WorldWideScience

Sample records for major energetic constraint

  1. Impaired control of body cooling during heterothermia represents the major energetic constraint in an aging non-human primate exposed to cold.

    Directory of Open Access Journals (Sweden)

    Jeremy Terrien

    2009-10-01

    Full Text Available Daily heterothermia is used by small mammals for energy and water savings, and seems to be preferentially exhibited during winter rather than during summer. This feature induces a trade-off between the energy saved during daily heterothermia and the energy cost of arousal, which can impact energy balance and survival under harsh environmental conditions. Especially, aging may significantly affect such trade off during cold-induced energy stress, but direct evidences are still lacking. We hypothesized that aging could alter the energetics of daily heterothermia, and that the effects could differ according to season. In the gray mouse lemur (Microcebus murinus, a non-human primate species which exhibits daily heterothermia, we investigated the effects of exposures to 25 and 12 degrees C on body composition, energy balance, patterns of heterothermia and water turnover in adult (N = 8 and aged animals (N = 7 acclimated to winter-like or summer-like photoperiods. Acclimation to summer prevented animals from deep heterothermia, even during aging. During winter, adult animals at 12 degrees C and aged animals at 25 degrees C exhibited low levels of energy expenditure with minor modulations of heterothermia. The major effects of cold were observed during winter, and were particularly pronounced in aged mouse lemurs which exhibited deep heterothermia phases. Body composition was not significantly affected by age and could not explain the age-related differences in heterothermia patterns. However, aging was associated with increased levels of energy expenditure during cold exposure, in concomitance with impaired energy balance. Interestingly, increased energy expenditure and depth of heterothermia phases were strongly correlated. In conclusion, it appeared that the exhibition of shallow heterothermia allowed energy savings during winter in adult animals only. Aged animals exhibited deep heterothermia and increased levels of energy expenditure, impairing

  2. Energetic and spatial constraints of arterial networks

    Directory of Open Access Journals (Sweden)

    Sandro Rossitti

    1995-06-01

    Full Text Available The principle of minimum work (PMW is a parametric optimization model for the growth and adaptation of arterial trees. A balance between energy dissipation due to frictional resistance of laminar flow (shear stress and the minimum volume of the blood and vessel wall tissue is achieved when the vessel radii are adjusted to the cube root of the volumetric flow. The PMW is known to apply over several magnitudes of vessel calibers, and in many different organs, including the brain, in humans and in animals. Animal studies suggest that blood flow in arteries is approximately proportional to the cube of the vessel radius, and that arteries alter their caliber in response to sustained changes of blood flow according to PMW. Remodelling of the retinal arteriolar network to long-term changes in blood flow was observed in humans. Remodelling of whole arterial networks occurs in the form of increase or diminishing of vessel calibers. Shear stress induced endothelial mediation seems to be the regulating mechanism for the maintenance of this optimum blood flow/vessel diameter relation. Arterial trees are also expected to be nearly space filing. The vascular system is constructed in such a way that, while blood vessels occupy only a small percentage of the body volume leaving the bulk to tissue, they also crisscross organs so tightly that every point in the tissue lies on the boundary between an artery and a vein. This review describes how the energetic optimum principle for least energy cost for blood flow is also compatible with the spatial constraints of arterial networks according to concepts derived from fractal geometry.

  3. Energetic and ecological constraints on population density of reef fishes.

    Science.gov (United States)

    Barneche, D R; Kulbicki, M; Floeter, S R; Friedlander, A M; Allen, A P

    2016-01-27

    Population ecology has classically focused on pairwise species interactions, hindering the description of general patterns and processes of population abundance at large spatial scales. Here we use the metabolic theory of ecology as a framework to formulate and test a model that yields predictions linking population density to the physiological constraints of body size and temperature on individual metabolism, and the ecological constraints of trophic structure and species richness on energy partitioning among species. Our model was tested by applying Bayesian quantile regression to a comprehensive reef-fish community database, from which we extracted density data for 5609 populations spread across 49 sites around the world. Our results indicate that population density declines markedly with increases in community species richness and that, after accounting for richness, energetic constraints are manifested most strongly for the most abundant species, which generally are of small body size and occupy lower trophic groups. Overall, our findings suggest that, at the global scale, factors associated with community species richness are the major drivers of variation in population density. Given that populations of species-rich tropical systems exhibit markedly lower maximum densities, they may be particularly susceptible to stochastic extinction. © 2016 The Author(s).

  4. Affordability Constraints in Major Defense Acquisitions

    Science.gov (United States)

    2016-11-01

    memo, does not provide a detailed recipe for those who must produce quantitative affordability constraints. Enclosure 8 of the January 7, 2015 version...3.0’s full title includes “Achieving Dominant Capabilities 2015 Lot 2028 Lot 2038 Lot $0 $100 $200 $300 $400 $ 500 $600 $700 $800 $900 0 10000 20000

  5. Energetic constraints, size gradients, and size limits in benthic marine invertebrates.

    Science.gov (United States)

    Sebens, Kenneth P

    2002-08-01

    Populations of marine benthic organisms occupy habitats with a range of physical and biological characteristics. In the intertidal zone, energetic costs increase with temperature and aerial exposure, and prey intake increases with immersion time, generating size gradients with small individuals often found at upper limits of distribution. Wave action can have similar effects, limiting feeding time or success, although certain species benefit from wave dislodgment of their prey; this also results in gradients of size and morphology. The difference between energy intake and metabolic (and/or behavioral) costs can be used to determine an energetic optimal size for individuals in such populations. Comparisons of the energetic optimal size to the maximum predicted size based on mechanical constraints, and the ensuing mortality schedule, provides a mechanism to study and explain organism size gradients in intertidal and subtidal habitats. For species where the energetic optimal size is well below the maximum size that could persist under a certain set of wave/flow conditions, it is probable that energetic constraints dominate. When the opposite is true, populations of small individuals can dominate habitats with strong dislodgment or damage probability. When the maximum size of individuals is far below either energetic optima or mechanical limits, other sources of mortality (e.g., predation) may favor energy allocation to early reproduction rather than to continued growth. Predictions based on optimal size models have been tested for a variety of intertidal and subtidal invertebrates including sea anemones, corals, and octocorals. This paper provides a review of the optimal size concept, and employs a combination of the optimal energetic size model and life history modeling approach to explore energy allocation to growth or reproduction as the optimal size is approached.

  6. A survey of major constraints limiting commercial poultry production ...

    African Journals Online (AJOL)

    In a survey of major constraints limiting commercial poultry production in Gombe metropolis, 2,121 poultry cases were presented at the Gombe State Veterinary Clinic between January 1995 and December 2004. Out of the total number of cases presented, Newcastle disease (ND) accounted for 14.66%, chronic respiratory ...

  7. A Macrophysiological Analysis of Energetic Constraints on Geographic Range Size in Mammals

    Science.gov (United States)

    Ceballos, Gerardo; Steele, Michael A.

    2013-01-01

    Physiological processes are essential for understanding the distribution and abundance of organisms, and recently, with widespread attention to climate change, physiology has been ushered back to the forefront of ecological thinking. We present a macrophysiological analysis of the energetics of geographic range size using combined data on body size, basal metabolic rate (BMR), phylogeny and range properties for 574 species of mammals. We propose three mechanisms by which interspecific variation in BMR should relate positively to geographic range size: (i) Thermal Plasticity Hypothesis, (ii) Activity Levels/Dispersal Hypothesis, and (iii) Energy Constraint Hypothesis. Although each mechanism predicts a positive correlation between BMR and range size, they can be further distinguished based on the shape of the relationship they predict. We found evidence for the predicted positive relationship in two dimensions of energetics: (i) the absolute, mass-dependent dimension (BMR) and (ii) the relative, mass-independent dimension (MIBMR). The shapes of both relationships were similar and most consistent with that expected from the Energy Constraint Hypothesis, which was proposed previously to explain the classic macroecological relationship between range size and body size in mammals and birds. The fact that this pattern holds in the MIBMR dimension indicates that species with supra-allometric metabolic rates require among the largest ranges, above and beyond the increasing energy demands that accrue as an allometric consequence of large body size. The relationship is most evident at high latitudes north of the Tropics, where large ranges and elevated MIBMR are most common. Our results suggest that species that are most vulnerable to extinction from range size reductions are both large-bodied and have elevated MIBMR, but also, that smaller species with elevated MIBMR are at heightened risk. We also provide insights into the global latitudinal trends in range size and MIBMR

  8. Molecular and Material Approaches to Overcome Kinetic and Energetic Constraints in Dye-Sensitized Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, Thomas [Michigan State Univ., East Lansing, MI (United States)

    2016-08-14

    Dye-sensitized solar cells (DSSCs) have attracted a lot of interest as they proffer the possibility of extremely inexpensive and efficient solar energy conversion. The excellent performance of the most efficient DSSCs relies on two main features: 1) a high surface area nanoparticle semiconductor photoanode to allow for excellent light absorption with moderate extinction molecular dyes and 2) slow recombination rates from the photoanode to I3- allowing good charge collection. The I3-/I- couple, however, has some disadvantages, notably the redox potential limits the maximum open-circuit voltage, and the dye regeneration requires a large driving force which constrains the light harvesting ability. Thus, the design features that allow DSSCs to perform as well as they do also prevent further significant improvements in performance. As a consequence, the most efficient device configuration, and the maximum efficiency, has remained essentially unchanged over the last 16 years. Significant gains in performance are possible; however it will likely require a substantial paradigm shift. The general goal of this project is to understand the fundamental role of dye-sensitized solar cell, DSSC, components (sensitizer, redox shuttle, and photoanode) involved in key processes in order to overcome the kinetic and energetic constraints of current generation DSSCs. For example, the key to achieving high energy conversion efficiency DSSCs is the realization of a redox shuttle which fulfills the dual requirements of 1) efficient dye regeneration with a minimal driving force and 2) efficient charge collection. In current generation DSSCs, however, only one or the other of these requirements is met. We are currently primarily interested in understanding the physical underpinnings of the regeneration and recombination reactions. Our approach is to systematically vary the components involved in reactions and interrogate them with a

  9. Major constraints affecting aquaculture development in Akwa Ibom ...

    African Journals Online (AJOL)

    The study contributes to nationwide attempts to enhance the contributions of aquaculture to the fishery subsector, and consequent overall gross domestic product of Nigeria, as well as to the protein intake of her citizenry. The focus is on the determination of the magnitude of constraints affecting aquaculture development in ...

  10. Thermal and energetic constraints on ectotherm abundance: A global test using lizards

    Science.gov (United States)

    Buckley, L.B.; Rodda, G.H.; Jetz, W.

    2008-01-01

    Population densities of birds and mammals have been shown to decrease with body mass at approximately the same rate as metabolic rates increase, indicating that energetic needs constrain endotherm population densities. In ectotherms, the exponential increase of metabolic rate with body temperature suggests that environmental temperature may additionally constrain population densities. Here we test simple bioenergetic models for an ecologically important group of ectothermic vertebrates by examining 483 lizard populations. We find that lizard population densities decrease as a power law of body mass with a slope approximately inverse to the slope of the relationship between metabolic rates and body mass. Energy availability should limit population densities. As predicted, environmental productivity has a positive effect on lizard density, strengthening the relationship between lizard density and body mass. In contrast, the effect of environmental temperature is at most weak due to behavioral thermoregulation, thermal evolution, or the temperature dependence of ectotherm performance. Our results provide initial insights into how energy needs and availability differentially constrain ectotherm and endotherm density across broad spatial scales. ?? 2008 by the Ecological Society of America.

  11. How energetic and environmental constraints of microorganisms determine the carbon turnover in soils

    Science.gov (United States)

    Don, A.; Rödenbeck, C.; Gleixner, G.

    2012-04-01

    Microorganisms are the main catalysts driving carbon fluxes from soils. Traditional concepts of soil carbon stabilization failed to account for environmental and energy constraints of microorganisms. The distribution and density of organic carbon in the soil profile maybe a key factor determining the carbon stability and carbon flux. Decomposition is a two-step process following the Michaelis Menten kinetics: In a first step enzyme and substrate form a joint complex and then the decomposition reaction is catalyzed. Thus, biological decomposition relies on the encounter of substrate and the degradation catalyst, the microorganisms. Lower substrate concentration decreases the likelihood of an enzyme to hit a substrate molecule, to form an enzyme-substrate complex, and thus to catalyze the reaction. However, it was unproofen if this concept can be appliued to soils also. A long-term lab experiment revealed that the soil carbon turnover decreased with increasing carbon dilution due to mixture with soil minerals. The ability of microorganisms to move towards substrate in soils seems to be limited. To elucidate the effect of concentration-controlled carbon turnover, we devised the simple simulation model SCAMP based on the two-step kinetic with microorganism and carbon particles been simulated explicitly. The SCAMP model was able to simulate soil carbon profiles and age profiles in a realistic manner. The only carbon stabilization mechanism implemented in the model is the distribution of microorganisms and carbon particles in the soil and thus the availability of carbon for microorganism, which is especially important for subsoil carbon dynamics. The experiments and the model help to explain why large fractions of soil carbon have been stabilized for millennia and decoupled from the global carbon cycle.

  12. Energetic use of deep aquifers. Constraints and challenges of new geothermics

    International Nuclear Information System (INIS)

    Vathaire, J.C.

    1996-01-01

    In France, the utilisation of low and very low energy geothermic resource knew a quick growth, mainly at the end of the second oil crisis. This development mainly occurred between 1980 and 1986 in a positive context in which the factor of the high cost of fossil energies played an important role. From 1986 onward, technical, economical and structural difficulties have hampered its development. The great majority of the operations which were carried out at that time is now effective, thanks to the administration, the research departments and the industrial sector concerned which enables them to overcome the difficulties. According to the actual economic context, the perspectives of a development similar to the 1980-1986 one in France are low but there are real possibilities as to the optimisation and the modelling of equipments and the diversification of the utilizations. The recent realizations are confirming this potentiality. (authors). 3 figs

  13. Energy balance of maize production in Brazil: the energetic constraints of a net positive outcome

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Luis Henrique de Barros; Alves, Bruno Jose Rodrigues; Urquiaga, Segundo

    2008-07-01

    Among the factors used to analyze and to establish the sustainability of a whole agricultural production system, the energy balance is one of the most powerful and robust. The maize production in Brazil is surely the reflex of an energy intensive system that demands many field operations and heavy fertilizer applications, notably nitrogen in urea form. This work presents an energy balance of this major crop adjusted to the Brazilian conditions of cultivation. The input components were grouped based on their energy contents, and the possible improvements in the agricultural practices that could improve energy balance and net energy withdrawn from the farming were considered. The replacement of N synthetic fertilizer by biological nitrogen fixation, whether the process is directly carried out by endophytic diazotroph bacteria or by means of a N{sub 2}- fixing legume culture planted before the main crop as a green-manure is also discussed. (author)

  14. Preferences, constraints, and the process of sex segregation in college majors: A choice analysis.

    Science.gov (United States)

    Ochsenfeld, Fabian

    2016-03-01

    The persistence of horizontal sex segregation in higher education continues to puzzle social scientists. To help resolve this puzzle, we analyze a sample of college entrants in Germany with a discrete choice design that allows for social learning from the experiences of others. We make at least two contributions to the state of research. First, we test whether essentialist gender stereotypes affect major selection mostly through internalization or rather as external constraints that high school graduates adapt their behavior to. Empirically, we find that internalized vocational interests better explain gendered major choices than conformance with friends' and parents' expectations does. Second, we scrutinize whether segregation results from women's anticipation of gendered family roles or from their anticipation of sex-based discrimination, but we find no evidence for either of these hypotheses. As in most previous studies, differences in mathematics achievement fail to explain gendered patterns of selection into college majors. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Dynamic endocrine responses to stress: evidence for energetic constraints and status dependence in breeding male green turtles.

    Science.gov (United States)

    Jessop, Tim S; Knapp, Rosemary; Whittier, Joan M; Limpus, Col J

    2002-03-01

    During reproduction, male vertebrates may exhibit a continuum of interactions between sex and adrenal steroids during stressful events, the outcome of which may be important in either reducing or promoting male reproductive success. We studied adult male green turtles (Chelonia mydas) to examine if they altered plasma corticosterone (CORT) and androgen levels in response to a standardized capture/restraint stressor as potential mechanisms to maintain reproductive activity during stressful events. At the population level, we found that migrant breeding males had a significantly smaller CORT response to the capture/restraint stressor compared to nonbreeding males and that this decreased response coincided with the generally poorer body condition of migrant breeders. In contrast, plasma androgen levels decreased significantly in response to the capture/restraint stressor in migrant breeding males, but not in nonbreeding and pre-migrant breeding males. For individual migrant breeding males, the magnitude of their CORT and androgen responses to the capture/restraint stressor was highly correlated with their body condition and body length, respectively. Our results demonstrate that male green turtles exhibit complex interactions in their endocrine responses to a capture/restraint stressor and that variation in these interactions is associated with differences in males' reproductive, energetic, and physical state. We hypothesize that interplay between physical status and plasma hormone responses to stressors could have important consequences for male green turtle reproduction.

  16. The apparently contradictory energetics of hopping and running: the counter-intuitive effect of constraints resolves the paradox.

    Science.gov (United States)

    Gutmann, Anne K; Bertram, John E A

    2017-01-15

    Metabolic rate appears to increase with the rate of force application for running. Leg function during ground contact is similar in hopping and running, so one might expect that this relationship would hold for hopping as well. Surprisingly, metabolic rate appeared to decrease with increasing force rate for hopping. However, this paradox is the result of comparing different cross-sections of the metabolic cost landscapes for hopping and running. The apparent relationship between metabolic rate and force rate observed in treadmill running is likely not a fundamental characteristic of muscle physiology, but a result of runners responding to speed constraints, i.e. runners selecting step frequencies that minimize metabolic cost per distance for a series of treadmill-specified speeds. Evaluating hopping metabolic rate over a narrow range of hop frequencies similar to that selected by treadmill runners yields energy use trends similar to those of running. © 2017. Published by The Company of Biologists Ltd.

  17. Major methodological constraints to the assessment of environmental status based on the condition of benthic communities

    Science.gov (United States)

    Medeiros, João Paulo; Pinto, Vanessa; Sá, Erica; Silva, Gilda; Azeda, Carla; Pereira, Tadeu; Quintella, Bernardo; Raposo de Almeida, Pedro; Lino Costa, José; José Costa, Maria; Chainho, Paula

    2014-05-01

    The Marine Strategy Framework Directive (MSFD) was published in 2008 and requires Member States to take the necessary measures to achieve or maintain good environmental status in aquatic ecosystems by the year of 2020. The MSFD indicates 11 qualitative descriptors for environmental status assessment, including seafloor integrity, using the condition of the benthic community as an assessment indicator. Member States will have to define monitoring programs for each of the MSFD descriptors based on those indicators in order to understand which areas are in a Good Environmental Status and what measures need to be implemented to improve the status of areas that fail to achieve that major objective. Coastal and offshore marine waters are not frequently monitored in Portugal and assessment tools have only been developed very recently with the implementation of the Water Framework Directive (WFD). The lack of historical data and knowledge on the constraints of benthic indicators in coastal areas requires the development of specific studies addressing this issue. The major objective of the current study was to develop and test and experimental design to assess impacts of offshore projects. The experimental design consisted on the seasonal and interannual assessment of benthic invertebrate communities in the area of future implementation of the structures (impact) and two potential control areas 2 km from the impact area. Seasonal benthic samples were collected at nine random locations within the impact and control areas in two consecutive years. Metrics included in the Portuguese benthic assessment tool (P-BAT) were calculated since this multimetric tool was proposed for the assessment of the ecological status in Portuguese coastal areas under the WFD. Results indicated a high taxonomic richness in this coastal area and no significant differences were found between impact and control areas, indicating the feasibility of establishing adequate control areas in marine

  18. Physiological constraints and energetic costs of diving behaviour in marine mammals: a review of studies using trained Steller sea lions diving in the open ocean.

    Science.gov (United States)

    Rosen, David A S; Hindle, Allyson G; Gerlinsky, Carling D; Goundie, Elizabeth; Hastie, Gordon D; Volpov, Beth L; Trites, Andrew W

    2017-01-01

    Marine mammals are characterized as having physiological specializations that maximize the use of oxygen stores to prolong time spent under water. However, it has been difficult to undertake the requisite controlled studies to determine the physiological limitations and trade-offs that marine mammals face while diving in the wild under varying environmental and nutritional conditions. For the past decade, Steller sea lions (Eumetopias jubatus) trained to swim and dive in the open ocean away from the physical confines of pools participated in studies that investigated the interactions between diving behaviour, energetic costs, physiological constraints, and prey availability. Many of these studies measured the cost of diving to understand how it varies with behaviour and environmental and physiological conditions. Collectively, these studies show that the type of diving (dive bouts or single dives), the level of underwater activity, the depth and duration of dives, and the nutritional status and physical condition of the animal affect the cost of diving and foraging. They show that dive depth, dive and surface duration, and the type of dive result in physiological adjustments (heart rate, gas exchange) that may be independent of energy expenditure. They also demonstrate that changes in prey abundance and nutritional status cause sea lions to alter the balance between time spent at the surface acquiring oxygen (and offloading CO 2 and other metabolic by-products) and time spent at depth acquiring prey. These new insights into the physiological basis of diving behaviour further our understanding of the potential scope for behavioural responses of marine mammals to environmental changes, the energetic significance of these adjustments, and the consequences of approaching physiological limits.

  19. Energetic Constraints on Fungal Growth.

    Science.gov (United States)

    Heaton, Luke L M; Jones, Nick S; Fricker, Mark D

    2016-02-01

    Saprotrophic fungi are obliged to spend energy on growth, reproduction, and substrate digestion. To understand the trade-offs involved, we developed a model that, for any given growth rate, identifies the strategy that maximizes the fraction of energy that could possibly be spent on reproduction. Our model's predictions of growth rates and bioconversion efficiencies are consistent with empirical findings, and it predicts the optimal investment in reproduction, resource acquisition, and biomass recycling for a given environment and timescale of reproduction. Thus, if the timescale of reproduction is long compared to the time required for the fungus to double in size, the model suggests that the total energy available for reproduction is maximal when a very small fraction of the energy budget is spent on reproduction. The model also suggests that fungi growing on substrates with a high concentration of low-molecular-weight compounds will not benefit from recycling: they should be able to grow more rapidly and allocate more energy to reproduction without recycling. In contrast, recycling offers considerable benefits to fungi growing on recalcitrant substrates, where the individual hyphae are not crowded and the time taken to consume resource is significantly longer than the fungus doubling time.

  20. Energetic Systems

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetic Systems Division provides full-spectrum energetic engineering services (project management, design, analysis, production support, in-service support,...

  1. Drought versus heat: What's the major constraint on Mediterranean green roof plants?

    Energy Technology Data Exchange (ETDEWEB)

    Savi, Tadeja, E-mail: tsavi@units.it [Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste (Italy); Dal Borgo, Anna, E-mail: dalborgo.anna@gmail.com [Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste (Italy); Love, Veronica L., E-mail: vllove1@sheffield.ac.uk [Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste (Italy); Department of Landscape, University of Sheffield, Western Bank, Sheffield, South Yorkshire S10 2TN (United Kingdom); Andri, Sergio, E-mail: s.andri@seic.it [Harpo seic verdepensile, Via Torino 34, 34123 Trieste (Italy); Tretiach, Mauro, E-mail: tretiach@units.it [Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste (Italy); Nardini, Andrea, E-mail: nardini@units.it [Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste (Italy)

    2016-10-01

    Green roofs are gaining momentum in the arid and semi-arid regions due to their multiple benefits as compared with conventional roofs. One of the most critical steps in green roof installation is the selection of drought and heat tolerant species that can thrive under extreme microclimate conditions. We monitored the water status, growth and survival of 11 drought-adapted shrub species grown on shallow green roof modules (10 and 13 cm deep substrate) and analyzed traits enabling plants to cope with drought (symplastic and apoplastic resistance) and heat stress (root membrane stability). The physiological traits conferring efficiency/safety to the water transport system under severe drought influenced plant water status and represent good predictors of both plant water use and growth rates over green roofs. Moreover, our data suggest that high substrate temperature represents a stress factor affecting plant survival to a larger extent than drought per se. In fact, the major cause influencing seedling survival on shallow substrates was the species-specific root resistance to heat, a single and easy measurable trait that should be integrated into the methodological framework for screening and selection of suitable shrub species for roof greening in the Mediterranean. - Highlights: • The use of hardy shrub species for roof greening should be increased. • We monitored water status of 11 shrub species growing on shallow green roofs. • Species heat and drought tolerance, growth, and survival were studied. • High substrate temperature significantly affected plant survival. • Root resistance to heat could be used as trait for species selection for green roofs.

  2. Drought versus heat: What's the major constraint on Mediterranean green roof plants?

    International Nuclear Information System (INIS)

    Savi, Tadeja; Dal Borgo, Anna; Love, Veronica L.; Andri, Sergio; Tretiach, Mauro; Nardini, Andrea

    2016-01-01

    Green roofs are gaining momentum in the arid and semi-arid regions due to their multiple benefits as compared with conventional roofs. One of the most critical steps in green roof installation is the selection of drought and heat tolerant species that can thrive under extreme microclimate conditions. We monitored the water status, growth and survival of 11 drought-adapted shrub species grown on shallow green roof modules (10 and 13 cm deep substrate) and analyzed traits enabling plants to cope with drought (symplastic and apoplastic resistance) and heat stress (root membrane stability). The physiological traits conferring efficiency/safety to the water transport system under severe drought influenced plant water status and represent good predictors of both plant water use and growth rates over green roofs. Moreover, our data suggest that high substrate temperature represents a stress factor affecting plant survival to a larger extent than drought per se. In fact, the major cause influencing seedling survival on shallow substrates was the species-specific root resistance to heat, a single and easy measurable trait that should be integrated into the methodological framework for screening and selection of suitable shrub species for roof greening in the Mediterranean. - Highlights: • The use of hardy shrub species for roof greening should be increased. • We monitored water status of 11 shrub species growing on shallow green roofs. • Species heat and drought tolerance, growth, and survival were studied. • High substrate temperature significantly affected plant survival. • Root resistance to heat could be used as trait for species selection for green roofs.

  3. Setting constraints on the nature and origin of the two major hydrous sulfates on Mars: Monohydrated and polyhydrated sulfates

    Science.gov (United States)

    Wang, Alian; Jolliff, Bradley L.; Liu, Yang; Connor, Kathryn

    2016-04-01

    Monohydrated Mg sulfate (MgSO4·H2O) and polyhydrated sulfate are the most common and abundant hydrous sulfates observed thus far on Mars. They are widely distributed and coexist in many locations. On the basis of results from two new sets of experiments, in combination with past experimental studies and the subsurface salt mineralogy observed at a saline playa (Dalangtan, DLT) in a terrestrial analogue hyperarid region on the Tibet Plateau, we can now set new constraints on the nature and origin of these two major Martian sulfates. Starkeyite (MgSO4·4H2O) is the best candidate for polyhydrated sulfate. MgSO4·H2O in the form of "LH-1w," generated from dehydration of Mg sulfates with high degrees of hydration, is the most likely mineral form for the majority of Martian monohydrated Mg sulfate. Two critical properties of Mg sulfates are responsible for the coexistence of these two phases that have very different degrees of hydration: (1) the metastability of a substructural unit in starkeyite at relatively low temperatures, and (2) catalytic effects attributed to coprecipitated species (sulfates, chlorides, oxides, and hydroxides) from chemically complex brines that help overcome the metastability of starkeyite. The combination of these two properties controls the coexistence of the LH-1w layer and starkeyite layers at many locations on Mars, which sometimes occur in an interbedded stratigraphy. The structural H2O held by these two broadly distributed sulfates represents a large H2O reservoir at the surface and in the shallow subsurface on current Mars.

  4. Energetic map

    International Nuclear Information System (INIS)

    2012-01-01

    This report explains the energetic map of Uruguay as well as the different systems that delimits political frontiers in the region. The electrical system importance is due to the electricity, oil and derived , natural gas, potential study, biofuels, wind and solar energy

  5. Membrane-bound conformation of M13 major coat protein : a structure validation through FRET-derived constraints

    NARCIS (Netherlands)

    Vos, W.L.; Koehorst, R.B.M.; Spruijt, R.B.; Hemminga, M.A.

    2005-01-01

    M13 major coat protein, a 50-amino-acid-long protein, was incorporated into DOPC/DOPG (80/20 molar ratio) unilamellar vesicles. Over 60% of all amino acid residues was replaced with cysteine residues, and the single cysteine mutants were labeled with the fluorescent label I-AEDANS. The coat protein

  6. Flare energetics

    Science.gov (United States)

    Wu, S. T.; Dejager, C.; Dennis, B. R.; Hudson, H. S.; Simnett, G. M.; Strong, K. T.; Bentley, R. D.; Bornmann, P. L.; Bruner, M. E.; Cargill, P. J.

    1986-01-01

    In this investigation of flare energetics, researchers sought to establish a comprehensive and self-consistent picture of the sources and transport of energy within a flare. To achieve this goal, they chose five flares in 1980 that were well observed with instruments on the Solar Maximum Mission, and with other space-borne and ground-based instruments. The events were chosen to represent various types of flares. Details of the observations available for them and the corresponding physical parameters derived from these data are presented. The flares were studied from two perspectives, the impulsive and gradual phases, and then the results were compared to obtain the overall picture of the energics of these flares. The role that modeling can play in estimating the total energy of a flare when the observationally determined parameters are used as the input to a numerical model is discussed. Finally, a critique of the current understanding of flare energetics and the methods used to determine various energetics terms is outlined, and possible future directions of research in this area are suggested.

  7. Temporal constraints on future accumulation-area loss of a major Arctic ice cap due to climate change (Vestfonna, Svalbard).

    Science.gov (United States)

    Möller, Marco; Schneider, Christoph

    2015-01-28

    Arctic glaciers and ice caps are major contributors to past, present and future sea-level fluctuations. Continued global warming may eventually lead to the equilibrium line altitudes of these ice masses rising above their highest points, triggering unstoppable downwasting. This may feed future sea-level rise considerably. We here present projections for the timing of equilibrium-line loss at the major Arctic ice cap Vestfonna, Svalbard. The projections are based on spatially distributed climatic mass balance modelling driven by the outputs of multiple climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) forced by the Representative Concentration Pathways (RCPs) 2.6, 4.5, 6.0 and 8.5. Results indicate strongly decreasing climatic mass balances over the 21(st) century for all RCPs considered. Glacier-wide mass-balance rates will drop down to -4 m a(-1) w.e. (water equivalent) at a maximum. The date at which the equilibrium line rises above the summit of Vestfonna (630 m above sea level) is calculated to range between 2040 and 2150, depending on scenario.

  8. Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts: Review of the experimental constraints

    Science.gov (United States)

    Lambart, Sarah; Laporte, Didier; Schiano, Pierre

    2013-02-01

    Based on previous and new results on partial melting experiments of pyroxenites at high pressure, we attempt to identify the major element signature of pyroxenite partial melts and to evaluate to what extent this signature can be transmitted to the basalts erupted at oceanic islands and mid-ocean ridges. Although peridotite is the dominant source lithology in the Earth's upper mantle, the ubiquity of pyroxenites in mantle xenoliths and in ultramafic massifs, and the isotopic and trace elements variability of oceanic basalts suggest that these lithologies could significantly contribute to the generation of basaltic magmas. The question is how and to what degree the melting of pyroxenites can impact the major-element composition of oceanic basalts. The review of experimental phase equilibria of pyroxenites shows that the thermal divide, defined by the aluminous pyroxene plane, separates silica-excess pyroxenites (SE pyroxenites) on the right side and silica-deficient pyroxenites (SD pyroxenites) on the left side. It therefore controls the melting phase relations of pyroxenites at high pressure but, the pressure at which the thermal divide becomes effective, depends on the bulk composition; partial melt compositions of pyroxenites are strongly influenced by non-CMAS elements (especially FeO, TiO2, Na2O and K2O) and show a progressive transition from the liquids derived from the most silica-deficient compositions to those derived from the most silica-excess compositions. Another important aspect for the identification of source lithology is that, at identical pressure and temperature conditions, many pyroxenites produce melts that are quite similar to peridotite-derived melts, making the determination of the presence of pyroxenite in the source regions of oceanic basalts difficult; only pyroxenites able to produce melts with low SiO2 and high FeO contents can be identified on the basis of the major-element compositions of basalts. In the case of oceanic island basalts

  9. The ICRP Proposed Maximum Public Dose Constraints of o.3 mSv/y: a Major Issue for the Nuclear Industry

    International Nuclear Information System (INIS)

    Saint-Pierre, S.; Coates, R.

    2004-01-01

    The International Commission on Radiological Protection (ICRP) is currently developing a new set of Recommendations on Radiological Protection. A value of 0.3mSv/y for the maximum public dose constraint has been discussed by ICRP. This value represents a major concern for the nuclear industry at large. The primary issue arises from the lack of any new scientific evidence on public health effects from ionising radiation to support, in practice, the proposed reduction by about a factor of 3 (from 1 to 0.3 mSv/y) of the upper bound value for public dose impact from a nuclear activity or site. Such a change would create a de facto limit on public exposure from specific sources at a dose level of about one tenth of average natural background and an even smaller fraction of the typical range of background exposures and exposures from medical sources. This cannot be justified on public health grounds. The WNA supports ICRP's renewed intention, as expressed at the NEA-ICRP Stakeholder Forum in Lanzarote (April 2003), to retain the concept of a public dose limit at 1 mSv/y. We strongly believe that the current system comprising of the dose limit and the ALARA Principle provides the necessary flexibility and tools for regulators to address all situations in all countries. The WNA consider that the question of setting an upper bound dose constraint (below 1 mSv/y) at the country/site specific level is best left for discussion and agreement between the local stakeholders rather than at an international level. When considering the potential practical implications of a maximum dose constraint, it is important to look beyond the very low off-site dose impacts (on the public) resulting from annual routine radioactive discharges of nuclear industrial sites. There are many off-site and on-site practical situations, related to public exposures (both workers and the public) and worker classification as well as activities such transportation, decommissioning and site remediation, for

  10. The ICRP Proposed Maximum Public Dose Constraints of o.3 mSv/y: a Major Issue for the Nuclear Industry

    Energy Technology Data Exchange (ETDEWEB)

    Saint-Pierre, S.; Coates, R.

    2004-07-01

    The International Commission on Radiological Protection (ICRP) is currently developing a new set of Recommendations on Radiological Protection. A value of 0.3mSv/y for the maximum public dose constraint has been discussed by ICRP. This value represents a major concern for the nuclear industry at large. The primary issue arises from the lack of any new scientific evidence on public health effects from ionising radiation to support, in practice, the proposed reduction by about a factor of 3 (from 1 to 0.3 mSv/y) of the upper bound value for public dose impact from a nuclear activity or site. Such a change would create a de facto limit on public exposure from specific sources at a dose level of about one tenth of average natural background and an even smaller fraction of the typical range of background exposures and exposures from medical sources. This cannot be justified on public health grounds. The WNA supports ICRP's renewed intention, as expressed at the NEA-ICRP Stakeholder Forum in Lanzarote (April 2003), to retain the concept of a public dose limit at 1 mSv/y. We strongly believe that the current system comprising of the dose limit and the ALARA Principle provides the necessary flexibility and tools for regulators to address all situations in all countries. The WNA consider that the question of setting an upper bound dose constraint (below 1 mSv/y) at the country/site specific level is best left for discussion and agreement between the local stakeholders rather than at an international level. When considering the potential practical implications of a maximum dose constraint, it is important to look beyond the very low off-site dose impacts (on the public) resulting from annual routine radioactive discharges of nuclear industrial sites. There are many off-site and on-site practical situations, related to public exposures (both workers and the public) and worker classification as well as activities such transportation, decommissioning and site remediation

  11. Fragmentation in the Public Administration for Climate Change Mitigation: A Major Institutional Constraint for Energy Policy in the Transportation Sector of Thailand

    Directory of Open Access Journals (Sweden)

    Ratchaphong Klinsrisuk

    2013-07-01

    Full Text Available This paper focuses on how fragmentation in public administration has become a major institutional constraint on CO2 emission mitigation policies in Thailand, particularly for energy policy in the transportation sector. Most of our data are narratives and descriptions derived from in-depth interviews with various governmental agencies and academics. It was found that in practice, the environmental policy link between separated sectors continues to be weak because of the lack of appropriate institutional structure for integration. We conclude that the institutions tend to be independent, fragmented, and working on relatively narrow mandates. The closed decision-making processes and the organizational structures strongly bias the different administrative units towards their respective interests.

  12. Physics of energetic ions

    International Nuclear Information System (INIS)

    1999-01-01

    Physics knowledge (theory and experiment) in energetic particles relevant to design of a reactor scale tokamak is reviewed, and projections for ITER are provided in this Chapter of the ITER Physics Basis. The review includes single particle effects such as classical alpha particle heating and toroidal field ripple loss, as well as collective instabilities that might be generated in ITER plasmas by energetic alpha particles. The overall conclusion is that fusion alpha particles are expected to provide an efficient plasma heating for ignition and sustained burn in the next step device. The major concern is localized heat loads on the plasma facing components produced by alpha particle loss, which might affect their lifetime in a tokamak reactor. (author)

  13. The Principle of Energetic Consistency

    Science.gov (United States)

    Cohn, Stephen E.

    2009-01-01

    A basic result in estimation theory is that the minimum variance estimate of the dynamical state, given the observations, is the conditional mean estimate. This result holds independently of the specifics of any dynamical or observation nonlinearity or stochasticity, requiring only that the probability density function of the state, conditioned on the observations, has two moments. For nonlinear dynamics that conserve a total energy, this general result implies the principle of energetic consistency: if the dynamical variables are taken to be the natural energy variables, then the sum of the total energy of the conditional mean and the trace of the conditional covariance matrix (the total variance) is constant between observations. Ensemble Kalman filtering methods are designed to approximate the evolution of the conditional mean and covariance matrix. For them the principle of energetic consistency holds independently of ensemble size, even with covariance localization. However, full Kalman filter experiments with advection dynamics have shown that a small amount of numerical dissipation can cause a large, state-dependent loss of total variance, to the detriment of filter performance. The principle of energetic consistency offers a simple way to test whether this spurious loss of variance limits ensemble filter performance in full-blown applications. The classical second-moment closure (third-moment discard) equations also satisfy the principle of energetic consistency, independently of the rank of the conditional covariance matrix. Low-rank approximation of these equations offers an energetically consistent, computationally viable alternative to ensemble filtering. Current formulations of long-window, weak-constraint, four-dimensional variational methods are designed to approximate the conditional mode rather than the conditional mean. Thus they neglect the nonlinear bias term in the second-moment closure equation for the conditional mean. The principle of

  14. Relative stability of major types of beta-turns as a function of amino acid composition: a study based on Ab initio energetic and natural abundance data.

    Science.gov (United States)

    Perczel, András; Jákli, Imre; McAllister, Michael A; Csizmadia, Imre G

    2003-06-06

    Folding properties of small globular proteins are determined by their amino acid sequence (primary structure). This holds both for local (secondary structure) and for global conformational features of linear polypeptides and proteins composed from natural amino acid derivatives. It thus provides the rational basis of structure prediction algorithms. The shortest secondary structure element, the beta-turn, most typically adopts either a type I or a type II form, depending on the amino acid composition. Herein we investigate the sequence-dependent folding stability of both major types of beta-turns using simple dipeptide models (-Xxx-Yyy-). Gas-phase ab initio properties of 16 carefully selected and suitably protected dipeptide models (for example Val-Ser, Ala-Gly, Ser-Ser) were studied. For each backbone fold most probable side-chain conformers were considered. Fully optimized 321G RHF molecular structures were employed in medium level [B3LYP/6-311++G(d,p)//RHF/3-21G] energy calculations to estimate relative populations of the different backbone conformers. Our results show that the preference for beta-turn forms as calculated by quantum mechanics and observed in Xray determined proteins correlates significantly.

  15. Energetics Conditioning Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Conditioning Facility is used for long term and short term aging studies of energetic materials. The facility has 10 conditioning chambers of which 2...

  16. Financing Constraints and Entrepreneurship

    OpenAIRE

    William R. Kerr; Ramana Nanda

    2009-01-01

    Financing constraints are one of the biggest concerns impacting potential entrepreneurs around the world. Given the important role that entrepreneurship is believed to play in the process of economic growth, alleviating financing constraints for would-be entrepreneurs is also an important goal for policymakers worldwide. We review two major streams of research examining the relevance of financing constraints for entrepreneurship. We then introduce a framework that provides a unified perspecti...

  17. Constraint Differentiation

    DEFF Research Database (Denmark)

    Mödersheim, Sebastian Alexander; Basin, David; Viganò, Luca

    2010-01-01

    We introduce constraint differentiation, a powerful technique for reducing search when model-checking security protocols using constraint-based methods. Constraint differentiation works by eliminating certain kinds of redundancies that arise in the search space when using constraints to represent...... results show that constraint differentiation substantially reduces search and considerably improves the performance of OFMC, enabling its application to a wider class of problems....

  18. Measuring and managing radiologist workload: application of lean and constraint theories and production planning principles to planning radiology services in a major tertiary hospital.

    Science.gov (United States)

    MacDonald, Sharyn L S; Cowan, Ian A; Floyd, Richard; Mackintosh, Stuart; Graham, Rob; Jenkins, Emma; Hamilton, Richard

    2013-10-01

    We describe how techniques traditionally used in the manufacturing industry (lean management, the theory of constraints and production planning) can be applied to planning radiology services to reduce the impact of constraints such as limited radiologist hours, and to subsequently reduce delays in accessing imaging and in report turnaround. Targets for imaging and reporting were set aligned with clinical needs. Capacity was quantified for each modality and for radiologists and recorded in activity lists. Demand was quantified and forecasting commenced based on historical referral rates. To try and mitigate the impact of radiologists as a constraint, lean management processes were applied to radiologist workflows. A production planning process was implemented. Outpatient waiting times to access imaging steadily decreased. Report turnaround times improved with the percentage of overnight/on-call reports completed by a 1030 target time increased from approximately 30% to 80 to 90%. The percentage of emergency and inpatient reports completed within one hour increased from approximately 15% to approximately 50% with 80 to 90% available within 4 hours. The number of unreported cases on the radiologist work-list at the end of the working day reduced. The average weekly accuracy for demand forecasts for emergency and inpatient CT, MRI and plain film imaging was 91%, 83% and 92% respectively. For outpatient CT, MRI and plain film imaging the accuracy was 60%, 55% and 77% respectively. Reliable routine weekly and medium to longer term service planning is now possible. Tools from industry can be successfully applied to diagnostic imaging services to improve performance. They allow an accurate understanding of the demands on a service, capacity, and can reliably predict the impact of changes in demand or capacity on service delivery. © 2013 The Royal Australian and New Zealand College of Radiologists.

  19. Energetic solar particles

    International Nuclear Information System (INIS)

    Biswas, M.

    1975-01-01

    In this review, some of the important aspects of energetic solar particles and their relation to solar physics are discussed. The major aspects of solar cosmic ray studies currently under investigation are identified and attention is focussed on the problems of the physical processes in the sun which may be responsible for these phenomena. The studies of the composition and energy spectra of solar cosmic ray nuclei are related to the basic problem of particle acceleration process in sun and to the composition of elements in solar atmosphere. The composition of higher energy (>20 MeV/amu) multiply charged nuclei of He, C, N, O, Ne, Mg, Si and Fe give information on the abundance of elements in the solar atmosphere. At lower energies (approximately 1-10 MeV/amu), the abundances of these elements show enhancements relative to solar abundances and these enhancements are believed to be due to particle acceleration mechanisms operative in the sun which are not fully understood at present. Studies of the relative abundances of H 2 , H 3 and He 3 isotopes and Li, Be, B nuclei in the solar cosmic rays can also be studied. The question of the relationship of the accelerated particles in the sun to the optical flare phenomena is discussed. Further studies of different aspects of these phenomena may give important clues to a wide ranging phenomena in the active sun. The observational methods employed for these studies are mentioned. (A.K.)

