WorldWideScience

Sample records for major histocompatibility mhc

  1. The combination of major histocompatibility complex (MHC) and non-MHC genes influences murine lymphocytic choriomeningitis virus pathogenesis

    DEFF Research Database (Denmark)

    Eyler, Y L; Pfau, C J; Broomhall, K S

    1989-01-01

    with the recessive disease phenotype. In all cases, susceptibility was dominant. In backcross progeny obtained from matings of parental strains differing in both major histocompatibility complex (MHC) and non-MHC (SWR; C3H), 90% of the challenged mice died, indicating that at least three loci controlled...... susceptibility to the disease. When the parental strains carried similar MHC haplotypes but dissimilar background genes (B10.BR; CBA), 78% of the backcross mice succumbed, indicating that at least two non-MHC loci influenced disease susceptibility. It is unlikely, however, that the same two non-MHC loci...... are critical in all genetic combinations, since F1 produced from two H-2 identical, resistant strains (B10.BR; C3H) were found to be fully susceptible. When congenic mice, differing only in the D-end of the MHC region, were analysed, 50% of the backcross animals died, indicating that one gene in the MHC region...

  2. Porcine major histocompatibility complex (MHC) class I molecules and analysis of their peptide-binding specificities

    DEFF Research Database (Denmark)

    Pedersen, Lasse Eggers; Harndahl, Mikkel; Rasmussen, Michael

    2011-01-01

    a HLA-I molecule (HLA-A*11:01), thereby generating recombinant human/swine chimeric MHC-I molecules as well as the intact SLA-1*0401 molecule. Biochemical peptide-binding assays and positional scanning combinatorial peptide libraries were used to analyze the peptide-binding motifs of these molecules....... A pan-specific predictor of peptide–MHC-I binding, NetMHCpan, which was originally developed to cover the binding specificities of all known HLA-I molecules, was successfully used to predict the specificities of the SLA-1*0401 molecule as well as the porcine/human chimeric MHC-I molecules. These data......In all vertebrate animals, CD8+ cytotoxic T lymphocytes (CTLs) are controlled by major histocompatibility complex class I (MHC-I) molecules. These are highly polymorphic peptide receptors selecting and presenting endogenously derived epitopes to circulating CTLs. The polymorphism of the MHC...

  3. Ligation of major histocompatibility complex class I antigens (MHC-I) prevents apoptosis induced by Fas or SAPK/JNK activation in T-lymphoma cells

    DEFF Research Database (Denmark)

    Lamberth, K; Claesson, M H

    2001-01-01

    Early apoptosis in Jurkat T-lymphoma cells was induced by agonistic anti-Fas Ab or by anisomycin which activates the stress kinases SAPK/JNK. Apoptosis was inhibited by ligation of major histocompatibility complex class I antigens (MHC-I). MHC-I ligation induced upregulation of the anti-apoptotic......Early apoptosis in Jurkat T-lymphoma cells was induced by agonistic anti-Fas Ab or by anisomycin which activates the stress kinases SAPK/JNK. Apoptosis was inhibited by ligation of major histocompatibility complex class I antigens (MHC-I). MHC-I ligation induced upregulation of the anti......-apoptotic Bcl-2 protein and stabilized the mitochondrial membrane potential (Deltapsim). MHC-I ligation also prevented downregulation of Bcl-2 and destabilization of Deltapsim induced by anti-Fas Ab treatment or anisomycin exposure. Studies on three different Jurkat cell mutants deficient for src p56(lck), ZAP......-70 kinase, or TCR/CD3 gamma-chain showed that the cells undergo apoptosis after Fas ligation. Anisomycin exposure induced apoptosis in the src p56(lck)-deficient cell line but not in the two other mutant cell lines. Simultaneous cross-linking of MHC-I and Fas ligation inhibited apoptosis in the ZAP...

  4. Red Queen Processes Drive Positive Selection on Major Histocompatibility Complex (MHC Genes.

    Directory of Open Access Journals (Sweden)

    Maciej Jan Ejsmond

    2015-11-01

    Full Text Available Major Histocompatibility Complex (MHC genes code for proteins involved in the incitation of the adaptive immune response in vertebrates, which is achieved through binding oligopeptides (antigens of pathogenic origin. Across vertebrate species, substitutions of amino acids at sites responsible for the specificity of antigen binding (ABS are positively selected. This is attributed to pathogen-driven balancing selection, which is also thought to maintain the high polymorphism of MHC genes, and to cause the sharing of allelic lineages between species. However, the nature of this selection remains controversial. We used individual-based computer simulations to investigate the roles of two phenomena capable of maintaining MHC polymorphism: heterozygote advantage and host-pathogen arms race (Red Queen process. Our simulations revealed that levels of MHC polymorphism were high and driven mostly by the Red Queen process at a high pathogen mutation rate, but were low and driven mostly by heterozygote advantage when the pathogen mutation rate was low. We found that novel mutations at ABSs are strongly favored by the Red Queen process, but not by heterozygote advantage, regardless of the pathogen mutation rate. However, while the strong advantage of novel alleles increased the allele turnover rate, under a high pathogen mutation rate, allelic lineages persisted for a comparable length of time under Red Queen and under heterozygote advantage. Thus, when pathogens evolve quickly, the Red Queen is capable of explaining both positive selection and long coalescence times, but the tension between the novel allele advantage and persistence of alleles deserves further investigation.

  5. Oriented coupling of major histocompatibility complex (MHC) to sensor surfaces using light assisted immobilisation technology

    DEFF Research Database (Denmark)

    Snabe, Torben; Røder, Gustav Andreas; Neves-Petersen, Maria Teresa

    2005-01-01

    Controlled and oriented immobilisation of proteins for biosensor purposes is of extreme interest since this provides more efficient sensors with a larger density of active binding sites per area compared to sensors produced by conventional immobilisation. In this paper oriented coupling of a major...... histocompatibility complex (MHC class I) to a sensor surface is presented. The coupling was performed using light assisted immobilisation--a novel immobilisation technology which allows specific opening of particular disulphide bridges in proteins which then is used for covalent bonding to thiol-derivatised surfaces...... via a new disulphide bond. Light assisted immobilisation specifically targets the disulphide bridge in the MHC-I molecule alpha(3)-domain which ensures oriented linking of the complex with the peptide binding site exposed away from the sensor surface. Structural analysis reveals that a similar...

  6. HUBUNGAN ANTARA PERTUMBUHAN DENGAN KEBERADAAN GEN TAHAN PENYAKIT MAJOR HISTOCOMPATIBILITY COMPLEX (MHC PADA IKAN MAS (Cyprinus carpio

    Directory of Open Access Journals (Sweden)

    Erma Primanita Hayuningtyas

    2016-04-01

    Full Text Available Wabah penyakit koi herpes virus (KHV di Indonesia yang terjadi sejak tahun 2002 merupakan salah satu faktor yang memicu kemerosotan produksi ikan mas budidaya. Pembentukan strain unggul ikan mas tahan KHV dapat menjadi solusi bagi permasalahan tersebut. Pemilihan genotip ikan mas tahan KHV dengan marka molekuler gen major histocompatibility complex class II (MHC-II, khususnya pada alel Cyca DAB 1*05 akan membantu dalam kegiatan seleksi. Penelitian ini bertujuan untuk mengetahui keberadaan gen MHC-II pada populasi dasar G0 ikan mas strain Rajadanu dan hubungannya dengan pertumbuhan (bobot. Metode deteksi keberadaan gen MHC-II pada dua kelompok ikan dengan ukuran berbeda dilakukan dengan teknik PCR. Hubungan antara pertumbuhan ikan mas dengan persentase kemunculan gen MHC-II dianalisis dengan menggunakan program SPSS (Statistical Package for the Social Sciences, sehingga diperoleh korelasi di antara keduanya. Hasil penelitian menunjukkan bahwa hubungan antara pertumbuhan dengan persentase keberadaan gen MHC-II berkorelasi negatif dengan nilai R = -0,742. Hal ini mengindikasikan bahwa semakin cepat pertumbuhan populasi ikan mas maka semakin sedikit persentase individu yang mempunyai gen MHC-II pada setiap populasi ikan mas. Sehingga populasi ikan mas yang pertumbuhannya lambat memiliki tingkat persentase positif MHC-II lebih tinggi (85,71%-100% dibandingkan populasi ikan mas yang pertumbuhannya cepat (42,86%-85,71%.

  7. Signal transduction by the major histocompatibility complex class I molecule

    DEFF Research Database (Denmark)

    Pedersen, A E; Skov, Svend; Bregenholt, S

    1999-01-01

    Ligation of cell surface major histocompatibility class I (MHC-I) proteins by antibodies, or by their native counter receptor, the CD8 molecule, mediates transduction of signals into the cells. MHC-I-mediated signaling can lead to both increased and decreased activity of the MHC-I-expressing cell...... and functioning, MHC-I molecules might be of importance for the maintenance of cellular homeostasis not only within the immune system, but also in the interplay between the immune system and other organ systems....

  8. Generation of a genomic tiling array of the human Major Histocompatibility Complex (MHC and its application for DNA methylation analysis

    Directory of Open Access Journals (Sweden)

    Ottaviani Diego

    2008-05-01

    Full Text Available Abstract Background The major histocompatibility complex (MHC is essential for human immunity and is highly associated with common diseases, including cancer. While the genetics of the MHC has been studied intensively for many decades, very little is known about the epigenetics of this most polymorphic and disease-associated region of the genome. Methods To facilitate comprehensive epigenetic analyses of this region, we have generated a genomic tiling array of 2 Kb resolution covering the entire 4 Mb MHC region. The array has been designed to be compatible with chromatin immunoprecipitation (ChIP, methylated DNA immunoprecipitation (MeDIP, array comparative genomic hybridization (aCGH and expression profiling, including of non-coding RNAs. The array comprises 7832 features, consisting of two replicates of both forward and reverse strands of MHC amplicons and appropriate controls. Results Using MeDIP, we demonstrate the application of the MHC array for DNA methylation profiling and the identification of tissue-specific differentially methylated regions (tDMRs. Based on the analysis of two tissues and two cell types, we identified 90 tDMRs within the MHC and describe their characterisation. Conclusion A tiling array covering the MHC region was developed and validated. Its successful application for DNA methylation profiling indicates that this array represents a useful tool for molecular analyses of the MHC in the context of medical genomics.

  9. A recombinant antibody with the antigen-specific, major histocompatibility complex-restricted specificity of T cells

    DEFF Research Database (Denmark)

    Andersen, P S; Stryhn, A; Hansen, B E

    1996-01-01

    Specific recognition of peptide/major histocompatibility complex (MHC) molecule complexes by the T-cell receptor is a key reaction in the specific immune response. Antibodies against peptide/MHC complexes would therefore be valuable tools in studying MHC function and T-cell recognition and might ...

  10. The Major Histocompatibility Complex in Transplantation

    Directory of Open Access Journals (Sweden)

    Marco Antonio Ayala García

    2012-01-01

    Full Text Available The transplant of organs is one of the greatest therapeutic achievements of the twentieth century. In organ transplantation, the adaptive immunity is considered the main response exerted to the transplanted tissue, since the principal target of the immune response is the MHC (major histocompatibility complex molecules expressed on the surface of donor cells. However, we should not forget that the innate and adaptive immunities are closely interrelated and should be viewed as complementary and cooperating. When a human transplant is performed, HLA (human leukocyte antigens molecules from a donor are recognized by the recipient's immune system triggering an alloimmune response Matching of donor and recipient for MHC antigens has been shown to have a significant positive effect on graft acceptance. This paper will present MHC, the innate and adaptive immunities, and clinical HLA testing.

  11. CD1 and major histocompatibility complex II molecules follow a different course during dendritic cell maturation

    NARCIS (Netherlands)

    van der Wel, Nicole N.; Sugita, Masahiko; Fluitsma, Donna M.; Cao, Xaiochun; Schreibelt, Gerty; Brenner, Michael B.; Peters, Peter J.

    2003-01-01

    The maturation of dendritic cells is accompanied by the redistribution of major histocompatibility complex (MHC) class II molecules from the lysosomal MHC class IT compartment to the plasma membrane to mediate presentation of peptide antigens. Besides MHC molecules, dendritic cells also express CD1

  12. Ligation of major histocompatibility complex class I antigens (MHC-I) prevents apoptosis induced by Fas or SAPK/JNK activation in T-lymphoma cells

    DEFF Research Database (Denmark)

    Lamberth, K; Claesson, M H

    2001-01-01

    Early apoptosis in Jurkat T-lymphoma cells was induced by agonistic anti-Fas Ab or by anisomycin which activates the stress kinases SAPK/JNK. Apoptosis was inhibited by ligation of major histocompatibility complex class I antigens (MHC-I). MHC-I ligation induced upregulation of the anti......-apoptotic Bcl-2 protein and stabilized the mitochondrial membrane potential (Deltapsim). MHC-I ligation also prevented downregulation of Bcl-2 and destabilization of Deltapsim induced by anti-Fas Ab treatment or anisomycin exposure. Studies on three different Jurkat cell mutants deficient for src p56(lck), ZAP......-70 kinase, or TCR/CD3 gamma-chain showed that the cells undergo apoptosis after Fas ligation. Anisomycin exposure induced apoptosis in the src p56(lck)-deficient cell line but not in the two other mutant cell lines. Simultaneous cross-linking of MHC-I and Fas ligation inhibited apoptosis in the ZAP...

  13. The major histocompatibility complex and perfumers' descriptions of human body odors

    OpenAIRE

    Wedekind, C.; Escher, S.; Van de Waal, M.; Frei, E.

    2007-01-01

    The MHC (major histocompatibility complex) is a group of genes that play a crucial role in immune recognition and in tolerance of tissue grafting. The MHC has also been found to influence body odors, body odor preferences, and mate choice in mice and humans. Here we test whether verbal descriptions of human body odors can be linked to the MHC. We asked 45 male students to live as odor neutral as possible for two consecutive days and to wear a T-shirt during the nights. The odors of these T-sh...

  14. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions

    DEFF Research Database (Denmark)

    Karosiene, Edita; Lundegaard, Claus; Lund, Ole

    2012-01-01

    A key role in cell-mediated immunity is dedicated to the major histocompatibility complex (MHC) molecules that bind peptides for presentation on the cell surface. Several in silico methods capable of predicting peptide binding to MHC class I have been developed. The accuracy of these methods depe...... at www.cbs.dtu.dk/services/NetMHCcons, and allows the user in an automatic manner to obtain the most accurate predictions for any given MHC molecule....

  15. Correlation in chicken between the marker LEI0258 alleles and Major Histocompatibility Complex sequences

    DEFF Research Database (Denmark)

    Chazara, Olympe; Juul-Madsen, Helle Risdahl; Chang, Chi-Seng

    Background The LEI0258 marker is located within the B region of the chicken Major Histocompatibility Complex (MHC), and is surprisingly well associated with serology. Therefore, the correlation between the LEI0258 alleles and the MHC class I and the class II alleles at the level of sequences is w...

  16. Olfactory cues associated with the major histocompatibility complex.

    Science.gov (United States)

    Eggert, F; Müller-Ruchholtz, W; Ferstl, R

    Besides its immunological function of self/non-self discrimination the major histocompatibility complex (MHC) has been recognized as a possible source of individual specific body odors. Dating back to speculations on the role of the extraordinary polymorphism of the MHC as background of an individual chemosensory identity and to early observations of MHC-dependent mate choice in inbred strains of mice, systematic experimental studies revealed a first evidence for H-2 related body odors in this species. Meanwhile a large number of animal studies with rodents and a series of field studies and experiments with humans have extended our knowledge of MHC-related odor signals and substantiated the hypothesis of immunogenetic associated odor types. These results suggest that the most prominent feature of the MHC, its extraordinary genetic diversity, seems in part to be selectively maintained by behavioral mechanisms which operate in contemporary natural populations. The high degree of heterozygosity found in natural populations of most species seems to be promoted by non-disease-based selection such as mating preferences and selective block of pregnancy.

  17. Molecular Genotype Identification of Different Chickens: Major Histocompatibility Complex

    Directory of Open Access Journals (Sweden)

    Hongzhi Wang

    2014-09-01

    Full Text Available Chicken is a main poultry in China. Molecular breeding for disease resistance plays an important role in the control of diseases, especially infectious diseases. Choice of genes for disease resistance is the key technology of molecular breeding. The major histocompatibility complex (MHC is of great interest to poultry breeding scientists for its extraordinary polymorphism and close relation with traits of resistance against infectious diseases. The MHC-B haplotype plays an important role in the study of disease resistance in chicken. The traditional chicken MHC-B haplotype is commonly defined by serologic reactions of erythrocytes and the majority of studies have been conducted in Leghorn and broiler but study about other chicken breeds is little. In this study, firstly, the microsatellite marker LEI0258 which is located within the MHC was sequenced by using target sequence capture assay in different chicken breeds, and then according to the number of repeated structures and polymorphic sequences in microsatellite, sequence information for the region defined by LEI0258 was obtained for different haplotypes. Afterwards, we identified the relation between MHC-B haplotypes and disease resistance. Collectively, these observed results provided the reference data for disease-resistant breeding association with blood type and for further study of MHC gene function in poultry.

  18. Isolation and characterization of major histocompatibility complex class IIB genes from the nurse shark.

    OpenAIRE

    Bartl, S; Weissman, I L

    1994-01-01

    The major histocompatibility complex (MHC) contains a set of linked genes which encode cell surface proteins involved in the binding of small peptide antigens for their subsequent recognition by T lymphocytes. MHC proteins share structural features and the presence and location of polymorphic residues which play a role in the binding of antigens. In order to compare the structure of these molecules and gain insights into their evolution, we have isolated two MHC class IIB genes from the nurse...

  19. Characterization of major histocompatibility complex (MHC DRB exon 2 and DRA exon 3 fragments in a primary terrestrial rabies vector (Procyon lotor.

    Directory of Open Access Journals (Sweden)

    Sarrah Castillo

    Full Text Available The major histocompatibility complex (MHC presents a unique system to explore links between genetic diversity and pathogens, as diversity within MHC is maintained in part by pathogen driven selection. While the majority of wildlife MHC studies have investigated species that are of conservation concern, here we characterize MHC variation in a common and broadly distributed species, the North American raccoon (Procyon lotor. Raccoons host an array of broadly distributed wildlife diseases (e.g., canine distemper, parvovirus and raccoon rabies virus and present important human health risks as they persist in high densities and in close proximity to humans and livestock. To further explore how genetic variation influences the spread and maintenance of disease in raccoons we characterized a fragment of MHC class II DRA exon 3 (250 bp and DRB exon 2 (228 bp. MHC DRA was found to be functionally monomorphic in the 32 individuals screened; whereas DRB exon 2 revealed 66 unique alleles among the 246 individuals screened. Between two and four alleles were observed in each individual suggesting we were amplifying a duplicated DRB locus. Nucleotide differences between DRB alleles ranged from 1 to 36 bp (0.4-15.8% divergence and translated into 1 to 21 (1.3-27.6% divergence amino acid differences. We detected a significant excess of nonsynonymous substitutions at the peptide binding region (P = 0.005, indicating that DRB exon 2 in raccoons has been influenced by positive selection. These data will form the basis of continued analyses into the spatial and temporal relationship of the raccoon rabies virus and the immunogenetic response in its primary host.

  20. A Recombinant Antibody with the Antigen-Specific, Major Histocompatibility Complex-Restricted Specificity of T Cells

    Science.gov (United States)

    Andersen, Peter S.; Stryhn, Anette; Hansen, Bjarke E.; Fugger, Lars; Engberg, Jan; Buus, Soren

    1996-03-01

    Specific recognition of peptide/major histocompatibility complex (MHC) molecule complexes by the T-cell receptor is a key reaction in the specific immune response. Antibodies against peptide/MHC complexes would therefore be valuable tools in studying MHC function and T-cell recognition and might lead to novel approaches in immunotherapy. However, it has proven difficult to generate antibodies with the specificity of T cells by conventional hybridoma techniques. Here we report that the phage display technology is a feasible alternative to generate antibodies recognizing specific, predetermined peptide/MHC complexes.

  1. Genetic Divergence of the Rhesus Macaque Major Histocompatibility Complex

    Science.gov (United States)

    Daza-Vamenta, Riza; Glusman, Gustavo; Rowen, Lee; Guthrie, Brandon; Geraghty, Daniel E.

    2004-01-01

    The major histocompatibility complex (MHC) is comprised of the class I, class II, and class III regions, including the MHC class I and class II genes that play a primary role in the immune response and serve as an important model in studies of primate evolution. Although nonhuman primates contribute significantly to comparative human studies, relatively little is known about the genetic diversity and genomics underlying nonhuman primate immunity. To address this issue, we sequenced a complete rhesus macaque MHC spanning over 5.3 Mb, and obtained an additional 2.3 Mb from a second haplotype, including class II and portions of class I and class III. A major expansion of from six class I genes in humans to as many as 22 active MHC class I genes in rhesus and levels of sequence divergence some 10-fold higher than a similar human comparison were found, averaging from 2% to 6% throughout extended portions of class I and class II. These data pose new interpretations of the evolutionary constraints operating between MHC diversity and T-cell selection by contrasting with models predicting an optimal number of antigen presenting genes. For the clinical model, these data and derivative genetic tools can be implemented in ongoing genetic and disease studies that involve the rhesus macaque. PMID:15289473

  2. Overall major histocompatibility complex class I expression is not downregulated in cervix cancer, as detected by immunoelectron microscopy

    NARCIS (Netherlands)

    van Eijkeren, MA; Roovers, JP; Oorschot, [No Value; Geuze, HJ

    2004-01-01

    Downregulation of major histocompatibility complex (MHC) class I molecules in cervix cancer has been proposed as a mechanism for cancer cells to escape immunodetection. By means of light microscopic immunohistochemistry, it has been shown that in 20-70% of cervix cancers MHC class I is

  3. Characterisation of major histocompatibility complex class I transcripts in an Australian dragon lizard.

    Science.gov (United States)

    Hacking, Jessica; Bertozzi, Terry; Moussalli, Adnan; Bradford, Tessa; Gardner, Michael

    2018-07-01

    Characterisation of squamate major histocompatibility complex (MHC) genes has lagged behind other taxonomic groups. MHC genes encode cell-surface glycoproteins that present self- and pathogen-derived peptides to T cells and play a critical role in pathogen recognition. Here we characterise MHC class I transcripts for an agamid lizard (Ctenophorus decresii) and investigate the evolution of MHC class I in Iguanian lizards. An iterative assembly strategy was used to identify six full-length C. decresii MHC class I transcripts, which were validated as likely to encode classical class I MHC molecules. Evidence for exon shuffling recombination was uncovered for C. decresii transcripts and Bayesian phylogenetic analysis of Iguanian MHC class I sequences revealed a pattern expected under a birth-and-death mode of evolution. This work provides a stepping stone towards further research on the agamid MHC class I region. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Engineering chimeric human and mouse major histocompatibility complex (MHC) class I tetramers for the production of T-cell receptor (TCR) mimic antibodies

    Science.gov (United States)

    Bentley, Carol; Yates, Jenna; Salimi, Maryam; Greig, Jenny; Wiblin, Sarah; Hassanali, Tasneem; Banham, Alison H.

    2017-01-01

    Therapeutic monoclonal antibodies targeting cell surface or secreted antigens are among the most effective classes of novel immunotherapies. However, the majority of human proteins and established cancer biomarkers are intracellular. Peptides derived from these intracellular proteins are presented on the cell surface by major histocompatibility complex class I (MHC-I) and can be targeted by a novel class of T-cell receptor mimic (TCRm) antibodies that recognise similar epitopes to T-cell receptors. Humoural immune responses to MHC-I tetramers rarely generate TCRm antibodies and many antibodies recognise the α3 domain of MHC-I and β2 microglobulin (β2m) that are not directly involved in presenting the target peptide. Here we describe the production of functional chimeric human-murine HLA-A2-H2Dd tetramers and modifications that increase their bacterial expression and refolding efficiency. These chimeric tetramers were successfully used to generate TCRm antibodies against two epitopes derived from wild type tumour suppressor p53 (RMPEAAPPV and GLAPPQHLIRV) that have been used in vaccination studies. Immunisation with chimeric tetramers yielded no antibodies recognising the human α3 domain and β2m and generated TCRm antibodies capable of specifically recognising the target peptide/MHC-I complex in fully human tetramers and on the cell surface of peptide pulsed T2 cells. Chimeric tetramers represent novel immunogens for TCRm antibody production and may also improve the yield of tetramers for groups using these reagents to monitor CD8 T-cell immune responses in HLA-A2 transgenic mouse models of immunotherapy. PMID:28448627

  5. Genetic variation of the major histocompatibility complex (MHC class II B gene in the threatened Hume's pheasant, Syrmaticus humiae.

    Directory of Open Access Journals (Sweden)

    Weicai Chen

    Full Text Available Major histocompatibility complex (MHC genes are the most polymorphic genes in vertebrates and encode molecules that play a crucial role in pathogen resistance. As a result of their diversity, they have received much attention in the fields of evolutionary and conservation biology. Here, we described the genetic variation of MHC class II B (MHCIIB exon 2 in a wild population of Hume's pheasant (Syrmaticus humiae, which has suffered a dramatic decline in population over the last three decades across its ranges in the face of heavy exploitation and habitat loss. Twenty-four distinct alleles were found in 73 S. humiae specimens. We found seven shared alleles among four geographical groups as well as six rare MHCIIB alleles. Most individuals displayed between one to five alleles, suggesting that there are at least three MHCIIB loci of the Hume's pheasant. The dN ⁄ dS ratio at putative antigen-binding sites (ABS was significantly greater than one, indicating balancing selection is acting on MHCIIB exon 2. Additionally, recombination and gene conversion contributed to generating MHCIIB diversity in the Hume's pheasant. One to three recombination events and seventy-five significant gene conversion events were observed within the Hume's pheasant MHCIIB loci. The phylogenetic tree and network analysis revealed that the Hume's pheasant alleles do not cluster together, but are scattered through the tree or network indicating a trans-species evolutionary mode. These findings revealed the evolution of the Hume's pheasant MHC after suffering extreme habitat fragmentation.

  6. Restriction fragment polymorphisms in the major histocompatibility complex of diabetic BB rats

    DEFF Research Database (Denmark)

    Kastern, W.; Dyrberg, T.; Scholler, J.

    1984-01-01

    DNA isolated from diabetic BB (BB/Hagedorn) rats was examined for restriction fragment length differences within the major histocompatibility complex (MHC) as compared with nondiabetic (W-subline) BB rats. Polymorphisms were detected using a mouse class I MHC gene as probe. Specifically, a 2-kb Bam......HI fragment was present in all the nondiabetic rats examined, but absent in the diabetic rats. Similar polymorphisms were observed with various other restriction enzymes, particularly XbaI, HindII, and SacI. There were no polymorphisms detected using either a human DR-alpha (class II antigen heavy chain...

  7. The Major Histocompatibility Complex and Perfumers' Descriptions of Human Body Odors

    Directory of Open Access Journals (Sweden)

    Claus Wedekind

    2007-04-01

    Full Text Available The MHC (major histocompatibility complex is a group of genes that play a crucial role in immune recognition and in tolerance of tissue grafting. The MHC has also been found to influence body odors, body odor preferences, and mate choice in mice and humans. Here we test whether verbal descriptions of human body odors can be linked to the MHC. We asked 45 male students to live as odor neutral as possible for two consecutive days and to wear a T-shirt during the nights. The odors of these T-shirts were then described by five evaluators: two professional perfumers and three laymen. One of the perfumers was able to describe the T-shirt odors in such a way that some of the allelic specificity of the MHC was significantly revealed (after Bonferroni correction for multiple testing. This shows that, although difficult, some people are able to describe MHC-correlated body odor components.

  8. Multiple major histocompatibility complex class I genes in Asian anurans: Ontogeny and phylogeny.

    Science.gov (United States)

    Didinger, Chelsea; Eimes, John A; Lillie, Mette; Waldman, Bruce

    2017-05-01

    Amphibians, as the first terrestrial vertebrates, offer a window into early major histocompatibility complex (MHC) evolution. We characterized the MHC class I of two Korean amphibians, the Asiatic toad (Bufo gargarizans) and the Japanese tree frog (Hyla japonica). We found at least four transcribed MHC class I (MHC I) loci, the highest number confirmed in any anuran to date. Furthermore, we identified MHC I transcripts in terrestrial adults, and possibly in aquatic larvae, of both species. We conducted a phylogenetic analysis based on MHC I sequence data and found that B. gargarizans and H. japonica cluster together in the superfamily Nobleobatrachia. We further identified three supertypes shared by the two species. Our results reveal substantial variation in the number of MHC I loci in anurans and suggest that certain supertypes have particular physiochemical properties that may confer pathogen resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Reconstructing an ancestral mammalian immune supercomplex from a marsupial major histocompatibility complex.

    Directory of Open Access Journals (Sweden)

    Katherine Belov

    2006-03-01

    Full Text Available The first sequenced marsupial genome promises to reveal unparalleled insights into mammalian evolution. We have used the Monodelphis domestica (gray short-tailed opossum sequence to construct the first map of a marsupial major histocompatibility complex (MHC. The MHC is the most gene-dense region of the mammalian genome and is critical to immunity and reproductive success. The marsupial MHC bridges the phylogenetic gap between the complex MHC of eutherian mammals and the minimal essential MHC of birds. Here we show that the opossum MHC is gene dense and complex, as in humans, but shares more organizational features with non-mammals. The Class I genes have amplified within the Class II region, resulting in a unique Class I/II region. We present a model of the organization of the MHC in ancestral mammals and its elaboration during mammalian evolution. The opossum genome, together with other extant genomes, reveals the existence of an ancestral "immune supercomplex" that contained genes of both types of natural killer receptors together with antigen processing genes and MHC genes.

  10. Efficient assembly of recombinant major histocompatibility complex class I molecules with preformed disulfide bonds

    DEFF Research Database (Denmark)

    Ostergaard Pedersen, L; Nissen, Mogens Holst; Hansen, N J

    2001-01-01

    The expression of major histocompatibility class I (MHC-I) crucially depends upon the binding of appropriate peptides. MHC-I from natural sources are therefore always preoccupied with peptides complicating their purification and analysis. Here, we present an efficient solution to this problem....... Recombinant MHC-I heavy chains were produced in Escherichia coli and subsequently purified under denaturing conditions. In contrast to common practice, the molecules were not reduced during the purification. The oxidized MHC-I heavy chain isoforms were highly active with respect to peptide binding....... This suggests that de novo folding of denatured MHC-I molecules proceed efficiently if directed by preformed disulfide bond(s). Importantly, these molecules express serological epitopes and stain specific T cells; and they bind peptides specifically. Several denatured MHC-I heavy chains were analyzed and shown...

  11. Pathogen burden, co-infection and major histocompatibility complex variability in the European badger (Meles meles)

    NARCIS (Netherlands)

    Sin, Yung Wa; Annavi, Geetha; Dugdale, Hannah L.; Newman, Chris; Burke, Terry; MacDonald, David W.

    2014-01-01

    Pathogen-mediated selection is thought to maintain the extreme diversity in the major histocompatibility complex (MHC) genes, operating through the heterozygote advantage, rare-allele advantage and fluctuating selection mechanisms. Heterozygote advantage (i.e. recognizing and binding a wider range

  12. Odour-based discrimination of similarity at the major histocompatibility complex in birds.

    Science.gov (United States)

    Leclaire, Sarah; Strandh, Maria; Mardon, Jérôme; Westerdahl, Helena; Bonadonna, Francesco

    2017-01-11

    Many animals are known to preferentially mate with partners that are dissimilar at the major histocompatibility complex (MHC) in order to maximize the antigen binding repertoire (or disease resistance) in their offspring. Although several mammals, fish or lizards use odour cues to assess MHC similarity with potential partners, the ability of birds to assess MHC similarity using olfactory cues has not yet been explored. Here we used a behavioural binary choice test and high-throughput-sequencing of MHC class IIB to determine whether blue petrels can discriminate MHC similarity based on odour cues alone. Blue petrels are seabirds with particularly good sense of smell, they have a reciprocal mate choice and are known to preferentially mate with MHC-dissimilar partners. Incubating males preferentially approached the odour of the more MHC-dissimilar female, whereas incubating females showed opposite preferences. Given their mating pattern, females were, however, expected to show preference for the odour of the more MHC-dissimilar male. Further studies are needed to determine whether, as in women and female mice, the preference varies with the reproductive cycle in blue petrel females. Our results provide the first evidence that birds can use odour cues only to assess MHC dissimilarity. © 2017 The Author(s).

  13. Isolation and characterization of major histocompatibility complex class II B genes in cranes.

    Science.gov (United States)

    Kohyama, Tetsuo I; Akiyama, Takuya; Nishida, Chizuko; Takami, Kazutoshi; Onuma, Manabu; Momose, Kunikazu; Masuda, Ryuichi

    2015-11-01

    In this study, we isolated and characterized the major histocompatibility complex (MHC) class II B genes in cranes. Genomic sequences spanning exons 1 to 4 were amplified and determined in 13 crane species and three other species closely related to cranes. In all, 55 unique sequences were identified, and at least two polymorphic MHC class II B loci were found in most species. An analysis of sequence polymorphisms showed the signature of positive selection and recombination. A phylogenetic reconstruction based on exon 2 sequences indicated that trans-species polymorphism has persisted for at least 10 million years, whereas phylogenetic analyses of the sequences flanking exon 2 revealed a pattern of concerted evolution. These results suggest that both balancing selection and recombination play important roles in the crane MHC evolution.

  14. Blood parasites shape extreme major histocompatibility complex diversity in a migratory passerine.

    Science.gov (United States)

    Biedrzycka, Aleksandra; Bielański, Wojciech; Ćmiel, Adam; Solarz, Wojciech; Zając, Tadeusz; Migalska, Magdalena; Sebastian, Alvaro; Westerdahl, Helena; Radwan, Jacek

    2018-06-01

    Pathogens are one of the main forces driving the evolution and maintenance of the highly polymorphic genes of the vertebrate major histocompatibility complex (MHC). Although MHC proteins are crucial in pathogen recognition, it is still poorly understood how pathogen-mediated selection promotes and maintains MHC diversity, and especially so in host species with highly duplicated MHC genes. Sedge warblers (Acrocephalus schoenobaenus) have highly duplicated MHC genes, and using data from high-throughput MHC genotyping, we were able to investigate to what extent avian malaria parasites explain temporal MHC class I supertype fluctuations in a long-term study population. We investigated infection status and infection intensities of two different strains of Haemoproteus, that is avian malaria parasites that are known to have significant fitness consequences in sedge warblers. We found that prevalence of avian malaria in carriers of specific MHC class I supertypes was a significant predictor of their frequency changes between years. This finding suggests that avian malaria infections partly drive the temporal fluctuations of the MHC class I supertypes. Furthermore, we found that individuals with a large number of different supertypes had higher resistance to avian malaria, but there was no evidence for an optimal MHC class I diversity. Thus, the two studied malaria parasite strains appear to select for a high MHC class I supertype diversity. Such selection may explain the maintenance of the extremely high number of MHC class I gene copies in sedge warblers and possibly also in other passerines where avian malaria is a common disease. © 2018 John Wiley & Sons Ltd.

  15. Gene duplication and fragmentation in the zebra finch major histocompatibility complex.

    Science.gov (United States)

    Balakrishnan, Christopher N; Ekblom, Robert; Völker, Martin; Westerdahl, Helena; Godinez, Ricardo; Kotkiewicz, Holly; Burt, David W; Graves, Tina; Griffin, Darren K; Warren, Wesley C; Edwards, Scott V

    2010-04-01

    Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC) has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC) sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH) evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving chromosomal fission, gene duplication and translocation in the

  16. Gene duplication and fragmentation in the zebra finch major histocompatibility complex

    Directory of Open Access Journals (Sweden)

    Burt David W

    2010-04-01

    Full Text Available Abstract Background Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. Results The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. Conclusion The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving

  17. The Missing Link in Epstein-Barr Virus Immune Evasion: the BDLF3 Gene Induces Ubiquitination and Downregulation of Major Histocompatibility Complex Class I (MHC-I) and MHC-II.

    Science.gov (United States)

    Quinn, Laura L; Williams, Luke R; White, Claire; Forrest, Calum; Zuo, Jianmin; Rowe, Martin

    2016-01-01

    The ability of Epstein-Barr virus (EBV) to spread and persist in human populations relies on a balance between host immune responses and EBV immune evasion. CD8(+) cells specific for EBV late lytic cycle antigens show poor recognition of target cells compared to immediate early and early antigen-specific CD8(+) cells. This phenomenon is due in part to the early EBV protein BILF1, whose immunosuppressive activity increases with lytic cycle progression. However, published data suggest the existence of a hitherto unidentified immune evasion protein further enhancing protection against late EBV antigen-specific CD8(+) cells. We have now identified the late lytic BDLF3 gene as the missing link accounting for efficient evasion during the late lytic cycle. Interestingly, BDLF3 also contributes to evasion of CD4(+) cell responses to EBV. We report that BDLF3 downregulates expression of surface major histocompatibility complex (MHC) class I and class II molecules in the absence of any effect upon other surface molecules screened, including CD54 (ICAM-1) and CD71 (transferrin receptor). BDLF3 both enhanced internalization of surface MHC molecules and reduced the rate of their appearance at the cell surface. The reduced expression of surface MHC molecules correlated with functional protection against CD8(+) and CD4(+) T cell recognition. The molecular mechanism was identified as BDLF3-induced ubiquitination of MHC molecules and their subsequent downregulation in a proteasome-dependent manner. Immune evasion is a necessary feature of viruses that establish lifelong persistent infections in the face of strong immune responses. EBV is an important human pathogen whose immune evasion mechanisms are only partly understood. Of the EBV immune evasion mechanisms identified to date, none could explain why CD8(+) T cell responses to late lytic cycle genes are so infrequent and, when present, recognize lytically infected target cells so poorly relative to CD8(+) T cells specific for

  18. IMGT unique numbering for MHC groove G-DOMAIN and MHC superfamily (MhcSF) G-LIKE-DOMAIN

    DEFF Research Database (Denmark)

    Lefranc, Marie-Paule; Duprat, E.; Kaas, Quentin

    2005-01-01

    IMGT, the international ImMunoGeneTics information system® (http://imgt.cines.fr) provides a common access to expertly annotated data on the genome, proteome, genetics and structure of immunoglobulins (IG), T cell receptors (TR), major histocompatibility complex (MHC), and related proteins...

  19. Allogeneic major histocompatibility complex-mismatched equine bone marrow-derived mesenchymal stem cells are targeted for death by cytotoxic anti-major histocompatibility complex antibodies.

    Science.gov (United States)

    Berglund, A K; Schnabel, L V

    2017-07-01

    Allogeneic mesenchymal stem cells (MSCs) are a promising cell source for treating musculoskeletal injuries in horses. Controversy exists, however, over whether major histocompatibility complex (MHC)-mismatched MSCs are recognised by the recipient immune system and targeted for death by a cytotoxic antibody response. To determine if cytotoxic anti-MHC antibodies generated in vivo following MHC-mismatched MSC injections are capable of initiating complement-dependent cytotoxicity of MSCs. Experimental controlled study. Antisera previously collected at Days 0, 7, 14 and 21 post-injection from 4 horses injected with donor MHC-mismatched equine leucocyte antigen (ELA)-A2 haplotype MSCs and one control horse injected with donor MHC-matched ELA-A2 MSCs were utilised in this study. Antisera were incubated with ELA-A2 MSCs before adding complement in microcytotoxicity assays and cell death was analysed via eosin dye exclusion. ELA-A2 peripheral blood leucocytes (PBLs) were used in the assays as a positive control. Antisera from all 4 horses injected with MHC-mismatched MSCs contained antibodies that caused the death of ELA-A2 haplotype MSCs in the microcytotoxicity assays. In 2 of the 4 horses, antibodies were present as early as Day 7 post-injection. MSC death was consistently equivalent to that of ELA-A2 haplotype PBL death at all time points and antisera dilutions. Antisera from the control horse that was injected with MHC-matched MSCs did not contain cytotoxic ELA-A2 antibodies at any of the time points examined. This study examined MSC death in vitro only and utilized antisera from a small number of horses. The cytotoxic antibody response induced in recipient horses following injection with donor MHC-mismatched MSCs is capable of killing donor MSCs in vitro. These results suggest that the use of allogeneic MHC-mismatched MSCs must be cautioned against, not only for potential adverse events, but also for reduced therapeutic efficacy due to targeted MSC death. © 2016 The

  20. DNA variation of the mammalian major histocompatibility complex reflects genomic diversity and population history

    Energy Technology Data Exchange (ETDEWEB)

    Yuhki, Naoya; O' Brien, S.J. (National Cancer Institute, Frederick, MD (USA))

    1990-01-01

    The major histocompatibility complex (MHC) is a multigene complex of tightly linked homologous genes that encode cell surface antigens that play a key role in immune regulation and response to foreign antigens. In most species, MHC gene products display extreme antigenic polymorphism, and their variability has been interpreted to reflect an adaptive strategy for accommodating rapidly evolving infectious agents that periodically afflict natural populations. Determination of the extent of MHC variation has been limited to populations in which skin grafting is feasible or for which serological reagents have been developed. The authors present here a quantitative analysis of restriction fragment length polymorphism of MHC class I genes in several mammalian species (cats, rodents, humans) known to have very different levels of genetic diversity based on functional MHC assays and on allozyme surveys. When homologous class I probes were employed, a notable concordance was observed between the extent of MHC restriction fragment variation and functional MHC variation detected by skin grafts or genome-wide diversity estimated by allozyme screens. These results confirm the genetically depauperate character of the African cheetah, Acinonyx jubatus, and the Asiatic lion, Panthera leo persica; further, they support the use of class I MHC molecular reagents in estimating the extent and character of genetic diversity in natural populations.

  1. DNA variation of the mammalian major histocompatibility complex reflects genomic diversity and population history

    International Nuclear Information System (INIS)

    Yuhki, Naoya; O'Brien, S.J.

    1990-01-01

    The major histocompatibility complex (MHC) is a multigene complex of tightly linked homologous genes that encode cell surface antigens that play a key role in immune regulation and response to foreign antigens. In most species, MHC gene products display extreme antigenic polymorphism, and their variability has been interpreted to reflect an adaptive strategy for accommodating rapidly evolving infectious agents that periodically afflict natural populations. Determination of the extent of MHC variation has been limited to populations in which skin grafting is feasible or for which serological reagents have been developed. The authors present here a quantitative analysis of restriction fragment length polymorphism of MHC class I genes in several mammalian species (cats, rodents, humans) known to have very different levels of genetic diversity based on functional MHC assays and on allozyme surveys. When homologous class I probes were employed, a notable concordance was observed between the extent of MHC restriction fragment variation and functional MHC variation detected by skin grafts or genome-wide diversity estimated by allozyme screens. These results confirm the genetically depauperate character of the African cheetah, Acinonyx jubatus, and the Asiatic lion, Panthera leo persica; further, they support the use of class I MHC molecular reagents in estimating the extent and character of genetic diversity in natural populations

  2. Expression of major histocompatibility complex class II and costimulatory molecules in oral carcinomas in vitro.

    Science.gov (United States)

    Villarroel-Dorrego, Mariana; Speight, Paul M; Barrett, A William

    2005-01-01

    Recognition in the 1980 s that keratinocytes can express class II molecules of the Major Histocompatibility Complex (MHC) first raised the possibility that these cells might have an immunological function, and may even act as antigen presenting cells (APC). For effective T lymphocyte activation, APC require, in addition to MHC II, appropriate costimulatory signals. The aim of this study was to determine the expression of MHC class II and the co-stimulatory molecules CD40, CD80 and CD86 in keratinocytes derived from healthy oral mucosa and oral carcinomas. Using flow cytometry, it was confirmed that oral keratinocytes, switch on, expression of MHC class II molecules after stimulation with IFNgamma in vitro. All keratinocyte lines expressed CD40 constitutively; by contrast, CD80 and CD86 were universally absent. Loss of CD80 and CD86 may be one means whereby tumours escape immunological surveillance.

  3. MHC and Evolution in Teleosts

    OpenAIRE

    Grimholt, Unni

    2016-01-01

    Major histocompatibility complex (MHC) molecules are key players in initiating immune responses towards invading pathogens. Both MHC class I and class II genes are present in teleosts, and, using phylogenetic clustering, sequences from both classes have been classified into various lineages. The polymorphic and classical MHC class I and class II gene sequences belong to the U and A lineages, respectively. The remaining class I and class II lineages contain nonclassical gene sequences that, de...

  4. Selective loss of mouse embryos due to the expression of transgenic major histocompatibility class I molecules early in embryogenesis.

    Science.gov (United States)

    Aït-Azzouzene, D; Langkopf, A; Cohen, J; Bleux, C; Gendron, M C; Kanellopoulos-Langevin, C

    1998-05-01

    Among the numerous hypotheses proposed to explain the absence of fetal rejection by the mother in mammals, it has been suggested that regulation of expression of the polymorphic major histocompatibility complex (MHC) at the fetal-maternal interface plays a major role. In addition to a lack of MHC gene expression in the placenta throughout gestation, the absence of polymorphic MHC molecules on the early embryo, as well as their low level of expression after midgestation, could contribute to this important biologic phenomenon. In order to test this hypothesis, we have produced transgenic mice able to express polymorphic MHC class I molecules early in embryogenesis. We have placed the MHC class la gene H-2Kb under the control of a housekeeping gene promoter, the hydroxy-methyl-glutaryl coenzyme A reductase (HMG) gene minimal promoter. This construct has been tested for functionality after transfection into mouse fibroblast L cells. The analysis of three founder transgenic mice and their progeny suggested that fetoplacental units that could express the H-2Kb heavy chains are unable to survive in utero beyond midgestation. We have shown further that a much higher resorption rate, on days 11 to 13 of embryonic development, is observed among transgenic embryos developing from eggs microinjected at the one-cell stage with the pHMG-Kb construct than in control embryos. This lethality is not due to immune phenomena, since it is observed in histocompatible combinations between mother and fetus. These results are discussed in the context of what is currently known about the regulation of MHC expression at the fetal-maternal interface and in various transgenic mouse models.

  5. MHC Class II epitope predictive algorithms

    DEFF Research Database (Denmark)

    Nielsen, Morten; Lund, Ole; Buus, S

    2010-01-01

    Major histocompatibility complex class II (MHC-II) molecules sample peptides from the extracellular space, allowing the immune system to detect the presence of foreign microbes from this compartment. To be able to predict the immune response to given pathogens, a number of methods have been...... developed to predict peptide-MHC binding. However, few methods other than the pioneering TEPITOPE/ProPred method have been developed for MHC-II. Despite recent progress in method development, the predictive performance for MHC-II remains significantly lower than what can be obtained for MHC-I. One reason...

  6. Chicken major histocompatibility complex-encoded B-G antigens are found on many cell types that are important for the immune system

    DEFF Research Database (Denmark)

    Salomonsen, J; Dunon, D; Skjødt, K

    1991-01-01

    B-G antigens are a polymorphic multigene family of cell surface molecules encoded by the chicken major histocompatibility complex (MHC). They have previously been described only on cells of the erythroid lineage. By using flow cytometry, section staining, and immunoprecipitation with monoclonal a...

  7. MHC class II B diversity in blue tits : A preliminary study

    NARCIS (Netherlands)

    Rivero-de Aguilar, Juan; Schut, Elske; Merino, Santiago; Martinez, Javier; Komdeur, Jan; Westerdahl, Helena

    In this study, we partly characterize major histocompatibility complex (MHC) class II B in the blue tit (Cyanistes caeruleus). A total of 22 individuals from three different European locations: Spain, The Netherlands, and Sweden were screened for MHC allelic diversity. The MHC genes were

  8. Shared fine specificity between T-cell receptors and an antibody recognizing a peptide/major histocompatibility class I complex

    DEFF Research Database (Denmark)

    Stryhn, A; Andersen, P S; Pedersen, L O

    1996-01-01

    Cytotoxic T cells recognize mosaic structures consisting of target peptides embedded within self-major histocompatibility complex (MHC) class I molecules. This structure has been described in great detail for several peptide-MHC complexes. In contrast, how T-cell receptors recognize peptide...... each other showing that peptide residues 1, 3, 4, 6, and 7 were exposed on the MHC surface and recognized by the T cells. Thus, the majority, and perhaps all, of the side chains of the non-primary anchor residues may be available for T-cell recognition, and contribute to the stringent specificity of T...... cells. A striking similarity between the specificity of the T cells and that of the pSAN antibody was found and most of the peptide residues, which could be recognized by the T cells, could also be recognized by the antibody....

  9. Characterisation of four major histocompatibility complex class II genes of the koala (Phascolarctos cinereus).

    Science.gov (United States)

    Lau, Quintin; Jobbins, Sarah E; Belov, Katherine; Higgins, Damien P

    2013-01-01

    Major histocompatibility complex (MHC) class II molecules have an integral role in the adaptive immune response, as they bind and present antigenic peptides to T helper lymphocytes. In this study of koalas, species-specific primers were designed to amplify exon 2 of the MHC class II DA and DB genes, which contain much of the peptide-binding regions of the α and β chains. A total of two DA α1 domain variants and eight DA β1 (DAB), three DB α1 and five DB β1 variants were amplified from 20 koalas from two free-living populations from South East Queensland and the Port Macquarie region in northern New South Wales. We detected greater variation in the β1 than in the α1 domains as well as evidence of positive selection in DAB. The present study provides a springboard to future investigation of the role of MHC in disease susceptibility in koalas.

  10. Clinical, immunological and genetic features in eleven Algerian patients with major histocompatibility complex class II expression deficiency

    Directory of Open Access Journals (Sweden)

    Djidjik Réda

    2012-08-01

    Full Text Available Abstract Presenting processed antigens to CD4+ lymphocytes during the immune response involves major histocompatibility complex class II molecules. MHC class II genes transcription is regulated by four transcription factors: CIITA, RFXANK, RFX5 and RFXAP. Defects in these factors result in major histocompatibility complex class II expression deficiency, a primary combined immunodeficiency frequent in North Africa. Autosomal recessive mutations in the RFXANK gene have been reported as being the principal defect found in North African patients with this disorder. In this paper, we describe clinical, immunological and genetic features of 11 unrelated Algerian patients whose monocytes display a total absence of MHC class II molecules. They shared mainly the same clinical picture which included protracted diarrhoea and respiratory tract recurrent infections. Genetic analysis revealed that 9 of the 11 patients had the same RFXANK founder mutation, a 26 bp deletion (named I5E6-25_I5E6+1, also known as 752delG26. Immunological and genetic findings in our series may facilitate genetic counselling implementation for Algerian consanguineous families. Further studies need to be conducted to determine 752delG26 heterozygous mutation frequency in Algerian population.

  11. The systems biology of MHC class II antigen presentation

    NARCIS (Netherlands)

    Paul, Petra

    2012-01-01

    Major histocompatibility class II molecules (MHC class II) are one of the key regulators of adaptive immunity because of their specific expression by professional antigen presenting cells (APC). They present peptides derived from endocytosed material to T helper lymphocytes. Consequently, MHC class

  12. Major histocompatibility complex (MHC) class III genetics in two Amerindian tribes from southern Brazil: the Kaingang and the Guarani.

    Science.gov (United States)

    Weg-Remers, S; Brenden, M; Schwarz, E; Witzel, K; Schneider, P M; Guerra, L K; Rehfeldt, I R; Lima, M T; Hartmann, D; Petzl-Erler, M L; de Messias, I J; Mauff, G

    1997-10-01

    Population genetic studies of the major histocompatibility complex (MHC) class III region, comprising C2, BF and C4 phenotypes, and molecular genetic data are rarely available for populations other than Caucasoids. We have investigated three Amerindian populations from Southern Brazil: 131 Kaingang from Ivaí (KIV), 111 Kaingang (KRC) and 100 Guarani (GRC) from Rio das Cobras. Extended MHC haplotypes were derived after standard C2, BF, C4 phenotyping and restriction fragment length polymorphism (RFLP) analysis with TaqI, together with HLA data published previously by segregation analysis. C2 and BF frequencies corresponded to other Amerindian populations. C4B*Q0 frequency was high in the GRC (0.429) but low in the Kaingang. Unusual C4 alleles were found, viz. C4A*58, A*55 and C4B*22 (presumably non-Amerindian) and aberrant C4A*3 of Amerindian origin occurring with a frequency of 0.223 in the GRC. C4A*3 bands of homo- and heterozygous individuals carrying this variant were Rodgers 1 positive and Chido 1,3 positive, showed a C4A specific lysis type and a C4A like alpha-chain. Polymerase chain reaction studies and sequencing showed that this is based on a C4A*3 duplication with a regular C4A*3 and a partially converted C4A*0304 carrying the C4B specific epitopes Ch 6 and Ch 1,3. Associations of class III haplotypes with particular RFLP patterns were similar to those reported for Caucasoids. The previously described association between combined C4A and CYP21P deletions and the 6.4 kb TaqI fragment was not seen in these Amerindians. This fragment occurred within a regular two locus gene structure in the Kaingang, representing a "short" gene at C4 locus I. C4 and CYP21 duplications were frequently observed. The distribution of extended MHC haplotypes provides evidence for a close relationship between the KIV and KRC and a larger genetic distance between the two Kaingang groups and the GRC.

  13. A quantitative and qualitative comparison of illumina MiSeq and 454 amplicon sequencing for genotyping the highly polymorphic major histocompatibility complex (MHC) in a non-model species.

    Science.gov (United States)

    Razali, Haslina; O'Connor, Emily; Drews, Anna; Burke, Terry; Westerdahl, Helena

    2017-07-28

    High-throughput sequencing enables high-resolution genotyping of extremely duplicated genes. 454 amplicon sequencing (454) has become the standard technique for genotyping the major histocompatibility complex (MHC) genes in non-model organisms. However, illumina MiSeq amplicon sequencing (MiSeq), which offers a much higher read depth, is now superseding 454. The aim of this study was to quantitatively and qualitatively evaluate the performance of MiSeq in relation to 454 for genotyping MHC class I alleles using a house sparrow (Passer domesticus) dataset with pedigree information. House sparrows provide a good study system for this comparison as their MHC class I genes have been studied previously and, consequently, we had prior expectations concerning the number of alleles per individual. We found that 454 and MiSeq performed equally well in genotyping amplicons with low diversity, i.e. amplicons from individuals that had fewer than 6 alleles. Although there was a higher rate of failure in the 454 dataset in resolving amplicons with higher diversity (6-9 alleles), the same genotypes were identified by both 454 and MiSeq in 98% of cases. We conclude that low diversity amplicons are equally well genotyped using either 454 or MiSeq, but the higher coverage afforded by MiSeq can lead to this approach outperforming 454 in amplicons with higher diversity.

  14. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11

    DEFF Research Database (Denmark)

    Lundegaard, Claus; Lamberth, K; Harndahl, M

    2008-01-01

    NetMHC-3.0 is trained on a large number of quantitative peptide data using both affinity data from the Immune Epitope Database and Analysis Resource (IEDB) and elution data from SYFPEITHI. The method generates high-accuracy predictions of major histocompatibility complex (MHC): peptide binding...

  15. Isolation and characterization of major histocompatibility complex class IIB genes from the nurse shark.

    Science.gov (United States)

    Bartl, S; Weissman, I L

    1994-01-04

    The major histocompatibility complex (MHC) contains a set of linked genes which encode cell surface proteins involved in the binding of small peptide antigens for their subsequent recognition by T lymphocytes. MHC proteins share structural features and the presence and location of polymorphic residues which play a role in the binding of antigens. In order to compare the structure of these molecules and gain insights into their evolution, we have isolated two MHC class IIB genes from the nurse shark, Ginglymostoma cirratum. Two clones, most probably alleles, encode proteins which differ by 13 amino acids located in the putative antigen-binding cleft. The protein structure and the location of polymorphic residues are similar to their mammalian counterparts. Although these genes appear to encode a typical MHC protein, no T-cell-mediated responses have been demonstrated in cartilaginous fish. The nurse shark represents the most phylogenetically primitive organism in which both class IIA [Kasahara, M., Vazquez, M., Sato, K., McKinney, E.C. & Flajnik, M.F. (1992) Proc. Natl. Acad. Sci USA 89, 6688-6692] and class IIB genes, presumably encoding the alpha/beta heterodimer, have been isolated.

  16. High-throughput identification of potential minor histocompatibility antigens by MHC tetramer-based screening

    DEFF Research Database (Denmark)

    Hombrink, Pleun; Hadrup, Sine R; Bakker, Arne

    2011-01-01

    the technical feasibility of high-throughput analysis of antigen-specific T-cell responses in small patient samples. However, the high-sensitivity of this approach requires the use of potential epitope sets that are not solely based on MHC binding, to prevent the frequent detection of T-cell responses that lack......T-cell recognition of minor histocompatibility antigens (MiHA) plays an important role in the graft-versus-tumor (GVT) effect of allogeneic stem cell transplantation (allo-SCT). However, the number of MiHA identified to date remains limited, making clinical application of MiHA reactive T......MHC-tetramer-based enrichment and multi-color flow cytometry. Using this approach, 71 peptide-reactive T-cell populations were generated. The isolation of a T-cell line specifically recognizing target cells expressing the MAP4K1(IMA) antigen demonstrates that identification of MiHA through this approach is in principle...

  17. Dynamics of major histocompatibility complex class I association with the human peptide-loading complex.

    Science.gov (United States)

    Panter, Michaela S; Jain, Ankur; Leonhardt, Ralf M; Ha, Taekjip; Cresswell, Peter

    2012-09-07

    Although the human peptide-loading complex (PLC) is required for optimal major histocompatibility complex class I (MHC I) antigen presentation, its composition is still incompletely understood. The ratio of the transporter associated with antigen processing (TAP) and MHC I to tapasin, which is responsible for MHC I recruitment and peptide binding optimization, is particularly critical for modeling of the PLC. Here, we characterized the stoichiometry of the human PLC using both biophysical and biochemical approaches. By means of single-molecule pulldown (SiMPull), we determined a TAP/tapasin ratio of 1:2, consistent with previous studies of insect-cell microsomes, rat-human chimeric cells, and HeLa cells expressing truncated TAP subunits. We also report that the tapasin/MHC I ratio varies, with the PLC population comprising both 2:1 and 2:2 complexes, based on mutational and co-precipitation studies. The MHC I-saturated PLC may be particularly prevalent among peptide-selective alleles, such as HLA-C4. Additionally, MHC I association with the PLC increases when its peptide supply is reduced by inhibiting the proteasome or by blocking TAP-mediated peptide transport using viral inhibitors. Taken together, our results indicate that the composition of the human PLC varies under normal conditions and dynamically adapts to alterations in peptide supply that may arise during viral infection. These findings improve our understanding of the quality control of MHC I peptide loading and may aid the structural and functional modeling of the human PLC.

  18. Antibodies against major histocompatibility complex class II antigens directly inhibit the growth of T cells infected with Theileria parva without affecting their state of activation

    OpenAIRE

    Eichhorn, M; Prospero, T D; Heussler, Volker; Dobbelaere, D A

    1993-01-01

    We have analyzed the effect of antibodies (Abs) directed against major histocompatibility complex (MHC) class II Abs on the proliferation of Theileria parva-infected (Tpi) T cells. Anti-MHC class II Abs exert a direct effect on Tpi T cells causing an acute block in their proliferation. The inhibition does not involve apoptosis and is also entirely reversible. The rapid arrest of DNA synthesis caused by anti- MHC class II Abs is not due to interference with the state of activation of the T cel...

  19. Mate choice for major histocompatibility complex genetic divergence as a bet-hedging strategy in the Atlantic salmon (Salmo salar)

    Science.gov (United States)

    Evans, Melissa L.; Dionne, Mélanie; Miller, Kristina M.; Bernatchez, Louis

    2012-01-01

    Major histocompatibility complex (MHC)-dependent mating preferences have been observed across vertebrate taxa and these preferences are expected to promote offspring disease resistance and ultimately, viability. However, little empirical evidence linking MHC-dependent mate choice and fitness is available, particularly in wild populations. Here, we explore the adaptive potential of previously observed patterns of MHC-dependent mate choice in a wild population of Atlantic salmon (Salmo salar) in Québec, Canada, by examining the relationship between MHC genetic variation and adult reproductive success and offspring survival over 3 years of study. While Atlantic salmon choose their mates in order to increase MHC diversity in offspring, adult reproductive success was in fact maximized between pairs exhibiting an intermediate level of MHC dissimilarity. Moreover, patterns of offspring survival between years 0+ and 1+, and 1+ and 2+ and population genetic structure at the MHC locus relative to microsatellite loci indicate that strong temporal variation in selection is likely to be operating on the MHC. We interpret MHC-dependent mate choice for diversity as a likely bet-hedging strategy that maximizes parental fitness in the face of temporally variable and unpredictable natural selection pressures. PMID:21697172

  20. Hard wiring of T cell receptor specificity for the major histocompatibility complex is underpinned by TCR adaptability

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, Scott R.; Chen, Zhenjun; Archbold, Julia K.; Tynan, Fleur E.; Beddoe, Travis; Kjer-Nielsen, Lars; Miles, John J.; Khanna, Rajiv; Moss, Denis J.; Liu, Yu Chih; Gras, Stephanie; Kostenko, Lyudmila; Brennan, Rebekah M.; Clements, Craig S.; Brooks, Andrew G.; Purcell, Anthony W.; McCluskey, James; Rossjohn, Jamie (Monash); (Queensland Inst. of Med. Rsrch.); (Melbourne)

    2010-07-07

    {alpha}{beta} T cell receptors (TCRs) are genetically restricted to corecognize peptide antigens bound to self-major histocompatibility complex (pMHC) molecules; however, the basis for this MHC specificity remains unclear. Despite the current dogma, evaluation of the TCR-pMHC-I structural database shows that the nongermline-encoded complementarity-determining region (CDR)-3 loops often contact the MHC-I, and the germline-encoded CDR1 and -2 loops frequently participate in peptide-mediated interactions. Nevertheless, different TCRs adopt a roughly conserved docking mode over the pMHC-I, in which three MHC-I residues (65, 69, and 155) are invariably contacted by the TCR in one way or another. Nonetheless, the impact of mutations at these three positions, either individually or together, was not uniformly detrimental to TCR recognition of pHLA-B*0801 or pHLA-B*3508. Moreover, when TCR-pMHC-I recognition was impaired, this could be partially restored by expression of the CD8 coreceptor. The structure of a TCR-pMHC-I complex in which these three (65, 69, and 155) MHC-I positions were all mutated resulted in shifting of the TCR footprint relative to the cognate complex and formation of compensatory interactions. Collectively, our findings reveal the inherent adaptability of the TCR in maintaining peptide recognition while accommodating changes to the central docking site on the pMHC-I.

  1. Genes of the major histocompatibility complex highlight interactions of the innate and adaptive immune system

    Directory of Open Access Journals (Sweden)

    Barbara Lukasch

    2017-08-01

    Full Text Available Background A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA or heterozygosity at the MHC are more important. Methods To do this we used captive house sparrows (Passer domesticus to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Results Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral were associated with several different alleles. Discussion We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic.

  2. Genes of the major histocompatibility complex highlight interactions of the innate and adaptive immune system.

    Science.gov (United States)

    Lukasch, Barbara; Westerdahl, Helena; Strandh, Maria; Winkler, Hans; Moodley, Yoshan; Knauer, Felix; Hoi, Herbert

    2017-01-01

    A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC) molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA) or heterozygosity at the MHC are more important. To do this we used captive house sparrows ( Passer domesticus ) to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral) were associated with several different alleles. We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic.

  3. Evolution of major histocompatibility complex class I and class II genes in the brown bear

    Directory of Open Access Journals (Sweden)

    Kuduk Katarzyna

    2012-10-01

    Full Text Available Abstract Background Major histocompatibility complex (MHC proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. Results We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN exceeded the rate of synonymous substitutions (dS at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Conclusions Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South–north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia.

  4. Evolution of major histocompatibility complex class I and class II genes in the brown bear.

    Science.gov (United States)

    Kuduk, Katarzyna; Babik, Wiesław; Bojarska, Katarzyna; Sliwińska, Ewa B; Kindberg, Jonas; Taberlet, Pierre; Swenson, Jon E; Radwan, Jacek

    2012-10-02

    Major histocompatibility complex (MHC) proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South-north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia.

  5. Evolution of major histocompatibility complex class I and class II genes in the brown bear

    Science.gov (United States)

    2012-01-01

    Background Major histocompatibility complex (MHC) proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. Results We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Conclusions Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South–north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia. PMID:23031405

  6. Major Histocompatibility Complex Genes Map to Two Chromosomes in an Evolutionarily Ancient Reptile, the Tuatara Sphenodon punctatus.

    Science.gov (United States)

    Miller, Hilary C; O'Meally, Denis; Ezaz, Tariq; Amemiya, Chris; Marshall-Graves, Jennifer A; Edwards, Scott

    2015-05-07

    Major histocompatibility complex (MHC) genes are a central component of the vertebrate immune system and usually exist in a single genomic region. However, considerable differences in MHC organization and size exist between different vertebrate lineages. Reptiles occupy a key evolutionary position for understanding how variation in MHC structure evolved in vertebrates, but information on the structure of the MHC region in reptiles is limited. In this study, we investigate the organization and cytogenetic location of MHC genes in the tuatara (Sphenodon punctatus), the sole extant representative of the early-diverging reptilian order Rhynchocephalia. Sequencing and mapping of 12 clones containing class I and II MHC genes from a bacterial artificial chromosome library indicated that the core MHC region is located on chromosome 13q. However, duplication and translocation of MHC genes outside of the core region was evident, because additional class I MHC genes were located on chromosome 4p. We found a total of seven class I sequences and 11 class II β sequences, with evidence for duplication and pseudogenization of genes within the tuatara lineage. The tuatara MHC is characterized by high repeat content and low gene density compared with other species and we found no antigen processing or MHC framework genes on the MHC gene-containing clones. Our findings indicate substantial differences in MHC organization in tuatara compared with mammalian and avian MHCs and highlight the dynamic nature of the MHC. Further sequencing and annotation of tuatara and other reptile MHCs will determine if the tuatara MHC is representative of nonavian reptiles in general. Copyright © 2015 Miller et al.

  7. NLRC5: a newly discovered MHC class I transactivator (CITA)

    OpenAIRE

    Meissner, Torsten B.; Li, Amy; Kobayashi, Koichi S.

    2011-01-01

    Major histocompatibility complex (MHC) class I and class II are crucial for the function of the human adaptive immune system. An NLR protein, CIITA (MHC class II transactivator), is a master regulator of MHC class II gene expression as well as of some of the genes involved in MHC class II antigen presentation. It has recently been discovered that another member of the NLR protein family, NLRC5, transcriptionally activates MHC class I genes, and thus acts as “CITA” (MHC class I transactivator)...

  8. Major histocompatibility complex class II compatibility, but not class I, predicts mate choice in a bird with highly developed olfaction.

    Science.gov (United States)

    Strandh, Maria; Westerdahl, Helena; Pontarp, Mikael; Canbäck, Björn; Dubois, Marie-Pierre; Miquel, Christian; Taberlet, Pierre; Bonadonna, Francesco

    2012-11-07

    Mate choice for major histocompatibility complex (MHC) compatibility has been found in several taxa, although rarely in birds. MHC is a crucial component in adaptive immunity and by choosing an MHC-dissimilar partner, heterozygosity and potentially broad pathogen resistance is maximized in the offspring. The MHC genotype influences odour cues and preferences in mammals and fish and hence olfactory-based mate choice can occur. We tested whether blue petrels, Halobaena caerulea, choose partners based on MHC compatibility. This bird is long-lived, monogamous and can discriminate between individual odours using olfaction, which makes it exceptionally well suited for this analysis. We screened MHC class I and II B alleles in blue petrels using 454-pyrosequencing and quantified the phylogenetic, functional and allele-sharing similarity between individuals. Partners were functionally more dissimilar at the MHC class II B loci than expected from random mating (p = 0.033), whereas there was no such difference at the MHC class I loci. Phylogenetic and non-sequence-based MHC allele-sharing measures detected no MHC dissimilarity between partners for either MHC class I or II B. Our study provides evidence of mate choice for MHC compatibility in a bird with a high dependency on odour cues, suggesting that MHC odour-mediated mate choice occurs in birds.

  9. Simulation of Major Histocompatibility Complex (MHC Structure and Peptide Loading into an MHC Binding Pocket with Teachers’Hands

    Directory of Open Access Journals (Sweden)

    Mojtaba Sankian

    2013-10-01

    Full Text Available Molecular understanding of three-dimensional (3D peptide: MHC models require both basic knowledge of computational modeling and skilled visual perception, which are not possessed by all students. The present model aims to simulate MHC molecular structure with the hands and make a profound impression on the students.

  10. Detection of autoreactive CD4 T cells using major histocompatibility complex class II dextramers

    Directory of Open Access Journals (Sweden)

    Kuszynski Charles

    2011-07-01

    Full Text Available Abstract Background Tetramers are useful tools to enumerate the frequencies of antigen-specific T cells. However, unlike CD8 T cells, CD4 T cells - especially self-reactive cells - are challenging to detect with major histocompatibility complex (MHC class II tetramers because of low frequencies and low affinities of their T cell receptors to MHC-peptide complexes. Here, we report the use of fluorescent multimers, designated MHC dextramers that contain a large number of peptide-MHC complexes per reagent. Results The utility of MHC dextramers was evaluated in three autoimmune disease models: 1 proteolipid protein (PLP 139-151-induced experimental autoimmune encephalomyelitis in SJL/J (H-2s mice; 2 myelin oligodendrocyte glycoprotein (MOG 35-55-induced experimental autoimmune encephalomyelitis in C57Bl/6 (H-2b mice; and 3 cardiac myosin heavy chain (Myhc-α 334-352-induced experimental autoimmune myocarditis in A/J (H-2a mice. Flow cytometrically, we demonstrate that IAs/PLP 139-151, IAb/MOG 35-55 and IAk/Myhc-α 334-352 dextramers detect the antigen-sensitized cells with specificity, and with a detection sensitivity significantly higher than that achieved with conventional tetramers. Furthermore, we show that binding of dextramers, but not tetramers, is less dependent on the activation status of cells, permitting enumeration of antigen-specific cells ex vivo. Conclusions The data suggest that MHC dextramers are useful tools to track the generation and functionalities of self-reactive CD4 cells in various experimental systems.

  11. Conditional analysis identifies three novel major histocompatibility complex loci associated with psoriasis.

    Science.gov (United States)

    Knight, Jo; Spain, Sarah L; Capon, Francesca; Hayday, Adrian; Nestle, Frank O; Clop, Alex; Barker, Jonathan N; Weale, Michael E; Trembath, Richard C

    2012-12-01

    Psoriasis is a common, chronic, inflammatory skin disorder. A number of genetic loci have been shown to confer risk for psoriasis. Collectively, these offer an integrated model for the inherited basis for susceptibility to psoriasis that combines altered skin barrier function together with the dysregulation of innate immune pathogen sensing and adap-tive immunity. The major histocompatibility complex (MHC) harbours the psoriasis susceptibility region which exhibits the largest effect size, driven in part by variation contained on the HLA-Cw*0602 allele. However, the resolution of the number and genomic location of potential independent risk loci are hampered by extensive linkage disequilibrium across the region. We leveraged the power of large psoriasis case and control data sets and the statistical approach of conditional analysis to identify potential further association signals distributed across the MHC. In addition to the major loci at HLA-C (P = 2.20 × 10(-236)), we observed and replicated four additional independent signals for disease association, three of which are novel. We detected evidence for association at SNPs rs2507971 (P = 6.73 × 10(-14)), rs9260313 (P = 7.93 × 10(-09)), rs66609536 (P = 3.54 × 10(-07)) and rs380924 (P = 6.24 × 10(-06)), located within the class I region of the MHC, with each observation replicated in an independent sample (P ≤ 0.01). The previously identified locus is close to MICA, the other three lie near MICB, HLA-A and HCG9 (a non-coding RNA gene). The identification of disease associations with both MICA and MICB is particularly intriguing, since each encodes an MHC class I-related protein with potent immunological function.

  12. Evolution of MHC class I genes in the European badger (Meles meles)

    NARCIS (Netherlands)

    Sin, Yung Wa; Dugdale, Hannah L.; Newman, Chris; Macdonald, David W.; Burke, Terry

    The major histocompatibility complex (MHC) plays a central role in the adaptive immune system and provides a good model with which to understand the evolutionary processes underlying functional genes. Trans-species polymorphism and orthology are both commonly found in MHC genes; however, mammalian

  13. Genomic polymorphism, recombination, and linkage disequilibrium in human major histocompatibility complex-encoded antigen-processing genes.

    Science.gov (United States)

    van Endert, P M; Lopez, M T; Patel, S D; Monaco, J J; McDevitt, H O

    1992-01-01

    Recently, two subunits of a large cytosolic protease and two putative peptide transporter proteins were found to be encoded by genes within the class II region of the major histocompatibility complex (MHC). These genes have been suggested to be involved in the processing of antigenic proteins for presentation by MHC class I molecules. Because of the high degree of polymorphism in MHC genes, and previous evidence for both functional and polypeptide sequence polymorphism in the proteins encoded by the antigen-processing genes, we tested DNA from 27 consanguineous human cell lines for genomic polymorphism by restriction fragment length polymorphism (RFLP) analysis. These studies demonstrate a strong linkage disequilibrium between TAP1 and LMP2 RFLPs. Moreover, RFLPs, as well as a polymorphic stop codon in the telomeric TAP2 gene, appear to be in linkage disequilibrium with HLA-DR alleles and RFLPs in the HLA-DO gene. A high rate of recombination, however, seems to occur in the center of the complex, between the TAP1 and TAP2 genes. Images PMID:1360671

  14. Identification of MHC class II restricted T‐cell‐mediated reactivity against MHC class I binding Mycobacterium tuberculosis peptides

    DEFF Research Database (Denmark)

    Wang, Mingjun; Tang, Sheila Tuyet; Stryhn, Anette

    2011-01-01

    Major histocompatibility complex (MHC) class I restricted cytotoxic T lymphocytes (CTL) are known to play an important role in the control of Mycobacterium tuberculosis infection so identification of CTL epitopes from M. tuberculosis is of importance for the development of effective peptide...

