; - analyze the effects of drift excavation on pore pressures

  2. Hydrogeologic framework of the middle San Pedro watershed, southeastern Arizona

    Science.gov (United States)

    Dickinson, Jesse; Kennedy, Jeffrey R.; Pool, D.R.; Cordova, Jeffrey T.; Parker, John T.; Macy, J.P.; Thomas, Blakemore

    2010-01-01

    Water managers in rural Arizona are under increasing pressure to provide sustainable supplies of water despite rapid population growth and demands for environmental protection. This report describes the results of a study of the hydrogeologic framework of the middle San Pedro watershed. The components of this report include: (1) a description of the geologic setting and depositional history of basin fill sediments that form the primary aquifer system, (2) updated bedrock altitudes underlying basin fill sediments calculated using a subsurface density model of gravity data, (3) delineation of hydrogeologic units in the basin fill using lithologic descriptions in driller's logs and models of airborne electrical resistivity data, (4) a digital three-dimensional (3D) hydrogeologic framework model (HFM) that represents spatial extents and thicknesses of the hydrogeologic units (HGUs), and (5) description of the hydrologic properties of the HGUs. The lithologic interpretations based on geophysical data and unit thickness and extent of the HGUs included in the HFM define potential configurations of hydraulic zones and parameters that can be incorporated in groundwater-flow models. The hydrogeologic framework comprises permeable and impermeable stratigraphic units: (1) bedrock, (2) sedimentary rocks predating basin-and-range deformation, (3) lower basin fill, (4) upper basin fill, and (5) stream alluvium. The bedrock unit includes Proterozoic to Cretaceous crystalline rocks, sedimentary rocks, and limestone that are relatively impermeable and poor aquifers, except for saturated portions of limestone. The pre-basin-and-range sediments underlie the lower basin fill but are relatively impermeable owing to cementation. However, they may be an important water-bearing unit where fractured. Alluvium of the lower basin fill, the main water-bearing unit, was deposited in the structural trough between the uplifted ridges of bedrock and (or) pre-basin-and-range sediments. Alluvium of

  3. Cloud attenuation studies of the six major climatic zones of Africa for Ka and V satellite system design

    Directory of Open Access Journals (Sweden)

    Temidayo Victor Omotosho

    2014-01-01

    Full Text Available Normal 0 false false false EN-GB X-NONE X-NONE Cloud cover statistics, cloud base and top height, cloud temperature, frequency of precipitation, freezing height, total cloud liquid water content (TCLWC and cloud attenuation data have been obtained for the six major climatic zones of Africa. The present results reveal a strong positive correlation between the monthly distribution of low cloud cover, cloud top height, cloud temperature, and frequency of precipitation in the six zones. The cumulative distribution of the TCLWC derived from radiosonde measurement in each climatic zone shows a departure from the TCLWC recommended by the ITU Study Group 3 data, with an exceedance percentage difference of 32% to 90% occurring 0.01% to 10% of the time. The underestimation of the TCLWC is greatest in the tropical rain forest. A comparison of the cloud attenuation cumulative distribution in the Ka and V bands reveals that the International Telecommunication Union – Region (ITU-R is an intergovernmental organization that develops rain model based on collected data around the world. This model underestimates the cloud attenuation in all of the six climatic zones by 2.0 dB and 4.7 dB for the arid Sahara desert, 1.3 dB and 3.0 dB in semi-arid North Africa, 1.3 dB and 1.5 dB in savannah North Africa, 2.0 dB and 3.6 dB in the tropical rain forest, 1.3 dB and 2.9 dB in savannah South Africa and 0.9 dB and 2.6 dB in semi-arid South Africa, respectively, at 30 and 50 GHz. Overall, the cloud attenuation in the tropical rain-forest zone is very high because of the high annual total cloud cover (98%, high annual frequency of precipitation (4.5, low annual clear sky amount (8%, high cloud depth (10,937 m, high 0°C isotherm height (4.7 km, high TCLWC (4.0 kg/m2 at 0.01% and low seasonal cloud base height (356 m.

  4. HYDROGEOLOGIC CASE STUDIES (DENVER PRESENTATION)

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  5. HYDROGEOLOGIC CASE STUDIES (CHICAGO, IL)

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  6. Hydrogeologic Case Studies (Seattle, WA)

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  7. Drilling technologies in hydrogeological survey

    OpenAIRE

    Vorlíček, Petr

    2014-01-01

    This work deals with the drilling technologies used in hydrogeology. The main aim of the work is to explore types of drilling technologies used at hydrogeological drilling wells and modern technologies that could potentially be used in the future. The work also summarizes a historical development of drilling techniques, a drilling process procedure, information obtained from boreholes and the most common types of drilling fluids.

  8. Low vascularization of the nephrogenic zone of the fetal kidney suggests a major role for hypoxia in human nephrogenesis.

    Science.gov (United States)

    Gerosa, C; Fanni, D; Faa, A; Van Eyken, P; Ravarino, A; Fanos, V; Faa, G

    2017-09-01

    CD31 reactivity is generally utilized as a marker of endothelial cells. CD31 immunoreactivity in the developing human kidney revealed that fetal glomerular capillary endothelial cells change their immunohistochemical phenotype during maturation. The aim of this study was to analyze CD31 reactivity in the fetal human kidney in the different stages of intrauterine development: We observed different distribution of CD31-reactive vascular progenitors in the different areas of the developing kidney. In particular, the nephrogenic zone and the renal capsule were characterized by a scarcity of CD31-reactive cells at all gestational ages. These data suggest the hypothesis that nephrogenesis does not need high oxygen levels and confirms a major role of hypoxia in nephrogenesis.

  9. Current status of regional hydrogeological studies and numerical simulations on geological disposal

    International Nuclear Information System (INIS)

    Nakao, Shinsuke; Kikuchi, Tsuneo; Ishido, Tsuneo

    2004-01-01

    Current status of regional hydrogeological studies on geological disposal including hydrogeological modeling using numerical simulators is reviewed in this report. A regional scale and boundary conditions of numerical models are summarized mainly from the results of the RHS (regional hydrogeological study) project conducted by Japan Nuclear Cycle Development Institute (JNC) in the Tono area. We also refer to the current conceptual modes of hydrology and numerical models of unsaturated zone flow at Yucca Mountain, Nevada, which is the arid site proposed for consideration as the United States' first underground high-level radioactive waste repository. Understanding behavior of a freshwater-saltwater transition zone seems to play a key role in the hydrogeological modeling in a coastal region. Technical features of a numerical simulator as a tool for geothermal reservoir modeling is also briefly described. (author)

  10. Mineralization of the ancient hydrogeological conditions in the northeast of Ordos basin

    International Nuclear Information System (INIS)

    Gao Junyi

    2012-01-01

    Ordos basin, North East, to the Eocene as a turning point, in the generation of the ancient hydrogeological conditions have distinct changes experienced at least two ancient evolution of hydrogeological conditions, that is closed in the early flow into basin Late open drain basin. Closed in the early period of the inner flow basin, since the purpose of layer deposition, the direction of the ancient hydrodynamic interlayer oxidation is consistent with the direction of oxidation. Hydrogeological conditions of the ancient point of view, in the Ordos basin, North East looking for interlayer oxidation zone type uranium has a guiding role. (author)

  11. Hydrographic and hydrogeological basin of Entre-Ribeiros: probable recharge zone delimitation and environmental impact assessment Bacia hidrográfica e hidrogeológica de Entre-Ribeiros: zonas prováveis de recarga e análise dos impactos ambientais históricos

    Directory of Open Access Journals (Sweden)

    Vitor V. Vasconcelos

    2012-06-01

    Full Text Available The probable recharge zone delimitation of Entre-Ribeiros Basin (Northwest of the state of Minas Gerais / Brazil is proposed in this study. The delimitation is based upon stratigraphy, geomorphology, geo-environmental domains and hydrogeology studies. Combining the recharge zone map with the land use variation between 1975 and 2008, the occupation trends of possible recharge zones are identified. Concluding, the environmental impacts for this basin are discussed.Apresenta-se uma proposta de delimitação das prováveis zonas de recarga da Bacia Hidrográfica de Entre-Ribeiros (Noroeste de Minas Gerais/Brasil. A delimitação teve como subsídio estudos de litoestratigrafia, geomorfologia, unidades geoambientais e hidrogeologia. A partir da delimitação proposta, e conjugando-se à análise da ocupação do solo entre o período de 1975 a 2008, procura-se identificar as tendências de ocupação das zonas prováveis de recarga. Por fim, tecem-se comentários sobre os impactos ambientais decorrentes da ocupação dessas áreas.

  12. Analysis on hydrogeological conditions of uranium formation in mulaamite sag in Kumux basin

    International Nuclear Information System (INIS)

    Wang Chengwei; Chen Liyun; Wang Juntang

    2008-01-01

    Based on the comprehensive analysis on the materials, hydrogeological conditions, features of water-bearing rock formation, relationship amoung the hydrogeochemical features and interlayer oxidation zone and uranium formation are analyzed from the point of view of basic geological conditions, it is preliminarily considered that Kuluketage fore-mountain zone has a good potential to develop the interlayer oxidation belt and uranium mineralization. (authors)

  13. Characterization of hydrogeologic units using matrix properties, Yucca Mountain, Nevada

    Science.gov (United States)

    Flint, L.E.

    1998-01-01

    Determination of the suitability of Yucca Mountain, in southern Nevada, as a geologic repository for high-level radioactive waste requires the use of numerical flow and transport models. Input for these models includes parameters that describe hydrologic properties and the initial and boundary conditions for all rock materials within the unsaturated zone, as well as some of the upper rocks in the saturated zone. There are 30 hydrogeologic units in the unsaturated zone, and each unit is defined by limited ranges where a discrete volume of rock contains similar hydrogeologic properties. These hydrogeologic units can be easily located in space by using three-dimensional lithostratigraphic models based on relation- ships of the properties with the lithostratigraphy. Physical properties of bulk density, porosity, and particle density; flow properties of saturated hydraulic conductivity and moisture-retention characteristics; and the state variables (variables describing the current state of field conditions) of saturation and water potential were determined for each unit. Units were defined using (1) a data base developed from 4,892 rock samples collected from the coring of 23 shallow and 8 deep boreholes, (2) described lithostratigraphic boundaries and corresponding relations to porosity, (3) recognition of transition zones with pronounced changes in properties over short vertical distances, (4) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (5) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. This study describes the correlation of hydrologic properties to porosity, a property that is well related to the lithostratigraphy and depositional and cooling history of the volcanic deposits and can, therefore, be modeled to be distributed laterally. Parameters of the hydrogeologic units developed in this study and the

  14. Role of Hydrogeology in Professional Environmental Projects

    Science.gov (United States)

    The purpose of this presentation is to acquaint hydrogeology students how hydrogeological principles are applied in environmental engineering projects. This presentation outlines EPA's Superfund processes of site characterization, feasibility studies, and remediation processes.

  15. Interdisciplinary hydrogeologic site characterization at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hawkins, W.L.; Wagoner, J.L.; Drellack, S.L.

    1992-01-01

    The Nevada Test Site was established in 1950 as a continental area for testing nuclear devices. Hydrogeologic investigations began in earnest with the US Geological Survey mapping much of the area from 1960 to 1965. Since 1963, all nuclear detonations have been underground. Most tests are conducted in vertical shafts, but a small percentage are conducted in tunnels. The majority of detonation points are above the water table, primarily in volcanic rocks, but sometimes in alluvium. Hydrogeologic investigations began in earnest with the US Geological Survey's mapping of much of the NTS region from 1960 to 1965. Following the BANEBERRY test in December 1970, which produced an accidental release of radioactivity to the atmosphere, the US Department of Energy (then the Atomic Energy Commission) established the Containment Evaluation Panel (CEP). Results of interdisciplinary hydrogeologic investigations for each test location are included in a Containment Prospectus which is thoroughly reviewed by the CEP

  16. First Workshop on Design and Construction of Deep Repositories - Theme: Excavation through water-conducting major fracture zones

    International Nuclear Information System (INIS)

    Baeckblom, G.; Svemar, C.

    1994-01-01

    Final disposal of high-level nuclear waste has not yet been carried out in any country today. The concepts under development are all based on geological repositories, i.e., disposal at a sufficient depth below the surface to provide stable mechanical, hydrological and chemical conditions during the period the waste needs to be isolated from man. In the cases where crystalline bedrock is considered the proposed repository depths vary between 300-1000 m. The construction, operation and sealing of a deep geological repository must meet various criteria that in many respects are more detailed and more demanding than usual in underground construction projects today. The work shall be done so that occupational safety is ensured. The work also shall conform to whatever restrictions are necessary for ensuring pre-closure operational safety and post-closure long-term safety. March 1993 SKB arranged a two-day international workshop to discuss design and construction of repositories. Close to 40 participants from eight countries shared experiences regarding passage of major water-conducting fracture zones and other matters. This report summarizes the contributions to the workshop

  17. Deformation processes and weakening mechanisms within the frictional viscous transition zone of major crustal-scale faults: insights from the Great Glen Fault Zone, Scotland

    Science.gov (United States)

    Stewart, M.; Holdsworth, R. E.; Strachan, R. A.

    2000-05-01

    The Great Glen Fault Zone (GGFZ), Scotland, is a typical example of a crustal-scale, reactivated strike-slip fault within the continental crust. Analysis of intensely strained fault rocks from the core of the GGFZ near Fort William provides a unique insight into the nature of deformation associated with the main phase of (sinistral) movements along the fault zone. In this region, an exhumed sequence of complex mid-crustal deformation textures that developed in the region of the frictional-viscous transition (ca. 8-15 km depth) is preserved. Fault rock fabrics vary from mylonitic in quartzites to cataclastic in micaceous shear zones and feldspathic psammites. Protolith mineralogy exerted a strong control on the initial textural development and distribution of the fault rocks. At lower strains, crystal-plastic deformation occurred in quartz-dominated lithologies to produce mylonites simultaneously with widespread fracturing and cataclasis in feldspar- and mica-dominated rocks. At higher strains, shearing appears to increasingly localise into interconnected networks of cataclastic shear zones, many of which are strongly foliated. Textures indicative of fluid-assisted diffusive mass transfer mechanisms are widespread in such regions and suggest that a hydrous fluid-assisted, grainsize-controlled switch in deformation behaviour followed the brittle comminution of grains. The fault zone textural evolution implies that a strain-induced, fluid-assisted shallowing and narrowing of the frictional-viscous transition occurred with increasing strain. It is proposed that this led to an overall weakening of the fault zone and that equivalent processes may occur along many other long-lived, crustal-scale dislocations.

  18. Major and trace elements in Mahogany zone oil shale in two cores from the Green River Formation, piceance basin, Colorado

    Science.gov (United States)

    Tuttle, M.L.; Dean, W.E.; Parduhn, N.L.

    1983-01-01

    The Parachute Creek Member of the lacustrine Green River Formation contains thick sequences of rich oil-shale. The richest sequence and the richest oil-shale bed occurring in the member are called the Mahogany zone and the Mahogany bed, respectively, and were deposited in ancient Lake Uinta. The name "Mahogany" is derived from the red-brown color imparted to the rock by its rich-kerogen content. Geochemical abundance and distribution of eight major and 18 trace elements were determined in the Mahogany zone sampled from two cores, U. S. Geological Survey core hole CR-2 and U. S. Bureau of Mines core hole O1-A (Figure 1). The oil shale from core hole CR-2 was deposited nearer the margin of Lake Uinta than oil shale from core hole O1-A. The major- and trace-element chemistry of the Mahogany zone from each of these two cores is compared using elemental abundances and Q-mode factor modeling. The results of chemical analyses of 44 CR-2 Mahogany samples and 76 O1-A Mahogany samples are summarized in Figure 2. The average geochemical abundances for shale (1) and black shale (2) are also plotted on Figure 2 for comparison. The elemental abundances in the samples from the two cores are similar for the majority of elements. Differences at the 95% probability level are higher concentrations of Ca, Cu, La, Ni, Sc and Zr in the samples from core hole CR-2 compared to samples from core hole O1-A and higher concentrations of As and Sr in samples from core hole O1-A compared to samples from core hole CR-2. These differences presumably reflect slight differences in depositional conditions or source material at the two sites. The Mahogany oil shale from the two cores has lower concentrations of most trace metals and higher concentrations of carbonate-related elements (Ca, Mg, Sr and Na) compared to the average shale and black shale. During deposition of the Mahogany oil shale, large quantities of carbonates were precipitated resulting in the enrichment of carbonate-related elements

  19. Hydrogeologic field study of the Koongarra uranium deposit in the Northern Territory of Australia

    International Nuclear Information System (INIS)

    Marley, R.D.

    1990-01-01

    This study is focused on the hydrogeologic characterization of the more southwesterly of the two Koongarra orebodies. The general objective is to augment the current hydrogeologic understanding of groundwater flow so that realistic transport models can be developed. Water level, aquifer tests, and slug-test data indicate that the Koongarra uranium deposit is within a low permeability, semi-confined, fractured-schist aquifer. Water levels demonstrate semi-diurnal and diurnal fluctuations related to earth tides and evapotranspiration stresses. Hydraulic test data were analyzed with homogenous isotropic and homogenous anisotropic models which allowed parameter estimation for sub-regions of the study area. Dominant anisotropy is subparallel to lithologic layering and the reverse fault. Slug tests reveal regions controlled by low storage but highly conductive fractures and isolated regions of low conductivity. Hydraulic connection of the weathered zone with the underlying schist is dependent on clay content and fractures. Environmental isotopes indicate ground water has been isolated from the atmosphere for a least 40 years and possibly several thousand years in some locations. Water budget calculations indicate the majority of recharge must be from direct infiltration through the weathered profile to account for the calculated ground-water fluxes. 36 refs., 12 tabs., 52 figs

  20. Hydrogeologic data and water-quality data from a thick unsaturated zone at a proposed wastewater-treatment facility site, Yucca Valley, San Bernardino County, California, 2008-11

    Science.gov (United States)

    O'Leary, David; Clark, Dennis A.; Izbicki, John A.

    2015-01-01

    The Hi-Desert Water District, in the community of Yucca Valley, California, is considering constructing a wastewater-treatment facility and using the reclaimed water to recharge the aquifer system through surface spreading. The Hi-Desert Water District is concerned with possible effects of this recharge on water quality in the underlying groundwater system; therefore, an unsaturated-zone monitoring site was constructed by the U.S. Geological Survey (USGS) to characterize the unsaturated zone, monitor a pilot-scale recharge test, and, ultimately, to monitor the flow of reclaimed water to the water table once the treatment facility is constructed.

  1. An integrated theoretical and practical approach for teaching hydrogeology

    Science.gov (United States)

    Bonomi, Tullia; Fumagalli, Letizia; Cavallin, Angelo

    2013-04-01

    Hydrogeology as an earth science intersects the broader disciplines of geology, engineering, and environmental studies but it does not overlap fully with any of them. It is focused on its own range of problems and over time has developed a rich variety of methods and approaches. The resolution of many hydrogeological problems requires knowledge of elements of geology, hydraulics, physics and chemistry; moreover in recent years the knowledge of modelling techniques has become a necessary ability. Successful transfer of all this knowledge to the students depends on the breadth of material taught in courses, the natural skills of the students and any practical experience the students can obtain. In the Department of Earth and Environmental Sciences of the University of Milano-Bicocca, the teaching of hydrogeology is developed in three inter-related courses: 1) general hydrogeology, 2) applied hydrogeology, 3) groundwater pollution and remediation. The sequence focuses on both groundwater flux and contaminant transport, supplemented by workshops involving case studies and computer labs, which provide the students with practical translation of the theoretical aspects of the science into the world of work. A second key aspect of the program utilizes the students' skill at learning through online approaches, and this is done through three approaches: A) by developing the courses on a University e-learning platform that allows the students to download lectures, articles, and teacher comments, and to participate in online forums; B) by carring out exercises through computer labs where the student analyze and process hydrogeological data by means of different numerical codes, that in turn enable them to manage databases and to perform aquifer test analysis, geostatistical analysis, and flux and transport modelling both in the unsaturated and saturated zone. These exercises are of course preceded by theoretical lectures on codes and software, highlighting their features and

  2. Characterization of hydrogeologic units using matrix properties, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Flint, L.E.

    1998-01-01

    Determination of the suitability of Yucca Mountain, in southern Nevada, as a geologic repository for high-level radioactive waste requires the use of numerical flow and transport models. Input for these models includes parameters that describe hydrologic properties and the initial and boundary conditions for all rock materials within the unsaturated zone, as well as some of the upper rocks in the saturated zone. There are 30 hydrogeologic units in the unsaturated zone, and each unit is defined by limited ranges where a discrete volume of rock contains similar hydrogeologic properties. These hydrogeologic units can be easily located in space by using three-dimensional lithostratigraphic models based on relationships of the properties with the lithostratigraphy. Physical properties of bulk density, porosity, and particle density; flow properties of saturated hydraulic conductivity and moisture-retention characteristics; and the state variables (variables describing the current state of field conditions) of saturation and water potential were determined for each unit. Units were defined using (1) a data base developed from 4,892 rock samples collected from the coring of 23 shallow and 8 deep boreholes, (2) described lithostratigraphic boundaries and corresponding relations to porosity, (3) recognition of transition zones with pronounced changes in properties over short vertical distances, (4) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (5) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. This study describes the correlation of hydrologic properties to porosity, a property that is well related to the lithostratigraphy and depositional and cooling history of the volcanic deposits and can, therefore, be modeled to be distributed laterally

  3. Hydrogeology baseline study Aurora Mine

    International Nuclear Information System (INIS)

    1996-01-01

    A baseline hydrogeologic study was conducted in the area of Syncrude's proposed Aurora Mine in order to develop a conceptual regional hydrogeologic model for the area that could be used to understand groundwater flow conditions. Geologic information was obtained from over 2,000 coreholes and from data obtained between 1980 and 1996 regarding water level for the basal aquifer. A 3-D numerical groundwater flow model was developed to provide quantitative estimates of the potential environmental impacts of the proposed mining operations on the groundwater flow system. The information was presented in the context of a regional study area which encompassed much of the Athabasca Oil Sands Region, and a local study area which was defined by the lowlands of the Muskeg River Basin. Characteristics of the topography, hydrology, climate, geology, and hydrogeology of the region are described. The conclusion is that groundwater flow in the aquifer occurs mostly in a westerly direction beneath the Aurora Mine towards its inferred discharge location along the Athabasca River. Baseflow in the Muskeg River is mostly related to discharge from shallow surficial aquifers. Water in the river under baseflow conditions was fresh, of calcium-carbonate type, with very little indication of mineralization associated with deeper groundwater in the Aurora Mine area. 44 refs., 5 tabs., 31 figs

  4. Integrated risk management for improving internal traffic control, work-zone safety, and mobility during major construction : tech transfer summary.

    Science.gov (United States)

    2012-10-01

    Construction work zones are among the most dangerous places to work in any industry in the world. This is because many factors in construction, such as constant change in working environments and driver errors, contribute to a workplace with a higher...

  5. Hydrogeological analysis applied to regional evaluation of sandstone-type uranium ore-formation in sedimentary basins

    International Nuclear Information System (INIS)

    Xu Laisheng

    2005-01-01

    The main purpose of regional evaluation of uranium ore-formation is to preliminarily divide environmental zones and to delineate favourable areas for uranium ore-formation in order to provide basis for further detailed prospecting work. Of the various kinds of prospecting work, the hydrogeologic work should be mainly carried out in following aspects: division of hydrogeological units, the determination of artesian water-bearing system and the identification of prospecting target horizon; the analysis on hydrodynamic regime, the analysis on hydrogeochemical environments, the paleo-hydrogeologic analysis and the delineation of redox front and favourable area for uranium ore-formation. (author)

  6. Compilation of data used for the analysis of the geological and hydrogeological DFN models. Site descriptive modelling SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Hermanson, Jan; Fox, Aaron; Oehman, Johan; Rhen, Ingvar

    2008-08-01

    This report provides an overview and compilation of the various data that constitutes the basis for construction of the geological and hydrogeological discrete feature network (DFN) models as part of model version SDM-Site Laxemar. This includes a review of fracture data in boreholes and in outcrop. Furthermore, the basis for the construction of lineament maps is given as well as a review of the hydraulic test data from cored and percussion-drilled boreholes. An emphasis is put on graphical representation of borehole logs in the form of composites of geological, hydrogeological and even hydrogeochemical data in the case of cored boreholes. One major contribution is a compilation of characteristics of minor local deformation zones (MDZs) identified in cored boreholes. Basic orientation data and fracture intensity data are presented as a function of depth for individual boreholes. The coupling between hydrogeological data and geological data is further refined in plots of Posiva flow log (PFL) data vs. geological single hole interpretation data

  7. Case studies in organic contaminant hydrogeology

    International Nuclear Information System (INIS)

    Baker, J.A.

    1989-01-01

    The effective management of domestic solid waste and hazardous, toxic, and radioactive waste is a major problem in the area of environmental geology and water sciences throughout the world. A series of case studies is presented of organic contaminants from both solid and hazardous waste disposal facilities to provide examples of these problems. The facilities were investigated to determine risks and liabilities before acquisition, to determine the site hydrogeologic conditions for design of appropriate groundwater monitoring plans, and/or to determine the potential for groundwater contamination. The case studies are of disposal facilities located in glacial tills, carbonaceous weathered clay soils, weathered shale, limestone bedrock, dolomite bedrock, and alluvial and sedimentary deposits. The results of these studies and investigations show certain relationships in the distribution of organic pollutants to the different geologic and hydrogeologic characteristics of each facility. In each of the four case studies, all 129 priority pollutants were analyzed in private wells and/or monitoring wells. The 31 volatile organic compounds (VOCs) of the priority pollutant list were the majority of organic compounds detected. When VOCs are found in groundwater impacted by disposal facilities, they are present in groups and tend to be distributed in patterns based on their relative concentrations. It is rare to find only one or two VOCs from facilities where leakage has been detected. The ethylenes and ethanes appear to be more prevalent and mobile than aromatic VOCs. The aromatics are restricted primarily to leachates and wastes and in monitoring wells located adjacent to facilities. 2 refs., 15 figs

  8. Fault zone architecture of a major oblique-slip fault in the Rawil depression, Western Helvetic nappes, Switzerland

    Science.gov (United States)

    Gasser, D.; Mancktelow, N. S.

    2009-04-01

    The Helvetic nappes in the Swiss Alps form a classic fold-and-thrust belt related to overall NNW-directed transport. In western Switzerland, the plunge of nappe fold axes and the regional distribution of units define a broad depression, the Rawil depression, between the culminations of Aiguilles Rouge massif to the SW and Aar massif to the NE. A compilation of data from the literature establishes that, in addition to thrusts related to nappe stacking, the Rawil depression is cross-cut by four sets of brittle faults: (1) SW-NE striking normal faults that strike parallel to the regional fold axis trend, (2) NW-SE striking normal faults and joints that strike perpendicular to the regional fold axis trend, and (3) WNW-ESE striking normal plus dextral oblique-slip faults as well as (4) WSW-ENE striking normal plus dextral oblique-slip faults that both strike oblique to the regional fold axis trend. We studied in detail a beautifully exposed fault from set 3, the Rezli fault zone (RFZ) in the central Wildhorn nappe. The RFZ is a shallow to moderately-dipping (ca. 30-60˚) fault zone with an oblique-slip displacement vector, combining both dextral and normal components. It must have formed in approximately this orientation, because the local orientation of fold axes corresponds to the regional one, as does the generally vertical orientation of extensional joints and veins associated with the regional fault set 2. The fault zone crosscuts four different lithologies: limestone, intercalated marl and limestone, marl and sandstone, and it has a maximum horizontal dextral offset component of ~300 m and a maximum vertical normal offset component of ~200 m. Its internal architecture strongly depends on the lithology in which it developed. In the limestone, it consists of veins, stylolites, cataclasites and cemented gouge, in the intercalated marls and limestones of anastomosing shear zones, brittle fractures, veins and folds, in the marls of anastomosing shear zones, pressure

  9. Description of hydrogeological data in SKB's database GEOTAB. Version 2

    International Nuclear Information System (INIS)

    Gerlach, M.

    1991-12-01

    During the research and development program performed by SKB for the final disposal of spent nuclear fuel, a large quantity of geoscientific data was collected. Most of this data was stored in a database called GEOTAB. The data is organized into eight groups (subjects) as follows: - Background information. - Geological data. - Borehole geophysical measurements. - Ground surface geophysical measurements. - Hydrogeological and meteorological data. - Hydrochemical data. - Petrophysical measurements. - Tracer tests. Except for the case of borehole geophysical data, ground surface geophysical data and petrophysical data, described in the same report, the data in each group is described in a separate SKB report. The present report described data within the hydrogeological data group. The hydrogeological data groups (subject), called HYDRO, is divided into several subgroups (methods). BHEQUIPE: equipments in borehole. CONDINT: electrical conductivity in pumped water. FLOWMETE: flowmeter tests. GRWB: groundwater level registrations in boreholes. HUFZ: hydraulic unit fracture zones. HURM: hydraulic unit rock mass. HYCHEM: hydraulic test during chemical Sampling. INTER: interference tests. METEOR: meteorological and hydrological measurements. PIEZO: piezometric measurements at depths in boreholes. RECTES: recovery tests. ROCKRM: hydraulic unit rock types in the rock mass. SFHEAD: single hole falling head test. SHBUP: single hole build up test. SHSINJ: single hole steady state tests. SHTINJ: single hole transient injection tests. SHTOLD: single hole transient injections tests - old data. A method consists of one or several data tables. In each chapter a method and its data tables are described. (au)

  10. Petrology, chronology and sequence of vein systems: Systematic magmatic and hydrothermal history of a major intracontinental shear zone, Canadian Appalachians

    Science.gov (United States)

    Pe-Piper, Georgia; Piper, David J. W.; McFarlane, Chris R. M.; Sangster, Chris; Zhang, Yuanyuan; Boucher, Brandon

    2018-04-01

    Intra-continental shear zones developed during continental collision may experience prolonged magmatism and mineralization. The Cobequid Shear Zone formed part of a NE-SW-trending, orogen-parallel shear system in the late Devonian-early Carboniferous, where syn-tectonic granite-gabbro plutons and volcanic rocks 4 km thick were progressively deformed. In late Carboniferous to Permian, Alleghanian collision of Africa with Laurentia formed the E-W trending Minas Fault Zone, reactivating parts of the Cobequid Shear Zone. The 50 Ma history of hydrothermal mineralization following pluton emplacement is difficult to resolve from field relationships of veins, but SEM study of thin sections provides clear detail on the sequence of mineralization. The general paragenesis is: albite ± quartz ± chlorite ± monazite → biotite → calcite, allanite, pyrite → Fe-carbonates, Fe-oxides, minor sulfides, calcite and synchysite. Chronology was determined from literature reports and new U-Pb LA-ICPMS dating of monazite and allanite in veins. Vein mineralization was closely linked to magmatic events. Vein emplacement occurred preferentially during fault movement recognised from basin-margin inversion, as a result of fractures opening in the damage zone of master faults. The sequence of mineralization, from ca. 355 Ma riebeckite and albite veins to ca. 327 (-305?) Ma siderite-magnetite and sulfide mineralization, resembles Precambrian iron-oxide-copper-gold (IOCG) systems in the literature. The abundant magmatic Na, halogens and CO2 in veins and some magmatic bodies, characteristic of IOCG systems, were derived from the deeply subducted Rheic Ocean slab with little terrigenous sediment. Regional extension of the Magdalen Basin caused asthenospheric upwelling and melting of the previously metasomatized sub-continental lithospheric mantle. Crustal scale strike-slip faulting facilitated the rise of magmas, resulting in high heat flow driving an active hydrothermal system. Table S2

  11. The Santa Rita Shear Zone: Major Mesozoic deformation along the western flank of the White-Inyo Range, CA

    Energy Technology Data Exchange (ETDEWEB)

    Brudos, T.C.; Paterson, S.R. (Univ. of Southern California, Los Angeles, CA (United States). Dept. of Geological Sciences)

    1993-04-01

    The Santa Rita Shear Zone (SRSZ), briefly described by Ross (1967), deforms the western part of the 164 Ma Santa Rita Flat pluton (SRFP), located SSE of Big Pine, CA. The SRSZ comprises a subvertical zone of solid-state deformation (strike N15E) over an area at least 13 km long by 2--3 km wide. Exposure of the shear zone is limited to the north and west by overlying Quaternary volcanics and basin fill within the Late Cenozoic Owens Valley graben. The SRSZ is larger than its present outcrop extent: strain magnitudes are highest within the westernmost exposures. The SRSZ along this western margin is a continuous zone of deformation comprising a mm-scale solid-state foliation containing igneous feldspars flattened into ovals with > 10:1 aspect ratios. The authors have identified three dike phases within the SRFP: (1) minor NE-striking Phase 1 dikes, comprising cm-scale aplites; (2) widespread m-scale Phase 2 dikes, which strike N10E; and (3) m-scale NW-striking Phase 3 mafic dikes. The Phase 1 and Phase 3 dikes are pre- and post-tectonic respectively; observations described below indicate the Phase 2 dikes are syn- to post-deformation. Deformation becomes localized along the Phase 2 dikes -- which are parallel to the orientation of the main body of the shear zone. Solid-state fabrics imposed on the Phase 2 dikes formed at higher temperatures than those within the SRFP, and in the east the SRFP is deformed only within a few cm of the dikes. They surmise syntectonic emplacement of the dikes into dislocational surfaces within the SRSZ, followed by solid-state deformation of the cooling dikes. Several workers have suggested the dikes within the SRFP are part of the 148 Ma independence dike swarm (referring to the Phase 2 or 3 dikes). If correct, this correlation indicates a Jurassic age for the SRSZ. Radiometric analyses of the dikes are in progress.

  12. Marine hydrogeology: recent accomplishments and future opportunities

    Science.gov (United States)

    Fisher, A. T.

    2005-03-01

    Marine hydrogeology is a broad-ranging scientific discipline involving the exploration of fluid-rock interactions below the seafloor. Studies have been conducted at seafloor spreading centers, mid-plate locations, and in plate- and continental-margin environments. Although many seafloor locations are remote, there are aspects of marine systems that make them uniquely suited for hydrologic analysis. Newly developed tools and techniques, and the establishment of several multidisciplinary programs for oceanographic exploration, have helped to push marine hydrogeology forward over the last several decades. Most marine hydrogeologic work has focused on measurement or estimation of hydrogeologic properties within the shallow subsurface, but additional work has emphasized measurements of local and global fluxes, fluid source and sink terms, and quantitative links between hydrogeologic, chemical, tectonic, biological, and geophysical processes. In addition to summarizing selected results from a small number of case studies, this paper includes a description of several new experiments and programs that will provide outstanding opportunities to address fundamental hydrogeologic questions within the seafloor during the next 20-30 years. L'hydrogéologie marine est une large discipline scientifique impliquant l' exploration des interactions entre les fluides et les roches sous les fonds marins. Des études ont été menées dans les différents environnements sous-marins (zone abyssale, plaque océanique, marges continentales). Bien que de nombreux fonds marins soient connus, il existe des aspects des systèmes marins qui les rendent inadaptés à l'analyse hydrologique. De nouveaux outils et techniques, et la mise en oeuvre de nombreux programmes multidisciplinaires d'exploration océanographique, ont aidé à pousser en avant l'hydrogéologie marine ces dix dernières années. La plus part des études hydrogéologiques se sont concentrées jusqu'à présent sur la mesure ou

  13. Hydrogeologic correlations for selected wells on Long Island, New York; a data base with retrieval program

    Science.gov (United States)

    Buxton, H.T.; Shernoff, P.K.; Smolensky, D.A.

    1989-01-01

    Accurate delineation of the internal hydrogeologic structure of Long Island, NY is integral to the understanding and management of the groundwater system. This report presents a computerized data base of hydrogeologic correlations for 3,146 wells on Long Island and adjacent parts of New York City. The data base includes the well identification number, the latitude-longitude of the well location, the altitude of land surface at the well and of the bottom of the drilled hole, and the altitude of the top of the major hydrogeologic units penetrated by the well. A computer program is included that allows retrieval of selected types of data for all of, or any local area of, Long Island. These data retrievals are a valuable aid to the construction of hydrogeologic surface maps. (USGS)

  14. Hydrogeology and water quality of the Leetown area, West Virginia

    Science.gov (United States)

    Kozar, Mark D.; McCoy, Kurt J.; Weary, David J.; Field, Malcolm S.; Pierce, Herbert A.; Schill, William Bane; Young, John A.

    2008-01-01

    characterize the quality of water and the hydraulic properties of the aquifer. Surface geophysical surveys provided a 3-dimensional view of bedrock resistivity in order to assess geologic and lithologic controls on ground-water flow. Borehole geophysical surveys were conducted in monitoring wells to assess the storage and movement of water in subsurface fractures. Numerous single-well, multi-well, and straddle packer aquifer tests and step-drawdown tests were conducted to define the hydraulic properties of the aquifer and to assess the role of bedrock fractures and solution conduits in the flow of ground water. Water samples collected from wells and springs were analyzed to assess the current quality of ground water and provide a baseline for future assessment. Microbiological sampling of wells for indicator bacteria and human and animal DNA provided an analysis of agricultural and suburban development impacts on ground-water quality. Light detection and ranging (LiDAR) data were analyzed to develop digital elevation models (DEMs) for assessing sinkhole distribution, to provide elevation data for development of a ground-water flow model, and to assess the distribution of major fractures and faults in the Leetown area. The flow of ground water in the study area is controlled by lithology and geologic structure. Bedrock, especially low permeability units such as the shale Martinsburg Formation and the Conococheague Limestone, act as barriers to water flowing down gradient and across bedding. This retardation of cross-strike flow is especially pronounced in the Leetown area, where bedding typically dips at steep angles. Highly permeable fault and fracture zones that disrupt the rocks in cross-strike directions provide avenues through which ground water can flow laterally across or through strata of low primary permeability. Significant strike parallel thrust faults and cross-strike faults typically coincide with larger solution conduits and act as drains for the more pervasive

  15. SRS Geology/Hydrogeology Environmental Information Document

    Energy Technology Data Exchange (ETDEWEB)

    Denham, M.E.

    1999-08-31

    The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas.

  16. SRS Geology/Hydrogeology Environmental Information Document

    International Nuclear Information System (INIS)

    Denham, M.E.

    1999-01-01

    The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas

  17. Distribution of effluent injected into the Boulder Zone of the Floridan aquifer system at the North District Wastewater Treatment Plant, southeastern Florida, 1997–2011

    Science.gov (United States)

    King, Jeffrey N.; Decker, Jeremy D.

    2018-02-09

    Nonhazardous, secondarily treated, domestic wastewater (effluent) has been injected about 1 kilometer below land surface into the Boulder Zone of the Floridan aquifer system at the North District Wastewater Treatment Plant in southeastern Florida. The Boulder Zone contains saline, nonpotable water. Effluent transport out of the injection zone is a risk of underground effluent injection. At the North District Wastewater Treatment Plant, injected effluent was detected outside the Boulder Zone. The U.S. Geological Survey, in cooperation with Miami-Dade Water and Sewer Department, investigated effluent transport from the Boulder Zone to overlying permeable zones in the Floridan aquifer system.One conceptual model is presented to explain the presence of effluent outside of the injection zone in which effluent injected into the Boulder Zone was transported to the Avon Park permeable zone, forced by buoyancy and injection pressure. In this conceptual model, effluent injected primarily into the Boulder Zone reaches a naturally occurring feature (a karst-collapse structure) near an injection well, through which the effluent is transported vertically upward to the uppermost major permeable zone of the Lower Floridan aquifer. The effluent is then transported laterally through the uppermost major permeable zone of the Lower Floridan aquifer to another naturally occurring feature northwest of the North District Wastewater Treatment Plant, through which it is then transported vertically upward into the Avon Park permeable zone. In addition, a leak within a monitoring well, between monitoring zones, allowed interflow between the Avon Park permeable zone and the Upper Floridan aquifer. A groundwater flow and effluent transport simulation of the hydrogeologic system at the North District Wastewater Treatment Plant, based on the hypothesized and non-unique conceptualization of the subsurface hydrogeology and flow system, generally replicated measured effluent constituent

  18. HYDROGEOLOGY

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    of water resources,unbalanee disrriburion ofwater resourees,serious waste of water re-souree3,badly environmental eondition of wa-ter.At last gives out the eour一termeasures ofrational utilization of water resourees:En-haneing management,strerlgthening seieneeand teehnology in utilization of water re

  19. Dissolved organic carbon and major and trace elements in peat porewater of sporadic, discontinuous, and continuous permafrost zones of western Siberia

    Science.gov (United States)

    Raudina, Tatiana V.; Loiko, Sergey V.; Lim, Artyom G.; Krickov, Ivan V.; Shirokova, Liudmila S.; Istigechev, Georgy I.; Kuzmina, Daria M.; Kulizhsky, Sergey P.; Vorobyev, Sergey N.; Pokrovsky, Oleg S.

    2017-07-01

    Mobilization of dissolved organic carbon (DOC) and related trace elements (TEs) from the frozen peat to surface waters in the permafrost zone is expected to enhance under ongoing permafrost thaw and active layer thickness (ALT) deepening in high-latitude regions. The interstitial soil solutions are efficient tracers of ongoing bio-geochemical processes in the critical zone and can help to decipher the intensity of carbon and metals migration from the soil to the rivers and further to the ocean. To this end, we collected, across a 640 km latitudinal transect of the sporadic to continuous permafrost zone of western Siberia peatlands, soil porewaters from 30 cm depth using suction cups and we analyzed DOC, dissolved inorganic carbon (DIC), and 40 major elements and TEs in 0.45 µm filtered fraction of 80 soil porewaters. Despite an expected decrease in the intensity of DOC and TE mobilization from the soil and vegetation litter to the interstitial fluids with the increase in the permafrost coverage and a decrease in the annual temperature and ALT, the DOC and many major and trace elements did not exhibit any distinct decrease in concentration along the latitudinal transect from 62.2 to 67.4° N. The DOC demonstrated a maximum of concentration at 66° N, on the border of the discontinuous/continuous permafrost zone, whereas the DOC concentration in peat soil solutions from the continuous permafrost zone was equal to or higher than that in the sporadic/discontinuous permafrost zone. Moreover, a number of major (Ca, Mg) and trace (Al, Ti, Sr, Ga, rare earth elements (REEs), Zr, Hf, Th) elements exhibited an increasing, not decreasing, northward concentration trend. We hypothesize that the effects of temperature and thickness of the ALT are of secondary importance relative to the leaching capacity of peat, which is in turn controlled by the water saturation of the peat core. The water residence time in peat pores also plays a role in enriching the fluids in some elements

  20. Dissolved organic carbon and major and trace elements in peat porewater of sporadic, discontinuous, and continuous permafrost zones of western Siberia

    Directory of Open Access Journals (Sweden)

    T. V. Raudina

    2017-07-01

    Full Text Available Mobilization of dissolved organic carbon (DOC and related trace elements (TEs from the frozen peat to surface waters in the permafrost zone is expected to enhance under ongoing permafrost thaw and active layer thickness (ALT deepening in high-latitude regions. The interstitial soil solutions are efficient tracers of ongoing bio-geochemical processes in the critical zone and can help to decipher the intensity of carbon and metals migration from the soil to the rivers and further to the ocean. To this end, we collected, across a 640 km latitudinal transect of the sporadic to continuous permafrost zone of western Siberia peatlands, soil porewaters from 30 cm depth using suction cups and we analyzed DOC, dissolved inorganic carbon (DIC, and 40 major elements and TEs in 0.45 µm filtered fraction of 80 soil porewaters. Despite an expected decrease in the intensity of DOC and TE mobilization from the soil and vegetation litter to the interstitial fluids with the increase in the permafrost coverage and a decrease in the annual temperature and ALT, the DOC and many major and trace elements did not exhibit any distinct decrease in concentration along the latitudinal transect from 62.2 to 67.4° N. The DOC demonstrated a maximum of concentration at 66° N, on the border of the discontinuous/continuous permafrost zone, whereas the DOC concentration in peat soil solutions from the continuous permafrost zone was equal to or higher than that in the sporadic/discontinuous permafrost zone. Moreover, a number of major (Ca, Mg and trace (Al, Ti, Sr, Ga, rare earth elements (REEs, Zr, Hf, Th elements exhibited an increasing, not decreasing, northward concentration trend. We hypothesize that the effects of temperature and thickness of the ALT are of secondary importance relative to the leaching capacity of peat, which is in turn controlled by the water saturation of the peat core. The water residence time in peat pores also plays a role in enriching the

  1. THE DISTRIBUTION OF ORGANIC CARBON IN MAJOR COMPONENTS OF FORESTS LOCATED IN FIVE LIFE ZONES OF VENEZUELA

    Science.gov (United States)

    One of the major uncertainties concerning the role of tropical forests in the global carbon cycle is the lack of adequate data on the carbon content of all their components. The goal of this study was to contribute to filling this data gap by estimating the quantity of carbon in ...

  2. Gravimetry contributions to the study of the complex western Haouz aquifer (Morocco): Structural and hydrogeological implications

    Science.gov (United States)

    Chouikri, Ibtissam; el Mandour, Abdennabi; Jaffal, Mohammed; Baudron, Paul; García-Aróstegui, José-Luis; Manar, Ahmed; Casas, Albert

    2016-03-01

    This study provides new elements that illustrate the benefits of combining gravity, structural, stratigraphic and piezometric data for hydrogeological purposes. A combined methodology was applied to the western Haouz aquifer (Morocco), one of the main sources of water for irrigation and human consumption in the Marrakech region. First, a residual anomaly map was calculated from the Bouguer anomaly data. The computed map provided information on the ground density variation, revealing a strong control by a regional gradient. We then used various filtering techniques to delineate the major geological structures such as faults and basins: vertical and horizontal derivatives and upward continuation. This technique highlighted news structures and provided information on their dip. The gravity anomalies perfectly delineated the basement uplifts and the sedimentary thickening in depressions and grabens. The interpretation of gravimetric filtering, geological and hydrogeological data then highlighted two types of groundwater reservoirs, an unconfined aquifer hosted in conglomeratic mio-pliocene and quaternary rocks, covering the entire western Haouz and a deep confined aquifer contained in cenomanian-turonian limestone and eocene dolomitic formations in the south. Combining piezometric and residual anomaly maps revealed that groundwater flow and storage was in perfect agreement with the structures showing a negative anomaly, while structures with positive anomalies corresponded to groundwater divides. The study of gravity gradient zones by contact analysis enhanced the existing structural pattern of the study area and highlighted new structures, mainly oriented N70 and N130. The results of this study present a common framework and provide a notable step forward in the knowledge of the geometry and the groundwater flow pattern of the western Haouz aquifer, and will serve as a solid basis for a better water resource management.

  3. Prevalence, risk factors, and major bacterial causes of camel mastitis in Borana Zone, Oromia Regional State, Ethiopia.

    Science.gov (United States)

    Regassa, Alemayehu; Golicha, Gelma; Tesfaye, Dawit; Abunna, Fufa; Megersa, Bekele

    2013-10-01

    A cross-sectional study was carried out from November 2010 up to April 2011 to estimate mastitis prevalence and associated risk factors and to assess its bacterial causes in traditionally managed camels in Borana Zone, Southern Ethiopia. Thus, 348 lactating camels were examined clinically, and subclinical cases were checked with California mastitis test (CMT). The overall prevalence of mastitis was 44.8 % (156/348), comprising clinical (19, 5.4 %) and subclinical (137, 39.4 %) cases. The quarter level prevalence of mastitis was 24.0 % (334/1,392). Of the total 1,392 examined teats, 30 were blind, and hence, from the 1,362 non-blind CMT-examined teats, 22.3 % (304/1,362) were CMT positive. Of the 304 CMT-positive samples, 264 were culture positive (197 Gram-positive, 41 Gram-negative, and 26 mixed isolates), and 40 were culture negative. The prevalence of Staphylococcus aureus was found to be the highest at both the animal (12.8 %, 39/304) and quarter level (2.9 %, 39/1,362). Regression analysis revealed higher likelihood of mastitis occurrence among camels from Dharito (OR = 3.4, 95 % confidence interval (CI) = 1.8, 6.4), Gagna (OR = 3.4, 95 % CI = 1.8, 6.5), and Haro Bake (OR = 2.6, 95 % CI = 1.3, 5.1) than camels from Surupha. Likewise, there was higher chance of mastitis occurrence among camels at the early lactation stage (OR = 2.3, 95 % CI = 1.1, 4.6) and camels with udder/teat lesions (OR = 13.7, 95 % CI = 1.7, 109.4) than among camels at late lactation stage and camels with healthy udder/teats, respectively. In conclusion, this study reveals the current status of camel mastitis in Southern Ethiopia.

  4. High-voltage zones within the pulmonary vein antra: Major determinants of acute pulmonary vein reconnections after atrial fibrillation ablation.

    Science.gov (United States)

    Nagashima, Koichi; Watanabe, Ichiro; Okumura, Yasuo; Iso, Kazuki; Takahashi, Keiko; Watanabe, Ryuta; Arai, Masaru; Kurokawa, Sayaka; Nakai, Toshiko; Ohkubo, Kimie; Yoda, Shunichi; Hirayama, Atsushi

    2017-08-01

    Recurrence of atrial fibrillation (AF) after pulmonary vein isolation (PVI) is mainly due to PV reconnections. Patient-specific tissue characteristics that may contribute remain unidentified. This study aimed to assess the relationship between the bipolar electrogram voltage amplitudes recorded from the PV-left atrial (LA) junction and acute PV reconnection sites. Three-dimensional LA voltage maps created before an extensive encircling PVI in 47 AF patients (31 men; mean age 62 ± 11 years) were examined for an association between the EGM voltage amplitude recorded from the PV-LA junction and acute post-PVI PV reconnections (spontaneous PV reconnections and/or ATP-provoked dormant PV conduction). Acute PV reconnections were observed in 17 patients (36%) and in 24 (3%) of the 748 PV segments (16 segments per patient) and were associated with relatively high bipolar voltage amplitudes (3.26 ± 0.85 vs. 1.79 ± 1.15 mV, p voltage (137 [106, 166] vs. 295 [193, 498] gs/mV, p voltage and FTI/PV-LA bipolar voltage for acute PV reconnections (areas under the curve: 0.86 and 0.89, respectively); the best cutoff values were >2.12 mV and ≤183 gs/mV, respectively. The PV-LA voltage on the PV-encircling ablation line and FTI/PV-LA voltage were related to the acute post-PVI PV reconnections. A more durable ablation strategy is warranted for high-voltage zones.

  5. Geologic and hydrogeologic frameworks of the Biscayne aquifer in central Miami-Dade County, Florida

    Science.gov (United States)

    Wacker, Michael A.; Cunningham, Kevin J.; Williams, John H.

    2014-01-01

    Evaluations of the lithostratigraphy, lithofacies, paleontology, ichnology, depositional environments, and cyclostratigraphy from 11 test coreholes were linked to geophysical interpretations, and to results of hydraulic slug tests of six test coreholes at the Snapper Creek Well Field (SCWF), to construct geologic and hydrogeologic frameworks for the study area in central Miami-Dade County, Florida. The resulting geologic and hydrogeologic frameworks are consistent with those recently described for the Biscayne aquifer in the nearby Lake Belt area in Miami-Dade County and link the Lake Belt area frameworks with those developed for the SCWF study area. The hydrogeologic framework is characterized by a triple-porosity pore system of (1) matrix porosity (mainly mesoporous interparticle porosity, moldic porosity, and mesoporous to megaporous separate vugs), which under dynamic conditions, produces limited flow; (2) megaporous, touching-vug porosity that commonly forms stratiform groundwater passageways; and (3) conduit porosity, including bedding-plane vugs, decimeter-scale diameter vertical solution pipes, and meter-scale cavernous vugs. The various pore types and associated permeabilities generally have a predictable vertical spatial distribution related to the cyclostratigraphy. The Biscayne aquifer within the study area can be described as two major flow units separated by a single middle semiconfining unit. The upper Biscayne aquifer flow unit is present mainly within the Miami Limestone at the top of the aquifer and has the greatest hydraulic conductivity values, with a mean of 8,200 feet per day. The middle semiconfining unit, mainly within the upper Fort Thompson Formation, comprises continuous to discontinuous zones with (1) matrix porosity; (2) leaky, low permeability layers that may have up to centimeter-scale vuggy porosity with higher vertical permeability than horizontal permeability; and (3) stratiform flow zones composed of fossil moldic porosity, burrow

  6. Hydrogeological testing in the Sellafield area

    International Nuclear Information System (INIS)

    Sutton, J.S.

    1996-01-01

    A summary of the hydrogeological test methodologies employed in the Sellafield geological investigations is provided in order that an objective appraisal of the quality of the data can be formed. A brief presentation of some of these data illustrates the corroborative nature of different test and measurement methodologies and provides a preliminary view of the results obtained. The programme of hydrogeological testing is an evolving one and methodologies are developing as work proceeds and targets become more clearly defined. As the testing is focused on relatively low permeability rocks at depth, the approach to testing differs slightly from conventional hydrogeological well testing and makes extensive use of oilfield technology. (author)

  7. Use of stratigraphic, petrographic, hydrogeologic and geochemical information for hydrogeologic modelling based on geostatistical simulation

    International Nuclear Information System (INIS)

    Rohlig, K.J.; Fischer, H.; Poltl, B.

    2004-01-01

    This paper describes the stepwise utilization of geologic information from various sources for the construction of hydrogeological models of a sedimentary site by means of geostatistical simulation. It presents a practical application of aquifer characterisation by firstly simulating hydrogeological units and then the hydrogeological parameters. Due to the availability of a large amount of hydrogeological, geophysical and other data and information, the Gorleben site (Northern Germany) has been used for a case study in order to demonstrate the approach. The study, which has not yet been completed, tries to incorporate as much as possible of the available information and to characterise the remaining uncertainties. (author)

  8. An integrated hydrogeological study to support sustainable development and management of groundwater resources: a case study from the Precambrian Crystalline Province, India

    Science.gov (United States)

    Madhnure, Pandith; Peddi, Nageshwar Rao; Allani, Damodar Rao

    2016-03-01

    The rapid expansion of agriculture, industries and urbanization has triggered unplanned groundwater development leading to severe stress on groundwater resources in crystalline rocks of India. With depleting resources from shallow aquifers, end users have developed resources from deeper aquifers, which have proved to be counterproductive economically and ecologically. An integrated hydrogeological study has been undertaken in the semi-arid Madharam watershed (95 km2) in Telangana State, which is underlain by granites. The results reveal two aquifer systems: a weathered zone (maximum 30 m depth) and a fractured zone (30-85 m depth). The weathered zone is unsaturated to its maximum extent, forcing users to tap groundwater from deeper aquifers. Higher orders of transmissivity, specific yield and infiltration rates are observed in the recharge zone, while moderate orders are observed in an intermediate zone, and lower orders in the discharge zone. This is due to the large weathering-zone thickness and a higher sand content in the recharge zone than in the discharge zone, where the weathered residuum contains more clay. The NO3 - concentration is high in shallow irrigation wells, and F- is high in deeper wells. Positive correlation is observed between F- and depth in the recharge zone and its proximity. Nearly 50 % of groundwater samples are unfit for human consumption and the majority of irrigation-well samples are classed as medium to high risk for plant growth. Both supply-side and demand-side measures are recommended for sustainable development and management of this groundwater resource. The findings can be up-scaled to other similar environments.

  9. Hydrogeological Characteristics of Groundwater Yield in Shallow ...

    African Journals Online (AJOL)

    Hydrogeological Characteristics of Groundwater Yield in Shallow Wells of the ... of Water Resources and Lower Niger River Basin Development Authority in Ilorin. ... moment correlation, multiple and stepwise multiple regression analysis.

  10. Hydrogeological and geophysical study for deeper groundwater ...

    Indian Academy of Sciences (India)

    lected using Syscal Pro Switch-10 channel system and covered a 2 km long profile in a tough terrain. The hydrogeological ... a rainwater harvesting structure to recharge the subsurface in ... southwest trend. The drainage pattern is dendritic.

  11. Alteration in Solid State Phosphorous With Depth in Sediments Along the Salinity Transition Zone of a Major Chesapeake Bay Tributary

    Science.gov (United States)

    Hartzell, J. L.; Jordan, T. E.

    2006-05-01

    Determining the fate of particulate phosphorus in estuaries is essential for addressing the widespread problem of estuarine eutrophication, and is key to understanding P cycling and developing accurate global P budgets. Prominent reservoirs of P in surficial sediments include particulate P associated with iron or organic C. However, the importance of these reservoirs changes with the decomposition of organic matter and the reduction of iron. Also, the importance of iron bound P may decrease with increasing salinity due to the formation of iron sulfides. To investigate estuarine P burial and its relationship to salinity, we collected sediment cores of one-meter depth along the salinity gradient of the Patuxent River estuary (Maryland, USA), a major tributary of Chesapeake Bay. The sediments were analyzed using a sequential sedimentary extraction procedure that quantifies five separate reservoirs of particulate P. Total phosphorus concentrations in freshwater sediments were significantly higher than those in more saline sediments at all depths. Conversely, porewater phosphate concentrations were significantly lower in freshwater sediments than in the more saline sediments. Total P in the saline sediment cores decreased with depth, correlating to a reduction in iron-bound P. However, we did not find a concurrent increase in authigenic apatite with depth. Our findings indicate that mechanisms controlling changes in P sorption to sediments change profoundly with salinity and may contribute to increased bioavailability of phosphates with increasing salinity.

  12. SRP baseline hydrogeologic investigation: Aquifer characterization. Groundwater geochemistry of the Savannah River Site and vicinity

    Energy Technology Data Exchange (ETDEWEB)

    Strom, R.N.; Kaback, D.S.

    1992-03-31

    An investigation of the mineralogy and chemistry of the principal hydrogeologic units and the geochemistry of the water in the principal aquifers at Savannah River Site (SRS) was undertaken as part of the Baseline Hydrogeologic Investigation. This investigation was conducted to provide background data for future site studies and reports and to provide a site-wide interpretation of the geology and geochemistry of the Coastal Plain Hydrostratigraphic province. Ground water samples were analyzed for major cations and anions, minor and trace elements, gross alpha and beta, tritium, stable isotopes of hydrogen, oxygen, and carbon, and carbon-14. Sediments from the well borings were analyzed for mineralogy and major and minor elements.

  13. Hydrogeological characteristics of Beishan preselected area, Gansu province for China's high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Guo Yonghai; Yang Tianxiao; Liu Shufen

    2001-01-01

    Groundwater is the major carrier for radionuclide migration in the high-level radioactive waste disposal. For this reason the hydrogeological study is one of the main contents in repository siting. According to the field investigation which has been carried out during the last few years and some data from the previous study, the author describes the general hydrogeological situation and groundwater circulation, as well as chemical characteristics of groundwater in Beishan preselected area, Gansu province. The research shows that main hydrogeological characteristics of the Beishan area is water-bearing character, low permeability and slow water movement while the major chemical feature of groundwater is high mineralization. This recognition will provide an important basis for repository siting in the site area

  14. Three decadal inputs of total organic carbon from four major coastal river basins to the summer hypoxic zone of the Northern Gulf of Mexico.