  20. Volatile (Cl, F and S) and major element constraints on subduction-related mantle metasomatism along the alkaline basaltic backarc, Payenia, Argentina

    DEFF Research Database (Denmark)

    Brandt, Frederik Ejvang; Holm, Paul Martin; Hansteen, Thor H.

    2017-01-01

    We present data on volatile (S, F and Cl) and major element contents in olivine-hosted melt inclusions (MIs) from alkaline basaltic tephras along the Quaternary Payenia backarc volcanic province (~34°S–38°S) of the Andean Southern Volcanic Zone (SVZ). The composition of Cr-spinel inclusions and h...

  1. Energetic certification in Europe

    International Nuclear Information System (INIS)

    1998-01-01

    At community level the problem of energy quality control in a building was introduced by EEC recommendation n. 93/76 in 1993. In this item are reported some notes on energetic certification in European countries [it

  2. Energetics Laboratory Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — These energetic materials laboratories are equipped with explosion proof hoods with blow out walls for added safety, that are certified for safe handling of primary...

  3. Geochemistry, water dynamics and metals: Major, trace elements, Pb and Sr isotope constraints on their origins and movements in a small anthropized catchment over a flood

    International Nuclear Information System (INIS)

    Luck, J.M.; Othman, D.B.

    1997-01-01

    Major, trace elements and Sr-Pb isotope data on the dissolved and particulate phases are reported for water samples taken regularly over the September flood of a Mediterranean river (S France). This river drains runoff from a small, carbonate, karstified watershed with Miocene and Jurassic lithologies, and characterized by agricultural, urban and road network activities. The objective is to combine all the data into a dynamic model for constraining the origin(s) and movements of waters and of their loads. Furthermore, for metals, it becomes then feasible to know their fate and bioavailability downstream

  4. Photoactive energetic materials

    Science.gov (United States)

    Chavez, David E.; Hanson, Susan Kloek; Scharff, Robert Jason; Veauthier, Jacqueline Marie; Myers, Thomas Winfield

    2018-02-27

    Energetic materials that are photoactive or believed to be photoactive may include a conventional explosive (e.g. PETN, nitroglycerine) derivatized with an energetic UV-absorbing and/or VIS-absorbing chromophore such as 1,2,4,5-tetrazine or 1,3,5-triazine. Absorption of laser light having a suitably chosen wavelength may result in photodissociation, decomposition, and explosive release of energy. These materials may be used as ligands to form complexes. Coordination compounds include such complexes with counterions. Some having the formula M(L).sub.n.sup.2+ were synthesized, wherein M is a transition metal and L is a ligand and n is 2 or 3. These may be photoactive upon exposure to a laser light beam having an appropriate wavelength of UV light, near-IR and/or visible light. Photoactive materials also include coordination compounds bearing non-energetic ligands; in this case, the counterion may be an oxidant such as perchlorate.

  5. Energetic Particle Estimates for Stellar Flares

    Science.gov (United States)

    Youngblood, Allison; Chamberlin, Phil; Woods, Tom

    2018-01-01

    In the heliosphere, energetic particles are accelerated away from the Sun during solar flares and/or coronal mass ejections where they frequently impact the Earth and other solar system bodies. Solar (or stellar) energetic particles (SEPs) not only affect technological assets, but also influence mass loss and chemistry in planetary atmospheres (e.g., depletion of ozone). SEPs are increasingly recognized as an important factor in assessing exoplanet habitability, but we do not yet have constraints on SEP emission from any stars other than the Sun. Until indirect measurements are available, we must assume solar-like particle production and apply correlations between solar flares and SEPs detected near Earth to stellar flares. We present improved scaling relations between solar far-UV flare flux and >10 MeV proton flux near Earth. We apply these solar scaling relations to far-UV flares from exoplanet host stars and discuss the implications for modeling chemistry and mass loss in exoplanet atmospheres.

  6. Misconceptions and constraints

    International Nuclear Information System (INIS)

    Whitten, M.; Mahon, R.

    2005-01-01

    In theory, the sterile insect technique (SIT) is applicable to a wide variety of invertebrate pests. However, in practice, the approach has been successfully applied to only a few major pests. Chapters in this volume address possible reasons for this discrepancy, e.g. Klassen, Lance and McInnis, and Robinson and Hendrichs. The shortfall between theory and practice is partly due to the persistence of some common misconceptions, but it is mainly due to one constraint, or a combination of constraints, that are biological, financial, social or political in nature. This chapter's goal is to dispel some major misconceptions, and view the constraints as challenges to overcome, seeing them as opportunities to exploit. Some of the common misconceptions include: (1) released insects retain residual radiation, (2) females must be monogamous, (3) released males must be fully sterile, (4) eradication is the only goal, (5) the SIT is too sophisticated for developing countries, and (6) the SIT is not a component of an area-wide integrated pest management (AW-IPM) strategy. The more obvious constraints are the perceived high costs of the SIT, and the low competitiveness of released sterile males. The perceived high up-front costs of the SIT, their visibility, and the lack of private investment (compared with alternative suppression measures) emerge as serious constraints. Failure to appreciate the true nature of genetic approaches, such as the SIT, may pose a significant constraint to the wider adoption of the SIT and other genetically-based tactics, e.g. transgenic genetically modified organisms (GMOs). Lack of support for the necessary underpinning strategic research also appears to be an important constraint. Hence the case for extensive strategic research in ecology, population dynamics, genetics, and insect behaviour and nutrition is a compelling one. Raising the competitiveness of released sterile males remains the major research objective of the SIT. (author)

  7. Solar constraints

    International Nuclear Information System (INIS)

    Provost, J.

    1984-01-01

    Accurate tests of the theory of stellar structure and evolution are available from the Sun's observations. The solar constraints are reviewed, with a special attention to the recent progress in observing global solar oscillations. Each constraint is sensitive to a given region of the Sun. The present solar models (standard, low Z, mixed) are discussed with respect to neutrino flux, low and high degree five-minute oscillations and low degree internal gravity modes. It appears that actually there do not exist solar models able to fully account for all the observed quantities. (Auth.)

  8. Forecast of nuclear energetics

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W

    1976-01-01

    The forecast concerning the development of nuclear energetics is presented. Some information on economics of nuclear power plants is given. The nuclear fuel reserves are estimated on the background of power resources of the world. The safety and environment protection problems are mentioned.

  9. Energetic and biomechanical constraints on animal migration distance.

    Science.gov (United States)

    Hein, Andrew M; Hou, Chen; Gillooly, James F

    2012-02-01

    Animal migration is one of the great wonders of nature, but the factors that determine how far migrants travel remain poorly understood. We present a new quantitative model of animal migration and use it to describe the maximum migration distance of walking, swimming and flying migrants. The model combines biomechanics and metabolic scaling to show how maximum migration distance is constrained by body size for each mode of travel. The model also indicates that the number of body lengths travelled by walking and swimming migrants should be approximately invariant of body size. Data from over 200 species of migratory birds, mammals, fish, and invertebrates support the central conclusion of the model - that body size drives variation in maximum migration distance among species through its effects on metabolism and the cost of locomotion. The model provides a new tool to enhance general understanding of the ecology and evolution of migration. © 2011 Blackwell Publishing Ltd/CNRS.

  10. The constraints

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    There are considerable incentives for the use of nuclear in preference to other sources for base load electricity generation in most of the developed world. These are economic, strategic, environmental and climatic. However, there are two potential constraints which could hinder the development of nuclear power to its full economic potential. These are public opinion and financial regulations which distort the nuclear economic advantage. The concerns of the anti-nuclear lobby are over safety, (especially following the Chernobyl accident), the management of radioactive waste, the potential effects of large scale exposure of the population to radiation and weapons proliferation. These are discussed. The financial constraint is over two factors, the availability of funds and the perception of cost, both of which are discussed. (U.K.)

  11. Energetic particle physics with applications in fusion and space plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1997-01-01

    Energetic particle physics is the study of the effects of energetic particles on collective electromagnetic (EM) instabilities and energetic particle transport in plasmas. Anomalously large energetic particle transport is often caused by low frequency MHD instabilities, which are driven by these energetic particles in the presence of a much denser background of thermal particles. The theory of collective energetic particle phenomena studies complex wave-particle interactions in which particle kinetic physics involving small spatial and fast temporal scales can strongly affect the MHD structure and long-time behavior of plasmas. The difficulty of modeling kinetic-MHD multiscale coupling processes stems from the disparate scales which are traditionally analyzed separately: the macroscale MHD phenomena are studied using the fluid MHD framework, while microscale kinetic phenomena are best described by complicated kinetic theories. The authors have developed a kinetic-MHD model that properly incorporates major particle kinetic effects into the MHD fluid description. For tokamak plasmas a nonvariational kinetic-MHD stability code, the NOVA-K code, has been successfully developed and applied to study problems such as the excitation of fishbone and Toroidal Alfven Eigenmodes (TAE) and the sawtooth stabilization by energetic ions in tokamaks. In space plasmas the authors have employed the kinetic-MHD model to study the energetic particle effects on the ballooning-mirror instability which explains the multisatellite observation of the stability and field-aligned structure of compressional Pc 5 waves in the magnetospheric ring current plasma

  12. Creativity from Constraints in Engineering Design

    DEFF Research Database (Denmark)

    Onarheim, Balder

    2012-01-01

    This paper investigates the role of constraints in limiting and enhancing creativity in engineering design. Based on a review of literature relating constraints to creativity, the paper presents a longitudinal participatory study from Coloplast A/S, a major international producer of disposable...... and ownership of formal constraints played a crucial role in defining their influence on creativity – along with the tacit constraints held by the designers. The designers were found to be highly constraint focused, and four main creative strategies for constraint manipulation were observed: blackboxing...

  13. Energetics of bacterial photosynthesis.

    Science.gov (United States)

    Lebard, David N; Matyushov, Dmitry V

    2009-09-10

    We report the results of extensive numerical simulations and theoretical calculations of electronic transitions in the reaction center of Rhodobacter sphaeroides photosynthetic bacterium. The energetics and kinetics of five electronic transitions related to the kinetic scheme of primary charge separation have been analyzed and compared to experimental observations. Nonergodic formulation of the reaction kinetics is required for the calculation of the rates due to a severe breakdown of the system ergodicity on the time scale of primary charge separation, with the consequent inapplicability of the standard canonical prescription to calculate the activation barrier. Common to all reactions studied is a significant excess of the charge-transfer reorganization energy from the width of the energy gap fluctuations over that from the Stokes shift of the transition. This property of the hydrated proteins, breaking the linear response of the thermal bath, allows the reaction center to significantly reduce the reaction free energy of near-activationless electron hops and thus raise the overall energetic efficiency of the biological charge-transfer chain. The increase of the rate of primary charge separation with cooling is explained in terms of the temperature variation of induction solvation, which dominates the average donor-acceptor energy gap for all electronic transitions in the reaction center. It is also suggested that the experimentally observed break in the Arrhenius slope of the primary recombination rate, occurring near the temperature of the dynamical transition in proteins, can be traced back to a significant drop of the solvent reorganization energy close to that temperature.

  14. Energetic cost of communication.

    Science.gov (United States)

    Stoddard, Philip K; Salazar, Vielka L

    2011-01-15

    Communication signals may be energetically expensive or inexpensive to produce, depending on the function of the signal and the competitive nature of the communication system. Males of sexually selected species may produce high-energy advertisement signals, both to enhance detectability and to signal their size and body condition. Accordingly, the proportion of the energy budget allocated to signal production ranges from almost nothing for many signals to somewhere in excess of 50% for acoustic signals in short-lived sexually selected species. Recent data from gymnotiform electric fish reveal mechanisms that regulate energy allocated to sexual advertisement signals through dynamical remodeling of the excitable membranes in the electric organ. Further, males of the short-lived sexually selected species, Brachyhypopomus gauderio, trade off among different metabolic compartments, allocating energy to signal production while reducing energy used in other metabolic functions. Female B. gauderio, by contrast, do not trade off energy between signaling and other functions. To fuel energetically expensive signal production, we expect a continuum of strategies to be adopted by animals of different life history strategies. Future studies should explore the relation between life history and energy allocation trade-offs.

  15. Energetics Manufacturing Technology Center (EMTC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Manufacturing Technology Center (EMTC), established in 1994 by the Office of Naval Research (ONR) Manufacturing Technology (ManTech) Program, is Navy...

  16. Identifying energy constraints to parasite resistance.

    Science.gov (United States)

    Allen, D E; Little, T J

    2011-01-01

    Life-history theory suggests that energetically expensive traits may trade off against each other, resulting in costs associated with the development or maintenance of a particular phenotype. The deployment of resistance mechanisms during parasite exposure is one such trait, and thus their potential benefit in fighting off parasites may be offset by costs to other fitness-related traits. In this study, we used trade-off theory as a basis to test whether stimulating an increased development rate in juvenile Daphnia would reveal energetic constraints to its ability to resist infection upon subsequent exposure to the castrating parasite, Pasteuria ramosa. We show that the presumably energetically expensive process of increased development rate does result in more infected hosts, suggesting that parasite resistance requires the allocation of resources from a limited source, and thus has the potential to be costly.

  17. About Russian nuclear energetic perspectives

    International Nuclear Information System (INIS)

    Laletin, N.I.

    2003-01-01

    My particular view about Russian nuclear energetics perspectives is presented. The nearest and the further perspectives are considered. The arguments are adduced that the most probable scenario of nuclear energetic development is its stabilization in the near future. Fur further development the arguments of supporters and opponents of nuclear energetics are analyzed. Three points of view are considered. The first point of view that there is not alternative for nuclear energetics. My notes are the following ones. a) I express a skeptic opinion about a statement of quick exhaustion of fossil organic fuel recourses and corresponding estimations are presented. b) It is expressed skeptic opinion about the statement that nuclear energetics can have a visual influence on ''steam effect''. c) I agree that nuclear energetics is the most ecological technology for normal work but however we can't disregard possibilities of catastrophic accidents. The second point of view that the use of nuclear energetics can't have the justification. I adduce the arguments contrary to this statement. The third point of view that nuclear energetics is a usual technology and the only criteria for discussions about what dimension and where one ought develop it is total cost of its unit. Expressed an opinion that the deceived for the choose of a way the skill of the estimate correctly and optimized so named the external parts of the unit energy costs for different energy technologies. (author)

  18. Rural energetic development: cuban experience

    International Nuclear Information System (INIS)

    Aguilera Barciela, M.

    1994-01-01

    The development of electro energetic national system in Cuba has been directed to the following objectives: to brake the rural population's exodus toward the cities, electrification of dairy farm, interconnection to the system electro energetic of all the sugar central production, these improves the rural population's conditions life

  19. Economical aspects of nuclear energetics

    International Nuclear Information System (INIS)

    Celinski, Z.

    2000-01-01

    The economical aspects of nuclear power generation in respect to costs of conventional energetics have been discussed in detail. The costs and competitiveness of nuclear power have been considered on the base of worldwide trends taking into account investment and fuel costs as well as 'social' costs being result of impact of different types of energetics on environment, human health etc

  20. Distance Constraint Satisfaction Problems

    Science.gov (United States)

    Bodirsky, Manuel; Dalmau, Victor; Martin, Barnaby; Pinsker, Michael

    We study the complexity of constraint satisfaction problems for templates Γ that are first-order definable in ({ Z}; {suc}), the integers with the successor relation. Assuming a widely believed conjecture from finite domain constraint satisfaction (we require the tractability conjecture by Bulatov, Jeavons and Krokhin in the special case of transitive finite templates), we provide a full classification for the case that Γ is locally finite (i.e., the Gaifman graph of Γ has finite degree). We show that one of the following is true: The structure Γ is homomorphically equivalent to a structure with a certain majority polymorphism (which we call modular median) and CSP(Γ) can be solved in polynomial time, or Γ is homomorphically equivalent to a finite transitive structure, or CSP(Γ) is NP-complete.

  1. Electrical initiation of an energetic nanolaminate film

    Science.gov (United States)

    Tringe, Joseph W.; Gash, Alexander E.; Barbee, Jr., Troy W.

    2010-03-30

    A heating apparatus comprising an energetic nanolaminate film that produces heat when initiated, a power source that provides an electric current, and a control that initiates the energetic nanolaminate film by directing the electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature. Also a method of heating comprising providing an energetic nanolaminate film that produces heat when initiated, and initiating the energetic nanolaminate film by directing an electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature.

  2. Analysis of the energetic sector through the national energetic matrix

    International Nuclear Information System (INIS)

    Garzon Lozano, Enrique

    2007-01-01

    The author shows the results of the national energetic balance 1975-2005, through the energetic matrix of the country, giving an annual growth of 5.1% in this period of offer of primary energy, where the mineral coal participates with 9,6%, the hydraulic energy with 4,8%, natural gas with 4,2%, trash with 2,4% and petroleum with 2,2%, while the firewood fell in 0,5%

  3. Energetic policies 2005-2030

    International Nuclear Information System (INIS)

    2008-01-01

    This power point exhibition shows the following topics: energy analysis, production and use, supply and demand, consumption, energy sources, energetic prospective of Uruguay country, medium and long term perspectives.

  4. Musical Tasks and Energetic Arousal.

    Science.gov (United States)

    Lim, Hayoung A; Watson, Angela L

    2018-03-08

    Music is widely recognized as a motivating stimulus. Investigators have examined the use of music to improve a variety of motivation-related outcomes; however, these studies have focused primarily on passive music listening rather than active participation in musical activities. To examine the influence of participation in musical tasks and unique participant characteristics on energetic arousal. We used a one-way Welch's ANOVA to examine the influence of musical participation (i.e., a non-musical control and four different musical task conditions) upon energetic arousal. In addition, ancillary analyses of participant characteristics including personality, age, gender, sleep, musical training, caffeine, nicotine, and alcohol revealed their possible influence upon pretest and posttest energetic arousal scores. Musical participation yielded a significant relationship with energetic arousal, F(4, 55.62) = 44.38, p = .000, estimated ω2 = 0.60. Games-Howell post hoc pairwise comparisons revealed statistically significant differences between five conditions. Descriptive statistics revealed expected differences between introverts' and extraverts' energetic arousal scores at the pretest, F(1, 115) = 6.80, p = .010, partial η2= .06; however, mean differences failed to reach significance at the posttest following musical task participation. No other measured participant characteristics yielded meaningful results. Passive tasks (i.e., listening to a story or song) were related to decreased energetic arousal, while active musical tasks (i.e., singing, rhythm tapping, and keyboard playing) were related to increased energetic arousal. Musical task participation appeared to have a differential effect for individuals with certain personality traits (i.e., extroverts and introverts).

  5. Locomotion, Energetics, Performance, and Behavior: A Mammalian Perspective on Lizards, and Vice Versa.

    Science.gov (United States)

    Garland, Theodore; Albuquerque, Ralph L

    2017-08-01

    average for both lineages, the ECT is surprisingly low, somewhat higher for lizards, and positively allometric. If a lizard and mammal of 100 g body mass were both to move their entire DMD at their MAS, they could do so in ∼21 and 17 min, respectively, thus de-emphasizing the possible importance of time constraints. We conclude that ecological-energetic constraints related to locomotion are relatively more likely to occur in large, carnivorous lizards. Overall, our comparisons support the idea that the (gradual) evolution of mammalian endothermy did not necessarily require major changes in locomotor energetics, performance, or associated behaviors. Instead, we speculate that the evolution of thermoregulatory responses to low temperatures (e.g., shivering) may have been a key and "difficult" step in this transition. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  6. Second School of Nuclear Energetics

    International Nuclear Information System (INIS)

    2009-01-01

    At 3-5 Nov 2009 Institute of Nuclear Energy POLATOM, Association of Polish Electrical Engineers (SEP) and Polish Nuclear Society have organized Second School of Nuclear Energetics. 165 participants have arrived from all Poland and represented both different central institutions (e.g. ministries) and local institutions (e.g. Office of Technical Inspection, The Voivodship Presidential Offices, several societies, consulting firms or energetic enterprises). Students from the Warsaw Technical University and Gdansk Technical University, as well as the PhD students from the Institute of Nuclear Chemistry and Technology (Warsaw) attended the School. 20 invited lectures presented by eminent Polish specialists concerned basic problems of nuclear energetics, nuclear fuel cycle and different problems of the NPP construction in Poland. [pl

  7. The energetics of electric organ discharge generation in gymnotiform weakly electric fish.

    Science.gov (United States)

    Salazar, Vielka L; Krahe, Rüdiger; Lewis, John E

    2013-07-01

    Gymnotiform weakly electric fish produce an electric signal to sense their environment and communicate with conspecifics. Although the generation of such relatively large electric signals over an entire lifetime is expected to be energetically costly, supporting evidence to date is equivocal. In this article, we first provide a theoretical analysis of the energy budget underlying signal production. Our analysis suggests that wave-type and pulse-type species invest a similar fraction of metabolic resources into electric signal generation, supporting previous evidence of a trade-off between signal amplitude and frequency. We then consider a comparative and evolutionary framework in which to interpret and guide future studies. We suggest that species differences in signal generation and plasticity, when considered in an energetics context, will not only help to evaluate the role of energetic constraints in the evolution of signal diversity but also lead to important general insights into the energetics of bioelectric signal generation.

  8. Heliospheric Observations of Energetic Particles

    Science.gov (United States)

    Summerlin, Errol J.

    2011-01-01

    Heliospheric observations of energetic particles have shown that, on long time averages, a consistent v^-5 power-law index arises even in the absence of transient events. This implies an ubiquitous acceleration process present in the solar wind that is required to generate these power-law tails and maintain them against adiabatic losses and coulomb-collisions which will cool and thermalize the plasma respectively. Though the details of this acceleration process are being debated within the community, most agree that the energy required for these tails comes from fluctuations in the magnetic field which are damped as the energy is transferred to particles. Given this source for the tail, is it then reasonable to assume that the turbulent LISM should give rise to such a power-law tail as well? IBEX observations clearly show a power-law tail of index approximately -5 in energetic neutral atoms. The simplest explanation for the origins of these ENAs are that they are energetic ions which have charge-exchanged with a neutral atom. However, this would imply that energetic ions possess a v^-5 power-law distribution at keV energies at the source of these ENAs. If the source is presumed to be the LISM, it provides additional options for explaining the, so called, IBEX ribbon. This presentation will discuss some of these options as well as potential mechanisms for the generation of a power-law spectrum in the LISM.

  9. About the wind energetics development

    International Nuclear Information System (INIS)

    Strebkov, D.S.; Kharitonov, V.P.; Murugov, V.P.; Sokol'skij, A.K.

    1996-01-01

    The review of wind power energetics state in USA, Europe, Russia is given. The data of EC on wind power plants production in different periods are presented. The directions of scientific-research works with the purpose of increasing the level of wind power industry of Russia corresponding to economics demands were elaborated. (author). 8 refs., 3 tabs

  10. Introduction to global energetic problems

    International Nuclear Information System (INIS)

    Gicquel, R.

    1992-01-01

    This book gives a view on global energetic problems and proposes a thorough economic analysis on principle aspects taken into account: energy supply, depending energy sources and available technologic channels, relationships between macro-economy and energy demand, new size of energy problems (environmental effects, overcosts of renewable energy sources, necessity of an high technologic development...). 38 refs

  11. Energetic consumption levels and human development indexes

    International Nuclear Information System (INIS)

    Boa Nova, Antonio Carlos

    1999-01-01

    The article overviews the energetic consumption levels and human development indexes. The human development indexes are described based on the United Nations Development Programme. A comparison between the energetic consumption levels and human development indexes is also presented

  12. The location of energetic compartments affects energetic communication in cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Rikke eBirkedal

    2014-09-01

    Full Text Available The heart relies on accurate regulation of mitochondrial energy supply to match energy demand. The main regulators are Ca2+ and feedback of ADP and Pi. Regulation via feedback has intrigued for decades. First, the heart exhibits a remarkable metabolic stability. Second, diffusion of ADP and other molecules is restricted specifically in heart and red muscle, where a fast feedback is needed the most. To explain the regulation by feedback, compartmentalization must be taken into account. Experiments and theoretical approaches suggest that cardiomyocyte energetic compartmentalization is elaborate with barriers obstructing diffusion in the cytosol and at the level of the mitochondrial outer membrane (MOM. A recent study suggests the barriers are organized in a lattice with dimensions in agreement with those of intracellular structures. Here, we discuss the possible location of these barriers. The more plausible scenario includes a barrier at the level of MOM. Much research has focused on how the permeability of MOM itself is regulated, and the importance of the creatine kinase system to facilitate energetic communication. We hypothesize that at least part of the diffusion restriction at the MOM level is not by MOM itself, but due to the close physical association between the sarcoplasmic reticulum (SR and mitochondria. This will explain why animals with a disabled creatine kinase system exhibit rather mild phenotype modifications. Mitochondria are hubs of energetics, but also ROS production and signaling. The close association between SR and mitochondria may form a diffusion barrier to ADP added outside a permeabilised cardiomyocyte. But in vivo, it is the structural basis for the mitochondrial-SR coupling that is crucial for the regulation of mitochondrial Ca2+-transients to regulate energetics, and for avoiding Ca2+-overload and irreversible opening of the mitochondrial permeability transition pore.

  13. SIMULATION OF ENERGETIC NEUTRAL ATOMS FROM SOLAR ENERGETIC PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Linghua [Institute of Space Physics and Applied Technology, Peking University, Beijing 100871 (China); Li, Gang [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Shih, Albert Y. [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20770 (United States); Lin, Robert P. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Wimmer-Schweingruber, Robert F., E-mail: wanglhwang@gmail.com [Institut fuer Experimentelle und Angewandte Physik, University of Kiel, Leibnizstrasse 11, D-24118 Kiel (Germany)

    2014-10-01

    Energetic neutral atoms (ENAs) provide the only way to observe the acceleration site of coronal-mass-ejection-driven (CME-driven) shock-accelerated solar energetic particles (SEPs). In gradual SEP events, energetic protons can charge exchange with the ambient solar wind or interstellar neutrals to become ENAs. Assuming a CME-driven shock with a constant speed of 1800 km s{sup –1} and compression ratio of 3.5, propagating from 1.5 to 40 R{sub S} , we calculate the accelerated SEPs at 5-5000 keV and the resulting ENAs via various charge-exchange interactions. Taking into account the ENA losses in the interplanetary medium, we obtain the flux-time profiles of these solar ENAs reaching 1 AU. We find that the arriving ENAs at energies above ∼100 keV show a sharply peaked flux-time profile, mainly originating from the shock source below 5 R{sub S} , whereas the ENAs below ∼20 keV have a flat-top time profile, mostly originating from the source beyond 10 R{sub S} . Assuming the accelerated protons are effectively trapped downstream of the shock, we can reproduce the STEREO ENA fluence observations at ∼2-5 MeV/nucleon. We also estimate the flux of ENAs coming from the charge exchange of energetic storm protons, accelerated by the fast CME-driven shock near 1 AU, with interstellar hydrogen and helium. Our results suggest that appropriate instrumentation would be able to detect ENAs from SEPs and to even make ENA images of SEPs at energies above ∼10-20 keV.

  14. Very energetic photons at HERA

    International Nuclear Information System (INIS)

    Bawa, A.C.; Krawczyk, M.

    1991-01-01

    We show that every energetic photons in the backward direction can be produced in deep inelastic Compton scattering at HERA. Assuming a fixed energy of 9 GeV for the initial photons and 820 GeV for the protons a high rate is found for the production of final photons with a transverse momentum equal to 5 GeV/c and energy between 40 GeV and 300 GeV. These energetic photons arise mainly from the scattering of the soft gluonic constituents of the initial photon with quarks from the proton. They are produced in the backward direction in coincidence with a photon beam jet of energy ∝ 9 GeV in the forward direction. (orig.)

  15. The energetic significance of cooking.

    Science.gov (United States)

    Carmody, Rachel N; Wrangham, Richard W

    2009-10-01

    While cooking has long been argued to improve the diet, the nature of the improvement has not been well defined. As a result, the evolutionary significance of cooking has variously been proposed as being substantial or relatively trivial. In this paper, we evaluate the hypothesis that an important and consistent effect of cooking food is a rise in its net energy value. The pathways by which cooking influences net energy value differ for starch, protein, and lipid, and we therefore consider plant and animal foods separately. Evidence of compromised physiological performance among individuals on raw diets supports the hypothesis that cooked diets tend to provide energy. Mechanisms contributing to energy being gained from cooking include increased digestibility of starch and protein, reduced costs of digestion for cooked versus raw meat, and reduced energetic costs of detoxification and defence against pathogens. If cooking consistently improves the energetic value of foods through such mechanisms, its evolutionary impact depends partly on the relative energetic benefits of non-thermal processing methods used prior to cooking. We suggest that if non-thermal processing methods such as pounding were used by Lower Palaeolithic Homo, they likely provided an important increase in energy gain over unprocessed raw diets. However, cooking has critical effects not easily achievable by non-thermal processing, including the relatively complete gelatinisation of starch, efficient denaturing of proteins, and killing of food borne pathogens. This means that however sophisticated the non-thermal processing methods were, cooking would have conferred incremental energetic benefits. While much remains to be discovered, we conclude that the adoption of cooking would have led to an important rise in energy availability. For this reason, we predict that cooking had substantial evolutionary significance.

  16. Life cycles of energetic systems

    International Nuclear Information System (INIS)

    Adnot, Jerome; Marchio, Dominique; Riviere, Philippe; Duplessis, B.; Rabl, A.; Glachant, M.; Aggeri, F.; Benoist, A.; Teulon, H.; Daude, J.

    2012-01-01

    This collective publication aims at being a course for students in engineering of energetic systems, i.e. at learning how to decide to accept or discard a project, to select the most efficient system, to select the optimal system, to select the optimal combination of systems, and to classify independent systems. Thus, it presents methods to analyse system life cycle from an energetic, economic and environmental point of view, describes how to develop an approach to the eco-design of an energy consuming product, how to understand the importance of hypotheses behind abundant and often contradicting publicised results, and to be able to criticise or to put in perspective one's own analysis. The first chapters thus recall some aspects of economic calculation, introduce the assessment of investment and exploitation costs of energetic systems, describe how to assess and internalise environmental costs, present the territorial carbon assessment, discuss the use of the life cycle assessment, and address the issue of environmental management at a product scale. The second part proposes various case studies: an optimal fleet of thermal production of electric power, the eco-design of a refrigerator, the economic and environmental assessment of wind farms

  17. Energetic charged particles above thunderclouds

    International Nuclear Information System (INIS)

    Fullekrug, Martin; Diver, Declan; Pincon, Jean-Louis; Renard, Jean-Baptiste; Phelps, Alan D.R.; Bourdon, Anne; Helling, Christiane; Blanc, Elisabeth; Honary, Farideh; Kosch, Mike; Harrison, Giles; Sauvaud, Jean-Andre; Lester, Mark; Rycroft, Michael; Kosch, Mike; Horne, Richard B.; Soula, Serge; Gaffet, Stephane

    2013-01-01

    The French government has committed to launch the satellite TARANIS to study transient coupling processes between the Earth's atmosphere and near-Earth space. The prime objective of TARANIS is to detect energetic charged particles and hard radiation emanating from thunderclouds. The British Nobel prize winner C. T. R. Wilson predicted lightning discharges from the top of thunderclouds into space almost a century ago. However, new experiments have only recently confirmed energetic discharge processes which transfer energy from the top of thunderclouds into the upper atmosphere and near-Earth space; they are now denoted as transient luminous events, terrestrial gamma-ray flashes and relativistic electron beams. This meeting report builds on the current state of scientific knowledge on the physics of plasmas in the laboratory and naturally occurring plasmas in the Earth's atmosphere to propose areas of future research. The report specifically reflects presentations delivered by the members of a novel Franco-British collaboration during a meeting at the French Embassy in London held in November 2011. The scientific subjects of the report tackle ionization processes leading to electrical discharge processes, observations of transient luminous events, electromagnetic emissions, energetic charged particles and their impact on the Earth's atmosphere. The importance of future research in this area for science and society, and towards spacecraft protection, is emphasized. (authors)

  18. Inferring repeat-protein energetics from evolutionary information.

    Directory of Open Access Journals (Sweden)

    Rocío Espada

    2017-06-01

    Full Text Available Natural protein sequences contain a record of their history. A common constraint in a given protein family is the ability to fold to specific structures, and it has been shown possible to infer the main native ensemble by analyzing covariations in extant sequences. Still, many natural proteins that fold into the same structural topology show different stabilization energies, and these are often related to their physiological behavior. We propose a description for the energetic variation given by sequence modifications in repeat proteins, systems for which the overall problem is simplified by their inherent symmetry. We explicitly account for single amino acid and pair-wise interactions and treat higher order correlations with a single term. We show that the resulting evolutionary field can be interpreted with structural detail. We trace the variations in the energetic scores of natural proteins and relate them to their experimental characterization. The resulting energetic evolutionary field allows the prediction of the folding free energy change for several mutants, and can be used to generate synthetic sequences that are statistically indistinguishable from the natural counterparts.

  19. Temporal Concurrent Constraint Programming

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Valencia Posso, Frank Dan

    2002-01-01

    The ntcc calculus is a model of non-deterministic temporal concurrent constraint programming. In this paper we study behavioral notions for this calculus. In the underlying computational model, concurrent constraint processes are executed in discrete time intervals. The behavioral notions studied...... reflect the reactive interactions between concurrent constraint processes and their environment, as well as internal interactions between individual processes. Relationships between the suggested notions are studied, and they are all proved to be decidable for a substantial fragment of the calculus...

  20. Theoretical Studies of Alfven Waves and Energetic Particle Physics in Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liu [Univ. of California, Irvine, CA (United States)

    2017-12-20

    This report summarizes major theoretical findings in the linear as well as nonlinear physics of Alfvén waves and energetic particles in magnetically confined fusion plasmas. On the linear physics, a variational formulation, based on the separation of singular and regular spatial scales, for drift-Alfvén instabilities excited by energetic particles is established. This variational formulation is then applied to derive the general fishbone-like dispersion relations corresponding to the various Alfvén eigenmodes and energetic-particle modes. It is further employed to explore in depth the low-frequency Alfvén eigenmodes and demonstrate the non-perturbative nature of the energetic particles. On the nonlinear physics, new novel findings are obtained on both the nonlinear wave-wave interactions and nonlinear wave-energetic particle interactions. It is demonstrated that both the energetic particles and the fine radial mode structures could qualitatively affect the nonlinear evolution of Alfvén eigenmodes. Meanwhile, a theoretical approach based on the Dyson equation is developed to treat self-consistently the nonlinear interactions between Alfvén waves and energetic particles, and is then applied to explain simulation results of energetic-particle modes. Relevant list of journal publications on the above findings is also included.

  1. Energetics of the built environment

    Energy Technology Data Exchange (ETDEWEB)

    Yeang, K

    1974-07-01

    Energetics, the study of energy transformations within ecosystems, provide a useful framework for examining the relationships between the built environment (a manmade ecosystem) and the natural environment. Values are provided for using energy indices in modeling, comparing design alternatives, improving designed systems, conserving nonrenewable resources, comparing impacts, and studying energy utilization patterns as a whole. The accounting of the energy cost of a proposed project would provide additional criteria for evaluating the impact of human developments on the natural environment. (3 diagrams, 12 tables)

  2. Energetic particles in the heliosphere

    CERN Document Server

    Simnett, George M

    2017-01-01

    This monograph traces the development of our understanding of how and where energetic particles are accelerated in the heliosphere and how they may reach the Earth. Detailed data sets are presented which address these topics. The bulk of the observations are from spacecraft in or near the ecliptic plane. It is timely to present this subject now that Voyager-1 has entered the true interstellar medium. Since it seems unlikely that there will be a follow-on to the Voyager programme any time soon, the data we already have regarding the outer heliosphere are not going to be enhanced for at least 40 years.

  3. Thermal-spectrum recriticality energetics

    International Nuclear Information System (INIS)

    Schwinkendorf, K.N.

    1993-12-01

    Large computer codes have been created in the past to predict the energy release in hypothetical core disruptive accidents (CDA), postulated to occur in liquid metal reactors (LMR). These codes, such as SIMMER, are highly specific to LMR designs. More recent attention has focused on thermal-spectrum criticality accidents, such as for fuel storage basins and waste tanks containing fissile material. This paper resents results from recent one-dimensional kinetics simulations, performed for a recriticality accident in a thermal spectrum. Reactivity insertion rates generally are smaller than in LMR CDAs, and the energetics generally are more benign. Parametric variation of input was performed, including reactivity insertion and initial temperature

  4. Active interrogation using energetic protons

    International Nuclear Information System (INIS)

    Morris, Christopher L.; Chung, Kiwhan; Greene, Steven J.; Hogan, Gary E.; Makela, Mark; Mariam, Fesseha; Milner, Edward C.; Murray, Matthew; Saunders, Alexander; Spaulding, Randy; Wang, Zhehui; Waters, Laurie; Wysocki, Frederick

    2010-01-01

    Energetic proton beams provide an attractive alternative when compared to electromagnetic and neutron beams for active interrogation of nuclear threats because they have large fission cross sections, long mean free paths and high penetration, and they can be manipulated with magnetic optics. We have measured time-dependent cross sections and neutron yields for delayed neutrons and gamma rays using 800 MeV and 4 GeV proton beams with a set of bare and shielded targets. The results show significant signals from both unshielded and shielded nuclear materials. Measurements of neutron energies yield suggest a signature unique to fissile material. Results are presented in this paper.

  5. Structural energetics of noble metals

    International Nuclear Information System (INIS)

    Mujibur Rahman, S.M.

    1982-06-01

    Structural energetics of the noble metals, namely Cu, Ag, and Au are investigated by employing a single-parameter pseudopotential. The calculations show that the lowest energy for all of these metals corresponds to FCC - their observed crystal structure. The one-electron contribution to the free energy is found to dominate the structural prediction for these metals. The present investigation strongly emphasizes that the effects due to band hybridization and core-core exchange play a significant role on the structural stability of the noble metals. (author)

  6. Analysis of Space Tourism Constraints

    Science.gov (United States)

    Bonnal, Christophe

    2002-01-01

    Space tourism appears today as a new Eldorado in a relatively near future. Private operators are already proposing services for leisure trips in Low Earth Orbit, and some happy few even tested them. But are these exceptional events really marking the dawn of a new space age ? The constraints associated to the space tourism are severe : - the economical balance of space tourism is tricky; development costs of large manned - the technical definition of such large vehicles is challenging, mainly when considering - the physiological aptitude of passengers will have a major impact on the mission - the orbital environment will also lead to mission constraints on aspects such as radiation, However, these constraints never appear as show-stoppers and have to be dealt with pragmatically: - what are the recommendations one can make for future research in the field of space - which typical roadmap shall one consider to develop realistically this new market ? - what are the synergies with the conventional missions and with the existing infrastructure, - how can a phased development start soon ? The paper proposes hints aiming at improving the credibility of Space Tourism and describes the orientations to follow in order to solve the major hurdles found in such an exciting development.

  7. Temporal Concurrent Constraint Programming

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Palamidessi, Catuscia; Valencia, Frank Dan

    2002-01-01

    The ntcc calculus is a model of non-deterministic temporal concurrent constraint programming. In this paper we study behavioral notions for this calculus. In the underlying computational model, concurrent constraint processes are executed in discrete time intervals. The behavioral notions studied...

  8. Evaluating Distributed Timing Constraints

    DEFF Research Database (Denmark)

    Kristensen, C.H.; Drejer, N.

    1994-01-01

    In this paper we describe a solution to the problem of implementing time-optimal evaluation of timing constraints in distributed real-time systems.......In this paper we describe a solution to the problem of implementing time-optimal evaluation of timing constraints in distributed real-time systems....

  9. Theory of Constraints (TOC)

    DEFF Research Database (Denmark)

    Michelsen, Aage U.

    2004-01-01

    Tankegangen bag Theory of Constraints samt planlægningsprincippet Drum-Buffer-Rope. Endvidere skitse af The Thinking Process.......Tankegangen bag Theory of Constraints samt planlægningsprincippet Drum-Buffer-Rope. Endvidere skitse af The Thinking Process....

  10. Energetics in a model of prebiotic evolution

    Science.gov (United States)

    Intoy, B. F.; Halley, J. W.

    2017-12-01

    Previously we reported [A. Wynveen et al., Phys. Rev. E 89, 022725 (2014), 10.1103/PhysRevE.89.022725] that requiring that the systems regarded as lifelike be out of chemical equilibrium in a model of abstracted polymers undergoing ligation and scission first introduced by Kauffman [S. A. Kauffman, The Origins of Order (Oxford University Press, New York, 1993), Chap. 7] implied that lifelike systems were most probable when the reaction network was sparse. The model was entirely statistical and took no account of the bond energies or other energetic constraints. Here we report results of an extension of the model to include effects of a finite bonding energy in the model. We studied two conditions: (1) A food set is continuously replenished and the total polymer population is constrained but the system is otherwise isolated and (2) in addition to the constraints in (1) the system is in contact with a finite-temperature heat bath. In each case, detailed balance in the dynamics is guaranteed during the computations by continuous recomputation of a temperature [in case (1)] and of the chemical potential (in both cases) toward which the system is driven by the dynamics. In the isolated case, the probability of reaching a metastable nonequilibrium state in this model depends significantly on the composition of the food set, and the nonequilibrium states satisfying lifelike condition turn out to be at energies and particle numbers consistent with an equilibrium state at high negative temperature. As a function of the sparseness of the reaction network, the lifelike probability is nonmonotonic, as in our previous model, but the maximum probability occurs when the network is less sparse. In the case of contact with a thermal bath at a positive ambient temperature, we identify two types of metastable nonequilibrium states, termed locally and thermally alive, and locally dead and thermally alive, and evaluate their likelihood of appearance, finding maxima at an optimal

  11. Energetic Techniques For Planetary Defense

    Science.gov (United States)

    Barbee, B.; Bambacus, M.; Bruck Syal, M.; Greenaugh, K. C.; Leung, R. Y.; Plesko, C. S.

    2017-12-01

    Near-Earth Objects (NEOs) are asteroids and comets whose heliocentric orbits tend to approach or cross Earth's heliocentric orbit. NEOs of various sizes periodically collide with Earth, and efforts are currently underway to discover, track, and characterize NEOs so that those on Earth-impacting trajectories are discovered far enough in advance that we would have opportunities to deflect or destroy them prior to Earth impact, if warranted. We will describe current efforts by the National Aeronautics and Space Administration (NASA) and the National Nuclear Security Administration (NNSA) to assess options for energetic methods of deflecting or destroying hazardous NEOs. These methods include kinetic impactors, which are spacecraft designed to collide with an NEO and thereby alter the NEO's trajectory, and nuclear engineering devices, which are used to rapidly vaporize a layer of NEO surface material. Depending on the amount of energy imparted, this can result in either deflection of the NEO via alteration of its trajectory, or robust disruption of the NEO and dispersal of the remaining fragments. We have studied the efficacies and limitations of these techniques in simulations, and have combined the techniques with corresponding spacecraft designs and mission designs. From those results we have generalized planetary defense mission design strategies and drawn conclusions that are applicable to a range of plausible scenarios. We will present and summarize our research efforts to date, and describe approaches to carrying out planetary defense missions with energetic NEO deflection or disruption techniques.

  12. Major depression

    Science.gov (United States)

    Depression - major; Depression - clinical; Clinical depression; Unipolar depression; Major depressive disorder ... providers do not know the exact causes of depression. It is believed that chemical changes in the ...