  15. MHCcluster, a method for functional clustering of MHC molecules

    DEFF Research Database (Denmark)

    Thomsen, Martin Christen Frølund; Lundegaard, Claus; Buus, Søren

    2013-01-01

    The identification of peptides binding to major histocompatibility complexes (MHC) is a critical step in the understanding of T cell immune responses. The human MHC genomic region (HLA) is extremely polymorphic comprising several thousand alleles, many encoding a distinct molecule. The potentially...... binding specificity. The method has a flexible web interface that allows the user to include any MHC of interest in the analysis. The output consists of a static heat map and graphical tree-based visualizations of the functional relationship between MHC variants and a dynamic TreeViewer interface where...

  16. Major Histocompatibility Complex, demographic, and environmental predictors of antibody presence in a free-ranging mammal.

    Science.gov (United States)

    Ruiz-López, María José; Monello, Ryan J; Schuttler, Stephanie G; Lance, Stacey L; Gompper, Matthew E; Eggert, Lori S

    2014-12-01

    Major Histocompatibility Complex (MHC) variability plays a key role in pathogen resistance, but its relative importance compared to environmental and demographic factors that also influence resistance is unknown. We analyzed the MHC II DRB exon 2 for 165 raccoons (Procyon lotor) in Missouri (USA). For each animal we also determined the presence of immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies to two highly virulent pathogens, canine distemper virus (CDV) and parvovirus. We investigated the role of MHC polymorphism and other demographic and environmental factors previously associated with predicting seroconversion. In addition, using an experimental approach, we studied the relative importance of resource availability and contact rates. We found important associations between IgG antibody presence and several MHC alleles and supertypes but not between IgM antibody presence and MHC. No effect of individual MHC diversity was found. For CDV, supertype S8, one allele within S8 (Prlo-DRB(∗)222), and a second allele (Prlo-DRB(∗)204) were positively associated with being IgG+, while supertype S4 and one allele within the supertype (Prlo-DRB(∗)210) were negatively associated with being IgG+. Age, year, and increased food availability were also positively associated with being IgG+, but allele Prlo-DRB(∗)222 was a stronger predictor. For parvovirus, only one MHC allele was negatively associated with being IgG+ and age and site were stronger predictors of seroconversion. Our results show that negative-frequency dependent selection is likely acting on the raccoon MHC and that while the role of MHC in relation to other factors depends on the pathogen of interest, it may be one of the most important factors predicting successful immune response. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. DNA sequence of the Peromyscus leucopus MHC class II gene Aa (MhcPeleAa)

    Energy Technology Data Exchange (ETDEWEB)

    Crew, M.D.; Bates, L.M. [Univ. of Arkansas for Medical Sciences, Little Rock, AR (United States)

    1996-09-01

    The genus Peromyscus has been extensively studied by populations biologists and ecologists for over eighty years, with P. leucopus (the white-footed mouse) being one of the most intensively investigated species. Polymorphic major histocompatibility complex (MHC) genes have proven useful in population genetic studies and might be helpful in understanding the population dynamics of Peromyscus species which are ubiquitously distributed over North and Central America. Polymorphism of P. leucopus MHC (MhcPele) class II genes was evident by restriction fragment length polymorphism (RFLP) analyses using human and mouse probes and Pele class II loci exhibited degrees of polymorphism similar to H2 class II genes (A-like>E-like). 8 refs., 2 figs.

  18. Distribution of class ii major histocompatibility complex antigenexpressing cells in human dental pulp with carious lesions

    Directory of Open Access Journals (Sweden)

    Tetiana Haniastuti

    2012-09-01

    Full Text Available Background: Dental caries is a bacterial infection which causes destruction of the hard tissues of the tooth. Exposure of the dentin to the oral environment as a result of caries inevitably results in a cellular response in the pulp. The major histocompatibility complex (MHC is a group of genes that code for cell-surface histocompatibility antigens. Cells expressing class II MHC molecules participate in the initial recognition and the processing of antigenic substances to serve as antigen-presenting cells. Purpose: The aim of the study was to elucidate the alteration in the distribution of class II MHC antigen-expressing cells in human dental pulp as carious lesions progressed toward the pulp. Methods: Fifteen third molars with caries at the occlusal site at various stages of decay and 5 intact third molars were extracted and used in this study. Before decalcifying with 10% EDTA solution (pH 7.4, all the samples were observed by micro-computed tomography to confirm the lesion condition three-dimensionally. The specimens were then processed for cryosection and immunohistochemistry using an anti-MHC class II monoclonal antibody. Results: Class II MHC antigen-expressing cells were found both in normal and carious specimens. In normal tooth, the class II MHC-immunopositive cells were observed mainly at the periphery of the pulp tissue. In teeth with caries, class II MHC-immunopositive cells were located predominantly subjacent to the carious lesions. As the caries progressed, the number of class II MHC antigen-expressing cells was increased. Conclusion: The depth of carious lesions affects the distribution of class II MHC antigen-expressing cells in the dental pulp.Latar belakang: Karies merupakan penyakit infeksi bakteri yang mengakibatkan destruksi jaringan keras gigi. Dentin yang terbuka akibat karies akan menginduksi respon imun seluler pada pulpa. Kompleks histokompatibilitas utama (MHC merupakan sekumpulan gen yang mengkode histokompatibilitas

  19. Functional isotypes are not encoded by the constant region genes of the beta subunit of the T cell receptor for antigen/major histocompatibility complex

    OpenAIRE

    1984-01-01

    Human T cell clones and a cDNA probe specific for constant regions of the beta subunit of the antigen/major histocompatibility complex (MHC) receptor, TiC beta 1 and TiC beta 2, were employed to determine whether these genes were differentially used by functional classes of T lymphocytes. DNA from 10 interleukin-2-dependent T cell clones including class I and class II MHC-specific cytotoxic T lymphocytes (n = 6), T4+ inducer T lymphocytes (n = 2), and T8+ suppressor T lymphocytes (n = 2) show...

  20. Introgression from domestic goat generated variation at the major histocompatibility complex of Alpine ibex.

    Directory of Open Access Journals (Sweden)

    Christine Grossen

    2014-06-01

    Full Text Available The major histocompatibility complex (MHC is a crucial component of the vertebrate immune system and shows extremely high levels of genetic polymorphism. The extraordinary genetic variation is thought to be ancient polymorphisms maintained by balancing selection. However, introgression from related species was recently proposed as an additional mechanism. Here we provide evidence for introgression at the MHC in Alpine ibex (Capra ibex ibex. At a usually very polymorphic MHC exon involved in pathogen recognition (DRB exon 2, Alpine ibex carried only two alleles. We found that one of these DRB alleles is identical to a DRB allele of domestic goats (Capra aegagrus hircus. We sequenced 2489 bp of the coding and non-coding regions of the DRB gene and found that Alpine ibex homozygous for the goat-type DRB exon 2 allele showed nearly identical sequences (99.8% to a breed of domestic goats. Using Sanger and RAD sequencing, microsatellite and SNP chip data, we show that the chromosomal region containing the goat-type DRB allele has a signature of recent introgression in Alpine ibex. A region of approximately 750 kb including the DRB locus showed high rates of heterozygosity in individuals carrying one copy of the goat-type DRB allele. These individuals shared SNP alleles both with domestic goats and other Alpine ibex. In a survey of four Alpine ibex populations, we found that the region surrounding the DRB allele shows strong linkage disequilibria, strong sequence clustering and low diversity among haplotypes carrying the goat-type allele. Introgression at the MHC is likely adaptive and introgression critically increased MHC DRB diversity in the genetically impoverished Alpine ibex. Our finding contradicts the long-standing view that genetic variability at the MHC is solely a consequence of ancient trans-species polymorphism. Introgression is likely an underappreciated source of genetic diversity at the MHC and other loci under balancing selection.

  1. Introgression from Domestic Goat Generated Variation at the Major Histocompatibility Complex of Alpine Ibex

    Science.gov (United States)

    Grossen, Christine; Keller, Lukas; Biebach, Iris; Croll, Daniel

    2014-01-01

    The major histocompatibility complex (MHC) is a crucial component of the vertebrate immune system and shows extremely high levels of genetic polymorphism. The extraordinary genetic variation is thought to be ancient polymorphisms maintained by balancing selection. However, introgression from related species was recently proposed as an additional mechanism. Here we provide evidence for introgression at the MHC in Alpine ibex (Capra ibex ibex). At a usually very polymorphic MHC exon involved in pathogen recognition (DRB exon 2), Alpine ibex carried only two alleles. We found that one of these DRB alleles is identical to a DRB allele of domestic goats (Capra aegagrus hircus). We sequenced 2489 bp of the coding and non-coding regions of the DRB gene and found that Alpine ibex homozygous for the goat-type DRB exon 2 allele showed nearly identical sequences (99.8%) to a breed of domestic goats. Using Sanger and RAD sequencing, microsatellite and SNP chip data, we show that the chromosomal region containing the goat-type DRB allele has a signature of recent introgression in Alpine ibex. A region of approximately 750 kb including the DRB locus showed high rates of heterozygosity in individuals carrying one copy of the goat-type DRB allele. These individuals shared SNP alleles both with domestic goats and other Alpine ibex. In a survey of four Alpine ibex populations, we found that the region surrounding the DRB allele shows strong linkage disequilibria, strong sequence clustering and low diversity among haplotypes carrying the goat-type allele. Introgression at the MHC is likely adaptive and introgression critically increased MHC DRB diversity in the genetically impoverished Alpine ibex. Our finding contradicts the long-standing view that genetic variability at the MHC is solely a consequence of ancient trans-species polymorphism. Introgression is likely an underappreciated source of genetic diversity at the MHC and other loci under balancing selection. PMID:24945814

  2. MHC Region and Its Related Disease Study

    DEFF Research Database (Denmark)

    Cao, Hongzhi

    The major histocompatibility complex (MHC) is one of the most gene dense regions in the human genome and many disorders, including primary immune deficiencies, autoimmune conditions, infections, cancers and mental disorder have been found to be associated with this region. However, due to a high ...

  3. Genetic wealth, population health: Major histocompatibility complex variation in captive and wild ring-tailed lemurs (Lemur catta).

    Science.gov (United States)

    Grogan, Kathleen E; Sauther, Michelle L; Cuozzo, Frank P; Drea, Christine M

    2017-10-01

    Across species, diversity at the major histocompatibility complex (MHC) is critical to individual disease resistance and, hence, to population health; however, MHC diversity can be reduced in small, fragmented, or isolated populations. Given the need for comparative studies of functional genetic diversity, we investigated whether MHC diversity differs between populations which are open, that is experiencing gene flow, versus populations which are closed, that is isolated from other populations. Using the endangered ring-tailed lemur ( Lemur catta ) as a model, we compared two populations under long-term study: a relatively "open," wild population ( n  = 180) derived from Bezà Mahafaly Special Reserve, Madagascar (2003-2013) and a "closed," captive population ( n  = 121) derived from the Duke Lemur Center (DLC, 1980-2013) and from the Indianapolis and Cincinnati Zoos (2012). For all animals, we assessed MHC-DRB diversity and, across populations, we compared the number of unique MHC-DRB alleles and their distributions. Wild individuals possessed more MHC-DRB alleles than did captive individuals, and overall, the wild population had more unique MHC-DRB alleles that were more evenly distributed than did the captive population. Despite management efforts to maintain or increase genetic diversity in the DLC population, MHC diversity remained static from 1980 to 2010. Since 2010, however, captive-breeding efforts resulted in the MHC diversity of offspring increasing to a level commensurate with that found in wild individuals. Therefore, loss of genetic diversity in lemurs, owing to small founder populations or reduced gene flow, can be mitigated by managed breeding efforts. Quantifying MHC diversity within individuals and between populations is the necessary first step to identifying potential improvements to captive management and conservation plans.

  4. Human major histocompatibility complex contains a minimum of 19 genes between the complement cluster and HLA-B

    International Nuclear Information System (INIS)

    Spies, T.; Bresnahan, M.; Strominger, J.L.

    1989-01-01

    A 600-kilobase (kb) DNA segment from the human major histocompatibility complex (MHC) class III region was isolated by extension of a previous 435-kb chromosome walk. The contiguous series of cloned overlapping cosmids contains the entire 555-kb interval between C2 in the complement gene cluster and HLA-B. This region is known to encode the tumor necrosis factors (TNFs) α and β, B144, and the major heat shock protein HSP70. Moreover, a cluster of genes, BAT1-BAT5 (HLA-B-associated transcripts) have been localized in the vicinity of the genes for TNFα and TNFβ. An additional four genes were identified by isolation of corresponding cDNA clones with cosmid DNA probes. These genes for BAT6-BAT9 were mapped near the gene for C2 within a 120-kb region that includes a HSP70 gene pair. These results, together with complementary data from a similar recent study, indicated the presence of a minimum of 19 genes within the C2-HLA-B interval of the MHC class III region. Although the functional properties of most of these genes are yet unknown, they may be involved in some aspects of immunity. This idea is supported by the genetic mapping of the hematopoietic histocompatibility locus-1 (Hh-1) in recombinant mice between TNFα and H-2S, which is homologous to the complement gene cluster in humans

  5. Sibling rivalry: competition between MHC class II family members inhibits immunity.

    Science.gov (United States)

    Denzin, Lisa K; Cresswell, Peter

    2013-01-01

    Peptide loading of major histocompatibility complex (MHC) class II molecules in the endosomes and lysosomes of antigen-presenting cells is catalyzed by human leukocyte antigen-DM (HLA-DM) and modulated by HLA-DO. In a structural study in this issue, Guce et al. show that HLA-DO is an MHC class II mimic and functions as a competitive and essentially irreversible inhibitor of HLA-DM activity, thereby inhibiting MHC class II antigen presentation.

  6. Lipofection indirectly increases expression of endogenous major histocompatibility complex class I molecules on tumor cells.

    Science.gov (United States)

    Fox, B A; Drury, M; Hu, H M; Cao, Z; Huntzicker, E G; Qie, W; Urba, W J

    1998-01-01

    Direct intratumoral injection of a lipid/DNA complex encoding an allogeneic major histocompatibility complex (MHC) class I molecule leads to regression of both an immunogenic murine tumor and also melanoma lesions in some patients. We have sought to understand the mechanism(s) for this augmentation of antitumor activity. While optimizing parameters for in vitro gene transfer into the D5 subclone of B16BL6, it was noted that lipofected tumors not only expressed the new alloantigen but also exhibited increased expression of endogenous MHC class I, both H-2 Kb and H-2 Db. This increase in expression was not restricted to the small percentage of cells that expressed the transfected gene, but appeared to affect the majority of cells in culture. Class I expression was not increased by lipopolysaccharide, DNA alone, lipid, or lipid/lipopolysaccharide mixtures. Enhanced class I expression required a DNA/lipid complex and was greatest when parameters optimized for gene transfer of the alloantigen were used. All DNA plasmids tested had this effect, including one plasmid whose DNA was not transcribed because it lacked an expression cassette. Because of the critical role that MHC class I antigens play in immune recognition, we propose that lipid complex-mediated gene transfer may provide immunological advantages beyond those that are attributable to expression of the specific gene transferred.

  7. 454 sequencing reveals extreme complexity of the class II Major Histocompatibility Complex in the collared flycatcher

    Directory of Open Access Journals (Sweden)

    Gustafsson Lars

    2010-12-01

    Full Text Available Abstract Background Because of their functional significance, the Major Histocompatibility Complex (MHC class I and II genes have been the subject of continuous interest in the fields of ecology, evolution and conservation. In some vertebrate groups MHC consists of multiple loci with similar alleles; therefore, the multiple loci must be genotyped simultaneously. In such complex systems, understanding of the evolutionary patterns and their causes has been limited due to challenges posed by genotyping. Results Here we used 454 amplicon sequencing to characterize MHC class IIB exon 2 variation in the collared flycatcher, an important organism in evolutionary and immuno-ecological studies. On the basis of over 152,000 sequencing reads we identified 194 putative alleles in 237 individuals. We found an extreme complexity of the MHC class IIB in the collared flycatchers, with our estimates pointing to the presence of at least nine expressed loci and a large, though difficult to estimate precisely, number of pseudogene loci. Many similar alleles occurred in the pseudogenes indicating either a series of recent duplications or extensive concerted evolution. The expressed alleles showed unambiguous signals of historical selection and the occurrence of apparent interlocus exchange of alleles. Placing the collared flycatcher's MHC sequences in the context of passerine diversity revealed transspecific MHC class II evolution within the Muscicapidae family. Conclusions 454 amplicon sequencing is an effective tool for advancing our understanding of the MHC class II structure and evolutionary patterns in Passeriformes. We found a highly dynamic pattern of evolution of MHC class IIB genes with strong signals of selection and pronounced sequence divergence in expressed genes, in contrast to the apparent sequence homogenization in pseudogenes. We show that next generation sequencing offers a universal, affordable method for the characterization and, in perspective

  8. Polarisation of Major Histocompatibility Complex II Host Genotype with Pathogenesis of European Brown Hare Syndrome Virus

    DEFF Research Database (Denmark)

    Iacovakis, Christos; Mamuris, Zissis; Moutou, Katerina A

    2013-01-01

    A study was conducted in order to determine the occurrence of European Brown Hare Syndrome virus (EBHSV) in Denmark and possible relation between disease pathogenesis and Major Histocompatibility Complex (MHC) host genotype. Liver samples were examined from 170 brown hares (hunted, found sick...... were found to be EBHSV-positive (RT-PCR, VP60 gene). In order to investigate associations between viral pathogenesis and host genotype, variation within the exon 2 DQA gene of MHC was assessed. DQA exon 2 analysis revealed the occurrence of seven different alleles in Denmark. Consistent with other...... populations examined so far in Europe, observed heterozygosity of DQA (H o = 0.1180) was lower than expected (H e = 0.5835). The overall variation for both nucleotide and amino acid differences (2.9% and 14.9%, respectively) were lower in Denmark than those assessed in other European countries (8.3% and 16...

  9. Adaptive major histocompatibility complex (MHC) and neutral genetic variation in two native Baltic Sea fishes (perch Perca fluviatilis and zander Sander lucioperca) with comparisons to an introduced and disease susceptible population in Australia (P. fluviatilis): assessing the risk of disease epidemics.

    Science.gov (United States)

    Faulks, L K; Östman, Ö

    2016-04-01

    This study assessed the major histocompatibility complex (MHC) and neutral genetic variation and structure in two percid species, perch Perca fluviatilis and zander Sander lucioperca, in a unique brackish ecosystem, the Baltic Sea. In addition, to assess the importance of MHC diversity to disease susceptibility in these populations, comparisons were made to an introduced, disease susceptible, P. fluviatilis population in Australia. Eighty-three MHC class II B exon 2 variants were amplified: 71 variants from 92 P. fluviatilis samples, and 12 variants from 82 S. lucioperca samples. Microsatellite and MHC data revealed strong spatial genetic structure in S. lucioperca, but not P. fluviatilis, across the Baltic Sea. Both microsatellite and MHC data showed higher levels of genetic diversity in P. fluviatilis from the Baltic Sea compared to Australia, which may have facilitated the spread of an endemic virus, EHNV in the Australian population. The relatively high levels of genetic variation in the Baltic Sea populations, together with spatial genetic structure, however, suggest that there currently seems to be little risk of disease epidemics in this system. To ensure this remains the case in the face of ongoing environmental changes, fisheries and habitat disturbance, the conservation of local-scale genetic variation is recommended. © 2016 The Fisheries Society of the British Isles.

  10. Innate lymphoid cells and the MHC.

    Science.gov (United States)

    Robinette, M L; Colonna, M

    2016-01-01

    Innate lymphoid cells (ILCs) are a new class of immune cells that include natural killer (NK) cells and appear to be the innate counterparts to CD4(+) helper T cells and CD8(+) cytotoxic T cells based on developmental and functional similarities. Like T cells, both NK cells and other ILCs also show connections to the major histocompatibility complex (MHC). In human and mouse, NK cells recognize and respond to classical and nonclassical MHC I molecules as well as structural homologues, whereas mouse ILCs have recently been shown to express MHC II. We describe the history of MHC I recognition by NK cells and discuss emerging roles for MHC II expression by ILC subsets, making comparisons between both mouse and human when possible. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Spatial variation and low diversity in the major histocompatibility complex in walrus (Odobenus rosmarus)

    Science.gov (United States)

    Sonsthagen, Sarah A.; Fales, Krystal; Jay, Chadwick V.; Sage, George K.; Talbot, Sandra L.

    2014-01-01

    Increased global temperature and associated changes to Arctic habitats will likely result in the northward advance of species, including an influx of pathogens novel to the Arctic. How species respond to these immunological challenges will depend in part on the adaptive potential of their immune response system. We compared levels of genetic diversity at a gene associated with adaptive immune response [Class II major histocompatibility complex (MHC), DQB exon 2] between populations of walrus (Odobenus rosmarus), a sea ice-dependent Arctic species. Walrus was represented by only five MHC DQB alleles, with frequency differences observed between Pacific and Atlantic populations. MHC DQB alleles appear to be under balancing selection, and most (80 %; n = 4/5) of the alleles were observed in walruses from both oceans, suggesting broad scale differences in the frequency of exposure and diversity of pathogens may be influencing levels of heterozygosity at DQB in walruses. Limited genetic diversity at MHC, however, suggests that walrus may have a reduced capacity to respond to novel immunological challenges associated with shifts in ecological communities and environmental stressors predicted for changing climates. This is particularly pertinent for walrus, since reductions in summer sea ice may facilitate both northward expansion of marine species and associated pathogens from more temperate regions, and exchange of marine mammals and associated pathogens through the recently opened Northwest Passage between the Atlantic and Pacific Oceans in the Canadian high Arctic.

  12. Zika Virus Escapes NK Cell Detection by Upregulating Major Histocompatibility Complex Class I Molecules.

    Science.gov (United States)

    Glasner, Ariella; Oiknine-Djian, Esther; Weisblum, Yiska; Diab, Mohammad; Panet, Amos; Wolf, Dana G; Mandelboim, Ofer

    2017-11-15

    NK cells are innate lymphocytes that participate in many immune processes encompassing cancer, bacterial and fungal infection, autoimmunity, and even pregnancy and that specialize in antiviral defense. NK cells express inhibitory and activating receptors and kill their targets when activating signals overpower inhibitory signals. The NK cell inhibitory receptors include a uniquely diverse array of proteins named killer cell immunoglobulin-like receptors (KIRs), the CD94 family, and the leukocyte immunoglobulin-like receptor (LIR) family. The NK cell inhibitory receptors recognize mostly major histocompatibility complex (MHC) class I (MHC-I) proteins. Zika virus has recently emerged as a major threat due to its association with birth defects and its pandemic potential. How Zika virus interacts with the immune system, and especially with NK cells, is unclear. Here we show that Zika virus infection is barely sensed by NK cells, since little or no increase in the expression of activating NK cell ligands was observed following Zika infection. In contrast, we demonstrate that Zika virus infection leads to the upregulation of MHC class I proteins and consequently to the inhibition of NK cell killing. Mechanistically, we show that MHC class I proteins are upregulated via the RIGI-IRF3 pathway and that this upregulation is mediated via beta interferon (IFN-β). Potentially, countering MHC class I upregulation during Zika virus infection could be used as a prophylactic treatment against Zika virus. IMPORTANCE NK cells are innate lymphocytes that recognize and eliminate various pathogens and are known mostly for their role in controlling viral infections. NK cells express inhibitory and activating receptors, and they kill or spare their targets based on the integration of inhibitory and activating signals. Zika virus has recently emerged as a major threat to humans due to its pandemic potential and its association with birth defects. The role of NK cells in Zika virus

  13. Major histocompatibility complex-unrestricted cytolytic activity of human T cells: analysis of precursor frequency and effector phenotype

    International Nuclear Information System (INIS)

    Patel, S.S.; Thiele, D.L.; Lipsky, P.E.

    1987-01-01

    The frequency and phenotype of human T cells that mediate major histocompatibility complex (MHC)-unrestricted cytolysis were analyzed. T cell clones were generated by culturing adherent cell-depleted peripheral blood mononuclear cells at a density of 0.3 cell/well with phytohemagglutinin, recombinant interleukin 2 (rIL-2), and irradiated autologous peripheral blood mononuclear cells and/or Epstein-Barr virus-transformed lymphoblastoid cell lines. All of the 198 clones generated by this method were T cells (CD2 + , CD3 + , CD4 + or CD2 + , CD3 + , CD8 + ) that possessed potent lytic activity against K562, an erythroleukemia line sensitive to lysis by human natural killer cells, and Cur, a renal carcinoma cell line resistant to human natural killer activity. Cytolysis, measured by 51 Cr release, was MHC-unrestricted, since the clones were able to lyse MHC class I or class II negative targets, as well as MHC class I and class II negative targets. Although the clones produced tissue necrosis factor/lymphotoxin-like molecules, lysis of Cur of K562 was not mediated by a soluble factor secreted by the clones. These data indicate that the capacity for MHC-unrestricted tumoricidal activity and expression of NKH1 and CD11b, but not CD 16, are properties common to all or nearly all human peripheral blood-derived T cell clones regardless of CD4 or CD8 phenotype

  14. Fine mapping in the MHC region accounts for 18% additional genetic risk for celiac disease

    NARCIS (Netherlands)

    Gutierrez-Achury, Javier; Zhernakova, Alexandra; Pulit, Sara L.; Trynka, Gosia; Hunt, Karen A.; Romanos, Jihane; Raychaudhuri, Soumya; van Heel, David A.; Wijmenga, Cisca; de Balcker, Paul I. W.

    Although dietary gluten is the trigger for celiac disease, risk is strongly influenced by genetic variation in the major histocompatibility complex (MHC) region. We fine mapped the MHC association signal to identify additional risk factors independent of the HLA-DQA1 and HLA-DQB1 alleles and

  15. The MHC locus and genetic susceptibility to autoimmune and infectious diseases

    NARCIS (Netherlands)

    Matzaraki, Vasiliki; Kumar, Vinod; Wijmenga, Cisca; Zhernakova, Alexandra

    2017-01-01

    In the past 50 years, variants in the major histocompatibility complex (MHC) locus, also known as the human leukocyte antigen (HLA), have been reported as major risk factors for complex diseases. Recent advances, including large genetic screens, imputation, and analyses of non-additive and epistatic

  16. The major histocompatibility complex genes impact pain response in DA and DA.1U rats.

    Science.gov (United States)

    Guo, Yuan; Yao, Fan-Rong; Cao, Dong-Yuan; Li, Li; Wang, Hui-Sheng; Xie, Wen; Zhao, Yan

    2015-08-01

    Our recent studies have shown that the difference in basal pain sensitivity to mechanical and thermal stimulation between Dark-Agouti (DA) rats and a novel congenic DA.1U rats is major histocompatibility complex (MHC) genes dependent. In the present study, we further used DA and DA.1U rats to investigate the role of MHC genes in formalin-induced pain model by behavioral, electrophysiological and immunohistochemical methods. Behavioral results showed biphasic nociceptive behaviors increased significantly following the intraplantar injection of formalin in the hindpaw of DA and DA.1U rats. The main nociceptive behaviors were lifting and licking, especially in DA rats (PDA rats were significantly higher than those in DA.1U rats in both phases of the formalin test (PDA rats was significantly higher than that of DA.1U rats (PDA was greater than that in DA.1U rats (PDA rats was significantly higher than that in DA.1U rats in the respective experimental group (PDA and DA.1U rats exhibited nociceptive responses in formalin-induced pain model and DA rats were more sensitive to noxious chemical stimulus than DA.1U rats, indicating that MHC genes might contribute to the difference in pain sensitivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Characterization of major histocompatibility complex class I, and class II DRB loci of captive and wild Indian leopards (Panthera pardus fusca).

    Science.gov (United States)

    Parmar, Drashti R; Mitra, Siuli; Bhadouriya, Snehalata; Rao, Tirupathi; Kunteepuram, Vaishnavi; Gaur, Ajay

    2017-12-01

    The major histocompatibility complex (MHC), in vertebrate animals, is a multi-genic protein complex that encodes various receptors. During a disease, MHC interacts with the antigen and triggers a cascade of adaptive immune responses to overcome a disease outbreak. The MHC is very important region from immunological point of view, but it is poorly characterized among Indian leopards. During this investigation, we examined genetic diversity for MHC class I (MHC-I) and MHC class II-DRB (MHC-II) among wild and captive Indian leopards. This study estimated a pool of 9 and 17 alleles for MHC-I and MHC-II, respectively. The wild group of individuals showed higher nucleotide diversity and amino acid polymorphism compared to the captive group. A phylogenetic comparison with other felids revealed a clustering in MHC-I and interspersed presence in MHC-II sequences. A test for selection also revealed a deviation from neutrality at MHC-II DRB loci and higher non-synonymous substitution rate (dN) among the individuals from wild group. Further, the wild individuals showed higher dN for both MHC I and II genes compared to the group that was bred under captive conditions. These findings suggest the role of micro-evolutionary forces, such as pathogen-mediated selection, to cause MHC variations among the two groups of Indian leopards, because the two groups have been bred in two different environments for a substantial period of time. Since, MHC diversity is often linked with the quality of immunological health; the results obtained from this study fill the gap of knowledge on disease predisposition among wild and captive Indian leopards.

  18. Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins

    OpenAIRE

    Sallaberry?Pincheira, Nicole; Gonz?lez?Acu?a, Daniel; Padilla, Pamela; Dantas, Gisele P. M.; Luna?Jorquera, Guillermo; Frere, Esteban; Vald?s?Vel?squez, Armando; Vianna, Juliana A.

    2016-01-01

    Abstract The evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC class II with extracellular infections (e.g., bacteria). Therefore, patterns of MHC I and II diversity may differ between species and across populations of species depending on the relative e...

  19. T-cell activation. VI. Inhibitory and stimulatory effects of anti-major histocompatibility complex class I antibodies in allogeneic mixed lymphocyte culture

    DEFF Research Database (Denmark)

    Röpke, M; Röpke, C; Claesson, Mogens Helweg

    1993-01-01

    Murine T splenocytes stimulated in primary allogeneic mixed lymphocyte culture (MLC) were incubated with soluble anti-major histocompatibility complex (MHC) class I monoclonal antibodies. These antibodies induced inhibition in the cytotoxicity of the responding population and this inhibition...... was not dependent on the domain on class I molecules recognized by the antibodies. Cross-reactivity of the antibodies between the responder and stimulating cell population caused a marked reduction in the inhibitory effect compared to systems where no such cross-reactivity was present. Saturating levels...... of the antibodies caused a reduction in generation of T-cell cytotoxicity, whereas low concentrations stimulated the same response. These results demonstrate that the MHC class I molecules of T cells are of significant importance in antigen-induced signal transduction....

  20. Structural requirements and biological significance of interactions between peptides and the major histocompatibility complex

    DEFF Research Database (Denmark)

    Grey, H M; Buus, S; Colon, S

    1989-01-01

    Previous studies indicate that T cells recognize a complex between the major histocompatibility complex (MHC) restriction-element and peptide-antigen fragments. Two aspects of this complex formation are considered in this paper: (1) what is the nature of the specificity of the interactions that a...... of binding to Ia (i.e. determinant selection was operative), we found that about 40% of Ia-binding peptides were not immunogenic (i.e. there were also 'holes in the T-cell repertoire')....... responsiveness, we present data that suggest both mechanisms operate in concert with one another. Thus only about 30% of a collection of peptides that in sum represent the sequence of a protein molecule were found to bind to Ia. Although immunogenicity was restricted to those peptides that were capable...

  1. MHC-I Ligand Discovery Using Targeted Database Searches of Mass Spectrometry Data: Implications for T-Cell Immunotherapies

    DEFF Research Database (Denmark)

    Murphy, J. Patrick; Konda, Prathyusha; Kowalewski, Daniel J.

    2017-01-01

    Class I major histocompatibility complex (MHC-I)-bound peptide ligands dictate the activation and specificity of CD8+ T cells and thus are important for devising T-cell immunotherapies. In recent times, advances in mass spectrometry (MS) have enabled the precise identification of these MHC-I pept...

  2. Predicting binding affinities of protein ligands from three-dimensional models: application to peptide binding to class I major histocompatibility proteins

    DEFF Research Database (Denmark)

    Rognan, D; Lauemoller, S L; Holm, A

    1999-01-01

    A simple and fast free energy scoring function (Fresno) has been developed to predict the binding free energy of peptides to class I major histocompatibility (MHC) proteins. It differs from existing scoring functions mainly by the explicit treatment of ligand desolvation and of unfavorable protein...... coordinates of the MHC-bound peptide have first been determined with an accuracy of about 1-1.5 A. Furthermore, it may be easily recalibrated for any protein-ligand complex.......) and of a series of 16 peptides to H-2K(k). Predictions were more accurate for HLA-A2-binding peptides as the training set had been built from experimentally determined structures. The average error in predicting the binding free energy of the test peptides was 3.1 kJ/mol. For the homology model-derived equation...

  3. One-pot, mix-and-read peptide-MHC tetramers

    DEFF Research Database (Denmark)

    Leisner, Christian Valdemar Vinge; Loeth, Nina; Lamberth, Kasper

    2008-01-01

    BACKGROUND: Cytotoxic T Lymphocytes (CTL) recognize complexes of peptide ligands and Major Histocompatibility Complex (MHC) class I molecules presented at the surface of Antigen Presenting Cells (APC). Detection and isolation of CTL's are of importance for research on CTL immunity, and development...... molecules can be refolded in vitro, tetramerized with streptavidin, and used for specific T cell staining-all in a one-pot reaction without any intervening purification steps. CONCLUSIONS/SIGNIFICANCE: We have developed an efficient "one-pot, mix-and-read" strategy for peptide-MHC tetramer generation...

  4. Activation of Stat-3 is involved in the induction of apoptosis after ligation of major histocompatibility complex class I molecules on human Jurkat T cells

    DEFF Research Database (Denmark)

    Skov, S; Nielsen, M; Bregenholt, S

    1998-01-01

    Activation of Janus tyrosine kinases (Jak) and Signal transducers and activators of transcription (Stat) after ligation of major histocompatibility complex class I (MHC-I) was explored in Jurkat T cells. Cross-linking of MHC-I mediated tyrosine phosphorylation of Tyk2, but not Jak1, Jak2, and Jak3......-probe derived from the interferon-gamma activated site (GAS) in the c-fos promoter, a common DNA sequence for Stat protein binding. An association between hSIE and Stat-3 after MHC-I ligation was directly demonstrated by precipitating Stat-3 from nuclear extracts with biotinylated hSIE probe and avidin......-coupled agarose. To investigate the function of the activated Stat-3, Jurkat T cells were transiently transfected with a Stat-3 isoform lacking the transactivating domain. This dominant-negative acting Stat-3 isoform significantly inhibited apoptosis induced by ligation of MHC-I. In conclusion, our data suggest...

  5. Barrett associated MHC and FOXF1 variants also increase esophageal carcinoma risk

    NARCIS (Netherlands)

    Dura, P.; Veen, E.M. van; Salomon, J.; Morsche, R.H.M. te; Roelofs, H.M.J.; Kristinsson, J.O.; Wobbes, T.; Witteman, B.J.; Tan, A.C.; Drenth, J.P.H.; Peters, W.H.M.

    2013-01-01

    Barrett's esophagus, with gastroesophageal reflux disease and obesity as risk factors, predisposes to esophageal adenocarcinoma (EAC). Recently a British genome wide association study identified two Barrett's esophagus susceptibility loci mapping within the major histocompatibility complex (MHC;

  6. The T-Cell Receptor Can Bind to the Peptide-Bound Major Histocompatibility Complex and Uncomplexed β2-Microglobulin through Distinct Binding Sites

    DEFF Research Database (Denmark)

    Merkle, Patrick S.; Irving, Melita; Hongjian, Song

    2017-01-01

    from molecular dynamics simulations. Using a biological assay based on TCR gene-engineered primary human T cells, we did not observe a significant effect of β2m on T-cell cytotoxicity, suggesting an alternate role for β2m binding. Overall, we show that binding of β2m to the TCR occurs in vitro and......T-Cell receptor (TCR)-mediated recognition of the peptide-bound major histocompatibility complex (pMHC) initiates an adaptive immune response against antigen-presenting target cells. The recognition events take place at the TCR-pMHC interface, and their effects on TCR conformation and dynamics...... are controversial. Here, we have measured the time-resolved hydrogen/deuterium exchange (HDX) of a soluble TCR in the presence and absence of its cognate pMHC by mass spectrometry to delineate the impact of pMHC binding on solution-phase structural dynamics in the TCR. Our results demonstrate that while TCR...

  7. H-2RIIBP, a member of the nuclear hormone receptor superfamily that binds to both the regulatory element of major histocompatibility class I genes and the estrogen response element.

    OpenAIRE

    Hamada, K; Gleason, S L; Levi, B Z; Hirschfeld, S; Appella, E; Ozato, K

    1989-01-01

    Transcription of major histocompatibility complex (MHC) class I genes is regulated by the conserved MHC class I regulatory element (CRE). The CRE has two factor-binding sites, region I and region II, both of which elicit enhancer function. By screening a mouse lambda gt 11 library with the CRE as a probe, we isolated a cDNA clone that encodes a protein capable of binding to region II of the CRE. This protein, H-2RIIBP (H-2 region II binding protein), bound to the native region II sequence, bu...

  8. The Intensity of Human Body Odors and the MHC: Should We Expect a Link?

    OpenAIRE

    Claus Wedekind; Thomas Seebeck; Florence Bettens; Alexander J. Paepke

    2006-01-01

    It is now well established that genes within the major histocompatibility complex (MHC) somehow affect the production of body odors in several vertebrates, including humans. Here we discuss whether variation in the intensity of body odors may be influenced by the MHC. In order to examine this question, we have to control for MHC-linked odor perception on the smeller's side. Such a control is necessary because the perception of pleasantness and intensity seem to be confounded, a...

  9. Low major histocompatibility complex class II DQA diversity in the Giant Panda (Ailuropoda melanoleuca

    Directory of Open Access Journals (Sweden)

    Ruan Xiang-Dong

    2007-06-01

    Full Text Available Abstract Background The giant panda (Ailuropoda melanoleuca is one of the most endangered animals due to habitat fragmentation and loss. Although the captive breeding program for this species is now nearly two decades old, researches on the genetic background of such captive populations, especially on adaptive molecular polymorphism of major histocompatibility complex (MHC, are still limited. In this study, we characterized adaptive variation of the giant panda's MHC DQA gene by PCR amplification of its antigen-recognizing region (i.e. the exon 2 and subsequent single-strand conformational polymorphism (SSCP and sequence analyses. Results The results revealed a low level of DQA exon 2 diversity in this rare animal, presenting 6 alleles from 61 giant panda individuals. The observed polymorphism was restricted to 9 amino acid substitutions, all of which occurred at and adjacent to positions forming the functionally important antigen-binding sites. All the samples were in Hardy-Weinberg proportions. A significantly higher rate of non-synonymous than synonymous substitutions at the antigen-binding sites indicated positive selection for diversity in the locus. Conclusion The DQA allelic diversity of giant pandas was low relative to other vertebrates. Nonetheless, the pandas exhibited more alleles in DQA than those in DRB, suggesting the alpha chain genes would play a leading role when coping with certain pathogens and thus should be included in conservation genetic investigation. The microsatellite and MHC loci might predict long-term persistence potential and short-term survival ability, respectively. Consequently, it is recommended to utilize multiple suites of microsatellite markers and multiple MHC loci to detect overall genetic variation in order to design unbiased conservation strategies.

  10. Semi-empirical quantum evaluation of peptide - MHC class II binding

    Science.gov (United States)

    González, Ronald; Suárez, Carlos F.; Bohórquez, Hugo J.; Patarroyo, Manuel A.; Patarroyo, Manuel E.

    2017-01-01

    Peptide presentation by the major histocompatibility complex (MHC) is a key process for triggering a specific immune response. Studying peptide-MHC (pMHC) binding from a structural-based approach has potential for reducing the costs of investigation into vaccine development. This study involved using two semi-empirical quantum chemistry methods (PM7 and FMO-DFTB) for computing the binding energies of peptides bonded to HLA-DR1 and HLA-DR2. We found that key stabilising water molecules involved in the peptide binding mechanism were required for finding high correlation with IC50 experimental values. Our proposal is computationally non-intensive, and is a reliable alternative for studying pMHC binding interactions.

  11. Olfactory fingerprints for major histocompatibility complex-determined body odors.

    Science.gov (United States)

    Schaefer, M L; Young, D A; Restrepo, D

    2001-04-01

    Recognition of individual body odors is analogous to human face recognition in that it provides information about identity. Individual body odors determined by differences at the major histocompatibility complex (MHC or H-2) have been shown to influence mate choice, pregnancy block, and maternal behavior in mice. Unfortunately, the mechanism and extent of the main olfactory bulb (MOB) and accessory olfactory bulb (AOB) involvement in the discrimination of animals according to H-2-type has remained ambiguous. Here we study the neuronal activation patterns evoked in the MOB in different individuals on exposure to these complex, biologically meaningful sensory stimuli. We demonstrate that body odors from H-2 disparate mice evoke overlapping but distinct maps of neuronal activation in the MOB. The spatial patterns of odor-evoked activity are sufficient to be used like fingerprints to predict H-2 identity using a novel computer algorithm. These results provide functional evidence for discrimination of H-2-determined body odors in the MOB, but do not preclude a role for the AOB. These data further our understanding of the neural strategies used to decode socially relevant odors.

  12. Novel full-length major histocompatibility complex class I allele discovery and haplotype definition in pig-tailed macaques.

    Science.gov (United States)

    Semler, Matthew R; Wiseman, Roger W; Karl, Julie A; Graham, Michael E; Gieger, Samantha M; O'Connor, David H

    2017-11-13

    Pig-tailed macaques (Macaca nemestrina, Mane) are important models for human immunodeficiency virus (HIV) studies. Their infectability with minimally modified HIV makes them a uniquely valuable animal model to mimic human infection with HIV and progression to acquired immunodeficiency syndrome (AIDS). However, variation in the pig-tailed macaque major histocompatibility complex (MHC) and the impact of individual transcripts on the pathogenesis of HIV and other infectious diseases is understudied compared to that of rhesus and cynomolgus macaques. In this study, we used Pacific Biosciences single-molecule real-time circular consensus sequencing to describe full-length MHC class I (MHC-I) transcripts for 194 pig-tailed macaques from three breeding centers. We then used the full-length sequences to infer Mane-A and Mane-B haplotypes containing groups of MHC-I transcripts that co-segregate due to physical linkage. In total, we characterized full-length open reading frames (ORFs) for 313 Mane-A, Mane-B, and Mane-I sequences that defined 86 Mane-A and 106 Mane-B MHC-I haplotypes. Pacific Biosciences technology allows us to resolve these Mane-A and Mane-B haplotypes to the level of synonymous allelic variants. The newly defined haplotypes and transcript sequences containing full-length ORFs provide an important resource for infectious disease researchers as certain MHC haplotypes have been shown to provide exceptional control of simian immunodeficiency virus (SIV) replication and prevention of AIDS-like disease in nonhuman primates. The increased allelic resolution provided by Pacific Biosciences sequencing also benefits transplant research by allowing researchers to more specifically match haplotypes between donors and recipients to the level of nonsynonymous allelic variation, thus reducing the risk of graft-versus-host disease.

  13. Recombinational hotspot specific to female meiosis in the mouse major histocompatibility complex.

    Science.gov (United States)

    Shiroishi, T; Hanzawa, N; Sagai, T; Ishiura, M; Gojobori, T; Steinmetz, M; Moriwaki, K

    1990-01-01

    The wm7 haplotype of the major histocompatibility complex (MHC), derived from the Japanese wild mouse Mus musculus molossinus, enhances recombination specific to female meiosis in the K/A beta interval of the MHC. We have mapped crossover points of fifteen independent recombinants from genetic crosses of the wm7 and laboratory haplotypes. Most of them were confined to a short segment of approximately 1 kilobase (kb) of DNA between the A beta 3 and A beta 2 genes, indicating the presence of a female-specific recombinational hotspot. Its location overlaps with a sex-independent hotspot previously identified in the Mus musculus castaneus CAS3 haplotype. We have cloned and sequenced DNA fragments surrounding the hotspot from the wm7 haplotype and the corresponding regions from the hotspot-negative B10.A and C57BL/10 strains. There is no significant difference between the sequences of these three strains, or between these and the published sequences of the CAS3 and C57BL/6 strains. However, a comparison of this A beta 3/A beta 2 hotspot with a previously characterized hotspot in the E beta gene revealed that they have a very similar molecular organization. Each hotspot consists of two elements, the consensus sequence of the mouse middle repetitive MT family and the tetrameric repeated sequences, which are separated by 1 kb of DNA.

  14. New horizons in mouse immunoinformatics: reliable in silico prediction of mouse class I histocompatibility major complex peptide binding affinity.

    Science.gov (United States)

    Hattotuwagama, Channa K; Guan, Pingping; Doytchinova, Irini A; Flower, Darren R

    2004-11-21

    Quantitative structure-activity relationship (QSAR) analysis is a main cornerstone of modern informatic disciplines. Predictive computational models, based on QSAR technology, of peptide-major histocompatibility complex (MHC) binding affinity have now become a vital component of modern day computational immunovaccinology. Historically, such approaches have been built around semi-qualitative, classification methods, but these are now giving way to quantitative regression methods. The additive method, an established immunoinformatics technique for the quantitative prediction of peptide-protein affinity, was used here to identify the sequence dependence of peptide binding specificity for three mouse class I MHC alleles: H2-D(b), H2-K(b) and H2-K(k). As we show, in terms of reliability the resulting models represent a significant advance on existing methods. They can be used for the accurate prediction of T-cell epitopes and are freely available online ( http://www.jenner.ac.uk/MHCPred).

  15. MHC class II-assortative mate choice in European badgers (Meles meles)

    NARCIS (Netherlands)

    Sin, Yung Wa; Annavi, Geetha; Newman, Chris; Buesching, Christina D.; Burke, Terry; Macdonald, David W.; Dugdale, Hannah

    The major histocompatibility complex (MHC) plays a crucial role in the immune system, and in some species, it is a target by which individuals choose mates to optimize the fitness of their offspring, potentially mediated by olfactory cues. Under the genetic compatibility hypothesis, individuals are

  16. Detecting Site-Specific Physicochemical Selective Pressures: Applications to the Class I HLA of the Human Major Histocompatibility Complex and the SRK of the Plant Sporophytic Self-Incompatibility System

    DEFF Research Database (Denmark)

    Sainudiin, Raazesh; Wong, Wendy Shuk Wan; Yogeeswaran, Krithika

    2005-01-01

    :transversion biases. Here, we apply this method to two positively selected receptors involved in ligand-recognition: the class I alleles of the human major histocompatibility complex (MHC) of known structure and the S-locus receptor kinase (SRK) of the sporophytic self-incompatibility system (SSI) in cruciferous...... Bayes approach is used to identify sites that may be important for ligand recognition in these proteins....

  17. Clinical, Immunological, and Molecular Findings in Five Patients with Major Histocompatibility Complex Class II Deficiency from India

    Directory of Open Access Journals (Sweden)

    Jahnavi Aluri

    2018-02-01

    Full Text Available Major histocompatibility complex (MHC class II deficiency is a rare autosomal recessive form of primary immunodeficiency disorder (PID characterized by the deficiency of MHC class II molecules. This deficiency affects the cellular and humoral immune response by impairing the development of CD4+ T helper (Th cells and Th cell-dependent antibody production by B cells. Affected children typically present with severe respiratory and gastrointestinal tract infections. Hematopoietic stem cell transplantation (HSCT is the only curative therapy available for treating these patients. This is the first report from India wherein we describe the clinical, immunological, and molecular findings in five patients with MHC class II deficiency. Our patients presented with recurrent lower respiratory tract infection as the most common clinical presentation within their first year of life and had a complete absence of human leukocyte antigen-antigen D-related (HLA-DR expression on B cells and monocytes. Molecular characterization revealed novel mutations in RFAXP, RFX5, and CIITA genes. Despite genetic heterogeneity, these patients were clinically indistinguishable. Two patients underwent HSCT but had a poor survival outcome. Detectable level of T cell receptor excision circles (TRECs were measured in our patients, highlighting that this form of PID may be missed by TREC-based newborn screening program for severe combined immunodeficiency.

  18. Effects of major histocompatibility complex class II knockout on mouse bone mechanical properties during development

    Science.gov (United States)

    Simske, Steven J.; Bateman, Ted A.; Smith, Erin E.; Ferguson, Virginia L.; Chapes, Stephen K.

    2002-01-01

    We investigated the effect of major histocompatibility complex class II (MHC II) knockout on the development of the mouse peripheral skeleton. These C2D mice had less skeletal development at 8, 12 and 16 weeks of age compared to wild-type C57BL/6J (B6) male mice. The C2D mice had decreased femur mechanical, geometric and compositional measurements compared to wild type mice at each of these ages. C2D femur stiffness (S), peak force in 3-pt bending (Pm), and mineral mass (Min-M) were 74%, 64% and 66%, respectively, of corresponding B6 values at 8 weeks of age. Similar differences were measured at 12 weeks (for which C2D femoral S, Pm and Min-M were 71%, 72% and 73%, respectively, of corresponding B6 values) and at 16 weeks (for which C2D femoral S, Pm and Min-M were 80%, 66% and 61%, respectively, of corresponding B6 values). MHC II knockout delays the development of adult bone properties and is accompanied by lower body mass compared to wild-type controls.

  19. Automated Analysis of Flow Cytometry Data to Reduce Inter-Lab Variation in the Detection of Major Histocompatibility Complex Multimer-Binding T Cells

    DEFF Research Database (Denmark)

    Pedersen, Natasja Wulff; Chandran, P. Anoop; Qian, Yu

    2017-01-01

    Manual analysis of flow cytometry data and subjective gate-border decisions taken by individuals continue to be a source of variation in the assessment of antigen-specific T cells when comparing data across laboratories, and also over time in individual labs. Therefore, strategies to provide...... automated analysis of major histocompatibility complex (MHC) multimer-binding T cells represent an attractive solution to decrease subjectivity and technical variation. The challenge of using an automated analysis approach is that MHC multimer-binding T cell populations are often rare and therefore...... laboratories. We used three different methods, FLOw Clustering without K (FLOCK), Scalable Weighted Iterative Flow-clustering Technique (SWIFT), and ReFlow to analyze flow cytometry data files from 28 laboratories. Each laboratory screened for antigen-responsive T cell populations with frequency ranging from 0...

  20. Association of a specific major histocompatibility complex class IIβ single nucleotide polymorphism with resistance to lactococcosis in rainbow trout, Oncorhynchus mykiss (Walbaum).

    Science.gov (United States)

    Colussi, S; Prearo, M; Bertuzzi, S A; Scanzio, T; Peletto, S; Favaro, L; Modesto, P; Maniaci, M G; Ru, G; Desiato, R; Acutis, P L

    2015-01-01

    Major histocompatibility complex (MHC) loci encode glycoproteins that bind to foreign peptides and initiate immune responses through their interaction with T cells. MHC class II molecules are heterodimers consisting of α and β chains encoded by extremely variable genes; variation in exon 2 is responsible for the majority of observed polymorphisms, mostly concentrated in the codons specifying the peptide-binding region. Lactococcus garvieae is the causative agent of lactococcosis, a warm-water bacterial infection pathogenic for cultured freshwater and marine fish. It causes considerable economic losses, limiting the profitability and development of fish industries in general and the intensive production of rainbow trout, Oncorhynchus mykiss (Walbaum), in particular. The disease is currently controlled with vaccines and antibiotics; however, vaccines have short-term efficacy, and increasing concerns regarding antibiotic residues have called for alternative strategies. To explore the involvement of the MHC class II β-1 domain as a candidate gene for resistance to lactococcosis, we exposed 400 rainbow trout to naturally contaminated water. One single nucleotide polymorphism (SNP) and one haplotype were associated with resistance (P trout resistant to lactococcosis. © 2014 John Wiley & Sons Ltd.

  1. Applicability of major histocompatibility complex DRB1 alleles as markers to detect vertebrate hybridization: a case study from Iberian ibex × domestic goat in southern Spain

    Directory of Open Access Journals (Sweden)

    Alasaad Samer

    2012-09-01

    Full Text Available Abstract Background Hybridization between closely related wild and domestic species is of great concern because it can alter the evolutionary integrity of the affected populations. The high allelic variability of Major Histocompatibility Complex (MHC loci usually excludes them from being used in studies to detect hybridization events. However, if a the parental species don’t share alleles, and b one of the parental species possesses an exceptionally low number of alleles (to facilitate analysis, then even MHC loci have the potential to detect hybrids. Results By genotyping the exon2 of the MHC class II DRB1 locus, we were able to detect hybridization between domestic goats (Capra hircus and free-ranging Iberian ibex (Capra pyrenaica hispanica by molecular means. Conclusions This is the first documentation of a Capra pyrenaica × Capra hircus hybridization, which presented us the opportunity to test the applicability of MHC loci as new, simple, cost-effective, and time-saving approach to detect hybridization between wild species and their domesticated relatives, thus adding value to MHC genes role in animal conservation and management.

  2. Systematic Characterisation of Cellular Localisation and Expression Profiles of Proteins Containing MHC Ligands

    DEFF Research Database (Denmark)

    Juncker, Agnieszka; Larsen, Mette Voldby; Weinhold, Nils

    2009-01-01

    Background: Presentation of peptides on Major Histocompatibility Complex (MHC) molecules is the cornerstone in immune system activation and increased knowledge of the characteristics of MHC ligands and their source proteins is highly desirable. Methodology/Principal Finding: In the present large......-scale study, we used a large data set of proteins containing experimentally identified MHC class I or II ligands and examined the proteins according to their expression profiles at the mRNA level and their Gene Ontology (GO) classification within the cellular component ontology. Proteins encoded by highly...

  3. Brucella abortus Inhibits Major Histocompatibility Complex Class II Expression and Antigen Processing through Interleukin-6 Secretion via Toll-Like Receptor 2▿

    Science.gov (United States)

    Barrionuevo, Paula; Cassataro, Juliana; Delpino, M. Victoria; Zwerdling, Astrid; Pasquevich, Karina A.; Samartino, Clara García; Wallach, Jorge C.; Fossati, Carlos A.; Giambartolomei, Guillermo H.

    2008-01-01

    The strategies that allow Brucella abortus to survive inside macrophages for prolonged periods and to avoid the immunological surveillance of major histocompatibility complex class II (MHC-II)-restricted gamma interferon (IFN-γ)-producing CD4+ T lymphocytes are poorly understood. We report here that infection of THP-1 cells with B. abortus inhibited expression of MHC-II molecules and antigen (Ag) processing. Heat-killed B. abortus (HKBA) also induced both these phenomena, indicating the independence of bacterial viability and involvement of a structural component of the bacterium. Accordingly, outer membrane protein 19 (Omp19), a prototypical B. abortus lipoprotein, inhibited both MHC-II expression and Ag processing to the same extent as HKBA. Moreover, a synthetic lipohexapeptide that mimics the structure of the protein lipid moiety also inhibited MHC-II expression, indicating that any Brucella lipoprotein could down-modulate MHC-II expression and Ag processing. Inhibition of MHC-II expression and Ag processing by either HKBA or lipidated Omp19 (L-Omp19) depended on Toll-like receptor 2 and was mediated by interleukin-6. HKBA or L-Omp19 also inhibited MHC-II expression and Ag processing of human monocytes. In addition, exposure to the synthetic lipohexapeptide inhibited Ag-specific T-cell proliferation and IFN-γ production of peripheral blood mononuclear cells from Brucella-infected patients. Together, these results indicate that there is a mechanism by which B. abortus may prevent recognition by T cells to evade host immunity and establish a chronic infection. PMID:17984211

  4. Quantitative disease resistance: to better understand parasite-mediated selection on major histocompatibility complex.

    Science.gov (United States)

    Westerdahl, Helena; Asghar, Muhammad; Hasselquist, Dennis; Bensch, Staffan

    2012-02-07

    We outline a descriptive framework of how candidate alleles of the immune system associate with infectious diseases in natural populations of animals. Three kinds of alleles can be separated when both prevalence of infection and infection intensity are measured--qualitative disease resistance, quantitative disease resistance and susceptibility alleles. Our descriptive framework demonstrates why alleles for quantitative resistance and susceptibility cannot be separated based on prevalence data alone, but are distinguishable on infection intensity. We then present a case study to evaluate a previous finding of a positive association between prevalence of a severe avian malaria infection (GRW2, Plasmodium ashfordi) and a major histocompatibility complex (MHC) class I allele (B4b) in great reed warblers Acrocephalus arundinaceus. Using the same dataset, we find that individuals with allele B4b have lower GRW2 infection intensities than individuals without this allele. Therefore, allele B4b provides quantitative resistance rather than increasing susceptibility to infection. This implies that birds carrying B4b can mount an immune response that suppresses the acute-phase GRW2 infection, while birds without this allele cannot and may die. We argue that it is important to determine whether MHC alleles related to infections are advantageous (quantitative and qualitative resistance) or disadvantageous (susceptibility) to obtain a more complete picture of pathogen-mediated balancing selection.

  5. MHC class IIB Exon 2 Polymorphism in the Grey Partridge (Perdix perdix) is shaped by selection, recombination and gene conversion

    Czech Academy of Sciences Publication Activity Database

    Promerová, Marta; Králová, Tereza; Bryjová, Anna; Albrecht, Tomáš; Bryja, Josef

    2013-01-01

    Roč. 8, č. 7 (2013), e69135 E-ISSN 1932-6203 R&D Projects: GA ČR GA206/08/1281 Institutional support: RVO:68081766 Keywords : major histocompatibility complex (MHC) * snipe Gallinago-media * Class-I genes * minimal-essential-MHC Subject RIV: EG - Zoology Impact factor: 3.534, year: 2013

  6. Low Major Histocompatibility Complex Class II Variation in the Endangered Indo-Pacific Humpback Dolphin (Sousa chinensis): Inferences About the Role of Balancing Selection.

    Science.gov (United States)

    Zhang, Xiyang; Lin, Wenzhi; Zhou, Ruilian; Gui, Duan; Yu, Xinjian; Wu, Yuping

    2016-03-01

    It has been widely reported that the major histocompatibility complex (MHC) is under balancing selection due to its immune function across terrestrial and aquatic mammals. The comprehensive studies at MHC and other neutral loci could give us a synthetic evaluation about the major force determining genetic diversity of species. Previously, a low level of genetic diversity has been reported among the Indo-Pacific humpback dolphin (Sousa chinensis) in the Pearl River Estuary (PRE) using both mitochondrial marker and microsatellite loci. Here, the expression and sequence polymorphism of 2 MHC class II genes (DQB and DRB) in 32 S. chinensis from PRE collected between 2003 and 2011 were investigated. High ratios of non-synonymous to synonymous substitution rates, codon-based selection analysis, and trans-species polymorphism (TSP) support the hypothesis that balancing selection acted on S. chinensis MHC sequences. However, only 2 haplotypes were detected at either DQB or DRB loci. Moreover, the lack of deviation from the Hardy-Weinberg expectation at DRB locus combined with the relatively low heterozygosity at both DQB locus and microsatellite loci suggested that balancing selection might not be sufficient, which further suggested that genetic drift associated with historical bottlenecks was not mitigated by balancing selection in terms of the loss of MHC and neutral variation in S. chinensis. The combined results highlighted the importance of maintaining the genetic diversity of the endangered S. chinensis. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Size polymorphism of chicken major histocompatibility complex-encoded B-G molecules is due to length variation in the cytoplasmic heptad repeat region

    DEFF Research Database (Denmark)

    Kaufman, J; Salomonsen, J; Skjødt, K

    1990-01-01

    B-G antigens are cell-surface molecules encoded by a highly polymorphic multigene family located in the chicken major histocompatibility complex (MHC). Rabbit antisera to B-G molecules immunoprecipitate 3-6 bands from iodinated erythrocytes by sodium dodecyl sulfate (SDS) gels under reducing......, which bear intrachain disulfide bonds. All 3-6 bands have different mobilities in SDS gels between different haplotypes, ranging from 30 to 55 kDa. This size polymorphism is not affected by glycosidase treatment or addition of protease inhibitors. Partial proteolysis of cell surface-iodinated B...

  8. Major-histocompatibility-complex-associated variation in secondary sexual traits of white-tailed deer (Odocoileus virginianus): evidence for good-genes advertisement.

    Science.gov (United States)

    Ditchkoff, S S; Lochmiller, R L; Masters, R E; Hoofer, S R; Van Den Bussche, R A

    2001-03-01

    Good-genes hypotheses predict that development of secondary sexual characters can be an honest advertisement of heritable male quality. We explored this hypothesis using a cervid model (adult, male white-tailed deer, Odocoileus virginianus) to determine whether antler development could provide an honest signal of a male's genetic quality and condition to adversaries. We compared antler, morphometric, hormonal, and parasitic data collected from hunter-harvested deer to characteristics of the Mhc-DRB (Odvi), the most widely studied gene of the major histocompatibility complex (MHC) in Artiodactyla. We detected associations between genetic characteristics at Odvi-DRB and antler development and body mass, suggesting that antler development and body mass may be associated with pathogen resistance in deer and thus may be an honest signal of genetic quality. We also detected associations between Odvi-DRB characteristics and serum testosterone during the breeding season, suggesting that certain MHC characteristics may help deer cope with stresses related to breeding activity. In addition, we observed a negative relationship between degree of antler development and overall abundance of abomasal helminths. Our observations provide support for the hypothesis that antler development in white-tailed deer is an honest signal of quality.

  9. Major histocompatibility complex harbors widespread genotypic variability of non-additive risk of rheumatoid arthritis including epistasis.

    Science.gov (United States)

    Wei, Wen-Hua; Bowes, John; Plant, Darren; Viatte, Sebastien; Yarwood, Annie; Massey, Jonathan; Worthington, Jane; Eyre, Stephen

    2016-04-25

    Genotypic variability based genome-wide association studies (vGWASs) can identify potentially interacting loci without prior knowledge of the interacting factors. We report a two-stage approach to make vGWAS applicable to diseases: firstly using a mixed model approach to partition dichotomous phenotypes into additive risk and non-additive environmental residuals on the liability scale and secondly using the Levene's (Brown-Forsythe) test to assess equality of the residual variances across genotype groups per marker. We found widespread significant (P 5e-05) vGWAS signals within the major histocompatibility complex (MHC) across all three study cohorts of rheumatoid arthritis. We further identified 10 epistatic interactions between the vGWAS signals independent of the MHC additive effects, each with a weak effect but jointly explained 1.9% of phenotypic variance. PTPN22 was also identified in the discovery cohort but replicated in only one independent cohort. Combining the three cohorts boosted power of vGWAS and additionally identified TYK2 and ANKRD55. Both PTPN22 and TYK2 had evidence of interactions reported elsewhere. We conclude that vGWAS can help discover interacting loci for complex diseases but require large samples to find additional signals.

  10. CD54/intercellular adhesion molecule 1 and major histocompatibility complex II signaling induces B cells to express interleukin 2 receptors and complements help provided through CD40 ligation

    DEFF Research Database (Denmark)

    Poudrier, J; Owens, T

    1994-01-01

    We have examined signaling roles for CD54 intercellular adhesion molecule 1 and major histocompatibility complex (MHC) II as contact ligands during T help for B cell activation. We used a T helper 1 (Th1)-dependent helper system that was previously shown to be contact as well as interleukin 2 (IL-2......) dependent to demonstrate the relative roles of CD54, MHC II, and CD40 signaling in the events leading to the induction of B cell proliferation and responsiveness to IL-2. Paraformaldehyde-fixed activated Th1-induced expression of IL-2R alpha, IL-2R beta, and B7, and upregulated MHC II and CD54 on B cells...... resulted in the upregulated expression of MHC II and of CD54 and B7, respectively, analogous to the effect of fixed activated Th1 cells. B7 expression was further enhanced by co-cross-linking CD54 and MHC II. Cross-linking of CD40 achieved comparable effects. Strikingly, cross-linking ligation of CD54...

  11. Selection, trans-species polymorphism, and locus identification of major histocompatibility complex class IIβ alleles of New World ranid frogs

    Science.gov (United States)

    Kiemnec-Tyburczy, Karen M.; Richmond, Jonathan Q.; Savage, Anna E.; Zamudio, Kelly R.

    2010-01-01

    Genes encoded by the major histocompatibility complex (MHC) play key roles in the vertebrate immune system. However, our understanding of the evolutionary processes and underlying genetic mechanisms shaping these genes is limited in many taxa, including amphibians, a group currently impacted by emerging infectious diseases. To further elucidate the evolution of the MHC in frogs (anurans) and develop tools for population genetics, we surveyed allelic diversity of the MHC class II ??1 domain in both genomic and complementary DNA of seven New World species in the genus Rana (Lithobates). To assign locus affiliation to our alleles, we used a "gene walking" technique to obtain intron 2 sequences that flanked MHC class II?? exon 2. Two distinct intron sequences were recovered, suggesting the presence of at least two class II?? loci in Rana. We designed a primer pair that successfully amplified an orthologous locus from all seven Rana species. In total, we recovered 13 alleles and documented trans-species polymorphism for four of the alleles. We also found quantitative evidence of selection acting on amino acid residues that are putatively involved in peptide binding and structural stability of the ??1 domain of anurans. Our results indicated that primer mismatch can result in polymerase chain reaction (PCR) bias, which influences the number of alleles that are recovered. Using a single locus may minimize PCR bias caused by primer mismatch, and the gene walking technique was an effective approach for generating single-copy orthologous markers necessary for future studies of MHC allelic variation in natural amphibian populations. ?? 2010 Springer-Verlag.

  12. Peripheral nerve injury causes transient expression of MHC class I antigens in rat motor neurons and skeletal muscles

    DEFF Research Database (Denmark)

    Maehlen, J; Nennesmo, I; Olsson, A B

    1989-01-01

    After a peripheral nerve lesion (rat facial and sciatic) an induction of major histocompatibility complex (MHC) antigens class I was detected immunohistochemically in skeletal muscle fibers and motor neurons. This MHC expression was transient after a nerve crush, when regeneration occurred......, but persisted after a nerve cut, when regeneration was prevented. Since the time course of MHC class I expression correlates to that of regeneration a role for this cell surface molecule in regeneration may be considered....

  13. Expression of bovine non-classical major histocompatibility complex class I proteins in mouse P815 and human K562 cells.

    Science.gov (United States)

    Parasar, Parveen; Wilhelm, Amanda; Rutigliano, Heloisa M; Thomas, Aaron J; Teng, Lihong; Shi, Bi; Davis, William C; Suarez, Carlos E; New, Daniel D; White, Kenneth L; Davies, Christopher J

    2016-08-01

    Major histocompatibility complex class I (MHC-I) proteins can be expressed as cell surface or secreted proteins. To investigate whether bovine non-classical MHC-I proteins are expressed as cell surface or secreted proteins, and to assess the reactivity pattern of monoclonal antibodies with non-classical MHC-I isoforms, we expressed the MHC proteins in murine P815 and human K562 (MHC-I deficient) cells. Following antibiotic selection, stably transfected cell lines were stained with H1A or W6/32 antibodies to detect expression of the MHC-I proteins by flow cytometry. Two non-classical proteins (BoLA-NC1*00501 and BoLA-NC3*00101) were expressed on the cell surface in both cell lines. Surprisingly, the BoLA-NC4*00201 protein was expressed on the cell membrane of human K562 but not mouse P815 cells. Two non-classical proteins (BoLA-NC1*00401, which lacks a transmembrane domain, and BoLA-NC2*00102) did not exhibit cell surface expression. Nevertheless, Western blot analyses demonstrated expression of the MHC-I heavy chain in all transfected cell lines. Ammonium-sulfate precipitation of proteins from culture supernatants showed that BoLA-NC1*00401 was secreted and that all surface expressed proteins where shed from the cell membrane by the transfected cells. Interestingly, the surface expressed MHC-I proteins were present in culture supernatants at a much higher concentration than BoLA-NC1*00401. This comprehensive study shows that bovine non-classical MHC-I proteins BoLA-NC1*00501, BoLA-NC3*00101, and BoLA-NC4*00201 are expressed as surface isoforms with the latter reaching the cell membrane only in K562 cells. Furthermore, it demonstrated that BoLA-NC1*00401 is a secreted isoform and that significant quantities of membrane associated MHC-I proteins can be shed from the cell membrane. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Evolution of MHC-based technologies used for detection of antigen-responsive T cells

    DEFF Research Database (Denmark)

    Bentzen, Amalie Kai; Hadrup, Sine Reker

    2017-01-01

    T cell-mediated recognition of peptide-major histocompatibility complex (pMHC) class I and II molecules is crucial for the control of intracellular pathogens and cancer, as well as for stimulation and maintenance of efficient cytotoxic responses. Such interactions may also play a role in the deve...

  15. Deleterious impact of feto-maternal MHC compatibility on the success of pregnancy in a macaque model.

    Science.gov (United States)

    Aarnink, Alice; Mee, Edward T; Savy, Nicolas; Congy-Jolivet, Nicolas; Rose, Nicola J; Blancher, Antoine

    2014-02-01

    The impact of feto-maternal histocompatibility on reproduction has inspired long-lasting debates. However, after the review of numerous articles, the impact of HLA allele sharing within couples on fecundity remains questionable. We decided to explore the impact of major histocompatibility complex (MHC) feto-maternal compatibility on reproduction in a cynomolgus macaque facility composed of animals of Mauritian descent. The Mauritian-derived macaque population presents a very restricted MHC polymorphism (only seven founding haplotypes) due to a strong founding bottleneck effect. The MHC polymorphism was investigated in 237 trios (male, female and offspring) using 17 microsatellite markers distributed across the MHC. Haplotypes were confirmed by segregation analysis. We evaluated the relative frequencies of MHC-compatible and MHC-semi-compatible offspring with the mothers. Among the 237 trios, we selected 42 trios for which the identity of the father is certain and for which the theoretical probabilities of fully compatible and semi-compatible offspring were equal. We found 11 offspring fully compatible and 31 offspring semi-compatible with their respective mother. The observed proportions were clearly outside the interval of confidence of 99 % and therefore most probably resulted from a selection of the semi-compatible offspring during pregnancy. We concluded that MHC fully compatible cynomolgus macaque offspring have a selective survival disadvantage in comparison with offspring inheriting a paternal MHC haplotype differing from maternal haplotypes.

  16. Axotomy induces MHC class I antigen expression on rat nerve cells

    DEFF Research Database (Denmark)

    Maehlen, J; Schröder, H D; Klareskog, L

    1988-01-01

    Immunomorphological staining demonstrates that class I major histocompatibility complex (MHC)-coded antigen expression can be selectively induced on otherwise class I-negative rat nerve cells by peripheral axotomy. Induction of class I as well as class II antigen expression was simultaneously seen...... on non-neural cells in the immediate vicinity of the injured nerve cells. As nerve regeneration after axotomy includes growth of new nerve cell processes and formation of new nerve cell contacts, the present findings raise the question of a role for MHC-coded molecules in cell-cell interactions during...... nerve cell growth....

  17. In silico peptide-binding predictions of passerine MHC class I reveal similarities across distantly related species, suggesting convergence on the level of protein function

    DEFF Research Database (Denmark)

    Follin, Elna; Karlsson, Maria; Lundegaard, Claus

    2013-01-01

    The major histocompatibility complex (MHC) genes are the most polymorphic genes found in the vertebrate genome, and they encode proteins that play an essential role in the adaptive immune response. Many songbirds (passerines) have been shown to have a large number of transcribed MHC class I genes...

  18. Expression of rat class I major histocompatibility complex (MHC) alloantigens and hepatocytes and hepatoma cells

    International Nuclear Information System (INIS)

    Hunt, J.M.; Desai, P.A.; Chakraborty, S.

    1986-01-01

    Altered expression of Class I MHC alloantigens has been reported for murine tumors, and may be associated with the tumorigenic phenotype of tumor cells. To characterize MHC Class I alloantigen expression on a chemically-induced transplantable rat hepatoma cell line, 17X, derived from a (WF x F344) F 1 rat, polyvalent anti-F344 and anti-WF rat alloantisera were first used to immunoprecipitate the rat RT1.A Class I MHC alloantigens expressed on primary (WF x F344) F 1 hepatocyptes in short-term monolayer cultures. Two-dimensional isoelectric focusing and SDS-PAGE of immunoprecipitates from 35 S-methionine-labeled (WF x F344) F 1 hepatocytes clearly resolved the RT1.A/sup u/ (WF) and RT1.A/sup LvI/ (F344) parental alloantigens. Identical radiolabeling and immunoprecipitation failed to detect either parental alloantigen on the 17X hepatoma cells. However, indirect immunofluorescence and immunoblot analyses demonstrated the presence of parental alloantigens on the 17X cells. Immunization of F344 rats but not of WF rats with 17X cells resulted in antibodies cytotoxic for normal (WF X F344) F 1 spleen cells in the presence of complement. These findings indicate that a combination of detection techniques will be necessary to characterize altered alloantigen expression on rat hepatoma cells

  19. Complex Mhc-based mate choice in a wild passerine

    Science.gov (United States)

    Bonneaud, Camille; Chastel, Olivier; Federici, Pierre; Westerdahl, Helena; Sorci, Gabriele

    2006-01-01

    The extreme polymorphism of the vertebrate major histocompatibility complex (Mhc) is famous for protecting hosts against constantly evolving pathogens. Mate choice is often evoked as a means of maintaining Mhc variability through avoidance of partners with similar Mhc alleles or preference for heterozygotes. Evidence for these two hypotheses mostly comes from studies on humans and laboratory mice. Here, we tested these hypotheses in a wild outbred population of house sparrows (Passer domesticus). Females were not more or less closely related to the males they paired with when considering neutral genetic variation. However, males failed to form breeding pairs when they had too few Mhc alleles and when they were too dissimilar from females at Mhc loci (i.e. had no common alleles). Furthermore, pairs did not form at random as Mhc diversity positively correlated in mating pairs. These results suggest that mate choice evolves in response to (i) benefits in terms of parasite resistance acquired from allelic diversity, and (ii) costs associated with the disruption of co-adapted genes. PMID:16600889

  20. Brief review of the chicken Major Histocompatibility Complex: the genes, their distribution on chromosome 16, and their contributions to disease resistance

    Science.gov (United States)

    Miller, Marcia M.; Taylor, Robert L.