    Science.gov (United States)

    He, Songjie; Xu, Y Jun

    2015-01-15

    This study investigated long-term (1980-2009) yields and variability of total organic carbon (TOC) from four major coastal rivers in Louisiana entering the Northern Gulf of Mexico where a large-area summer hypoxic zone has been occurring since the middle 1980s. Two of these rivers drain agriculture-intensive (>40%) watersheds, while the other two rivers drain forest-pasture dominated (>50%) watersheds. The study found that these rivers discharged a total of 13.0×10(4)t TOC annually, fluctuating from 5.9×10(4) to 22.8×10(4)t. Seasonally, the rivers showed high TOC yield during the winter and early spring months, corresponding to the seasonal trend of river discharge. While river hydrology controlled TOC yields, land use has played an important role in fluxes, seasonal variations, and characteristics of TOC. The findings fill in a critical information gap of quantity and quality of organic carbon transport from coastal watersheds to one of the world's largest summer hypoxic zones. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. On the methane paradox: Transport from shallow water zones rather than in situ methanogenesis is the major source of CH4 in the open surface water of lakes

    Science.gov (United States)

    Encinas Fernández, Jorge; Peeters, Frank; Hofmann, Hilmar

    2016-10-01

    Estimates of global methane (CH4) emissions from lakes and the contributions of different pathways are currently under debate. In situ methanogenesis linked to algae growth was recently suggested to be the major source of CH4 fluxes from aquatic systems. However, based on our very large data set on CH4 distributions within lakes, we demonstrate here that methane-enriched water from shallow water zones is the most likely source of the basin-wide mean CH4 concentrations in the surface water of lakes. Consistently, the mean surface CH4 concentrations are significantly correlated with the ratio between the surface area of the shallow water zone and the entire lake, fA,s/t, but not with the total surface area. The categorization of CH4 fluxes according to fA,s/t may therefore improve global estimates of CH4 emissions from lakes. Furthermore, CH4 concentrations increase substantially with water temperature, indicating that seasonally resolved data are required to accurately estimate annual CH4 emissions.

  16. Storage of low-level radioactive wastes in the ground hydrogeologic and hydrochemical factors (with an appendix on the Maxey Flats, Kentucky, radioactive waste storage site: current knowledge and data needs for a quantitative hydrogeologic evaluation)

    International Nuclear Information System (INIS)

    Papadopulos, S.S.; Winograd, I.J.

    1974-01-01

    Hydrogeologic criteria presented by Cherry and others (1973) are adopted as a guideline to define the hydrogeologic and hydrochemical data needs for the evaluation of the suitability of proposed or existing low-level radioactive waste burial sites. Evaluation of the suitability of a site requires the prediction of flow patterns and of rates of nuclide transport in the regional hydrogeologic system. Such predictions can be made through mathematical simulation of flow and solute transport in porous media. The status of mathematical simulation techniques, as they apply to radioactive waste burial sites, is briefly reviewed, and hydrogeologic and hydrochemical data needs are listed in order of increasing difficulty and cost of acquisition. Predictive modeling, monitoring, and management of radionuclides dissolved and transported by ground water can best be done for sites in relatively simple hydrogeologic settings; namely, in unfaulted relatively flat-lying strata of intermediate permeability such as silt, siltstone and silty sandstone. In contrast, dense fractured or soluble media and poorly permeable porous media (aquitards) are not suitable for use as burial sites, first, because of media heterogeneity and difficulties of sampling, and consequently of predictive modeling, and, second, because in humid zones burial trenches in aquitards may overflow. A buffer zone several thousands of feet to perhaps several miles around existing or proposed sites is a mandatory consequence of the site selection criteria. As a specific example, the Maxey Flats, Kentucky low-level waste disposal site is examined. (U.S.)

  17. Regional hydrogeological simulations using CONECTFLOW. Preliminary site description. Laxemar sub area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Hunter, Fiona; Jackson, Peter; McCarthy, Rachel [Serco Assurance, Risley (United Kingdom); Gylling, Bjoern; Marsic, Niko [Kemakta Konsult AB, Stockholm (Sweden)

    2006-04-15

    The main objective of this study is to support the development of a preliminary Site Description of the Laxemar subarea on a regional-scale based on the available data of November 2004 (Data Freeze L1.2). A more specific objective of this study is to assess the role of both known and less quantified hydrogeological conditions in determining the present-day distribution of saline groundwater in the Laxemar subarea on a regional-scale. An improved understanding of the palaeo-hydrogeology is necessary in order to gain credibility for the Site Description in general and the hydrogeological description in particular. This is to serve as a basis for describing the present hydrogeological conditions on a local-scale, as well as predictions of future hydrogeological conditions. Another objective is to assess the flow-paths from the local-scale model domain, based on the present-day flow conditions, to assess the distribution of discharge and recharge areas connected to the flow at the approximate repository depth to inform the Preliminary Safety Evaluation. Significant new features incorporated in the modelling include: a depth variation in hydraulic properties within the deformation zones; a dependence on rock domain and depth in the rock mass properties in regional-scale models; a more detailed model of the overburden in terms of a layered system of spatially variable thickness made up of several different types of Quaternary deposits has been implemented; and several variants on the position of the watertable have been tried. The motivation for introducing a dependence on rock domain was guided by the hydrogeological interpretation with the aim of honouring the observed differences in hydraulic properties measured at the boreholes.

  18. Regional hydrogeological simulations using CONECTFLOW. Preliminary site description. Laxemar sub area - version 1.2

    International Nuclear Information System (INIS)

    Hartley, Lee; Hunter, Fiona; Jackson, Peter; McCarthy, Rachel; Gylling, Bjoern; Marsic, Niko

    2006-04-01

    The main objective of this study is to support the development of a preliminary Site Description of the Laxemar subarea on a regional-scale based on the available data of November 2004 (Data Freeze L1.2). A more specific objective of this study is to assess the role of both known and less quantified hydrogeological conditions in determining the present-day distribution of saline groundwater in the Laxemar subarea on a regional-scale. An improved understanding of the palaeo-hydrogeology is necessary in order to gain credibility for the Site Description in general and the hydrogeological description in particular. This is to serve as a basis for describing the present hydrogeological conditions on a local-scale, as well as predictions of future hydrogeological conditions. Another objective is to assess the flow-paths from the local-scale model domain, based on the present-day flow conditions, to assess the distribution of discharge and recharge areas connected to the flow at the approximate repository depth to inform the Preliminary Safety Evaluation. Significant new features incorporated in the modelling include: a depth variation in hydraulic properties within the deformation zones; a dependence on rock domain and depth in the rock mass properties in regional-scale models; a more detailed model of the overburden in terms of a layered system of spatially variable thickness made up of several different types of Quaternary deposits has been implemented; and several variants on the position of the watertable have been tried. The motivation for introducing a dependence on rock domain was guided by the hydrogeological interpretation with the aim of honouring the observed differences in hydraulic properties measured at the boreholes

  19. Tracer techniques in karst hydrogeology. Application to the location of karst aquifers

    International Nuclear Information System (INIS)

    Mangin, A.; Molinari, J.

    1976-01-01

    From the recent progress in karst aquifer simulation techniques and the improved knowledge of tracers, the old-established tracer technique has become an invaluable instrument for hydrogeological survey work. Typical information obtainable includes karst system boundaries features and location of hydrodynamic discontinuities, flow variation in both space and time. Tracer methods are a basic requirement for investigation of karst groundwater supplies and determining protection zones for water supply points [fr

  20. Teaching hydrogeology: a review of current practice

    Science.gov (United States)

    Gleeson, T.; Allen, D. M.; Ferguson, G.

    2012-07-01

    Hydrogeology is now taught in a broad spectrum of departments and institutions to students with diverse backgrounds. Successful instruction in hydrogeology thus requires a variety of pedagogical approaches depending on desired learning outcomes and the background of students. We review the pedagogical literature in hydrogeology to highlight recent advances and analyze a 2005 survey among 68 hydrogeology instructors. The literature and survey results suggest there are only ~ 15 topics that are considered crucial by most hydrogeologists and > 100 other topics that are considered crucial by some hydrogeologists. The crucial topics focus on properties of aquifers and fundamentals of groundwater flow, and should likely be part of all undergraduate hydrogeology courses. Other topics can supplement and support these crucial topics, depending on desired learning outcomes. Classroom settings continue to provide a venue for emphasizing fundamental knowledge. However, recent pedagogical advances are biased towards field and laboratory instruction with a goal of bolstering experiential learning. Field methods build on the fundamentals taught in the classroom and emphasize the collection of data, data uncertainty, and the development of vocational skills. Laboratory and computer-based exercises similarly build on theory, and offer an opportunity for data analysis and integration. The literature suggests curricula at all levels should ideally balance field, laboratory, and classroom pedagogy into an iterative and integrative whole. An integrated, iterative and balanced approach leads to greater student motivation and advancement of theoretical and vocational knowledge.

  1. Hydrogeological challenges through gender approaches

    Science.gov (United States)

    Di Lorenzo, Maria Rosaria; Saltari, Davide; Di Giacomo, Tullia Valeria

    2017-04-01

    Women and Men play a different role in the society, tied from the differences (physical, biological, somatic, etc…) typical of each one. In the last decades, more gender approach has been introduced in a number of fields including the hydrogeological risk. Experiences, needs and potential of each one, women and men, covers both the risk reduction before the occurrence of extreme events (vulnerability assessment and prediction of the expected risk), then in the next emergency and intervention in follow-up actions to the overcoming of the event for the return to everyday life. The response of the extreme hydrological events are also subordinated from gender participation and it is closely related from other aspects, as natural disasters (flood events), gender inequalities and urban floodings. These aspects are also scheduled by the different approaches: a woman focuses different primary and social aspects than a man. How women can help organizations offering new 'policies' and government is the main aspect to be considered and how a gender approach can mitigate disasters to hydrological risk. It depends on some factors: gender inequalities (gender perception and sensibility), importance of natural disasters and urban floodings. Gender inequalities can match both in the natural disasters and urban floodings in a relevant way. ICT solutions can also give a helpful framework to accelerate and focus the quicker condition to get the better approach and solution. Gender has a particular significant, explanatory variable in disaster research. Many studies, show how women have higher mortality and morbidity rates than men during natural disasters, especially in lower income countries. In the aftermath disasters, at the same time, specific responsibilities on women are imposed from the gendered division of labour. Furthermore gender differences are sometimes attributed to traditional women's roles, discrimination, lower physical strength, nutritional deficiencies, etc. as

  2. Stepwise hydrogeological modeling and groundwater flow analysis on site scale (Step 0 and Step 1)

    International Nuclear Information System (INIS)

    Ohyama, Takuya; Saegusa, Hiromitsu; Onoe, Hironori

    2005-05-01

    One of the main goals of the Mizunami Underground Research Laboratory Project is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment. To achieve this goal, a variety of investigations, analysis, and evaluations have been conducted using an iterative approach. In this study, hydrogeological modeling and ground water flow analyses have been carried out using the data from surface-based investigations at Step 0 and Step 1, in order to synthesize the investigation results, to evaluate the uncertainty of the hydrogeological model, and to specify items for further investigation. The results of this study are summarized as follows: 1) As the investigation progresses Step 0 to Step 1, the understanding of groundwater flow was enhanced from Step 0 to Step 1, and the hydrogeological model could be revised, 2) The importance of faults as major groundwater flow pathways was demonstrated, 3) Geological and hydrogeological characteristics of faults with orientation of NNW and NE were shown to be especially significant. The main item specified for further investigations is summarized as follows: geological and hydrogeological characteristics of NNW and NE trending faults are important. (author)

  3. Hydrogeology of the Krafla geothermal system, northeast Iceland

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Bird, D. K.; Arnórsson, S.

    2016-01-01

    The Krafla geothermal system is located in Iceland's northeastern neovolcanic zone, within the Krafla central volcanic complex. Geothermal fluids are superheated steam closest to the magma heat source, two-phase at higher depths, and sub-boiling at the shallowest depths. Hydrogen isotope ratios...... of geothermal fluids range from -87‰, equivalent to local meteoric water, to -94‰. These fluids are enriched in 18O relative to the global meteoric line by +0.5-3.2‰. Calculated vapor fractions of the fluids are 0.0-0.5 wt% (~0-16% by volume) in the northwestern portion of the geothermal system and increase...... the benefits of combining phase segregation effects in two-phase systems during analysis of wellhead fluid data with stable isotope values of hydrous alteration minerals when evaluating the complex hydrogeology of volcano-hosted geothermal systems....

  4. Uncertainty in geological and hydrogeological data

    Directory of Open Access Journals (Sweden)

    B. Nilsson

    2007-09-01

    Full Text Available Uncertainty in conceptual model structure and in environmental data is of essential interest when dealing with uncertainty in water resources management. To make quantification of uncertainty possible is it necessary to identify and characterise the uncertainty in geological and hydrogeological data. This paper discusses a range of available techniques to describe the uncertainty related to geological model structure and scale of support. Literature examples on uncertainty in hydrogeological variables such as saturated hydraulic conductivity, specific yield, specific storage, effective porosity and dispersivity are given. Field data usually have a spatial and temporal scale of support that is different from the one on which numerical models for water resources management operate. Uncertainty in hydrogeological data variables is characterised and assessed within the methodological framework of the HarmoniRiB classification.

  5. Crosshole investigations: Hydrogeological results and interpretations

    International Nuclear Information System (INIS)

    Black, J.H.; Holmes, D.C.; Brightman, M.A.

    1987-12-01

    The Crosshole Programme was an integrated geophysical and hydrogeological study of a limited volume of rock (known as the Crosshole Site) within the Stripa mine. Borehole radar, borehole seismic and hydraulic methods were developed for specific application to fractured crystalline rock. The hydrogeological investigations contained both single borehole and crosshole test techniques. A novel technique, using a sinusoidal variation of pressure, formed the main method of crosshole testing and was assessed during the programme. The strategy of crosshole testing was strongly influenced by the results from the geophysical measurements. The longer term, larger scale hydrogeological response of the region was asessed by examining the variation of heads over the region. These were responding to the presence of an old drift. A method of overall assessment involving minimising the divergence from a homogeneous response yielded credible values of hydraulic conductivity for the rock as a whole. (orig./DG)

  6. Chemical analysis of water in hydrogeology

    International Nuclear Information System (INIS)

    Flakova, R.; Zenisova, Z.; Seman, M.

    2010-01-01

    The aim of the monograph is to give complete information on the chemical analysis of water hydrogeology not only for the students program of Geology study (Bachelor degree study), Engineering Geology and Hydrogeology (Master's degree study) and Engineering Geology (doctoral level study), but also for students from other colleges and universities schools in Slovakia, as well as in the Czech Republic, dealing with the chemical composition of water and its quality, from different perspectives. The benefit would be for professionals with hydrogeological, water and environmental practices, who can find there all the necessary information about proper water sampling, the units used in the chemical analysis of water, expressing the proper chemical composition of water in its various parameters through classification of chemical composition of the water up to the basic features of physical chemistry at thermodynamic calculations and hydrogeochemical modelling.

  7. HydroCube: an entity-relationship hydrogeological data model

    Science.gov (United States)

    Wojda, Piotr; Brouyère, Serge; Derouane, Johan; Dassargues, Alain

    2010-12-01

    Managing, handling and accessing hydrogeological information depends heavily on the applied hydrogeological data models, which differ between institutions and countries. The effective dissemination of hydrogeological information requires the convergence of such models to make hydrogeological information accessible to multiple users such as universities, water suppliers, and administration and research organisations. Furthermore, because hydrogeological studies are complex, they require a wide variety of high-quality hydrogeological data with appropriate metadata in clearly designed and coherent structures. A need exists, therefore, to develop and implement hydrogeological data models that cover, as much as possible, the full hydrogeological domain. A new data model, called HydroCube, was developed for the Walloon Region in Belgium in 2005. The HydroCube model presents an innovative holistic project-based approach which covers a full set of hydrogeological concepts and features, allowing for effective hydrogeological project management. The model stores data relating to the project locality, hydrogeological equipment, and related observations and measurements. In particular, it focuses on specialized hydrogeological field experiments such as pumping and tracer tests. This logical data model uses entity-relationship diagrams and it has been implemented in the Microsoft Access environment. It has been enriched with a fully functional user interface.

  8. Effectiveness evaluation of remote data application in hydrogeologic explorations

    Energy Technology Data Exchange (ETDEWEB)

    Burleshin, M I; Koloskova, V N

    1981-01-01

    Use of the information approach to evaluate the effectiveness of remote data in hydrogeologic cartography of Ustyurt is discussed. Space image, interval and final diagrams of hydrogeologic interpretation are represented like a communication channel. Using the information approach, quantitative evaluation is carried out, and hydrogeologic maps are compared (that, have been compiled by earth surface methods and via interpretation of remote data.

  9. SRP Baseline Hydrogeologic Investigation, Phase 3

    Energy Technology Data Exchange (ETDEWEB)

    Bledsoe, H.W.

    1988-08-01

    The SRP Baseline Hydrogeologic Investigation was implemented for the purpose of updating and improving the knowledge and understanding of the hydrogeologic systems underlying the SRP site. Phase III, which is discussed in this report, includes the drilling of 7 deep coreholes (sites P-24 through P-30) and the installation of 53 observation wells ranging in depth from approximately 50 ft to more than 970 ft below the ground surface. In addition to the collection of geologic cores for lithologic and stratigraphic study, samples were also collected for the determination of physical characteristics of the sediments and for the identification of microorganisms.

  10. Numerical modeling of the hydrogeological effects of ONKALO in 2009

    International Nuclear Information System (INIS)

    Raemae, T.

    2011-10-01

    The underground rock characterization facility ONKALO is currently being excavated in the bedrock of the Olkiluoto Island. The construction work of the ONKALO begun in 2004 and the tunnel will remain open for the whole period of the operation of the planned repository for spent nuclear fuel. The open tunnels cause a disturbance on the local groundwater system. The leakage water flowing into the open tunnels withdraw water from the bedrock and locally alter the natural flow routes. One of the possible consequences of the convergent flow towards the ONKALO is that the highly saline deeper groundwater might be drawn towards the ONKALO, this process is called upconing. The purpose of this work is to estimate the possible upconing of the deep saline waters up to the repository level. A numerical flow and transport simulation is conducted with conservative approach to ensure overestimation of the effects of the ONKALO. In this study a 3D model of the hydrogeological system of the Olkiluoto is used as the basis for numerical flow and transport modeling of the saline groundwater movement in the bedrock of Olkiluoto. The numerical modelling is conducted using the commercial Comsol 3.5a code. The modelled geometry of the ONKALO includes the already excavated ONKALO and the extension according to the layout plan used in this work. The ONKALO and the hydrogeological zones are simplified for this study. In addition the used hydrogeological zones are modelled as 3D blocks with constant thickness of 50 meters. With the used boundary conditions upconing occurs even with the lowest leakage values. The influence of the leakage water is small on the maximum TDS-value at the depth near ONKALO. In this work this phenomenon is explained by the increase in the fresh water infiltration rate as the leakage water is increased, since the low density fresh water is transported more easily downwards than the high density saline water transported upwards towards the ONKALO. Further away from

  11. Hydrogeology of the Mogollon Highlands, central Arizona

    Science.gov (United States)

    Parker, John T.C.; Steinkampf, William C.; Flynn, Marilyn E.

    2005-01-01

    The Mogollon Highlands, 4,855 square miles of rugged, mountainous terrain at the southern edge of the Colorado Plateau in central Arizona, is characterized by a bedrock-dominated hydrologic system that results in an incompletely integrated regional ground-water system, flashy streamflow, and various local water-bearing zones that are sensitive to drought. Increased demand on the water resources of the area as a result of recreational activities and population growth have made necessary an increased understanding of the hydrogeology of the region. The U.S. Geological Survey conducted a study of the geology and hydrology of the region in cooperation with the Arizona Department of Water Resources under the auspices of the Arizona Rural Watershed Initiative, a program launched in 1998 to assist rural areas in dealing with water-resources issues. The study involved the analysis of geologic maps, surface-water and ground-water flow, and water and rock chemical data and spatial relationships to characterize the hydrogeologic framework. The study area includes the southwestern corner of the Colorado Plateau and the Mogollon Rim, which is the eroded edge of the plateau. A 3,000- to 4,000-foot sequence of early to late Paleozoic sedimentary rocks forms the generally south-facing scarp of the Mogollon Rim. The area adjacent to the edge of the Mogollon Rim is an erosional landscape of rolling, step-like terrain exposing Proterozoic metamorphic and granitic rocks. Farther south, the Sierra Ancha and Mazatzal Mountain ranges, which are composed of various Proterozoic rocks, flank an alluvial basin filled with late Cenozoic sediments and volcanic flows. Eight streams with perennial to intermittent to ephemeral flow drain upland regions of the Mogollon Rim and flow into the Salt River on the southern boundary or the Verde River on the western boundary. Ground-water flow paths generally are controlled by large-scale fracture systems or by karst features in carbonate rocks. Stream

  12. Hydrogeophysics and remote sensing for the design of hydrogeological conceptual models in hard rocks - Sardón catchment (Spain)

    Science.gov (United States)

    Francés, Alain P.; Lubczynski, Maciek W.; Roy, Jean; Santos, Fernando A. M.; Mahmoudzadeh Ardekani, Mohammad R.

    2014-11-01

    Hard rock aquifers are highly heterogeneous and hydrogeologically complex. To contribute to the design of hydrogeological conceptual models of hard rock aquifers, we propose a multi-techniques methodology based on a downward approach that combines remote sensing (RS), non-invasive hydrogeophysics and hydrogeological field data acquisition. The proposed methodology is particularly suitable for data scarce areas. It was applied in the pilot research area of Sardón catchment (80 km2) located west of Salamanca (Spain). The area was selected because of hard-rock hydrogeology, semi-arid climate and scarcity of groundwater resources. The proposed methodology consisted of three main steps. First, we detected the main hydrogeological features at the catchment scale by processing: (i) a high resolution digital terrain model to map lineaments and to outline fault zones; and (ii) high-resolution, multispectral satellite QuickBird and WorldView-2 images to map the outcropping granite. Second, we characterized at the local scale the hydrogeological features identified at step one with: i) ground penetrating radar (GPR) to assess groundwater table depth complementing the available monitoring network data; ii) 2D electric resistivity tomography (ERT) and frequency domain electromagnetic (FDEM) to retrieve the hydrostratigraphy along selected survey transects; iii) magnetic resonance soundings (MRS) to retrieve the hydrostratigraphy and aquifer parameters at the selected survey sites. In the third step, we drilled 5 boreholes (25 to 48 m deep) and performed slug tests to verify the hydrogeophysical interpretation and to calibrate the MRS parameters. Finally, we compiled and integrated all acquired data to define the geometry and parameters of the Sardón aquifer at the catchment scale. In line with a general conceptual model of hard rock aquifers, we identified two main hydrostratigraphic layers: a saprolite layer and a fissured layer. Both layers were intersected and drained by

  13. Hydrogeologic study of Cafam area. Melgar (Tolima)

    International Nuclear Information System (INIS)

    Angel M, Carlos E; Perez C, Rosalbina

    1989-06-01

    The hydrogeologic study covers an area of 50 km 2 with the objectives of to determine the possibility of use of the underground waters and to locate places to carry out exploratory perforations in lands of Cafam, equally the elaboration of a hydrogeologic map of the region; for the effect it was carried out cartography geologic scale 1:10.000, inventory and sampling of water point, geoelectric prospecting and some permeability tests. In the area the exploitation of underground water is incipient, alone there are 20 points of water, of which none produce more than 1L/seg. The water has in general good physical chemistry quality for the human consumption. Geologically was recognized the groups Guadalupe and Gualanday, also some quaternary deposits; the previous ones were subdivided in 11 geological units for its composition and morphology, which are framed structurally in the E flank of the synclinal of Carmen de Apicala and displaced by traverse faults with address E-W and N-W. From the point of hydrogeologic view the units were grouped in 8 aquifer systems, of which four are considered of hydrogeologic importance for the area; the sector with better possibilities to capture these aquifer systems is the W of the area (in the terraces area) that extends to the Sumapaz River. For the Cafam sector a place was selected to build an exploratory well of 200 mts. of depth that would capture an aquifer of low transmissivity, corresponding to the Unit T3

  14. Small Scale Multisource Site – Hydrogeology Investigation

    Science.gov (United States)

    A site impacted by brackish water was evaluated using traditional hydrogeologic and geochemical site characterization techniques. No single, specific source of the brine impacted ground water was identified. However, the extent of the brine impacted ground water was found to be...

  15. Hydrogeological And Geotechnical Investigations Of Gully Erosion ...

    African Journals Online (AJOL)

    Consequently, hydrogeological and geotechnical studies of gully erosion sites were carried out in order to provide information on the genesis and continual expansion of gullies in the area. The results indicate that gullies are located in the upper aquifer of the Benin Formation (Coastal Plain Sands). The estimated hydraulic ...

  16. Hydrogeological evaluation of geological formations in Ashanti ...

    African Journals Online (AJOL)

    This study, therefore, employed Geographical Information System to assess some of these hydrogeological parameters in the Ashanti Region using the ordinary kriging interpolation method. Data on 2,788 drilled boreholes in the region were used and the assessment focused on the various geological formations in the ...

  17. Hydrogeologic framework and geologic structure of the Floridan aquifer system and intermediate confining unit in the Lake Okeechobee area, Florida

    Science.gov (United States)

    Reese, Ronald S.

    2014-01-01

    The successful implementation of aquifer storage and recovery (ASR) as a water-management tool requires detailed information on the hydrologic and hydraulic properties of the potential water storage zones. This report presents stratigraphic and hydrogeologic sections of the upper part of the Floridan aquifer system and the overlying confining unit or aquifer system in the Lake Okeechobee area, and contour maps of the upper contacts of the Ocala Limestone and the Arcadia Formation, which are represented in the sections. The sections and maps illustrate hydrogeologic factors such as confinement of potential storage zones, the distribution of permeability within the zones, and geologic features that may control the efficiency of injection, storage, and recovery of water, and thus may influence decisions on ASR activities in areas of interest to the Comprehensive Everglades Restoration Plan.

  18. Studies on hydrogeological conditions for mineralization of some sandstone type uranium deposit

    International Nuclear Information System (INIS)

    Wang Zhiming; Li Sen; Xiao Feng; Qi Daneng; Yin Jinshuang

    1996-11-01

    Based on the analysis for regional geology, structural and hydrogeological conditions of Erennaoer Depression, Erlian Basin, the hydrogeological hydraulic zoning was carried out for groundwater in the study area, structural-palaeo-hydrogeological stages and the feature of deep-seated groundwater were studied, and, two important U-mineralization periods were determined. The conditions of recharge, runoff and discharge of groundwater in ore bearing aquifers and the hydraulic mechanism were revealed by isotope hydrology and single-well tracing technique. By study of hydrogeochemistry, it is indicated that both Subeng and Nuheting U-deposit are located at the parts where groundwater characteristics intensely variate, and the ore indicators are determined. Oil and gas transportation and the relationships between groundwater and U-metallogenetic process were discussed by using of organic geochemistry method. It shows that the bleeding of oil and gas is very important for the forming of U-deposits. It is suggested that the interlayered oxidation zone type sandstone U-deposit which is suitable for in-situ leaching could be existed in the Tenggeer formation, Bayanhua group of Lower Cretaceous, accordingly, two prospecting areas are delimited. (4 refs., 3 figs., 2 tabs.)

  19. Does Anaemia Have Major Public Health Importance in Children Aged 6-59 Months in the Duggina Fanigo District of Wolaita Zone, Southern Ethiopia?

    Science.gov (United States)

    Tiku, Yohannes Samuel; Mekonnen, Tefera Chane; Workie, Shimelash Bitew; Amare, Endale

    2018-01-01

    Globally, a large number of children aged 6-59 months are affected by anaemia. In Ethiopia, like other developing countries, more than 40% of children under 5 years are affected by anaemia. Anaemia during infancy and childhood period is associated with poor health and impaired cognitive development, leading to reduced academic achievement and earning potential in their adult life. The aim of this research was to assess whether anaemia remained a major public health problem among children aged 6-59 months or not in Duggina Fanigo District of Wolaita Zone, South Ethiopia in 2016. A community-based cross-sectional study was conducted from February to March 2016, on 404 mothers with children aged 6-59 months who were selected through the systematic sampling method. Socio-demographic and other data on associated factors was collected using a pre-tested questionnaire. Capillary blood was taken from the fingertip of each child and hemoglobin was measured using Haemo-Cue digital photometer. All the necessary safety measures were taken during blood collection. Data analysis was made using SPSS version 21. Multivariable logistic regression analysis was used to assess the association of independent variables with outcome variables and to control the possible confounding factors. The overall prevalence of anaemia was 51.4%. Anaemia was common among young children as compared to older children. After controlling the effect of confounding and adjusting for age, gender and altitude, explanatory variables like low dietary diversity (AOR = 3.24; 95% CI [1.68-6.23]), food insecurity (AOR = 3.63; 95% CI [2.18-6.04]), stunting (AOR = 2.60; 95% CI [1.56-4.35]), underweight (AOR = 2.46; 95% CI [1.29-4.67]) and fever within 2 weeks (AOR = 2.49; 95% CI [1.29-4.81]) prior to the survey were significantly associated with anaemia. In conclusion, the overall prevalence of anaemia among children aged 6-59 months has remained a major public health importance in the study area. Integrated

  20. Alligator Rivers Analogue project. Hydrogeological modelling. Final Report - Volume 6

    International Nuclear Information System (INIS)

    Townley, L.R.; Trefry, M.G.; Barr, A.D.; Braumiller, S.

    1992-01-01

    This volume describes hydrogeological modelling carried out as part of the Alligator Rivers Analogue Project. Hydrogeology has played a key integrating role in the Project, largely because water movement is believed to have controlled the evolution of the Koongarra uranium Orebody and therefore affects field observations of all types at all scales. Aquifer testing described uses the concept of transmissivity in its interpretation of aquifer response to pumping. The concept of an aquifer, a layer transmitting significant quantities of water in a mainly horizontal direction, seems hard to accept in an environment as heterogeneous as that at Koongarra. But modelling of aquifers both in one dimension and two dimensionally in plan has contributed significantly to our understanding of the site. A one-dimensional model with three layers (often described as a quasi two dimensional model) was applied to flow between the Fault and Koongarra Creek. Being a transient model, this model was able to show that reverse flows can indeed occur back towards the Fault, but only if there is distributed recharge over the orebody as well as a mechanism for the Fault, or a region near the Fault, to remove water from the simulated cross-section. The model also showed clearly that the response of the three-layered system, consisting of a highly weathered zone, a fractured transmissive zone and a less conductive lower schist zone, is governed mainly by the transmissivity and storage coefficient of the middle layer. The storage coefficient of the higher layer has little effect. A two-dimensional model in plan used a description of anisotropy to show that reverse flows can also occur even without a conducting Fault. Modelling of a three-dimensional region using discrete fractures showed that it is certainly possible to simulate systems like that observed at Koongarra, but that large amounts of data are probably needed to obtain realistic descriptions of the fracture networks. Inverse modelling

  1. Alligator Rivers Analogue project. Hydrogeological modelling. Final Report - Volume 6

    Energy Technology Data Exchange (ETDEWEB)

    Townley, L R; Trefry, M G; Barr, A D [CSIRO Div of Water Resources, PO Wembley, WA (Australia); Braumiller, S [Univ of Arizona, Tucson, AZ (United States). Dept of Hydrology and Water Resources; Kawanishi, M [Central Research Institute of Electric Power Industry, Abiko-Shi, Chiba-Ken (Japan); and others

    1993-12-31

    This volume describes hydrogeological modelling carried out as part of the Alligator Rivers Analogue Project. Hydrogeology has played a key integrating role in the Project, largely because water movement is believed to have controlled the evolution of the Koongarra uranium Orebody and therefore affects field observations of all types at all scales. Aquifer testing described uses the concept of transmissivity in its interpretation of aquifer response to pumping. The concept of an aquifer, a layer transmitting significant quantities of water in a mainly horizontal direction, seems hard to accept in an environment as heterogeneous as that at Koongarra. But modelling of aquifers both in one dimension and two dimensionally in plan has contributed significantly to our understanding of the site. A one-dimensional model with three layers (often described as a quasi two dimensional model) was applied to flow between the Fault and Koongarra Creek. Being a transient model, this model was able to show that reverse flows can indeed occur back towards the Fault, but only if there is distributed recharge over the orebody as well as a mechanism for the Fault, or a region near the Fault, to remove water from the simulated cross-section. The model also showed clearly that the response of the three-layered system, consisting of a highly weathered zone, a fractured transmissive zone and a less conductive lower schist zone, is governed mainly by the transmissivity and storage coefficient of the middle layer. The storage coefficient of the higher layer has little effect. A two-dimensional model in plan used a description of anisotropy to show that reverse flows can also occur even without a conducting Fault. Modelling of a three-dimensional region using discrete fractures showed that it is certainly possible to simulate systems like that observed at Koongarra, but that large amounts of data are probably needed to obtain realistic descriptions of the fracture networks. Inverse modelling

  2. Hydrogeology, waste disposal, science and politics: Proceedings

    International Nuclear Information System (INIS)

    Link, P.K.

    1994-01-01

    A total of 48 papers were presented at the Engineering Geology and Geotechnical Engineering 30th Symposium. These papers are presented in this proceedings under the following headings: site characterization--Pocatello area; site characterization--Boise Area; site assessment; Idaho National Engineering Laboratory; geophysical methods; remediation; geotechnical engineering; and hydrogeology, northern and western Idaho. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database

  3. Recent hydrogeologic study of the Vis island

    Directory of Open Access Journals (Sweden)

    Janislav Kapelj

    2002-12-01

    Full Text Available The Vis Island belongs to the group of the Middle Dalmatian islands. It comprises an area of about 90.2 km2. Morphologically, three belts of highlands and two depressions with karst poljes are significant. The highest point on the island is Hum with 587 m a.s.l. theisland’s water supply is organized from the water-supply station “Korita”, situated in the central part of island, in tectonically formed depression. There are two additional capturedobjects: the well K-1 above the Komiža town and the spring “Pizdica”. The most important hydrogeological role on the island have two hydrogeological barriers, one in the KomižaBay, completely made of impermeable igneous and clastic rocks, and another one, the recently recognized relative barrier in the area of Dra~evo, Plisko and Velo polje. Since the island karst aquifer is in permanent dynamic relation with seawater, classical geologic,structural and hydrogeologic investigations have been performed with application of hydrogeochemical methods taking into account the natural chemical tracer content of groundwater and its variations in different hydrologic and vegetation conditions. Precipitationregime is very unfavorable with regard to the recharging of island’s aquifer, because dry periods are usually very long. During the summer tourist season, when the number of inhabitants and fresh water consumption considerably increase, amounts of island’sgroundwater suitable for water supply and irrigation rapidly decrease. Sometimes, insufficient quantity of fresh water on the Vis Island causes restrictions. Concerning the development of tourist potential and the present agricultural activities, summer lack ofwater is a serious restrictive factor. Some results of the performed hydrogeological study, important as a basis for island’s fresh water potential assessment, will be presented.

  4. HYDROGEOLOGICAL AND HYDROCHEMICAL FEATURES OF KALNIK MASSIF

    Directory of Open Access Journals (Sweden)

    Vinko Mraz

    2008-12-01

    Full Text Available Kalničko gorje consists of Cretaceous – Holocene sediments, which can be in hydrogeological sense classified in three hydrogeological units: (1 northern area from central massive of Kalnik, consists of Cretaceous and low Miocene impermeable and low permeable sediments which are hydrogeological barrier and low permeable Cretaceous eruptive sediments ; (2 Kalnik massive consists of Paleogen and Baden permeable carbonate – clastic sediments, which are aquifer; (3 southern Kalnik area consists of Neogene low permeable sediments and Quaternary medium permeable unconsolidated deposits. In the hydrogelogical units are several aquifers types: (i Paleogen carbonate aquifer consists of limestone – dolomite breccia and this is the most important aquifer in the Kalnik area; (ii Baden carbonate aquifer consists of lithothamnium, lithothamnium limestone, sandstone and breccia-conglomerate and it has high permeability, especially through the karst morphological features; (iii Quaternary alluvial aquifers – the most important is in the valley of the Kamešnica river and it’s permeability varies from poor to good depending on granulometric properties; (iv Cretaceous eruptive aquifer from which in the Apatovac area is abstraction of mineral water. The aquifers of the Kalnik area are very vulnerable considering the hydrogeological properties of the area. Nevertheless, physical, physicalchemical, and chemical properties of groundwater in the Kalnik area are showing that waters are of very good quality. The reasons of good quality of waters are that the area is poorly populated and there is no potential pollutant. The area is very valuable and important natural resource for water supply of whole region. In the future it is necessary to provide good protection and sustainable water management to obtain today’s good quality and quantity of groundwater (the paper is published in Croatian.

  5. A compilation of subsurface hydrogeologic data

    International Nuclear Information System (INIS)

    1986-03-01

    This report presents a compilation of both fracture properties and hydrogeological parameters relevant to the flow of groundwater in fractured rock systems. Methods of data acquisition as well as the scale of and conditions during the measurement are recorded. Measurements and analytical techniques for each of the parameters under consideration have been reviewed with respect to their methodology, assumptions and accuracy. Both the rock type and geologic setting associated with these measurements have also been recorded. 373 refs

  6. The physical hydrogeology of ore deposits

    Science.gov (United States)

    Ingebritsen, Steven E.; Appold, M.S.

    2012-01-01

    Hydrothermal ore deposits represent a convergence of fluid flow, thermal energy, and solute flux that is hydrogeologically unusual. From the hydrogeologic perspective, hydrothermal ore deposition represents a complex coupled-flow problem—sufficiently complex that physically rigorous description of the coupled thermal (T), hydraulic (H), mechanical (M), and chemical (C) processes (THMC modeling) continues to challenge our computational ability. Though research into these coupled behaviors has found only a limited subset to be quantitatively tractable, it has yielded valuable insights into the workings of hydrothermal systems in a wide range of geologic environments including sedimentary, metamorphic, and magmatic. Examples of these insights include the quantification of likely driving mechanisms, rates and paths of fluid flow, ore-mineral precipitation mechanisms, longevity of hydrothermal systems, mechanisms by which hydrothermal fluids acquire their temperature and composition, and the controlling influence of permeability and other rock properties on hydrothermal fluid behavior. In this communication we review some of the fundamental theory needed to characterize the physical hydrogeology of hydrothermal systems and discuss how this theory has been applied in studies of Mississippi Valley-type, tabular uranium, porphyry, epithermal, and mid-ocean ridge ore-forming systems. A key limitation in the computational state-of-the-art is the inability to describe fluid flow and transport fully in the many ore systems that show evidence of repeated shear or tensional failure with associated dynamic variations in permeability. However, we discuss global-scale compilations that suggest some numerical constraints on both mean and dynamically enhanced crustal permeability. Principles of physical hydrogeology can be powerful tools for investigating hydrothermal ore formation and are becoming increasingly accessible with ongoing advances in modeling software.

  7. Hydrogeology, waste disposal, science and politics: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Link, P.K. [ed.

    1994-07-01

    A total of 48 papers were presented at the Engineering Geology and Geotechnical Engineering 30th Symposium. These papers are presented in this proceedings under the following headings: site characterization--Pocatello area; site characterization--Boise Area; site assessment; Idaho National Engineering Laboratory; geophysical methods; remediation; geotechnical engineering; and hydrogeology, northern and western Idaho. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  8. Hydrogeological controls of variable microbial water quality in a complex subtropical karst system in Northern Vietnam

    Science.gov (United States)

    Ender, Anna; Goeppert, Nadine; Goldscheider, Nico

    2018-05-01

    Karst aquifers are particularly vulnerable to bacterial contamination. Especially in developing countries, poor microbial water quality poses a threat to human health. In order to develop effective groundwater protection strategies, a profound understanding of the hydrogeological setting is crucial. The goal of this study was to elucidate the relationships between high spatio-temporal variability in microbial contamination and the hydrogeological conditions. Based on extensive field studies, including mapping, tracer tests and hydrochemical analyses, a conceptual hydrogeological model was developed for a remote and geologically complex karst area in Northern Vietnam called Dong Van. Four different physicochemical water types were identified; the most important ones correspond to the karstified Bac Son and the fractured Na Quan aquifer. Alongside comprehensive investigation of the local hydrogeology, water quality was evaluated by analysis for three types of fecal indicator bacteria (FIB): Escherichia coli, enterococci and thermotolerant coliforms. The major findings are: (1) Springs from the Bac Son formation displayed the highest microbial contamination, while (2) springs that are involved in a polje series with connections to sinking streams were distinctly more contaminated than springs with a catchment area characterized by a more diffuse infiltration. (3) FIB concentrations are dependent on the season, with higher values under wet season conditions. Furthermore, (4) the type of spring capture also affects the water quality. Nevertheless, all studied springs were faecally impacted, along with several shallow wells within the confined karst aquifer. Based on these findings, effective protection strategies can be developed to improve groundwater quality.

  9. A computer hydrogeologic model of the Nevada Test Site and surrounding region

    International Nuclear Information System (INIS)

    Gillson, R.; Hand, J.; Adams, P.; Lawrence, S.

    1996-01-01

    A three-dimensional, hydrogeologic model of the Nevada Test Site and surrounding region was developed as an element for regional groundwater flow and radionuclide transport models. The hydrogeologic model shows the distribution, thickness, and structural relationships of major aquifers and confining units, as conceived by a team of experts organized by the U.S. Department of Energy Nevada Operations Office. The model was created using Intergraph Corporation's Geographical Information System based Environmental Resource Management Application software. The study area encompasses more than 28,000 square kilometers in southern Nevada and Inyo County, California. Fifty-three geologic cross sections were constructed throughout the study area to provide a framework for the model. The lithology was simplified to 16 hydrostratigraphic units, and the geologic structures with minimal effect on groundwater flow were removed. Digitized cross sections, surface geology, and surface elevation data were the primary sources for the hydrogeologic model and database. Elevation data for the hydrostratigraphic units were posted, contoured, and gridded. Intergraph Corporation's three-dimensional visualization software, VOXEL trademark, was used to view the results interactively. The hydrogeologic database will be used in future flow modeling activities

  10. On uncertainty quantification in hydrogeology and hydrogeophysics

    Science.gov (United States)

    Linde, Niklas; Ginsbourger, David; Irving, James; Nobile, Fabio; Doucet, Arnaud

    2017-12-01

    Recent advances in sensor technologies, field methodologies, numerical modeling, and inversion approaches have contributed to unprecedented imaging of hydrogeological properties and detailed predictions at multiple temporal and spatial scales. Nevertheless, imaging results and predictions will always remain imprecise, which calls for appropriate uncertainty quantification (UQ). In this paper, we outline selected methodological developments together with pioneering UQ applications in hydrogeology and hydrogeophysics. The applied mathematics and statistics literature is not easy to penetrate and this review aims at helping hydrogeologists and hydrogeophysicists to identify suitable approaches for UQ that can be applied and further developed to their specific needs. To bypass the tremendous computational costs associated with forward UQ based on full-physics simulations, we discuss proxy-modeling strategies and multi-resolution (Multi-level Monte Carlo) methods. We consider Bayesian inversion for non-linear and non-Gaussian state-space problems and discuss how Sequential Monte Carlo may become a practical alternative. We also describe strategies to account for forward modeling errors in Bayesian inversion. Finally, we consider hydrogeophysical inversion, where petrophysical uncertainty is often ignored leading to overconfident parameter estimation. The high parameter and data dimensions encountered in hydrogeological and geophysical problems make UQ a complicated and important challenge that has only been partially addressed to date.

  11. Stochastic hydrogeology: what professionals really need?

    Science.gov (United States)

    Renard, Philippe

    2007-01-01

    Quantitative hydrogeology celebrated its 150th anniversary in 2006. Geostatistics is younger but has had a very large impact in hydrogeology. Today, geostatistics is used routinely to interpolate deterministically most of the parameters that are required to analyze a problem or make a quantitative analysis. In a small number of cases, geostatistics is combined with deterministic approaches to forecast uncertainty. At a more academic level, geostatistics is used extensively to study physical processes in heterogeneous aquifers. Yet, there is an important gap between the academic use and the routine applications of geostatistics. The reasons for this gap are diverse. These include aspects related to the hydrogeology consulting market, technical reasons such as the lack of widely available software, but also a number of misconceptions. A change in this situation requires acting at different levels. First, regulators must be convinced of the benefit of using geostatistics. Second, the economic potential of the approach must be emphasized to customers. Third, the relevance of the theories needs to be increased. Last, but not least, software, data sets, and computing infrastructure such as grid computing need to be widely available.

  12. Materials of conference: Hydrogeological Problems of South-West Poland

    International Nuclear Information System (INIS)

    1996-01-01

    Hydrogeological problems of South-west Poland is the collection of conference papers held in Szklarska Poreba on 20-22 June 1996. The materials have been gathered in three topical groups: water quality problems in hydrological cycle, regional hydrogeology of South-west Poland, theoretical problems and research methods in hydrogeology. More of performed articles have a interdisciplinary character taking into account the precipitation and surface water quality and their influence on ground water features

  13. Hydrogeologic structures in two Serbian spa towns - Sijarinska Banja and Selters Banja

    Directory of Open Access Journals (Sweden)

    Marinković Goran

    2016-01-01

    Full Text Available The objective of the paper is to identify the boundaries of hydrogeologic structures in which natural mineral waters occur, using two examples: old mineral water (Sijarinska Banja and young mineral water (Selters Banja. The research addresses the distance from recharge zones, depth of occurrence, and points of discharge. Apart from the three spatial dimensions, the study also includes the time dimension - water age. The following parameters are examined: geologichydrogeologic conditions in the places of occurrence of mineral water, connection between mineral water and permeable fault zones, distance of surface water divides, previously-defined maximum possible depths of occurrence, possible flow rates, and the determined age. If the flow followed a straight line, the maximum distance of the recharge zone would be up to 7 m for the young and up to 11 km for the old mineral water. However, it is obvious that this is never the case in fractured systems, given that water travels much longer distances from the point of entry to the point of drainage from aquifers. Assessment of geologic-hydrogeologic and hydrodynamic conditions, relative to the determined age of the mineral water, leads to the conclusion that the distance between the recharge and drainage zones can be less than 5 km. The paper shows that insight into the depth of infiltration into permeable fault zones can also be gained by studying the depth of circulation relative to known hydrodynamic zones. The inference is that the largest amount of groundwater is restored in the hydrodynamic zone of slow groundwater renewal, which is below a depth of 1.5 km at Sijarinska Banja and below 1.3 km at Selters Banja.

  14. Three-dimensional distribution and hydrogeological properties of the Omagari fault in the Horonobe area, northern Hokkaido, Japan

    International Nuclear Information System (INIS)

    Ishii, Eiichi; Yasue, Ken-ichi; Tsukuwi, Routa; Tanaka, Takenobu; Matsuo, Koichi; Sugiyama, Kazutoshi; Matsuo, Shigeaki

    2006-01-01

    We investigated the geological structure and hydrogeological properties of the Omagari Fault in Neogene siliceous sedimentary rocks of the Horonobe area, northern Hokkaido, by geological mapping, borehole investigations, reflection seismic survey, and audio-frequency magnetotelluric survey. As a result of the investigation, the 3-D distribution of the Fault was clarified and the following were shown. In addition, the magnetotelluric survey in particular was effective for mapping of the 3-D distribution and hydrogeological properties of the fault. The Omagari Fault has a fault zone, about 120 m wide, that consists mainly of the damage zone, and has a permeable structure. The magnetotelluric survey shows several high-resistivity zones, one of which corresponds to the Omagari Fault inferred from the reflection seismic surveys. The high resistivity zones are correlative with the concentration zones of low-saline water, which suggests infiltration of ground water through the permeable Omagari Fault zone. The Omagari Fault over-steps at the earth surface and at the same time is converging in subsurface zones. (author)

  15. Numerical model for mapping of complex hydrogeological conditions: the Chmielnik area (South Poland) case study

    Science.gov (United States)

    Buszta, Kamila; Szklarczyk, Tadeusz; Malina, Grzegorz

    2017-04-01

    Detailed analysis of hydrogeological conditions at a study area is the basis for characterising adjacent groundwater circulation systems. It is also an essential element during executing hydrogeological documentations. The goal of this work was to reconstruct on a numerical model natural groundwater circulation systems of the studied area located within the municipality of Chmielnik in the region of Kielce (South Poland). The area is characterized by a complex geological structure, which along with the existing hydrographic network, makes the scheme of groundwater circulation complicated and difficult to map on a numerical model. The studied area is situated at the border of three geological units: on the North - the extended portion of the Palaeozoic Swietokrzyskie Mountains (mainly Devonian and Permian), in the center - the S-W part of the Mesozoic Margin of the Swietokrzyskie Mountains, and on the South - a marginal zone of the Carpathian Foredeep. The whole area belongs to the Vistula river basin, and it includes catchments of its left tributaries: the Nida and Czarna Staszowska rivers. Based on the collected field and archival hydrogeological, hydrological and sozological data a conceptual model was built, under which a numerical model of groundwater flow was developed using the specialized software - Visual MODFLOW. The numerical model maps the five-layer groundwater circulation system in conjunction with surface watercourses. Such division reflects appropriately the variability of hydrogeological parameters within the geological structures. Two principal and exploited aquifers comprise: a fractured-porous Neogene and fractured Upper Jurassic formations. The external model borders are based primarily on surface watercourses and locally on watersheds. The modelled area of 130 km2 was divided into square grids of 50 m. The model consists of 275 rows and 277 columns. Each of five layers was simulated with the same number of active blocks. In the construction of

  16. Environmental assessment of a uranium experimental rock blasting in Portugal, using geophysical and hydrogeological methods

    International Nuclear Information System (INIS)

    Ramalho, E C; Midões, C; Costa, A; Lourenço, M C; Monteiro Santos, F A

    2012-01-01

    The Nisa uranium deposit, located in Central Portugal, has been known since the late 1960s. Some areas were explored at that time. Today, a few open pits and dumps remain in place and are a concern to local authorities. To assess the geoenvironmental problems caused by the main mining exploration composed of an experimental rock blasting, 3D electrical conductivity and resistivity models were made to develop a hydrogeological model to understand the possibility of contaminants transportation, such as uranium, from the dumps towards a dam located nearby. These 3D models were the support to show alteration layer thickness variations and fault zones at depths controlling groundwater circulation. Spectrometric surveys were also carried out and correlated with geology and geoelectrical structure. All this information was used in the construction of the 3D steady state hydrogeological model of the experimental rock blasting of Nisa. In this model, groundwater flow and the contaminant pathways were simulated. Some areas have very high radioactive values resulting from the geological formation characteristics and old dumps. However, results of the environmental assessment using geophysical and hydrogeological methods point to a critical situation restricted only to the area of the experimental rock blasting of the Nisa uranium deposit and its dumps. (paper)

  17. The majority of cutaneous marginal zone B-cell lymphomas expresses class-switched immunoglobulins and develops in a T-helper type 2 inflammatory environment

    NARCIS (Netherlands)

    van Maldegem, Febe; van Dijk, Remco; Wormhoudt, Thera A. M.; Kluin, Philip M.; Willemze, Rein; Cerroni, Lorenzo; van Noesel, Carel J. M.; Bende, Richard J.

    2008-01-01

    Extranodal marginal zone B-cell lymphomas (MZBCLs) arise on a background of chronic inflammation resulting from organ-specific autoimmunity, infection, or by unknown causes. Well-known examples are salivary gland MZBCL in Sjorgren's sialadenitis and gastric MZBCL in Helicobacter pylori gastritis.

  18. Isotope hydrology in the Sahel zone

    International Nuclear Information System (INIS)

    1974-01-01

    Northern Africa has recently experienced an exceptional period of severe drought. Practically no precipitation has been received during two or three years by large regions in the so-called Sahel zone, which extends over all Africa from West to East at a latitude between 10 and 20 degrees North in the following countries: Senegal, Mauritania, Mali, Upper Volta, Niger, Nigeria, Chad, Sudan and Ethiopia. Although precipitation is scarce even in normal years, important groundwater resources are present in the Sahei zone. However, groundwater is exploited mainly by dug wells, reaching only the upper part of the phreatic aquifer, which is also the one immediately affected by droughts (lowering of the water table). Deep groundwater is exploited only by a limited number of drilled wells. In recent years several hydrogeological projects have been financed by the United Nations through UNDP in the Sahel countries, with the purpose of locating and evaluating groundwater resources and of developing their exploitation. The International Atomic Energy Agency has taken or takes part in many of these projects by providing isotopic analyses of groundwater. Some of the most difficult questions to be answered in groundwater research in arid zones are: Is the recharge of a given aquifer also taking place at present? If so, from where does the major contribution to groundwater recharge come? What is the age of groundwater? Often it is not possible to answer these questions with the classical hydrogeological and geophysical methods above, but the techniques based on the so-called environmental isotopes ( 18 O and 2 H, 3 H and 14 C) may provide an answer. The information provided by isotope techniques is in many cases extremely valuable for a better understanding of groundwater resources and a better planning of their exploitation, despite the problems which always occur in actual cases. In fact, natural processes, like mixing or interaction with the aquifer material, or practical

  19. Flow and transport in unsaturated fractured rock: Effects of multiscale heterogeneity of hydrogeologic properties

    International Nuclear Information System (INIS)

    Zhou, Quanlin; Liu, Hui-Hai; Bodvarsson, Gudmundur S.; Oldenburg, Curtis M.

    2002-01-01

    The heterogeneity of hydrogeologic properties at different scales may have different effects on flow and transport processes in a subsurface system. A model for the unsaturated zone of Yucca Mountain, Nevada, is developed to represent complex heterogeneity at two different scales: (1) layer scale corresponding to geologic layering and (2) local scale. The layer-scale hydrogeologic properties are obtained using inverse modeling, based on the available measurements collected from the Yucca Mountain site. Calibration results show a significant lateral and vertical variability in matrix and fracture properties. Hydrogeologic property distributions in a two-dimensional, vertical cross section of the site are generated by combining the average layer-scale matrix and fracture properties with local-scale perturbations generated using a stochastic simulation method. The unsaturated water flow and conservative (nonsorbing) tracer transport through the cross section are simulated for different sets of matrix and fracture property fields. Comparison of simulation results indicates that the local-scale heterogeneity of matrix and fracture properties has a considerable effect on unsaturated flow processes, leading to fast flow paths in fractures and the matrix. These paths shorten the travel time of a conservative tracer from the source (repository) horizon in the unsaturated zone to the water table for small fractions of total released tracer mass. As a result, the local-scale heterogeneity also has a noticeable effect on global tracer transport processes, characterized by an average breakthrough curve at the water table, especially at the early arrival time of tracer mass. However, the effect is not significant at the later time after 20 percent tracer mass reaches the water table. The simulation results also verify that matrix diffusion plays an important role in overall solute transport processes in the unsaturated zone at Yucca Mountain

  20. Faulting and groundwater in a desert environment: constraining hydrogeology using time-domain electromagnetic data

    Science.gov (United States)

    Bedrosian, Paul A.; Burgess, Matthew K.; Nishikawa, Tracy

    2013-01-01

    Within the south-western Mojave Desert, the Joshua Basin Water District is considering applying imported water into infiltration ponds in the Joshua Tree groundwater sub-basin in an attempt to artificially recharge the underlying aquifer. Scarce subsurface hydrogeological data are available near the proposed recharge site; therefore, time-domain electromagnetic (TDEM) data were collected and analysed to characterize the subsurface. TDEM soundings were acquired to estimate the depth to water on either side of the Pinto Mountain Fault, a major east-west trending strike-slip fault that transects the proposed recharge site. While TDEM is a standard technique for groundwater investigations, special care must be taken when acquiring and interpreting TDEM data in a twodimensional (2D) faulted environment. A subset of the TDEM data consistent with a layered-earth interpretation was identified through a combination of three-dimensional (3D) forward modelling and diffusion time-distance estimates. Inverse modelling indicates an offset in water table elevation of nearly 40 m across the fault. These findings imply that the fault acts as a low-permeability barrier to groundwater flow in the vicinity of the proposed recharge site. Existing production wells on the south side of the fault, together with a thick unsaturated zone and permeable near-surface deposits, suggest the southern half of the study area is suitable for artificial recharge. These results illustrate the effectiveness of targeted TDEM in support of hydrological studies in a heavily faulted desert environment where data are scarce and the cost of obtaining these data by conventional drilling techniques is prohibitive.

  1. Nagra technical report 14-02, geological basics - Dossier V - Hydro-geological conditions

    International Nuclear Information System (INIS)

    Traber, D.; Gautschi, A.; Marschall, P.; Becker, J.; Waber, N.

    2014-01-01

    This dossier is the fifth of a series of eight reports concerning the safety and technical aspects of locations for the disposal of radioactive wastes in Switzerland. Dossier V looks at hydro-geological considerations in North-Western Switzerland. Rock layers in the region and their hydrological properties are examined. Ground-water and deeper lying aquifers in the various rock formations are discussed. The specific hydrology in the proposed areas for nuclear waste depositories is looked at, including infiltration and exfiltration zones and gradients

  2. Hydrogeology of an ancient arid closed basin: Implications for tabular sandstone-hosted uranium deposits

    International Nuclear Information System (INIS)

    Sanford, R.F.

    1990-01-01

    Hydrogeologic modeling shows that tabular-type uranium deposits in the grants uranium region of the San Juan basin, New Mexico, formed in zones of ascending and discharging regional ground-water flow. The association of either lacustrine mudstone or actively subsiding structures and uranium deposits can best be explained by the occurrence of lakes at topographic depressions where ground water having different sources and compositions is likely to converge, mix, and discharge. Ascending and discharging flow also explains the association of uranium deposits with underlying evaporites and suggests a brine interface. The simulations contradict previous suggestions that ground water moved downward in the mudflat

  3. Relation of water chemistry of the Edwards aquifer to hydrogeology and land use, San Antonio Region, Texas

    Science.gov (United States)

    Buszka, Paul M.

    1987-01-01

    Water-chemistry data from the Edwards aquifer for 1976-85, consisting of nearly 1,500 chemical analyses from 280 wells and 3 springs, were used to statistically evaluate relations among ground-water chemistry, hydrogeology, and land use. Five land uses associated with sampled wells were classified on the basis of published information and field surveys. Four major subareas of the aquifer were defined to reflect the relative susceptibility of ground water to contamination originating from human activities using hydrogeologic and tritium data.