  13. Constraint-based reachability

    Directory of Open Access Journals (Sweden)

    Arnaud Gotlieb

    2013-02-01

    Full Text Available Iterative imperative programs can be considered as infinite-state systems computing over possibly unbounded domains. Studying reachability in these systems is challenging as it requires to deal with an infinite number of states with standard backward or forward exploration strategies. An approach that we call Constraint-based reachability, is proposed to address reachability problems by exploring program states using a constraint model of the whole program. The keypoint of the approach is to interpret imperative constructions such as conditionals, loops, array and memory manipulations with the fundamental notion of constraint over a computational domain. By combining constraint filtering and abstraction techniques, Constraint-based reachability is able to solve reachability problems which are usually outside the scope of backward or forward exploration strategies. This paper proposes an interpretation of classical filtering consistencies used in Constraint Programming as abstract domain computations, and shows how this approach can be used to produce a constraint solver that efficiently generates solutions for reachability problems that are unsolvable by other approaches.

  14. Energetic materials and methods of tailoring electrostatic discharge sensitivity of energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Michael A.; Heaps, Ronald J.; Wallace, Ronald S.; Pantoya, Michelle L.; Collins, Eric S.

    2016-11-01

    An energetic material comprising an elemental fuel, an oxidizer or other element, and a carbon nanofiller or carbon fiber rods, where the carbon nanofiller or carbon fiber rods are substantially homogeneously dispersed in the energetic material. Methods of tailoring the electrostatic discharge sensitivity of an energetic material are also disclosed.

  15. Energetic evolution of cellular Transportomes

    DEFF Research Database (Denmark)

    Darbani, Behrooz; Kell, Douglas B.; Borodina, Irina

    2018-01-01

    of the transition from prokaryotes to eukaryotes. The transportome analysis also indicated seven bacterial species, including Neorickettsia risticii and Neorickettsia sennetsu, as likely origins of the mitochondrion in eukaryotes, based on the phylogenetically restricted presence therein of clear homologues......) than in primitive eukaryotes (13%), algae and plants (10%) and in fungi and animals (5–6%). This decrease is compensated by an increased occurrence of secondary transporters and ion channels. The share of ion channels is particularly high in animals (ca. 30% of the transportome) and algae and plants...... of modern mitochondrial solute carriers. Conclusions: The results indicate that the transportomes of eukaryotes evolved strongly towards a higher energetic efficiency, as ATP-dependent transporters diminished and secondary transporters and ion channels proliferated. These changes have likely been important...

  16. Cosmic Ray Energetics and Mass

    CERN Multimedia

    Baylon cardiel, J L; Wallace, K C; Anderson, T B; Copley, M

    The cosmic-ray energetics and mass (CREAM) investigation is designed to measure cosmic-ray composition to the supernova energy scale of 10$^{15}$ eV in a series of ultra long duration balloon (ULDB) flights. The first flight is planned to be launched from Antarctica in December 2004. The goal is to observe cosmic-ray spectral features and/or abundance changes that might signify a limit to supernova acceleration. The particle ($\\{Z}$) measurements will be made with a timing-based charge detector and a pixelated silicon charge detector to minimize the effect of backscatter from the calorimeter. The particle energy measurements will be made with a transition radiation detector (TRD) for $\\{Z}$ > 3 and a sampling tungsten/scintillator calorimeter for $\\{Z}$ $\\geq$1 particles, allowing inflight cross calibration of the two detectors. The status of the payload construction and flight preparation are reported in this paper.

  17. Energetic model of metal hardening

    Directory of Open Access Journals (Sweden)

    Ignatova O.N.

    2011-01-01

    Full Text Available Based on Bailey hypothesis on the link between strain hardening and elastic lattice defect energy this paper suggests a shear strength energetic model that takes into consideration plastic strain intensity and rate as well as softening related to temperature annealing and dislocation annihilation. Metal strain hardening was demonstrated to be determined only by elastic strain energy related to the energy of accumulated defects. It is anticipated that accumulation of the elastic energy of defects is governed by plastic work. The suggested model has a reasonable agreement with the available experimental data for copper up to P = 70 GPa , for aluminum up to P = 10 GPa and for tantalum up to P = 20 GPa.

  18. Ecological problems of thermonuclear energetics. Review

    Energy Technology Data Exchange (ETDEWEB)

    Sivintsev, Yu V

    1980-01-01

    A review of preliminary quantitative estimates of radiation hazard of thermonuclear reactors is presented. Main attention is given to three aspects: nonradiation effect on environment, radionuclide blow-ups at normal operation and emergency situations with their consequences. The given data testify to great radiological advantages of thermonuclear energetics as compared with the modern nuclear energetics with thermal and prospective fast reactors.

  19. Resources, constraints and capabilities

    NARCIS (Netherlands)

    Dhondt, S.; Oeij, P.R.A.; Schröder, A.

    2018-01-01

    Human and financial resources as well as organisational capabilities are needed to overcome the manifold constraints social innovators are facing. To unlock the potential of social innovation for the whole society new (social) innovation friendly environments and new governance structures

  20. Design with Nonlinear Constraints

    KAUST Repository

    Tang, Chengcheng

    2015-01-01

    . The first application is the design of meshes under both geometric and static constraints, including self-supporting polyhedral meshes that are not height fields. Then, with a formulation bridging mesh based and spline based representations, the application

  1. Dynamics and causality constraints

    International Nuclear Information System (INIS)

    Sousa, Manoelito M. de

    2001-04-01

    The physical meaning and the geometrical interpretation of causality implementation in classical field theories are discussed. Causality in field theory are kinematical constraints dynamically implemented via solutions of the field equation, but in a limit of zero-distance from the field sources part of these constraints carries a dynamical content that explains old problems of classical electrodynamics away with deep implications to the nature of physicals interactions. (author)

  2. Momentum constraint relaxation

    International Nuclear Information System (INIS)

    Marronetti, Pedro

    2006-01-01

    Full relativistic simulations in three dimensions invariably develop runaway modes that grow exponentially and are accompanied by violations of the Hamiltonian and momentum constraints. Recently, we introduced a numerical method (Hamiltonian relaxation) that greatly reduces the Hamiltonian constraint violation and helps improve the quality of the numerical model. We present here a method that controls the violation of the momentum constraint. The method is based on the addition of a longitudinal component to the traceless extrinsic curvature A ij -tilde, generated by a vector potential w i , as outlined by York. The components of w i are relaxed to solve approximately the momentum constraint equations, slowly pushing the evolution towards the space of solutions of the constraint equations. We test this method with simulations of binary neutron stars in circular orbits and show that it effectively controls the growth of the aforementioned violations. We also show that a full numerical enforcement of the constraints, as opposed to the gentle correction of the momentum relaxation scheme, results in the development of instabilities that stop the runs shortly

  3. Selection of new constraints

    International Nuclear Information System (INIS)

    Sugier, A.

    2003-01-01

    The selected new constraints should be consistent with the scale of concern i.e. be expressed roughly as fractions or multiples of the average annual background. They should take into account risk considerations and include the values of the currents limits, constraints and other action levels. The recommendation is to select four leading values for the new constraints: 500 mSv ( single event or in a decade) as a maximum value, 0.01 mSv/year as a minimum value; and two intermediate values: 20 mSv/year and 0.3 mSv/year. This new set of dose constraints, representing basic minimum standards of protection for the individuals taking into account the specificity of the exposure situations are thus coherent with the current values which can be found in ICRP Publications. A few warning need however to be noticed: There is no more multi sources limit set by ICRP. The coherence between the proposed value of dose constraint (20 mSv/year) and the current occupational dose limit of 20 mSv/year is valid only if the workers are exposed to one single source. When there is more than one source, it will be necessary to apportion. The value of 1000 mSv lifetimes used for relocation can be expressed into annual dose, which gives approximately 10 mSv/year and is coherent with the proposed dose constraint. (N.C.)

  4. ENERGETIC FERMI/LAT GRB 100414A: ENERGETIC AND CORRELATIONS

    International Nuclear Information System (INIS)

    Urata, Yuji; Tsai, Patrick P.; Huang, Kuiyun; Yamaoka, Kazutaka; Tashiro, Makoto S.

    2012-01-01

    This study presents multi-wavelength observational results for energetic GRB 100414A with GeV photons. The prompt spectral fitting using Suzaku/WAM data yielded spectral peak energies of E src peak of 1458.7 +132.6 –106.6 keV and E iso of 34.5 +2.0 –1.8 × 10 52 erg with z = 1.368. The optical afterglow light curves between 3 and 7 days were effectively fitted according to a simple power law with a temporal index of α = –2.6 ± 0.1. The joint light curve with earlier Swift/UVOT observations yields a temporal break at 2.3 ± 0.2 days. This was the first Fermi/LAT detected event that demonstrated the clear temporal break in the optical afterglow. The jet opening angle derived from this temporal break was 5. 0 8, consistent with those of other well-observed long gamma-ray bursts (GRBs). The multi-wavelength analyses in this study showed that GRB 100414A follows E src peak -E iso and E src peak -E γ correlations. The late afterglow revealed a flatter evolution with significant excesses at 27.2 days. The most straightforward explanation for the excess is that GRB 100414A was accompanied by a contemporaneous supernova. The model light curve based on other GRB-SN events is marginally consistent with that of the observed light curve.

  5. GLOBAL ENERGETICS OF SOLAR FLARES. IV. CORONAL MASS EJECTION ENERGETICS

    International Nuclear Information System (INIS)

    Aschwanden, Markus J.

    2016-01-01

    This study entails the fourth part of a global flare energetics project, in which the mass m cme , kinetic energy E kin , and the gravitational potential energy E grav of coronal mass ejections (CMEs) is measured in 399 M and X-class flare events observed during the first 3.5 years of the Solar Dynamics Observatory (SDO) mission, using a new method based on the EUV dimming effect. EUV dimming is modeled in terms of a radial adiabatic expansion process, which is fitted to the observed evolution of the total emission measure of the CME source region. The model derives the evolution of the mean electron density, the emission measure, the bulk plasma expansion velocity, the mass, and the energy in the CME source region. The EUV dimming method is truly complementary to the Thomson scattering method in white light, which probes the CME evolution in the heliosphere at r ≳ 2 R ⊙ , while the EUV dimming method tracks the CME launch in the corona. We compare the CME parameters obtained in white light with the LASCO/C2 coronagraph with those obtained from EUV dimming with the Atmospheric Imaging Assembly onboard the SDO for all identical events in both data sets. We investigate correlations between CME parameters, the relative timing with flare parameters, frequency occurrence distributions, and the energy partition between magnetic, thermal, nonthermal, and CME energies. CME energies are found to be systematically lower than the dissipated magnetic energies, which is consistent with a magnetic origin of CMEs.

  6. Composition of heavy ions in solar energetic particle events

    International Nuclear Information System (INIS)

    Fan, C.Y.; Gloeckler, G.

    1983-01-01

    Recent advances in determining the elemental, charge state, and isotopic composition of approximatelt 1 to 20 MeV per nucleon ions in solar energetic particle (SEP) events and outline our current understanding of the nature of solar and interplanetary processes which may explain the observations. Average values of relative abundances measured in a large number of SEP events were found to be roughly energy independent in the approx. 1 to approx. 20 MeV per nucleon range, and showed a systematic deviation from photospheric abundances which seems to be organized in terms of the first ionization potential of the ion. Direct measurements of the charge states of SEPs revealed the surprisingly common presence of energetic He(+) along with heavy ion with typically coronal ionization states. High resolution measurements of isotopic abundance ratios in a small number of SEP events showed these to be consistent with the universal composition except for the puzzling overabundance of the SEP(22)Ne/(20)Ne relative to this isotopes ratio in the solar wind. The broad spectrum of observed elemental abundance variations, which in their extreme result in composition anomalies characteristic of (3)He rich, heavy ion rich and carbon poor SEP events, along with direct measurements of the ionization states of SEPs provided essential information on the physical characteristics of, and conditions in the source regions, as well as important constraints to possible models for SEP production

  7. Shock interactions with heterogeneous energetic materials

    Science.gov (United States)

    Yarrington, Cole D.; Wixom, Ryan R.; Damm, David L.

    2018-03-01

    The complex physical phenomenon of shock wave interaction with material heterogeneities has significant importance and nevertheless remains little understood. In many materials, the observed macroscale response to shock loading is governed by characteristics of the microstructure. Yet, the majority of computational studies aimed at predicting phenomena affected by these processes, such as the initiation and propagation of detonation waves in explosives or shock propagation in geological materials, employ continuum material and reactive burn model treatment. In an effort to highlight the grain-scale processes that underlie the observable effects in an energetic system, a grain-scale model for hexanitrostilbene (HNS) has been developed. The measured microstructures were used to produce synthetic computational representations of the pore structure, and a density functional theory molecular dynamics derived equation of state (EOS) was used for the fully dense HNS matrix. The explicit inclusion of the microstructure along with a fully dense EOS resulted in close agreement with historical shock compression experiments. More recent experiments on the dynamic reaction threshold were also reproduced by inclusion of a global kinetics model. The complete model was shown to reproduce accurately the expected response of this heterogeneous material to shock loading. Mesoscale simulations were shown to provide a clear insight into the nature of threshold behavior and are a way to understand complex physical phenomena.

  8. Running Economy from a Muscle Energetics Perspective

    Directory of Open Access Journals (Sweden)

    Jared R. Fletcher

    2017-06-01

    Full Text Available The economy of running has traditionally been quantified from the mass-specific oxygen uptake; however, because fuel substrate usage varies with exercise intensity, it is more accurate to express running economy in units of metabolic energy. Fundamentally, the understanding of the major factors that influence the energy cost of running (Erun can be obtained with this approach. Erun is determined by the energy needed for skeletal muscle contraction. Here, we approach the study of Erun from that perspective. The amount of energy needed for skeletal muscle contraction is dependent on the force, duration, shortening, shortening velocity, and length of the muscle. These factors therefore dictate the energy cost of running. It is understood that some determinants of the energy cost of running are not trainable: environmental factors, surface characteristics, and certain anthropometric features. Other factors affecting Erun are altered by training: other anthropometric features, muscle and tendon properties, and running mechanics. Here, the key features that dictate the energy cost during distance running are reviewed in the context of skeletal muscle energetics.

  9. Energetic Particles in the Inner Heliosphere

    Science.gov (United States)

    Malandraki, Olga

    2016-07-01

    Solar Energetic Particle (SEP) events are a key ingredient of Solar-Terrestrial Physics both for fundamental research and space weather applications. SEP events are the defining component of solar radiation storms, contribute to radio blackouts in polar regions and are related to many of the fastest Coronal Mass Ejections (CMEs) driving major geomagnetic storms. In addition to CMEs, SEPs are also related to flares. In this work, the current state of knowledge on the SEP field will be reviewed. Key issues to be covered and discussed include: the current understanding of the origin, acceleration and transport processes of SEPs at the Sun and in the inner heliosphere, lessons learned from multi-spacecraft SEP observations, statistical quantification of the comparison of solar events and SEP events of the current solar cycle 24 with previous solar cycles, causes of the solar-cycle variations in SEP fluencies and composition, theoretical work and current SEP acceleration models. Furthermore, the outstanding issues that constitute a knowledge gap in the field will be presented and discussed, as well as future directions and expected advances from the observational and modeling perspective, also in view of the unique observations provided by the upcoming Solar Orbiter and Solar Probe Plus missions. Acknowledgement: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324.

  10. Optimization of some eco-energetic systems

    International Nuclear Information System (INIS)

    Purica, I.; Pavelescu, M.; Stoica, M.

    1976-01-01

    An optimization problem of two eco-energetic systems is described. The first one is close to the actual eco-energetic system in Romania, while the second is a new one, based on nuclear energy as primary source and hydrogen energy as secondary source. The optimization problem solved is to find the optimal structure of the systems so that the objective functions adopted, namely unitary energy cost C and total pollution P, to be minimum at the same time. The problem can be modelated with a bimatrix cooperative mathematical game without side payments. We demonstrate the superiority of the new eco-energetic system. (author)

  11. ENERGETIC FERMI/LAT GRB 100414A: ENERGETIC AND CORRELATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Yuji; Tsai, Patrick P. [Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Huang, Kuiyun [Academia Sinica Institute of Astronomy and Astrophysics, Taipei 106, Taiwan (China); Yamaoka, Kazutaka [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1, Fuchinobe, Sayamihara 229-8558 (Japan); Tashiro, Makoto S., E-mail: urata@astro.ncu.edu.tw [Department of Physics, Saitama University, Shimo-Okubo, Saitama 338-8570 (Japan)

    2012-03-20

    This study presents multi-wavelength observational results for energetic GRB 100414A with GeV photons. The prompt spectral fitting using Suzaku/WAM data yielded spectral peak energies of E{sup src}{sub peak} of 1458.7{sup +132.6}{sub -106.6} keV and E{sub iso} of 34.5{sup +2.0}{sub -1.8} Multiplication-Sign 10{sup 52} erg with z = 1.368. The optical afterglow light curves between 3 and 7 days were effectively fitted according to a simple power law with a temporal index of {alpha} = -2.6 {+-} 0.1. The joint light curve with earlier Swift/UVOT observations yields a temporal break at 2.3 {+-} 0.2 days. This was the first Fermi/LAT detected event that demonstrated the clear temporal break in the optical afterglow. The jet opening angle derived from this temporal break was 5.{sup 0}8, consistent with those of other well-observed long gamma-ray bursts (GRBs). The multi-wavelength analyses in this study showed that GRB 100414A follows E{sup src}{sub peak}-E{sub iso} and E{sup src}{sub peak}-E{sub {gamma}} correlations. The late afterglow revealed a flatter evolution with significant excesses at 27.2 days. The most straightforward explanation for the excess is that GRB 100414A was accompanied by a contemporaneous supernova. The model light curve based on other GRB-SN events is marginally consistent with that of the observed light curve.

  12. Occupational dose constraint

    International Nuclear Information System (INIS)

    Heilbron Filho, Paulo Fernando Lavalle; Xavier, Ana Maria

    2005-01-01

    The revision process of the international radiological protection regulations has resulted in the adoption of new concepts, such as practice, intervention, avoidable and restriction of dose (dose constraint). The latter deserving of special mention since it may involve reducing a priori of the dose limits established both for the public and to individuals occupationally exposed, values that can be further reduced, depending on the application of the principle of optimization. This article aims to present, with clarity, from the criteria adopted to define dose constraint values to the public, a methodology to establish the dose constraint values for occupationally exposed individuals, as well as an example of the application of this methodology to the practice of industrial radiography

  13. Psychological constraints on egalitarianism

    DEFF Research Database (Denmark)

    Kasperbauer, Tyler Joshua

    2015-01-01

    processes motivating people to resist various aspects of egalitarianism. I argue for two theses, one normative and one descriptive. The normative thesis holds that egalitarians must take psychological constraints into account when constructing egalitarian ideals. I draw from non-ideal theories in political...... philosophy, which aim to construct moral goals with current social and political constraints in mind, to argue that human psychology must be part of a non-ideal theory of egalitarianism. The descriptive thesis holds that the most fundamental psychological challenge to egalitarian ideals comes from what......Debates over egalitarianism for the most part are not concerned with constraints on achieving an egalitarian society, beyond discussions of the deficiencies of egalitarian theory itself. This paper looks beyond objections to egalitarianism as such and investigates the relevant psychological...

  14. Management practices and production constraints of central ...

    African Journals Online (AJOL)

    management practices of central highland goats and their major constraints. ... tance to improve the goat production potential and livelihood of the farmers in the study ... ing the productivity and income from keeping goats, there is a study gap in ..... and day time, possibly increasing the chance of getting contagious diseases.

  15. Tilapia culture in Kuwait: constraints and solutions

    OpenAIRE

    Ridha, M.T.

    2006-01-01

    Tilapia farming in Kuwait is in its early stages. Slow growth, high production cost and poor demand are the major constraints to the expansion of tilapia culture in Kuwait. This article presents some suggestions for overcoming these problems to improve the economic feasibility of tilapia culture in Kuwait.

  16. Hydro energetic inventory study from Chapecozinho river

    International Nuclear Information System (INIS)

    Pimenta, S.C.; Sureck, M.A.A.; Nascimento, P.R.; Kawasaki, M.; Silva Felipe, R. da.

    1990-01-01

    The Hydro energetic Inventory Study in Chapecozinho River Basin, Brazil is described, comparing the proposed results in 1979 with the actual review in 1989. An analysis for solution the socio-economic and environment problems is also presented. (author)

  17. Energetic particle observations at the subsolar magnetopause

    Directory of Open Access Journals (Sweden)

    A. A. Eccles

    Full Text Available The pitch-angle distributions (PAD of energetic particles are examined as the ISEE-1 satellite crosses the Earth’s magnetopause near the subsolar point. The investigation focuses on the possible existence of a particular type of distribution that would be associated with a source of energetic particles in the high-latitude magnetosphere. PADs, demonstrating broad, persistent field-aligned fluxes filling a single hemisphere (upper/northern or lower/southern, were observed just sunward of the magnetopause current layer for an extended period of many minutes. These distributions are a direct prediction of a possible source of energetic particles located in the high altitude dayside cusp and we present five examples in detail of the three-dimensional particle distributions to demonstrate their existence. From these results, other possible causes of such PADs are examined.

    Key words. Magnetospheric physics (energetic particles, precipitating; magnetopause, cusp and boundary layers; magnetospheric configuration and dynamics

  18. Global Positioning System (GPS) Energetic Particle Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Energetic particle data from the CXD and BDD instrument on the GPS constellation are available to the space weather research community. The release of these data...

  19. Modeling Thermal Ignition of Energetic Materials

    National Research Council Canada - National Science Library

    Gerri, Norman J; Berning, Ellen

    2004-01-01

    This report documents an attempt to computationally simulate the mechanics and thermal regimes created when a threat perforates an armor envelope and comes in contact with stowed energetic material...

  20. Organization of the national energetic institutions

    International Nuclear Information System (INIS)

    Waltenberg, D.A.M.

    1983-01-01

    This text broaches, in a critical pourt of view, the organization of national energetic institutions, the need of a law revision, the problem of the rising of tariff and shows the decisions of GC01 [pt

  1. Constraint-based scheduling applying constraint programming to scheduling problems

    CERN Document Server

    Baptiste, Philippe; Nuijten, Wim

    2001-01-01

    Constraint Programming is a problem-solving paradigm that establishes a clear distinction between two pivotal aspects of a problem: (1) a precise definition of the constraints that define the problem to be solved and (2) the algorithms and heuristics enabling the selection of decisions to solve the problem. It is because of these capabilities that Constraint Programming is increasingly being employed as a problem-solving tool to solve scheduling problems. Hence the development of Constraint-Based Scheduling as a field of study. The aim of this book is to provide an overview of the most widely used Constraint-Based Scheduling techniques. Following the principles of Constraint Programming, the book consists of three distinct parts: The first chapter introduces the basic principles of Constraint Programming and provides a model of the constraints that are the most often encountered in scheduling problems. Chapters 2, 3, 4, and 5 are focused on the propagation of resource constraints, which usually are responsibl...

  2. Safer energetic materials by a nanotechnological approach

    Science.gov (United States)

    Siegert, Benny; Comet, Marc; Spitzer, Denis

    2011-09-01

    Energetic materials - explosives, thermites, populsive powders - are used in a variety of military and civilian applications. Their mechanical and electrostatic sensitivity is high in many cases, which can lead to accidents during handling and transport. These considerations limit the practical use of some energetic materials despite their good performance. For industrial applications, safety is one of the main criteria for selecting energetic materials. The sensitivity has been regarded as an intrinsic property of a substance for a long time. However, in recent years, several approaches to lower the sensitivity of a given substance, using nanotechnology and materials engineering, have been described. This feature article gives an overview over ways to prepare energetic (nano-)materials with a lower sensitivity.Energetic materials - explosives, thermites, populsive powders - are used in a variety of military and civilian applications. Their mechanical and electrostatic sensitivity is high in many cases, which can lead to accidents during handling and transport. These considerations limit the practical use of some energetic materials despite their good performance. For industrial applications, safety is one of the main criteria for selecting energetic materials. The sensitivity has been regarded as an intrinsic property of a substance for a long time. However, in recent years, several approaches to lower the sensitivity of a given substance, using nanotechnology and materials engineering, have been described. This feature article gives an overview over ways to prepare energetic (nano-)materials with a lower sensitivity. Electronic supplementary information (ESI) available: Experimental details for the preparation of the V2O5@CNF/Al nanothermite; X-ray diffractogram of the V2O5@CNF/Al combustion residue; installation instructions and source code for the nt-timeline program. See DOI: 10.1039/c1nr10292c

  3. Nuclear energetics all over the world

    International Nuclear Information System (INIS)

    Wojcik, T.

    2000-01-01

    The actual state and tendencies of nuclear power further development for different world regions have been presented and discussed. The problem of safety of energetic nuclear reactors, radioactive waste management and related problems have been discussed in respect of regulations in different countries. The economical aspects of nuclear energetics in comparison with different fossil fuel power plants exploitation costs has been presented as well. The official state of international organizations (IAEA, WANO, HASA etc.) have been also shown in respect to subject presented

  4. Constraints on Large-Block Shareholders

    OpenAIRE

    Clifford G. Holderness; Dennis P. Sheehan

    1998-01-01

    Corporate managers who own a majority of the common stock in their company or who represent another firm owning such an interest appear to be less constrained than managers of diffusely held firms, yet their power to harm minority shareholders must be circumscribed by some organizational or legal arrangements. Empirical investigations reveal that boards of directors in majority-owned firms are little different from firms with diffuse stock ownership. Another source of constraints on a majorit...

  5. Constraints on Dbar uplifts

    International Nuclear Information System (INIS)

    Alwis, S.P. de

    2016-01-01

    We discuss constraints on KKLT/KKLMMT and LVS scenarios that use anti-branes to get an uplift to a deSitter vacuum, coming from requiring the validity of an effective field theory description of the physics. We find these are not always satisfied or are hard to satisfy.

  6. Ecosystems emerging. 5: Constraints

    Czech Academy of Sciences Publication Activity Database

    Patten, B. C.; Straškraba, Milan; Jorgensen, S. E.

    2011-01-01

    Roč. 222, č. 16 (2011), s. 2945-2972 ISSN 0304-3800 Institutional research plan: CEZ:AV0Z50070508 Keywords : constraint * epistemic * ontic Subject RIV: EH - Ecology, Behaviour Impact factor: 2.326, year: 2011 http://www.sciencedirect.com/science/article/pii/S0304380011002274

  7. Constraints and Ambiguity

    DEFF Research Database (Denmark)

    Dove, Graham; Biskjær, Michael Mose; Lundqvist, Caroline Emilie

    2017-01-01

    groups of students building three models each. We studied groups building with traditional plastic bricks and also using a digital environment. The building tasks students undertake, and our subsequent analysis, are informed by the role constraints and ambiguity play in creative processes. Based...

  8. Structure of Energetic Particle Mediated Shocks Revisited

    International Nuclear Information System (INIS)

    Mostafavi, P.; Zank, G. P.; Webb, G. M.

    2017-01-01

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  9. Structure of Energetic Particle Mediated Shocks Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Mostafavi, P.; Zank, G. P. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Webb, G. M. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2017-05-20

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  10. Quasar outflow energetics from broad absorption line variability

    Science.gov (United States)

    McGraw, S. M.; Shields, J. C.; Hamann, F. W.; Capellupo, D. M.; Herbst, H.

    2018-03-01

    Quasar outflows have long been recognized as potential contributors to the co-evolution between supermassive black holes (SMBHs) and their host galaxies. The role of outflows in active galactic nucleus (AGN) feedback processes can be better understood by placing observational constraints on wind locations and kinetic energies. We utilize broad absorption line (BAL) variability to investigate the properties of a sample of 71 BAL quasars with P V broad absorption. The presence of P V BALs indicates that other BALs like C IV are saturated, such that variability in those lines favours clouds crossing the line of sight. We use these constraints with measurements of BAL variability to estimate outflow locations and energetics. Our data set consists of multiple-epoch spectra from the Sloan Digital Sky Survey and MDM Observatory. We detect significant (4σ) BAL variations from 10 quasars in our sample over rest-frame time-scales between ≤0.2-3.8 yr. Our derived distances for the 10 variable outflows are nominally ≲ 1-10 pc from the SMBH using the transverse-motion scenario, and ≲ 100-1000 pc from the central source using ionization-change considerations. These distances, in combination with the estimated high outflow column densities (i.e. NH ≳ 1022 cm-2), yield outflow kinetic luminosities between ˜ 0.001 and 1 times the bolometric luminosity of the quasar, indicating that many absorber energies within our sample are viable for AGN feedback.

  11. ANALYSIS OF CONSTRAINTS IN RESOURCE USE EFFICIENCY IN ...

    African Journals Online (AJOL)

    ANALYSIS OF CONSTRAINTS IN RESOURCE USE EFFICIENCY IN MULTIPLE CROPPING SYSTEM BY SMALL-HOLDER FARMERS IN EBONYI STATE OF ... high cost of modern inputs, lack of adequate finance and lack of collaterals among others served as major constraints, which constituted29%, 36%, 33% and 22% ...

  12. Major Links.

    Science.gov (United States)

    Henderson, Tona

    1995-01-01

    Provides electronic mail addresses for resources and discussion groups related to the following academic majors: art, biology, business, chemistry, computer science, economics, health sciences, history, literature, math, music, philosophy, political science, psychology, sociology, and theater. (AEF)

  13. Major Roads

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data set contains roadway centerlines for major roads (interstates and trunk highways) found on the USGS 1:24,000 mapping series. These roadways are current...

  14. The Energetic Demands and Planetary Footprint of Alternative Human Diets

    Science.gov (United States)

    Eshel, G.; Martin, P. A.

    2005-12-01

    Agriculture is one of the major vehicles of human alteration of the planetary environment. Yet different diets vary vastly in terms of both their energetic demands and overall planetary footprint. We present a quantitative argument that demonstrates that plant-based diets exert vastly smaller planetary environmental cost than animal-based ones. We demonstrate that under a reasonable and readily defensible set of assumptions, a plant-based diet differs from the average American diet by as much energy as the difference between driving a compact and efficient sedan and a Sport Utility Vehicle.

  15. Quantifying the energetics of cooperativity in a ternary protein complex

    DEFF Research Database (Denmark)

    Andersen, Peter S; Schuck, Peter; Sundberg, Eric J

    2002-01-01

    and mathematical modeling to describe the energetics of cooperativity in a trimolecular protein complex. As a model system for quantifying cooperativity, we studied the ternary complex formed by the simultaneous interaction of a superantigen with major histocompatibility complex and T cell receptor, for which...... a structural model is available. This system exhibits positive and negative cooperativity, as well as augmentation of the temperature dependence of binding kinetics upon the cooperative interaction of individual protein components in the complex. Our experimental and theoretical analysis may be applicable...... to other systems involving cooperativity....

  16. [The Nature and Issues of Drug Addiction Treatment under Constraint].

    Science.gov (United States)

    Quirion, Bastien

    This article is exploring different forms of constraint that are exerted in the field of drug addiction treatment. The objective of this article is to establish benchmarks and to stimulate reflection about the ethical and clinical implications of those constraints in the field of drug addiction treatment. This article is presenting a critical review of different forms of constraint that can be exerted in Canada in regard to the treatment of drug addiction. In the first section of the article, a definition of therapeutic intervention is proposed, that includes the dimension of power, which justifies the importance of considering the coercive aspects of treatment. The second section, which represents the core section of the paper, is devoted to the presentation of different levels of constraint that can be distinguished in regard to drug addicts who are under treatment. Three levels of constraint are exposed: judicial constraint, institutional constraint and relational constraint. The coercive aspect of treatment can then be recognized as a combination of all tree levels of constraint. Judicial constraint refers to any form of constraint in which the court or the judge is imposing or recommending treatment. This particular level of constraint can take different forms, such as therapeutic remands, conditions of a probation order, conditions of a conditional sentence of imprisonment, and coercive treatment such as the ones provided through drug courts. Institutional constraint refers to any form of constraint exerted within any institutional setting, such as correctional facilities and programs offered in community. Correctional facilities being limited by their own specific mission, it might have a major impact on the way the objectives of treatment are defined. Those limitations can then be considered as a form of constraint, in which drug users don't have much space to express their personal needs. Finally, relational constraint refers to any form of constraint in

  17. April 2006. 32 Major Orthopaedic Procedures

    African Journals Online (AJOL)

    user

    2006-04-01

    Apr 1, 2006 ... Major Orthopaedic Procedures: 17 Year Trends. Biruk Lambisso Wamisho1 ... financial and logistic constraints with poor compliance of ... Modern orthopaedic surgery is very expensive. A highly ..... Case management. Tribury.

  18. Graphical constraints: a graphical user interface for constraint problems

    OpenAIRE

    Vieira, Nelson Manuel Marques

    2015-01-01

    A constraint satisfaction problem is a classical artificial intelligence paradigm characterized by a set of variables (each variable with an associated domain of possible values), and a set of constraints that specify relations among subsets of these variables. Solutions are assignments of values to all variables that satisfy all the constraints. Many real world problems may be modelled by means of constraints. The range of problems that can use this representation is very diverse and embrace...

  19. Constraint-based scheduling

    Science.gov (United States)

    Zweben, Monte

    1993-01-01

    The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint-based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all the inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocation for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its application to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.

  20. Efficient Searching with Linear Constraints

    DEFF Research Database (Denmark)

    Agarwal, Pankaj K.; Arge, Lars Allan; Erickson, Jeff

    2000-01-01

    We show how to preprocess a set S of points in d into an external memory data structure that efficiently supports linear-constraint queries. Each query is in the form of a linear constraint xd a0+∑d−1i=1 aixi; the data structure must report all the points of S that satisfy the constraint. This pr...

  1. Deepening Contractions and Collateral Constraints

    DEFF Research Database (Denmark)

    Jensen, Henrik; Ravn, Søren Hove; Santoro, Emiliano

    and occasionally non-binding credit constraints. Easier credit access increases the likelihood that constraints become slack in the face of expansionary shocks, while contractionary shocks are further amplified due to tighter constraints. As a result, busts gradually become deeper than booms. Based...

  2. Energetic particle pressure in intense ESP events

    Science.gov (United States)

    Lario, D.; Decker, R. B.; Roelof, E. C.; Viñas, A.-F.

    2015-09-01

    We study three intense energetic storm particle (ESP) events in which the energetic particle pressure PEP exceeded both the pressure of the background thermal plasma Pth and the pressure of the magnetic field PB. The region upstream of the interplanetary shocks associated with these events was characterized by a depression of the magnetic field strength coincident with the increase of the energetic particle intensities and, when plasma measurements were available, a depleted solar wind density. The general feature of cosmic-ray mediated shocks such as the deceleration of the upstream background medium into which the shock propagates is generally observed. However, for those shocks where plasma parameters are available, pressure balance is not maintained either upstream of or across the shock, which may result from the fact that PEP is not included in the calculation of the shock parameters.

  3. Biogas - energetical and environmental point of view

    International Nuclear Information System (INIS)

    Skele, A.; Upitis, A.; Kristapsons, M.; Goizevskis, O.; Ziemelis, I.

    2003-01-01

    Energy sector has been one of the most important priorities since reestablishment of independence of Latvia. The deficiency of energy resources in Latvia has created a need to assess all the possibilities to utilise all possibilities to utilise all the energy resources, including the biological ones, to motivate the trends in the development of energetic in Latvia. A huge non-utilised reserve in Latvia is methane fermentation of organic agricultural and municipal residue and sewage from food industry. The organic mass of solid and liquid waste of different origin and its energetic potential for rural region have been investigated. The work deals with an integrated system of the utilisation of agricultural waste with the anaerobic (biogas) and the thermal processes. Presently the anaerobic waste utilisation, in combination with the production of biogas and organic fertiliser, is considered as one of the energetically most efficient and environment-friendly ways of organic fertiliser utilisation (authors)

  4. Gait strategy changes with acceleration to accommodate the biomechanical constraint on push-off propulsion.

    Science.gov (United States)

    Oh, Keonyoung; Baek, Juhyun; Park, Sukyung

    2012-11-15

    To maintain steady and level walking, push-off propulsion during the double support phase compensates for the energy loss through heel strike collisions in an energetically optimal manner. However, a large portion of daily gait activities also contains transient gait responses, such as acceleration or deceleration, during which the observed dominance of the push-off work or the energy optimality may not hold. In this study, we examined whether the push-off propulsion during the double support phase served as a major energy source for gait acceleration, and we also studied the energetic optimality of accelerated gait using a simple bipedal walking model. Seven healthy young subjects participated in the over-ground walking experiments. The subjects walked at four different constant gait speeds ranging from a self-selected speed to a maximum gait speed, and then they accelerated their gait from zero to the maximum gait speed using a self-selected acceleration ratio. We measured the ground reaction force (GRF) of three consecutive steps and the corresponding leg configuration using force platforms and an optical marker system, respectively, and we compared the mechanical work performed by the GRF during each single and double support phase. In contrast to the model prediction of an increase in the push-off propulsion that is proportional to the acceleration and minimizes the mechanical energy cost, the push-off propulsion was slightly increased, and a significant increase in the mechanical work during the single support phase was observed. The results suggest that gait acceleration occurs while accommodating a feasible push-off propulsion constraint. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Sexual division of labor: energetic and evolutionary scenarios.

    Science.gov (United States)

    Panter-Brick, Catherine

    2002-01-01

    This article examines comparative energetic data on hunter-gatherers in the context of evolutionary scenarios of the sexual division of labor, with respect to both specific task allocation and overall levels of daily physical activity. The division of labor between men and women, well marked in contemporary foraging societies, was once posited as the "true watershed" for the evolution of the genus Homo. Some research on brain-wiring even links sex differences in cognitive and spatial abilities to sex-specific foraging activities. Most recent evolutionary arguments posit that men focus on hunting and women on gathering activities to realize potentially conflicting mating and parenting goals. A range of cooperative strategies (male/female and female/female) for child provisioning is also under investigation. Attention to energetic and reproductive trade-offs has usefully challenged the proposition that women are excluded from big-game hunting due to constraints of foraging ecology and reproduction. Simplistic assumptions about gender roles are thus increasingly questioned in anthropology, as well as in archaeology. Current models in behavioral ecology explore ways in which foraging practices vary with ecological circumstances, aiming to derive testable hypotheses from fine-grained data on the behavior of contemporary hunter-gatherers. Data on overall physical activity levels (PAL) can also serve to evaluate relative male/female workloads in modern groups, reconstruct hominid energy requirements and activity profiles, and examine changes with subsistence intensification. Male/female PAL ratios show that a task-specific division of labor does not readily extrapolate to 24-hour energy expenditure and that male/female differences in workloads were not necessarily reduced with the transition to agriculture. With respect to gender roles and PAL, a shift away from facile stereotypes of human behavior is evident. The challenge is to incorporate a range of behavioral

  6. Sawteeth stabilization by energetic trapped ions

    International Nuclear Information System (INIS)

    Samain, A.; Edery, D.; Garbet, X.; Roubin, J.P.

    1991-01-01

    The analysis of a possible stabilization of sawteeth by a population of energetic ions is performed by using the Lagrangian of the electromagnetic perturbation. It is shown that the trapped component of such a population has a small influence compared to that of the passing component. The stabilization threshold is calculated assuming a non linear regime in the q=1 resonant layer. The energetic population must create a stable tearing structure if the average curvature effect on thermal particles in the layer is small. However, this effect decreases the actual threshold

  7. Energetic Constraints on H-2-Dependent Terminal Electron Accepting Processes in Anoxic Environments

    DEFF Research Database (Denmark)

    Heimann, Axel Colin; Jakobsen, Rasmus; Blodau, C.

    2010-01-01

    and sulfate reduction are under direct thermodynamic control in soils and sediments and generally approach theoretical minimum energy thresholds. If H-2 concentrations are lowered by thermodynamically more potent TEAPs, these processes are inhibited. This principle is also valid for TEAPS providing more free......Microbially mediated terminal electron accepting processes (TEAPs) to a large extent control the fate of redox reactive elements and associated reactions in anoxic soils, sediments, and aquifers. This review focuses on thermodynamic controls and regulation of H-2-dependent TEAPs, case studies...... illustrating this concept and the quantitative description of thermodynamic controls in modeling. Other electron transfer processes are considered where appropriate. The work reviewed shows that thermodynamics and microbial kinetics are connected near thermodynamic equilibrium. Free energy thresholds...

  8. Energetic constraints, not predation, influence the evolution of sleep patterning in mammals

    OpenAIRE

    Capellini, I.; Nunn, C. L.; McNamara, P.; Preston, B. T.; Barton, R. A.

    2008-01-01

    Mammalian sleep is composed of two distinct states – rapid-eye-movement (REM) and non-REM (NREM) sleep – that alternate in cycles over a sleep bout. The duration of these cycles varies extensively across mammalian species. Because the end of a sleep cycle is often followed by brief arousals to waking, a shorter sleep cycle has been proposed to function as an anti-predator strategy. Similarly, higher predation risk could explain why many species exhibit a polyphasic sleep pattern (division of ...

  9. Energetic optimization of a solar thermochemical energy storage system subject to real constraints

    Energy Technology Data Exchange (ETDEWEB)

    Lovegrove, K [Australian National Univ., Canberra (Australia). Energy Research Centre

    1993-12-01

    An approach to the optimization of a solar energy conversion system which involves treating the system as a series of subsystems, each having a single cost determining variable, is proposed. The application to an ammonia-based thermochemical system with direct work output is discussed and possible subsystems are identified. The subsystem consisting of the exothermic reactor has been studied in detail. For this subsystem, the ratio of available catalyst volume to thermal power level is held constant whilst the exergetic efficiency is maximized. Results are presented from a determination of optimized reaction paths using dynamic programming techniques. (author)

  10. Design with Nonlinear Constraints

    KAUST Repository

    Tang, Chengcheng

    2015-12-10

    Most modern industrial and architectural designs need to satisfy the requirements of their targeted performance and respect the limitations of available fabrication technologies. At the same time, they should reflect the artistic considerations and personal taste of the designers, which cannot be simply formulated as optimization goals with single best solutions. This thesis aims at a general, flexible yet e cient computational framework for interactive creation, exploration and discovery of serviceable, constructible, and stylish designs. By formulating nonlinear engineering considerations as linear or quadratic expressions by introducing auxiliary variables, the constrained space could be e ciently accessed by the proposed algorithm Guided Projection, with the guidance of aesthetic formulations. The approach is introduced through applications in different scenarios, its effectiveness is demonstrated by examples that were difficult or even impossible to be computationally designed before. The first application is the design of meshes under both geometric and static constraints, including self-supporting polyhedral meshes that are not height fields. Then, with a formulation bridging mesh based and spline based representations, the application is extended to developable surfaces including origami with curved creases. Finally, general approaches to extend hard constraints and soft energies are discussed, followed by a concluding remark outlooking possible future studies.

  11. Searching for genomic constraints

    Energy Technology Data Exchange (ETDEWEB)

    Lio` , P [Cambridge, Univ. (United Kingdom). Genetics Dept.; Ruffo, S [Florence, Univ. (Italy). Fac. di Ingegneria. Dipt. di Energetica ` S. Stecco`

    1998-01-01

    The authors have analyzed general properties of very long DNA sequences belonging to simple and complex organisms, by using different correlation methods. They have distinguished those base compositional rules that concern the entire genome which they call `genomic constraints` from the rules that depend on the `external natural selection` acting on single genes, i. e. protein-centered constraints. They show that G + C content, purine / pyrimidine distributions and biological complexity of the organism are the most important factors which determine base compositional rules and genome complexity. Three main facts are here reported: bacteria with high G + C content have more restrictions on base composition than those with low G + C content; at constant G + C content more complex organisms, ranging from prokaryotes to higher eukaryotes (e.g. human) display an increase of repeats 10-20 nucleotides long, which are also partly responsible for long-range correlations; work selection of length 3 to 10 is stronger in human and in bacteria for two distinct reasons. With respect to previous studies, they have also compared the genomic sequence of the archeon Methanococcus jannaschii with those of bacteria and eukaryotes: it shows sometimes an intermediate statistical behaviour.