    2016-01-01

    Nearly all genes presently mapped to chicken chromosome 16 (GGA 16) have either a demonstrated role in immune responses or are considered to serve in immunity by reason of sequence homology with immune system genes defined in other species. The genes are best described in regional units. Among these, the best known is the polymorphic major histocompatibility complex-B (MHC-B) region containing genes for classical peptide antigen presentation. Nearby MHC-B is a small region containing two CD1 genes, which encode molecules known to bind lipid antigens and which will likely be found in chickens to present lipids to specialized T cells, as occurs with CD1 molecules in other species. Another region is the MHC-Y region, separated from MHC-B by an intervening region of tandem repeats. Like MHC-B, MHC-Y is polymorphic. It contains specialized class I and class II genes and c-type lectin-like genes. Yet another region, separated from MHC-Y by the single nucleolar organizing region (NOR) in the chicken genome, contains olfactory receptor genes and scavenger receptor genes, which are also thought to contribute to immunity. The structure, distribution, linkages and patterns of polymorphism in these regions, suggest GGA 16 evolves as a microchromosome devoted to immune defense. Many GGA 16 genes are polymorphic and polygenic. At the moment most disease associations are at the haplotype level. Roles of individual MHC genes in disease resistance are documented in only a very few instances. Provided suitable experimental stocks persist, the availability of increasingly detailed maps of GGA 16 genes combined with new means for detecting genetic variability will lead to investigations defining the contributions of individual loci and more applications for immunogenetics in breeding healthy poultry. PMID:26740135

  1. NetMHCpan 4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data

    OpenAIRE

    Jurtz, Vanessa; Paul, Sinu; Andreatta, Massimo; Marcatili, Paolo; Peters, Bjoern; Nielsen, Morten

    2017-01-01

    Cytotoxic T cells are of central importance in the immune systems response to disease. They recognize defective cells by binding to peptides presented on the cell surface by MHC (major histocompatibility complex) class I molecules. Peptide binding to MHC molecules is the single most selective step in the antigen presentation pathway. On the quest for T cell epitopes, the prediction of peptide binding to MHC molecules has therefore attracted large attention. In the past, predictors of peptide-...

  2. An ontology for major histocompatibility restriction.

    Science.gov (United States)

    Vita, Randi; Overton, James A; Seymour, Emily; Sidney, John; Kaufman, Jim; Tallmadge, Rebecca L; Ellis, Shirley; Hammond, John; Butcher, Geoff W; Sette, Alessandro; Peters, Bjoern

    2016-01-01

    MHC molecules are a highly diverse family of proteins that play a key role in cellular immune recognition. Over time, different techniques and terminologies have been developed to identify the specific type(s) of MHC molecule involved in a specific immune recognition context. No consistent nomenclature exists across different vertebrate species. To correctly represent MHC related data in The Immune Epitope Database (IEDB), we built upon a previously established MHC ontology and created an ontology to represent MHC molecules as they relate to immunological experiments. This ontology models MHC protein chains from 16 species, deals with different approaches used to identify MHC, such as direct sequencing verses serotyping, relates engineered MHC molecules to naturally occurring ones, connects genetic loci, alleles, protein chains and multi-chain proteins, and establishes evidence codes for MHC restriction. Where available, this work is based on existing ontologies from the OBO foundry. Overall, representing MHC molecules provides a challenging and practically important test case for ontology building, and could serve as an example of how to integrate other ontology building efforts into web resources.

  3. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach

    DEFF Research Database (Denmark)

    Nielsen, Morten; Lundegaard, Claus; Worning, Peder

    2004-01-01

    Prediction of which peptides will bind a specific major histocompatibility complex (MHC) constitutes an important step in identifying potential T-cell epitopes suitable as vaccine candidates. MHC class II binding peptides have a broad length distribution complicating such predictions. Thus......, identifying the correct alignment is a crucial part of identifying the core of an MHC class II binding motif. In this context, we wish to describe a novel Gibbs motif sampler method ideally suited for recognizing such weak sequence motifs. The method is based on the Gibbs sampling method, and it incorporates...

  4. Colonizing the world in spite of reduced MHC variation

    Science.gov (United States)

    Gangoso, L.; Alcaide, M.; Grande, J.M.; Muñoz, J.; Talbot, Sandra L.; Sonsthagen, Sarah A.; Sage, Kevin; Figuerola, J.

    2012-01-01

    Reduced immune gene diversity is thought to negatively affect the capacity of organisms to adapt to pathogen challenges, which represent a major force in natural selection. Genes of the Major Histocompatibility Complex (MHC) are the most widely invoked adaptive loci in conservation biology, and have become the most popular genetic markers to investigate pathogen-host interactions in vertebrates. Although MHC genes are the most polymorphic genes described in the vertebrate genome, the extent to which MHC diversity determines the long-term persistence of populations is, unclear and often debated, as recent studies have documented the occurrence of natural populations thriving even after a depletion of MHC diversity caused by genetic drift. Here, we show that some phylogenetically related species belonging to the Falco genus (Aves: Falconidae) present a dramatically low MHC variability that has not precluded, nevertheless, the successful colonization of almost all existing regions and habitats worldwide. We found evidence for two remarkably different patterns of MHC variation within the genus. While kestrels show a high MHC variation according to the general theory, falcons exhibit an ancestrally low intra- and inter-specific MHC allelic diversity. We provide compelling evidence that this pattern is not caused by the degeneration of functional genes into pseudogenes, the inadvertent analyses of paralogous MHC genes, or the devastating action of genetic drift. Instead, our results strongly support the idea of an evolutionary transition driven and maintained by natural selection from primarily highly variable towards low polymorphic, but functional and expressed, MHC genes with species-specific pathogen-recognition capabilities.

  5. MHC variability in heritage breeds of chickens.

    Science.gov (United States)

    Fulton, J E; Lund, A R; McCarron, A M; Pinegar, K N; Korver, D R; Classen, H L; Aggrey, S; Utterbach, C; Anthony, N B; Berres, M E

    2016-02-01

    The chicken Major Histocompatibility Complex (MHC) is very strongly associated with disease resistance and thus is a very important region of the chicken genome. Historically, MHC (B locus) has been identified by the use of serology with haplotype specific alloantisera. These antisera can be difficult to produce and frequently cross-react with multiple haplotypes and hence their application is generally limited to inbred and MHC-defined lines. As a consequence, very little information about MHC variability in heritage chicken breeds is available. DNA-based methods are now available for examining MHC variability in these previously uncharacterized populations. A high density SNP panel consisting of 101 SNP that span a 230,000 bp region of the chicken MHC was used to examine MHC variability in 17 heritage populations of chickens from five universities from Canada and the United States. The breeds included 6 heritage broiler lines, 3 Barred Plymouth Rock, 2 New Hampshire and one each of Rhode Island Red, Light Sussex, White Leghorn, Dark Brown Leghorn, and 2 synthetic lines. These heritage breeds contained from one to 11 haplotypes per line. A total of 52 unique MHC haplotypes were found with only 10 of them identical to serologically defined haplotypes. Furthermore, nine MHC recombinants with their respective parental haplotypes were identified. This survey confirms the value of these non-commercially utilized lines in maintaining genetic diversity. The identification of multiple MHC haplotypes and novel MHC recombinants indicates that diversity is being generated and maintained within these heritage populations. © 2016 Poultry Science Association Inc.

  6. SNP association mapping across the extended major histocompatibility complex and risk of B-cell precursor acute lymphoblastic leukemia in children.

    Directory of Open Access Journals (Sweden)

    Kevin Y Urayama

    Full Text Available The extended major histocompatibility complex (xMHC is the most gene-dense region of the genome and harbors a disproportionately large number of genes involved in immune function. The postulated role of infection in the causation of childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL suggests that the xMHC may make an important contribution to the risk of this disease. We conducted association mapping across an approximately 4 megabase region of the xMHC using a validated panel of single nucleotide polymorphisms (SNPs in childhood BCP-ALL cases (n=567 enrolled in the Northern California Childhood Leukemia Study (NCCLS compared with population controls (n=892. Logistic regression analyses of 1,145 SNPs, adjusted for age, sex, and Hispanic ethnicity indicated potential associations between several SNPs and childhood BCP-ALL. After accounting for multiple comparisons, one of these included a statistically significant increased risk associated with rs9296068 (OR=1.40, 95% CI=1.19-1.66, corrected p=0.036, located in proximity to HLA-DOA. Sliding window haplotype analysis identified an additional locus located in the extended class I region in proximity to TRIM27 tagged by a haplotype comprising rs1237485, rs3118361, and rs2032502 (corrected global p=0.046. Our findings suggest that susceptibility to childhood BCP-ALL is influenced by genetic variation within the xMHC and indicate at least two important regions for future evaluation.

  7. The Intensity of Human Body Odors and the MHC: Should We Expect a Link?

    Directory of Open Access Journals (Sweden)

    Claus Wedekind

    2006-01-01

    Full Text Available It is now well established that genes within the major histocompatibility complex (MHC somehow affect the production of body odors in several vertebrates, including humans. Here we discuss whether variation in the intensity of body odors may be influenced by the MHC. In order to examine this question, we have to control for MHC-linked odor perception on the smeller's side. Such a control is necessary because the perception of pleasantness and intensity seem to be confounded, and the causalities are still unsolved. It has previously been found that intense odors are scored as less pleasant if the signaler and the receiver are of MHC-dissimilar type, but not if they are of MHC similar type. We argue, and first data suggest, that an effect of the degree of MHC-heterozygosity and odor intensity is likely (MHC-homozygotes may normally smell more intense, while there is currently no strong argument for other possible links between the MHC and body odor intensity.

  8. High levels of diversity characterize mandrill (Mandrillus sphinx) Mhc-DRB sequences.

    Science.gov (United States)

    Abbott, Kristin M; Wickings, E Jean; Knapp, Leslie A

    2006-08-01

    The major histocompatibility complex (MHC) is highly polymorphic in most primate species studied thus far. The rhesus macaque (Macaca mulatta) has been studied extensively and the Mhc-DRB region demonstrates variability similar to humans. The extent of MHC diversity is relatively unknown for other Old World monkeys (OWM), especially among genera other than Macaca. A molecular survey of the Mhc-DRB region in mandrills (Mandrillus sphinx) revealed extensive variability, suggesting that other OWMs may also possess high levels of Mhc-DRB polymorphism. In the present study, 33 Mhc-DRB loci were identified from only 13 animals. Eleven were wild-born and presumed to be unrelated and two were captive-born twins. Two to seven different sequences were identified for each individual, suggesting that some mandrills may have as many as four Mhc-DRB loci on a single haplotype. From these sequences, representatives of at least six Mhc-DRB loci or lineages were identified. As observed in other primates, some new lineages may have arisen through the process of gene conversion. These findings indicate that mandrills have Mhc-DRB diversity not unlike rhesus macaques and humans.

  9. Giant panda BAC library construction and assembly of a 650-kb contig spanning major histocompatibility complex class II region

    Directory of Open Access Journals (Sweden)

    Pan Hui-Juan

    2007-09-01

    Full Text Available Abstract Background Giant panda is rare and endangered species endemic to China. The low rates of reproductive success and infectious disease resistance have severely hampered the development of captive and wild populations of the giant panda. The major histocompatibility complex (MHC plays important roles in immune response and reproductive system such as mate choice and mother-fetus bio-compatibility. It is thus essential to understand genetic details of the giant panda MHC. Construction of a bacterial artificial chromosome (BAC library will provide a new tool for panda genome physical mapping and thus facilitate understanding of panda MHC genes. Results A giant panda BAC library consisting of 205,800 clones has been constructed. The average insert size was calculated to be 97 kb based on the examination of 174 randomly selected clones, indicating that the giant panda library contained 6.8-fold genome equivalents. Screening of the library with 16 giant panda PCR primer pairs revealed 6.4 positive clones per locus, in good agreement with an expected 6.8-fold genomic coverage of the library. Based on this BAC library, we constructed a contig map of the giant panda MHC class II region from BTNL2 to DAXX spanning about 650 kb by a three-step method: (1 PCR-based screening of the BAC library with primers from homologous MHC class II gene loci, end sequences and BAC clone shotgun sequences, (2 DNA sequencing validation of positive clones, and (3 restriction digest fingerprinting verification of inter-clone overlapping. Conclusion The identifications of genes and genomic regions of interest are greatly favored by the availability of this giant panda BAC library. The giant panda BAC library thus provides a useful platform for physical mapping, genome sequencing or complex analysis of targeted genomic regions. The 650 kb sequence-ready BAC contig map of the giant panda MHC class II region from BTNL2 to DAXX, verified by the three-step method, offers a

  10. Structural properties of MHC class II ligands, implications for the prediction of MHC class II epitopes.

    Directory of Open Access Journals (Sweden)

    Kasper Winther Jørgensen

    2010-12-01

    Full Text Available Major Histocompatibility class II (MHC-II molecules sample peptides from the extracellular space allowing the immune system to detect the presence of foreign microbes from this compartment. Prediction of MHC class II ligands is complicated by the open binding cleft of the MHC class II molecule, allowing binding of peptides extending out of the binding groove. Furthermore, only a few HLA-DR alleles have been characterized with a sufficient number of peptides (100-200 peptides per allele to derive accurate description of their binding motif. Little work has been performed characterizing structural properties of MHC class II ligands. Here, we perform one such large-scale analysis. A large set of SYFPEITHI MHC class II ligands covering more than 20 different HLA-DR molecules was analyzed in terms of their secondary structure and surface exposure characteristics in the context of the native structure of the corresponding source protein. We demonstrated that MHC class II ligands are significantly more exposed and have significantly more coil content than other peptides in the same protein with similar predicted binding affinity. We next exploited this observation to derive an improved prediction method for MHC class II ligands by integrating prediction of MHC- peptide binding with prediction of surface exposure and protein secondary structure. This combined prediction method was shown to significantly outperform the state-of-the-art MHC class II peptide binding prediction method when used to identify MHC class II ligands. We also tried to integrate N- and O-glycosylation in our prediction methods but this additional information was found not to improve prediction performance. In summary, these findings strongly suggest that local structural properties influence antigen processing and/or the accessibility of peptides to the MHC class II molecule.

  11. New recombinants within the MHC (B-complex) of the chicken

    DEFF Research Database (Denmark)

    Koch, C; Skjødt, K; Toivanen, A

    1983-01-01

    In a search for genetic recombinations within the major histocompatibility complex (MHC) of the chicken, the B-complex, the offspring from matings between heterozygous B15/B21 and B4/B6 animals were analysed by red cell agglutination. Among the progeny, 8,912 informative typings were performed...... followed B-F/B-L. The mapping distance between the two loci B-F and B-G is in the range of 0.04 centimorgan. The lack of recombinants separating individual B-F loci in this study and in the studies of others might indicate that chicken MHC is less complex than those of mammalian species, but alternative...

  12. Variation in MHC class II B genes in marbled murrelets: implications for delineating conservation units

    Science.gov (United States)

    C. Vásquez-Carrillo; V. Friesen; L. Hall; M.Z. Peery

    2013-01-01

    Conserving genetic variation is critical for maintaining the evolutionary potential and viability of a species. Genetic studies seeking to delineate conservation units, however, typically focus on characterizing neutral genetic variation and may not identify populations harboring local adaptations. Here, variation at two major histocompatibility complex (MHC) class II...

  13. Characterization and 454 pyrosequencing of Major Histocompatibility Complex class I genes in the great tit reveal complexity in a passerine system

    Directory of Open Access Journals (Sweden)

    Sepil Irem

    2012-05-01

    Full Text Available Abstract Background The critical role of Major Histocompatibility Complex (Mhc genes in disease resistance and their highly polymorphic nature make them exceptional candidates for studies investigating genetic effects on survival, mate choice and conservation. Species that harbor many Mhc loci and high allelic diversity are particularly intriguing as they are potentially under strong selection and studies of such species provide valuable information as to the mechanisms maintaining Mhc diversity. However comprehensive genotyping of complex multilocus systems has been a major challenge to date with the result that little is known about the consequences of this complexity in terms of fitness effects and disease resistance. Results In this study, we genotyped the Mhc class I exon 3 of the great tit (Parus major from two nest-box breeding populations near Oxford, UK that have been monitored for decades. Characterization of Mhc class I exon 3 was adopted and bidirectional sequencing was carried using the 454 sequencing platform. Full analysis of sequences through a stepwise variant validation procedure allowed reliable typing of more than 800 great tits based on 214,357 reads; from duplicates we estimated the repeatability of typing as 0.94. A total of 862 alleles were detected, and the presence of at least 16 functional loci was shown - the highest number characterized in a wild bird species. Finally, the functional alleles were grouped into 17 supertypes based on their antigen binding affinities. Conclusions We found extreme complexity at the Mhc class I of the great tit both in terms of allelic diversity and gene number. The presence of many functional loci was shown, together with a pseudogene family and putatively non-functional alleles; there was clear evidence that functional alleles were under strong balancing selection. This study is the first step towards an in-depth analysis of this gene complex in this species, which will help

  14. High-Resolution Patterns of Meiotic Recombination across the Human Major Histocompatibility Complex

    Science.gov (United States)

    Cullen, Michael; Perfetto, Stephen P.; Klitz, William; Nelson, George; Carrington, Mary

    2002-01-01

    Definitive characteristics of meiotic recombination events over large (i.e., >1 Mb) segments of the human genome remain obscure, yet they are essential for establishing the haplotypic structure of the genome and for efficient mapping of complex traits. We present a high-resolution map of recombination at the kilobase level across a 3.3-Mb interval encompassing the major histocompatibility complex (MHC). Genotyping of 20,031 single sperm from 12 individuals resulted in the identification and fine mapping of 325 recombinant chromosomes within genomic intervals as small as 7 kb. Several principal characteristics of recombination in this region were observed: (1) rates of recombination can differ significantly between individuals; (2) intense hot spots of recombination occur at least every 0.8 Mb but are not necessarily evenly spaced; (3) distribution in the location of recombination events can differ significantly among individuals; (4) between hot spots, low levels of recombination occur fairly evenly across 100-kb segments, suggesting the presence of warm spots of recombination; and (5) specific sequence motifs associate significantly with recombination distribution. These data provide a plausible model for recombination patterns of the human genome overall. PMID:12297984

  15. Crystal structure of a TAPBPR–MHC I complex reveals the mechanism of peptide editing in antigen presentation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jiansheng; Natarajan, Kannan; Boyd, Lisa F.; Morozov, Giora I.; Mage, Michael G.; Margulies, David H. (NIH); (Hebrew)

    2017-10-12

    Central to CD8+ T cell–mediated immunity is the recognition of peptide–major histocompatibility complex class I (p–MHC I) proteins displayed by antigen-presenting cells. Chaperone-mediated loading of high-affinity peptides onto MHC I is a key step in the MHC I antigen presentation pathway. However, the structure of MHC I with a chaperone that facilitates peptide loading has not been determined. We report the crystal structure of MHC I in complex with the peptide editor TAPBPR (TAP-binding protein–related), a tapasin homolog. TAPBPR remodels the peptide-binding groove of MHC I, resulting in the release of low-affinity peptide. Changes include groove relaxation, modifications of key binding pockets, and domain adjustments. This structure captures a peptide-receptive state of MHC I and provides insights into the mechanism of peptide editing by TAPBPR and, by analogy, tapasin.

  16. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11.

    Science.gov (United States)

    Lundegaard, Claus; Lamberth, Kasper; Harndahl, Mikkel; Buus, Søren; Lund, Ole; Nielsen, Morten

    2008-07-01

    NetMHC-3.0 is trained on a large number of quantitative peptide data using both affinity data from the Immune Epitope Database and Analysis Resource (IEDB) and elution data from SYFPEITHI. The method generates high-accuracy predictions of major histocompatibility complex (MHC): peptide binding. The predictions are based on artificial neural networks trained on data from 55 MHC alleles (43 Human and 12 non-human), and position-specific scoring matrices (PSSMs) for additional 67 HLA alleles. As only the MHC class I prediction server is available, predictions are possible for peptides of length 8-11 for all 122 alleles. artificial neural network predictions are given as actual IC(50) values whereas PSSM predictions are given as a log-odds likelihood scores. The output is optionally available as download for easy post-processing. The training method underlying the server is the best available, and has been used to predict possible MHC-binding peptides in a series of pathogen viral proteomes including SARS, Influenza and HIV, resulting in an average of 75-80% confirmed MHC binders. Here, the performance is further validated and benchmarked using a large set of newly published affinity data, non-redundant to the training set. The server is free of use and available at: http://www.cbs.dtu.dk/services/NetMHC.

  17. Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus.

    Science.gov (United States)

    Kamath, Pauline L; Getz, Wayne M

    2011-05-18

    Major Histocompatibility Complex (MHC) genes are central to vertebrate immune response and are believed to be under balancing selection by pathogens. This hypothesis has been supported by observations of extremely high polymorphism, elevated nonsynonymous to synonymous base pair substitution rates and trans-species polymorphisms at these loci. In equids, the organization and variability of this gene family has been described, however the full extent of diversity and selection is unknown. As selection is not expected to act uniformly on a functional gene, maximum likelihood codon-based models of selection that allow heterogeneity in selection across codon positions can be valuable for examining MHC gene evolution and the molecular basis for species adaptations. We investigated the evolution of two class II MHC genes of the Equine Lymphocyte Antigen (ELA), DRA and DQA, in the genus Equus with the addition of novel alleles identified in plains zebra (E. quagga, formerly E. burchelli). We found that both genes exhibited a high degree of polymorphism and inter-specific sharing of allele lineages. To our knowledge, DRA allelic diversity was discovered to be higher than has ever been observed in vertebrates. Evidence was also found to support a duplication of the DQA locus. Selection analyses, evaluated in terms of relative rates of nonsynonymous to synonymous mutations (dN/dS) averaged over the gene region, indicated that the majority of codon sites were conserved and under purifying selection (dN

  18. Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus

    Directory of Open Access Journals (Sweden)

    Getz Wayne M

    2011-05-01

    Full Text Available Abstract Background Major Histocompatibility Complex (MHC genes are central to vertebrate immune response and are believed to be under balancing selection by pathogens. This hypothesis has been supported by observations of extremely high polymorphism, elevated nonsynonymous to synonymous base pair substitution rates and trans-species polymorphisms at these loci. In equids, the organization and variability of this gene family has been described, however the full extent of diversity and selection is unknown. As selection is not expected to act uniformly on a functional gene, maximum likelihood codon-based models of selection that allow heterogeneity in selection across codon positions can be valuable for examining MHC gene evolution and the molecular basis for species adaptations. Results We investigated the evolution of two class II MHC genes of the Equine Lymphocyte Antigen (ELA, DRA and DQA, in the genus Equus with the addition of novel alleles identified in plains zebra (E. quagga, formerly E. burchelli. We found that both genes exhibited a high degree of polymorphism and inter-specific sharing of allele lineages. To our knowledge, DRA allelic diversity was discovered to be higher than has ever been observed in vertebrates. Evidence was also found to support a duplication of the DQA locus. Selection analyses, evaluated in terms of relative rates of nonsynonymous to synonymous mutations (dN/dS averaged over the gene region, indicated that the majority of codon sites were conserved and under purifying selection (dN dS. However, the most likely evolutionary codon models allowed for variable rates of selection across codon sites at both loci and, at the DQA, supported the hypothesis of positive selection acting on specific sites. Conclusions Observations of elevated genetic diversity and trans-species polymorphisms supported the conclusion that balancing selection may be acting on these loci. Furthermore, at the DQA, positive selection was

  19. Circumvention of MHC class II restriction by genetic immunization.

    Science.gov (United States)

    Schuler, K; Lu, C; Chang, H D; Croft, M; Zanetti, M; Gerloni, M

    2001-11-12

    The fate of T cell responses to peptide-based vaccination is subject to constraints by the major histocompatibility complex (MHC), MHC restriction. Using as a model system of T and B cell epitopes from the circumsporozoite protein of Plasmodium falciparum malaria parasite, we show that vaccination by somatic transgene immunization readily primes Balb/c mice (H-2(d)) a strain previously reported to be non-responder to immunization with a synthetic peptide vaccine encompassing these epitopes. Following genetic vaccination Balb/c mice developed a primary T cell response comparable to that of the responder strain C57Bl/6 (H-2(b)). Following booster immunization on day 45 Balb/c mice responded with a typical T cell memory response. Priming induced the formation of specific antibodies, which rose sharply after booster immunization. These findings suggests that genetic immunization can circumvent MHC class II restriction.

  20. Major histocompatibility complex-restricted self-recognition in responses to trinitrophenyl-Ficoll. A novel cell interaction pathway requiring self-recognition of accessory cell H-2 determinants by both T cells and B cells

    International Nuclear Information System (INIS)

    Hodes, R.J.; Hathcock, K.S.; Singer, A.

    1983-01-01

    In vitro primary antibody responses to limiting concentrations of trinitrophenyl (TNP)-Ficoll were shown to be T cell dependent, requiring the cooperation of T helper (TH) cells, B cells, and accessory cells. Under these conditions, TH cells derived from long-term radiation bone marrow chimeras were major histocompatibility complex (MHC) restricted in their ability to cooperate with accessory cells expressing host-type MHC determinants. The requirement for MHC-restricted self-recognition by TNP-Ficoll-reactive B cells was assessed under these T-dependent conditions. In the presence of competent TH cells, chimeric B cells were found to be MHC restricted, cooperating only with accessory cells that expressed host-type MHC products. In contrast, the soluble products of certain monoclonal T cell lines were able to directly activate B cells in response to TNP-Ficoll, bypassing any requirement for MHC-restricted self-recognition. These findings demonstrate the existence of a novel cell interaction pathway in which B cells as well as TH cells are each required to recognize self-MHC determinants on accessory cells, but are not required to recognize each other. They further demonstrate that the requirement for self-recognition by B cells may be bypassed in certain T-dependent activation pathways

  1. Polarisation of major histocompatibility complex II host genotype with pathogenesis of European Brown Hare syndrome virus.

    Directory of Open Access Journals (Sweden)

    Christos Iacovakis

    Full Text Available A study was conducted in order to determine the occurrence of European Brown Hare Syndrome virus (EBHSV in Denmark and possible relation between disease pathogenesis and Major Histocompatibility Complex (MHC host genotype. Liver samples were examined from 170 brown hares (hunted, found sick or dead, collected between 2004 and 2009. Macroscopical and histopathological findings consistent with EBHS were detected in 24 (14.1% hares; 35 (20.6% had liver lesions not typical of the syndrome, 50 (29.4% had lesions in other tissues and 61 (35.9% had no lesions. Sixty five (38.2% of 170 samples were found to be EBHSV-positive (RT-PCR, VP60 gene. In order to investigate associations between viral pathogenesis and host genotype, variation within the exon 2 DQA gene of MHC was assessed. DQA exon 2 analysis revealed the occurrence of seven different alleles in Denmark. Consistent with other populations examined so far in Europe, observed heterozygosity of DQA (H o = 0.1180 was lower than expected (H e = 0.5835. The overall variation for both nucleotide and amino acid differences (2.9% and 14.9%, respectively were lower in Denmark than those assessed in other European countries (8.3% and 16.9%, respectively. Within the peptide binding region codons the number of nonsynonymous substitutions (dN was much higher than synonymous substitutions (dS, which would be expected for MHC alleles under balancing selection. Allele frequencies did not significantly differ between EBHSV-positive and -negative hares. However, allele Leeu-DQA*30 was detected in significantly higher (P = 0.000006 frequency among the positive hares found dead with severe histopathological lesions than among those found sick or apparently healthy. In contrast, the latter group was characterized by a higher frequency of the allele Leeu-DQA*14 as well as the proportion of heterozygous individuals (P = 0.000006 and P = 0.027. These data reveal a polarisation between EBHSV

  2. MHC class II genes in the European badger (Meles meles) : Characterization, patterns of variation, and transcription analysis

    NARCIS (Netherlands)

    Sin, Yung Wa; Dugdale, Hannah L.; Newman, Chris; Macdonald, David W.; Burke, Terry

    The major histocompatibility complex (MHC) comprises many genes, some of which are polymorphic with numerous alleles. Sequence variation among alleles is most pronounced in exon 2 of the class II genes, which encodes the alpha 1 and beta 1 domains that form the antigen-binding site (ABS) for the

  3. IFN-τ Mediated Control of Bovine Major Histocompatibility Complex Class I Expression and Function via the Regulation of bta-miR-148b/152 in Bovine Endometrial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Haichong Wu

    2018-02-01

    Full Text Available IFN-τ, a type I interferon produced by the trophoblasts of ruminants, has various important immune functions, including effects on the expression of major histocompatibility complex (MHC class I (MHC-I. A previous study has reported that IFN-τ promotes the expression of MHC-I molecules on endometrial cells. However, the immunological mechanisms by which IFN-τ regulates MHC-I molecules remain unknown. Here, we investigated which microRNA (miRNAs may be involved in the regulation of MHC-I molecule expression and function in bovine endometrial epithelial cells (bEECs. By using TargetScan 6.2 and http://www.microRNA.org, two miRNAs were suggested to target the 3′UTR of the bovine MHC-I heavy chain: bta-miR-148b and bta-miR-152. Dual luciferase reporter and miRNA mimic/inhibitor assays suggested that bta-miR-148b/152 were negatively correlated with bovine MHC-I heavy chain genes. The function of the MHC-I heavy chain was then investigated using qRT-PCR, ELISA, western blotting, immunofluorescence, and RNA interference assays in primary bEECs and an endometrial epithelial cell line (BEND. The results demonstrated that bta-miR-148b/152 could promote TLR4-triggered inflammatory responses by targeting the bovine MHC-I heavy chain, and the MHC-I molecule negatively regulated TLR4-induced inflammatory reactions may through the Fps-SHP-2 pathway. Our discovery offers novel insight into negative regulation of the TLR4 pathway and elucidates the mechanism by which bovine MHC-I molecules control congenital inflammatory reactions.

  4. MHC I stabilizing potential of computer-designed octapeptides.

    Science.gov (United States)

    Wisniewska, Joanna M; Jäger, Natalie; Freier, Anja; Losch, Florian O; Wiesmüller, Karl-Heinz; Walden, Peter; Wrede, Paul; Schneider, Gisbert; Hiss, Jan A

    2010-01-01

    Experimental results are presented for 180 in silico designed octapeptide sequences and their stabilizing effects on the major histocompatibility class I molecule H-2K(b). Peptide sequence design was accomplished by a combination of an ant colony optimization algorithm with artificial neural network classifiers. Experimental tests yielded nine H-2K(b) stabilizing and 171 nonstabilizing peptides. 28 among the nonstabilizing octapeptides contain canonical motif residues known to be favorable for MHC I stabilization. For characterization of the area covered by stabilizing and non-stabilizing octapeptides in sequence space, we visualized the distribution of 100,603 octapeptides using a self-organizing map. The experimental results present evidence that the canonical sequence motives of the SYFPEITHI database on their own are insufficient for predicting MHC I protein stabilization.

  5. MHC I Stabilizing Potential of Computer-Designed Octapeptides

    Directory of Open Access Journals (Sweden)

    Joanna M. Wisniewska

    2010-01-01

    Full Text Available Experimental results are presented for 180 in silico designed octapeptide sequences and their stabilizing effects on the major histocompatibility class I molecule H-2Kb. Peptide sequence design was accomplished by a combination of an ant colony optimization algorithm with artificial neural network classifiers. Experimental tests yielded nine H-2Kb stabilizing and 171 nonstabilizing peptides. 28 among the nonstabilizing octapeptides contain canonical motif residues known to be favorable for MHC I stabilization. For characterization of the area covered by stabilizing and non-stabilizing octapeptides in sequence space, we visualized the distribution of 100,603 octapeptides using a self-organizing map. The experimental results present evidence that the canonical sequence motives of the SYFPEITHI database on their own are insufficient for predicting MHC I protein stabilization.

  6. MHC class II expression in lung cancer.

    Science.gov (United States)

    He, Yayi; Rozeboom, Leslie; Rivard, Christopher J; Ellison, Kim; Dziadziuszko, Rafal; Yu, Hui; Zhou, Caicun; Hirsch, Fred R

    2017-10-01

    Immunotherapy is an exciting development in lung cancer research. In this study we described major histocompatibility complex (MHC) Class II protein expression in lung cancer cell lines and patient tissues. We studied MHC Class II (DP, DQ, DR) (CR3/43, Abcam) protein expression in 55 non-small cell lung cancer (NSCLC) cell lines, 42 small cell lung cancer (SCLC) cell lines and 278 lung cancer patient tissues by immunohistochemistry (IHC). Seven (12.7%) NSCLC cell lines were positive for MHC Class II. No SCLC cell lines were found to be MHC Class II positive. We assessed 139 lung cancer samples available in the Hirsch Lab for MHC Class II. There was no positive MHC Class II staining on SCLC tumor cells. MHC Class II expression on TILs in SCLC was significantly lower than that on TILs in NSCLC (P<0.001). MHC Class II was also assessed in an additional 139 NSCLC tumor tissues from Medical University of Gdansk, Poland. Patients with positive staining of MHC Class II on TILs had longer regression-free survival (RFS) and overall survival (OS) than those whose TILs were MHC Class II negative (2.980 years, 95% CI 1.628-4.332 vs. 1.050 years, 95% CI 0.556-1.554, P=0.028) (3.230 years, 95% CI 2.617-3.843 vs. 1.390 years, 95% CI 0.629-2.151, P=0.014). MHC Class II was expressed both in NSCLC cell lines and tissues. However, MHC Class II was not detected in SCLC cell lines or tissue tumor cells. MHC Class II expression was lower on SCLC TILs than on NSCLC TILs. Loss of expression of MHC Class II on SCLC tumor cells and reduced expression on SCLC TILs may be a means of escaping anti-cancer immunity. Higher MHC Class II expression on TILs was correlated with better prognosis in patients with NSCLC. Copyright © 2017. Published by Elsevier B.V.

  7. The SysteMHC Atlas project.

    Science.gov (United States)

    Shao, Wenguang; Pedrioli, Patrick G A; Wolski, Witold; Scurtescu, Cristian; Schmid, Emanuel; Vizcaíno, Juan A; Courcelles, Mathieu; Schuster, Heiko; Kowalewski, Daniel; Marino, Fabio; Arlehamn, Cecilia S L; Vaughan, Kerrie; Peters, Bjoern; Sette, Alessandro; Ottenhoff, Tom H M; Meijgaarden, Krista E; Nieuwenhuizen, Natalie; Kaufmann, Stefan H E; Schlapbach, Ralph; Castle, John C; Nesvizhskii, Alexey I; Nielsen, Morten; Deutsch, Eric W; Campbell, David S; Moritz, Robert L; Zubarev, Roman A; Ytterberg, Anders Jimmy; Purcell, Anthony W; Marcilla, Miguel; Paradela, Alberto; Wang, Qi; Costello, Catherine E; Ternette, Nicola; van Veelen, Peter A; van Els, Cécile A C M; Heck, Albert J R; de Souza, Gustavo A; Sollid, Ludvig M; Admon, Arie; Stevanovic, Stefan; Rammensee, Hans-Georg; Thibault, Pierre; Perreault, Claude; Bassani-Sternberg, Michal; Aebersold, Ruedi; Caron, Etienne

    2018-01-04

    Mass spectrometry (MS)-based immunopeptidomics investigates the repertoire of peptides presented at the cell surface by major histocompatibility complex (MHC) molecules. The broad clinical relevance of MHC-associated peptides, e.g. in precision medicine, provides a strong rationale for the large-scale generation of immunopeptidomic datasets and recent developments in MS-based peptide analysis technologies now support the generation of the required data. Importantly, the availability of diverse immunopeptidomic datasets has resulted in an increasing need to standardize, store and exchange this type of data to enable better collaborations among researchers, to advance the field more efficiently and to establish quality measures required for the meaningful comparison of datasets. Here we present the SysteMHC Atlas (https://systemhcatlas.org), a public database that aims at collecting, organizing, sharing, visualizing and exploring immunopeptidomic data generated by MS. The Atlas includes raw mass spectrometer output files collected from several laboratories around the globe, a catalog of context-specific datasets of MHC class I and class II peptides, standardized MHC allele-specific peptide spectral libraries consisting of consensus spectra calculated from repeat measurements of the same peptide sequence, and links to other proteomics and immunology databases. The SysteMHC Atlas project was created and will be further expanded using a uniform and open computational pipeline that controls the quality of peptide identifications and peptide annotations. Thus, the SysteMHC Atlas disseminates quality controlled immunopeptidomic information to the public domain and serves as a community resource toward the generation of a high-quality comprehensive map of the human immunopeptidome and the support of consistent measurement of immunopeptidomic sample cohorts. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Methods for MHC genotyping in non-model vertebrates.

    Science.gov (United States)

    Babik, W

    2010-03-01

    Genes of the major histocompatibility complex (MHC) are considered a paradigm of adaptive evolution at the molecular level and as such are frequently investigated by evolutionary biologists and ecologists. Accurate genotyping is essential for understanding of the role that MHC variation plays in natural populations, but may be extremely challenging. Here, I discuss the DNA-based methods currently used for genotyping MHC in non-model vertebrates, as well as techniques likely to find widespread use in the future. I also highlight the aspects of MHC structure that are relevant for genotyping, and detail the challenges posed by the complex genomic organization and high sequence variation of MHC loci. Special emphasis is placed on designing appropriate PCR primers, accounting for artefacts and the problem of genotyping alleles from multiple, co-amplifying loci, a strategy which is frequently necessary due to the structure of the MHC. The suitability of typing techniques is compared in various research situations, strategies for efficient genotyping are discussed and areas of likely progress in future are identified. This review addresses the well established typing methods such as the Single Strand Conformation Polymorphism (SSCP), Denaturing Gradient Gel Electrophoresis (DGGE), Reference Strand Conformational Analysis (RSCA) and cloning of PCR products. In addition, it includes the intriguing possibility of direct amplicon sequencing followed by the computational inference of alleles and also next generation sequencing (NGS) technologies; the latter technique may, in the future, find widespread use in typing complex multilocus MHC systems. © 2009 Blackwell Publishing Ltd.

  9. Two putative subunits of a peptide pump encoded in the human major histocompatability complex class 2 region

    International Nuclear Information System (INIS)

    Bahram, S.; Arnold, D.; Bresnahan, M.; Strominger, J.L.; Spies, T.

    1991-01-01

    The class 2 region of the human major histocompatibility complex (MHC) may encode several genes controlling the processing of endogenous antigen and the presentation of peptide epitopes by MHC class 1 molecules to cytotoxic T lymphocytes. A previously described peptide supply factor (PSF1) is a member of the multidrug-resistance family of transporters and may pump cytosolic peptides into the membrane-bound compartment where class 1 molecules assemble. A second transporter gene, PSF2, was identified 10 kilobases (kb) from PSF1, near the class 2 DOB gene. The complete sequences of PSF1 and PSF2 were determined from cDNA clones. The translation products are closely related in sequence and predicted secondary structure. Both contain a highly conserved ATP-binding fold and share 25% homology in a hydrophobic domain with a tentative number of eight membrane-spanning segments. Based on the principle dimeric organization of these two domains in other transporters, PSF1 and PSF2 may function as complementary subunits, independently as homodimers, or both. Taken together with previous genetic evidence, the coregulation of PSF1 and PSF2 by γ interferon and the to-some-degree coordinate transcription of these genes suggest a common role in peptide-loading of class 1 molecules, although a distinct function of PSF2 cannot be ruled out

  10. Population Based Assessment of MHC Class I Antigens Down Regulation as Markers of Increased Risk for Development and Progression of Breast Cancer from Benign Breast Lesions

    National Research Council Canada - National Science Library

    Worsham, Maria J

    2007-01-01

    .... The major histocompatibility complex (MHC) class I molecules are found on the cell membrane of all cells in the body and are involved in intercellular communications and in complex interactions with the immune...

  11. Population Based Assessment of MHC Class I Antigens Down Regulation as Markers of Increased Risk for Development and Progression of Breast Cancer from Benign Breast Lesions

    National Research Council Canada - National Science Library

    Worsham, Maria

    2001-01-01

    .... The major histocompatibility complex (MHC) class I molecules are found on the cell membrane of all cells in the body and are involved in intercellular communications and in complex interactions with the immune...

  12. Population Based Assessment of MHC Class I Antigens Down Regulation as Markers of Increased Risk for Development and Progression of Breast Cancer from Benign Breast Lesions

    National Research Council Canada - National Science Library

    Worsham, Maria J; Raju, Usha; Abrams, Judith

    2005-01-01

    .... The major histocompatibility complex (MHC) class I molecules are found on the cell membrane of all cells in the body and are involved in intercellular communications and in complex interactions with the immune...

  13. Population Based Assessment of MHC Class 1 Antigens Down Regulation as Marker in Increased Risk for Development and Progression of Breast Cancer From Benign Breast Lesions

    National Research Council Canada - National Science Library

    Worsham, Maria J

    2006-01-01

    .... The major histocompatibility complex (MHC) class I molecules are found on the cell membrane of all cells in the body and are involved in intercellular communications and in complex interactions with the immune...

  14. Population Based Assessment of MHC Class I Antigens Down Regulation as Markers of Increased Risk for Development and Progression of Breast Cancer From Benign Breast Lesions

    National Research Council Canada - National Science Library

    Worsham, Maria

    2004-01-01

    .... The major histocompatibility complex (MHC) class I molecules are found on the cell membrane of all cells in the body and are involved in intercellular communications and in complex interactions with the immune...

  15. Involvement of the major histocompatibility complex region in the genetic regulation of circulating CD8 T-cell numbers in humans.

    Science.gov (United States)

    Cruz, E; Vieira, J; Gonçalves, R; Alves, H; Almeida, S; Rodrigues, P; Lacerda, R; Porto, G

    2004-07-01

    Variability in T-lymphocyte numbers is partially explained by a genetic regulation. From studies in animal models, it is known that the Major Histocompatibility Complex (MHC) is involved in this regulation. In humans, this has not been shown yet. The objective of the present study was to test the hypothesis that genes in the MHC region influence the regulation of T-lymphocyte numbers. Two approaches were used. Association studies between T-cell counts (CD4(+) and CD8(+)) or total lymphocyte counts and HLA class I alleles (A and B) or mutations in the HFE (C282Y and H63D), the hemochromatosis gene, in an unrelated population (n = 264). A second approach was a sibpair correlation analysis of the same T-cell counts in relation to HLA-HFE haplotypes in subjects belonging to 48 hemochromatosis families (n = 456 sibpairs). In the normal population, results showed a strong statistically significant association of the HLA-A*01 with high numbers of CD8(+) T cells and a less powerful association with the HLA-A*24 with low numbers of CD8(+) T cells. Sibpair correlations revealed the most significant correlation for CD8(+) T-cell numbers for sibpairs with HLA-HFE-identical haplotypes. This was not observed for CD4(+) T cells. These results show that the MHC region is involved in the genetic regulation of CD8(+) T-cell numbers in humans. Identification of genes responsible for this control may have important biological and clinical implications.

  16. Exosomal cancer immunotherapy is independent of MHC molecules on exosomes.

    Science.gov (United States)

    Hiltbrunner, Stefanie; Larssen, Pia; Eldh, Maria; Martinez-Bravo, Maria-Jose; Wagner, Arnika K; Karlsson, Mikael C I; Gabrielsson, Susanne

    2016-06-21

    Peptide-loaded exosomes are promising cancer treatment vehicles; however, moderate T cell responses in human clinical trials indicate a need to further understand exosome-induced immunity. We previously demonstrated that antigen-loaded exosomes carry whole protein antigens and require B cells for inducing antigen-specific T cells. Therefore, we investigated the relative importance of exosomal major histocompatibility complex (MHC) class I for the induction of antigen-specific T cell responses and tumour protection. We show that ovalbumin-loaded dendritic cell-derived exosomes from MHCI-/- mice induce antigen-specific T cells at the same magnitude as wild type exosomes. Furthermore, exosomes lacking MHC class I, as well as exosomes with both MHC class I and II mismatch, induced tumour infiltrating T cells and increased overall survival to the same extent as syngeneic exosomes in B16 melanoma. In conclusion, T cell responses are independent of exosomal MHC/peptide complexes if whole antigen is present. This establishes the prospective of using impersonalised exosomes, and will greatly increase the feasibility of designing exosome-based vaccines or therapeutic approaches in humans.

  17. Immunomodulation of glioma cells after gene therapy: induction of major histocompatibility complex class I but not class II antigen in vitro.

    Science.gov (United States)

    Parsa, A T; Chi, J H; Hurley, P T; Jeyapalan, S A; Bruce, J N

    2001-09-01

    Acquired immunity has been demonstrated in Fischer rats bearing syngeneic 9L tumors after herpes simplex virus (HSV) thymidine kinase (TK) gene transfection and ganciclovir treatment. The nature of this immunity in rats and its relevance to the HSV TK/ganciclovir protocol for human subjects remain to be determined. In this study, levels of major histocompatibility complex (MHC) Class I and II antigen expression were measured before and after HSV TK transfection, in an effort to document immunomodulatory changes caused by gene therapy. Tumor cells from the 9L gliosarcoma cell line, three primary human glioma cultures, and the human glioma cell line U87 MG were transduced with HSV TK vector-containing supernatant from fibroblast-producing cells (titer of 5 x 10(6) colony-forming units/ml) and selected in G418 medium for neomycin resistance. Clones were pooled or individually selected for cell-killing assays with ganciclovir, to confirm TK expression (10(3) cells/well in a 96-well dish). Northern analyses using MHC Class I and Class II complementary deoxyribonucleic acid probes were performed on blots containing total ribonucleic acid from wild-type tumor cells and HSV TK transfectants. A beta-actin complementary deoxyribonucleic acid probe served as an internal control. Cell surface expression was confirmed with flow cytometry. The induction of MHC Class I was tested for cycloheximide and genistein sensitivity. All cell cultures exhibited increases in MHC Class I but not MHC Class II expression, as determined by Northern analysis densitometry and flow cytometry. Cycloheximide treatment did not diminish the up-regulation of MHC Class I after retroviral transfection, implicating a signal transduction pathway that does not require ongoing protein synthesis. Genistein pretreatment of cell cultures did diminish the up-regulation of MHC Class I, implicating a tyrosine kinase in the signaling cascade. Induction of MHC Class I in rat and human glioma cells after HSV TK

  18. Constitutive MHC class I molecules negatively regulate TLR-triggered inflammatory responses via the Fps-SHP-2 pathway.

    Science.gov (United States)

    Xu, Sheng; Liu, Xingguang; Bao, Yan; Zhu, Xuhui; Han, Chaofeng; Zhang, Peng; Zhang, Xuemin; Li, Weihua; Cao, Xuetao

    2012-04-22

    The molecular mechanisms that fine-tune Toll-like receptor (TLR)-triggered innate inflammatory responses remain to be fully elucidated. Major histocompatibility complex (MHC) molecules can mediate reverse signaling and have nonclassical functions. Here we found that constitutively expressed membrane MHC class I molecules attenuated TLR-triggered innate inflammatory responses via reverse signaling, which protected mice from sepsis. The intracellular domain of MHC class I molecules was phosphorylated by the kinase Src after TLR activation, then the tyrosine kinase Fps was recruited via its Src homology 2 domain to phosphorylated MHC class I molecules. This led to enhanced Fps activity and recruitment of the phosphatase SHP-2, which interfered with TLR signaling mediated by the signaling molecule TRAF6. Thus, constitutive MHC class I molecules engage in crosstalk with TLR signaling via the Fps-SHP-2 pathway and control TLR-triggered innate inflammatory responses.

  19. The interaction of beta 2-microglobulin (beta 2m) with mouse class I major histocompatibility antigens and its ability to support peptide binding. A comparison of human and mouse beta 2m

    DEFF Research Database (Denmark)

    Pedersen, L O; Stryhn, A; Holter, T L

    1995-01-01

    of class I molecules are involved in peptide binding, whereas most of class I molecules are involved in beta 2m binding. We propose that mouse beta 2m interacts with the minor peptide binding (i.e. the "empty") fraction with a lower affinity than human beta 2m does, whereas mouse and human beta 2m interact......The function of major histocompatibility complex (MHC) class I molecules is to sample peptides derived from intracellular proteins and to present these peptides to CD8+ cytotoxic T lymphocytes. In this paper, biochemical assays addressing MHC class I binding of both peptide and beta 2-microglobulin...... (beta 2m) have been used to examine the assembly of the trimolecular MHC class I/beta 2m/peptide complex. Recombinant human beta 2m and mouse beta 2ma have been generated to compare the binding of the two beta 2m to mouse class I. It is frequently assumed that human beta 2m binds to mouse class I heavy...

  20. MHC2NNZ: A novel peptide binding prediction approach for HLA DQ molecules

    Science.gov (United States)

    Xie, Jiang; Zeng, Xu; Lu, Dongfang; Liu, Zhixiang; Wang, Jiao

    2017-07-01

    The major histocompatibility complex class II (MHC-II) molecule plays a crucial role in immunology. Computational prediction of MHC-II binding peptides can help researchers understand the mechanism of immune systems and design vaccines. Most of the prediction algorithms for MHC-II to date have made large efforts in human leukocyte antigen (HLA, the name of MHC in Human) molecules encoded in the DR locus. However, HLA DQ molecules are equally important and have only been made less progress because it is more difficult to handle them experimentally. In this study, we propose an artificial neural network-based approach called MHC2NNZ to predict peptides binding to HLA DQ molecules. Unlike previous artificial neural network-based methods, MHC2NNZ not only considers sequence similarity features but also captures the chemical and physical properties, and a novel method incorporating these properties is proposed to represent peptide flanking regions (PFR). Furthermore, MHC2NNZ improves the prediction accuracy by combining with amino acid preference at more specific positions of the peptides binding core. By evaluating on 3549 peptides binding to six most frequent HLA DQ molecules, MHC2NNZ is demonstrated to outperform other state-of-the-art MHC-II prediction methods.

  1. Giant panda genomic data provide insight into the birth-and-death process of mammalian major histocompatibility complex class II genes.

    Directory of Open Access Journals (Sweden)

    Qiu-Hong Wan

    Full Text Available To gain an understanding of the genomic structure and evolutionary history of the giant panda major histocompatibility complex (MHC genes, we determined a 636,503-bp nucleotide sequence spanning the MHC class II region. Analysis revealed that the MHC class II region from this rare species contained 26 loci (17 predicted to be expressed, of which 10 are classical class II genes (1 DRA, 2 DRB, 2 DQA, 3 DQB, 1 DYB, 1 DPA, and 2 DPB and 4 are non-classical class II genes (1 DOA, 1 DOB, 1 DMA, and 1 DMB. The presence of DYB, a gene specific to ruminants, prompted a comparison of the giant panda class II sequence with those of humans, cats, dogs, cattle, pigs, and mice. The results indicated that birth and death events within the DQ and DRB-DY regions led to major lineage differences, with absence of these regions in the cat and in humans and mice respectively. The phylogenetic trees constructed using all expressed alpha and beta genes from marsupials and placental mammals showed that: (1 because marsupials carry loci corresponding to DR, DP, DO and DM genes, those subregions most likely developed before the divergence of marsupials and placental mammals, approximately 150 million years ago (MYA; (2 conversely, the DQ and DY regions must have evolved later, but before the radiation of placental mammals (100 MYA. As a result, the typical genomic structure of MHC class II genes for the giant panda is similar to that of the other placental mammals and corresponds to BTNL2 approximately DR1 approximately DQ approximately DR2 approximately DY approximately DO_box approximately DP approximately COL11A2. Over the past 100 million years, there has been birth and death of mammalian DR, DQ, DY, and DP genes, an evolutionary process that has brought about the current species-specific genomic structure of the MHC class II region. Furthermore, facing certain similar pathogens, mammals have adopted intra-subregion (DR and DQ and inter-subregion (between DQ and DP

  2. Evolution of MHC class I genes in the endangered loggerhead sea turtle (Caretta caretta) revealed by 454 amplicon sequencing.

    Science.gov (United States)

    Stiebens, Victor A; Merino, Sonia E; Chain, Frédéric J J; Eizaguirre, Christophe

    2013-04-30

    In evolutionary and conservation biology, parasitism is often highlighted as a major selective pressure. To fight against parasites and pathogens, genetic diversity of the immune genes of the major histocompatibility complex (MHC) are particularly important. However, the extensive degree of polymorphism observed in these genes makes it difficult to conduct thorough population screenings. We utilized a genotyping protocol that uses 454 amplicon sequencing to characterize the MHC class I in the endangered loggerhead sea turtle (Caretta caretta) and to investigate their evolution at multiple relevant levels of organization. MHC class I genes revealed signatures of trans-species polymorphism across several reptile species. In the studied loggerhead turtle individuals, it results in the maintenance of two ancient allelic lineages. We also found that individuals carrying an intermediate number of MHC class I alleles are larger than those with either a low or high number of alleles. Multiple modes of evolution seem to maintain MHC diversity in the loggerhead turtles, with relatively high polymorphism for an endangered species.

  3. ZAP-70 and p72syk are signaling response elements through MHC class II molecules

    DEFF Research Database (Denmark)

    Kanner, S B; Grosmaire, L S; Blake, J

    1995-01-01

    Ligation of major histocompatibility complex (MHC) class II antigens expressed on antigen-activated human CD4+ T-lymphocytes induces early signal transduction events including the activation of tyrosine kinases, the tyrosine phosphorylation of phospholipase-C gamma 1 and the mobilization...... of intracellular calcium. Similar responses have been observed in B-cells following stimulation of MHC class II molecules, including the increased production of intracellular cAMP. In this report, we demonstrate that the ZAP-70 tyrosine kinase is a responsive signaling element following cross-linking of HLA...... by herbimycin A. MHC class II ligation on B-lymphocytes resulted in cell death, which was both qualitatively distinct from Fas-induced apoptosis and partially protected by herbimycin A pretreatment. Thus, ligation of MHC class II molecules expressed on human lymphocytes stimulates the ZAP-70/p72syk family...

  4. Autoimmunity as a possible limiting selection pressure for the individual MHC IIB allele diversity in the three-spined stickleback Gasterosteus aculeatus?

    OpenAIRE

    Krause, A.

    2011-01-01

    Genetic diversity is a prerequisite for evolution. The genes of the Major Histocompatibility Complex (MHC) show genetic variation. They are polygenic and contain highly polymorphic loci. MHC molecules are an important part of the adaptive immune system due to their ability to bind and present different antigens to the T-lymphocytes. But this high specificity also implies a risk: the higher the number of recognized antigens, the more likely the similarity of foreign and auto antigens. This can...

  5. High-risk human papillomavirus E7 expression reduces cell-surface MHC class I molecules and increases susceptibility to natural killer cells

    DEFF Research Database (Denmark)

    Bottley, G; Watherston, O G; Hiew, Y-L

    2007-01-01

    a role for E7 in tumour immune evasion. We show that knockdown of E7 expression in HPV16- and HPV18-transformed cervical carcinoma cells by RNA interference increased expression of major histocompatibility complex (MHC) class I at the cell surface and reduced susceptibility of these cells to natural...... killer (NK) cells. Tetracycline-regulated induction of HPV16 E7 resulted in reduced expression of cell surface MHC class I molecules and increased NK cell killing. Our results suggest that, for HPV-associated malignancies, reduced MHC class I expression is the result of an active immune evasion strategy...

  6. Autoimmunity and inflammation are independent of class II transactivator type PIV-dependent class II major histocompatibility complex expression in peripheral tissues during collagen-induced arthritis.

    Science.gov (United States)

    Waldburger, Jean-Marc; Palmer, Gaby; Seemayer, Christian; Lamacchia, Celine; Finckh, Axel; Christofilopoulos, Panayiotis; Baeten, Dominique; Reith, Walter; Gabay, Cem

    2011-11-01

    To determine the regulation of class II major histocompatibility complex (MHC) expression in fibroblast-like synoviocytes (FLS) in order to investigate their role as nonprofessional antigen-presenting cells in collagen-induced arthritis (CIA). Expression of class II MHC, class II MHC transactivator (CIITA), and Ciita isoforms PI, PIII, and PIV was examined by real-time quantitative polymerase chain reaction, immunohistochemistry, and flow cytometry in human synovial tissues, arthritic mouse joints, and human and murine FLS. CIA was induced in mice in which isoform PIV of Ciita was knocked out (PIV(-/-) ), in PIV(-/-) mice transgenic for CIITA in the thymus (K14 CIITA), and in their control littermates. HLA-DRA, total CIITA, and CIITA PIII messenger RNA levels were significantly increased in synovial tissue samples from patients with rheumatoid arthritis compared with the levels in tissue from patients with osteoarthritis. Human FLS expressed surface class II MHC via CIITA PIII and PIV, while class II MHC expression in murine FLS was entirely mediated by PIV. Mice with a targeted deletion of CIITA PIV lack CD4+ T cells and were protected against CIA. The expression of CIITA was restored in the thymus of PIV(-/-) K14 CIITA-transgenic mice, which had a normal CD4+ T cell repertoire and normal surface levels of class II MHC on professional antigen-presenting cells, but did not induce class II MHC on FLS. Synovial inflammation and immune responses against type II collagen were similar in PIV(-/-) K14 CIITA-transgenic mice and control mice with CIA, but bone erosion was significantly reduced in the absence of PIV. Overexpression of class II MHC is tightly correlated with CIITA expression in arthritic synovium and in FLS. Selective targeting of Ciita PIV in peripheral tissues abrogates class II MHC expression by murine FLS but does not protect against inflammation and autoimmune responses in CIA. Copyright © 2011 by the American College of Rheumatology.

  7. Sympatric and allopatric divergence of MHC genes in threespine stickleback.

    Directory of Open Access Journals (Sweden)

    Blake Matthews

    2010-06-01

    Full Text Available Parasites can strongly affect the evolution of their hosts, but their effects on host diversification are less clear. In theory, contrasting parasite communities in different foraging habitats could generate divergent selection on hosts and promote ecological speciation. Immune systems are costly to maintain, adaptable, and an important component of individual fitness. As a result, immune system genes, such as those of the Major Histocompatibility Complex (MHC, can change rapidly in response to parasite-mediated selection. In threespine stickleback (Gasterosteus aculeatus, as well as in other vertebrates, MHC genes have been linked with female mating preference, suggesting that divergent selection acting on MHC genes might influence speciation. Here, we examined genetic variation at MHC Class II loci of sticklebacks from two lakes with a limnetic and benthic species pair, and two lakes with a single species. In both lakes with species pairs, limnetics and benthics differed in their composition of MHC alleles, and limnetics had fewer MHC alleles per individual than benthics. Similar to the limnetics, the allopatric population with a pelagic phenotype had few MHC alleles per individual, suggesting a correlation between MHC genotype and foraging habitat. Using a simulation model we show that the diversity and composition of MHC alleles in a sympatric species pair depends on the amount of assortative mating and on the strength of parasite-mediated selection in adjacent foraging habitats. Our results indicate parallel divergence in the number of MHC alleles between sympatric stickleback species, possibly resulting from the contrasting parasite communities in littoral and pelagic habitats of lakes.

  8. MHC class II B diversity in blue tits: a preliminary study.

    Science.gov (United States)

    Aguilar, Juan Rivero-de; Schut, Elske; Merino, Santiago; Martínez, Javier; Komdeur, Jan; Westerdahl, Helena

    2013-07-01

    In this study, we partly characterize major histocompatibility complex (MHC) class II B in the blue tit (Cyanistes caeruleus). A total of 22 individuals from three different European locations: Spain, The Netherlands, and Sweden were screened for MHC allelic diversity. The MHC genes were investigated using both PCR-based methods and unamplified genomic DNA with restriction fragment length polymorphism (RFLP) and southern blots. A total of 13 different exon 2 sequences were obtained independently from DNA and/or RNA, thus confirming gene transcription and likely functionality of the genes. Nine out of 13 alleles were found in more than one country, and two alleles appeared in all countries. Positive selection was detected in the region coding for the peptide binding region (PBR). A maximum of three alleles per individual was detected by sequencing and the RFLP pattern consisted of 4-7 fragments, indicating a minimum number of 2-4 loci per individual. A phylogenetic analysis, demonstrated that the blue tit sequences are divergent compared to sequences from other passerines resembling a different MHC lineage than those possessed by most passerines studied to date.

  9. Disentangling the roles of natural selection and genetic drift in shaping variation at MHC immunity genes.

    Science.gov (United States)

    Sutton, Jolene T; Nakagawa, Shinichi; Robertson, Bruce C; Jamieson, Ian G

    2011-11-01

    The major histocompatibility complex (MHC) forms an integral component of the vertebrate immune response and, due to strong selection pressures, is one of the most polymorphic regions of the entire genome. Despite over 15 years of research, empirical studies offer highly contradictory explanations of the relative roles of different evolutionary forces, selection and genetic drift, acting on MHC genes during population bottlenecks. Here, we take a meta-analytical approach to quantify the results of studies into the effects of bottlenecks on MHC polymorphism. We show that the consequences of selection acting on MHC loci prior to a bottleneck event, combined with drift during the bottleneck, will result in overall loss of MHC polymorphism that is ∼15% greater than loss of neutral genetic diversity. These results are counter to general expectations that selection should maintain MHC polymorphism, but do agree with the results of recent simulation models and at least two empirical studies. Notably, our results suggest that negative frequency-dependent selection could be more important than overdominance for maintaining high MHC polymorphism in pre-bottlenecked populations. © 2011 Blackwell Publishing Ltd.

  10. No evidence for the effect of MHC on male mating success in the brown bear.

    Science.gov (United States)

    Kuduk, Katarzyna; Babik, Wieslaw; Bellemain, Eva; Valentini, Alice; Zedrosser, Andreas; Taberlet, Pierre; Kindberg, Jonas; Swenson, Jon E; Radwan, Jacek

    2014-01-01

    Mate choice is thought to contribute to the maintenance of the spectacularly high polymorphism of the Major Histocompatibility Complex (MHC) genes, along with balancing selection from parasites, but the relative contribution of the former mechanism is debated. Here, we investigated the association between male MHC genotype and mating success in the brown bear. We analysed fragments of sequences coding for the peptide-binding region of the highly polymorphic MHC class I and class II DRB genes, while controlling for genome-wide effects using a panel of 18 microsatellite markers. Male mating success did not depend on the number of alleles shared with the female or amino-acid distance between potential mates at either locus. Furthermore, we found no indication of female mating preferences for MHC similarity being contingent on the number of alleles the females carried. Finally, we found no significant association between the number of MHC alleles a male carried and his mating success. Thus, our results provided no support for the role of mate choice in shaping MHC polymorphism in the brown bear.

  11. Comparative genome analyses reveal distinct structure in the saltwater crocodile MHC.

    Directory of Open Access Journals (Sweden)

    Weerachai Jaratlerdsiri

    Full Text Available The major histocompatibility complex (MHC is a dynamic genome region with an essential role in the adaptive immunity of vertebrates, especially antigen presentation. The MHC is generally divided into subregions (classes I, II and III containing genes of similar function across species, but with different gene number and organisation. Crocodylia (crocodilians are widely distributed and represent an evolutionary distinct group among higher vertebrates, but the genomic organisation of MHC within this lineage has been largely unexplored. Here, we studied the MHC region of the saltwater crocodile (Crocodylus porosus and compared it with that of other taxa. We characterised genomic clusters encompassing MHC class I and class II genes in the saltwater crocodile based on sequencing of bacterial artificial chromosomes. Six gene clusters spanning ∼452 kb were identified to contain nine MHC class I genes, six MHC class II genes, three TAP genes, and a TRIM gene. These MHC class I and class II genes were in separate scaffold regions and were greater in length (2-6 times longer than their counterparts in well-studied fowl B loci, suggesting that the compaction of avian MHC occurred after the crocodilian-avian split. Comparative analyses between the saltwater crocodile MHC and that from the alligator and gharial showed large syntenic areas (>80% identity with similar gene order. Comparisons with other vertebrates showed that the saltwater crocodile had MHC class I genes located along with TAP, consistent with birds studied. Linkage between MHC class I and TRIM39 observed in the saltwater crocodile resembled MHC in eutherians compared, but absent in avian MHC, suggesting that the saltwater crocodile MHC appears to have gene organisation intermediate between these two lineages. These observations suggest that the structure of the saltwater crocodile MHC, and other crocodilians, can help determine the MHC that was present in the ancestors of archosaurs.

  12. Improved methods for predicting peptide binding affinity to MHC class II molecules

    DEFF Research Database (Denmark)

    Jensen, Kamilla Kjærgaard; Andreatta, Massimo; Marcatili, Paolo

    2018-01-01

    Major histocompatibility complex class II (MHC-II) molecules are expressed on the surface of professional antigen presenting cells where they display peptides to T helper cells, which orchestrate the onset and outcome of many host immune responses. Understanding which peptides will be presented b...... are publicly available at www.cbs.dtu.dk/services/NetMHCII-2.3 and www.cbs.dtu.dk/services/NetMHCIIpan-3.2. This article is protected by copyright. All rights reserved....

  13. Peptide binding motifs associated with MHC molecules common in Chinese rhesus macaques are analogous to those of human HLA supertypes, and include HLA-B27-like alleles

    OpenAIRE

    Mothé, Bianca R.; Southwood, Scott; Sidney, John; English, A. Michelle; Wriston, Amanda; Hoof, Ilka; Shabanowitz, Jeffrey; Hunt, Donald F.; Sette, Alessandro

    2013-01-01

    Chinese rhesus macaques are of particular interest in SIV/HIV research as these animals have prolonged kinetics of disease progression to AIDS, compared to their Indian counterparts, suggesting that they may be a better model for HIV. Nevertheless, the specific mechanism(s) accounting for these kinetics remains unclear. The study of Major Histocompatibility Complex (MHC) molecules, including their MHC:peptide binding motifs, provides valuable information for measuring cellular immune response...

  14. Improved methods for predicting peptide binding affinity to MHC class II molecules.

    Science.gov (United States)

    Jensen, Kamilla Kjaergaard; Andreatta, Massimo; Marcatili, Paolo; Buus, Søren; Greenbaum, Jason A; Yan, Zhen; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten

    2018-01-06

    Major histocompatibility complex class II (MHC-II) molecules are expressed on the surface of professional antigen-presenting cells where they display peptides to T helper cells, which orchestrate the onset and outcome of many host immune responses. Understanding which peptides will be presented by the MHC-II molecule is therefore important for understanding the activation of T helper cells and can be used to identify T-cell epitopes. We here present updated versions of two MHC-II-peptide binding affinity prediction methods, NetMHCII and NetMHCIIpan. These were constructed using an extended data set of quantitative MHC-peptide binding affinity data obtained from the Immune Epitope Database covering HLA-DR, HLA-DQ, HLA-DP and H-2 mouse molecules. We show that training with this extended data set improved the performance for peptide binding predictions for both methods. Both methods are publicly available at www.cbs.dtu.dk/services/NetMHCII-2.3 and www.cbs.dtu.dk/services/NetMHCIIpan-3.2. © 2018 John Wiley & Sons Ltd.

  15. Use of "one-pot, mix-and-read" peptide-MHC class I tetramers and predictive algorithms to improve detection of cytotoxic T lymphocyte responses in cattle

    DEFF Research Database (Denmark)

    Svitek, Nicholas; Hansen, Andreas Martin; Steinaa, Lucilla

    2014-01-01

    Peptide-major histocompatibility complex (p-MHC) class I tetramer complexes have facilitated the early detection and functional characterisation of epitope specific CD8(+) cytotoxic T lymphocytes (CTL). Here, we report on the generation of seven recombinant bovine leukocyte antigens (BoLA) and re...

  16. The C-terminal amino acid of the MHC-I heavy chain is critical for binding to Derlin-1 in human cytomegalovirus US11-induced MHC-I degradation.

    Science.gov (United States)

    Cho, Sunglim; Kim, Bo Young; Ahn, Kwangseog; Jun, Youngsoo

    2013-01-01

    Derlin-1 plays a critical role in endoplasmic reticulum-associated protein degradation (ERAD) of a particular subset of proteins. Although it is generally accepted that Derlin-1 mediates the export of ERAD substrates from the ER to the cytosol, little is known about how Derlin-1 interacts with these substrates. Human cytomegalovirus (HCMV) US11 exploits Derlin-1-dependent ERAD to degrade major histocompatibility complex class I (MHC-I) molecules and evade immune surveillance. US11 requires the cytosolic tail of the MHC-I heavy chain to divert MHC-I molecules into the ERAD pathway for degradation; however, the underlying mechanisms remain unknown. Here, we show that the cytosolic tail of the MHC-I heavy chain, although not required for interaction with US11, is required for tight binding to Derlin-1 and thus for US11-induced dislocation of the MHC-I heavy chain to the cytosol for proteasomal degradation. Surprisingly, deletion of a single C-terminal amino acid from the cytosolic tail disrupted the interaction between MHC-I molecules and Derlin-1, rendering mutant MHC-I molecules resistant to US11-induced degradation. Consistently, deleting the C-terminal cytosolic region of Derlin-1 prevented it from binding to MHC-I molecules. Taken together, these results suggest that the cytosolic region of Derlin-1 is involved in ERAD substrate binding and that this interaction is critical for the Derlin-1-mediated dislocation of the MHC-I heavy chain to the cytosol during US11-induced MHC-I degradation.

  17. MHC class II polymorphisms, autoreactive T-cells and autoimmunity

    Directory of Open Access Journals (Sweden)

    Sue eTsai

    2013-10-01

    Full Text Available Major histocompatibility complex (MHC genes, also known as human leukocyte antigen genes (HLA in humans, are the prevailing contributors of genetic susceptibility to autoimmune diseases such as Type 1 Diabetes (T1D, Multiple Sclerosis (MS, and Rheumatoid arthritis (RA, among others (Todd and Wicker, 2001;MacKay et al., 2002;Hafler et al., 2007. Although the pathways through which MHC molecules afford autoimmune risk or resistance remain to be fully mapped out, it is generally accepted that they do so by shaping the central and peripheral T cell repertoires of the host towards autoimmune proclivity or resistance, respectively. Disease-predisposing MHC alleles would both spare autoreactive thymocytes from central tolerance and bias their development towards a pathogenic phenotype. Protective MHC alleles, on the other hand, would promote central deletion of autoreactive thymocytes and skew their development towards non-pathogenic phenotypes. This interpretation of the data is at odds with two other observations: that in MHC-heterozygous individuals, resistance is dominant over susceptibility; and that it is difficult to understand how deletion of one or a few clonal autoreactive T cell types would suffice to curb autoimmune responses driven by hundreds if not thousands of autoreactive T cell specificities. This review provides an update on current advances in our understanding of the mechanisms underlying MHC class II-associated autoimmune disease susceptibility and/or resistance and attempts to reconcile these seemingly opposing concepts.

  18. IFN-induced modulation of histocompatibility antigens on human cells. Background, mechanisms and perspectives

    DEFF Research Database (Denmark)

    Hokland, M; Basse, P; Justesen, J

    1989-01-01

    IFN proteins are a family of lymphokines with anti-viral effects. Several other effects of IFNs have also been described, including enhancement of natural killer (NK) cell activity, enhancement of cytotoxic T-lymphocyte activity, and enhancement of the expression of major histocompatibility compl...... to the classical anti-viral mechanism. This concept proposes that the MHC-enhancing effect of IFNs is a vital part of the immunological defense against virus infections and an integral part of the anti-viral effects of IFN proteins. Udgivelsesdato: 1988-Nov...

  19. Social pairing of Seychelles warblers under reduced constraints: MHC, neutral heterozygosity, and age.

    Science.gov (United States)

    Wright, David J; Brouwer, Lyanne; Mannarelli, Maria-Elena; Burke, Terry; Komdeur, Jan; Richardson, David S

    2016-01-01

    The prevalence and significance of precopulatory mate choice remains keenly debated. The major histocompatibility complex (MHC) plays a key role in vertebrate adaptive immunity, and variation at the MHC influences individual survival. Although MHC-dependent mate choice has been documented in certain species, many other studies find no such pattern. This may be, at least in part, because in natural systems constraints may reduce the choices available to individuals and prevent full expression of underlying preferences. We used translocations to previously unoccupied islands to experimentally reduce constraints on female social mate choice in the Seychelles warbler ( Acrocephalus sechellensis ), a species in which patterns of MHC-dependent extrapair paternity (EPP), but not social mate choice, have been observed. We find no evidence of MHC-dependent social mate choice in the new populations. Instead, we find that older males and males with more microsatellite heterozygosity are more likely to have successfully paired. Our data cannot resolve whether these patterns in pairing were due to male-male competition or female choice. However, our research does suggest that female Seychelles warblers do not choose social mates using MHC class I to increase fitness. It may also indicate that the MHC-dependent EPP observed in the source population is probably due to mechanisms other than female precopulatory mate choice based on MHC cues.