  4. Allocating risk capital for a brownfields redevelopment project under hydrogeological and financial uncertainty.

    Science.gov (United States)

    Yu, Soonyoung; Unger, Andre J A; Parker, Beth; Kim, Taehee

    2012-06-15

    In this study, we defined risk capital as the contingency fee or insurance premium that a brownfields redeveloper needs to set aside from the sale of each house in case they need to repurchase it at a later date because the indoor air has been detrimentally affected by subsurface contamination. The likelihood that indoor air concentrations will exceed a regulatory level subject to subsurface heterogeneity and source zone location uncertainty is simulated by a physics-based hydrogeological model using Monte Carlo realizations, yielding the probability of failure. The cost of failure is the future value of the house indexed to the stochastic US National Housing index. The risk capital is essentially the probability of failure times the cost of failure with a surcharge to compensate the developer against hydrogeological and financial uncertainty, with the surcharge acting as safety loading reflecting the developers' level of risk aversion. We review five methodologies taken from the actuarial and financial literature to price the risk capital for a highly stylized brownfield redevelopment project, with each method specifically adapted to accommodate our notion of the probability of failure. The objective of this paper is to develop an actuarially consistent approach for combining the hydrogeological and financial uncertainty into a contingency fee that the brownfields developer should reserve (i.e. the risk capital) in order to hedge their risk exposure during the project. Results indicate that the price of the risk capital is much more sensitive to hydrogeological rather than financial uncertainty. We use the Capital Asset Pricing Model to estimate the risk-adjusted discount rate to depreciate all costs to present value for the brownfield redevelopment project. A key outcome of this work is that the presentation of our risk capital valuation methodology is sufficiently generalized for application to a wide variety of engineering projects. Copyright © 2012 Elsevier

  5. Site investigation SFR. Hydrogeological modelling of SFR. Model version 0.2

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Johan (Golder Associates AB (Sweden)); Follin, Sven (SF GeoLogic (Sweden))

    2010-01-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations for a planned extension of the existing final repository for short-lived radioactive waste (SFR). A hydrogeological model is developed in three model versions, which will be used for safety assessment and design analyses. This report presents a data analysis of the currently available hydrogeological data from the ongoing Site Investigation SFR (KFR27, KFR101, KFR102A, KFR102B, KFR103, KFR104, and KFR105). The purpose of this work is to develop a preliminary hydrogeological Discrete Fracture Network model (hydro-DFN) parameterisation that can be applied in regional-scale modelling. During this work, the Geologic model had not yet been updated for the new data set. Therefore, all analyses were made to the rock mass outside Possible Deformation Zones, according to Single Hole Interpretation. Owing to this circumstance, it was decided not to perform a complete hydro-DFN calibration at this stage. Instead focus was re-directed to preparatory test cases and conceptual questions with the aim to provide a sound strategy for developing the hydrogeological model SFR v. 1.0. The presented preliminary hydro-DFN consists of five fracture sets and three depth domains. A statistical/geometrical approach (connectivity analysis /Follin et al. 2005/) was performed to estimate the size (i.e. fracture radius) distribution of fractures that are interpreted as Open in geologic mapping of core data. Transmissivity relations were established based on an assumption of a correlation between the size and evaluated specific capacity of geologic features coupled to inflows measured by the Posiva Flow Log device (PFL-f data). The preliminary hydro-DFN was applied in flow simulations in order to test its performance and to explore the role of PFL-f data. Several insights were gained and a few model technical issues were raised. These are summarised in Table 5-1

  6. A hydrogeological conceptual model of the Suio hydrothermal area (central Italy)

    Science.gov (United States)

    Saroli, Michele; Lancia, Michele; Albano, Matteo; Casale, Anna; Giovinco, Gaspare; Petitta, Marco; Zarlenga, Francesco; dell'Isola, Marco

    2017-09-01

    A hydrogeological conceptual model has been developed that describes the hydrothermal system of Suio Terme (central Italy). The studied area is located along the peri-Tyrrhenian zone of the central Apennines, between the Mesozoic and Cenozoic carbonate platform sequences of the Aurunci Mountains and the volcanic sequences of the Roccamonfina. A multi-disciplinary approach was followed, using new hydrogeological surveys, the interpretation of stratigraphic logs of boreholes and water wells, and geophysical data—seismic sections, shear-wave velocity (Vs) crustal model and gravimetric model. The collected information allowed for construction of a conceptual hydrogeological model and characterization of the hydrothermal system. The Suio hydrothermal system is strongly influenced by the Eastern Aurunci hydrostructure. Along the southeastern side, the top of the hydrostructure sinks to -1,000 m relative to sea level via a series of normal faults which give origin to the Garigliano graben. Geological and hydrogeological data strongly suggest the propagation and mixing of hot fluids, with cold waters coming from the shallow karst circuit. The aquitard distribution, the normal tectonic displacements and the fracturing of the karst hydrostructure strongly influence the hydrothermal basin. Carbon dioxide and other gasses play a key role in the whole circuit, facilitating the development of the hydrothermal system. The current level of knowledge suggests that the origin of the Suio hydrothermalism is the result of interaction between the carbonate reservoir of the Eastern Aurunci Mountains and the hot and deep crust of this peri-Tyrrhenian sector, where the Roccamonfina volcano represents the shallowest expression.

  7. Site investigation SFR. Hydrogeological modelling of SFR. Model version 0.2

    International Nuclear Information System (INIS)

    Oehman, Johan; Follin, Sven

    2010-01-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations for a planned extension of the existing final repository for short-lived radioactive waste (SFR). A hydrogeological model is developed in three model versions, which will be used for safety assessment and design analyses. This report presents a data analysis of the currently available hydrogeological data from the ongoing Site Investigation SFR (KFR27, KFR101, KFR102A, KFR102B, KFR103, KFR104, and KFR105). The purpose of this work is to develop a preliminary hydrogeological Discrete Fracture Network model (hydro-DFN) parameterisation that can be applied in regional-scale modelling. During this work, the Geologic model had not yet been updated for the new data set. Therefore, all analyses were made to the rock mass outside Possible Deformation Zones, according to Single Hole Interpretation. Owing to this circumstance, it was decided not to perform a complete hydro-DFN calibration at this stage. Instead focus was re-directed to preparatory test cases and conceptual questions with the aim to provide a sound strategy for developing the hydrogeological model SFR v. 1.0. The presented preliminary hydro-DFN consists of five fracture sets and three depth domains. A statistical/geometrical approach (connectivity analysis /Follin et al. 2005/) was performed to estimate the size (i.e. fracture radius) distribution of fractures that are interpreted as Open in geologic mapping of core data. Transmissivity relations were established based on an assumption of a correlation between the size and evaluated specific capacity of geologic features coupled to inflows measured by the Posiva Flow Log device (PFL-f data). The preliminary hydro-DFN was applied in flow simulations in order to test its performance and to explore the role of PFL-f data. Several insights were gained and a few model technical issues were raised. These are summarised in Table 5-1

  8. Regional hydrogeological simulations for Forsmark - numerical modelling using DarcyTools. Preliminary site description Forsmark area version 1.2

    International Nuclear Information System (INIS)

    Follin, Sven; Stigsson, Martin; Svensson, Urban

    2005-12-01

    fractures. It comprises, among other things, a fracture network generator, algorithms for the computation of finite-volume (block-size) properties and a multi-rate diffusion model. It is noted that some of the components of DarcyTools are not used in the work reported here as they are still under development or subjected to testing and verification. The main observations of the hydrogeological DFN and block-scale analyses with DarcyTools are as follows: There were several difficulties in applying the global geological DFN to the hydraulic tests. The main difficulty stemmed from significant variations in fracture intensities and the proportions of sets between boreholes making it difficult to use an averaged, global, geological DFN model when matching hydraulic tests in a specific borehole. Due to the spatial variability of the fracture properties and the few flow anomalies a number of bedrock volumes lateral flow jointly with the ConnectFlow Team. For the work presented in this report the following volumes were defined: Volume A above the gently dipping deformation zone ZFMNE00A2 (A2) below c 100 m depth. Volume B below A2 between 220-360 m depth. Volume C below A2 between 100-220 m depth. Volume D below A2 below c 360-400 m depth (target volume). A major observation from the hydrogeological DFN analysis of Volumes A-D is that it is possible to come to different results concerning the connected fracture area per unit volume when calibrating against the measured borehole fracture intensity depending on the value used for the minimum fracture size of the power-law size distribution. In conclusion, the reference fracture size is a key parameter of considerable importance for the outcome of the approach used. A direct correlation between transmissivity and length appears to be a workable hypothesis but the simulations conducted suggest a considerable variability between different volumes as well as between realisations within a fixed volume due to the spatial variations in

  9. Regional hydrogeological simulations for Forsmark - numerical modelling using DarcyTools. Preliminary site description Forsmark area version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-12-15

    fractures. It comprises, among other things, a fracture network generator, algorithms for the computation of finite-volume (block-size) properties and a multi-rate diffusion model. It is noted that some of the components of DarcyTools are not used in the work reported here as they are still under development or subjected to testing and verification. The main observations of the hydrogeological DFN and block-scale analyses with DarcyTools are as follows: There were several difficulties in applying the global geological DFN to the hydraulic tests. The main difficulty stemmed from significant variations in fracture intensities and the proportions of sets between boreholes making it difficult to use an averaged, global, geological DFN model when matching hydraulic tests in a specific borehole. Due to the spatial variability of the fracture properties and the few flow anomalies a number of bedrock volumes lateral flow jointly with the ConnectFlow Team. For the work presented in this report the following volumes were defined: Volume A above the gently dipping deformation zone ZFMNE00A2 (A2) below c 100 m depth. Volume B below A2 between 220-360 m depth. Volume C below A2 between 100-220 m depth. Volume D below A2 below c 360-400 m depth (target volume). A major observation from the hydrogeological DFN analysis of Volumes A-D is that it is possible to come to different results concerning the connected fracture area per unit volume when calibrating against the measured borehole fracture intensity depending on the value used for the minimum fracture size of the power-law size distribution. In conclusion, the reference fracture size is a key parameter of considerable importance for the outcome of the approach used. A direct correlation between transmissivity and length appears to be a workable hypothesis but the simulations conducted suggest a considerable variability between different volumes as well as between realisations within a fixed volume due to the spatial variations in

  10. A compilation of subsurface hydrogeologic data

    International Nuclear Information System (INIS)

    1986-03-01

    This volume contains the permeability data for the research sites discussed in Volume 1 which have been studied in sufficient detail to allow for analysis. These sites are the following: Stripa Mine, Sweden; Finnsjon, Kamlunge, Fjallveden, Gidea, Svartboberget, Sweden; Olkiluoto, Loviisa, Lavia, Finland; Climax Granite Nevada Test Site; OCRD Room, Colorado School of Mines; Savannah River Plant, Aiken, South Carolina; Oracle, Arizona; Basalt Waste Isolation Project (BWIP), Hanford, Washington; Underground Research Laboratory, AECL, Canada; Atikokan Research Area, AECL; Chalk River Research Area, AECL; Whiteshell Research Area, AECL. Other sources of information have been included where sufficient site specific geologic and hydrogeologic information is provided

  11. Regional hydrogeological study in the Tono area

    International Nuclear Information System (INIS)

    Ogata, Nobuhisa; Ota, Kunio; Hama, Katsuhiro; Tsubota, Kouji

    1998-01-01

    Regional hydrogeological studies have been carried out since fiscal 1992 to determine the regional groundwater flow in the Tono area of Japan. The following items have been investigated: 1) Understanding the geological structure, groundwater flow and groundwater chemistry of the deep geological environment in the Tono area. 2) Constructing conceptual models of the geological structure, groundwater flow and groundwater chemistry. 3) Developing appropriate techniques to investigate the geological structure, groundwater flow and groundwater chemistry of the deep geological environment. This report presents the results of the last six years of the study in the Tono area. (author)

  12. A compilation of subsurface hydrogeologic data

    International Nuclear Information System (INIS)

    1986-03-01

    This volume contains a continuation of the fracture data for the research sites discussed in Volume 1 which have been studied in sufficient detail to allow for analysis. The sites discussed in this volume are the following: Climax Granite Nevada Test Site; OCRD Room, Colorado School of Mines; Savannah River Plant, Aiken, South Carolina; Oracle, Arizona; Basalt Waste Isolation Project (BWIP), Hanford, Washington Underground Research Laboratory, AECL, Canada; Atikokan Research Area, AECL; Chalk River Research Area, AECL; Whiteshell Research Area, AECL. Other sources of information have been included where sufficient site specific geologic and hydrogeologic information is provided

  13. Hydrogeology of the basalts in the Uruguayan NW

    International Nuclear Information System (INIS)

    Hausman, A.; Fernandez, A.

    1967-01-01

    This work is about the hydrogeological aspects in the NW Uruguayan basaltic area. The results of this research are the main geological, morphological and hydrogeological aspects of the area as well as the characteristics and the color of the basalt and sandstones

  14. Hydrogeological Properties of the Rocks in Adansi Mining Area ...

    African Journals Online (AJOL)

    The hydrogeological properties of an aquifer coupled with climatic conditions and geomorphology determines how much groundwater exists in that location. A hydrogeological study of the rocks in the Adansi area was carried out to obtain the aquifer hydraulic properties. Drilling and pumping test analysis information were ...

  15. Industrial--hydrogeological characteristics of water in the Orenburg Field

    Energy Technology Data Exchange (ETDEWEB)

    Kortsenshtein, V N; Zhabrev, I P; Uchastkin, Yu V; Alekseeva, I V

    1977-06-01

    An examination is made of the industrial hydrogeological conditions of the Orenburg Field in connection with the beginning of its development. Features of pay dirt water manifestation are demonstrated, genetic types of water brought out by gas flow are described, and methods are suggested for processing hydrogeological information. 3 references, 2 figures, 1 table.

  16. Hydrogeology of rocks of low permeability: region studies

    International Nuclear Information System (INIS)

    Llamas, M.R.

    1985-01-01

    Hydrogeological regional studies on low permeability rocks are rather scarce in comparison to similar studies on normal permeability rocks. Economic and technological difficulties to develop ground water from these terrains may be the main cause of this scarcity. Several facts may indicate that these studies will increase in the near future. First, the need to supply water to the people living in underdeveloped arid zones over extensive areas of low permeability rocks. Second, the relevant role that some low permeability large groundwater basins may play in conjunctive ground and surface-water use. And last but not least the feasibility of some low permeability rock areas as sites for nuclear waste repositories. Some specific difficulties in these regional studies may be: a) intrinsic difficulties in obtaining representative water samples and measuring hydraulic heads; b) scarcity of observation and/or pumping wells; c) important hydraulic head and chemical properties variations in a vertical direction; d) old groundwater ages; this may require paleohydrological considerations to understand certain apparent anomalies. In most of these regional studies hydrogeochemical methods and modelling (flow and mass transport) may be very valuable tools. 77 references, 7 figures

  17. Methodology for deriving hydrogeological input parameters for safety-analysis models - application to fractured crystalline rocks of Northern Switzerland

    International Nuclear Information System (INIS)

    Vomvoris, S.; Andrews, R.W.; Lanyon, G.W.; Voborny, O.; Wilson, W.

    1996-04-01

    Switzerland is one of many nations with nuclear power that is seeking to identify rock types and locations that would be suitable for the underground disposal of nuclear waste. A common challenge among these programs is to provide engineering designers and safety analysts with a reasonably representative hydrogeological input dataset that synthesizes the relevant information from direct field observations as well as inferences and model results derived from those observations. Needed are estimates of the volumetric flux through a volume of rock and the distribution of that flux into discrete pathways between the repository zones and the biosphere. These fluxes are not directly measurable but must be derived based on understandings of the range of plausible hydrogeologic conditions expected at the location investigated. The methodology described in this report utilizes conceptual and numerical models at various scales to derive the input dataset. The methodology incorporates an innovative approach, called the geometric approach, in which field observations and their associated uncertainty, together with a conceptual representation of those features that most significantly affect the groundwater flow regime, were rigorously applied to generate alternative possible realizations of hydrogeologic features in the geosphere. In this approach, the ranges in the output values directly reflect uncertainties in the input values. As a demonstration, the methodology is applied to the derivation of the hydrogeological dataset for the crystalline basement of Northern Switzerland. (author) figs., tabs., refs

  18. Development of hydrogeological modelling tools based on NAMMU

    Energy Technology Data Exchange (ETDEWEB)

    Marsic, N. [Kemakta Konsult AB, Stockholm (Sweden); Hartley, L.; Jackson, P.; Poole, M. [AEA Technology, Harwell (United Kingdom); Morvik, A. [Bergen Software Services International AS, Bergen (Norway)

    2001-09-01

    A number of relatively sophisticated hydrogeological models were developed within the SR 97 project to handle issues such as nesting of scales and the effects of salinity. However, these issues and others are considered of significant importance and generality to warrant further development of the hydrogeological methodology. Several such developments based on the NAMMU package are reported here: - Embedded grid: nesting of the regional- and site-scale models within the same numerical model has given greater consistency in the structural model representation and in the flow between scales. Since there is a continuous representation of the regional- and site-scales the modelling of pathways from the repository no longer has to be contained wholly by the site-scale region. This allows greater choice in the size of the site-scale. - Implicit Fracture Zones (IFZ): this method of incorporating the structural model is very efficient and allows changes to either the mesh or fracture zones to be implemented quickly. It also supports great flexibility in the properties of the structures and rock mass. - Stochastic fractures: new functionality has been added to IFZ to allow arbitrary combinations of stochastic or deterministic fracture zones with the rock-mass. Whether a fracture zone is modelled deterministically or stochastically its statistical properties can be defined independently. - Stochastic modelling: efficient methods for Monte-Carlo simulation of stochastic permeability fields have been implemented and tested on SKB's computers. - Visualisation: the visualisation tool Avizier for NAMMU has been enhanced such that it is efficient for checking models and presentation. - PROPER interface: NAMMU outputs pathlines in PROPER format so that it can be included in PA workflow. The developed methods are illustrated by application to stochastic nested modelling of the Beberg site using data from SR 97. The model properties were in accordance with the regional- and site

  19. Development of hydrogeological modelling tools based on NAMMU

    International Nuclear Information System (INIS)

    Marsic, N.; Hartley, L.; Jackson, P.; Poole, M.; Morvik, A.

    2001-09-01

    A number of relatively sophisticated hydrogeological models were developed within the SR 97 project to handle issues such as nesting of scales and the effects of salinity. However, these issues and others are considered of significant importance and generality to warrant further development of the hydrogeological methodology. Several such developments based on the NAMMU package are reported here: - Embedded grid: nesting of the regional- and site-scale models within the same numerical model has given greater consistency in the structural model representation and in the flow between scales. Since there is a continuous representation of the regional- and site-scales the modelling of pathways from the repository no longer has to be contained wholly by the site-scale region. This allows greater choice in the size of the site-scale. - Implicit Fracture Zones (IFZ): this method of incorporating the structural model is very efficient and allows changes to either the mesh or fracture zones to be implemented quickly. It also supports great flexibility in the properties of the structures and rock mass. - Stochastic fractures: new functionality has been added to IFZ to allow arbitrary combinations of stochastic or deterministic fracture zones with the rock-mass. Whether a fracture zone is modelled deterministically or stochastically its statistical properties can be defined independently. - Stochastic modelling: efficient methods for Monte-Carlo simulation of stochastic permeability fields have been implemented and tested on SKB's computers. - Visualisation: the visualisation tool Avizier for NAMMU has been enhanced such that it is efficient for checking models and presentation. - PROPER interface: NAMMU outputs pathlines in PROPER format so that it can be included in PA workflow. The developed methods are illustrated by application to stochastic nested modelling of the Beberg site using data from SR 97. The model properties were in accordance with the regional- and site

  20. Bathymetric preference of four major genera of rectilinear benthic foraminifera within oxygen minimum zone in Arabian Sea off central west coast of India.

    Digital Repository Service at National Institute of Oceanography (India)

    Mazumder, A.; Nigam, R.

    species, including two species of Bolivina and a single species of Uvigerina, with the bathymetrical variation from the northern Gulf of Mexico. But there is no attempt to correlate the total population of any important genus of rectilinear foraminifera...–900. Malakoff D 1998 Death by suffocation in the Gulf of Mexico; Science 281 190–192. Mallon J, Glock N and Scho¨nfeld J 2012 The response of benthic foraminifera to low-oxygen conditions of the Peruvian oxygen minimum zone; In: ANOXIA: Evidence for eukaryote...

  1. Hydrogeological characterization, modelling and monitoring of the site of Canada's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Davison, C.C.; Guvanasen, V.

    1985-01-01

    Atomic Energy of Canada Limited (AECL) is constructing an Underground Research Laboratory (URL) to a depth of 250 m in a previously undisturbed granitic pluton located near Lac du Bonnet, Manitoba, as one of the major research projects within the Canadian Nuclear Fuel Waste Management Program. This paper discusses the hydrogeological characterization of the URL site, the modelling approach used to represent this information, the hydrogeological monitoring system installed to monitor the actual drawdown conditions that develop in response to the excavation, and the procedures employed to calibrate the numerical model. Comparisons between the drawdown predictions made by the model prior to any excavation and the actual drawdowns that have been measured since shaft excavation began in May 1984 are also discussed

  2. Cities at risk: status of Italian planning system in reducing seismic and hydrogeological risks

    Directory of Open Access Journals (Sweden)

    Grazia Di Giovanni

    2016-03-01

    Full Text Available Italy and its urban systems are under high seismic and hydrogeological risks. The awareness about the role of human activities in the genesis of disasters is achieved in the scientific debate, as well as the role of urban and regional planning in reducing risks. The paper reviews the state of Italian major cities referred to hydrogeological and seismic risk by: 1 extrapolating data and maps about seismic hazard and landslide risk concerning cities with more than 50.000 inhabitants and metropolitan contexts, and 2 outlining how risk reduction is framed in Italian planning system (at national and regional levels. The analyses of available data and the review of the normative framework highlight the existing gaps in addressing risk reduction: nevertheless a wide knowledge about natural risks afflicting Italian territory and an articulated regulatory framework, the available data about risks are not exhaustive, and risk reduction policies and multidisciplinary pro-active approaches are only partially fostered and applied.

  3. Reconnaissance hydrogeologic investigation of the Defense Waste Processing Facility and Vicinity, Savannah River Plant, South Carolina

    International Nuclear Information System (INIS)

    Dennehy, K.F.; Prowell, D.C.; McMahon, P.B.

    1989-01-01

    The purposes of this report are two-fold: (1) to define the hydrogeologic conditions in the vicinity of the defense waste processing facility (DWPF) and, (2) to evaluate the potential for movement of a concentrated salt-solution waste if released at or near the DWPF. These purposes were accomplished by assembling and evaluating existing hydrogeologic data; collecting additional geologic, hydrologic, and water-quality data; developing a local geologic framework; developing a conceptual model of the local ground-water flow system; and by performing laboratory experiments to determine the mobility of salt-solution waste in surface and near-surface sediments. Although the unconsolidated sediments are about 1000 ft thick in the study area, only the Tertiary age sediments, or upper 300 ft are discussed in this report. The top of the Ellenton Formation acts as the major confining unit between the overlying aquifers in Tertiary sediments and the underlying aquifers in Cretaceous sediments; therefore, the Ellenton Formation is the vertical limit of our hydrogeologic investigation. The majority of the hydrologic data for this study come from monitoring wells at the saltstone disposal site (SDS) in Z Area (fig. 3). No recent water-level data were collected in S Area owing to the removal of S Area monitoring wells prior to construction at the DWPF. 46 refs., 26 figs., 7 tabs

  4. Hydrogeological characterization of Itataia mine, Ceara, Brazil

    International Nuclear Information System (INIS)

    Silva, Jose Roberto de Alcantara e

    2003-01-01

    This work analyzes the geological-geotechnical-geophysical behavior, aiming to define the characteristics of a karstic-fissural aquifer in the mid-northern region of the State of Ceara, named as Itataia Phosphor-Uranium Deposit. This area is constituted of marbles and gneisses from Itataia Group, which are morphologically located at a higher point to the south and at a lower point to the north, related to Paleoproterozoic Era. Fracture system led to the implantation of two karstic marble phases, being the oldest from Cambrian Period and the most recent from Tertiary/Quaternary Period. Porosity is secondary to fractures, fissures and crushed zones which act as hydraulic channels for groundwater flow. Major geophysics defined conducting lines are controlled by normal fractures and faults in both N70 deg E and N80 deg W directions, and secondarily in both N10 deg E and N30 deg W directions, dipping 70 deg -85 deg into the northern quadrant of the main axes. Fault characteristics are typical of graben and horst patterns. Rocks in the area are distributed into three classes of geotechnical massif: healthy rock, moderately altered and fractured rock, and strongly altered and fractured rock. The latter occurs predominantly in the center of the area, from the soil surface to an average depth of 150 meters. Groundwater flow is characterized by fractures which enlarged by the karstic phenomenon dissolution, and then become closer as deeper they are. This flow may be slower or even discontinue in light of silty-argillaceous alteration material that fill the open fracture gaps. Water level is not lower than 5 m or higher than 90 m, averaging by 30 m ali over the area. The synoptic piezometry map shows a general south-north direction; however in the southwestern portion - the recharge zone - it takes the south direction, while in the southeastern portion it takes the southeast direction. (author)

  5. Geologic framework and hydrogeologic characteristics of the Glen Rose limestone, Camp Stanley Storage Activity, Bexar County, Texas

    Science.gov (United States)

    Clark, Allan K.

    2004-01-01

    The Trinity aquifer is a regional water source in the Hill Country of south-central Texas that supplies water for agriculture, commercial, domestic, and stock purposes. Rocks of the Glen Rose Limestone, which compose the upper zone and upper part of the middle zone of the Trinity aquifer, crop out at the Camp Stanley Storage Activity (CSSA), a U.S. Army weapons and munitions supply, maintenance, and storage facility in northern Bexar County (San Antonio area) (fig. 1). On its northeastern, eastern, and southern boundaries, the CSSA abuts the Camp Bullis Training Site, a U.S. Army field training site for military and Federal government agencies. During 2003, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army, studied the outcropping Glen Rose Limestone at the CSSA and immediately adjacent area (Camp Stanley study area, fig. 1) to identify and map the hydrogeologic subdivisions and faults of the Glen Rose Limestone at the facility. The results of the study are intended to help resource managers improve their understanding of the distribution of porosity and permeability of the outcropping rocks, and thus the conditions for recharge and the potential for contaminants to enter the Glen Rose Limestone. This study followed a similar study done by the USGS at Camp Bullis (Clark, 2003). The purpose of this report is to present the geologic framework and hydrogeologic characteristics of the Glen Rose Limestone in the study area. The hydrogeologic nomenclature follows that introduced by Clark (2003) for the outcropping Glen Rose Limestone at Camp Bullis in which the upper member of the Glen Rose Limestone (hereinafter, upper Glen Rose Limestone), which is coincident with the upper zone of the Trinity aquifer, is divided into five intervals on the basis of observed lithologic and hydrogeologic properties. An outcrop map, two generalized sections, related illustrations, and a table summarize the description of the framework and distribution of characteristics.

  6. Geophysical Characterization of Serpentinite Hosted Hydrogeology at the McLaughlin Natural Reserve, Coast Range Ophiolite

    Science.gov (United States)

    Ortiz, Estefania; Tominaga, Masako; Cardace, Dawn; Schrenk, Matthew O.; Hoehler, Tori M.; Kubo, Michael D.; Rucker, Dale F.

    2018-01-01

    Geophysical remote sensing both on land and at sea has emerged as a powerful approach to characterize in situ water-rock interaction processes in time and space. We conducted 2-D Electrical Resistivity Tomography (ERT) surveys to investigate in situ hydrogeological architecture within the Jurassic age tectonic mélange portion of the Coast Range Ophiolite Microbial Observatory (CROMO) during wet and dry seasons, where water-rock interactive processes are thought to facilitate a subsurface biosphere. Integrating survey tracks traversing two previously drilled wells, QV1,1 and CSW1,1 at the CROMO site with wireline and core data, and the Serpentine Valley site, we successfully documented changes in hydrogeologic properties in the CROMO formation, i.e., lateral and vertical distribution of conductive zones and their temporal behavior that are dependent upon seasonal hydrology. Based on the core-log-ERT integration, we propose a hydrogeological architectural model, in which the formation is composed of three distinct aquifer systems: perched serpentinite aquifer without seasonal dependency (shallow system), well-cemented serpentine confining beds with seasonal dependency (intermediate system), serpentinite aquifer (deep system), and the ultramafic basement that acts as a quasi-aquiclude (below the deep system). The stunning contrast between the seasonality in the surface water availability and groundwater storativity in the formation allowed us to locate zones where serpentinite weathering and possibly deeper serpentinization processes might have taken place. We based our findings primarily on lithological composition and the distribution of the conductive formation, our work highlights the link between serpentinite weathering processes and possible sources of water in time and space.

  7. Bedrock hydrogeology Forsmark. Site descriptive modelling, SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven (SF GeoLogic AB, Taeby (Sweden))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations at two different locations, the Forsmark and Laxemar-Simpevarp areas, with the objective of siting a final repository for spent nuclear fuel according to the KBS-3 concept. Site characterisation should provide all data required for an integrated evaluation of the suitability of the investigated site and an important component in the characterisation work is the development of a hydrogeological model. The hydrogeological model is used by repository engineering to design the underground facility and to develop a repository layout adapted to the site. It also provides input to the safety assessment. Another important use of the hydrogeological model is in the environmental impact assessment. This report presents the understanding of the hydrogeological conditions of the bedrock at Forsmark reached following the completion of the surface-based investigations and provides a summary of the bedrock hydrogeological model and the underlying data supporting its development. It constitutes the main reference on bedrock hydrogeology for the site descriptive model concluding the surface-based investigations at Forsmark, SDM-site, and is intended to describe the hydraulic properties and hydrogeological conditions of the bedrock at the site and to give the information essential for demonstrating understanding

  8. Hydrogeology and water-quality characteristics of the Lower Floridan aquifer in east-central Florida

    Science.gov (United States)

    O'Reilly, Andrew M.; Spechler, Rick M.; McGurk, Brian E.

    2002-01-01

    The hydrogeology and water-quality characteristics of the Lower Floridan aquifer and the relation of the Lower Floridan aquifer to the framework of the Floridan aquifer system were evaluated during a 6-year (1995-2001) study. The study area, a 7,500 square-mile area of east-central Florida, is underlain by three principal hydrogeologic units: the surficial aquifer system, the intermediate confining unit, and the Floridan aquifer system. The Floridan aquifer system, a carbonate-rock aquifer system composed of the Upper Floridan aquifer, a middle semiconfining unit, a middle confining unit, and the Lower Floridan aquifer, is the major source of water supply to east-central Florida. The Upper Floridan aquifer provides much of the water required to meet the current (2002) demand; however, the Lower Floridan aquifer is being used increasingly as a source of freshwater, particularly for municipal needs. For this reason, a better understanding of the aquifer is needed. The Lower Floridan aquifer is present throughout east-central Florida. The aquifer is composed of alternating beds of limestone and dolomite, and is characterized by abundant fractured dolomite zones and solution cavities. The altitude of the top of the Lower Floridan aquifer ranges from less than 600 feet below sea level in the northern part of the study area to more than 1,600 feet below sea level in the southwestern part. Thickness of the unit ranges from about 910 to 1,180 feet. The top of the Lower Floridan aquifer generally is marked by an increase in formation resistivity and by an increase in the occurrence of fractures and solution cavities within the carbonates. Also, a noticeable increase in borehole flow often marks the top of the unit. The bottom of the Lower Floridan aquifer is based on the first occurrence of evaporites. Ground-water in the Lower Floridan aquifer generally moves in a southwest-to-northeast direction across the study area. In September 1998, the altitude of the potentiometric

  9. Hydrogeologic factors to be addressed in disposal guidelines

    International Nuclear Information System (INIS)

    Lafleur, D.W.; Raven, K.G.

    1986-12-01

    This report identifies the physical hydrogeologic factors that should be addressed for performance assessment of a radioactive waste disposal facility in plutonic rock. The hydrogeologic factors include theoretical methods, groundwater flow factors and solute transport parameters. Theoretical methods, including different deterministic and stochastic approaches for evaluating physical hydrogeolgic conditions, are evaluated with respect to data requirements, applications and limitations. Preferred methods for measurement and determination of the identified groundwater flow factors and solute transport parameters are discussed. A recommended set of procedures for reliable hydrogeologic characterization of a plutonic rock mass at both regional and site scales is also presented

  10. Hydrogeology of exogenic epigenic uranium deposits (sedimentary type) in Uzbekistan

    International Nuclear Information System (INIS)

    Irgashev, Yu.I.; Gavrilov, V.A.; Muslimov, B.A.

    1996-01-01

    Common problems of hydrogeology and geotechnology for uranium deposits (sedimentary type) in the Republic of Uzbekistan are discussed in the paper. Hydrogeology includes studies of texture of water-bearing horizons, occurrences of ore bodies in horizons, hydrochemical survey, hydrodynamics and engineering geology. Features of deposits workable by underground leaching are presented. Such terms as 'water-bearing horizon', 'efficiency', 'water-bearing bed' are explained accounting the results of 30 year investigations conducted during prospecting, designing and exploitation of uranium deposits. Stages of hydrogeological survey are listed and features of each of them are described. Importance of geotechnology for a deposit characterization is shown. (author). 6 refs.; 1 fig.; 1 tab

  11. In situ production of 36CI in uranium ore: a hydrogeological assessment tool

    International Nuclear Information System (INIS)

    Cornett, R.J.; Cramer, J.; Andrews, H.R.; Chant, L.A.; Davies, W.; Greiner, B.F.; Imahori, Y.; Koslowsky, V.; McKay, J.; Milton, G.M.; Milton, J.C.D.

    1996-01-01

    In situ neutron activation of 35 Cl within the rock and groundwater of geologic deposits that have elevated concentrations of uranium provides a hydrogeological tracer. We determine the production rate and mobility of 36 Cl in the 1.3-billion-year-old Cigar Lake uranium ore deposit. Accelerator mass spectrometry was used to map the Concentrations of 36 Cl in the ore and in the groundwater that were up to 100 times greater than those encountered in unmineralized portions of the host sandstone aquifer. The residence time of this mobile anion in groundwater within the mineralized zone ranged from 14 to 280 kyr. These residence times are consistent with the hydraulic and geochemical data, suggesting significant control of Cl - and groundwater movement by the clay-rich matrix of the mineralized zone. (author)

  12. Hydrogeological characterization of the Stripa site

    International Nuclear Information System (INIS)

    Gale, J.; Macleod, R.; Welhan, J.; Cole, C.; Vail, L.

    1987-06-01

    This study was initiated in January, 1986, to determine a) if the permeability of the rock mass in the immediate mine area was anisotropic, b) the effective and total fracture porosity distributions based on field and laboratory data and c) the three-dimensional configuration of the groundwater flow system at Stripa in order to properly interpret the hydrogeological, geochemical and isotopic data. The total and flow porosities of single fractures from Stripa were determined in the laboratory using a resin impregnation technique. The three-dimensional numerical model gave mine inflows that were consistent with the measured mine inflows with perturbations extending to at least 3,000 m of depth. (orig./DG)

  13. Hydrogeological reconnaissance study: Dyfi Valley, Wales

    International Nuclear Information System (INIS)

    Glendining, S.J.

    1981-10-01

    This report describes work carried out for the Department of the Environment as part of its research programme into radioactive waste management. It presents an account of a hydrogeological reconnaissance study in the Dyfi Valley area of Central Wales. Initially the purposes of such a study are given and the assumptions used in deriving parameters such as flow volume, path length and transit time in areas of massive fractured rocks are described. Using these assumptions with geological, topographic and hydrometeorological data the potential ranges in properties such as bulk hydraulic conductivity, path lengths, hydraulic gradients and volumes of groundwater flow have been determined. These ranges have been used to estimate solute transport model parameters. The limitations and usefulness of the reconnaissance study in planning research and siting exploratory boreholes in the Dyfi area are discussed. (author)

  14. A compilation of subsurface hydrogeologic data

    International Nuclear Information System (INIS)

    1986-03-01

    This volume contains the storage coefficient, porosity, compressibility and fracture data for the research sites discussed in Volume 1 which have been studied in sufficient detail to allow for analysis. These sites are the following: Stripa Mine, Sweden; Finnsjon, Kamlunge, Fjallveden, Gidea, Svartboberget, Sweden; Olkiluoto, Loviisa, Lavia, Finland; Climax Granite Nevada Test Site; OCRD Room, Colorado School of Mines; Savannah River Plant, Aiken, South Carolina; Oracle, Arizona; Basalt Waste Isolation Project (BWIP), Hanford, Washington; Underground Research Laboratory, AECL, Canada; Atikokan Research Area, AECL; Chalk River Research Area, AECL; Whiteshell Research Area, AECL. Other sources of information have been included where sufficient site specific geologic and hydrogeologic information is provided. The fracture data for the first three of the sites listed above are contained in this volume. The fracture data for the remaining research research sites are discussed in Volume 4

  15. Investigations of the unsaturated zone at two radioactive waste disposal sites in Lithuania.

    Science.gov (United States)

    Skuratovič, Žana; Mažeika, Jonas; Petrošius, Rimantas; Martma, Tõnu

    2016-01-01

    The unsaturated zone is an important part of the water cycle, governed by many hydrological and hydrogeological factors and processes and provide water and nutrients to the terrestrial ecosystem. Besides, the soils of the unsaturated zone are regarded as the first natural barrier to a large extent and are able to limit the spread of contaminants depending on their properties. The unsaturated zone provides a linkage between atmospheric moisture, groundwater, and seepage of groundwater to streams, lakes, or other surface water bodies. The major difference between water flow in saturated and unsaturated soils is that the hydraulic conductivity, which is conventionally assumed to be a constant in saturated soils, is a function of the degree of saturation or matrix suction in the unsaturated soils. In Lithuania, low and intermediate level radioactive wastes generated from medicine, industry and research were accumulated at the Maisiagala radioactive waste repository. Short-lived low and intermediate levels radioactive waste, generated during the operation of the Ignalina Nuclear Power Plant (INPP) and arising after the INPP decommissioning will be disposed of in the near surface repository close to the INPP (Stabatiske site). Extensive data sets of the hydraulic properties and water content attributed to unsaturated zone soil profiles of the two radioactive waste disposal sites have been collected and summarized. Globally widespread radionuclide tritium ((3)H) and stable isotope ratio ((18)O/(16)O and (2)H/(1)H) distribution features were determined in precipitation, unsaturated zone soil moisture profiles and groundwater.

  16. Hydrogeology of Montserrat review and new insights

    Directory of Open Access Journals (Sweden)

    Brioch Hemmings

    2015-03-01

    Full Text Available Study region: The tropical, active volcanic arc island of Montserrat, Lesser Antilles, Caribbean. Study focus: New insights into hydrological recharge distribution, measurements of aquifer permeability, and geological and hydrological field observations from Montserrat are combined with a review of the current understanding of volcanic island hydrology. The aim is to begin to develop a conceptual model for the hydrology of Montserrat, and to inform and stimulate further investigation into the hydrology of volcanic arc islands, by combining a review of the current understanding of essential components of the hydrological system with fresh analysis of existing data, and new observations, data collection and analysis. This study provides new insights into hydrological recharge distribution, measurements of aquifer permeability, and geological and hydrological field observations from Montserrat. New hydrological insights for the region: A new groundwater recharge model predicts whole island recharge of 266 mm/year, between 10% and 20% of annual rainfall. Core scale permeability tests reveal ranges from 10−14 to 10−12 m2 for volcaniclastic rocks with coarse matrix, to a minimum of 10−18 m2 for andesitic lavas and volcaniclastics with fine or altered matrix. Analysis of historical pumping tests on aquifers in reworked, channel and alluvial sediment indicate permeabilities ∼10−10 m2. Springs at elevations between 200 and 400 m above mean sea level on Centre Hills currently discharge over 45 L/s. High discharge require a reasonably laterally continuous low permeability body. Contrasting conceptual models are presented to illustrate two potential hydrogeological scenarios. New field observations also reveal systematic spatial variations in spring water temperature and specific electrical conductivity indicating that meteoric waters supplying the springs are mixed with a deeper groundwater source at some sites. Keywords: Volcanic island

  17. Hydrogeological characterization of peculiar Apenninic springs

    Science.gov (United States)

    Cervi, F.; Marcaccio, M.; Petronici, F.; Borgatti, L.

    2014-09-01

    In the northern Apennines of Italy, springs are quite widespread over the slopes. Due to the outcropping of low-permeability geologic units, they are generally characterized by low-yield capacities and high discharge variability during the hydrologic year. In addition, low-flow periods (discharge lower than 1 Ls-1) reflect rainfall and snowmelt distribution and generally occur in summer seasons. These features strongly condition the management for water-supply purposes, making it particularly complex. The "Mulino delle Vene" springs (420 m a.s.l., Reggio Emilia Province, Italy) are one of the largest in the Apennines for mean annual discharge and dynamic storage and are considered as the main water resource in the area. They flow out from several joints and fractures at the bottom of an arenite rock mass outcrop in the vicinity of the Tresinaro River. To date, these springs have not yet been exploited, as the knowledge about the hydrogeological characteristics of the aquifer and their hydrological behaviour is not fully achieved. This study aims to describe the recharge processes and to define the hydrogeological boundaries of the aquifer. It is based on river and spring discharge monitoring and groundwater balance assessment carried out during the period 2012-2013. Results confirm the effectiveness of the approach, as it allowed the total aliquot of discharge of the springs to be assessed. Moreover, by comparing the observed discharge volume with the one calculated with the groundwater balance, the aquifer has been identified with the arenite slab (mean altitude of 580 m a.s.l.), extended about 5.5 km2 and located 1 km west of the monitored springs.

  18. Capture zone simulation for boreholes located in fractured dykes ...

    African Journals Online (AJOL)

    drinie

    2002-04-02

    Apr 2, 2002 ... models do not account for the capture zone of a draining fracture. In South Africa ... uniform, the pathline distribution under certain hydrogeological settings is ... defined as a mathematical sink line with a finite length. If a pumping ... the impermeable dyke is located at x = - d and the centre of the fracture with ...

  19. Stepwise hydrogeological modeling and groundwater flow analysis on site scale (step 2)

    International Nuclear Information System (INIS)

    Onoe, Hironori; Saegusa, Hiromitsu; Endo, Yoshinobu

    2005-02-01

    One of the main goals of the Mizunami Underground Research Laboratory Project is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment. To achieve this goal, a variety of investigations are being conducted using an iterative approach. In this study, hydrogeological modeling and groundwater flow analyses have been carried out using the data from surface-based investigations at Step 2, in order to synthesize the investigation results, to evaluate the uncertainty of the hydrogeological model, and to specify items for further investigation. The results of this study are summarized as follows: 1) The understanding of groundwater flow is enhanced, and the hydrogeological model has renewed; 2) The importance of faults as major groundwater flow pathways has been demonstrated; 3) The importance of iterative approach as progress of investigations has been demonstrated; 4) Geological and hydraulic characteristics of faults with orientation of NNW, NW and NE were shown to be especially significant; 5) the hydraulic properties of the Lower Sparsely Fractured Domain (LSFD) significantly influence the groundwater flow. The main items specified for further investigations are summarized as follows: 1) Geological and hydraulic characteristics of NNW, NW and NE trending faults; 2) Hydraulic properties of the LSFD; 3) More accuracy upper and lateral boundary conditions of the site scale model. (author)

  20. Scale problems in assessment of hydrogeological parameters of groundwater flow models

    Science.gov (United States)

    Nawalany, Marek; Sinicyn, Grzegorz

    2015-09-01

    An overview is presented of scale problems in groundwater flow, with emphasis on upscaling of hydraulic conductivity, being a brief summary of the conventional upscaling approach with some attention paid to recently emerged approaches. The focus is on essential aspects which may be an advantage in comparison to the occasionally extremely extensive summaries presented in the literature. In the present paper the concept of scale is introduced as an indispensable part of system analysis applied to hydrogeology. The concept is illustrated with a simple hydrogeological system for which definitions of four major ingredients of scale are presented: (i) spatial extent and geometry of hydrogeological system, (ii) spatial continuity and granularity of both natural and man-made objects within the system, (iii) duration of the system and (iv) continuity/granularity of natural and man-related variables of groundwater flow system. Scales used in hydrogeology are categorised into five classes: micro-scale - scale of pores, meso-scale - scale of laboratory sample, macro-scale - scale of typical blocks in numerical models of groundwater flow, local-scale - scale of an aquifer/aquitard and regional-scale - scale of series of aquifers and aquitards. Variables, parameters and groundwater flow equations for the three lowest scales, i.e., pore-scale, sample-scale and (numerical) block-scale, are discussed in detail, with the aim to justify physically deterministic procedures of upscaling from finer to coarser scales (stochastic issues of upscaling are not discussed here). Since the procedure of transition from sample-scale to block-scale is physically well based, it is a good candidate for upscaling block-scale models to local-scale models and likewise for upscaling local-scale models to regional-scale models. Also the latest results in downscaling from block-scale to sample scale are briefly referred to.

  1. Scale problems in assessment of hydrogeological parameters of groundwater flow models

    Directory of Open Access Journals (Sweden)

    Nawalany Marek

    2015-09-01

    Full Text Available An overview is presented of scale problems in groundwater flow, with emphasis on upscaling of hydraulic conductivity, being a brief summary of the conventional upscaling approach with some attention paid to recently emerged approaches. The focus is on essential aspects which may be an advantage in comparison to the occasionally extremely extensive summaries presented in the literature. In the present paper the concept of scale is introduced as an indispensable part of system analysis applied to hydrogeology. The concept is illustrated with a simple hydrogeological system for which definitions of four major ingredients of scale are presented: (i spatial extent and geometry of hydrogeological system, (ii spatial continuity and granularity of both natural and man-made objects within the system, (iii duration of the system and (iv continuity/granularity of natural and man-related variables of groundwater flow system. Scales used in hydrogeology are categorised into five classes: micro-scale – scale of pores, meso-scale – scale of laboratory sample, macro-scale – scale of typical blocks in numerical models of groundwater flow, local-scale – scale of an aquifer/aquitard and regional-scale – scale of series of aquifers and aquitards. Variables, parameters and groundwater flow equations for the three lowest scales, i.e., pore-scale, sample-scale and (numerical block-scale, are discussed in detail, with the aim to justify physically deterministic procedures of upscaling from finer to coarser scales (stochastic issues of upscaling are not discussed here. Since the procedure of transition from sample-scale to block-scale is physically well based, it is a good candidate for upscaling block-scale models to local-scale models and likewise for upscaling local-scale models to regional-scale models. Also the latest results in downscaling from block-scale to sample scale are briefly referred to.

  2. Hydrogeologic framework and groundwater conditions of the Ararat Basin in Armenia

    Science.gov (United States)

    Valder, Joshua F.; Carter, Janet M.; Medler, Colton J.; Thompson, Ryan F.; Anderson, Mark T.

    2018-01-17

    Armenia is a landlocked country located in the mountainous Caucasus region between Asia and Europe. It shares borders with the countries of Georgia on the north, Azerbaijan on the east, Iran on the south, and Turkey and Azerbaijan on the west. The Ararat Basin is a transboundary basin in Armenia and Turkey. The Ararat Basin (or Ararat Valley) is an intermountain depression that contains the Aras River and its tributaries, which also form the border between Armenia and Turkey and divide the basin into northern and southern regions. The Ararat Basin also contains Armenia’s largest agricultural and fish farming zone that is supplied by high-quality water from wells completed in the artesian aquifers that underlie the basin. Groundwater constitutes about 40 percent of all water use, and groundwater provides 96 percent of the water used for drinking purposes in Armenia. Since 2000, groundwater withdrawals and consumption in the Ararat Basin of Armenia have increased because of the growth of aquaculture and other uses. Increased groundwater withdrawals caused decreased springflow, reduced well discharges, falling water levels, and a reduction of the number of flowing artesian wells in the southern part of Ararat Basin in Armenia.In 2016, the U.S. Geological Survey and the U.S. Agency for International Development (USAID) began a cooperative study in Armenia to share science and field techniques to increase the country’s capabilities for groundwater study and modeling. The purpose of this report is to describe the hydrogeologic framework and groundwater conditions of the Ararat Basin in Armenia based on data collected in 2016 and previous hydrogeologic studies. The study area includes the Ararat Basin in Armenia. This report was completed through a partnership with USAID/Armenia in the implementation of its Science, Technology, Innovation, and Partnerships effort through the Advanced Science and Partnerships for Integrated Resource Development program and associated

  3. Pesticide residue evaluation in major staple food items of Ethiopia using the QuEChERS method: a case study from the Jimma Zone.

    Science.gov (United States)

    Mekonen, Seblework; Ambelu, Argaw; Spanoghe, Pieter

    2014-06-01

    Samples of maize, teff, red pepper, and coffee (green bean and coffee bean with pulp) were collected from a local market in the Jimma Zone, Ethiopia. Samples were analyzed for the occurrence of cypermethrin, permethrin, deltamethrin, chlorpyrifos ethyl, DTT and its metabolites, and endosulfan (α, β). In the analytical procedure, the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) extraction methodology with dispersive solid phase extraction clean up (d-SPE) technique was applied. Validation of the QuEChERS method was satisfactory. Recovery percentages of most pesticides were in the range of 70% to 120%, with good repeatability (%relative standard deviation coffee bean. Residues of DDT in coffee pulp significantly differed (p < 0.01) from other food items except for red pepper. The concentration of pesticides in the food items varied from 0.011 mg/kg to 1.115 mg/kg. All food items contained 1 or more pesticides. Two-thirds of the samples had residues below corresponding maximum residue limits, and the remaining one-third of samples were above the maximum residue limits. These results indicate the need for a good pesticide monitoring program to evaluate consumer risk for the Ethiopian people. © 2014 SETAC.

  4. Hydrogeological DFN modelling using structural and hydraulic data from KLX04. Preliminary site description Laxemar subarea - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven [SF GeoLogic AB, Taeby (Sweden); Stigsson, Martin [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Svensson, Urban [Computer-aided Fluid Engineering AB, Norrkoeping (Sweden)

    2006-04-15

    SKB is conducting site investigations for a high-level nuclear waste repository in fractured crystalline rocks at two coastal areas in Sweden. The two candidate areas are named Forsmark and Simpevarp. The site characterisation work is divided into two phases, an initial site investigation phase (ISI) and a complete site investigation phase (CSI). The results of the ISI phase are used as a basis for deciding on the subsequent CSI phase. On the basis of the CSI investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft). An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model which provides the geometrical context in terms of a model of deformation zones and the less fractured rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other disciplines (surface ecosystems, hydrogeology, hydrogeochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models. The main objective of this study is to support the development of a hydrogeological DFN model (Discrete Fracture Network) for the Preliminary Site Description of the Laxemar area on a regional-scale (SDM version L1.2). A more specific objective of this study is to assess the propagation of uncertainties in the geological DFN modelling reported for L1.2 into the groundwater flow modelling. An improved understanding is necessary in order to gain credibility for the Site Description in general and the hydrogeological description in particular. The latter will serve as a basis for describing the present

  5. Hydrogeological DFN modelling using structural and hydraulic data from KLX04. Preliminary site description Laxemar subarea - version 1.2

    International Nuclear Information System (INIS)

    Follin, Sven; Stigsson, Martin; Svensson, Urban

    2006-04-01

    SKB is conducting site investigations for a high-level nuclear waste repository in fractured crystalline rocks at two coastal areas in Sweden. The two candidate areas are named Forsmark and Simpevarp. The site characterisation work is divided into two phases, an initial site investigation phase (ISI) and a complete site investigation phase (CSI). The results of the ISI phase are used as a basis for deciding on the subsequent CSI phase. On the basis of the CSI investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft). An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model which provides the geometrical context in terms of a model of deformation zones and the less fractured rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other disciplines (surface ecosystems, hydrogeology, hydrogeochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models. The main objective of this study is to support the development of a hydrogeological DFN model (Discrete Fracture Network) for the Preliminary Site Description of the Laxemar area on a regional-scale (SDM version L1.2). A more specific objective of this study is to assess the propagation of uncertainties in the geological DFN modelling reported for L1.2 into the groundwater flow modelling. An improved understanding is necessary in order to gain credibility for the Site Description in general and the hydrogeological description in particular. The latter will serve as a basis for describing the present

  6. Hydrogeologic framework and salinity distribution of the Floridan aquifer system of Broward County, Florida

    Science.gov (United States)

    Reese, Ronald S.; Cunningham, Kevin J.

    2014-01-01

    Concerns about water-level decline and seawater intrusion in the surficial Biscayne aquifer, currently the principal source of water supply to Broward County, prompted a study to refine the hydrogeologic framework of the underlying Floridan aquifer system to evaluate its potential as an alternative source of supply. This report presents cross sections that illustrate the stratigraphy and hydrogeology in eastern Broward County; maps of the upper surfaces and thicknesses of several geologic formations or units within the Floridan aquifer system; and maps of two of the potentially productive water-bearing zones within the system, the Upper Floridan aquifer and the Avon Park permeable zone. An analysis of data on rock depositional textures, associated pore networks, and flow zones in the Floridan aquifer system shows that groundwater moves through the system in two ways. These data support a conceptual, dual-porosity model of the system wherein groundwater moves either as concentrated flow in discrete, thin bedding-plane vugs or zones of vuggy megaporosity, or as diffuse flow through rocks with primarily interparticle and moldic-particle porosity. Because considerable exchange of groundwater may occur between the zones of vuggy and matrix-dominated porosity, understanding the distribution of that porosity and flow zone types is important to evaluating the suitability of the several units within the Floridan aquifer system for managing the water through practices such as aquifer storage and recovery (ASR). The salinity of the water in the Floridan aquifer system is highest in the central part of the study area, and lower toward the north and south. Although salinity generally increases with depth, in the western part of the study area a zone of relatively high saline water is perched above water of lower salinity in the underlying Avon Park permeable zone. Overall, the areas of highest salinity in the aquifer system coincide with those with the lowest estimated

  7. Litho-stratigraphic and Hydrogeological Evaluation of Groundwater ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2015-10-30

    ://www.ajol.info/index.php/jasem http://www.bioline.org.br/ja. Litho-stratigraphic and Hydrogeological Evaluation of Groundwater System in Parts of. Benin Metropolis, Benin City Nigeria: The Key to Groundwater Sustainability.

  8. Surficial geology and hydrogeology of the Town Londonderry, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG08-2 De Simone, D., and Gale, M., 2008,�Surficial geology and hydrogeology of the Town Londonderry, Vermont: Vermont Geological Survey Open-File...

  9. Study of hydrogeological and engineering-geological conditions of deposits

    International Nuclear Information System (INIS)

    1985-01-01

    Methods for hydrogeological and engineering-geological studies are considered as a part of the complex works dUring eXploration of hydrogenic uranium deposits to develop them by Underground ieaching (UL). Problems are enumerated and peculiarities Of hydrogeologic and engipeering-geological works at different stages are outlined (prospeccing - evaluating works, preliminary and detailed survey). Attention is paid to boring and equipment for hydrogeological and engineering - geological boreholes. Testing-filtering works are described, the latter includes: evacuations, fulnesses ( forcings), and tests of fulness-evacuation. The problem on steady-state observations in boreholes and laboratory studies of rocks and underground waters is discussed. Geological and geophysical methods for evaluation of rock and ore filtering properties are presented. Necessity of hydrogeological zonation of deposits as applied to UL is marked

  10. HYDROGEOLOGIC CASE STUDIE(PRESENTATION FOR MNA WORKSHOP)

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  11. Geology and hydrogeology of the Town of Calais, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG2016-1 Springston, G., Kim, J., Gale. M. and Thomas, E., 2016, Geology and hydrogeology of the Town of Calais, Vermont: Vermont Geological Survey...

  12. Drilling methods to keep the hydrogeological parameters of natural aquifer

    International Nuclear Information System (INIS)

    Chen Xiaoqin

    2004-01-01

    In hydrogeological drilling, how to keep the hydrogeological parameters of natural aquifer unchanged is a deeply concerned problem for the technicians, this paper introduces the methods taken by the state-owned 'Red Hill' geological company of Uzbekistan. By the research and contrast of different kinds of flush liquid, the company has found the methods to reduce the negative effects of drilling on the permeability of the vicinal aquifer. (author)

  13. An evaluation of hydrogeologic data of crystalline rock systems

    International Nuclear Information System (INIS)

    Raven, K.G.; Lafleur, D.W.

    1986-12-01

    This report presents a detailed review of hydrogeologic data collected as part of various research programs investigating fractured crystalline rock around the world. Based on the available information describing the test equipment, test methods and analytical techniques, the data have been assessed in terms of their reliability and representativeness, and likely error ranges have been assigned. The data reviewed include both hydrogeologic parameters, such as permeability, storage coefficient components (principally porosity), and fracture characteristic data

  14. Hydrogeology in North America: past and future

    Science.gov (United States)

    Narasimhan, T. N.

    2005-03-01

    This paper is a retrospective on the evolution of hydrogeology in North America over the past two centuries, and a brief speculation of its future. The history of hydrogeology is marked by developments in many different fields such as groundwater hydrology, soil mechanics, soil science, economic geology, petroleum engineering, structural geology, geochemistry, geophysics, marine geology, and more recently, ecology. The field has been enriched by the contributions of distinguished researchers from all these fields. At present, hydrogeology is in transition from a state of discovering new resources and exploiting them efficiently for maximum benefit, to one of judicious management of finite, interconnected resources that are vital for the sustenance of humans and other living things. The future of hydrogeology is likely to be dictated by the subtle balance with which the hydrological, erosional, and nutritional cycles function, and the decision of a technological society to either adapt to the constraints imposed by the balance, or to continue to exploit hydrogeological systems for maximum benefit. Although there is now a trend towards ecological and environmental awareness, human attitudes could change should large parts of the populated world be subjected to the stresses of droughts that last for many decades. Cet article est une rétrospective de l'évolution de l'hydrogéologie en Amérique du Nord sur les deux derniers siècles, et une brève évaluation de son futur. L'histoire de l'hydrogéologie est marquée par le développement de plusieurs techniques de terrain telles, l'hydrologie des eaux souterraines, la mécanique des sols, les sciences du sol, la géologie économique, l' ingénierie pétrolière, la géologie structurale, la géochimie, la géophysique, la géologie marine et plus récemment l'écologie. La science a été enrichie par la contribution de plusieurs chercheurs distingués, provenant de toutes ces branches. A présent, l

  15. Hydrogeology - HYDROGEOL_SETTINGS_IN: Hydrogeologic Terrains and Settings of Indiana (Indiana Geological Survey, 1:100,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — HYDROGEOL_SETTINGS_IN is a polygon shapefile that shows hydrogeologic terrains and settings of Indiana. The methodology of the investigation and definitions of terms...

  16. Hydrogeology of the Salamanca area, Cattaraugus County, New York

    Science.gov (United States)

    Zarriello, Phillip J.

    1987-01-01

    The hydrogeology of a 132-sq mi area centered at Salamanca, NY, is summarized in five maps at 1:24,000 scale. The maps show locations of wells and test holes, surficial geology and geologic sections, water-table surface, soil permeability, and land use. The valley-fill aquifer in the Salamanca area serves approximately 7,000 people through two major distribution systems with an average daily pumpage of 1.2 million gal/day. The aquifer, composed of outwash sand and gravel, averages 60 ft in thickness and overlies as much as 200 ft of lacustrine silt and clay. The aquifer is recharged directly from precipitation and through seepage from streams. Average annual recharge to the aquifer from direct precipitation and infiltration of runoff from adjacent hillsides is estimated to be 13 inches or 0.6 million gal/day/sq mi. The glacial features in the Allegheny valley near Salamanca are associated with Illinoian and Wisconsin glaciations. Illinoian features consist of small, isolated exposures of outwash and till emplaced against the valley walls. Wisconsin features deposited during Altonian and Woodfordian Times of the Wisconsin consist mainly of end moraines and valley-train outwash. (USGS)

  17. A discussion on validation of hydrogeological models

    International Nuclear Information System (INIS)

    Carrera, J.; Mousavi, S.F.; Usunoff, E.J.; Sanchez-Vila, X.; Galarza, G.