  12. Searching for genomic constraints

    International Nuclear Information System (INIS)

    Lio', P.; Ruffo, S.

    1998-01-01

    The authors have analyzed general properties of very long DNA sequences belonging to simple and complex organisms, by using different correlation methods. They have distinguished those base compositional rules that concern the entire genome which they call 'genomic constraints' from the rules that depend on the 'external natural selection' acting on single genes, i. e. protein-centered constraints. They show that G + C content, purine / pyrimidine distributions and biological complexity of the organism are the most important factors which determine base compositional rules and genome complexity. Three main facts are here reported: bacteria with high G + C content have more restrictions on base composition than those with low G + C content; at constant G + C content more complex organisms, ranging from prokaryotes to higher eukaryotes (e.g. human) display an increase of repeats 10-20 nucleotides long, which are also partly responsible for long-range correlations; work selection of length 3 to 10 is stronger in human and in bacteria for two distinct reasons. With respect to previous studies, they have also compared the genomic sequence of the archeon Methanococcus jannaschii with those of bacteria and eukaryotes: it shows sometimes an intermediate statistical behaviour

  13. Nosema spp. infections cause no energetic stress in tolerant honeybees

    DEFF Research Database (Denmark)

    Kurze, Christoph; Mayack, Christopher; Hirche, Frank

    2016-01-01

    closely related and highly host dependent intracellular gut pathogens, Nosema apis and Nosema ceranae, on the energetic state in Nosema tolerant and sensitive honeybees facing the infection. We quantified the three major haemolymph carbohydrates fructose, glucose, and trehalose using high......-performance liquid chromatography (HPLC) as a measure for host energetic state. Trehalose levels in the haemolymph were negatively associated with N. apis infection intensity and with N. ceranae infection regardless of the infection intensity in sensitive honeybees. Nevertheless, there was no such association...

  14. New Physics with Energetic Top Quarks

    CERN Document Server

    Andeen, Timothy; The ATLAS collaboration

    2018-01-01

    Many theories beyond the Standard Model predict new phenomena which decay to energetic top quarks. Searches for such new physics models are performed using the ATLAS experiment at the LHC using proton-proton collision data collected in 2015 and 2016 with a center-of-mass energy of 13 TeV. Selected recent results will be discussed.

  15. Energetic utilisation of biomass in Hungary

    International Nuclear Information System (INIS)

    Barotfi, I.

    1994-01-01

    Energetic utilisation of biomass has been known since prehistoric times and was only pushed into the background by the technological developments of the last century. The energy crisis and, more recently, environmental problems have now brought it back to the fore, and efforts are being made worldwide to find modern technical applications for biomass and contribute to its advance. (orig.) [de

  16. Energetic utilization of dietary fiber in pigs

    NARCIS (Netherlands)

    Rijnen, M.M.J.A.

    2003-01-01

    The energetic utilization of fermentable dietary fiber (fDF) of different fiber sources and its relation to physical activity and housing conditions was studied in three experiments. In all experiments the daily intake of digestible nutrients, nitrogen and energy balances, heat production, and

  17. Radiation hormesis: an ecological and energetic perspective.

    Science.gov (United States)

    Parsons, P A

    2001-09-01

    Organisms in natural habitats are exposed to an array of environmental stresses, which all have energetic costs. Under this ecological scenario, hormesis for ionizing radiation becomes an evolutionary expectation at exposures substantially exceeding background. This conclusion implies that some relaxation of radiation protection criteria is worthy of serious consideration. Copyright 2001 Harcourt Publishers Ltd.

  18. Energetic materials standards – Chemical compatibility

    NARCIS (Netherlands)

    Tuukkanen, I.M.; Bouma, R.H.B.

    2014-01-01

    Subgroup A Energetic Materials Team, SG/A (EMT), develops and maintains standards that are relevant to all life-cycle phases of ammunition/weapon systems. STANAG 4147 is the standard regarding chemical compatibility of explosives with munition components, and is a document of prime importance.

  19. Capturing the most energetic cosmic rays

    International Nuclear Information System (INIS)

    Mantsch, P.

    1999-01-01

    The methods of energy measurement applied to the most energetic cosmic rays are described. The rays are so rare that two gigantic systems of detectors are proposed to detect at least some of them (the Pierre Auger Project ). (Z.J.)

  20. Physics with energetic radioactive ion beams

    International Nuclear Information System (INIS)

    Henning, W.F.

    1996-01-01

    Beams of short-lived, unstable nuclei have opened new dimensions in studies of nuclear structure and reactions. Such beams also provide key information on reactions that take place in our sun and other stars. Status and prospects of the physics with energetic radioactive beams are summarized

  1. ENERGETIC CHARGE OF AN INFORMATION PROCESS

    Directory of Open Access Journals (Sweden)

    Popova T.M.

    2009-12-01

    Full Text Available Main laws of technical thermodynamics are universal and could be applied to processes other than thermodynamic ones. The results of the comparison of peculiarities of irreversible informational and thermodynamic processes are presented in the article and a new term “Infopy” is used. A more precise definition of “infopy” as an energetic charge is given in the article.

  2. Salt-bridge energetics in halophilic proteins.

    Science.gov (United States)

    Nayek, Arnab; Sen Gupta, Parth Sarthi; Banerjee, Shyamashree; Mondal, Buddhadev; Bandyopadhyay, Amal K

    2014-01-01

    Halophilic proteins have greater abundance of acidic over basic and very low bulky hydrophobic residues. Classical electrostatic stabilization was suggested as the key determinant for halophilic adaptation of protein. However, contribution of specific electrostatic interactions (i.e. salt-bridges) to overall stability of halophilic proteins is yet to be understood. To understand this, we use Adaptive-Poison-Boltzmann-Solver Methods along with our home-built automation to workout net as well as associated component energy terms such as desolvation energy, bridge energy and background energy for 275 salt-bridges from 20 extremely halophilic proteins. We then perform extensive statistical analysis on general and energetic attributes on these salt-bridges. On average, 8 salt-bridges per 150 residues protein were observed which is almost twice than earlier report. Overall contributions of salt-bridges are -3.0 kcal mol-1. Majority (78%) of salt-bridges in our dataset are stable and conserved in nature. Although, average contributions of component energy terms are equal, their individual details vary greatly from one another indicating their sensitivity to local micro-environment. Notably, 35% of salt-bridges in our database are buried and stable. Greater desolvation penalty of these buried salt-bridges are counteracted by stable network salt-bridges apart from favorable equal contributions of bridge and background terms. Recruitment of extensive network salt-bridges (46%) with a net contribution of -5.0 kcal mol-1 per salt-bridge, seems to be a halophilic design wherein favorable average contribution of background term (-10 kcal mol-1) exceeds than that of bridge term (-7 kcal mol-1). Interiors of proteins from halophiles are seen to possess relatively higher abundance of charge and polar side chains than that of mesophiles which seems to be satisfied by cooperative network salt-bridges. Overall, our theoretical analyses provide insight into halophilic signature in its

  3. Recent progress of hybrid simulation for energetic particles and MHD

    International Nuclear Information System (INIS)

    Todo, Y.

    2013-01-01

    Several hybrid simulation models have been constructed to study the evolution of Alfven eigenmodes destabilized by energetic particles. Recent hybrid simulation results of energetic particle driven instabilities are presented in this paper. (J.P.N.)

  4. Advances in magnetospheric physics, 1971--1974: energetic particles

    International Nuclear Information System (INIS)

    West, H.I. Jr.

    1974-12-01

    An account is given of energetic particle research in magnetospheric physics for the time period 1971--1974. Emphasis is on relating the various aspects of energetic particles to magnetospheric processes. 458 refs. (U.S.)

  5. Supergravity constraints on monojets

    International Nuclear Information System (INIS)

    Nandi, S.

    1986-01-01

    In the standard model, supplemented by N = 1 minimal supergravity, all the supersymmetric particle masses can be expressed in terms of a few unknown parameters. The resulting mass relations, and the laboratory and the cosmological bounds on these superpartner masses are used to put constraints on the supersymmetric origin of the CERN monojets. The latest MAC data at PEP excludes the scalar quarks, of masses up to 45 GeV, as the origin of these monojets. The cosmological bounds, for a stable photino, excludes the mass range necessary for the light gluino-heavy squark production interpretation. These difficulties can be avoided by going beyond the minimal supergravity theory. Irrespective of the monojets, the importance of the stable γ as the source of the cosmological dark matter is emphasized

  6. Temporal Concurrent Constraint Programming

    DEFF Research Database (Denmark)

    Valencia, Frank Dan

    Concurrent constraint programming (ccp) is a formalism for concurrency in which agents interact with one another by telling (adding) and asking (reading) information in a shared medium. Temporal ccp extends ccp by allowing agents to be constrained by time conditions. This dissertation studies...... temporal ccp by developing a process calculus called ntcc. The ntcc calculus generalizes the tcc model, the latter being a temporal ccp model for deterministic and synchronouss timed reactive systems. The calculus is built upon few basic ideas but it captures several aspects of timed systems. As tcc, ntcc...... structures, robotic devises, multi-agent systems and music applications. The calculus is provided with a denotational semantics that captures the reactive computations of processes in the presence of arbitrary environments. The denotation is proven to be fully-abstract for a substantial fragment...

  7. Energetics of Brazilian ethanol: Comparison between assessment approaches

    International Nuclear Information System (INIS)

    Ramirez Triana, Carlos Ariel

    2011-01-01

    As with any other bioenergy product, bioethanol production requires fossil fuel inputs; hence the alleged benefits of energy security and carbon mitigation depend on the extent to which these inputs are capable of drawing a substantive bioenergetic yield. Brazilian ethanol, made out of sugarcane, has been reported as the most efficient gasoline substitute that is commercially available nowadays. For that reason it has been the object of several analyses on the energetics, i.e. energy balances. These studies surprisingly vary widely according with the scholar approach and are not fully comparable among them due to divergences in the assessment method. This paper standardises results of the four most prominent authors in the field, establishing a point of comparison and drawing some light on the energetics studies on biofuels. The main result is shown in , which homogenises the outcomes for referred studies in terms of unit of assessment in the energy input analysis. Subsequently, this information is also charted () explaining the source of divergence among authors. This work ends with a short reference and comparison to some energy balance studies carried out on feedstocks of diverse nature, highlighting the potential that sugarcane-based bioethanol represents nowadays. - Highlights: → Distribution stage could reduce energy ratio but its contribution is not significant. → In Pimentel and Patzek there is an evident impact of the industrial stage. → A coincidence across the studies was the major impact of the agricultural stage. → Brazilian technology to produce ethanol was proved the most energy efficient one.

  8. Assessment of accident energetics in LMFBR core-disruptive accidents

    International Nuclear Information System (INIS)

    Fauske, H.K.

    1977-01-01

    An assessment of accident energetics in LMFBR core-disruptive accidents is given with emphasis on the generic issues of energetic recriticality and energetic fuel-coolant interaction events. Application of a few general behavior principles to the oxide-fueled system suggests that such events are highly unlikely following a postulated core meltdown event

  9. Minimal Flavor Constraints for Technicolor

    DEFF Research Database (Denmark)

    Sakuma, Hidenori; Sannino, Francesco

    2010-01-01

    We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self-coupling and mas......We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self...

  10. Social Constraints on Animate Vision

    National Research Council Canada - National Science Library

    Breazeal, Cynthia; Edsinger, Aaron; Fitzpatrick, Paul; Scassellati, Brian

    2000-01-01

    .... In humanoid robotic systems, or in any animate vision system that interacts with people, social dynamics provide additional levels of constraint and provide additional opportunities for processing economy...

  11. The composition of heavy ions in solar energetic particle events

    International Nuclear Information System (INIS)

    Fan, C.Y.

    1984-01-01

    The composition within individual SEP events may vary both with time and energy, and will in general be different from that in other SEP events. Average values of relative abundances measured in a large number of SEP events, however, are found to be roughly energy independent in the proportional1 to proportional20 MeV per nucleon range, and show a systematic deviation from photospheric abundances which seems to be organized in terms of the first ionization potential of the ion. Direct measurements of the charge states of SEPs have revealed the surprisingly common presence of energetic He + along with heavy ions with typically coronal ionization states. High-resolution measurements of isotopic abundance ratios in a small number of SEP events show these to be consistent with the universal composition except for the puzzling overabundance of the SEP 22 Ne/ 20 Ne relative to this isotopes ratio in the solar wind. The broad spectrum of observed elemental abundance variations, which in their extreme result in composition anomalies characteristic of 3 He-rich, heavy-ion rich and carbon-poor SEP events, along with direct measurements of the ionization states of SEPs provide essential information on the physical characteristics of, and conditions in the source regions, as well as important constraints to possible models for SEP production. (orig./HM)

  12. Energetic charged particles in the magnetosphere of Neptune

    International Nuclear Information System (INIS)

    Stone, E.C.; Cummings, A.C.; Looper, M.D.; Selesnick, R.S.; Lal, N.; McDonald, F.B.; Trainor, J.H.; Chenette, D.L.

    1989-01-01

    The Voyager 2 cosmic ray system (CRS) measured significant fluxes of energetic [approx-lt 1 megaelectron volt (MeV)] trapped electrons and protons in the magnetosphere of Neptune. The intensities at maximum near a magnetic L shell of 7, decreasing closer to the planet because of absorption by satellites and rings. In the region of the inner satellites of Neptune, the radiation belts have a complicated structure, which provides some constraints on the magnetic field geometry of the inner magnetosphere. Electron phase-space densities have a positive radial gradient, indicating that they diffuse inward from a source in the outer magnetosphere. Electron spectra from 1 to 5 MeV are generally well represented by power laws with indices near 6, which harden in the region of peak flux to power law indices of 4 to 5. Protons have significantly lower fluxes than electrons throughout the magnetosphere, with large anisotropies due to radial intensity gradients. The radiation belts resemble those of Uranus to the extent allowed by the different locations of the satellites, which limit the flux at each planet

  13. Energetic Combustion Devices for Aerospace Propulsion and Power

    Science.gov (United States)

    Litchford, Ron J.

    2000-01-01

    Chemical reactions have long been the mainstay thermal energy source for aerospace propulsion and power. Although it is widely recognized that the intrinsic energy density limitations of chemical bonds place severe constraints on maximum realizable performance, it will likely be several years before systems based on high energy density nuclear fuels can be placed into routine service. In the mean time, efforts to develop high energy density chemicals and advanced combustion devices which can utilize such energetic fuels may yield worthwhile returns in overall system performance and cost. Current efforts in this vein are being carried out at NASA MSFC under the direction of the author in the areas of pulse detonation engine technology development and light metals combustion devices. Pulse detonation engines are touted as a low cost alternative to gas turbine engines and to conventional rocket engines, but actual performance and cost benefits have yet to be convincingly demonstrated. Light metal fueled engines also offer potential benefits in certain niche applications such as aluminum/CO2 fueled engines for endo-atmospheric Martian propulsion. Light metal fueled MHD generators also present promising opportunities with respect to electric power generation for electromagnetic launch assist. This presentation will discuss the applications potential of these concepts with respect to aero ace propulsion and power and will review the current status of the development efforts.

  14. Modifier constraint in alkali borophosphate glasses using topological constraint theory

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zeng, Huidan, E-mail: hdzeng@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Jiang, Qi [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhao, Donghui [Unifrax Corporation, Niagara Falls, NY 14305 (United States); Chen, Guorong [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Wang, Zhaofeng; Sun, Luyi [Department of Chemical & Biomolecular Engineering and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States); Chen, Jianding [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2016-12-01

    In recent years, composition-dependent properties of glasses have been successfully predicted using the topological constraint theory. The constraints of the glass network are derived from two main parts: network formers and network modifiers. The constraints of the network formers can be calculated on the basis of the topological structure of the glass. However, the latter cannot be accurately calculated in this way, because of the existing of ionic bonds. In this paper, the constraints of the modifier ions in phosphate glasses were thoroughly investigated using the topological constraint theory. The results show that the constraints of the modifier ions are gradually increased with the addition of alkali oxides. Furthermore, an improved topological constraint theory for borophosphate glasses is proposed by taking the composition-dependent constraints of the network modifiers into consideration. The proposed theory is subsequently evaluated by analyzing the composition dependence of the glass transition temperature in alkali borophosphate glasses. This method is supposed to be extended to other similar glass systems containing alkali ions.

  15. Seismological Constraints on Geodynamics

    Science.gov (United States)

    Lomnitz, C.

    2004-12-01

    Earth is an open thermodynamic system radiating heat energy into space. A transition from geostatic earth models such as PREM to geodynamical models is needed. We discuss possible thermodynamic constraints on the variables that govern the distribution of forces and flows in the deep Earth. In this paper we assume that the temperature distribution is time-invariant, so that all flows vanish at steady state except for the heat flow Jq per unit area (Kuiken, 1994). Superscript 0 will refer to the steady state while x denotes the excited state of the system. We may write σ 0=(J{q}0ṡX{q}0)/T where Xq is the conjugate force corresponding to Jq, and σ is the rate of entropy production per unit volume. Consider now what happens after the occurrence of an earthquake at time t=0 and location (0,0,0). The earthquake introduces a stress drop Δ P(x,y,z) at all points of the system. Response flows are directed along the gradients toward the epicentral area, and the entropy production will increase with time as (Prigogine, 1947) σ x(t)=σ 0+α {1}/(t+β )+α {2}/(t+β )2+etc A seismological constraint on the parameters may be obtained from Omori's empirical relation N(t)=p/(t+q) where N(t) is the number of aftershocks at time t following the main shock. It may be assumed that p/q\\sim\\alpha_{1}/\\beta times a constant. Another useful constraint is the Mexican-hat geometry of the seismic transient as obtained e.g. from InSAR radar interferometry. For strike-slip events such as Landers the distribution of \\DeltaP is quadrantal, and an oval-shaped seismicity gap develops about the epicenter. A weak outer triggering maxiμm is found at a distance of about 17 fault lengths. Such patterns may be extracted from earthquake catalogs by statistical analysis (Lomnitz, 1996). Finally, the energy of the perturbation must be at least equal to the recovery energy. The total energy expended in an aftershock sequence can be found approximately by integrating the local contribution over

  16. Revisiting big-bang nucleosynthesis constraints on long-lived decaying particles

    Science.gov (United States)

    Kawasaki, Masahiro; Kohri, Kazunori; Moroi, Takeo; Takaesu, Yoshitaro

    2018-01-01

    We study the effects of long-lived massive particles, which decayed during the big-bang nucleosynthesis (BBN) epoch, on the primordial abundance of light elements. Compared to previous studies, (i) the reaction rates of standard BBN reactions are updated, (ii) the most recent observational data on the light element abundance and cosmological parameters are used, (iii) the effects of the interconversion of energetic nucleons at the time of inelastic scattering with background nuclei are considered, and (iv) the effects of the hadronic shower induced by energetic high-energy antinucleons are included. We compare the theoretical predictions on the primordial abundance of light elements with the latest observational constraints, and we derive upper bounds on the relic abundance of the decaying particle as a function of its lifetime. We also apply our analysis to an unstable gravitino, the superpartner of a graviton in supersymmetric theories, and obtain constraints on the reheating temperature after inflation.

  17. Dark matter line emission constraints from NuSTAR observations of the Bullet Cluster

    DEFF Research Database (Denmark)

    Riemer-Sørensen, S.; Wik, D.; Madejski, G.

    2015-01-01

    Some dark matter candidates, e.g., sterile neutrinos, provide observable signatures in the form of mono-energetic line emission. We present the first search for dark matter line emission in the range in a pointed observation of the Bullet Cluster with NuSTAR. We do not detect any significant line...... emission and instead we derive upper limits (95% CL) on the flux, and interpret these constraints in the context of sterile neutrinos and more generic dark matter candidates. NuSTAR does not have the sensitivity to constrain the recently claimed line detection at , but improves on the constraints...... for energies of 10–25 keV....

  18. Energetic particles at venus: galileo results.

    Science.gov (United States)

    Williams, D J; McEntire, R W; Krimigis, S M; Roelof, E C; Jaskulek, S; Tossman, B; Wilken, B; Stüdemann, W; Armstrong, T P; Fritz, T A; Lanzerotti, L J; Roederer, J G

    1991-09-27

    At Venus the Energetic Particles Detector (EPD) on the Galileo spacecraft measured the differential energy spectra and angular distributions of ions >22 kiloelectron volts (keV) and electrons > 15 keV in energy. The only time particles were observed by EPD was in a series of episodic events [0546 to 0638 universal time (UT)] near closest approach (0559:03 UT). Angular distributions were highly anisotropic, ordered by the magnetic field, and showed ions arriving from the hemisphere containing Venus and its bow shock. The spectra showed a power law form with intensities observed into the 120- to 280-keV range. Comparisons with model bow shock calculations show that these energetic ions are associated with the venusian foreshock-bow shock region. Shock-drift acceleration in the venusian bow shock seems the most likely process responsible for the observed ions.

  19. Energetics of edge oxidization of graphene nanoribbons

    Science.gov (United States)

    Yasuma, Airi; Yamanaka, Ayaka; Okada, Susumu

    2018-06-01

    On the basis of the density functional theory, we studied the geometries and energetics of O atoms adsorbed on graphene edges for simulating the initial stage of the edge oxidization of graphene. Our calculations showed that oxygen atoms are preferentially adsorbed onto the graphene edges with the zigzag portion, resulting in a large adsorption energy of about 5 eV. On the other hand, the edges with armchair shape are rarely oxidized, or the oxidization causes substantial structural reconstructions, because of the stable covalent bond at the armchair edge with the triple bond nature. Furthermore, the energetics sensitively depends on the edge angles owing to the inhomogeneity of the charge density at the edge atomic sites.

  20. Green colorants based on energetic azole borates.

    Science.gov (United States)

    Glück, Johann; Klapötke, Thomas M; Rusan, Magdalena; Stierstorfer, Jörg

    2014-11-24

    The investigation of green-burning boron-based compounds as colorants in pyrotechnic formulations as alternative for barium nitrate, which is a hazard to health and to the environment, is reported. Metal-free and nitrogen-rich dihydrobis(5-aminotetrazolyl)borate salts and dihydrobis(1,3,4-triazolyl)borate salts have been synthesized and characterized by NMR spectroscopy, elemental analysis, mass spectrometry, and vibrational spectroscopy. Their thermal and energetic properties have been determined as well. Several pyrotechnic compositions using selected azolyl borate salts as green colorants were investigated. Formulations with ammonium dinitramide and ammonium nitrate as oxidizers and boron and magnesium as fuels were tested. The burn time, dominant wavelength, spectral purity, luminous intensity, and luminous efficiency as well as the thermal and energetic properties of these compositions were measured. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The composition of corotating energetic particle streams

    International Nuclear Information System (INIS)

    McGuire, R.E.; von Rosenvinge, T.T.; McDonald, F.B.

    1978-01-01

    The relative abundances of 1.5--23 MeV per nucleon ions in corotating nucleon streams are compared with ion abundances in particle events associated with solar flares and with solar and solar wind abundances. He/O and C/O ratios are found to be a factor of the order 2--3 greater in corotating streams than in flare-associated events. The distribution of H/He ratios in corotating streams is found to be much narrower and of lower average value than in flare-associated events. H/He in corotating energetic particle streams compares favorably in both lack of variability and numerical value with H/He in high-speed solar wind plasma streams. The lack of variability suggests that the source population for the corotating energetic particles is the solar wind, a suggestion consistent with acceleration of the corotating particles in interplanetary space

  2. Assessment of CRBR core disruptive accident energetics

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Bell, C.R.

    1984-03-01

    The results of an independent assessment of core disruptive accident energetics for the Clinch River Breeder Reactor are presented in this document. This assessment was performed for the Nuclear Regulatory Commission under the direction of the CRBR Program Office within the Office of Nuclear Reactor Regulation. It considered in detail the accident behavior for three accident initiators that are representative of three different classes of events; unprotected loss of flow, unprotected reactivity insertion, and protected loss of heat sink. The primary system's energetics accommodation capability was realistically, yet conservatively, determined in terms of core events. This accommodation capability was found to be equivalent to an isentropic work potential for expansion to one atmosphere of 2550 MJ or a ramp rate of about 200 $/s applied to a classical two-phase disassembly

  3. Energetic Issues Concerning the Content of Money

    OpenAIRE

    Negoescu Gheorghe; Radu Riana Iren

    2012-01-01

    In full times of crisis, money has become increasingly more important. We put the issue to analyze whether money can be considered a form of energy. The article is taking into consideration the conservation of energy and for money is due to kinetic energy during the boom and to potential energy during the crisis. In the article is also made an illustration of the energetic content of money at a company’s level.

  4. Estimating Instantaneous Energetic Cost During Gait Adaptation

    Science.gov (United States)

    2014-08-31

    energetic cost. Its 327   accuracy benefits from a personalized model for each subject, but for some situations, it may suffice to 328   use the...Activity 380   Patterns During Robotic - and Therapist-Assisted Treadmill Walking in Individuals With 381   Incomplete Spinal Cord Injury. Phys Ther 86...of level walking with powered ankle 410   exoskeletons . Journal of Experimental Biology 211: 1402–1413, 2008. 411   25. Schmalz T, Blumentritt S

  5. Multiphase Combustion of Metalized Nanocomposite Energetic Materials

    Science.gov (United States)

    2014-12-19

    on thermal conductivity and absorption coefficient for consolidated aluminum nanoparticles, International Journal of Heat and Mass Transfer, (06...28. Stacy, S.C., Zhang, X., Pantoya, M.L., Weeks, B., Effect of Density on Thermal Conductivity and Absorption Coefficient for Consolidated Aluminum...energetic powder to ESD stimuli generated from a piezo electric crystal ( PZT ). Results show that a high PZT dielectric strength leads to faster

  6. Problems Of Transport Energetics In Lithuania

    International Nuclear Information System (INIS)

    Ambrazevicius, A.; Baublys, J.

    2001-01-01

    Lithuania has more than one million of transport means, the thermal capacity of which is about 50 mill. kW, i.e. 10 times more than the capacity of all thermal power stations. In the 21st century electrical energy will be used for transport means instead of petrol, and new capacities of electric stations in Lithuania will be necessary. All perspective transport means are described and conclusions for Lithuanian energetics are presented. (author)

  7. The energetic alpha particle transport method EATM

    International Nuclear Information System (INIS)

    Kirkpatrick, R.C.

    1998-02-01

    The EATM method is an evolving attempt to find an efficient method of treating the transport of energetic charged particles in a dynamic magnetized (MHD) plasma for which the mean free path of the particles and the Larmor radius may be long compared to the gradient lengths in the plasma. The intent is to span the range of parameter space with the efficiency and accuracy thought necessary for experimental analysis and design of magnetized fusion targets

  8. Computational Chemistry Toolkit for Energetic Materials Design

    Science.gov (United States)

    2006-11-01

    industry are aggressively engaged in efforts to develop multiscale modeling and simulation methodologies to model and analyze complex phenomena across...energetic materials design. It is hoped that this toolkit will evolve into a collection of well-integrated multiscale modeling methodologies...Experimenta Theoreticala This Work 1-5-Diamino-4- methyl- tetrazolium nitrate 8.4 41.7 47.5 1-5-Diamino-4- methyl- tetrazolium azide 138.1 161.6

  9. Time constraints and autonomy at work in the European Union

    NARCIS (Netherlands)

    Dhondt, S.

    1998-01-01

    Time constraints and job autonomy are seen as two major dimensions of work content. These two dimensions play a major role in controlling psychosocial stress at work. The European Foundation for the Improvement of Living and Working Conditions (EFILWC) has asked NIA TNO to prepare a report on time

  10. Nuclear energy I, Non-energetic applications

    International Nuclear Information System (INIS)

    Lartigue G, J.; Navarrete T, M.; Cabrera M, L.; Arandia, P.A.; Arriola S, H.

    1986-01-01

    The nuclear energy is defined as the energy produced or absorbed in the nuclear reactions, therefore, these are divided in endothermic and exothermic. The exothermic nuclear reactions present more interest from the point of view of its applications and they can show in four main forms: radioactivity (from 0 to 4 MeV/reaction; light nucleus fusion ( ∼ 20 MeV/reaction), heavy nucleus fusion (∼ 200 MeV/reaction) and nucleons annihilation ( ∼ 2000 MeV/reaction). Nowadays only the fission has reached the stage of profitable energetic application, finding the other three forms in research and development. The non-energetic applications of the nuclear energy are characterized by they do not require of prior conversion to another form of energy and they are made through the use of radioisotopes as well as through the use of endothermic reaction caused in particle accelerators. In this work are presented some of the non-energetic applications with its theoretical and experimental basis as well as its benefits of each one. (Author)

  11. Sol-Gel Manufactured Energetic Materials

    Science.gov (United States)

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2005-05-17

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  12. Energetic Particles Dynamics in Mercury's Magnetosphere

    Science.gov (United States)

    Walsh, Brian M.; Ryou, A.S.; Sibeck, D. G.; Alexeev, I. I.

    2013-01-01

    We investigate the drift paths of energetic particles in Mercury's magnetosphere by tracing their motion through a model magnetic field. Test particle simulations solving the full Lorentz force show a quasi-trapped energetic particle population that gradient and curvature drift around the planet via "Shabansky" orbits, passing though high latitudes in the compressed dayside by equatorial latitudes on the nightside. Due to their large gyroradii, energetic H+ and Na+ ions will typically collide with the planet or the magnetopause and will not be able to complete a full drift orbit. These simulations provide direct comparison for recent spacecraft measurements from MESSENGER. Mercury's offset dipole results in an asymmetric loss cone and therefore an asymmetry in particle precipitation with more particles precipitating in the southern hemisphere. Since the planet lacks an atmosphere, precipitating particles will collide directly with the surface of the planet. The incident charged particles can kick up neutrals from the surface and have implications for the formation of the exosphere and weathering of the surface

  13. Calculation of the energetics of chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, T.H. Jr.; Harding, L.B.; Shepard, R.L.; Harrison, R.J.

    1988-01-01

    To calculate the energetics of chemical reactions we must solve the electronic Schroedinger equation for the molecular conformations of importance for the reactive encounter. Substantial changes occur in the electronic structure of a molecular system as the reaction progresses from reactants through the transition state to products. To describe these changes, our approach includes the following three elements: the use of multiconfiguration self-consistent field wave functions to provide a consistent zero-order description of the electronic structure of the reactants, transition state, and products; the use of configuration interaction techniques to describe electron correlation effects needed to provide quantitative predictions of the reaction energetics; and the use of large, optimized basis sets to provide the flexibility needed to describe the variations in the electronic distributions. With this approach we are able to study reactions involving as many as 5--6 atoms with errors of just a few kcal/mol in the predicted reaction energetics. Predictions to chemical accuracy, i.e., to 1 kcal/mol or less, are not yet feasible, although continuing improvements in both the theoretical methodology and computer technology suggest that this will soon be possible, at least for reactions involving small polyatomic species. 4 figs.

  14. Observational constraints on interstellar chemistry

    International Nuclear Information System (INIS)

    Winnewisser, G.

    1984-01-01

    The author points out presently existing observational constraints in the detection of interstellar molecular species and the limits they may cast on our knowledge of interstellar chemistry. The constraints which arise from the molecular side are summarised and some technical difficulties encountered in detecting new species are discussed. Some implications for our understanding of molecular formation processes are considered. (Auth.)

  15. Market segmentation using perceived constraints

    Science.gov (United States)

    Jinhee Jun; Gerard Kyle; Andrew Mowen

    2008-01-01

    We examined the practical utility of segmenting potential visitors to Cleveland Metroparks using their constraint profiles. Our analysis identified three segments based on their scores on the dimensions of constraints: Other priorities--visitors who scored the highest on 'other priorities' dimension; Highly Constrained--visitors who scored relatively high on...

  16. Fixed Costs and Hours Constraints

    Science.gov (United States)

    Johnson, William R.

    2011-01-01

    Hours constraints are typically identified by worker responses to questions asking whether they would prefer a job with more hours and more pay or fewer hours and less pay. Because jobs with different hours but the same rate of pay may be infeasible when there are fixed costs of employment or mandatory overtime premia, the constraint in those…

  17. An Introduction to 'Creativity Constraints'

    DEFF Research Database (Denmark)

    Onarheim, Balder; Biskjær, Michael Mose

    2013-01-01

    Constraints play a vital role as both restrainers and enablers in innovation processes by governing what the creative agent/s can and cannot do, and what the output can and cannot be. Notions of constraints are common in creativity research, but current contributions are highly dispersed due to n...

  18. Constraint Programming for Context Comprehension

    DEFF Research Database (Denmark)

    Christiansen, Henning

    2014-01-01

    A close similarity is demonstrated between context comprehension, such as discourse analysis, and constraint programming. The constraint store takes the role of a growing knowledge base learned throughout the discourse, and a suitable con- straint solver does the job of incorporating new pieces...

  19. Optimisation and constraints - a view from ICRP

    International Nuclear Information System (INIS)

    Dunster, H.J.

    1994-01-01

    The optimisation of protection has been the major policy underlying the recommendations of the International Commission on Radiological Protection for more than 20 years. In earlier forms, the concept can be traced back to 1951. Constraints are more recent, appearing in their present form only in the 1990 recommendations of the Commission. The requirement to keep all exposures as low as reasonably achievable applies to both normal and potential exposures. The policy and the techniques are well established for normal exposures, i.e. exposures that are certain to occur. The application to potential exposures, i.e. exposures that have a probability of occurring that is less than unity, is more difficult and is still under international discussion. Constraints are needed to limit the inequity associated with the use of collective dose in cost-benefit analysis and to provide a margin to protect individuals who may be exposed to more than one source. (author)

  20. Study on penetration-induced initiation of energetic fragment

    Science.gov (United States)

    Qiao, Xiangxin; Xu, Heyang

    2017-09-01

    In order to investigate penetration-induced initiation of energetic fragment penetrating target, PTFE/Al (mass ratio 73.5/26.5) pressed and sintered into a Ф8mm × 8mm cylinder. To form energetic fragment, the cylinder was put into a closed container made by 35CrMnSiA. The container is 12mm long, 2mm thick. Energetic fragments were launched by a 14.5mm ballistic gun with a series of velocities and the penetrate process was simulated by AUTODYN-3D. The results show that the stress peak of energetic material exceed the initiation threshold, and energetic material will deflagrate, when energetic fragments impact velocity more than 800 m/s. The research results can provide reference for designs of energetic warhead.

  1. Evidence against the energetic cost hypothesis for the short introns in highly expressed genes

    Directory of Open Access Journals (Sweden)

    Niu Deng-Ke

    2008-05-01

    Full Text Available Abstract Background In animals, the moss Physcomitrella patens and the pollen of Arabidopsis thaliana, highly expressed genes have shorter introns than weakly expressed genes. A popular explanation for this is selection for transcription efficiency, which includes two sub-hypotheses: to minimize the energetic cost or to minimize the time cost. Results In an individual human, different organs may differ up to hundreds of times in cell number (for example, a liver versus a hypothalamus. Considered at the individual level, a gene specifically expressed in a large organ is actually transcribed tens or hundreds of times more than a gene with a similar expression level (a measure of mRNA abundance per cell specifically expressed in a small organ. According to the energetic cost hypothesis, the former should have shorter introns than the latter. However, in humans and mice we have not found significant differences in intron length between large-tissue/organ-specific genes and small-tissue/organ-specific genes with similar expression levels. Qualitative estimation shows that the deleterious effect (that is, the energetic burden of long introns in highly expressed genes is too negligible to be efficiently selected against in mammals. Conclusion The short introns in highly expressed genes should not be attributed to energy constraint. We evaluated evidence for the time cost hypothesis and other alternatives.

  2. Energetics of dislocation transformations in hcp metals

    International Nuclear Information System (INIS)

    Wu, Zhaoxuan; Yin, Binglun; Curtin, W.A.

    2016-01-01

    Dislocation core structures of hcp metals are highly complex and differ significantly among the hcp family. Some dislocations undergo unconventional transformations that have significant effects on the material plastic flow. Here, the energetics of dislocation dissociations are analyzed in a general anisotropic linear elastic theory framework for transformations in which changes in the partial Burgers vectors are small. Quantitative analyses on various transformations are made using DFT-computed stacking fault energies and partial Burgers vectors. Specifically, possible transformations of the mixed, edge, and screw 〈c+a〉 and screw 〈a〉 dislocations in 6 hcp metals (Mg, Ti, Zr, Re, Zn, Cd) are studied. Climb dissociation of mixed or edge 〈c+a〉 dislocations to the Basal plane is energetically favorable in all 6 metals and thus only limited by thermal activation. The 〈c+a〉 screw dislocation is energetically preferable on Pyramidal I for Ti, Zr, and Re, and on Pyramidal II for Zn and Cd. In Mg, the energy difference between screw 〈c+a〉 on Pyramidal I and II planes is small, suggesting relatively easy cross-slip. For the screw 〈a〉, Basal dissociation is energetically favorable in Mg, Re, Zn and Cd, while Prism dissociation is strongly favorable in Ti and Zr. Only Ti, Zr and Re show a metastable state for dissociation on the Prism plane, and the energy difference between screw 〈a〉 on the Prism and Pyramidal I planes is relatively small in all systems, suggesting relatively easy cross-slip of 〈a〉 in Ti and Zr. The elastic analysis thus provides a single framework able to capture the controlling energetics for different dissociations and slip systems in hcp metals. When the calculated energy differences are very small, the results point to the need for detailed modeling of the atomistic core structure. Moreover, the analyses rationalize broad experimental observations on dominant slip systems and dislocation behaviours, and provide

  3. Effects of energetic heavy ions on electromagnetic ion cyclotron wave generation in the plasmapause region

    International Nuclear Information System (INIS)

    Kozyra, J.U.; Cravens, T.E.; Nagy, A.F.; Fontheim, E.G.; Ong, R.S.B.

    1984-01-01

    An expression for the linear electromagnetic ion cyclotron convective growth rate has been derived, considering multiple ions in the energetic anisotropic component of the plasma (which provides the free energy for the instability) as well as in the cold component of the plasma. This represents a modification of recent treatments investigating electromagnetic ion cyclotron growth rates which have considered only hydrogen ions in the energetic component. Four major effects on the growth and propagation characteristics result from inclusion of heavy ions in the energetic component. Some wave growth occurs at low frequencies below the corresponding marginally unstable wave mode for each heavy ion. Enhanced quasi-monochronomatic peaks in the convective growth rate appear just below the O + and He + gyrofrequency and can be quite pronounced for certain plasma conditions. Stop bands, decreased group velocity and other effects normally attributed to cold heavy ions can be produced or enhanced by heavy ions in the energetic plasma component. Partial or complete suppression of wave growth at frequencies above the marginally unstable wave mode for a particular energetic heavy ion can greatly alter the growth rates that would occur in the absence of this energetic heavy ion. The expression for the linear electromagnetic ion cyclotron convective growth rate along with appropriate plasma parameters was used to investigate the nature of linear wave growth in the plasmapause region. The frequencies of peaks in the convective growth rate given by this model compare favorably with wave measurements in this region. It is conceivable that through wave-particle interactions, electromagnetic ion cyclotron waves could supply the energy source for various plasmapause region phenomena such as the O + torus, the plasma cloak and stable auroral red arcs

  4. Vocabulary Constraint on Texts

    Directory of Open Access Journals (Sweden)

    C. Sutarsyah

    2008-01-01

    Full Text Available This case study was carried out in the English Education Department of State University of Malang. The aim of the study was to identify and describe the vocabulary in the reading text and to seek if the text is useful for reading skill development. A descriptive qualitative design was applied to obtain the data. For this purpose, some available computer programs were used to find the description of vocabulary in the texts. It was found that the 20 texts containing 7,945 words are dominated by low frequency words which account for 16.97% of the words in the texts. The high frequency words occurring in the texts were dominated by function words. In the case of word levels, it was found that the texts have very limited number of words from GSL (General Service List of English Words (West, 1953. The proportion of the first 1,000 words of GSL only accounts for 44.6%. The data also show that the texts contain too large proportion of words which are not in the three levels (the first 2,000 and UWL. These words account for 26.44% of the running words in the texts.  It is believed that the constraints are due to the selection of the texts which are made of a series of short-unrelated texts. This kind of text is subject to the accumulation of low frequency words especially those of content words and limited of words from GSL. It could also defeat the development of students' reading skills and vocabulary enrichment.

  5. Mammalian energetics. Flexible energetics of cheetah hunting strategies provide resistance against kleptoparasitism.

    Science.gov (United States)

    Scantlebury, David M; Mills, Michael G L; Wilson, Rory P; Wilson, John W; Mills, Margaret E J; Durant, Sarah M; Bennett, Nigel C; Bradford, Peter; Marks, Nikki J; Speakman, John R

    2014-10-03

    Population viability is driven by individual survival, which in turn depends on individuals balancing energy budgets. As carnivores may function close to maximum sustained power outputs, decreased food availability or increased activity may render some populations energetically vulnerable. Prey theft may compromise energetic budgets of mesopredators, such as cheetahs and wild dogs, which are susceptible to competition from larger carnivores. We show that daily energy expenditure (DEE) of cheetahs was similar to size-based predictions and positively related to distance traveled. Theft at 25% only requires cheetahs to hunt for an extra 1.1 hour per day, increasing DEE by just 12%. Therefore, not all mesopredators are energetically constrained by direct competition. Other factors that increase DEE, such as those that increase travel, may be more important for population viability. Copyright © 2014, American Association for the Advancement of Science.