  20. Expressão do complexo de histocompatilidade principal de classe I (MHC I no sistema nervoso central: plasticidade sináptica e regeneração Expresión del complejo principal de histocompatibilidad de clase I (MHC I en el sistema nervioso central: plasticidad sináptica y regeneración Expression of class I major histocompatibility complex (MHC I in the central nervous system: role in synaptic plasticity and regeneration

    Directory of Open Access Journals (Sweden)

    Renata Graciele Zanon

    2010-06-01

    consecuencia, con la recuperación funcional. Por consiguiente, estos nuevos aspectos sobre la función del MHC I en el SNC orientan nuevas investigaciones con miras a entender el papel del MHC I en las enfermedades neurológicas y a desarrollar nuevas estrategias terapéuticas.It has been recently demonstrated that the major histocompatibility complex of class I (MHC I expressed in the central nervous system (CNS does not only function as a molecule of the immune system, but also plays a role in the synaptic plasticity. The expression of MHC I influences the intensity and selectivity of elimination of synapses apposed to neurons that were subjected to lesion, besides influencing the reactivity of neighboring glial cells. MHC I expression and the degree of synaptic rearrangement and glial response after injury correlate with differences in the regenerative potential and functional recovery of isogenic mice strains. In this way, the new aspects regarding MHC I functions in the CNS may guide further studies aiming at searching the involvement of MCH I in neurologic disorders, as well as the development of new therapeutic strategies.

  1. Modulation of the major histocompatibility complex by neural stem cell-derived neurotrophic factors used for regenerative therapy in a rat model of stroke

    Directory of Open Access Journals (Sweden)

    Sun Chongran

    2010-08-01

    Full Text Available Abstract Background The relationship between functional improvements in ischemic rats given a neural stem cell (NSC transplant and the modulation of the class I major histocompatibility complex (MHC mediated by NSC-derived neurotrophins was investigated. Methods The levels of gene expression of nerve growth factor (NGF, brain-derived neurotropic factor (BDNF and neurotrophin-3 (NT-3 were assayed from cultures of cortical NSC from Sprague-Dawley rat E16 embryos. The levels of translated NGF in spent culture media from NSC cultures and the cerebral spinal fluid (CSF of rats with and without NGF injection or NSC transplant were also measured. Results We found a significant increase of NGF, BDNF and NT-3 transcripts and NGF proteins in both the NSC cultures and the CSF of the rats. The immunochemical staining for MHC in brain sections and the enzyme-linked immunosorbent assay of CSF were carried out in sham-operated rats and rats with surgically induced focal cerebral ischemia. These groups were further divided into animals that did and did not receive NGF administration or NSC transplant into the cisterna magna. Our results show an up-regulation of class I MHC in the ischemic rats with NGF and NSC administration. The extent of caspase-III immunoreactivity was comparable among three arms in the ischemic rats. Conclusion Readouts of somatosensory evoked potential and the trap channel test illustrated improvements in the neurological function of ischemic rats treated with NGF administration and NSC transplant.

  2. An integrated tool to study MHC region: accurate SNV detection and HLA genes typing in human MHC region using targeted high-throughput sequencing.

    Directory of Open Access Journals (Sweden)

    Hongzhi Cao

    Full Text Available The major histocompatibility complex (MHC is one of the most variable and gene-dense regions of the human genome. Most studies of the MHC, and associated regions, focus on minor variants and HLA typing, many of which have been demonstrated to be associated with human disease susceptibility and metabolic pathways. However, the detection of variants in the MHC region, and diagnostic HLA typing, still lacks a coherent, standardized, cost effective and high coverage protocol of clinical quality and reliability. In this paper, we presented such a method for the accurate detection of minor variants and HLA types in the human MHC region, using high-throughput, high-coverage sequencing of target regions. A probe set was designed to template upon the 8 annotated human MHC haplotypes, and to encompass the 5 megabases (Mb of the extended MHC region. We deployed our probes upon three, genetically diverse human samples for probe set evaluation, and sequencing data show that ∼97% of the MHC region, and over 99% of the genes in MHC region, are covered with sufficient depth and good evenness. 98% of genotypes called by this capture sequencing prove consistent with established HapMap genotypes. We have concurrently developed a one-step pipeline for calling any HLA type referenced in the IMGT/HLA database from this target capture sequencing data, which shows over 96% typing accuracy when deployed at 4 digital resolution. This cost-effective and highly accurate approach for variant detection and HLA typing in the MHC region may lend further insight into immune-mediated diseases studies, and may find clinical utility in transplantation medicine research. This one-step pipeline is released for general evaluation and use by the scientific community.

  3. Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins.

    Science.gov (United States)

    Sallaberry-Pincheira, Nicole; González-Acuña, Daniel; Padilla, Pamela; Dantas, Gisele P M; Luna-Jorquera, Guillermo; Frere, Esteban; Valdés-Velásquez, Armando; Vianna, Juliana A

    2016-10-01

    The evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC class II with extracellular infections (e.g., bacteria). Therefore, patterns of MHC I and II diversity may differ between species and across populations of species depending on the relative effect of local and global environmental selective pressures, genetic drift, and gene flow. We hypothesize that high gene flow among populations of Humboldt and Magellanic penguins limits local adaptation in MHC I and MHC II, and signatures of selection differ between markers, locations, and species. We evaluated the MHC I and II diversity using 454 next-generation sequencing of 100 Humboldt and 75 Magellanic penguins from seven different breeding colonies. Higher genetic diversity was observed in MHC I than MHC II for both species, explained by more than one MHC I loci identified. Large population sizes, high gene flow, and/or similar selection pressures maintain diversity but limit local adaptation in MHC I. A pattern of isolation by distance was observed for MHC II for Humboldt penguin suggesting local adaptation, mainly on the northernmost studied locality. Furthermore, trans-species alleles were found due to a recent speciation for the genus or convergent evolution. High MHC I and MHC II gene diversity described is extremely advantageous for the long-term survival of the species.

  4. Polymorphism at Expressed DQ and DR Loci in Five Common Equine MHC Haplotypes

    Science.gov (United States)

    Miller, Donald; Tallmadge, Rebecca L.; Binns, Matthew; Zhu, Baoli; Mohamoud, Yasmin Ali; Ahmed, Ayeda; Brooks, Samantha A.; Antczak, Douglas F.

    2016-01-01

    The polymorphism of Major Histocompatibility Complex (MHC) class II DQ and DR genes in five common Equine Leukocyte Antigen (ELA) haplotypes was determined through sequencing of mRNA transcripts isolated from lymphocytes of eight ELA homozygous horses. Ten expressed MHC class II genes were detected in horses of the ELA-A3 haplotype carried by the donor horses of the equine Bacterial Artificial Chromosome (BAC) library and the reference genome sequence: four DR genes and six DQ genes. The other four ELA haplotypes contained at least eight expressed polymorphic MHC class II loci. Next Generation Sequencing (NGS) of genomic DNA of these four MHC haplotypes revealed stop codons in the DQA3 gene in the ELA-A2, ELA-A5, and ELA-A9 haplotypes. Few NGS reads were obtained for the other MHC class II genes that were not amplified in these horses. The amino acid sequences across haplotypes contained locus-specific residues, and the locus clusters produced by phylogenetic analysis were well supported. The MHC class II alleles within the five tested haplotypes were largely non-overlapping between haplotypes. The complement of equine MHC class II DQ and DR genes appears to be well conserved between haplotypes, in contrast to the recently described variation in class I gene loci between equine MHC haplotypes. The identification of allelic series of equine MHC class II loci will aid comparative studies of mammalian MHC conservation and evolution and may also help to interpret associations between the equine MHC class II region and diseases of the horse. PMID:27889800

  5. ER stress affects processing of MHC class I-associated peptides

    Directory of Open Access Journals (Sweden)

    Meloche Sylvain

    2009-02-01

    Full Text Available Abstract Background Viral infection and neoplastic transformation trigger endoplasmic reticulum (ER stress. Thus, a large proportion of the cells that must be recognized by the immune system are stressed cells. Cells respond to ER stress by launching the unfolded protein response (UPR. The UPR regulates the two key processes that control major histocompatibility complex class I (MHC I-peptide presentation: protein synthesis and degradation. We therefore asked whether and how the UPR impinges on MHC I-peptide presentation. Results We evaluated the impact of the UPR on global MHC I expression and on presentation of the H2Kb-associated SIINFEKL peptide. EL4 cells stably transfected with vectors coding hen egg lysozyme (HEL-SIINFEKL protein variants were stressed with palmitate or exposed to glucose deprivation. UPR decreased surface expression of MHC I but did not affect MHC I mRNA level nor the total amount of intracellular MHC I proteins. Impaired MHC I-peptide presentation was due mainly to reduced supply of peptides owing to an inhibition of overall protein synthesis. Consequently, generation of H2Kb-SIINFEKL complexes was curtailed during ER stress, illustrating how generation of MHC I peptide ligands is tightly coupled to ongoing protein synthesis. Notably, the UPR-induced decline of MHC I-peptide presentation was more severe when the protein source of peptides was localized in the cytosol than in the ER. This difference was not due to changes in the translation rates of the precursor proteins but to increased stability of the cytosolic protein during ER stress. Conclusion Our results demonstrate that ER stress impairs MHC I-peptide presentation, and that it differentially regulates expression of ER- vs. cytosol-derived peptides. Furthermore, this work illustrates how ER stress, a typical feature of infected and malignant cells, can impinge on cues for adaptive immune recognition.

  6. Features of target cell lysis by class I and class II MHC restricted cytolytic T lymphocytes

    International Nuclear Information System (INIS)

    Maimone, M.M.; Morrison, L.A.; Braciale, V.L.; Braciale, T.J.

    1986-01-01

    The lytic activity of influenza virus-specific muvine cytolytic T lymphocyte (CTL) clones that are restricted by either H-2K/D (class I) or H-2I (class II) major histocompatibility (MHC) locus products was compared on an influenza virus-infected target cell expressing both K/D and I locus products. With the use of two in vitro measurements of cytotoxicity, conventional 51 Cr release, and detergent-releasable radiolabeled DNA (as a measure of nuclear disintegration in the early post-lethal hit period), the authors found no difference between class I and class II MHC-restricted CTL in the kinetics of target cell destruction. In addition, class II MHC-restricted antiviral CTL failed to show any lysis of radiolabeled bystander cells. Killing of labeled specific targets by these class II MHC-restricted CTL was also efficiently inhibited by unlabeled specific competitor cells in a cold target inhibition assay. In sum, these data suggest that class I and class II MHC-restricted CTL mediate target cell destruction by an essentially similar direct mechanism

  7. Mechanical Stress Downregulates MHC Class I Expression on Human Cancer Cell Membrane

    DEFF Research Database (Denmark)

    La Rocca, Rosanna; Tallerico, Rossana; Hassan, Almosawy Talib

    2014-01-01

    In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were...... treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography) or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC) class I molecules expression on cancer cell membrane compared to different kinds of healthy cells...... between 700–1800 cm-1, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased...

  8. Peptide-MHC-based nanomedicines for autoimmunity function as T-cell receptor microclustering devices

    Science.gov (United States)

    Singha, Santiswarup; Shao, Kun; Yang, Yang; Clemente-Casares, Xavier; Solé, Patricia; Clemente, Antonio; Blanco, Jesús; Dai, Qin; Song, Fayi; Liu, Shang Wan; Yamanouchi, Jun; Umeshappa, Channakeshava Sokke; Nanjundappa, Roopa Hebbandi; Detampel, Pascal; Amrein, Matthias; Fandos, César; Tanguay, Robert; Newbigging, Susan; Serra, Pau; Khadra, Anmar; Chan, Warren C. W.; Santamaria, Pere

    2017-07-01

    We have shown that nanoparticles (NPs) can be used as ligand-multimerization platforms to activate specific cellular receptors in vivo. Nanoparticles coated with autoimmune disease-relevant peptide-major histocompatibility complexes (pMHC) blunted autoimmune responses by triggering the differentiation and expansion of antigen-specific regulatory T cells in vivo. Here, we define the engineering principles impacting biological activity, detail a synthesis process yielding safe and stable compounds, and visualize how these nanomedicines interact with cognate T cells. We find that the triggering properties of pMHC-NPs are a function of pMHC intermolecular distance and involve the sustained assembly of large antigen receptor microclusters on murine and human cognate T cells. These compounds show no off-target toxicity in zebrafish embryos, do not cause haematological, biochemical or histological abnormalities, and are rapidly captured by phagocytes or processed by the hepatobiliary system. This work lays the groundwork for the design of ligand-based NP formulations to re-program in vivo cellular responses using nanotechnology.

  9. Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers

    DEFF Research Database (Denmark)

    Lundegaard, Claus; Lund, Ole; Nielsen, Morten

    2008-01-01

    Several accurate prediction systems have been developed for prediction of class I major histocompatibility complex (MHC):peptide binding. Most of these are trained on binding affinity data of primarily 9mer peptides. Here, we show how prediction methods trained on 9mer data can be used for accurate...

  10. Variation in MHC genotypes in two populations of house sparrow (Passer domesticus) with different population histories.

    Science.gov (United States)

    Borg, Asa Alexandra; Pedersen, Sindre Andre; Jensen, Henrik; Westerdahl, Helena

    2011-10-01

    Small populations are likely to have a low genetic ability for disease resistance due to loss of genetic variation through inbreeding and genetic drift. In vertebrates, the highest genetic diversity of the immune system is located at genes within the major histocompatibility complex (MHC). Interestingly, parasite-mediated selection is thought to potentially maintain variation at MHC loci even in populations that are monomorphic at other loci. Therefore, general loss of genetic variation in the genome may not necessarily be associated with low variation at MHC loci. We evaluated inter- and intrapopulation variation in MHC genotypes between an inbred (Aldra) and a relatively outbred population (Hestmannøy) of house sparrows (Passer domesticus) in a metapopulation at Helgeland, Norway. Genomic (gDNA) and transcribed (cDNA) alleles of functional MHC class I and IIB loci, along with neutral noncoding microsatellite markers, were analyzed to obtain relevant estimates of genetic variation. We found lower allelic richness in microsatellites in the inbred population, but high genetic variation in MHC class I and IIB loci in both populations. This suggests that also the inbred population could be under balancing selection to maintain genetic variation for pathogen resistance.

  11. Structure of a Pheromone Receptor-Associated Mhc Molecule With An Open And Empty Groove

    Energy Technology Data Exchange (ETDEWEB)

    Olson, R.; Huey-Tubman, K.E.; Dulac, C.; Bjorkman, P.J.; /Caltech /Harvard U.

    2006-10-06

    Neurons in the murine vomeronasal organ (VNO) express a family of class Ib major histocompatibility complex (MHC) proteins (M10s) that interact with the V2R class of VNO receptors. This interaction may play a direct role in the detection of pheromonal cues that initiate reproductive and territorial behaviors. The crystal structure of M10.5, an M10 family member, is similar to that of classical MHC molecules. However, the M10.5 counterpart of the MHC peptide-binding groove is open and unoccupied, revealing the first structure of an empty class I MHC molecule. Similar to empty MHC molecules, but unlike peptide-filled MHC proteins and non-peptide-binding MHC homologs, M10.5 is thermally unstable, suggesting that its groove is normally occupied. However, M10.5 does not bind endogenous peptides when expressed in mammalian cells or when offered a mixture of class I-binding peptides. The F pocket side of the M10.5 groove is open, suggesting that ligands larger than 8-10-mer class I-binding peptides could fit by extending out of the groove. Moreover, variable residues point up from the groove helices, rather than toward the groove as in classical MHC structures. These data suggest that M10s are unlikely to provide specific recognition of class I MHC-binding peptides, but are consistent with binding to other ligands, including proteins such as the V2Rs.

  12. Structure of a pheromone receptor-associated MHC molecule with an open and empty groove.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Neurons in the murine vomeronasal organ (VNO express a family of class Ib major histocompatibility complex (MHC proteins (M10s that interact with the V2R class of VNO receptors. This interaction may play a direct role in the detection of pheromonal cues that initiate reproductive and territorial behaviors. The crystal structure of M10.5, an M10 family member, is similar to that of classical MHC molecules. However, the M10.5 counterpart of the MHC peptide-binding groove is open and unoccupied, revealing the first structure of an empty class I MHC molecule. Similar to empty MHC molecules, but unlike peptide-filled MHC proteins and non-peptide-binding MHC homologs, M10.5 is thermally unstable, suggesting that its groove is normally occupied. However, M10.5 does not bind endogenous peptides when expressed in mammalian cells or when offered a mixture of class I-binding peptides. The F pocket side of the M10.5 groove is open, suggesting that ligands larger than 8-10-mer class I-binding peptides could fit by extending out of the groove. Moreover, variable residues point up from the groove helices, rather than toward the groove as in classical MHC structures. These data suggest that M10s are unlikely to provide specific recognition of class I MHC-binding peptides, but are consistent with binding to other ligands, including proteins such as the V2Rs.

  13. MHC polymorphism and disease resistance in Atlantic salmon (Salmo salar); facing pathogens with single expressed major histocompatibility class I and class II loci

    NARCIS (Netherlands)

    Grimholt, U.; Larsen, S.; Nordmo, R.; Midtlyng, P.; Kjoeglum, S.; Storset, A.; Saebo, S.; Stet, R.J.M.

    2003-01-01

    Few studies have yet addressed the functional aspects of MHC molecules in fish. To lay the foundation for this, we evaluated the association between disease resistance and MHC class I and class II polymorphism in Atlantic salmon. Standardized disease challenge trials were performed on a semi-wild

  14. Anti-GBM disease after nephrectomy for xanthogranulomatous pyelonephritis in a patient expressing HLA DR15 major histocompatibility antigens: a case report.

    Science.gov (United States)

    O'Hagan, Emma; Mallett, Tamara; Convery, Mairead; McKeever, Karl

    2015-01-01

    Antiglomerular basement membrane (anti-GBM) antibody disease is uncommon in the pediatric population. There are no cases in the literature describing the development of anti-GBM disease following XGP or nephrectomy. We report the case of a 7-year-old boy with no past history of urological illness, treated with antimicrobials and nephrectomy for diffuse, unilateral xanthogranulomatous pyelonephritis (XGP). Renal function and ultrasound scan of the contralateral kidney postoperatively were normal. Three months later, the child represented in acute renal failure with rapidly progressive glomerulonephritis requiring hemodialysis. Renal biopsy showed severe crescentic glomerulonephritis with 95% of glomeruli demonstrating circumferential cellular crescents. Strong linear IgG staining of the glomerular basement membranes was present, in keeping with anti-GBM disease. Circulating anti-GBM antibodies were positive. Treatment with plasma exchange, methylprednisolone, and cyclophosphamide led to normalization of anti-GBM antibody titers. Frequency of hemodialysis was reduced as renal function improved, and he is currently independent of dialysis with estimated glomerular filtration rate 20.7 mls/min/1.73 m 2 . Case studies in the adult literature have reported the development of a rapidly progressive anti-GBM antibody-induced glomerulonephritis following renal surgery where patients expressed HLA DR2/HLA DR15 major histocompatibility (MHC) antigens. Of note, our patient also expresses the HLA DR15 MHC antigen.

  15. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation

    NARCIS (Netherlands)

    Pereyra, Florencia; Jia, Xiaoming; McLaren, Paul J.; Telenti, Amalio; de Bakker, Paul I. W.; Walker, Bruce D.; Ripke, Stephan; Brumme, Chanson J.; Pulit, Sara L.; Carrington, Mary; Kadie, Carl M.; Carlson, Jonathan M.; Heckerman, David; Graham, Robert R.; Plenge, Robert M.; Deeks, Steven G.; Gianniny, Lauren; Crawford, Gabriel; Sullivan, Jordan; Gonzalez, Elena; Davies, Leela; Camargo, Amy; Moore, Jamie M.; Beattie, Nicole; Gupta, Supriya; Crenshaw, Andrew; Burtt, Noël P.; Guiducci, Candace; Gupta, Namrata; Gao, Xiaojiang; Qi, Ying; Yuki, Yuko; Piechocka-Trocha, Alicja; Cutrell, Emily; Rosenberg, Rachel; Moss, Kristin L.; Lemay, Paul; O'Leary, Jessica; Schaefer, Todd; Verma, Pranshu; Toth, Ildiko; Block, Brian; Baker, Brett; Rothchild, Alissa; Lian, Jeffrey; Proudfoot, Jacqueline; Alvino, Donna Marie L.; Vine, Seanna; Addo, Marylyn M.; Allen, Todd M.; Altfeld, Marcus; Henn, Matthew R.; Le Gall, Sylvie; Streeck, Hendrik; Haas, David W.; Kuritzkes, Daniel R.; Robbins, Gregory K.; Shafer, Robert W.; Gulick, Roy M.; Shikuma, Cecilia M.; Haubrich, Richard; Riddler, Sharon; Sax, Paul E.; Daar, Eric S.; Ribaudo, Heather J.; Agan, Brian; Agarwal, Shanu; Ahern, Richard L.; Allen, Brady L.; Altidor, Sherly; Altschuler, Eric L.; Ambardar, Sujata; Anastos, Kathryn; Anderson, Ben; Anderson, Val; Andrady, Ushan; Antoniskis, Diana; Bangsberg, David; Barbaro, Daniel; Barrie, William; Bartczak, J.; Barton, Simon; Basden, Patricia; Basgoz, Nesli; Bazner, Suzane; Bellos, Nicholaos C.; Benson, Anne M.; Berger, Judith; Bernard, Nicole F.; Bernard, Annette M.; Birch, Christopher; Bodner, Stanley J.; Bolan, Robert K.; Boudreaux, Emilie T.; Bradley, Meg; Braun, James F.; Brndjar, Jon E.; Brown, Stephen J.; Brown, Katherine; Brown, Sheldon T.; Burack, Jedidiah; Bush, Larry M.; Cafaro, Virginia; Campbell, Omobolaji; Campbell, John; Carlson, Robert H.; Carmichael, J. Kevin; Casey, Kathleen K.; Cavacuiti, Chris; Celestin, Gregory; Chambers, Steven T.; Chez, Nancy; Chirch, Lisa M.; Cimoch, Paul J.; Cohen, Daniel; Cohn, Lillian E.; Conway, Brian; Cooper, David A.; Cornelson, Brian; Cox, David T.; Cristofano, Michael V.; Cuchural, George; Czartoski, Julie L.; Dahman, Joseph M.; Daly, Jennifer S.; Davis, Benjamin T.; Davis, Kristine; Davod, Sheila M.; DeJesus, Edwin; Dietz, Craig A.; Dunham, Eleanor; Dunn, Michael E.; Ellerin, Todd B.; Eron, Joseph J.; Fangman, John J. W.; Farel, Claire E.; Ferlazzo, Helen; Fidler, Sarah; Fleenor-Ford, Anita; Frankel, Renee; Freedberg, Kenneth A.; French, Neel K.; Fuchs, Jonathan D.; Fuller, Jon D.; Gaberman, Jonna; Gallant, Joel E.; Gandhi, Rajesh T.; Garcia, Efrain; Garmon, Donald; Gathe, Joseph C.; Gaultier, Cyril R.; Gebre, Wondwoosen; Gilman, Frank D.; Gilson, Ian; Goepfert, Paul A.; Gottlieb, Michael S.; Goulston, Claudia; Groger, Richard K.; Gurley, T. Douglas; Haber, Stuart; Hardwicke, Robin; Hardy, W. David; Harrigan, P. Richard; Hawkins, Trevor N.; Heath, Sonya; Hecht, Frederick M.; Henry, W. Keith; Hladek, Melissa; Hoffman, Robert P.; Horton, James M.; Hsu, Ricky K.; Huhn, Gregory D.; Hunt, Peter; Hupert, Mark J.; Illeman, Mark L.; Jaeger, Hans; Jellinger, Robert M.; John, Mina; Johnson, Jennifer A.; Johnson, Kristin L.; Johnson, Heather; Johnson, Kay; Joly, Jennifer; Jordan, Wilbert C.; Kauffman, Carol A.; Khanlou, Homayoon; Killian, Robert K.; Kim, Arthur Y.; Kim, David D.; Kinder, Clifford A.; Kirchner, Jeffrey T.; Kogelman, Laura; Kojic, Erna Milunka; Korthuis, P. Todd; Kurisu, Wayne; Kwon, Douglas S.; LaMar, Melissa; Lampiris, Harry; Lanzafame, Massimiliano; Lederman, Michael M.; Lee, David M.; Lee, Jean M. L.; Lee, Marah J.; Lee, Edward T. Y.; Lemoine, Janice; Levy, Jay A.; Llibre, Josep M.; Liguori, Michael A.; Little, Susan J.; Liu, Anne Y.; Lopez, Alvaro J.; Loutfy, Mono R.; Loy, Dawn; Mohammed, Debbie Y.; Man, Alan; Mansour, Michael K.; Marconi, Vincent C.; Markowitz, Martin; Marques, Rui; Martin, Jeffrey N.; Martin, Harold L.; Mayer, Kenneth Hugh; McElrath, M. Juliana; McGhee, Theresa A.; McGovern, Barbara H.; McGowan, Katherine; McIntyre, Dawn; Mcleod, Gavin X.; Menezes, Prema; Mesa, Greg; Metroka, Craig E.; Meyer-Olson, Dirk; Miller, Andy O.; Montgomery, Kate; Mounzer, Karam C.; Nagami, Ellen H.; Nagin, Iris; Nahass, Ronald G.; Nelson, Margret O.; Nielsen, Craig; Norene, David L.; O'Connor, David H.; Ojikutu, Bisola O.; Okulicz, Jason; Oladehin, Olakunle O.; Oldfield, Edward C.; Olender, Susan A.; Ostrowski, Mario; Owen, William F.; Pae, Eunice; Parsonnet, Jeffrey; Pavlatos, Andrew M.; Perlmutter, Aaron M.; Pierce, Michael N.; Pincus, Jonathan M.; Pisani, Leandro; Price, Lawrence Jay; Proia, Laurie; Prokesch, Richard C.; Pujet, Heather Calderon; Ramgopal, Moti; Rathod, Almas; Rausch, Michael; Ravishankar, J.; Rhame, Frank S.; Richards, Constance Shamuyarira; Richman, Douglas D.; Rodes, Berta; Rodriguez, Milagros; Rose, Richard C.; Rosenberg, Eric S.; Rosenthal, Daniel; Ross, Polly E.; Rubin, David S.; Rumbaugh, Elease; Saenz, Luis; Salvaggio, Michelle R.; Sanchez, William C.; Sanjana, Veeraf M.; Santiago, Steven; Schmidt, Wolfgang; Schuitemaker, Hanneke; Sestak, Philip M.; Shalit, Peter; Shay, William; Shirvani, Vivian N.; Silebi, Vanessa I.; Sizemore, James M.; Skolnik, Paul R.; Sokol-Anderson, Marcia; Sosman, James M.; Stabile, Paul; Stapleton, Jack T.; Starrett, Sheree; Stein, Francine; Stellbrink, Hans-Jurgen; Sterman, F. Lisa; Stone, Valerie E.; Stone, David R.; Tambussi, Giuseppe; Taplitz, Randy A.; Tedaldi, Ellen M.; Theisen, William; Torres, Richard; Tosiello, Lorraine; Tremblay, Cecile; Tribble, Marc A.; Trinh, Phuong D.; Tsao, Alice; Ueda, Peggy; Vaccaro, Anthony; Valadas, Emilia; Vanig, Thanes J.; Vecino, Isabel; Vega, Vilma M.; Veikley, Wenoah; Wade, Barbara H.; Walworth, Charles; Wanidworanun, Chingchai; Ward, Douglas J.; Warner, Daniel A.; Weber, Robert D.; Webster, Duncan; Weis, Steve; Wheeler, David A.; White, David J.; Wilkins, Ed; Winston, Alan; Wlodaver, Clifford G.; van't Wout, Angelique; Wright, David P.; Yang, Otto O.; Yurdin, David L.; Zabukovic, Brandon W.; Zachary, Kimon C.; Zeeman, Beth; Zhao, Meng

    2010-01-01

    Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide

  16. Leukemia prevention and long-term survival of AKR mice transplanted with MHC-matched or MHC-mismatched bone marrow

    International Nuclear Information System (INIS)

    Longley, R.E.; Good, R.A.

    1986-01-01

    The current studies were designed to evaluate the effectiveness of marrow transplantation within and outside the major histocompatibility complex (MHC) on the long-term survival and occurrence of spontaneous leukemia in AKR mice. AKR mice, which were lethally irradiated and received MHC-matched marrow from CBA/J mice (CBA----AKR), never developed leukemia and were alive and remained healthy for up to 280 days post-transplant. These long-term surviving chimeras possessed substantial immune vigor when both cell-mediated and humoral responses were tested. Lethally irradiated AKR mice, which had received MHC-mismatched marrow (anti-Thy-1.2 treated or nontreated) from C57BL/6J mice (B6----AKR), never developed leukemia and survived up to 170 days post-transplant. However, both groups of these chimeras began dying 180 to 270 days post-transplant due to a disease process which could not be readily identified. Histological analysis of B6----AKR chimeras revealed severe lymphoid cell depletion in thymus and spleen; however, none of these chimeras exhibited classical features of acute graft versus host disease. Concanavalin A mitogenesis, primary antibody responses to sheep red blood cells and the production of interleukin 2 (IL-2) were suppressed in B6----AKR chimeras. IL-2 treatment of B6----AKR chimeras was shown to partially correct these deficiencies without stimulating mixed lymphocyte responsiveness to donor or host lymphocytes. These studies indicate that the use of MHC-mismatched marrow for the prevention of spontaneous AKR leukemia may rely on augmentative IL-2 therapy for complete immune reconstitution of leukemia-free chimeras

  17. Occurrence of extra-pair paternity is connected to social male’s MHC-variability in the scarlet rosefinch Carpodacus erythrinus

    Czech Academy of Sciences Publication Activity Database

    Promerová, Marta; Vinkler, Michal; Bryja, Josef; Poláková, Radka; Schnitzer, J.; Munclinger, P.; Albrecht, Tomáš

    2011-01-01

    Roč. 42, č. 1 (2011), s. 5-10 ISSN 0908-8857 R&D Projects: GA AV ČR IAA600930608; GA ČR GA206/06/0851; GA MŠk LC06073 Institutional research plan: CEZ:AV0Z60930519 Keywords : scarlet rosefinch * Major Histocompatibility Complex (MHC) * mate choice decisions * good genes * sexual selection Subject RIV: EG - Zoology Impact factor: 2.280, year: 2011

  18. Cheetah paradigm revisited: MHC diversity in the world's largest free-ranging population.

    Science.gov (United States)

    Castro-Prieto, Aines; Wachter, Bettina; Sommer, Simone

    2011-04-01

    For more than two decades, the cheetah (Acinonyx jubatus) has been considered a paradigm of disease vulnerability associated with low genetic diversity, particularly at the immune genes of the major histocompatibility complex (MHC). Cheetahs have been used as a classic example in numerous conservation genetics textbooks as well as in many related scientific publications. However, earlier studies used methods with low resolution to quantify MHC diversity and/or small sample sizes. Furthermore, high disease susceptibility was reported only for captive cheetahs, whereas free-ranging cheetahs show no signs of infectious diseases and a good general health status. We examined whether the diversity at MHC class I and class II-DRB loci in 149 Namibian cheetahs was higher than previously reported using single-strand conformation polymorphism analysis, cloning, and sequencing. MHC genes were examined at the genomic and transcriptomic levels. We detected ten MHC class I and four class II-DRB alleles, of which nine MHC class I and all class II-DRB alleles were expressed. Phylogenetic analyses and individual genotypes suggested that the alleles belong to four MHC class I and three class II-DRB putative loci. Evidence of positive selection was detected in both MHC loci. Our study indicated that the low number of MHC class I alleles previously observed in cheetahs was due to a smaller sample size examined. On the other hand, the low number of MHC class II-DRB alleles previously observed in cheetahs was further confirmed. Compared with other mammalian species including felids, cheetahs showed low levels of MHC diversity, but this does not seem to influence the immunocompetence of free-ranging cheetahs in Namibia and contradicts the previous conclusion that the cheetah is a paradigm species of disease vulnerability.

  19. Differential regulation of expression of the MHC class II molecules RT1.B and RT1.D on rat B lymphocytes: effects of interleukin-4, interleukin-13 and interferon-gamma

    NARCIS (Netherlands)

    Roos, A.; Schilder-Tol, E. J.; Chand, M. A.; Claessen, N.; Lakkis, F. G.; Pascual, D. W.; Weening, J. J.; Aten, J.

    1998-01-01

    Susceptibility to induction of both T helper 1- (Th1) and Th2-mediated autoimmunity is multifactorial and involves genetic linkage to the major histocompatibility complex (MHC) class II haplotype. Brown Norway (BN) rats exposed to mercuric chloride develop a Th2-dependent systemic autoimmunity,

  20. Characterization of MHC class I in a long distance migratory wader, the Icelandic black-tailed godwit.

    Science.gov (United States)

    Pardal, Sara; Drews, Anna; Alves, José A; Ramos, Jaime A; Westerdahl, Helena

    2017-07-01

    The major histocompatibility complex (MHC) encodes proteins that are central for antigen presentation and pathogen elimination. MHC class I (MHC-I) genes have attracted a great deal of interest among researchers in ecology and evolution and have been partly characterized in a wide range of bird species. So far, the main focus has been on species within the bird orders Galliformes and Passeriformes, while Charadriiformes remain vastly underrepresented with only two species studied to date. These two Charadriiformes species exhibit striking differences in MHC-I characteristics and MHC-I diversity. We therefore set out to study a third species within Charadriiformes, the Icelandic subspecies of black-tailed godwits (Limosa limosa islandica). This subspecies is normally confined to parasite-poor environments, and we hence expected low MHC diversity. MHC-I was partially characterized first using Sanger sequencing and then using high-throughput sequencing (MiSeq) in 84 individuals. We verified 47 nucleotide alleles in open reading frame with classical MHC-I characteristics, and each individual godwit had two to seven putatively classical MHC alleles. However, in contrast to previous MHC-I data within Charadriiformes, we did not find any evidence of alleles with low sequence diversity, believed to represent non-classical MHC genes. The diversity and divergence of the godwits MHC-I genes to a large extent fell between the previous estimates within Charadriiformes. However, the MHC genes of the migratory godwits had few sites subject to positive selection, and one possible explanation could be a low exposure to pathogens.

  1. Sex-specific selection for MHC variability in Alpine chamois

    Directory of Open Access Journals (Sweden)

    Schaschl Helmut

    2012-02-01

    Full Text Available Abstract Background In mammals, males typically have shorter lives than females. This difference is thought to be due to behavioural traits which enhance competitive abilities, and hence male reproductive success, but impair survival. Furthermore, in many species males usually show higher parasite burden than females. Consequently, the intensity of selection for genetic factors which reduce susceptibility to pathogens may differ between sexes. High variability at the major histocompatibility complex (MHC genes is believed to be advantageous for detecting and combating the range of infectious agents present in the environment. Increased heterozygosity at these immune genes is expected to be important for individual longevity. However, whether males in natural populations benefit more from MHC heterozygosity than females has rarely been investigated. We investigated this question in a long-term study of free-living Alpine chamois (Rupicapra rupicapra, a polygynous mountain ungulate. Results Here we show that male chamois survive significantly (P = 0.022 longer if heterozygous at the MHC class II DRB locus, whereas females do not. Improved survival of males was not a result of heterozygote advantage per se, as background heterozygosity (estimated across twelve microsatellite loci did not change significantly with age. Furthermore, reproductively active males depleted their body fat reserves earlier than females leading to significantly impaired survival rates in this sex (P Conclusions Increased MHC class II DRB heterozygosity with age in males, suggests that MHC heterozygous males survive longer than homozygotes. Reproductively active males appear to be less likely to survive than females most likely because of the energetic challenge of the winter rut, accompanied by earlier depletion of their body fat stores, and a generally higher parasite burden. This scenario renders the MHC-mediated immune response more important for males than for females

  2. Participation of L3T4 in T cell activation in the absence of class II major histocompatibility complex antigens. Inhibition by anti-L3T4 antibodies is a function both of epitope density and mode of presentation of anti-receptor antibody

    DEFF Research Database (Denmark)

    Owens, T; Fazekas de St Groth, B

    1987-01-01

    two monoclonal antibodies, KJ16-133.18 and F23.1, that recognize a determinant encoded by the T cell receptor V beta 8 gene family. These antibodies were used to select two clones of T cells with surface phenotype Thy-1.2+, L3T4+, Lyt-2-, KJ16-133.18+, F23.1+, IA-, IE-. One of these clones (E9.D4......The recognition of many class II major histocompatibility complex (MHC)-associated antigens by T cells requires the participation of the L3T4 molecule. It has been proposed that this molecule acts to stabilize low affinity binding to antigen in association with MHC and thereby increases the avidity...... of T cell/antigen interactions. By using antibodies against the T cell antigen receptor (TCR) to activate T cells, thereby circumventing the requirement for antigen presenting cells and MHC-associated antigen, we have been able to study the function of L3T4 in the absence of class II MHC. We have used...

  3. Key Role of Toll-Like Receptor 2 in the Inflammatory Response and Major Histocompatibility Complex Class II Downregulation in Brucella abortus-Infected Alveolar Macrophages

    Science.gov (United States)

    Ferrero, Mariana C.; Hielpos, M. Soledad; Carvalho, Natalia B.; Barrionuevo, Paula; Corsetti, Patricia P.; Giambartolomei, Guillermo H.; Oliveira, Sergio C.

    2014-01-01

    Alveolar macrophages (AM) seem to constitute the main cellular target of inhaled brucellae. Here, we show that Brucella abortus invades and replicates in murine AM without inducing cytotoxicity. B. abortus infection induced a statistically significant increase of tumor necrosis factor alpha (TNF-α), CXCL1 or keratinocyte chemoattractant (KC), interleukin-1β (IL-1β), IL-6, and IL-12 in AM from C57BL/6 mice and BALB/c mice, but these responses were generally weaker and/or delayed compared to those elicited in peritoneal macrophages. Studies using knockout mice for TLR2, TLR4, and TLR9 revealed that TNF-α and KC responses were mediated by TLR2 recognition. Brucella infection reduced in a multiplicity of infection-dependent manner the expression of major histocompatibility complex class II (MHC-II) molecules induced by gamma interferon (IFN-γ) in AM. The same phenomenon was induced by incubation with heat-killed B. abortus (HKBA) or the lipidated form of the 19-kDa outer membrane protein of Brucella (L-Omp19), and it was shown to be mediated by TLR2 recognition. In contrast, no significant downregulation of MHC-II was induced by either unlipidated Omp19 or Brucella LPS. In a functional assay, treatment of AM with either L-Omp19 or HKBA reduced the MHC-II-restricted presentation of OVA peptides to specific T cells. One week after intratracheal infection, viable B. abortus was detected in AM from both wild-type and TLR2 KO mice, but CFU counts were higher in the latter. These results suggest that B. abortus survives in AM after inhalatory infection in spite of a certain degree of immune control exerted by the TLR2-mediated inflammatory response. Both the modest nature of the latter and the modulation of MHC-II expression by the bacterium may contribute to such survival. PMID:24478078

  4. Evidence for multiple major histocompatibility class II X-box binding proteins.

    OpenAIRE

    Celada, A; Maki, R

    1989-01-01

    The X box is a loosely conserved DNA sequence that is located upstream of all major histocompatibility class II genes and is one of the cis-acting regulatory elements. Despite the similarity between all X-box sequences, each promoter-proximal X box in the mouse appears to bind a separate nuclear factor.

  5. Complex assembly, crystallization and preliminary X-ray crystallographic studies of duck MHC class I molecule

    International Nuclear Information System (INIS)

    Zhang, Jianhua; Chen, Yong; Gao, Feng; Chen, Weihong; Qi, Jianxun; Xia, Chun

    2009-01-01

    Using a peptide derived from H5N1, a complex of duck MHC class I molecule (DuMHC I) with duck β 2 -microglobulin (Duβ 2 m) was assembled and crystallized. Initial structure analysis indicated that the crystals did not contain the complete DuMHC I complex but instead contained DuMHC I α3-domain and Duβ 2 m subunits. In order to understand the biological properties of the immune systems of waterfowl and to establish a system for structural studies of duck class I major histocompatibility complex (DuMHC I), a complex of DuMHC I with duck β 2 -microglobulin (Duβ 2 m) and the peptide AEIEDLIF (AF8) derived from H5N1 NP residues 251–258 was assembled. The complex was crystallized; the crystals belonged to space group C222 1 , with unit-cell parameters a = 54.7, b = 72.4, c = 102.2 Å, and diffracted to 2.3 Å resolution. Matthews coefficient calculation and initial structure determination by molecular replacement showed that the crystals did not contain the whole DuMHC I complex, but instead contained the DuMHC I α3 domain and a Duβ2m molecule (DuMHC I α3+β2m). Another complex of DuMHC I with the peptide IDWFDGKE derived from a chicken fusion protein also generated the same results. The stable structure of DuMHC I α3+β2m may reflect some unique characteristics of DuMHC I and pave the way for novel MHC structure-related studies in the future

  6. Low MHC variation in the endangered Galápagos penguin (Spheniscus mendiculus).

    Science.gov (United States)

    Bollmer, Jennifer L; Vargas, F Hernán; Parker, Patricia G

    2007-07-01

    The major histocompatibility complex (MHC) is one of the most polymorphic regions of the genome, likely due to balancing selection acting to maintain alleles over time. Lack of MHC variability has been attributed to factors such as genetic drift in small populations and relaxed selection pressure. The Galápagos penguin (Spheniscus mendiculus), endemic to the Galápagos Islands, is the only penguin that occurs on the equator. It relies upon cold, nutrient-rich upwellings and experiences severe population declines when ocean temperatures rise during El Niño events. These bottlenecks, occurring in an already small population, have likely resulted in reduced genetic diversity in this species. In this study, we used MHC class II exon 2 sequence data from a DRB1-like gene to characterize the amount of genetic variation at the MHC in 30 Galápagos penguins, as well as one Magellanic penguin (S. magellanicus) and two king penguins (Aptenodytes patagonicus), and compared it to that in five other penguin species for which published data exist. We found that the Galápagos penguin had the lowest MHC diversity (as measured by number of polymorphic sites and average divergence among alleles) of the eight penguin species studied. A phylogenetic analysis showed that Galápagos penguin MHC sequences are most closely related to Humboldt penguin (Spheniscus humboldti) sequences, its putative sister species based on other loci. An excess of non-synonymous mutations and a pattern of trans-specific evolution in the neighbor-joining tree suggest that selection is acting on the penguin MHC.

  7. Use of 8-methoxypsoralen and ultraviolet-A pretreated platelet concentrates to prevent alloimmunization against class I major histocompatibility antigens

    International Nuclear Information System (INIS)

    Grana, N.H.; Kao, K.J.

    1991-01-01

    The use of 8-methoxypsoralen (8-MOP) and UV-A irradiation to inactivate contaminating donor leukocytes in platelet concentrates and to prevent primary alloimmunization against donor class I major histocompatibility (MHC) antigens in mice was investigated. CBA/CaH-T6J mice with the H2k haplotype and BALB/cByJ mice with the H2d haplotype were used as donors and recipients, respectively. The mixed leukocyte reaction between these two strains of mice showed that treatment of spleen cells with 500 ng/mL 8-MOP and 5J/cm2 UV-A inhibited 99% of responder and 92% of stimulator function. There was no measurable loss of platelet aggregating activity after the treatment. After two weekly transfusions of platelets without any treatment, 93% of control mice (n = 15) developed anti-H2k antibody. In contrast, only 33% of mice (n = 15) receiving platelets treated with 8-MOP and UV-A became alloimmunized. After six weekly platelet transfusions, all mice became alloimmunized. Nevertheless, the mean titers of anti-H2k antibody in sera of the treated groups were significantly lower than the control groups. One hour posttransfusion recoveries of 51Cr-labeled donor platelets were also higher in mice transfused with the treated platelets. Thus, the pretreatment of platelet concentrates with 8-MOP and UV-A irradiation effectively reduced the alloantigenicity of class I MHC molecules. The implication of this finding in relation to the mechanism by which donor leukocytes allosensitize recipients is discussed

  8. High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis

    DEFF Research Database (Denmark)

    Goyette, Philippe; Boucher, Gabrielle; Mallon, Dermot

    2015-01-01

    high-density SNP typing of the MHC in >32,000 individuals with IBD, implicating multiple HLA alleles, with a primary role for HLA-DRB1*01:03 in both Crohn's disease and ulcerative colitis. Noteworthy differences were observed between these diseases, including a predominant role for class II HLA......Genome-wide association studies of the related chronic inflammatory bowel diseases (IBD) known as Crohn's disease and ulcerative colitis have shown strong evidence of association to the major histocompatibility complex (MHC). This region encodes a large number of immunological candidates, including...

  9. Expression and characterization of recombinant single-chain salmon class I MHC fused with beta2-microglobulin with biological activity

    DEFF Research Database (Denmark)

    Zhao, Heng; Stet, René J M; Skjødt, Karsten

    2008-01-01

    Heterodimeric class I major histocompatibility complex (MHC) molecules consist of a putative 45-kDa heavy chain and a 12-kDa beta2-microglobulin (beta2m) light chain. The knowledge about MHC genes in Atlantic salmon accumulated during the last decade has allowed us to generate soluble and stable ...... MHC class I molecules with biological activity. We report here the use of a bacterial expression system to produce the recombinant single-chain MHC molecules based on a specific allele Sasa-UBA*0301. This particular allele was selected because previous work has shown its association...... antibodies were successfully produced against both the MHC class I heavy chain and beta(2)m, and showed binding to the recombinant molecule. The recombinant complex Sasabeta2mUBA*0301 was expressed and isolated; the production was scaled up by adjusting to its optimal conditions. Subsequently......, the recombinant proteins were purified by affinity chromatography using mAb against beta2m and alpha3. Eluates were analyzed by Western blot and refolded by the removal of denaturant. The correct folding was confirmed by measuring its binding capacity against mAb produced to recognize the native form of MHC...

  10. Expression of ras oncogene and major histocompatibility complex (MHC) antigen in carcinomas of the uterine cervix

    International Nuclear Information System (INIS)

    Cho, Kyung Ja; Jang, Ja June; Kim, Yong Dae; Ha, Chang Won; Koh, Jae Soo

    1993-01-01

    Consecutive 50 cases of squamous cell carcinomas of the uterine cervix diagnosed in 1992 were subjected to immunohistochemical study for ras oncogene product (p21) and MHC class II (DR) antigen using a microprobe immunostainer. Activated ras and aberrant DR expression were noted in 26 cases (52%) and 11 cases (22%) of cervical squamous cell carcinomas, respectively, without difference among histologic types. The reaction was mainly intracytoplasmic, with granular staining pattern and diffuse distribution. No direct histologic correlation between ras and DR expression was found. Four cases with HPV 16/18 DNA in superficial koilocytotic cells, revealed by in situ hybridization, showed various expression of ras and DR, and these 3 factors histologically did not seem to be affected one another. (Author)

  11. Major Histocompatibility Complex I Mediates Immunological Tolerance of the Trophoblast during Pregnancy and May Mediate Rejection during Parturition

    Directory of Open Access Journals (Sweden)

    Anna Rapacz-Leonard

    2014-01-01

    Full Text Available During pregnancy in larger mammals, the maternal immune system must tolerate the fetus for months while resisting external infection. This tolerance is facilitated by immunological communication between the fetus and the mother, which is mediated by Major Histocompatibility Complex I (MHC I proteins, by leukocytes, and by the cytokines secreted by the leukocytes. Fetal-maternal immunological communication also supports pregnancy by inducing physiological changes in the mother. If the mother “misunderstands” the signal sent by the fetus during pregnancy, the fetus will be miscarried or delivered preterm. Unlike any other maternal organ, the placenta can express paternal antigens. At parturition, paternal antigens are known to be expressed in cows and may be expressed in horses, possibly so that the maternal immune system will reject the placenta and help to expel it. This review compares fetal-maternal crosstalk that is mediated by the immune system in three species with pregnancies that last for nine months or longer: humans, cattle, and horses. It raises the possibility that immunological communication early in pregnancy may prepare the mother for successful expulsion of fetal membranes at parturition.

  12. Characterization of MHC class I and II genes in a subantarctic seabird, the blue petrel, Halobaena caerulea (Procellariiformes).

    Science.gov (United States)

    Strandh, Maria; Lannefors, Mimi; Bonadonna, Francesco; Westerdahl, Helena

    2011-10-01

    The great polymorphism observed in the major histocompatibility complex (MHC) genes is thought to be maintained by pathogen-mediated selection possibly combined with MHC-disassortative mating, guided by MHC-determined olfactory cues. Here, we partly characterize the MHC class I and II B of the blue petrel, Halobaena caerulea (Procellariiformes), a bird with significant olfactory abilities that lives under presumably low pathogen burdens in Subantarctica. Blue petrels are long-lived, monogamous birds which suggest the necessity of an accurate mate choice process. The species is ancestral to songbirds (Passeriformes; many MHC loci), although not to gamefowls (Galliformes; few MHC loci). Considering the phylogenetic relationships and the low subantarctic pathogen burden, we expected few rather than many MHC loci in the blue petrel. However, when we analysed partial MHC class I and class II B cDNA and gDNA sequences we found evidence for as many as at least eight MHC class I loci and at least two class II B loci. These class I and II B sequences showed classical MHC characteristics, e.g. high nucleotide diversity, especially in putative peptide-binding regions where signatures of positive selection was detected. Trans-species polymorphism was found between MHC class II B sequences of the blue petrel and those of thin-billed prion, Pachyptila belcheri, two species that diverged ∼25 MYA. The observed MHC allele richness in the blue petrel may well serve as a basis for mate choice, especially since olfactory discrimination of MHC types may be possible in this species.

  13. Identification, inheritance, and linkage of B-G-like and MHC class I genes in cranes

    Science.gov (United States)

    Jarvi, S.I.; Goto, R.M.; Gee, G.F.; Briles, W.E.; Miller, M.M.

    1999-01-01

    We identified B-G-like genes in the whooping and Florida sandhill cranes and linked them to the major histocompatibility complex (MHC). We evaluated the inheritance of B-G-like genes in families of whooping and Florida sandhill cranes using restriction fragment patterns (RFPs). Two B-G-like genes, designated wcbgl and wcbg2, were located within 8 kb of one another. The fully sequenced wcbg2 gene encodes a B-G IgV-like domain, an additional Ig-like domain, a transmembrane domain, and a single heptad domain typical of '-helical coiled coils. Patterns of restriction fragments in DNA from the whooping crane and from a number of other species indicate that the B-G-like gene families of cranes are large with diverse sequences. Segregation of RFPs in families of Florida sandhill cranes provide evidence for genetic polymorphism in the B-G-like genes. The restriction fragments generally segregated in concert with MHC haplotypes assigned by serological typing and by single stranded conformational polymorphism (SSCP) assays based in the second exon of the crane MHC class I genes. This study supports the concept of a long-term association of polymorphic B-G-like genes with the MHC. It also establishes SSCP as a means for evaluating MHC genetic variability in cranes.

  14. Identification, inheritance, and linkage of B-G-like and MHC class I genes in cranes.

    Science.gov (United States)

    Jarvi, S I; Goto, R M; Gee, G F; Briles, W E; Miller, M M

    1999-01-01

    We identified B-G-like genes in the whooping and Florida sandhill cranes and linked them to the major histocompatibility complex (MHC). We evaluated the inheritance of B-G-like genes in families of whooping and Florida sandhill cranes using restriction fragment patterns (RFPs). Two B-G-like genes, designated wcbg1 and wcbg2, were located within 8 kb of one another. The fully sequenced wcbg2 gene encodes a B-G IgV-like domain, an additional Ig-like domain, a transmembrane domain, and a single heptad domain typical of alpha-helical coiled coils. Patterns of restriction fragments in DNA from the whooping crane and from a number of other species indicate that the B-G-like gene families of cranes are large with diverse sequences. Segregation of RFPs in families of Florida sandhill cranes provide evidence for genetic polymorphism in the B-G-like genes. The restriction fragments generally segregated in concert with MHC haplotypes assigned by serological typing and by single stranded conformational polymorphism (SSCP) assays based in the second exon of the crane MHC class I genes. This study supports the concept of a long-term association of polymorphic B-G-like genes with the MHC. It also establishes SSCP as a means for evaluating MHC genetic variability in cranes.

  15. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction

    Directory of Open Access Journals (Sweden)

    Lund Ole

    2009-09-01

    Full Text Available Abstract Background The major histocompatibility complex (MHC molecule plays a central role in controlling the adaptive immune response to infections. MHC class I molecules present peptides derived from intracellular proteins to cytotoxic T cells, whereas MHC class II molecules stimulate cellular and humoral immunity through presentation of extracellularly derived peptides to helper T cells. Identification of which peptides will bind a given MHC molecule is thus of great importance for the understanding of host-pathogen interactions, and large efforts have been placed in developing algorithms capable of predicting this binding event. Results Here, we present a novel artificial neural network-based method, NN-align that allows for simultaneous identification of the MHC class II binding core and binding affinity. NN-align is trained using a novel training algorithm that allows for correction of bias in the training data due to redundant binding core representation. Incorporation of information about the residues flanking the peptide-binding core is shown to significantly improve the prediction accuracy. The method is evaluated on a large-scale benchmark consisting of six independent data sets covering 14 human MHC class II alleles, and is demonstrated to outperform other state-of-the-art MHC class II prediction methods. Conclusion The NN-align method is competitive with the state-of-the-art MHC class II peptide binding prediction algorithms. The method is publicly available at http://www.cbs.dtu.dk/services/NetMHCII-2.0.

  16. Identification of naturally processed hepatitis C virus-derived major histocompatibility complex class I ligands.

    Directory of Open Access Journals (Sweden)

    Benno Wölk

    Full Text Available Fine mapping of human cytotoxic T lymphocyte (CTL responses against hepatitis C virus (HCV is based on external loading of target cells with synthetic peptides which are either derived from prediction algorithms or from overlapping peptide libraries. These strategies do not address putative host and viral mechanisms which may alter processing as well as presentation of CTL epitopes. Therefore, the aim of this proof-of-concept study was to identify naturally processed HCV-derived major histocompatibility complex (MHC class I ligands. To this end, continuous human cell lines were engineered to inducibly express HCV proteins and to constitutively express high levels of functional HLA-A2. These cell lines were recognized in an HLA-A2-restricted manner by HCV-specific CTLs. Ligands eluted from HLA-A2 molecules isolated from large-scale cultures of these cell lines were separated by high performance liquid chromatography and further analyzed by electrospray ionization quadrupole time of flight mass spectrometry (MS/tandem MS. These analyses allowed the identification of two HLA-A2-restricted epitopes derived from HCV nonstructural proteins (NS 3 and 5B (NS3₁₄₀₆₋₁₄₁₅ and NS5B₂₅₉₄₋₂₆₀₂. In conclusion, we describe a general strategy that may be useful to investigate HCV pathogenesis and may contribute to the development of preventive and therapeutic vaccines in the future.

  17. Identification of T1D susceptibility genes within the MHC region by combining protein interaction networks and SNP genotyping data

    DEFF Research Database (Denmark)

    Brorsson, C.; Hansen, Niclas Tue; Hansen, Kasper Lage

    2009-01-01

    genes. We have developed a novel method that combines single nucleotide polymorphism (SNP) genotyping data with protein-protein interaction (ppi) networks to identify disease-associated network modules enriched for proteins encoded from the MHC region. Approximately 2500 SNPs located in the 4 Mb MHC......To develop novel methods for identifying new genes that contribute to the risk of developing type 1 diabetes within the Major Histocompatibility Complex (MHC) region on chromosome 6, independently of the known linkage disequilibrium (LD) between human leucocyte antigen (HLA)-DRB1, -DQA1, -DQB1...... region were analysed in 1000 affected offspring trios generated by the Type 1 Diabetes Genetics Consortium (T1DGC). The most associated SNP in each gene was chosen and genes were mapped to ppi networks for identification of interaction partners. The association testing and resulting interacting protein...

  18. H-2RIIBP, a member of the nuclear hormone receptor superfamily that binds to both the regulatory element of major histocompatibility class I genes and the estrogen response element.

    Science.gov (United States)

    Hamada, K; Gleason, S L; Levi, B Z; Hirschfeld, S; Appella, E; Ozato, K

    1989-11-01

    Transcription of major histocompatibility complex (MHC) class I genes is regulated by the conserved MHC class I regulatory element (CRE). The CRE has two factor-binding sites, region I and region II, both of which elicit enhancer function. By screening a mouse lambda gt 11 library with the CRE as a probe, we isolated a cDNA clone that encodes a protein capable of binding to region II of the CRE. This protein, H-2RIIBP (H-2 region II binding protein), bound to the native region II sequence, but not to other MHC cis-acting sequences or to mutant region II sequences, similar to the naturally occurring region II factor in mouse cells. The deduced amino acid sequence of H-2RIIBP revealed two putative zinc fingers homologous to the DNA-binding domain of steroid/thyroid hormone receptors. Although sequence similarity in other regions was minimal, H-2RIIBP has apparent modular domains characteristic of the nuclear hormone receptors. Further analyses showed that both H-2RIIBP and the natural region II factor bind to the estrogen response element (ERE) of the vitellogenin A2 gene. The ERE is composed of a palindrome, and half of this palindrome resembles the region II binding site of the MHC CRE. These results indicate that H-2RIIBP (i) is a member of the superfamily of nuclear hormone receptors and (ii) may regulate not only MHC class I genes but also genes containing the ERE and related sequences. Sequences homologous to the H-2RIIBP gene are widely conserved in the animal kingdom. H-2RIIBP mRNA is expressed in many mouse tissues, in agreement with the distribution of the natural region II factor.

  19. Expression, refolding and preliminary X-ray crystallographic analysis of equine MHC class I molecule complexed with an EIAV-Env CTL epitope

    International Nuclear Information System (INIS)

    Yao, Shugang; Qi, Jianxun; Liu, Jun; Chen, Rong; Pan, Xiaocheng; Li, Xiaoying; Gao, Feng; Xia, Chun

    2011-01-01

    The equine MHC class I molecule was crystallized in complex with β 2 -microglobulin and a CTL epitope and X-ray diffraction data were collected to 2.3 Å resolution. In order to clarify the structure and the peptide-presentation characteristics of the equine major histocompatibility complex (MHC) class I molecule, a complex of equine MHC class I molecule (ELA-A1 haplotype, 7-6 allele) with mouse β 2 -microglobulin and the cytotoxic T lymphocyte (CTL) epitope Env-RW12 (RVEDVTNTAEYW) derived from equine infectious anaemia virus (EIAV) envelope protein (residues 195–206) was refolded and crystallized. The crystal, which belonged to space group P2 1 , diffracted to 2.3 Å resolution and had unit-cell parameters a = 82.5, b = 71.4, c = 99.8 Å, β = 102.9°. The crystal structure contained two molecules in the asymmetric unit. These results should help to determine the first equine MHC class I molecule structure presenting an EIAV CTL epitope

  20. Detection of new MHC mutations in mice by skin grafting, tumor transplantation and monoclonal antibodies: a comparison

    International Nuclear Information System (INIS)

    Egorov, I.K.; Egorov, O.S.

    1988-01-01

    Two mechanisms of major histocompatibility complex (MHC) mutations have been described in mice: gene conversion and homologous but unequal recombination. However, the knowledge of mutations in MHC is incomplete because studies have been limited almost exclusively to two haplotypes, H-2/sup b/ and H-2/sup d/, while hundreds of haplotypes exist in nature; it has been biased by the use of only one procedure of screening for mutation, skin grafting. The authors used three procedures to screen for MHC mutations: (1) conventional techniques of skin grafting, (2) syngeneic tumor transplantation and (3) typing with monoclonal anti-MHC antibodies (mAbs) and complement. The faster technique of tumor transplantation detected mutants similar to those discovered by skin grafting technique. Screening with mAbs allowed us to detect both mutants that are capable of rejecting standard skin grafts and those that are silent in skin grafting tests, and which therefore resulted in a higher apparent mutation frequency. Two mutants of the H-2/sup a/ haplotype were found that carry concomitant class I and class II antigenic alterations. Both MHC mutants silent in skin grafting tests and mutants carrying concomitant class I and class II alterations have never been studied before and are expected to reveal new mechanisms of generating MHC mutations. 1-Ethyl-1-nitrosourea (ENU) failed to induce de novo MHC mutations in our skin grafting series

  1. X-ray crystallographic characterization of rhesus macaque MHC Mamu-A*02 complexed with an immunodominant SIV-Gag nonapeptide

    International Nuclear Information System (INIS)

    Feng, Youjun; Qi, Jianxun; Zhang, Huimin; Wang, Jinzi; Liu, Jinhua; Jiang, Fan; Gao, Feng

    2005-01-01

    X-ray crystallographic characterization of rhesus macaque MHC Mamu-A*02 complexed with an immunodominant SIV-Gag nonapeptide. Simian immunodeficiency virus (SIV) in the rhesus macaque is regarded as a classic animal model, playing a crucial role in HIV vaccine strategies and therapeutics by characterizing various cytotoxic T-lymphocyte (CTL) responses in macaque monkeys. However, the availability of well documented structural reports focusing on rhesus macaque major histocompatibility complex class I (MHC I) molecules remains extremely limited. Here, a complex of the rhesus macaque MHC I molecule (Mamu-A*02) with human β 2 m and an immunodominant SIV-Gag nonapeptide, GESNLKSLY (GY9), has been crystallized. The crystal diffracts X-rays to 2.7 Å resolution and belongs to space group C2, with unit-cell parameters a = 124.11, b = 110.45, c = 100.06 Å, and contains two molecules in the asymmetric unit. The availability of the structure, which is being solved by molecular replacement, will provide new insights into rhesus macaque MHC I (Mamu-A*02) presenting pathogenic SIV peptides

  2. X-ray crystallographic characterization of rhesus macaque MHC Mamu-A*02 complexed with an immunodominant SIV-Gag nonapeptide

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Youjun [Laboratory of Molecular Immunology and Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080 (China); Graduate School, Chinese Academy of Sciences, Beijing (China); Qi, Jianxun [Graduate School, Chinese Academy of Sciences, Beijing (China); Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Zhang, Huimin; Wang, Jinzi [Laboratory of Molecular Immunology and Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080 (China); Liu, Jinhua [College of Veterinary Medicine, China Agricultural University, Beijing 100094 (China); Jiang, Fan [Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Gao, Feng, E-mail: gaofeng@im.ac.cn [Laboratory of Molecular Immunology and Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080 (China); College of Veterinary Medicine, China Agricultural University, Beijing 100094 (China)

    2006-01-01

    X-ray crystallographic characterization of rhesus macaque MHC Mamu-A*02 complexed with an immunodominant SIV-Gag nonapeptide. Simian immunodeficiency virus (SIV) in the rhesus macaque is regarded as a classic animal model, playing a crucial role in HIV vaccine strategies and therapeutics by characterizing various cytotoxic T-lymphocyte (CTL) responses in macaque monkeys. However, the availability of well documented structural reports focusing on rhesus macaque major histocompatibility complex class I (MHC I) molecules remains extremely limited. Here, a complex of the rhesus macaque MHC I molecule (Mamu-A*02) with human β{sub 2}m and an immunodominant SIV-Gag nonapeptide, GESNLKSLY (GY9), has been crystallized. The crystal diffracts X-rays to 2.7 Å resolution and belongs to space group C2, with unit-cell parameters a = 124.11, b = 110.45, c = 100.06 Å, and contains two molecules in the asymmetric unit. The availability of the structure, which is being solved by molecular replacement, will provide new insights into rhesus macaque MHC I (Mamu-A*02) presenting pathogenic SIV peptides.

  3. Natural selection on MHC IIβ in parapatric lake and stream stickleback: Balancing, divergent, both or neither?

    Science.gov (United States)

    Stutz, William E; Bolnick, Daniel I

    2017-09-01

    Major histocompatibility complex (MHC) genes encode proteins that play a central role in vertebrates' adaptive immunity to parasites. MHC loci are among the most polymorphic in vertebrates' genomes, inspiring many studies to identify evolutionary processes driving MHC polymorphism within populations and divergence between populations. Leading hypotheses include balancing selection favouring rare alleles within populations, and spatially divergent selection. These hypotheses do not always produce diagnosably distinct predictions, causing many studies of MHC to yield inconsistent or ambiguous results. We suggest a novel strategy to distinguish balancing vs. divergent selection on MHC, taking advantage of natural admixture between parapatric populations. With divergent selection, individuals with immigrant alleles will be more infected and less fit because they are susceptible to novel parasites in their new habitat. With balancing selection, individuals with locally rare immigrant alleles will be more fit (less infected). We tested these contrasting predictions using three-spine stickleback from three replicate pairs of parapatric lake and stream habitats. We found numerous positive and negative associations between particular MHC IIβ alleles and particular parasite taxa. A few allele-parasite comparisons supported balancing selection, and others supported divergent selection between habitats. But, there was no overall tendency for fish with immigrant MHC alleles to be more or less heavily infected. Instead, locally rare MHC alleles (not necessarily immigrants) were associated with heavier infections. Our results illustrate the complex relationship between MHC IIβ allelic variation and spatially varying multispecies parasite communities: different hypotheses may be concurrently true for different allele-parasite combinations. © 2017 John Wiley & Sons Ltd.

  4. Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man.

    Science.gov (United States)

    Kulski, Jerzy K; Shiina, Takashi; Anzai, Tatsuya; Kohara, Sakae; Inoko, Hidetoshi

    2002-12-01

    The major histocompatibility complex (MHC) genomic region is composed of a group of linked genes involved functionally with the adaptive and innate immune systems. The class I and class II genes are intrinsic features of the MHC and have been found in all the jawed vertebrates studied so far. The MHC genomic regions of the human and the chicken (B locus) have been fully sequenced and mapped, and the mouse MHC sequence is almost finished. Information on the MHC genomic structures (size, complexity, genic and intergenic composition and organization, gene order and number) of other vertebrates is largely limited or nonexistent. Therefore, we are mapping, sequencing and analyzing the MHC genomic regions of different human haplotypes and at least eight nonhuman species. Here, we review our progress with these sequences and compare the human MHC structure with that of the nonhuman primates (chimpanzee and rhesus macaque), other mammals (pigs, mice and rats) and nonmammalian vertebrates such as birds (chicken and quail), bony fish (medaka, pufferfish and zebrafish) and cartilaginous fish (nurse shark). This comparison reveals a complex MHC structure for mammals and a relatively simpler design for nonmammalian animals with a hypothetical prototypic structure for the shark. In the mammalian MHC, there are two to five different class I duplication blocks embedded within a framework of conserved nonclass I and/or nonclass II genes. With a few exceptions, the class I framework genes are absent from the MHC of birds, bony fish and sharks. Comparative genomics of the MHC reveal a highly plastic region with major structural differences between the mammalian and nonmammalian vertebrates. Additional genomic data are needed on animals of the reptilia, crocodilia and marsupial classes to find the origins of the class I framework genes and examples of structures that may be intermediate between the simple and complex MHC organizations of birds and mammals, respectively.

  5. Peptide-binding motif prediction by using phage display library for SasaUBA*0301, a resistance haplotype of MHC class I molecule from Atlantic Salmon (Salmo salar)

    DEFF Research Database (Denmark)

    Zhao, Heng; Hermsen, Trudi; Stet, Rene J M

    2008-01-01

    The structure of the peptide-binding specificity of major histocompatibility complex (MHC) class I has been analyzed extensively in human and mouse. For fish, there are no crystallographic models of MHC molecules, neither are there data on the peptide-binding specificity. In this study, we descri...... and there is a significant association between MHC polymorphism and the disease resistance. Therefore, our study might contribute to designing a peptide vaccine against this viral disease....... class I molecule might have a very similar binding motif at the C-terminus compared with a known mouse class I molecule H2-Kb which has L, or I, V, M at p8. Previous work showed that Atlantic Salmon carrying the allele SasaUBA*0301 are resistant to infectious Salmon aneamia virus...

  6. HIV Controllers Exhibit Enhanced Frequencies of Major Histocompatibility Complex Class II Tetramer+ Gag-Specific CD4+ T Cells in Chronic Clade C HIV-1 Infection.

    Science.gov (United States)

    Laher, Faatima; Ranasinghe, Srinika; Porichis, Filippos; Mewalal, Nikoshia; Pretorius, Karyn; Ismail, Nasreen; Buus, Søren; Stryhn, Anette; Carrington, Mary; Walker, Bruce D; Ndung'u, Thumbi; Ndhlovu, Zaza M

    2017-04-01

    Immune control of viral infections is heavily dependent on helper CD4 + T cell function. However, the understanding of the contribution of HIV-specific CD4 + T cell responses to immune protection against HIV-1, particularly in clade C infection, remains incomplete. Recently, major histocompatibility complex (MHC) class II tetramers have emerged as a powerful tool for interrogating antigen-specific CD4 + T cells without relying on effector functions. Here, we defined the MHC class II alleles for immunodominant Gag CD4 + T cell epitopes in clade C virus infection, constructed MHC class II tetramers, and then used these to define the magnitude, function, and relation to the viral load of HIV-specific CD4 + T cell responses in a cohort of untreated HIV clade C-infected persons. We observed significantly higher frequencies of MHC class II tetramer-positive CD4 + T cells in HIV controllers than progressors ( P = 0.0001), and these expanded Gag-specific CD4 + T cells in HIV controllers showed higher levels of expression of the cytolytic proteins granzymes A and B. Importantly, targeting of the immunodominant Gag41 peptide in the context of HLA class II DRB1*1101 was associated with HIV control ( r = -0.5, P = 0.02). These data identify an association between HIV-specific CD4 + T cell targeting of immunodominant Gag epitopes and immune control, particularly the contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infection. Furthermore, these results highlight the advantage of the use of class II tetramers in evaluating HIV-specific CD4 + T cell responses in natural infections. IMPORTANCE Increasing evidence suggests that virus-specific CD4 + T cells contribute to the immune-mediated control of clade B HIV-1 infection, yet there remains a relative paucity of data regarding the role of HIV-specific CD4 + T cells in shaping adaptive immune responses in individuals infected with clade C, which is responsible for the majority of HIV

  7. Quantum chemical analysis explains hemagglutinin peptide-MHC Class II molecule HLA-DRβ1*0101 interactions

    International Nuclear Information System (INIS)

    Cardenas, Constanza; Villaveces, Jose Luis; Bohorquez, Hugo; Llanos, Eugenio; Suarez, Carlos; Obregon, Mateo; Patarroyo, Manuel Elkin

    2004-01-01

    We present a new method to explore interactions between peptides and major histocompatibility complex (MHC) molecules using the resultant vector of the three principal multipole terms of the electrostatic field expansion. Being that molecular interactions are driven by electrostatic interactions, we applied quantum chemistry methods to better understand variations in the electrostatic field of the MHC Class II HLA-DRβ1*0101-HA complex. Multipole terms were studied, finding strong alterations of the field in Pocket 1 of this MHC molecule, and weak variations in other pockets, with Pocket 1 >> Pocket 4 > Pocket 9 ∼ Pocket 7 > Pocket 6. Variations produced by 'ideal' amino acids and by other occupying amino acids were compared. Two types of interactions were found in all pockets: a strong unspecific one (global interaction) and a weak specific interaction (differential interaction). Interactions in Pocket 1, the dominant pocket for this allele, are driven mainly by the quadrupole term, confirming the idea that aromatic rings are important in these interactions. Multipolar analysis is in agreement with experimental results, suggesting quantum chemistry methods as an adequate methodology to understand these interactions

  8. Genes Outside the Major Histocompatibility Complex Locus Are Linked to the Development of Thyroid Autoantibodies and Thyroiditis in NOD.H2h4 Mice.

    Science.gov (United States)

    McLachlan, Sandra M; Lesage, Sylvie; Collin, Roxanne; Banuelos, Bianca; Aliesky, Holly A; Rapoport, Basil

    2017-04-01

    Thyroiditis and autoantibodies to thyroglobulin (TgAb) and thyroid peroxidase (TPOAb) develop spontaneously in NOD.H2h4 mice, a phenotype enhanced by dietary iodine. NOD.H2h4 mice were derived by introducing the major histocompatibility class (MHC) molecule I-Ak from B10.A(4R) mice to nonobese diabetic (NOD) mice. Apart from I-Ak, the genes responsible for the NOD.H2h4 phenotype are unknown. Extending serendipitous observations from crossing BALB/c to NOD.H2h4 mice, thyroid autoimmunity was investigated in both genders of the F1, F2, and the second-generation backcross of F1 to NOD.H2h4 (N2). Medium-density linkage analysis was performed on thyroid autoimmunity traits in F2 and N2 progeny. TgAb develop before TPOAb and were measured after 8 and 16 weeks of iodide exposure; TPOAb and thyroiditis were studied at 16 weeks. TgAb, TPOAb, and thyroiditis, absent in BALB/c and F1 mice, developed in most NOD.H2h4 and in more N2 than F2 progeny. No linkages were observed in F2 progeny, probably because of the small number of autoantibody-positive mice. In N2 progeny (equal numbers of males and females), a chromosome 17 locus is linked to thyroiditis and TgAb and is suggestively linked to TPOAb. This locus includes MHC region genes from B10.A(4R) mice (such as I-Ak and Tnf, the latter involved in thyrocyte apoptosis) and genes from NOD mice such as Satb1, which most likely plays a role in immune tolerance. In conclusion, MHC and non-MHC genes, encoded within the chromosome 17 locus from both B10.A(4R) and NOD strains, are most likely responsible for the Hashimoto disease-like phenotype of NOD.H2h4 mice. Copyright © 2017 Endocrine Society.