    1993-01-01

    Groundwater flow and solute transport are often driven by heterogeneities that elude easy identification. It is also difficult to select and describe the physico-chemical processes controlling solute behaviour. As a result, definition of a conceptual model involves numerous assumptions both on the selection of processes and on the representation of their spatial variability. Validating a numerical model by comparing its predictions with actual measurements may not be sufficient for evaluating whether or not it provides a good representation of 'reality'. Predictions will be close to measurements, regardless of model validity, if these are taken from experiments that stress well-calibrated model modes. On the other hand, predictions will be far from measurements when model parameters are very uncertain, even if the model is indeed a very good representation of the real system. Hence, we contend that 'classical' validation of hydrogeological models is not possible. Rather, models should be viewed as theories about the real system. We propose to follow a rigorous modeling approach in which different sources of uncertainty are explicitly recognized. The application of one such approach is illustrated by modeling a laboratory uranium tracer test performed on fresh granite, which was used as Test Case 1b in INTRAVAL. (author)

  18. Hydrogeological modelling for migration of radioactivity

    International Nuclear Information System (INIS)

    Sunny, Faby; Chopra, Manish; Oza, R.B.

    2016-01-01

    The hydrogeological modelling for migration of radionuclides basically involves modelling of groundwater flow and contaminant transport through the groundwater. The water that occurs below the land surface or within the lithosphere is called groundwater. The groundwater constitutes about 4 % of the total water on the earth and about 30 % of freshwater on the earth. Groundwater models describe groundwater flow and contaminant transport processes using mathematical equations that are based on certain simplifying assumptions. These assumptions typically involve the direction of flow, geometry of the aquifer, the heterogeneity or anisotropy of sediments or bedrock within the aquifer, the contaminant transport mechanisms and chemical reactions. Because of the simplifying assumptions and the many uncertainties in the values of data, a model must be viewed as an approximation and not an exact duplication of field conditions. However, these models are useful investigation tool for a number of applications such as prediction of the possible fate and migration of contaminants for risk evaluation; tracking the possible pathway of groundwater contamination; evaluation of design of hydraulic containment and pump-and-treat systems; design of groundwater monitoring networks; evaluation of regional groundwater resources and prediction of the effect of future groundwater withdrawals on groundwater levels

  19. Manual on mathematical models in isotope hydrogeology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    Methodologies based on the use of naturally occurring isotopes are, at present, an integral part of studies being undertaken for water resources assessment and management. Quantitative evaluations based on the temporal and/or spatial distribution of different isotopic species in hydrological systems require conceptual mathematical formulations. Different types of model can be employed depending on the nature of the hydrological system under investigation, the amount and type of data available, and the required accuracy of the parameter to be estimated. This manual provides an overview of the basic concepts of existing modelling approaches, procedures for their application to different hydrological systems, their limitations and data requirements. Guidance in their practical applications, illustrative case studies and information on existing PC software are also included. While the subject matter of isotope transport modelling and improved quantitative evaluations through natural isotopes in water sciences is still at the development stage, this manual summarizes the methodologies available at present, to assist the practitioner in the proper use within the framework of ongoing isotope hydrological field studies. In view of the widespread use of isotope methods in groundwater hydrology, the methodologies covered in the manual are directed towards hydrogeological applications, although most of the conceptual formulations presented would generally be valid. Refs, figs, tabs.

  20. 2101-M Pond hydrogeologic characterization report

    Energy Technology Data Exchange (ETDEWEB)

    Chamness, M.A.; Luttrell, S.P.; Bates, D.J.; Martin, W.J.

    1990-09-01

    This report documents information collected by the Pacific Northwest Laboratory {sup (a)} at the request of Westinghouse Hanford Company. Presented in this report is the interpretation of the hydrogeologic environment at the 2101-M Pond, located in the 200-East Area of the Hanford Site. This information and its accompanying interpretation were derived from sampling and testing activities associated with the installation of four ground-water monitoring wells, in addition to data gathered from several previously existing wells. The new monitoring wells were installed as part of a groundwater monitoring program initiated in 1988. The four new monitoring wells were installed around the 2101-M Pond between May 23 and August 27, 1988. Geologic sampling, aquifer testing, and initial ground-water sampling were performed during the installation of these wells. Laboratory analyses of the sediment samples for particle size, calcium carbonate content, and selected natural and contaminant constituents were performed. A full year of quarterly ground-water sampling and the first statistical analysis of background and downgradient data have also been performed. 112 refs., 49 figs., 18 tabs.

  1. Manual on mathematical models in isotope hydrogeology

    International Nuclear Information System (INIS)

    1996-10-01

    Methodologies based on the use of naturally occurring isotopes are, at present, an integral part of studies being undertaken for water resources assessment and management. Quantitative evaluations based on the temporal and/or spatial distribution of different isotopic species in hydrological systems require conceptual mathematical formulations. Different types of model can be employed depending on the nature of the hydrological system under investigation, the amount and type of data available, and the required accuracy of the parameter to be estimated. This manual provides an overview of the basic concepts of existing modelling approaches, procedures for their application to different hydrological systems, their limitations and data requirements. Guidance in their practical applications, illustrative case studies and information on existing PC software are also included. While the subject matter of isotope transport modelling and improved quantitative evaluations through natural isotopes in water sciences is still at the development stage, this manual summarizes the methodologies available at present, to assist the practitioner in the proper use within the framework of ongoing isotope hydrological field studies. In view of the widespread use of isotope methods in groundwater hydrology, the methodologies covered in the manual are directed towards hydrogeological applications, although most of the conceptual formulations presented would generally be valid. Refs, figs, tabs

  2. Hydrochemistry and origin of principal major elements in the groundwater of the Béchar–Kénadsa basin in arid zone, South-West of Algeria

    Directory of Open Access Journals (Sweden)

    Lachache Salih

    2018-03-01

    Full Text Available Béchar region is located in the southwest of Algeria, characterized by an arid climate with a Saharan tendency. It is subject to an increasing demand for water like all the great agglomerations due to the economic and demographic development. The groundwater of region is deteriorating because of the economic development, and the rapid growth of population. This article is devoted to the study of hydrochemistry and processes of mineralization of groundwater in this region. The results of physicochemicals analyses shows the same chemical facies of the chloride and sulphate-calcium and magnesium type, with high mineralization from North-East to South-West to the outlet of Béchar–Kénadsa basin. The determination of the mineralization origin and the main major elements were approached by multivariate statistical treatment and geochemical. This method has identified the main chemical phenomena involved in the acquisition of mineralization of water in this aquifer. These phenomena are mainly related to the dissolution of evaporite formations, the infiltration of runoff water and direct ion exchange and mixing. However, the high mineralization anomaly is observed at the centre of Béchar–Kénadsa basin progressively by going to the outlet of this basin.

  3. Emergency planning and the Control of Major Accident Hazards (COMAH/Seveso II) Directive: An approach to determine the public safety zone for toxic cloud releases

    International Nuclear Information System (INIS)

    O'Mahony, Mary T.; Doolan, Donal; O'Sullivan, Alice; Hession, Michael

    2008-01-01

    The EU Control of Major Accidents Hazards Directive (Seveso II) requires an external emergency plan for each top tier site. This paper sets out a method to build the protection of public health into emergency planning for Seveso sites in the EU. The method involves the review of Seveso site details prescribed under the directive. The site safety report sets out the potential accident scenarios. The safety report's worst-case scenario, and chemical involved, is used as the basis for the external emergency plan. A decision was needed on the appropriate threshold value to use as the level of concern to protect public health. The definitions of the regulatory standards (air quality standards and occupational standards) in use were studied, how they are derived and for what purpose. The 10 min acute exposure guideline level (AEGL) for a chemical is recommended as the threshold value to inform decisions taken to protect public health from toxic cloud releases. The area delimited by AEGL 1 defines the population who may be concerned about being exposed. They need information based on comprehensive risk assessment. The area delimited by AEGL 2 defines the population for long-term surveillance when indicated and may include first responders. The area delimited by AEGL 3 defines the population who may present acutely to the medical services. It ensures that the emergency responders site themselves safely. A standard methodology facilitates discussions with plant operators and concerned public. Examples show how the methodology can be adapted to suit explosive risk and response to fire

  4. Regional air pollution caused by a simultaneous destruction of major industrial sources in a war zone. The case of April Serbia in 1999

    Science.gov (United States)

    Vukmirović, Zorka B.; Unkašević, Miroslava; Lazić, Lazar; Tošić, Ivana

    During NATO's 78-day Kosovo war, 24 March-10 June 1999, almost daily attacks on major industrial sources have caused numerous industrial accidents in Serbia. These accidents resulted in releases of many hazardous chemical substances including the persistent organic pollutants (POPs). Detection of some important POPs in fine aerosol form took place at Xanthi in Greece and reported to the scientific world. The paper focuses on two pollution episodes: (a) 6-8 April; and (b) 18-20 April. Using the Eta model trajectory analysis, the regional pollutant transport from industrial sites in Northern Serbia (Novi Sad) and in the Belgrade vicinity (Pančevo), respectively, almost simultaneously bombed at midnight between 17 and 18 April, corroborated measurements at Xanthi. At the same time the pollutant puff was picked up at about 3000 m and transported to Bulgaria, Romania, Ukraine, Moldavia and the Black Sea. The low-level trajectories from Pančevo below 1000 m show pollutant transport towards Belgrade area in the first 12 h. The POP washout in central and southern Serbia in the second episode was deemed to have constituted the principal removal mechanism. Maximum POP wet deposition was found in central Serbia and along the 850 hPa trajectory towards south-eastern Serbia and the Bulgarian border.

  5. Regional hydrogeological conceptual model of candidate Beishan area for high level radioactive waste disposal repository

    International Nuclear Information System (INIS)

    Wang Hailong; Guo Yonghai

    2014-01-01

    The numerical modeling of groundwater flow is an important aspect of hydrogeological assessment in siting of a high level radioactive waste disposal repository. Hydrogeological conceptual model is the basic and premise of numerical modeling of groundwater flow. Based on the hydrogeological analysis of candidate Beishan area, surface water system was created by using DEM data and the modeling area is determined. Three-dimensional hydrogeological structure model was created through GMS software. On the basis of analysis and description of boundary condition, flow field, groundwater budget and hydrogeological parameters, hydrogeological conceptual model was set up for the Beishan area. (authors)

  6. Tono regional hydrogeological study project. Annual report 2004

    International Nuclear Information System (INIS)

    Iwatsuki, Teruki; Ota, Kunio; Takeuchi, Shinji; Amano, Kenji; Takeuchi, Ryuji; Saegusa, Hiromitsu; Osawa, Hideaki

    2005-09-01

    Tono Geoscience Center, Japan Nuclear Cycle Development Institute has been conducting a wide range of geoscientific research in order to build firm scientific and technological basis for the research and development of geological disposal. One of the geoscientific research programme is a Regional Hydrogeological Study (RHS) project in the Tono region, central Japan. This report mainly summarizes the results of research in DH-14 and DH-15 boreholes at Toki city and Mizunami city in fiscal year 2004 which were carried out to support and improve the results in fiscal year 2003. The research in the regional scale area shows the reliability of conceptual hydrogeological model and numerical simulation for the evaluation of regional hydrogeology. On the other hand, the geological and geophysical investigation, and borehole investigation during the surface-based investigations in the local scale area provide the pragmatic distribution of hydrogeological structure that may control regional groundwater hydrology. Hydrogeological simulations regarding the geological structure such as fault and hydrogeological property demonstrate the priority of investigation of geological structure for the evaluation of hydrogeology. The fault perpendicular to groundwater flow direction crucially affects on regional hydrology. Such fault is necessary to be investigated by priority. Hydrochemical investigation shows that chemical evolution process in this groundwater illustrated is mixing between groundwaters with different salinities. Principal component analysis and mass balance calculation reveal reliable chemistry of end-member waters for mixing. Regarding methodology development, the strategy and procedure of investigations are summarized based on the results of surface-based investigation. Moreover the multi interval monitoring system for water pressure and temperature has developed and started to monitor the in-situ condition of groundwater. The geology, geological structure, hydraulic

  7. Study on metallogenetic prospect of interlayer oxidation zone sandstone type uranium deposit in Shanganning basin

    International Nuclear Information System (INIS)

    Wang Jinping

    1998-01-01

    As Compared with orogenic zone basin, which the interlayer oxidation zone sandstone type uranium deposits are found, the Shanganning basin a continental platform type basin is distinct either in the geodynamic background and the post-basin hydrogeological evolution or in the appearance of the metallogenetic dynamics-orogenesis. The prediction criteria summarized for interlayer oxidation zone type U-deposits in Middle Asia therefore can not be completely applied in such a basin. Based on analysis of the typical regional geological setting, the hydrogeology of the Meso-Cenozoic cover is studied in detail. Three hydrogeological cycles have been divided, and prospects of uranium deposits have been clarified and the most promising target have been proposed

  8. Evaluate the accuracy of the numerical solution of hydrogeological problems of mass transfer

    Directory of Open Access Journals (Sweden)

    Yevhrashkina G.P.

    2014-12-01

    Full Text Available In the hydrogeological task on quantifying pollution of aquifers the error are starting add up with moment organization of regime observation network as a source of information on the pollution of groundwater in order to evaluate migration options for future prognosis calculations. Optimum element regime observation network should consist of three drill holes on the groundwater flow at equal distances from one another and transversely to the flow of the three drill holes, and at equal distances. If the target of observation drill holes coincides with the stream line on which will then be decided by direct migration task, the error will be minimal. The theoretical basis and results of numerical experiments to assess the accuracy of direct predictive tasks planned migration of groundwater in the area of full water saturation. For the vadose zone, we consider problems of vertical salt transport moisture. All studies were performed by comparing the results of fundamental and approximate solutions in a wide range of characteristics of the processes, which are discussed in relation to ecological and hydrogeological conditions of mining regions on the example of the Western Donbass.

  9. Compilation and analysis of hydrogeological pressure responses to field activities in Olkiluoto during 2006-2009

    Energy Technology Data Exchange (ETDEWEB)

    Vaittinen, T.; Pentti, E. [Poeyry Finland Oy, Vantaa (Finland)

    2013-11-15

    Groundwater flow characteristics provide essential input for the construction and safety assessment of a disposal facility for spent nuclear fuel. On the Olkiluoto site flow connections have been studied in deep drillholes by means of long-term pumping tests, various interference tests, and by interpreting the measured hydraulic heads. This report focuses on the assessment of measured hydraulic heads during 2006-2009. Hydraulic heads have been measured both in open and in packed-off drillholes since 1991. The interpretation of the hydraulic connections is based on observed changes in hydraulic head distribution caused by certain investigation activities on the site. Field activities may increase the head, e.g. drilling, or more typically decrease the head, e.g. flush pumping after drilling, difference flow logging with pumping, and both temporary and currently stable inflows into underground facilities caused by the construction of ONKALO. Processing of the head observations has been developed by determining section-specific corrections for natural fluctuation of the groundwater. The objective of the corrections is to remove natural fluctuation of the groundwater table and sea level, tidal effect, and atmospheric pressure to improve detection of changes in hydraulic head caused by field activities. Time series of observations are compared to schedules of field activities and values for responses are calculated. In addition to temporary responses head drawdown at the end of 2009 is estimated. Analysed responses are mainly related to pumpings from open drillholes and to construction of the access tunnel and the shafts through the hydrogeological HZ19 system until June 2008. Since July 2008 the strongest responses are caused by excavation of the access tunnel and pre-grouting of the shafts through the hydrogeological HZ20 system. Based on the head observations in packed-off drillholes, sub-horizontal hydraulic zones form a layered system at the ONKALO area

  10. Compilation and analysis of hydrogeological pressure responses to field activities in Olkiluoto during 2006-2009

    International Nuclear Information System (INIS)

    Vaittinen, T.; Pentti, E.

    2013-11-01

    Groundwater flow characteristics provide essential input for the construction and safety assessment of a disposal facility for spent nuclear fuel. On the Olkiluoto site flow connections have been studied in deep drillholes by means of long-term pumping tests, various interference tests, and by interpreting the measured hydraulic heads. This report focuses on the assessment of measured hydraulic heads during 2006-2009. Hydraulic heads have been measured both in open and in packed-off drillholes since 1991. The interpretation of the hydraulic connections is based on observed changes in hydraulic head distribution caused by certain investigation activities on the site. Field activities may increase the head, e.g. drilling, or more typically decrease the head, e.g. flush pumping after drilling, difference flow logging with pumping, and both temporary and currently stable inflows into underground facilities caused by the construction of ONKALO. Processing of the head observations has been developed by determining section-specific corrections for natural fluctuation of the groundwater. The objective of the corrections is to remove natural fluctuation of the groundwater table and sea level, tidal effect, and atmospheric pressure to improve detection of changes in hydraulic head caused by field activities. Time series of observations are compared to schedules of field activities and values for responses are calculated. In addition to temporary responses head drawdown at the end of 2009 is estimated. Analysed responses are mainly related to pumpings from open drillholes and to construction of the access tunnel and the shafts through the hydrogeological HZ19 system until June 2008. Since July 2008 the strongest responses are caused by excavation of the access tunnel and pre-grouting of the shafts through the hydrogeological HZ20 system. Based on the head observations in packed-off drillholes, sub-horizontal hydraulic zones form a layered system at the ONKALO area

  11. Characterization of Spatial Variability of Hydrogeologic Properties for Unsaturated Flow in the Fractured Rocks at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Zhou, Quanlin; Bodvarsson, Gudmundur S.; Liu, Hui-Hai; Oldenburg, Curtis M.

    2002-01-01

    The spatial variability of layer-scale hydrogeologic properties of the unsaturated zone (UZ) at Yucca Mountain, Nevada, is investigated using inverse modeling. The thick UZ is grouped into five hydrostratigraphic units and further into 35 hydrogeologic layers. For each layer, lateral variability is represented by the variations in calibrated values of layer-scale properties at different individual deep boreholes. In the calibration model, matrix and fracture properties are calibrated for the one-dimensional vertical column at each individual borehole using the ITOUGH2 code. The objective function is the summation of the weighted misfits between the ambient unsaturated flow (represented by measured state variables: water saturation, water potential, and pneumatic pressure) and the simulated one in the one-dimensional flow system. The objective function also includes the weighted misfits between the calibrated properties and their prior information. Layer-scale state variables and prior rock properties are obtained from their core-scale measurements. Because of limited data, the lateral variability of three most sensitive properties (matrix permeability, matrix of the van Genuchten characterization, and fracture permeability) is calibrated, while all other properties are fixed at their calibrated layer-averaged values. Considerable lateral variability of hydrogeologic properties is obtained. For example, the lateral variability of is two to three orders of magnitude and that of and is one order of magnitude. The effect of lateral variability on site-scale flow and transport will be investigated in a future study

  12. A contribution of gravity and seismic data in understanding the geometry of the Zouaraa - Ouchtata dune (NW Tunisia): Hydrogeological implications

    Science.gov (United States)

    Djebbi, M.; Gabtni, H.

    2018-01-01

    As it is located in a very particular and complex domain within the Tellian fold and thrust belt zone in northwestern Tunisia, the Nefza area has always been challenging. Geological, hydrogeological and geophysical studies were conducted in the region. A multidisciplinary study was performed by combining geological and geophysical techniques. Gravity data processing revealed the continuity of the outcropping series of Argoub Er Romane and Jebel Hamra underneath the dune deposits building a high zone separating the dune of Zouaraa and Ouchtata into two asymmetric basins. It forms a threshold zone that controls the geometry of the dune reservoir in the area. The distribution of the gravity anomaly along the dune of Zouaraa proved the heterogeneity of this dune reservoir. Gravity data modeling for this area confirmed these results and showed a preferential tendency of subsidence to the northwest and thus the thickening of Zouaraa dune sequence as compared to that of Ouchtata.

  13. Flowing with the changing needs of hydrogeology instruction

    Science.gov (United States)

    Gleeson, T.; Allen, D. M.; Ferguson, G.

    2012-01-01

    Hydrogeology is now taught in a broad spectrum of departments and institutions to students with diverse backgrounds. Successful instruction in hydrogeology thus requires a variety of pedagogical approaches depending on desired learning outcomes and the diverse background of students. We review the pedagogical literature in hydrogeology to highlight recent advances and analyze a 2005 survey of 68 hydrogeology instructors. The literature and survey results suggest there are ~15 topics that are considered crucial by most hydrogeologists and >100 other topics that are considered crucial by some hydrogeologists. The crucial topics focus on properties of aquifers and fundamentals of groundwater flow, and should likely be part of all undergraduate hydrogeology courses. Other topics can supplement and support these crucial topics, depending on desired learning outcomes. Classroom settings continue to provide a venue for emphasizing fundamental knowledge. However, recent pedagogical advances are biased towards field and laboratory instruction with a goal of bolstering experiential learning. Field methods build on the fundamentals taught in the classroom and emphasize the collection of data, data uncertainty, and the development of vocational skills. Laboratory and computer-based exercises similarly build on theory, and offer an opportunity for data analysis and integration. The literature suggests curricula at all levels should ideally balance field, laboratory, and classroom pedagogy into an iterative and integrative whole. An integrated approach leads to greater student motivation and advancement of theoretical and vocational knowledge.

  14. HYDROGEOLOGICAL RELATIONS ON KARSTIFIED ISLANDS - VIS ISLAND CASE STUDY

    Directory of Open Access Journals (Sweden)

    Josip Terzić

    2004-12-01

    Full Text Available An approach to the hydrogeological investigations on Adriatic islands is presented on the Island of Vis case study. Infiltration, accumulation and discharge of the groundwater occur in karstified rock mass. Hydrogeological relations are mostly a consequence of the geological setting, because of the complete hydrogeologic barrier in Komiža bay, and relative barrier in the area of karst poljes. Significant research was performed in the 1999 – 2000 period aimed of better understanding of hydrogeological relations. These investigations, as well as reinterpretation of some previously known data, included structural geology, hydrogeology, hydrology and hydrochemistry. Approximate rock mass hydraulic conductivity calculation is also shown, as well as level of its usability in such terrain. Based on all these methods, it is possible to conclude that on the Island of Vis there is no saline water present underneath the entire island. There is only a saline water wedge which is formed on the top of relatively impermeable base rock, some few tens of meters under recent sea level. With such a model, and taking in account the hydrological balance, it is possible to conclude that there is possibility of higher amount of groundwater exploitation then it is today (the paper is published in Croatian.

  15. A comparison of results from groundwater flow modelling for two conceptual hydrogeological models for the Konrad site

    International Nuclear Information System (INIS)

    Arens, G.; Fein, E.; Storck, R.

    1991-01-01

    Radioactive wastes with negligible heat production are planned to be disposed of into a deep iron ore formation at the Konrad site. This repository will be bedded in a low permeable formation called Oxfordian in a depth of 800 - 1300 m below the surface. The host formation is largely covered with clay of a few hundred meters thickness. The hydrogeological model area has an extension of 14 km in the west-east and 47 km in the north-south direction. The geological formations within the model area are disturbed by several fractured zones with a vertical extension of several hundred meters intersecting different horizontal layers. Due to this fact two hydrogeological models have been developed: The first one handles the fractured zones by globally increased permeabilities of the geological formations. The second handles the fractured zones by locally increased permeabilities, leaving the permeabilities of undisturbed areas unchanged. For both models, groundwater flow calculations have been carried out including parameter variations of permeability values. The results of the calculations are presented as flow paths which are compared for both models. Computer code used: SWIFT. 1 fig., 3 tabs., 3 refs

  16. Essential application of depositional analysis and interpretation in hydrogeologic assessments of contaminated sites

    International Nuclear Information System (INIS)

    Sciacca, J.

    1991-01-01

    In most hydrogeologic studies of contaminated sites, little attention is given to analysis of depositional environments and associated depositional patterns. This analysis is essential for sedimentary deposits present at a majority of these sites. The depositional processes associated with alluvial, fluvial and deltaic environments yield heterogeneity ranging from large to small scale. These processes also yield preferential grain orientations in coarse grained units which result in preferential directions of increased permeability. Studies conducted in fluvial and deltaic petroleum reservoirs have shown varying permeabilities resulting from deposition that strongly control the flow of fluids. The marked heterogeneity evident in the sandy portion of a single 3 to 30-foot thick fluvial point bar deposit can exert significant differences in porous flow. Preferential permeability has been shown parallel to the long axis of fluvial channel sand units while barrier beach sands exhibit preferential permeability perpendicular to the long axis of the sand body. Such controls influence natural flow and transport of contaminants in groundwater. Hydrogeologic studies should: determine the depositional environment and facies present at the site; determine the propensity for heterogeneity within the entire vertical sequence investigated and within the different facies present; assess the potential for preferential permeability within sand bodies; and provide a predictive depositional model to assess potential connections between major high permeability units. Sand unit connections are commonly forced during cross section generation and subsequent aquifer analysis. Failure to incorporate the above objectives in hydrogeologic investigations ignores the basic precept that process controls the distribution of permeability and will result in poor prediction of natural and remedial transport of contaminants in groundwater

  17. Modern and Unconventional Approaches to Karst Hydrogeology

    Science.gov (United States)

    Sukop, M. C.

    2017-12-01

    Karst hydrogeology is frequently approached from a hydrograph/statistical perspective where precipitation/recharge inputs are converted to output hydrographs and the conversion process reflects the hydrology of the system. Karst catchments show hydrological response to short-term meteorological events and to long-term variation of large-scale atmospheric circulation. Modern approaches to analysis of these data include, for example, multiresolution wavelet techniques applied to understand relations between karst discharge and climate fields. Much less effort has been directed towards direct simulation of flow fields and transport phenomena in karst settings. This is primarily due to the lack of information on the detailed physical geometry of most karst systems. New mapping, sampling, and modeling techniques are beginning to enable direct simulation of flow and transport. A Conduit Flow Process (CFP) add-on to the USGS ModFlow model became available in 2007. FEFLOW and similar models are able to represent flows in individual conduits. Lattice Boltzmann models have also been applied to flow modeling in karst systems. Regarding quantitative measurement of karst system geometry, at scales to 0.1 m, X-ray computed tomography enables good detection of detailed (sub-millimeter) pore space in karstic rocks. Three-dimensional printing allows reconstruction of fragile high porosity rocks, and surrogate samples generated this way can then be subjected to laboratory testing. Borehole scales can be accessed with high-resolution ( 0.001 m) Digital Optical Borehole Imaging technologies and can provide virtual samples more representative of the true nature of karst aquifers than can obtained from coring. Subsequent extrapolation of such samples can generate three-dimensional models suitable for direct modeling of flow and transport. Finally, new cave mapping techniques are beginning to provide information than can be applied to direct simulation of flow. Due to flow rates and cave

  18. Hydrogeologic framework and selected components of the groundwater budget for the upper Umatilla River Basin, Oregon

    Science.gov (United States)

    Herrera, Nora B.; Ely, Kate; Mehta, Smita; Stonewall, Adam J.; Risley, John C.; Hinkle, Stephen R.; Conlon, Terrence D.

    2017-05-31

    Executive SummaryThis report presents a summary of the hydrogeology of the upper Umatilla River Basin, Oregon, based on characterization of the hydrogeologic framework, horizontal and vertical directions of groundwater flow, trends in groundwater levels, and components of the groundwater budget. The conceptual model of the groundwater flow system integrates available data and information on the groundwater resources of the upper Umatilla River Basin and provides insights regarding key hydrologic processes, such as the interaction between the groundwater and surface water systems and the hydrologic budget.The conceptual groundwater model developed for the study area divides the groundwater flow system into five hydrogeologic units: a sedimentary unit, three Columbia River basalt units, and a basement rock unit. The sedimentary unit, which is not widely used as a source of groundwater in the upper basin, is present primarily in the lowlands and consists of conglomerate, loess, silt and sand deposits, and recent alluvium. The Columbia River Basalt Group is a series of Miocene flood basalts that are present throughout the study area. The basalt is uplifted in the southeastern half of the study area, and either underlies the sedimentary unit, or is exposed at the surface. The interflow zones of the flood basalts are the primary aquifers in the study area. Beneath the flood basalts are basement rocks composed of Paleogene to Pre-Tertiary sedimentary, volcanic, igneous, and metamorphic rocks that are not used as a source of groundwater in the upper Umatilla River Basin.The major components of the groundwater budget in the upper Umatilla River Basin are (1) groundwater recharge, (2) groundwater discharge to surface water and wells, (3) subsurface flow into and out of the basin, and (4) changes in groundwater storage.Recharge from precipitation occurs primarily in the upland areas of the Blue Mountains. Mean annual recharge from infiltration of precipitation for the upper

  19. Groundwater quality in the San Diego Drainages Hydrogeologic Province, California

    Science.gov (United States)

    Wright, Michael T.; Belitz, Kenneth

    2011-01-01

    More than 40 percent of California's drinking water is from groundwater. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The San Diego Drainages Hydrogeologic Province (hereinafter referred to as San Diego) is one of the study units being evaluated. The San Diego study unit is approximately 3,900 square miles and consists of the Temecula Valley, Warner Valley, and 12 other alluvial basins (California Department of Water Resources, 2003). The study unit also consists of all areas outside defined groundwater basins that are within 3 kilometers of a public-supply well. The study unit was separated, based primarily on hydrogeologic settings, into four study areas: Temecula Valley, Warner Valley, Alluvial Basins, and Hard Rock (Wright and others, 2005). The sampling density for the Hard Rock study area, which consists of areas outside of groundwater basins, was much lower than for the other study areas. Consequently, aquifer proportions for the Hard Rock study area are not used to calculate the aquifer proportions shown by the pie charts. An assessment of groundwater quality for the Hard Rock study area can be found in Wright and Belitz, 2011. The temperatures in the coastal part of the study unit are mild with dry summers, moist winters, and an average annual rainfall of about 10 inches. The temperatures in the mountainous eastern part of the study unit are cooler than in the coastal part, with an annual precipitation of about 45 inches that occurs mostly in the winter. The primary aquifers consist of Quaternary-age alluvium and weathered bedrock in the Temecula Valley, Warner Valley, and Alluvial Basins study areas, whereas in the Hard Rock study area the primary aquifers consist mainly of fractured and

  20. Groundwater dynamics in mountain peatlands with contrasting climate, vegetation, and hydrogeological setting

    Science.gov (United States)

    Millar, David J.; Cooper, David J.; Ronayne, Michael J.

    2018-06-01

    Hydrological dynamics act as a primary control on ecosystem function in mountain peatlands, serving as an important regulator of carbon fluxes. In western North America, mountain peatlands exist in different hydrogeological settings, across a range climatic conditions, and vary in floristic composition. The sustainability of these ecosystems, particularly those at the low end of their known elevation range, is susceptible to a changing climate via changes in the water cycle. We conducted a hydrological investigation of two mountain peatlands, with differing vegetation, hydrogeological setting (sloping vs basin), and climate (strong vs weak monsoon influence). Growing season saturated zone water budgets were modeled on a daily basis, and subsurface flow characterizations were performed during multiple field campaigns at each site. The sloping peatland expectedly showed a strong lateral groundwater potential gradient throughout the growing season. Alternatively, the basin peatland had low lateral gradients but more pronounced vertical gradients. A zero-flux plane was apparent at a depth of approximately 50 cm below the peat surface at the basin peatland; shallow groundwater above this depth moved upward towards the surface via evapotranspiration. The differences in groundwater flow dynamics between the two sites also influenced water budgets. Higher groundwater inflow at the sloping peatland offset higher rates of evapotranspiration losses from the saturated zone, which were apparently driven by differences in vegetative cover. This research revealed that although sloping peatlands cover relatively small portions of mountain watersheds, they provide unique settings where vegetation directly utilizes groundwater for transpiration, which were several-fold higher than typically reported for surrounding uplands.

  1. Results of monitoring at Olkiluoto in 2012 - hydrology and hydrogeology

    Energy Technology Data Exchange (ETDEWEB)

    Vaittinen, T.; Ahokas, H.; Komulainen, J.; Nummela, J.; Pentti, E.; Tammisto, E.; Turku, J. [Poeyry Finland Oy, Espoo (Finland); Karvonen, T. [WaterHope, Helsinki (Finland); Aro, S.

    2013-10-15

    The impact of the construction of ONKALO is monitored by measuring and observing numerous different parameters related to hydrology, geochemistry, environment, rock mechanics and foreign materials. The Hydrological Monitoring Programme consists of the following parameters: groundwater level, hydraulic head, flow conditions in open drillholes, transverse flow, hydraulic conductivity, groundwater salinity (in situ EC), precipitation (including snow), sea-water level, surface flow (runoff), infiltration, ground frost, leakages in tunnels, and water balance in the tunnel system and in Korvensuo Reservoir. This Report focuses on hydrogeological parameters. Other parameters, like precipitation, ground frost etc. will be reported in the Monitoring Report of Environment. Updated monitoring program was introduced in the beginning of 2012. The updated program will be used for the period before repository operation. Only minor changes were implemented. Monitoring has been carried out according to plan. This Report presents the results for the year 2012. The access tunnel was excavated from chainage 4913 m to chainage 4987 m in 2012. In addition, demonstration tunnel 2 from chainage 65 m to 101 m and some technical facilities were excavated. Total inflow into ONKALO down to chainage 4580 m including shaft ONK-KU2 down to level -427m was 36 l/min at the end of 2012. The mapping of water leakages and moisture conditions on the tunnel walls and the ceiling has been continued. The general pattern of leakages has remained similar during the construction of ONKALO. Most significant differences are caused by seasonal effects like condensation of warm ventilation air on tunnel walls and ceiling. The changes observed in the groundwater level in shallow observation tubes in the overburden and in shallow drillholes in the bedrock are not necessarily caused by the construction of ONKALO. However, weak indications of a local decrease in groundwater level have been observed. Effects on the

  2. Results of monitoring at Olkiluoto in 2013. Hydrology and hydrogeology

    Energy Technology Data Exchange (ETDEWEB)

    Vaittinen, T.; Ahokas, H.; Komulainen, J.; Nummela, J.; Pentti, E.; Turku, J. [Poeyry Finland Oy, Vantaa (Finland); Karvonen, T. [WaterHope, Helsinki (Finland); Aro, S.

    2014-12-15

    The impact of the construction of ONKALO is monitored by measuring and observing numerous different parameters related to hydrology, geochemistry, environment, rock mechanics and foreign materials. The Hydrological Monitoring Programme consists of the following parameters: groundwater level, hydraulic head, flow conditions in open drillholes, transverse flow, hydraulic conductivity, groundwater salinity (in situ EC), precipitation (including snow), sea-water level, surface flow (runoff), infiltration, ground frost, leakages in tunnels, and water balance in the tunnel system and in Korvensuo Reservoir. This Report focuses on hydrogeological parameters. Other parameters, like precipitation, ground frost etc. will be reported in the Monitoring Report of Environment. Updated monitoring program was introduced in the beginning of 2012. The updated program will be used for the period before repository operation. Only minor changes were implemented. Monitoring has been carried out according to plan. This Report presents the results for the year 2013. Excavation of the access tunnel was completed in 2012. Demonstration tunnels 3 and 4 were excavated and central tunnel 1 was continued from chainage 4366-22 m to chainage 4366-60 m in 2013. Total inflow into ONKALO down to chainage 4580 m including shaft ONK-KU2 down to level -437 m was on average 35 l/min in 2013. The mapping of water leakages and moisture conditions on the tunnel walls and the ceiling has been continued. The general pattern of leakages has remained similar during the construction of ONKALO. Most significant differences are caused by seasonal effects like condensation of warm ventilation air on tunnel walls and ceiling. The changes observed in the groundwater level in observation tubes in the overburden and in shallow drillholes in the bedrock are not necessarily caused by the construction of ONKALO. However, weak indications of a local decrease in groundwater level have been observed. Effects on the head

  3. The availability of hydrogeologic data associated with areas identified by the US Geological Survey as experiencing potentially induced seismicity resulting from subsurface injection

    Science.gov (United States)

    Barnes, Caitlin; Halihan, Todd

    2018-05-01

    A critical need exists for site-specific hydrogeologic data in order to determine potential hazards of induced seismicity and to manage risk. By 2015, the United States Geological Survey (USGS) had identified 17 locations in the USA that are experiencing an increase in seismicity, which may be potentially induced through industrial subsurface injection. These locations span across seven states, which vary in geological setting, industrial exposure and seismic history. Comparing the research across the 17 locations revealed patterns for addressing induced seismicity concerns, despite the differences between geographical locations. Most induced seismicity studies evaluate geologic structure and seismic data from areas experiencing changes in seismic activity levels, but the inherent triggering mechanism is the transmission of hydraulic pressure pulses. This research conducted a systematic review of whether data are available in these locations to generate accurate hydrogeologic predictions, which could aid in managing seismicity. After analyzing peer-reviewed research within the 17 locations, this research confirms a lack of site-specific hydrogeologic data availability for at-risk areas. Commonly, formation geology data are available for these sites, but hydraulic parameters for the seismically active injection and basement zones are not available to researchers conducting peer-reviewed research. Obtaining hydrogeologic data would lead to better risk management for injection areas and provide additional scientific evidential support for determining a potentially induced seismic area.

  4. Meteorological, hydrological and hydrogeological monitoring data and near-surface hydrogeological properties data from Laxemar-Simpevarp. Site descriptive modelling SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Werner, Kent; Oehman, Johan; Holgersson, Bjoern; Roennback, Kristoffer; Marelius, Fredrick

    2008-12-01

    magnitude higher compared to till in other parts of the area. Permeameter tests on till indicate an anisotropic hydraulic conductivity, with an anisotropy ratio (K h /K v ) that may be on the order of 15-30. Joint data evaluations are used to investigate interaction between groundwater in the Quaternary deposits and surface waters. Such evaluation of stream discharges and groundwater levels in the Quaternary deposits in the vicinity of the streams indicate that there is an (unconfined) groundwater level 'threshold' for initiation of discharge, likely related to the local drainage depth (i.e. the depth to the bottom of the stream). Moreover, joint evaluation of lake-water levels and groundwater levels near and below lakes indicates that interaction between lake water and groundwater in the underlying Quaternary deposits is limited to near-shore areas. Conceptually, groundwater flow in the deeper parts of the rock in Laxemar primarily occurs in a connected system of deformation zones, and the associated groundwater discharge takes place at locations where this system connects to zones that outcrop in the valleys. According to joint evaluation of groundwater levels in the Quaternary deposits and point-water heads in percussion and core boreholes, upward hydraulic-head gradients from the rock to the Quaternary deposits primarily prevail in connection to deformation zones in the rock. Hence, the topography in combination with the geometry and the hydrogeological properties of the deformation zones and their contact with the Quaternary deposits are likely important factors for groundwater discharge from rock to Quaternary deposits. At least in a qualitative sense, the interference tests summarised in this study indicate that there exist such hydraulic connections between outcropping deformation zones and Quaternary deposits

  5. Hydrogeological and isotopic studies for selected springs in Sinai Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Hamza, M S; Awad, M A; El-gamal, S A [Atomic Energy Authority, Cairo Egypt and Middle Eastern Regional Radioisotope Center for The Arab Countries, Dokki, 12311, Cairo (Egypt); Hammad, F A [Desert Research Centre, Materia, Cairo, (Egypt)

    1995-10-01

    This paper deals with the hydrogeology and isotopic composition of water samples collected from selected spring in sinai (e.g. Algudierate, Alqusiema, qidis and Isram) in order to identify their genesis, their interaction with the host rocks and mixing trend. Results of isotopic composition have indicated the similarity in the hydrogeologic situation of Ain qidis and Ain-al-gudierate, while Ain Isram has shown a marked difference in its stable isotope and this could be due to evaporation effect. The isotopic and hydrochemical constituents of the studied springs reflect eater of a meteoric origin with a possible contamination from surficial materials (evaporates) and deeper aquifers. 6 figs., 2 tabs.

  6. The geology and hydrogeology of Sellafield: an overview

    International Nuclear Information System (INIS)

    Chaplow, Robert

    1996-01-01

    Nirex is responsible for providing and managing a national facility for solid intermediate-level and low-level radioactive waste. Geological and hydrogeological investigations have been in progress at Sellafield in west Cumbria since 1989 aimed at determining whether or not the site is suitable for such a deep repository. Geological investigations have included the drilling of 20 deep boreholes with over 20 000 metres of drilling, together with almost 2000 line kilometres of seismic surveys and over 8000 line kilometres of airborne geophysical surveys. Hydrogeological testing and groundwater sampling and testing have provided additional information on the ground conditions at the site. (author)

  7. Hydrogeology of Cibola County, New Mexico

    Science.gov (United States)

    Baldwin, J.A.; Rankin, D.R.

    1995-01-01

    The hydrogeology of Cibola County, New Mexico, was evaluated to determine the occurrence, availability, and quality of ground-water resources. Rocks of Precambrian through Quaternary age are present in Cibola County. Most rocks are sedimentary in origin except for Precambrian igneous and metamorphic rocks exposed in the Zuni Uplift and Tertiary and Quaternary basalts in northern and central parts of the county. The most productive aquifers in the county include (youngest to oldest) Quaternary deposits, sandstones in the Mesaverde Group, the Dakota-Zuni-Bluff aquifer, the Westwater Canyon aquifer, the Todilto- Entrada aquifer, sandstone beds in the Chinle Formation, and the San Andres-Glorieta aquifer. Unconsolidated sand, silt, and gravel form a mantle ranging from a few inches to 150 to 200 feet over much of the bedrock in Cibola County. Well yields range from 5 to 1,110 gallons per minute. Dissolved-solids concentrations of ground water range from 200 to more than 5,200 milligrams per liter. Calcium, magnesium, bicarbonate, and sulfate are the predominant ions in ground water in alluvial material. The Mesaverde Group mainly occurs in three areas of the county. Well yields range from less than 1 to 12 gallons per minute. The predominant ions in water from wells in the Mesaverde Group are calcium, sodium, and bicarbonate. The transition from calcium-predominant to sodium-predominant water in the southwestern part of the county likely is a result of ion exchange. Wells completed in the Dakota-Zuni-Bluff aquifer yield from 1 to 30 gallons per minute. Dissolved-solids concentrations range from 220 to 2,000 milligrams per liter in water from 34 wells in the western part of the county. Predominant ions in the ground water include calcium, sodium, sulfate, and bicarbonate. Calcium predominates in areas where the aquifer is exposed at the surface or is overlain with alluvium. Sandstones in the Chinle Formation yield from 10 to 300 gallons per minute to wells in the Grants

  8. Hydrogeological conceptual model for Guarani Aquifer System: A tool for management; Modelo hidrogeologico conceptual del Sistema Acuifero Guarani (SAG): una herramienta para la gestion

    Energy Technology Data Exchange (ETDEWEB)

    Gastmans, D.; Veroslavsky, G.; Kiang Cahng, H.; Caetano-Chang, M. R.; Nogueira Pressinotti, M. M.

    2012-11-01

    The Guarani aquifer system (GAS) extends beneath the territories of Argentina, Brazil, Paraguay and Uruguay and thus represents a typical example of a transboundary aquifer. The GAS is an important source of drinking water for the population living within its area. Because of differences in the legal norms concerning water resources in these four countries, an urgently required legal framework for the shared management of the groundwater is currently being drawn up. Within this context, the conceptual regional hydrogeological model should be used as an important tool to delineate shared actions, particularly in regions where the groundwater flow is transboundary. The GAS is considered to be a continuous aquifer made up of Mesozoic continental clastic sedimentary rocks that occur in the Parana and Chacoparanense sedimentary basins, and is bounded at its base by a Permo-Eotriassic regional unconformity and at the top by lower-Cretaceous basaltic lava. The groundwater flow shows a regional trend from N to S along the main axis of these basins. With regard to the major tectonic structures of these sedimentary basins, various main hydrodynamic domains can be distinguished, such as the Ponta Grossa arch and the Asuncion-Rio Grande dorsal. Regional recharge areas are primarily located in the eastern and northern outcrop areas, whilst the western end of the GAS, the Mato Grosso do Sul, contains zones of local recharge and regional discharge. Transboundary flow is observed in areas confined to the national borders of the four countries. Nevertheless, due to the groundwater residence times in the GAS special management actions are called for to prevent over-exploitation, particularly in the confined zones of the aquifer. (Author)

  9. Expert panel on hydrogeology; report to AECL Research (1992)

    International Nuclear Information System (INIS)

    Domenico, P.A.; Grisak, G.E.; Schwartz, F.W.

    1995-02-01

    In 1992 AECL Research convened a panel of external hydrogeological experts consisting of P.A. Domenico, G.E. Grisak, and F.W. Schwartz, to review AECL's proposed approach to siting a geological repository in the rocks of the Canadian Shield for the safe disposal of Canada's nuclear fuel wastes. In particular the panel was asked to provide its opinion on 1) the soundness of the technical approach developed to characterize the groundwater flow systems for the purpose of selecting a location for a disposal vault, 2) the validity and effectiveness of the geological case study used to demonstrate the performance assessment methodology based on the hydrogeological conditions observed at the Whiteshell Research Area, and 3) the adequacy of the hydrogeological information that AECL proposes to use in its Environmental Impact Statement (EIS) of the disposal concept. This report presents the findings, conclusions and recommendations of the hydrogeology review panel. The report was submitted to AECL Research in 1992 December. (author). 24 refs., 2 tabs., 4 figs

  10. hydrogeological caracterization and modeling of the aquifer of oued ...

    African Journals Online (AJOL)

    K. Baba-Hamed

    1 janv. 2018 ... Journal of Fundamental and Applied Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0. International License. Libraries Resource Directory. We are listed under Research Associations category. HYDROGEOLOGICAL CARACTERIZATION AND MODELING OF THE AQUIFER.

  11. Groundwater availability as constrained by hydrogeology and environmental flows.

    Science.gov (United States)

    Watson, Katelyn A; Mayer, Alex S; Reeves, Howard W

    2014-01-01

    Groundwater pumping from aquifers in hydraulic connection with nearby streams has the potential to cause adverse impacts by decreasing flows to levels below those necessary to maintain aquatic ecosystems. The recent passage of the Great Lakes-St. Lawrence River Basin Water Resources Compact has brought attention to this issue in the Great Lakes region. In particular, the legislation requires the Great Lakes states to enact measures for limiting water withdrawals that can cause adverse ecosystem impacts. This study explores how both hydrogeologic and environmental flow limitations may constrain groundwater availability in the Great Lakes Basin. A methodology for calculating maximum allowable pumping rates is presented. Groundwater availability across the basin may be constrained by a combination of hydrogeologic yield and environmental flow limitations varying over both local and regional scales. The results are sensitive to factors such as pumping time, regional and local hydrogeology, streambed conductance, and streamflow depletion limits. Understanding how these restrictions constrain groundwater usage and which hydrogeologic characteristics and spatial variables have the most influence on potential streamflow depletions has important water resources policy and management implications. © 2013, National Ground Water Association.

  12. International excursion hydrogeology, Slovakia, [September 8 - 15, 1996

    NARCIS (Netherlands)

    Dijksma, R.

    1996-01-01

    This is a report of the hydrogeological excursion to Slovakia, held in the period from September 8 up to September 15, 1996. This report is a compilation of the work of the participating students, parts of the excursion guide and also information, provided by the Slovak excursion guides.

  13. a significant site for hydrogeological investigation in crystalline ...

    Indian Academy of Sciences (India)

    Estimating the hydrogeologic control of fractured aquifers in hard crystalline and metamorphosed rocks is challenging due to complexity in the development of secondary porosity. The present study in the Precambrian metamorphic terrain in and around the Balarampur of Purulia district, West Bengal, India, aims to estimate ...

  14. Hydrogeological investigation programmes: best practice. Proof of evidence

    International Nuclear Information System (INIS)

    Reeves, G.M.

    1996-01-01

    Proof of Evidence by an expert witness is presented in support of the case by Friends of the Earth (FOE) against the proposed construction by UK Nirex Ltd of an underground Rock Characterisation Facility (RCF) at a site in the Sellafield area. The RCF is part of an investigation by Nirex into a suitable site for an underground repository for the disposal of radioactive waste. The objections were raised at a Planning Inquiry in 1995. Drawing on best practice in hydrogeological investigation from case studies of groundwater assessment in the UK and the Canadian nuclear waste disposal programme, the hydrogeological monitoring work undertaken to date at Sellafield is found to be inadequate in both scope and duration. The lack of adequate equilibrium hydrogeological data is significant in its implications for the RCF both in terms of the effects on local water resources and the proposed repository. It is concluded, therefore, that the construction of the RCF should be postponed pending the establishment of the equilibrium hydrogeological regime. (10 figures; 33 references). (UK)

  15. Hydrogeological research at the site of the Asse salt mine

    International Nuclear Information System (INIS)

    Batsche, H.; Rauert, W.; Klarr, K.

    1980-01-01

    In connection with the storage of radioactive wastes in the abandoned Asse salt mine near Brunswick (Federal Republic of Germany), the hydrogeology of the ridge of hills of Asse has been investigated. In order to obtain as detailed information as possible on the hydrogeological conditions, a long-term investigation programme has been set up and many methods of investigation have been used. Hydrogeological boring operations resulted in important scientific findings regarding, for example, the course of the salt table and the main anhydrite which towers up above the salt table into the overlying collapsed rocks. Hydrochemical data showed the hydraulic effect of transverse faults. Isotopic hydrological measurements permitted distinction between the flow behaviour of the groundwater in different aquifers. The origin of the salt springs at the northwest end of the structure can be explained. Some additional pumping and labelling tests are expected to yield quantitative results concerning hydraulic interrelationships recognized to date. The very complex hydrogeological structure of the ridge of hills of Asse is the result of the multiple succession of permeable and impermeable layers on the flanks of the structure, and, furthermore, is possibly due to the fact that in some individual faults groundwater may seep through normally impermeable layers as well as via waterways at the salt table. (author)

  16. Uruguay Hydrogeological map scale 1/1.000.000

    International Nuclear Information System (INIS)

    Heinzen, W.; Carrion, R.; Massa, E.; Pena, S.; Stapff, M.

    2003-06-01

    Between the main items the Uruguayan Hydrogeological map show us: aquifers productivity, geographical references, well information, depth, level, caudal, dry waste, from Hydrologic unit cuaternario differenced, Villa Soriano, Chuy, Raigon, Salto, Cretacico Superior, Tacuarembo, Las Arenas, Del Terciario, Cretacico Superior, Tres Islas, Cerrezuelo, Arapey, Neoproterozoico, Paleoproterozoico. It shows a brief map about Guarani Aquifer

  17. Seawater intrusion in the gravelly confined aquifer of the coastal Pisan Plain (Tuscany): hydrogeological and geochemical investigation to assess causes and consequences

    Science.gov (United States)

    Doveri, M.; Giannecchini, R.; Butteri, M.

    2012-12-01

    The gravelly horizon of the Pisa plain multilayered system is a confined aquifer tapped by a large number of wells. It hosts a very important water resource for drinking, industrial and irrigable uses, but may be affected by seawater intrusion coming from the coastal area; most wells is distributed inland, anyway a significant exploitation along the coastal area is also present to supply farms and tourist services. Previous hydrogeological and geochemical investigations carried out in coastal area stated maximum percentage of seawater in gravelly aquifer of about 7-9% and suggested the presence of two different mechanisms (Doveri et alii, 2010): i) a direct seawater intrusion from the zone where the gravelly aquifer is in contact with the sea floor; ii) a mixing process between freshwater and seawater, the latter deriving from the Arno river-shallow sandy aquifer system. Basing on these results, since January 2012 a new two-year project was financed by the MSRM Regional Park. Major aims are a better definition of such phenomena and their distribution on the territory, and an assessing of the seawater intrusion trend in relation to groundwater exploitation. Eleven piezometers were realised during first semester of 2012, thus improving the measurement network, which is now made up by 40 wells/piezometers distributed on about 60 km^2. Comparing new and previous borehole data a general confinement of the gravelly aquifer is confirmed, excepting in the northern part where the aquifer is in contact with the superficial sandy one. Preliminary field measurement was performed in June 2012, during which water level (WL) and electrical conductivity (EC) data were collected. WLs below the sea-level were observed on most of the studied area, with a minimum value of about -5 m a.s.l. in the inner part of the northern zone, where major exploitation is present. Moreover, a relative minimum of WL (about -2 m a.s.l.) is present near the shoreline in the southern zone. In the latter

  18. Rectangular Schlumberger resistivity arrays for delineating vadose zone clay-lined fractures in shallow tuff

    International Nuclear Information System (INIS)

    Miele, M.; Laymon, D.; Gilkeson, R.; Michelotti, R.

    1996-01-01

    Rectangular Schlumberger arrays can be used for 2-dimensional lateral profiling of apparent resistivity at a unique current electrode separation, hence single depth of penetration. Numerous apparent resistivity measurements are collected moving the potential electrodes (fixed MN spacing) within a rectangle of defined dimensions. The method provides a fast, cost-effective means for the collection of dense resistivity data to provide high-resolution information on subsurface hydrogeologic conditions. Several rectangular Schlumberger resistivity arrays were employed at Los Alamos National Laboratory (LANL) from 1989 through 1995 in an area adjacent to and downhill from an outfall pipe, septic tank, septic drainfield, and sump. Six rectangular arrays with 2 AB spacings were used to delineate lateral low resistivity anomalies that may be related to fractures that contain clay and/or vadose zone water. Duplicate arrays collected over a three year time period exhibited very good data repeatability. The properties of tritium make it an excellent groundwater tracer. Because tritium was present in discharged water from all of the anthropogenic sources in the vicinity it was used for this purpose. One major low resistivity anomaly correlates with relatively high tritium concentrations in the tuff. This was determined from borehole samples collected within and outside of the anomalous zone. The anomaly is interpreted to be due to fractures that contain clay from the soil profile. The clay was deposited in the fractures by aeolian processes and by surface water infiltration. The fractures likely served as a shallow vadose zone groundwater pathway

  19. Hydrogeologic Modeling at the Sylvania Corning FUSRAP Site - 13419

    Energy Technology Data Exchange (ETDEWEB)

    Ewy, Ann [U.S. Army Corps of Engineers, Kansas City District (United States); Heim, Kenneth J. [U.S. Army Corps of Engineers, New England District (United States); McGonigal, Sean T.; Talimcioglu, Nazmi M. [The Louis Berger Group, Inc. (United States)

    2013-07-01

    A comparative groundwater hydrogeologic modeling analysis is presented herein to simulate potential contaminant migration pathways in a sole source aquifer in Nassau County, Long Island, New York. The source of contamination is related to historical operations at the Sylvania Corning Plant ('Site'), a 9.49- acre facility located at 70, 100 and 140 Cantiague Rock Road, Town of Oyster Bay in the westernmost portion of Hicksville, Long Island. The Site had historically been utilized as a nuclear materials manufacturing facility (e.g., cores, slug, and fuel elements) for reactors used in both research and electric power generation in early 1950's until late 1960's. The Site is contaminated with various volatile organic and inorganic compounds, as well as radionuclides. The major contaminants of concern at the Site are tetrachloroethene (PCE), trichloroethene (TCE), nickel, uranium, and thorium. These compounds are present in soil and groundwater underlying the Site and have migrated off-site. The Site is currently being investigated as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). The main objective of the current study is to simulate the complex hydrogeologic features in the region, such as numerous current and historic production well fields; large, localized recharge basins; and, multiple aquifers, and to assess potential contaminant migration pathways originating from the Site. For this purpose, the focus of attention was given to the underlying Magothy formation, which has been impacted by the contaminants of concern. This aquifer provides more than 90% of potable water supply in the region. Nassau and Suffolk Counties jointly developed a three-dimensional regional groundwater flow model to help understand the factors affecting groundwater flow regime in the region, to determine adequate water supply for public consumption, to investigate salt water intrusion in localized areas, to evaluate the impacts of regional

  20. Regional hydrogeological simulations for Forsmark - numerical modelling using CONNECTFLOW. Preliminary site description Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Cox, Ian; Hunter, Fiona; Jackson, Peter; Joyce, Steve; Swift, Ben [Serco Assurance, Risley (United Kingdom); Gylling, Bjoern; Marsic, Niko [Kemakta Konsult AB, Stockholm (Sweden)

    2005-05-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) carries out site investigations in two different candidate areas in Sweden with the objective of describing the in-situ conditions for a bedrock repository for spent nuclear fuel. The site characterisation work is divided into two phases, an initial site investigation phase (IPLU) and a complete site investigation phase (KPLU). The results of IPLU are used as a basis for deciding on a subsequent KPLU phase. On the basis of the KPLU investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft). An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model, which provides the geometrical context in terms of a model of deformation zones and the rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other geo-disciplines (hydrogeology, hydro-geochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models. Here, a numerical model is developed on a regional-scale (hundreds of square kilometres) to understand the zone of influence for groundwater flow that affects the Forsmark area. Transport calculations are then performed by particle tracking from a local-scale release area (a few square kilometres) to identify potential discharge areas for the site and using greater grid resolution. The main objective of this study is to support the development of a preliminary Site Description of the Forsmark area on a regional-scale based on the available data of 30 June 2004 and the previous Site Description. A more specific

  1. Geologic framework and hydrogeologic characteristics in the southern part of the Rancho Diana Natural Area, northern Bexar County, Texas, 2008-10

    Science.gov (United States)

    Clark, Allan K.; Morris, Robert R.

    2011-01-01

    The area designated by the city of San Antonio as the Rancho Diana Natural Area is in northern Bexar County, near San Antonio, Texas. During 2008-10, the U.S. Geological Survey, in cooperation with the city of San Antonio, documented the geologic framework and mapped the hydrogeologic characteristics for the southern part of the Rancho Diana Natural Area. The geologic framework of the study area and its hydrogeologic characteristics were documented using field observations and information from previously published reports. Many of the geologic and hydrogeologic features were found by making field observations through the dense vegetation along gridlines spaced approximately 25 feet apart and documenting the features as they were located. Surface geologic features were identified and hydrogeologic features such as caves, sinkholes, and areas of solutionally enlarged porosity were located using hand-held Global Positioning System units. The location data were used to create a map of the hydrogeologic subdivisions and the location of karst features. The outcrops of the Edwards and Trinity aquifer recharge zones were mapped by using hydrogeologic subdivisions modified from previous reports. All rocks exposed within the study area are of sedimentary origin and Lower Cretaceous in age. The valley floor is formed in the cavernous member of the upper Glen Rose Limestone of the Trinity Group. The hills are composed of the basal nodular member, dolomitic member, Kirschberg evaporite member, and grainstone member of the Kainer Formation of the Edwards Group. Field observations made during this study of the exposed formations and members indicate that the formations and members typically are composed of mudstones, wackestones, packstones, grainstones, and argillaceous limestones, along with marls. The upper Glen Rose Limestone is approximately 410 to 450 feet thick but only the upper 70 feet is exposed in the study area. The Kainer Formation is approximately 255 feet thick in

  2. 3D mapping, hydrodynamics and modelling of the freshwater-brine mixing zone in salt flats similar to the Salar de Atacama (Chile)

    Science.gov (United States)

    Marazuela, M. A.; Vázquez-Suñé, E.; Custodio, E.; Palma, T.; García-Gil, A.; Ayora, C.