  6. Seasonal energetic stress in a tropical forest primate: proximate causes and evolutionary implications.

    Directory of Open Access Journals (Sweden)

    Steffen Foerster

    Full Text Available Animals facing seasonal variation in food availability experience selective pressures that favor behavioral adjustments such as migration, changes in activity, or shifts in diet. Eclectic omnivores such as many primates can process low-quality fallback food when preferred food is unavailable. Such dietary flexibility, however, may be insufficient to eliminate constraints on reproduction even for species that live in relatively permissive environments, such as moist tropical forests. Focusing on a forest-dwelling primate with a flexible diet (Cercopithecus mitis we investigated whether females experience seasonal energetic stress and how it may relate to reproductive seasonality. We used fecal glucocorticoids (fGCs as an indicator of energetic stress, controlling for the potentially confounding effects of social interactions and reproductive state. We modeled within-female fGC variation with General Linear Mixed Models, evaluating changes in feeding behavior and food availability as main effects. Regardless of reproductive state, fGCs increased when females shifted their diet towards fallback foods (mature leaves and other non-preferred items and when they spent more time feeding, while fGCs decreased with feeding time on preferred items (insects, fruits, young leaves and with the availability of young leaves. Changes in fruit availability had no general effects on fGCs, likely because fruits were sought out regardless of availability. As predicted, females in the energetically demanding stages of late pregnancy and early lactation showed greater increases in fGCs between periods of low versus high availability of fruits and young leaves than females in other reproductive states. Potential social stressors had no measurable effects on fGCs. Preliminary evidence suggests that seasonal energetic stress may affect the timing of infant independence from mothers and contribute to unusually long inter-birth intervals compared to closely related species

  7. Seasonal energetic stress in a tropical forest primate: proximate causes and evolutionary implications.

    Science.gov (United States)

    Foerster, Steffen; Cords, Marina; Monfort, Steven L

    2012-01-01

    Animals facing seasonal variation in food availability experience selective pressures that favor behavioral adjustments such as migration, changes in activity, or shifts in diet. Eclectic omnivores such as many primates can process low-quality fallback food when preferred food is unavailable. Such dietary flexibility, however, may be insufficient to eliminate constraints on reproduction even for species that live in relatively permissive environments, such as moist tropical forests. Focusing on a forest-dwelling primate with a flexible diet (Cercopithecus mitis) we investigated whether females experience seasonal energetic stress and how it may relate to reproductive seasonality. We used fecal glucocorticoids (fGCs) as an indicator of energetic stress, controlling for the potentially confounding effects of social interactions and reproductive state. We modeled within-female fGC variation with General Linear Mixed Models, evaluating changes in feeding behavior and food availability as main effects. Regardless of reproductive state, fGCs increased when females shifted their diet towards fallback foods (mature leaves and other non-preferred items) and when they spent more time feeding, while fGCs decreased with feeding time on preferred items (insects, fruits, young leaves) and with the availability of young leaves. Changes in fruit availability had no general effects on fGCs, likely because fruits were sought out regardless of availability. As predicted, females in the energetically demanding stages of late pregnancy and early lactation showed greater increases in fGCs between periods of low versus high availability of fruits and young leaves than females in other reproductive states. Potential social stressors had no measurable effects on fGCs. Preliminary evidence suggests that seasonal energetic stress may affect the timing of infant independence from mothers and contribute to unusually long inter-birth intervals compared to closely related species of similar body

  8. Natural Constraints to Species Diversification.

    Directory of Open Access Journals (Sweden)

    Eric Lewitus

    2016-08-01

    Full Text Available Identifying modes of species diversification is fundamental to our understanding of how biodiversity changes over evolutionary time. Diversification modes are captured in species phylogenies, but characterizing the landscape of diversification has been limited by the analytical tools available for directly comparing phylogenetic trees of groups of organisms. Here, we use a novel, non-parametric approach and 214 family-level phylogenies of vertebrates representing over 500 million years of evolution to identify major diversification modes, to characterize phylogenetic space, and to evaluate the bounds and central tendencies of species diversification. We identify five principal patterns of diversification to which all vertebrate families hold. These patterns, mapped onto multidimensional space, constitute a phylogenetic space with distinct properties. Firstly, phylogenetic space occupies only a portion of all possible tree space, showing family-level phylogenies to be constrained to a limited range of diversification patterns. Secondly, the geometry of phylogenetic space is delimited by quantifiable trade-offs in tree size and the heterogeneity and stem-to-tip distribution of branching events. These trade-offs are indicative of the instability of certain diversification patterns and effectively bound speciation rates (for successful clades within upper and lower limits. Finally, both the constrained range and geometry of phylogenetic space are established by the differential effects of macroevolutionary processes on patterns of diversification. Given these properties, we show that the average path through phylogenetic space over evolutionary time traverses several diversification stages, each of which is defined by a different principal pattern of diversification and directed by a different macroevolutionary process. The identification of universal patterns and natural constraints to diversification provides a foundation for understanding the

  9. Natural Constraints to Species Diversification.

    Science.gov (United States)

    Lewitus, Eric; Morlon, Hélène

    2016-08-01

    Identifying modes of species diversification is fundamental to our understanding of how biodiversity changes over evolutionary time. Diversification modes are captured in species phylogenies, but characterizing the landscape of diversification has been limited by the analytical tools available for directly comparing phylogenetic trees of groups of organisms. Here, we use a novel, non-parametric approach and 214 family-level phylogenies of vertebrates representing over 500 million years of evolution to identify major diversification modes, to characterize phylogenetic space, and to evaluate the bounds and central tendencies of species diversification. We identify five principal patterns of diversification to which all vertebrate families hold. These patterns, mapped onto multidimensional space, constitute a phylogenetic space with distinct properties. Firstly, phylogenetic space occupies only a portion of all possible tree space, showing family-level phylogenies to be constrained to a limited range of diversification patterns. Secondly, the geometry of phylogenetic space is delimited by quantifiable trade-offs in tree size and the heterogeneity and stem-to-tip distribution of branching events. These trade-offs are indicative of the instability of certain diversification patterns and effectively bound speciation rates (for successful clades) within upper and lower limits. Finally, both the constrained range and geometry of phylogenetic space are established by the differential effects of macroevolutionary processes on patterns of diversification. Given these properties, we show that the average path through phylogenetic space over evolutionary time traverses several diversification stages, each of which is defined by a different principal pattern of diversification and directed by a different macroevolutionary process. The identification of universal patterns and natural constraints to diversification provides a foundation for understanding the deep-time evolution of

  10. Natural Constraints to Species Diversification

    Science.gov (United States)

    Lewitus, Eric; Morlon, Hélène

    2016-01-01

    Identifying modes of species diversification is fundamental to our understanding of how biodiversity changes over evolutionary time. Diversification modes are captured in species phylogenies, but characterizing the landscape of diversification has been limited by the analytical tools available for directly comparing phylogenetic trees of groups of organisms. Here, we use a novel, non-parametric approach and 214 family-level phylogenies of vertebrates representing over 500 million years of evolution to identify major diversification modes, to characterize phylogenetic space, and to evaluate the bounds and central tendencies of species diversification. We identify five principal patterns of diversification to which all vertebrate families hold. These patterns, mapped onto multidimensional space, constitute a phylogenetic space with distinct properties. Firstly, phylogenetic space occupies only a portion of all possible tree space, showing family-level phylogenies to be constrained to a limited range of diversification patterns. Secondly, the geometry of phylogenetic space is delimited by quantifiable trade-offs in tree size and the heterogeneity and stem-to-tip distribution of branching events. These trade-offs are indicative of the instability of certain diversification patterns and effectively bound speciation rates (for successful clades) within upper and lower limits. Finally, both the constrained range and geometry of phylogenetic space are established by the differential effects of macroevolutionary processes on patterns of diversification. Given these properties, we show that the average path through phylogenetic space over evolutionary time traverses several diversification stages, each of which is defined by a different principal pattern of diversification and directed by a different macroevolutionary process. The identification of universal patterns and natural constraints to diversification provides a foundation for understanding the deep-time evolution of

  11. Solar Energetic Particle Studies with PAMELA

    Science.gov (United States)

    Bravar, U.; Christian, E. R.; deNolfo, Georgia; Ryan, J. M.; Stochaj, S.

    2011-01-01

    The origin of the high-energy solar energetic particles (SEPs) may conceivably be found in composition signatures that reflect the elemental abundances of the low corona and chromosphere vs. the high corona and solar wind. The presence of secondaries, such as neutrons and positrons, could indicate a low coronal origin of these particles. Velocity dispersion of different species and over a wide energy range can be used to determine energetic particle release times at the Sun. Together with multi-wavelength imaging, in- situ observations of a variety of species, and coverage over a wide energy range provide a critical tool in identifying the origin of SEPs, understanding the evolution of these events within the context of solar active regions, and constraining the acceleration mechanisms at play. The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA)instrument, successfully launched in 2006 and expected to remain operational until at least the beginning of 2012, measures energetic particles in the same energy range as ground-based neutron monitors, and lower energies as well. It thus bridges the gap between low energy in-situ observations and ground-based Ground Level Enhancements (GLE) observations. It can measure the charge (up to Z=6) and atomic number of the detected particles, and it can identify and measure positrons and detect neutrons-an unprecedented array of data channels that we can bring to bear on the origin of high-energy SEPs. We present prelimiary results on the for the 2006 December 13 solar flare and GLE and the 2011 March 21 solar flare, both registering proton and helium enhancements in PAMELA. Together with multi- spacecraft contextual data and modeling, we discuss the PAMELA results in the context of the different acceleration mechanisms at play.

  12. Synthesis of a new energetic nitrate ester

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, David E [Los Alamos National Laboratory

    2008-01-01

    Nitrate esters have been known as useful energetic materials since the discovery of nitroglycerin by Ascanio Sobrero in 1846. The development of methods to increase the safety and utility of nitroglycerin by Alfred Nobel led to the revolutionary improvement in the utility of nitroglycerin in explosive applications in the form of dynamite. Since then, many nitrate esters have been prepared and incorporated into military applications such as double-based propellants, detonators and as energetic plasticizers. Nitrate esters have also been shown to have vasodilatory effects in humans and thus have been studied and used for treatments of ailments such as angina. The mechanism of the biological response towards nitrate esters has been elucidated recently. Interestingly, many of the nitrate esters used for military purposes are liquids (ethylene glycol dinitrate, propylene glycol dinitrate, etc). Pentaerythritol tetranitrate (PETN) is one of the only solid nitrate esters, besides nitrocellulose, that is used in any application. Unfortunately, PETN melting point is above 100 {sup o}C, and thus must be pressed as a solid for detonator applications. A more practical material would be a melt-castable explosive, for potential simplification of manufacturing processes. Herein we describe the synthesis of a new energetic nitrate ester (1) that is a solid at ambient temperatures, has a melting point of 85-86 {sup o}C and has the highest density of any known nitrate ester composed only of carbon, hydrogen, nitrogen and oxygen. We also describe the chemical, thermal and sensitivity properties of 1 as well as some preliminary explosive performance data.

  13. Observation of enhanced radial transport of energetic ion due to energetic particle mode destabilized by helically-trapped energetic ion in the Large Helical Device

    Science.gov (United States)

    Ogawa, K.; Isobe, M.; Kawase, H.; Nishitani, T.; Seki, R.; Osakabe, M.; LHD Experiment Group

    2018-04-01

    A deuterium experiment was initiated to achieve higher-temperature and higher-density plasmas in March 2017 in the Large Helical Device (LHD). The central ion temperature notably increases compared with that in hydrogen experiments. However, an energetic particle mode called the helically-trapped energetic-ion-driven resistive interchange (EIC) mode is often excited by intensive perpendicular neutral beam injections on high ion-temperature discharges. The mode leads to significant decrease of the ion temperature or to limiting the sustainment of the high ion-temperature state. To understand the effect of EIC on the energetic ion confinement, the radial transport of energetic ions is studied by means of the neutron flux monitor and vertical neutron camera newly installed on the LHD. Decreases of the line-integrated neutron profile in core channels show that helically-trapped energetic ions are lost from the plasma.

  14. Energetic particle instabilities in fusion plasmas

    International Nuclear Information System (INIS)

    Sharapov, S.E.; Alper, B.; Challis, C.D.; Gryaznevich, M.P.; Kiptily, V.G.; Voitsekhovich, I.; Berk, H.L.; Breizman, B.N.; Borba, D.N.; Nabais, F.; Classen, I.G.J.; Edlund, E.M.; Fredrickson, E.D.; Fu, G.Y.; Ghantous, K.; Gorelenkov, N.N.; Kramer, G.J.; Nazikian, R.; Podesta, M.; White, R.B.; Eriksson, J.; Hellesen, C.; Fasoli, A.; Garcia-Munoz, M.; Lauber, P.; Thun, C. Perez von; Gassner, T.; Goloborodko, V.; Schoepf, K.; Yavorskij, V.; Hacquin, S.; Heidbrink, W.W.; Lilley, M.K.; Lisak, M.; Nyqvist, R.; Osakabe, M.; Todo, Y.; Toi, K.; Pinches, S.D.; Porkolab, M.; Shinohara, Koji; Van Zeeland, M.A.

    2012-11-01

    Remarkable progress has been made in diagnosing energetic particle instabilities on present-day machines and in establishing a theoretical framework for describing them. This overview describes the much improved diagnostics of Alfvén instabilities and modelling tools developed world-wide, and discusses progress in interpreting the observed phenomena. A multi-machine comparison is presented giving information on the performance of both diagnostics and modelling tools for different plasma conditions outlining expectations for ITER based on our present knowledge. (author)

  15. Solar energetic particles and radio burst emission

    Czech Academy of Sciences Publication Activity Database

    Miteva, R.; Samwel, S. W.; Krupař, Vratislav

    2017-01-01

    Roč. 7 (2017), č. článku A37. ISSN 2115-7251 R&D Projects: GA ČR(CZ) GJ17-06818Y Institutional support: RVO:68378289 Keywords : solar energetic particles * solar radio burst emission * solar cycle Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.446, year: 2016 https://www.swsc-journal.org/ articles /swsc/abs/2017/01/swsc170028/swsc170028.html

  16. Machine tongues. X. Constraint languages

    Energy Technology Data Exchange (ETDEWEB)

    Levitt, D.

    Constraint languages and programming environments will help the designer produce a lucid description of a problem domain, and then of particular situations and problems in it. Early versions of these languages were given descriptions of real world domain constraints, like the operation of electrical and mechanical parts. More recently, the author has automated a vocabulary for describing musical jazz phrases, using constraint language as a jazz improviser. General constraint languages will handle all of these domains. Once the model is in place, the system will connect built-in code fragments and algorithms to answer questions about situations; that is, to help solve problems. Bugs will surface not in code, but in designs themselves. 15 references.

  17. Variational calculus with constraints on general algebroids

    Energy Technology Data Exchange (ETDEWEB)

    Grabowska, Katarzyna [Physics Department, Division of Mathematical Methods in Physics, University of Warsaw, Hoza 69, 00-681 Warszawa (Poland); Grabowski, Janusz [Institute of Mathematics, Polish Academy of Sciences, Sniadeckich 8, PO Box 21, 00-956 Warszawa (Poland)], E-mail: konieczn@fuw.edu.pl, E-mail: jagrab@impan.gov.pl

    2008-05-02

    Variational calculus on a vector bundle E equipped with a structure of a general algebroid is developed, together with the corresponding analogs of Euler-Lagrange equations. Constrained systems are introduced in the variational and geometrical settings. The constrained Euler-Lagrange equations are derived for analogs of holonomic, vakonomic and nonholonomic constraints. This general model covers the majority of first-order Lagrangian systems which are present in the literature and reduces to the standard variational calculus and the Euler-Lagrange equations in classical mechanics for E = TM.

  18. Intelligence Constraints on Terrorist Network Plots

    Science.gov (United States)

    Woo, Gordon

    Since 9/11, the western intelligence and law enforcement services have managed to interdict the great majority of planned attacks against their home countries. Network analysis shows that there are important intelligence constraints on the number and complexity of terrorist plots. If two many terrorists are involved in plots at a given time, a tipping point is reached whereby it becomes progressively easier for the dots to be joined and for the conspirators to be arrested, and for the aggregate evidence to secure convictions. Implications of this analysis are presented for the campaign to win hearts and minds.

  19. Variational calculus with constraints on general algebroids

    International Nuclear Information System (INIS)

    Grabowska, Katarzyna; Grabowski, Janusz

    2008-01-01

    Variational calculus on a vector bundle E equipped with a structure of a general algebroid is developed, together with the corresponding analogs of Euler-Lagrange equations. Constrained systems are introduced in the variational and geometrical settings. The constrained Euler-Lagrange equations are derived for analogs of holonomic, vakonomic and nonholonomic constraints. This general model covers the majority of first-order Lagrangian systems which are present in the literature and reduces to the standard variational calculus and the Euler-Lagrange equations in classical mechanics for E = TM

  20. Participation Constraints in the Stock Market

    DEFF Research Database (Denmark)

    Andersen, Steffen; Meisner Nielsen, Kasper

    2011-01-01

    We use a natural experiment to investigate the impact of participation constraints on individuals' decisions to invest in the stock market. Unexpected inheritance due to sudden deaths results in exogenous variation in financial wealth, and allows us to examine whether fixed entry and ongoing...... participation costs cause non-participation. We have three key findings. First, windfall wealth has a positive effect on participation. Second, the majority of households do not react to sizeable windfalls by entering the stock market, but hold on to substantial safe assets—even over longer horizons. Third...

  1. Fluid convection, constraint and causation

    Science.gov (United States)

    Bishop, Robert C.

    2012-01-01

    Complexity—nonlinear dynamics for my purposes in this essay—is rich with metaphysical and epistemological implications but is receiving sustained philosophical analysis only recently. I will explore some of the subtleties of causation and constraint in Rayleigh–Bénard convection as an example of a complex phenomenon, and extract some lessons for further philosophical reflection on top-down constraint and causation particularly with respect to causal foundationalism. PMID:23386955

  2. ENERGETIC PARTICLE OBSERVATIONS AND PROPAGATION IN THE THREE-DIMENSIONAL HELIOSPHERE DURING THE 2006 DECEMBER EVENTS

    International Nuclear Information System (INIS)

    Malandraki, O. E.; Marsden, R. G.; Tranquille, C.; Lario, D.; Heber, B.; Mewaldt, R. A.; Cohen, C. M. S.; Lanzerotti, L. J.; Forsyth, R. J.; Elliott, H. A.; Vogiatzis, I. I.; Geranios, A.

    2009-01-01

    We report observations of solar energetic particles obtained by the HI-SCALE and COSPIN/LET instruments onboard Ulysses during the period of isolated but intense solar activity in 2006 December, in the declining phase of the solar activity cycle. We present measurements of particle intensities and also discuss observations of particle anisotropies and composition in selected energy ranges. Active Region 10930 produced a series of major solar flares with the strongest one (X9.0) recorded on December 5 after it rotated into view on the solar east limb. Located over the South Pole of the Sun, at >72 0 S heliographic latitude and 2.8 AU radial distance, Ulysses provided unique measurements for assessing the nature of particle propagation to high latitudes under near-minimum solar activity conditions, in a relatively undisturbed heliosphere. The observations seem to exclude the possibility that magnetic field lines originating at low latitudes reached Ulysses, suggesting either that the energetic particles observed as large solar energetic particle (SEP) events over the South Pole of the Sun in 2006 December were released when propagating coronal waves reached high-latitude field lines connected to Ulysses, or underwent perpendicular diffusion. We also discuss comparisons with energetic particle data acquired by the STEREO and Advanced Composition Explorer in the ecliptic plane near 1 AU during this period.

  3. Nighttime ionization by energetic particles at Wallops Island in the altitude region 120 to 200 km

    International Nuclear Information System (INIS)

    Voss, H.D.; Smith, L.G.

    1979-01-01

    Five Nike Apache rockets, each including an energetic particle spectrometer and an electron density-electron temperature experiment, have been launched from Wallops Island (L=2.6) near midnight under varying geomagnetic conditions. On the most recent of these (5 January 1978) an additional spectrometer with a broom magnet, and a 391.4 nm photometer were flown. The data from this flight indicate that the energetic particle flux consists predominantly of protons, neutral hydrogen and possibly other energetic nuclei. The energy spectrum becomes much softer and the flux more intense with increasing Kp for 10 0 indicating that the majority of particles are near their mirroring altitude. Ionization rates are calculated based on the measured energy spectrum and mirror height distribution. The resulting ionization rate profile is found to be nearly constant with altitude in the region 120 to 200 km. The measured energetic particle flux and calculated ionization rate from the five flights are found to vary with magnetic activity (based on the Kp and Dst indexes) in the same way as the independently derived ionization rates deduced from the electron density profile

  4. Nighttime ionization by energetic particles at Wallops Island in the altitude region 120 to 200 km

    Science.gov (United States)

    Voss, H. D.; Smith, L. G.

    1979-01-01

    Five Nike Apache rockets, each including an energetic particle spectrometer and an electron density-electron temperature experiment, have been launched from Wallops Island (L = 2.6) near midnight under varying geomagnetic conditions. On the most recent of these (5 January 1978) an additional spectrometer with a broom magnet, and a 391.4 nm photometer were flown. The data from this flight indicate that the energetic particle flux consists predominantly of protons, neutral hydrogen and possibly other energetic nuclei. The energy spectrum becomes much softer and the flux more intense with increasing Kp for 10-100 keV. The pitch angle distribution at 180 km is asymmetrical with a peak at 90 deg indicating that the majority of particles are near their mirroring altitude. Ionization rates are calculated based on the measured energy spectrum and mirror height distribution. The resulting ionization rate profile is found to be nearly constant with altitude in the region 120 to 200 km. The measured energetic particle flux and calculated ionization rate from the five flights are found to vary with magnetic activity (based on the Kp and Dst indexes) in the same way as the independently derived ionization rates deduced from the electron density profile.

  5. Energetic Ion Loss Diagnostic for the Wendelstein 7-AS Stellarator

    International Nuclear Information System (INIS)

    Darrow, D. S.; Werner, A.; Weller, A.

    2000-01-01

    A diagnostic to measure the loss of energetic ions from the Wendelstein 7-AS (W7-AS) stellarator has been built. It is capable of measuring losses of both neutral beam ions and energetic ions arising from ion cyclotron resonant heating. The probe can measure losses of both clockwise and counterclockwise-going energetic ions simultaneously, and accepts a wide range of pitch angles in both directions. Initial measurements by the diagnostic are reported

  6. The Energetics of Economics (Money as access to Energy)

    OpenAIRE

    Ternyik, Stephen I.

    2013-01-01

    Money is being portrayed as temporal access to energy and a new methodical approach to the energetics of the human economy is introduced.The economic evolution of world system energetics is put into the historical focus of all global monetary civilization, reaching back to Sumerian city states.This long wave energetics of human economic action clearly points to the biophysical boundaries of the globalized monetary production economy which is also based on natural law.The future perspective of...

  7. Energetics of hydrogen bonding in proteins: a model compound study.

    OpenAIRE

    Habermann, S. M.; Murphy, K. P.

    1996-01-01

    Differences in the energetics of amide-amide and amide-hydroxyl hydrogen bonds in proteins have been explored from the effect of hydroxyl groups on the structure and dissolution energetics of a series of crystalline cyclic dipeptides. The calorimetrically determined energetics are interpreted in light of the crystal structures of the studied compounds. Our results indicate that the amide-amide and amide-hydroxyl hydrogen bonds both provide considerable enthalpic stability, but that the amide-...

  8. Energetic materials research and development activities at Sandia National Laboratories supported under DP-10 programs

    Energy Technology Data Exchange (ETDEWEB)

    Ratzel, A.C. III

    1998-09-01

    This report provides summary descriptions of Energetic Materials (EM) Research and Development activities performed at Sandia National Laboratories and funded through the Department of Energy DP-10 Program Office in FY97 and FY98. The work falls under three major focus areas: EM Chemistry, EM Characterization, and EM Phenomenological Model Development. The research supports the Sandia component mission and also Sandia's overall role as safety steward for the DOE Nuclear Weapons Complex.

  9. Synthesis and evaluation of energetic materials

    Science.gov (United States)

    Santhosh, G.

    Over the years new generations of propellants and explosives are being developed. High performance and pollution prevention issues have become the subject of interest in recent years. Desired properties of these materials are a halogen-free, nitrogen and oxygen rich molecular composition with high density and a positive heat of formation. The dinitramide anion is a new oxy anion of nitrogen and forms salts with variety of metal, organic and inorganic cations. Particular interest is in ammonium dinitramide (ADN, NH4N(NO 2)2) which is a potentially useful energetic oxidizer. ADN is considered as one of the most promising substitutes for ammonium perchlorate (AP, NH4ClO4) in currently used composite propellants. It is unique among energetic materials in that it has no carbon or chlorine; its combustion products are not detrimental to the atmosphere. Unquestionable advantage of ADN over AP is the significant improvement in the performance of solid rocket motors by 5-15%. The present thesis is centered on the experimental results along with discussion of some of the most pertinent aspects related to the synthesis and characterization of few dinitramide salts. The chemistry, mechanism and kinetics of the formation of dinitramide salts by nitration of deactivated amines are investigated. The evaluation of the thermal and spectral properties along with the adsorption and thermal decomposition characteristics of the dinitramide salts are also explored in this thesis.

  10. Modelling of energetic molecule-surface interactions

    International Nuclear Information System (INIS)

    Kerford, M.

    2000-09-01

    This thesis contains the results of molecular dynamics simulations of molecule-surface interactions, looking particularly at fullerene molecules and carbon surfaces. Energetic impacts of fullerene molecules on graphite create defect craters. The relationship between the parameters of the impacting molecule and the parameters of the crater axe examined and found to be a function of the energy and velocity of the impacting molecule. Less energetic fullerene molecules can be scattered from a graphite surface and the partitioning of energy after a scattering event is investigated. It is found that a large fraction of the kinetic energy retained after impact is translational energy, with a small fraction of rotational energy and a number of vibrational modes. At impact energies where the surface is not broken and at normal incidence, surface waves axe seen to occur. These waves axe used to develop a method of desorbing molecules from a graphite surface without damage to either the surface or the molecules being desorbed. A number of fullerene molecules are investigated and ways to increase the desorption yield are examined. It is found that this is a successful technique for desorbing large numbers of intact molecules from graphite. This technique could be used for desorbing intact molecules into a gas phase for mass spectrometric analysis. (author)

  11. Energetic particle effects on global MHD modes

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1990-01-01

    The effects of energetic particles on MHD type modes are studied by analytical theories and the nonvariational kinetic-MHD stability code (NOVA-K). In particular we address the problems of (1) the stabilization of ideal MHD internal kink modes and the excitation of resonant ''fishbone'' internal modes and (2) the alpha particle destabilization of toroidicity-induced Alfven eigenmodes (TAE) via transit resonances. Analytical theories are presented to help explain the NOVA-K results. For energetic trapped particles generated by neutral-beam injection (NBI) or ion cyclotron resonant heating (ICRH), a stability window for the n=1 internal kink mode in the hot particle beat space exists even in the absence of core ion finite Larmor radius effect (finite ω *i ). On the other hand, the trapped alpha particles are found to resonantly excite instability of the n=1 internal mode and can lower the critical beta threshold. The circulating alpha particles can strongly destabilize TAE modes via inverse Landau damping associated with the spatial gradient of the alpha particle pressure. 23 refs., 5 figs

  12. Energetics of the terrestrial bow shock

    Science.gov (United States)

    Hamrin, Maria; Gunell, Herbert; Norqvist, Patrik

    2017-04-01

    The solar wind is the primary energy source for the magnetospheric energy budget. Energy can enter through the magnetopause both as kinetic energy (plasma entering via e.g. magnetic reconnection and impulsive penetration) and as electromagnetic energy (e.g. by the conversion of solar wind kinetic energy into electromagnetic energy in magnetopause generators). However, energy is extracted from the solar wind already at the bow shock, before it encounters the terrestrial magnetopause. At the bow shock the supersonic solar wind is slowed down and heated, and the region near the bow shock is known to host many complex processes, including the accelerating of particles and the generation of waves. The processes at and near the bow shock can be discussed in terms of energetics: In a generator (load) process kinetic energy is converted to (from) electromagnetic energy. Bow shock regions where the solar wind is decelerated correspond to generators, while regions where particles are energized (accelerated and heated) correspond to loads. Recently, it has been suggested that currents from the bow shock generator should flow across the magnetosheath and connect to the magnetospause current systems [Siebert and Siscoe, 2002; Lopez et al., 2011]. In this study we use data from the Magnetospheric MultiScale (MMS) mission to investigate the energetics of the bow shock and the current closure, and we compare with the MHD simulations of Lopez et al., 2011.

  13. Preliminary Hazard Analysis of Supercritical Fluid Separation of Energetic Materials

    National Research Council Canada - National Science Library

    1997-01-01

    .... Army Research Laboratory (ARL) and elsewhere, particularly at the Phasex Corporation, Lawrence, MA, has demonstrated the feasibility of separating the energetic moieties by use of supercritical CO2...

  14. Ultrafast Vibrational Spectrometer for Engineered Nanometric Energetic Materials

    National Research Council Canada - National Science Library

    Dlott, Dana

    2002-01-01

    The proposer requested funding for laser equipment that would be used to study engineered nanometric energetic materials consisting of nanometer metal particles, passivation layers and oxidizing binders...

  15. Segregation and redistribution of end-of-process energetic materials

    International Nuclear Information System (INIS)

    McCabe, R.A.; Cummins, B.; Gonzalez, M.A.

    1993-03-01

    A system recovering then recycling or reusing end-of-process energetic materials has been developed at the Lawrence Livermore National Laboratory (LLNL). The system promotes separating energetic materials with high potential for reuse or recycling from those that have no further value. A feature of the system is a computerized electronic bulletin board for advertising the availability of surplus and recovered energetic materials and process chemicals to LLNL researchers, and for posting energetic materials, ''want ads.'' The system was developed and implemented to promote waste minimization and pollution prevention at LLNL

  16. Astrophysical constraints on singlet scalars at LHC

    Science.gov (United States)

    Hertzberg, Mark P.; Masoumi, Ali

    2017-04-01

    We consider the viability of new heavy gauge singlet scalar particles at colliders such as the LHC . Our original motivation for this study came from the possibility of a new heavy particle of mass ~ TeV decaying significantly into two photons at colliders, such as LHC, but our analysis applies more broadly. We show that there are significant constraints from astrophysics and cosmology on the simplest UV complete models that incorporate such new particles and its associated collider signal. The simplest and most obvious UV complete model that incorporates such signals is that it arises from a new singlet scalar (or pseudo-scalar) coupled to a new electrically charged and colored heavy fermion. Here we show that these new fermions (and anti-fermions) would be produced in the early universe, then form new color singlet heavy mesons with light quarks, obtain a non-negligible freeze-out abundance, and remain in kinetic equilibrium until decoupling. These heavy mesons possess interesting phenomenology, dependent on their charge, including forming new bound states with electrons and protons. We show that a significant number of these heavy states would survive for the age of the universe and an appreciable number would eventually be contained within the earth and solar system. We show that this leads to detectable consequences, including the production of highly energetic events from annihilations on earth, new spectral lines, and, spectacularly, the destabilization of stars. The lack of detection of these consequences rules out such simple UV completions, putting pressure on the viability of such new particles at LHC . To incorporate such a scalar would require either much more complicated UV completions or even further new physics that provides a decay channel for the associated fermion.

  17. Astrophysical constraints on singlet scalars at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hertzberg, Mark P.; Masoumi, Ali, E-mail: mark.hertzberg@tufts.edu, E-mail: ali@cosmos.phy.tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2017-04-01

    We consider the viability of new heavy gauge singlet scalar particles at colliders such as the LHC . Our original motivation for this study came from the possibility of a new heavy particle of mass ∼ TeV decaying significantly into two photons at colliders, such as LHC, but our analysis applies more broadly. We show that there are significant constraints from astrophysics and cosmology on the simplest UV complete models that incorporate such new particles and its associated collider signal. The simplest and most obvious UV complete model that incorporates such signals is that it arises from a new singlet scalar (or pseudo-scalar) coupled to a new electrically charged and colored heavy fermion. Here we show that these new fermions (and anti-fermions) would be produced in the early universe, then form new color singlet heavy mesons with light quarks, obtain a non-negligible freeze-out abundance, and remain in kinetic equilibrium until decoupling. These heavy mesons possess interesting phenomenology, dependent on their charge, including forming new bound states with electrons and protons. We show that a significant number of these heavy states would survive for the age of the universe and an appreciable number would eventually be contained within the earth and solar system. We show that this leads to detectable consequences, including the production of highly energetic events from annihilations on earth, new spectral lines, and, spectacularly, the destabilization of stars. The lack of detection of these consequences rules out such simple UV completions, putting pressure on the viability of such new particles at LHC . To incorporate such a scalar would require either much more complicated UV completions or even further new physics that provides a decay channel for the associated fermion.

  18. LHC constraints on gauge boson couplings to dark matter

    CERN Document Server

    Crivellin, Andreas; Hibbs, Anthony

    2015-01-01

    Collider searches for energetic particles recoiling against missing transverse energy allow to place strong bounds on the interactions between dark matter (DM) and standard model particles. In this article we update and extend LHC constraints on effective dimension-7 operators involving DM and electroweak gauge bosons. A concise comparison of the sensitivity of the mono-photon, mono-W, mono-Z, mono-W/Z, invisible Higgs-boson decays in the vector boson fusion mode and the mono-jet channel is presented. Depending on the parameter choices, either the mono-photon or the mono-jet data provide the most stringent bounds at the moment. We furthermore explore the potential of improving the current 8 TeV limits at 14 TeV. Future strategies capable of disentangling the effects of the different effective operators involving electroweak gauge bosons are discussed as well.

  19. Transport theory for energetic alpha particles and tolerable magnitude of error fields in tokamaks with broken symmetry

    International Nuclear Information System (INIS)

    Shaing, K.C.; Hsu, C.T.

    2014-01-01

    A transport theory for energetic fusion born alpha particles in tokamaks with broken symmetry has been developed. The theory is a generalization of the theory for neoclassical toroidal plasma viscosity for thermal particles in tokamaks. It is shown that the radial energy transport rate can be comparable to the slowing down rate for energetic alpha particles when the ratio of the typical magnitude of the perturbed magnetic field strength to that of the equilibrium magnetic field strength is of the order of 10 −4 or larger. This imposes a constraint on the magnitude of the error fields in thermonuclear fusion reactors. The implications on stellarators as potential fusion reactors are also discussed. (paper)

  20. Solid deuterated water in space: detection constraints from laboratory experiments

    Science.gov (United States)

    Urso, R. G.; Palumbo, M. E.; Baratta, G. A.; Scirè, C.; Strazzulla, G.

    2018-06-01

    The comparison between astronomical spectra and laboratory experiments is fundamental to spread light on the structure and composition of ices found in interstellar dense molecular clouds and in Solar System bodies. Water is among the most abundant solid-phase species observed in these environments, and several attempts have been made to investigate the presence of its solid-phase isotopologues. In particular, the detection of the O-D stretching mode band at 4.1 μm due to both D2O and HDO within icy grain mantles is still under debate, and no detection have been reported about the presence of these species within icy bodies in the Solar System yet. In the near future, an important contribution could derive from the data acquired in the O-D stretching mode spectral range by the sensitive instruments on board the James Webb Space Telescope. With this in mind, we performed several laboratory experiments to study the O-D stretching mode band in solid mixtures containing water and deuterated water deposited in the temperature range between 17 and 155 K, in order to simulate astrophysical relevant conditions. Furthermore, samples have been studied at various temperature and irradiated with energetic ions (200 keV H+) in order to study the effects induced by both thermal and energetic processing. Our results provide some constraints on the detection of the 4.1 μm band in astronomical environments.

  1. Developmental constraints on behavioural flexibility.

    Science.gov (United States)

    Holekamp, Kay E; Swanson, Eli M; Van Meter, Page E

    2013-05-19

    We suggest that variation in mammalian behavioural flexibility not accounted for by current socioecological models may be explained in part by developmental constraints. From our own work, we provide examples of constraints affecting variation in behavioural flexibility, not only among individuals, but also among species and higher taxonomic units. We first implicate organizational maternal effects of androgens in shaping individual differences in aggressive behaviour emitted by female spotted hyaenas throughout the lifespan. We then compare carnivores and primates with respect to their locomotor and craniofacial adaptations. We inquire whether antagonistic selection pressures on the skull might impose differential functional constraints on evolvability of skulls and brains in these two orders, thus ultimately affecting behavioural flexibility in each group. We suggest that, even when carnivores and primates would theoretically benefit from the same adaptations with respect to behavioural flexibility, carnivores may nevertheless exhibit less behavioural flexibility than primates because of constraints imposed by past adaptations in the morphology of the limbs and skull. Phylogenetic analysis consistent with this idea suggests greater evolutionary lability in relative brain size within families of primates than carnivores. Thus, consideration of developmental constraints may help elucidate variation in mammalian behavioural flexibility.

  2. Data assimilation with inequality constraints

    Science.gov (United States)

    Thacker, W. C.

    If values of variables in a numerical model are limited to specified ranges, these restrictions should be enforced when data are assimilated. The simplest option is to assimilate without regard for constraints and then to correct any violations without worrying about additional corrections implied by correlated errors. This paper addresses the incorporation of inequality constraints into the standard variational framework of optimal interpolation with emphasis on our limited knowledge of the underlying probability distributions. Simple examples involving only two or three variables are used to illustrate graphically how active constraints can be treated as error-free data when background errors obey a truncated multi-normal distribution. Using Lagrange multipliers, the formalism is expanded to encompass the active constraints. Two algorithms are presented, both relying on a solution ignoring the inequality constraints to discover violations to be enforced. While explicitly enforcing a subset can, via correlations, correct the others, pragmatism based on our poor knowledge of the underlying probability distributions suggests the expedient of enforcing them all explicitly to avoid the computationally expensive task of determining the minimum active set. If additional violations are encountered with these solutions, the process can be repeated. Simple examples are used to illustrate the algorithms and to examine the nature of the corrections implied by correlated errors.

  3. Stages in the energetics of baroclinic systems

    Science.gov (United States)

    Orlanski, Isidoro; Sheldon, John P.

    1995-10-01

    The results from several idealized and case studies are drawn together to form a comprehensive picture of "downstream baroclinic evolution" using local energetics. This new viewpoint offers a complementary alternative to the more conventional descriptions of cyclone development. These additional insights are made possible largely because the local energetics approach permits one to define an energy flux vector which accurately describes the direction of energy dispersion and quantifies the role of neighboring systems in local development. In this view, the development of a system's energetics is divided into three stages. In Stage 1, a pre-existing disturbance well upstream of an incipient trough loses energy via ageostrophic geopotential fluxes directed downstream through the intervening ridge, generating a new energy center there. In Stage 2, this new energy center grows vigorously, at first due to the convergence of these fluxes, and later by baroclinic conversion as well. As the center matures, it begins to export energy via geopotential fluxes to the eastern side of the trough, initiating yet another energy center. In Stage 3, this new energy center continues to grow while that on the western side of the trough decays due to a dwinding supply of energy via fluxes from the older upstream system and also as a consequence of its own export of energy downstream. As the eastern energy center matures, it exports energy further downstream, and the sequence begins anew. The USA "Blizzard of'93" is used as a new case study to test the limits to which this conceptual sequence might apply, as well as to augment the current limited set of case studies. It is shown that, despite the extraordinary magnitude of the event, the evolution of the trough associated with the Blizzard fits the conceptual picture of downstream baroclinic evolution quite well, with geopotential fluxes playing a critical rôle in three respects. First, fluxes from an old, decaying system in the

  4. Constraint programming and decision making

    CERN Document Server

    Kreinovich, Vladik

    2014-01-01

    In many application areas, it is necessary to make effective decisions under constraints. Several area-specific techniques are known for such decision problems; however, because these techniques are area-specific, it is not easy to apply each technique to other applications areas. Cross-fertilization between different application areas is one of the main objectives of the annual International Workshops on Constraint Programming and Decision Making. Those workshops, held in the US (El Paso, Texas), in Europe (Lyon, France), and in Asia (Novosibirsk, Russia), from 2008 to 2012, have attracted researchers and practitioners from all over the world. This volume presents extended versions of selected papers from those workshops. These papers deal with all stages of decision making under constraints: (1) formulating the problem of multi-criteria decision making in precise terms, (2) determining when the corresponding decision problem is algorithmically solvable; (3) finding the corresponding algorithms, and making...

  5. Enhancing Reactivity in Structural Energetic Materials

    Science.gov (United States)

    Glumac, Nick

    2017-06-01

    In many structural energetic materials, only a small fraction of the metal oxidizes, and yet this provides a significant boost in the overall energy release of the system. Different methodologies to enhance this reactivity include alloying and geometric modifications of microstructure of the reactive material (RM). In this presentation, we present the results of several years of systematic study of both chemical (alloy) and mechanical (geometry) effects on reactivity for systems with typical charge to case mass ratios. Alloys of aluminum with magnesium and lithium are considered, as these are common alloys in aerospace applications. In terms of geometric modifications, we consider surface texturing, inclusion of dense additives, and inclusion of voids. In all modifications, a measurable influence on output is observed, and this influence is related to the fragment size distribution measured from the observed residue. Support from DTRA is gratefully acknowledged.

  6. Type Ia Supernovae: Energetics, Neutronization and Nucleosynthesis

    International Nuclear Information System (INIS)

    Truran, James W.; Calder, Alan C.; Townsley, Dean M.; Seitenzahl, Ivo R.; Peng, Fang; Vladimirova, Natalia; Lamb, Donald Q.; Brown, Edward F.

    2007-01-01

    The utility of Type Ia supernovae, not simply as probes of the distance scale but also as a means of constraining the properties of dark energy, demands a significant improvement in theoretical predictions of their properties in outburst. To this end, we have given substantial effort to quantifying the energetics and nucleosynthesis properties of deflagration fronts in the interiors of the putative carbon-oxygen white dwarf progenitors of Type Ia thermonuclear supernovae. We briefly review some essential features of our flame model and its properties in this paper and discuss its implications both for our multidimensional numerical simulations of SNe Ia and for nucleosynthesis (specifically 56Ni production) in SNe Ia and Galactic chemical evolution

  7. Solar energetic particles and radio burst emission

    Directory of Open Access Journals (Sweden)

    Miteva Rositsa

    2017-01-01

    Full Text Available We present a statistical study on the observed solar radio burst emission associated with the origin of in situ detected solar energetic particles. Several proton event catalogs in the period 1996–2016 are used. At the time of appearance of the particle origin (flare and coronal mass ejection we identified radio burst signatures of types II, III and IV by inspecting dynamic radio spectral plots. The information from observatory reports is also accounted for during the analysis. The occurrence of solar radio burst signatures is evaluated within selected wavelength ranges during the solar cycle 23 and the ongoing 24. Finally, we present the burst occurrence trends with respect to the intensity of the proton events and the location of their solar origin.

  8. Energetics study of West African dust haze

    International Nuclear Information System (INIS)

    Omotosho, J.B.

    1988-10-01

    The causes of the large and often persistent negative anomalies of equivalent potential temperature observed in the 900-700 hpa layer and which occurs in association with dust haze outbreaks over Kano in winter is investigated. Energetics results indicate that the primary mechanism for such anomalies is the horizontal transport of drier and, to a lesser extent, colder air at the upper levels by eddy motions, with consequent destabilization of the atmospheric boundary layer over the station. This is suggested as the mobilization mechanism responsible for raising dust from the surface over the Bilma/Faya-Largeau source region much further poleward. Temperature inversions were also found to be more pronounced during dust spells than in clear periods. (author). 18 refs, 6 figs, 2 tabs

  9. Liquid surface model for carbon nanotube energetics

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Mathew, Maneesh; Solov'yov, Andrey V.

    2008-01-01

    an important insight in the energetics and stability of nanotubes of different chirality and might be important for the understanding of nanotube growth process. For the computations we use empirical Brenner and Tersoff potentials and discuss their applicability to the study of carbon nanotubes. From......In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube with relative error less than 1% once its chirality and the total number of atoms...... the calculated energies we determine the elastic properties of the single-wall carbon nanotubes (Young modulus, curvature constant) and perform a comparison with available experimental measurements and earlier theoretical predictions....

  10. Effective charge of energetic ions in metals

    International Nuclear Information System (INIS)

    Kitagawa, M.; Brandt, W.

    1983-01-01

    The effective charge of energetic ion, as derived from stopping power of metals, is calculated by use of a dielectronic-response function method. The electronic distribution in the ion is described through the variational principle in a statistical approximation. The dependences of effective charge on the ion velocity, atomic number and r/sub s/-value of metal are derived at the low-velocity region. The effective charge becomes larger than the real charge of ion due to the close collisions. We obtain the quasi-universal equation of the fractional effective electron number of ion as a function of the ratio between the ionic size and the minimum distance approach. The comparsion between theoretical and experimental results of the effective charge is performed for the cases of N ion into Au, C and Al. We also discuss the equipartition rule of partially ionized ion at the high-velocity region

  11. Energetically Modified Cement (EMC) - Performance Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ronin, Vladimir; Elfgren, Lennart [Luleaa Univ. of Technology (Sweden). Centre for High Performance Cement

    2003-03-01

    Energetically Modified Cements, EMC, made of intensively milled cement (50%) and fillers (50%) of quartz or fly ash have been compared to blends of Ordinary Portland Cement, OPC, and fillers. The EMCs have better properties than other blends and are comparable to unblended OPC. This remarkable fact can probably be explained as follows. The grinding process reduces the size of both cement grains and fillers. This combined with the creation of micro defects gives the ground cement a very high degree of hydration. The increased early hydration and a better distribution of hydration products results in an extensive pore size refinement of the hardened binder. This pore size refinement leads to a favorably reduced permeability and diffusivity and very good mechanical properties.