  9. MH2c: Characterization of major histocompatibility α-helices - an information criterion approach.

    Science.gov (United States)

    Hischenhuber, B; Frommlet, F; Schreiner, W; Knapp, B

    2012-07-01

    Major histocompatibility proteins share a common overall structure or peptide binding groove. Two binding groove domains, on the same chain for major histocompatibility class I or on two different chains for major histocompatibility class II, contribute to that structure that consists of two α -helices ("wall") and a sheet of eight anti-parallel beta strands ("floor"). Apart from the peptide presented in the groove, the major histocompatibility α -helices play a central role for the interaction with the T cell receptor. This study presents a generalized mathematical approach for the characterization of these helices. We employed polynomials of degree 1 to 7 and splines with 1 to 2 nodes based on polynomials of degree 1 to 7 on the α -helices projected on their principal components. We evaluated all models with a corrected Akaike Information Criterion to determine which model represents the α -helices in the best way without overfitting the data. This method is applicable for both the stationary and the dynamic characterization of α -helices. By deriving differential geometric parameters from these models one obtains a reliable method to characterize and compare α -helices for a broad range of applications. Program title: MH 2 c (MH helix curves) Catalogue identifier: AELX_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AELX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 327 565 No. of bytes in distributed program, including test data, etc.: 17 433 656 Distribution format: tar.gz Programming language: Matlab Computer: Personal computer architectures Operating system: Windows, Linux, Mac (all systems on which Matlab can be installed) RAM: Depends on the trajectory size, min. 1 GB (Matlab) Classification: 2.1, 4.9, 4.14 External routines: Curve

  10. MHC class I cross-talk with CD2 and CD28 induces specific intracellular signalling and leads to growth retardation and apoptosis via a p56(lck)-dependent mechanism

    DEFF Research Database (Denmark)

    Ruhwald, M; Pedersen, Anders Elm; Claesson, M H

    1999-01-01

    Ligation of the major histocompatibility complex class I molecules (MHC-I) on human T lymphoma cells (Jurkat) initiates p56(lck)-dependent intracellular signalling events (phosphotyrosine kinase activity; [Ca(2+)](i)) and leads to augmented growth inhibition and apoptosis. MHC-I ligation in concert...... of apoptosis. In parallel experiments with the p56(lck)-negative Jurkat mutant cell, JCaM1.6, cross-linking neither influenced cell signalling nor cellular growth functions, indicating a cardinal role of the src kinases in signal transduction via MHC-I, CD2 and CD28 molecules. The results presented here...... with ligation of CD2 or CD28 augments, changes or modifies the pattern of activation. Ligation of MHC-I and CD2 alone resulted in growth inhibition, whereas CD28 ligation alone had no effect on cell proliferation. Ligation of MHC-I together with CD2 augmented growth inhibition and enhanced the level...

  11. Design of Peptide Immunotherapies for MHC Class-II-Associated Autoimmune Disorders

    Directory of Open Access Journals (Sweden)

    Masha Fridkis-Hareli

    2013-01-01

    Full Text Available Autoimmune disorders, that occur when autoreactive immune cells are induced to activate their responses against self-tissues, affect one percent of the world population and represent one of the top 10 leading causes of death. The major histocompatibility complex (MHC is a principal susceptibility locus for many human autoimmune diseases, in which self-tissue antigens providing targets for pathogenic lymphocytes are bound to HLA molecules encoded by disease-associated alleles. In spite of the attempts to design strategies for inhibition of antigen presentation targeting the MHC-peptide/TCR complex via generation of blocking antibodies, altered peptide ligands (APL, or inhibitors of costimulatory molecules, potent therapies with minimal side effects have yet to be developed. Copaxone (glatiramer acetate, GA is a random synthetic amino acid copolymer that reduces the relapse rate by about 30% in relapsing-remitting multiple sclerosis (MS patients. Based on the elucidated binding motifs of Copaxone and of the anchor residues of the immunogenic myelin basic protein (MBP peptide to HLA-DR molecules, novel copolymers have been designed and proved to be more effective in suppressing MS-like disease in mice. In this report, we describe the rationale for design of second-generation synthetic random copolymers as candidate drugs for a number of MHC class-II-associated autoimmune disorders.

  12. Selection on MHC class II supertypes in the New Zealand endemic Hochstetter's frog.

    Science.gov (United States)

    Lillie, Mette; Grueber, Catherine E; Sutton, Jolene T; Howitt, Robyn; Bishop, Phillip J; Gleeson, Dianne; Belov, Katherine

    2015-04-13

    The New Zealand native frogs, family Leiopelmatidae, are among the most archaic in the world. Leiopelma hochstetteri (Hochstetter's frog) is a small, semi-aquatic frog with numerous, fragmented populations scattered across New Zealand's North Island. We characterized a major histocompatibility complex (MHC) class II B gene (DAB) in L. hochstetteri from a spleen transcriptome, and then compared its diversity to neutral microsatellite markers to assess the adaptive genetic diversity of five populations ("evolutionarily significant units", ESUs). L. hochstetteri possessed very high MHC diversity, with 74 DAB alleles characterized. Extremely high differentiation was observed at the DAB locus, with only two alleles shared between populations, a pattern that was not reflected in the microsatellites. Clustering analysis on putative peptide binding residues of the DAB alleles indicated four functional supertypes, all of which were represented in 4 of 5 populations, albeit at different frequencies. Otawa was an exception to these observations, with only two DAB alleles present. This study of MHC diversity highlights extreme population differentiation at this functional locus. Supertype differentiation was high among populations, suggesting spatial and/or temporal variation in selection pressures. Low DAB diversity in Otawa may limit this population's adaptive potential to future pathogenic challenges.

  13. The importance of immune gene variability (MHC in evolutionary ecology and conservation

    Directory of Open Access Journals (Sweden)

    Sommer Simone

    2005-10-01

    Full Text Available Abstract Genetic studies have typically inferred the effects of human impact by documenting patterns of genetic differentiation and levels of genetic diversity among potentially isolated populations using selective neutral markers such as mitochondrial control region sequences, microsatellites or single nucleotide polymorphism (SNPs. However, evolutionary relevant and adaptive processes within and between populations can only be reflected by coding genes. In vertebrates, growing evidence suggests that genetic diversity is particularly important at the level of the major histocompatibility complex (MHC. MHC variants influence many important biological traits, including immune recognition, susceptibility to infectious and autoimmune diseases, individual odours, mating preferences, kin recognition, cooperation and pregnancy outcome. These diverse functions and characteristics place genes of the MHC among the best candidates for studies of mechanisms and significance of molecular adaptation in vertebrates. MHC variability is believed to be maintained by pathogen-driven selection, mediated either through heterozygote advantage or frequency-dependent selection. Up to now, most of our knowledge has derived from studies in humans or from model organisms under experimental, laboratory conditions. Empirical support for selective mechanisms in free-ranging animal populations in their natural environment is rare. In this review, I first introduce general information about the structure and function of MHC genes, as well as current hypotheses and concepts concerning the role of selection in the maintenance of MHC polymorphism. The evolutionary forces acting on the genetic diversity in coding and non-coding markers are compared. Then, I summarise empirical support for the functional importance of MHC variability in parasite resistance with emphasis on the evidence derived from free-ranging animal populations investigated in their natural habitat. Finally, I

  14. Extensive shared polymorphism at non-MHC immune genes in recently diverged North American prairie grouse

    Science.gov (United States)

    Minias, Piotr; Bateson, Zachary W.; Whittingham, Linda A.; Johnson, Jeff A.; Oyler-McCance, Sara J.; Dunn, Peter O.

    2018-01-01

    Gene polymorphisms shared between recently diverged species are thought to be widespread and most commonly reflect introgression from hybridization or retention of ancestral polymorphism through incomplete lineage sorting. Shared genetic diversity resulting from incomplete lineage sorting is usually maintained for a relatively short period of time, but under strong balancing selection it may persist for millions of years beyond species divergence (balanced trans-species polymorphism), as in the case of the major histocompatibility complex (MHC) genes. However, balancing selection is much less likely to act on non-MHC immune genes. The aim of this study was to investigate the patterns of shared polymorphism and selection at non-MHC immune genes in five grouse species from Centrocercus and Tympanuchus genera. For this purpose, we genotyped five non-MHC immune genes that do not interact directly with pathogens, but are involved in signaling and regulate immune cell growth. In contrast to previous studies with MHC, we found no evidence for balancing selection or balanced trans-species polymorphism among the non-MHC immune genes. No haplotypes were shared between genera and in most cases more similar allelic variants sorted by genus. Between species within genera, however, we found extensive shared polymorphism, which was most likely attributable to introgression or incomplete lineage sorting following recent divergence and large ancestral effective population size (i.e., weak genetic drift). Our study suggests that North American prairie grouse may have attained relatively low degree of reciprocal monophyly at nuclear loci and reinforces the rarity of balancing selection in non-MHC immune genes.

  15. Thermodynamics of T cell receptor – peptide/MHC interactions: progress and opportunities

    Science.gov (United States)

    Armstrong, Kathryn M.; Insaidoo, Francis K.; Baker, Brian M.

    2013-01-01

    αβ T cell receptors (TCR) recognize peptide antigens presented by class I or class II major histocompatibility complex molecules (pMHC). Here we review the use of thermodynamic measurements in the study of TCR-pMHC interactions, with attention to the diversity in binding thermodynamics and how this is related to the variation in TCR-pMHC interfaces. We show that there is no enthalpic or entropic signature for TCR binding; rather, enthalpy and entropy changes vary in a compensatory manner that reflects a narrow free energy window for the interactions that have been characterized. Binding enthalpy and entropy changes do not correlate with structural features such as buried surface area or the number of hydrogen bonds within TCR-pMHC interfaces, possibly reflecting the myriad of contributors to binding thermodynamics, but likely also reflecting a reliance on van’t Hoff over calorimetric measurements and the unaccounted influence of equilibria linked to binding. TCR-pMHC binding heat capacity changes likewise vary considerably. In some cases the heat capacity changes are consistent with conformational differences between bound and free receptors, but there is little data indicating these conformational differences represent the need to organize commonly disordered CDR loops. In this regard, we discuss how thermodynamics may provide additional insight into conformational changes occurring upon TCR binding. Finally, we highlight opportunities for the further use of thermodynamic measurements in the study of TCR-pMHC interactions, not only for understanding TCR binding in general, but for understanding specifics of individual interactions and the engineering of T cell receptors with desired molecular recognition properties. PMID:18496839

  16. Sequence Variation of MHC Class II DQB Gene in Bottlenose Dolphin (Tursiops truncatus from Taiwanese Waters

    Directory of Open Access Journals (Sweden)

    Wei-Cheng Yang

    2008-03-01

    Full Text Available The major histocompatibility complex (MHC is a large multigene coding for glycoproteins that play a key role in the initiation of immune responses in vertebrates. For a better understanding of the immunologic diversity in thriving marine mammal species, the sequence variation of the exon 2 region of MHC DQB locus was analyzed in 42 bottlenose dolphins (Tursiops truncatus collected from strandings and fishery bycatch in Taiwanese waters. The 172 bp sequences amplified showed no more than two alleles in each individual. The high proportion of non-synonymous nucleotide substitutions and the moderate amount of variation suggest positive selection pressure on this locus, arguing against a reduction in the marine environment selection pressure. The phylogenetic relationship among DQB exon 2 sequences of T. truncatus and other cetaceans did not coincide with taxonomic relationship, indicating a trans-species evolutionary pattern.

  17. Donor T cells primed on leukemia lysate-pulsed recipient APCs mediate strong graft-versus-leukemia effects across MHC barriers in full chimeras

    OpenAIRE

    Ghosh, Arnab; Koestner, Wolfgang; Hapke, Martin; Schlaphoff, Verena; Länger, Florian; Baumann, Rolf; Koenecke, Christian; Cornberg, Markus; Welte, Karl; Blazar, Bruce R.; Sauer, Martin G.

    2009-01-01

    Antigen-presenting cells (APCs) of host origin drive graft-versus-leukemia (GVL) effects but can also trigger life-threatening graft-versus-host disease (GVHD) after hematopoietic cell transplantation (HCT) across major histocompatibility complex (MHC) barriers. We show that in vitro priming of donor lymphocytes can circumvent the need of recipient-derived APCs in vivo for mediating robust GVL effects and significantly diminishes the risk of severe GVHD. In vitro, generated and expanded T cel...

  18. Discovery of novel MHC-class I alleles and haplotypes in Filipino cynomolgus macaques (Macaca fascicularis) by pyrosequencing and Sanger sequencing: Mafa-class I polymorphism.

    Science.gov (United States)

    Shiina, Takashi; Yamada, Yukiho; Aarnink, Alice; Suzuki, Shingo; Masuya, Anri; Ito, Sayaka; Ido, Daisuke; Yamanaka, Hisashi; Iwatani, Chizuru; Tsuchiya, Hideaki; Ishigaki, Hirohito; Itoh, Yasushi; Ogasawara, Kazumasa; Kulski, Jerzy K; Blancher, Antoine

    2015-10-01

    Although the low polymorphism of the major histocompatibility complex (MHC) transplantation genes in the Filipino cynomolgus macaque (Macaca fascicularis) is expected to have important implications in the selection and breeding of animals for medical research, detailed polymorphism information is still lacking for many of the duplicated class I genes. To better elucidate the degree and types of MHC polymorphisms and haplotypes in the Filipino macaque population, we genotyped 127 unrelated animals by the Sanger sequencing method and high-resolution pyrosequencing and identified 112 different alleles, 28 at cynomolgus macaque MHC (Mafa)-A, 54 at Mafa-B, 12 at Mafa-I, 11 at Mafa-E, and seven at Mafa-F alleles, of which 56 were newly described. Of them, the newly discovered Mafa-A8*01:01 lineage allele had low nucleotide similarities (Filipino macaque population would identify these and other high-frequency Mafa-class I haplotypes that could be used as MHC control animals for the benefit of biomedical research.

  19. Examining the evidence for major histocompatibility complex-dependent mate selection in humans and nonhuman primates

    Czech Academy of Sciences Publication Activity Database

    Winternitz, Jamie Caroline; Abbate, J. L.

    2015-01-01

    Roč. 6, 13 May (2015), s. 73-88 ISSN 1179-7274 Institutional support: RVO:68081766 Keywords : major histocompatibility complex * sexual selection * olfaction * facial attraction * parasite resistance * inbreeding avoidance Subject RIV: EB - Genetics ; Molecular Biology

  20. Immunohistochemical detection and correlation between MHC antigen and cell-mediated immune system in recurrent glioma by APAAP method.

    Science.gov (United States)

    Miyagi, K; Ingram, M; Techy, G B; Jacques, D B; Freshwater, D B; Sheldon, H

    1990-09-01

    As part of an on-going clinical trial of immunotherapy for recurrent malignant gliomas, using alkaline phosphatase-anti-alkaline phosphatase method with monoclonal antibodies, we investigated the correlation between expression of the major histocompatibility complex (MHC) and the subpopulation of tumor-infiltrating lymphocytes (TILs) in 38 glioma specimens (20 grade IV, 11 grade III, and 7 grade II) from 33 patients. Thirty specimens (78.9%) were positive to class I MHC antigen and 20 (52.6%) were positive to class II MHC antigen. The correlations between class I MHC antigen expression and the number of infiltrating T8 (p less than 0.01), and also between class II MHC antigen expression and the number of infiltrating T4 (p less than 0.05) were significant. We conclude that TILs are the result of immunoreaction (host-defense mechanism). 31.6% of specimens had perivascular infiltration of T cells. The main infiltrating lymphocyte subset in moderate to marked perivascular cuffing was T4. Our results may indicate that lack of MHC antigen on the glioma cell surface has a share in the poor immunogenicity in glioma-bearing patients. In addition, considering the effector/target ratio, the number of infiltrating lymphocytes against glioma cells was too small, so the immunological intervention seems to be essential in glioma therapy. Previous radiation therapy and chemotherapy, including steroid therapy, did not influence lymphocyte and macrophage infiltration.

  1. Quantifying the importance of pMHC valency, total pMHC dose and frequency on nanoparticle therapeutic efficacy.

    Science.gov (United States)

    Sugarman, Jordan; Tsai, Sue; Santamaria, Pere; Khadra, Anmar

    2013-05-01

    Nanoparticles (NPs) coated with β-cell-specific peptide major histocompatibility complex (pMHC) class I molecules can effectively restore normoglycemia in spontaneously diabetic nonobese diabetic mice. They do so by expanding pools of cognate memory autoreactive regulatory CD8+ T cells that arise from naive low-avidity T-cell precursors to therapeutic levels. Here we develop our previously constructed mathematical model to explore the effects of compound design parameters (NP dose and pMHC valency) on therapeutic efficacy with the underlying hypothesis that the functional correlates of the therapeutic response (expansion of autoregulatory T cells and deletion of autoantigen-loaded antigen-presenting cells by these T cells) are biphasic. We show, using bifurcation analysis, that the model exhibits a 'resonance'-like behavior for a given range of NP dose in which bistability between the healthy state (possessing zero level of effector T-cell population) and autoimmune state (possessing elevated level of the same population) disappears. A heterogeneous population of model mice subjected to several treatment protocols under these new conditions is conducted to quantify both the average percentage of autoregulatory T cells in responsive and nonresponsive model mice, and the average valency-dependent minimal optimal dose needed for effective therapy. Our results reveal that a moderate increase (≥1.6-fold) in the NP-dependent expansion rate of autoregulatory T-cell population leads to a significant increase in the efficacy and the area corresponding to the effective treatment regimen, provided that NP dose ≥8 μg. We expect the model developed here to generalize to other autoimmune diseases and serve as a computational tool to understand and optimize pMHC-NP-based therapies.

  2. A highly tilted binding mode by a self-reactive T cell receptor results in altered engagement of peptide and MHC

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, D.K.; Heroux, A.; Schubert, D. A.; Anders, A.-K.; Bonsor, D. A.; Thomas, C. P.; Sundberg, E. J.; Pyrdol, J.; Wucherpfennig, K. W.

    2011-01-17

    Self-reactive T cells that escape elimination in the thymus can cause autoimmune pathology, and it is therefore important to understand the structural mechanisms of self-antigen recognition. We report the crystal structure of a T cell receptor (TCR) from a patient with relapsing-remitting multiple sclerosis that engages its self-peptide-major histocompatibility complex (pMHC) ligand in an unusual manner. The TCR is bound in a highly tilted orientation that prevents interaction of the TCR-{alpha} chain with the MHC class II {beta} chain helix. In this structure, only a single germline-encoded TCR loop engages the MHC protein, whereas in most other TCR-pMHC structures all four germline-encoded TCR loops bind to the MHC helices. The tilted binding mode also prevents peptide contacts by the short complementarity-determining region (CDR) 3{beta} loop, and interactions that contribute to peptide side chain specificity are focused on the CDR3{alpha} loop. This structure is the first example in which only a single germline-encoded TCR loop contacts the MHC helices. Furthermore, the reduced interaction surface with the peptide may facilitate TCR cross-reactivity. The structural alterations in the trimolecular complex are distinct from previously characterized self-reactive TCRs, indicating that there are multiple unusual ways for self-reactive TCRs to bind their pMHC ligand.

  3. A Highly Tilted Binding Mode by a Self-Reactive T Cell Receptor Results in Altered Engagement of Peptide and MHC

    Energy Technology Data Exchange (ETDEWEB)

    D Sethi; D Schubert; A Anders; A Heroux; D Bonsor; C Thomas; E Sundberg; J Pyrdol; K Wucherpfennig

    2011-12-31

    Self-reactive T cells that escape elimination in the thymus can cause autoimmune pathology, and it is therefore important to understand the structural mechanisms of self-antigen recognition. We report the crystal structure of a T cell receptor (TCR) from a patient with relapsing-remitting multiple sclerosis that engages its self-peptide-major histocompatibility complex (pMHC) ligand in an unusual manner. The TCR is bound in a highly tilted orientation that prevents interaction of the TCR-{alpha} chain with the MHC class II {beta} chain helix. In this structure, only a single germline-encoded TCR loop engages the MHC protein, whereas in most other TCR-pMHC structures all four germline-encoded TCR loops bind to the MHC helices. The tilted binding mode also prevents peptide contacts by the short complementarity-determining region (CDR) 3{beta} loop, and interactions that contribute to peptide side chain specificity are focused on the CDR3{alpha} loop. This structure is the first example in which only a single germline-encoded TCR loop contacts the MHC helices. Furthermore, the reduced interaction surface with the peptide may facilitate TCR cross-reactivity. The structural alterations in the trimolecular complex are distinct from previously characterized self-reactive TCRs, indicating that there are multiple unusual ways for self-reactive TCRs to bind their pMHC ligand.

  4. Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes

    DEFF Research Database (Denmark)

    Bentzen, Amalie Kai; Marquard, Andrea Marion; Lyngaa, Rikke Birgitte

    2016-01-01

    -major histocompatibility complex (MHC) multimers labeled with individual DNA barcodes to screen >1,000 peptide specificities in a single sample, and detect low-frequency CD8 T cells specific for virus- or cancer-restricted antigens. When analyzing T-cell recognition of shared melanoma antigens before and after adoptive...... cell therapy in melanoma patients, we observe a greater number of melanoma-specific T-cell populations compared with cytometry-based approaches. Furthermore, we detect neoepitope-specific T cells in tumor-infiltrating lymphocytes and peripheral blood from patients with non-small cell lung cancer...

  5. MHC-Dependent Mate Selection within 872 Spousal Pairs of European Ancestry from the Health and Retirement Study

    Directory of Open Access Journals (Sweden)

    Zhen Qiao

    2018-01-01

    Full Text Available Disassortative mating refers to the phenomenon in which individuals with dissimilar genotypes and/or phenotypes mate with one another more frequently than would be expected by chance. Although the existence of disassortative mating is well established in plant and animal species, the only documented example of negative assortment in humans involves dissimilarity at the major histocompatibility complex (MHC locus. Previous studies investigating mating patterns at the MHC have been hampered by limited sample size and contradictory findings. Inspired by the sparse and conflicting evidence, we investigated the role that the MHC region played in human mate selection using genome-wide association data from 872 European American spouses from the Health and Retirement Study (HRS. First, we treated the MHC region as a whole, and investigated genomic similarity between spouses using three levels of genomic variation: single-nucleotide polymorphisms (SNPs, classical human leukocyte antigen (HLA alleles (both four-digit and two-digit classifications, and amino acid polymorphisms. The extent of MHC dissimilarity between spouses was assessed using a permutation approach. Second, we investigated fine scale mating patterns by testing for deviations from random mating at individual SNPs, HLA genes, and amino acids in HLA molecules. Third, we assessed how extreme the spousal relatedness at the MHC region was compared to the rest of the genome, to distinguish the MHC-specific effects from genome-wide effects. We show that neither the MHC region, nor any single SNPs, classic HLA alleles, or amino acid polymorphisms within the MHC region, were significantly dissimilar between spouses relative to non-spouse pairs. However, dissimilarity in the MHC region was extreme relative to the rest of genome for both spousal and non-spouse pairs. Despite the long-standing controversy, our analyses did not support a significant role of MHC dissimilarity in human mate choice.

  6. A new polymorphic and multicopy MHC gene family related to nonmammalian class I

    Energy Technology Data Exchange (ETDEWEB)

    Leelayuwat, C.; Degli-Esposti, M.A.; Abraham, L.J. [Univ. of Western Australia, Perth (Australia); Townend, D.C. [Sir Charles Gairdner Hospital, Perth (Australia); Dawkins, R.L. [Royal Perth Hospital, Perth (Australia)]|[Univ. of Western Australia, Perth (Australia)]|[Sir Charles Gairdner Hospital, Perth (Australia)

    1994-12-31

    The authors have used genomic analysis to characterize a region of the central major histocompatibility complex (MHC) spanning {approximately} 300 kilobases (kb) between TNF and HLA-B. This region has been suggested to carry genetic factors relevant to the development of autoimmune diseases such as myasthenia gravis (MG) and insulin dependent diabetes mellitus (IDDM). Genomic sequence was analyzed for coding potential, using two neural network programs, GRAIL and GeneParser. A genomic probe, JAB, containing putative coding sequences (PERB11) located 60 kb centromeric of HLA-B, was used for northern analysis of human tissues. Multiple transcripts were detected. Southern analysis of genomic DNA and overlapping YAC clones, covering the region from BAT1 to HLA-F, indicated that there are at least five copies of PERB11, four of which are located within this region of the MHC. The partial cDNA sequence of PERB11 was obtained from poly-A RNA derived from skeletal muscle. The putative amino acid sequence of PERB11 shares {approximately} 30% identity to MHC class I molecules from various species, including reptiles, chickens, and frogs, as well as to other MHC class I-like molecules, such as the IgG FcR of the mouse and rat and the human Zn-{alpha}2-glycoprotein. From direct comparison of amino acid sequences, it is concluded that PERB11 is a distinct molecule more closely related to nonmammalian than known mammalian MHC class I molecules. Genomic sequence analysis of PERB11 from five MHC ancestral haplotypes (AH) indicated that the gene is polymorphic at both DNA and protein level. The results suggest that the authors have identified a novel polymorphic gene family with multiple copies within the MHC. 48 refs., 10 figs., 2 tabs.

  7. Proteolytic enzymes involved in MHC class I antigen processing: A guerrilla army that partners with the proteasome.

    Science.gov (United States)

    Lázaro, Silvia; Gamarra, David; Del Val, Margarita

    2015-12-01

    Major histocompatibility complex class I proteins (MHC-I) load short peptides derived from proteolytic cleavage of endogenous proteins in any cell of the body, in a process termed antigen processing and presentation. When the source proteins are altered self or encoded by a pathogen, recognition of peptide/MHC-I complexes at the plasma membrane leads to CD8(+) T-lymphocyte responses that clear infections and probably underlie tumor immune surveillance. On the other hand, presentation of self peptides may cause some types of autoimmunity. The peptides that are presented determine the specificity and efficiency of pathogen clearance or, conversely, of immunopathology. In this review we highlight the growing number of peptidases which, as a by-product of their regular activity, can generate peptide epitopes for immune surveillance. These ∼20 peptidases collectively behave as a guerrilla army partnering with the regular proteasome army in generating a variety of peptides for presentation by MHC-I and thus optimally signaling infection. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. De novo transcriptome assembly facilitates characterisation of fast-evolving gene families, MHC class I in the bank vole (Myodes glareolus).

    Science.gov (United States)

    Migalska, M; Sebastian, A; Konczal, M; Kotlík, P; Radwan, J

    2017-04-01

    The major histocompatibility complex (MHC) plays a central role in the adaptive immune response and is the most polymorphic gene family in vertebrates. Although high-throughput sequencing has increasingly been used for genotyping families of co-amplifying MHC genes, its potential to facilitate early steps in the characterisation of MHC variation in nonmodel organism has not been fully explored. In this study we evaluated the usefulness of de novo transcriptome assembly in characterisation of MHC sequence diversity. We found that although de novo transcriptome assembly of MHC I genes does not reconstruct sequences of individual alleles, it does allow the identification of conserved regions for PCR primer design. Using the newly designed primers, we characterised MHC I sequences in the bank vole. Phylogenetic analysis of the partial MHC I coding sequence (2-4 exons) of the bank vole revealed a lack of orthology to MHC I of other Cricetidae, consistent with the high gene turnover of this region. The diversity of expressed alleles was characterised using ultra-deep sequencing of the third exon that codes for the peptide-binding region of the MHC molecule. High allelic diversity was demonstrated, with 72 alleles found in 29 individuals. Interindividual variation in the number of expressed loci was found, with the number of alleles per individual ranging from 5 to 14. Strong signatures of positive selection were found for 8 amino acid sites, most of which are inferred to bind antigens in human MHC, indicating conservation of structure despite rapid sequence evolution.

  9. Population genetic segmentation of MHC-correlated perfume preferences.

    Science.gov (United States)

    Hämmerli, A; Schweisgut, C; Kaegi, M

    2012-04-01

    It has become difficult to find a matching perfume. An overwhelming number of 300 new perfumes launch each year, and marketing campaigns target pre-defined groups based on gender, age or income rather than on individual preferences. Recent evidence for a genetic basis of perfume preferences, however, could be the starting point for a novel population genetic approach to better match perfumes with people's preferences. With a total of 116 participants genotyped for alleles of three loci of the major histocompatibility complex (MHC), the aim of this study was to test whether common MHC alleles could be used as genetic markers to segment a given population into preference types. Significant deviations from random expectations for a set of 10 common perfume ingredients indicate how such segmentation could be achieved. In addition, preference patterns of participants confronted with images that contained a sexual communication context significantly differed in their ratings for some of the scents compared with participants confronted with images of perfume bottles. This strongly supports the assumption that genetically correlated perfume preferences evolved in the context of sexual communication. The results are discussed in the light of perfume customization. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  10. Modified human beta 2-microglobulin (desLys(58)) displays decreased affinity for the heavy chain of MHC class I and induces nitric oxide production and apoptosis

    DEFF Research Database (Denmark)

    Wang, M; Harhaji, L; Lamberth, K

    2009-01-01

    Beta2-microglobulin (beta2m) is the light chain of major histocompatibility complex class I (MHC-I) molecules, and is a prerequisite for the binding of peptides to the heavy chain and their presentation to CD8+ T cells. beta2m can be modified in vivo and in vitro by proteolytic cleavage...... by complement C1 and subsequent carboxypeptidase B-like activity--processes that lead to the generation of desLys(58) beta2m (dbeta2m). This work aims to study the effect of dbeta2m on peptide binding to MHC-I, the influence of dbeta2m on the binding of beta2m to the MHC-I heavy chain and the biological...... activity of dbeta2m. Both beta2m and dbeta2m are able to support the generation of MHC-I/peptide complexes at 18 degrees C, but complexes formed in the presence of dbeta2m destabilize at 37 degrees C. Moreover, a 250 times higher concentration of dbeta2m than of beta2m is needed to displace MHC...

  11. Increased projection of MHC and tumor antigens in murine B16-BL6 melanoma induced by hydrostatic pressure and chemical crosslinking.

    Science.gov (United States)

    Ramakrishna, V; Eisenthal, A; Skornick, Y; Shinitzky, M

    1993-05-01

    The B16-BL6 melanoma, like most spontaneously arising tumors, is poorly immunogenic and expresses low levels of major histocompatibility complex (MHC) antigens. Treatment of cells of this tumor in vitro by hydrostatic pressure in the presence of adenosine 2',3'-dialdehyde (oxAdo), a membrane-impermeant crosslinker, caused elevated projection of MHC and a specific tumor antigen as demonstrated by flow-cytometric analysis. Maximum projection of both the MHC and the tumor antigens could be reached by application of 1200 atm for 15 min in the presence of 20 mM oxAdo. It is not yet clear whether this passive increase in availability of antigens on the cell surface originated from a dormant pool of antigens in the plasma membrane or from pressure-induced fusion of antigen-rich intracellular organelles (e.g. the endoplasmic reticulum). The immunogenic properties of the antigen-enriched B16-BL6 cells are described in the following paper.

  12. Genetic variation in the extended major histocompatibility complex and susceptibility to childhood acute lymphoblastic leukemia: a review of the evidence

    Directory of Open Access Journals (Sweden)

    Kevin Y Urayama

    2013-12-01

    Full Text Available The enduring suspicion that infections and immunologic response may play a role in the etiology of childhood leukemia, particularly acute lymphoblastic leukemia (ALL, is now supported, albeit still indirectly, by numerous epidemiological studies. The cumulative evidence includes, for example, descriptive observations of a peculiar peak incidence at age 2-5 years for ALL in economically developed countries, clustering of cases in situations of population mixing associated with unusual patterns of personal contacts, associations with various proxy measures for immune modulatory exposures early in life, and genetic susceptibility conferred by variation in genes involved in the immune system. In this review, our focus is the extended major histocompatibility complex (xMHC, an approximately 7.6 megabase region that is well-known for its high density of expressed genes, extensive polymorphisms exhibiting complex linkage disequilibrium patterns, and its disproportionately large number of immune-related genes, including human leukocyte antigen (HLA. First discovered through the role they play in transplant rejection, the classical HLA class I (HLA-A, -B, and -C and class II (HLA-DR, HLA-DQ, and HLA-DP molecules reside at the epicenter of the immune response pathways and are now the targets of many disease susceptibility studies, including those for childhood leukemia. The genes encoding the HLA molecules are only a minority of the over 250 expressed genes in the xMHC, and a growing number of studies are beginning to evaluate other loci through targeted investigations or utilizing a mapping approach with a comprehensive screen of the entire region. Here, we review the current epidemiologic evidence available to date regarding genetic variation contained within this highly unique region of the genome and its relationship with childhood ALL risk.

  13. Patterns of evolution of MHC class II genes of crows (Corvus suggest trans-species polymorphism

    Directory of Open Access Journals (Sweden)

    John A. Eimes

    2015-03-01

    Full Text Available A distinguishing characteristic of genes that code for the major histocompatibility complex (MHC is that alleles often share more similarity between, rather than within species. There are two likely mechanisms that can explain this pattern: convergent evolution and trans-species polymorphism (TSP, in which ancient allelic lineages are maintained by balancing selection and retained by descendant species. Distinguishing between these two mechanisms has major implications in how we view adaptation of immune genes. In this study we analyzed exon 2 of the MHC class IIB in three passerine bird species in the genus Corvus: jungle crows (Corvus macrorhynchos japonensis American crows (C. brachyrhynchos and carrion crows (C. corone orientalis. Carrion crows and American crows are recently diverged, but allopatric, sister species, whereas carrion crows and jungle crows are more distantly related but sympatric species, and possibly share pathogens linked to MHC IIB polymorphisms. These patterns of evolutionary divergence and current geographic ranges enabled us to test for trans-species polymorphism and convergent evolution of the MHC IIB in crows. Phylogenetic reconstructions of MHC IIB sequences revealed several well supported interspecific clusters containing all three species, and there was no biased clustering of variants among the sympatric carrion crows and jungle crows. The topologies of phylogenetic trees constructed from putatively selected sites were remarkably different than those constructed from putatively neutral sites. In addition, trees constructed using non-synonymous substitutions from a continuous fragment of exon 2 had more, and generally more inclusive, supported interspecific MHC IIB variant clusters than those constructed from the same fragment using synonymous substitutions. These phylogenetic patterns suggest that recombination, especially gene conversion, has partially erased the signal of allelic ancestry in these species. While

  14. Genetic variation and selection of MHC class I loci differ in two congeneric frogs.

    Science.gov (United States)

    Kiemnec-Tyburczy, Karen M; Tracy, Karen E; Lips, Karen R; Zamudio, Kelly R

    2018-04-01

    Major histocompatibility complex (MHC) genes encode proteins in the acquired immune response pathway that often show distinctive selection-driven patterns in wild vertebrate populations. We examined genetic variation and signatures of selection in the MHC class I alpha 1 (A1)- and alpha 2 (A2)-domain encoding exons of two frog congeners [Agalychnis callidryas (n = 20) and A. lemur (n = 20)] from a single locality in Panama. We also investigated how historical demographic processes may have impacted MHC genetic diversity by analyzing a neutral mitochondrial marker. We found that both MHC domains were highly variable in both species, with both species likely expressing three loci. Our analyses revealed different signatures of selection between the two species, most notably that the A. callidryas A2 domain had experienced positive selection while the A2 domain of A. lemur had not. Diversifying selection acted on the same number of A1 and A2 allelic lineages, but on a higher percentage of A1 sites compared to A2 sites. Neutrality tests of mitochondrial haplotypes predominately indicated that the two species were at genetic equilibrium when the samples were collected. In addition, two historical tests of demography indicated both species have had relatively stable population sizes over the past 100,000 years; thus large population size changes are unlikely to have greatly influenced MHC diversity in either species during this time period. In conclusion, our results suggest that the impact of selection on MHC diversity varied between these two closely related species, likely due to a combination of distinct ecological conditions and past pathogenic pressures.

  15. Mass Spectrometry Reveals Changes in MHC I Antigen Presentation After Lentivector Expression of a Gene Regulation System

    Directory of Open Access Journals (Sweden)

    Roland Vogel

    2013-01-01

    Full Text Available The rapamycin-inducible gene regulation system was designed to minimize immune reactions in man and may thus be suited for gene therapy. We assessed whether this system indeed induces no immune responses. The protein components of the regulation system were produced in the human cell lines HEK 293T, D407, and HER 911 following lentiviral transfer of the corresponding genes. Stable cell lines were established, and the peptides presented by major histocompatibility complex class I (MHC I molecules on transduced and wild-type (wt cells were compared by differential mass spectrometry. In all cell lines examined, expression of the transgenes resulted in prominent changes in the repertoire of MHC I-presented self-peptides. No MHC I ligands originating from the transgenic proteins were detected. In vitro analysis of immunogenicity revealed that transduced D407 cells displayed slightly higher capacity than wt controls to promote proliferation of cytotoxic T cells. These results indicate that therapeutic manipulations within the genome of target cells may affect pathways involved in the processing of peptide antigens and their presentation by MHC I. This makes the genomic modifications visible to the immune system which may recognize these events and respond. Ultimately, the findings call attention to a possible immune risk.

  16. Inhibition of MHC class I is a virulence factor in herpes simplex virus infection of mice.

    Directory of Open Access Journals (Sweden)

    Mark T Orr

    2005-09-01

    Full Text Available Herpes simplex virus (HSV has a number of genes devoted to immune evasion. One such gene, ICP47, binds to the transporter associated with antigen presentation (TAP 1/2 thereby preventing transport of viral peptides into the endoplasmic reticulum, loading of peptides onto nascent major histocompatibility complex (MHC class I molecules, and presentation of peptides to CD8 T cells. However, ICP47 binds poorly to murine TAP1/2 and so inhibits antigen presentation by MHC class I in mice much less efficiently than in humans, limiting the utility of murine models to address the importance of MHC class I inhibition in HSV immunopathogenesis. To address this limitation, we generated recombinant HSVs that efficiently inhibit antigen presentation by murine MHC class I. These recombinant viruses prevented cytotoxic T lymphocyte killing of infected cells in vitro, replicated to higher titers in the central nervous system, and induced paralysis more frequently than control HSV. This increase in virulence was due to inhibition of antigen presentation to CD8 T cells, since these differences were not evident in MHC class I-deficient mice or in mice in which CD8 T cells were depleted. Inhibition of MHC class I by the recombinant viruses did not impair the induction of the HSV-specific CD8 T-cell response, indicating that cross-presentation is the principal mechanism by which HSV-specific CD8 T cells are induced. This inhibition in turn facilitates greater viral entry, replication, and/or survival in the central nervous system, leading to an increased incidence of paralysis.

  17. MHC-I affects infection intensity but not infection status with a frequent avian malaria parasite in blue tits.

    Directory of Open Access Journals (Sweden)

    Helena Westerdahl

    Full Text Available Host resistance against parasites depends on three aspects: the ability to prevent, control and clear infections. In vertebrates the immune system consists of innate and adaptive immunity. Innate immunity is particularly important for preventing infection and eradicating established infections at an early stage while adaptive immunity is slow, but powerful, and essential for controlling infection intensities and eventually clearing infections. Major Histocompatibility Complex (MHC molecules are central in adaptive immunity, and studies on parasite resistance and MHC in wild animals have found effects on both infection intensity (parasite load and infection status (infected or not. It seems MHC can affect both the ability to control infection intensities and the ability to clear infections. However, these two aspects have rarely been considered simultaneously, and their relative importance in natural populations is therefore unclear. Here we investigate if MHC class I genotype affects infection intensity and infection status with a frequent avian malaria infection Haemoproteus majoris in a natural population of blue tits Cyanistes caeruleus. We found a significant negative association between a single MHC allele and infection intensity but no association with infection status. Blue tits that carry a specific MHC allele seem able to suppress H. majoris infection intensity, while we have no evidence that this allele also has an effect on clearance of the H. majoris infection, a result that is in contrast with some previous studies of MHC and avian malaria. A likely explanation could be that the clearance rate of avian malaria parasites differs between avian malaria lineages and/or between avian hosts.

  18. MHC-I affects infection intensity but not infection status with a frequent avian malaria parasite in blue tits.

    Science.gov (United States)

    Westerdahl, Helena; Stjernman, Martin; Råberg, Lars; Lannefors, Mimi; Nilsson, Jan-Åke

    2013-01-01

    Host resistance against parasites depends on three aspects: the ability to prevent, control and clear infections. In vertebrates the immune system consists of innate and adaptive immunity. Innate immunity is particularly important for preventing infection and eradicating established infections at an early stage while adaptive immunity is slow, but powerful, and essential for controlling infection intensities and eventually clearing infections. Major Histocompatibility Complex (MHC) molecules are central in adaptive immunity, and studies on parasite resistance and MHC in wild animals have found effects on both infection intensity (parasite load) and infection status (infected or not). It seems MHC can affect both the ability to control infection intensities and the ability to clear infections. However, these two aspects have rarely been considered simultaneously, and their relative importance in natural populations is therefore unclear. Here we investigate if MHC class I genotype affects infection intensity and infection status with a frequent avian malaria infection Haemoproteus majoris in a natural population of blue tits Cyanistes caeruleus. We found a significant negative association between a single MHC allele and infection intensity but no association with infection status. Blue tits that carry a specific MHC allele seem able to suppress H. majoris infection intensity, while we have no evidence that this allele also has an effect on clearance of the H. majoris infection, a result that is in contrast with some previous studies of MHC and avian malaria. A likely explanation could be that the clearance rate of avian malaria parasites differs between avian malaria lineages and/or between avian hosts.

  19. Molecular characterization of classical and nonclassical MHC class I genes from the golden pheasant (Chrysolophus pictus).

    Science.gov (United States)

    Zeng, Q-Q; Zhong, G-H; He, K; Sun, D-D; Wan, Q-H

    2016-02-01

    Classical major histocompatibility complex (MHC) class I allelic polymorphism is essential for competent antigen presentation. To improve the genotyping efforts in the golden pheasant, it is necessary to differentiate more accurately between classical and nonclassical class I molecules. In our study, all MHC class I genes were isolated from one golden pheasant based on two overlapping PCR amplifications. In total, six full-length class I nucleotide sequences (A-F) were identified, and four were novel. Two (A and C) belonged to the IA1 gene, two (B and D) were alleles derived from the IA2 gene through transgene amplification, and two (E and F) comprised a third novel locus, IA3 that was excluded from the core region of the golden pheasant MHC-B. IA1 and IA2 exhibited the broad expression profiles characteristic of classical loci, while IA3 showed no expression in multiple tissues and was therefore defined as a nonclassical gene. Phylogenetic analysis indicated that the three IA genes in the golden pheasant share a much closer evolutionary relationship than the corresponding sequences in other galliform species. This observation was consistent with high sequence similarity among them, which likely arises from the homogenizing effect of recombination. Our careful distinction between the classical and nonclassical MHC class I genes in the golden pheasant lays the foundation for developing locus-specific genotyping and establishing a good molecular marker system of classical MHC I loci. © 2015 John Wiley & Sons Ltd.

  20. Antigen-specific T cell activation independently of the MHC: chimeric antigen receptor (CAR-redirected T cells.

    Directory of Open Access Journals (Sweden)

    Hinrich eAbken

    2013-11-01

    Full Text Available Adoptive T cell therapy has recently shown powerful in initiating a lasting anti-tumor response with spectacular therapeutic success in some cases. Specific T cell therapy, however, is limited since a number of cancer cells are not recognized by T cells due to various mechanisms including the limited availability of tumor-specific T cells and deficiencies in antigen processing or major histocompatibility complex (MHC expression of cancer cells. To make adoptive cell therapy applicable for the broad variety of cancer entities, patient's T cells are engineered ex vivo with pre-defined specificity by a recombinant chimeric antigen receptor (CAR which consists in the extracellular part of an antibody-derived domain for binding with a tumor-associated antigen and in the intracellular part of a TCR-derived signaling moiety for T cell activation. The specificity of CAR mediated T cell recognition is defined by the antibody domain, is independent of MHC presentation and can be extended to any target for which an antibody is available. We discuss the advantages and limitations of MHC-independent T cell targeting by an engineered CAR and review most significant progress recently made in early stage clinical trials to treat cancer.

  1. Humans with chimpanzee-like major histocompatibility complex-specificities control HIV-1 infection

    DEFF Research Database (Denmark)

    Hoof, Ilka; Kesmir, Can; Lund, Ole

    2008-01-01

    and the progression rate to AIDS. Chimpanzees control HIV-1 viral replication and develop a chronic infection without progressing to AIDS. A similar course of disease is observed in human long-term non-progressors. Objective: To investigate if long-term non-progressors and chimpanzees have functional similarities...... in their MHC class I repertoire. Methods: We compared the specificity of groups of human MHC molecules associated with different levels of viremia in HIV-1 infected individuals with those of chimpanzee. Results and conclusion: We demonstrate that human MHC with control of HIV-1 viral load share binding motifs...... with chimpanzee MHC. Moreover, we find that chimpanzee and human MHC associated with low viral load are predicted to elicit broader Gag-specific immune responses than human MHC associated with high viral load, thus supporting earlier findings that Gag-specific immune responses are essential for HIV-1 control....

  2. Automated benchmarking of peptide-MHC class I binding predictions

    Science.gov (United States)

    Trolle, Thomas; Metushi, Imir G.; Greenbaum, Jason A.; Kim, Yohan; Sidney, John; Lund, Ole; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten

    2015-01-01

    Motivation: Numerous in silico methods predicting peptide binding to major histocompatibility complex (MHC) class I molecules have been developed over the last decades. However, the multitude of available prediction tools makes it non-trivial for the end-user to select which tool to use for a given task. To provide a solid basis on which to compare different prediction tools, we here describe a framework for the automated benchmarking of peptide-MHC class I binding prediction tools. The framework runs weekly benchmarks on data that are newly entered into the Immune Epitope Database (IEDB), giving the public access to frequent, up-to-date performance evaluations of all participating tools. To overcome potential selection bias in the data included in the IEDB, a strategy was implemented that suggests a set of peptides for which different prediction methods give divergent predictions as to their binding capability. Upon experimental binding validation, these peptides entered the benchmark study. Results: The benchmark has run for 15 weeks and includes evaluation of 44 datasets covering 17 MHC alleles and more than 4000 peptide-MHC binding measurements. Inspection of the results allows the end-user to make educated selections between participating tools. Of the four participating servers, NetMHCpan performed the best, followed by ANN, SMM and finally ARB. Availability and implementation: Up-to-date performance evaluations of each server can be found online at http://tools.iedb.org/auto_bench/mhci/weekly. All prediction tool developers are invited to participate in the benchmark. Sign-up instructions are available at http://tools.iedb.org/auto_bench/mhci/join. Contact: mniel@cbs.dtu.dk or bpeters@liai.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25717196

  3. Glatiramer Acetate Treatment Increases Stability of Spinal Synapses and Down Regulates MHC I during the Course of EAE

    Science.gov (United States)

    Scorisa, Juliana M.; Freria, Camila M.; Victorio, Sheila C.; Barbizan, Roberta; Zanon, Renata G.; Oliveira, Alexandre L. R.

    2011-01-01

    The recent discovery that the major histocompatibility complex of class I (MHC I) expression has a role in the synaptic elimination process, represented an insight into understanding the cross talk between neurons. In the present study, the possibility that glatiramer acetate (GA) treatment influences the MHC class I expression and the synaptic plasticity process in the spinal cord during the course of EAE was investigated. C57BL/6J mice were induced to EAE and submitted to treatment either with a placebo solution or with GA (0.05mg/animal, subcutaneously, on a daily basis). All the animals were sacrificed at the peak disease (14 days after induction) or at the point of recovery of the clinical signs (21 days after induction). The spinal cords were removed and submitted to immunohistochemical examination, Western blotting and transmission electron microscopy analysis. The results showed that GA treatment was able to decrease synaptic loss during the course of EAE, which correlates with the downregulation of the MHC I complex. The present results reinforce the neuroprotective role of GA treatment, by reducing synaptic loss during the course of the disease. Such action may be associated with the recently described role of MHC I regulation during the synaptic plasticity process. PMID:22043176

  4. Stepwise threshold clustering: a new method for genotyping MHC loci using next-generation sequencing technology.

    Directory of Open Access Journals (Sweden)

    William E Stutz

    Full Text Available Genes of the vertebrate major histocompatibility complex (MHC are of great interest to biologists because of their important role in immunity and disease, and their extremely high levels of genetic diversity. Next generation sequencing (NGS technologies are quickly becoming the method of choice for high-throughput genotyping of multi-locus templates like MHC in non-model organisms. Previous approaches to genotyping MHC genes using NGS technologies suffer from two problems:1 a "gray zone" where low frequency alleles and high frequency artifacts can be difficult to disentangle and 2 a similar sequence problem, where very similar alleles can be difficult to distinguish as two distinct alleles. Here were present a new method for genotyping MHC loci--Stepwise Threshold Clustering (STC--that addresses these problems by taking full advantage of the increase in sequence data provided by NGS technologies. Unlike previous approaches for genotyping MHC with NGS data that attempt to classify individual sequences as alleles or artifacts, STC uses a quasi-Dirichlet clustering algorithm to cluster similar sequences at increasing levels of sequence similarity. By applying frequency and similarity based criteria to clusters rather than individual sequences, STC is able to successfully identify clusters of sequences that correspond to individual or similar alleles present in the genomes of individual samples. Furthermore, STC does not require duplicate runs of all samples, increasing the number of samples that can be genotyped in a given project. We show how the STC method works using a single sample library. We then apply STC to 295 threespine stickleback (Gasterosteus aculeatus samples from four populations and show that neighboring populations differ significantly in MHC allele pools. We show that STC is a reliable, accurate, efficient, and flexible method for genotyping MHC that will be of use to biologists interested in a variety of downstream applications.

  5. Species-specific evolution of class I MHC genes in iguanas (order: Squamata; subfamily: Iguaninae).

    Science.gov (United States)

    Glaberman, Scott; Caccone, Adalgisa

    2008-07-01

    Over the last few decades, the major histocompatibility complex (MHC) has emerged as a model for understanding the influence of natural selection on genetic diversity in populations as well as for investigating the genetic basis of host resistance to pathogens. However, many vertebrate taxa remain underrepresented in the field of MHC research, preventing its application to studies of disease, evolution, and conservation genetics in these groups. This is particularly true for squamates, which are by far the most diversified order of non-avian reptiles but have not been the subject of any recent MHC studies. In this paper, we present MHC class I complementary DNA data from three squamate species in the subfamily Iguaninae (iguanas): the Galápagos marine iguana (Amblyrhynchus cristatus), the Galápagos land iguana (Conolophus subcristatus), and the green iguana (Iguana iguana). All sequences obtained are related to the few published class I genes from other squamates. There is evidence for multiple loci in each species, and the conserved alpha-3 domain appears to be evolving in a species-specific manner. Conversely, there is some indication of shared polymorphism between species in the peptide-binding alpha-1 and alpha-2 domains, suggesting that these two regions have different phylogenetic histories. The great similarity between alpha-3 sequences in marine iguanas in particular suggests that concerted evolution is acting to homogenize class I loci within species. However, while less likely, the data are also compatible with a birth and death model of evolution.

  6. Expression, refolding and crystallization of murine MHC class I H-2Db in complex with human β2-microglobulin

    International Nuclear Information System (INIS)

    Sandalova, Tatyana; Michaëlsson, Jakob; Harris, Robert A.; Ljunggren, Hans-Gustaf; Kärre, Klas; Schneider, Gunter; Achour, Adnane

    2005-01-01

    Mouse MHC class I H-2Db in complex with human β2m and the LCMV-derived peptide gp33 has been produced and crystallized. Resolution of the structure of this complex combined with the structural comparison with the previously solved crystal structure of H-2Db/mβ2m/gp33 should lead to a better understanding of how the β2m subunit affects the overall conformation of MHC complexes as well as the stability of the presented peptides. β 2 -Microglobulin (β 2 m) is non-covalently linked to the major histocompatibility (MHC) class I heavy chain and interacts with CD8 and Ly49 receptors. Murine MHC class I can bind human β 2 m (hβ 2 m) and such hybrid molecules are often used in structural and functional studies. The replacement of mouse β 2 m (mβ 2 m) by hβ 2 m has important functional consequences for MHC class I complex stability and specificity, but the structural basis for this is unknown. To investigate the impact of species-specific β 2 m subunits on MHC class I conformation, murine MHC class I H-2D b in complex with hβ 2 m and the peptide gp33 derived from lymphocytic choriomeningitis virus (LCMV) has been expressed, refolded in vitro and crystallized. Crystals containing two complexes per asymmetric unit and belonging to the space group P2 1 , with unit-cell parameters a = 68.1, b = 65.2, c = 101.9 Å, β = 102.4°, were obtained

  7. Genotyping of major histocompatibility complex Class II DRB gene in Rohilkhandi goats by polymerase chain reaction-restriction fragment length polymorphism and DNA sequencing

    Directory of Open Access Journals (Sweden)

    Kush Shrivastava

    2015-10-01

    Full Text Available Aim: To study the major histocompatibility complex (MHC Class II DRB1 gene polymorphism in Rohilkhandi goat using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP and nucleotide sequencing techniques. Materials and Methods: DNA was isolated from 127 Rohilkhandi goats maintained at sheep and goat farm, Indian Veterinary Research Institute, Izatnagar, Bareilly. A 284 bp fragment of exon 2 of DRB1 gene was amplified and digested using BsaI and TaqI restriction enzymes. Population genetic parameters were calculated using Popgene v 1.32 and SAS 9.0. The genotypes were then sequenced using Sanger dideoxy chain termination method and were compared with related breeds/species using MEGA 6.0 and Megalign (DNASTAR software. Results: TaqI locus showed three and BsaI locus showed two genotypes. Both the loci were found to be in Hardy–Weinberg equilibrium (HWE, however, population genetic parameters suggest that heterozygosity is still maintained in the population at both loci. Percent diversity and divergence matrix, as well as phylogenetic analysis revealed that the MHC Class II DRB1 gene of Rohilkhandi goats was found to be in close cluster with Garole and Scottish blackface sheep breeds as compared to other goat breeds included in the sequence comparison. Conclusion: The PCR-RFLP patterns showed population to be in HWE and absence of one genotype at one locus (BsaI, both the loci showed excess of one or the other homozygote genotype, however, effective number of alleles showed that allelic diversity is present in the population. Sequence comparison of DRB1 gene of Rohilkhandi goat with other sheep and goat breed assigned Rohilkhandi goat in divergence with Jamanupari and Angora goats.

  8. The E5 protein of human papillomavirus type 16 perturbs MHC class II antigen maturation in human foreskin keratinocytes treated with interferon-γ

    International Nuclear Information System (INIS)

    Zhang Benyue; Li Ping; Wang Exing; Brahmi, Zacharie; Dunn, Kenneth W.; Blum, Janice S.; Roman, Ann

    2003-01-01

    Major histocompatibility complex (MHC) class II antigens are expressed on human foreskin keratinocytes (HFKs) following exposure to interferon gamma. The expression of MHC class II proteins on the cell surface may allow keratinocytes to function as antigen-presenting cells and induce a subsequent immune response to virus infection. Invariant chain (Ii) is a chaperone protein which plays an important role in the maturation of MHC class II molecules. The sequential degradation of Ii within acidic endocytic compartments is a key process required for the successful loading of antigenic peptide onto MHC class II molecules. Since human papillomavirus (HPV) 16 E5 can inhibit the acidification of late endosomes in HFKs, the E5 protein may be able to affect proper peptide loading onto the MHC class II molecule. To test this hypothesis, HFKs were infected with either control virus or a recombinant virus expressing HPV16 E5 and the infected cells were subsequently treated with interferon-γ. ELISAs revealed a decrease of MHC class II expression on the surface of E5-expressing cells compared with control virus-infected cells after interferon treatment. Western blot analysis showed that, in cells treated with interferon gamma, E5 could prevent the breakdown of Ii and block the formation of peptide-loaded, SDS-stable mature MHC class II dimers, correlating with diminished surface MHC class II expression. These data suggest that HPV16 E5 may be able to decrease immune recognition of infected keratinocytes via disruption of MHC class II protein function

  9. Association between the MHC gene region and variation of serum IgE levels against specific mould allergens in the horse

    Directory of Open Access Journals (Sweden)

    Curik Ino

    2003-06-01

    Full Text Available Abstract To investigate whether the equine major histocompatibility complex (MHC gene region influences the production of mould-specific immunoglobulin E antibodies (IgE, alleles of the equine leukocyte antigen (ELA-A locus and three microsatellite markers (UM-011, HTG-05 and HMS-42 located on the same chromosome as the equine MHC were determined in 448 Lipizzan horses. Statistical analyses based on composite models, showed significant associations of the ELA-A and UM-011 loci with IgE titres against the recombinant Aspergillus fumigatus 7 antigen (rAsp f 7. UM-011 was also significantly associated with IgE titres against the recombinant Aspergillus fumigatus 8 antigen (rAsp f 8. In addition to the loci mentioned above, the MHC class II DQA and DRA loci were determined in 76 Lipizzans from one stud. For IgE levels against rAsp f 7, the composite model showed the strongest association for DQA (P rAsp f 8 specific IgE levels, similarly to the results found with all 448 horses, the strongest association was found with UM-011 (P = 0.01, which is closely linked with the MHC class II DRB locus. These results suggest that the equine MHC gene region and possibly MHC class II loci, influence the specific IgE response in the horse. However, although the strongest associations were found with DQA and UM-011, this study did not distinguish if the observed effects were due to the MHC itself or to other tightly linked genes.

  10. FOXP1 suppresses immune response signatures and MHC class II expression in activated B-cell-like diffuse large B-cell lymphomas

    DEFF Research Database (Denmark)

    Brown, P J; Wong, K K; Felce, S L

    2016-01-01

    The FOXP1 (forkhead box P1) transcription factor is a marker of poor prognosis in diffuse large B-cell lymphoma (DLBCL). Here microarray analysis of FOXP1-silenced DLBCL cell lines identified differential regulation of immune response signatures and major histocompatibility complex class II (MHC II......) genes as some of the most significant differences between germinal center B-cell (GCB)-like DLBCL with full-length FOXP1 protein expression versus activated B-cell (ABC)-like DLBCL expressing predominantly short FOXP1 isoforms. In an independent primary DLBCL microarray data set, multiple MHC II genes......, including human leukocyte antigen DR alpha chain (HLA-DRA), were inversely correlated with FOXP1 transcript expression (PABC-DLBCL cells led to increased cell-surface expression of HLA-DRA and CD74. In R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone...

  11. RSCA genotyping of MHC for high-throughput evolutionary studies in the model organism three-spined stickleback Gasterosteus aculeatus

    Science.gov (United States)

    Lenz, Tobias L; Eizaguirre, Christophe; Becker, Sven; Reusch, Thorsten BH

    2009-01-01

    Background In all jawed vertebrates, highly polymorphic genes of the major histocompatibility complex (MHC) encode antigen presenting molecules that play a key role in the adaptive immune response. Their polymorphism is composed of multiple copies of recently duplicated genes, each possessing many alleles within populations, as well as high nucleotide divergence between alleles of the same species. Experimental evidence is accumulating that MHC polymorphism is a result of balancing selection by parasites and pathogens. In order to describe MHC diversity and analyse the underlying mechanisms that maintain it, a reliable genotyping technique is required that is suitable for such highly variable genes. Results We present a genotyping protocol that uses Reference Strand-mediated Conformation Analysis (RSCA), optimised for recently duplicated MHC class IIB genes that are typical for many fish and bird species, including the three-spined stickleback, Gasterosteus aculeatus. In addition we use a comprehensive plasmid library of MHC class IIB alleles to determine the nucleotide sequence of alleles represented by RSCA allele peaks. Verification of the RSCA typing by cloning and sequencing demonstrates high congruency between both methods and provides new insight into the polymorphism of classical stickleback MHC genes. Analysis of the plasmid library additionally reveals the high resolution and reproducibility of the RSCA technique. Conclusion This new RSCA genotyping protocol offers a fast, but sensitive and reliable way to determine the MHC allele repertoire of three-spined sticklebacks. It therefore provides a valuable tool to employ this highly polymorphic and adaptive marker in future high-throughput studies of host-parasite co-evolution and ecological speciation in this emerging model organism. PMID:19291291

  12. RSCA genotyping of MHC for high-throughput evolutionary studies in the model organism three-spined stickleback Gasterosteus aculeatus

    Directory of Open Access Journals (Sweden)

    Becker Sven

    2009-03-01

    Full Text Available Abstract Background In all jawed vertebrates, highly polymorphic genes of the major histocompatibility complex (MHC encode antigen presenting molecules that play a key role in the adaptive immune response. Their polymorphism is composed of multiple copies of recently duplicated genes, each possessing many alleles within populations, as well as high nucleotide divergence between alleles of the same species. Experimental evidence is accumulating that MHC polymorphism is a result of balancing selection by parasites and pathogens. In order to describe MHC diversity and analyse the underlying mechanisms that maintain it, a reliable genotyping technique is required that is suitable for such highly variable genes. Results We present a genotyping protocol that uses Reference Strand-mediated Conformation Analysis (RSCA, optimised for recently duplicated MHC class IIB genes that are typical for many fish and bird species, including the three-spined stickleback, Gasterosteus aculeatus. In addition we use a comprehensive plasmid library of MHC class IIB alleles to determine the nucleotide sequence of alleles represented by RSCA allele peaks. Verification of the RSCA typing by cloning and sequencing demonstrates high congruency between both methods and provides new insight into the polymorphism of classical stickleback MHC genes. Analysis of the plasmid library additionally reveals the high resolution and reproducibility of the RSCA technique. Conclusion This new RSCA genotyping protocol offers a fast, but sensitive and reliable way to determine the MHC allele repertoire of three-spined sticklebacks. It therefore provides a valuable tool to employ this highly polymorphic and adaptive marker in future high-throughput studies of host-parasite co-evolution and ecological speciation in this emerging model organism.

  13. The Major Genetic Determinants of HIV-1 Control Affect HLA Class I Peptide Presentation

    OpenAIRE

    Pereyra, Florencia; Jia, Xiaoming; McLaren, Paul J.; Telenti, Amalio; de Bakker, Paul I.W.; Walker, Bruce D.; Jia, Xiaoming; McLaren, Paul J.; Ripke, Stephan; Brumme, Chanson J.; Pulit, Sara L.; Telenti, Amalio; Carrington, Mary; Kadie, Carl M.; Carlson, Jonathan M.

    2010-01-01

    Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. W...

  14. Mechanical Stress Downregulates MHC Class I Expression on Human Cancer Cell Membrane

    KAUST Repository

    La Rocca, Rosanna

    2014-12-26

    In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography) or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC) class I molecules expression on cancer cell membrane compared to different kinds of healthy cells (fibroblasts, macrophages, dendritic and lymphocyte cells) was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar = 100.000 Pascal), depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range between 700–1800 cm−1, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased susceptibility to Natural Killer (NK) cells cytotoxic recognition.

  15. Mechanical stress downregulates MHC class I expression on human cancer cell membrane.

    Directory of Open Access Journals (Sweden)

    Rosanna La Rocca

    Full Text Available In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC class I molecules expression on cancer cell membrane compared to different kinds of healthy cells (fibroblasts, macrophages, dendritic and lymphocyte cells was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar = 100.000 Pascal, depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range between 700-1800 cm(-1, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased susceptibility to Natural Killer (NK cells cytotoxic recognition.

  16. Complex assembly, crystallization and preliminary X-ray crystallographic studies of rhesus macaque MHC Mamu-A*01 complexed with an immunodominant SIV-Gag nonapeptide

    International Nuclear Information System (INIS)

    Chu, Fuliang; Lou, Zhiyong; Gao, Bin; Bell, John I.; Rao, Zihe; Gao, George F.

    2005-01-01

    Crystallization of the first rhesus macaque MHC class I complex. Simian immunodeficiency virus (SIV) infection in rhesus macaques has been used as the best model for the study of human immunodeficiency virus (HIV) infection in humans, especially in the cytotoxic T-lymphocyte (CTL) response. However, the structure of rhesus macaque (or any other monkey model) major histocompatibility complex class I (MHC I) presenting a specific peptide (the ligand for CTL) has not yet been elucidated. Here, using in vitro refolding, the preparation of the complex of the rhesus macaque MHC I allele (Mamu-A*01) with human β 2 m and an immunodominant peptide, CTPYDINQM (Gag-CM9), derived from SIV Gag protein is reported. The complex (45 kDa) was crystallized; the crystal belongs to space group I422, with unit-cell parameters a = b = 183.8, c = 155.2 Å. The crystal contains two molecules in the asymmetric unit and diffracts X-rays to 2.8 Å resolution. The structure is being solved by molecular replacement and this is the first attempt to determined the crystal structure of a peptide–nonhuman primate MHC complex

  17. The major histocompatibility complex in the chicken

    DEFF Research Database (Denmark)

    Guillemot, F; Kaufman, J F; Skjoedt, K

    1989-01-01

    The chicken B complex is the first non-mammalian MHC characterized at the molecular level. It differs from the human HLA and murine H-2 complexes in the small size of the class I (B-F) and class II (B-L) genes and their close proximity. This proximity accounts for the absence of recombination...

  18. Characterization of MHC class II B polymorphism in bottlenecked New Zealand saddlebacks reveals low levels of genetic diversity.

    Science.gov (United States)

    Sutton, Jolene T; Robertson, Bruce C; Grueber, Catherine E; Stanton, Jo-Ann L; Jamieson, Ian G

    2013-08-01

    The major histocompatibility complex (MHC) is integral to the vertebrate adaptive immune system. Characterizing diversity at functional MHC genes is invaluable for elucidating patterns of adaptive variation in wild populations, and is particularly interesting in species of conservation concern, which may suffer from reduced genetic diversity and compromised disease resilience. Here, we use next generation sequencing to investigate MHC class II B (MHCIIB) diversity in two sister taxa of New Zealand birds: South Island saddleback (SIS), Philesturnus carunculatus, and North Island saddleback (NIS), Philesturnus rufusater. These two species represent a passerine family outside the more extensively studied Passerida infraorder, and both have experienced historic bottlenecks. We examined exon 2 sequence data from populations that represent the majority of genetic diversity remaining in each species. A high level of locus co-amplification was detected, with from 1 to 4 and 3 to 12 putative alleles per individual for South and North Island birds, respectively. We found strong evidence for historic balancing selection in peptide-binding regions of putative alleles, and we identified a cluster combining non-classical loci and pseudogene sequences from both species, although no sequences were shared between the species. Fewer total alleles and fewer alleles per bird in SIS may be a consequence of their more severe bottleneck history; however, overall nucleotide diversity was similar between the species. Our characterization of MHCIIB diversity in two closely related species of New Zealand saddlebacks provides an important step in understanding the mechanisms shaping MHC diversity in wild, bottlenecked populations.

  19. Mortality selection during the 2003 European heat wave in three-spined sticklebacks: effects of parasites and MHC genotype

    Directory of Open Access Journals (Sweden)

    Milinski Manfred

    2008-04-01

    Full Text Available Abstract Background Ecological interaction strength may increase under environmental stress including temperature. How such stress enhances and interacts with parasite selection is almost unknown. We studied the importance of resistance genes of the major histocompatibility complex (MHC class II in 14 families of three-spined sticklebacks Gasterosteus aculeatus exposed to their natural macroparasites in field enclosures in the extreme summer of 2003. Results After a mass die-off during the 2003-European heat wave killing 78% of 277 experimental fish, we found strong differences in survival among and within families. In families with higher average parasite load fewer individuals survived. Multivariate analysis revealed that the composition of the infecting parasite fauna was family specific. Within families, individuals with an intermediate number of MHC class IIB sequence variants survived best and had the lowest parasite load among survivors, suggesting a direct functional link between MHC diversity and fitness. The within family MHC effects were, however, small compared to between family effects, suggesting that other genetic components or non-genetic effects were also important. Conclusion The correlation between parasite load and mortality that we found at both individual and family level might have appeared only in the extraordinary heatwave of 2003. Due to global warming the frequency of extreme climatic events is predicted to increase, which might intensify costs of parasitism and enhance selection on immune genes.

  20. The impact of sex-role reversal on the diversity of the major histocompatibility complex: Insights from the seahorse (Hippocampus abdominalis

    Directory of Open Access Journals (Sweden)

    Wilson Anthony B

    2011-05-01

    Full Text Available Abstract Background Both natural and sexual selection are thought to influence genetic diversity, but the study of the relative importance of these two factors on ecologically-relevant traits has traditionally focused on species with conventional sex-roles, with male-male competition and female-based mate choice. With its high variability and significance in both immune function and olfactory-mediated mate choice, the major histocompatibility complex (MHC/MH is an ideal system in which to evaluate the relative contributions of these two selective forces to genetic diversity. Intrasexual competition and mate choice are both reversed in sex-role reversed species, and sex-related differences in the detection and use of MH-odor cues are expected to influence the intensity of sexual selection in such species. The seahorse, Hippocampus abdominalis, has an exceptionally highly developed form of male parental care, with female-female competition and male mate choice. Results Here, we demonstrate that the sex-role reversed seahorse has a single MH class II beta-chain gene and that the diversity of the seahorse MHIIβ locus and its pattern of variation are comparable to those detected in species with conventional sex roles. Despite the presence of only a single gene copy, intralocus MHIIβ allelic diversity in this species exceeds that observed in species with multiple copies of this locus. The MHIIβ locus of the seahorse exhibits a novel expression domain in the male brood pouch. Conclusions The high variation found at the seahorse MHIIβ gene indicates that sex-role reversed species are capable of maintaining the high MHC diversity typical in most vertebrates. Whether such species have evolved the capacity to use MH-odor cues during mate choice is presently being investigated using mate choice experiments. If this possibility can be rejected, such systems would offer an exceptional opportunity to study the effects of natural selection in isolation

  1. The impact of sex-role reversal on the diversity of the major histocompatibility complex: insights from the seahorse (Hippocampus abdominalis).

    Science.gov (United States)

    Bahr, Angela; Wilson, Anthony B

    2011-05-10

    Both natural and sexual selection are thought to influence genetic diversity, but the study of the relative importance of these two factors on ecologically-relevant traits has traditionally focused on species with conventional sex-roles, with male-male competition and female-based mate choice. With its high variability and significance in both immune function and olfactory-mediated mate choice, the major histocompatibility complex (MHC/MH) is an ideal system in which to evaluate the relative contributions of these two selective forces to genetic diversity. Intrasexual competition and mate choice are both reversed in sex-role reversed species, and sex-related differences in the detection and use of MH-odor cues are expected to influence the intensity of sexual selection in such species. The seahorse, Hippocampus abdominalis, has an exceptionally highly developed form of male parental care, with female-female competition and male mate choice. Here, we demonstrate that the sex-role reversed seahorse has a single MH class II beta-chain gene and that the diversity of the seahorse MHIIβ locus and its pattern of variation are comparable to those detected in species with conventional sex roles. Despite the presence of only a single gene copy, intralocus MHIIβ allelic diversity in this species exceeds that observed in species with multiple copies of this locus. The MHIIβ locus of the seahorse exhibits a novel expression domain in the male brood pouch. The high variation found at the seahorse MHIIβ gene indicates that sex-role reversed species are capable of maintaining the high MHC diversity typical in most vertebrates.Whether such species have evolved the capacity to use MH-odor cues during mate choice is presently being investigated using mate choice experiments. If this possibility can be rejected, such systems would offer an exceptional opportunity to study the effects of natural selection in isolation, providing powerful comparative models for understanding the

  2. Bacterial superantigens promote acute nasopharyngeal infection by Streptococcus pyogenes in a human MHC Class II-dependent manner.

    Directory of Open Access Journals (Sweden)

    Katherine J Kasper

    2014-05-01

    Full Text Available Establishing the genetic determinants of niche adaptation by microbial pathogens to specific hosts is important for the management and control of infectious disease. Streptococcus pyogenes is a globally prominent human-specific bacterial pathogen that secretes superantigens (SAgs as 'trademark' virulence factors. SAgs function to force the activation of T lymphocytes through direct binding to lateral surfaces of T cell receptors and class II major histocompatibility complex (MHC-II molecules. S. pyogenes invariably encodes multiple SAgs, often within putative mobile genetic elements, and although SAgs are documented virulence factors for diseases such as scarlet fever and the streptococcal toxic shock syndrome (STSS, how these exotoxins contribute to the fitness and evolution of S. pyogenes is unknown. Here we show that acute infection in the nasopharynx is dependent upon both bacterial SAgs and host MHC-II molecules. S. pyogenes was rapidly cleared from the nasal cavity of wild-type C57BL/6 (B6 mice, whereas infection was enhanced up to ∼10,000-fold in B6 mice that express human MHC-II. This phenotype required the SpeA superantigen, and vaccination with an MHC -II binding mutant toxoid of SpeA dramatically inhibited infection. Our findings indicate that streptococcal SAgs are critical for the establishment of nasopharyngeal infection, thus providing an explanation as to why S. pyogenes produces these potent toxins. This work also highlights that SAg redundancy exists to avoid host anti-SAg humoral immune responses and to potentially overcome host MHC-II polymorphisms.

  3. Isolation of a 97-kb minimal essential MHC B locus from a new reverse-4D BAC library of the golden pheasant.

    Directory of Open Access Journals (Sweden)

    Qing Ye

    Full Text Available The bacterial artificial chromosome (BAC system is widely used in isolation of large genomic fragments of interest. Construction of a routine BAC library requires several months for picking clones and arraying BACs into superpools in order to employ 4D-PCR to screen positive BACs, which might be time-consuming and laborious. The major histocompatibility complex (MHC is a cluster of genes involved in the vertebrate immune system, and the classical avian MHC-B locus is a minimal essential one, occupying a 100-kb genomic region. In this study, we constructed a more effective reverse-4D BAC library for the golden pheasant, which first creates sub-libraries and then only picks clones of positive sub-libraries, and identified several MHC clones within thirty days. The full sequencing of a 97-kb reverse-4D BAC demonstrated that the golden pheasant MHC-B locus contained 20 genes and showed good synteny with that of the chicken. The notable differences between these two species were the numbers of class II B loci and NK genes and the inversions of the TAPBP gene and the TAP1-TAP2 region. Furthermore, the inverse TAP2-TAP1 was unique in the golden pheasant in comparison with that of chicken, turkey, and quail. The newly defined genomic structure of the golden pheasant MHC will give an insight into the evolutionary history of the avian MHC.