    2018-06-01

    Salt flat brines are a major source of minerals and especially lithium. Moreover, valuable wetlands with delicate ecologies are also commonly present at the margins of salt flats. Therefore, the efficient and sustainable exploitation of the brines they contain requires detailed knowledge about the hydrogeology of the system. A critical issue is the freshwater-brine mixing zone, which develops as a result of the mass balance between the recharged freshwater and the evaporating brine. The complex processes occurring in salt flats require a three-dimensional (3D) approach to assess the mixing zone geometry. In this study, a 3D map of the mixing zone in a salt flat is presented, using the Salar de Atacama as an example. This mapping procedure is proposed as the basis of computationally efficient three-dimensional numerical models, provided that the hydraulic heads of freshwater and mixed waters are corrected based on their density variations to convert them into brine heads. After this correction, the locations of lagoons and wetlands that are characteristic of the marginal zones of the salt flats coincide with the regional minimum water (brine) heads. The different morphologies of the mixing zone resulting from this 3D mapping have been interpreted using a two-dimensional (2D) flow and transport numerical model of an idealized cross-section of the mixing zone. The result of the model shows a slope of the mixing zone that is similar to that obtained by 3D mapping and lower than in previous models. To explain this geometry, the 2D model was used to evaluate the effects of heterogeneity in the mixing zone geometry. The higher the permeability of the upper aquifer is, the lower the slope and the shallower the mixing zone become. This occurs because most of the freshwater lateral recharge flows through the upper aquifer due to its much higher transmissivity, thus reducing the freshwater head. The presence of a few meters of highly permeable materials in the upper part of

  3. Hydrogeologic factors in the selection of shallow land burial sites for the disposal of low-level radioactive waste

    Science.gov (United States)

    Fischer, John N.

    1986-01-01

    In the United States, low-level radioactive waste is disposed of by shallow land burial. Commercial low-level radioactive waste has been buried at six sites, and low-level radioactive waste generated by the Federal Government has been buried at nine major and several minor sites. Several existing low-level radioactive waste sites have not provided expected protection of the environment. These shortcomings are related, at least in part, to an inadequate understanding of site hydrogeology at the time the sites were selected. To better understand the natural systems and the effect of hydrogeologic factors on long-term site performance, the U.S. Geological Survey has conducted investigations at five of the six commercial low-level radioactive waste sites and at three Federal sites. These studies, combined with those of other Federal and State agencies, have identified and confirmed important hydrogeologic factors in the effective disposal of low-level radioactive waste by shallow land burial. These factors include precipitation, surface drainage, topography, site stability, geology, thickness of the host soil-rock horizon, soil and sediment permeability, soil and water chemistry, and depth to the water table.

  4. Compilation and analysis of hydrogeological pressure responses to field activities in Olkiluoto during 2010-2012

    Energy Technology Data Exchange (ETDEWEB)

    Pentti, E.; Penttinen, T.; Vaittinen, T. [Poeyry Finland Oy, Vantaa (Finland)

    2014-04-15

    drawdowns are partially caused indirectly by the hydraulic connection along packer section L1 of OL-KR7. Based on the head observations in packed-off drillholes, sub-horizontal hydraulic zones form a layered system at the ONKALO area corresponding to current hydrogeological structure model. The results support the hypothesis of the relation between ductile deformation model and hydrogeological structure model but it cannot be confirmed, because packed-off drillholes are still mostly located at the ONKALO area. (orig.)

  5. 3D hydrogeological model of the Lower Yarmouk Gorge, Jordan Rift Valley

    Science.gov (United States)

    Magri, Fabien; Inbar, Nimrod; Möller, Peter; Raggad, Marwan; Rödiger, Tino; Rosenthal, Eliahu; Shentsis, Izabela; Tzoufka, Kalliopi; Siebert, Christian

    2017-04-01

    The Lower Yarmouk Gorge (LYG) lies on the eastern margin of the lower Jordan Rift Valley (JRV), bounded to the south by the Ajlun and to the north by the Golan Heights. It allows the outflow of the Yarmouk drainage basin and flow into the Jordan River, a few kilometers south of Lake Tiberias. The main aquifer system of the LYG is built mostly of Cretaceous sandstones and carbonates confined by Maastrichtian aquiclude. Fissures allow hydraulic connections between the major water-bearing formations from Quaternary to Upper Cretaceous age. It is supposed that the gorge acts as the mixing zone of two crossing flow pathways: N-S from the Hermon Mountains and from the Ajlun Dome, and E-W from Jebel al Arab Mountain in Syria (also known as Huran Plateau or Yarmouk drainage basin). As a result, several springs can be found within the gorge. These are characterized by widespread temperatures (20 - 60 °C) which indicate that, beside the complex regional flow, also ascending thermal waters control the hydrologic behavior of the LYG. Previous simulations based on a conceptual simplified 3D model (Magri et al., 2016) showed that crossing flow paths result from the coexistence of convection, that can develop for example along NE-SW oriented faults within the gorge or in permeable aquifers below Maastrichtian aquiclude, and additional flow fields that are induced by the N-S topographic gradients. Here we present the first 3D hydrogeological model of the entire LYG that includes structural features based on actual logs and interpreted seismic lines from both Israeli and Jordanian territories. The model distinguishes seven units from upper Eocene to the Lower Triassic, accounting for major aquifers, aquicludes and deep-cutting faults. Recharges are implemented based on the numerical representation developed by Shentsis (1990) that considers relationships between mean annual rain and topographic elevation. The model reveals that topography-driven N-S and E-W flows strongly control

  6. GIS-based model of groundwater occurrence using geological and hydrogeological data in Precambrian Oban Massif southeastern Nigeria

    Science.gov (United States)

    Sikakwe, Gregory Udie

    2018-06-01

    This research modeled geological and hydrogeological controls on groundwater occurrence in Oban Massif and environs southeastern Nigeria. Topographical, hydrogeological, and structural maps, including lithology samples from drilled bores, well completion, and pumping test data in the study area were procured. Collection of coordinates of rock sample locations and structural data on strike and dip of rock exposures was collected. Geological and structural information collected was overlaid on the topographical, hydrogeological and structural map and digitized to produce the geological map of the study area. Thematic map on geological groundwater prospect map of the study was prepared using multicriteria evaluation. Relative weights were assigned to various rock types based on their relative contribution to groundwater occurrence and the map was reclassified using geographic information system (ArcGIS10.1) analysis. Depth ranges of the various lithologic units from drilled boreholes were used to construct lithologic correlation section of the boreholes across the study area using RockWorks16 Program software. Hydrogeological parameters such as storativity, specific capacity, transmissivity, drawdown, pumping rate, static water level, total depth, and well yield were computed from well completion reports and aquifer test. Results shows that the geologic groundwater prospect map was categorized into very good (28.73 m2), good (9.66 m2), moderate (35.08 m2), fair (49.38 m2), and poor (77.63 m2) zones. Aquifer parameters showed ranges such as (specific capacity (1.81-31.16 m2/day/m), transmissivity (0.0033-12 m2/day), storativity (9.4 × 10-3-2.3), drawdown (2.2-17.65 m), pumping rate (0.75-3.57 l/s), static water level (0-20.5 m), and total depth (3.3-61 m). Borehole depths obtained in the basement are shallower than those in the sedimentary area. Aquifer test parameters obtained from boreholes across the study indicate better correspondence with zones identified as

  7. Geological investigations contributing to the hydrogeological conceptual model in the Meuse/Haute-Marne area, Eastern France

    International Nuclear Information System (INIS)

    Rocher, M.; De Hoyos, A.; Hibsch, C.; Viennot, P.

    2010-01-01

    relatively predictable along large correlation profiles, the Oxfordian and Dogger carbonate platform facies show significant lateral variations (respectively, at the km and the 10 km scales). Further new investigations combined fieldwork mapping and seismic reflection analysis. Specific litho-stratigraphic limits were identified in the field using both geo-morphological and/or petrological evidences. Thanks to the low-angle dips, simple 3D surfaces were constructed for each of these limits relying on loose stone mapping and geo-location of the transitions. Where the petrographic changes were quite sharp, and outcropping conditions favourable, this technique locally revealed faults with less than 4 m-vertical offset, below the resolution limit of available seismic profiles. The analysis of selected seismic profiles provided the vertical geometry of the mapped faults. These complementary methods gave consistent results. They improved the knowledge of the structural framework along the southern NNW-SSE striking Gondrecourt fault zone as they pointed out new transverse faults and their right-lateral transform role during the Gondrecourt Graben setting. The WNW-ESE 'en echelon' Poisson fault system, already recognised on the western side of the Gondrecourt Graben, was extended to its eastern side, towards the aquifers recharge area. As a consequence, higher transmissivity values might be considered in the hydrogeological model along these faults. At the metre scale, the porosity values were derived from the stratigraphic facies and fracturing distribution. Statistical analysis on measured minor fractures has been achieved in the Mesozoic limestones outcropping in MHM area. The main trends are the same as for major faults: N040-050 deg. and N130-140 deg.. Minor fracturing is more intense near the regional faults, and locally, the preferential trend is similar to the nearest fault. These results plead for increasing once more the transmissivity values around major faults

  8. Hydrogeology of the rock mass encountered at the 240 level of Canada's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Kozak, E.T.; Davison, C.C.

    1992-09-01

    The rock mass surrounding the 240 level of Canada's Underground Research Laboratory (URL) has been hydrogeologically characterized through observations made in the tunnel and room excavations and from a network of radiating low-dipping boreholes. The 240 level complex sits in a wedge of grey-to-pink granite between two important, low-dipping, hydraulically active fracture zones, known as Fracture Zone 2 (FZ2) and Fracture Zone 2.5 (FZ2.5), a splay of FZ2. There is no apparent seepage into the 240 level room and tunnel network from the surrounding rock mass except from a vertical fracture intersected by the Room 209 tunnel. Extensive hydraulic and geomechanical tests have been conducted in boreholes intersecting the Room 209 vertical fracture, and transmissivities were found to range from 10 -10 to 10 -6 m 2 /s. FZ2 and FZ2.5 occur at the 240 m depth approximately 10 m to the west and 100 m to the south respectively of the 240 level tunnel network. Hydraulic testing within packer-isolated boreholes intersecting these fracture zones showed that transmissivities ranged from 10 -7 to 10 -5 m 2 /s in FZ2, and 10 -9 to 10 -7 m 2 /s in FZ2.5. No naturally-occurring fractures were encountered east of the 240 level complex up to 300 m away. The rock mass to the north of the 240 level is dominated by the Room 209 vertical fracture, which tends to splay with distance and has been intersected 95 m from the Room 209 tunnel. (Author) (50 figs., 5 tabs., 10 refs.)

  9. Preliminary Hydrogeologic Characterization Results from the Wallula Basalt Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    B.P. McGrail; E. C. Sullivan; F. A. Spane; D. H. Bacon; G. Hund; P. D. Thorne; C. J. Thompson; S. P. Reidel; F. S. Colwell

    2009-12-01

    The DOE's Big Sky Regional Carbon Sequestration Partnership has completed drilling the first continental flood basalt sequestration pilot borehole to a total depth (TD) of 4,110 feet on the Boise White Paper Mill property at Wallula, Washington. Site suitability was assessed prior to drilling by the 2007-2008 acquisition, processing and analysis of a four-mile, five-line three component seismic swath, which was processed as a single data-dense line. Analysis of the seismic survey data indicated a composite basalt formation thickness of {approx}8,000 feet and absence of major geologic structures (i.e., faults) along the line imaged by the seismic swath. Drilling of Wallula pilot borehole was initiated on January 13, 2009 and reached TD on April 6, 2009. Based on characterization results obtained during drilling, three basalt breccia zones were identified between the depth interval of 2,716 and 2,910 feet, as being suitable injection reservoir for a subsequent CO2 injection pilot study. The targeted injection reservoir lies stratigraphically below the massive Umtanum Member of the Grande Ronde Basalt, whose flow-interior section possesses regionally recognized low-permeability characteristics. The identified composite injection zone reservoir provides a unique and attractive opportunity to scientifically study the reservoir behavior of three inter-connected reservoir intervals below primary and secondary caprock confining zones. Drill cuttings, wireline geophysical logs, and 31one-inch diameter rotary sidewall cores provided geologic data for characterization of rock properties. XRF analyses of selected rock samples provided geochemical characterizations of the rocks and stratigraphic control for the basalt flows encountered by the Wallula pilot borehole. Based on the geochemical results, the pilot borehole was terminated in the Wapshilla Ridge 1 flow of the Grande Ronde Basalt Formation. Detailed hydrologic test characterizations of 12 basalt interflow

  10. Layout Determining Features, their Influence Zones and Respect Distances at the Olkiluoto Site

    International Nuclear Information System (INIS)

    Pere, T.; Ahokas, H.; Vaittinen, T.; Wikstroem, L.

    2012-12-01

    Fault zones located at the site of an underground nuclear waste repository may pose a risk to the repository by acting as potential hosts for earthquakes during the present day or future stress fields and having the possibility to induce secondary displacements on nearby large fractures, which may damage the nuclear waste canisters, if being intersected by such fractures. The fault zones may additionally provide possible flow routes, important for the transport of radionuclides and the chemical stability of the repository. It is therefore important to identify such structures, defined as layout determining features (LDF), and to assess their influence on the surrounding host rock and to determine respect volumes to the structures, which are avoided in the layout planning in order to mitigate the possible harmful effects to the repository. Fault zones with a trace length of 3 km or more are considered as layout determining features as these can potentially host an earthquake of a magnitude of 5.5 or more and may thus induce secondary displacements larger than 5 cm on nearby fractures, which is held as the current canister damage threshold premise. Fault zones with a size less than 3 km are considered unlikely candidates to induce secondary displacements of 5 cm or larger. In addition to the earthquake potential, hydrogeological zones with high T -value (geometrical mean T ≤ 10 -6 m 2 /s) and large dimensions (at least several hundred metres) are also defined as layout determining features. For each layout determining feature an influence zone is defined, depicting a volume around a fault zone or a hydrogeological zone with increased fracture density and permeability, often also called as damage zones in the scientific literature. Influence zones are therefore considered as mechanically weak and/or transmissive parts of the host rock, which may cause harmful effects to the performance of the repository if intersecting deposition tunnels or deposition holes. In

  11. Hydrogeologic and Hydraulic Characterization of the Surficial Aquifer System, and Origin of High Salinity Groundwater, Palm Beach County, Florida

    Science.gov (United States)

    Reese, Ronald S.; Wacker, Michael A.

    2009-01-01

    Previous studies of the hydrogeology of the surficial aquifer system in Palm Beach County, Florida, have focused mostly on the eastern one-half to one-third of the county in the more densely populated coastal areas. These studies have not placed the hydrogeology in a framework in which stratigraphic units in this complex aquifer system are defined and correlated between wells. Interest in the surficial aquifer system has increased because of population growth, westward expansion of urbanized areas, and increased utilization of surface-water resources in the central and western areas of the county. In 2004, the U.S. Geological Survey, in cooperation with the South Florida Water Management District, initiated an investigation to delineate the hydrogeologic framework of the surficial aquifer system in Palm Beach County, based on a lithostratigraphic framework, and to evaluate hydraulic properties and characteristics of units and permeable zones within this framework. A lithostratigraphic framework was delineated by correlating markers between all wells with data available based primarily on borehole natural gamma-ray geophysical log signatures and secondarily, lithologic characteristics. These correlation markers approximately correspond to important lithostratigraphic unit boundaries. Using the markers as guides to their boundaries, the surficial aquifer system was divided into three main permeable zones or subaquifers, which are designated, from shallowest to deepest, zones 1, 2, and 3. Zone 1 is above the Tamiami Formation in the Anastasia and Fort Thompson Formations. Zone 2 primarily is in the upper part or Pinecrest Sand Member of the Tamiami Formation, and zone 3 is in the Ochopee Limestone Member of the Tamiami Formation or its correlative equivalent. Differences in the lithologic character exist between these three zones, and these differences commonly include differences in the nature of the pore space. Zone 1 attains its greatest thickness (50 feet or more

  12. Site investigation - equipment for geological, geophysical, hydrogeological and hydrochemical characterization

    International Nuclear Information System (INIS)

    Almen, K.E.; Fridh, B.; Johansson, B.E.; Sehlstedt, M.

    1986-11-01

    The investigations are performed within a site investigation program. In total about 60,000 m of cored 56 mm boreholes have been drilled and investigated at eight study sites. A summarized description of the main investigation methods is included. Instruments for geophysical investigations contains equipment for ground measurements as well as for borehole logging. The Geophysical investigations including the borehole radar measurements, are indirect methods for the geological and hydrogeological characterization of the rock formation. Great effort has been laid on the development of hydrogeological instruments for hydraulic tests and groundwater head measurements. In order to obtain hydrochemical investigations with high quality, a complete system for sampling and analysis of ground water has been developed. (orig./PW)

  13. Goal-oriented Site Characterization in Hydrogeological Applications: An Overview

    Science.gov (United States)

    Nowak, W.; de Barros, F.; Rubin, Y.

    2011-12-01

    In this study, we address the importance of goal-oriented site characterization. Given the multiple sources of uncertainty in hydrogeological applications, information needs of modeling, prediction and decision support should be satisfied with efficient and rational field campaigns. In this work, we provide an overview of an optimal sampling design framework based on Bayesian decision theory, statistical parameter inference and Bayesian model averaging. It optimizes the field sampling campaign around decisions on environmental performance metrics (e.g., risk, arrival times, etc.) while accounting for parametric and model uncertainty in the geostatistical characterization, in forcing terms, and measurement error. The appealing aspects of the framework lie on its goal-oriented character and that it is directly linked to the confidence in a specified decision. We illustrate how these concepts could be applied in a human health risk problem where uncertainty from both hydrogeological and health parameters are accounted.

  14. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won [Korea Atomic Energy Institue, Daejeon (Korea, Republic of)

    2012-09-15

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  15. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won

    2012-01-01

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  16. Application of GIS in hydrogeology and engineering geology

    Directory of Open Access Journals (Sweden)

    Lucia Mihalová

    2007-06-01

    Full Text Available Hydrogeology as a specific science discipline has a multi spectral interest focused to officiating sources in drink water and utilization water and also in area aimed for pure mineral water sources. Although engineering geology works exercise with piece of knowledge, geosciences are focused to territorial planning, investment construction and protection environment. Application of GIS in appointed problems purvey possibility quality, quick and high special analysis appointed problems and take advantage all accessible quality and quantity related information of water focused to hydrogeology, as to occurrence varied basement soil, appropriate for building activity, possibly appointed for protection. Solution of this probleme is on first name terms definite interest area, as to adjudication sources focused economic significance state.

  17. Neutron-activation analysis of natural water applied to hydrogeology

    Energy Technology Data Exchange (ETDEWEB)

    Landstroem, O [AB Atomenergi, Stockholm (Sweden); Wenner, C G [Stockholm Univ. (Sweden). Dept. of Quaternary Research

    1965-12-15

    The natural content of elements in water has been utilized to characterize different groundwater supplies and reveal the presence of groundwater streams. A neutron-activation method including chemical group separation techniques has been used for the determination of trace elements. Analyzed water samples from three different places in northern Sweden illustrate the application to common and important hydrogeological problems, such as the quality and capacity of water supplies, the origin and existence of groundwater streams and groundwater exchange with rivers.

  18. Neutron-activation analysis of natural water applied to hydrogeology

    International Nuclear Information System (INIS)

    Landstroem, O.; Wenner, C.G.

    1965-12-01

    The natural content of elements in water has been utilized to characterize different groundwater supplies and reveal the presence of groundwater streams. A neutron-activation method including chemical group separation techniques has been used for the determination of trace elements. Analyzed water samples from three different places in northern Sweden illustrate the application to common and important hydrogeological problems, such as the quality and capacity of water supplies, the origin and existence of groundwater streams and groundwater exchange with rivers

  19. Developing Hydrogeological Site Characterization Strategies based on Human Health Risk

    Science.gov (United States)

    de Barros, F.; Rubin, Y.; Maxwell, R. M.

    2013-12-01

    In order to provide better sustainable groundwater quality management and minimize the impact of contamination in humans, improved understanding and quantification of the interaction between hydrogeological models, geological site information and human health are needed. Considering the joint influence of these components in the overall human health risk assessment and the corresponding sources of uncertainty aid decision makers to better allocate resources in data acquisition campaigns. This is important to (1) achieve remediation goals in a cost-effective manner, (2) protect human health and (3) keep water supplies clean in order to keep with quality standards. Such task is challenging since a full characterization of the subsurface is unfeasible due to financial and technological constraints. In addition, human exposure and physiological response to contamination are subject to uncertainty and variability. Normally, sampling strategies are developed with the goal of reducing uncertainty, but less often they are developed in the context of their impacts on the overall system uncertainty. Therefore, quantifying the impact from each of these components (hydrogeological, behavioral and physiological) in final human health risk prediction can provide guidance for decision makers to best allocate resources towards minimal prediction uncertainty. In this presentation, a multi-component human health risk-based framework is presented which allows decision makers to set priorities through an information entropy-based visualization tool. Results highlight the role of characteristic length-scales characterizing flow and transport in determining data needs within an integrated hydrogeological-health framework. Conditions where uncertainty reduction in human health risk predictions may benefit from better understanding of the health component, as opposed to a more detailed hydrogeological characterization, are also discussed. Finally, results illustrate how different dose

  20. Evaluation of the hydrogeological interconnection between the Salar de Maricunga and the Piedra Pomez basins, Atacama Region, Chile; An isotope and geochemical approach

    International Nuclear Information System (INIS)

    Iriarte, S.; Santibanez, I; Aravena, R

    2001-01-01

    Groundwater is the main water source for the mining industry in the Altiplano of northern Chile. Groundwater also plays a significant role as a water source for lagoons, wetlands and salares, which are important ecosystems for animal life and vegetation communities that exist in this arid region. The rational use and protection of the groundwater resource requires a good understanding of the aquifer systems. One of the key components in the assessment of water resources in Northern Chile, is the hydrogeological interconnection between basins. During the last three years, as part of a major hydrogeological project, Sernageomin has been working in the Altiplano of the Atacama region (Iriarte et al., 1998; Iriarte, 1999; Venegas et al., 2000; Santibanez, in prep.). This study included the evaluation of the geometry and groundwater potential of the aquifers and the chemical characterization of the surface and groundwater. Part of this study has focused on the Salar de Maricunga and the Campo de Piedra Pomez basins, due to an increasing demand for groundwater resources in this area by the mining industry. This paper discusses the use of isotope and geochemical tools that were used to evaluate the hydrogeological interconnection between the Salar de Maricunga and the Piedra Pomez basins. The geological and hydrogeological framework of this work is discussed in detail by Iriarte (1999) (au)

  1. Hydrogeological characterization and surveillance of the Asse site

    International Nuclear Information System (INIS)

    Stempel, C. Von; Brewitz, W.

    1995-01-01

    The Asse salt mine is located about 20 km southeast of Braunschweig in Northern Germany and the testing of radioactive waste disposal took place in the mine during 1967 to 1978. Observations of the hydrogeological conditions have been carried out for 25 years in the covering rock strata above the caprock and at the flanks of the Asse salt anticline. For geological and hydrogeological investigations 27 large diameter boreholes, 19 piezometers and 5 deep boreholes were sunk into the rock formations above the Asse salt anticline and 29 hydrological observation points (mostly measuring weirs) were constructed. Hydraulic conductivities between 10 -4 and 10 -9 m/s, mostly between 10 -5 and 10 -8 m/s were determined in the Triassic formations by pumping tests, the oscillation method and packer-tests. The groundwater recharge rate is between 10 and 20% of the yearly precipitation. Isotopic analyses showed that in the rocks above the Asse salt anticline there are three kinds of groundwater: near-surface precipitation; an intermediate-depth ground water corresponding to near-surface 2H/18O but without tritium from young precipitations; and deep groundwater below 740 m, without any tritium. In the vicinity of the Asse mine, the surface rocks above the Asse salt anticline, shows good conditions as a hydrogeological barrier

  2. Use of a risk-based hydrogeologic model to set remedial goals in a Puget Sound basin watershed

    International Nuclear Information System (INIS)

    Pascoe, G.; Gould, L.; Martin, J.; Riley, M.; Floyd, T.

    1995-01-01

    The Port of Seattle is redeveloping industrial land for a container terminal along the southwest Seattle waterfront. Concrete, asphalt, ballast, and a landfill geomembrane will cover the site and prevent direct contact with surface soils, so remedial goals focused on groundwater contamination from subsurface soils. Groundwater at the site flows along an old stormwater drain, in a filled estuary of a small creek, to Elliott Bay. Remedial goals for a variety of organic chemicals, metals, and TPH in subsurface soils were identified to protect marine receptors in the bay and their consumers. Washington State and federal marine water quality criteria were the starting points in the risk-based model, and corresponding concentrations of chemicals in groundwater were back-calculated through a hydrogeologic model. The hydrogeologic model included a mixing zone component in the bay and dilution/attenuation factors along the groundwater transport pathway that were determined from onsite groundwater and surface water chemical concentrations. A rearranged Summers equation was then applied in a second back-calculation to determine subsurface soil concentrations corresponding to the back calculated groundwater concentrations. The equation was based on calculated aquifer flow rates for the small creek watershed and rates of infiltration through surface materials calculated for each redevelopment soil cover type by the HELP model. Results of the risk-based hydrogeologic back-calculation model indicate that, depending on soil cover type at the site, concentrations in subsurface soils of PCBs from 2 to 1,000 mg/kg and of TPH up to free phase concentration would not result in risks to marine organisms or their consumers in Elliott Bay

  3. Challenges and Solutions for the Integration of Structural and Hydrogeological Understanding of Fracture Systems - Insights from the Olkiluoto Site, Finland

    Science.gov (United States)

    Hartley, L. J.; Aaltonen, I.; Baxter, S. J.; Cottrell, M.; Fox, A. L.; Hoek, J.; Koskinen, L.; Mattila, J.; Mosley, K.; Selroos, J. O.; Suikkanen, J.; Vanhanarkaus, O.; Williams, T. R. N.

    2017-12-01

    A field site at Olkiluoto in SW Finland has undergone extensive investigations as a location for a deep geological repository for spent nuclear fuel, which is expected to become operational in the early 2020s. Characterisation data comes from 58 deep cored drillholes, a wide variety of geophysical investigations, many outcrops, kilometres of underground mapping and testing in the ONKALO research facility, and groundwater pressure monitoring and sampling in both deep and shallow holes. A primary focus is on the properties of natural fractures and brittle fault zones in the low permeability crystalline rocks at Olkiluoto; an understanding of the flow and transport processes in these features are an essential part of assessing long-term safety of the repository. This presentation will illustrate how different types of source data and cross-disciplinary interpretations are integrated to develop conceptual and numerical models of the fracture system. A model of the brittle fault zones developed from geological and geophysical data provides the hydrostructural backbone controlling the most intense fracturing and dynamic conduits for fluids. Models of ductile deformation and lithology form a tectonic framework for the description of fracture heterogeneity in the background rock, revealing correlations between the intensity and orientation of fractures with geological and spatial properties. The sizes of brittle features are found to be best defined on two scales relating to individual fractures and zones. Inferred fracture-specific from flow logging are correlated with fracture geometric and mechanical properties along with in situ stress measurements to create a hydromechanical description of fracture hydraulic properties. The insights and understandings gained from these efforts help define a discrete fracture network (DFN) model for the Olkiluoto site, with hydrogeological characteristics consistent with monitoring data of hydraulic heads and their disturbances to

  4. Modelling of future hydrogeological conditions at SFR

    International Nuclear Information System (INIS)

    Holmen, L.G.; Stigsson, M.

    2001-03-01

    The purpose is to estimate the future groundwater movements at the SFR repository and to produce input to the quantitative safety assessment of the SFR. The future flow pattern of the groundwater is of interest, since components of the waste emplaced in a closed and abandoned repository will dissolve in the groundwater and be transported by the groundwater to the ground surface. The study is based on a system analysis approach. Three-dimensional models were devised of the studied domain. The models include the repository tunnels and the surrounding rock mass with fracture zones. The formal models used for simulation of the groundwater flow are three-dimensional mathematical descriptions of the studied hydraulic system. The studied domain is represented on four scales - regional, local, semi local and detailed - forming four models with different resolutions: regional, local, semi local and detailed models. The local and detailed models include a detailed description of the tunnel system at SFR and of surrounding rock mass and fracture zones. In addition, the detailed model includes description of the different structures that take place inside the deposition tunnels. At the area studied, the shoreline will retreat due to the shore level displacement; this process is included in the models. The studied period starts at 2000 AD and continues until a steady state like situation is reached for the surroundings of the SFR at ca 6000 AD. The models predict that as long as the sea covers the ground above the SFR, the regional groundwater flow as well as the flow in the deposition tunnels are small. However, due to the shore level displacement the shoreline (the sea) will retreat. Because of the retreating shoreline, the general direction of the groundwater flow at SFR will change, from vertical upward to a more horizontal flow; the size of the groundwater flow will be increased as well. The present layout of the SFR includes five deposition tunnels: SILO, BMA, BLA, BTF1

  5. Hydrogeological measurements and modelling of the Down Ampney Fault Research site

    International Nuclear Information System (INIS)

    Brightman, M.A.; Sen, M.A.; Abbott, M.A.W.

    1991-01-01

    The British Geological Survey, in cooperation with ISMES of Italy, is carrying out a research programme into the properties of faults cutting clay formations. The programme has two major aims; firstly, to develop geophysical techniques to locate and measure the geophysical properties of a fault in clay; secondly, to measure the hydrogeological properties of the fault and its effect on the groundwater flow pattern through a sequence of clays and aquifers. Analysis of pulse tests performed in the clays at the Down Ampney Research site gave values of hydraulic conductivity ranging from 5 x 10 -12 to 2 x 10 -8 ms -1 . Numerical modelling of the effects of groundwater abstraction from nearby wells on the site was performed using the finite element code FEMWATER. The results are discussed. (Author)

  6. Geological and hydrogeological investigation in West Malaysia

    Science.gov (United States)

    Ahmad, J. B. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. The broad synoptic view of the images allowed easy identification of circular features and major fault traces in low lying areas. Sedimentary units were delineated in accordance with the prevailing rock types and where applicable the folding characteristics. Igneous units could easily be differentiated by tone, degree of fracturing, texture, and drainage pattern. The larger fold structures, anticlinoriums and synclinoriums, of the younger sediments on the eastern edge of the central belt could also be easily delineated.

  7. Summary of Available Hydrogeologic Data for the Northeast Portion of the Alluvial Aquifer at Louisville, Kentucky

    National Research Council Canada - National Science Library

    Unthank, Michael D; Nelson, Jr., Hugh L

    2006-01-01

    The hydrogeologic characteristics of the unconsolidated glacial outwash sand and gravel deposits that compose the northeast portion of the alluvial aquifer at Louisville, Kentucky, indicate a prolific...

  8. Alligator Rivers Analogue project. Hydrogeological field studies. Final Report - Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S N [Univ of Arizona, Tucson, Arizona (United States). Dept of Hydrology and Water Resources; Marley, R D [D.B. Stephens and Associates Inc., Albuquerque, NM (United States); Norris, J R [Hydro Geo Chem Inc., Tucson, Arizona (United States)

    1993-12-31

    The hydrogeology of the Koongarra site was interpreted primarily from long-term hydrographs, water-level maps, water injection tests, aquifer pumping tests, logs of boreholes, and chemical analyses of groundwater samples. Data have been collected over a 21-year period starting with test-drilling in 1970. The first intensive period of hydrogeologic investigations was from 1978 through 1981 and was related to anticipated exploitation of uranium ore at Koongarra. The second period was from 1986 through 1991 and was related to the international Alligator Rivers Analogue Project under the direction of the Australian Nuclear Science and Technology Organisation. The conclusion which can be drawn from the chemical data is that water moving out of the No. 1 ore deposit is diluted rapidly with recharge from the surface as it migrates down the hydraulic gradient. Most of the groundwater outside of the ore deposit does not originate from the ore deposit, and flow models which assume unmodified stream tubes extending out of the ore deposit in a downgradient direction do not reflect the true system. Water in the ore deposit itself, must come from slow upward seepage through the fault zone. Owing to the fact that this water must be at least hundreds of years old, observed fluctuations of water levels in the deposit must reflect pressure head variations induced by seasonal recharge to the overlying surficial materials. Water level fluctuations do not signify a yearly displacement of water deep in the system. Water in the deeper part of the ore must be almost static compared to obvious rapid groundwater circulation in the area around PH88. Small changes in pH, temperature and specific electrical conductivity during aquifer tests indicate a complex hydraulic system which has a variable response to pumping as a function of time. Low concentration in tritium and Carbon-14 together with high concentrations of dissolved helium in the groundwaters all suggested strongly that semi static

  9. Alligator Rivers Analogue project. Hydrogeological field studies. Final Report - Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.N. [Univ of Arizona, Tucson, Arizona (United States). Dept of Hydrology and Water Resources; Marley, R.D. [D.B. Stephens and Associates Inc., Albuquerque, NM (United States); Norris, J.R. [Hydro Geo Chem Inc., Tucson, Arizona (United States)

    1992-12-31

    The hydrogeology of the Koongarra site was interpreted primarily from long-term hydrographs, water-level maps, water injection tests, aquifer pumping tests, logs of boreholes, and chemical analyses of groundwater samples. Data have been collected over a 21-year period starting with test-drilling in 1970. The first intensive period of hydrogeologic investigations was from 1978 through 1981 and was related to anticipated exploitation of uranium ore at Koongarra. The second period was from 1986 through 1991 and was related to the international Alligator Rivers Analogue Project under the direction of the Australian Nuclear Science and Technology Organisation. The conclusion which can be drawn from the chemical data is that water moving out of the No. 1 ore deposit is diluted rapidly with recharge from the surface as it migrates down the hydraulic gradient. Most of the groundwater outside of the ore deposit does not originate from the ore deposit, and flow models which assume unmodified stream tubes extending out of the ore deposit in a downgradient direction do not reflect the true system. Water in the ore deposit itself, must come from slow upward seepage through the fault zone. Owing to the fact that this water must be at least hundreds of years old, observed fluctuations of water levels in the deposit must reflect pressure head variations induced by seasonal recharge to the overlying surficial materials. Water level fluctuations do not signify a yearly displacement of water deep in the system. Water in the deeper part of the ore must be almost static compared to obvious rapid groundwater circulation in the area around PH88. Small changes in pH, temperature and specific electrical conductivity during aquifer tests indicate a complex hydraulic system which has a variable response to pumping as a function of time. Low concentration in tritium and Carbon-14 together with high concentrations of dissolved helium in the groundwaters all suggested strongly that semi static

  10. Calibration of the Site-Scale Saturated Zone Flow Model

    International Nuclear Information System (INIS)

    Zyvoloski, G. A.

    2001-01-01

    The purpose of the flow calibration analysis work is to provide Performance Assessment (PA) with the calibrated site-scale saturated zone (SZ) flow model that will be used to make radionuclide transport calculations. As such, it is one of the most important models developed in the Yucca Mountain project. This model will be a culmination of much of our knowledge of the SZ flow system. The objective of this study is to provide a defensible site-scale SZ flow and transport model that can be used for assessing total system performance. A defensible model would include geologic and hydrologic data that are used to form the hydrogeologic framework model; also, it would include hydrochemical information to infer transport pathways, in-situ permeability measurements, and water level and head measurements. In addition, the model should include information on major model sensitivities. Especially important are those that affect calibration, the direction of transport pathways, and travel times. Finally, if warranted, alternative calibrations representing different conceptual models should be included. To obtain a defensible model, all available data should be used (or at least considered) to obtain a calibrated model. The site-scale SZ model was calibrated using measured and model-generated water levels and hydraulic head data, specific discharge calculations, and flux comparisons along several of the boundaries. Model validity was established by comparing model-generated permeabilities with the permeability data from field and laboratory tests; by comparing fluid pathlines obtained from the SZ flow model with those inferred from hydrochemical data; and by comparing the upward gradient generated with the model with that observed in the field. This analysis is governed by the Office of Civilian Radioactive Waste Management (OCRWM) Analysis and Modeling Report (AMR) Development Plan ''Calibration of the Site-Scale Saturated Zone Flow Model'' (CRWMS M and O 1999a)

  11. Groundwater Capture Zones

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Source water protection areas are delineated for each groundwater-based public water supply system using available geologic and hydrogeologic information to...

  12. Unsaturated Zone and Saturated Zone Transport Properties (U0100)

    Energy Technology Data Exchange (ETDEWEB)

    J. Conca

    2000-12-20

    This Analysis/Model Report (AMR) summarizes transport properties for the lower unsaturated zone hydrogeologic units and the saturated zone at Yucca Mountain and provides a summary of data from the Busted Butte Unsaturated Zone Transport Test (UZTT). The purpose of this report is to summarize the sorption and transport knowledge relevant to flow and transport in the units below Yucca Mountain and to provide backup documentation for the sorption parameters decided upon for each rock type. Because of the complexity of processes such as sorption, and because of the lack of direct data for many conditions that may be relevant for Yucca Mountain, data from systems outside of Yucca Mountain are also included. The data reported in this AMR will be used in Total System Performance Assessment (TSPA) calculations and as general scientific support for various Process Model Reports (PMRs) requiring knowledge of the transport properties of different materials. This report provides, but is not limited to, sorption coefficients and other relevant thermodynamic and transport properties for the radioisotopes of concern, especially neptunium (Np), plutonium (Pu), Uranium (U), technetium (Tc), iodine (I), and selenium (Se). The unsaturated-zone (UZ) transport properties in the vitric Calico Hills (CHv) are discussed, as are colloidal transport data based on the Busted Butte UZTT, the saturated tuff, and alluvium. These values were determined through expert elicitation, direct measurements, and data analysis. The transport parameters include information on interactions of the fractures and matrix. In addition, core matrix permeability data from the Busted Butte UZTT are summarized by both percent alteration and dispersion.

  13. Unsaturated Zone and Saturated Zone Transport Properties (U0100)

    International Nuclear Information System (INIS)

    Conca, J.

    2000-01-01

    This Analysis/Model Report (AMR) summarizes transport properties for the lower unsaturated zone hydrogeologic units and the saturated zone at Yucca Mountain and provides a summary of data from the Busted Butte Unsaturated Zone Transport Test (UZTT). The purpose of this report is to summarize the sorption and transport knowledge relevant to flow and transport in the units below Yucca Mountain and to provide backup documentation for the sorption parameters decided upon for each rock type. Because of the complexity of processes such as sorption, and because of the lack of direct data for many conditions that may be relevant for Yucca Mountain, data from systems outside of Yucca Mountain are also included. The data reported in this AMR will be used in Total System Performance Assessment (TSPA) calculations and as general scientific support for various Process Model Reports (PMRs) requiring knowledge of the transport properties of different materials. This report provides, but is not limited to, sorption coefficients and other relevant thermodynamic and transport properties for the radioisotopes of concern, especially neptunium (Np), plutonium (Pu), Uranium (U), technetium (Tc), iodine (I), and selenium (Se). The unsaturated-zone (UZ) transport properties in the vitric Calico Hills (CHv) are discussed, as are colloidal transport data based on the Busted Butte UZTT, the saturated tuff, and alluvium. These values were determined through expert elicitation, direct measurements, and data analysis. The transport parameters include information on interactions of the fractures and matrix. In addition, core matrix permeability data from the Busted Butte UZTT are summarized by both percent alteration and dispersion

  14. Hydrogeological characterization of the Nador Plio-Quaternary aquifer, Tipaza (Algeria); Caracterizacion hidrogeologica del acuifero pliocuaternario de Nador, Tipaza (Argelia)

    Energy Technology Data Exchange (ETDEWEB)

    Bouderbala, A.; Remini, B.; Pulido-Bosch, A.

    2014-06-01

    This paper focuses on the hydrogeological and hydrochemical knowledge of the Nador Plio-Quaternary aquifer in Tipaza, situated along the Algerian coastline. It includes the identification of the hydrodynamic aquifer, hydrogeological and piezometric characteristics and, finally, an overview of the hydro-geochemistry of the area. We carried out this study between 2008 and 2013, with piezometric and hydrochemical monitoring of 24 wells in the study area. The physicochemical analysis of water shows that 25 % of the wells in the coastal zone have values of electrical conductivity greater than 3000 μS/cm The Mg{sup 2}+/Ca{sup 2}+ ratio is also higher than one and there are sodium chloride facies due to the mix of freshwater with seawater exceeding 10 % in some places. However, the comparison of the salinity of the groundwater during the period 2008-2013 with 1988-2004 indicates that there is a low dilution due to the reduction of pumping in the aquifer after the construction of the Boukourdane dam. There has also been a more rainy period and a possible return flow from irrigation in the area. (Author)

  15. Hydrogeology and hydrologic conditions of the Ozark Plateaus aquifer system

    Science.gov (United States)

    Hays, Phillip D.; Knierim, Katherine J.; Breaker, Brian K.; Westerman, Drew A.; Clark, Brian R.

    2016-11-23

    The hydrogeology and hydrologic characteristics of the Ozark Plateaus aquifer system were characterized as part of ongoing U.S. Geological Survey efforts to assess groundwater availability across the Nation. The need for such a study in the Ozark Plateaus physiographic province (Ozark Plateaus) is highlighted by increasing demand on groundwater resources by the 5.3 million people of the Ozark Plateaus, water-level declines in some areas, and potential impacts of climate change on groundwater availability. The subject study integrates knowledge gained through local investigation within a regional perspective to develop a regional conceptual model of groundwater flow in the Ozark Plateaus aquifer system (Ozark system), a key phase of groundwater availability assessment. The Ozark system extends across much of southern Missouri and northwestern and north-central Arkansas and smaller areas of southeastern Kansas and northeastern Oklahoma. The region is one of the major karst landscapes in the United States, and karst aquifers are predominant in the Ozark system. Groundwater flow is ultimately controlled by aquifer and confining unit lithologies and stratigraphic relations, geologic structure, karst development, and the character of surficial lithologies and regolith mantle. The regolith mantle is a defining element of Ozark Plateaus karst, affecting recharge, karst development, and vulnerability to surface-derived contaminants. Karst development is more advanced—as evidenced by larger springs, hydraulic characteristics, and higher well yields—in the Salem Plateau and in the northern part of the Springfield Plateau (generally north of the Arkansas-Missouri border) as compared with the southern part of the Springfield Plateau in Arkansas, largely due to thinner, less extensive regolith and purer carbonate lithology.Precipitation is the ultimate source of all water to the Ozark system, and the hydrologic budget for the Ozark system includes inputs from recharge

  16. Hydrogeological modelling as a tool for understanding rockslides evolution

    Science.gov (United States)

    Crosta, Giovanni B.; De Caro, Mattia; Frattini, Paolo; Volpi, Giorgio

    2015-04-01

    construction of the models, in particular the partition of the slope in different sectors with different hydraulic conductivities, are coherent with the geological, structural, hydrological and hydrogeological field and laboratory data. The sensitivity analysis shows that the hydraulic conductivity of some slope sectors (e.g. morphostructures, compressed or relaxed slope-toe, basal shear band) strongly influence the water table position and evolution. In transient models, the values of specific storage coefficient play a major control on the amplitude of groundwater level fluctuations, deriving from snowmelt or induced reservoir level rise. The calibrated groundwater flow-models are consistent with groundwater levels measured in the proximity of the piezometers aligned along the sections. The two examples can be considered important for a more advanced understanding of the evolution of rockslides and suggest the required set of data and modelling approaches both for seasonal and long term slope stability analyses. The use of the results of such analyses is reported, for both the case studies, in a companion abstract in session 3.7 where elasto-visco-plastic rheologies have been adopted for the shear band materials to replicate the available displacement time-series.

  17. Flow and transport in Riparian Zones

    DEFF Research Database (Denmark)

    Jensen, Jannick Kolbjørn

    scenarios with changing conditions for flow (steady state with no flooding or transient with flooding), hydrogeology, denitrification rate, and extent of flooding it is demonstrated how flow paths, residence times, and nitrate removal are affected. With this previous conceptual models on the hydrology......The PhD study presents research results from two re-established Danish riparian zones, Brynemade and Skallebanke, located along Odense River on the island Funen, Denmark. The overall objectives of the PhD study have been to improve the understanding of flow and transport in riparian zones....... The methodology focuses on; construction of field sites along Odense River, understanding flow and transport, and performing numerical/analytical model assessments of flow and transport. An initial 2D simulation study was performed with a conceptual setup based on the Brynemade site. Through a series of 2D model...

  18. Major depression

    Science.gov (United States)

    Depression - major; Depression - clinical; Clinical depression; Unipolar depression; Major depressive disorder ... providers do not know the exact causes of depression. It is believed that chemical changes in the ...

  19. Water transport monitoring in an unsaturated zone – Case study: lysimeter Selniška dobrava (Slovenia

    Directory of Open Access Journals (Sweden)

    Nina Mali

    2002-12-01

    Full Text Available Pollution transport in an aquifer depends on its structure, upper unsaturated zone and lower saturated zone. In order to understand processes in the unsaturated zone, several hydrogeological field measurements must be done. A field laboratory- lysimeter in Selni{kadobrava was installed for the improvement of field measurements, and explanation of the parameters and processes in the unsaturated zone. The problems, which can be solved by means of investigations in a lysimeter, are defined in this paper. Described are also:concept of investigation planning, construction and equipment of the lysimeter, measurements of unsaturated zone parameters and processes, water sampling for physical, chemical and isotope analysis.

  20. Physical hydrogeology and environmental isotopes to constrain the age, origins, and stability of a low-salinity groundwater lens formed by periodic river recharge: Murray Basin, Australia

    Science.gov (United States)

    Cartwright, Ian; Weaver, Tamie R.; Simmons, Craig T.; Fifield, L. Keith; Lawrence, Charles R.; Chisari, Robert; Varley, Simon

    2010-01-01

    SummaryA low-salinity (total dissolved solids, TDS, Australia. Hydraulic heads, surface water elevations, δ 18O values, major ion geochemistry, 14C activities, and 3H concentrations show that the lens is recharged from the Murray River largely through the riverbank with limited recharge through the floodplain. Recharge of the lens occurs mainly at high river levels and the low-salinity groundwater forms baseflow to some river reaches during times of low river levels. Within the lens, flow through the shallow Channel Sands and deeper Parilla Sands aquifers is sub-horizontal. While the Blanchetown Clay locally separates the Channel Sands and the Parilla Sands, the occurrence of recently recharged low-salinity groundwater below the Blanchetown Clay suggests that there is considerable leakage through this unit, implying that it is not an efficient aquitard. The lateral margin of the lens with the regional groundwater (TDS >25,000 mg/L) is marked by a hectometer to kilometer scale transition in TDS concentrations that is not stratigraphically controlled. Rather this boundary represents a mixing zone with the regional groundwater, the position of which is controlled by the rate of recharge from the river. The lens is part of an active and dynamic hydrogeological system that responds over years to decades to changes in river levels. The lens has shrunk during the drought of the late 1990s to the mid 2000s, and it will continue to shrink unless regular high flows in the Murray River are re-established. Over longer timescales, the rise of the regional water table due to land clearing will increase the hydraulic gradient between the regional groundwater and the groundwater in the lens, which will also cause it to degrade. Replacement of low-salinity groundwater in the lens with saline groundwater will ultimately increase the salinity of the Murray River reducing its utility for water supply and impacting riverine ecosystems.

  1. Hydrogeologic controls imposed by mechanical stratigraphy in layered rocks of the Chateauguay River Basin, a U.S.-Canada transborder aquifer

    Science.gov (United States)

    Morin, Roger H.; Godin, Rejean; Nastev, Miroslav; Rouleau, Alain

    2007-01-01

    [1] The Châteauguay River Basin delineates a transborder watershed with roughly half of its surface area located in northern New York State and half in southern Québec Province, Canada. As part of a multidisciplinary study designed to characterize the hydrogeologic properties of this basin, geophysical logs were obtained in 12 wells strategically located to penetrate the four major sedimentary rock formations that constitute the regional aquifers. The layered rocks were classified according to their elastic properties into three primary units: soft sandstone, hard sandstone, and dolostone. Downhole measurements were analyzed to identify fracture patterns associated with each unit and to evaluate their role in controlling groundwater flow. Fracture networks are composed of orthogonal sets of laterally extensive, subhorizontal bedding plane partings and bed-delimited, subvertical joints with spacings that are consistent with rock mechanics principles and stress models. The vertical distribution of transmissive zones is confined to a few select bedding plane fractures, with soft sandstone having the fewest (one per 70-m depth) and hard sandstone the most (five per 70-m depth). Bed-normal permeability is examined using a probabilistic model that considers the lengths of flow paths winding along joints and bedding plane fractures. Soft sandstone has the smallest bed-normal permeability primarily because of its wide, geomechanically undersaturated joint spacing. Results indicate that the three formations have similar values of bulk transmissivity, within roughly an order of magnitude, but that each rock unit has its own unique system of groundwater flow paths that constitute that transmissivity.

  2. Predictability of solute transport in diffusion-controlled hydrogeologic regimes

    International Nuclear Information System (INIS)

    Gillham, R.W.; Cherry, J.A.

    1983-01-01

    Hydrogeologic regimes that are favourable for the subsurface management of low-level radioactive wastes must have transport properties that will limit the migration velocity of contaminants to some acceptably low value. Of equal importance, for the purpose of impact assessment and licensing, is the need to be able to predict, with a reasonable degree of certainty and over long time periods, what the migration velocity of the various contaminants of interest will be. This paper presents arguments to show that in addition to having favourable velocity characteristics, transport in saturated, diffusion-controlled hydrogeologic regimes is considerably more predictable than in the most common alternatives. The classical transport models for unsaturated, saturated-advection-controlled and saturated-diffusion-controlled environments are compared, with particular consideration being given to the difficulties associated with the characterization of the respective transport parameters. Results are presented which show that the diffusion of non-reactive solutes and solutes that react according to a constant partitioning ratio (K/sub d/) are highly predictable under laboratory conditions and that the diffusion coefficients for the reactive solutes can be determined with a reasonable degree of accuracy from independent measurements of bulk density, porosity, distribution coefficient and tortuosity. Field evidence is presented which shows that the distribution of environmental isotopes and chloride in thick clayey deposits is consistent with a diffusion-type transport process in these media. These results are particularly important in that they not only demonstrate the occurrence of diffusion-controlled hydrogeologic regimes, but they also demonstrate the predictability of the migration characteristics over very long time periods

  3. Hydrogeology and management of freshwater lenses on atoll islands: Review of current knowledge and research needs

    Science.gov (United States)

    Werner, Adrian D.; Sharp, Hannah K.; Galvis, Sandra C.; Post, Vincent E. A.; Sinclair, Peter

    2017-08-01

    On atoll islands, fresh groundwater occurs as a buoyant lens-shaped body surrounded by saltwater derived from the sea, forming the main freshwater source for many island communities. A review of the state of knowledge of atoll island groundwater is overdue given their susceptibility to adverse impacts, and the task to address water access and sanitation issues within the United Nations' Sustainable Development Goals framework before the year 2030. In this article, we review available literature to summarise the key processes, investigation techniques and management approaches of atoll island groundwater systems. Over fifty years of investigation has led to important advancements in the understanding of atoll hydrogeology, but a paucity of hydrogeological data persists on all but a small number of atoll islands. We find that the combined effects of buoyancy forces, complex geology, tides, episodic ocean events, strong climatic variability and human impacts create highly dynamic fresh groundwater lenses. Methods used to quantify freshwater availability range from simple empirical relationships to three-dimensional density-dependent models. Generic atoll island numerical models have proven popular in trying to unravel the individual factors controlling fresh groundwater lens behaviour. Major challenges face the inhabitants and custodians of atoll island aquifers, with rising anthropogenic stresses compounded by the threats of climate variability and change, sea-level rise, and some atolls already extracting freshwater at or above sustainability limits. We find that the study of atoll groundwater systems remains a critical area for further research effort to address persistent knowledge gaps, which lead to high uncertainties in water security issues for both island residents and surrounding environs.

  4. Hydrogeological study of single water conducting fracture using a crosshole hydraulic test apparatus

    International Nuclear Information System (INIS)

    Yamamoto, Hajime; Shimo, Michito; Yamamoto, Takuya

    1998-03-01

    The Crosshole Injection Test Apparatus has been constructed to evaluate the hydraulic properties and conditions, such as hydraulic conductivity and its anisotropy, storage coefficient, pore pressure etc. within a rock near a drift. The construction started in FY93 and completed on August FY96 as a set of equipments for the use of crosshole hydraulic test, which is composed of one injection borehole instrument, one observation borehole instrument and a set of on-ground instrument. In FY96, in-situ feasibility test was conducted at a 550 m level drift in Kamaishi In Situ Test Site which has been operated by PNC, and the performance of the equipment and its applicability to various types of injection method were confirmed. In this year, a hydrogeological investigation on the single water conducting fracture was conducted at a 250 m level drift in Kamaishi In Situ Test Site, using two boreholes, KCH-3 and KCH-4, both of which are 30 m depth and inclined by 45 degrees from the surface. Pressure responses at the KCH-3 borehole during the drilling of KCH-4 borehole, the results of Borehole TV logging and core observation indicated that a major conductive single-fracture was successfully isolated by the packers. As a result of a series of the single-hole and the crosshole tests (sinusoidal and constant flowrate test), the hydraulic parameters of the single-fracture (such as hydraulic conductivity and storage coefficient) were determined. This report shows all the test result, analysed data, and also describes the hydro-geological structure near the drift. (author)

  5. Description of hydrogeological data in SKB's database GEOTAB

    International Nuclear Information System (INIS)

    Gentzschein, B.

    1986-12-01

    Since 1977 Swedish Nuclear Fuel and Waste Management Co., SKB has been performing a research and development programme for final disposal and spent nuclear fuel. The purpose of the programme is to acquire knowledge and data of radioactive waste. Measurement for the characterisation of geological, geophysical, hydrogeological and hydrochemical conditions are performed in specific site investigations as well as for geoscientific projects. A database, called GEOTAB, was investigated. It is based on a concept from Mimer Information System, and have been further developed by Ergo-Data. The hardware is a VAX 750 computer located at KRAB (Kraftverksbolagens Redovisningsavdelning AB) in Stockholm. (orig./DG)

  6. Activation analysis of indium used as tracer in hydrogeology

    International Nuclear Information System (INIS)

    Stanescu, S.P.; Farcasiu, O.M.; Gaspar, E.; Spiridon, S.; Nazarov, V.M.; Frontasieva, M.V.

    1985-01-01

    About 2500 samples of 18 hydro-karstic structures from Romania have been analyzed. The water flow rates were in the range of 0.05 to 2.7 m 3 /s and transit time values were from 30 h to 200 days. The quantity of indium used for a labelling was a calculated function of the emergency flow rate and the estimated transit time and varied from 1 to 100 g. The results prove that the activation analysis of indium in water samples combined with preconcentration by coprecipitation is an useful method in hydrogeological studies

  7. Hydrogeologic impacts of underground (Longwall) mining in the Illinois basin

    International Nuclear Information System (INIS)

    Booth, C.J.

    1992-01-01

    This paper reports that hydrogeological impacts of active longwall mining were studied at two sites in Illinois. At the site with the more transmissive sandstone aquifer, aquifer permeabilities increased an order of magnitude due to subsidence. Piezometric levels declined with subsidence due to increased porosity, and ahead of mining due to a transmitted drawdown. Levels recovered rapidly at first and fully over two years. At the site with the less transmissive aquifer, impacts were similar except that recovery has been limited. Local aquifer enhancement through increased yield can occur, but only where the aquifer is transmissive enough for recovery

  8. RESEARCH INTO THE HYDROGEOLOGY OF THE SAVA RIVER BASIN IN EASTERN SLAVONIA AND ITS KNOWLEDGE

    Directory of Open Access Journals (Sweden)

    Andrija Capar

    1992-12-01

    Full Text Available Geological explorations, especially hydrogeology of quaternary waterbearing deposits of Eastern Slavonia are presented. Hydro-geological and hydrochemical parameters are discussed and evaluation of groundwater reserves is done. Critical approach to the results of exploration is provided by some suggestions for future quaternary deposits exploration in the area (the paper is published in Croatian.

  9. Hydrogeological investigation for sitting disposal repository for high level radioactive waste

    International Nuclear Information System (INIS)

    Guo Yonghai; Liu Shufen; Lv Chuanhe

    2005-01-01

    Based on the research experiences of our country and some developed countries in the world, the purpose, process and methods, as well as the function of hydrogeological investigation for sitting disposal repository for high radioactive waste are discussed. Meanwhile, the topic related to the acquisition of hydrogeological parameters is described as well, aiming at providing reference for the future study. (authors)

  10. Calibrating Vadose Zone Models with Time-Lapse Gravity Data

    DEFF Research Database (Denmark)

    Christiansen, Lars; Hansen, A. B.; Looms, M. C.

    2009-01-01

    A change in soil water content is a change in mass stored in the subsurface. Given that the mass change is big enough, the change can be measured with a gravity meter. Attempts have been made with varying success over the last decades to use ground-based time-lapse gravity measurements to infer...... hydrogeological parameters. These studies focused on the saturated zone with specific yield as the most prominent target parameter. Any change in storage in the vadose zone has been considered as noise. Our modeling results show a measureable change in gravity from the vadose zone during a forced infiltration...... experiment on 10m by 10m grass land. Simulation studies show a potential for vadose zone model calibration using gravity data in conjunction with other geophysical data, e.g. cross-borehole georadar. We present early field data and calibration results from a forced infiltration experiment conducted over 30...

  11. Inverse modeling for the determination of hydrogeological parameters of a two-phase system

    International Nuclear Information System (INIS)

    Finsterle, S.

    1993-02-01

    Investigations related to the disposal of radioactive wastes in Switzerland consider formations containing natural gas as potential rocks for a repository. Moreover, gas generation in the repository itself may lead to an unsaturated zone of significant extent and impact on the system's performance. The site characterization procedure requires the estimation of hydraulic properties being used as input parameters for a two-phase two-component numerical simulator. In this study, estimates of gas-related formation parameters are obtained by inverse modeling. Based on discrete observations of the system's state, model parameters can be estimated within the framework of a given conceptual model by means of optimization techniques. This study presents the theoretical background that related field data to the model parameters. A parameter estimation procedure is proposed and implemented in a computer code for automatic model calibration. This tool allows identification of key parameters affecting flow of water and gas in porous media. The inverse modeling approach is verified using data from a synthetic laboratory experiment. In addition, the Gas test performed at the Grimsel Test Site is analyzed in order to demonstrate the applicability of the proposed procedure when used with data from a real geologic environment. Estimation of hydrogeologic parameters by automatic model calibration improves the understanding of the two-phase flow processes and therefore increases the reliability of the subsequent simulation runs. (author) figs., tabs., refs

  12. Inverse modeling for the determination of hydrogeological parameters of a two-phase system

    International Nuclear Information System (INIS)

    Finsterle, S.