  12. Towards an energetic theory of brittle fracture

    International Nuclear Information System (INIS)

    Francfort, G.; Marigo, J.J.

    2002-01-01

    The drawbacks of the classical theory of brittle fracture, based on Griffith's criterion, - a notion of critical energy release rate -, and a fracture toughness k, are numerous (think for instance the issue of crack initiation) and penalize its validity as a good model. Are all attempts at building a macroscopic theory of fracture doomed? The variety and complexity of micro-mechanical phenomena would suggest that this is indeed the case. We believe however that structural effects still preside over fracture and consequently propose to modify slightly Griffith theory without altering its fundamental components so that it becomes amenable to the widest range of situations. The examples presented here will demonstrate that a revisited energetic framework is a sound basis for a theory which can be used at the engineering level and which reconciles seemingly contradictory viewpoints. (authors)

  13. Forces and energetics of intermittent swimming

    Science.gov (United States)

    Floryan, Daniel; Van Buren, Tyler; Smits, Alexander J.

    2017-08-01

    Experiments are reported on intermittent swimming motions. Water tunnel experiments on a nominally two-dimensional pitching foil show that the mean thrust and power scale linearly with the duty cycle, from a value of 0.2 all the way up to continuous motions, indicating that individual bursts of activity in intermittent motions are independent of each other. This conclusion is corroborated by particle image velocimetry (PIV) flow visualizations, which show that the main vortical structures in the wake do not change with duty cycle. The experimental data also demonstrate that intermittent motions are generally energetically advantageous over continuous motions. When metabolic energy losses are taken into account, this conclusion is maintained for metabolic power fractions less than 1.

  14. Energetics of swimming of schooling fish

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2012-01-01

    , i.e. nearest neighbour distance, water temperature, gill oxygen extraction, gill ventilation capacity, etc. Fish swimming in a school have been shown to have energetic advantages when trailing behind neighbours, resulting in up to 20% energy saving. The effect of this energy saving is that the fish......Soc for experimental Biol Annual Meeting - Salzburg 2012 John F. Steffensen (University of Copenhagen, Denmark) When a fish school swims through the water, every individual consumes a certain amount of oxygen, which means that less will be available for the trailing fish in the school. In 1967 Mc......Farland and Moss reported that the oxygen saturation decreased approximately 30% from the front to the rear of an approximately 150-m long school of mullets swimming in normoxic water. They also observed that the decline in oxygen saturation at the rear resulted in the school disintegrating into smaller separate...

  15. Energetics of dislocation nucleation under a nanoindenter

    International Nuclear Information System (INIS)

    Zhang Chuanli; Xu Guanshui

    2005-01-01

    We present an analysis of dislocation nucleation under an idealized nanoindenter based on the variational boundary integral formulation of the Peierls-Nabarro dislocation model. By solving the embryonic dislocation profiles, corresponding to the relative displacements between the two adjacent atomic layers along the slip plane, we have determined the critical conditions for athermal dislocation nucleation as well as the activation energies required to thermally activate embryonic dislocations from their stable to unstable saddle point configurations. The effect of the size of the indenter on the energetics of dislocation nucleation is quantitatively characterized. The result is compared with a simplified analysis based on the application of the Rice model for dislocation nucleation at a crack tip

  16. Energetics of dislocation nucleation under a nanoindenter

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Chuanli [College of Mechanical Engineering, Yangtze University, Jingzhou, Hubei 434023 (China); Department of Mechanical Engineering, University of California, Riverside, CA 92521 (United States); Xu Guanshui [Department of Mechanical Engineering, University of California, Riverside, CA 92521 (United States)]. E-mail: guanshui.xu@ucr.edu

    2005-07-25

    We present an analysis of dislocation nucleation under an idealized nanoindenter based on the variational boundary integral formulation of the Peierls-Nabarro dislocation model. By solving the embryonic dislocation profiles, corresponding to the relative displacements between the two adjacent atomic layers along the slip plane, we have determined the critical conditions for athermal dislocation nucleation as well as the activation energies required to thermally activate embryonic dislocations from their stable to unstable saddle point configurations. The effect of the size of the indenter on the energetics of dislocation nucleation is quantitatively characterized. The result is compared with a simplified analysis based on the application of the Rice model for dislocation nucleation at a crack tip.

  17. Flexible energetic materials and related methods

    Energy Technology Data Exchange (ETDEWEB)

    Heaps, Ronald J.

    2018-03-06

    Energetic compositions and methods of forming components from the compositions are provided. In one embodiment, a composition includes aluminum, molybdenum trioxide, potassium perchlorate, and a binder. In one embodiment, the binder may include a silicone material. The materials may be mixed with a solvent, such as xylene, de-aired, shaped and cured to provide a self-supporting structure. In one embodiment, one or more reinforcement members may be added to provide additional strength to the structure. For example, a weave or mat of carbon fiber material may be added to the mixture prior to curing. In one embodiment, blade casting techniques may be used to form a structure. In another embodiment, a structure may be formed using 3-dimensional printing techniques.

  18. Energetic Di- and Trinitromethylpyridines: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Yiying Zhang

    2017-12-01

    Full Text Available Pyridine derivatives based on the addition of trinitromethyl functional groups were synthesized by the reaction of N2O4 with the corresponding pyridinecarboxaldoximes, then they were converted into dinitromethylide hydrazinium salts. These energetic compounds were fully characterized by IR and NMR spectroscopy, elemental analysis, differential scanning calorimetry (DSC, and X-ray crystallography. These pyridine derivatives have good densities, positive enthalpies of formation, and acceptable sensitivity values. Theoretical calculations carried out using Gaussian 03 and EXPLO5 programs demonstrated good to excellent detonation velocities and pressures. Each of these compounds is superior in performance to TNT, while 2,6-bis(trinitromethylpyridine (D = 8700 m·s−1, P = 33.2 GPa shows comparable detonation performance to that of RDX, but its thermal stability is too low, making it inferior to RDX.

  19. Baseline composition of solar energetic particles

    International Nuclear Information System (INIS)

    Meyer, J.

    1985-01-01

    We analyze all existing spacecraft observations of the highly variable heavy element composition of solar energetic particles (SEP) during non- 3 He-rich events. All data show the imprint of an ever-present basic composition pattern (dubbed ''mass-unbiased baseline'' SEP composition) that differs from the photospheric composition by a simple bias related to first ionization potential (FIP). In each particular observation, this mass-unbiased baseline composition is being distorted by an additional bias, which is always a monotonic function of mass (or Z). This latter bias varies in amplitude and even sign from observation to observation. To first order, it seems related to differences in the A/Z* ratio between elements (Z* = mean effective charge)

  20. Structure and energetics correlations in some chlorohydroxypyridines

    International Nuclear Information System (INIS)

    Miranda, Margarida S.; Matos, Maria Agostinha R.; Morais, Victor M.F.

    2013-01-01

    Highlights: • Study of the structure and energetics of some chlorohydroxypyridines. • Enthalpies of formation and sublimation were determined by calorimetric techniques. • Structure and energy correlations were established. • Quantum chemical calculations allowed estimation of enthalpies of formation. -- Abstract: We have performed a study of the structure and energetics of some chlorohydroxypyridines based on experimental calorimetry techniques and high level ab initio computational calculations. The standard (p° = 0.1 MPa) molar enthalpies of formation of 2-chloro-3-hydroxypyridine (2-Cl-3-OHPy), 2-chloro-6-hydroxypyridine (2-Cl-6-OHPy) and 3-chloro-5-hydroxypyridine (3-Cl-5-OHPy) in the crystalline phase, at T = 298.15 K, were derived from the respective standard massic energies of combustion measured by rotating-bomb combustion calorimetry, in oxygen, at T = 298.15 K. The standard molar enthalpies of sublimation, at T = 298.15 K, were measured by Calvet microcalorimetry. From these experimentally determined enthalpic parameters we have derived the standard molar enthalpies of formation of the three compounds in the gaseous phase, at T = 298.15 K: 2-Cl–3-OHPy, −(76.8 ± 2.0) kJ · mol −1 ; 2-Cl-6-OHPy, −(105.0 ± 1.7) kJ · mol −1 , 3-Cl-5-OHPy −(61.2 ± 2.4) kJ · mol −1 . These values were compared with estimates obtained from very accurate computational calculations using the G3(MP2)//B3LYP composite method and appropriately chosen reactions. These calculations have also been extended to the remaining chlorohydroxypyridine isomers that were not studied experimentally. Based on B3LYP/6-31G ∗ optimized geometries and calculated G3(MP2)//B3LYP absolute enthalpies some structure–energy correlations were discussed

  1. Energetic particle perspective of the magnetopause

    International Nuclear Information System (INIS)

    Williams, D.J.; Fritz, T.A.; Wilken, B.; Keppler, E.

    1979-01-01

    We present a detailed analysis of energetic (>24 keV) particle data obtained from the Isee satellites during a series of magnetopause crossings which occurred at 0000--0400 hours UT (approx.1030 hours LT) on November 20, 1977. The primary energetic particle data used are the three-dimensional distributions obtained from the Isee A satellite. Correlative magnetic field measurements are used to relate the particle behavior to magnetic field characteristics at and earthward of the magnetopause. We find that to first order the magnetopause can be regarded as a perfectly absorbing boundary for trapped >24-keV particles, that it is nearly alway in motion, and that boundary waves are often present. We find that the observed dayside magnetopause motion is consistent with a large-scale radial motion having an approx.10-min period plus superimposed boundary waves with a 90- to 150-s period. More qualitatively, we find that the data require a third and longer period (approx. 30 min) magnetopause motion upon which the above, shorter-period motions are superimposed. Consistent with the picture of absorbing boundary, we find no evidence of microturbulent processes at the magnetopause which significantly affect the directional trapped particle flux to within 9--36 km of the boundary. We therefore conclude that the radial gradient to the magnetopause observed in the directional, >24-keV, dayside, near-equatorial, magnetospherically trapped particle flux is due to internal magnetospheric processes. Just outside the magnetopause in the magnetosheath we observe a broad (approximately hemispherical) field-aligned flow of >24-keV ions away from the magnetosphere. The absolute intensity and spectral characteristics of this flow and its relation to the magnetopause and the trapped particle population indicate that it is formed by the leakage of trapped particles from the radiation belts

  2. Energetic assessment of soybean biodiesel obtainment in West ...

    African Journals Online (AJOL)

    SAM

    2014-07-16

    Jul 16, 2014 ... Energetic outputs added up to 3,003.75 MJ and energy balance was 57,132.54 MJ. ... biodiesel, the study was divided into three stages: soybean farming, ... considering energetic consumptions with labor, seeds, diesel oil, ... model MF 283(4X2 TDA), power 63.2 kW (86 cv) in the engine, board weight.

  3. Computational studies on energetic properties of nitrogen-rich ...

    Indian Academy of Sciences (India)

    Computational studies on energetic properties of nitrogen-rich energetic materials with ditetrazoles. LI XIAO-HONGa,b,∗ and ZHANG RUI-ZHOUa. aCollege of Physics and Engineering, Henan University of Science and Technology, Luoyang 471 003, China. bLuoyang Key Laboratory of Photoelectric Functional Materials, ...

  4. Energetic adaptations persist after bariatric surgery in severely obese adolescents

    Science.gov (United States)

    Energetic adaptations induced by bariatric surgery have not been studied in adolescents or for extended periods postsurgery. Energetic, metabolic, and neuroendocrine responses to Roux-en-Y gastric bypass (RYGB) surgery were investigated in extremely obese adolescents. At baseline and at 1.5, 6, and...

  5. Rocket measurements of energetic particles in the midlatitude precipitation zone

    Science.gov (United States)

    Voss, H. D.; Smith, L. G.; Braswell, F. M.

    1980-01-01

    Measurements of energetic ion and electron properties as a function of altitude in the midlatitude zone of nighttime energetic particle precipitation are reported. The measurements of particle fluxes, energy spectra and pitch angle distributions were obtained by a Langmuir probe, six energetic particle spectrometers and an electrostatic analyzer on board a Nike Apache rocket launched near the center of the midlatitude zone during disturbed conditions. It is found that the incident flux was primarily absorbed rather than backscattered, and consists of mainly energetic hydrogen together with some helium and a small energetic electron component. Observed differential energy spectra of protons having an exponential energy spectrum, and pitch angle distributions at various altitudes indicate that the energetic particle flux decreases rapidly for pitch angles less than 70 deg. An energetic particle energy flux of 0.002 ergs/sq cm per sec is calculated which indicates the significance of energetic particles as a primary nighttime ionization source for altitudes between 120 and 200 km in the midlatitude precipitation zone.

  6. Non-Extensive Statistical Analysis of Solar Wind Electric, Magnetic Fields and Solar Energetic Particle time series.

    Science.gov (United States)

    Pavlos, G. P.; Malandraki, O.; Khabarova, O.; Livadiotis, G.; Pavlos, E.; Karakatsanis, L. P.; Iliopoulos, A. C.; Parisis, K.

    2017-12-01

    In this work we study the non-extensivity of Solar Wind space plasma by using electric-magnetic field data obtained by in situ spacecraft observations at different dynamical states of solar wind system especially in interplanetary coronal mass ejections (ICMEs), Interplanetary shocks, magnetic islands, or near the Earth Bow shock. Especially, we study the energetic particle non extensive fractional acceleration mechanism producing kappa distributions as well as the intermittent turbulence mechanism producing multifractal structures related with the Tsallis q-entropy principle. We present some new and significant results concerning the dynamics of ICMEs observed in the near Earth at L1 solar wind environment, as well as its effect in Earth's magnetosphere as well as magnetic islands. In-situ measurements of energetic particles at L1 are analyzed, in response to major solar eruptive events at the Sun (intense flares, fast CMEs). The statistical characteristics are obtained and compared for the Solar Energetic Particles (SEPs) originating at the Sun, the energetic particle enhancements associated with local acceleration during the CME-driven shock passage over the spacecraft (Energetic Particle Enhancements, ESPs) as well as the energetic particle signatures observed during the passage of the ICME. The results are referred to Tsallis non-extensive statistics and in particular to the estimation of Tsallis q-triplet, (qstat, qsen, qrel) of electric-magnetic field and the kappa distributions of solar energetic particles time series of the ICME, magnetic islands, resulting from the solar eruptive activity or the internal Solar Wind dynamics. Our results reveal significant differences in statistical and dynamical features, indicating important variations of the magnetic field dynamics both in time and space domains during the shock event, in terms of rate of entropy production, relaxation dynamics and non-equilibrium meta-stable stationary states.

  7. Seed constraint to cultivation and productivity of African indigenous ...

    African Journals Online (AJOL)

    Non-availability of improved seeds constitutes a major constraint to the cultivation and productivity of the indigenous leaf vegetables (ILVs) of Africa. Research on African ILVs has focused mainly on the ethnobotany, collection, preservation, and the assessment of food value and chemical composition of the ILVs. No serious ...

  8. Constraints in the Adoption of Eco Friendly Conservation Practices

    Directory of Open Access Journals (Sweden)

    L. Murali Krishnan

    2016-05-01

    Insect pest and diseases management, Lack of awareness of agro environmental problems and farmer’s attitude towards the Eco Friendly Conservation Practices are the major constraints in the adoption of Eco Friendly Conservation Practices.The study suggests educational, extension & training strategies for fostering the adopted of ECO friendly Conservation Practices.

  9. Very High Performance High Nitrogen Energetic Ingredients and Energetic Polymers for Structural Components

    Science.gov (United States)

    2011-12-31

    13. SUPPLEMENTARY NOTES SoUoWtoo^ 14. ABSTRACT This project investigated new energetic materials for use with a triazole cured binder system ...The reaction was repeated using two equivalents of KH. An even more insoluble product was obtained. Figure 8 and 9 show the C-13 and N-15 CP/MAS...Sonnenberg, M. Hada, M. Ehara, K. Toyota , R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda , O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr

  10. Energetic materials: crystallization, characterization and insensitive plastic bonded explosives

    Energy Technology Data Exchange (ETDEWEB)

    Heijden, Antoine E.D.M. van der; Creyghton, Yves L.M.; Marino, Emanuela; Bouma, Richard H.B.; Scholtes, Gert J.H.G.; Duvalois, Willem [TNO Defence, Security and Safety, P. O. Box 45, 2280 AA Rijswijk (Netherlands); Roelands, Marc C.P.M. [TNO Science and Industry, P. O. Box 342, 7300 AH Apeldoorn (Netherlands)

    2008-02-15

    The product quality of energetic materials is predominantly determined by the crystallization process applied to produce these materials. It has been demonstrated in the past that the higher the product quality of the solid energetic ingredients, the less sensitive a plastic bonded explosive containing these energetic materials becomes. The application of submicron or nanometric energetic materials is generally considered to further decrease the sensitiveness of explosives. In order to assess the product quality of energetic materials, a range of analytical techniques is available. Recent attempts within the Reduced-sensitivity RDX Round Robin (R4) have provided the EM community a better insight into these analytical techniques and in some cases a correlation between product quality and shock initiation of plastic bonded explosives containing (RS-)RDX was identified, which would provide a possibility to discriminate between conventional and reduced sensitivity grades. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  11. Energetic Materials Effects on Essential Soil Processes: Decomposition of Orchard Grass (Dactylis glomerata) Litter in Soil Contaminated with Energetic Materials

    Science.gov (United States)

    2014-02-01

    availabilities of their respective food sources (bacteria and fungi ), were also unaffected-or-increasing in soil with CL-20 treatments. This is...ENERGETIC MATERIALS EFFECTS ON ESSENTIAL SOIL PROCESSES: DECOMPOSITION OF ORCHARD...GRASS (DACTYLIS GLOMERATA) LITTER IN SOIL CONTAMINATED WITH ENERGETIC MATERIALS ECBC-TR-1199 Roman G. Kuperman Ronald T. Checkai Michael Simini

  12. Energetics and dynamics in organic–inorganic halide perovskite photovoltaics and light emitters

    International Nuclear Information System (INIS)

    Sum, Tze Chien; Chen, Shi; Xing, Guichuan; Liu, Xinfeng; Wu, Bo

    2015-01-01

    The rapid transcendence of organic–inorganic metal halide perovskite solar cells to above the 20% efficiency mark has captivated the broad photovoltaic community. As the efficiency race continues unabated, it is essential that fundamental studies keep pace with these developments. Further gains in device efficiencies are expected to be increasingly arduous and harder to come by. The key to driving the perovskite solar cell efficiencies towards their Shockley–Queisser limit is through a clear understanding of the interfacial energetics and dynamics between perovskites and other functional materials in nanostructured- and heterojunction-type devices. In this review, we focus on the current progress in basic characterization studies to elucidate the interfacial energetics (energy-level alignment and band bending) and dynamical processes (from the ultrafast to the ultraslow) in organic–inorganic metal halide perovskite photovoltaics and light emitters. Major findings from these studies will be distilled. Open questions and scientific challenges will also be highlighted. (topical review)

  13. Constraint elimination in dynamical systems

    Science.gov (United States)

    Singh, R. P.; Likins, P. W.

    1989-01-01

    Large space structures (LSSs) and other dynamical systems of current interest are often extremely complex assemblies of rigid and flexible bodies subjected to kinematical constraints. A formulation is presented for the governing equations of constrained multibody systems via the application of singular value decomposition (SVD). The resulting equations of motion are shown to be of minimum dimension.

  14. Constraint Programming versus Mathematical Programming

    DEFF Research Database (Denmark)

    Hansen, Jesper

    2003-01-01

    Constraint Logic Programming (CLP) is a relatively new technique from the 80's with origins in Computer Science and Artificial Intelligence. Lately, much research have been focused on ways of using CLP within the paradigm of Operations Research (OR) and vice versa. The purpose of this paper...

  15. Sterile neutrino constraints from cosmology

    DEFF Research Database (Denmark)

    Hamann, Jan; Hannestad, Steen; Raffelt, Georg G.

    2012-01-01

    The presence of light particles beyond the standard model's three neutrino species can profoundly impact the physics of decoupling and primordial nucleosynthesis. I review the observational signatures of extra light species, present constraints from recent data, and discuss the implications of po...... of possible sterile neutrinos with O(eV)-masses for cosmology....

  16. Intertemporal consumption and credit constraints

    DEFF Research Database (Denmark)

    Leth-Petersen, Søren

    2010-01-01

    There is continuing controversy over the importance of credit constraints. This paper investigates whether total household expenditure and debt is affected by an exogenous increase in access to credit provided by a credit market reform that enabled Danish house owners to use housing equity...

  17. Financial Constraints: Explaining Your Position.

    Science.gov (United States)

    Cargill, Jennifer

    1988-01-01

    Discusses the importance of educating library patrons about the library's finances and the impact of budget constraints and the escalating cost of serials on materials acquisition. Steps that can be taken in educating patrons by interpreting and publicizing financial information are suggested. (MES)

  18. Balancing energetic and cognitive resources: memory use during search depends on the orienting effector.

    Science.gov (United States)

    Solman, Grayden J F; Kingstone, Alan

    2014-09-01

    Search outside the laboratory involves tradeoffs among a variety of internal and external exploratory processes. Here we examine the conditions under which item specific memory from prior exposures to a search array is used to guide attention during search. We extend the hypothesis that memory use increases as perceptual search becomes more difficult by turning to an ecologically important type of search difficulty - energetic cost. Using optical motion tracking, we introduce a novel head-contingent display system, which enables the direct comparison of search using head movements and search using eye movements. Consistent with the increased energetic cost of turning the head to orient attention, we discover greater use of memory in head-contingent versus eye-contingent search, as reflected in both timing and orienting metrics. Our results extend theories of memory use in search to encompass embodied factors, and highlight the importance of accounting for the costs and constraints of the specific motor groups used in a given task when evaluating cognitive effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Dynamic optimization of a biped model: Energetic walking gaits with different mechanical and gait parameters

    Directory of Open Access Journals (Sweden)

    Kang An

    2015-05-01

    Full Text Available Energy consumption is one of the problems for bipedal robots walking. For the purpose of studying the parameter effects on the design of energetic walking bipeds with strong adaptability, we use a dynamic optimization method on our new walking model to first investigate the effects of the mechanical parameters, including mass and length distribution, on the walking efficiency. Then, we study the energetic walking gait features with the combinations of walking speed and step length. Our walking model is designed upon Srinivasan’s model. Dynamic optimization is used for a free search with minimal constraints. The results show that the cost of transport of a certain gait increases with the increase in the mass and length distribution parameters, except for that the cost of transport decreases with big length distribution parameter and long step length. We can also find a corresponding range of walking speed and step length, in which the variation in one of the two parameters has no obvious effect on the cost of transport. With fixed mechanical parameters, the cost of transport increases with the increase in the walking speed. There is a speed–step length relationship for walking with minimal cost of transport. The hip torque output strategy is adjusted in two situations to meet the walking requirements.

  20. Main engineering features driving design concept and engineering design constraints

    International Nuclear Information System (INIS)

    Saito, Ryusei; Kobayashi, Takeshi; Yamada, Masao

    1987-09-01

    Major engineering design philosophies are described, which are essential bases for an engineering design and may have significant impacts on a reactor design concept. Those design philosophies are classified into two groups, engineering design drivers and engineering design constraints. The design drivers are featured by the fact that a designer is free to choose and the choice may be guided by his opinion, such as coil system, a mechanical configuration, a tritium breeding scenario, etc.. The design constraints may follow a natural law or engineering limit, such as material strength, coil current density, and so on. (author)

  1. Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints

    DEFF Research Database (Denmark)

    Thompson, Mary Kathryn; Moroni, Giovanni; Vaneker, Tom

    2016-01-01

    The past few decades have seen substantial growth in Additive Manufacturing (AM) technologies. However, this growth has mainly been process-driven. The evolution of engineering design to take advantage of the possibilities afforded by AM and to manage the constraints associated with the technology...... has lagged behind. This paper presents the major opportunities, constraints, and economic considerations for Design for Additive Manufacturing. It explores issues related to design and redesign for direct and indirect AM production. It also highlights key industrial applications, outlines future...

  2. Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints

    DEFF Research Database (Denmark)

    Thompson, Mary Kathryn; Moroni, Giovanni; Vaneker, Tom

    2016-01-01

    has lagged behind. This paper presents the major opportunities, constraints, and economic considerations for Design for Additive Manufacturing. It explores issues related to design and redesign for direct and indirect AM production. It also highlights key industrial applications, outlines future......The past few decades have seen substantial growth in Additive Manufacturing (AM) technologies. However, this growth has mainly been process-driven. The evolution of engineering design to take advantage of the possibilities afforded by AM and to manage the constraints associated with the technology...

  3. Main physics features driving design concept and physics design constraints

    International Nuclear Information System (INIS)

    Fujisawa, Noboru; Sugihara, Masayoshi; Yamamoto, Shin

    1987-07-01

    Major physics design philosophies are described, which are essential bases for a plasma design and may have significant impacts on a reactor design concept. Those design philosophies are classified into two groups, physics design drivers and physics design constraints. The design drivers are featured by the fact that a designer is free to choose and the choice may be guided by his opinion, such as ignition, a pulse length, an operation scenario, etc.. The design constraints may follow a physical law, such as plasma confinement, β-limit, density limit, and so on. (author)

  4. Nonlinear MHD and energetic particle modes in stellarators

    International Nuclear Information System (INIS)

    Strauss, H.R.; Fu, G.Y.; Park, W.; Breslau, J.; Sugiyama, L.E.

    2003-01-01

    The M3D (Multi-level 3D) project carries out simulation studies of plasmas using multiple levels of physics, geometry and grid models. The M3D code has been applied to ideal, resistive, two fluid, and hybrid simulations of compact quasi axisymmetric stellarators. When β exceeds a threshold, moderate toroidal mode number (n ∼ 10) modes grow exponentially, clearly distinguishable from the equilibrium evolution. The β limits are significantly higher than the infinite mode number ballooning limits. In the presence of resistivity, these modes occur well below the ideal limit. Their growth rate scaling with resistivity is similar to tearing modes. At low resistivity, the modes couple to resistive interchanges, which are unstable in most stellarators. Two fluid simulations with M3D show that resistive modes can be stabilized by diamagnetic drift. The two fluid computations are done with a realistic value of the Hall parameter, the ratio of ion skin depth to major radius. Hybrid gyrokinetic simulations with energetic particles indicate that global shear Alfven TAE - like modes can be destabilized in stellarators. Computations in a two-period compact stellarator obtained a predominantly n=1 toroidal mode with the expected TAE frequency. It is found that TAE modes are more stable in the two-period compact stellarator that in a tokamak with the same q and pressure profiles. M3D combines a two dimensional unstructured mesh with finite element discretization in poloidal planes, and fourth order finite differencing in the toroidal direction. (author)

  5. Solar Energetic Particle Transport Near a Heliospheric Current Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Battarbee, Markus; Dalla, Silvia [Jeremiah Horrocks Institute, University of Central Lancashire, PR1 2HE (United Kingdom); Marsh, Mike S., E-mail: mbattarbee@uclan.ac.uk [Met Office, Exeter, EX1 3 PB (United Kingdom)

    2017-02-10

    Solar energetic particles (SEPs), a major component of space weather, propagate through the interplanetary medium strongly guided by the interplanetary magnetic field (IMF). In this work, we analyze the implications that a flat Heliospheric Current Sheet (HCS) has on proton propagation from SEP release sites to the Earth. We simulate proton propagation by integrating fully 3D trajectories near an analytically defined flat current sheet, collecting comprehensive statistics into histograms, fluence maps, and virtual observer time profiles within an energy range of 1–800 MeV. We show that protons experience significant current sheet drift to distant longitudes, causing time profiles to exhibit multiple components, which are a potential source of confusing interpretations of observations. We find that variation of the current sheet thickness within a realistic parameter range has little effect on particle propagation. We show that the IMF configuration strongly affects the deceleration of protons. We show that in our model, the presence of a flat equatorial HCS in the inner heliosphere limits the crossing of protons into the opposite hemisphere.

  6. Energetics of global ocean tides from Geosat altimetry

    Science.gov (United States)

    Cartwright, David E.; Ray, Richard D.

    1991-01-01

    The present paper focuses on resonance and energetics of the daily tides, especially in the southern ocean, the distribution of gravitational power input of daily and half-daily tides, and comparison with other estimates of global dissipation rates. The present global tidal maps, derived from Geosat altimetry, compare favorably with ground truth data at about the same rms level as the models of Schwiderski (1983), and are slightly better in lunar than in solar tides. Diurnal admittances clearly show Kelvin wave structure in the southern ocean and confirm the resonant mode of Platzman (1984) at 28.5 + or - 0.1 hr with an apparent Q of about 4. Driving energy is found to enter dominantly in the North Pacific for the daily tides and is strongly peaked in the tropical oceans for the half-daily tides. Global rates of working on all major tide constituents except S2 agree well with independent results from analyses of gravity through satellite tracking. Comparison at S2 is improved by allowing for the air tide in gravitational results but suggests deficiencies in all solar tide models.

  7. The Energetics and Physiological Impact of Cohesin Extrusion.

    Science.gov (United States)

    Vian, Laura; Pękowska, Aleksandra; Rao, Suhas S P; Kieffer-Kwon, Kyong-Rim; Jung, Seolkyoung; Baranello, Laura; Huang, Su-Chen; El Khattabi, Laila; Dose, Marei; Pruett, Nathanael; Sanborn, Adrian L; Canela, Andres; Maman, Yaakov; Oksanen, Anna; Resch, Wolfgang; Li, Xingwang; Lee, Byoungkoo; Kovalchuk, Alexander L; Tang, Zhonghui; Nelson, Steevenson; Di Pierro, Michele; Cheng, Ryan R; Machol, Ido; St Hilaire, Brian Glenn; Durand, Neva C; Shamim, Muhammad S; Stamenova, Elena K; Onuchic, José N; Ruan, Yijun; Nussenzweig, Andre; Levens, David; Aiden, Erez Lieberman; Casellas, Rafael

    2018-05-17

    Cohesin extrusion is thought to play a central role in establishing the architecture of mammalian genomes. However, extrusion has not been visualized in vivo, and thus, its functional impact and energetics are unknown. Using ultra-deep Hi-C, we show that loop domains form by a process that requires cohesin ATPases. Once formed, however, loops and compartments are maintained for hours without energy input. Strikingly, without ATP, we observe the emergence of hundreds of CTCF-independent loops that link regulatory DNA. We also identify architectural "stripes," where a loop anchor interacts with entire domains at high frequency. Stripes often tether super-enhancers to cognate promoters, and in B cells, they facilitate Igh transcription and recombination. Stripe anchors represent major hotspots for topoisomerase-mediated lesions, which promote chromosomal translocations and cancer. In plasmacytomas, stripes can deregulate Igh-translocated oncogenes. We propose that higher organisms have coopted cohesin extrusion to enhance transcription and recombination, with implications for tumor development. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Evaluation of uranium resources. Problems and constraints

    International Nuclear Information System (INIS)

    Williams, R.M.

    1979-01-01

    Growing awareness that the era of cheap energy is over has led to current efforts by governments and international organizations to examine the question of the adequacy of energy resources on a global scale. Despite the relative success of the NEA and the IAEA efforts in the study of world uranium supply, there is a need for such studies to become still more comprehensive and broader in scope. A basic problem exists with respect to the lack of a universally accepted set of resource terms by which to classify resource estimates once they are made. Often voids exist in international assessments because of insufficient data with respect to known resources and occasionally because of a lack of expertise to make the required estimates. With respect to the assessment of undiscovered uranium resources, major constraints are the relatively embryonic state of methodology for assessment of undiscovered resources and the fact that the inventory of basic geology, geochemical, and geophysical data is either incomplete or non-existent in many parts of the world. Finally, once resource estimates are made, there is often an unclear understanding about when and at what rate the resources can be made available. Hopefully, current efforts will lead to a solution to some of the principal problems and constraints which may be impeding progress toward an expansion and improvement of world uranium resource assessments. (author)

  9. Internal Transport Barrier Driven by Redistribution of Energetic Ions

    International Nuclear Information System (INIS)

    Wong, K.L.; Heidbrink, W.W.; Ruskov, E.; Petty, C.C.; Greenfield, C.M.; Nazikian, R.; Budny, R.

    2004-01-01

    Alfven instabilities excited by energetic ions are used as a means to reduce the central magnetic shear in a tokamak via redistribution of energetic ions. When the central magnetic shear is low enough, ballooning modes become stable for any plasma pressure gradient and an internal transport barrier (ITB) with a steep pressure gradient can exist. This mechanism can sustain a steady-state ITB as demonstrated by experimental data from the DIII-D tokamak. It can also produce a shear in toroidal and poloidal plasma rotation. Possible application of this technique to use the energetic alpha particles for improvement of burning plasma performance is discussed

  10. PoET: Polarimeters for Energetic Transients

    Science.gov (United States)

    McConnell, Mark; Barthelmy, Scott; Hill, Joanne

    2008-01-01

    This presentation focuses on PoET (Polarimeters for Energetic Transients): a Small Explorer mission concept proposed to NASA in January 2008. The principal scientific goal of POET is to measure GRB polarization between 2 and 500 keV. The payload consists of two wide FoV instruments: a Low Energy Polarimeter (LEP) capable of polarization measurements in the energy range from 2-15 keV and a high energy polarimeter (Gamma-Ray Polarimeter Experiment - GRAPE) that will measure polarization in the 60-500 keV energy range. Spectra will be measured from 2 keV up to 1 MeV. The PoET spacecraft provides a zenith-pointed platform for maximizing the exposure to deep space. Spacecraft rotation will provide a means of effectively dealing with systematics in the polarization response. PoET will provide sufficient sensitivity and sky coverage to measure statistically significant polarization for up to 100 GRBs in a two-year mission. Polarization data will also be obtained for solar flares, pulsars and other sources of astronomical interest.

  11. Energetic and economical comparison for biomass fuel

    International Nuclear Information System (INIS)

    Galins, A.; Grundulis, A.; Zihmane, K.

    2003-01-01

    The common agricultural biomass, such as wheat straw, rape straw, wheat small corn, wheat forage, rape oil cakes and other, we can use as fuel for heat production. The biomass application for burning depends on economical situation on agriculture and fuel market. Energetic and economical parameters of agricultural biomass are estimated and compared to wooden grain. As parameters for comparison used the biomass heat value Q (MJ/kg), specific cost per 1 kWh heat production C 0 (Ls/kWh) and the fuel consumption per 1 kWh heat production M 0 (kg/kWh). The rape oil cakes have best heat value (20.82 MJ/kg), but cheapest heat energy we can get from rape straw (0.0046 Ls/kWh). Expenses of heat production for forge wheat corn (0.011 Ls/kWh) are alike to wooden chip (0.0103 Ls/kWh) and wooden grain (0.0122 Ls/kWh) (authors)

  12. The energetic ion substorm injection boundary

    International Nuclear Information System (INIS)

    Lopez, R.E.; Sibeck, D.G.; McEntire, R.W.; Krimigis, S.M.

    1990-01-01

    The substorm injection boundary model has enjoyed considerable success in explaining plasma signatures in the near-geosynchronous region. However, the injection boundary has remained primarily a phenomenological model. In this paper the authors examine 167 dispersionless energetic ion injections which were observed by AMPTE CCE. The radial and local time distribution of the events as a function of Kp is qualitatively similar to that envisioned in the injection boundary model of Mauk and McIlwain (1974). They argue that particles observed during dispersionless injections are locally energized during the disruption of the cross-tail current sheet. Therefore they identify the injection boundary, as derived from the spatial distribution of dispersionless injections, with the earthward edge of the region of the magnetotail which undergoes current sheet disruption during the substorm expansion phase. The authors show that this qualitative model for the generation of the injection boundary can provide an explanation for the dispersionless nature, the double spiral shape, and the Kp dependence of the boundary

  13. Reactive thermal waves in energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Larry G [Los Alamos National Laboratory

    2009-01-01

    Reactive thermal waves (RTWs) arise in several energetic material applications, including self-propagating high-temperature synthesis (SHS), high explosive cookoff, and the detonation of heterogeneous explosives. In this paper I exmaine ideal RTWs, by which I mean that (1) material motion is neglected, (2) the state dependence of reaction is Arrhenius in the temperature, and (3) the reaction rate is modulated by an arbitrary mass-fraction-based reaction progress function. Numerical simulations demonstrate that one's natural intuition, which is based mainly upon experience with inert materials and which leads one to expect diffusion processes to become relatively slow after a short time period, is invalid for high energy, state-sensitive reactive systems. Instead, theory predicts that RTWs can propagate at very high speeds. This result agrees with estimates for detonating heterogeneous explosives, which indicate that RTWs must spread from hot-spot nucleation sites at rates comparable to the detonation speed in order to produce experimentally-observed reaction zone thicknesses. Using dimensionless scaling and further invoking the high activation energy approximation, I obtain an analytic formula for the steady plane RTW speed from numerical calculations. I then compute the RTW speed for real explosives, and discuss aspects of their behavior.

  14. Energetics of thermoregulation by an industrious endotherm.

    Science.gov (United States)

    Meehan, Timothy D

    2012-01-01

    Thermoregulation by modern industrial humans is unique among endothermic animals, in that it is largely accomplished by controlling the temperature of our external environment. The objective of this study was to view the relationship between thermoregulatory energy use and environmental temperature in modern humans from the perspective of comparative physiology. Monthly residential energy use estimates from the US Energy Information Administration were divided by the annual number of American households from the US Census Bureau, giving average monthly energy consumption per American household for the years 2006 through 2010. Monthly energy consumption was then plotted against average monthly temperature across the United States from the National Climatic Data Center. The resulting graph bore a striking resemblance to a classic Scholander-Irving curve, exhibiting clear upper (22°C) and lower (15°C) critical temperatures, and an increase in energy use as temperatures extend above (90 W °C(-1) increase) or below (244 W °C(-1) decrease) those critical temperatures. Allometric equations from comparative physiology indicate that the energetic costs of our current thermoregulatory habits are ∼30 to 50 times those predicted for an endotherm of our size. Modern humans have redefined what it means to be a homeothermic endotherm, using large quantities of extrametabolic energy to regulate the temperature of our surroundings. Despite this sophistication, the signal of our individual physiology is readily discernible in national data on energy consumption. Copyright © 2012 Wiley Periodicals, Inc.

  15. PLASMA ENERGETIC PARTICLES SIMULATION CENTER (PEPSC)

    Energy Technology Data Exchange (ETDEWEB)

    Berk, Herbert L.

    2014-05-23

    The main effort of the Texas group was to develop theoretical and simplified numerical models to understand chirping phenomena often seen for Alfven and geodesic acoustic waves in experimental plasmas such as D-III-D, NSTX and JET. Its main numerical effort was to modify the AEGIS code, which was originally developed as an eigenvalue solver. To apply to the chirping problem this code has to be able to treat the linear response to the continuum and the response of the plasma to external drive or to an internal drive that comes from the formation of phase space chirping structures. The theoretical underpinning of this investigation still needed to be more fully developed to understand how to best formulate the theoretical problem. Considerable progress was made on this front by B.N. Breizman and his collaborators and a new reduced model was developed by H. L. Berk and his PhD student, G. Wang which can be uses as simplified model to describe chirping in a large aspect ratio tokamak. This final report will concentrate on these two directions that were developed as well as results that were found in the work with the AEGIS code and in the progress in developing a novel quasi-linear formulation for a description of Alfvenic modes destabilized by energetic particles, such as alpha particles in a burning plasma.

  16. On perspectives of developments in energetics

    International Nuclear Information System (INIS)

    Frey, T.

    1994-04-01

    The strategy towards politically and economically independent Estonia has created an urgent need to elaborate a lot of problems of tactics in the energy use as well as in the perspectives of the energy import versus export. Today Estonia produces rather a considerable amount of electricity, reaching some 1.2 thousand kWh per capita year. Nevertheless, technocratically-minded people are looking toward to introducing at least one nuclear power plant to our native area of merely 45 000 square kilometers. The Estonia n Council of Ecology is taking the opportunity of considering the alternatives to this proposal, organizing an energetics-focused ecological conference just on the 5. anniversary of the Chernobyl accident. The corresponding data show that Estonia might be able, in the coming 5 years, to rise the efficiency in the commercial energy use by 15 per cent, to reduce the amount of energy-consuming industry, mostly military, by another 15 per cent, and extend the use of wood, peat, wind, water and sunshine taken together by a third 15 per cent. All in all, it turns out that in 1995 there exists no need for energy import on the full balance level. The outlook deserves attention, indeed. (author)

  17. Mechanisms and energetics of surface atomic processes

    International Nuclear Information System (INIS)

    Tsong, T.T.

    1991-01-01

    The energies involved in various surface atomic processes such as surface diffusion, the binding of small atomic clusters on the surface, the interaction between two adsorbed atoms, the dissociation of an atom from a small cluster or from a surface layer, the binding of kink size atoms or atoms at different adsorption sites to the surface etc., can be derived from an analysis of atomically resolved field ion microscope images and a kinetic energy measurement of low temperature field desorbed ions using the time-of-flight atom-probe field ion microscope. These energies can be used to compare with theories and to understand the transport of atoms on the surface in atomic reconstructions, epitaxial growth of surface layers and crystal growth, adsorption layer superstructure formation, and also why an atomic ordering or atomic reconstruction at the surface is energetically favored. Mechanisms of some of the surface atomic processes are also clarified from these quantitative, atomic resolution studies. In this paper work in this area is bris briefly reviewed

  18. The energetic characterization of pineapple crown leaves.

    Science.gov (United States)

    Braga, R M; Queiroga, T S; Calixto, G Q; Almeida, H N; Melo, D M A; Melo, M A F; Freitas, J C O; Curbelo, F D S

    2015-12-01

    Energetic characterization of biomass allows for assessing its energy potential for application in different conversion processes into energy. The objective of this study is to physicochemically characterize pineapple crown leaves (PC) for their application in energy conversion processes. PC was characterized according to ASTM E871-82, E1755-01, and E873-82 for determination of moisture, ash, and volatile matter, respectively; the fixed carbon was calculated by difference. Higher heating value was determined by ASTM E711-87 and ash chemical composition was determined by XRF. The thermogravimetric and FTIR analyses were performed to evaluate the thermal decomposition and identify the main functional groups of biomass. PC has potential for application in thermochemical processes, showing high volatile matter (89.5%), bulk density (420.8 kg/m(3)), and higher heating value (18.9 MJ/kg). The results show its energy potential justifying application of this agricultural waste into energy conversion processes, implementing sustainability in the production, and reducing the environmental liabilities caused by its disposal.

  19. Atypical energetic particle events observed prior energetic particle enhancements associated with corotating interaction regions

    Science.gov (United States)

    Khabarova, Olga; Malandraki, Olga; Zank, Gary; Jackson, Bernard; Bisi, Mario; Desai, Mihir; Li, Gang; le Roux, Jakobus; Yu, Hsiu-Shan

    2017-04-01

    Recent studies of mechanisms of particle acceleration in the heliosphere have revealed the importance of the comprehensive analysis of stream-stream interactions as well as the heliospheric current sheet (HCS) - stream interactions that often occur in the solar wind, producing huge magnetic cavities bounded by strong current sheets. Such cavities are usually filled with small-scale magnetic islands that trap and re-accelerate energetic particles (Zank et al. ApJ, 2014, 2015; le Roux et al. ApJ, 2015, 2016; Khabarova et al. ApJ, 2015, 2016). Crossings of these regions are associated with unusual variations in the energetic particle flux up to several MeV/nuc near the Earth's orbit. These energetic particle flux enhancements called "atypical energetic particle events" (AEPEs) are not associated with standard mechanisms of particle acceleration. The analysis of multi-spacecraft measurements of energetic particle flux, plasma and the interplanetary magnetic field shows that AEPEs have a local origin as they are observed by different spacecraft with a time delay corresponding to the solar wind propagation from one spacecraft to another, which is a signature of local particle acceleration in the region embedded in expanding and rotating background solar wind. AEPEs are often observed before the arrival of corotating interaction regions (CIRs) or stream interaction regions (SIRs) to the Earth's orbit. When fast solar wind streams catch up with slow solar wind, SIRs of compressed heated plasma or more regular CIRs are created at the leading edge of the high-speed stream. Since coronal holes are often long-lived structures, the same CIR re-appears often for several consecutive solar rotations. At low heliographic latitudes, such CIRs are typically bounded by forward and reverse waves on their leading and trailing edges, respectively, that steepen into shocks at heliocentric distances beyond 1 AU. Energetic ion increases have been frequently observed in association with CIR

  20. Energetic and hydrogen limitations of thermophilic and hyperthermophilic methanogens

    Science.gov (United States)

    Stewart, L. C.; Holden, J. F.