  4. Binding of human beta 2-microglobulin to murine EL4 thymoma cells upregulates MHC class I heavy-chain epitopes, inhibits IL-2 secretion and induces resistance to killing by natural killer cells

    DEFF Research Database (Denmark)

    Claësson, M H; Nissen, Mogens Holst

    1994-01-01

    line (ABLS-8), X63 B-lymphoma cells and YAC cells did not bind h beta 2m. In two of the T lymphomas, EL4 and BW5147, binding of h beta 2m led to an increase in major histocompatibility complex class I (MHC-I) heavy-chain epitope expression as measured by anti-H-2K/D antibody binding and FACS analysis....... EL4 cells which had bound h beta 2m decreased their rate of constitutive IL-2 secretion and became resistant to activated natural killer (NK) cell killing. The present data suggest the binding of h beta 2m to mouse T cells leads to conformational changes of MHC-I heavy chains which influence both...

  5. Expression, purification and preliminary X-ray crystallographic analysis of the chicken MHC class I molecule YF1*7.1

    International Nuclear Information System (INIS)

    Hee, Chee Seng; Gao, Song; Miller, Marcia M.; Goto, Ronald M.; Ziegler, Andreas; Daumke, Oliver; Uchanska-Ziegler, Barbara

    2009-01-01

    The chicken classical MHC class I antigen YF1*7.1 was crystallized together with β 2 -microglobulin but without a peptide ligand. Crystals diffracted synchrotron radiation to 1.32 Å and belonged to the monoclinic space group P2 1 . YF1*7.1 is an allele of a polymorphic major histocompatibility complex (MHC) class I-like locus within the chicken Y gene complex. With the aim of understanding the possible role of the YF1*7.1 molecule in antigen presentation, the complex of YF1*7.1 heavy chain and β 2 -microglobulin was reconstituted and purified without a peptide. Crystals diffracted synchrotron radiation to 1.32 Å resolution and belonged to the monoclinic space group P2 1 . The phase problem was solved by molecular replacement. A detailed examination of the structure may provide insight into the type of ligand that could be bound by the YF1*7.1 molecule

  6. An MHC II-Dependent Activation Loop between Adipose Tissue Macrophages and CD4+ T Cells Controls Obesity-Induced Inflammation

    Directory of Open Access Journals (Sweden)

    Kae Won Cho

    2014-10-01

    Full Text Available An adaptive immune response triggered by obesity is characterized by the activation of adipose tissue CD4+ T cells by unclear mechanisms. We have examined whether interactions between adipose tissue macrophages (ATMs and CD4+ T cells contribute to adipose tissue metainflammation. Intravital microscopy identifies dynamic antigen-dependent interactions between ATMs and T cells in visceral fat. Mice deficient in major histocompatibility complex class II (MHC II showed protection from diet-induced obesity. Deletion of MHC II expression in macrophages led to an adipose tissue-specific decrease in the effector/memory CD4+ T cells, attenuation of CD11c+ ATM accumulation, and improvement in glucose intolerance by increasing adipose tissue insulin sensitivity. Ablation experiments demonstrated that the maintenance of proliferating conventional T cells is dependent on signals from CD11c+ ATMs in obese mice. These studies demonstrate the importance of MHCII-restricted signals from ATMs that regulate adipose tissue T cell maturation and metainflammation.

  7. Directed evolution of human T cell receptor CDR2 residues by phage display dramatically enhances affinity for cognate peptide-MHC without increasing apparent cross-reactivity

    Science.gov (United States)

    Dunn, Steven M.; Rizkallah, Pierre J.; Baston, Emma; Mahon, Tara; Cameron, Brian; Moysey, Ruth; Gao, Feng; Sami, Malkit; Boulter, Jonathan; Li, Yi; Jakobsen, Bent K.

    2006-01-01

    The mammalian α/β T cell receptor (TCR) repertoire plays a pivotal role in adaptive immunity by recognizing short, processed, peptide antigens bound in the context of a highly diverse family of cell-surface major histocompatibility complexes (pMHCs). Despite the extensive TCR–MHC interaction surface, peptide-independent cross-reactivity of native TCRs is generally avoided through cell-mediated selection of molecules with low inherent affinity for MHC. Here we show that, contrary to expectations, the germ line-encoded complementarity determining regions (CDRs) of human TCRs, namely the CDR2s, which appear to contact only the MHC surface and not the bound peptide, can be engineered to yield soluble low nanomolar affinity ligands that retain a surprisingly high degree of specificity for the cognate pMHC target. Structural investigation of one such CDR2 mutant implicates shape complementarity of the mutant CDR2 contact interfaces as being a key determinant of the increased affinity. Our results suggest that manipulation of germ line CDR2 loops may provide a useful route to the production of high-affinity TCRs with therapeutic and diagnostic potential. PMID:16600963

  8. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation.

    Science.gov (United States)

    Pereyra, Florencia; Jia, Xiaoming; McLaren, Paul J; Telenti, Amalio; de Bakker, Paul I W; Walker, Bruce D; Ripke, Stephan; Brumme, Chanson J; Pulit, Sara L; Carrington, Mary; Kadie, Carl M; Carlson, Jonathan M; Heckerman, David; Graham, Robert R; Plenge, Robert M; Deeks, Steven G; Gianniny, Lauren; Crawford, Gabriel; Sullivan, Jordan; Gonzalez, Elena; Davies, Leela; Camargo, Amy; Moore, Jamie M; Beattie, Nicole; Gupta, Supriya; Crenshaw, Andrew; Burtt, Noël P; Guiducci, Candace; Gupta, Namrata; Gao, Xiaojiang; Qi, Ying; Yuki, Yuko; Piechocka-Trocha, Alicja; Cutrell, Emily; Rosenberg, Rachel; Moss, Kristin L; Lemay, Paul; O'Leary, Jessica; Schaefer, Todd; Verma, Pranshu; Toth, Ildiko; Block, Brian; Baker, Brett; Rothchild, Alissa; Lian, Jeffrey; Proudfoot, Jacqueline; Alvino, Donna Marie L; Vine, Seanna; Addo, Marylyn M; Allen, Todd M; Altfeld, Marcus; Henn, Matthew R; Le Gall, Sylvie; Streeck, Hendrik; Haas, David W; Kuritzkes, Daniel R; Robbins, Gregory K; Shafer, Robert W; Gulick, Roy M; Shikuma, Cecilia M; Haubrich, Richard; Riddler, Sharon; Sax, Paul E; Daar, Eric S; Ribaudo, Heather J; Agan, Brian; Agarwal, Shanu; Ahern, Richard L; Allen, Brady L; Altidor, Sherly; Altschuler, Eric L; Ambardar, Sujata; Anastos, Kathryn; Anderson, Ben; Anderson, Val; Andrady, Ushan; Antoniskis, Diana; Bangsberg, David; Barbaro, Daniel; Barrie, William; Bartczak, J; Barton, Simon; Basden, Patricia; Basgoz, Nesli; Bazner, Suzane; Bellos, Nicholaos C; Benson, Anne M; Berger, Judith; Bernard, Nicole F; Bernard, Annette M; Birch, Christopher; Bodner, Stanley J; Bolan, Robert K; Boudreaux, Emilie T; Bradley, Meg; Braun, James F; Brndjar, Jon E; Brown, Stephen J; Brown, Katherine; Brown, Sheldon T; Burack, Jedidiah; Bush, Larry M; Cafaro, Virginia; Campbell, Omobolaji; Campbell, John; Carlson, Robert H; Carmichael, J Kevin; Casey, Kathleen K; Cavacuiti, Chris; Celestin, Gregory; Chambers, Steven T; Chez, Nancy; Chirch, Lisa M; Cimoch, Paul J; Cohen, Daniel; Cohn, Lillian E; Conway, Brian; Cooper, David A; Cornelson, Brian; Cox, David T; Cristofano, Michael V; Cuchural, George; Czartoski, Julie L; Dahman, Joseph M; Daly, Jennifer S; Davis, Benjamin T; Davis, Kristine; Davod, Sheila M; DeJesus, Edwin; Dietz, Craig A; Dunham, Eleanor; Dunn, Michael E; Ellerin, Todd B; Eron, Joseph J; Fangman, John J W; Farel, Claire E; Ferlazzo, Helen; Fidler, Sarah; Fleenor-Ford, Anita; Frankel, Renee; Freedberg, Kenneth A; French, Neel K; Fuchs, Jonathan D; Fuller, Jon D; Gaberman, Jonna; Gallant, Joel E; Gandhi, Rajesh T; Garcia, Efrain; Garmon, Donald; Gathe, Joseph C; Gaultier, Cyril R; Gebre, Wondwoosen; Gilman, Frank D; Gilson, Ian; Goepfert, Paul A; Gottlieb, Michael S; Goulston, Claudia; Groger, Richard K; Gurley, T Douglas; Haber, Stuart; Hardwicke, Robin; Hardy, W David; Harrigan, P Richard; Hawkins, Trevor N; Heath, Sonya; Hecht, Frederick M; Henry, W Keith; Hladek, Melissa; Hoffman, Robert P; Horton, James M; Hsu, Ricky K; Huhn, Gregory D; Hunt, Peter; Hupert, Mark J; Illeman, Mark L; Jaeger, Hans; Jellinger, Robert M; John, Mina; Johnson, Jennifer A; Johnson, Kristin L; Johnson, Heather; Johnson, Kay; Joly, Jennifer; Jordan, Wilbert C; Kauffman, Carol A; Khanlou, Homayoon; Killian, Robert K; Kim, Arthur Y; Kim, David D; Kinder, Clifford A; Kirchner, Jeffrey T; Kogelman, Laura; Kojic, Erna Milunka; Korthuis, P Todd; Kurisu, Wayne; Kwon, Douglas S; LaMar, Melissa; Lampiris, Harry; Lanzafame, Massimiliano; Lederman, Michael M; Lee, David M; Lee, Jean M L; Lee, Marah J; Lee, Edward T Y; Lemoine, Janice; Levy, Jay A; Llibre, Josep M; Liguori, Michael A; Little, Susan J; Liu, Anne Y; Lopez, Alvaro J; Loutfy, Mono R; Loy, Dawn; Mohammed, Debbie Y; Man, Alan; Mansour, Michael K; Marconi, Vincent C; Markowitz, Martin; Marques, Rui; Martin, Jeffrey N; Martin, Harold L; Mayer, Kenneth Hugh; McElrath, M Juliana; McGhee, Theresa A; McGovern, Barbara H; McGowan, Katherine; McIntyre, Dawn; Mcleod, Gavin X; Menezes, Prema; Mesa, Greg; Metroka, Craig E; Meyer-Olson, Dirk; Miller, Andy O; Montgomery, Kate; Mounzer, Karam C; Nagami, Ellen H; Nagin, Iris; Nahass, Ronald G; Nelson, Margret O; Nielsen, Craig; Norene, David L; O'Connor, David H; Ojikutu, Bisola O; Okulicz, Jason; Oladehin, Olakunle O; Oldfield, Edward C; Olender, Susan A; Ostrowski, Mario; Owen, William F; Pae, Eunice; Parsonnet, Jeffrey; Pavlatos, Andrew M; Perlmutter, Aaron M; Pierce, Michael N; Pincus, Jonathan M; Pisani, Leandro; Price, Lawrence Jay; Proia, Laurie; Prokesch, Richard C; Pujet, Heather Calderon; Ramgopal, Moti; Rathod, Almas; Rausch, Michael; Ravishankar, J; Rhame, Frank S; Richards, Constance Shamuyarira; Richman, Douglas D; Rodes, Berta; Rodriguez, Milagros; Rose, Richard C; Rosenberg, Eric S; Rosenthal, Daniel; Ross, Polly E; Rubin, David S; Rumbaugh, Elease; Saenz, Luis; Salvaggio, Michelle R; Sanchez, William C; Sanjana, Veeraf M; Santiago, Steven; Schmidt, Wolfgang; Schuitemaker, Hanneke; Sestak, Philip M; Shalit, Peter; Shay, William; Shirvani, Vivian N; Silebi, Vanessa I; Sizemore, James M; Skolnik, Paul R; Sokol-Anderson, Marcia; Sosman, James M; Stabile, Paul; Stapleton, Jack T; Starrett, Sheree; Stein, Francine; Stellbrink, Hans-Jurgen; Sterman, F Lisa; Stone, Valerie E; Stone, David R; Tambussi, Giuseppe; Taplitz, Randy A; Tedaldi, Ellen M; Telenti, Amalio; Theisen, William; Torres, Richard; Tosiello, Lorraine; Tremblay, Cecile; Tribble, Marc A; Trinh, Phuong D; Tsao, Alice; Ueda, Peggy; Vaccaro, Anthony; Valadas, Emilia; Vanig, Thanes J; Vecino, Isabel; Vega, Vilma M; Veikley, Wenoah; Wade, Barbara H; Walworth, Charles; Wanidworanun, Chingchai; Ward, Douglas J; Warner, Daniel A; Weber, Robert D; Webster, Duncan; Weis, Steve; Wheeler, David A; White, David J; Wilkins, Ed; Winston, Alan; Wlodaver, Clifford G; van't Wout, Angelique; Wright, David P; Yang, Otto O; Yurdin, David L; Zabukovic, Brandon W; Zachary, Kimon C; Zeeman, Beth; Zhao, Meng

    2010-12-10

    Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA-viral peptide interaction as the major factor modulating durable control of HIV infection.

  9. The Major Genetic Determinants of HIV-1 Control Affect HLA Class I Peptide Presentation

    Science.gov (United States)

    Pereyra, Florencia; Jia, Xiaoming; McLaren, Paul J.; Telenti, Amalio; de Bakker, Paul I.W.; Walker, Bruce D.; Jia, Xiaoming; McLaren, Paul J.; Ripke, Stephan; Brumme, Chanson J.; Pulit, Sara L.; Telenti, Amalio; Carrington, Mary; Kadie, Carl M.; Carlson, Jonathan M.; Heckerman, David; de Bakker, Paul I.W.; Pereyra, Florencia; de Bakker, Paul I.W.; Graham, Robert R.; Plenge, Robert M.; Deeks, Steven G.; Walker, Bruce D.; Gianniny, Lauren; Crawford, Gabriel; Sullivan, Jordan; Gonzalez, Elena; Davies, Leela; Camargo, Amy; Moore, Jamie M.; Beattie, Nicole; Gupta, Supriya; Crenshaw, Andrew; Burtt, Noël P.; Guiducci, Candace; Gupta, Namrata; Carrington, Mary; Gao, Xiaojiang; Qi, Ying; Yuki, Yuko; Pereyra, Florencia; Piechocka-Trocha, Alicja; Cutrell, Emily; Rosenberg, Rachel; Moss, Kristin L.; Lemay, Paul; O’Leary, Jessica; Schaefer, Todd; Verma, Pranshu; Toth, Ildiko; Block, Brian; Baker, Brett; Rothchild, Alissa; Lian, Jeffrey; Proudfoot, Jacqueline; Alvino, Donna Marie L.; Vine, Seanna; Addo, Marylyn M.; Allen, Todd M.; Altfeld, Marcus; Henn, Matthew R.; Le Gall, Sylvie; Streeck, Hendrik; Walker, Bruce D.; Haas, David W.; Kuritzkes, Daniel R.; Robbins, Gregory K.; Shafer, Robert W.; Gulick, Roy M.; Shikuma, Cecilia M.; Haubrich, Richard; Riddler, Sharon; Sax, Paul E.; Daar, Eric S.; Ribaudo, Heather J.; Agan, Brian; Agarwal, Shanu; Ahern, Richard L.; Allen, Brady L.; Altidor, Sherly; Altschuler, Eric L.; Ambardar, Sujata; Anastos, Kathryn; Anderson, Ben; Anderson, Val; Andrady, Ushan; Antoniskis, Diana; Bangsberg, David; Barbaro, Daniel; Barrie, William; Bartczak, J.; Barton, Simon; Basden, Patricia; Basgoz, Nesli; Bazner, Suzane; Bellos, Nicholaos C.; Benson, Anne M.; Berger, Judith; Bernard, Nicole F.; Bernard, Annette M.; Birch, Christopher; Bodner, Stanley J.; Bolan, Robert K.; Boudreaux, Emilie T.; Bradley, Meg; Braun, James F.; Brndjar, Jon E.; Brown, Stephen J.; Brown, Katherine; Brown, Sheldon T.; Burack, Jedidiah; Bush, Larry M.; Cafaro, Virginia; Campbell, Omobolaji; Campbell, John; Carlson, Robert H.; Carmichael, J. Kevin; Casey, Kathleen K.; Cavacuiti, Chris; Celestin, Gregory; Chambers, Steven T.; Chez, Nancy; Chirch, Lisa M.; Cimoch, Paul J.; Cohen, Daniel; Cohn, Lillian E.; Conway, Brian; Cooper, David A.; Cornelson, Brian; Cox, David T.; Cristofano, Michael V.; Cuchural, George; Czartoski, Julie L.; Dahman, Joseph M.; Daly, Jennifer S.; Davis, Benjamin T.; Davis, Kristine; Davod, Sheila M.; Deeks, Steven G.; DeJesus, Edwin; Dietz, Craig A.; Dunham, Eleanor; Dunn, Michael E.; Ellerin, Todd B.; Eron, Joseph J.; Fangman, John J.W.; Farel, Claire E.; Ferlazzo, Helen; Fidler, Sarah; Fleenor-Ford, Anita; Frankel, Renee; Freedberg, Kenneth A.; French, Neel K.; Fuchs, Jonathan D.; Fuller, Jon D.; Gaberman, Jonna; Gallant, Joel E.; Gandhi, Rajesh T.; Garcia, Efrain; Garmon, Donald; Gathe, Joseph C.; Gaultier, Cyril R.; Gebre, Wondwoosen; Gilman, Frank D.; Gilson, Ian; Goepfert, Paul A.; Gottlieb, Michael S.; Goulston, Claudia; Groger, Richard K.; Gurley, T. Douglas; Haber, Stuart; Hardwicke, Robin; Hardy, W. David; Harrigan, P. Richard; Hawkins, Trevor N.; Heath, Sonya; Hecht, Frederick M.; Henry, W. Keith; Hladek, Melissa; Hoffman, Robert P.; Horton, James M.; Hsu, Ricky K.; Huhn, Gregory D.; Hunt, Peter; Hupert, Mark J.; Illeman, Mark L.; Jaeger, Hans; Jellinger, Robert M.; John, Mina; Johnson, Jennifer A.; Johnson, Kristin L.; Johnson, Heather; Johnson, Kay; Joly, Jennifer; Jordan, Wilbert C.; Kauffman, Carol A.; Khanlou, Homayoon; Killian, Robert K.; Kim, Arthur Y.; Kim, David D.; Kinder, Clifford A.; Kirchner, Jeffrey T.; Kogelman, Laura; Kojic, Erna Milunka; Korthuis, P. Todd; Kurisu, Wayne; Kwon, Douglas S.; LaMar, Melissa; Lampiris, Harry; Lanzafame, Massimiliano; Lederman, Michael M.; Lee, David M.; Lee, Jean M.L.; Lee, Marah J.; Lee, Edward T.Y.; Lemoine, Janice; Levy, Jay A.; Llibre, Josep M.; Liguori, Michael A.; Little, Susan J.; Liu, Anne Y.; Lopez, Alvaro J.; Loutfy, Mono R.; Loy, Dawn; Mohammed, Debbie Y.; Man, Alan; Mansour, Michael K.; Marconi, Vincent C.; Markowitz, Martin; Marques, Rui; Martin, Jeffrey N.; Martin, Harold L.; Mayer, Kenneth Hugh; McElrath, M. Juliana; McGhee, Theresa A.; McGovern, Barbara H.; McGowan, Katherine; McIntyre, Dawn; Mcleod, Gavin X.; Menezes, Prema; Mesa, Greg; Metroka, Craig E.; Meyer-Olson, Dirk; Miller, Andy O.; Montgomery, Kate; Mounzer, Karam C.; Nagami, Ellen H.; Nagin, Iris; Nahass, Ronald G.; Nelson, Margret O.; Nielsen, Craig; Norene, David L.; O’Connor, David H.; Ojikutu, Bisola O.; Okulicz, Jason; Oladehin, Olakunle O.; Oldfield, Edward C.; Olender, Susan A.; Ostrowski, Mario; Owen, William F.; Pae, Eunice; Parsonnet, Jeffrey; Pavlatos, Andrew M.; Perlmutter, Aaron M.; Pierce, Michael N.; Pincus, Jonathan M.; Pisani, Leandro; Price, Lawrence Jay; Proia, Laurie; Prokesch, Richard C.; Pujet, Heather Calderon; Ramgopal, Moti; Rathod, Almas; Rausch, Michael; Ravishankar, J.; Rhame, Frank S.; Richards, Constance Shamuyarira; Richman, Douglas D.; Robbins, Gregory K.; Rodes, Berta; Rodriguez, Milagros; Rose, Richard C.; Rosenberg, Eric S.; Rosenthal, Daniel; Ross, Polly E.; Rubin, David S.; Rumbaugh, Elease; Saenz, Luis; Salvaggio, Michelle R.; Sanchez, William C.; Sanjana, Veeraf M.; Santiago, Steven; Schmidt, Wolfgang; Schuitemaker, Hanneke; Sestak, Philip M.; Shalit, Peter; Shay, William; Shirvani, Vivian N.; Silebi, Vanessa I.; Sizemore, James M.; Skolnik, Paul R.; Sokol-Anderson, Marcia; Sosman, James M.; Stabile, Paul; Stapleton, Jack T.; Starrett, Sheree; Stein, Francine; Stellbrink, Hans-Jurgen; Sterman, F. Lisa; Stone, Valerie E.; Stone, David R.; Tambussi, Giuseppe; Taplitz, Randy A.; Tedaldi, Ellen M.; Telenti, Amalio; Theisen, William; Torres, Richard; Tosiello, Lorraine; Tremblay, Cecile; Tribble, Marc A.; Trinh, Phuong D.; Tsao, Alice; Ueda, Peggy; Vaccaro, Anthony; Valadas, Emilia; Vanig, Thanes J.; Vecino, Isabel; Vega, Vilma M.; Veikley, Wenoah; Wade, Barbara H.; Walworth, Charles; Wanidworanun, Chingchai; Ward, Douglas J.; Warner, Daniel A.; Weber, Robert D.; Webster, Duncan; Weis, Steve; Wheeler, David A.; White, David J.; Wilkins, Ed; Winston, Alan; Wlodaver, Clifford G.; Wout, Angelique van’t; Wright, David P.; Yang, Otto O.; Yurdin, David L.; Zabukovic, Brandon W.; Zachary, Kimon C.; Zeeman, Beth; Zhao, Meng

    2011-01-01

    Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA–viral peptide interaction as the major factor modulating durable control of HIV infection. PMID:21051598

  10. Chemotherapeutics and radiation stimulate MHC class I expression through elevated interferon-beta signaling in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Shan Wan

    Full Text Available Low doses of anticancer drugs have been shown to enhance antitumor immune response and increase the efficacy of immunotherapy. The molecular basis for such effects remains elusive, although selective depletion of T regulatory cells has been demonstrated. In the current studies, we demonstrate that topotecan (TPT, a topoisomerase I-targeting drug with a well-defined mechanism of action, stimulates major histocompatibility complex class I (MHC I expression in breast cancer cells through elevated expression/secretion of interferon-β (IFN-β and activation of type I IFN signaling. First, we show that TPT treatment elevates the expression of both total and cell-surface MHC I in breast cancer cells. Second, conditioned media from TPT-treated breast cancer ZR-75-1 cells induce elevated expression of cell-surface MHC I in drug-naïve recipient cells, suggesting the involvement of cytokines and/or other secreted molecules. Consistently, TPT-treated cells exhibit elevated expression of multiple cytokines such as IFN-β, TNF-α, IL-6 and IL-8. Third, either knocking down the type I interferon receptor subunit 1 (IFNAR1 or addition of neutralizing antibody against IFN-β results in reduced MHC I expression in TPT-treated cells. Together, these results suggest that TPT induces increased IFN-β autocrine/paracrine signaling through type I IFN receptor, resulting in the elevated MHC I expression in tumor cells. Studies have also demonstrated that other chemotherapeutic agents (e.g. etoposide, cisplatin, paclitaxel and vinblastine similarly induce increased IFN-β secretion and elevated MHC I expression. In addition, conditioned media from γ-irradiated donor cells are shown to induce IFN-β-dependent MHC I expression in unirradiated recipient cells. In the aggregate, our results suggest that many cancer therapeutics induce elevated tumor antigen presentation through MHC I, which could represent a common mechanism for enhanced antitumor immune response through

  11. MHC class II DQB diversity in the Japanese black bear, Ursus thibetanus japonicus

    Science.gov (United States)

    2012-01-01

    Background The major histocompatibility complex (MHC) genes are one of the most important genetic systems in the vertebrate immune response. The diversity of MHC genes may directly influence the survival of individuals against infectious disease. However, there has been no investigation of MHC diversity in the Asiatic black bear (Ursus thibetanus). Here, we analyzed 270-bp nucleotide sequences of the entire exon 2 region of the MHC DQB gene by using 188 samples from the Japanese black bear (Ursus thibetanus japonicus) from 12 local populations. Results Among 185 of 188 samples, we identified 44 MHC variants that encoded 31 different amino acid sequences (allotypes) and one putative pseudogene. The phylogenetic analysis suggests that MHC variants detected from the Japanese black bear are derived from the DQB locus. One of the 31 DQB allotypes, Urth-DQB*01, was found to be common to all local populations. Moreover, this allotype was shared between the black bear on the Asian continent and the Japanese black bear, suggesting that Urth-DQB*01 might have been maintained in the ancestral black bear population for at least 300,000 years. Our findings, from calculating the ratio of non-synonymous to synonymous substitutions, indicate that balancing selection has maintained genetic variation of peptide-binding residues at the DQB locus of the Japanese black bear. From examination of genotype frequencies among local populations, we observed a considerably lower level of observed heterozygosity than expected. Conclusions The low level of observed heterozygosity suggests that genetic drift reduced DQB diversity in the Japanese black bear due to a bottleneck event at the population or species level. The decline of DQB diversity might have been accelerated by the loss of rare variants that have been maintained by negative frequency-dependent selection. Nevertheless, DQB diversity of the black bear appears to be relatively high compared with some other endangered mammalian

  12. MHC class II DQB diversity in the Japanese black bear, Ursus thibetanus japonicus

    Directory of Open Access Journals (Sweden)

    Yasukochi Yoshiki

    2012-11-01

    Full Text Available Abstract Background The major histocompatibility complex (MHC genes are one of the most important genetic systems in the vertebrate immune response. The diversity of MHC genes may directly influence the survival of individuals against infectious disease. However, there has been no investigation of MHC diversity in the Asiatic black bear (Ursus thibetanus. Here, we analyzed 270-bp nucleotide sequences of the entire exon 2 region of the MHC DQB gene by using 188 samples from the Japanese black bear (Ursus thibetanus japonicus from 12 local populations. Results Among 185 of 188 samples, we identified 44 MHC variants that encoded 31 different amino acid sequences (allotypes and one putative pseudogene. The phylogenetic analysis suggests that MHC variants detected from the Japanese black bear are derived from the DQB locus. One of the 31 DQB allotypes, Urth-DQB*01, was found to be common to all local populations. Moreover, this allotype was shared between the black bear on the Asian continent and the Japanese black bear, suggesting that Urth-DQB*01 might have been maintained in the ancestral black bear population for at least 300,000 years. Our findings, from calculating the ratio of non-synonymous to synonymous substitutions, indicate that balancing selection has maintained genetic variation of peptide-binding residues at the DQB locus of the Japanese black bear. From examination of genotype frequencies among local populations, we observed a considerably lower level of observed heterozygosity than expected. Conclusions The low level of observed heterozygosity suggests that genetic drift reduced DQB diversity in the Japanese black bear due to a bottleneck event at the population or species level. The decline of DQB diversity might have been accelerated by the loss of rare variants that have been maintained by negative frequency-dependent selection. Nevertheless, DQB diversity of the black bear appears to be relatively high compared with some other

  13. MHC class II DQB diversity in the Japanese black bear, Ursus thibetanus japonicus.

    Science.gov (United States)

    Yasukochi, Yoshiki; Kurosaki, Toshifumi; Yoneda, Masaaki; Koike, Hiroko; Satta, Yoko

    2012-11-29

    The major histocompatibility complex (MHC) genes are one of the most important genetic systems in the vertebrate immune response. The diversity of MHC genes may directly influence the survival of individuals against infectious disease. However, there has been no investigation of MHC diversity in the Asiatic black bear (Ursus thibetanus). Here, we analyzed 270-bp nucleotide sequences of the entire exon 2 region of the MHC DQB gene by using 188 samples from the Japanese black bear (Ursus thibetanus japonicus) from 12 local populations. Among 185 of 188 samples, we identified 44 MHC variants that encoded 31 different amino acid sequences (allotypes) and one putative pseudogene. The phylogenetic analysis suggests that MHC variants detected from the Japanese black bear are derived from the DQB locus. One of the 31 DQB allotypes, Urth-DQB*01, was found to be common to all local populations. Moreover, this allotype was shared between the black bear on the Asian continent and the Japanese black bear, suggesting that Urth-DQB*01 might have been maintained in the ancestral black bear population for at least 300,000 years. Our findings, from calculating the ratio of non-synonymous to synonymous substitutions, indicate that balancing selection has maintained genetic variation of peptide-binding residues at the DQB locus of the Japanese black bear. From examination of genotype frequencies among local populations, we observed a considerably lower level of observed heterozygosity than expected. The low level of observed heterozygosity suggests that genetic drift reduced DQB diversity in the Japanese black bear due to a bottleneck event at the population or species level. The decline of DQB diversity might have been accelerated by the loss of rare variants that have been maintained by negative frequency-dependent selection. Nevertheless, DQB diversity of the black bear appears to be relatively high compared with some other endangered mammalian species. This result suggests that

  14. Inhibition of MHC-I by Brucella abortus is an early event during infection and involves EGFR pathway.

    Science.gov (United States)

    Velásquez, Lis N; Milillo, M Ayelén; Delpino, M Victoria; Trotta, Aldana; Mercogliano, M Florencia; Pozner, Roberto G; Schillaci, Roxana; Elizalde, Patricia V; Giambartolomei, Guillermo H; Barrionuevo, Paula

    2017-04-01

    Brucella abortus is able to persist inside the host despite the development of potent CD8 + T-cell responses. We have recently reported the ability of B. abortus to inhibit the interferon-γ-induced major histocompatibility complex (MHC)-I cell surface expression on human monocytes. This phenomenon was due to the B. abortus-mediated retention of MHC-I molecules within the Golgi apparatus and was dependent on bacterial viability. However, the implications of bacterial virulence or replicative capacity and the signaling pathways remained unknown. Here we demonstrated that the B. abortus mutant strains RB51 and virB10 - are able to inhibit MHC-I expression in the same manner as wild-type B. abortus, even though they are unable to persist inside human monocytes for a long period of time. Consistent with this, the phenomenon was triggered early in time and could be observed at 8 h postinfection. At 24 and 48 h, it was even stronger. Regarding the signaling pathway, targeting epidermal growth factor (EGF) receptor (EGFR), ErbB2 (HER2) or inhibition of tumor necrosis factor-α-converting enzyme, one of the enzymes which generates soluble EGF-like ligands, resulted in partial recovery of MHC-I surface expression. Moreover, recombinant EGF and transforming growth factor-α as well as the combination of both were also able to reproduce the B. abortus-induced MHC-I downmodulation. Finally, when infection was performed in the presence of an extracellular signal-regulated kinase 1/2 (Erk1/2) inhibitor, MHC-I surface expression was significantly recovered. Overall, these results describe how B. abortus evades CD8 + T-cell responses early during infection and exploits the EGFR-ERK signaling pathway to escape from the immune system and favor chronicity.

  15. A community resource benchmarking predictions of peptide binding to MHC-I molecules.

    Science.gov (United States)

    Peters, Bjoern; Bui, Huynh-Hoa; Frankild, Sune; Nielson, Morten; Lundegaard, Claus; Kostem, Emrah; Basch, Derek; Lamberth, Kasper; Harndahl, Mikkel; Fleri, Ward; Wilson, Stephen S; Sidney, John; Lund, Ole; Buus, Soren; Sette, Alessandro

    2006-06-09

    Recognition of peptides bound to major histocompatibility complex (MHC) class I molecules by T lymphocytes is an essential part of immune surveillance. Each MHC allele has a characteristic peptide binding preference, which can be captured in prediction algorithms, allowing for the rapid scan of entire pathogen proteomes for peptide likely to bind MHC. Here we make public a large set of 48,828 quantitative peptide-binding affinity measurements relating to 48 different mouse, human, macaque, and chimpanzee MHC class I alleles. We use this data to establish a set of benchmark predictions with one neural network method and two matrix-based prediction methods extensively utilized in our groups. In general, the neural network outperforms the matrix-based predictions mainly due to its ability to generalize even on a small amount of data. We also retrieved predictions from tools publicly available on the internet. While differences in the data used to generate these predictions hamper direct comparisons, we do conclude that tools based on combinatorial peptide libraries perform remarkably well. The transparent prediction evaluation on this dataset provides tool developers with a benchmark for comparison of newly developed prediction methods. In addition, to generate and evaluate our own prediction methods, we have established an easily extensible web-based prediction framework that allows automated side-by-side comparisons of prediction methods implemented by experts. This is an advance over the current practice of tool developers having to generate reference predictions themselves, which can lead to underestimating the performance of prediction methods they are not as familiar with as their own. The overall goal of this effort is to provide a transparent prediction evaluation allowing bioinformaticians to identify promising features of prediction methods and providing guidance to immunologists regarding the reliability of prediction tools.

  16. Characterization of a Nonclassical Class I MHC Gene in a Reptile, the Galápagos Marine Iguana (Amblyrhynchus cristatus)

    Science.gov (United States)

    Glaberman, Scott; Du Pasquier, Louis; Caccone, Adalgisa

    2008-01-01

    Squamates are a diverse order of vertebrates, representing more than 7,000 species. Yet, descriptions of full-length major histocompatibility complex (MHC) genes in this group are nearly absent from the literature, while the number of MHC studies continues to rise in other vertebrate taxa. The lack of basic information about MHC organization in squamates inhibits investigation into the relationship between MHC polymorphism and disease, and leaves a large taxonomic gap in our understanding of amniote MHC evolution. Here, we use both cDNA and genomic sequence data to characterize a class I MHC gene (Amcr-UA) from the Galápagos marine iguana, a member of the squamate subfamily Iguaninae. Amcr-UA appears to be functional since it is expressed in the blood and contains many of the conserved peptide-binding residues that are found in classical class I genes of other vertebrates. In addition, comparison of Amcr-UA to homologous sequences from other iguanine species shows that the antigen-binding portion of this gene is under purifying selection, rather than balancing selection, and therefore may have a conserved function. A striking feature of Amcr-UA is that both the cDNA and genomic sequences lack the transmembrane and cytoplasmic domains that are necessary to anchor the class I receptor molecule into the cell membrane, suggesting that the product of this gene is secreted and consequently not involved in classical class I antigen-presentation. The truncated and conserved character of Amcr-UA lead us to define it as a nonclassical gene that is related to the few available squamate class I sequences. However, phylogenetic analysis placed Amcr-UA in a basal position relative to other published classical MHC genes from squamates, suggesting that this gene diverged near the beginning of squamate diversification. PMID:18682845

  17. Characterization of a nonclassical class I MHC gene in a reptile, the Galápagos marine iguana (Amblyrhynchus cristatus.

    Directory of Open Access Journals (Sweden)

    Scott Glaberman

    Full Text Available Squamates are a diverse order of vertebrates, representing more than 7,000 species. Yet, descriptions of full-length major histocompatibility complex (MHC genes in this group are nearly absent from the literature, while the number of MHC studies continues to rise in other vertebrate taxa. The lack of basic information about MHC organization in squamates inhibits investigation into the relationship between MHC polymorphism and disease, and leaves a large taxonomic gap in our understanding of amniote MHC evolution. Here, we use both cDNA and genomic sequence data to characterize a class I MHC gene (Amcr-UA from the Galápagos marine iguana, a member of the squamate subfamily Iguaninae. Amcr-UA appears to be functional since it is expressed in the blood and contains many of the conserved peptide-binding residues that are found in classical class I genes of other vertebrates. In addition, comparison of Amcr-UA to homologous sequences from other iguanine species shows that the antigen-binding portion of this gene is under purifying selection, rather than balancing selection, and therefore may have a conserved function. A striking feature of Amcr-UA is that both the cDNA and genomic sequences lack the transmembrane and cytoplasmic domains that are necessary to anchor the class I receptor molecule into the cell membrane, suggesting that the product of this gene is secreted and consequently not involved in classical class I antigen-presentation. The truncated and conserved character of Amcr-UA lead us to define it as a nonclassical gene that is related to the few available squamate class I sequences. However, phylogenetic analysis placed Amcr-UA in a basal position relative to other published classical MHC genes from squamates, suggesting that this gene diverged near the beginning of squamate diversification.

  18. Geometry Dynamics of α-Helices in Different Class I Major Histocompatibility Complexes

    Directory of Open Access Journals (Sweden)

    Reiner Ribarics

    2015-01-01

    Full Text Available MHC α-helices form the antigen-binding cleft and are of particular interest for immunological reactions. To monitor these helices in molecular dynamics simulations, we applied a parsimonious fragment-fitting method to trace the axes of the α-helices. Each resulting axis was fitted by polynomials in a least-squares sense and the curvature integral was computed. To find the appropriate polynomial degree, the method was tested on two artificially modelled helices, one performing a bending movement and another a hinge movement. We found that second-order polynomials retrieve predefined parameters of helical motion with minimal relative error. From MD simulations we selected those parts of α-helices that were stable and also close to the TCR/MHC interface. We monitored the curvature integral, generated a ruled surface between the two MHC α-helices, and computed interhelical area and surface torsion, as they changed over time. We found that MHC α-helices undergo rapid but small changes in conformation. The curvature integral of helices proved to be a sensitive measure, which was closely related to changes in shape over time as confirmed by RMSD analysis. We speculate that small changes in the conformation of individual MHC α-helices are part of the intrinsic dynamics induced by engagement with the TCR.

  19. Extreme MHC class I diversity in the sedge warbler (Acrocephalus schoenobaenus); selection patterns and allelic divergence suggest that different genes have different functions.

    Science.gov (United States)

    Biedrzycka, Aleksandra; O'Connor, Emily; Sebastian, Alvaro; Migalska, Magdalena; Radwan, Jacek; Zając, Tadeusz; Bielański, Wojciech; Solarz, Wojciech; Ćmiel, Adam; Westerdahl, Helena

    2017-07-05

    Recent work suggests that gene duplications may play an important role in the evolution of immunity genes. Passerine birds, and in particular Sylvioidea warblers, have highly duplicated major histocompatibility complex (MHC) genes, which are key in immunity, compared to other vertebrates. However, reasons for this high MHC gene copy number are yet unclear. High-throughput sequencing (HTS) allows MHC genotyping even in individuals with extremely duplicated genes. This HTS data can reveal evidence of selection, which may help to unravel the putative functions of different gene copies, i.e. neofunctionalization. We performed exhaustive genotyping of MHC class I in a Sylvioidea warbler, the sedge warbler, Acrocephalus schoenobaenus, using the Illumina MiSeq technique on individuals from a wild study population. The MHC diversity in 863 genotyped individuals by far exceeds that of any other bird species described to date. A single individual could carry up to 65 different alleles, a large proportion of which are expressed (transcribed). The MHC alleles were of three different lengths differing in evidence of selection, diversity and divergence within our study population. Alleles without any deletions and alleles containing a 6 bp deletion showed characteristics of classical MHC genes, with evidence of multiple sites subject to positive selection and high sequence divergence. In contrast, alleles containing a 3 bp deletion had no sites subject to positive selection and had low divergence. Our results suggest that sedge warbler MHC alleles that either have no deletion, or contain a 6 bp deletion, encode classical antigen presenting MHC molecules. In contrast, MHC alleles containing a 3 bp deletion may encode molecules with a different function. This study demonstrates that highly duplicated MHC genes can be characterised with HTS and that selection patterns can be useful for revealing neofunctionalization. Importantly, our results highlight the need to consider the

  20. Does the parasite-mediated selection drive the MHC class IIB diversity in wild populations of European chub (Squalius cephalus)?

    Science.gov (United States)

    Seifertová, Mária; Jarkovský, Jiří; Šimková, Andrea

    2016-04-01

    The genes of major histocompatibility complex (MHC) provide an excellent opportunity to study host-parasite relationships because they are expected to evolve in response to parasites and variation in parasite communities. In this study, we investigated the potential role of parasite-mediated selection acting on MHC class IIB (DAB) genes in European chub (Squalius cephalus) natural populations. We found significant differences between populations in metazoan parasites, neutral and adaptive genetic diversities. The analyses based on pairwise data revealed that populations with dissimilar MHC allelic profiles were geographically distant populations with significantly different diversity in microsatellites and a dissimilar composition of parasite communities. The results from the generalized estimating equations method (GEE) on the level of individuals revealed that metazoan parasite load in European chub was influenced by the diversity of DAB alleles as well as by the diversity of neutral genetic markers and host traits reflecting condition and immunocompetence. The multivariate co-inertia analysis showed specific associations between DAB alleles and parasite species. DAB1-like alleles were more involved in associations with ectoparasites, while DAB3-like alleles were positively associated with endoparasites which could suggest potential differences between DAB genes caused by different selection pressure. Our study revealed that parasite-mediated selection is not the only variable affecting MHC diversity in European chub; however, we strongly support the role of neutral processes as the main driver of DAB diversity across populations. In addition, our study contributes to the understanding of the evolution of MHC genes in wild living fish.

  1. MHC class II DRB diversity in raccoons (Procyon lotor) reveals associations with raccoon rabies virus (Lyssavirus).

    Science.gov (United States)

    Srithayakumar, Vythegi; Castillo, Sarrah; Rosatte, Rick C; Kyle, Christopher J

    2011-02-01

    In North America, the raccoon rabies virus (RRV) is an endemic wildlife disease which causes acute encephalopathies and is a strong selective force on raccoons (Procyon lotor), with estimates of ∼85% of the population succumbing to the disease when epizootic. RRV is regarded as a lethal disease if untreated; therefore, no evolutionary response would be expected of raccoon populations. However, variable immune responses to RRV have been observed in raccoons indicating a potential for evolutionary adaptation. Studies of variation within the immunologically important major histocompatibility complex (MHC) have revealed relationships between MHC alleles and diseases in humans and other wildlife species. This enhances our understanding of how hosts and pathogens adapt and co-evolve. In this study, we used RRV as a model system to study host-pathogen interaction in raccoons from a challenge study and from four wild populations that differ in exposure times and viral lineages. We investigated the potential role of Prlo-DRB polymorphism in relation to susceptibility/resistance to RRV in 113 RRV positive and 143 RRV negative raccoons. Six alleles were found to be associated with RRV negative status and five alleles with RRV positive animals. We found variable patterns of MHC associations given the relative number of selective RRV sweeps in the studied regions and correlations between MHC diversity and RRV lineages. The allelic associations established provide insight into how the genetic variation of raccoons may affect the disease outcome and this can be used to examine similar associations between other rabies variants and their hosts.

  2. Prevention of MHC-alloimmunization by UV-B irradiation in a murine model: effects of UV dose and number of transfused cells

    International Nuclear Information System (INIS)

    Grijzenhout, M.A.; Claas, F.H.J.

    1994-01-01

    The optimal dose of UV-B radiation for prevention of in vivo alloimmunization (AI) against major histocompatibility complex (MHC) antigens was investigated in a murine transfusion model. Two groups with five C57BL/6 mice (H-2 b ) each were transfused at weekly intervals with 1 x 10 5 or 1 x 10 6 DBA/2 (H-2 d ) leucocytes. Both suspensions induced anti-H-2 d antibodies in all mice after the second transfusion. The minimal UV-B dose required for abolition of alloreactivity in the mixed leucocyte reaction (MLR) was 0.6 J/cm 2 . This dose completely prevented the onset of MHC-AI in all five mice transfused with six suspensions containing 1 x 10 5 leucocytes. In contrast, suspensions with 1 x 10 6 leucocytes and exposed to 0.6 J/cm 2 induced immunization in 4/5 mice. Further increase of the dose to 1.8 or 5.4 J/cm 2 did not prevent the onset of MHC-AI. We conclude that the number of leucocytes per transfusion determines the efficacy of UV irradiation for the prevention of MHC-AI. For UV irradiation of human platelet concentrates (PCs) we propose to reduce the number of leucocytes by centrifugation prior to UV exposure. UV-B irradiation of PCs with high numbers of leucocytes may not be effective for prevention of alloimmunization. (Author)

  3. Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms

    Directory of Open Access Journals (Sweden)

    Feng Lin

    2007-11-01

    Full Text Available Abstract Background Peptides binding to Major Histocompatibility Complex (MHC class II molecules are crucial for initiation and regulation of immune responses. Predicting peptides that bind to a specific MHC molecule plays an important role in determining potential candidates for vaccines. The binding groove in class II MHC is open at both ends, allowing peptides longer than 9-mer to bind. Finding the consensus motif facilitating the binding of peptides to a MHC class II molecule is difficult because of different lengths of binding peptides and varying location of 9-mer binding core. The level of difficulty increases when the molecule is promiscuous and binds to a large number of low affinity peptides. In this paper, we propose two approaches using multi-objective evolutionary algorithms (MOEA for predicting peptides binding to MHC class II molecules. One uses the information from both binders and non-binders for self-discovery of motifs. The other, in addition, uses information from experimentally determined motifs for guided-discovery of motifs. Results The proposed methods are intended for finding peptides binding to MHC class II I-Ag7 molecule – a promiscuous binder to a large number of low affinity peptides. Cross-validation results across experiments on two motifs derived for I-Ag7 datasets demonstrate better generalization abilities and accuracies of the present method over earlier approaches. Further, the proposed method was validated and compared on two publicly available benchmark datasets: (1 an ensemble of qualitative HLA-DRB1*0401 peptide data obtained from five different sources, and (2 quantitative peptide data obtained for sixteen different alleles comprising of three mouse alleles and thirteen HLA alleles. The proposed method outperformed earlier methods on most datasets, indicating that it is well suited for finding peptides binding to MHC class II molecules. Conclusion We present two MOEA-based algorithms for finding motifs

  4. Characteristics of MHC class I genes in house sparrows Passer domesticus as revealed by long cDNA transcripts and amplicon sequencing.

    Science.gov (United States)

    Karlsson, Maria; Westerdahl, Helena

    2013-08-01

    In birds the major histocompatibility complex (MHC) organization differs both among and within orders; chickens Gallus gallus of the order Galliformes have a simple arrangement, while many songbirds of the order Passeriformes have a more complex arrangement with larger numbers of MHC class I and II genes. Chicken MHC genes are found at two independent loci, classical MHC-B and non-classical MHC-Y, whereas non-classical MHC genes are yet to be verified in passerines. Here we characterize MHC class I transcripts (α1 to α3 domain) and perform amplicon sequencing using a next-generation sequencing technique on exon 3 from house sparrow Passer domesticus (a passerine) families. Then we use phylogenetic, selection, and segregation analyses to gain a better understanding of the MHC class I organization. Trees based on the α1 and α2 domain revealed a distinct cluster with short terminal branches for transcripts with a 6-bp deletion. Interestingly, this cluster was not seen in the tree based on the α3 domain. 21 exon 3 sequences were verified in a single individual and the average numbers within an individual were nine and five for sequences with and without a 6-bp deletion, respectively. All individuals had exon 3 sequences with and without a 6-bp deletion. The sequences with a 6-bp deletion have many characteristics in common with non-classical MHC, e.g., highly conserved amino acid positions were substituted compared with the other alleles, low nucleotide diversity and just a single site was subject to positive selection. However, these alleles also have characteristics that suggest they could be classical, e.g., complete linkage and absence of a distinct cluster in a tree based on the α3 domain. Thus, we cannot determine for certain whether or not the alleles with a 6-bp deletion are non-classical based on our present data. Further analyses on segregation patterns of these alleles in combination with dating the 6-bp deletion through MHC characterization across the

  5. An MHC-I cytoplasmic domain/HIV-1 Nef fusion protein binds directly to the mu subunit of the AP-1 endosomal coat complex.

    Directory of Open Access Journals (Sweden)

    Rajendra Kumar Singh

    2009-12-01

    Full Text Available The down-regulation of the major histocompatibility complex class I (MHC-I from the surface of infected cells by the Nef proteins of primate immunodeficiency viruses likely contributes to pathogenesis by providing evasion of cell-mediated immunity. HIV-1 Nef-induced down-regulation involves endosomal trafficking and a cooperative interaction between the cytoplasmic domain (CD of MHC-I, Nef, and the clathrin adaptor protein complex-1 (AP-1. The CD of MHC-I contains a key tyrosine within the sequence YSQA that is required for down-regulation by Nef, but this sequence does not conform to the canonical AP-binding tyrosine-based motif Yxxphi, which mediates binding to the medium (micro subunits of AP complexes. We previously proposed that Nef allows the MHC-I CD to bind the mu subunit of AP-1 (micro1 as if it contained a Yxxphimotif.Here, we show that a direct interaction between the MHC-I CD/Nef and micro1 plays a primary role in the down-regulation of MHC-I: GST pulldown assays using recombinant proteins indicated that most of the MHC-I CD and Nef residues that are required for the down-regulation in human cells contribute to direct interactions with a truncated version of micro1. Specifically, the tyrosine residue of the YSQA sequence in the MHC-I CD as well as Nef residues E62-65 and P78 each contributed to the interaction between MHC-I CD/Nef and micro1 in vitro, whereas Nef M20 had little to no role. Conversely, residues F172/D174 and V392/L395 of the binding pocket on micro1 for Yxxphi motifs were required for a robust interaction.These data indicate that the MHC-I cytoplasmic domain, Nef, and the C-terminal two thirds of the mu subunit of AP-1 are sufficient to constitute a biologically relevant interaction. The data also reveal an unexpected role for a hydrophobic pocket in micro1 for interaction with MHC-I CD/Nef.

  6. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method.

    Science.gov (United States)

    Nielsen, Morten; Lundegaard, Claus; Lund, Ole

    2007-07-04

    Antigen presenting cells (APCs) sample the extra cellular space and present peptides from here to T helper cells, which can be activated if the peptides are of foreign origin. The peptides are presented on the surface of the cells in complex with major histocompatibility class II (MHC II) molecules. Identification of peptides that bind MHC II molecules is thus a key step in rational vaccine design and developing methods for accurate prediction of the peptide:MHC interactions play a central role in epitope discovery. The MHC class II binding groove is open at both ends making the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC) and three mouse H2-IA alleles. The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR), we demonstrate a consistent gain in predictive performance by favoring binding registers with a minimum PFR length of two amino acids. Visualizing the binding motif as obtained by the SMM-align and TEPITOPE methods highlights a series of fundamental discrepancies between the two predicted motifs. For the DRB1*1302 allele for instance, the TEPITOPE method favors basic amino acids at most anchor positions, whereas the SMM-align method identifies a preference for hydrophobic or neutral amino acids at the anchors. The SMM-align method was shown to outperform other

  7. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method

    Directory of Open Access Journals (Sweden)

    Lund Ole

    2007-07-01

    Full Text Available Abstract Background Antigen presenting cells (APCs sample the extra cellular space and present peptides from here to T helper cells, which can be activated if the peptides are of foreign origin. The peptides are presented on the surface of the cells in complex with major histocompatibility class II (MHC II molecules. Identification of peptides that bind MHC II molecules is thus a key step in rational vaccine design and developing methods for accurate prediction of the peptide:MHC interactions play a central role in epitope discovery. The MHC class II binding groove is open at both ends making the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC and three mouse H2-IA alleles. Results The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR, we demonstrate a consistent gain in predictive performance by favoring binding registers with a minimum PFR length of two amino acids. Visualizing the binding motif as obtained by the SMM-align and TEPITOPE methods highlights a series of fundamental discrepancies between the two predicted motifs. For the DRB1*1302 allele for instance, the TEPITOPE method favors basic amino acids at most anchor positions, whereas the SMM-align method identifies a preference for hydrophobic or neutral amino acids at the anchors. Conclusion

  8. Genomic structure and expression pattern of MHC IIα and IIβ genes reveal an unusual immune trait in lined seahorse Hippocampus erectus.

    Science.gov (United States)

    Luo, Wei; Wang, Xin; Qu, Hongyue; Qin, Geng; Zhang, Huixian; Lin, Qiang

    2016-11-01

    The major histocompatibility complex (MHC) genes are crucial in the adaptive immune system, and the gene duplication of MHC in animals can generally result in immune flexibility. In this study, we found that the lined seahorse (Hippocampus erectus) has only one gene copy number (GCN) of MHC IIα and IIβ, which is different from that in other teleosts. Together with the lack of spleen and gut-associated lymphatic tissue (GALT), the seahorse may be referred to as having a partial but natural "immunodeficiency". Highly variable amino acid residues were found in the IIα and IIβ domains, especially in the α1 and β1 domains with 9.62% and 8.43% allelic variation, respectively. Site models revealed seven and ten positively selected positions in the α1 and β1 domains, respectively. Real-time PCR experiments showed high expression levels of the MHC II genes in intestine (In), gill (Gi) and trunk kidney (TK) and medium in muscle (Mu) and brood pouch (BP), and the expression levels were significantly up-regulated after bacterial infection. Specially, relative higher expression level of both MHC IIα and IIβ was found in Mu and BP when compared with other fish species, in which MHC II is expressed negligibly in Mu. These results indicate that apart from TK, Gi and In, MU and BP play an important role in the immune response against pathogens in the seahorse. In conclusion, high allelic variation and strong positive selection in PBR and relative higher expression in MU and BP are speculated to partly compensate for the immunodeficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Expression and phylogenetic analyses reveal paralogous lineages of putatively classical and non-classical MHC-I genes in three sparrow species (Passer).

    Science.gov (United States)

    Drews, Anna; Strandh, Maria; Råberg, Lars; Westerdahl, Helena

    2017-06-26

    The Major Histocompatibility Complex (MHC) plays a central role in immunity and has been given considerable attention by evolutionary ecologists due to its associations with fitness-related traits. Songbirds have unusually high numbers of MHC class I (MHC-I) genes, but it is not known whether all are expressed and equally important for immune function. Classical MHC-I genes are highly expressed, polymorphic and present peptides to T-cells whereas non-classical MHC-I genes have lower expression, are more monomorphic and do not present peptides to T-cells. To get a better understanding of the highly duplicated MHC genes in songbirds, we studied gene expression in a phylogenetic framework in three species of sparrows (house sparrow, tree sparrow and Spanish sparrow), using high-throughput sequencing. We hypothesize that sparrows could have classical and non-classical genes, as previously indicated though never tested using gene expression. The phylogenetic analyses reveal two distinct types of MHC-I alleles among the three sparrow species, one with high and one with low level of polymorphism, thus resembling classical and non-classical genes, respectively. All individuals had both types of alleles, but there was copy number variation both within and among the sparrow species. However, the number of highly polymorphic alleles that were expressed did not vary between species, suggesting that the structural genomic variation is counterbalanced by conserved gene expression. Overall, 50% of the MHC-I alleles were expressed in sparrows. Expression of the highly polymorphic alleles was very variable, whereas the alleles with low polymorphism had uniformly low expression. Interestingly, within an individual only one or two alleles from the polymorphic genes were highly expressed, indicating that only a single copy of these is highly expressed. Taken together, the phylogenetic reconstruction and the analyses of expression suggest that sparrows have both classical and non

  10. In silico and in vivo analysis of Toxoplasma gondii epitopes by correlating survival data with peptide-MHC-I binding affinities.

    Science.gov (United States)

    Huang, Si-Yang; Jensen, Maria Risager; Rosenberg, Carina Agerbo; Zhu, Xing-Quan; Petersen, Eskild; Vorup-Jensen, Thomas

    2016-07-01

    Protein antigens comprising peptide motifs with high binding affinity to major histocompatibility complex class I (MHC-I) molecules are expected to induce a stronger cytotoxic T-lymphocyte response and thus provide better protection against infection with microorganisms where cytotoxic T-cells are the main effector arm of the immune system. Data on cyst formation and survival were extracted from past studies on the DNA immunization of mice with plasmids coding for Toxoplasma gondii antigens. From in silico analyses of the vaccine antigens, the correlation was tested between the predicted affinity for MHC-I molecules of the vaccine peptides and the survival of immunized mice after challenge with T. gondii. ELISPOT analysis was used for the experimental testing of peptide immunogenicity. Predictions for the Db MHC-I molecule produced a strong, negative correlation between survival and the dissociation constant of vaccine-derived peptides. The in silico analyses of nine T. gondii antigens identified peptides with a predicted dissociation constant in the interval from 10nM to 40μM. ELISPOT assays with splenocytes from T. gondii-infected mice further supported the importance of the peptide affinity for MHC-I. In silico analysis clearly helped the search for protective vaccine antigens. The ELISPOT analysis confirmed that the predicted T-cell epitopes were immunogenic by their ability to release interferon gamma in spleen cells. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Expression of the major histocompatibility antigens HLA-A2 and HLA-B7 by DNA-mediated gene transfer

    NARCIS (Netherlands)

    Bernabeu, C.; Finlay, D.; van de Rijn, M.; Maziarz, R. T.; Biro, P. A.; Spits, H.; de Vries, J.; Terhorst, C. P.

    1983-01-01

    Genes coding for the heavy chain of the class I antigens HLA-A2 or HLA-B7 of the human major histocompatibility complex have been introduced into mouse LtK- cells by cotransfection with the herpes simplex virus thymidine kinase gene. HAT-resistant colonies were isolated expressing either HLA-A2 or

  12. Clinicopathologic features of myositis patients with CD8-MHC-1 complex pathology.

    Science.gov (United States)

    Ikenaga, Chiseko; Kubota, Akatsuki; Kadoya, Masato; Taira, Kenichiro; Uchio, Naohiro; Hida, Ayumi; Maeda, Meiko Hashimoto; Nagashima, Yu; Ishiura, Hiroyuki; Kaida, Kenichi; Goto, Jun; Tsuji, Shoji; Shimizu, Jun

    2017-09-05

    To determine the clinical features of myositis patients with the histopathologic finding of CD8-positive T cells invading non-necrotic muscle fibers expressing major histocompatibility complex class 1 (CD8-MHC-1 complex), which is shared by polymyositis (PM) and inclusion body myositis (IBM), in relation to the p62 immunostaining pattern of muscle fibers. All 93 myositis patients with CD8-MHC-1 complex who were referred to our hospital from 1993 to 2015 were classified on the basis of the European Neuromuscular Center (ENMC) diagnostic criteria for IBM (Rose, 2013) or PM (Hoogendijk, 2004) and analyzed. The 93 patients included were 17 patients with PM, 70 patients with IBM, and 6 patients who neither met the criteria for PM nor IBM in terms of muscle weakness distribution (unclassifiable group). For these PM, IBM, and unclassifiable patients, their mean ages at diagnosis were 63, 70, and 64 years; autoimmune disease was present in 7 (41%), 13 (19%), and 4 (67%); hepatitis C virus infection was detected in 0%, 13 (20%), and 2 (33%); and p62 was immunopositive in 0%, 66 (94%), and 2 (33%), respectively. Of the treated patients, 11 of 16 PM patients and 4 of 6 p62-immunonegative patients in the unclassifiable group showed responses to immunotherapy, whereas all 44 patients with IBM and 2 p62-immunopositive patients in the unclassifiable group were unresponsive to immunotherapy. CD8-MHC-1 complex is present in patients with PM, IBM, or unclassifiable group. The data may serve as an argument for a trial of immunosuppressive treatment in p62-immunonegative patients with unclassifiable myositis. © 2017 American Academy of Neurology.

  13. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.

    Science.gov (United States)

    Han, Youngmahn; Kim, Dongsup

    2017-12-28

    Computational scanning of peptide candidates that bind to a specific major histocompatibility complex (MHC) can speed up the peptide-based vaccine development process and therefore various methods are being actively developed. Recently, machine-learning-based methods have generated successful results by training large amounts of experimental data. However, many machine learning-based methods are generally less sensitive in recognizing locally-clustered interactions, which can synergistically stabilize peptide binding. Deep convolutional neural network (DCNN) is a deep learning method inspired by visual recognition process of animal brain and it is known to be able to capture meaningful local patterns from 2D images. Once the peptide-MHC interactions can be encoded into image-like array(ILA) data, DCNN can be employed to build a predictive model for peptide-MHC binding prediction. In this study, we demonstrated that DCNN is able to not only reliably predict peptide-MHC binding, but also sensitively detect locally-clustered interactions. Nonapeptide-HLA-A and -B binding data were encoded into ILA data. A DCNN, as a pan-specific prediction model, was trained on the ILA data. The DCNN showed higher performance than other prediction tools for the latest benchmark datasets, which consist of 43 datasets for 15 HLA-A alleles and 25 datasets for 10 HLA-B alleles. In particular, the DCNN outperformed other tools for alleles belonging to the HLA-A3 supertype. The F1 scores of the DCNN were 0.86, 0.94, and 0.67 for HLA-A*31:01, HLA-A*03:01, and HLA-A*68:01 alleles, respectively, which were significantly higher than those of other tools. We found that the DCNN was able to recognize locally-clustered interactions that could synergistically stabilize peptide binding. We developed ConvMHC, a web server to provide user-friendly web interfaces for peptide-MHC class I binding predictions using the DCNN. ConvMHC web server can be accessible via http://jumong.kaist.ac.kr:8080/convmhc

  14. Considerable MHC diversity suggests that the functional extinction of baiji is not related to population genetic collapse.

    Directory of Open Access Journals (Sweden)

    Shixia Xu

    Full Text Available To further extend our understanding of the mechanism causing the current nearly extinct status of the baiji (Lipotes vexillifer, one of the most critically endangered species in the world, genetic diversity at the major histocompatibility complex (MHC class II DRB locus was investigated in the baiji. Nine highly divergent DRB alleles were identified in 17 samples, with an average of 28.4 (13.2% nucleotide difference and 16.7 (23.5% amino acid difference between alleles. The unexpectedly high levels of DRB allelic diversity in the baiji may partly be attributable to its evolutionary adaptations to the freshwater environment which is regarded to have a higher parasite diversity compared to the marine environment. In addition, balancing selection was found to be the main mechanisms in generating sequence diversity at baiji DRB gene. Considerable sequence variation at the adaptive MHC genes despite of significant loss of neutral genetic variation in baiji genome might suggest that intense selection has overpowered random genetic drift as the main evolutionary forces, which further suggested that the critically endangered or nearly extinct status of the baiji is not an outcome of genetic collapse.

  15. Native IgG2a(b) is barely antigenic to major histocompatibility complex class II-restricted T cells owing to inefficient internalization by professional antigen-presenting cells.

    Science.gov (United States)

    Bartnes, K; Hannestad, K

    2000-04-01

    Peptide epitopes derived from immunoglobulin variable regions represent tumour-specific antigens on B-cell neoplasms and can be recognized by syngeneic, major histocompatibility complex (MHC) class II-restricted T cells. Immunoglobulin peptide/MHC class II complexes may also be involved in autoimmunity and CD4+ T-cell-mediated B-cell regulation. Thus, the IgG2a(b) H-chain allopeptide gamma2a(b) 435-451 presented on I-Ad mimics the epitope implicated in herpes simplex virus-induced autoimmune stromal keratitis and is the target of T helper 1 (Th1) clones that suppress IgG2a(b) production in vivo. We here report that spleen and thymus cells constitutively present the autologous gamma2a(b) epitope to a gamma2a(b) 435-451/I-A(d) reactive T-cell hybridoma as a function of the animal housing conditions (specific pathogen-free or not) and the serum levels of IgG2a(b). Constitutive presentation in the spleen was predominantly performed by dendritic cells. Whereas spleen cells poorly presented native IgG2a(b) to a gamma2a(b) 435-451/I-A(d) reactive T-cell hybridoma, IgG2a(b) in the form of immune complexes were presented > 200-fold more efficiently owing to internalization via low-affinity FcgammaR on macrophages. The antigenicity could also be improved by homotypic aggregation and by targeting IgG2a(b) to complement receptors on the A20 B-cell lymphoma. Mice without detectable IgG2a(b)-containing immune complexes typically exhibited minimal constitutive presentation. Nevertheless, native IgG2a(b) can sensitize antigen-presenting cells in vivo, as mice that were devoid of immune complexes and carried an IgG2a(b)-producing tumour did present constitutively, even at physiological IgG2a(b) serum levels. Whereas the amounts of IgG released from most B-cell lymphomas may be too low to allow spontaneous priming of tumour-specific MHC class II-restricted T cells, administration of tumour immunoglobulin in aggregated form might improve the efficacy of idiotype vaccination.

  16. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.

    Science.gov (United States)

    Hattotuwagama, Channa K; Doytchinova, Irini A; Flower, Darren R

    2007-01-01

    Quantitative structure-activity relationship (QSAR) analysis is a cornerstone of modern informatics. Predictive computational models of peptide-major histocompatibility complex (MHC)-binding affinity based on QSAR technology have now become important components of modern computational immunovaccinology. Historically, such approaches have been built around semiqualitative, classification methods, but these are now giving way to quantitative regression methods. We review three methods--a 2D-QSAR additive-partial least squares (PLS) and a 3D-QSAR comparative molecular similarity index analysis (CoMSIA) method--which can identify the sequence dependence of peptide-binding specificity for various class I MHC alleles from the reported binding affinities (IC50) of peptide sets. The third method is an iterative self-consistent (ISC) PLS-based additive method, which is a recently developed extension to the additive method for the affinity prediction of class II peptides. The QSAR methods presented here have established themselves as immunoinformatic techniques complementary to existing methodology, useful in the quantitative prediction of binding affinity: current methods for the in silico identification of T-cell epitopes (which form the basis of many vaccines, diagnostics, and reagents) rely on the accurate computational prediction of peptide-MHC affinity. We have reviewed various human and mouse class I and class II allele models. Studied alleles comprise HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203, HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3101, HLA-A*6801, HLA-A*6802, HLA-B*3501, H2-K(k), H2-K(b), H2-D(b) HLA-DRB1*0101, HLA-DRB1*0401, HLA-DRB1*0701, I-A(b), I-A(d), I-A(k), I-A(S), I-E(d), and I-E(k). In this chapter we show a step-by-step guide into predicting the reliability and the resulting models to represent an advance on existing methods. The peptides used in this study are available from the AntiJen database (http://www.jenner.ac.uk/AntiJen). The PLS method

  17. Haplotype specific alteration of diabetes MHC risk by olfactory receptor gene polymorphism.

    Science.gov (United States)

    Jahromi, Mohamed M

    2012-12-01

    Evidence for genes associated with risk for Type 1 diabetes (T1D) in the extended region of the major histocompatibility complex (MHC) genes is accumulating. The aim of this study was to investigate the association pattern of the extended MHC region with T1D susceptibility to identify effects independent of well established DR/DQ genes. A total of 394 Europid families with T1D were genotyped for the single nucleotide polymorphism (SNP) in the olfactory receptor family 14, subfamily J, member 1 (OR14J1) gene, rs9257691, in the MHC telomeric region. The OR provides "an internal depiction of our external world" through the capture of odorant molecules in the main OR system by several large families of G-protein coupled receptors (GPCR). These receptors transduce and chemosignals into the central nervous system (CNS). This SNP was chosen to identify its association with T1D. Interestingly, OR14J1C allele was significantly associated with T1D that seems to go with DRB1*0401, Χ(2)=10.9, p=0.0003. However, by fixing both genes of DR*0401-DQB1*0302, high risk, the association of T1D with OR14J1C still existed, Χ(2)=7.4, p=0.005. The occurrence of association of the OR14J1C allele with T1D patients with DRB1*401/DQB1*0302 is an independent risk for T1D. As an accumulative report suggests the role of OR in the pathogenesis of diabetic microvascular and other diabetic complications, undoubtedly, this haplotype specific alteration of T1D risk is an independent risk for the disease and can address the promising MHC-linked gene other than DR/DQ. Moreover, there is nothing to hinder for that this might be a signal that identifies the role of OR gene in the pathogenesis of T1D in patients who are prone to diabetic complications. Copyright © 2012. Published by Elsevier B.V.

  18. Genetic variation of the MHC class II DRB genes in the Japanese weasel, Mustela itatsi, endemic to Japan, compared with the Siberian weasel, Mustela sibirica.

    Science.gov (United States)

    Nishita, Y; Abramov, A V; Kosintsev, P A; Lin, L-K; Watanabe, S; Yamazaki, K; Kaneko, Y; Masuda, R

    2015-12-01

    Major histocompatibility complex (MHC) genes encode proteins that play a critical role in vertebrate immune system and are highly polymorphic. To further understand the molecular evolution of the MHC genes, we compared MHC class II DRB genes between the Japanese weasel (Mustela itatsi), a species endemic to Japan, and the Siberian weasel (Mustela sibirica), a closely related species on the continent. We sequenced a 242-bp region of DRB exon 2, which encodes antigen-binding sites (ABS), and found 24 alleles from 31 M. itatsi individuals and 17 alleles from 21 M. sibirica individuals, including broadly distributed, species-specific and/or geographically restricted alleles. Our results suggest that pathogen-driven balancing selection have acted to maintain the diversity in the DRB genes. For predicted ABS, nonsynonymous substitutions exceeded synonymous substitutions, also indicating positive selection, which was not seen at non-ABS. In a Bayesian phylogenetic tree, two M. sibirica DRB alleles were basal to the rest of the sequences from mustelid species and may represent ancestral alleles. Trans-species polymorphism was evident between many mustelid DRB alleles, especially between M. itatsi and M. sibirica. These two Mustela species divided about 1.7 million years ago, but still share many MHC alleles, indicative of their close phylogenetic relationship. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Genetic Variation at Exon 2 of the MHC Class II DQB Locus in Blue Whale (Balaenoptera musculus from the Gulf of California.

    Directory of Open Access Journals (Sweden)

    Diana D Moreno-Santillán

    Full Text Available The genes of the Major Histocompatibility Complex (MHC play an important role in the vertebrate immune response and are among the most polymorphic genes known in vertebrates. In some marine mammals, MHC genes have been shown to be characterized by low levels of polymorphism compared to terrestrial taxa; this reduction in variation is often explained as a result of lower pathogen pressures in marine habitats. To determine if this same reduction in variation applies to the migratory population of blue whales (Balaenoptera musculus that occurs in the Gulf of California, we genotyped a 172 bp fragment of exon 2 of the MHC Class II DQB locus for 80 members of this population. Twenty-two putatively functional DQB allotypes were identified, all of which were homologous with DQB sequences from other cetacean species. Up to 5 putative alleles per individual were identified, suggesting that gene duplication has occurred at this locus. Rates of non-synonymous to synonymous substitutions (ω and maximum likelihood analyses of models of nucleotide variation provided potential evidence of ongoing positive selection at this exon. Phylogenetic analyses of DQB alleles from B. musculus and 16 other species of cetaceans revealed trans-specific conservation of MHC variants, suggesting that selection has acted on this locus over prolonged periods of time. Collectively our findings reveal that immunogenic variation in blue whales is comparable to that in terrestrial mammals, thereby providing no evidence that marine taxa are subject to reduced pathogen-induced selective pressures.

  20. Exploring the unbinding of Leishmania (L.) amazonensis CPB derived-epitopes from H2 MHC class I proteins.

    Science.gov (United States)

    Brandt, Artur M L; Batista, Paulo Ricardo; Souza-Silva, Franklin; Alves, Carlos Roberto; Caffarena, Ernesto Raul

    2016-04-01

    New strategies to control Leishmania disease demand an extensive knowledge about several aspects of infection including the understanding of its molecular events. In murine models, cysteine proteinase B from Leishmania amazonensis promotes regulation of immune response, and fragments from its C-terminus extension (cyspep) can play a decisive role in the host-parasite interaction. The interaction between cyspep-derived peptides and major histocompatibility complex (MHC) proteins is a crucial factor in Leishmania infections. Seven cyspep-derived peptides, previously identified as capable of interacting with H-2 (murine) MHC class I proteins, were studied in this work. We established a protocol to simulate the unbinding of these peptides from the cleft of H-2 receptors. From the simulations, we estimated the corresponding free energy of dissociation (ΔGd ) and described the molecular events that occur during the exit of peptides from the cleft. To test the reliability of this method, we first applied it to a calibration set of four crystallographic MHC/peptide complexes. Next, we explored the unbinding of the seven complexes mentioned above. Results were consistent with ΔGd values obtained from surface plasmon resonance (SPR) experiments. We also identified some of the primary interactions between peptides and H-2 receptors, and we detected three regions of influence for the interaction. This pattern was systematically observed for the peptides and helped determine a minimum distance for the real interaction between peptides and H-2 proteins occurring at ∼ 25 Å. © 2016 Wiley Periodicals, Inc.

  1. Patterns of genetic differentiation at MHC class I genes and microsatellites identify conservation units in the giant panda.