    1993-01-01

    Investigations related to the disposal of radioactive wastes in Switzerland are dealing with formations containing natural gas as potential host rock for a repository. Moreover, gas generation in the repository itself may lead to an unsaturated zone of significant extent and impact on the system's performance. The site characterization procedure requires the estimation of hydraulic properties being used as input parameters for a two-phase two-component numerical simulator. In this study, estimates of gas related formation parameters are obtained by inverse modeling. Based on discrete observations of the system's state, model parameters can be estimated within the framework of a given conceptual model by means of optimization techniques. This study presents the theoretical background that relates field data to the model parameters. A parameter estimation procedure is proposed and implemented in a computer code for automatic model calibration. This tool allows to identify key parameters affecting flow of water and gas in porous media. The inverse modeling approach is verified using data from a synthetic laboratory experiment. In addition, the Gastest performed at the Grimsel Test Site is analyzed in order to demonstrate the applicability of the proposed procedure when used with data from a real geologic environment. Estimation of hydrogeologic parameters by automatic model calibration improves the understanding of the two-phase flow processes and therefore increases the reliability of the subsequent simulation runs. (author) figs., tabs., 100 refs

  13. Preparatory hydrogeological calculations for site scale models of Aberg, Beberg and Ceberg

    International Nuclear Information System (INIS)

    Gylling, B.; Lindgren, M.; Widen, H.

    1999-03-01

    The purpose of the study is to evaluate the basis for site scale models of the three sites Aberg, Beberg and Ceberg in terms of: extent and position of site scale model domains; numerical implementation of geologic structural model; systematic review of structural data and control of compatibility in data sets. Some of the hydrogeological features of each site are briefly described. A summary of the results from the regional modelling exercises for Aberg, Beberg and Ceberg is given. The results from the regional models may be used as a base for determining the location and size of the site scale models and provide such models with boundary conditions. Results from the regional models may also indicate suitable locations for repositories. The resulting locations and sizes for site scale models are presented in figures. There are also figures showing that the structural models interpreted by HYDRASTAR do not conflict with the repository tunnels. It has in addition been verified with TRAZON, a modified version of HYDRASTAR for checking starting positions, revealing conflicts between starting positions and fractures zones if present

  14. A revised conceptual hydrogeologic model of a crystalline rock environment, Whiteshell research area, southeastern Manitoba, Canada

    International Nuclear Information System (INIS)

    Stevenson, D.R.; Brown, A.; Davison, C.C.; Gascoyne, M.; McGregor, R.G.; Ophori, D.U.; Scheier, N.W.; Stanchell, F.; Thorne, G.A.; Tomsons, D.K.

    1996-04-01

    A revised conceptual hydrogeologic model of regional groundwater flow in the crystalline rocks of the Whiteshell Research Area (WRA) has been developed by a team of AECL geoscientists. The revised model updates an earlier model developed in 1985, and has a much broader database. This database was compiled from Landsat and airborne radar images, geophysical surveys and surface mapping, and from analyses of fracture logs, hydraulic tests and water samples collected from a network of deep boreholes drilled across the WRA. The boundaries of the revised conceptual model were selected to coincide with the natural hydraulic boundaries assumed for the regional groundwater flow systems in the WRA. The upper and lower boundaries are the water table and a horizontal plane 4 km below ground surface. For modelling purposes the rocks below 4 km are considered to be impermeable. The rocks of the modelled region were divided on the basis of fracture characteristics into three categories: fractured zones (FZs); moderately fractured rock (MFR); and sparsely fractured rock (SFR). The FZs are regions of intensely fractured rock. Seventy-six FZs were selected to form the fault framework within the revised conceptual model. The physical rock/water properties of the FZs, MFR and SFR were selected by analysis of field data from hydraulic and tracer tests, laboratory test data and water quality data. These properties were used to define a mathematical groundwater flow model of the WRA using AECL's MOTIF finite element code (Ophori et al. 1995, 1996). (author). 29 refs., 4 tabs., 12 figs

  15. Geologic framework and hydrogeologic features of the Glen Rose Limestone, Camp Bullis Training Site, Bexar County, Texas

    Science.gov (United States)

    Clark, Allan K.

    2003-01-01

    The Glen Rose Limestone crops out over most of the Camp Bullis Training Site in northern Bexar County, Texas, where it consists of upper and lower members and composes the upper zone and the upper part of the middle zone of the Trinity aquifer. Uncharacteristically permeable in northern Bexar County, the Glen Rose Limestone can provide avenues for recharge to and potential contamination of the downgradient Edwards aquifer, which occupies the southeastern corner of Camp Bullis.The upper member of the Glen Rose Limestone characteristically is thin-bedded and composed mostly of soft limestone and marl, and the lower Glen Rose typically is composed mostly of relatively massive, fossiliferous limestone. The upper member, about 410 to 450 feet thick at Camp Bullis, was divided in this study into five hydrogeologic subdivisions, A through E (youngest to oldest).The approximately 120-foot-thick Interval A has an abundance of caves, which is indicative of its generally well developed fracture, channel, and cavern porosity that in places provides appreciable permeability. The 120- to 150-foot-thick Interval B is similar to Interval A but with less cave development and considerably less permeability. The 10- to 20-foot-thick Interval C, a layer of partly to mostly dissolved soluble carbonate minerals, is characterized by breccia porosity, boxwork permeability, and collapse structures that typically divert ground water laterally to discharge at land surface. The 135- to 180-foot-thick Interval D generally has low porosity and little permeability with some local exceptions, most notably the caprinid biostrome just below the top of the interval, which appears to be permeable by virtue of excellent moldic, vug, fracture, and cavern porosity. The 10- to 20-foot-thick Interval E, a layer of partly to mostly dissolved evaporites similar to Interval C, has similar hydrogeologic properties and a tendency to divert ground water laterally.

  16. Hydrogeological and multi-isotopic approach to define nitrate pollution and denitrification processes in a coastal aquifer (Sardinia, Italy)

    Science.gov (United States)

    Pittalis, Daniele; Carrey, Raul; Da Pelo, Stefania; Carletti, Alberto; Biddau, Riccardo; Cidu, Rosa; Celico, Fulvio; Soler, Albert; Ghiglieri, Giorgio

    2018-02-01

    Agricultural coastal areas are frequently affected by the superimposition of various processes, with a combination of anthropogenic and natural sources, which degrade groundwater quality. In the coastal multi-aquifer system of Arborea (Italy)—a reclaimed morass area identified as a nitrate vulnerable zone, according to Nitrate Directive 91/676/EEC—intensive agricultural and livestock activities contribute to substantial nitrate contamination. For this reason, the area can be considered a bench test for tuning an appropriate methodology aiming to trace the nitrate contamination in different conditions. An approach combining environmental isotopes, water quality and hydrogeological indicators was therefore used to understand the origins and attenuation mechanisms of nitrate pollution and to define the relationship between contaminant and groundwater flow dynamics through the multi-aquifer characterized by sandy (SHU), alluvial (AHU), and volcanic hydrogeological (VHU) units. Various groundwater chemical pathways were consistent with both different nitrogen sources and groundwater dynamics. Isotope composition suggests a mixed source for nitrate (organic and synthetic fertilizer), especially for the AHU and SHU groundwater. Moreover, marked heterotrophic denitrification and sulfate reduction processes were detected; although, for the contamination related to synthetic fertilizer, the attenuation was inefficient at removing NO3 - to less than the human consumption threshold of 50 mg/L. Various factors contributed to control the distribution of the redox processes, such as the availability of carbon sources (organic fertilizer and the presence of lagoon-deposited aquitards), well depth, and groundwater flow paths. The characterization of these processes supports water-resource management plans, future actions, and regulations, particularly in nitrate vulnerable zones.

  17. Sound Zones

    DEFF Research Database (Denmark)

    Møller, Martin Bo; Olsen, Martin

    2017-01-01

    Sound zones, i.e. spatially confined regions of individual audio content, can be created by appropriate filtering of the desired audio signals reproduced by an array of loudspeakers. The challenge of designing filters for sound zones is twofold: First, the filtered responses should generate...... an acoustic separation between the control regions. Secondly, the pre- and post-ringing as well as spectral deterioration introduced by the filters should be minimized. The tradeoff between acoustic separation and filter ringing is the focus of this paper. A weighted L2-norm penalty is introduced in the sound...

  18. Hydrogeological characterization of deep subsurface structures at the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Takeuchi, Shinji; Saegusa, Hiromitsu; Amano, Kenji; Takeuchi, Ryuji

    2013-01-01

    Several hydrogeological investigation techniques have been used at the Mizunami Underground Research Laboratory site to assess hydrogeological structures and their control on groundwater flow. For example, the properties of water-conducting features (WCFs) can be determined using high-resolution electrical conductivity measurements of fluids, and compared to measurements using conventional logging techniques. Connectivity of WCFs can be estimated from transmissivity changes over time, calculated from the pressure derivative of hydraulic pressure data obtained from hydraulic testing results. Hydraulic diffusivity, obtained from hydraulic interference testing by considering the flow dimension, could be a key indicator of the connectivity of WCFs between boreholes. A conceptual hydrogeological model of several hundred square meters to several square kilometers, bounded by flow barrier structures, has been developed from pressure response plots, based on interference hydraulic testing. The applicability of several methods for developing conceptual hydrogeological models has been confirmed on the basis of the hydrogeological investigation techniques mentioned above. (author)

  19. Synthetic hydrogeological study on Beishan preselected area for high-level radioactive waste repository in China

    International Nuclear Information System (INIS)

    Guo Yonghai; Su Rui; Ji Ruili; Wang Hailong; Liu Shufen; Zong Zihua; Dong Jiannan; Zhang Ming

    2014-01-01

    On the basis of large scale field hydrogeological investigation, synthetic hydrogeological studies related to groundwater system characteristics, permeability of rock bodies, groundwater dynamic, hydrogeochemistry, isotopic hydrology, CFC's of groundwater and groundwater flow field simulation were carried out for Beishan area, Gansu province. According to analysis on a large amount of hydrogeological data, the characteristics of groundwater circulation, groundwater hydrodynamics and hydrgeochemistry were described and the suitability of Beishan area as the potential area of high-level radioactive waste disposal was evaluated in the paper. Through this study, the hydrogeological study and evaluation methods in the siting of China's high level radioactive waste repository were set up. Furthermore, the important hydrogeological scientific evidence was provided for optimal site filtration of China's high-level radioactive waste repository in Beishan area. (authors)

  20. Regional hydrogeological simulations. Numerical modelling using ConnectFlow. Preliminary site description Simpevarp sub area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Hoch, Andrew; Hunter, Fiona; Jackson, Peter [Serco Assurance, Risley (United Kingdom); Marsic, Niko [Kemakta Konsult, Stockholm (Sweden)

    2005-02-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) carries out site investigations in two different candidate areas in Sweden with the objective of describing the in situ conditions for a bedrock repository for spent nuclear fuel. The two candidate areas are named Forsmark and Simpevarp. The site characterisation work is divided into two phases, an initial site investigation phase (IPLU) and a complete site investigation phase (KPLU). The results of IPLU are used as a basis for deciding on a subsequent KPLU phase. On the basis of the KPLU investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft).An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model which provides the geometrical context in terms of a model of deformation zones and the rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other geo-disciplines (hydrogeology, hydro-geochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models.Here, a numerical model is developed on a regional-scale (hundreds of square kilometres) to understand the zone of influence for groundwater flow that effects the Simpevarp area. Transport calculations are then performed by particle tracking from a local-scale release area (tens of square kilometres) to identify potential discharge areas for the site. The transport from the two site-scale release areas (a few square kilometres) at the Simpevarp site and the Laxemar site are also considered more specifically and using greater grid resolution.The main

  1. Compilation and analysis of hydrogeological responses to field activities in Olkiluoto

    International Nuclear Information System (INIS)

    Vaittinen, T.; Nummela, J.; Ahokas, H.

    2008-01-01

    Groundwater flow characteristics provide essential input for the construction and safety assessment of a disposal facility for spent nuclear fuel. On the Olkiluoto site flow connections have been studied in deep drillholes by means of long-term pumping tests, varying interference tests, and by interpreting the measured hydraulic heads. This report focuses on the assessment of measured hydraulic heads. Hydraulic heads have been measured both in open and in packed-off drillholes since 1991. The interpretation of the hydraulic connections is based on observed changes in hydraulic head distribution caused by certain investigation activities on the site. Field activities may increase the head, e.g. drilling, or more typically decrease the head, e.g. flush pumping after drilling, difference flow logging with pumping, and groundwater sampling. All the measured head observations have been gathered to binary files and a code has been developed to enable inquiries of head values for selected field activities. The main improvement has been the possibility for easy comparison of head observations in several drillholes. This report contains a short description of the pumping and the over-pressure tests, hydraulic head observations in packed-off drillholes until the end of 2005, and an interpretation of the selected representative cases. The presented cases highlight both the advantages and the difficulties related to the interpretation of the available hydraulic head data. Based on the head observations in packed-off drillholes, sub-horizontal hydraulic zones seem to form a layered system and indicate weak sub-vertical connections. The results of the pumping tests carried out between 1991 and 1998 are the most valuable, because the drillholes were mostly packed-off during the tests. Later, observations have suffered from open drillholes, which spread the head changes to all intersected hydrogeological zones. Due to the open drillholes, the existence of sub-vertical hydraulic

  2. Hydrogeology of the Judith River Formation in southwestern Saskatchewan, Canada

    Science.gov (United States)

    Ferris, David; Lypka, Morgan; Ferguson, Grant

    2017-11-01

    The Judith River Formation forms an important regional aquifer in southwestern Saskatchewan, Canada. This aquifer is used for domestic and agricultural purposes in some areas and supports oil and gas production in other areas. As a result, the available data come from a range of sources and integration is required to provide an overview of aquifer characteristics. Here, data from oil and gas databases are combined with data from groundwater resource assessments. Analysis of cores, drill-stem tests and pumping tests provide a good overview of the physical hydrogeology of the Judith River Aquifer. Water chemistry data from oil and gas databases were less helpful in understanding the chemical hydrogeology due contamination of samples and unreliable laboratory analyses. Analytical modeling of past pumping in the aquifer indicates that decreases in hydraulic head exceeding 2 m are possible over distances of 10s of kilometers. Similar decreases in head should be expected for additional large withdrawals of groundwater from the Judith River Aquifer. Long-term groundwater abstraction should be limited by low pumping rates. Higher pumping rates appear to be possible for short-term uses, such as those required by the oil and gas industry.

  3. Proceedings of the joint Russian-American hydrogeology seminar

    International Nuclear Information System (INIS)

    Tsang, C.F.; Mironenko, V.

    1997-01-01

    Hydrogeology research has been very active in both Russia and the US because of the concerns for migration of radioactive and chemical contaminants in soils and geologic formations, as well as for water problems related to mining and other industrial operations. Russian hydrogeologists have developed various analysis and field testing techniques, sometimes in parallel with US counterparts. These Proceedings come out of a Seminar held to bring together a small group (about 15) of active Russian researchers in geologic flow and transport associated with the disposal of radioactive and chemical wastes either on the soils or through deep injection wells, with a corresponding group (about 25) of American hydrogeologists. The meeting was intentionally kept small to enable informal, detailed and in-depth discussions on hydrogeological issues of common interest. Out of this interaction, the authors hope that, firstly, they will have learned from each other and secondly, that research collaborations will be established where there is the opportunity. This proceedings presents the summaries and viewgraphs from the presentations. What cannot be conveyed here is the warm and cooperative atmosphere of these interactions, both inside and outside the formal sessions, which may well lead to future collaborations

  4. Hydrogeologic studies for CRNL's proposed shallow land burial site

    International Nuclear Information System (INIS)

    Killey, R.W.D.; Devgun, J.S.

    1986-09-01

    The first phase of conversion from storage to disposal of low- and intermediate-level radioactive wastes at CRNL is focussed on solids with hazardous lifetimes less than 500 years. In order to use a facility buried above the water table and to achieve maximum use of radionuclide migration information from studies of existing facilities, the proposed site is located in sands above an active groundwater flow system. The selection of a permeable and geologically-simple slow system has allowed application of a wide variety of techniques for hydrogeologic evaluation of the site. Ground-probing radar in conjunction with continuously cored boreholes have provided stratigraphic data and sediments for testing. Field hydrogeologic testing has included a detailed network of piezometers for hydraulic head mapping and a series of borehole dilution tests. Measurements of contaminant sorption behaviour are also being made in the field to reduce variations in uncontrolled parameters. Mathematical models successfully simulate the real system in terms of groundwater flow. Simulations of reactive contaminant transport are more difficult, but the application of data from field tests of radionuclide migration behaviour and from existing contaminant plumes will, we believe, provide acceptably reliable predictions of the impact of failures in the engineered disposal structure

  5. Hydrogeological properties of bank storage area in Changwon city, Korea

    Science.gov (United States)

    Hamm, S.-Y.; Kim, H.-S.; Cheong, J.-Y.; Ryu, S. M.; Kim, M. J.

    2003-04-01

    Bank filtrated water has been used in developed countries such as United States, France, Germany, Austria, Nederland and so on. In Korea, most of the drinking water is provided from the surface water. However, drinking water acquisition is becoming difficult due to the degradation of surface water quality. In special, the quality of drinking water source is much lower in downstream area than in upstream area. Thus, the use of bank filtrated water is getting attracted by central and local governments in Korea. The bank filtrated water was surveyed in the areas of Yeongsan river, Nakdong river, Geum river and Han river. Up to present, however, the downstream areas of Nakdong river are most suitable places to apply the bank filtration system. This study investigates hydrogeological characteristics of bank-storage area located in Daesan- Myeon, Changwon city, adjacent the downstream of Nakdong river. Changwon city is the capital city of Gyeongsangnam-Do province. Changwon city uses water derived from Nakdong river as municipal water. However, the quantity and quality of the river water are gradually decreased. Thus, Changwon city developed two sites of bank filtration system in Daesan-myeon and Buk-myeon. Pumping rate is 2,000m3/day at present and will be increased to 60,000m3/day in Daesan-myeon site at the end of the first stage of the project. For the study, we conducted pumping tests four times on seven pumping wells (PW1, PW2, PW3, PW4, PW5, PW6, and PW7) and twelve drill holes (BH-2, OW2-OW12) in the area of 370 m x 100 m. Pumping wells PW1 and PW2 were drilled in 1999 by Samjung Engineering Co. and pumping wells PW3, PW4, PW5, PW6 and PW7 were drilled in 2000 by Donga Construction Co. and Daeduk Gongyeong Co. The pumping wells are located at 45-110 meters from Nakdong riverside. The geology of the study area is composed of volcanic rocks (Palryeongsan tuff and Jusasan andesitic rock) and alluvium. Palryeongsan tuff consists of mostly green tuff with partly

  6. Hydrogeological model of the territory of Kowsar hydraulic project

    Directory of Open Access Journals (Sweden)

    Orekhov Vyacheslav Valentinovich

    2015-03-01

    Full Text Available Mathematical hydrogeology model of the territory of Kowsar Project was created with account for the results of the engineering surveys and hydro geological monitoring, which was conducted in the process of Kowsar Project construction. In order to create the model in the present work a universal computer system Ansys was used, which implements the finite element method and solid modeling technology, allowing to solve the filtration problem with the use of thermal analogy. The three-dimensional geometric model was built with use of the principle “hard body” modeling, which displays the main line of the territory relief, including the created water reservoir, geological structure (anticline Duk and the main lithological complexes developed within the territory. In the limestone mass As here is a zone characterized by water permeability on territory of Kowsar Project, and a layer characterized by seepage feeding, which occurs outside the considered territory. The water reservoir is a source of the change of hydro geological situation. The results of field observations witness, that the levels of underground waters within the area of the main structures reacts almost instantly on the water level change in the water reservoir; the delay period of levels change is not more than 1,5…2,0 weeks at maximum distance from the water reservoir. These particularities of the hydro geological regime allow using the steady-state scheme of the decision of forecast problems. The mass of limestone As, containing the structures of the Kowsar Project, is not homogeneous and anisotropy in its seepage characteristics. The heterogeneity is conditioned by exogenous influence on the mass up to the depth of 100…150 m. The seepage anisotropy of the mass is expressed by the difference of water permeability of the mass along and across the layers for almost one order. The structures of Kowsar Project is presented by a dam, grouting curtain on axis of the dam and

  7. Integrated socio-hydrogeological approach to tackle nitrate contamination in groundwater resources. The case of Grombalia Basin (Tunisia).

    Science.gov (United States)

    Re, V; Sacchi, E; Kammoun, S; Tringali, C; Trabelsi, R; Zouari, K; Daniele, S

    2017-09-01

    Nitrate contamination still remains one of the main groundwater quality issues in several aquifers worldwide, despite the perduring efforts of the international scientific community to effectively tackle this problem. The classical hydrogeological and isotopic investigations are obviously of paramount importance for the characterization of contaminant sources, but are clearly not sufficient for the correct and long-term protection of groundwater resources. This paper aims at demonstrating the effectiveness of the socio-hydrogeological approach as the best tool to tackle groundwater quality issues, while contributing bridging the gap between science and society. An integrated survey, including land use, hydrochemical (physicochemical parameters and major ions) and isotopic (δ 15 N NO3 and δ 18 O NO3 ) analyses, coupled to capacity building and participatory activities was carried out to correctly attribute the nitrate origin in groundwater from the Grombalia Basin (North Tunisia), a region where only synthetic fertilizers have been generally identified as the main source of such pollution. Results demonstrates that the basin is characterized by high nitrate concentrations, often exceeding the statutory limits for drinking water, in both the shallow and deep aquifers, whereas sources are associated to both agricultural and urban activities. The public participation of local actors proved to be a fundamental element for the development of the hydrogeological investigation, as it permitted to obtain relevant information to support data interpretation, and eventually guaranteed the correct assessment of contaminant sources in the studied area. In addition, such activity, if adequately transferred to regulators, will ensure the effective adoption of management practices based on the research outcomes and tailored on the real needs of the local population, proving the added value to include it in any integrated investigation. Copyright © 2017 Elsevier B.V. All rights

  8. Assessment of site-scale hydrogeological modelling possibilities in crystalline hard rock for safety appraisal

    Energy Technology Data Exchange (ETDEWEB)

    Geier, J. [Cleanwater Hardrock Consulting, Corvallis, OR (United States); Luukkonen, A.

    2012-09-15

    This review describes the state-of-the-art in hydrogeological modelling for safety-case studies related to spent-fuel repositories in crystalline hard rock, focusing on issues of relevance for the KBS-3 disposal concept in Nordic environments. The review includes a survey of model capabilities and assumptions regarding groundwater flow processes, geological and excavation-related features, and boundary conditions for temperate, periglacial, and glacial climates. Modelling approaches are compared for research sites including the Stripa mine (Sweden), the Grimsel Test Site (Switzerland), the Whiteshell Underground Research Laboratory (Canada), the Aspo Hard Rock Laboratory and Simpevarp-Laxemar site (Sweden), the Forsmark site (Sweden), the Waste Isolation Pilot Plant site (USA), and Olkiluoto (Finland). Current hydrogeological models allow realistic representations, but are limited by availability of data to constrain their properties. Examples of calibrations of stochastic representations of heterogeneity are still scarce. Integrated models that couple flow and non-reactive transport are now well established, particularly those based on continuum representations. Models that include reactive transport are still mainly in the realm of research tools. Thus far, no single software tool allows fully coupled treatment of all relevant thermal, hydraulic, mechanical, and chemical transport processes in the bedrock, together with climate-related physical processes at the ground surface, and with explicit treatment of bedrock heterogeneity. Hence practical applications require combinations of models based on different simplifications. Key improvements can be expected in treatment of the unsaturated zone, simulation of heterogeneous infiltration at the surface, and hydromechanical coupling. Significant advances have already been made in the amounts and types of data that can be used in site-scale models, including large datasets to define topography and other surface

  9. Conceptual and analytical modeling of fracture zone aquifers in hard rock. Implications of pumping tests in the Pohjukansalo well field, east-central Finland

    International Nuclear Information System (INIS)

    Leveinen, J.

    2001-01-01

    Fracture zones with an interconnected network of open fractures can conduct significant groundwater flow and as in the case of the Pohjukansalo well field in Leppaevirta, can yield sufficiently for small-scale municipal water supply. Glaciofluvial deposits comprising major aquifers commonly overlay fracture zones that can contribute to the water balance directly or indirectly by providing hydraulic interconnections between different formations. Fracture zones and fractures can also transport contaminants in a poorly predictable way. Consequently, hydrogeological research of fracture zones is important for the management and protection of soil aquifers in Finland. Hydraulic properties of aquifers are estimated in situ by well test analyses based on analytical models. Most analytical models rely on the concepts of radial flow and horizontal slab aquifer. In Paper 1, pump test responses of fracture zones in the Pohjukansalo well field were characterised based on alternative analytical models developed for channelled flow cases. In Paper 2, the tests were analysed based on the generalised radial flow (GRF) model and a concept of a fracture network possessing fractional flow dimension due to limited connectivity compared to ideal 2- or 3- dimensional systems. The analysis provides estimates of hydraulic properties in terms of parameters that do not have concrete meaning when the flow dimension of the aquifer has fractional values. Concrete estimates of hydraulic parameters were produced by making simplified assumptions and by using the composite model developed in Paper 3. In addition to estimates of hydraulic parameters, analysis of hydraulic tests provides qualitative information that is useful when the hydraulic connections in the fracture system are not well known. However, attention should be paid to the frequency of drawdown measurements-particularly for the application of derivative curves. In groundwater studies, analytical models have been also used to estimate

  10. Preparatory hydrogeologic investigations for in situ migration experiments in Studsvik

    International Nuclear Information System (INIS)

    Klockars, C.-E.; Persson, O.; Carlsson, L.; Duran, O.; Lindstroem, D.; Magnusson, K.-Aa.; Scherman, S.

    1980-11-01

    The test area is located at Studsvik and covers an area of 8000 m 2 . Within the area, the Geological Survey of Sweden has carried out studies including:Geological and tectonic mapping of the bedrock. Geophysical studies from the ground surface, including refraction seismic measurements, resistivity measurements and electromagnetic measurements. Core drilling. Hammer drilling. Geophysical and geochemical borehole measurements. Hydraulic tests in and between different boreholes. The geological mapping shows that the test area is located within a bedrock consisting of metamorphic sedimentary gneisses, known as migmatite within which decimeter-to-meter-thick layers of amphibolite are present. Mapped fractures from the drill core have chiefly chlorite and calcite as fracture-filling materials. The fracture frequency is relatively high with a maximum in the strike direction of the fractures in a northwesterly direction. The resistivity loggings that have been carried out show that the bedrock has a low average resistivity of 24 000 ohm m. The seismic measurements also show a low-velocity zone within the central portion of the area, which indicates that the portion of the bedrock close to the ground surface has a relatively high fracture content. In the measurements of spontaneous potential (SP), pyrite-filled fractures in the core borehole gave electronegative deviations. The borehole liquid has low salinity (high resistivity), a low pH and a positive redox potential. The hydraulic measurements that have been carried out show that the bedrock possesses low conductivity, in the order of 10 -6 m/s. Hydraulic double packer measurements indicate a number of major transmissive sections along the length of the boreholes. Inter-hole measurements show that only a few of these transmissive sections have hydraulic connection with nearby boreholes. Measurements of radon content and the resistivity of the borehole liquid provide information on a borehole's dominant zones with

  11. Modeling of water transfer to aquifers: application to the determination of groundwater recharge by inversion in a complex hydrogeological system

    International Nuclear Information System (INIS)

    Hassane-Mamadou-Maina, Fadji-Zaouna

    2016-01-01

    Groundwater is the main available water resource for many countries; they are mainly replenished by water from precipitation, called groundwater recharge. Due to its great importance, management of groundwater resources is more essential than ever, and is achieved through mathematical models which offer us a better understanding of physical phenomena as well as their prediction. Hydrogeological Systems are generally complex thus characterized by a highly variable dynamic over time and space. These complexities have attracted the attention of many hydro geologists and many sophisticated models that can handle these issues and describe these Systems accurately were developed. Unfortunately, modeling groundwater recharge is still a challenge in groundwater resource management. Generally, groundwater models are used to simulate aquifers flow without a good estimation of recharge and its spatial-temporal distribution. as groundwater recharge rates show spatial-temporal variability due to climatic conditions, land use, and hydrogeological heterogeneity, these methods have limitations in dealing with these characteristics. To overcome these limitations, a coupled model which simulates flow in the unsaturated zone and recharge as well as groundwater flow was developed. The flow in the unsaturated zone is solved either with resolution of Richards equation or with empirical models while the diffusivity equation governs flow in the saturated zone. Robust numerical methods were used to solve these equations: we apply nonconforming finite element to solve the diffusivity equation and we used an accurate and efficient method for solving the Richards equation. In the natural environments, parameters that control these hydrological mechanisms aren't accurately known or even unknowns, only variations of piezometric heads are commonly available. Hence, ail parameters related to unsaturated and saturated flows will be identified by using only these piezometric data

  12. Vadose zone transport field study: Detailed test plan for simulated leak tests

    International Nuclear Information System (INIS)

    AL Ward; GW Gee

    2000-01-01

    The US Department of Energy (DOE) Groundwater/Vadose Zone Integration Project Science and Technology initiative was created in FY 1999 to reduce the uncertainty associated with vadose zone transport processes beneath waste sites at DOE's Hanford Site near Richland, Washington. This information is needed not only to evaluate the risks from transport, but also to support the adoption of measures for minimizing impacts to the groundwater and surrounding environment. The principal uncertainties in vadose zone transport are the current distribution of source contaminants and the natural heterogeneity of the soil in which the contaminants reside. Oversimplified conceptual models resulting from these uncertainties and limited use of hydrologic characterization and monitoring technologies have hampered the understanding contaminant migration through Hanford's vadose zone. Essential prerequisites for reducing vadose transport uncertainly include the development of accurate conceptual models and the development or adoption of monitoring techniques capable of delineating the current distributions of source contaminants and characterizing natural site heterogeneity. The Vadose Zone Transport Field Study (VZTFS) was conceived as part of the initiative to address the major uncertainties confronting vadose zone fate and transport predictions at the Hanford Site and to overcome the limitations of previous characterization attempts. Pacific Northwest National Laboratory (PNNL) is managing the VZTFS for DOE. The VZTFS will conduct field investigations that will improve the understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. Ideally, these methods will capture the extent of contaminant plumes using existing infrastructure (i.e., more than 1,300 steel-cased boreholes). The objectives of the VZTFS are to conduct controlled transport experiments at well-instrumented field sites at Hanford to

  13. Modelling of hydro-zones for layout planning and numerical flow model in 2006

    International Nuclear Information System (INIS)

    Ahokas, H.; Vaittinen, T.; Tammisto, E.; Nummela, J.

    2007-11-01

    As part of the programme for the final disposal of spent nuclear fuel, a model was compiled of hydrogeologically significant zones on the Olkiluoto site. These deterministic zones dominate the groundwater flow especially deep in the bedrock, and because of their nature intersections by disposal tunnels will be avoided, if possible. For layout planning purposes, a brief description was made of the deformation zones of the geological model that intersect the planned repository area and are of hydraulic significance from the point of view of long-term safety. In addition, the hydraulic properties of the zones and the bedrock outside the zones needed for the numerical flow simulations were described. Modelling was mainly based on hydrological observations including an extensive number of single-hole hydraulic tests as well as some long-term pumping test results. Some geophysical mise-a-la-masse results were also used in the compilation of the zones. A comparison between the modelled hydrogeological zones and the deformation zones identified in the geological model of the Olkiluoto site is also presented. (orig.)

  14. Hydrogeology of the interstream area between Ty Ty Creek and Ty Ty Creek tributary near Plains, Georgia

    Science.gov (United States)

    Stewart, Lisa M.; Hicks, David W.

    1996-01-01

    This report is part of an interdisciplinary effort to identify and describe processes that control movement and fate of selected fertilizers and pesticides in the surface and subsurface environments in the Fall Line Hills district of the Georgia Coastal Plain physiographic province. This report describes the hydrogeology of the interstream area between Ty Ty Creek and it's tributary near Plains, Sumter County, Georgia. Geologic units of interest to this study are, in ascending order, (1) the Tuscahoma Formation, a bluish gray, silty clay; (2) the Tallahatta Formation, a fine-to-coarse, poorly sorted quartz sand that is divided into an upper and lower unit; and (3) the undifferentiated overburden, which consists of fine to medium poorly sorted sand, silt and clay. Continuous-core samples indicate that the unsaturated zone includes the undifferentiated overburden and the upper unit of the Tallahatta Formation, and attains a maximum thickness of about 52 feet (ft) in the southern part of the study area. The Claiborne aquifer in the study area consists of the lower unit of the Tallahatta Formation and ranges in thickness from 3 ft near Ty Ty Creek tributary to about 20 ft in the upland divide area. It is confined below by the clayey sediments of the Tuscahoma Formation. The Claiborne aquifer in the study area generally is confined above by an extensive clay layer that is the base if the upper unit of the Tallahatta Formation. Fluctuations in the amount of vertical recharge to the aquifer result in areal and temporal changes in aquifer conditions from confined to unconfined in parts of the study area. Hydraulic conductivity of the aquifer ranges from 3.5 to 7 feet per day. The transmissivity of the aquifer is approximately 50 feet squared per day. Water-level data indicate the potentiometric surface slopes to the south, southeast, and southwest with a gradient of about 87 to 167 feet per mile. The shape of the potentiometric surface and the direction of groundwater flow

  15. Evaluation of intrinsic groundwater vulnerability to pollution: COP method for pilot area of Carrara hydrogeological system (Northern Tuscany, Italy)

    Science.gov (United States)

    Baldi, B.; Guastaldi, E.; Rossetto, R.

    2009-04-01

    During the characterization of the Apuan Alps groundwater body ( "Corpo Idrico Sotterraneo Significativo", briefly CISS) (Regione Toscana, 2007) the intrinsic vulnerability has been evaluated for Carrara hydrogeological system (Northern Tuscany, Italy) by means of COP method, developed within COST 620 European Action (Zwalhlen, 2003). This system is both characterized by large data availability and it is considered an highly risky zone since groundwater protection problems (turbidity of the tapped spring waters and hydrocarbons contamination) and anthropic activity (marble quarries). The study area, 20 Km2large, has high relief energy, with elevations ranging from 5 to 1700 m amsl in almost 5 km. Runoff is scarce except during heavy rainfall; due to the presence of carbonate rocks infiltration is high: groundwater discharge at 155-255 m amsl. The area is located in the north-western part of Apuan Alps Metamorphic Complex, characterized by carbonate and non-carbonate rocks belonging to the non-metamorphic Tuscan Units (Carnic-Oligocene), Mesozoic Succession, Middle-Triassic Succession, and metamorphic Paleozoic rocks. The main geological structure of the area is the Carrara Syncline, constituted prevalently by dolostones, marbles and cherty limestones. These carbonate formations define several moderately to highly productive hydrogeological units, characterized by fissured and karst flow. Hydrogeological system may be subdivided in two different subsets, because of both geo-structural set up and area conformation. However, these are hydrogeologically connected since anisotropy and fractures of karst groundwater. The southern boundary of Carrara hydrogeological system shows important dammed springs, defined by low productive units of Massa Unit (Cambriano?-Carnic). COP methodology for evaluating intrinsic vulnerability of karst groundwater is based on three main factors for the definition of vulnerability itself: COPIndex = C (flow Concentration) *O (Overlying layers

  16. Coastal zone

    International Nuclear Information System (INIS)

    2002-01-01

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on the coastal zone focuses on the impact of climate change on Canada's marine and Great Lakes coasts with tips on how to deal with the impacts associated with climate change in sensitive environments. This report is aimed at the sectors that will be most affected by adaptation decisions in the coastal zone, including fisheries, tourism, transportation and water resources. The impact of climate change in the coastal zone may include changes in water levels, wave patterns, storm surges, and thickness of seasonal ice cover. The Intergovernmental Panel on Climate Change projects global average sea level will rise between 9 and 88 centimetres between 1990 to 2100, but not all areas of Canada will experience the same rate of future sea level change. The main physical impact would be shoreline change that could result in a range of biophysical and socio-economic impacts, some beneficial, some negative. The report focuses on issues related to infrastructure and communities in coastal regions. It is noted that appropriate human adaptation will play a vital role in reducing the extent of potential impacts by decreasing the vulnerability of average zone to climate change. The 3 main trends in coastal adaptation include: (1) increase in soft protection, retreat and accommodation, (2) reliance on technology such as geographic information systems to manage information, and (3) awareness of the need for coastal adaptation that is appropriate for local conditions. 61 refs., 7 figs

  17. The Greenland Analogue Project (GAP). Literature review of hydrogeology/ hydrogeochemistry

    International Nuclear Information System (INIS)

    Wallroth, Thomas; Lokrantz, Hanna; Rimsa, Andrius

    2010-09-01

    This report is produced as part of the Greenland Analogue Project (GAP), carried out as a collaboration project with the Canadian Nuclear Waste Management Organization (NWMO), Posiva Oy and the Swedish Nuclear Fuel and Waste Management Co (SKB). The overall aim of the project is to improve the current understanding of hydrogeological and hydrogeochemical processes associated with continental-scale glacial periods including with the presence of permafrost and the advance/retreat of ice sheets. The project will focus on studying how an ice sheet affects groundwater flow and water chemistry around a deep geological repository in crystalline bedrock. The Greenland Analogue Project consists of three active sub-projects (A-C) with individual objectives. Field studies are conducted in the Kangerlussuaq region, in central Western Greenland. Sub-projects A and B collectively aim at improving the understanding of ice sheet hydrology by combining investigations on surface water processes with ice sheet drilling and instrumentation. In sub-project C, the penetration of glacial melt water into the bedrock, groundwater flow and the chemical composition of water will be studied. Main planned activities in sub-project C include drilling of a deep borehole in front of the ice sheet, in which different downhole surveys, sampling and monitoring will be carried out. The primary aim of this report is to review available information about hydrogeology and hydrogeochemistry in central Western Greenland, with special emphasis on the area around Kangerlussuaq. The relevant information about this area is however very limited, and it was decided to extend the review to briefly include studies made in other regions with similar conditions in terms of geology, climate and glaciology. The number of published studies made in other areas with glaciers, ice sheets or permafrost is very large, and the review and list of references in this report is far from complete. It is also obvious that both

  18. The Greenland Analogue Project (GAP). Literature review of hydrogeology/ hydrogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Wallroth, Thomas; Lokrantz, Hanna; Rimsa, Andrius (Bergab Consulting Geologists, Goeteborg (Sweden))

    2010-09-15

    This report is produced as part of the Greenland Analogue Project (GAP), carried out as a collaboration project with the Canadian Nuclear Waste Management Organization (NWMO), Posiva Oy and the Swedish Nuclear Fuel and Waste Management Co (SKB). The overall aim of the project is to improve the current understanding of hydrogeological and hydrogeochemical processes associated with continental-scale glacial periods including with the presence of permafrost and the advance/retreat of ice sheets. The project will focus on studying how an ice sheet affects groundwater flow and water chemistry around a deep geological repository in crystalline bedrock. The Greenland Analogue Project consists of three active sub-projects (A-C) with individual objectives. Field studies are conducted in the Kangerlussuaq region, in central Western Greenland. Sub-projects A and B collectively aim at improving the understanding of ice sheet hydrology by combining investigations on surface water processes with ice sheet drilling and instrumentation. In sub-project C, the penetration of glacial melt water into the bedrock, groundwater flow and the chemical composition of water will be studied. Main planned activities in sub-project C include drilling of a deep borehole in front of the ice sheet, in which different downhole surveys, sampling and monitoring will be carried out. The primary aim of this report is to review available information about hydrogeology and hydrogeochemistry in central Western Greenland, with special emphasis on the area around Kangerlussuaq. The relevant information about this area is however very limited, and it was decided to extend the review to briefly include studies made in other regions with similar conditions in terms of geology, climate and glaciology. The number of published studies made in other areas with glaciers, ice sheets or permafrost is very large, and the review and list of references in this report is far from complete. It is also obvious that both

  19. Hydrogeological map of Italy: the preliminary Sheet N. 348 Antrodoco (Central Italy

    Directory of Open Access Journals (Sweden)

    Marco Amanti

    2016-07-01

    Full Text Available The Geological Survey of Italy, Italian National Institute for Environmental Protection and Research is realizing the Sheet N.348 Antrodoco (Central Italy of the Hydrogeological map of Italy as a cartographical test of the Italian hydrogeological survey and mapping guidelines, in the frame of the Italian Geological Cartography Project. The study area is characterized by structural units deeply involved in the Apennine Orogeny (Latium and Abruzzi region territory, Rieti and L’Aquila provinces and including deposits of marine carbonate shelf, slope, basin and foredeep environments hosting relatively large amounts of groundwater resources. The map was realized to obtain the best possible representation of all hydrogeological elements deriving from field surveys, in order to characterize the hydrogeological asset. A control network for monthly measurement of surface and groundwater flow rates and hydrogeochemical parameters was performed. Data were uploaded in a geographic information system to perform the present preliminary hydrogeological cartography consisting in a main map showing the following hydrogeological complexes based on relative permeability degree (from bottom to top: i calcareous (Jurassic-Cretaceous; high permeability; ii calcareous-marly (Upper Cretaceous-Middle Eocene; intermediate permeability; iii marly-calcareous and marly (Upper Eocene- Upper Miocene; low permeability; iv flysch (Upper Miocene; low permeability; v conglomeratic-sandy and detritic (Upper Pliocene- Pleistocene; intermediate permeability; vi alluvial (Quaternary; low permeability. Among other elements shown in the main map there are hydrographical basin and sub-basin boundaries, stream gauging stations, meteo-climatic stations, streamwater-groundwater exchange processes, hydrostructure boundaries, point and linear spring flow rates, groundwater flow directions. Furthermore, complementary smaller-scale sketches at the margin of the main map were realized (e

  20. An Integrated Hydrogeologic and Geophysical Investigation to Characterize the Hydrostratigraphy of the Edwards Aquifer in an Area of Northeastern Bexar County, Texas

    Science.gov (United States)

    Shah, Sachin D.; Smith, Bruce D.; Clark, Allan K.; Payne, Jason

    2008-01-01

    In August 2007, the U.S. Geological Survey, in cooperation with the San Antonio Water System, did a hydrogeologic and geophysical investigation to characterize the hydrostratigraphy (hydrostratigraphic zones) and also the hydrogeologic features (karst features such as sinkholes and caves) of the Edwards aquifer in a 16-square-kilometer area of northeastern Bexar County, Texas, undergoing urban development. Existing hydrostratigraphic information, enhanced by local-scale geologic mapping in the area, and surface geophysics were used to associate ranges of electrical resistivities obtained from capacitively coupled (CC) resistivity surveys, frequency-domain electromagnetic (FDEM) surveys, time-domain electromagnetic (TDEM) soundings, and two-dimensional direct-current (2D-DC) resistivity surveys with each of seven hydrostratigraphic zones (equivalent to members of the Kainer and Person Formations) of the Edwards aquifer. The principal finding of this investigation is the relation between electrical resistivity and the contacts between the hydrostratigraphic zones of the Edwards aquifer and the underlying Trinity aquifer in the area. In general, the TDEM data indicate a two-layer model in which an electrical conductor underlies an electrical resistor, which is consistent with the Trinity aquifer (conductor) underlying the Edwards aquifer (resistor). TDEM data also show the plane of Bat Cave fault, a well-known fault in the area, to be associated with a local, nearly vertical zone of low resistivity that provides evidence, although not definitive, for Bat Cave fault functioning as a flow barrier, at least locally. In general, the CC resistivity, FDEM survey, and 2D-DC resistivity survey data show a sharp electrical contrast from north to south, changing from high resistivity to low resistivity across Bat Cave fault as well as possible karst features in the study area. Interpreted karst features that show relatively low resistivity within a relatively high

  1. Hydrogeology and water chemistry of Infranz catchment springs, Bahir Dar Area, Lake Tana Basin, Ethiopia

    Science.gov (United States)

    Abera, F. N.

    2017-12-01

    The major springs in the Infranz catchment are a significant source of water for Bahir city and nearby villages, while they help to sustain Infranz River and the downstream wetlands. The aim of the research was to understand the hydrogeological conditions of these high-discharge springs, and to explain the hydrochemical composition of spring waters. Water samples from rainwater and springs were collected and analyzed and compared for major cations and anions. The hydrochemical data analysis showed that all water samples of the springs have freshwater chemistry, Ca-HCO3 type, while deep groundwater shows more evolved types. This indicates limited water-rock interaction and short residence time for the spring waters. The rise of NO3- and PO43- may indicate future water quality degradation unless the anthropogenic activities upgradient and nearby are restricted. The uptake of 75% of spring water for water supply of Bahir Dar results in wetland degradation. Key words: Spring water, Infranz River, Bahir Dar, Ethiopia, hydrochemistry

  2. Hydrogeology of Valley-Fill Aquifers and Adjacent Areas in Eastern Chemung County, New York

    Science.gov (United States)

    Heisig, Paul M.

    2015-10-19

    The extent, hydrogeologic framework, and potential well yields of valley-fill aquifers within a 151-square-mile area of eastern Chemung County, New York, were investigated, and the upland distribution of till thickness over bedrock was characterized. The hydrogeologic framework of these valleyfill aquifers was interpreted from multiple sources of surficial and subsurface data and an interpretation of the origin of the glacial deposits, particularly during retreat of glacial ice from the region. Potential yields of screened wells are based on the hydrogeologic framework interpretation and existing well-yield data, most of which are from wells finished with open-ended well casing.

  3. Study on the methodology for hydrogeological site descriptive modelling by discrete fracture networks

    International Nuclear Information System (INIS)

    Tanaka, Tatsuya; Ando, Kenichi; Hashimoto, Shuuji; Saegusa, Hiromitsu; Takeuchi, Shinji; Amano, Kenji

    2007-01-01

    This study aims to establish comprehensive techniques for site descriptive modelling considering the hydraulic heterogeneity due to the Water Conducting Features in fractured rocks. The WCFs was defined by the interpretation and integration of geological and hydrogeological data obtained from the deep borehole investigation campaign in the Mizunami URL project and Regional Hydrogeological Study. As a result of surface based investigation phase, the block-scale hydrogeological descriptive model was generated using hydraulic discrete fracture networks. Uncertainties and remaining issues associated with the assumption in interpreting the data and its modelling were addressed in a systematic way. (author)

  4. Perspectives of natural isotopes application for solving hydrogeological problems of mineral deposits

    International Nuclear Information System (INIS)

    Rozkowski, A.

    1978-01-01

    Results of hydrogeological studies made with use of natural isotopes and carried out within the Lublin Coal Field are presented in the paper. The studies have proved advantageous possibilities of isotope technique application for solving the hydrogeological problems of mineral deposits. Examination of isotope relations in ground waters complements traditional hydrogeological methods. This trend of complex investigations enables solving some peculiar hydrodynamic and hydrochemical problems. Exact recognition of these conditions is required to elaborate out proper prognosis on water content degree in given deposit and on value of ground water inflow into areas of designed mines. (author)

  5. Summary of hydrogeologic conditions at Aberg, Beberg and Ceberg

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.; Gurban, I. [INTERA KB, Sollentuna (Sweden); Rhen, I. [VBB Viak AB (Sweden)

    1997-10-01

    This report is a compilation of existing data and descriptions for use in the hydrogeologic modelling of three hypothetical sites for a nuclear waste repository in Sweden. It provides modelling teams with preliminary conceptual models, parameter values and uncertainties for inputs to numerical flow and transport models on the regional and site scales. Its primary objective is to provide consistent data sets and conceptual models so that the results of performance assessment modelling will be as comparable as possible. Where possible, this report also provides alternative conceptual models that should be evaluated as part of the modelers` sensitivity analysis. The information contained in this report is taken from several key sources, including the SKB SICADA database, the Swedish Geological Survey well database, the SKB Geographic Information System, the Swedish Land Survey databases, and published SKB reports. 148 refs, 25 tabs, 60 figs.

  6. Simple method for quick estimation of aquifer hydrogeological parameters

    Science.gov (United States)

    Ma, C.; Li, Y. Y.

    2017-08-01

    Development of simple and accurate methods to determine the aquifer hydrogeological parameters was of importance for groundwater resources assessment and management. Aiming at the present issue of estimating aquifer parameters based on some data of the unsteady pumping test, a fitting function of Theis well function was proposed using fitting optimization method and then a unitary linear regression equation was established. The aquifer parameters could be obtained by solving coefficients of the regression equation. The application of the proposed method was illustrated, using two published data sets. By the error statistics and analysis on the pumping drawdown, it showed that the method proposed in this paper yielded quick and accurate estimates of the aquifer parameters. The proposed method could reliably identify the aquifer parameters from long distance observed drawdowns and early drawdowns. It was hoped that the proposed method in this paper would be helpful for practicing hydrogeologists and hydrologists.

  7. In-EDTA as activable tracer in hydrogeological investigations

    International Nuclear Information System (INIS)

    Stanescu, S.P.; Gaspar, E.; Spiridon, S.; Farcasiu, O.M.; Catilina, R.

    1982-12-01

    Two experiments are presented, on the possibilities of the use of indium in the form of the In-EDTA complex, as an activable tracer for hydrogeological studies. The determination of indium concentrations in the sampled water has been carried out by using the coprecipitation of indium with bismuth hydroxide, the neutron activation at the VVR-S reactor of the Institute for Nuclear Physics and Engineering - Bucharest and the measurement on the 417.0 keV line of sup(116m)In with the Ge(Li) spectrometric device. The advantages of the utilization of In-EDTA as a tracer for marking large volumes of water and of some long transit waters (of the order of months) have resulted. (authors)

  8. Hydrogeology of the Besparmak (Pentadactilos) Mountains (TRNC) Karstic Aquifer

    International Nuclear Information System (INIS)

    Erduran, B.; Goekmenoglu, O.; Keskin, E.

    2002-01-01

    The Besparmak Mountains are located on the Nothern part of North Cyprus and lay paralel to the sea, 160 km 2 in length 10 km in width. Karstification, potential constituent and the hydro-dynamic structure of the Mesosoic aged carbonate rocks, located at high altitudes of the Besparmak Mountains have been investigated in this study. The Mesosoic aged carbonate rocks; dolomite, dolomitic limestones and recrytallized limestones are yhe units suitable for karstification in the exploration area. Surface area of the carbonate rocks is 84 km 2 . Chemical and isotopic samples have been collected, groundwater fluctuations have been observed and investigation wells have been openned for the definition of the karst aquifer. As the result of the geological, hydrogeological, drilling and geophysical investigations it was found that the Besparmak Mountains Karst Aquifer was formed of independent karstic systems and a total dynamic groundwater potential of aproximately 9 x 10 6 m 3 /year for these systems has been determined

  9. Hydrogeological investigations at the surface of the Wellenberg region

    International Nuclear Information System (INIS)

    Baumann, A.; Frieg, B.

    1991-01-01

    The aim of the surface investigations carried out at Wellenberg is twofold, namely to provide a record of the actual hydrogeological situation before commencing operations at a site and to suppplement data obtained using other methods. The initial phase involved drawing up an inventory of all springs, streams and groundwater observation points and determining various physical parameters. The observation points are now checked periodically. In order to supplement the network for monitoring groundwater in the valley of the Engelberger Aa, new shallow boreholes have been drilled and equipped as piezometers. Isotopic investigations are carried out on samples of precipitation and spring-water. This allows infiltration conditions, and seasonal variations therein, to be determined. Finally, hydrochemical and bacteriological investigations were carried out for selected springs. (author) 2 figs

  10. Summary of hydrogeologic conditions at Aberg, Beberg and Ceberg

    International Nuclear Information System (INIS)

    Walker, D.; Gurban, I.; Rhen, I.

    1997-10-01

    This report is a compilation of existing data and descriptions for use in the hydrogeologic modelling of three hypothetical sites for a nuclear waste repository in Sweden. It provides modelling teams with preliminary conceptual models, parameter values and uncertainties for inputs to numerical flow and transport models on the regional and site scales. Its primary objective is to provide consistent data sets and conceptual models so that the results of performance assessment modelling will be as comparable as possible. Where possible, this report also provides alternative conceptual models that should be evaluated as part of the modelers' sensitivity analysis. The information contained in this report is taken from several key sources, including the SKB SICADA database, the Swedish Geological Survey well database, the SKB Geographic Information System, the Swedish Land Survey databases, and published SKB reports

  11. Progress in Geo-Electrical Methods for Hydrogeological Mapping?

    DEFF Research Database (Denmark)

    Schrøder, Niels

    2014-01-01

    In most of the 20th century the geo-electrical methods were primarily used for groundwater exploration and the application of the methods were normally followed by a borehole, and a moment of truth. In this process the use of DC (direct current) soundings have been developed to a high grade...... of excellence. In the last 25 years the geo-electrical methods are more used in connection with groundwater protection and planning, and new methods, as transient electromagnetic (TEM) soundings, have been developed that provide more measurements per hour. In Denmark this change is very explicit, and a paper....... The test area was earlier mapped by DC-soundings, so it is possible to test the methods against each other. It is concluded that well performed DC-soundings with a Schlumberger configuration still provide the best base for hydrogeological mapping...

  12. Hydrogeological Characterization of Low-permeability Clayey Tills

    DEFF Research Database (Denmark)

    Kessler, Timo Christian

    The topic of this PhD thesis is an integrated investigation of sand lenses in glacial diamictons. Sand lenses indicate various deposition regimes and glaciotectonic deformation styles and are as such important features in studies of glacial sediments. In a hydrogeological framework, sand lenses......-dimensional realizations indicate clear channel networks, whereas only limited connectivity was found for the two-dimensional case. This is an important aspect because it emphasizes the need to collect data and to represent this type of heterogeneity in 3D. The physical response of sand lens heterogeneity was evaluated...... enhance the horizontal spreading of contaminants without a significant increase of the equivalent permeability in the till. Overall, sand lenses occur in all types of glacial sediments and with a broad range of shapes and hydraulic properties. Geometric characterization enabled classification of the most...

  13. A review of hydrogeology research techniques and technology

    International Nuclear Information System (INIS)

    Grisak, G.E.; Pickens, J.F.

    1985-06-01

    A review of techniques and technology pertaining to the movement of ground water, solutes/radionuclides and heat through porous and fractured media has been conducted. The theory describing each of these processes has been presented in terms of their partial differential equations. The equations serve as the basis for the identification of processes. These parameters have been discussed in detail with regards to their importance in controlling the overall transport processes. A hypothetical research program has been assembled for the purpose of illustrating the hydrogeologic methods and research techniques applicable to site characterization studies. Areas where the current state of the art is lacking have been identified and the necessary research has been recommended. 103 refs

  14. Using Vertical Electrical Soundings for Characterizing Hydrogeological and Tectonic Settings in Deir El-Adas Area, Yarmouk Basin, Syria

    Science.gov (United States)

    Al-Fares, Walid

    2016-06-01

    The present study is aimed at characterizing the subsurface geological and tectonic structure in Deir El-Adas area, by using Vertical Electrical Sounding survey (VES) and hydrogeological investigations, in order to determine the causes of the failure for the majority of the wells drilled in the area. The survey data was treated in three different approaches including direct VES inversion, pseudo-2D method and horizontal profiling, in order to maximize the reliability of the data interpretation. The results revealed the presence of a local faulted anticline structure at the top of the Paleogene formation, underneath the basaltic outcrops where Deir El-Adas village is situated. The appearance of this subsurface anticline structure has complicated the local hydro-geological situation, and most likely led to limitation of the groundwater recharge in the area. Moreover, the performed piezometric and discharge maps indicated the presence of a notable groundwater watershed, in addition to feeble water productivity of the wells drilled adjacent to Deir El-Adas, mostly related to the subsurface geological and tectonic settings in the area.

  15. Major Links.

    Science.gov (United States)

    Henderson, Tona

    1995-01-01

    Provides electronic mail addresses for resources and discussion groups related to the following academic majors: art, biology, business, chemistry, computer science, economics, health sciences, history, literature, math, music, philosophy, political science, psychology, sociology, and theater. (AEF)

  16. Major Roads

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data set contains roadway centerlines for major roads (interstates and trunk highways) found on the USGS 1:24,000 mapping series. These roadways are current...

  17. Observations on Faults and Associated Permeability Structures in Hydrogeologic Units at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Prothro, Lance B.; Drellack, Sigmund L.; Haugstad, Dawn N.; Huckins-Gang, Heather E.; Townsend, Margaret J.

    2009-03-30

    Observational data on Nevada Test Site (NTS) faults were gathered from a variety of sources, including surface and tunnel exposures, core samples, geophysical logs, and down-hole cameras. These data show that NTS fault characteristics and fault zone permeability structures are similar to those of faults studied in other regions. Faults at the NTS form complex and heterogeneous fault zones with flow properties that vary in both space and time. Flow property variability within fault zones can be broken down into four major components that allow for the development of a simplified, first approximation model of NTS fault zones. This conceptual model can be used as a general guide during development and evaluation of groundwater flow and contaminate transport models at the NTS.

  18. Hydrogeology and simulation of groundwater flow in the Central Oklahoma (Garber-Wellington) Aquifer, Oklahoma, 1987 to 2009, and simulation of available water in storage, 2010–2059

    Science.gov (United States)

    Mashburn, Shana L.; Ryter, Derek W.; Neel, Christopher R.; Smith, S. Jerrod; Magers, Jessica S.

    2014-02-10

    The Central Oklahoma (Garber-Wellington) aquifer underlies about 3,000 square miles of central Oklahoma. The study area for this investigation was the extent of the Central Oklahoma aquifer. Water from the Central Oklahoma aquifer is used for public, industrial, commercial, agricultural, and domestic supply. With the exception of Oklahoma City, all of the major communities in central Oklahoma rely either solely or partly on groundwater from this aquifer. The Oklahoma City metropolitan area, incorporating parts of Canadian, Cleveland, Grady, Lincoln, Logan, McClain, and Oklahoma Counties, has a population of approximately 1.2 million people. As areas are developed for groundwater supply, increased groundwater withdrawals may result in decreases in long-term aquifer storage. The U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, investigated the hydrogeology and simulated groundwater flow in the aquifer using a numerical groundwater-flow model. The purpose of this report is to describe an investigation of the Central Oklahoma aquifer that included analyses of the hydrogeology, hydrogeologic framework of the aquifer, and construction of a numerical groundwater-flow model. The groundwater-flow model was used to simulate groundwater levels and for water-budget analysis. A calibrated transient model was used to evaluate changes in groundwater storage associated with increased future water demands.

  19. Hydrogeology and simulation of the effects of reclaimed-water application in west Orange and southeast Lake counties, Florida

    Science.gov (United States)

    O'Reilly, Andrew M.