    2013-12-01

    Deep-sea hydrothermal vents are a unique ecosystem, based ultimately not on photosynthesis but chemosynthetic primary production. This makes them an excellent analog environment for the early Earth, and for potential extraterrestrial habitable environments, such as those on Mars and Europa. The habitability of given vent systems for chemoautotrophic prokaryotes can be modeled energetically by estimating the available Gibbs energy for specific modes of chemoautotrophy, using geochemical data and mixing models for hydrothermal fluids and seawater (McCollom and Shock, 1997). However, modeling to date has largely not taken into account variation in organisms' energy demands in these environments. Controls on maintenance energies are widely assumed to be temperature-dependent, rising with increasing temperature optima (Tijhuis et al., 1993), and species-independent. The impacts of other environmental stressors and particular energy-gathering strategies on maintenance energies have not been investigated. We have undertaken culture-based studies of growth and maintenance energies in thermophilic and hyperthermophilic methanogenic (hydrogenotrophic) archaea from deep-sea hydrothermal vents to investigate potential controls on energy demands in hydrothermal vent microbes, and to quantify their growth and maintenance energies for future bioenergetic modeling. We have investigated trends in their growth energies over their full temperature range and a range of nitrogen concentrations, and in their maintenance energies at different hydrogen concentrations. Growth energies in these organisms appear to rise with temperature, but do not vary between hyperthermophilic and thermophilic methanogens. Nitrogen availability at tested levels (40μM - 9.4 mM) does not appear to affect growth energies in all but one tested organism. In continuous chemostat culture, specific methane production varied with hydrogen availability but was similar between a thermophilic and a hyperthermophilic

  1. Regional magnetic anomaly constraints on continental rifting

    Science.gov (United States)

    Vonfrese, R. R. B.; Hinze, W. J.; Olivier, R.; Bentley, C. R.

    1985-01-01

    Radially polarized MAGSAT anomalies of North and South America, Europe, Africa, India, Australia and Antarctica demonstrate remarkably detailed correlation of regional magnetic lithospheric sources across rifted margins when plotted on a reconstruction of Pangea. These major magnetic features apparently preserve their integrity until a superimposed metamorphoric event alters the magnitude and pattern of the anomalies. The longevity of continental scale magnetic anomalies contrasts markedly with that of regional gravity anomalies which tend to reflect predominantly isostatic adjustments associated with neo-tectonism. First observed as a result of NASA's magnetic satellite programs, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans. Accordingly, satellite magnetic observations provide a further tool for investigating continental drift to compliment other lines of evidence in paleoclimatology, paleontology, paleomagnetism, and studies of the radiometric ages and geometric fit of the continents.

  2. A compendium of chameleon constraints

    International Nuclear Information System (INIS)

    Burrage, Clare; Sakstein, Jeremy

    2016-01-01

    The chameleon model is a scalar field theory with a screening mechanism that explains how a cosmologically relevant light scalar can avoid the constraints of intra-solar-system searches for fifth-forces. The chameleon is a popular dark energy candidate and also arises in f ( R ) theories of gravity. Whilst the chameleon is designed to avoid historical searches for fifth-forces it is not unobservable and much effort has gone into identifying the best observables and experiments to detect it. These results are not always presented for the same models or in the same language, a particular problem when comparing astrophysical and laboratory searches making it difficult to understand what regions of parameter space remain. Here we present combined constraints on the chameleon model from astrophysical and laboratory searches for the first time and identify the remaining windows of parameter space. We discuss the implications for cosmological chameleon searches and future small-scale probes.

  3. A compendium of chameleon constraints

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, Clare [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Sakstein, Jeremy, E-mail: clare.burrage@nottingham.ac.uk, E-mail: jeremy.sakstein@port.ac.uk [Center for Particle Cosmology, Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA 19104 (United States)

    2016-11-01

    The chameleon model is a scalar field theory with a screening mechanism that explains how a cosmologically relevant light scalar can avoid the constraints of intra-solar-system searches for fifth-forces. The chameleon is a popular dark energy candidate and also arises in f ( R ) theories of gravity. Whilst the chameleon is designed to avoid historical searches for fifth-forces it is not unobservable and much effort has gone into identifying the best observables and experiments to detect it. These results are not always presented for the same models or in the same language, a particular problem when comparing astrophysical and laboratory searches making it difficult to understand what regions of parameter space remain. Here we present combined constraints on the chameleon model from astrophysical and laboratory searches for the first time and identify the remaining windows of parameter space. We discuss the implications for cosmological chameleon searches and future small-scale probes.

  4. Self-Imposed Creativity Constraints

    DEFF Research Database (Denmark)

    Biskjaer, Michael Mose

    2013-01-01

    Abstract This dissertation epitomizes three years of research guided by the research question: how can we conceptualize creative self-binding as a resource in art and design processes? Concretely, the dissertation seeks to offer insight into the puzzling observation that highly skilled creative...... practitioners sometimes freely and intentionally impose rigid rules, peculiar principles, and other kinds of creative obstructions on themselves as a means to spur momentum in the process and reach a distinctly original outcome. To investigate this the dissertation is composed of four papers (Part II) framed...... of analysis. Informed by the insight that constraints both enable and restrain creative agency, the dissertation’s main contention is that creative self- binding may profitably be conceptualized as the exercise of self-imposed creativity constraints. Thus, the dissertation marks an analytical move from vague...

  5. Unitarity constraints on trimaximal mixing

    International Nuclear Information System (INIS)

    Kumar, Sanjeev

    2010-01-01

    When the neutrino mass eigenstate ν 2 is trimaximally mixed, the mixing matrix is called trimaximal. The middle column of the trimaximal mixing matrix is identical to tribimaximal mixing and the other two columns are subject to unitarity constraints. This corresponds to a mixing matrix with four independent parameters in the most general case. Apart from the two Majorana phases, the mixing matrix has only one free parameter in the CP conserving limit. Trimaximality results in interesting interplay between mixing angles and CP violation. A notion of maximal CP violation naturally emerges here: CP violation is maximal for maximal 2-3 mixing. Similarly, there is a natural constraint on the deviation from maximal 2-3 mixing which takes its maximal value in the CP conserving limit.

  6. Macroscopic constraints on string unification

    International Nuclear Information System (INIS)

    Taylor, T.R.

    1989-03-01

    The comparison of sting theory with experiment requires a huge extrapolation from the microscopic distances, of order of the Planck length, up to the macroscopic laboratory distances. The quantum effects give rise to large corrections to the macroscopic predictions of sting unification. I discus the model-independent constraints on the gravitational sector of string theory due to the inevitable existence of universal Fradkin-Tseytlin dilatons. 9 refs

  7. Financial Constraints and Franchising Decisions

    OpenAIRE

    Kai-Uwe Kuhn; Francine Lafontaine; Ying Fan

    2013-01-01

    We study how the financial constraints of agents affect the behavior of principals in the context of franchising. We develop an empirical model of franchising starting with a principal-agent framework that emphasizes the role of franchisees' collateral from an incentive perspective. We estimate the determinants of chains' entry (into franchising) and growth decisions using data on franchised chains and data on local macroeconomic conditions. In particular, we use collateralizable housing weal...

  8. Contributions of Glycogen to Astrocytic Energetics during Brain Activation

    Science.gov (United States)

    Dienel, Gerald A.; Cruz, Nancy F.

    2014-01-01

    Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 mol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K+ level, oxidative stress management, and memory consolidation; it is a multi-functional compound. PMID:24515302

  9. Contributions of glycogen to astrocytic energetics during brain activation.

    Science.gov (United States)

    Dienel, Gerald A; Cruz, Nancy F

    2015-02-01

    Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 μmol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K(+) level, oxidative stress management, and memory consolidation; it is a multi-functional compound.

  10. Input and output constraints affecting irrigation development

    Science.gov (United States)

    Schramm, G.

    1981-05-01

    In many of the developing countries the expansion of irrigated agriculture is used as a major development tool for bringing about increases in agricultural output, rural economic growth and income distribution. Apart from constraints imposed by water availability, the major limitations considered to any acceleration of such programs are usually thought to be those of costs and financial resources. However, as is shown on the basis of empirical data drawn from Mexico, in reality the feasibility and effectiveness of such development programs is even more constrained by the lack of specialized physical and human factors on the input and market limitations on the output side. On the input side, the limited availability of complementary factors such as, for example, truly functioning credit systems for small-scale farmers or effective agricultural extension services impose long-term constraints on development. On the output side the limited availability, high risk, and relatively slow growth of markets for high-value crops sharply reduce the usually hoped-for and projected profitable crop mix that would warrant the frequently high costs of irrigation investments. Three conclusions are drawn: (1) Factors in limited supply have to be shadow-priced to reflect their high opportunity costs in alternative uses. (2) Re-allocation of financial resources from immediate construction of projects to longer-term increase in the supply of scarce, highly-trained manpower resources are necessary in order to optimize development over time. (3) Inclusion of high-value, high-income producing crops in the benefit-cost analysis of new projects is inappropriate if these crops could potentially be grown in already existing projects.

  11. Infrared Constraint on Ultraviolet Theories

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Yuhsin [Cornell Univ., Ithaca, NY (United States)

    2012-08-01

    While our current paradigm of particle physics, the Standard Model (SM), has been extremely successful at explaining experiments, it is theoretically incomplete and must be embedded into a larger framework. In this thesis, we review the main motivations for theories beyond the SM (BSM) and the ways such theories can be constrained using low energy physics. The hierarchy problem, neutrino mass and the existence of dark matter (DM) are the main reasons why the SM is incomplete . Two of the most plausible theories that may solve the hierarchy problem are the Randall-Sundrum (RS) models and supersymmetry (SUSY). RS models usually suffer from strong flavor constraints, while SUSY models produce extra degrees of freedom that need to be hidden from current experiments. To show the importance of infrared (IR) physics constraints, we discuss the flavor bounds on the anarchic RS model in both the lepton and quark sectors. For SUSY models, we discuss the difficulties in obtaining a phenomenologically allowed gaugino mass, its relation to R-symmetry breaking, and how to build a model that avoids this problem. For the neutrino mass problem, we discuss the idea of generating small neutrino masses using compositeness. By requiring successful leptogenesis and the existence of warm dark matter (WDM), we can set various constraints on the hidden composite sector. Finally, to give an example of model independent bounds from collider experiments, we show how to constrain the DM–SM particle interactions using collider results with an effective coupling description.

  12. Isocurvature constraints on portal couplings

    Energy Technology Data Exchange (ETDEWEB)

    Kainulainen, Kimmo; Nurmi, Sami; Vaskonen, Ville [Department of Physics, University of Jyväskylä, P.O.Box 35 (YFL), FI-40014 University of Jyväskylä (Finland); Tenkanen, Tommi; Tuominen, Kimmo, E-mail: kimmo.kainulainen@jyu.fi, E-mail: sami.t.nurmi@jyu.fi, E-mail: tommi.tenkanen@helsinki.fi, E-mail: kimmo.i.tuominen@helsinki.fi, E-mail: ville.vaskonen@jyu.fi [Department of Physics, University of Helsinki P.O. Box 64, FI-00014, Helsinki (Finland)

    2016-06-01

    We consider portal models which are ultraweakly coupled with the Standard Model, and confront them with observational constraints on dark matter abundance and isocurvature perturbations. We assume the hidden sector to contain a real singlet scalar s and a sterile neutrino ψ coupled to s via a pseudoscalar Yukawa term. During inflation, a primordial condensate consisting of the singlet scalar s is generated, and its contribution to the isocurvature perturbations is imprinted onto the dark matter abundance. We compute the total dark matter abundance including the contributions from condensate decay and nonthermal production from the Standard Model sector. We then use the Planck limit on isocurvature perturbations to derive a novel constraint connecting dark matter mass and the singlet self coupling with the scale of inflation: m {sub DM}/GeV ∼< 0.2λ{sub s}{sup 3/8} ( H {sub *}/10{sup 11} GeV){sup −3/2}. This constraint is relevant in most portal models ultraweakly coupled with the Standard Model and containing light singlet scalar fields.

  13. Constraints Faced by the Dairy Farmers in Nagpur District while Adopting Animal Managenment Practices

    Directory of Open Access Journals (Sweden)

    A.P.Patil

    2009-06-01

    Full Text Available The present study was carried out to analyse the constraints faced by the dairy farmers in Nagpur district. This study was conducted in 15 villages from 3 talukas of Nagpur district by personally interviewing 225 dairy farmers. Here, majority of the respondents (72.44% stated their constraint as low milk production from the local breeds, 45.33% as shortage of green fodder and 41.33% as lack of clean water while 25.33% stated lack of preservation facility as their constraint. Referring to the financial constraints, 78.22% respondents stated their constraint as delay in milk payment,63.11% as inadequate money and lack of loan facility whereas high cost of concentrates as the constraint by 56.44% of the respondents. As regards technical constraints, majority of the respondents (68.00% have stated their constraint as inadequate knowledge of diseases, their prevention and control while 56.89% have referred their constraint as non-availability of veterinary services. [Vet. World 2009; 2(3.000: 111-112

  14. Stakeholders' influence on the importance of users' and clients' information and constraints during website design.

    Science.gov (United States)

    Chevalier, Aline

    2007-12-01

    The present study aims at determining the role of the stakeholder (via a user vs a client spokesperson) on the importance allocated to information and constraints considered by novice and professional web designers. Analysis showed all designers focused mainly on clients' constraints and information even when they dealt with a user spokesperson: they considered clients' constraints as more important than users' constraints. These results are new with regard to those previously obtained in web design, which showed designers considered prescribed constraints (regardless of the stakeholder to which they are related) as unavaoidable, and the vast majority of others as avoidable if required. Research is required to help web designers to ponder users' and clients' constraints and to assess whether the same patterns of results occur in other design domains.

  15. Profitability and constraints in the marketing of poultry birds in Delta ...

    African Journals Online (AJOL)

    Profitability and constraints in the marketing of poultry birds in Delta central agricultural zone, Delta state, Nigeria. ... Randomly selected 54 poultry bird marketers were surveyed in 5 major markets. ... EMAIL FULL TEXT EMAIL FULL TEXT

  16. Relaxations of semiring constraint satisfaction problems

    CSIR Research Space (South Africa)

    Leenen, L

    2007-03-01

    Full Text Available The Semiring Constraint Satisfaction Problem (SCSP) framework is a popular approach for the representation of partial constraint satisfaction problems. In this framework preferences can be associated with tuples of values of the variable domains...

  17. Progress Towards a Benchtop Energetics Capability (BRIEFING CHARTS)

    National Research Council Canada - National Science Library

    Fajardo, Mario E; Lewis, William K

    2006-01-01

    The incorporation of nanometric (sub-micron size) metal fuel and oxidizer particles into energetic materials is a promising approach to increasing significantly the systems-level performance of munitions...

  18. Jupiter energetic particle experiment ESAD proton sensor design

    International Nuclear Information System (INIS)

    Gruhn, C.R.; Higbie, P.R.

    1977-12-01

    A proton sensor design for the Jupiter Energetic Particle Experiment is described. The sensor design uses avalanche multiplication in order to lower the effective energy threshold. A complete signal-to-noise analysis is given for this design

  19. Aerial energetic residue data from JBER C4 testing

    Data.gov (United States)

    U.S. Environmental Protection Agency — Aerially-collected energetic residues from surface detonation of C4. This dataset is associated with the following publication: Walsh, M., B. Gullett, M. Walsh, M....

  20. Use of energetic ion beams in materials synthesis and processing

    International Nuclear Information System (INIS)

    Appleton, B.R.

    1992-01-01

    A brief review of the use energetic ion beams and related techniques for the synthesis, processing, and characterization of materials is presented. Selected opportunity areas are emphasized with examples, and references are provided for more extensive coverage. (author)

  1. Monitoring solar energetic particles with an armada of European spacecraft and the new automated SEPF (Solar Energetic Proton Fluxes) Tool

    Science.gov (United States)

    Sandberg, I.; Daglis, I. A.; Anastasiadis, A.; Balasis, G.; Georgoulis, M.; Nieminen, P.; Evans, H.; Daly, E.

    2012-01-01

    Solar energetic particles (SEPs) observed in interplanetary medium consist of electrons, protons, alpha particles and heavier ions (up to Fe), with energies from dozens of keVs to a few GeVs. SEP events, or SEPEs, are particle flux enhancements from background level ( 30 MeV. The main part of SEPEs results from the acceleration of particles either by solar flares and/or by interplanetary shocks driven by Coronal Mass Ejections (CMEs); these accelerated particles propagate through the heliosphere, traveling along the interplanetary magnetic field (IMF). SEPEs show significant variability from one event to another and are an important part of space weather, because they pose a serious health risk to humans in space and a serious radiation hazard for the spacecraft hardware which may lead to severe damages. As a consequence, engineering models, observations and theoretical investigations related to the high energy particle environment is a priority issue for both robotic and manned space missions. The European Space Agency operates the Standard Radiation Environment Monitor (SREM) on-board six spacecraft: Proba-1, INTEGRAL, Rosetta, Giove-B, Herschel and Planck, which measures high-energy protons and electrons with a fair angular and spectral resolution. The fact that several SREM units operate in different orbits provides a unique chance for comparative studies of the radiation environment based on multiple data gathered by identical detectors. Furthermore, the radiation environment monitoring by the SREM unit onboard Rosetta may reveal unknown characteristics of SEPEs properties given the fact that the majority of the available radiation data and models only refer to 1AU solar distances. The Institute for Space Applications and Remote Sensing of the National Observatory of Athens (ISARS/NOA) has developed and validated a novel method to obtain flux spectra from SREM count rates. Using this method and by conducting detailed scientific studies we have showed in

  2. Transmission and capacity pricing and constraints

    International Nuclear Information System (INIS)

    Fusco, M.

    1999-01-01

    A series of overhead viewgraphs accompanied this presentation which discussed the following issues regarding the North American electric power industry: (1) capacity pricing transmission constraints, (2) nature of transmission constraints, (3) consequences of transmission constraints, and (4) prices as market evidence. Some solutions suggested for pricing constraints included the development of contingent contracts, back-up power in supply regions, and new line capacity construction. 8 tabs., 20 figs

  3. Ant colony optimization and constraint programming

    CERN Document Server

    Solnon, Christine

    2013-01-01

    Ant colony optimization is a metaheuristic which has been successfully applied to a wide range of combinatorial optimization problems. The author describes this metaheuristic and studies its efficiency for solving some hard combinatorial problems, with a specific focus on constraint programming. The text is organized into three parts. The first part introduces constraint programming, which provides high level features to declaratively model problems by means of constraints. It describes the main existing approaches for solving constraint satisfaction problems, including complete tree search

  4. Carbon nanostructure formation driven by energetic particles

    International Nuclear Information System (INIS)

    Zhu Zhiyuan; Gong Jinlong; Zhu Dezhang

    2006-01-01

    Carbon nanostructures, especially carbon nanotubes (CNTs), have been envisaged to be the building blocks of a variety of nanoscale devices and materials. The inherent nanometer-size and ability of being either metallic or semiconductive of CNTs lead to their application in nanoelectronics. Excellent mechanical characteristics of CNTs suggest their use as structural reinforcements. However, to fully exploit the potential applications, effective means of tailoring CNT properties must be developed. Irradiation of materials with energetic particles beams (ions and electrons) is a standard and important tool for modifying material properties. Irradiation makes it possible to dope the samples, to create local amorphous region or vice versa, recrystallize the lattice and even drive a phase transition. In this paper, we report our results of (1) phase transfromation from carbon nanotubes to nanocrystalline diamond driven by hydrogen plasma, (2) onion-like nanostructure from carbon nanotubes driven by ion beams of several tens keV, and (3) amorphous carbon nanowire network formation by ion beam irradiation. Structural phase transformation from multiwalled carbon nanotubes to nanocrystalline diamond by hydrogen plasma post-treatment was carried out. Ultrahigh equivalent diamond nucleation density of more than 1011 nuclei/cm 2 was obtained. The diamond formation and growth mechanisms were proposed to be the consequence of the formation of sp3 bonded amorphous carbon clusters. The hydrogen chemisorption on curved graphite network and the energy deposited on CNTs by continuous impingement of activated molecular or atomic hydrogen are responsible for the formation of amorphous carbon matrix. Diamond nucleates and grows in the way similar to that of diamond chemical vapor deposition processes on amorphous carbon films. Furthermore, single crystalline diamond nanorods of 4-8 nm in diameter and up to 200 nm in length have been successfully synthesized by hydrogen plasma post

  5. An automatic system to study sperm motility and energetics

    OpenAIRE

    Shi, LZ; Nascimento, JM; Chandsawangbhuwana, C; Botvinick, EL; Berns, MW

    2008-01-01

    An integrated robotic laser and microscope system has been developed to automatically analyze individual sperm motility and energetics. The custom-designed optical system directs near-infrared laser light into an inverted microscope to create a single-point 3-D gradient laser trap at the focal spot of the microscope objective. A two-level computer structure is described that quantifies the sperm motility (in terms of swimming speed and swimming force) and energetics (measuring mid-piece membr...

  6. Nonperturbative effects of energetic ions on Alfven eigenmodes

    International Nuclear Information System (INIS)

    Todo, Y.; Nakajima, N.; Shinohara, K.; Takechi, M.; Ishikawa, M.; Yamamoto, S.

    2005-01-01

    Linear properties and nonlinear evolutions of an energetic-ion driven instability in a JT-60U plasma were investigated using a simulation code for magnetohydrodynamics and energetic particles. The spatial profile of the unstable mode peaks near the plasma center where the safety factor profile is flat. The unstable mode is not a toroidal Alfven eigenmode (TAE) because the spatial profile deviates from the expected location of TAE and the spatial profile consists of a single primary harmonic m/n = 2/1 where m, n are poloidal and toroidal mode numbers. The real frequency of the unstable mode is close to the experimental starting frequency of the fast frequency sweeping mode. The simulation results demonstrate that the energetic ion orbit width and the energetic ion pressure significantly broaden radial profile of the unstable mode. For the smallest value among the investigated energetic ion orbit width, the unstable mode is localized within 20% of the minor radius. This gives an upper limit of the spatial profile width of the unstable mode which the magnetohydrodynamic effects alone can induce. For the experimental condition of the JT-60U plasma, the energetic ions broaden the spatial profile of the unstable mode by a factor of 3 compared with the smallest orbit width case. The unstable mode is primarily induced by the energetic particles. It is demonstrated that the frequency shifts both upward and downward in the nonlinear evolution at the rate close to that of the fast frequency sweeping mode. In addition to the energetic particle mode in the JT-60U plasma, an investigation of TAE in an LHD-like plasma using the simulation code for the helical coordinate system is reported. (author)

  7. Nonperturbative effects of energetic ions on Alfven eigenmodes

    International Nuclear Information System (INIS)

    Todo, Y.; Nakajima, N.; Shinohara, Kouji; Takechi, Manabu; Ishikawa, Masao

    2005-01-01

    Linear properties and nonlinear evolutions of an energetic-ion driven instability in a JT-60U plasma were investigated using a simulation code for magnetohydrodynamics and energetic particles. The spatial profile of the unstable mode peaks near the plasma center where the safety factor profile is flat. The unstable mode is not a toroidal Alfven eigenmode (TAE) because the spatial profile deviates from the expected location of TAE and the spatial profile consists of a single primary harmonic m/n=2/1 where m, n are poloidal and toroidal mode numbers. The real frequency of the unstable mode is close to the experimental starting frequency of the fast frequency sweeping mode. The simulation results demonstrate that the energetic ion orbit width and the energetic ion pressure significantly broaden radial profile of the unstable mode. For the smallest value among the investigated energetic ion orbit width, the unstable mode is localized within 20% of the minor radius. This gives an upper limit of the spatial profile width of the unstable mode which the magnetohydrodynamic effects alone can induce. For the experimental condition of the JT-60U plasma, the energetic ions broaden the spatial profile of the unstable mode by a factor of 3 compared with the smallest orbit width case. The unstable mode is primarily induced by the energetic particles. It is demonstrated that the frequency shifts both upward and downward in the nonlinear evolution at the rate close to that of the fast frequency sweeping mode. In addition to the energetic particle mode in the JT-60U plasma, an investigation of TAE in an LHD-like plasma using the simulation code for the helical coordinate system is reported. (author)

  8. Radiational and energetic characteristics of diatomic molecules (data base)

    International Nuclear Information System (INIS)

    Kuznetsova, L.A.; Pazyuk, E.A.; Stolyarov, A.V.

    1993-01-01

    Data base on radiational and energetic characteristics of diatomic molecules was created. The base consists of two parts: reference system and recommended data system. The reference system contains the information about studies of radiational and energetic parameters of more than 1500 electronic states and 1700 electron transfers for ∼ 350 diatomic molecules and their ions. The base bibliography includes ∼ 3000 publications. 11 refs., 1 figs

  9. Wrong directions of the energetic policy; Descaminhos da politica energetica

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Joaquim Francisco

    1997-12-31

    The energetic planning should take an important role in the formulation of the economic and social development policy of any country. This work presents the opinion of the author in relation to this issue in what concerns the Brazilian experience. Several actions considered wrong by the author, which were taken by the government in what concerns energetic policy are presented and their expected consequences in the near future are discussed 6 refs., 1 tab.

  10. The effect of constraint on fuel-coolant interactions in a confined geometry

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.; Corradini, M.L. [Univ. of Wisconsin, Madison, WI (United States)

    1995-09-01

    A Fuel-Coolant Interaction (FCI or vapor explosion) is the phenomena in which a hot liquid rapidly transfers its internal energy into a surrounding colder and more volatile liquid. The energetics of such a complex multi-phase and multi-component phenomenon is partially determined by the surrounding boundary conditions. As one of the boundary conditions, we studied the effect of constraint on FCIs. The WFCI-D series of experiments were performed specifically to observe this effect. The results from these and our previous WFCI tests as well as those of other investigators are compared.

  11. Revisiting big-bang nucleosynthesis constraints on dark-matter annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Masahiro [Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa 277-8582 (Japan); Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa 277-8583 (Japan); Kohri, Kazunori [Theory Center, IPNS, KEK, Tsukuba 305-0801 (Japan); Sokendai, Tsukuba 305-0801 (Japan); Moroi, Takeo [Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa 277-8583 (Japan); Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Takaesu, Yoshitaro, E-mail: takaesu@hep-th.phys.s.u-tokyo.ac.jp [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan)

    2015-12-17

    We study the effects of dark-matter annihilation during the epoch of big-bang nucleosynthesis on the primordial abundances of light elements. We improve the calculation of the light-element abundances by taking into account the effects of anti-nucleons emitted by the annihilation of dark matter and the interconversion reactions of neutron and proton at inelastic scatterings of energetic nucleons. Comparing the theoretical prediction of the primordial light-element abundances with the latest observational constraints, we derive upper bounds on the dark-matter pair-annihilation cross section. Implication to some of particle-physics models are also discussed.

  12. Revisiting big-bang nucleosynthesis constraints on dark-matter annihilation

    Directory of Open Access Journals (Sweden)

    Masahiro Kawasaki

    2015-12-01

    Full Text Available We study the effects of dark-matter annihilation during the epoch of big-bang nucleosynthesis on the primordial abundances of light elements. We improve the calculation of the light-element abundances by taking into account the effects of anti-nucleons emitted by the annihilation of dark matter and the interconversion reactions of neutron and proton at inelastic scatterings of energetic nucleons. Comparing the theoretical prediction of the primordial light-element abundances with the latest observational constraints, we derive upper bounds on the dark-matter pair-annihilation cross section. Implication to some of particle-physics models are also discussed.

  13. Elemental composition of solar energetic particles

    International Nuclear Information System (INIS)

    Cook, W.R. III.

    1981-01-01

    The Low Energy Telescopes on the Voyager spacecraft are used to measure the elemental composition (2 less than or equal to Z less than or equal to 28) and energy spectra (5 to 15 MeV/nucleon) of solar energetic particles (SEPs) in seven large flare events. Four flare events are selected which have SEP abundance ratios approximately independent of energy/nucleon. The abundances for these events are compared from flare to flare and are compared to solar abundances from other sources - spectroscopy of the photosphere and corona, and solar wind measurements. The selected SEP composition results may be described by an average composition plus a systematic flare-to-flare deviation about the average. For each of the four events, the ratios of the SEP abundances to the four-flare average SEP abundances are approximately monotonic functions of nuclear charge Z in the range 6 less than or equal to Z less than or equal to 28. An exception to this Z-dependent trend occurs for He, whose abundance relative to Si is nearly the same in all four events. The four-flare average SEP composition is significantly different from the solar composition determined by photospheric spectroscopy: the elements C, N and O are depleted in SEPs by a factor of about five relative to the elements Na, Mg, Al, Si, Ca, Cr, Fe, and Ni. For some elemental abundance ratios (e.g. Mg/O), the difference between SEP and photospheric results is persistent from flare to flare and is apparently not due to a systematic difference in SEP energy/nucleon spectra between the elements, nor to propagation effects which would result in a time-dependent abundance ratio in individual flare events

  14. University of Rochester, Laboratory for Laser Energetics

    Science.gov (United States)

    1987-01-01

    In FY86 the Laboratory has produced a list of accomplishments in which it takes pride. LLE has met every laser-fusion program milestone to date in a program of research for direct-drive ultraviolet laser fusion originally formulated in 1981. LLE scientists authored or co-authored 135 scientific papers during 1985 to 1986. The collaborative experiments with NRL, LANL, and LLNL have led to a number of important ICF results. The cryogenic target system developed by KMS Fusion for LLE will be used in future high-density experiments on OMEGA to demonstrate the compression of thermonuclear fuel to 100 to 200 times that of solid (20 to 40 g/cm) in a test of the direct-drive concept, as noted in the National Academy of Sciences' report. The excellence of the advanced technology efforts at LLE is illustrated by the establishment of the Ultrafast Science Center by the Department of Defense through the Air Force Office of Scientific Research. Research in the Center will concentrate on bridging the gap between high-speed electronics and ultrafast optics by providing education, research, and development in areas critical to future communications and high-speed computer systems. The Laboratory for Laser Energetics continues its pioneering work on the interaction of intense radiation with matter. This includes inertial-fusion and advanced optical and optical electronics research; training people in the technology and applications of high-power, short-pulse lasers; and interacting with the scientific community, business, industry, and government to promote the growth of laser technology.

  15. Mitochondria and Energetic Depression in Cell Pathophysiology

    Directory of Open Access Journals (Sweden)

    Stephan Zierz

    2009-05-01

    Full Text Available Mitochondrial dysfunction is a hallmark of almost all diseases. Acquired or inherited mutations of the mitochondrial genome DNA may give rise to mitochondrial diseases. Another class of disorders, in which mitochondrial impairments are initiated by extramitochondrial factors, includes neurodegenerative diseases and syndromes resulting from typical pathological processes, such as hypoxia/ischemia, inflammation, intoxications, and carcinogenesis. Both classes of diseases lead to cellular energetic depression (CED, which is characterized by decreased cytosolic phosphorylation potential that suppresses the cell’s ability to do work and control the intracellular Ca2+ homeostasis and its redox state. If progressing, CED leads to cell death, whose type is linked to the functional status of the mitochondria. In the case of limited deterioration, when some amounts of ATP can still be generated due to oxidative phosphorylation (OXPHOS, mitochondria launch the apoptotic cell death program by release of cytochrome c. Following pronounced CED, cytoplasmic ATP levels fall below the thresholds required for processing the ATP-dependent apoptotic cascade and the cell dies from necrosis. Both types of death can be grouped together as a mitochondrial cell death (MCD. However, there exist multiple adaptive reactions aimed at protecting cells against CED. In this context, a metabolic shift characterized by suppression of OXPHOS combined with activation of aerobic glycolysis as the main pathway for ATP synthesis (Warburg effect is of central importance. Whereas this type of adaptation is sufficiently effective to avoid CED and to control the cellular redox state, thereby ensuring the cell survival, it also favors the avoidance of apoptotic cell death. This scenario may underlie uncontrolled cellular proliferation and growth, eventually resulting in carcinogenesis.

  16. Solar energetic particles and space weather

    Science.gov (United States)

    Reames, Donald V.; Tylka, Allan J.; Ng, Chee K.

    2001-02-01

    The solar energetic particles (SEPs) of consequence to space weather are accelerated at shock waves driven out from the Sun by fast coronal mass ejections (CMEs). In the large events, these great shocks fill half of the heliosphere. SEP intensity profiles change appearance with longitude. Events with significant intensities of >10 MeV protons occur at an average rate of ~13 yr-1 near solar maximum and several events with high intensities of >100 MeV protons occur each decade. As particles stream out along magnetic field lines from a shock near the Sun, they generate waves that scatter subsequent particles. At high intensities, wave growth throttles the flow below the ``streaming limit.'' However, if the shock maintains its strength, particle intensities can rise above this limit to a peak when the shock itself passes over the observer creating a `delayed' radiation hazard, even for protons with energies up to ~1 GeV. The streaming limit makes us blind to the intensities at the oncoming shock, however, heavier elements such as He, O, and Fe probe the shape of the wave spectrum, and variation in abundances of these elements allow us to evade the limit and probe conditions at the shock, with the aid of detailed modeling. At high energies, spectra steepen to form a spectral `knee.' The location of the proton spectral knee can vary from ~10 MeV to ~1 GeV, depending on shock conditions, greatly affecting the radiation hazard. Hard spectra are a serious threat to astronauts, placing challenging requirements for shielding, especially on long-duration missions to the moon or Mars. .

  17. Energetic dialog EU and Russia slows

    International Nuclear Information System (INIS)

    Hirman, K.

    2004-01-01

    European Union maintains an individual dialog with Russia about cooperation in energy sphere since joint summit in Paris in October 2000. Both sides agreed there to create four export groups: for energy strategy, investments, infrastructure and technologies, efficiency and ecology. European Union expects that Russia will unequivocally take over the obligations by creation of suitable climate for investors. European Union considers as key preconditions the restructuring of the largest national monopoles. These conditions are also the important component of asking strategy of EU by the discussions about integration of Russia to WTO. One of the most important requests of Brussels is the restructuring of Gazprom concern, what means its division to mining and transport part. Russian part refuses all steps in this sphere. Author analyses the strategic interests of Russian government and of president Putin by planning and mining of oil and gas as like as by investments to the pipelines and gas lines. International Energetic Agency (IEA) assumes that the investments to oil and gas mining in Russia will be around 330 million USD till 2030. The similar situation is also in oil sector. More than half of huge oil deposits with the highest output are already mined. The oil mining in Russia reached 421 million tons in 2003. According to pessimistic estimations the gas mining will reach from 550 to 560 billion m 3 in the following decades, according to optimistic scenario it can reach up to 730 billion m 3 per year. In this case the netto export of oil from Russia could rise from present around 175 billion m 3 to 280 billion m 3 in 2030. IEA warns that these plans should be fulfilled only if massive foreign investments enter this sector. IEA also warns before concerns of investors about Russian legislation, property protection, cooperative regulation and transparentness of undertaking. Proposed pipelines among Russia, Near East, Africa and European Union are shown

  18. Energetics of charged metal clusters containing vacancies

    Science.gov (United States)

    Pogosov, Valentin V.; Reva, Vitalii I.

    2018-01-01

    We study theoretically large metal clusters containing vacancies. We propose an approach, which combines the Kohn-Sham results for monovacancy in a bulk of metal and analytical expansions in small parameters cv (relative concentration of vacancies) and RN,v -1, RN ,v being cluster radii. We obtain expressions of the ionization potential and electron affinity in the form of corrections to electron work function, which require only the characteristics of 3D defect-free metal. The Kohn-Sham method is used to calculate the electron profiles, ionization potential, electron affinity, electrical capacitance; dissociation, cohesion, and monovacancy-formation energies of the small perfect clusters NaN, MgN, AlN (N ≤ 270) and the clusters containing a monovacancy (N ≥ 12) in the stabilized-jellium model. The quantum-sized dependences for monovacancy-formation energies are calculated for the Schottky scenario and the "bubble blowing" scenario, and their asymptotic behavior is also determined. It is shown that the asymptotical behaviors of size dependences for these two mechanisms differ from each other and weakly depend on the number of atoms in the cluster. The contribution of monovacancy to energetics of charged clusters and the size dependences of their characteristics and asymptotics are discussed. It is shown that the difference between the characteristics for the neutral and charged clusters is entirely determined by size dependences of ionization potential and electron affinity. Obtained analytical dependences may be useful for the analysis of the results of photoionization experiments and for the estimation of the size dependences of the vacancy concentration including the vicinity of the melting point.

  19. Response of energetic particles to local magnetic dipolarization inside geosynchronous orbit

    Science.gov (United States)

    Motoba, T.; Ohtani, S.; Gkioulidou, M.; Takahashi, K.

    2017-12-01

    Magnetic field dipolarization and energetic particle injections are the most distinct phenomena observed in the inner magnetosphere during the substorm expansion phase. Compared to a wealth of knowledge about the phenomenology of magnetic dipolarizations and particle injections at/outside geosynchronous orbit (GEO), our understanding of them inside GEO remains incomplete because of a very limited number of previous studies. In the present study, we statistically examine the response of 1-1000 keV energetic particles to local magnetic dipolarization by performing a superposed epoch analysis of energetic particle fluxes with the zero epoch defined as the dipolarization onset times. Based on data from the Van Allen Probes tail seasons in 2012-2016, we identified a total of 97 magnetic dipolarization events which occurred closer to the magnetic equator (i.e., BH, which is antiparallel to the Earth's dipole axis, is the dominant component of the local magnetic field at least for 5 min before the onset). For major ion species (hydrogen, helium, and oxygen ions), the relative flux intensity to the pre-onset level increases at > 50 keV and decreases at inverse energy dispersion. For dipolarizations with strong impulsive westward electric fields, the relative electron flux intensity increases up to 5-10 times, in particular most significant at several tens of keV. This result suggests that the impulsive electric field acts as an efficient factor in the rapid energization of the tens-of-keV electrons. We also discuss how the response of energetic particles to dipolarization depends on MLT, radial distance, and pitch angle.

  20. The Ambiguous Role of Constraints in Creativity

    DEFF Research Database (Denmark)

    Biskjær, Michael Mose; Onarheim, Balder; Wiltschnig, Stefan

    2011-01-01

    The relationship between creativity and constraints is often described in the literature either in rather imprecise, general concepts or in relation to very specific domains. Cross-domain and cross-disciplinary takes on how the handling of constraints influences creative activities are rare. In t......-disciplinary research into the ambiguous role of constraints in creativity....

  1. Learning and Parallelization Boost Constraint Search

    Science.gov (United States)

    Yun, Xi

    2013-01-01

    Constraint satisfaction problems are a powerful way to abstract and represent academic and real-world problems from both artificial intelligence and operations research. A constraint satisfaction problem is typically addressed by a sequential constraint solver running on a single processor. Rather than construct a new, parallel solver, this work…

  2. A general treatment of dynamic integrity constraints

    NARCIS (Netherlands)

    de Brock, EO

    This paper introduces a general, set-theoretic model for expressing dynamic integrity constraints, i.e., integrity constraints on the state changes that are allowed in a given state space. In a managerial context, such dynamic integrity constraints can be seen as representations of "real world"

  3. Energetic magnetospheric protons in the plasma depletion layer

    International Nuclear Information System (INIS)

    Fuselier, S.A.

    1992-01-01

    Interplanetary magnetic field draping against the Earth's dayside subsolar magnetopause creates a region of reduced plasma density and increased magnetic field called the plasma depletion layer. In this region, leakage of energetic ions from the Earth's magnetosphere onto magnetic field lines in the plasma depletion layer can be studied without interference from ions accelerated at the Earth's quasi-parallel bow shock. Active Magnetospheric Particle Tracer Experiment/Charge Composition Explorer (AMPTE/CCE) observations for 13 plasma depletion layer events are used to determine the characteristics of energetic protons between a few keV/e and ∼100keV/e leaked from the magnetosphere. Results indicate that the leaked proton distributions resemble those in the magnetosphere except that they have lower densities and temperatures and much higher velocities parallel (or antiparallel) and perpendicular to the magnetic field. Compared to the low-energy magnetosheath proton distributions present in the depletion layer, the leaked energetic proton distributions typically have substantially higher flow velocities along the magnetic field indicate that the leaked energetic proton distributions to contribute to the energetic proton population seen upstream and downstream from the quasi-parallel bow shock. However, their contribution is small compared to the contribution from acceleration of protons at the bow shock because the leaked proton densities are on the order of 10 times smaller than the energetic proton densities typically observed in the vicinity of the quasi-parallel bow shock

  4. Quinquennial National Program (1990-1994) for the Energetic Modernization

    International Nuclear Information System (INIS)

    1990-01-01

    The Mexican Energetics Sector currently has the eighth possition regarding reserves of hydrocarbons and the sixth regarding oil production, the installed capacity in electricity matters is among the first 20 of the world. The Program established first, a general balance of the situation in which the energetics sector lays today. It also points out the strategic role that this sector holds, as well an on the solutions to the problems faced. This Program establishes the objectives pursued by the energetics sector and that are as follows: to guarantee enough supply of energetics, to strenghten the link between the energetics sector and economy, society and environmental protection, to consolidate an energetics sector that is more current and better integrated. This Program presents the proposal to tend to five priorities: productivity, saving and effective use of energy, financing of the development and expansion of the offer, to diversify sources, as well as an efficient participation in international markets. In the chapter the effort regarding supply and demand of energy, it is evident that the effort made to expand the offer must be great, facing the total demand of energy demonstrated by the figures. For 1994 this demmand is of 31 - 36 % greater to that observed in 1988. Lastly, two statistic documents are enclosed, one historic, with general pointers of the sector, and another with the basic variables for national energy balance

  5. Constraint Specialisation in Horn Clause Verification

    DEFF Research Database (Denmark)

    Kafle, Bishoksan; Gallagher, John Patrick

    2015-01-01

    We present a method for specialising the constraints in constrained Horn clauses with respect to a goal. We use abstract interpretation to compute a model of a query-answer transformation of a given set of clauses and a goal. The effect is to propagate the constraints from the goal top......-down and propagate answer constraints bottom-up. Our approach does not unfold the clauses at all; we use the constraints from the model to compute a specialised version of each clause in the program. The approach is independent of the abstract domain and the constraints theory underlying the clauses. Experimental...

  6. Constraint specialisation in Horn clause verification

    DEFF Research Database (Denmark)

    Kafle, Bishoksan; Gallagher, John Patrick

    2017-01-01

    We present a method for specialising the constraints in constrained Horn clauses with respect to a goal. We use abstract interpretation to compute a model of a query–answer transformed version of a given set of clauses and a goal. The constraints from the model are then used to compute...... a specialised version of each clause. The effect is to propagate the constraints from the goal top-down and propagate answer constraints bottom-up. The specialisation procedure can be repeated to yield further specialisation. The approach is independent of the abstract domain and the constraint theory...