    Science.gov (United States)

    Zhu, Ying; Wan, Qiu-Hong; Yu, Bin; Ge, Yun-Fa; Fang, Sheng-Guo

    2013-10-22

    Evaluating patterns of genetic variation is important to identify conservation units (i.e., evolutionarily significant units [ESUs], management units [MUs], and adaptive units [AUs]) in endangered species. While neutral markers could be used to infer population history, their application in the estimation of adaptive variation is limited. The capacity to adapt to various environments is vital for the long-term survival of endangered species. Hence, analysis of adaptive loci, such as the major histocompatibility complex (MHC) genes, is critical for conservation genetics studies. Here, we investigated 4 classical MHC class I genes (Aime-C, Aime-F, Aime-I, and Aime-L) and 8 microsatellites to infer patterns of genetic variation in the giant panda (Ailuropoda melanoleuca) and to further define conservation units. Overall, we identified 24 haplotypes (9 for Aime-C, 1 for Aime-F, 7 for Aime-I, and 7 for Aime-L) from 218 individuals obtained from 6 populations of giant panda. We found that the Xiaoxiangling population had the highest genetic variation at microsatellites among the 6 giant panda populations and higher genetic variation at Aime-MHC class I genes than other larger populations (Qinling, Qionglai, and Minshan populations). Differentiation index (FST)-based phylogenetic and Bayesian clustering analyses for Aime-MHC-I and microsatellite loci both supported that most populations were highly differentiated. The Qinling population was the most genetically differentiated. The giant panda showed a relatively higher level of genetic diversity at MHC class I genes compared with endangered felids. Using all of the loci, we found that the 6 giant panda populations fell into 2 ESUs: Qinling and non-Qinling populations. We defined 3 MUs based on microsatellites: Qinling, Minshan-Qionglai, and Daxiangling-Xiaoxiangling-Liangshan. We also recommended 3 possible AUs based on MHC loci: Qinling, Minshan-Qionglai, and Daxiangling-Xiaoxiangling-Liangshan. Furthermore, we recommend

  2. In silico peptide-binding predictions of passerine MHC class I reveal similarities across distantly related species, suggesting convergence on the level of protein function.

    Science.gov (United States)

    Follin, Elna; Karlsson, Maria; Lundegaard, Claus; Nielsen, Morten; Wallin, Stefan; Paulsson, Kajsa; Westerdahl, Helena

    2013-04-01

    The major histocompatibility complex (MHC) genes are the most polymorphic genes found in the vertebrate genome, and they encode proteins that play an essential role in the adaptive immune response. Many songbirds (passerines) have been shown to have a large number of transcribed MHC class I genes compared to most mammals. To elucidate the reason for this large number of genes, we compared 14 MHC class I alleles (α1-α3 domains), from great reed warbler, house sparrow and tree sparrow, via phylogenetic analysis, homology modelling and in silico peptide-binding predictions to investigate their functional and genetic relationships. We found more pronounced clustering of the MHC class I allomorphs (allele specific proteins) in regards to their function (peptide-binding specificities) compared to their genetic relationships (amino acid sequences), indicating that the high number of alleles is of functional significance. The MHC class I allomorphs from house sparrow and tree sparrow, species that diverged 10 million years ago (MYA), had overlapping peptide-binding specificities, and these similarities across species were also confirmed in phylogenetic analyses based on amino acid sequences. Notably, there were also overlapping peptide-binding specificities in the allomorphs from house sparrow and great reed warbler, although these species diverged 30 MYA. This overlap was not found in a tree based on amino acid sequences. Our interpretation is that convergent evolution on the level of the protein function, possibly driven by selection from shared pathogens, has resulted in allomorphs with similar peptide-binding repertoires, although trans-species evolution in combination with gene conversion cannot be ruled out.

  3. Crystal structure of Vδ1 T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human γδ T cells.

    Science.gov (United States)

    Luoma, Adrienne M; Castro, Caitlin D; Mayassi, Toufic; Bembinster, Leslie A; Bai, Li; Picard, Damien; Anderson, Brian; Scharf, Louise; Kung, Jennifer E; Sibener, Leah V; Savage, Paul B; Jabri, Bana; Bendelac, Albert; Adams, Erin J

    2013-12-12

    The nature of the antigens recognized by γδ T cells and their potential recognition of major histocompatibility complex (MHC)-like molecules has remained unclear. Members of the CD1 family of lipid-presenting molecules are suggested ligands for Vδ1 TCR-expressing γδ T cells, the major γδ lymphocyte population in epithelial tissues. We crystallized a Vδ1 TCR in complex with CD1d and the self-lipid sulfatide, revealing the unusual recognition of CD1d by germline Vδ1 residues spanning all complementarity-determining region (CDR) loops, as well as sulfatide recognition separately encoded by nongermline CDR3δ residues. Binding and functional analysis showed that CD1d presenting self-lipids, including sulfatide, was widely recognized by gut Vδ1+ γδ T cells. These findings provide structural demonstration of MHC-like recognition of a self-lipid by γδ T cells and reveal the prevalence of lipid recognition by innate-like T cell populations. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Enhancement of MHC-I antigen presentation via architectural control of pH-responsive, endosomolytic polymer nanoparticles.

    Science.gov (United States)

    Wilson, John T; Postma, Almar; Keller, Salka; Convertine, Anthony J; Moad, Graeme; Rizzardo, Ezio; Meagher, Laurence; Chiefari, John; Stayton, Patrick S

    2015-03-01

    Protein-based vaccines offer a number of important advantages over organism-based vaccines but generally elicit poor CD8(+) T cell responses. We have previously demonstrated that pH-responsive, endosomolytic polymers can enhance protein antigen delivery to major histocompatibility complex class I (MHC-I) antigen presentation pathways thereby augmenting CD8(+) T cell responses following immunization. Here, we describe a new family of nanocarriers for protein antigen delivery assembled using architecturally distinct pH-responsive polymers. Reversible addition-fragmentation chain transfer (RAFT) polymerization was used to synthesize linear, hyperbranched, and core-crosslinked copolymers of 2-(N,N-diethylamino)ethyl methacrylate (DEAEMA) and butyl methacrylate (BMA) that were subsequently chain extended with a hydrophilic N,N-dimethylacrylamide (DMA) segment copolymerized with thiol-reactive pyridyl disulfide (PDS) groups. In aqueous solution, polymer chains assembled into 25 nm micellar nanoparticles and enabled efficient and reducible conjugation of a thiolated protein antigen, ovalbumin. Polymers demonstrated pH-dependent membrane-destabilizing activity in an erythrocyte lysis assay, with the hyperbranched and cross-linked polymer architectures exhibiting significantly higher hemolysis at pH ≤ 7.0 than the linear diblock. Antigen delivery with the hyperbranched and cross-linked polymer architecture enhanced in vitro MHC-I antigen presentation relative to free antigen, whereas the linear construct did not have a discernible effect. The hyperbranched system elicited a four- to fivefold increase in MHC-I presentation relative to the cross-linked architecture, demonstrating the superior capacity of the hyperbranched architecture in enhancing MHC-I presentation. This work demonstrates that the architecture of pH-responsive, endosomolytic polymers can have dramatic effects on intracellular antigen delivery, and offers a promising strategy for enhancing CD8(+) T cell

  5. Evolutionary Analysis of Minor Histocompatibility Genes In Hydra

    KAUST Repository

    Aalismail, Nojood

    2016-01-01

    In the present study we took initiative to study the self/nonself recognition in hydra and its relation to the immune response. Moreover, performing phylogenetic analysis to look for annotated immune genes in hydra gave us a potential to analyze the expression of minor histocompatibility genes that have been shown to play a major role in grafting and transplantation in mammals. Here we obtained the cDNA library that shows expression of minor histocompatibility genes and confirmed that the annotated sequences in databases are actually present. In addition, grafting experiments suggested, although still preliminary, that homograft showed less rejection response than in heterograft. Involvement of possible minor histocompatibility gene orthologous in immune response was examined by qPCR.

  6. The optimization of peptide cargo bound to MHC class I molecules by the peptide-loading complex.

    Science.gov (United States)

    Elliott, Tim; Williams, Anthony

    2005-10-01

    Major histocompatibility complex (MHC) class I complexes present peptides from both self and foreign intracellular proteins on the surface of most nucleated cells. The assembled heterotrimeric complexes consist of a polymorphic glycosylated heavy chain, non-polymorphic beta(2) microglobulin, and a peptide of typically nine amino acids in length. Assembly of the class I complexes occurs in the endoplasmic reticulum and is assisted by a number of chaperone molecules. A multimolecular unit termed the peptide-loading complex (PLC) is integral to this process. The PLC contains a peptide transporter (transporter associated with antigen processing), a thiooxido-reductase (ERp57), a glycoprotein chaperone (calreticulin), and tapasin, a class I-specific chaperone. We suggest that class I assembly involves a process of optimization where the peptide cargo of the complex is edited by the PLC. Furthermore, this selective peptide loading is biased toward peptides that have a longer off-rate from the assembled complex. We suggest that tapasin is the key chaperone that directs this action of the PLC with secondary contributions from calreticulin and possibly ERp57. We provide a framework model for how this may operate at the molecular level and draw parallels with the proposed mechanism of action of human leukocyte antigen-DM for MHC class II complex optimization.

  7. Positive regulation of plasmacytoid dendritic cell function via Ly49Q recognition of class I MHC

    Science.gov (United States)

    Tai, Lee-Hwa; Goulet, Marie-Line; Belanger, Simon; Toyama-Sorimachi, Noriko; Fodil-Cornu, Nassima; Vidal, Silvia M.; Troke, Angela D.; McVicar, Daniel W.; Makrigiannis, Andrew P.

    2008-01-01

    Plasmacytoid dendritic cells (pDCs) are an important source of type I interferon (IFN) during initial immune responses to viral infections. In mice, pDCs are uniquely characterized by high-level expression of Ly49Q, a C-type lectin-like receptor specific for class I major histocompatibility complex (MHC) molecules. Despite having a cytoplasmic immunoreceptor tyrosine-based inhibitory motif, Ly49Q was found to enhance pDC function in vitro, as pDC cytokine production in response to the Toll-like receptor (TLR) 9 agonist CpG-oligonucleotide (ODN) could be blocked using soluble monoclonal antibody (mAb) to Ly49Q or H-2Kb. Conversely, CpG-ODN–dependent IFN-α production by pDCs was greatly augmented upon receptor cross-linking using immobilized anti-Ly49Q mAb or recombinant H-2Kb ligand. Accordingly, Ly49Q-deficient pDCs displayed a severely reduced capacity to produce cytokines in response to TLR7 and TLR9 stimulation both in vitro and in vivo. Finally, TLR9-dependent antiviral responses were compromised in Ly49Q-null mice infected with mouse cytomegalovirus. Thus, class I MHC recognition by Ly49Q on pDCs is necessary for optimal activation of innate immune responses in vivo. PMID:19075287

  8. Design of glycopeptides used to investigate class II MHC binding and T-cell responses associated with autoimmune arthritis.

    Directory of Open Access Journals (Sweden)

    Ida E Andersson

    Full Text Available The glycopeptide fragment CII259-273 from type II collagen (CII binds to the murine A(q and human DR4 class II Major Histocompatibility Complex (MHC II proteins, which are associated with development of murine collagen-induced arthritis (CIA and rheumatoid arthritis (RA, respectively. It has been shown that CII259-273 can be used in therapeutic vaccination of CIA. This glycopeptide also elicits responses from T-cells obtained from RA patients, which indicates that it has an important role in RA as well. We now present a methodology for studies of (glycopeptide-receptor interactions based on a combination of structure-based virtual screening, ligand-based statistical molecular design and biological evaluations. This methodology included the design of a CII259-273 glycopeptide library in which two anchor positions crucial for binding in pockets of A(q and DR4 were varied. Synthesis and biological evaluation of the designed glycopeptides provided novel structure-activity relationship (SAR understanding of binding to A(q and DR4. Glycopeptides that retained high affinities for these MHC II proteins and induced strong responses in panels of T-cell hybridomas were also identified. An analysis of all the responses revealed groups of glycopeptides with different response patterns that are of high interest for vaccination studies in CIA. Moreover, the SAR understanding obtained in this study provides a platform for the design of second-generation glycopeptides with tuned MHC affinities and T-cell responses.

  9. A novel protective MHC-I haplotype not associated with dominant Gag-specific CD8+ T-cell responses in SIVmac239 infection of Burmese rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Naofumi Takahashi

    Full Text Available Several major histocompatibility complex class I (MHC-I alleles are associated with lower viral loads and slower disease progression in human immunodeficiency virus (HIV and simian immunodeficiency virus (SIV infections. Immune-correlates analyses in these MHC-I-related HIV/SIV controllers would lead to elucidation of the mechanism for viral control. Viral control associated with some protective MHC-I alleles is attributed to CD8+ T-cell responses targeting Gag epitopes. We have been trying to know the mechanism of SIV control in multiple groups of Burmese rhesus macaques sharing MHC-I genotypes at the haplotype level. Here, we found a protective MHC-I haplotype, 90-010-Id (D, which is not associated with dominant Gag-specific CD8+ T-cell responses. Viral loads in five D+ animals became significantly lower than those in our previous cohorts after 6 months. Most D+ animals showed predominant Nef-specific but not Gag-specific CD8+ T-cell responses after SIV challenge. Further analyses suggested two Nef-epitope-specific CD8+ T-cell responses exerting strong suppressive pressure on SIV replication. Another set of five D+ animals that received a prophylactic vaccine using a Gag-expressing Sendai virus vector showed significantly reduced viral loads compared to unvaccinated D+ animals at 3 months, suggesting rapid SIV control by Gag-specific CD8+ T-cell responses in addition to Nef-specific ones. These results present a pattern of SIV control with involvement of non-Gag antigen-specific CD8+ T-cell responses.

  10. Antigen presentation and MHC class II expression by human esophageal epithelial cells: role in eosinophilic esophagitis.

    Science.gov (United States)

    Mulder, Daniel J; Pooni, Aman; Mak, Nanette; Hurlbut, David J; Basta, Sameh; Justinich, Christopher J

    2011-02-01

    Professional antigen-presenting cells (APCs) play a crucial role in initiating immune responses. Under pathological conditions, epithelial cells at mucosal surfaces act as nonprofessional APCs, thereby regulating immune responses at the site of exposure. Epithelial cells in the esophagus may contribute to the pathogenesis of eosinophilic esophagitis (EoE) by presenting antigens on the major histocompatibility complex (MHC) class II. Our goal was to demonstrate the ability of esophageal epithelial cells to process and present antigens on the MHC class II system and to investigate the contribution of epithelial cell antigen presentation to EoE. Immunohistochemistry detected HLA-DR, CD80, and CD86 expression and enzyme-linked immunosorbent assay detected interferon-γ (IFNγ) in esophageal biopsies. Antigen presentation was studied using the human esophageal epithelial cell line HET-1A by reverse transcriptase-PCR, flow cytometry, and confocal microscopy. T helper cell lymphocyte proliferation was assessed by flow cytometry and IL-2 secretion. IFNγ and MHC class II were increased in mucosa of patients with EoE. IFNγ increased mRNA of HLA-DP, HLA-DQ, HLA-DR, and CIITA in HET-1A cells. HET-1A engulfed cell debris and processed ovalbumin. HET-1A cells expressed HLA-DR after IFNγ treatment. HET-1A stimulated T helper cell activation. In this study, we demonstrated the ability of esophageal epithelial cells to act as nonprofessional APCs in the presence of IFNγ. Esophageal epithelial cell antigen presentation may contribute to the pathophysiology of eosinophilic esophagitis. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Positive selection on MHC class II DRB and DQB genes in the bank vole (Myodes glareolus).

    Science.gov (United States)

    Scherman, Kristin; Råberg, Lars; Westerdahl, Helena

    2014-05-01

    The major histocompatibility complex (MHC) class IIB genes show considerable sequence similarity between loci. The MHC class II DQB and DRB genes are known to exhibit a high level of polymorphism, most likely maintained by parasite-mediated selection. Studies of the MHC in wild rodents have focused on DRB, whilst DQB has been given much less attention. Here, we characterised DQB genes in Swedish bank voles Myodes glareolus, using full-length transcripts. We then designed primers that specifically amplify exon 2 from DRB (202 bp) and DQB (205 bp) and investigated molecular signatures of natural selection on DRB and DQB alleles. The presence of two separate gene clusters was confirmed using BLASTN and phylogenetic analysis, where our seven transcripts clustered according to either DQB or DRB homologues. These gene clusters were again confirmed on exon 2 data from 454-amplicon sequencing. Our DRB primers amplify a similar number of alleles per individual as previously published DRB primers, though our reads are longer. Traditional d N/d S analyses of DRB sequences in the bank vole have not found a conclusive signal of positive selection. Using a more advanced substitution model (the Kumar method) we found positive selection in the peptide binding region (PBR) of both DRB and DQB genes. Maximum likelihood models of codon substitutions detected positively selected sites located in the PBR of both DQB and DRB. Interestingly, these analyses detected at least twice as many positively selected sites in DQB than DRB, suggesting that DQB has been under stronger positive selection than DRB over evolutionary time.

  12. CIITA promoter I CARD-deficient mice express functional MHC class II genes in myeloid and lymphoid compartments.

    Science.gov (United States)

    Zinzow-Kramer, W M; Long, A B; Youngblood, B A; Rosenthal, K M; Butler, R; Mohammed, A-U-R; Skountzou, I; Ahmed, R; Evavold, B D; Boss, J M

    2012-06-01

    Three distinct promoters control the master regulator of major histocompatibility complex (MHC) class II expression, class II transactivator (CIITA), in a cell type-specific manner. Promoter I (pI) CIITA, expressed primarily by dendritic cells (DCs) and macrophages, expresses a unique isoform that contains a caspase-recruitment domain (CARD). The activity and function of this isoform are not understood, but are believed to enhance the function of CIITA in antigen-presenting cells. To determine whether isoform I of CIITA has specific functions, CIITA mutant mice were created in which isoform I was replaced with isoform III sequences. Mice in which pI and the CARD-encoding exon were deleted were also created. No defect in the formation of CD4 T cells, the ability to respond to a model antigen or bacterial or viral challenge was observed in mice lacking CIITA isoform I. Although CIITA and MHC-II expression was decreased in splenic DCs, pI knockout animals expressed CIITA from downstream promoters, suggesting that control of pI activity is mediated by unknown distal elements that could act at pIII, the B-cell promoter. Thus, no critical function is linked to the CARD domain of CIITA isoform I with respect to basic immune system development, function and challenge.

  13. Next-generation detection of antigen-responsive T cells using DNA barcode-labeled peptide-major histocompatibility complex I multimers

    DEFF Research Database (Denmark)

    Bentzen, Amalie Kai; Marquard, Andrea Marion; Lyngaa, Rikke Birgitte

    2016-01-01

    sample using >1000 different peptide-MHC multimers labeled with individual DNA barcodes.After isolation of MHC multimer binding T cells their recognition are revealed by amplification andsequencing of the MHC multimer-associated DNA barcodes. The relative frequency of the sequencedDNA barcodes...... originating from a given peptide-MHC motif relates to the size of the antigenresponsiveT cell population. We have demonstrated the use of large panels of >1000 DNA barcodedMHC multimers for detection of rareT cell populations of virus and cancer-restricted origin in various tissues and compared...

  14. PeptX: Using Genetic Algorithms to optimize peptides for MHC binding

    Directory of Open Access Journals (Sweden)

    Ribarics Reiner

    2011-06-01

    Full Text Available Abstract Background The binding between the major histocompatibility complex and the presented peptide is an indispensable prerequisite for the adaptive immune response. There is a plethora of different in silico techniques for the prediction of the peptide binding affinity to major histocompatibility complexes. Most studies screen a set of peptides for promising candidates to predict possible T cell epitopes. In this study we ask the question vice versa: Which peptides do have highest binding affinities to a given major histocompatibility complex according to certain in silico scoring functions? Results Since a full screening of all possible peptides is not feasible in reasonable runtime, we introduce a heuristic approach. We developed a framework for Genetic Algorithms to optimize peptides for the binding to major histocompatibility complexes. In an extensive benchmark we tested various operator combinations. We found that (1 selection operators have a strong influence on the convergence of the population while recombination operators have minor influence and (2 that five different binding prediction methods lead to five different sets of "optimal" peptides for the same major histocompatibility complex. The consensus peptides were experimentally verified as high affinity binders. Conclusion We provide a generalized framework to calculate sets of high affinity binders based on different previously published scoring functions in reasonable runtime. Furthermore we give insight into the different behaviours of operators and scoring functions of the Genetic Algorithm.

  15. Evaluation of two approaches to genotyping major histocompatibility complex class I in a passerine—CE-SSCP and 454 pyrosequencing

    Czech Academy of Sciences Publication Activity Database

    Promerová, Marta; Babik, W.; Bryja, Josef; Albrecht, Tomáš; Stuglik, M.; Radwan, J.

    2012-01-01

    Roč. 12, č. 2 (2012), s. 285-292 ISSN 1755-098X R&D Projects: GA AV ČR IAA600930608; GA ČR GA206/06/0851; GA ČR GAP505/10/1871 Institutional research plan: CEZ:AV0Z60930519 Keywords : avian * Carpodacus erythrinus * major histocompatibility complex * next-generation sequencing * scarlet rosefinch Subject RIV: EG - Zoology Impact factor: 7.432, year: 2012

  16. The outermost N-terminal region of tapasin facilitates folding of major histocompatibility complex class I

    DEFF Research Database (Denmark)

    Røder, Gustav Andreas; Geironson, Linda; Darabi, Anna

    2009-01-01

    ). Using a biochemical peptide-MHC-I-binding assay, recombinant Tpn(1-87) was found to specifically facilitate peptide-dependent folding of HLA-A*0201. Furthermore, we used Tpn(1-87) to generate a monoclonal antibody, alphaTpn(1-87)/80, specific for natural human Tpn and capable of cellular staining of ER......Tapasin (Tpn) is an ER chaperone that is uniquely dedicated to MHC-I biosynthesis. It binds MHC-I molecules, integrates them into peptide-loading complexes, and exerts quality control of the bound peptides; only when an "optimal peptide" is bound will the MHC-I be released and exported to the cell...... surface for presentation to T cells. The exact mechanisms of Tpn quality control and the criteria for being an optimal peptide are still unknown. Here, we have generated a recombinant fragment of human Tpn, Tpn(1-87) (representing the 87 N-terminal and ER-luminal amino acids of the mature Tpn protein...

  17. C57BL/6 mice need MHC class II Aq to develop collagen-induced arthritis dependent on autoreactive T cells.

    Science.gov (United States)

    Bäcklund, Johan; Li, Cuiqin; Jansson, Erik; Carlsen, Stefan; Merky, Patrick; Nandakumar, Kutty-Selva; Haag, Sabrina; Ytterberg, Jimmy; Zubarev, Roman A; Holmdahl, Rikard

    2013-07-01

    Collagen-induced arthritis (CIA) has traditionally been performed in MHC class II A(q)-expressing mice, whereas most genetically modified mice are on the C57BL/6 background (expressing the b haplotype of the major histocompatibility complex (MHC) class II region). However, C57BL/6 mice develop arthritis after immunisation with chicken-derived collagen type II (CII), but arthritis susceptibility has been variable, and the immune specificity has not been clarified. To establish a CIA model on the C57BL/6 background with a more predictable and defined immune response to CII. Both chicken and rat CII were arthritogenic in C57BL/6 mice provided they were introduced with high doses of Mycobacterium tuberculosis adjuvant. However, contaminating pepsin was strongly immunogenic and was essential for arthritis development. H-2(b)-restricted T cell epitopes on chicken or rat CII could not be identified, but expression of A(q) on the C57BL/6 background induced T cell response to the CII260-270 epitope, and also prolonged the arthritis to be more chronic. The putative (auto)antigen and its arthritogenic determinants in C57BL/6 mice remains undisclosed, questioning the value of the model for addressing T cell-driven pathological pathways in arthritis. To circumvent this impediment, we recommend MHC class II congenic C57BL/6N.Q mice, expressing A(q), with which T cell determinants have been thoroughly characterised.

  18. Isolation of a monoclonal antibody from a phage display library binding the rhesus macaque MHC class I allomorph Mamu-A1*001.

    Directory of Open Access Journals (Sweden)

    Nathan Holman

    Full Text Available Monoclonal antibodies that bind to human leukocyte antigen (HLA are useful tools for HLA-typing, tracking donor-recipient chimerisms after bone marrow transplants, and characterizing specific major histocompatibility complexes (MHC on cell surfaces. Unfortunately, equivalent reagents are not available for rhesus macaques, which are commonly used animal as models in organ transplant and infectious disease research. To address this deficiency, we isolated an antibody that recognizes the common Indian rhesus macaque MHC class I molecule, Mamu-A1*001. We induced Mamu-A1*001-binding antibodies by alloimmunizing a female Mamu-A1*001-negative rhesus macaque with peripheral blood mononuclear cells (PBMC from a male Mamu-A1*001-positive donor. A Fab phage display library was constructed with PBMC from the alloimmunized macaque and panned to isolate an antibody that binds to Mamu-A1*001 but not to other common rhesus macaque MHC class I molecules. The isolated antibody distinguishes PBMC from Mamu-A1*001-positive and -negative macaques. Additionally, the Mamu-A1*001-specific antibody binds the cynomolgus macaque MHC class I ortholog Mafa-A1*001:01 but not variants Mafa-A1*001:02/03, indicating a high degree of binding specificity. The Mamu-A1*001-specific antibody will be useful for identifying Mamu-A1*001-positive rhesus macaques, for detecting Mamu-A1*001-positive cells in populations of Mamu-A1*001-negative cells, and for examining disease processes that alter expression of Mamu-A1*001 on cell surfaces. Moreover, the alloimmunization process we describe will be useful for isolating additional MHC allomorph-specific monoclonal antibodies or antibodies against other polymorphic host proteins which are difficult to isolate with traditional technologies.

  19. Epigenetic mechanisms regulate MHC and antigen processing molecules in human embryonic and induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Beatriz Suárez-Alvarez

    2010-04-01

    Full Text Available Human embryonic stem cells (hESCs are an attractive resource for new therapeutic approaches that involve tissue regeneration. hESCs have exhibited low immunogenicity due to low levels of Mayor Histocompatibility Complex (MHC class-I and absence of MHC class-II expression. Nevertheless, the mechanisms regulating MHC expression in hESCs had not been explored.We analyzed the expression levels of classical and non-classical MHC class-I, MHC class-II molecules, antigen-processing machinery (APM components and NKG2D ligands (NKG2D-L in hESCs, induced pluripotent stem cells (iPSCs and NTera2 (NT2 teratocarcinoma cell line. Epigenetic mechanisms involved in the regulation of these genes were investigated by bisulfite sequencing and chromatin immunoprecipitation (ChIP assays. We showed that low levels of MHC class-I molecules were associated with absent or reduced expression of the transporter associated with antigen processing 1 (TAP-1 and tapasin (TPN components in hESCs and iPSCs, which are involved in the transport and load of peptides. Furthermore, lack of beta2-microglobulin (beta2m light chain in these cells limited the expression of MHC class I trimeric molecule on the cell surface. NKG2D ligands (MICA, MICB were observed in all pluripotent stem cells lines. Epigenetic analysis showed that H3K9me3 repressed the TPN gene in undifferentiated cells whilst HLA-B and beta2m acquired the H3K4me3 modification during the differentiation to embryoid bodies (EBs. Absence of HLA-DR and HLA-G expression was regulated by DNA methylation.Our data provide fundamental evidence for the epigenetic control of MHC in hESCs and iPSCs. Reduced MHC class I and class II expression in hESCs and iPSCs can limit their recognition by the immune response against these cells. The knowledge of these mechanisms will further allow the development of strategies to induce tolerance and improve stem cell allograft acceptance.

  20. Epigenetic Mechanisms Regulate MHC and Antigen Processing Molecules in Human Embryonic and Induced Pluripotent Stem Cells

    Science.gov (United States)

    Suárez-Álvarez, Beatriz; Rodriguez, Ramón M.; Calvanese, Vincenzo; Blanco-Gelaz, Miguel A.; Suhr, Steve T.; Ortega, Francisco; Otero, Jesus; Cibelli, Jose B.; Moore, Harry; Fraga, Mario F.; López-Larrea, Carlos

    2010-01-01

    Background Human embryonic stem cells (hESCs) are an attractive resource for new therapeutic approaches that involve tissue regeneration. hESCs have exhibited low immunogenicity due to low levels of Mayor Histocompatibility Complex (MHC) class-I and absence of MHC class-II expression. Nevertheless, the mechanisms regulating MHC expression in hESCs had not been explored. Methodology/Principal Findings We analyzed the expression levels of classical and non-classical MHC class-I, MHC class-II molecules, antigen-processing machinery (APM) components and NKG2D ligands (NKG2D-L) in hESCs, induced pluripotent stem cells (iPSCs) and NTera2 (NT2) teratocarcinoma cell line. Epigenetic mechanisms involved in the regulation of these genes were investigated by bisulfite sequencing and chromatin immunoprecipitation (ChIP) assays. We showed that low levels of MHC class-I molecules were associated with absent or reduced expression of the transporter associated with antigen processing 1 (TAP-1) and tapasin (TPN) components in hESCs and iPSCs, which are involved in the transport and load of peptides. Furthermore, lack of β2-microglobulin (β2m) light chain in these cells limited the expression of MHC class I trimeric molecule on the cell surface. NKG2D ligands (MICA, MICB) were observed in all pluripotent stem cells lines. Epigenetic analysis showed that H3K9me3 repressed the TPN gene in undifferentiated cells whilst HLA-B and β2m acquired the H3K4me3 modification during the differentiation to embryoid bodies (EBs). Absence of HLA-DR and HLA-G expression was regulated by DNA methylation. Conclusions/Significance Our data provide fundamental evidence for the epigenetic control of MHC in hESCs and iPSCs. Reduced MHC class I and class II expression in hESCs and iPSCs can limit their recognition by the immune response against these cells. The knowledge of these mechanisms will further allow the development of strategies to induce tolerance and improve stem cell allograft acceptance

  1. The role of placental MHC class I expression in immune-assisted separation of the fetal membranes in cattle.

    Science.gov (United States)

    Benedictus, Lindert; Koets, Ad P; Rutten, Victor P M G

    2015-11-01

    The bovine fetus, like that of other species, is a semi-allograft and the regulation of materno-fetal alloimmunity is critical to prevent its immunological rejection. In cattle, a materno-fetal alloimmune response may be beneficial at parturition. It is hypothesized that upregulation of major histocompatibility complex (MHC) class I on the fetal membranes toward the end of gestation induces a maternal alloimmune response that activates innate immune effector mechanisms, aiding in the loss of the adherence between the fetal membranes and the uterus. Loss of fetal-maternal adherence is pivotal for the timely expulsion of the fetal membranes and the absence (or reduction) of the maternal immune response may lead to retained fetal membranes, a common reproductive disorder of cattle. Currently, there is no effective treatment for retained fetal membranes and a better understanding of materno-fetal alloimmune-assisted separation of the fetal membranes may lead to novel targets for the treatment of retained fetal membranes. In this review, the regulation of materno-fetal alloimmunity during pregnancy in cattle, with a focus on placental MHC class I expression, and the importance of maternal alloimmunity for the timely separation of the fetal membranes, are discussed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Trans-species polymorphism and selection in the MHC class II DRA genes of domestic sheep.

    Directory of Open Access Journals (Sweden)

    Keith T Ballingall

    Full Text Available Highly polymorphic genes with central roles in lymphocyte mediated immune surveillance are grouped together in the major histocompatibility complex (MHC in higher vertebrates. Generally, across vertebrate species the class II MHC DRA gene is highly conserved with only limited allelic variation. Here however, we provide evidence of trans-species polymorphism at the DRA locus in domestic sheep (Ovis aries. We describe variation at the Ovar-DRA locus that is far in excess of anything described in other vertebrate species. The divergent DRA allele (Ovar-DRA*0201 differs from the sheep reference sequences by 20 nucleotides, 12 of which appear non-synonymous. Furthermore, DRA*0201 is paired with an equally divergent DRB1 allele (Ovar-DRB1*0901, which is consistent with an independent evolutionary history for the DR sub-region within this MHC haplotype. No recombination was observed between the divergent DRA and B genes in a range of breeds and typical levels of MHC class II DR protein expression were detected at the surface of leukocyte populations obtained from animals homozygous for the DRA*0201, DRB1*0901 haplotype. Bayesian phylogenetic analysis groups Ovar-DRA*0201 with DRA sequences derived from species within the Oryx and Alcelaphus genera rather than clustering with other ovine and caprine DRA alleles. Tests for Darwinian selection identified 10 positively selected sites on the branch leading to Ovar-DRA*0201, three of which are predicted to be associated with the binding of peptide antigen. As the Ovis, Oryx and Alcelaphus genera have not shared a common ancestor for over 30 million years, the DRA*0201 and DRB1*0901 allelic pair is likely to be of ancient origin and present in the founding population from which all contemporary domestic sheep breeds are derived. The conservation of the integrity of this unusual DR allelic pair suggests some selective advantage which is likely to be associated with the presentation of pathogen antigen to T

  3. Oral HPV infection and MHC class II deficiency (A study of two cases with atypical outcome

    Directory of Open Access Journals (Sweden)

    Guirat-Dhouib Naouel

    2012-04-01

    Full Text Available Abstract Background Major histocompatibility complex class II deficiency, also referred to as bare lymphocyte syndrome is a rare primary Immunodeficiency disorder characterized by a profondly deficient human leukocyte antigen class II expression and a lack of cellular and humoral immune responses to foreign antigens. Clinical manifestations include extreme susceptibility to viral, bacterial, and fungal infections. The infections begin in the first year of life and involve usually the respiratory system and the gastrointestinal tract. Severe malabsorption with failure to thrive ensues, often leading to death in early childhood. Bone marrow transplantation is the curative treatment. Case reports Here we report two cases with a late outcome MHC class II deficiency. They had a long term history of recurrent bronchopulmonary and gastrointestinal infections. Bone marrow transplantation could not be performed because no compatible donor had been identified. At the age of 12 years, they developed oral papillomatous lesions related to HPV (human papillomavirus. The diagnosis of HPV infection was done by histological examination. HPV typing performed on the tissue obtained at biopsy showed HPV type 6. The lesions were partially removed after two months of laser treatment. Conclusions Viral infections are common in patients with MHC class II and remain the main cause of death. Besides warts caused by HPV infection do not exhibit a propensity for malignant transformation; they can cause great psychosocial morbidity.

  4. The quantum chemical causality of pMHC-TCR biological avidity: Peptide atomic coordination data and the electronic state of agonist N termini

    Directory of Open Access Journals (Sweden)

    Georgios S.E. Antipas

    2015-06-01

    Full Text Available The quantum state of functional avidity of the synapse formed between a peptide-Major Histocompatibility Complex (pMHC and a T cell receptor (TCR is a subject not previously touched upon. Here we present atomic pair correlation meta-data based on crystalized tertiary structures of the Tax (HTLV-1 peptide along with three artificially altered variants, all of which were presented by the (Class I HLA-A201 protein in complexation with the human (CD8+ A6TCR. The meta-data reveal the existence of a direct relationship between pMHC-TCR functional avidity (agonist/antagonist and peptide pair distribution function (PDF. In this context, antagonist peptides are consistently under-coordinated in respect to Tax. Moreover, Density Functional Theory (DFT datasets in the BLYP/TZ2P level of theory resulting from relaxation of the H species on peptide tertiary structures reveal that the coordination requirement of agonist peptides is also expressed as a physical observable of the protonation state of their N termini: agonistic peptides are always found to retain a stable ammonium (NH3+ terminal group while antagonist peptides are not.

  5. Neurons are MHC class I-dependent targets for CD8 T cells upon neurotropic viral infection.

    Directory of Open Access Journals (Sweden)

    Grégoire Chevalier

    2011-11-01

    Full Text Available Following infection of the central nervous system (CNS, the immune system is faced with the challenge of eliminating the pathogen without causing significant damage to neurons, which have limited capacities of renewal. In particular, it was thought that neurons were protected from direct attack by cytotoxic T lymphocytes (CTL because they do not express major histocompatibility class I (MHC I molecules, at least at steady state. To date, most of our current knowledge on the specifics of neuron-CTL interaction is based on studies artificially inducing MHC I expression on neurons, loading them with exogenous peptide and applying CTL clones or lines often differentiated in culture. Thus, much remains to be uncovered regarding the modalities of the interaction between infected neurons and antiviral CD8 T cells in the course of a natural disease. Here, we used the model of neuroinflammation caused by neurotropic Borna disease virus (BDV, in which virus-specific CTL have been demonstrated as the main immune effectors triggering disease. We tested the pathogenic properties of brain-isolated CD8 T cells against pure neuronal cultures infected with BDV. We observed that BDV infection of cortical neurons triggered a significant up regulation of MHC I molecules, rendering them susceptible to recognition by antiviral CTL, freshly isolated from the brains of acutely infected rats. Using real-time imaging, we analyzed the spatio-temporal relationships between neurons and CTL. Brain-isolated CTL exhibited a reduced mobility and established stable contacts with BDV-infected neurons, in an antigen- and MHC-dependent manner. This interaction induced rapid morphological changes of the neurons, without immediate killing or impairment of electrical activity. Early signs of neuronal apoptosis were detected only hours after this initial contact. Thus, our results show that infected neurons can be recognized efficiently by brain-isolated antiviral CD8 T cells and

  6. Transport of Streptococcus pneumoniae capsular polysaccharide in MHC Class II tubules.

    Directory of Open Access Journals (Sweden)

    Tom Li Stephen

    2007-03-01

    Full Text Available Bacterial capsular polysaccharides are virulence factors and are considered T cell-independent antigens. However, the capsular polysaccharide Sp1 from Streptococcus pneumoniae serotype 1 has been shown to activate CD4(+ T cells in a major histocompatibility complex (MHC class II-dependent manner. The mechanism of carbohydrate presentation to CD4(+ T cells is unknown. We show in live murine dendritic cells (DCs that Sp1 translocates from lysosomal compartments to the plasma membrane in MHCII-positive tubules. Sp1 cell surface presentation results in reduction of self-peptide presentation without alteration of the MHCII self peptide repertoire. In DM-deficient mice, retrograde transport of Sp1/MHCII complexes resulting in T cell-dependent immune responses to the polysaccharide in vitro and in vivo is significantly reduced. The results demonstrate the capacity of a bacterial capsular polysaccharide antigen to use DC tubules as a vehicle for its transport as an MHCII/saccharide complex to the cell surface for the induction of T cell activation. Furthermore, retrograde transport requires the functional role of DM in self peptide-carbohydrate exchange. These observations open new opportunities for the design of vaccines against microbial encapsulated pathogens.

  7. Characterization and evolution of MHC class II B genes in Galápagos marine iguanas (Amblyrhynchus cristatus).

    Science.gov (United States)

    Glaberman, Scott; Moreno, Maria A; Caccone, Adalgisa

    2009-08-01

    Major histocompatibility complex (MHC) class II molecules play a key role in the adaptive immune system of vertebrates. Class II B genes appear to evolve in a very different manner in mammals and birds. Orthology is commonly observed among mammal loci, while genes tend to cluster phylogenetically within bird species. Here we present class II B data from a representative of another major group of amniotes, the squamates (i.e. lizards, snakes, amphisbaenians), with the ultimate goal of placing mammalian and avian MHC evolution into a broader context. In this study, eight class II B cDNA sequences were obtained from the Galápagos marine iguana (Amblyrhynchus cristatus) which were divided into five locus groups, Amcr-DAB1 through -DAB5, based on similarities along most of the coding and noncoding portions of the transcribed gene. All marine iguana sequences were monophyletic with respect to class II genes from other vertebrates indicating that they originated from a common ancestral locus after squamates split from other reptiles. The beta-1 domain, which is involved in antigen binding, exhibited signatures of positive selection as well as interlocus gene conversion in both long and short tracts-a pattern also observed in birds and fish, but not in mammals. On the other hand, the beta-2 domain was divergent between gene groups, which is characteristic of mammals. Based on these results, we preliminarily show that squamate class II B genes have been shaped by a unique blend of evolutionary forces that have been observed in differing degrees in other vertebrates.

  8. MHC motif viewer

    DEFF Research Database (Denmark)

    Rapin, Nicolas Philippe Jean-Pierre; Hoof, Ilka; Lund, Ole

    2008-01-01

    . Algorithms that predict which peptides MHC molecules bind have recently been developed and cover many different alleles, but the utility of these algorithms is hampered by the lack of tools for browsing and comparing the specificity of these molecules. We have, therefore, developed a web server, MHC motif....... A special viewing feature, MHC fight, allows for display of the specificity of two different MHC molecules side by side. We show how the web server can be used to discover and display surprising similarities as well as differences between MHC molecules within and between different species. The MHC motif...

  9. Patterns of MHC-G-Like and MHC-B Diversification in New World Monkeys.

    Directory of Open Access Journals (Sweden)

    Juan S Lugo

    Full Text Available The MHC class I (MHC-I region in New World monkeys (Platyrrhini has remained relatively understudied. To evaluate the diversification patterns and transcription behavior of MHC-I in Platyrrhini, we first analyzed public genomic sequences from the MHC-G-like subregion in Saimiri boliviensis, Ateles geoffroyi and Callicebus moloch, and from the MHC-B subregion in Saimiri boliviensis. While S. boliviensis showed multiple copies of both MHC-G-like (10 and -B (15 loci, A. geoffroyi and C. moloch had only three and four MHC-G-like genes, respectively, indicating that not all Platyrrhini species have expanded their MHC-I loci. We then sequenced MHC-G-like and -B cDNAs from nine Platyrrhini species, recovering two to five unique cDNAs per individual for both loci classes. In two Saguinus species, however, no MHC-B cDNAs were found. In phylogenetic trees, MHC-G-like cDNAs formed genus-specific clusters whereas the MHC-B cDNAs grouped by Platyrrhini families, suggesting a more rapid diversification of the former. Furthermore, cDNA sequencing in 12 capuchin monkeys showed that they transcribe at least four MHC-G-like and five MHC-B polymorphic genes, showing haplotypic diversity for gene copy number and signatures of positive natural selection at the peptide binding region. Finally, a quantitative index for MHC:KIR affinity was proposed and tested to predict putative interacting pairs. Altogether, our data indicate that i MHC-I genes has expanded differentially among Platyrrhini species, ii Callitrichinae (tamarins and marmosets MHC-B loci have limited or tissue-specific expression, iii MHC-G-like genes have diversified more rapidly than MHC-B genes, and iv the MHC-I diversity is generated mainly by genetic polymorphism and gene copy number variation, likely promoted by natural selection for ligand binding.

  10. Allelic diversity of the MHC class II DRB genes in brown bears (Ursus arctos) and a comparison of DRB sequences within the family Ursidae.

    Science.gov (United States)

    Goda, N; Mano, T; Kosintsev, P; Vorobiev, A; Masuda, R

    2010-11-01

    The allelic diversity of the DRB locus in major histocompatibility complex (MHC) genes was analyzed in the brown bear (Ursus arctos) from the Hokkaido Island of Japan, Siberia, and Kodiak of Alaska. Nineteen alleles of the DRB exon 2 were identified from a total of 38 individuals of U. arctos and were highly polymorphic. Comparisons of non-synonymous and synonymous substitutions in the antigen-binding sites of deduced amino acid sequences indicated evidence for balancing selection on the bear DRB locus. The phylogenetic analysis of the DRB alleles among three genera (Ursus, Tremarctos, and Ailuropoda) in the family Ursidae revealed that DRB allelic lineages were not separated according to species. This strongly shows trans-species persistence of DRB alleles within the Ursidae. © 2010 John Wiley & Sons A/S.

  11. Docosahexaenoic acid modifies the clustering and size of lipid rafts and the lateral organization and surface expression of MHC class I of EL4 cells.

    Science.gov (United States)

    Shaikh, Saame Raza; Rockett, Benjamin Drew; Salameh, Muhammad; Carraway, Kristen

    2009-09-01

    An emerging molecular mechanism by which docosahexaenoic acid (DHA) exerts its effects is modification of lipid raft organization. The biophysical model, based on studies with liposomes, shows that DHA avoids lipid rafts because of steric incompatibility between DHA and cholesterol. The model predicts that DHA does not directly modify rafts; rather, it incorporates into nonrafts to modify the lateral organization and/or conformation of membrane proteins, such as the major histocompatibility complex (MHC) class I. Here, we tested predictions of the model at a cellular level by incorporating oleic acid, eicosapentaenoic acid (EPA), and DHA, compared with a bovine serum albumin (BSA) control, into the membranes of EL4 cells. Quantitative microscopy showed that DHA, but not EPA, treatment, relative to the BSA control diminished lipid raft clustering and increased their size. Approximately 30% of DHA was incorporated directly into rafts without changing the distribution of cholesterol between rafts and nonrafts. Quantification of fluorescence colocalization images showed that DHA selectively altered MHC class I lateral organization by increasing the fraction of the nonraft protein into rafts compared with BSA. Both DHA and EPA treatments increased antibody binding to MHC class I compared with BSA. Antibody titration showed that DHA and EPA did not change MHC I conformation but increased total surface levels relative to BSA. Taken together, our findings are not in agreement with the biophysical model. Therefore, we propose a model that reconciles contradictory viewpoints from biophysical and cellular studies to explain how DHA modifies lipid rafts on several length scales. Our study supports the notion that rafts are an important target of DHA's mode of action.

  12. Identification of neurotensin-related peptides in human thymic epithelial cell membranes and relationship with major histocompatibility complex class I molecules.

    Science.gov (United States)

    Vanneste, Y; Thome, A N; Vandersmissen, E; Charlet, C; Franchimont, D; Martens, H; Lhiaubet, A M; Schimpff, R M; Rostène, W; Geenen, V

    1997-06-01

    This study shows the expression at the cell surface of human thymic epithelial cells (TEC) of a neurotensin (NT)-like immunoreactivity. NT radio-immunoassay (RIA) revealed that cultured human TEC contain +/-5 ng immunoreactive (ir) NT/10(6) cells, of which 5% is associated with plasma cell membranes. HPLC analysis of NT-ir present in human TEC showed a major peak of NT-ir corresponding to NT1-13. NT-ir was not detected in the supernatant of human TEC cultures. Using an affinity column prepared with a anti-MHC class I monoclonal antibody, NT-ir-related peptides were retained on the column and eluted together with MHC class I-related proteins. According to the elution time on HPLC of these peptides, they correspond to intact NT1-13, as well as to smaller fragments of NT1-13.

  13. Crystallization and preliminary X-ray crystallographic analysis of the rhesus macaque MHC class I molecule Mamu-B*17 complexed with an immunodominant SIVmac239 Env epitope

    International Nuclear Information System (INIS)

    Gao, Feng; Bao, Jinku

    2013-01-01

    A primitive monoclinic crystal of the rhesus macaque MHC class I molecule Mamu-B*17 complexed with an SIVmac239 Env peptide was obtained and belonged to space group P2, with unit-cell parameters a = 68.3, b = 45.0, c = 81.5 Å, β = 96.5°. The crystal diffracted to 2.55 Å resolution. Long-term nonprogression during simian immunodeficiency virus (SIV) infection has been strongly associated with the major histocompatibility complex (MHC) class I allele Mamu-B*17. Here, a complex of rhesus macaque Mamu-B*17 with rhesus macaque β 2 -microglobulin (β 2 m) and an immunodominant peptide (SIVmac239 Env241–251; LRCNDTNYSGF; Env LF11) derived from the SIV Env protein was crystallized by the hanging-drop method using PEG 3350 as a precipitating agent. The crystals belonged to the primitive monoclinic space group P2, with unit-cell parameters a = 68.3, b = 45.0, c = 81.5 Å, β = 96.5°. Assuming the presence of one molecule in the asymmetric unit, the Matthews coefficient and solvent content were calculated to be 2.96 Å 3 Da −1 and 58.5%, respectively

  14. BG1 has a major role in MHC-linked resistance to malignant lymphoma in the chicken.

    Science.gov (United States)

    Goto, Ronald M; Wang, Yujun; Taylor, Robert L; Wakenell, Patricia S; Hosomichi, Kazuyoshi; Shiina, Takashi; Blackmore, Craig S; Briles, W Elwood; Miller, Marcia M

    2009-09-29

    Pathogen selection is postulated to drive MHC allelic diversity at loci for antigen presentation. However, readily apparent MHC infectious disease associations are rare in most species. The strong link between MHC-B haplotype and the occurrence of virally induced tumors in the chicken provides a means for defining the relationship between pathogen selection and MHC polymorphism. Here, we verified a significant difference in resistance to gallid herpesvirus-2 (GaHV-2)-induced lymphomas (Marek's disease) conferred by two closely-related recombinant MHC-B haplotypes. We mapped the crossover breakpoints that distinguish these haplotypes to the highly polymorphic BG1 locus. BG1 encodes an Ig-superfamily type I transmembrane receptor-like protein that contains an immunoreceptor tyrosine-based inhibition motif (ITIM), which undergoes phosphorylation and is recognized by Src homology 2 domain-containing protein tyrosine phosphatase (SHP-2). The recombinant haplotypes are identical, except for differences within the BG1 3'-untranslated region (3'-UTR). The 3'-UTR of the BG1 allele associated with increased lymphoma contains a 225-bp insert of retroviral origin and showed greater inhibition of luciferase reporter gene translation compared to the other allele. These findings suggest that BG1 could affect the outcome of GaHV-2 infection through modulation of the lymphoid cell responsiveness to infection, a condition that is critical for GaHV-2 replication and in which the MHC-B haplotype has been previously implicated. This work provides a mechanism by which MHC-B region genetics contributes to the incidence of GaHV-2-induced malignant lymphoma in the chicken and invites consideration of the possibility that similar mechanisms might affect the incidence of lymphomas associated with other oncogenic viral infections.

  15. Evolutionary dynamics of an expressed MHC class IIβ locus in the Ranidae (Anura) uncovered by genome walking and high-throughput amplicon sequencing

    Science.gov (United States)

    Mulder, Kevin P.; Cortazar-Chinarro, Maria; Harris, D. James; Crottini, Angelica; Grant, Evan H. Campbell; Fleischer, Robert C.; Savage, Anna E.

    2017-01-01

    The Major Histocompatibility Complex (MHC) is a genomic region encoding immune loci that are important and frequently used markers in studies of adaptive genetic variation and disease resistance. Given the primary role of infectious diseases in contributing to global amphibian declines, we characterized the hypervariable exon 2 and flanking introns of the MHC Class IIβ chain for 17 species of frogs in the Ranidae, a speciose and cosmopolitan family facing widespread pathogen infections and declines. We find high levels of genetic variation concentrated in the Peptide Binding Region (PBR) of the exon. Ten codons are under positive selection, nine of which are located in the mammal-defined PBR. We hypothesize that the tenth codon (residue 21) is an amphibian-specific PBR site that may be important in disease resistance. Trans-species and trans-generic polymorphisms are evident from exon-based genealogies, and co-phylogenetic analyses between intron, exon and mitochondrial based reconstructions reveal incongruent topologies, likely due to different locus histories. We developed two sets of barcoded adapters that reliably amplify a single and likely functional locus in all screened species using both 454 and Illumina based sequencing methods. These primers provide a resource for multiplexing and directly sequencing hundreds of samples in a single sequencing run, avoiding the labour and chimeric sequences associated with cloning, and enabling MHC population genetic analyses. Although the primers are currently limited to the 17 species we tested, these sequences and protocols provide a useful genetic resource and can serve as a starting point for future disease, adaptation and conservation studies across a range of anuran taxa.

  16. Determination of the Crystal Structure of Human Zn-Alpha 2-Gylcoprotein, A Protein Implicated in Breast Cancer

    National Research Council Canada - National Science Library

    Bjorkman, Pamela

    2000-01-01

    Zn-alpha 2-glycoprotein (ZAG) is a 41 kDa soluble protein whose sequence and domain organization are surprisingly similar to those of the membrane glycoproteins of the major histocompatibility complex (MHC...

  17. Evolutionary Analysis of Minor Histocompatibility Genes In Hydra

    KAUST Repository

    Aalismail, Nojood

    2016-05-01

    Hydra is a simple freshwater solitary polyp used as a model system to study evolutionary aspects. The immune response of this organism has not been studied extensively and the immune response genes have not been identified and characterized. On the other hand, immune response has been investigated and genetic analysis has been initiated in other lower invertebrates. In the present study we took initiative to study the self/nonself recognition in hydra and its relation to the immune response. Moreover, performing phylogenetic analysis to look for annotated immune genes in hydra gave us a potential to analyze the expression of minor histocompatibility genes that have been shown to play a major role in grafting and transplantation in mammals. Here we obtained the cDNA library that shows expression of minor histocompatibility genes and confirmed that the annotated sequences in databases are actually present. In addition, grafting experiments suggested, although still preliminary, that homograft showed less rejection response than in heterograft. Involvement of possible minor histocompatibility gene orthologous in immune response was examined by qPCR.

  18. Testing genotyping strategies for ultra-deep sequencing of a co-amplifying gene family: MHC class I in a passerine bird.

    Science.gov (United States)

    Biedrzycka, Aleksandra; Sebastian, Alvaro; Migalska, Magdalena; Westerdahl, Helena; Radwan, Jacek

    2017-07-01

    Characterization of highly duplicated genes, such as genes of the major histocompatibility complex (MHC), where multiple loci often co-amplify, has until recently been hindered by insufficient read depths per amplicon. Here, we used ultra-deep Illumina sequencing to resolve genotypes at exon 3 of MHC class I genes in the sedge warbler (Acrocephalus schoenobaenus). We sequenced 24 individuals in two replicates and used this data, as well as a simulated data set, to test the effect of amplicon coverage (range: 500-20 000 reads per amplicon) on the repeatability of genotyping using four different genotyping approaches. A third replicate employed unique barcoding to assess the extent of tag jumping, that is swapping of individual tag identifiers, which may confound genotyping. The reliability of MHC genotyping increased with coverage and approached or exceeded 90% within-method repeatability of allele calling at coverages of >5000 reads per amplicon. We found generally high agreement between genotyping methods, especially at high coverages. High reliability of the tested genotyping approaches was further supported by our analysis of the simulated data set, although the genotyping approach relying primarily on replication of variants in independent amplicons proved sensitive to repeatable errors. According to the most repeatable genotyping method, the number of co-amplifying variants per individual ranged from 19 to 42. Tag jumping was detectable, but at such low frequencies that it did not affect the reliability of genotyping. We thus demonstrate that gene families with many co-amplifying genes can be reliably genotyped using HTS, provided that there is sufficient per amplicon coverage. © 2016 John Wiley & Sons Ltd.

  19. Identification of SIV Nef CD8(+) T cell epitopes restricted by a MHC class I haplotype associated with lower viral loads in a macaque AIDS model.

    Science.gov (United States)

    Nomura, Takushi; Yamamoto, Hiroyuki; Takahashi, Naofumi; Naruse, Taeko K; Kimura, Akinori; Matano, Tetsuro

    2014-07-25

    Virus-specific CD8(+) T-cell responses are crucial for the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. Multiple studies on HIV-infected individuals and SIV-infected macaques have indicated association of several major histocompatibility complex class I (MHC-I) genotypes with lower viral loads and delayed AIDS progression. Understanding of the viral control mechanism associated with these MHC-I genotypes would contribute to the development of intervention strategy for HIV control. We have previously reported a rhesus MHC-I haplotype, 90-120-Ia, associated with lower viral loads after SIVmac239 infection. Gag206-216 and Gag241-249 epitope-specific CD8(+) T-cell responses have been shown to play a central role in the reduction of viral loads, whereas the effect of Nef-specific CD8(+) T-cell responses induced in all the 90-120-Ia(+) macaques on SIV replication remains unknown. Here, we identified three CD8(+) T-cell epitopes, Nef9-19, Nef89-97, and Nef193-203, associated with 90-120-Ia. Nef9-19 and Nef193-203 epitope-specific CD8(+) T-cell responses frequently selected for mutations resulting in viral escape from recognition by these CD8(+) T cells, indicating that these CD8(+) T cells exert strong suppressive pressure on SIV replication. Results would be useful for elucidation of the viral control mechanism associated with 90-120-Ia. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. MHC class II+ (HLA-DP-like) cells in the cow reproductive tract: II. Immunolocalization of MHC class II+ cells in oviduct and vagina.

    Science.gov (United States)

    Eren, U; Kum, S; Sandikçi, M; Eren, V; Ilhan, F

    2009-08-01

    The aim of this study was to determine and examine the distribution of major frequency MHC II+ cells in the oviduct and vagina of cows during the oestrous and dioestrus phases. Right oviduct (ampulla, isthmus) and vaginal samples taken from a total of twenty seven multiparous cows were used. Tissue samples were processed to obtain both cryostat and paraffin sections. Sections were stained immunocytochemically using StreptABC method using a specific monoclonal antibody to MHC II+ cell population. Intra-epithelial and subepithelial areas along with lamina propria, muscularis mucosae and serosa of both ampulla and isthmus and intra-epithelial/subepithelial areas and mucosae of vagina were examined for the presence of MHC II+ cells. The density of immune positive cells was determined using a subjective scoring system. MHC II+ cells were demonstrated in all areas examined in both oestrus and dioestrus. In oestrus, the density of MHC II+ cells decreased in subepithelial areas (in between the epithelial cells and the basal membrane) of isthmus, whereas the density of immune positive cells was increased in muscularis mucosae of isthmus (P < 0.05), lamina propria and muscularis mucosae of ampulla (P < 0.05) as well as in the mucosae of vagina (P MHC II+ cells observed in the oviduct and vagina increases in the majority of areas examined due to the effect of oestrogen.

  1. Evidence for balancing selection at the DAB locus in the axolotl, Ambystoma mexicanum.

    Science.gov (United States)

    Richman, A D; Herrera, G; Reynoso, V H; Méndez, G; Zambrano, L

    2007-12-01

    The axolotl (Ambystoma mexicanum) has been characterized as immunodeficient, and the absence of major histocompatibility complex (MHC) class II polymorphism has been cited as a possible explanation. Here we present evidence for considerable allelic polymorphism at the MHC class II DAB locus for a sample of wild-caught axolotls. Evidence that these sequences are the product of balancing selection for disease resistance is discussed.

  2. The production, purification and crystallization of a soluble form of the nonclassical MHC HLA-G: the essential role of cobalt

    International Nuclear Information System (INIS)

    Clements, Craig S.; Kjer-Nielsen, Lars; Kostenko, Lyudmila; McCluskey, James; Rossjohn, Jamie

    2005-01-01

    X-ray diffraction data were collected to 1.9 Å from crystals of HLA-G. Cobalt ions were found to be essential for the production of diffracting crystals. HLA-G is a nonclassical class I major histocompatibility complex (MHC) molecule that is primarily expressed at the foetal–maternal interface. Although the role of HLA-G has not been fully elucidated, current evidence suggests it protects the foetus from the maternal immune response. In this report, HLA-G (44 kDa) is characterized by expression in Escherichia coli. The inclusion bodies were refolded in complex with a peptide derived from histone H2A (RIIPRHLQL), purified and subsequently crystallized. Correct refolding was determined using two conformation-dependent antibodies. Cobalt ions were shown to be an essential ingredient for obtaining diffraction-quality crystals. The crystals, which diffracted to 1.9 Å resolution, belonged to space group P3 2 2 1 , with unit-cell parameters a = b = 77.15, c = 151.72 Å

  3. Impact of clonal competition for peptide-MHC complexes on the CD8[superscript +] T-cell repertoire selection in a persistent viral infection

    Energy Technology Data Exchange (ETDEWEB)

    Wynn, Katherine K.; Fulton, Zara; Cooper, Leanne; Silins, Sharon L.; Gras, Stephanie; Archbold, Julia K.; Tynan, Fleur E.; Miles, John J.; McCluskey, James; Burrows, Scott R.; Rossjohn, Jamie; Khanna, Rajiv (Monash); (Queensland Inst. of Med. Rsrch.); (Melbourne)

    2008-04-29

    CD8{sup +} T-cell responses to persistent viral infections are characterized by the accumulation of an oligoclonal T-cell repertoire and a reduction in the naive T-cell pool. However, the precise mechanism for this phenomenon remains elusive. Here we show that human cytomegalovirus (HCMV)-specific CD8{sup +} T cells recognizing distinct epitopes from the pp65 protein and restricted through an identical HLA class I allele (HLA B*3508) exhibited either a highly conserved public T-cell repertoire or a private, diverse T-cell response, which was uniquely altered in each donor following in vitro antigen exposure. Selection of a public T-cell receptor (TCR) was coincident with an atypical major histocompatibility complex (MHC)-peptide structure, in that the epitope adopted a helical conformation that bulged from the peptide-binding groove, while a diverse TCR profile was observed in response to the epitope that formed a flatter, more 'featureless' landscape. Clonotypes with biased TCR usage demonstrated more efficient recognition of virus-infected cells, a greater CD8 dependency, and were more terminally differentiated in their phenotype when compared with the T cells expressing diverse TCR. These findings provide new insights into our understanding on how the biology of antigen presentation in addition to the structural features of the pMHC-I might shape the T-cell repertoire and its phenotype.

  4. Proteolysis of the heavy chain of major histocompatibility complex class I antigens by complement component C1s

    DEFF Research Database (Denmark)

    Eriksson, H; Nissen, Mogens Holst

    1990-01-01

    weights of the fragments are in agreement with the cleavage located in the area between the disulphide loops of the alpha 2-and alpha 3-domains of the heavy chain. In addition human C1s complement is able to cleave H-2 antigens from mouse in a similar fashion but not rat MHC class I antigen or mouse MHC...... class II antigen (I-Ad). Mouse MHC class I antigen-specific determinants could also be detected in supernatant from mouse spleen cells incubated with C1r and C1s. These results indicate the presence in the body fluids of a non-membrane-bound soluble form of the alpha 1-and alpha 2-domains which...

  5. MHC polymorphism and disease resistance to vibrio anguillarum in 8 families of half-smooth tongue sole (Cynoglossus semilaevis

    Directory of Open Access Journals (Sweden)

    Liu Yan-hong

    2011-09-01

    Full Text Available Abstract Background Genes in the major histocompatibility complex (MHC have a critical role in both the innate and adaptive immune responses because of their involvement in presenting foreign peptides to T cells. However, the nature has remained largely unknown. Results We examined the genetic variation in MHC class IIB in half-smooth tongue sole (Cynoglossus semilaevis after challenge with vibrio anguillarum. Two thousand and four hundred fry from 12 half-smooth tongue sole families were challenged with Vibrio anguillarum. To determine any association between alleles and resistance or susceptibility to V. anguillarum, 160 individuals from four high-resistance (HR, 73.27% mortality families were selected for MHC IIB exon2 gene sequence analysis. The MHC IIB exon2 genes of tongue sole displayed a high level of polymorphism and were discovered at least four loci. Meanwhile, the dN/dS [the ratio of non-synonymous (dN substitutions to synonymous (dS substitutions] in the peptide-binding region (PBR was higher than that in the non-peptide-binding region (non-PBR. Eighty-eight alleles were discovered among 160 individuals, and 13 out of 88 alleles were used to analyze the distribution pattern between the resistant and susceptible families. Certain alleles presented in HR and LR with a different frequency, while other alleles were discovered in only the HR or LR families, not both. Five alleles, Cyse-DBB*6501, Cyse-DBB*4002, Cyse-DBB*6102, Cyse-DBB*5601 and Cyse-DBB*2801, were found to be associated with susceptibility to V. anguillarum with a frequency of 1.25%, 1.25%, 1.25%, 1.25% and 2.5% in the HR families, and 35%, 33.75%, 27.5%, 16.25%, 15% in the LR families (p Cyse-DBB*3301, Cyse-DBB*4701, Cyse-DBB*6801 and Cyse-DBB*5901, were found to be associated with resistance to V. anguillarum, with a frequency of 13.75%, 11.25%, 11.25%, 8.75% in the HR families and 1.25%, 1.25%, 1.25%, 1.25% and 1.25% in the LR families (p Conclusions Elucidation of the

  6. HLA associations reveal genetic heterogeneity in psoriatic arthritis and in the psoriasis phenotype.

    LENUS (Irish Health Repository)

    Winchester, Robert

    2012-04-01

    Rigorously ascertained cases of psoriatic arthritis in subjects presenting to a rheumatology unit were compared with cases of psoriasis in subjects presenting to a dermatology unit, where subjects with musculoskeletal features were excluded, to address 1) the extent to which the contribution of the major histocompatibility complex (MHC) to psoriatic arthritis susceptibility resembles that in psoriasis, and 2) whether MHC genes determine quantitative traits within the psoriatic arthritis phenotype.

  7. T cell responses affected by aminopeptidase N (CD13)-mediated trimming of major histocompatibility complex class II-bound peptides

    DEFF Research Database (Denmark)

    Larsen, S L; Pedersen, L O; Buus, S

    1996-01-01

    Endocytosed protein antigens are believed to be fragmented in what appears to be a balance between proteolysis and MHC-mediated epitope protection, and the resulting peptide-MHC complexes are transported to the surface of the antigen-presenting cells (APC) and presented to T cells. The events tha...

  8. Schizophrenia risk from complex variation of complement component 4

    NARCIS (Netherlands)

    Sekar, Aswin; Bialas, Allison R.; de Rivera, Heather; Davis, Avery; Hammond, Timothy R.; Kamitaki, Nolan; Tooley, Katherine; Presumey, Jessy; Baum, Matthew; van Doren, Vanessa; Genovese, Giulio; Rose, Samuel A.; Handsaker, Robert E.; Daly, Mark J.; Carroll, Michael C.; Stevens, Beth; McCarroll, Steven A.; Ripke, Stephan; Neale, Benjamin M.; Corvin, Aiden; Walters, James T. R.; Farh, Kai-How; Holmans, Peter A.; Lee, Phil; Bulik-Sullivan, Brendan; Collier, David A.; Huang, Hailiang; Pers, Tune H.; Agartz, Ingrid; Agerbo, Esben; Albus, Margot; Alexander, Madeline; Amin, Farooq; Bacanu, Silviu A.; Begemann, Martin; Belliveau, Richard A.; Bene, Judit; Bergen, Sarah E.; Bevilacqua, Elizabeth; Bigdeli, Tim B.; Black, Donald W.; Bruggeman, Richard; Buccola, Nancy G.; Buckner, Randy L.; Byerley, William; Cahn, Wiepke; Cai, Guiqing; Cairns, Murray J.; Campion, Dominique; de Haan, Lieuwe

    2016-01-01

    Schizophrenia is a heritable brain illness with unknown pathogenic mechanisms. Schizophrenia's strongest genetic association at a population level involves variation in the major histocompatibility complex (MHC) locus, but the genes and molecular mechanisms accounting for this have been challenging

  9. SCIMP, a transmembrane adaptor protein involved in major histocompatibility complex class II signaling

    Czech Academy of Sciences Publication Activity Database

    Dráber, Peter; Vonková, Ivana; Štěpánek, Ondřej; Hrdinka, Matouš; Kucová, Markéta; Skopcová, Tereza; Otáhal, Pavel; Angelisová, Pavla; Hořejší, Václav; Yeung, M.; Weiss, A.; Brdička, Tomáš

    2011-01-01

    Roč. 31, č. 22 (2011), s. 4550-4562 ISSN 0270-7306 R&D Projects: GA MŠk 1M0506; GA ČR GEMEM/09/E011 Institutional research plan: CEZ:AV0Z50520514 Keywords : SCIMP * transmembrane adaptor protein * MHC II Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.527, year: 2011

  10. Normalized Synergy Predicts That CD8 Co-Receptor Contribution to T Cell Receptor (TCR and pMHC Binding Decreases As TCR Affinity Increases in Human Viral-Specific T Cells

    Directory of Open Access Journals (Sweden)

    Chad M. Williams

    2017-07-01

    Full Text Available The discovery of naturally occurring T cell receptors (TCRs that confer specific, high-affinity recognition of pathogen and cancer-associated antigens remains a major goal in cellular immunotherapies. The contribution of the CD8 co-receptor to the interaction between the TCR and peptide-bound major histocompatibility complex (pMHC has previously been correlated with the activation and responsiveness of CD8+ T cells. However, these studies have been limited to model systems of genetically engineered hybridoma TCRs or transgenic mouse TCRs against either a single epitope or an array of altered peptide ligands. CD8 contribution in a native human antigen-specific T cell response remains elusive. Here, using Hepatitis C Virus-specific precursor CTLs spanning a large range of TCR affinities, we discovered that the functional responsiveness of any given TCR correlated with the contribution of CD8 to TCR/pMHC binding. Furthermore, we found that CD8 contribution to TCR/pMHC binding in the two-dimensional (2D system was more accurately reflected by normalized synergy (CD8 cooperation normalized by total TCR/pMHC bonds rather than synergy (total CD8 cooperation alone. While synergy showed an increasing trend with TCR affinity, normalized synergy was demonstrated to decrease with the increase of TCR affinity. Critically, normalized synergy was shown to correlate with CTL functionality and peptide sensitivity, corroborating three-dimensional (3D analysis of CD8 contribution with respect to TCR affinity. In addition, we identified TCRs that were independent of CD8 for TCR/pMHC binding. Our results resolve the current discrepancy between 2D and 3D analysis on CD8 contribution to TCR/pMHC binding, and demonstrate that naturally occurring high-affinity TCRs are more capable of CD8-independent interactions that yield greater functional responsiveness even with CD8 blocking. Taken together, our data suggest that addition of the normalized synergy parameter to our

  11. Functional recombinant MHC class II molecules and high-throughput peptide-binding assays

    DEFF Research Database (Denmark)

    Justesen, Sune; Harndahl, Mikkel; Lamberth, Kasper

    2009-01-01

    BACKGROUND: Molecules of the class II major histocompability complex (MHC-II) specifically bind and present exogenously derived peptide epitopes to CD4+ T helper cells. The extreme polymorphism of the MHC-II hampers the complete analysis of peptide binding. It is also a significant hurdle......-II molecules and accompanying HTS peptide-binding assay were successfully developed for nine different MHC-II molecules including the DPA1*0103/DPB1*0401 (DP401) and DQA1*0501/DQB1*0201, where both alpha and beta chains are polymorphic, illustrating the advantages of producing the two chains separately....... CONCLUSION: We have successfully developed versatile MHC-II resources, which may assist in the generation of MHC class II -wide reagents, data, and tools....

  12. CCR5 in Multiple Sclerosis : expression, regulation, and modulation by statins

    NARCIS (Netherlands)

    Kuipers, Hedwich Fardau

    2007-01-01

    Activation of microglia, the macrophages of the central nervous system, is a key element in multiple sclerosis (MS) lesion development and is characterized by enhanced expression of both classes of major histocompatibility complex (MHC) molecules. This enhanced expression results from increased

  13. Role of major histocompatibility complex class II in the development of autoimmune type 1 diabetes and thyroiditis in rats

    Science.gov (United States)

    Yokoi, N; Hidaka, S; Tanabe, S; Ohya, M; Ishima, M; Takagi, Y; Masui, N; Seino, S

    2012-01-01

    Although the MHC class II ‘u' haplotype is strongly associated with type 1 diabetes (T1D) in rats, the role of MHC class II in the development of tissue-specific autoimmune diseases including T1D and autoimmune thyroiditis remains unclear. To clarify this, we produced a congenic strain carrying MHC class II ‘a' and ‘u' haplotypes on the Komeda diabetes-prone (KDP) genetic background. The u/u homozygous animals developed T1D similar to the original KDP rat; a/u heterozygous animals did develop T1D but with delayed onset and low frequency. In contrast, none of the a/a homozygous animals developed T1D; about half of the animals with a/u heterozygous or a/a homozygous genotypes showed autoimmune thyroiditis. To investigate the role of genetic background in the development of thyroiditis, we also produced a congenic strain carrying Cblb mutation of the KDP rat on the PVG.R23 genetic background (MHC class II ‘a' haplotype). The congenic rats with homozygous Cblb mutation showed autoimmune thyroiditis without T1D and slight to severe alopecia, a clinical symptom of hypothyroidism such as Hashimoto's thyroiditis. These data indicate that MHC class II is involved in the tissue-specific development of autoimmune diseases, including T1D and thyroiditis. PMID:21918539

  14. MHC protocols

    National Research Council Canada - National Science Library

    Powis, Stephen H; Vaughan, Robert W

    2003-01-01

    ... because it contains genes encoding components of the complement pathway. The entire human MHC has recently been sequenced (1) and each subregion is now known to contain many other genes, a number of which have immunological functions. The study of polymorphism within the MHC is well established, because the region contains the highly polymorphic HLA genes. HLA polym...

  15. Development of a rapid in vitro protein refolding assay which discriminates between peptide-bound and peptide-free forms of recombinant porcine major histocompatibility class I complex (SLA-I)

    DEFF Research Database (Denmark)

    Oleksiewicz, M.B.; Kristensen, B.; Ladekjaer-Mikkelsen, A.S.

    2002-01-01

    The extracellular domains of swine leukocyte antigen class I (SLA-I, major histocompatibility complex protein class 1) were cloned and sequenced for two haplotypes (114 and H7) which do not share any alleles based on serological typing, and which are the most important in Danish farmed pigs...

  16. Inhibition of HLA-DM mediated MHC class II peptide loading by HLA-DO promotes self tolerance

    Directory of Open Access Journals (Sweden)

    Lisa K. Denzin

    2013-12-01

    Full Text Available Major histocompatibility class II (MHCII molecules are loaded with peptides derived from foreign and self-proteins within the endosomes and lysosomes of antigen presenting cells (APCs. This process is mediated by interaction of MHCII with the conserved, nonpolymorphic MHCII-like molecule HLA-DM (DM. DM activity is directly opposed by HLA-DO (DO, another conserved, non-polymorphic MHCII like molecule. DO is an MHCII substrate mimic. Binding of DO to DM prevents MHCII from binding to DM, thereby inhibiting peptide loading. Inhibition of DM function enables low stability MHC complexes to survive and populate the surface of APCS. As a consequence, DO promotes the display of a broader pool of low abundance self-peptides. Broadening the peptide repertoire theoretically reduces the likelihood of inadvertently acquiring a density of self-ligands that is sufficient to activate self-reactive T cells. One function of DO, therefore, is to promote T cell tolerance by shaping the visible image of self. Recent data also shows that DO influences the adaptive immune response by controlling B cell entry into the germinal center reaction. This review explores the data supporting these concepts.