    1998-01-01

    Wastewater reclamation and reuse has become increasingly popular as water agencies search for alternative water-supply and wastewater-disposal options. Several governmental agencies in central Florida currently use the land-based application of reclaimed water (wastewater that has been treated beyond secondary treatment) as a management alternative to surface-water disposal of wastewater. Water Conserv II, a water reuse project developed jointly by Orange County and the City of Orlando, began operation in December 1986. In 1995, the Water Conserv II facility distributed approximately 28 Mgal/d of reclaimed water for discharge to rapid-infiltration basins (RIBs) and for use as agricultural irrigation. The Reedy Creek Improvement District (RCID) began operation of RIBs in September 1990, and in 1995 these RIBs received approximately 6.7 Mgal/d of reclaimed water. Analyses of existing data and data collected during the course of this study were combined with ground-water flow modeling and particle-tracking analyses to develop a process-oriented evaluation of the regional effects of reclaimed water applied by Water Conserv II and the RCID RIBs on the hydrology of west Orange and southeast Lake Counties. The ground-water flow system beneath the study area is a multi-aquifer system that consists of a thick sequence of highly permeable carbonate rocks overlain by unconsolidated sediments. The hydrogeologic units are the unconfined surficial aquifer system, the intermediate confining unit, and the confined Floridan aquifer system, which consists of two major permeable zones, the Upper and Lower Floridan aquifers, separated by the less permeable middle semiconfining unit. Flow in the surficial aquifer system is dominated regionally by diffuse downward leakage to the Floridan aquifer system and is affected locally by lateral flow systems produced by streams, lakes, and spatial variations in recharge. Ground water generally flows laterally through the Upper Floridan aquifer

  20. Geoecological zoning of developed territories

    Directory of Open Access Journals (Sweden)

    O. N. Gryaznov

    2017-12-01

    Full Text Available The article contains information on methods of geoecological zoning carried out based on the assessment of cartographic material using geoinformation technologies for the analysis of factographic cartographic material. The proposed methodology complements the existing methodological recommendations on geological and environmental research, developed by VSEGINGEO. The paper reflects the basic principles of obtaining the initial environmental information for creation of a map evaluation model of the Salekhard Area, and the rationale for selecting factors and numerical criteria for an integrated environmental assessment of the territory, taking into account the specifics of nature-technogenic conditions of the Severnoye Priobye region (West Siberia. The article briefly describes the main natural factors of the region of research, including landscape, geological, radiation, engineering-geological, geocryological, hydrogeological factors. Separate block describes the objects of technogenic load, including technogeneally-transformed landscapes in residential areas, corridors of transport communications, industrial and energy zones, and local ecologically significant objects. Ecological significance of natural and technogenic factors affected conducted ranking of their numerical parameters of the evaluation criteria. The article shows the application of a method of expert scoring for obtaining an integral assessment of the ecological state of the geological environment and creating a map of the regionalization of the Salekhard Area. Based on obtained cartographic model, a brief analysis of the existing ecological situation in the Salekhard Area shows the territories of favorable, satisfactory, tense, and crisis ecological states. The geoinformation-integrated model serves as the basis for determination of ecologically significant factors at the points of mapping the state of the geological environment, which allows for the further development of the

  1. Hydrogeology and Analysis of Aquifer Characteristics in West-Central Pinellas County, Florida

    National Research Council Canada - National Science Library

    Broska, James C; Barnette, Holly L

    1999-01-01

    The U.S. Geological Survey, in cooperation with Pinellas County, Florida, conducted an investigation to describe the hydrogeology and analyze the aquifer characteristics in west-central Pinellas County...

  2. The efficiency of the use of penetration nuclear logging in hydrogeology and engineering geology

    International Nuclear Information System (INIS)

    Ferronsky, V.I.

    1992-01-01

    The latest developments in equipment and techniques for nuclear and combined non-nuclear logging in friable unconsolidated deposits, including marine bottom sediments are described. The effectiveness of these techniques in hydrogeological and engineering geological investigations is discussed. (Author)

  3. Socio-hydrogeology and low-income countries: taking science to rural society

    Science.gov (United States)

    Limaye, Shrikant Daji

    2017-11-01

    Rural societies in low-income, high-population countries often faces scarcity of water of suitable quality for domestic use and agriculture. Hydrogeologists should therefore orientate their research work towards solving practical problems and impart basic knowledge about the hydrogeology of local watersheds to the village councils and communities so as to ensure their participation in better management of groundwater resources. Such cooperation between the hydrogeologists and villagers is the foundation of socio-hydrogeology, which aims at broader dissemination of information and discussions with hydrogeologists at village meetings regarding watershed management such as recharge augmentation, groundwater quality issues and prudent use of groundwater. Socio-hydrogeology implies improved accessibility of rural society to hydrogeological experts and better communication through the use of more appropriate and understandable language.

  4. Hydrogeology and Aquifer Storage and Recovery Performance in the Upper Floridan Aquifer, Southern Florida

    Science.gov (United States)

    Reese, Ronald S.; Alvarez-Zarikian, Carlos A.

    2007-01-01

    Well construction, hydraulic well test, ambient water-quality, and cycle test data were inventoried and compiled for 30 aquifer storage and recovery facilities constructed in the Floridan aquifer system in southern Florida. Most of the facilities are operated by local municipalities or counties in coastal areas, but five sites are currently being evaluated as part of the Comprehensive Everglades Restoration Plan. The relative performance of all sites with adequate cycle test data was determined, and compared with four hydrogeologic and design factors that may affect recovery efficiency. Testing or operational cycles include recharge, storage, and recovery periods that each last days or months. Cycle test data calculations were made including the potable water (chloride concentration of less than 250 milligrams per liter) recovery efficiency per cycle, total recovery efficiency per cycle, and cumulative potable water recovery efficiencies for all of the cycles at each site. The potable water recovery efficiency is the percentage of the total amount of potable water recharged for each cycle that is recovered; potable water recovery efficiency calculations (per cycle and cumulative) were the primary measures used to evaluate site performance in this study. Total recovery efficiency, which is the percent recovery at the end of each cycle, however, can be substantially higher and is the performance measure normally used in the operation of water-treatment plants. The Upper Floridan aquifer of the Floridan aquifer system currently is being used, or planned for use, at 29 of the aquifer storage and recovery sites. The Upper Floridan aquifer is continuous throughout southern Florida, and its overlying confinement is generally good; however, the aquifer contains brackish to saline ground water that can greatly affect freshwater storage and recovery due to dispersive mixing within the aquifer. The hydrogeology of the Upper Floridan varies in southern Florida; confinement

  5. SITE-94. Discrete-feature modelling of the Aespoe Site: 3. Predictions of hydrogeological parameters for performance assessment

    International Nuclear Information System (INIS)

    Geier, J.E.

    1996-12-01

    A 3-dimensional, discrete-feature hydrological model is developed. The model integrates structural and hydrologic data for the Aespoe site, on scales ranging from semi regional fracture zones to individual fractures in the vicinity of the nuclear waste canisters. Predicted parameters for the near field include fracture spacing, fracture aperture, and Darcy velocity at each of forty canister deposition holes. Parameters for the far field include discharge location, Darcy velocity, effective longitudinal dispersion coefficient and head gradient, flow porosity, and flow wetted surface, for each canister source that discharges to the biosphere. Results are presented in the form of statistical summaries for a total of 42 calculation cases, which treat a set of 25 model variants in various combinations. The variants for the SITE-94 Reference Case model address conceptual and parametric uncertainty related to the site-scale hydrogeologic model and its properties, the fracture network within the repository, effective semi regional boundary conditions for the model, and the disturbed-rock zone around the repository tunnels and shafts. Two calculation cases simulate hydrologic conditions that are predicted to occur during future glacial episodes. 30 refs

  6. Hydrogeological controls of radon in a few hot springs in the Western Ghats at Ratnagiri district in Maharashtra, India

    International Nuclear Information System (INIS)

    Ansari, Md. Arzoo; Sharma, Suman; Saravana Kumar, U.; Chatterjee, Sitangshu; Diksha; Low, Upananda

    2014-01-01

    Geological structures (faults, fractures and weak zones) and high heat flow in geothermal areas allow easy passage for release of radon gas to the atmosphere. Radon is constantly transported from the Earth's interior and vented out through exhalation points at permeable fault zones. 222 Rn concentrations were measured in a few hot springs and nearby groundwater using RAD7 at Tural and Rajwadi, Ratnagiri district, Maharashtra. The 222 Rn concentrations in the hot springs vary from 1087 ± 132 to 1655 ± 177 Bq/m 3 at Tural and from 152 ± 67 to 350 ± 82 Bq/m 3 at Rajwadi. Groundwaters from wells within a radius of 200 m around the geothermal fields have radon concentration between 1087 ± 132 and 5445 ± 337 Bq/m 3 . We have assessed the radon activity in the vicinity of the hot springs to understand their hydrogeological control, origin of heat source and possible effect on the tourist and the human population residing nearby. (author)

  7. Analysis on paleo-hydrogeological conditions of uranium formation in Sawafuqi uranium deposit

    International Nuclear Information System (INIS)

    Lin Xiaobin; Hao Weilin; Wang Zhiming

    2013-01-01

    Sawafuqi uranium deposit is located in Kuergan intermontane basin of the South Tianshan (STS) fold belt. On the basis of regional tectonics, paleogeography, paleoclimate and related data, the evolution of intermontane basin could be divided into three hydrogeological cycles. The relationship of uranium mineralization to each cycle was analyzed from the perspective of the evolution of palaeo-hydrogeological conditions, and the uranium metallogenic model in palaeohydrogeology under strongly constructive background was established. (authors)

  8. The relationship between hydrogeologic properties and sedimentary facies: an example from Pennsylvanian bedrock aquifers, southwestern Indiana

    International Nuclear Information System (INIS)

    Fisher, A.T.; Barnhill, M.; Revenaugh, J.

    1998-01-01

    The relationship between the hydrogeologic properties and sedimentary facies of shallow Pennsylvanian bedrock aquifers was examined using detailed sedimentologic descriptions, aquifer (slug) tests, and gamma ray logs. The main goal of the study was to determine if it was possible to reliably estimate near-well hydraulic conductivities using core descriptions and logging data at a complex field site, based on assignment of consistent conductivity indicators to individual facies. Lithologic information was gathered from three sources: core descriptions, simplified lithologic columns derived from the core descriptions, and drillers' logs. Gamma ray data were collected with a conventional logging instrument. Slug tests were conducted in all wells containing screened zones entirely within the Pennsylvanian facies of interest. Simplified subsets of sedimentologic facies were assembled for classification of subsurface geology, and all rocks within the screened intervals of test wells were assigned to individual facies based on visual descriptions. Slug tests were conducted to determine the bulk hydraulic conductivity (a spatial average within the screened interval) in the immediate vicinity of the wells, with measured values varying from 10 -4 m/s to 10 -8 m/s. Gamma ray logs from these wells revealed variations in raw counts above about 1.5 orders of magnitude. Data were combined using simple linear and nonlinear inverse techniques to derive relations between sedimentologic facies, gamma ray signals, and bulk hydraulic conductivities. The analyses suggest that facies data alone, even those derived from detailed core descriptions, are insufficient for estimating hydraulic conductivity in this setting to better than an order of magnitude. The addition of gamma ray data improved the estimates, as did selective filtering of several extreme values from the full data set. Better estimates might be obtained through more careful field measurements and reduction of

  9. GIS-based hydrogeological databases and groundwater modelling

    Science.gov (United States)

    Gogu, Radu Constantin; Carabin, Guy; Hallet, Vincent; Peters, Valerie; Dassargues, Alain

    2001-12-01

    Reliability and validity of groundwater analysis strongly depend on the availability of large volumes of high-quality data. Putting all data into a coherent and logical structure supported by a computing environment helps ensure validity and availability and provides a powerful tool for hydrogeological studies. A hydrogeological geographic information system (GIS) database that offers facilities for groundwater-vulnerability analysis and hydrogeological modelling has been designed in Belgium for the Walloon region. Data from five river basins, chosen for their contrasting hydrogeological characteristics, have been included in the database, and a set of applications that have been developed now allow further advances. Interest is growing in the potential for integrating GIS technology and groundwater simulation models. A "loose-coupling" tool was created between the spatial-database scheme and the groundwater numerical model interface GMS (Groundwater Modelling System). Following time and spatial queries, the hydrogeological data stored in the database can be easily used within different groundwater numerical models. Résumé. La validité et la reproductibilité de l'analyse d'un aquifère dépend étroitement de la disponibilité de grandes quantités de données de très bonne qualité. Le fait de mettre toutes les données dans une structure cohérente et logique soutenue par les logiciels nécessaires aide à assurer la validité et la disponibilité et fournit un outil puissant pour les études hydrogéologiques. Une base de données pour un système d'information géographique (SIG) hydrogéologique qui offre toutes les facilités pour l'analyse de la vulnérabilité des eaux souterraines et la modélisation hydrogéologique a été établi en Belgique pour la région Wallonne. Les données de cinq bassins de rivières, choisis pour leurs caractéristiques hydrogéologiques différentes, ont été introduites dans la base de données, et un ensemble d

  10. A hydrogeologic map of the Death Valley region, Nevada, and California, developed using GIS techniques

    International Nuclear Information System (INIS)

    Faunt, C.C.; D'Agnese, F.A.; Turner, A.K.

    1997-01-01

    In support of Yucca Mountain site characterization studies, a hydrogeologic framework was developed, and a hydrogeologic map was constructed for the Death Valley region. The region, covering approximately 100,000 km 2 along the Nevada-California border near Las Vegas, is characterized by isolated mountain ranges juxtaposed against broad, alluvium-filled valleys. Geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. The regional ground-water flow system can best be described as a series of connected intermontane basins in which ground-water flow occurs in basin-fill deposits, carbonate rocks, clastic rocks, and volcanic rocks. Previous investigations have developed more site-specific hydrogeologic relationships; however, few have described all the lithologies within the Death Valley regional ground-water flow system. Information required to characterize the hydrogeologic units in the region was obtained from regional geologic maps and reports. Map data were digitized from regional geologic maps and combined into a composite map using a geographic information system. This map was simplified to show 10 laterally extensive hydrogeologic units with distinct hydrologic properties. The hydraulic conductivity values for the hydrogeologic units range over 15 orders of magnitude due to the variability in burial depth and degree of fracturing

  11. Contribution to optimisation of Environmental Isotopes tracing in Hydrogeology. Case study of Madagascar

    International Nuclear Information System (INIS)

    RAJAOBELISON, J.

    2003-01-01

    The aim of this work is to suggest some improvements on the theory of interpretation and on the methodological approach for the optimum use of environmental isotopes tracing applied to hydrogeological investigation. A review of the theory of environmental isotopes used in hydrogeology has been made. The main constraints have been highlighted and led to some comments and proposals of improvement, in particular with regard to the continental effect on stable isotopes, to the seasonal variation of groundwater 1 4C content, and to the appropriate model for fractured crystalline aquifers. A literature survey on ten specific scientific papers, dealing with isotopic hydrology in miscellaneous types of aquifers and catchments, allowed to draw a synthesis of the hydrogeological, geochemical and isotopic constraints. A proposal of optimum methodological approach, taking into account the above mentioned constraints, have been inferred. The results of an on-going hydrogeological investigation carried out in the Southern crystalline basement and coastal sedimentary aquifers of Madagascar highlights an unusual methodological approach based on the lack of initial basic hydrogeological data. Besides, it shows to what extent the experience of the above mentioned research works can apply in the specific case of the complex aquifers of Madagascar. The lessons gained from this study contribute to enrich the synthesis of environmental isotopes constraints in hydrogeology and lead to a more realistic methodological approach proposal wich is likely to better make profitable the isotope hydrology technology

  12. West Siberian basin hydrogeology - regional framework for contaminant migration from injected wastes

    International Nuclear Information System (INIS)

    Foley, M.G.

    1994-05-01

    Nuclear fuel cycle activities of the former Soviet Union (FSU) have resulted in massive contamination of the environment in western Siberia. We are developing three-dimensional numerical models of the hydrogeology and potential contaminant migration in the West Siberian Basin. Our long-term goal at Pacific Northwest Laboratory is to help determine future environmental and human impacts given the releases that have occurred to date and the current waste management practices. In FY 1993, our objectives were to (1) refine and implement the hydrogeologic conceptual models of the regional hydrogeology of western Siberia developed in FY 1992 and develop the detailed, spatially registered digital geologic and hydrologic databases to test them, (2) calibrate the computer implementation of the conceptual models developed in FY 1992, and (3) develop general geologic and hydrologic information and preliminary hydrogeologic conceptual models relevant to the more detailed models of contaminated site hydrogeology. Calibration studies of the regional hydrogeologic computer model suggest that most precipitation entering the ground-water system moves in the near-surface part of the system and discharges to surface waters relatively near its point of infiltration. This means that wastes discharged to the surface and near-surface may not be isolated as well as previously thought, since the wastes may be carried to the surface by gradually rising ground waters

  13. Hydrogeology and simulation of ground-water flow, Picatinny Arsenal and vicinity, Morris County, New Jersey

    Science.gov (United States)

    Voronin, L.M.; Rice, D.E.

    1996-01-01

    Ground-water flow in glacial sediments and bedrock at Picatinny Arsenal, N.J., was simulated by use of a three-dimensional finite-difference ground- water-flow model. The modeled area includes a 4.3-square-mile area that extends from Picatinny Lake to the Rockaway River. Most of the study area is bounded by the natural hydrologic boundaries of the ground-water system. eophysical logs, lithologic logs, particle-size data, and core data from selected wells and surface geophysical data were analyzed to define the hydrogeologic framework. Hydrogeologic sections and thickness maps define six permeable and three low-permeability layers that are represented in the model as aquifers and confining units, respectively. Hydrologic data incorporated in the model include a rate of recharge from precipitation of 22 inches per year, estimated from long-term precipitation records and estimates of evapotranspiration. Additional recharge from infiltration along valleys was estimated from measured discharge of springs along the adjacent valley walls and from estimates of runoff from upland drainage that flows to the valley floor. Horizontal and vertical hydraulic conductivities of permeable and low-permeability layers were estimated from examination of aquifer-test data, gamma-ray logs, borehole cuttings, and previously published data. Horizontal hydraulic conductivities in glacial sediments range from 10 to 380 feet per day. Vertical hydraulic conductivities of the low-permeability layers range from 0.01 to 0.7 feet per day. The model was calibrated by simulating steady-state conditions during 1989-93 and by closely matching simulated and measured ground-water levels, vertical ground-water-head differences, and streamflow gain and loss. Simulated steady-state potentiometric- surface maps produced for the six permeable layers indicate that ground water in the unconfined material within Picatinny Arsenal flows predominantly toward the center of the valley, where it discharges to Green

  14. The geology, hydrogeology and geochemistry of the Needle's Eye natural analogue site

    International Nuclear Information System (INIS)

    Hooker, P.J.

    1991-01-01

    The British Geological Survey has been carrying out a research investigation of the Needle's Eye site at Southwick on the Solway coast in south-western Scotland. This study of a naturally radioactive geochemical system has the aim of improving our confidence in using predictive models of radionuclide migration in the geosphere. This summary report describes results from the integrated use of hydrogeological, mineralogical and geochemical techniques applied to the study of the transport and distribution of uranium. Pitchblende veins exposed in the cliffs are a major source of soluble uranium in ground-waters flowing into organic-rich post-glacial flood plain and intertidal mudflat deposits. Organic matter both living and dead has played a key role in the retardation of uranium in these sediments. Chemical transport modelling of the uranium dispersion/retardation is described and the implications for performance assessment work are discussed. Computer codes used: CHEMVAL (thermodynamic data base constants). CHIMERE (chemical equilibrium code). METIS (flow code). PHREEQE (chemical equilibrium code). STELE (coupled chemical transport code)

  15. Characterization of the hydrogeology of the sacred Gihon Spring, Jerusalem: a deteriorating urban karst spring

    Science.gov (United States)

    Amiel, Ronit Benami; Grodek, Tamir; Frumkin, Amos

    2010-09-01

    The Gihon Spring, Jerusalem, is important for the major monotheistic religions. Its hydrogeology and hydrochemistry is studied here in order to understand urbanization effects on karst groundwater resources, and promote better water management. High-resolution monitoring of the spring discharge, temperature and electrical conductivity, was performed, together with chemical and bacterial analysis. All these demonstrate a rapid response of the spring to rainfall events and human impact. A complex karst system is inferred, including conduit flow, fissure flow and diffuse flow. Electrical conductivity, Na+ and K+ values (2.0 mS/cm, 130 and 50 mg/l respectively) are very high compared to other nearby springs located at the town margins (0.6 mS/cm, 15 and <1 mg/l respectively), indicating considerable urban pollution in the Gihon area. The previously cited pulsating nature of the spring was not detected during the present high-resolution monitoring. This phenomenon may have ceased due to additional water sources from urban leakage and irrigation feeding the spring. The urbanization of the recharge catchment thus affects the spring water dramatically, both chemically and hydrologically. Appropriate measures should therefore be undertaken to protect the Gihon Spring and other karst aquifers threatened by rapid urbanization.

  16. Preliminary Test Results of Heshe Hydrogeological Experimental Well Station in Taiwan

    Science.gov (United States)

    Chuang, P.; Liu, C.; Lin, M.; Chan, W.; Lee, T.; Chia, Y.; Teng, M.; Liu, C.

    2013-12-01

    Safe disposal of radioactive waste is a critical issue for the development of nuclear energy. The design of final disposal system is based on the concept of multiple barriers which integrate the natural barriers and engineering barriers for long-term isolation of radioactive wastes. As groundwater is the major medium that can transport radionuclides to our living environment, it is essential to characterize groundwater flow at the disposal site. Taiwan is located at the boundary between the Eurasian plate and the Philippine Sea plate. Geologic formations are often fractured due to tectonic compression and extension. In this study, a well station for the research and development of hydrogeological techniques was established at the Experimental Forest of the National Taiwan University in central Taiwan. There are 10 testing wells, ranging in depth from 25 m to 100 m, at the station. The bedrock beneath the regolith is highly fractured mudstone. As fracture is the preferential pathway of the groundwater flow, the focus of in-situ tests is to investigate the location of permeable fractures and the connection of permeable fractures. Several field tests have been conducted, including geophysical logging, heat-pulse flowmeter, hydraulic test, tracer test and double packer test, for the development of advanced technologies to detect the preferential groundwater flow in fractured rocks.

  17. Research on the hydrogeological and geochemical conditions at the coastal area and submarine formations

    International Nuclear Information System (INIS)

    Tokunaga, Tomochika; Taniguchi, Makoto; Goto, Junji

    2003-05-01

    One of the major concerns for the high-level radioactive waste disposal is the possibility of the radionuclides to reach biosphere by groundwater flow. Recent research results have shown that the fresh groundwater discharge from subsea formations are widespread phenomena, thus, it is necessary to evaluate the submarine groundwater discharge as possible pathways of contaminant discharge towards the biosphere. It is also important to unravel the groundwater flow and associated material transport at the coastal area and subsea formations. To better understand the groundwater flow processes and the submarine groundwater discharge, we have conducted the hydrological, hydrogeological, geochemical, and numerical modeling studies at the Kurobe alluvial fan and its offshore, Toyama Prefecture, Japan. In this report, the results of the following research activities are presented: 1) Development and application of a method to detect the locations of the submarine groundwater discharge. 2) Development and application of a method to collect uncontaminated groundwater samples from subsea formations. 3) Measurements of submarine groundwater discharge fluxes by automated seepage meter. 4) Hydrological and geochemical studies for groundwater flow at the coastal area. 5) Geochemical studies to understand sources of fresh submarine groundwater discharge. 6) Examination of groundwater flow and submarine groundwater discharge using methane concentration and carbon isotope ratio. 7) Numerical modeling studies for coastal groundwater flow system. (author)

  18. Hydrogeology and groundwater quality of Highlands County, Florida

    Science.gov (United States)

    Spechler, Rick M.

    2010-01-01

    Groundwater is the main source of water supply in Highlands County, Florida. As the demand for water in the county increases, additional information about local groundwater resources is needed to manage and develop the water supply effectively. To address the need for additional data, a study was conducted to evaluate the hydrogeology and groundwater quality of Highlands County. Total groundwater use in Highlands County has increased steadily since 1965. Total groundwater withdrawals increased from about 37 million gallons per day in 1965 to about 107 million gallons per day in 2005. Much of this increase in water use is related to agricultural activities, especially citrus cultivation, which increased more than 300 percent from 1965 to 2005. Highlands County is underlain by three principal hydrogeologic units. The uppermost water-bearing unit is the surficial aquifer, which is underlain by the intermediate aquifer system/intermediate confining unit. The lowermost hydrogeologic unit is the Floridan aquifer system, which consists of the Upper Floridan aquifer, as many as three middle confining units, and the Lower Floridan aquifer. The surficial aquifer consists primarily of fine-to-medium grained quartz sand with varying amounts of clay and silt. The aquifer system is unconfined and underlies the entire county. The thickness of the surficial aquifer is highly variable, ranging from less than 50 to more than 300 feet. Groundwater in the surficial aquifer is recharged primarily by precipitation, but also by septic tanks, irrigation from wells, seepage from lakes and streams, and the lateral groundwater inflow from adjacent areas. The intermediate aquifer system/intermediate confining unit acts as a confining layer (except where breached by sinkholes) that restricts the vertical movement of water between the surficial aquifer and the underlying Upper Floridan aquifer. The sediments have varying degrees of permeability and consist of permeable limestone, dolostone, or

  19. Hydrogeologic framework of fractured sedimentary rock, Newark Basin, New Jersey

    Science.gov (United States)

    Lacombe, Pierre J.; Burton, William C.

    2010-01-01

    The hydrogeologic framework of fractured sedimentary bedrock at the former Naval Air Warfare Center (NAWC), Trenton, New Jersey, a trichloroethylene (TCE)-contaminated site in the Newark Basin, is developed using an understanding of the geologic history of the strata, gamma-ray logs, and rock cores. NAWC is the newest field research site established as part of the U.S. Geological Survey Toxic Substances Hydrology Program, Department of Defense (DoD) Strategic Environmental Research and Development Program, and DoD Environmental Security Technology Certification Program to investigate contaminant remediation in fractured rock. Sedimentary bedrock at the NAWC research site comprises the Skunk Hollow, Byram, and Ewing Creek Members of the Lockatong Formation and Raven Rock Member of the Stockton Formation. Muds of the Lockatong Formation that were deposited in Van Houten cycles during the Triassic have lithified to form the bedrock that is typical of much of the Newark Basin. Four lithotypes formed from the sediments include black, carbon-rich laminated mudstone, dark-gray laminated mudstone, light-gray massive mudstone, and red massive mudstone. Diagenesis, tectonic compression, off-loading, and weathering have altered the rocks to give some strata greater hydraulic conductivity than other strata. Each stratum in the Lockatong Formation is 0.3 to 8 m thick, strikes N65 degrees E, and dips 25 degrees to 70 degrees NW. The black, carbon-rich laminated mudstone tends to fracture easily, has a relatively high hydraulic conductivity and is associated with high natural gamma-ray count rates. The dark-gray laminated mudstone is less fractured and has a lower hydraulic conductivity than the black carbon-rich laminated mudstone. The light-gray and the red massive mudstones are highly indurated and tend to have the least fractures and a low hydraulic conductivity. The differences in gamma-ray count rates for different mudstones allow gamma-ray logs to be used to correlate and

  20. Geometrical and hydrogeological impact on the behaviour of deep-seated rock slides during reservoir impoundment

    Science.gov (United States)

    Lechner, Heidrun; Zangerl, Christian

    2015-04-01

    Given that there are still uncertainties regarding the deformation and failure mechanisms of deep-seated rock slides this study concentrates on key factors that influence the behaviour of rock slides in the surrounding of reservoirs. The focus is placed on the slope geometry, hydrogeology and kinematics. Based on numerous generic rock slide models the impacts of the (i) rock slide geometry, (ii) reservoir impoundment and level fluctuations, (iii) seepage and buoyancy forces and (iv) hydraulic conductivity of the rock slide mass and the basal shear zone are examined using limit equilibrium approaches. The geometry of many deep-seated rock slides in metamorphic rocks is often influenced by geological structures, e.g. fault zones, joints, foliation, bedding planes and others. With downslope displacement the rock slide undergoes a change in shape. Several observed rock slides in an advanced stage show a convex, bulge-like topography at the foot of the slope and a concave topography in the middle to upper part. Especially, the situation of the slope toe plays an important role for stability. A potentially critical situation can result from a partially submerged flat slope toe because the uplift due to water pressure destabilizes the rock slide. Furthermore, it is essential if the basal shear zone daylights at the foot of the slope or encounters alluvial or glacial deposits at the bottom of the valley, the latter having a buttressing effect. In this study generic rock slide models with a shear zone outcropping at the slope toe are established and systematically analysed using limit equilibrium calculations. Two different kinematic types are modelled: (i) a translational or planar and (ii) a rotational movement behaviour. Questions concerning the impact of buoyancy and pore pressure forces that develop during first time impoundment are of key interest. Given that an adverse effect on the rock slide stability is expected due to reservoir impoundment the extent of

  1. Hydrogeologic and Hydrochemical Studies in a Semi-arid Watershed in Northern Mexico

    Science.gov (United States)

    Kretzschmar, T.; Vazquez, R.; Hinojosa, A.

    2006-12-01

    Within the Baja California panhandle exist quite a significant number of valleys which hydrogeology conditions are of great importance for the communities of the region. The Guadalupe Valley for example, located 30 km Northeast of Ensenada, hosts an important wine industry which presents a mayor factor for agriculture and tourism in Baja California. The irrigation is carried out basically by groundwater extracted from quaternary sediments filling this post-Miocene depression. Besides the intensive usage of the water by the wine industry in the Guadalupe Valley, the local waterworks installed in 1985 a gallery of 10 wells extracting around 320 l/s or 30 % of the total water extraction in the valley to supply the city of Ensenada with drinking water. A total of more than 500 wells with a combined annual consumption of about 28 Mio m3 are at the moment active in the valley. In the arid portions of northern Mexico Mountain front recharge presents an important recharge source for the alluvial aquifers. Other important sources directly related to precipitation are direct infiltration, recharge by surface water runoff in the arroyos as well as by active fault systems. The principal recharge sources for the Guadalupe Valley aquifer are the Sierra Juárez and the Guadalupe River. To be able to address the state of equilibrium of aquifer, recharge estimates for the watershed were calculated determining the runoff/infiltration relationships obtained by curve number determinations combined with the interpretation of satellite images. These results were integrated into an evaluation and hydrologic modeling of the hydrologic data pointing towards differences of up to over 50 percent in the recharge estimation in comparison to earlier studies carried out in the area. Furthermore hydrochemical and isotopic studies were carried out to show the effects of the excessive ground water extraction on the water quality of the aquifer. The hydrochemical data indicate that intense use of

  2. Hydrogeology and water quality of the shallow ground-water system in eastern York County, Virginia. Water resources investigation

    International Nuclear Information System (INIS)

    1993-01-01

    The report describes the hydrogeology and water quality of the shallow ground-water system in the eastern part of York County, Va. The report includes a discussion of (1) the aquifers and confining units, (2) the flow of ground water, and (3) the quality of ground water. The report is an evaluation of the shallow ground-water system and focuses on the first 200 ft of sediments below land surface. Historical water-level and water-quality data were not available for the study area; therefore, a network of observation wells was constructed for the study. Water levels were measured to provide an understanding of the flow of ground water through the multiaquifer system. Water samples were collected and analyzed for major inorganic constituents, nutrients, and metals. The report presents maps that show the regional distribution of chloride and iron concentrations. Summary statistics and graphical summaries of selected chemical constituents provide a general assessment of the ground-water quality

  3. New insights into the structure of Om Ali-Thelepte basin, central Tunisia, inferred from gravity data: Hydrogeological implications

    Science.gov (United States)

    Harchi, Mongi; Gabtni, Hakim; El Mejri, Hatem; Dassi, Lassaad; Mammou, Abdallah Ben

    2016-08-01

    This work presents new results from gravity data analyses and interpretation within the Om Ali-Thelepte (OAT) basin, central Tunisia. It focuses on the hydrogeological implication, using several qualitative and quantitative techniques such as horizontal gradient, upward continuation and Euler deconvolution on boreholes log data, seismic reflection data and electrical conductivity measurements. The structures highlighted using the filtering techniques suggest that the Miocene aquifer of OAT basin is cut by four major fault systems that trend E-W, NE-SW, NW-SE and NNE-SSW. In addition, a NW-SE gravity model established shows the geometry of the Miocene sandstone reservoir and the Upper Cretaceous limestone rocks. Moreover, the superimposition of the electrical conductivity and the structural maps indicates that the low conductivity values of sampled water from boreholes are located around main faults.

  4. Hydrogeologic controls on ground-water and contaminant discharge to the Columbia River near the Hanford Townsite

    International Nuclear Information System (INIS)

    Luttrell, S.P.; Newcomer, D.R.; Teel, S.S.; Vermeul, V.R.

    1992-11-01

    The purpose of this study is to quantify ground-water and contaminant discharge to the Columbia River in the Hanford Townsite vicinity. The primary objectives of the work are to: describe the hydrogeologic setting and controls on ground-water movement and contaminant discharge to the Columbia River; understand the river/aquifer relationship and its effects on contaminant discharge to the Columbia River; quantify the ground-water and contaminant mass discharge to the Columbia River; and provide data that may be useful for a three-dimensional model of ground-water flow and contaminant transport in the Hanford Townsite study area. The majority of ground-water contamination occurs within the unconfined aquifer; therefore, ground-water and contaminant discharge from the unconfined aquifer is the emphasis of this study. The period of study is primarily from June 1990 through March 1992

  5. Analysis on regional hydrogeological condition of Beishan preselected area for high level radioactive waste disposal repository in Gansu province

    International Nuclear Information System (INIS)

    Guo Yonghai; Su Rui; Liu Shufen; Lu Chuanhe

    2004-01-01

    Based on the field investigation which has been carried out in the Beishan preselected area for high level radioactive waste repository in Gansu province during the last few years and the previous hydrogeological investigation results, the different groundwater types are divided initially and the hydrogeological features of different water-bearing media are described in this paper. Meanwhile, the preliminary evaluation of the regional hydrogeological condition of the study area is carried out. (author)

  6. Hydrogeophysics and remote sensing for the design of hydrogeological conceptual models in hard rocks - Sardón catchment (Spain)

    OpenAIRE

    Francés, Alain; Lubczynski, Maciek W.; Roy, Jean; Santos, Fernando A. Monteiro; Ardekani, Mohammad R. Mahmoudzadeh

    2014-01-01

    Hard rock aquifers are highly heterogeneous and hydrogeologically complex. To contribute to the design of hydrogeological conceptual models of hard rock aquifers, we propose a multi-techniques methodology based on a downward approach that combines remote sensing (RS), non-invasive hydrogeophysics and hydrogeological field data acquisition. The proposed methodology is particularly suitable for data scarce areas. It was applied in the pilot research area of Sardón catchment (80 km2)...

  7. Materials of conference: Hydrogeological Problems of South-West Poland; Materialy konferencji: Problemy Hydrogeologiczne Poludniowo-Zachodniej Polski

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Hydrogeological problems of South-west Poland is the collection of conference papers held in Szklarska Poreba on 20-22 June 1996. The materials have been gathered in three topical groups: water quality problems in hydrological cycle, regional hydrogeology of South-west Poland, theoretical problems and research methods in hydrogeology. More of performed articles have a interdisciplinary character taking into account the precipitation and surface water quality and their influence on ground water features.

  8. Hydrogeological problems in the ultimate storage of radioactive wastes

    International Nuclear Information System (INIS)

    Uerpmann, E.P.

    1980-01-01

    The following work shows how one can achieve the safe closure of ultimate-stored radioactive wastes by connecting a series of various barriers to the biosphere. The propagation of radionuclides by ground water is considered to be the most important long-term transport mechanism. Salt occurences in the Federal Republic of Germany are considered to be the best form suitable for end storage formations for known reasons. When not observing mining and hydrogeological knowledge, the danger of uncontrollable water flow in the end storage can arise from the water solubility of the salt rocks. Therefore the filling of salt mines and the subsequent procedures are dealt with in detail. The leading of radioactive nuclides is influenced by the properties of the ultimately stored wastes and by the quality of the remaining filling of the caves. These problems are dealt with in detail. A series of barriers to the closure of the underground caves are suggested and discussed. The most important barriers consist of the stability of the corresponding selected end storage structure. Possible arrangements of the storage cave are given which even after storage must maintain a high stability. Proposals are made on how the ultimately stored wastes can protect themselves against contact with free water or salt solutions. (orig.) [de

  9. Hydrogeologic testing strategy for the Basalt Waste Isolation Project site

    International Nuclear Information System (INIS)

    Logsdon, M.J.; Verma, T.R.

    1984-01-01

    At the time of licensing for a proposed deep geologic repository for high-level nuclear waste, the Department of Energy (DOE) has the responsibility to present and defend a complete licensing/performance assessment of the geologic repository system. As part of its responsibilities, the Nuclear Regulatory Commission (NRC) staff will be required to perform an independent assessment of the groundwater flow system with respect to the technical criteria of 10 Code of Federal Regulations (CFR) Part 60. Specifically, the staff expects to use mathematical models to predict pre-emplacement and post-emplacement groundwater flow paths and travel times. These predictive assessments will be used to reach findings on compliance with the proposed EPA Standards (10 CFR 60.112), which apply to post-emplacement groundwater travel time along the path of likely radionuclide travel (10 CFR 60.113(2)). Predictive modeling of groundwater flow will require defensible conceptual models of the flow system, defensible boundary conditions, and defensible values of hydraulic parameters. The purpose fo this technical position is to provide guidance to DOE on an approach that the NRC staff considers acceptable in determining what hydrogeologic testing (including types of tests, scale of tests, and number of tests) at the Hanford site will be required to produce the hydraulic data necessary and sufficient to perform rigorous, quantitative modeling to support predictions of repository performance. 2 figures

  10. Application of stable isotopes to hydrogeology in coal mine

    International Nuclear Information System (INIS)

    Duan Qi; Duan Yucheng

    1988-01-01

    Stable isotopes including Oxygen-18 and Deuterium have been applied to investigation of hydrogeology in main coal mines. By determination of stable isotopic composition of hydrogen and oxygen together with water analysis, the following studies have been developed: Identification of the hydrogeochemical characteristics of the groundwater from varied aquifers; Analysis of the hydraulic relationship between varied aquifers; Interpretation of the probable recharge source of mine water. The research results mentioned above reveal that: 1. The groundwater from main aquifers at coal mines in north China is of meteoric origin, which is recharged from hilly area surrounding the coal mine. Its isotopic composition differs slightly from that of the local precipitation. 2. There is a mutual hydraulic relationship between the Ordovician and Quarternary aquifers, so the difference of isotopic composition is very small. 3. By way of the variation of isotopic composition of groundwater from coal-bearing strata, we can infer the hydraulic relationship extent between overlaid alluvial layer and underlaid Ordovician limestone. (author). 9 refs, 6 figs, 8 tabs

  11. Hydrogeologic effects of natural disruptive events on nuclear waste repositories

    International Nuclear Information System (INIS)

    Davis, S.N.

    1980-06-01

    Some possible hydrogeologic effects of disruptive events that may affect repositories for nuclear waste are described. A very large number of combinations of natural events can be imagined, but only those events which are judged to be most probable are covered. Waste-induced effects are not considered. The disruptive events discussed above are placed into four geologic settings. Although the geology is not specific to given repository sites that have been considered by other agencies, the geology has been generalized from actual field data and is, therefore, considered to be physically reasonable. The geologic settings considered are: (1) interior salt domes of the Gulf Coast, (2) bedded salt of southeastern New Mexico, (3) argillaceous rocks of southern Nevanda, and (4) granitic stocks of the Basin and Range Province. Log-normal distributions of permeabilities of rock units are given for each region. Chapters are devoted to: poresity and permeability of natural materials, regional flow patterns, disruptive events (faulting, dissolution of rock forming minerals, fracturing from various causes, rapid changes of hydraulic regimen); possible hydrologic effects of disruptive events; and hydraulic fracturing

  12. The deep hydrogeologic flow system underlying the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Nativ, R.; Hunley, A.E.

    1993-07-01

    The deep hydrogeologic system underlying the Oak Ridge Reservation contains some areas contaminated with radionuclides, heavy metals, nitrates, and organic compounds. The groundwater at that depth is saline and has previously been considered stagnant. On the basis of existing and newly collected data, the nature of flow of the saline groundwater and its potential discharge into shallow, freshwater systems was assessed. Data used for this purpose included (1) spatial and temporal pressures and hydraulic heads measured in the deep system, (2) hydraulic parameters of the formations in question, (3) spatial temperature variations, and (4) spatial and temporal chemical and isotopic composition of the saline groundwater. In addition, chemical analyses of brine in adjacent areas in Tennessee, Kentucky, Ohio, Pennsylvania, and West Virginia were compared with the deep water underlying the reservation to help assess the origin of the brine. Preliminary conclusions suggest that the saline water contained at depth is old but not isolated (in terms of recharge and discharge) from the overlying active and freshwater-bearing units. The confined water (along with dissolved solutes) moves along open fractures (or man-made shortcuts) at relatively high velocity into adjacent, more permeable units. Groundwater volumes involved in this flow probably are small

  13. Hydrogeology of the 200 Areas low-level burial grounds

    International Nuclear Information System (INIS)

    Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.

    1989-01-01

    This report presents information derived from the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. This volume contains the main text. Volume 2 contains the appendixes, including data and supporting information that verify content and results found in the main text. This report documents information collected by the Pacific Northwest Laboratory at the request of Westinghouse Hanford Company. Presented in this report are the preliminary interpretations of the hydrogeologic environment of six low-level burial grounds, which comprise four waste management areas (WMAs) located in the 200 Areas of the Hanford Site. This information and its accompanying interpretations were derived from sampling and testing activities associated with the construction of 35 ground-water monitoring wells as well as a multitude of previously existing boreholes. The new monitoring wells were installed as part of a ground-water monitoring program initiated in 1986. This ground-water monitoring program is based on requirements for interim status facilities in compliance with the Resource Conservation and Recovery Act (1976)

  14. A Bayesian Markov geostatistical model for estimation of hydrogeological properties

    International Nuclear Information System (INIS)

    Rosen, L.; Gustafson, G.

    1996-01-01

    A geostatistical methodology based on Markov-chain analysis and Bayesian statistics was developed for probability estimations of hydrogeological and geological properties in the siting process of a nuclear waste repository. The probability estimates have practical use in decision-making on issues such as siting, investigation programs, and construction design. The methodology is nonparametric which makes it possible to handle information that does not exhibit standard statistical distributions, as is often the case for classified information. Data do not need to meet the requirements on additivity and normality as with the geostatistical methods based on regionalized variable theory, e.g., kriging. The methodology also has a formal way for incorporating professional judgments through the use of Bayesian statistics, which allows for updating of prior estimates to posterior probabilities each time new information becomes available. A Bayesian Markov Geostatistical Model (BayMar) software was developed for implementation of the methodology in two and three dimensions. This paper gives (1) a theoretical description of the Bayesian Markov Geostatistical Model; (2) a short description of the BayMar software; and (3) an example of application of the model for estimating the suitability for repository establishment with respect to the three parameters of lithology, hydraulic conductivity, and rock quality designation index (RQD) at 400--500 meters below ground surface in an area around the Aespoe Hard Rock Laboratory in southeastern Sweden

  15. Hydrogeological Studies of Mendhwan Watershed, Ahmadnagar District, Maharashtra, India

    Science.gov (United States)

    Muley, R. B.; Babar, Md.; Kulkarni, P. S.

    2011-07-01

    The Mendhwan watershed area is a part of chronic drought prone region of Ahmadnagar district of Maharashtra state, India which is considered for the study with reference to hydrogeological characteristics in Deccan basaltic terrain. In order to enhance groundwater availability and to demarcate the area of high groundwater potential, Geoforum, Parbhani Chapter has carried out hydrological investigation of this watershed area. Geologically, the study area belongs to the Deccan trap basalts of late Cretaceous to early Eocene period. The entire study area consists of thin irregular vesicular-amygdaloidal basalt flows also known as compound pahoehoe flows. The area is traversed by two prominent dykes, which are almost perpendicular to each other. In most of the southern part of the area, amygdaloidal basalt is exposed at the surface. The fresh amygdaloidal basalt flow is free from joints and occurs as homogeneous watertight mass. As dykes are jointed, they provide favorable conditions for percolation and ground water potential of this area is found to be satisfactory. It was observed that in Mendhwan area a large number of water conservation structures have been constructed across the streams. Incidentally groundwater potential shows notable increase only in those localities where the structures had been constructed on the dyke rock. The result of the study is found to be very much beneficial to the rural populace of this draught prone area so as to plan the optimum utilization of this precious natural resource.

  16. Hydrogeologic reconnaissance of the San Miguel River basin, southwestern Colorado

    Science.gov (United States)

    Ackerman, D.J.; Rush, F.E.

    1984-01-01

    The San Miguel River Basin encompasses 4,130 square kilometers of which about two-thirds is in the southeastern part of the Paradox Basin. The Paradox Basin is a part of the Colorado Plateaus that is underlain by a thick sequence of evaporite beds of Pennsylvanian age. The rock units that underlie the area have been grouped into hydrogeologic units based on their water-transmitting ability. Evaporite beds of mostly salt are both overlain and underlain by confining beds. Aquifers are present above and below the confining-bed sequence. The principal element of ground-water outflow from the upper aquifer is flow to the San Miguel River and its tributaries; this averages about 90 million cubic meters per year. A water budget for the lower aquifer has only two equal, unestimated elements, subsurface outflow and recharge from precipitation. The aquifers are generally isolated from the evaporite beds by the bounding confining beds; as a result, most ground water has little if any contact with the evaporites. No brines have been sampled and no brine discharges have been identified in the basin. Salt water has been reported for petroleum-exploration wells, but no active salt solution has been identified. (USGS)

  17. Evaluation of the geological, geophysical and hydrogeological conditions at Kamlunge

    International Nuclear Information System (INIS)

    Ahlbom, K.; Albino, B.; Carlsson, L.; Danielsson, J.; Nilsson, G.; Olsson, O.; Sehlstedt, S.; Stejskal, V.; Stenberg, L.

    1983-05-01

    The Kamlunge study site constitutes a 16 km 2 mountain plateau. The topography of the plateau is flat, the soil cover is thin, and in the western part, there is a high percentage of outcrops. The most commonly occurring rock types are gneisses and red granite (Lina granite). A rock type with granodioritic to dioritic composition also occurs. Concentrations of economically valuable minerals are so small that mining operations are not feasible in the area. The rock mass exhibits a fracture frequency of more than 4.0 fractures per metre down to a depth of 200 metres. Below 300 metres, the fracture frequency is approximately 2.0 fractures per metre. The Kamlunge study site is surrounded by regional fracture zones to the north, east and west delimiting a 16 km 2 triangular block. The regional zone to the west of the study site has a width of about 550 m. Only local fracture zones spaced 500-l 500 m. apart occur within the study site. The local fracture zones are generally steeply inclined and strike to the north-west and the north-east. At a depth of 555 m below Kamlungekoelen, a horizontal fracture zone has been encountered in 4 of the deep drill holes. This fracture zone is permeable to water but less crushed and weathered than the steeply inclined fracture zones. Moreover, horizontal fractures of large lateral extent can occur in the upper 100-200 metres. Common fracture minerals in the fracture zones are calcite, chlorite, laumontite, smectite and various types of iron oxides. The hydraulic conductivity of the rock mass decreases markedly with depth. It decreases from about 2 x 10 -9 m/s at a depth of 100 metres to about 10 -11 m/s at a depth of 500 metres. The hydraulic conductivity of the local fracture zones at Kamlunge is 7 x 10 -10 m/s at a depth of 500 m. The hydraulic conductivity decreases with depth more slowly in the fracture zones than in the rock mass. The large hydraulic gradients found on the margins of the Kamlungekoelen do not affect the groundwater

  18. Hydrogeochemical and hydrogeological studies of Ellebelle and Jumoro Districts of the Western Region of Ghana

    International Nuclear Information System (INIS)

    Adwoba-Kua, E.

    2012-07-01

    Groundwater is an important resource for domestic, agriculture and industrial purposes throughout the Ellembelle and Jomoro districts of the Western region of Ghana. However, the hydrogeology and hydrogeochemistry of groundwater systems in the districts are not well known, even though some data on the geology, borehole yield, static water levels and water quality analysis are available. Moreover, surface and groundwater systems in the districts are threatened by anthropogenic activities, including mining, poor waste management and oil spillage. An integrated approach based on hydrogeology, hydrogeochemistry and isotopic composition was, therefore, adopted in order to establish the availability, quality and sustainable utilization of surface and groundwater in the two districts. The research involved measurement of physical parameters (pH, temperature, Eh, salinity, TDS, total hardness, turbidity, colour, and conductivity), major ions (Ca 2+, Mg 2+, Na +, K +, HCO 3 -, Cl -, PO 4 3-, SO 4 2- and NO 3 -) trace elememts (Al, As, Hg, Fe, Mn, Cu, Co, Zn, Pb, Ni, Cd and Cr) and stable isotopes (δ 2 H and (δ 18 O) in nine (9) rivers, one (1) lagoon, twenty (20) hand dug wells and twenty-five (25) boreholes. Arsenic (As) and Hg were determined by hydride generation atomic absorption spectrometry (HG-AAS). Levels of Fe, Mn, Cu, Zn, Pb, Ni, Co, Cd and Cr were measured by flame atomic absorption spectrometry (FAAS). Instrumental Neutron Activation Analysis (INAA) was used for the determination of Ca 2+ , Mg 2+ and AI whereas the contents of Na + and K + were measured by flame photometry. Measurement of the levels of PO 4 3- , SO 4 2- and NO 3 - was performed by UV -visible spectrophotometry. Titrimetry was used for the determination of total hardness, alkalinity, HCO 3 - and CI - . The stable isotopes (δ 2 H and δ 18 O) compositions of the waters were measured using the liquid- water stable isotope analyzer [based on off-axis integrated cavity output spectroscopy (OA

  19. Preliminary hydrogeologic assessment and study plan for a regional ground-water resource investigation of the Blue Ridge and Piedmont provinces of North Carolina

    Science.gov (United States)

    Daniel, Charles C.; Dahlen, Paul R.

    2002-01-01

    , Groundwater Section, in cooperation with the U.S. Geological Survey, initiated a multiyear study of ground water in the Blue Ridge and Piedmont Provinces. The study began in 1999.Most of the study area is underlain by a complex, two-part, regolith-fractured crystalline rock aquifer system. Thickness of the regolith throughout the study area is highly variable and ranges from 0 to more than 150 feet. The regolith consists of an unconsolidated or semiconsolidated mixture of clay and fragmental material ranging in grain size from silt to boulders. Because porosities range from 35 to 55 percent, the regolith provides the bulk of the water storage within the Blue Ridge and Piedmont ground-water system. At the base of the regolith is the transition zone where saprolite grades into unweathered bedrock. The transition zone has been identified as a potential conduit for rapid ground-water flow. If this is the case, the transition zone also may serve as a conduit for rapid movement of contaminants to nearby wells or to streams with channels that cut into 1 U.S. Geological Survey, Raleigh, North Carolina. 2 North Carolina Department of Environment and Natural Resources, Division of Water Quality, Groundwater Section. or through the transition zone. How rapidly a contaminant moves through the system largely may be a function of the characteristics of the transition zone. The transition zone is one of several topics identified during the literature review and data synthesis, for which there is a deficiency in data and understanding of the processes involved in the movement of ground water to surface water.Because the Blue Ridge and Piedmont study area is so large, and the hydrogeology diverse, it is not feasible to study all of the area in detail. A more feasible approach is to select areas that are most representative of the land use, geology, and hydrology to obtain an understanding of the hydrologic processes in the selected areas, and transfer the knowledge from these local "type

  20. Preliminary hydrogeologic assessment of boreholes UE-25c No. 1, UE-25c No. 2, and UE-25c No. 3, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Geldon, A.L.

    1993-01-01

    The purpose of this report is to characterize the hydrogeology of saturated tuffaceous rocks penetrated by boreholes UE-25c No. 1, UE-25c No.2, and UE-25c No. 3. These boreholes are referred to collectively in this report as the C-holes. The C-holes were drilled to perform multiwell aquifer tests and tracer tests; they comprise the only complex of closely spaced boreholes completed in the saturated zone at Yucca Mountain. Results of lithologic and geophysical logging, fracture analyses, water-level monitoring, temperature and tracejector surveys, aquifer tests, and hydrochemical sampling completed at the C-hole complex as of 1986 are assessed with respect to the regional geologic and hydrologic setting. A conceptual hydrogeological model of the Yucca Mountain area is presented to provide a context for quantitatively evaluating hydrologic tests performed at the C-hole complex as of 1985, for planning and interpreting additional hydrologic tests at the C-hole complex, and for possibly re-evaluating hydrologic tests in boreholes other than the C-holes

  1. Preliminary hydrogeologic assessment of boreholes UE-25c No. 1, UE-25c No. 2, and UE-25c No. 3, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Geldon, A.L.

    1993-01-01

    The purpose of this report is to characterize-the hydrogeology of saturated tuffaceous rocks penetrated by boreholes UE-25c number-sign 1, UE-25c number-sign 2, and UE-25c number-sign 3. These boreholes are referred to collectively in this report as the C-holes. The C-holes were drilled to perform multiwell aquifer tests and tracer tests; they comprise the only complex of closely spaced boreholes completed in the saturated zone at Yucca Mountain. Results of lithologic and geophysical logging, fracture analyses, water-level monitoring, temperature and tracejector surveys aquifer tests, and hydrochemical sampling completed at the C-hole complex as of 1986 are assessed with respect to the regional geologic and hydrologic setting. A conceptual hydrogeological model of the Yucca Mountain area is presented to provide a context for quantitatively evaluating hydrologic tests performed at the C-hole complex as of 1985, for planning and interpreting additional hydrologic tests at the C-hole complex, and for possibly re-evaluating hydrologic tests in boreholes other than the C-holes

  2. Hydrogeology of the Ramapo River-Woodbury Creek valley-fill aquifer system and adjacent areas in eastern Orange County, New York

    Science.gov (United States)

    Heisig, Paul M.

    2015-01-01

    The hydrogeology of the valley-fill aquifer system and surrounding watershed areas was investigated within a 23-mile long, fault-controlled valley in eastern Orange County, New York. Glacial deposits form a divide within the valley that is drained to the north by Woodbury Creek and is drained to the south by the Ramapo River. Surficial geology, extent and saturated thickness of sand and gravel aquifers, extent of confining units, bedrock-surface elevation beneath valleys, major lineaments, and the locations of wells for which records are available were delineated on an interactive map.

  3. Evaluation of the geological, geophysical and hydrogeological conditions at Svartboberget

    International Nuclear Information System (INIS)

    Ahlbom, K.; Carlsson, L.; Gentzschein, B.; Jaemtlid, A.; Olsson, O.; Tiren, S.

    1983-05-01

    The Svartboberget study site is an elongate hill, approx 2.5 km wide and 5 km long. The depth of the Quaternary sedimentary cover is small and the percentage of exposed rock is small. The main rock type is a migmatitic paragneiss with a great amount of neosome, granite, and subordinate veins. In the northern part of the area there is a 150 m thick layer of graphitic gneiss. The fracture frequency of the rock mass is 2.6 fractures per metre and the variation with depth is insignificant. The Svartboberget study site is situated between two north-northwest orientated valleys which are defined by regional fracture zones. The thickness of these zones are from 10 to more than 250 m. They dip 30 to 40 degrees towards the south-west and can be traced over long distances. The fracture zones consist of discrete sections, locally more than 30 m thick, of highly fractured and subordinate crushed rock. The regional fracture zones delimit a rock plinth, approx 5 km 2 large, consisting of the actual hill Svartboberget. Within this plinth there are local fracture zones with a mutual distance of 100-500 m. They contain minor parts of crushed rock. Common infilling in the fracture zones are calcite, chlorite, illite and zeolite. The hydraulic conductivity in the rock mass of Svartboberget decreases with depth. At 100 m depth, the conductivity is c. 4 x 10 -9 m/s and at 500 m c. 5 x 10 -11 m/s. The hydraulic conductivity of the local fracture zones in Svartboberget is at 500 m depth 8 x 10 -10 m/s. The topographic relief of the area implies that there is a high hydraulic gradient in the bedrock. This has also been confirmed by piezometric measurements where i.a. pressure differences of a 30 m water column have been registered in a drill hole. (author)

  4. Definition of a critical confining zone using surface geophysical methods

    International Nuclear Information System (INIS)

    Eddy-Dilek, C.A.; Hoekstra, P.; Harthill, N.; Blohm, M.; Phillips, D.R.

    1996-01-01

    Definition of the hydrogeologic framework in layered sediments of fluvial and deltaic origin is a difficult challenge for environmental characterization and remediation programs due to the lithologic and stratigraphic heterogeneities inherent in these settings. These heterogeneties often control contaminant transport and the effectiveness of remediation alternatives, Surface geophysical surveys can be cost-effective methods for characterization, but individual methods have inherent limitations in resolution and sensitivity. A synergistic approach, utilizing two geophysical survey methods was applied, to define and examine the nature and extent of a deep confining zone of regulatory importance, the Crouch Branch Confining Unit, in Coastal Plain sediments at the Savannah River Site. TDEM accurately maps the overall conductance (product of thickness and electrical conductivity) of a confining zone clay facies; from variation in conductance, changes in lithology of the conforming zone can be inferred. Shear wave seismic reflection surveys map the depth to the clay layers, and the clay layer thickness, but provides little information on the lithologic nature of the confining zone. Integrated interpretation of the combined data set (including all available borehole logs) allows for delineation of the lateral and vertical extent of clay-dominated zones, sand-dominated zones, key stratigraphic horizons, and erosional features associated with unconformities. This approach has resulted in the collection of critical information that will be used to optimize remedial system design, representing a significant cost savings to environmental restoration programs at the Savannah River Site

  5. The fracture zone project - final report

    International Nuclear Information System (INIS)

    Andersson, Peter

    1993-09-01

    This report summarizes the work and the experiences gained during the fracture zone project at the Finnsjoen study site. The project is probably the biggest effort, so far, to characterize a major fracture zone in crystalline bedrock. The project was running between 1984-1990 involving a large number of geological, geohydrological, geochemical, and geomechanical investigation. The methods used for identification and characterization are reviewed and discussed in terms of applicability and possible improvements for future investigations. The discussion is exemplified with results from the investigation within the project. Flow and transport properties of the zone determined from hydraulic tests and tracer tests are discussed. A large number of numerical modelling efforts performed within the fracture zone project, the INTRAVAL project, and the SKB91-study are summarized and reviewed. Finally, occurrence of similar zones and the relevance of major low angle fracture zones in connection to the siting of an underground repository is addressed

  6. Geology and hydrogeology of the Dammam Formation in Kuwait

    Science.gov (United States)

    Al-Awadi, E.; Mukhopadhyay, A.; Al-Senafy, M. N.

    The Dammam Formation of Middle Eocene age is one of the major aquifers containing useable brackish water in Kuwait. Apart from the paleokarst zone at the top, the Dammam Formation in Kuwait consists of 150-200m of dolomitized limestone that is subdivided into three members, on the basis of lithology and biofacies. The upper member consists of friable chalky dolomicrite and dolomite. The middle member is mainly laminated biomicrite and biodolomicrite. The lower member is nummulitic limestone with interlayered shale toward the base. Geophysical markers conform to these subdivisions. Core analyses indicate that the upper member is the most porous and permeable of the three units, as confirmed by the distribution of lost-circulation zones. The quality of water in the aquifer deteriorates toward the north and east. A potentiometric-head difference exists between the Dammam Formation and the unconformably overlying Kuwait Group; this difference is maintained by the presence of an intervening aquitard. Résumé La formation de Damman, d'âge Éocène moyen, est l'un des principaux aquifères du Koweit, contenant de l'eau saumâtre utilisable. A part dans sa partie supérieure où existe un paléokarst, la formation de Damman au Koweit est constituée par 150 à 200m de calcaires dolomitisés, divisés en trois unités sur la base de leur lithologie et de biofaciès. L'unité supérieure est formée d'une dolomicrite crayeuse et friable et d'une dolomie. L'unité médiane est pour l'essentiel une biomicrite laminée et une biodolomicrite. L'unité inférieure est un calcaire nummulitique avec des intercalations argileuses vers la base. Les marqueurs géophysiques sont conformes à ces subdivisions. Les analyses de carottes montrent que l'unité supérieure est la plus poreuse et la plus perméable des trois. La répartition des zones d'écoulement souterrain confirment ces données. La qualité de l'eau dans l'aquifère se dégrade en direction du nord et de l'est. Une

  7. Geodatabase compilation of hydrogeologic, remote sensing, and water-budget-component data for the High Plains aquifer, 2011

    Science.gov (United States)

    Houston, Natalie A.; Gonzales-Bradford, Sophia L.; Flynn, Amanda T.; Qi, Sharon L.; Peterson, Steven M.; Stanton, Jennifer S.; Ryter, Derek W.; Sohl, Terry L.; Senay, Gabriel B.

    2013-01-01

    The High Plains aquifer underlies almost 112 million acres in the central United States. It is one of the largest aquifers in the Nation in terms of annual groundwater withdrawals and provides drinking water for 2.3 million people. The High Plains aquifer has gained national and international attention as a highly stressed groundwater supply primarily because it has been appreciably depleted in some areas. The U.S. Geological Survey has an active program to monitor the changes in groundwater levels for the High Plains aquifer and has documented substantial water-level changes since predevelopment: the High Plains Groundwater Availability Study is part of a series of regional groundwater availability studies conducted to evaluate the availability and sustainability of major aquifers across the Nation. The goals of the regional groundwater studies are to quantify current groundwater resources in an aquifer system, evaluate how these resources have changed over time, and provide tools to better understand a systems response to future demands and environmental stresses. The purpose of this report is to present selected data developed and synthesized for the High Plains aquifer as part of the High Plains Groundwater Availability Study. The High Plains Groundwater Availability Study includes the development of a water-budget-component analysis for the High Plains completed in 2011 and development of a groundwater-flow model for the northern High Plains aquifer. Both of these tasks require large amounts of data about the High Plains aquifer. Data pertaining to the High Plains aquifer were collected, synthesized, and then organized into digital data containers called geodatabases. There are 8 geodatabases, 1 file geodatabase and 7 personal geodatabases, that have been grouped in three categories: hydrogeologic data, remote sensing data, and water-budget-component data. The hydrogeologic data pertaining to the northern High Plains aquifer is included in three separate

  8. Zone separator for multiple zone vessels

    Science.gov (United States)

    Jones, John B.

    1983-02-01

    A solids-gas contact vessel, having two vertically disposed distinct reaction zones, includes a dynamic seal passing solids from an upper to a lower zone and maintaining a gas seal against the transfer of the separate treating gases from one zone to the other, and including a stream of sealing fluid at the seal.

  9. System for the hydrogeologic analysis of uranium mill waste disposal sites

    International Nuclear Information System (INIS)

    Osiensky, J.L.

    1983-01-01

    Most of the uranium mill wastes generated before 1977 are stored in unlined tailings ponds. Seepage from some of these ponds has been of sufficient severity that the US Nuclear Regulatory Commission (NRC) has required the installation of withdrawal wells to remove the contaminated groundwater. Uranium mill waste disposal facilities typically are located in complex hydrogeologic environments. This research was initiated in 1980 to analyze hydrogeologic data collected at seven disposal sites in the US that have experienced problems with groundwater contamination. The characteristics of seepage migration are site specific and are controlled by the hydrogeologic environment in the vicinity of each tailings pond. Careful monitoring of most seepage plumes was not initiated until approximately 1977. These efforts were accelerated as a consequence of the uranium Mill Tailings Act of 1979. Some of the data collected at uranium mill waste disposal sites in the past are incomplete and some were collected by methods that are outdated. Data frequently were collected in sequences which disrupted the continuity of the hydrogeologic analysis and decreased the effectiveness of the data collection programs. Evaluation of data collection programs for seven uranium mill waste disposal sites in the US has led to the development and presentation herein of a system for the hydrogeologic analysis of disposal sites

  10. Seismic-refraction field experiments on Galapagos Islands: A quantitative tool for hydrogeology

    Science.gov (United States)

    Adelinet, M.; Domínguez, C.; Fortin, J.; Violette, S.

    2018-01-01

    Due to their complex structure and the difficulty of collecting data, the hydrogeology of basaltic islands remains misunderstood, and the Galapagos islands are not an exception. Geophysics allows the possibility to describe the subsurface of these islands and to quantify the hydrodynamical properties of its ground layers, which can be useful to build robust hydrogeological models. In this paper, we present seismic refraction data acquired on Santa Cruz and San Cristobal, the two main inhabited islands of Galapagos. We investigated sites with several hydrogeological contexts, located at different altitudes and at different distances to the coast. At each site, a 2D P-wave velocity profile is built, highlighting unsaturated and saturated volcanic layers. At the coastal sites, seawater intrusion is identified and basal aquifer is characterized in terms of variations in compressional sound wave velocities, according to saturation state. At highlands sites, the limits between soils and lava flows are identified. On San Cristobal Island, the 2D velocity profile obtained on a mid-slope site (altitude 150 m), indicates the presence of a near surface freshwater aquifer, which is in agreement with previous geophysical studies and the hydrogeological conceptual model developed for this island. The originality of our paper is the use of velocity data to compute field porosity based on poroelasticity theory and the Biot-Gassmann equations. Given that porosity is a key parameter in quantitative hydrogeological models, it is a step forward to a better understanding of shallow fluid flows within a complex structure, such as Galapagos volcanoes.

  11. Hydrogeological conceptual model development and numerical modelling using CONNECTFLOW, Forsmark modelling stage 2.3

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven (SF GeoLogic AB, Taeby (Sweden)); Hartley, Lee; Jackson, Peter; Roberts, David (Serco TAP (United Kingdom)); Marsic, Niko (Kemakta Konsult AB, Stockholm (Sweden))

    2008-05-15

    Three versions of a site descriptive model (SDM) have been completed for the Forsmark area. Version 0 established the state of knowledge prior to the start of the site investigation programme. Version 1.1 was essentially a training exercise and was completed during 2004. Version 1.2 was a preliminary site description and concluded the initial site investigation work (ISI) in June 2005. Three modelling stages are planned for the complete site investigation work (CSI). These are labelled stage 2.1, 2.2 and 2.3, respectively. An important component of each of these stages is to address and continuously try to resolve discipline-specific uncertainties of importance for repository engineering and safety assessment. Stage 2.1 included an updated geological model for Forsmark and aimed to provide a feedback from the modelling working group to the site investigation team to enable completion of the site investigation work. Stage 2.2 described the conceptual understanding and the numerical modelling of the bedrock hydrogeology in the Forsmark area based on data freeze 2.2. The present report describes the modelling based on data freeze 2.3, which is the final data freeze in Forsmark. In comparison, data freeze 2.3 is considerably smaller than data freeze 2.2. Therefore, stage 2.3 deals primarily with model confirmation and uncertainty analysis, e.g. verification of important hypotheses made in stage 2.2 and the role of parameter uncertainty in the numerical modelling. On the whole, the work reported here constitutes an addendum to the work reported in stage 2.2. Two changes were made to the CONNECTFLOW code in stage 2.3. These serve to: 1) improve the representation of the hydraulic properties of the regolith, and 2) improve the conditioning of transmissivity of the deformation zones against single-hole hydraulic tests. The changes to the modelling of the regolith were made to improve the consistency with models made with the MIKE SHE code, which involved the introduction

  12. Evaluation of Van Lake (Turkey) about radiological and hydrogeological risk

    International Nuclear Information System (INIS)

    Akyil, S.; Aytas, S.; Yusan, S.; Aslani, M. A. A.; Aycan, H. A.; Eral, M.; Tuerkoezue, D. A.; Isik, M. A.; Oelgen, M. K.

    2009-01-01

    Basins which are grow in the continent and not discharge to open sea are named as a close basin. Lead, uranium and thorium are high levels in respect to open basins. Lake of Van is a close basin. In the lake basins, rivers which are discharge basin are the most important source of the heavy metal concentration. In this study, surface water, coast and deep sediments of Van Lake and Inci Kefal (fish) were analyzed as a radiological and evaluated in terms of hydrogeological. Data was obtained for natural radioactivity concentration of this lake and evaluated using geostatistical methods in a geographical information system environment and fitted for isoradioactivity contour maps. The concentration and distribution of natural radionuclides in Van Lake were investigated with the aim of evaluating the environmental radioactivity. Sixty three coastal and deep sediments, 228 lake surface waters and 12 fish samples were taken in Van Lake over the time period 2005-2008 and the distribution pattern of the measured radionuclides was presented. The mean concentrations of gross alpha and beta, eU, eTh and K-40 activities in sediments were 207±96, 1046±60, 207±96, 70±29 and 399±231 Bq/kg, respectively. On the other hand, water samples from Van Lake had mean concentrations of 0.74±0.46 Bq/L for gross alpha activity concentration, 0.02±0.01 Bq/L for gross beta activity concentration, 0.06±0.04 Bq/L for gross radium isotopes, respectively. The mean gross alpha and beta, eU, eTh and K-40 activities in fish samples were 47±18, 470±12, 0.57±0.22, 0.022±0.006, 319±11 Bq/kg, respectively. An average annual effective dose equivalent (mSv/y) was calculated.

  13. Interprétation hydrogéologique de l'aquifère des bassins sud-rifains (Maroc) : apport de la sismique réflexionHydrogeological interpretation of the southern Rifean basins aquifer (Morocco): seismic reflexion contribution

    Science.gov (United States)

    Zouhri, Lahcen; Gorini, Christian; Lamouroux, Christian; Vachard, Daniel; Dakki, Mohammed

    2003-03-01

    The aquifer of the Rharb Basin is constituted by heterogeneous material. The seismic reflexion interpretation carried out in this area, highlighted a permeable device compartmentalized in raised and subsided blocks. Depressions identified in the northern and southernmost zones are characterized by Plio-Quaternary fillings that are favourable to the hydrogeological exploitation. Two mechanisms contribute to structure the Plio-Quaternary aquifer: the Hercynian reactivation in the southernmost part, and the gravitational mechanism of the Pre-Rifean nappe. The groundwater flow and the aquifer thickening are controlled by this reactivation.

  14. Evaluation of the geological, geophysical and hydrogeological conditions at Gideaa

    International Nuclear Information System (INIS)

    Ahlbom, K.; Albino, B.; Carlsson, L.; Nilsson, G.; Olsson, O.; Stenberg, L.; Timje, H.

    1983-05-01

    The Gideaa study site has a flat topography, insignificant soil depth and a high percentage of outcrops. The dominating rock type in the area is veined gneiss of norht-east structural strike and small dip. The fracture frequency in the rock mass is more than 4.0 fractures per metre down to a depth of 400 m. Below the 500 m level, the fracture frequency is 2.0 fractures per metre. Within the study site there are defined local fracture zones at a mutual distance of 400-800 m. These local fracture zones delimit a triangular block of rock with a top surface of 1.8 km 2 . This bloc is transversed by two local fracture zones, approx 4 m wide. The fracture zones are steeply dipping with the exception of two subhorizontal fracture zones in the northern and eastern parts of the area which are dipping outwards from the study site. Horizontal fractures of vast lateral extent can be found in the upper 100-200 metres. Frequently occurring fracture minerals in the fracture zones are calcite, kaolinite, chlorite, laumontite, pyrite and the clay minerals illite and smectite. At a depth of 500 m the granite gneiss has a hydraulic conductivity of 1.5 x 10 -10 m/s, that of the surrounding bedrock being 2 x 10 -11 m/s. this implies anisotropic hydraulic properties in the rock mass with a higher hydraulic conductivity horizontally. In the rock mass as a whole, i.e. by forming the average of all data from both rock types, the hydraulic conductivity decreases from c. 4 x 10 -9 m/s at 100 m depth to c. 2 x 10 -11 m/s at a depth of 500 m. The hydraulic conductivity in the local fracture zones at Gideaa is 9 x 10 -11 m/s at a depth of 500 m. The hydraulic conductivity in the fracture zones decreases with increaseing depth in the same way as that of the rock mass

  15. Seismic-Reflection Technology Defines Potential Vertical Bypass in Hydrogeologic Confinement within Tertiary Carbonates of the Southeastern Florida Platform

    Science.gov (United States)

    Cunningham, K. J.; Walker, C.; Westcott, R. L.

    2011-12-01

    Continuous improvements in shallow-focused, high-resolution, marine seismic-reflection technology has provided the opportunity to evaluate geologic structures that breach confining units of the Floridan aquifer system within the southeastern Florida Platform. The Floridan aquifer system is comprised mostly of Tertiary platform carbonates. In southeastern Florida, hydrogeologic confinement is important to sustainable use of the Floridan aquifer system, where the saline lower part is used for injection of wastewater and the brackish upper part is an alternative source of drinking water. Between 2007 and 2011, approximately 275 km of 24- and 48-channel seismic-reflection profiles were acquired in canals of peninsular southeastern Florida, Biscayne Bay, present-day Florida shelf margin, and the deeply submerged Miami Terrace. Vertical to steeply dipping offsets in seismic reflections indicate faults, which range from Eocene to possible early Pliocene age. Most faults are associated with karst collapse structures; however, a few tectonic faults of early Miocene to early Pliocene age are present. The faults may serve as a pathway for vertical groundwater flow across relatively low-permeability carbonate strata that separate zones of regionally extensive high-permeability in the Floridan aquifer system. The faults may collectively produce a regional confinement bypass system. In early 2011, twenty seismic-reflection profiles were acquired near the Key Biscayne submarine sinkhole located on the seafloor of the Miami Terrace. Here the water depth is about 365 m. A steeply dipping (eastward) zone of mostly deteriorated quality of seismic-reflection data underlies the sinkhole. Correlation of coherent seismic reflections within and adjacent to the disturbed zone indicates a series of faults occur within the zone. It is hypothesized that upward movement of groundwater within the zone contributed to development of a hypogenic karst system and the resultant overlying sinkhole

  16. Stability analysis of rockmass using a hydrogeologic model of groundwater flow at an underground limestone mine in Korea

    Science.gov (United States)

    Baek, H.; Kim, D.; Kim, G.; Kim, D.; Cheong, S.

    2017-12-01

    The safety and environmental issues should be addressed for sustainable mining operations. One of the key factors is the groundwater flow into underground mine workings, which will affect the overall workability and efficiency of the mining operation. Prediction of the groundwater inflow requires a detailed knowledge of the geologic conditions, including the presence of major faults and other geologic structures at the mine site. The hydrologic boundaries and depth of the phreatic surface of the mine area, as well as other relevant properties of the rockmass, are also provided. The stability of underground structures, in terms of the maximum stresses and deformations within the rockmass, can be analyzed using either the total stress or the effective stress approaches. Both the dried and saturated conditions should be considered with appropriate safety factors, as the distribution of the water pressure within the rockmass resulted from the groundwater flow directly affects the stability. In some cases, the rockmass rating systems such as the RMR and Q-systems are also applied. Various numerical codes have been used to construct the hydrogeologic models of mine sites, and the MINEDW by Itasca is one of those groundwater flow model codes developed to simulate groundwater flow related to mining. In this study, with a 3D hydrogeologic model constructed using the MINEDW for an underground limestone mine, the rate of mine water inflow and the porewater pressure were estimated. The stability of mine pillars and adits was analyzed adopting the porewater pressure and effective stress developed in the rockmass. The results were also compared with those from other 2D stability analysis procedures.

  17. Nitrate attenuation in the Salburua wetland (Basque Country). Hydrogeological context; Atenuacion de nitratos en el Humedal de Salburua (Pais Vasco). Contexto hidrogeologico

    Energy Technology Data Exchange (ETDEWEB)

    Antiguedad, I.; Martinez-Santos, M.; Martinez, M.; Munoz, B.; Zabaleta, A.; Uriarte, J.; Morales, T.; Iribar, V.; Sanchez, J. M.; Ruiz, E.

    2009-07-01

    The Salburua wetland is located within a vulnerable zone (quaternary aquifer) related to the farming origin nitrate pollution. The restoration of the wetland, which was drained some decades ago, has evidenced the attenuation of nitrates in groundwater entering from farmlands, which exceed 50 mg/l NO{sub 3}. The recently installation of piezo metric network has allowed to characterize the groundwater flow pattern and determine the hydrogeological context of nitrate loss processes. Despite the dilution is happening the most important process seems to be the denitrification, either heterotrophic or auto trophic, probably depending on marly substratum position. The potential of denitrification has been measured in the soils and the values are really highs. This paper focuses on the right conditions for denitrification in the wetland. (Author) 23 refs.

  18. Horonobe Underground Research Laboratory project overview of the pilot borehole investigation of the ventilation shaft (PB-V01). Hydrogeological investigation

    International Nuclear Information System (INIS)

    Yabuuchi, Satoshi; Kunimaru, Takanori; Ishii, Eiichi; Hatsuyama, Yoshihiro; Ijiri, Yuji; Matsuoka, Kiyoyuki; Ibara, Tetsuo; Matsunami, Shinjiro; Makino, Akiya

    2009-02-01

    The Pilot Borehole Investigation of the Ventilation Shaft was conducted in Horonobe, Hokkaido, Japan from October 2007 to March 2008. Main purpose of the investigation is to understand geological, hydrogeological and hydrochemical properties of the formation where the Ventilation Shaft has been excavated. Hydraulic packer tests show that hydraulic conductivity lies in the range from 1.1E-11 to 1.4E-7 m/sec down to 500m in depth. This heterogeneity mainly depends on the distribution and permeability of groundwater inflow points, which were detected by Fluid Electric Conductivity logging. High conductive zones were found between 263m and 290m, 355m and 370m of the depth in the pilot borehole. An effective method for reducing groundwater inflow should be considered for the deeper Ventilation Shaft excavation. (author)

  19. Nature, Humans, and the Coastal Zone.

    Science.gov (United States)

    Walker, H. Jesse

    1990-01-01

    Considers the interface of humans and seacoasts over time. Explains how coastal zones are formed and human attempts to defend against sea level changes. Charts the percentage of major world cities that also are ports. Postulates how the greenhouse effect could influence sea level, examining potential human responses to changes in coastal zones.…

  20. Exploration of method determining hydrogeologic parameters of low permeability sandstone uranium deposits

    International Nuclear Information System (INIS)

    Ji Hongbin; Wu Liwu; Cao Zhen

    2012-01-01

    A hypothesis of regarding injecting test as 'anti-pumping' test is presented, and pumping test's 'match line method' is used to process data of injecting test. Accurate hydrogeologic parameters can be obtained by injecting test in the sandstone uranium deposits with low permeability and small pumping volume. Taking injecting test in a uranium deposit of Xinjiang for example, the hydrogeologic parameters of main ore-bearing aquifer were calculated by using the 'anti-pumping' hypothesis. Results calculated by the 'anti-pumping' hypothesis were compared with results calculated by water level recovery method. The results show that it is feasible to use 'anti-pumping' hypothesis to calculate the hydrogeologic parameters of main ore-bearing aquifer. (authors)

  1. Use of radioactive and neutron-activatable tracers to determine effective hydrogeologic parameters

    International Nuclear Information System (INIS)

    Yu, C.; Jester, W.A.; Jarrett, A.R.

    1985-01-01

    The migration of nuclides in a geologic medium is controlled by the hydrogeologic parameters of the medium such as the dispersion coefficient, pore water velocity, retardation factor, degradation rate, mass transfer coefficient, water content, and fraction of dead-end pores. The breakthrough curve (BTC), which is the graphical relationship between the tracer concentration and the elapsed time since introduction, is an integrated picture of the hydrogeologic parameters that produced the BTC. Both radioactive and neutron-activatable tracers have been used to generate BTCs. The BTC of a 92 Br radioactive tracer generated under saturated conditions in a nonhomogeneous (fractured) soil column is shown. From BTCs, the effective hydrogeologic parameters can be identified if appropriate techniques are applied

  2. Large-scale hydraulic structure of a seismogenic fault at 10 km depth (Gole Larghe Fault Zone, Italian Southern Alps)

    Science.gov (United States)

    Bistacchi, Andrea; Di Toro, Giulio; Smith, Steve; Mittempergher, Silvia; Garofalo, Paolo

    2014-05-01

    The definition of hydraulic properties of fault zones is a major issue in structural geology, seismology, and in several applications (hydrocarbons, hydrogeology, CO2 sequestration, etc.). The permeability of fault rocks can be measured in laboratory experiments, but its upscaling to large-scale structures is not straightforward. For instance, typical permeability of fine-grained fault rock samples is in the 10-18-10-20 m2 range, but, according to seismological estimates, the large-scale permeability of active fault zones can be as high as 10-10 m2. Solving this issue is difficult because in-situ measurements of large-scale permeability have been carried out just at relatively shallow depths - mainly in oil wells and exceptionally in active tectonic settings (e.g. SAFOD at 3 km), whilst deeper experiments have been performed only in the stable continental crust (e.g. KTB at 9 km). In this study, we apply discrete fracture-network (DFN) modelling techniques developed for shallow aquifers (mainly in nuclear waste storage projects like Yucca Mountain) and in the oil industry, in order to model the hydraulic structure of the Gole Larghe Fault Zone (GLFZ, Italian Southern Alps). This fault, now exposed in world-class glacier-polished outcrops, has been exhumed from ca. 8 km, where it was characterized by a well-documented seismic activity, but also by hydrous fluid flow evidenced by alteration halos and precipitation of hydrothermal minerals in veins and along cataclasites. The GLFZ does not show a classical seal structure that in other fault zones corresponds to a core zone characterized by fine-grained fault rocks. However, permeability is heterogeneous and the permeability tensor is strongly anisotropic due to fracture preferential orientation. We will show with numerical experiments that this hydraulic structure results in a channelized fluid flow (which is consistent with the observed hydrothermal alteration pattern). This results in a counterintuitive situation

  3. Discussion on hydrogeological conditions of metallogenesis of the sandstone type uranium deposit in Burqin basin, Xinjiang autonomous region

    International Nuclear Information System (INIS)

    Li Qirong

    2000-01-01

    Based on a brief introduction to the occurrence and distribution of groundwater, the characteristics of the tectonic-hydrogeological layers of the basin are discussed. Then, the author expounds the groundwater hydrodynamic conditions including recharge, runoff and drainage, and hydrogeochemical characteristics. In the end, the hydrogeological conditions favorable for uranium metallogenesis are summarized

  4. Hydrogeological Properties of the Rocks in Adansi Mining Area ...

    African Journals Online (AJOL)

    Michael

    2016-06-01

    Jun 1, 2016 ... zones and in fractures of the bedrocks, as well as lack of detailed .... after which the second stage of recovery of 3 hours followed. During .... In areas with lower hydraulic .... He is a member of the International. Association of ...

  5. Evaluation of the geological, geophysical and hydrogeological conditions at Fjaellveden

    International Nuclear Information System (INIS)

    Ahlbom, K.; Carlsson, L.; Carlsten, L.E.; Duran, O.; Larsson, N.Aa.; Olsson, O.

    1983-05-01

    The Fjaellveden study site has a flat topography and a high per-centage of outcrops. The main type of rock in the area is veined gneiss with a north-east structural strike and vertical dip. The veined gneiss contains sulphide minerals, primarily pyrite and pyrrhotite, in the form of fracture minerals and as impregnations. In conformity with the gneiss structure there are strata of granite gneiss. The rock mass has a fracture frequency of 4.0 fractures per metre within the upper 100 metres. The frequency decreases with increasing depth and below the 300 m level it is 1.8 fractures per metre. The Fjaellveden study site is delimited to the north-east and south-west by regional fracture zones, 80-90 m wide and dipping approx 75degree towards the south-west. The fracture zones contain wide sections of crushed and clay-altered rock, mylonites and breccias. The regional zones delimit a block at least 3times3 km large. This block contains only local fracture zones. Drill hole examinations indicate that the fracture zones are small and of a mean width of 5 m. Within the upper 100-200 metres horizontal fractures can be found. Common fracture minerals in fracture zones are calcite, kaolinite, chlorite and illite. Existing granite gneiss strata possess higher hydraulic conductivity than the surrounding veined gneiss. At a depth of 500 m the granite gneiss has a hydraulic conductivity than the surrounding veined gneiss. At a depth of 500 m the granite gneiss has a hydraulic conductivity of 3times10 -9 m/s, the corresponding value in the surrounding bedrock being 2times10 -11 m/s. For the rock mass as a whole, the hydraulic conductivity decreases from approx 10 -8 m/s at the surface rock to approx 10 -11 m/s at a depth of 600 m. The hydraulic conductivity in the local fracture zones in the Fjaellveden area is 5times10 -9 m/s at the 500 m level. The flat topography of the area implies that the hydraulic gradients in the bedrock are small. This has also been recorded by means of

  6. Hydrogeology and hydrogeochemistry at a site of strategic importance: the Pareja Limno-reservoir drainage basin (Guadalajara, central Spain)

    Science.gov (United States)

    Molina-Navarro, Eugenio; Sastre-Merlín, Antonio; Vicente, Rosa; Martínez-Pérez, Silvia

    2014-08-01

    A small calcareous basin in central Spain was studied to establish the role of groundwater in the Pareja Limno-reservoir. Limno-reservoirs aim to preserve a constant water level in the riverine zone of large reservoirs to mitigate the impacts arising from their construction. Groundwater flow contribution (mean 60 %) was derived by recharge estimation. In situ measurements (spring discharge, electrical conductivity and sulfate) were undertaken and spring discharge was compared with a drought index. Twenty-eight springs were monitored and three hydrogeological units (HGUs) were defined: a carbonate plateau (HGU1), the underlying aquitard (HGU2), and the gypsum-enriched HGU3. HGU1 is the main aquifer and may play a role in the preservation of the limno-reservoir water level. Hydrogeochemical sampling was conducted and the code PHREEQC used to describe the main geochemical processes. Weathering and dissolution of calcite and gypsum seem to control the hydrogeochemical processes in the basin. Water progresses from Ca2+-HCO3 - in the upper basin to Ca2+-SO4 2- in the lower basin, where HGU3 outcrops. A clear temporal pattern was observed in the limno-reservoir, with salinity decreasing in winter and increasing in summer. This variation was wider at the river outlet, but the mixing of the river discharge with limno-reservoir water buffered it.

  7. Joint Russian-American hydrogeological-geochemical studies of the Karachai-Mishelyak system, South Urals, Russia

    International Nuclear Information System (INIS)

    Drozhko, E.G.; Glagolenko, Y.U.; Mokrov, Y.G.; Postovalova, G.A.; Samsonova, L.M.; Glagolev, A.V.; Ter-Saakian, S.A.; Glinsky, M.L.; Vasil'kova, N.A.; Skokov, A.V.; Wollenberg, H.A.; Tsan, C.F.; Frangos, W.; Solbau, R.D.; Stevenson, K.A.

    1997-01-01

    In September 1994, a Russian-American team conducted hydrogeological, geochemical, geophysical, and radiometric measurements in the teritory of the Mayak Production Association, Russia. The primary purpose of these operations was to examine the frontal area of a radioelement- and nitrate-laden groundwater plume moving from the disposal site, Lake Karachai, toward the Mishelyak River. Activities encompassed (1) isolation of hydrologic intervgals in two wells and production of water from these intervals, to comapre isolated versus open-well sampling methods and to determine hydraulic transmissivities of the aquifer(s); (2) surface and soil-water sampling, accompanying radiometric measurements and subsequent chemical analyses; and (3) electrical resistivity profiling in areas of expected contrasting resistivity. Preliminary results indicate that (1) 60 Co, 137 Cs, and 90 Sr are present in small concentrations (∝0.1% of permissible levels) in water of the Mishelyak River; (2) analyses of water samples collected by a downhole sampler and of water produced from packed-off intevals agree within limits of laboratory accuracy, attesting to the efficacy of the sampling methods presently used by the Russian workers; (3) considerable differences in contaminant concentrations exist between nearby wells, supporting the concept that the plume from Lake Karachai toward the Mishelyak River is controlled by steeply dipping fractures and shear zones; and (4) strong contrasts occur between the electrical resistivities of soil and bedrock. (orig./SR)

  8. Using hydrogeology to identify the source of groundwater to Montezuma Well, a natural spring in central Arizona: part 1

    Science.gov (United States)

    Johnson, Raymond H.; DeWitt, Ed H.; Arnold, L. Rick

    2012-01-01

    Montezuma Well is a natural spring located within a “sinkhole” in the desert environment of the Verde Valley in Central Arizona. It is managed by the National Park Service as part of Montezuma Castle National Monument. Because of increasing development of groundwater in the area, this research was undertaken to better understand the sources of groundwater to Montezuma Well. The use of well logs and geophysics provides details on the geology in the area around Montezuma Well. This includes characterizing the extent and position of a basalt dike that intruded a deep fracture zone. This low permeability barrier forces groundwater to the surface at the Montezuma Well “pool” with sufficient velocity to entrain sand-sized particles from underlying bedrock. Permeable fractures along and above the basalt dike provide conduits that carry deep sourced carbon dioxide to the surface, which can dissolve carbonate minerals along the transport path in response to the added carbon dioxide. At the ground surface, CO2 degasses, depositing travertine. Geologic cross sections, rock geochemistry, and semi-quantitative groundwater flow modeling provide a hydrogeologic framework that indicates groundwater flow through a karstic limestone at depth (Redwall Limestone) as the most significant source of groundwater to Montezuma Well. Additional groundwater flow from the overlying formations (Verde Formation and Permian Sandstones) is a possibility, but significant flow from these units is not indicated.

  9. Description of climate, surface hydrology, and near-surface hydrogeology. Preliminary site description. Forsmark area - version 1.2

    International Nuclear Information System (INIS)

    Johansson, Per-Olof; Werner, Kent; Bosson, Emma; Berglund, Sten; Juston, John

    2005-06-01

    groundwater recharge to, or discharge from, the bedrock (the model includes the bedrock to a depth of 150 m, based on the Forsmark 1.1 description of the hydraulic properties of the rock). Also the results from the particle tracking simulations show that the groundwater flow is dominated by its vertical component. The dominant transport of particles in the rock occurs in the fracture zones. A relatively large amount of new data has been available for the Forsmark version 1.2 modelling of surface hydrology and near-surface hydrogeology. The available local meteorological time series are very short and longer time series are needed to get reliable correlations to nearby regional SMHI-stations. Local continuous discharge measurements were not available for the Forsmark 1.2 modelling. Future time series from such measurements will be most valuable for the derivation of a more accurate total water balance. The groundwater levels in the area are very shallow. However, there is a bias towards local topographical minima in the location of the monitoring wells. Some additional wells should be located to typical local topographical maxima (recharge areas). The evident difference in groundwater levels between the Quaternary deposits and the upper bedrock observed at some of the core-drill sites should be further investigated for a better understanding of the hydraulic contact between the Quaternary deposits and the rock. The locations of recharge and discharge areas at different scales are crucial for the understanding of the groundwater flow system. A combination of complementary field investigations, including hydrogeological and hydrogeochemical methods, and modelling exercises using models based on morphological parameters as well as hydrogeological modelling is recommended. The model results should be compared with, e.g. the vegetation map, the soil type map and the Quaternary deposits map

  10. Site-Scale Saturated Zone Flow Model

    International Nuclear Information System (INIS)

    G. Zyvoloski

    2003-01-01

    The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca Mountain using FEHM V 2.20 are being

  11. Groundwater denitrification in two agricultural river catchments: influence of hydro-geological setting and aquifer geochemistry

    Science.gov (United States)

    McAleer, Eoin; Mellander, Per-Erik; Coxon, Catherine; Richards, Karl G.; Jahangir, Mohammad M. R.

    2015-04-01

    Identifying subsurface environments with a natural capacity for denitrification is important for improving agricultural management. At the catchment scale, a complex hierarchy of landscape, hydro-geological and physico-chemical characteristics combine to affect the distribution of groundwater nitrate (NO3-). This study was conducted along four instrumented hillslopes in two ca. 10km2 agricultural river catchments in Ireland, one dominated by arable and one by grassland agriculture. Both catchments are characterised by well drained soils, but have differing aquifer characteristics. The arable catchment is underlain by weathered Ordovician slate bedrock which is extensively fractured with depth. The grassland catchment is characterised by Devonian sandstone bedrock, exhibiting both lateral (from upslope to near stream) and vertical variations in permeability along each hillslope. The capacity for groundwater denitrification was assessed by examining the concentration and distribution patterns of N species (total nitrogen, nitrate, nitrite, ammonium), dissolved organic carbon (DOC), dissolved oxygen (DO) and redox potential (Eh) in monthly samples from shallow and deep groundwater piezometers (n=37). Additionally, the gaseous products of denitrification: nitrous oxide (N2O) and excess dinitrogen (excess N2) were measured seasonally using gas chromatography and membrane inlet mass spectroscopy, respectively. The slate catchment was characterised by uniformity, both laterally and vertically, in aquifer geochemistry and gaseous denitrification products. The four year spatial mean groundwater NO3--N concentration was 6.89 mg/l and exhibited low spatial and temporal variability (temporal SD: 1.19 mg/l, spatial SD: 1.185 mg/l). Elevated DO concentrations (mean: 9.75 mg/l) and positive Eh (mean: +176.5mV) at all sample horizons indicated a setting with little denitrification potential. This non-reducing environment was reflected in a low accumulation of denitrification

  12. Hydrogeology and water quality of the North Canadian River alluvium, Concho Reserve, Canadian County, Oklahoma

    Science.gov (United States)

    Becker, C.J.

    1998-01-01

    A growing user population within the Concho Reserve in Canadian County, Oklahoma, has increased the need for drinking water. The North Canadian River alluvium is a reliable source of ground water for agriculture, industry, and cities in Canadian County and is the only ground-water source capable of meeting large demands. This study was undertaken to collect and analyze data to describe the hydrogeology and ground-water quality of the North Canadian River alluvium within the Concho Reserve. The alluvium forms a band about 2 miles long and 0.5 mile wide along the southern edge of the Concho Reserve. Thickness of the alluvium ranges from 19 to 75 feet thick and averages about 45 feet in the study area. Well cuttings and natural gamma-ray logs indicate the alluvium consists of interfingering lenses of clay, silt, and sand. The increase of coarse-grained sand and the decrease of clay and silt with depth suggests that the water-bearing properties of the aquifer within the study area improve with depth. A clay layer in the upper part of the aquifer may be partially responsible for surface water ponding in low areas after above normal precipitation and may delay the infiltration of potentially contaminated water from land surface. Specific conductance measurements indicate the ground-water quality improves in a northern direction towards the terrace. Water-quality properties, bacteria counts, major ion and nutrient concentrations, trace-element and radionuclide concentrations, and organic compound concentrations were measured in one ground-water sample at the southern edge of the Concho Reserve and comply with the primary drinking-water standards. Measured concentrations of iron, manganese, sulfate, and total dissolved solids exceed the secondary maximum contaminant levels set for drinking water. The ground water is a calcium sulfate bicarbonate type and is considered very hard, with a hardness of 570 milligrams per liter as calcium carbonate.

  13. Effects of damaging hydrogeological events on people throughout 15 years in a Mediterranean region

    Directory of Open Access Journals (Sweden)

    L. Aceto

    2017-07-01

    Full Text Available Damaging Hydrogeological Events (DHE are defined as rainy periods during which landslides and floods can damage people. The paper investigated the effects of DHE on people living in Calabria (southern Italy in the period 2000–2014, using data coming from the systematic survey of regional newspapers. Data about fatalities, people injured and people involved (not killed neither hurt were stored in the database named PEOPLE, made of three sections: (1 event identification, (2 victim-event interaction, (3 effects on people. The outcomes highlighted vulnerability factors related to gender and age: males were killed more frequently (75 % than females (25 %, and fatalities were older (average age 49 years than injured (40.1 years and involved people (40.5 years. The average ages of females killed (67.5 years, injured (43.4 years and involved (44.6 years were higher than the same values assessed for males, maybe indicating that younger females tended to be more cautious than same-age males, while older females showed an intrinsic greater vulnerability. Involved people were younger than injured people and fatalities, perhaps because younger people show greater promptness to react in dangerous situations. In the study region, floods caused more fatalities (67.9 %, injured (55 % and involved people (55.3 % than landslides. Fatalities and injuries mainly occurred outdoor, especially along roads, and the most dangerous dynamic was to be dragged by flood, causing the majority of fatalities (71.4 %. These outcomes can be used to strengthen the strategies aimed at saving people, and to customise warning campaigns according to the local risk features and people's behaviour. The results can improve the understanding of the potential impacts of geo-hydrological hazards on the population and can increase risk awareness among both administrators and citizens.

  14. Effects of damaging hydrogeological events on people throughout 15 years in a Mediterranean region

    Science.gov (United States)

    Aceto, Luigi; Aurora Pasqua, A.; Petrucci, Olga

    2017-07-01

    Damaging Hydrogeological Events (DHE) are defined as rainy periods during which landslides and floods can damage people. The paper investigated the effects of DHE on people living in Calabria (southern Italy) in the period 2000-2014, using data coming from the systematic survey of regional newspapers. Data about fatalities, people injured and people involved (not killed neither hurt) were stored in the database named PEOPLE, made of three sections: (1) event identification, (2) victim-event interaction, (3) effects on people. The outcomes highlighted vulnerability factors related to gender and age: males were killed more frequently (75 %) than females (25 %), and fatalities were older (average age 49 years) than injured (40.1 years) and involved people (40.5 years). The average ages of females killed (67.5 years), injured (43.4 years) and involved (44.6 years) were higher than the same values assessed for males, maybe indicating that younger females tended to be more cautious than same-age males, while older females showed an intrinsic greater vulnerability. Involved people were younger than injured people and fatalities, perhaps because younger people show greater promptness to react in dangerous situations. In the study region, floods caused more fatalities (67.9 %), injured (55 %) and involved people (55.3 %) than landslides. Fatalities and injuries mainly occurred outdoor, especially along roads, and the most dangerous dynamic was to be dragged by flood, causing the majority of fatalities (71.4 %). These outcomes can be used to strengthen the strategies aimed at saving people, and to customise warning campaigns according to the local risk features and people's behaviour. The results can improve the understanding of the potential impacts of geo-hydrological hazards on the population and can increase risk awareness among both administrators and citizens.

  15. Hydrogeologic characterization of a proposed landfill expansion in Pickens County near Easley, South Carolina

    Science.gov (United States)

    Stringfield, W.J.

    1994-01-01

    This report presents the results of a hydrogeologic study in the Piedmont physiographic province of South Carolina to obtain geologic, hydrologic, and water-quality data from the site of a proposed landfill expansion in Pickens County near Easley, South Carolina. The geology of the study area is typical of the Piedmont region. The unconsolidated regolith on the site is soil and saprolite, which is a product of the weathered parent rock. The soil ranges in thickness from about 5 to 20 feet. The saprolite ranges in thickness from about 5 to 134 feet. The most abundant parent rock type in the area is a biotite gneiss. Ground- and surface-water data were collected at the site. Slug tests on the saprolite indicate a mean hydraulic conductivity of 3 x 0.000003 feet per second. Transmissivity ranges from 12 to 27 cubic feet per day per feet (squared per day). The ground-water velocity for the site ranges from 3 to 6 feet per year. The closest major stream to the site is Golden Creek. Based on low-flow data for Golden Creek, the estimated minimum 7 consecutive day flow that has a recurrence interval of 10 years (7Q10) at station 02186102 is 2.4 cubic feet per second. Water samples were collected from five monitoring wells at the proposed landfill expansion site and from one stream adjacent to the expansion site. Measured pH units ranged from 5.5 to 8.1, and alkalinity concentrations ranged from 5.1 to 73 milligrams per liter as CaCO3. Other water- quality data obtained included temperature and specific conductance, and 5-day BOD (biochemical oxygen demand), bicarbonate, ammonia-nitrogen, nitrite-nitrogen, nitrite plus nitrate, organic carbon, calcium, magnesium, sodium, potassium, chloride, sulfate, fluoride, and selected trace metal concentrations.

  16. Soft computing and hydrogeologic characterization of the Serra Geral-Guarani aquifer system, Parana state, Brazil

    Science.gov (United States)

    Iwashita, F.; Friedel, M. J.; Ferreira, F. J.; Fraser, S. J.

    2011-12-01

    The Self-organizing map (SOM) technique is used to estimate missing hydrogeologic (hydraulic and hydrochemical) properties and evaluate potential connectivity between the Serra Geral and Guarani aquifer system. K-means clustering of SOM neurons is useful for identifying hydrogeologic units (conceptual models) in which the Serra Geral waters are carbonate-calcium and carbonate-magnesium, and Guarani waters are sodium, chloride, fluoride and sulfate as characteristic elements. SOM predictions appear generally consistent with current connectivity models with vertical fluxes from Guarani aquifer strongly influenced by geological structures. Additionally, we identify other new hydrochemical facies in the Serra Geral aquifer indicating areas with potential connections between the two aquifers.

  17. Hydrogeological and geochemical investigations of elevated arsenic (As) abundances in groundwater in Ireland

    International Nuclear Information System (INIS)

    Gilligan, M.; Feely, M.; Morrison, L.; Henry, T.; Higgins, T.M.; Zhang, C.

    2009-01-01

    Full text: This study will use hydrogeology, geochemistry and chemical speciation studies to investigate the presence of elevated arsenic (As) abundances in groundwater in Ireland. Comparative studies of groundwater, bedrock and mineral chemistry will be linked to hydrogeology, GIS and statistical studies. This approach will facilitate characterization of the temporal and spatial distribution of As as a function of groundwater and bedrock geology using the pressures, pathways and receptors approach. Arsenic speciation studies will determine As toxicity, bioavailability and potential for migration in this environment thus addressing human health issues. (author)

  18. Hydrogeology of the Owego-Apalachin Elementary School Geothermal Fields, Tioga County, New York

    Science.gov (United States)

    Williams, John H.; Kappel, William M.

    2015-12-22

    The hydrogeology of the Owego-Apalachin Elementary School geothermal fields, which penetrate saline water and methane in fractured upper Devonian age bedrock in the Owego Creek valley, south-central New York, was characterized through the analysis of drilling and geophysical logs, water-level monitoring data, and specific-depth water samples. Hydrogeologic insights gained during the study proved beneficial for the design of the geothermal drilling program and protection of the overlying aquifer during construction, and may be useful for the development of future geothermal fields and other energy-related activities, such as drilling for oil and natural gas in similar fractured-bedrock settings.

  19. Hydrogeological assessment of Acid mine Drainage impacts in the West Rand Basin, Gauteng Province

    CSIR Research Space (South Africa)

    Hobbs, PJ

    2007-08-01

    Full Text Available HYDROGEOLOGICAL ASSESSMENT OF ACID MINE DRAINAGE IMPACTS IN THE WEST RAND BASIN, GAUTENG PROVINCE Principal Author PJ Hobbs (Pr.Sci.Nat.) Co-author JE Cobbing (Pr.Sci.Nat.) August 2007 Report prepared for CSIR / THRIP Document... it is published. A Hydrogeological Assessment of Acid Mine Drainage Report No. Impacts in the West Rand Basin, Gauteng Province CSIR/NRE/WR/ER/2007/0097/C CSIR Natural Resources and the Environment (i) The “Lodge” spring rising...

  20. Data-Driven Approach for Analyzing Hydrogeology and Groundwater Quality Across Multiple Scales.

    Science.gov (United States)

    Curtis, Zachary K; Li, Shu-Guang; Liao, Hua-Sheng; Lusch, David

    2017-08-29

    Recent trends of assimilating water well records into statewide databases provide a new opportunity for evaluating spatial dynamics of groundwater quality and quantity. However, these datasets are scarcely rigorously analyzed to address larger scientific problems because they are of lower quality and massive. We develop an approach for utilizing well databases to analyze physical and geochemical aspects of groundwater systems, and apply it to a multiscale investigation of the sources and dynamics of chloride (Cl - ) in the near-surface groundwater of the Lower Peninsula of Michigan. Nearly 500,000 static water levels (SWLs) were critically evaluated, extracted, and analyzed to delineate long-term, average groundwater flow patterns using a nonstationary kriging technique at the basin-scale (i.e., across the entire peninsula). Two regions identified as major basin-scale discharge zones-the Michigan and Saginaw Lowlands-were further analyzed with regional- and local-scale SWL models. Groundwater valleys ("discharge" zones) and mounds ("recharge" zones) were identified for all models, and the proportions of wells with elevated Cl - concentrations in each zone were calculated, visualized, and compared. Concentrations in discharge zones, where groundwater is expected to flow primarily upwards, are consistently and significantly higher than those in recharge zones. A synoptic sampling campaign in the Michigan Lowlands revealed concentrations generally increase with depth, a trend noted in previous studies of the Saginaw Lowlands. These strong, consistent SWL and Cl - distribution patterns across multiple scales suggest that a deep source (i.e., Michigan brines) is the primary cause for the elevated chloride concentrations observed in discharge areas across the peninsula. © 2017, National Ground Water Association.

  1. Constructing development and integrated coastal zone management in the conditions of the landslide slopes of Cheboksary water reservoir (Volga River)

    Science.gov (United States)

    Nikonorova, I. V.

    2018-01-01

    Uncontrolled construction and insufficient accounting of engineering-geological and hydro-geological conditions of the coastal zone, intensified technogenic impact on sloping surfaces and active urbanization led to the emergence of serious problems and emergency situations on the coasts of many Volga reservoirs, including the Cheboksary reservoir, within Cheboksary urban district and adjacent territories of Chuvashia. This article is devoted to substantiation of the possibility of rational construction development of landslide slopes of the Cheboksary water reservoir.

  2. Revised hydrogeologic framework of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina

    Science.gov (United States)

    Williams, Lester J.; Kuniansky, Eve L.

    2015-04-08

    The hydrogeologic framework for the Floridan aquifer system has been revised throughout its extent in Florida and parts of Georgia, Alabama, and South Carolina. The updated framework generally conforms to the original framework established by the U.S. Geological Survey in the 1980s, except for adjustments made to the internal boundaries of the Upper and Lower Floridan aquifers and the individual higher and contrasting lower permeability zones within these aquifers. The system behaves as one aquifer over much of its extent; although subdivided vertically into two aquifer units, the Upper and Lower Floridan aquifers. In the previous framework, discontinuous numbered middle confining units (MCUI–VII) were used to subdivide the system. In areas where less-permeable rocks do not occur within the middle part of the system, the system was previously considered one aquifer and named the Upper Floridan aquifer. In intervening years, more detailed data have been collected in local areas, resulting in some of the same lithostratigraphic units in the Floridan aquifer system being assigned to the Upper or Lower Floridan aquifer in different parts of the State of Florida. Additionally, some of the numbered middle confining units are found to have hydraulic properties within the same order of magnitude as the aquifers. A new term “composite unit” is introduced for lithostratigraphic units that cannot be defined as either a confining or aquifer unit over their entire extent. This naming convention is a departure from the previous framework, in that stratigraphy is used to consistently subdivide the aquifer system into upper and lower aquifers across the State of Florida. This lithostratigraphic mapping approach does not change the concept of flow within the system. The revised boundaries of the Floridan aquifer system were mapped by considering results from local studies and regional correlations of lithostratigraphic and hydrogeologic units or zones. Additional zones within

  3. Groundwater geochemistry of the Yucatan Peninsula, Mexico: Constraints on stratigraphy and hydrogeology

    Science.gov (United States)

    Perry, Eugene; Paytan, Adina; Pedersen, Bianca; Velazquez-Oliman, Guadalupe

    2009-03-01

    SummaryWe report 87Sr/ 86Sr and ion concentrations of sulfate, chloride, and strontium in the groundwater of the northern and central Yucatan Peninsula, Mexico. Correlation between these data indicates that ejecta from the 65.95 m.y. old Chicxulub impact crater have an important effect on hydrogeology, geomorphology, and soil development of the region. Ejecta are present at relatively shallow subsurface depths in north-central Yucatan and at the surface along the Rio Hondo escarpment in southeast Quintana Roo, where they are referred to as the Albion Formation. Anhydrite/gypsum (and by inference celestite) are common in impact ejecta clasts and in beds and cements of overlying Paleocene and Lower Eocene rocks cored around the margin of the crater. The sulfate-rich minerals that are found in rocks immediately overlying the impact ejecta blanket, may either be partially mobilized from the ejecta layer itself or may have been deposited after the K/T impact event in an extensive pre-Oligocene shallow sea. These deposits form a distinctive sedimentary package that can be easily traced by the Eocene-Cretaceous 87Sr/ 86Sr signal. A distinct Sr isotopic signature and high SO 4/Cl ratios are observed in groundwater of northwestern and north-central Yucatan that interacts with these rocks. Moreover, the distribution of the gypsum-rich stratigraphic unit provides a solution-enhanced subsurface drainage pathway for a broad region characterized by dissolution features (poljes) extending from Chetumal, Quintana Roo to Campeche, Campeche. The presence of gypsum quarries in the area is also consistent with a sulfate-rich stratigraphic "package" that includes ejecta. The distinctive chemistry of groundwater that has been in contact with evaporite/ejecta can be used to trace flow directions and confirms a groundwater divide in the northern Peninsula. Information about groundwater flow directions and about deep subsurface zones of high permeability is useful for groundwater and

  4. Hydrogeology and water quality of the Chakari Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Chornack, Michael P.; Flanagan, Sarah M.; Chalmers, Ann T.

    2014-01-01

    The hydrogeology and water quality of the Chakari Basin, a 391-square-kilometer (km2) watershed near Kabul, Afghanistan, was assessed by the U.S. Geological Survey and the Afghanistan Geological Survey to provide an understanding of the water resources in an area of Afghanistan with considerable copper and other mineral resources. Water quality, chemical, and isotopic samples were collected at eight wells, four springs, one kareze, and the Chakari River in a basin-fill aquifer in the Chakari Basin by the Afghanistan Geological Survey. Results of water-quality analyses indicate that some water samples in the basin had concentrations of chemical constituents that exceeded World Health Organization guidelines for nitrate, sodium, and dissolved solids and some of the samples also had elevated concentrations of trace elements, such as copper, selenium, strontium, uranium, and zinc. Chemical and isotopic analyses, including for tritium, chlorofluorocarbons, and carbon-14, indicate that most wells contain water with a mixture of ages from young (years to decades) to old (several thousand years). Three wells contained groundwater that had modeled ages ranging from 7,200 to 7,900 years old. Recharge from precipitation directly on the basin-fill aquifer, which covers an area of about 150 km2, is likely to be very low (7 × 10-5 meters per day) or near zero. Most recharge to this aquifer is likely from rain and snowmelt on upland areas and seepage losses and infiltration of water from streams crossing the basin-fill aquifer. It is likely that the older water in the basin-fill aquifer is groundwater that has travelled along long and (or) slow flow paths through the fractured bedrock mountains surrounding the basin. The saturated basin-fill sediments in most areas of the basin are probably about 20 meters thick and may be about 30 to 60 meters thick in most areas near the center of the Chakari Basin. The combination of low recharge and little storage indicates that groundwater

  5. Calibrating vadose zone models with time-lapse gravity data: a forced infiltration experiment

    DEFF Research Database (Denmark)

    Christiansen, Lars; Hansen, Allan Bo; Zibar, Majken Caroline Looms

    A change in soil water content is a change in mass stored in the subsurface, and when large enough, can be measured with a gravity meter. Over the last few decades there has been increased use of ground-based time-lapse gravity measurements to infer hydrogeological parameters. These studies have...... focused on the saturated zone, with specific yield as the most prominent target parameter and with few exceptions, changes in storage in the vadose zone have been considered as noise. Here modeling results are presented suggesting that gravity changes will be measureable when soil moisture changes occur...... in the unsaturated zone. These results are confirmed by field measurements of gravity and georadar data at a forced infiltration experiment conducted over 14 days on a grassland area of 10 m by 10 m. An unsaturated zone infiltration model can be calibrated using the gravity data with good agreement to the field data...

  6. Radiation protection zoning

    International Nuclear Information System (INIS)

    2015-01-01

    Radiation being not visible, the zoning of an area containing radioactive sources is important in terms of safety. Concerning radiation protection, 2 work zones are defined by regulations: the monitored zone and the controlled zone. The ministerial order of 15 may 2006 settles the frontier between the 2 zones in terms of radiation dose rates, the rules for access and the safety standards in both zones. Radioprotection rules and the name of the person responsible for radiation protection must be displayed. The frontier between the 2 zones must be materialized and marked with adequate equipment (specific danger signs and tapes). Both zones are submitted to selective entrance, the access for the controlled zone is limited because of the radiation risk and of the necessity of confining radioactive contamination while the limitation of the access to the monitored zone is due to radiation risk only. (A.C.)

  7. Hydrogeologic data for existing excavations and the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1993-12-01

    The Special Projects Section of Reynolds Electrical ampersand Engineering Co., Inc. is responsible for characterizing the subsurface geology and hydrology of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) for the US Department of Energy, Nevada Operations Office (DOE/NV), Office of Environmental Restoration and Waste Management Waste Management Division. Geologic description, in situ testing, and laboratory analyses of alluvium exposed in existing excavations are important subparts to the Area 5 Site Characterization Program designed to determine the suitability of the RWMS for disposal of low level waste mixed waste and transuranic waste. The primary purpose of the Existing Excavation Project is two-fold: first, to characterize important hydrologic properties of the near surface alluvium, thought to play an important role in the infiltration and redistribution of water and solutes through the upper unsaturated zone at the Area 5 RWMS; and second, to provide guidance for the design of future sampling and testing programs. The justification for this work comes from the state of Nevada review of the original DOE/NV Part B Permit application submitted in 1988 for disposal of mixed wastes at the RWMS. The state of Nevada determined that the permit was deficient in characterization data concerning the hydrogeology of the unsaturated zone. DOE/NV agreed with the state and proposed the study of alluvium exposed in existing excavations as one step toward satisfying these important site characterization data requirements. Other components of the site characterization process include the Science Trench Borehole and Pilot Well Projects

  8. Sensitivity analysis and development of calibration methodology for near-surface hydrogeology model of Laxemar

    International Nuclear Information System (INIS)

    Aneljung, Maria; Sassner, Mona; Gustafsson, Lars-Goeran

    2007-11-01

    This report describes modelling where the hydrological modelling system MIKE SHE has been used to describe surface hydrology, near-surface hydrogeology, advective transport mechanisms, and the contact between groundwater and surface water within the SKB site investigation area at Laxemar. In the MIKE SHE system, surface water flow is described with the one-dimensional modelling tool MIKE 11, which is fully and dynamically integrated with the groundwater flow module in MIKE SHE. In early 2008, a supplementary data set will be available and a process of updating, rebuilding and calibrating the MIKE SHE model based on this data set will start. Before the calibration on the new data begins, it is important to gather as much knowledge as possible on calibration methods, and to identify critical calibration parameters and areas within the model that require special attention. In this project, the MIKE SHE model has been further developed. The model area has been extended, and the present model also includes an updated bedrock model and a more detailed description of the surface stream network. The numerical model has been updated and optimized, especially regarding the modelling of evapotranspiration and the unsaturated zone, and the coupling between the surface stream network in MIKE 11 and the overland flow in MIKE SHE. An initial calibration has been made and a base case has been defined and evaluated. In connection with the calibration, the most important changes made in the model were the following: The evapotranspiration was reduced. The infiltration capacity was reduced. The hydraulic conductivities of the Quaternary deposits in the water-saturated part of the subsurface were reduced. Data from one surface water level monitoring station, four surface water discharge monitoring stations and 43 groundwater level monitoring stations (SSM series boreholes) have been used to evaluate and calibrate the model. The base case simulations showed a reasonable agreement

  9. Description of climate, surface hydrology, and near-surface hydrogeology. Preliminary site description. Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Per-Olof [Artesia Grundvattenkonsult AB, Stockholm (Sweden); Werner, Kent [SWECO VIAK AB/Golder Associates AB, Stockholm (Sweden); Bosson, Emma; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Juston, John [DBE Sweden, Uppsala (Sweden)

    2005-06-15

    conductive zones shown to exist in the upper bedrock. The sediment stratigraphy of lakes and wetlands is crucial for their function as discharge areas for groundwater. Low-permeable sediments will restrict the discharge and result in a relocation of the discharge to areas where such sediments are missing. Concerning the interactions between surface water and groundwater, it may also be noted that comparisons between measured lake water levels and groundwater levels below and around lakes indicate that the lakes in some cases may act as sources of groundwater recharge. Specifically, observations from Lake Bolundsfjaerden and Lake Eckarfjaerden show that such conditions were at hand during the dry summer of 2003. However, whether the observed water level relations correspond to significant water fluxes depends also on the hydrogeological properties of the lake sediments and the underlying Quaternary deposits. 'Old' water with high chloride content has been found below Lake Bolundsfjaerden, Lake Eckarfjaerden and Lake Gaellsbotraesket. These observations can either be interpreted as the result of a continuous discharge of deep water, or as evidence of more or less stagnant water below the lakes. Furthermore, the relations between the sea water level and the water levels in Lake Norra Bassaengen, Lake Bolundsfjaerden and Lake Lillfjaerden show that inflow of sea water can occur during periods of high sea water levels. The results from the hydrological GIS modelling support the assumptions and conclusions in the descriptive model. The flow model is highly sensitive to the topography, as this is the only parameter determining the flow pattern. Consequently, the simulated locations of recharge and discharge areas are strongly influenced by the local topography. In addition, the flat topography implies that small errors in the topographical model (the Digital Elevation Model, DEM) may have large effects on the modelled flow pattern. Ditches, diverted water courses and

  10. The hydrogeologic environment for a proposed deep geologic repository in Canada for low and intermediate level radioactive waste - 59285

    International Nuclear Information System (INIS)

    Sykes, Jonathan F.; Normani, Stefano D.; Yin, Yong; Jensen, Mark R.

    2012-01-01

    A Deep Geologic Repository (DGR) for low and intermediate level radioactive waste has been proposed by Ontario Power Generation for the Bruce nuclear site in Ontario, Canada. As proposed the DGR would be constructed at a depth of about 680 m below ground surface within the argillaceous Ordovician limestone of the Cobourg Formation. This paper describes the hydrogeology of the DGR site developed through both site characterization studies and regional-scale numerical modelling analysis. The analysis provides a framework for the assembly and integration of the site-specific geo-scientific data and examines the factors that influence the predicted long-term performance of the geosphere barrier. Flow system evolution was accomplished using both the density-dependent FRAC3DVS-OPG flow and transport model and the two-phase gas and water flow computational model TOUGH2-MP. In the geologic framework of the Province of Ontario, the DGR is located on the eastern flank of the Michigan Basin. Borehole logs covering Southern Ontario combined with site-specific data from 6 deep boreholes have been used to define the structural contours and hydrogeologic properties at the regional-scale of the modelled 31 sedimentary strata that may be partially present above the Precambrian crystalline basement rock. The regional-scale domain encompasses an approximately 18500 km 2 region extending from Lake Huron to Georgian Bay. The groundwater zone below the Devonian includes units containing stagnant water having high concentrations of total dissolved solids that can exceed 300 g/L. The Ordovician sediments are significantly under-pressured. The horizontal hydraulic conductivity for the Cobourg limestone is estimated to be 2x10 -14 m/s based on straddle-packer hydraulic tests. The low advective velocities in the Cobourg and other Ordovician units result in solute transport that is diffusion dominant with Peclet numbers less than 0:003 for a characteristic length of unity. Long

  11. Hydro-geological studies at the PINSTECH quadrangle