  17. to view fulltext PDF

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Although originally described as an intracellular second messenger, sphingosine 1-phosphate (S1P) has recently been shown to ... lysophosphatidic acid; LPS, lipopolysaccharides; mDC, mature DC; MHC, major histocompatibility complex; NK, natural killer; PCR, ..... -the enigmatic lipid class: biochemistry, physiology, and.

  18. IMGT unique numbering for immunoglobulin and T cell receptor constant domains and Ig superfamily C-like domains

    DEFF Research Database (Denmark)

    Lefranc, Marie-Paule; Pommié, Christelle; Kaas, Quentin

    2005-01-01

    IMGT, the international ImMunoGeneTics information system (http://imgt.cines.fr) provides a common access to expertly annotated data on the genome, proteome, genetics and structure of immunoglobulins (IG), T cell receptors (TR), major histocompatibility complex (MHC), and related proteins...

  19. Designing bovine T cell vaccines via reverse immunology

    DEFF Research Database (Denmark)

    Nene, Vishvanath; Svitek, Nicholas; Toye, Philip

    2012-01-01

    T cell responses contribute to immunity against many intracellular infections. There is, for example, strong evidence that major histocompatibility complex (MHC) class I-restricted cytotoxic T lymphocytes (CTLs) play an essential role in mediating immunity to East Coast fever (ECF), a fatal lymph...

  20. In situ behavior of human Langerhans cells in skin organ culture

    NARCIS (Netherlands)

    Rambukkana, A.; Bos, J. D.; Irik, D.; Menko, W. J.; Kapsenberg, M. L.; Das, P. K.

    1995-01-01

    Epidermal Langerhans cells (ELC) play a critical role in the initiation of cutaneous immune responses. ELC are characterized by the expression of major histocompatibility complex (MHC) class II Ag and a number of adhesion/costimulatory molecules. Evidence suggests that cytokines induced within the

  1. Common genetic variation and the control of HIV-1 in humans

    DEFF Research Database (Denmark)

    Fellay, J.; Ge, D.; Shianna, K.V.

    2009-01-01

    provide overwhelming confirmation of three associations previously reported in a genome-wide study and show further independent effects of both common and rare variants in the Major Histocompatibility Complex region (MHC). We also examined the polymorphisms reported in previous candidate gene studies...

  2. Ultrastructural characterization of effector-target interactions for human neonatal and adult NK cells reveals reduced intercellular surface contacts of neonatal cells

    NARCIS (Netherlands)

    Ribeiro-do-Couto, Laura M.; Poelen, Martien; Hooibrink, Berend; Dormans, Jan A. M. A.; Roholl, Paul J. M.; Boog, Claire J. P.

    2003-01-01

    Limitations in neonatal natural killer (NK) cell responses may be associated with the less efficient newborn capacity to solve viral infections. Although these limitations have been extensively reported they are poorly characterized. Making use of the major histocompatibility complex (MHC) class I

  3. MPID-T2: a database for sequence-structure-function analyses of pMHC and TR/pMHC structures.

    Science.gov (United States)

    Khan, Javed Mohammed; Cheruku, Harish Reddy; Tong, Joo Chuan; Ranganathan, Shoba

    2011-04-15

    Sequence-structure-function information is critical in understanding the mechanism of pMHC and TR/pMHC binding and recognition. A database for sequence-structure-function information on pMHC and TR/pMHC interactions, MHC-Peptide Interaction Database-TR version 2 (MPID-T2), is now available augmented with the latest PDB and IMGT/3Dstructure-DB data, advanced features and new parameters for the analysis of pMHC and TR/pMHC structures. http://biolinfo.org/mpid-t2. shoba.ranganathan@mq.edu.au Supplementary data are available at Bioinformatics online.

  4. MHC class II restricted innate-like double negative T cells contribute to optimal primary and secondary immunity to Leishmania major.

    Science.gov (United States)

    Mou, Zhirong; Liu, Dong; Okwor, Ifeoma; Jia, Ping; Orihara, Kanami; Uzonna, Jude Ezeh

    2014-09-01

    Although it is generally believed that CD4(+) T cells play important roles in anti-Leishmania immunity, some studies suggest that they may be dispensable, and that MHC II-restricted CD3(+)CD4(-)CD8(-) (double negative, DN) T cells may be more important in regulating primary anti-Leishmania immunity. In addition, while there are reports of increased numbers of DN T cells in Leishmania-infected patients, dogs and mice, concrete evidence implicating these cells in secondary anti-Leishmania immunity has not yet been documented. Here, we report that DN T cells extensively proliferate and produce effector cytokines (IFN-γ, TNF and IL-17) and granzyme B (GrzB) in the draining lymph nodes and spleens of mice following primary and secondary L. major infections. DN T cells from healed mice display functional characteristics of protective anti-Leishmania memory-like cells: rapid and extensive proliferation and effector cytokines production following L. major challenge in vitro and in vivo. DN T cells express predominantly (> 95%) alpha-beta T cell receptor (αβ TCR), are Leishmania-specific, restricted mostly by MHC class II molecules and display transcriptional profile of innate-like genes. Using in vivo depletion and adoptive transfer studies, we show that DN T cells contribute to optimal primary and secondary anti-Leishmania immunity in mice. These results directly identify DN T cells as important players in effective and protective primary and secondary anti-L. major immunity in experimental cutaneous leishmaniasis.

  5. Rejection of class I MHC-deficient haemopoietic cells by irradiated MHC-matched mice

    International Nuclear Information System (INIS)

    Bix, M.; Nanshih Liao; Raulet, D.; Zijlstra, M.; Loring, J.; Jaenisch, R.

    1991-01-01

    Irradiated MHC-heterozygous mice often reject bone marrow cells transplanted from one of the homozygous parental strains, a phenomenon ('hybrid resistance') that appears to violate the laws of transplantation. Rejection of parental and allogeneic marrow cells also differs from conventional T cell-mediated rejection mechanisms as it is effected by NK1.1 + cells. To account for the unusual specificity of bone marrow rejection, it has been proposed that NK1.1 + cells destroy marrow cells that fail to express the full complement of self MHC class I (MHC-I) molecules. We show here that NK1.1 + cells in normal mice reject haemopoietic transplants from mice that are deficient for normal cell-surface MHC-I expression because of a targeted mutation in the β 2 -microglobulin gene. These findings demonstrate that deficient expression of MHC-I molecules renders marrow cells susceptible to rejection. (author)

  6. Pathogen-mediated selection for MHC variability in wild zebrafish

    Czech Academy of Sciences Publication Activity Database

    Smith, C.; Ondračková, Markéta; Spence, R.; Adams, S.; Betts, D. S.; Mallon, E.

    2011-01-01

    Roč. 13, č. 6 (2011), s. 589-605 ISSN 1522-0613 Institutional support: RVO:68081766 Keywords : digenean * frequency-dependent selection * heterozygote advantage * major histocompatibility complex * metazoan parasite * pathogen-driven selection Subject RIV: EG - Zoology Impact factor: 1.029, year: 2011

  7. MR1-restricted MAIT cells display ligand discrimination and pathogen selectivity through distinct T cell receptor usage

    DEFF Research Database (Denmark)

    Gold, Marielle C.; McLaren, James E.; Reistetter, Joseph A.

    2014-01-01

    Mucosal-associated invariant T (MAIT) cells express a semi-invariant T cell receptor (TCR) that detects microbial metabolites presented by the nonpolymorphic major histocompatibility complex (MHC)-like molecule MR1. The highly conserved nature of MR1 in conjunction with biased MAIT TCRα chain usa...

  8. From Viral genome to specific peptide epitopes - Methods for identifying porcine T cell epitopes based on in silico predictions, in vitro identification and ex vivo verification

    DEFF Research Database (Denmark)

    Pedersen, Lasse Eggers; Rasmussen, Michael; Harndahl, Mikkel

    The affinity for and stability of peptides bound by major histocompatibility complex (MHC) class I molecules are instrumental factors in presentation of viral epitopes to cytotoxic T lymphocytes (CTLs). In swine, such peptide presentations by swine leukocyte antigens (SLA) are crucial for swine i...

  9. Autologous peptides constitutively occupy the antigen binding site on Ia

    DEFF Research Database (Denmark)

    Buus, S; Sette, A; Colon, S M

    1988-01-01

    Low molecular weight material associated with affinity-purified class II major histocompatibility complex (MHC) molecules of mouse (Ia) had the expected properties of peptides bound to the antigen binding site of Ia. Thus, the low molecular weight material derived from the I-Ad isotype...

  10. Critical role for CD1d-restricted invariant NKT cells in stimulating intrahepatic CD8 T-cell responses to liver antigen

    NARCIS (Netherlands)

    Sprengers, Dave; Sillé, Fenna C. M.; Derkow, Katja; Besra, Gurdyal S.; Janssen, Harry L. A.; Schott, Eckart; Boes, Marianne

    2008-01-01

    V alpha14 invariant natural killer T cells (iNKT) are localized in peripheral tissues such as the liver rather than lymphoid tissues. Therefore, their role in modulating the stimulation of conventional, major histocompatibility complex (MHC)-restricted T-cell responses has remained ambiguous. We

  11. Disappearance of beta(2)-adrenergic receptors on astrocytes in canine distemper encephalitis : possible implications for the pathogenesis of multiple sclerosis

    NARCIS (Netherlands)

    De Keyser, J; Wilczak, N; Zurbriggen, A

    2001-01-01

    It has been reported that astrocytes in the white matter of patients with multiple sclerosis (MS) lack beta (2)-adrenergic receptors. This abnormality might explain why astrocytes in active MS plaques aberrantly express major histocompatibility (MHC) class II molecules, which play an important role

  12. Designing bovine T-cell vaccines via reverse immunology

    Science.gov (United States)

    T-cell responses contribute to immunity against many intra-cellular infections. There is, for example, strong evidence that major histocompatibility complex (MHC) class I restricted cytotoxic T lymphocytes (CTLs) play an essential role in mediating immunity to East Coast fever (ECF), a fatal lymphop...

  13. DNA polymorphism of HLA class II genes in pauciarticular juvenile rheumatoid arthritis

    DEFF Research Database (Denmark)

    Morling, N; Friis, J; Fugger, L

    1991-01-01

    We investigated the DNA restriction fragment length polymorphism (RFLP) of the major histocompatibility complex (MHC) class II genes: HLA-DRB, -DQA, -DQB, DPA, and -DPB in 54 patients with pauciarticular juvenile rheumatoid arthritis (PJRA) and in healthy Danes. The frequencies of DNA fragments a...

  14. Structure of HLA-A*0301 in complex with a peptide of proteolipid protein: insights into the role of HLA-A alleles in susceptibility to multiple sclerosis

    International Nuclear Information System (INIS)

    McMahon, Róisín M.; Friis, Lone; Siebold, Christian; Friese, Manuel A.; Fugger, Lars; Jones, E. Yvonne

    2011-01-01

    The structure of the human major histocompatability (MHC) class I molecule HLA-A*0301 (HLA-A3) in complex with a nonameric peptide (KLIETYFSK) has been determined by X-ray crystallography to 2.7 Å resolution. The structure of the human major histocompatability (MHC) class I molecule HLA-A*0301 (HLA-A3) in complex with a nonameric peptide (KLIETYFSK) has been determined by X-ray crystallography to 2.7 Å resolution. HLA-A3 is a predisposing allele for multiple sclerosis (MS), an autoimmune disease of the central nervous system. The KLIETYFSK peptide is a naturally processed epitope of proteolipid protein, a myelin protein and candidate target for immune-mediated myelin destruction in MS. Comparison of the structure of HLA-A3 with that of HLA-A2, an MHC class I molecule which is protective against MS, indicates that both MHC class I molecules present very similar faces for T-cell receptor recognition whilst differing in the specificity of their peptide-binding grooves. These characteristics may underlie the opposing (predisposing versus protective) associations that they exhibit both in humans and in mouse models of MS-like disease. Furthermore, subtle alterations within the peptide-binding groove of HLA-A3 and other A3-like MHC class I molecules, members of the so-called A3 superfamily, may be sufficient to alter their presentation of autoantigen peptides such as KLIETYFSK. This in turn may modulate their contribution to the associated risk of autoimmune disease

  15. Genomic Anatomy of a Premier Major Histocompatibility Complex Paralogous Region on Chromosome 1q21–q22

    Science.gov (United States)

    Shiina, Takashi; Ando, Asako; Suto, Yumiko; Kasai, Fumio; Shigenari, Atsuko; Takishima, Nobusada; Kikkawa, Eri; Iwata, Kyoko; Kuwano, Yuko; Kitamura, Yuka; Matsuzawa, Yumiko; Sano, Kazumi; Nogami, Masahiro; Kawata, Hisako; Li, Suyun; Fukuzumi, Yasuhito; Yamazaki, Masaaki; Tashiro, Hiroyuki; Tamiya, Gen; Kohda, Atsushi; Okumura, Katsuzumi; Ikemura, Toshimichi; Soeda, Eiichi; Mizuki, Nobuhisa; Kimura, Minoru; Bahram, Seiamak; Inoko, Hidetoshi

    2001-01-01

    Human chromosomes 1q21–q25, 6p21.3–22.2, 9q33–q34, and 19p13.1–p13.4 carry clusters of paralogous loci, to date best defined by the flagship 6p MHC region. They have presumably been created by two rounds of large-scale genomic duplications around the time of vertebrate emergence. Phylogenetically, the 1q21–25 region seems most closely related to the 6p21.3 MHC region, as it is only the MHC paralogous region that includes bona fide MHC class I genes, the CD1 and MR1 loci. Here, to clarify the genomic structure of this model MHC paralogous region as well as to gain insight into the evolutionary dynamics of the entire quadriplication process, a detailed analysis of a critical 1.7 megabase (Mb) region was performed. To this end, a composite, deep, YAC, BAC, and PAC contig encompassing all five CD1 genes and linking the centromeric +P5 locus to the telomeric KRTC7 locus was constructed. Within this contig a 1.1-Mb BAC and PAC core segment joining CD1D to FCER1A was fully sequenced and thoroughly analyzed. This led to the mapping of a total of 41 genes (12 expressed genes, 12 possibly expressed genes, and 17 pseudogenes), among which 31 were novel. The latter include 20 olfactory receptor (OR) genes, 9 of which are potentially expressed. Importantly, CD1, SPTA1, OR, and FCERIA belong to multigene families, which have paralogues in the other three regions. Furthermore, it is noteworthy that 12 of the 13 expressed genes in the 1q21–q22 region around the CD1 loci are immunologically relevant. In addition to CD1A-E, these include SPTA1, MNDA, IFI-16, AIM2, BL1A, FY and FCERIA. This functional convergence of structurally unrelated genes is reminiscent of the 6p MHC region, and perhaps represents the emergence of yet another antigen presentation gene cluster, in this case dedicated to lipid/glycolipid antigens rather than antigen-derived peptides. [The nucleotide sequence data reported in this paper have been submitted to the DDBJ, EMBL, and GenBank databases under

  16. A strategy for bacterial production of a soluble functional human neonatal Fc receptor

    DEFF Research Database (Denmark)

    Andersen, Jan Terje; Justesen, Sune; Berntzen, Gøril

    2008-01-01

    The major histocompatibility complex (MHC) class I related receptor, the neonatal Fc receptor (FcRn), rescues immunoglobulin G (IgG) and albumin from lysosomal degradation by recycling in endothelial cells. FcRn also contributes to passive immunity by mediating transport of IgG from mother to fetus...

  17. Ontogeny of human natural killer (NK) cells: fetal NK cells mediate cytolytic function and express cytoplasmic CD3 epsilon,delta proteins

    NARCIS (Netherlands)

    Phillips, J. H.; Hori, T.; Nagler, A.; Bhat, N.; Spits, H.; Lanier, L. L.

    1992-01-01

    Natural killer (NK) cells have been defined as CD3 epsilon-, CD16+ and/or CD56+ lymphocytes that mediate major histocompatibility complex (MHC)-unrestricted cytotoxicity against certain tumors and virus-infected cells. Unlike T lymphocytes, NK cells do not rearrange or productively express T cell

  18. DNA polymorphism of HLA class II genes in systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Cowland, J B; Andersen, V; Halberg, P

    1994-01-01

    We investigated the DNA restriction fragment length polymorphism (RFLP) of the major histocompatibility complex (MHC) genes: HLA-DRB, -DQA, -DQB, -DPB in 24 Danish patients with systemic lupus erythematosus (SLE) and in 102 healthy Danes. A highly significant increase of the frequency of the DR3...

  19. Tumour-infiltrating lymphocytes mediate lysis of autologous squamous cell carcinomas of the head and neck

    DEFF Research Database (Denmark)

    Hald, Jeppe; Rasmussen, N; Claesson, Mogens Helweg

    1995-01-01

    Tumour-infiltrating lymphocytes (TIL) and tumours from six patients with squamous cell carcinomas of the head and neck (SCCHN) were investigated. The six tumours all expressed major histocompatibility complex (MHC) class I antigens both in vivo and as tumor cell lines grown in vitro. In addition...

  20. Does genetic diversity predict health in humans?

    Directory of Open Access Journals (Sweden)

    Hanne C Lie

    2009-07-01

    Full Text Available Genetic diversity, especially at genes important for immune functioning within the Major Histocompatibility Complex (MHC, has been associated with fitness-related traits, including disease resistance, in many species. Recently, genetic diversity has been associated with mate preferences in humans. Here we asked whether these preferences are adaptive in terms of obtaining healthier mates. We investigated whether genetic diversity (heterozygosity and standardized mean d(2 at MHC and nonMHC microsatellite loci, predicted health in 153 individuals. Individuals with greater allelic diversity (d(2 at nonMHC loci and at one MHC locus, linked to HLA-DRB1, reported fewer symptoms over a four-month period than individuals with lower d(2. In contrast, there were no associations between MHC or nonMHC heterozygosity and health. NonMHC-d(2 has previously been found to predict male preferences for female faces. Thus, the current findings suggest that nonMHC diversity may play a role in both natural and sexual selection acting on human populations.

  1. Association of SNP variants of MHC Class II DRB gene with thermo-physiological traits in tropical goats.

    Science.gov (United States)

    Yakubu, Abdulmojeed; Salako, Adebowale E; De Donato, Marcos; Peters, Sunday O; Takeet, Michael I; Wheto, Mathew; Okpeku, Moses; Imumorin, Ikhide G

    2017-02-01

    Host defense in vertebrates depend on many secreted regulatory proteins such as major histocompatibility complex (MHC) class II which provide important regulatory and effector functions of T cells. Gene polymorphism in the second exon of Capra-DRB gene in three major Nigerian goat breeds [West African Dwarf (WAD), Red Sokoto (RS), and Sahel (SH)] was analyzed by restriction fragment length polymorphisms (RFLP). Four restriction enzymes, BsaHI, AluI, HaeIII, and SacII, were utilized. The association between the polymorphic sites and some heat tolerance traits were also investigated in a total of 70 WAD, 90 RS, and 50 SH goats. Fourteen different types of alleles identified in the Nigerian goats, four of which were found in the peptide coding region (A57G, Q89R, G104D, and T112I), indicate a high degree of polymorphism at the DRB locus in this species. An obvious excess (P  0.05), except AluI in RS goats and HaeIII in WAD goats (P goat populations, ranged from 0.16 to 0.50. Genotypes AA (BsaHI), GG, GC and CC (AluI) and GG, GA, AA (HaeIII) appeared better in terms of heat tolerance. The heat-tolerant ability of SH and RS goats to the hot and humid tropical environment of Nigeria seemed better than that of the WAD goats. Sex effect (P tropics.

  2. A role for NADPH oxidase in antigen presentation

    Directory of Open Access Journals (Sweden)

    Gail J Gardiner

    2013-09-01

    Full Text Available The nicotinamide adenine dinucleotide phosphate (NADPH oxidase expressed in phagocytes is a multi-subunit enzyme complex that generates superoxide (O2.-. This radical is an important precursor of hydrogen peroxide (H2O2 and other reactive oxygen species (ROS needed for microbicidal activity during innate immune responses. Inherited defects in NADPH oxidase give rise to chronic granulomatous disease (CGD, a primary immunodeficiency characterized by recurrent infections and granulomatous inflammation. Interestingly, CGD, CGD carrier status, and oxidase gene polymorphisms have all been associated with autoinflammatory and autoimmune disorders, suggesting a potential role for NADPH oxidase in regulating adaptive immune responses. Here, NADPH oxidase function in antigen processing and presentation is reviewed. NADPH oxidase influences dendritic cell (DC crosspresentation by major histocompatibility complex class I molecules (MHC-I through regulation of the phagosomal microenvironment, while in B lymphocytes, NADPH oxidase alters epitope selection by major histocompatibility complex class II molecules (MHC-II.

  3. LDSplitDB: a database for studies of meiotic recombination hotspots in MHC using human genomic data.

    Science.gov (United States)

    Guo, Jing; Chen, Hao; Yang, Peng; Lee, Yew Ti; Wu, Min; Przytycka, Teresa M; Kwoh, Chee Keong; Zheng, Jie

    2018-04-20

    Meiotic recombination happens during the process of meiosis when chromosomes inherited from two parents exchange genetic materials to generate chromosomes in the gamete cells. The recombination events tend to occur in narrow genomic regions called recombination hotspots. Its dysregulation could lead to serious human diseases such as birth defects. Although the regulatory mechanism of recombination events is still unclear, DNA sequence polymorphisms have been found to play crucial roles in the regulation of recombination hotspots. To facilitate the studies of the underlying mechanism, we developed a database named LDSplitDB which provides an integrative and interactive data mining and visualization platform for the genome-wide association studies of recombination hotspots. It contains the pre-computed association maps of the major histocompatibility complex (MHC) region in the 1000 Genomes Project and the HapMap Phase III datasets, and a genome-scale study of the European population from the HapMap Phase II dataset. Besides the recombination profiles, related data of genes, SNPs and different types of epigenetic modifications, which could be associated with meiotic recombination, are provided for comprehensive analysis. To meet the computational requirement of the rapidly increasing population genomics data, we prepared a lookup table of 400 haplotypes for recombination rate estimation using the well-known LDhat algorithm which includes all possible two-locus haplotype configurations. To the best of our knowledge, LDSplitDB is the first large-scale database for the association analysis of human recombination hotspots with DNA sequence polymorphisms. It provides valuable resources for the discovery of the mechanism of meiotic recombination hotspots. The information about MHC in this database could help understand the roles of recombination in human immune system. DATABASE URL: http://histone.scse.ntu.edu.sg/LDSplitDB.

  4. The MHC motif viewer: a visualization tool for MHC binding motifs

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Hoof, Ilka; Lund, Ole

    2010-01-01

    is hampered by the lack of tools for browsing and comparing specificity of these molecules. We have developed a Web server, MHC Motif Viewer, which allows the display of the binding motif for MHC class I proteins for human, chimpanzee, rhesus monkey, mouse, and swine, as well as HLA-DR protein sequences...

  5. Restriction fragment length polymorphism of the major histocompatibility complex of the dog.

    Science.gov (United States)

    Sarmiento, U M; Storb, R F

    1988-01-01

    Human major histocompatibility complex (HLA) cDNA probes were used to analyze the restriction fragment length polymorphism (RFLP) of the DLA-D region in dogs. Genomic DNA from peripheral blood leucocytes of 23 unrelated DLA-D-homozygous dogs representing nine DLA-D types (defined by mixed leucocyte reaction) was digested with restriction enzymes (Bam HI, Eco RI, Hind III, Pvu II, Taq I, Rsa I, Msp I, Pst I, and Bgl II), separated by agarose gel electrophoresis, and transferred onto Biotrace membrane. The Southern blots were successively hybridized with radiolabeled HLA cDNA probes corresponding to DR, DQ, DP, and DO beta genes. The autoradiograms for all nine enzyme digests displayed multiple bands with the DRb, DQb, and DPb probes while the DOb probe hybridized with one to two bands. The RFLP patterns were highly polymorphic but consistent within each DLA-D type. Standard RFLP patterns were established for nine DLA-D types which could be discriminated from each other by using two enzymes (Rsa I and Pst I) and the HLA-DPb probe. Cluster analysis of the polymorphic restriction fragments detected by the DRb probe revealed four closely related supertypic groups or DLA-DR families: Dw3 + Dw4 + D1, Dw8 + D10, D7 + D16 + D9, and Dw1. This study provides the basis for DLA-D genotyping at a population level by RFLP analysis. These results also suggest that the genetic organization of the DLA-D region may closely resemble that of the HLA complex.

  6. An allelic polymorphism within the human tumor necrosis factor alpha promoter region is strongly associated with HLA A1, B8, and DR3 alleles

    NARCIS (Netherlands)

    Wilson, A. G.; de Vries, N. [=Niek; Pociot, F.; di Giovine, F. S.; van der Putte, L. B.; Duff, G. W.

    1993-01-01

    The tumor necrosis factor (TNF) alpha gene lies within the class III region of the major histocompatibility complex (MHC), telomeric to the class II and centromeric to the class I region. We have recently described the first polymorphism within the human TNF-alpha locus. This is biallelic and lies

  7. Balancing selection and recombination as evolutionary forces caused population genetic variations in golden pheasant MHC class I genes.

    Science.gov (United States)

    Zeng, Qian-Qian; He, Ke; Sun, Dan-Dan; Ma, Mei-Ying; Ge, Yun-Fa; Fang, Sheng-Guo; Wan, Qiu-Hong

    2016-02-18

    The major histocompatibility complex (MHC) genes are vital partners in the acquired immune processes of vertebrates. MHC diversity may be directly associated with population resistance to infectious pathogens. Here, we screened for polymorphisms in exons 2 and 3 of the IA1 and IA2 genes in 12 golden pheasant populations across the Chinese mainland to characterize their genetic variation levels, to understand the effects of historical positive selection and recombination in shaping class I diversity, and to investigate the genetic structure of wild golden pheasant populations. Among 339 individual pheasants, we identified 14 IA1 alleles in exon 2 (IA1-E2), 11 IA1-E3 alleles, 27 IA2-E2 alleles, and 28 IA2-E3 alleles. The non-synonymous substitution rate was significantly greater than the synonymous substitution rate at sequences in the IA2 gene encoding putative peptide-binding sites but not in the IA1 gene; we also found more positively selected sites in IA2 than in IA1. Frequent recombination events resulted in at least 9 recombinant IA2 alleles, in accordance with the intermingling pattern of the phylogenetic tree. Although some IA alleles are widely shared among studied populations, large variation occurs in the number of IA alleles across these populations. Allele frequency analysis across 2 IA loci showed low levels of genetic differentiation among populations on small geographic scales; however, significant genetic differentiation was observed between pheasants from the northern and southern regions of the Yangtze River. Both STRUCTURE analysis and F-statistic (F ST ) value comparison classified those populations into 2 major groups: the northern region of the Yangtze River (NYR) and the southern region of the Yangtze River (SYR). More extensive polymorphisms in IA2 than IA1 indicate that IA2 has undergone much stronger positive-selection pressure during evolution. Moreover, the recombination events detected between the genes and the intermingled phylogenetic

  8. Inhibitors of Deubiquitinating Enzymes Block HIV-1 Replication and Augment the Presentation of Gag-Derived MHC-I Epitopes.

    Science.gov (United States)

    Setz, Christian; Friedrich, Melanie; Rauch, Pia; Fraedrich, Kirsten; Matthaei, Alina; Traxdorf, Maximilian; Schubert, Ulrich

    2017-08-12

    In recent years it has been well established that two major constituent parts of the ubiquitin proteasome system (UPS)-the proteasome holoenzymes and a number of ubiquitin ligases-play a crucial role, not only in virus replication but also in the regulation of the immunogenicity of human immunodeficiency virus type 1 (HIV-1). However, the role in HIV-1 replication of the third major component, the deubiquitinating enzymes (DUBs), has remained largely unknown. In this study, we show that the DUB-inhibitors (DIs) P22077 and PR-619, specific for the DUBs USP7 and USP47, impair Gag processing and thereby reduce the infectivity of released virions without affecting viral protease activity. Furthermore, the replication capacity of X4- and R5-tropic HIV-1 NL4-3 in human lymphatic tissue is decreased upon treatment with these inhibitors without affecting cell viability. Most strikingly, combinatory treatment with DIs and proteasome inhibitors synergistically blocks virus replication at concentrations where mono-treatment was ineffective, indicating that DIs can boost the therapeutic effect of proteasome inhibitors. In addition, P22077 and PR-619 increase the polyubiquitination of Gag and thus its entry into the UPS and the major histocompatibility complex (MHC)-I pathway. In summary, our data point towards a model in which specific inhibitors of DUBs not only interfere with virus spread but also increase the immune recognition of HIV-1 expressing cells.

  9. Improved pan-specific MHC class I peptide-binding predictions using a novel representation of the MHC-binding cleft environment

    DEFF Research Database (Denmark)

    Carrasco Pro, S.; Zimic, M.; Nielsen, Morten

    2014-01-01

    of the current state-of-the-art methods for MHC class I is NetMHCpan, which has a core ingredient for the representation of the MHC class I molecule using a pseudo-sequence representation of the binding cleft amino acid environment. New and large MHC-peptide-binding data sets are constantly being made available...... of different MHC data sets including human leukocyte antigen (HLA), non-human primates (chimpanzee, macaque and gorilla) and other animal alleles (cattle, mouse and swine). From these constructs, we showed that by focusing on MHC sequence positions found to be polymorphic across the MHC molecules used to train...

  10. A glow of HLA typing in organ transplantation

    Science.gov (United States)

    2013-01-01

    The transplant of organs and tissues is one of the greatest curative achievements of this century. In organ transplantation, the adaptive immunity is considered the main response exerted to the transplanted tissue, since the main goal of the immune response is the MHC (major histocompatibility complex) molecules expressed on the surface of donor cells. Cell surface molecules that induce an antigenic stimulus cause the rejection immune response to grafted tissue or organ. A wide variety of transplantation antigens have been described, including the major histocompatibility molecules, minor histocompatibility antigens, ABO blood group antigens and endothelial cell antigens. The sensitization to MHC antigens may be caused by transfusions, pregnancy, or failed previous grafts leading to development of anti-human leukocyte antigen (HLA) antibodies that are important factor responsible for graft rejection in solid organ transplantation and play a role in post-transfusion complication Anti-HLA Abs may be present in healthy individuals. Methods for HLA typing are described, including serological methods, molecular techniques of sequence-specific priming (SSP), sequence-specific oligonucleotide probing (SSOP), Sequence based typing (SBT) and reference strand-based conformation analysis (RSCA) method. Problems with organ transplantation are reservoir of organs and immune suppressive treatments that used to decrease rate of rejection with less side effect and complications. PMID:23432791

  11. The Immune Epitope Database 2.0

    DEFF Research Database (Denmark)

    Hoof, Ilka; Vita, R; Zarebski, L

    2010-01-01

    The Immune Epitope Database (IEDB, www.iedb.org) provides a catalog of experimentally characterized B and T cell epitopes, as well as data on Major Histocompatibility Complex (MHC) binding and MHC ligand elution experiments. The database represents the molecular structures recognized by adaptive...... immune receptors and the experimental contexts in which these molecules were determined to be immune epitopes. Epitopes recognized in humans, nonhuman primates, rodents, pigs, cats and all other tested species are included. Both positive and negative experimental results are captured. Over the course...

  12. Selection of unrelated donors for bone marrow transplantation studied in rhesus monkeys

    International Nuclear Information System (INIS)

    Wagemaker, G.; Bekkum, D.W. van

    Graft versus Host disease (GvHD) remains to be a severe limitation to a more general application of bone marrow transplantation. Clinically acceptable results are restricted to those potential recipients for which a major histocompatibility complex (MHC) identical sibling donor is available. At an average family size of 2 to 3 siblings, the frequency of such donors is not more than approximately 30%. This pre-clinical study in rhesus monkeys is directed at the selection of donors for recipients which lack an MHC identical sibling. (Auth.)

  13. Female rose bitterling prefer MHC-dissimilar males: experimental evidence

    Czech Academy of Sciences Publication Activity Database

    Reichard, Martin; Spence, R.; Bryjová, Anna; Bryja, Josef; Smith, C.

    2012-01-01

    Roč. 7, č. 7 (2012), e40780 E-ISSN 1932-6203 R&D Projects: GA ČR GA206/09/1163 Institutional support: RVO:68081766 Keywords : major histocompatibility complex * mate choice * sexual selection * good genes * reproductive success * compatible genes * polymorphism * evolution Subject RIV: EG - Zoology Impact factor: 3.730, year: 2012

  14. Complement component C1r mediated cleavage of the heavy chain of the major histocompatibility class I antigens

    DEFF Research Database (Denmark)

    Eriksson, H; Nissen, Mogens Holst

    1992-01-01

    Apart from cleaving C1s, we demonstrate for the first time that: 1) at concentrations found in serum, the activated forms of the complement components C1r in addition to C1s can cleave the heavy chain of MHC class I antigens, 2) the cleavage by C1r and C1s is seemingly dependent upon a native con......-chain of MHC class I was shown to take place between the alpha 2- and alpha 3- domains as estimated by the Con A-Sepharose precipitation pattern on SDS-PAGE. The alpha 1/alpha 2 fragment was still shown to interact with beta 2-microglobulin as shown by immunoprecipitation....

  15. Major histocompatibility complex class I molecule expression is normal on peripheral blood lymphocytes from patients with insulin-dependent diabetes mellitus.

    OpenAIRE

    Hao, W; Gladstone, P; Engardt, S; Greenbaum, C; Palmer, J P

    1996-01-01

    Recent work from one laboratory has shown, in both nonobese diabetic mice and humans, an association between insulin-dependent diabetes mellitus (IDDM) and quantitative difference in MHC class I molecule expression. This reported decrease in MHC class I molecule expression is very controversial in the nonobese diabetic mouse model of IDDM, but to our knowledge, it has not been evaluated by another group in human IDDM. To evaluate this question, we studied 30 patients with IDDM and 30 age- and...

  16. Characterization of MHC-I in the blue tit (Cyanistes caeruleus) reveals low levels of genetic diversity and trans-population evolution across European populations

    NARCIS (Netherlands)

    Schut, Elske; Rivero-de Aguilar, Juan; Merino, Santiago; Magrath, Michael J. L.; Komdeur, Jan; Westerdahl, Helena

    The major histcompatibility complex (MHC) is a vital component of the adaptive immune system in all vertebrates. This study is the first to characterize MHC class I (MHC-I) in blue tits (Cyanistes caeruleus), and we use MHC-I exon 3 sequence data from individuals originating from three locations

  17. Genetic monitoring of a Santa Ines herd using microsatellite markers near or linked to the sheep MHC Monitoramento genético de um rebanho da raça Santa Inês a partir de marcadores microssatélites próximos ou ligados ao MHC ovino

    Directory of Open Access Journals (Sweden)

    César Daniel Petroli

    2009-04-01

    Full Text Available This study aimed to analyze genetic diversity in a conservation nucleus of Santa Inês sheep using thirteen microsatellite loci on chromosome 20 (where the Sheep Major Histocompatibility Complex - Ovar-MHC - is found. Seventy three animals from one herd born from 2004 to 2006 were evaluated as a principal nucleus. Seventy one animals from two other herds were used as control comparison. There was a reduction in heterozygosity over the years in relation to the whole population. This may be due to the repeated use of the same sires. The estimates of molecular coancestrality also indicated an increase in genetic similarity between individuals with the herd over the years. A high number of alleles occurred exclusively in the principal nucleus herd, but with a frequency lower than 10%. The Ovar-MHC region of chromosome 20 was shown to be highly polymorphic. Monitoring of the herd over time should be implemented as additional tool for genetic management within the herd.O objetivo neste trabalho foi analisar a diversidade genética de um núcleo de conservação da raça Santa Inês utilizando-se 13 locos de microssatélites localizados no cromossomo 20, onde se encontra o Complexo Maior de Histocompatibilidade ovino - Ovar-MHC. Foi avaliado um total de 73 animais nascidos nos anos de 2004, 2005 e 2006 mais 71 animais de outros dois rebanhos como controles. Em geral, constatou-se redução na heterozigosidade dos indivíduos ao longo dos anos em relação à população total, talvez pela baixa rotatividade de reprodutores. As estimativas de co-ancestralidade molecular também evidenciaram aumento da similaridade genética entre os indivíduos do rebanho ao longo dos anos. Há elevado número elevado de alelos privados na população principal, embora esses alelos tenham freqüência menor que 10%. A região do Ovar-MHC do cromossomo 20 ovino foi altamente polimórfica e pode ser usada para auxiliar na manutenção de rebanhos. A continuação deste

  18. Major histocompatibility complex-linked immune response of young chickens vaccinated with an attenuated live infectious bursal disease virus vaccine followed by an infection

    DEFF Research Database (Denmark)

    Juul-Madsen, Helle; Nielsen, O.L.; Krogh-Maibom, T.

    2002-01-01

    The influence of the MHC on infectious bursal disease virus (IBDV) vaccine response in chickens was investigated in three different chicken lines containing four different MHC haplotypes. Two MHC haplotypes were present in all three lines with one haplotype (1319) shared between the lines. Line I...... further contains the BW1 haplotype isolated from a Red jungle Fowl. Line 131 further contains the B131 haplotype isolated from a meat-type chicken, Finally, Line 21 further contains the international B21 haplotype. The chickens were vaccinated with live attenuated commercial IBDV vaccine at 3 wk of age...

  19. A single-chain fusion molecule consisting of peptide, major histocompatibility gene complex class I heavy chain and beta2-microglobulin can fold partially correctly, but binds peptide inefficiently

    DEFF Research Database (Denmark)

    Sylvester-Hvid, C; Buus, S

    1999-01-01

    of a recombinant murine MHC-I molecule, which could be produced in large amounts in bacteria. The recombinant MHC-I protein was expressed as a single molecule (PepSc) consisting of the antigenic peptide linked to the MHC-I heavy chain and further linked to human beta2-microglobulin (hbeta2m). The PepSc molecule...... electrophoresis (SDS-PAGE). Serological analysis revealed the presence of some, but not all, MHC-I-specific epitopes. Biochemically, PepSc could bind peptide, however, rather ineffectively. We suggest that a partially correctly refolded MHC-I has been obtained....

  20. Identification of swine influenza virus epitopes and analysis of multiple specificities expressed by cytotoxic T cell subsets

    DEFF Research Database (Denmark)

    Pedersen, Lasse Eggers; Breum, Solvej Østergaard; Riber, Ulla

    2014-01-01

    Background: Major histocompatibility complex (MHC) class I peptide binding and presentation are essential for antigen-specific activation of cytotoxic T lymphocytes (CTLs) and swine MHC class I molecules, also termed swine leukocyte antigens (SLA), thus play a crucial role in the process that leads...... to elimination of viruses such as swine influenza virus (SwIV). This study describes the identification of SLA-presented peptide epitopes that are targets for a swine CTL response, and further analyses multiple specificities expressed by SwIV activated CTL subsets. Findings: Four SwIV derived peptides were...

  1. NetMHCIIpan-2.0 - Improved pan-specific HLA-DR predictions using a novel concurrent alignment and weight optimization training procedure

    DEFF Research Database (Denmark)

    Nielsen, Morten; Justesen, Sune Frederik Lamdahl; Lund, Ole

    2010-01-01

    BACKGROUND: Binding of peptides to Major Histocompatibility class II (MHC-II) molecules play a central role in governing responses of the adaptive immune system. MHC-II molecules sample peptides from the extracellular space allowing the immune system to detect the presence of foreign microbes fro...... be obtained for all alleles with know protein sequence and the method can benefit by including data in the training from alleles even where only few binders are known. The method and benchmark data are available at http://www.cbs.dtu.dk/services/NetMHCIIpan-2.0....

  2. Overview of a HLA-Ig based "Lego-like system" for T cell monitoring, modulation and expansion.

    Science.gov (United States)

    Oelke, Mathias; Schneck, Jonathan P

    2010-07-01

    Recent advances in molecular medicine have shown that soluble MHC-multimers can be valuable tools for both analysis and modulation of antigen-specific immune responses in vitro and in vivo. In this review, we describe the use of dimeric human and mouse major histocompatibility complexes, MHC-Ig, as part of an artificial Antigen-Presenting Cell (aAPC). MHC-Ig-based aAPC and its derivatives represent an exciting new platform technology for measuring and manipulating immune responses in vitro as well as in vivo. This new technology has the potential to help overcome many of the obstacles associated with limitations in current antigen-specific approaches of immunotherapy for the treatment of cancer, infectious diseases and autoimmunity.

  3. NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence

    DEFF Research Database (Denmark)

    Nielsen, Morten; Lundegaard, Claus; Blicher, Thomas

    2007-01-01

    BACKGROUND: Binding of peptides to Major Histocompatibility Complex (MHC) molecules is the single most selective step in the recognition of pathogens by the cellular immune system. The human MHC class I system (HLA-I) is extremely polymorphic. The number of registered HLA-I molecules has now surp...... to provide new basic insights into HLA structure-function relationships. The method is available at http://www.cbs.dtu.dk/services/NetMHCpan....... surpassed 1500. Characterizing the specificity of each separately would be a major undertaking. PRINCIPAL FINDINGS: Here, we have drawn on a large database of known peptide-HLA-I interactions to develop a bioinformatics method, which takes both peptide and HLA sequence information into account...... successfully validate this method. We further demonstrate that the method can be applied to perform a clustering analysis of MHC specificities and suggest using this clustering to select particularly informative novel MHC molecules for future biochemical and functional analysis. CONCLUSIONS: Encompassing all...

  4. Characterization of MHC-I in the blue tit (Cyanistes caeruleus) reveals low levels of genetic diversity and trans-population evolution across European populations.

    Science.gov (United States)

    Schut, Elske; Aguilar, Juan Rivero-de; Merino, Santiago; Magrath, Michael J L; Komdeur, Jan; Westerdahl, Helena

    2011-08-01

    The major histcompatibility complex (MHC) is a vital component of the adaptive immune system in all vertebrates. This study is the first to characterize MHC class I (MHC-I) in blue tits (Cyanistes caeruleus), and we use MHC-I exon 3 sequence data from individuals originating from three locations across Europe: Spain, the Netherlands to Sweden. Our phylogeny of the 17 blue tit MHC-I alleles contains one allele cluster with low nucleotide diversity compared to the remaining more diverse alleles. We found a significant evidence for balancing selection in the peptide-binding region in the diverse allele group only. No separation according to geographic location was found in the phylogeny of alleles. Although the number of MHC-I loci of the blue tit is comparable to that of other passerine species, the nucleotide diversity of MHC-I appears to be much lower than that of other passerine species, including the closely related great tit (Parus major) and the severely inbred Seychelles warbler (Acrocephalus sechellensis). We believe that this initial MHC-I characterization in blue tits provides an important step towards understanding the mechanisms shaping MHC-I diversity in natural populations.

  5. Restriction fragment length polymorphism within the class I gene loci of the equine major histocompatibility complex

    International Nuclear Information System (INIS)

    Alexander, A.J.; Bailey, E.; Woodward, J.G.

    1986-01-01

    Fourteen standard bred horses were serotyped as homozygous for 1 of 6 Equine Leukocyte Antigen (ELA) specificities. DNA was purified from peripheral leukocytes and digested with Hind III or Pvu II. Southern blot hybridization analysis was carried out using a 32 P-labeled mouse cDNA probe (PH2IIa) specific for class I MHC genes. Both enzymes generated blots that contained a large number of bands (23 to 30) per horse. Significant polymorphism existed among most fragment sizes, while a dozen highly conserved band sizes suggested the presence of Qa/tla - like genes. Only 2 animals (both W6's) showed identical band patterns. Polymorphism was greatest between horses of different serotypes and was significantly decreased within serotypes. Unique bands were present on both blots for both W1's and W6's and may account for the serologic specificity seen in ELA W1 and W6 horses. This study is consistent with the findings in other higher vertebrates and implies that the MHC of the horse includes a highly polymorphic class I multigene family

  6. Fowlpoxvirus recombinants coding for the CIITA gene increase the expression of endogenous MHC-II and Fowlpox Gag/Pro and Env SIV transgenes.

    Science.gov (United States)

    Bissa, Massimiliano; Forlani, Greta; Zanotto, Carlo; Tosi, Giovanna; De Giuli Morghen, Carlo; Accolla, Roberto S; Radaelli, Antonia

    2018-01-01

    A complete eradication of an HIV infection has never been achieved by vaccination and the search for new immunogens that can induce long-lasting protective responses is ongoing. Avipoxvirus recombinants are host-restricted for replication to avian species and they do not have the undesired side effects induced by vaccinia recombinants. In particular, Fowlpox (FP) recombinants can express transgenes over long periods and can induce protective immunity in mammals, mainly due to CD4-dependent CD8+ T cells. In this context, the class II transactivator (CIITA) has a pivotal role in triggering the adaptive immune response through induction of the expression of class-II major histocompatibility complex molecule (MHC-II), that can present antigens to CD4+ T helper cells. Here, we report on construction of novel FPgp and FPenv recombinants that express the highly immunogenic SIV Gag-pro and Env structural antigens. Several FP-based recombinants, with single or dual genes, were also developed that express CIITA, driven from H6 or SP promoters. These recombinants were used to infect CEF and Vero cells in vitro and determine transgene expression, which was evaluated by real-time PCR and Western blotting. Subcellular localisation of the different proteins was evaluated by confocal microscopy, whereas HLA-DR or MHC-II expression was measured by flow cytometry. Fowlpox recombinants were also used to infect syngeneic T/SA tumour cells, then injected into Balb/c mice to elicit MHC-II immune response and define the presentation of the SIV transgene products in the presence or absence of FPCIITA. Antibodies to Env were measured by ELISA. Our data show that the H6 promoter was more efficient than SP to drive CIITA expression and that CIITA can enhance the levels of the gag/pro and env gene products only when infection is performed by FP single recombinants. Also, CIITA expression is higher when carried by FP single recombinants than when combined with FPgp or FPenv constructs and can

  7. Donor T cells primed on leukemia lysate-pulsed recipient APCs mediate strong graft-versus-leukemia effects across MHC barriers in full chimeras.

    Science.gov (United States)

    Ghosh, Arnab; Koestner, Wolfgang; Hapke, Martin; Schlaphoff, Verena; Länger, Florian; Baumann, Rolf; Koenecke, Christian; Cornberg, Markus; Welte, Karl; Blazar, Bruce R; Sauer, Martin G

    2009-04-30

    Antigen-presenting cells (APCs) of host origin drive graft-versus-leukemia (GVL) effects but can also trigger life-threatening graft-versus-host disease (GVHD) after hematopoietic cell transplantation (HCT) across major histocompatibility complex (MHC) barriers. We show that in vitro priming of donor lymphocytes can circumvent the need of recipient-derived APCs in vivo for mediating robust GVL effects and significantly diminishes the risk of severe GVHD. In vitro, generated and expanded T cells (ETCs) mediate anti-leukemia effects only when primed on recipient-derived APCs. Loading of APCs in vitro with leukemia cell lysate, chimerism status of the recipient, and timing of adoptive transfer after HCT are important factors determining the outcome. Delayed transfer of ETCs resulted in strong GVL effects in leukemia-bearing full chimera (FC) and mixed chimera (MC) recipients, which were comparable with the GVL/GVHD rates observed after the transfer of naive donor lymphocyte infusion (DLI). Upon early transfer, GVL effects were more pronounced with ETCs but at the expense of significant GVHD. The degree of GVHD was most severe in MCs after transfer of ETCs that had been in vitro primed either on nonpulsed recipient-derived APCs or with donor-derived APCs.

  8. Non HLA genetic markers association with type-1 diabetes mellitus ...

    African Journals Online (AJOL)

    The currently available data identified IDDM1 and IDDM2 as 2 susceptibility loci for type 1 diabetes (T1D). The major histocompatibility complex (MHC)/HLA region referred to as IDDM1 contains several 100 genes known to have a great influence on T1D risk. Within IDDM2, a minisatellite variable number of tandem repeats ...

  9. HLA-G in human reproduction

    DEFF Research Database (Denmark)

    Hviid, Thomas Vauvert F

    2005-01-01

    The non-classical human leukocyte antigen (HLA) class Ib genes, HLA-E, -G and -F, are located on chromosome 6 in the human major histocompatibility complex (MHC). HLA class Ib antigens resemble the HLA class Ia antigens in many ways, but several major differences have been described. This review ...... transplantation and in inflammatory or autoimmune disease, and of HLA-G in an evolutionary context, are also briefly examined....

  10. Understanding TR binding to pMHC complexes: how does a TR scan many pMHC complexes yet preferentially bind to one.

    Directory of Open Access Journals (Sweden)

    Javed Mohammed Khan

    Full Text Available Understanding the basis of the binding of a T cell receptor (TR to the peptide-MHC (pMHC complex is essential due to the vital role it plays in adaptive immune response. We describe the use of computed binding (free energy (BE, TR paratope, pMHC epitope, molecular surface electrostatic potential (MSEP and calculated TR docking angle (θ to analyse 61 TR/pMHC crystallographic structures to comprehend TR/pMHC interaction. In doing so, we have successfully demonstrated a novel/rational approach for θ calculation, obtained a linear correlation between BE and θ without any "codon" or amino acid preference, provided an explanation for TR ability to scan many pMHC ligands yet specifically bind one, proposed a mechanism for pMHC recognition by TR leading to T cell activation and illustrated the importance of the peptide in determining TR specificity, challenging the "germline bias" theory.

  11. Transplantation of islet cells across major histocompatibility barriers after total lymphoid irradiation and infusion of allogeneic bone marrow cells

    International Nuclear Information System (INIS)

    Britt, L.D.; Scharp, D.W.; Lacy, P.E.; Slavin, S.

    1982-01-01

    Diabetic Lewis rats (AgB1/L) were evaluated as recipients of allogeneic Wistar-Furth (AgB2/2) isolated adult islets without the use of standard recipient immunosuppression. One group was treated with fractionated total lymphoid irradiation (TLI) and Wistar-Furth bone marrow cell reconstitution to proven chimerism prior to islet transplantation. This group returned to a prediabetic state following Wistar-Furth islet transplantation without any evidence of rejection for 100 days posttransplant. A second group of Lewis rats received only TLI without bone marrow treatment. They gave a varying result following islet transplantation with one recipient showing evidence of prolonged islet survival. A third chimeric control group did not receive isolated islets and did not alter their diabetic state. A fourth group was not given TLI nor donor bone marrow cells and uniformly rejected their allogeneic islets by 7 days. Thus, allogeneic adult islets will survive across major rat histocompatibility barriers using TLI and donor bone marrow chimerism as the only form of immunosuppression

  12. MHC Class II and Non-MHC Class II Genes Differentially Influence Humoral Immunity to Bacillus anthracis Lethal Factor and Protective Antigen

    Directory of Open Access Journals (Sweden)

    Judith A. James

    2012-12-01

    Full Text Available Anthrax Lethal Toxin consists of Protective Antigen (PA and Lethal Factor (LF, and current vaccination strategies focus on eliciting antibodies to PA. In human vaccination, the response to PA can vary greatly, and the response is often directed toward non-neutralizing epitopes. Variable vaccine responses have been shown to be due in part to genetic differences in individuals, with both MHC class II and other genes playing roles. Here, we investigated the relative contribution of MHC class II versus non-MHC class II genes in the humoral response to PA and LF immunization using three immunized strains of inbred mice: A/J (H-2k at the MHC class II locus, B6 (H-2b, and B6.H2k (H-2k. IgG antibody titers to LF were controlled primarily by the MHC class II locus, whereas IgG titers to PA were strongly influenced by the non-MHC class II genetic background. Conversely, the humoral fine specificity of reactivity to LF appeared to be controlled primarily through non-MHC class II genes, while the specificity of reactivity to PA was more dependent on MHC class II. Common epitopes, reactive in all strains, occurred in both LF and PA responses. These results demonstrate that MHC class II differentially influences humoral immune responses to LF and PA.

  13. Genetically-based olfactory signatures persist despite dietary variation.

    Directory of Open Access Journals (Sweden)

    Jae Kwak

    Full Text Available Individual mice have a unique odor, or odortype, that facilitates individual recognition. Odortypes, like other phenotypes, can be influenced by genetic and environmental variation. The genetic influence derives in part from genes of the major histocompatibility complex (MHC. A major environmental influence is diet, which could obscure the genetic contribution to odortype. Because odortype stability is a prerequisite for individual recognition under normal behavioral conditions, we investigated whether MHC-determined urinary odortypes of inbred mice can be identified in the face of large diet-induced variation. Mice trained to discriminate urines from panels of mice that differed both in diet and MHC type found the diet odor more salient in generalization trials. Nevertheless, when mice were trained to discriminate mice with only MHC differences (but on the same diet, they recognized the MHC difference when tested with urines from mice on a different diet. This indicates that MHC odor profiles remain despite large dietary variation. Chemical analyses of urinary volatile organic compounds (VOCs extracted by solid phase microextraction (SPME and analyzed by gas chromatography/mass spectrometry (GC/MS are consistent with this inference. Although diet influenced VOC variation more than MHC, with algorithmic training (supervised classification MHC types could be accurately discriminated across different diets. Thus, although there are clear diet effects on urinary volatile profiles, they do not obscure MHC effects.

  14. Clinical evaluation of the endothelial tie-2 crossmatch in ABO compatible and ABO incompatible renal transplants.

    Science.gov (United States)

    Kafetzi, Maria L; Boletis, John N; Melexopoulou, Christine A; Tsakris, Athanassios; Iniotaki, Aliki G; Doxiadis, Ilias I N

    2013-11-01

    The necessity of detection of other than the classical major histocompatibility complex (MHC) and MHC class I-related chain A (MICA) directed antibodies prior to organ transplantation has already been repeatedly reported. A commercial flow cytometric endothelial crossmatch (CM) using isolated peripheral blood tie-2 positive cells provides a tool to detect non-MHC antibodies in addition to antibodies directed to MHC class I and II. The vast majority of circulating tie-2 positive cells expresses HLA-DR but not the A, B blood group antigens. Tie-2 cells are circulating surrogate endothelial cells. In this retrospective study we evaluated the endothelial CM in 51 renal transplantations, 30 with ABO compatible grafts and 21 with ABO incompatible grafts. Fifteen of the ABO compatible recipients (group A) developed unexplained rejection episodes (RE) while the remaining 15 had no RE (group B). Five cases of group A and none of group B had a positive tie-2 CM before transplantation (p=0.042). A positive tie-2 CM was also correlated with graft failure in ABO compatible transplants (p=0.02). No significant correlation was found between a positive pre-transplant tie-2 CM and RE in the ABO incompatible group. This study strongly suggest that a positive tie-2 CM may predict post-transplantation complications in ABO compatible grafts while negative reactions are not predictive. The test is not significantly correlated with RE in ABO incompatible grafts possibly due to applied desensitization. Copyright © 2013 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  15. Confinement of activating receptors at the plasma membrane controls natural killer cell tolerance.

    Science.gov (United States)

    Guia, Sophie; Jaeger, Baptiste N; Piatek, Stefan; Mailfert, Sébastien; Trombik, Tomasz; Fenis, Aurore; Chevrier, Nicolas; Walzer, Thierry; Kerdiles, Yann M; Marguet, Didier; Vivier, Eric; Ugolini, Sophie

    2011-04-05

    Natural killer (NK) cell tolerance to self is partly ensured by major histocompatibility complex (MHC) class I-specific inhibitory receptors on NK cells, which dampen their reactivity when engaged. However, NK cells that do not detect self MHC class I are not autoreactive. We used dynamic fluorescence correlation spectroscopy to show that MHC class I-independent NK cell tolerance in mice was associated with the presence of hyporesponsive NK cells in which both activating and inhibitory receptors were confined in an actin meshwork at the plasma membrane. In contrast, the recognition of self MHC class I by inhibitory receptors "educated" NK cells to become fully reactive, and activating NK cell receptors became dynamically compartmentalized in membrane nanodomains. We propose that the confinement of activating receptors at the plasma membrane is pivotal to ensuring the self-tolerance of NK cells.

  16. Characterization of 47 MHC class I sequences in Filipino cynomolgus macaques

    Science.gov (United States)

    Campbell, Kevin J.; Detmer, Ann M.; Karl, Julie A.; Wiseman, Roger W.; Blasky, Alex J.; Hughes, Austin L.; Bimber, Benjamin N.; O’Connor, Shelby L.; O’Connor, David H.

    2009-01-01

    Cynomolgus macaques (Macaca fascicularis) provide increasingly common models for infectious disease research. Several geographically distinct populations of these macaques from Southeast Asia and the Indian Ocean island of Mauritius are available for pathogenesis studies. Though host genetics may profoundly impact results of such studies, similarities and differences between populations are often overlooked. In this study we identified 47 full-length MHC class I nucleotide sequences in 16 cynomolgus macaques of Filipino origin. The majority of MHC class I sequences characterized (39 of 47) were unique to this regional population. However, we discovered eight sequences with perfect identity and six sequences with close similarity to previously defined MHC class I sequences from other macaque populations. We identified two ancestral MHC haplotypes that appear to be shared between Filipino and Mauritian cynomolgus macaques, notably a Mafa-B haplotype that has previously been shown to protect Mauritian cynomolgus macaques against challenge with a simian/human immunodeficiency virus, SHIV89.6P. We also identified a Filipino cynomolgus macaque MHC class I sequence for which the predicted protein sequence differs from Mamu-B*17 by a single amino acid. This is important because Mamu-B*17 is strongly associated with protection against simian immunodeficiency virus (SIV) challenge in Indian rhesus macaques. These findings have implications for the evolutionary history of Filipino cynomolgus macaques as well as for the use of this model in SIV/SHIV research protocols. PMID:19107381

  17. Influence of HLA on human partnership and sexual satisfaction.

    Science.gov (United States)

    Kromer, J; Hummel, T; Pietrowski, D; Giani, A S; Sauter, J; Ehninger, G; Schmidt, A H; Croy, I

    2016-08-31

    The major histocompatibility complex (MHC, called HLA in humans) is an important genetic component of the immune system. Fish, birds and mammals prefer mates with different genetic MHC code compared to their own, which they determine using olfactory cues. This preference increases the chances of high MHC variety in the offspring, leading to enhanced resilience against a variety of pathogens. Humans are also able to discriminate HLA related olfactory stimuli, however, it is debated whether this mechanism is of behavioural relevance. We show on a large sample (N = 508), with high-resolution typing of HLA class I/II, that HLA dissimilarity correlates with partnership, sexuality and enhances the desire to procreate. We conclude that HLA mediates mate behaviour in humans.

  18. Structural basis of evasion of cellular adaptive immunity by HIV-1 Nef

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Xiaofei; Singh, Rajendra; Homann, Stefanie; Yang, Haitao; Guatelli, John; Xiong, Yong (Yale); (VA); (UCSD)

    2012-10-24

    The HIV-1 protein Nef inhibits antigen presentation by class I major histocompatibility complex (MHC-I). We determined the mechanism of this activity by solving the crystal structure of a protein complex comprising Nef, the MHC-I cytoplasmic domain (MHC-I CD) and the {mu}1 subunit of the clathrin adaptor protein complex 1. A ternary, cooperative interaction clamps the MHC-I CD into a narrow binding groove at the Nef-{mu}1 interface, which encompasses the cargo-recognition site of {mu}1 and the proline-rich strand of Nef. The Nef C terminus induces a previously unobserved conformational change in {mu}1, whereas the N terminus binds the Nef core to position it optimally for complex formation. Positively charged patches on {mu}1 recognize acidic clusters in Nef and MHC-I. The structure shows how Nef functions as a clathrin-associated sorting protein to alter the specificity of host membrane trafficking and enable viral evasion of adaptive immunity.

  19. A T-Cell Receptor Breaks the Rules | Center for Cancer Research

    Science.gov (United States)

    Most mature T cells function immunologically when a T-cell receptor (TCR) located on the cell surface encounters and engages its ligand, a major histocompatability complex (MHC), which displays a specific part of a target protein called an antigen. This antigen-presenting complex is assembled from one of the dozen or so MHC molecules that every person inherits from their parents; and the antigen fragment, called a peptide epitope, is excised from one of thousands of possible proteins—originally part of an invading pathogen or a cancer cell—that T cells are capable of identifying and attacking. The framework of an MHC molecule holding a centrally displayed or “presented” peptide is what engages the TCR and triggers T-cell action. This role of MHC molecules presenting antigens to the TCR is a central tenet of immunology, with the fit between a TCR and the MHC framework actually “hardwired” into their three-dimensional structures.

  20. Density-related changes in selection pattern for major histocompatibility complex genes in fluctuating populations of voles

    Czech Academy of Sciences Publication Activity Database

    Bryja, Josef; Charbonnel, N.; Berthier, K.; Galan, M.; Cosson, J.-F.

    2007-01-01

    Roč. 16, č. 23 (2007), s. 5084-5097 ISSN 0962-1083 R&D Projects: GA AV ČR IAA600930608 EU Projects: European Commission(XE) 10284 - EDEN Institutional research plan: CEZ:AV0Z60930519 Source of funding: R - rámcový projekt EK Keywords : Arvicola terrestris * balancing selection * local adaptation * MHC * population cycles Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.169, year: 2007

  1. Diversity and evolutionary patterns of immune genes in free-ranging Namibian leopards (Panthera pardus pardus).

    Science.gov (United States)

    Castro-Prieto, Aines; Wachter, Bettina; Melzheimer, Joerg; Thalwitzer, Susanne; Sommer, Simone

    2011-01-01

    The genes of the major histocompatibility complex (MHC) are a key component of the mammalian immune system and have become important molecular markers for fitness-related genetic variation in wildlife populations. Currently, no information about the MHC sequence variation and constitution in African leopards exists. In this study, we isolated and characterized genetic variation at the adaptively most important region of MHC class I and MHC class II-DRB genes in 25 free-ranging African leopards from Namibia and investigated the mechanisms that generate and maintain MHC polymorphism in the species. Using single-stranded conformation polymorphism analysis and direct sequencing, we detected 6 MHC class I and 6 MHC class II-DRB sequences, which likely correspond to at least 3 MHC class I and 3 MHC class II-DRB loci. Amino acid sequence variation in both MHC classes was higher or similar in comparison to other reported felids. We found signatures of positive selection shaping the diversity of MHC class I and MHC class II-DRB loci during the evolutionary history of the species. A comparison of MHC class I and MHC class II-DRB sequences of the leopard to those of other felids revealed a trans-species mode of evolution. In addition, the evolutionary relationships of MHC class II-DRB sequences between African and Asian leopard subspecies are discussed.

  2. Genetic structure and contrasting selection pattern at two major histocompatibility complex genes in wild house mouse populations

    Czech Academy of Sciences Publication Activity Database

    Čížková, Dagmar; Goüy de Bellocq, J.; Baird, S. J. E.; Piálek, Jaroslav; Bryja, Josef

    2011-01-01

    Roč. 106, č. 5 (2011), s. 727-740 ISSN 0018-067X R&D Projects: GA AV ČR IAA600930608; GA ČR GA206/08/0640 Institutional research plan: CEZ:AV0Z60930519 Keywords : MHC * house mouse * selection * population structure * trans-species polymorphism Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.597, year: 2011

  3. Mate choice for major histocompatibility complex complementarity in a strictly monogamous bird, the grey partridge (Perdix perdix)

    Czech Academy of Sciences Publication Activity Database

    Rymešová, D.; Králová, Tereza; Promerová, Marta; Bryja, Josef; Tomášek, Oldřich; Svobodová, J.; Šmilauer, P.; Šálek, M.; Albrecht, Tomáš

    2017-01-01

    Roč. 14, č. 1 (2017), č. článku 9. ISSN 1742-9994 R&D Projects: GA ČR GA206/08/1281 Institutional support: RVO:68081766 Keywords : Grey partridge * Mate choice * MHC genes * Ornaments * Sexual selection * Social monogamy * Inbreeding avoidance Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 2.781, year: 2016

  4. In situ localisation of major histocompatibility complex class I and class II and CD8 positive cells in infectious salmon anaemia virus (ISAV)-infected Atlantic salmon

    DEFF Research Database (Denmark)

    Hetland, Dyveke Lem; Jørgensen, Sven Martin; Skjødt, Karsten

    2010-01-01

    It is assumed that the mobilisation of a strong cellular immune response is important for the survival of Atlantic salmon infected with infectious salmon anaemia virus (ISAV). In this study, the characterisation of immune cell populations in tissues of non-ISAV infected Atlantic salmon and during...... the early viraemia of ISAV was undertaken. Immunohistochemical investigations of spleen, head kidney and gills using monoclonal antibodies against recombinant proteins from MHC I, II and CD8 were performed on tissues from Atlantic salmon collected day 17 post-challenge in a cohabitant infection model....... The localisations of MHC I and II in control salmon were consistent with previous reports but this study presents novel observations on the distribution of CD8 labelled cell populations in Atlantic salmon including the description of significant mucosal populations in the gills. The distribution of MHC I, MHC II...

  5. Helper T cell epitope-mapping reveals MHC-peptide binding affinities that correlate with T helper cell responses to pneumococcal surface protein A.

    Directory of Open Access Journals (Sweden)

    Rajesh Singh

    2010-02-01

    Full Text Available Understanding the requirements for protection against pneumococcal carriage and pneumonia will greatly benefit efforts in controlling these diseases. Several proteins and polysaccharide capsule have recently been implicated in the virulence of and protective immunity against Streptococcus pneumonia. Pneumococcal surface protein A (PspA is highly conserved among S. pneumonia strains, inhibits complement activation, binds lactoferrin, elicits protective systemic immunity against pneumococcal infection, and is necessary for full pneumococcal virulence. Identification of PspA peptides that optimally bind human leukocyte antigen (HLA would greatly contribute to global vaccine efforts, but this is hindered by the multitude of HLA polymorphisms. Here, we have used an experimental data set of 54 PspA peptides and in silico methods to predict peptide binding to HLA and murine major histocompatibility complex (MHC class II. We also characterized spleen- and cervical lymph node (CLN-derived helper T lymphocyte (HTL cytokine responses to these peptides after S. pneumonia strain EF3030-challenge in mice. Individual, yet overlapping peptides, 15 amino acids in length revealed residues 199 to 246 of PspA (PspA(199-246 consistently caused the greatest IFN-gamma, IL-2, IL-5 and proliferation as well as moderate IL-10 and IL-4 responses by ex vivo stimulated splenic and CLN CD4(+ T cells isolated from S. pneumonia strain EF3030-challeged F(1 (B6xBALB/c mice. IEDB, RANKPEP, SVMHC, MHCPred, and SYFPEITHI in silico analysis tools revealed peptides in PspA(199-246 also interact with a broad range of HLA-DR, -DQ, and -DP allelles. These data suggest that predicted MHC class II-peptide binding affinities do not always correlate with T helper (Th cytokine or proliferative responses to PspA peptides, but when used together with in vivo validation can be a useful tool to choose candidate pneumococcal HTL epitopes.

  6. In vivo immunologic selection of class I major histocompatibility complex gene deletion variants from the B16-BL6 melanoma.

    Science.gov (United States)

    Talmadge, J E; Talmadge, C B; Zbar, B; McEwen, R; Meeker, A K; Tribble, H

    1987-06-01

    The mechanism by which tumor allografts escape host immunologic attack was investigated. B16-BL6 cells (the bladder 6 subline of the B16 melanoma) (H-2b) were transfected with a gene (Dd) encoding an allogeneic class I major histocompatibility complex antigen. Clones that expressed Dd antigen were injected into the footpads of nonimmune syngeneic mice, syngeneic immune mice, and nude mice. Under conditions of immunologic selection a clone that contained multiple copies of the transfected gene formed variants that lacked the transfected gene. Primary tumors and pulmonary metastases of immunized mice and pulmonary metastases of nonimmunized mice had lost the Dd gene and, in most cases, all of the associated plasmid. In contrast, in immunodeficient nude mice, primary tumors and pulmonary metastases retained the Dd gene and the associated plasmid. Deletion of genes encoding cell surface antigens may be one of the mechanisms by which allogeneic tumors escape immunologic attack.

  7. Allogeneic bone marrow grafts in genotyped swine

    International Nuclear Information System (INIS)

    Vaiman, M.

    1974-01-01

    The proof of a major histocompatibility complex (MHC) called SL-A enabled to promote bone marrow allografts. A study of the response to that kind of graft in irradiated pig states a number of interesting points. Bone marrow allografting complies with the rule of tissular compatibility with the major histocompatibility complex. The taking of SL-A incompatible bone marrow allografts could not be achieved under the experimental conditions. In spite of the high doses of radiation, 950 to 1050 rads, higher than 1.5 LD 100%, recipients were capable of rejecting their grafts, regularly. SL-A identify ensured 100%, initial achievement. However, animals developed regular fatal disease within a fairly short time. This development could by no means, be ascribed to the sole sequealae of radiation sickness since autografted animals at equal or even higher doses, showed none of the symptome. Assumption of a chronic graft-vs-host reactions, induced by the minor histocompatible systems, was put foreward, but should be confirmed histopathologically [fr

  8. Primordial linkage of β2-microglobulin to the MHC.

    Science.gov (United States)

    Ohta, Yuko; Shiina, Takashi; Lohr, Rebecca L; Hosomichi, Kazuyoshi; Pollin, Toni I; Heist, Edward J; Suzuki, Shingo; Inoko, Hidetoshi; Flajnik, Martin F

    2011-03-15

    β2-Microglobulin (β2M) is believed to have arisen in a basal jawed vertebrate (gnathostome) and is the essential L chain that associates with most MHC class I molecules. It contains a distinctive molecular structure called a constant-1 Ig superfamily domain, which is shared with other adaptive immune molecules including MHC class I and class II. Despite its structural similarity to class I and class II and its conserved function, β2M is encoded outside the MHC in all examined species from bony fish to mammals, but it is assumed to have translocated from its original location within the MHC early in gnathostome evolution. We screened a nurse shark bacterial artificial chromosome library and isolated clones containing β2M genes. A gene present in the MHC of all other vertebrates (ring3) was found in the bacterial artificial chromosome clone, and the close linkage of ring3 and β2M to MHC class I and class II genes was determined by single-strand conformational polymorphism and allele-specific PCR. This study satisfies the long-held conjecture that β2M was linked to the primordial MHC (Ur MHC); furthermore, the apparent stability of the shark genome may yield other genes predicted to have had a primordial association with the MHC specifically and with immunity in general.

  9. MHC class I Dk locus and Ly49G2+ NK cells confer H-2k resistance to murine cytomegalovirus.

    Science.gov (United States)

    Xie, Xuefang; Stadnisky, Michael D; Brown, Michael G

    2009-06-01

    Essential NK cell-mediated murine CMV (MCMV) resistance is under histocompatibility-2(k) (H-2(k)) control in MA/My mice. We generated a panel of intra-H2(k) recombinant strains from congenic C57L.M-H2(k/b) (MCMV resistant) mice for precise genetic mapping of the critical interval. Recombination breakpoint sites were precisely mapped and MCMV resistance/susceptibility traits were determined for each of the new lines to identify the MHC locus. Strains C57L.M-H2(k)(R7) (MCMV resistant) and C57L.M-H2(k)(R2) (MCMV susceptible) are especially informative; we found that allelic variation in a 0.3-megabase interval in the class I D locus confers substantial difference in MCMV control phenotypes. When NK cell subsets responding to MCMV were examined, we found that Ly49G2(+) NK cells rapidly expand and selectively acquire an enhanced capacity for cytolytic functions only in C57L.M-H2(k)(R7). We further show that depletion of Ly49G2(+) NK cells before infection abrogated MCMV resistance in C57L.M-H2(k)(R7). We conclude that the MHC class I D locus prompts expansion and activation of Ly49G2(+) NK cells that are needed in H-2(k) MCMV resistance.

  10. Immunoglobulin Heavy Chain Variable Region and Major Histocompatibility Region Genes Are Linked to Induced Graves' Disease in Females From Two Very Large Families of Recombinant Inbred Mice

    Science.gov (United States)

    Aliesky, Holly; Banuelos, Bianca; Magana, Jessica; Williams, Robert W.; Rapoport, Basil

    2014-01-01

    Graves' hyperthyroidism is caused by antibodies to the TSH receptor (TSHR) that mimic thyroid stimulation by TSH. Stimulating TSHR antibodies and hyperthyroidism can be induced by immunizing mice with adenovirus expressing the human TSHR A-subunit. Prior analysis of induced Graves' disease in small families of recombinant inbred (RI) female mice demonstrated strong genetic control but did not resolve trait loci for TSHR antibodies or elevated serum T4. We investigated the genetic basis for induced Graves' disease in female mice of two large RI families and combined data with earlier findings to provide phenotypes for 178 genotypes. TSHR antibodies measured by inhibition of TSH binding to its receptor were highly significantly linked in the BXD set to the major histocompatibility region (chromosome 17), consistent with observations in 3 other RI families. In the LXS family, we detected linkage between T4 levels after TSHR-adenovirus immunization and the Ig heavy chain variable region (Igvh, chromosome 12). This observation is a key finding because components of the antigen binding region of Igs determine antibody specificity and have been previously linked to induced thyroid-stimulating antibodies. Data from the LXS family provide the first evidence in mice of a direct link between induced hyperthyroidism and Igvh genes. A role for major histocompatibility genes has now been established for genetic susceptibility to Graves' disease in both humans and mice. Future studies using arrays incorporating variation in the complex human Ig gene locus will be necessary to determine whether Igvh genes are also linked to Graves' disease in humans. PMID:25051451

  11. PCR-based isolation of multigene families: lessons from the avian MHC class IIB

    Czech Academy of Sciences Publication Activity Database

    Burri, R.; Promerová, Marta; Goebel, J.; Fumagalli, L.

    2014-01-01

    Roč. 14, č. 4 (2014), s. 778-788 ISSN 1755-098X R&D Projects: GA ČR GAP505/10/1871 Institutional support: RVO:68081766 Keywords : Birds * Major histocompatibility complex * Multigene families * PCR bias Subject RIV: EG - Zoology Impact factor: 3.712, year: 2014