  7. Nuclear energy and external constraints

    International Nuclear Information System (INIS)

    Lattes, R.; Thiriet, L.

    1983-01-01

    The structural factors of this crisis probably predominate over factors arising out the economic situation, even if explanations vary in this respect. In this article devoted to nuclear energy, a possible means of Loosering external constraints the current international economic environment is firstly outlined; the context in which the policies of industrialized countries, and therefore that of France, must be developed. An examination of the possible role of energy policies in general and nuclear policies in particular as an instrument of economic policy in providing a partial solution to this crisis, will then enable to quantitatively evaluate the effects of such policies at a national level [fr

  8. Solar flares, CMEs and solar energetic particle events during solar cycle 24

    Science.gov (United States)

    Pande, Bimal; Pande, Seema; Chandra, Ramesh; Chandra Mathpal, Mahesh

    2018-01-01

    We present here a study of Solar Energetic Particle Events (SEPs) associated with solar flares during 2010-2014 in solar cycle 24. We have selected the flare events (≥GOES M-class), which produced SEPs. The SEPs are classified into three categories i.e. weak (proton intensity ≤ 1 pfu), minor (1 pfu pfu) and major (proton intensity ≥ 10 pfu). We used the GOES data for the SEP events which have intensity greater than one pfu and SOHO/ERNE data for the SEP event less than one pfu intensity. In addition to the flare and SEP properties, we have also discussed different properties of associated CMEs.

  9. Behaviour of superconductivity energetic characteristics in electron-doped cuprates. A simple model

    International Nuclear Information System (INIS)

    Kristoffel, N.; Rubin, P.

    2008-01-01

    A simple model to describe the energetic phase diagram of electron-doped cuprate superconductor is developed. Interband pairing operates between the UHB and the defect states created by doping and supplied by both extincting HB-s. Two defect subbands correspond to the (π,0) and (π/2,π/2) momentum regions. Extended doping quenches the bare normal state gaps (pseudogaps). Maximal transition temperature corresponds to overlapping bands ensemble intersected by the chemical potential. Illustrative results for T c , pseudo- and superconducting gaps are calculated on the whole doping scale. Major characteristic features on the phase diagram are reproduced. Anticipated manifestation of gaps doping dynamics is discussed

  10. The Two Sources of Solar Energetic Particles

    Science.gov (United States)

    Reames, Donald V.

    2013-06-01

    Evidence for two different physical mechanisms for acceleration of solar energetic particles (SEPs) arose 50 years ago with radio observations of type III bursts, produced by outward streaming electrons, and type II bursts from coronal and interplanetary shock waves. Since that time we have found that the former are related to "impulsive" SEP events from impulsive flares or jets. Here, resonant stochastic acceleration, related to magnetic reconnection involving open field lines, produces not only electrons but 1000-fold enhancements of 3He/4He and of ( Z>50)/O. Alternatively, in "gradual" SEP events, shock waves, driven out from the Sun by coronal mass ejections (CMEs), more democratically sample ion abundances that are even used to measure the coronal abundances of the elements. Gradual events produce by far the highest SEP intensities near Earth. Sometimes residual impulsive suprathermal ions contribute to the seed population for shock acceleration, complicating the abundance picture, but this process has now been modeled theoretically. Initially, impulsive events define a point source on the Sun, selectively filling few magnetic flux tubes, while gradual events show extensive acceleration that can fill half of the inner heliosphere, beginning when the shock reaches ˜2 solar radii. Shock acceleration occurs as ions are scattered back and forth across the shock by resonant Alfvén waves amplified by the accelerated protons themselves as they stream away. These waves also can produce a streaming-limited maximum SEP intensity and plateau region upstream of the shock. Behind the shock lies the large expanse of the "reservoir", a spatially extensive trapped volume of uniform SEP intensities with invariant energy-spectral shapes where overall intensities decrease with time as the enclosing "magnetic bottle" expands adiabatically. These reservoirs now explain the slow intensity decrease that defines gradual events and was once erroneously attributed solely to slow

  11. On energetics of hydrocarbon chemical reactions by ionizing irradiation

    International Nuclear Information System (INIS)

    Zaykin, Yu.A.; Zaykina, R.F.; Mirkin, G.

    2002-01-01

    Complete text of publication follows. The present global energy crisis requires the industry to look for technologies that are more effective and, particularly, less energy consuming. The hydrocarbon processing technology based on the electron radiation-induced thermal chemical conversion has a great potential. Comparing the presently predominant thermocatalytic processing, it is much more energy efficient, because chemical conversions go at a minimal processing temperature and pressure. To compare energy consumption by electron irradiation with thermal and thermocatalytic technologies of hydrocarbon processing one must see major differences between them. While traditional thermocatalytic processes are equilibrium and their energetics can be evaluated based on principles of classic thermodynamics, HEET processing is non-equilibrium and this evaluation approach is not valid for it. However, a theoretical description of radiation-chemical conversion using reaction rate constants determined in thermally equilibrium systems is approximately adequate to radiation processes by substituting equilibrium concentrations of reacting particles as their non-equilibrium concentrations under irradiation. In particular, description of radical reactions initiated by radiation requires substitution of thermally equilibrium radical concentration by much higher concentration defined by the dynamic equilibrium of radical radiation generation and their recombination. The paper presents the comparative analysis of energy consumption in different stages of hydrocarbon processing using classic thermal cracking by heating versus radiation induced cracking. It is shown that in the most energy-consuming stage of processing - the chain reaction initiation necessary for concentration of active radicals, irradiation processing has the great advantage compared to thermal cracking by heating and allows cutting down the total energy consumption by approximately 40%

  12. Biomass energetics potential of wetlands at Saare county

    International Nuclear Information System (INIS)

    Kask, U.; Kask, L.

    2002-01-01

    Most of the fuels that are being used to produce the thermal and electrical power are nonrenewable. Transferring them into energy pollutes the environment with CO 2 and surplus heat. Biomass is the most suitable energy resource in Estonian natural circumstances. Hitherto, one kind of biomass - plants of wetland - has almost not been used. There are plenty of wetlands in Saaremaa that have reasonably high productivity of biomass. Exertion of technologies of processing and using the biomass helps to create new jobs in agriculture as well in other sector of economy and evolve the regional development. The local currency circulation will improve and there are also possibilities in increase of capital expenditures and export potential. The biomass productivity of wetland plants accounting to dry matter can reach up to 4-5 kg/m 2 in a year. One advantage to use the plants of wetland (reed, cattail) in energy production is the fact that these plants will disengage from water in the end of their growth period and will need no extra drying. There are over 12000 ha of wetlands in Saaremaa, half of them could be used to get energetical biomass. The other half is either under (nature)protection or it would be economically inefficient to cut reed there. The major wetlands are in the surroundings of Mullatu bay and the Koigi swamp, also in Tornimae. There could be significant reduce in the emission of solid particles into the atmosphere, if the biomass of wetlands would be used to produce thermal and electrical power in Kuressaare. (author)

  13. Developmental constraint of insect audition

    Directory of Open Access Journals (Sweden)

    Strauß Johannes

    2006-12-01

    Full Text Available Abstract Background Insect ears contain very different numbers of sensory cells, from only one sensory cell in some moths to thousands of sensory cells, e.g. in cicadas. These differences still await functional explanation and especially the large numbers in cicadas remain puzzling. Insects of the different orders have distinct developmental sequences for the generation of auditory organs. These sensory cells might have different functions depending on the developmental stages. Here we propose that constraints arising during development are also important for the design of insect ears and might influence cell numbers of the adults. Presentation of the hypothesis We propose that the functional requirements of the subadult stages determine the adult complement of sensory units in the auditory system of cicadas. The hypothetical larval sensory organ should function as a vibration receiver, representing a functional caenogenesis. Testing the hypothesis Experiments at different levels have to be designed to test the hypothesis. Firstly, the neuroanatomy of the larval sense organ should be analyzed to detail. Secondly, the function should be unraveled neurophysiologically and behaviorally. Thirdly, the persistence of the sensory cells and the rebuilding of the sensory organ to the adult should be investigated. Implications of the hypothesis Usually, the evolution of insect ears is viewed with respect to physiological and neuronal mechanisms of sound perception. This view should be extended to the development of sense organs. Functional requirements during postembryonic development may act as constraints for the evolution of adult organs, as exemplified with the auditory system of cicadas.

  14. Positron lifetime study of copper irradiated by energetic protons or energetic neutrons

    International Nuclear Information System (INIS)

    Howell, R.H.

    1979-03-01

    Positron lifetime measurements of pure copper damaged by irradiation with energetic protons and neutrons are presented. Lifetime determinations of the bulk material and various traps were made, and the dependence of the trapping rate on dose and irradiation energy were investigated. The results from the neutron- and proton-irradiated samples point to the existence of traps with similar but distinct lifetime parameters, not varying greatly from values reported in deformation studies. Also, a trap with long lifetime is seen for some proton irradiations, but is never seen for the neutron irradiations. The trapping rate of the short-lifetime trap is a linear function of dose for proton-irradiated samples and nearly so for the neutron irradiation. 1 figure

  15. Export constraints facing Lesotho-based manufacturing enterprises

    Directory of Open Access Journals (Sweden)

    Motšelisi C. Mokhethi

    2015-07-01

    Full Text Available Orientation: Exporting is preferred by many enterprises as the mode of foreign entry as it requires less commitment of organisational resources and offers flexibility of managerial actions. However, enterprises face a number of challenges when attempting to initiate exports or expand their export operations. Research purpose: This study was undertaken to determine the characteristics and composition of export barriers constraining exporting by Lesotho-based manufacturing enterprises. Motivation for the study: Lesotho is faced with low destination diversity and low diversity in export products. Research design, approach and method: Data was collected from 162 Lesotho-based manufacturing enterprises through a self-administered questionnaire. Main findings: In its findings, the study firstly identified international constraints, distribution constraints and financial constraints as factors constraining exporting. Secondly, it was determined that three exporting constraints, all internal to the enterprise and all related to one factor (namely financial constraint hampered exporting. Lastly, the ANOVA results revealed that the perceptions of export constraints differed according to the enterprise characteristics, enterprise size, ownership and type of industry. Contribution/value-add: With the majority of enterprises in this study being identified as micro-enterprises, the government of Lesotho needs to pay particular attention to addressing the export needs of these enterprises in order to enable them to participate in exporting activities − especially considering that they can play a pivotal role in the alleviation of poverty, job creation and economic rejuvenation.

  16. Morphological constraints on changing avian migration phenology.

    Science.gov (United States)

    Møller, A P; Rubolini, D; Saino, N

    2017-06-01

    Many organisms at northern latitudes have responded to climate warming by advancing their spring phenology. Birds are known to show earlier timing of spring migration and reproduction in response to warmer springs. However, species show heterogeneous phenological responses to climate warming, with those that have not advanced or have delayed migration phenology experiencing population declines. Although some traits (such as migration distance) partly explain heterogeneity in phenological responses, the factors affecting interspecies differences in the responsiveness to climate warming have yet to be fully explored. In this comparative study, we investigate whether variation in wing aspect ratio (reflecting relative wing narrowness), an ecomorphological trait that is strongly associated with flight efficiency and migratory behaviour, affects the ability to advance timing of spring migration during 1960-2006 in a set of 80 European migratory bird species. Species with larger aspect ratio (longer and narrower wings) showed smaller advancement of timing of spring migration compared to species with smaller aspect ratio (shorter and wider wings) while controlling for phylogeny, migration distance and other life-history traits. In turn, migration distance positively predicted aspect ratio across species. Hence, species that are better adapted to migration appear to be more constrained in responding phenologically to rapid climate warming by advancing timing of spring migration. Our findings corroborate the idea that aspect ratio is a major evolutionary correlate of migration, and suggest that selection for energetically efficient flights, as reflected by high aspect ratio, may hinder phenotypically plastic/microevolutionary adjustments of migration phenology to ongoing climatic changes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  17. Energetically resolved multiple-fluid equilibria of tokamak plasmas

    International Nuclear Information System (INIS)

    Hole, M J; Dennis, G

    2009-01-01

    In many magnetically confined fusion experiments, a significant fraction of the stored energy of the plasma resides in energetic, or non-thermal, particle populations. Despite this, most equilibrium treatments are based on MHD: a single fluid treatment which assumes a Maxwell-Boltzmann distribution function. Detailed magnetic reconstruction based on this treatment ignore the energetic complexity of the plasma and can result in model-data inconsistencies, such as thermal pressure profiles which are inconsistent with the total stored kinetic energy of the plasma. Alternatively, ad hoc corrections to the pressure profile, such as summing the energetic and thermal pressures, have poor theoretical justification. Motivated by this omission, we generalize ideal MHD one step further: we consider multiple quasi-neutral fluids, each in thermal equilibrium and each thermally insulated from each other-no population mixing occurs. Kinetically, such a model may be able to describe the ion or electron distribution function in regions of velocity phase space with a large number of particles, at the expense of more weakly populated phase space, which may have uncharacteristically high temperature and hence pressure. As magnetic equilibrium effects increase with the increase in pressure, our work constitutes an upper limit to the effect of energetic particles. When implemented into an existing solver, FLOW (Guazzotto et al 2004 Phys. Plasmas 11, 604-14), it becomes possible to qualitatively explore the impact of resolving the energetic populations on plasma equilibrium configurations in realistic geometry. Deploying the modified code, FLOW-M, on a high performance spherical torus configuration, we find that the effect of variations of the pressure, poloidal flow and toroidal flow of the energetic populations is qualitatively similar to variations in the background plasma. We also study the robustness of the equilibrium to uncertainties in the current profile and the energetic

  18. Thermomechanical constraints and constitutive formulations in thermoelasticity

    Directory of Open Access Journals (Sweden)

    Baek S.

    2003-01-01

    Full Text Available We investigate three classes of constraints in a thermoelastic body: (i a deformation-temperature constraint, (ii a deformation-entropy constraint, and (iii a deformation-energy constraint. These constraints are obtained as limits of unconstrained thermoelastic materials and we show that constraints (ii and (iii are equivalent. By using a limiting procedure, we show that for the constraint (i, the entropy plays the role of a Lagrange multiplier while for (ii and (iii, the absolute temperature plays the role of Lagrange multiplier. We further demonstrate that the governing equations for materials subject to constraint (i are identical to those of an unconstrained material whose internal energy is an affine function of the entropy, while those for materials subject to constraints (ii and (iii are identical to those of an unstrained material whose Helmholtz potential is affine in the absolute temperature. Finally, we model the thermoelastic response of a peroxide-cured vulcanizate of natural rubber and show that imposing the constraint in which the volume change depends only on the internal energy leads to very good predictions (compared to experimental results of the stress and temperature response under isothermal and isentropic conditions.

  19. Energetic Particles: From Sun to Heliosphere - and vice versa

    Science.gov (United States)

    Wimmer-Schweingruber, R. F.; Rodriguez-Pacheco, J.; Boden, S.; Boettcher, S. I.; Cernuda, I.; Dresing, N.; Drews, C.; Droege, W.; Espinosa Lara, F.; Gomez-Herrero, R.; Heber, B.; Ho, G. C.; Klassen, A.; Kulkarni, S. R.; Mann, G. J.; Martin-Garcia, C.; Mason, G. M.; Panitzsch, L.; Prieto, M.; Sanchez, S.; Terasa, C.; Eldrum, S.

    2017-12-01

    Energetic particles in the heliosphere can be measured at their elevated energetic status after three processes: injection, acceleration, and transport. Suprathermal seed particles have speeds well above the fast magnetosonic speed in the solar wind frame of reference and can vary from location to location and within the solar activity cycle. Acceleration sites include reconnecting current sheets in solar flares or magnetspheric boundaries, shocks in the solar corona, heliosphere and a planetary obstacles, as well as planetary magnetospheres. Once accelerated, particles are transported from the acceleration site into and through the heliosphere. Thus, by investigating properties of energetic particles such as their composition, energy spectra, pitch-angle distribution, etc. one can attempt to distinguish their origin or injection and acceleration site. This in turn allows us to better understand transport effects whose underlying microphysics is also a key ingredient in the acceleration of particles. In this presentation we will present some clear examples which link energetic particles from their observing site to their source locations. These include Jupiter electrons, singly-charged He ions from CIRs, and 3He from solar flares. We will compare these examples with the measurement capabilities of the Energetic Particle Detector (EPD) on Solar Orbiter and consider implications for the key science goal of Solar Orbiter and Solar Proble Plus - How the Sun creates and controls the heliosphere.

  20. Cutting and machining energetic materials with a femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Roeske, Frank; Benterou, Jerry; Lee, Ronald; Roos, Edward [Energetic Materials Center, Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94550 (United States)

    2003-04-01

    A femtosecond (fs) laser has been used as a tool for solving many problems involving access, machining, disassembly, inspection and avoidance of undesirable hazardous waste streams in systems containing energetic materials. Because of the unique properties of the interaction of ultrashort laser pulses with matter, the femtosecond laser can be used to safely cut these energetic materials in a precise manner without creating an unacceptable waste stream. Many types of secondary high explosives (HE) and propellants have been cut with the laser for a variety of applications ranging from disassembly of aging conventional weapons (demilitarization), inspection of energetic components of aging systems to creating unique shapes of HE for purposes of initiation and detonation physics studies. Hundreds of samples of energetic materials have been cut with the fs laser without ignition and, in most cases, without changing the surface morphology of the cut surfaces. The laser has also been useful in cutting nonenergetic components in close proximity to energetic materials. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  1. Pluvials, Droughts, Energetics, and the Mongol Empire

    Science.gov (United States)

    Hessl, A. E.; Pederson, N.; Baatarbileg, N.

    2012-12-01

    The success of the Mongol Empire, the largest contiguous land empire the world has ever known, is a historical enigma. At its peak in the late 13th century, the empire influenced areas from the Hungary to southern Asia and Persia. Powered by domesticated herbivores, the Mongol Empire grew at the expense of agriculturalists in Eastern Europe, Persia, and China. What environmental factors contributed to the rise of the Mongols? What factors influenced the disintegration of the empire by 1300 CE? Until now, little high resolution environmental data have been available to address these questions. We use tree-ring records of past temperature and water to illuminate the role of energy and water in the evolution of the Mongol Empire. The study of energetics has long been applied to biological and ecological systems but has only recently become a theme in understanding modern coupled natural and human systems (CNH). Because water and energy are tightly linked in human and natural systems, studying their synergies and interactions make it possible to integrate knowledge across disciplines and human history, yielding important lessons for modern societies. We focus on the role of energy and water in the trajectory of an empire, including its rise, development, and demise. Our research is focused on the Orkhon Valley, seat of the Mongol Empire, where recent paleoenvironmental and archeological discoveries allow high resolution reconstructions of past human and environmental conditions for the first time. Our preliminary records indicate that the period 1210-1230 CE, the height of Chinggis Khan's reign is one of the longest and most consistent pluvials in our tree ring reconstruction of interannual drought. Reconstructed temperature derived from five millennium-long records from subalpine forests in Mongolia document warm temperatures beginning in the early 1200's and ending with a plunge into cold temperatures in 1260. Abrupt cooling in central Mongolia at this time is

  2. From physical dose constraints to equivalent uniform dose constraints in inverse radiotherapy planning

    International Nuclear Information System (INIS)

    Thieke, Christian; Bortfeld, Thomas; Niemierko, Andrzej; Nill, Simeon

    2003-01-01

    Optimization algorithms in inverse radiotherapy planning need information about the desired dose distribution. Usually the planner defines physical dose constraints for each structure of the treatment plan, either in form of minimum and maximum doses or as dose-volume constraints. The concept of equivalent uniform dose (EUD) was designed to describe dose distributions with a higher clinical relevance. In this paper, we present a method to consider the EUD as an optimization constraint by using the method of projections onto convex sets (POCS). In each iteration of the optimization loop, for the actual dose distribution of an organ that violates an EUD constraint a new dose distribution is calculated that satisfies the EUD constraint, leading to voxel-based physical dose constraints. The new dose distribution is found by projecting the current one onto the convex set of all dose distributions fulfilling the EUD constraint. The algorithm is easy to integrate into existing inverse planning systems, and it allows the planner to choose between physical and EUD constraints separately for each structure. A clinical case of a head and neck tumor is optimized using three different sets of constraints: physical constraints for all structures, physical constraints for the target and EUD constraints for the organs at risk, and EUD constraints for all structures. The results show that the POCS method converges stable and given EUD constraints are reached closely

  3. Metric approach to quantum constraints

    International Nuclear Information System (INIS)

    Brody, Dorje C; Hughston, Lane P; Gustavsson, Anna C T

    2009-01-01

    A framework for deriving equations of motion for constrained quantum systems is introduced and a procedure for its implementation is outlined. In special cases, the proposed new method, which takes advantage of the fact that the space of pure states in quantum mechanics has both a symplectic structure and a metric structure, reduces to a quantum analogue of the Dirac theory of constraints in classical mechanics. Explicit examples involving spin-1/2 particles are worked out in detail: in the first example, our approach coincides with a quantum version of the Dirac formalism, while the second example illustrates how a situation that cannot be treated by Dirac's approach can nevertheless be dealt with in the present scheme.

  4. Cosmographic Constraints and Cosmic Fluids

    Directory of Open Access Journals (Sweden)

    Salvatore Capozziello

    2013-12-01

    Full Text Available The problem of reproducing dark energy effects is reviewed here with particular interest devoted to cosmography. We summarize some of the most relevant cosmological models, based on the assumption that the corresponding barotropic equations of state evolve as the universe expands, giving rise to the accelerated expansion. We describe in detail the ΛCDM (Λ-Cold Dark Matter and ωCDM models, considering also some specific examples, e.g., Chevallier–Polarsky–Linder, the Chaplygin gas and the Dvali–Gabadadze–Porrati cosmological model. Finally, we consider the cosmological consequences of f(R and f(T gravities and their impact on the framework of cosmography. Keeping these considerations in mind, we point out the model-independent procedure related to cosmography, showing how to match the series of cosmological observables to the free parameters of each model. We critically discuss the role played by cosmography, as a selection criterion to check whether a particular model passes or does not present cosmological constraints. In so doing, we find out cosmological bounds by fitting the luminosity distance expansion of the redshift, z, adopting the recent Union 2.1 dataset of supernovae, combined with the baryonic acoustic oscillation and the cosmic microwave background measurements. We perform cosmographic analyses, imposing different priors on the Hubble rate present value. In addition, we compare our results with recent PLANCK limits, showing that the ΛCDM and ωCDM models seem to be the favorite with respect to other dark energy models. However, we show that cosmographic constraints on f(R and f(T cannot discriminate between extensions of General Relativity and dark energy models, leading to a disadvantageous degeneracy problem.

  5. Causality Constraints in Conformal Field Theory

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d-dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (∂φ)4 coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinni...

  6. Constraint Embedding for Multibody System Dynamics

    Science.gov (United States)

    Jain, Abhinandan

    2009-01-01

    This paper describes a constraint embedding approach for the handling of local closure constraints in multibody system dynamics. The approach uses spatial operator techniques to eliminate local-loop constraints from the system and effectively convert the system into tree-topology systems. This approach allows the direct derivation of recursive O(N) techniques for solving the system dynamics and avoiding the expensive steps that would otherwise be required for handling the closedchain dynamics. The approach is very effective for systems where the constraints are confined to small-subgraphs within the system topology. The paper provides background on the spatial operator O(N) algorithms, the extensions for handling embedded constraints, and concludes with some examples of such constraints.

  7. Use of dose constraints in public exposure

    International Nuclear Information System (INIS)

    Tageldein, Amged

    2015-02-01

    An overview of the dose constraints in public exposures has been carried out in this project. The establishment, development and the application of the concept of dose constraints are reviewed with regards to public exposure. The role of dose constraints in the process of optimization of radiation protection was described and has been showed that the concept of the dose constraints along with many other concept of radiation protection is widely applied in the optimization of exposure to radiation. From the beginning of the establishment of dose constraints as a concept in radiation protection, the International Commission of Radiological Protection (ICRP) has published a number of documents that provides detailed application related to radiation protection and safety of public exposure from ionizing radiation. This work provides an overview of such publications and related documents with special emphasis on optimization of public exposure using dose constraints. (au)

  8. Causality constraints in conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Thomas; Jain, Sachin; Kundu, Sandipan [Department of Physics, Cornell University,Ithaca, New York (United States)

    2016-05-17

    Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (∂ϕ){sup 4} coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinning operators.

  9. Chemical rocket propulsion a comprehensive survey of energetic materials

    CERN Document Server

    Shimada, Toru; Sinditskii, Valery; Calabro, Max

    2017-01-01

    Developed and expanded from the work presented at the New Energetic Materials and Propulsion Techniques for Space Exploration workshop in June 2014, this book contains new scientific results, up-to-date reviews, and inspiring perspectives in a number of areas related to the energetic aspects of chemical rocket propulsion. This collection covers the entire life of energetic materials from their conceptual formulation to practical manufacturing; it includes coverage of theoretical and experimental ballistics, performance properties, as well as laboratory-scale and full system-scale, handling, hazards, environment, ageing, and disposal. Chemical Rocket Propulsion is a unique work, where a selection of accomplished experts from the pioneering era of space propulsion and current technologists from the most advanced international laboratories discuss the future of chemical rocket propulsion for access to, and exploration of, space. It will be of interest to both postgraduate and final-year undergraduate students in...

  10. The source of multi spectral energy of solar energetic electron

    Energy Technology Data Exchange (ETDEWEB)

    Herdiwijaya, Dhani [Astronomy Division and Bosscha Observatory, Faculty Mathematics and Natural Sciences, Intitute Technology of Bandung, Ganesha 10, Bandung, Indonesia 40132 dhani@as.itb.ac.id (Indonesia)

    2015-04-16

    We study the solar energetic electron distribution obtained from ACE and GOES satellites which have different altitudes and electron spectral energy during the year 1997 to 2011. The electron spectral energies were 0.038–0.315 MeV from EPAM instrument onboard ACE satellite and >2 MeV from GOES satellite. We found that the low electron energy has no correlation with high energy. In spite of we have corrected to the altitude differences. It implied that they originated from time dependent events with different sources and physical processes at the solar atmosphere. The sources of multi spectral energetic electron were related to flare and CME phenomena. However, we also found that high energetic electron comes from coronal hole.

  11. Kinetic Simulation and Energetic Neutral Atom Imaging of the Magnetosphere

    Science.gov (United States)

    Fok, Mei-Ching H.

    2011-01-01

    Advanced simulation tools and measurement techniques have been developed to study the dynamic magnetosphere and its response to drivers in the solar wind. The Comprehensive Ring Current Model (CRCM) is a kinetic code that solves the 3D distribution in space, energy and pitch-angle information of energetic ions and electrons. Energetic Neutral Atom (ENA) imagers have been carried in past and current satellite missions. Global morphology of energetic ions were revealed by the observed ENA images. We have combined simulation and ENA analysis techniques to study the development of ring current ions during magnetic storms and substorms. We identify the timing and location of particle injection and loss. We examine the evolution of ion energy and pitch-angle distribution during different phases of a storm. In this talk we will discuss the findings from our ring current studies and how our simulation and ENA analysis tools can be applied to the upcoming TRIO-CINAMA mission.

  12. Nuclear energetics as environmentally affable source - present and and future

    International Nuclear Information System (INIS)

    Suchomel, J.

    2002-01-01

    In this paper the situation in nuclear energetics in the world in 2000 year is presented. Climatic changes initiated by burning of the fossil fuels an influence of nuclear energetics are discussed. Author informs that European Union and U.S.A. supports developing of nuclear energetics. Nuclear phobia from radiation risk of some inhabitants is compared with risks of other man activities. Possibilities of the electricity production by alternative sources are compared. Liability of the Slovak Republic for decommissioning of two reactor of the V-1 Jaslovske Bohunice NPP in 2006 and 2008, which is compared with the Program of safety improvement of these reactors are discussed. Author and Slovak Nuclear Society accept gladly the suggestion of government of the Slovak Republic that they reassess this liability. The best alternative for decommissioned Jaslovske Bohunice NPP will be the completion of the 3 rd and 4 th blocks of the Mochovce NPP

  13. Benefits and constraints in the use of solar cooker

    International Nuclear Information System (INIS)

    Ilyas, S.Z.

    2008-01-01

    Women in Pakistan have been overlooked during and after the planning anti implementation of household energy projects for decades. The immediate impact of domestic household energy projects falls on the women first. Since women are the ones who deal mostly with energy at the domestic level A sample of 100 women users of solar cookers was selected randomly. Majority of the respondents were in the age group 30-55 years (80%) and possessed solar cooker for more than one year (74%). Nutritional aspects (preserving nutritive value and food flavors) environmental aspects (keeping environment clean) and economical aspects (saving fuel and money) were perceived at most beneficial. Personal benefits (saving of time me and convenience) ranked low under benefit. Situational constraints like no cooking after evening find seasonal use of the cooker were perceived as severe constraints followed by technical constraints (device not being durable) and personal constraints (shifting of device). The paper also highlights the modification desired in the design of the solar cooker. (author)

  14. Prospects for nuclear terrorism: psychological motivations and constraints

    International Nuclear Information System (INIS)

    Post, J.M.

    1987-01-01

    In considering the implications of psychological understandings to the specific case of nuclear terrorism, it is emphasized that distorted decision making does not equate to totally irrational decision making. In certain circumstances, however, the distorted individual and group decision-making psychology could influence the group toward a high-risk option such as nuclear terrorism. For terrorists operating within their own national boundaries, a terrorist act producing mass casualties would generally be counterproductive. For groups acting across national boundaries, however, this constraint does not apply to nearly the same degree. Although the opprobrium of the West will be a constraint for some, it will not be equally so for all terrorist groups. The degree of disincentive will relate in particular to the major audience of influence. Also, there are the terrorist losers who are being shunted aside and losing the recognition they seek. Such a group could justify a terrorist spectacular in order to regain influence on the basis of a what have we got to lose rationale. In thinking about the possibility of nuclear terrorism, it is important to distinguish between the actual detonation of a device and the use of a device for extortion and influence. The constraints against the latter are significantly reduced in contrast to acts producing mass casualties. The constraints are even more reduced in the case of the plausible nuclear hoax, an option that can be expected to become more frequent

  15. On the Brazilian energetic situation 1970 - 2030

    International Nuclear Information System (INIS)

    Lima, Maria Thereza da Silva Lopes; Souza, Marina Correa de; Flores, Tarcisio Santos; Cruz, Nathalia Gracielle da Silva; Diamantino, Hugo Duarte; Barroso, Livia Alves; Rocha, Bruna Almeida; Souza, Romulo Luiz Mendes; Ramos, Pedro Camilo; Macedo, Marcio Henrique Marques

    2015-01-01

    In this paper we report, first, the Brazilian energy situation from the major oil crisis in the 1970s.Next, we discuss the period from the 1980s until 2005.Finally, it is projected scenarios from recent past (2005-2013), to the future that begins today and runs until 2030.This is a work for educational purposes, in which we provide compiled data for school research in all levels. (author)

  16. Constraint-based Word Segmentation for Chinese

    DEFF Research Database (Denmark)

    Christiansen, Henning; Bo, Li

    2014-01-01

    -hoc and statistically based methods. In this paper, we show experiments of implementing different approaches to CWSP in the framework of CHR Grammars [Christiansen, 2005] that provides a constraint solving approach to language analysis. CHR Grammars are based upon Constraint Handling Rules, CHR [Frühwirth, 1998, 2009......], which is a declarative, high-level programming language for specification and implementation of constraint solvers....

  17. Stability Constraints for Robust Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Amanda G. S. Ottoni

    2015-01-01

    Full Text Available This paper proposes an approach for the robust stabilization of systems controlled by MPC strategies. Uncertain SISO linear systems with box-bounded parametric uncertainties are considered. The proposed approach delivers some constraints on the control inputs which impose sufficient conditions for the convergence of the system output. These stability constraints can be included in the set of constraints dealt with by existing MPC design strategies, in this way leading to the “robustification” of the MPC.

  18. Some cosmological constraints on gauge theories

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1983-01-01

    In these lectures, a review is made of various constraints cosmology may place on gauge theories. Particular emphasis is placed on those constraints obtainable from Big Bang Nucleosynthesis, with only brief mention made of Big Bang Baryosynthesis. There is also a considerable discussion of astrophysical constraints on masses and lifetimes of neutrinos with specific mention of the 'missing mass (light)' problem of galactic dynamics. (orig./HSI)

  19. The energetic relationship among geoeffective solar flares, associated CMEs and SEPs

    International Nuclear Information System (INIS)

    Bhatt Nipa J; Jain Rajmal; Awasthi Arun Kumar

    2013-01-01

    Major solar eruptions (flares, coronal mass ejections (CMEs) and solar energetic particles (SEPs)) strongly influence geospace and space weather. Currently, the mechanism of their influence on space weather is not well understood and requires a detailed study of the energetic relationship among these eruptive phenomena. From this perspective, we investigate 30 flares (observed by RHESSI), followed by weak to strong geomagnetic storms. Spectral analysis of these flares suggests a new power-law relationship (r ∼ 0.79) between the hard X-ray (HXR) spectral index (before flare-peak) and linear speed of the associated CME observed by LASCO/SOHO. For 12 flares which were followed by SEP enhancement near Earth, HXR and SEP spectral analysis reveals a new scaling law (r ∼ 0.9) between the hardest X-ray flare spectrum and the hardest SEP spectrum. Furthermore, a strong correlation is obtained between the linear speed of the CME and the hardest spectrum of the corresponding SEP event (r ∼ 0.96). We propose that the potentially geoeffective flare and associated CME and SEP are well-connected through a possible feedback mechanism, and should be regarded within the framework of a solar eruption. Owing to their space weather effects, these new results will help improve our current understanding of the Sun-Earth relationship, which is a major goal of research programs in heliophysics

  20. Duty-cycle and energetics of remnant radio-loud AGN

    Science.gov (United States)

    Turner, Ross J.

    2018-05-01

    Deriving the energetics of remnant and restarted active galactic nuclei (AGNs) is much more challenging than for active sources due to the complexity in accurately determining the time since the nucleus switched-off. I resolve this problem using a new approach that combines spectral ageing and dynamical models to tightly constrain the energetics and duty-cycles of dying sources. Fitting the shape of the integrated radio spectrum yields the fraction of the source age the nucleus is active; this, in addition to the flux density, source size, axis ratio, and properties of the host environment, provides a constraint on dynamical models describing the remnant radio source. This technique is used to derive the intrinsic properties of the well-studied remnant radio source B2 0924+30. This object is found to spend 50_{-12}^{+14} Myr in the active phase and a further 28_{-5}^{+6} Myr in the quiescent phase, have a jet kinetic power of 3.6_{-1.7}^{+3.0}× 10^{37} W, and a lobe magnetic field strength below equipartition at the 8σ level. The integrated spectra of restarted and intermittent radio sources are found to yield a `steep-shallow' shape when the previous outburst occurred within 100 Myr. The duty-cycle of B2 0924+30 is hence constrained to be δ < 0.15 by fitting the shortest time to the previous comparable outburst that does not appreciably modify the remnant spectrum. The time-averaged feedback energy imparted by AGNs into their host galaxy environments can in this manner be quantified.

  1. Energetics and evasion dynamics of large predators and prey: pumas vs. hounds.

    Science.gov (United States)

    Bryce, Caleb M; Wilmers, Christopher C; Williams, Terrie M

    2017-01-01

    Quantification of fine-scale movement, performance, and energetics of hunting by large carnivores is critical for understanding the physiological underpinnings of trophic interactions. This is particularly challenging for wide-ranging terrestrial canid and felid predators, which can each affect ecosystem structure through distinct hunting modes. To compare free-ranging pursuit and escape performance from group-hunting and solitary predators in unprecedented detail, we calibrated and deployed accelerometer-GPS collars during predator-prey chase sequences using packs of hound dogs ( Canis lupus familiaris , 26 kg, n  = 4-5 per chase) pursuing simultaneously instrumented solitary pumas ( Puma concolor , 60 kg, n  = 2). We then reconstructed chase paths, speed and turning angle profiles, and energy demands for hounds and pumas to examine performance and physiological constraints associated with cursorial and cryptic hunting modes, respectively. Interaction dynamics revealed how pumas successfully utilized terrain (e.g., fleeing up steep, wooded hillsides) as well as evasive maneuvers (e.g., jumping into trees, running in figure-8 patterns) to increase their escape distance from the overall faster hounds (avg. 2.3× faster). These adaptive strategies were essential to evasion in light of the mean 1.6× higher mass-specific energetic costs of the chase for pumas compared to hounds (mean: 0.76 vs. 1.29 kJ kg -1  min -1 , respectively). On an instantaneous basis, escapes were more costly for pumas, requiring exercise at ≥90% of predicted [Formula: see text] and consuming as much energy per minute as approximately 5 min of active hunting. Our results demonstrate the marked investment of energy for evasion by a large, solitary carnivore and the advantage of dynamic maneuvers to postpone being overtaken by group-hunting canids.

  2. Energetics and evasion dynamics of large predators and prey: pumas vs. hounds

    Directory of Open Access Journals (Sweden)

    Caleb M. Bryce

    2017-08-01

    Full Text Available Quantification of fine-scale movement, performance, and energetics of hunting by large carnivores is critical for understanding the physiological underpinnings of trophic interactions. This is particularly challenging for wide-ranging terrestrial canid and felid predators, which can each affect ecosystem structure through distinct hunting modes. To compare free-ranging pursuit and escape performance from group-hunting and solitary predators in unprecedented detail, we calibrated and deployed accelerometer-GPS collars during predator-prey chase sequences using packs of hound dogs (Canis lupus familiaris, 26 kg, n = 4–5 per chase pursuing simultaneously instrumented solitary pumas (Puma concolor, 60 kg, n = 2. We then reconstructed chase paths, speed and turning angle profiles, and energy demands for hounds and pumas to examine performance and physiological constraints associated with cursorial and cryptic hunting modes, respectively. Interaction dynamics revealed how pumas successfully utilized terrain (e.g., fleeing up steep, wooded hillsides as well as evasive maneuvers (e.g., jumping into trees, running in figure-8 patterns to increase their escape distance from the overall faster hounds (avg. 2.3× faster. These adaptive strategies were essential to evasion in light of the mean 1.6× higher mass-specific energetic costs of the chase for pumas compared to hounds (mean: 0.76 vs. 1.29 kJ kg−1 min−1, respectively. On an instantaneous basis, escapes were more costly for pumas, requiring exercise at ≥90% of predicted $\\dot {\\mathrm{V }}{\\mathrm{O}}_{2\\mathrm{MAX}}$ V ̇ O 2 MAX and consuming as much energy per minute as approximately 5 min of active hunting. Our results demonstrate the marked investment of energy for evasion by a large, solitary carnivore and the advantage of dynamic maneuvers to postpone being overtaken by group-hunting canids.

  3. A Mobile Application Recommendation Framework by Exploiting Personal Preference with Constraints

    Directory of Open Access Journals (Sweden)

    Konglin Zhu

    2017-01-01

    Full Text Available Explosive mobile applications (Apps are proliferating with the popularity of mobile devices (e.g., smartphones, tablets. These Apps are developed to satisfy different function needs of users. Majority of existing App Stores have difficulty in recommending proper Apps for users. Therefore, it is of significance to recommend mobile Apps for users according to personal preference and various constraints of mobile devices (e.g., battery power. In this paper, we propose a mobile App recommendation framework by incorporating different requirements from users. We exploit modern portfolio theory (MPT to combine the popularity of mobile Apps, personal preference, and mobile device constraints for mobile App recommendation. Based on this framework, we discuss the recommendation approaches by constraints of phone power and limited mobile data plan. Extensive evaluations show that the proposed mobile App recommendation framework can well adapt to power and network data plan constraints. It satisfies the user App preference and mobile device constraints.

  4. Structure and energetics of trivalent metal halides

    International Nuclear Information System (INIS)

    Hutchinson, F.

    1999-01-01

    Metal trihalide (MX 3 ) systems represent a stern challenge in terms of constructing transferable potential models. Starting from a previously published set of potentials, 'extended' ionic models are developed which, at the outset, include only anion polarization. Deficiencies in these models, particularly for smaller (highly polarizing) cations, axe shown to be significant. For example, crystal structures different to those observed experimentally axe adopted. The potentials axe improved upon by reference to ab initio information available for alkali halides with the 'constraint' that the parameters transfer systematically in a physically transparent manner, for example, in terms of ion radii. The possible influence of anion compression ('breathing') and the relative abundance of anion-anion interactions are considered. Simulation techniques axe developed to allow for the effective simulation of any system symmetry and for the study of transitions between different crystals (constant stress). The developed models are fully tested for a large range of metal trichloride (MCl 3 ) systems. Particular attention is paid to the comparison with recent neutron and X-ray diffraction data on the liquid state. Polarization effects axe shown to be vital in reproducing strong experimental features. The excellent agreement between simulation and experiment allows for differences in experimental procedures to be highlighted. The transferability is further tested by modelling mixtures of the lanthanides with alkali halides with potentials unchanged from the pure systems. The complex evolution of the melt structure is highlighted as the concentration of MCl 3 increases. The effectiveness of the models is tested by reference to dynamical properties. Particular attention is paid to the comparison with Raman scattering data available for a wide range of systems and mixture concentrations. The simulated spectra are generated both by a simple molecular picture of the underlying

  5. Generalized Pauli constraints in small atoms

    DEFF Research Database (Denmark)

    Schilling, Christian; Altunbulak, Murat; Knecht, Stefan

    2018-01-01

    investigations have found evidence that these constraints are exactly saturated in several physically relevant systems, e.g., in a certain electronic state of the beryllium atom. It has been suggested that, in such cases, the constraints, rather than the details of the Hamiltonian, dictate the system......'s qualitative behavior. Here, we revisit this question with state-of-the-art numerical methods for small atoms. We find that the constraints are, in fact, not exactly saturated, but that they lie much closer to the surface defined by the constraints than the geometry of the problem would suggest. While...

  6. Production Team Maintenance: Systemic Constraints Impacting Implementation

    National Research Council Canada - National Science Library

    Moore, Terry

    1997-01-01

    .... Identified constraints included: integrating the PTM positioning strategy into the AMC corporate strategic planning process, manpower modeling simulator limitations, labor force authorizations and decentralization...

  7. Review of Minimal Flavor Constraints for Technicolor

    DEFF Research Database (Denmark)

    S. Fukano, Hidenori; Sannino, Francesco

    2010-01-01

    We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self-coupling and mas......We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self...

  8. Toward an automaton Constraint for Local Search

    Directory of Open Access Journals (Sweden)

    Jun He

    2009-10-01

    Full Text Available We explore the idea of using finite automata to implement new constraints for local search (this is already a successful technique in constraint-based global search. We show how it is possible to maintain incrementally the violations of a constraint and its decision variables from an automaton that describes a ground checker for that constraint. We establish the practicality of our approach idea on real-life personnel rostering problems, and show that it is competitive with the approach of [Pralong, 2007].

  9. Notes on Timed Concurrent Constraint Programming

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Valencia, Frank D.

    2004-01-01

    and program reactive systems. This note provides a comprehensive introduction to the background for and central notions from the theory of tccp. Furthermore, it surveys recent results on a particular tccp calculus, ntcc, and it provides a classification of the expressive power of various tccp languages.......A constraint is a piece of (partial) information on the values of the variables of a system. Concurrent constraint programming (ccp) is a model of concurrency in which agents (also called processes) interact by telling and asking information (constraints) to and from a shared store (a constraint...

  10. An energetically consistent vertical mixing parameterization in CCSM4

    DEFF Research Database (Denmark)

    Nielsen, Søren Borg; Jochum, Markus; Eden, Carsten

    2018-01-01

    An energetically consistent stratification-dependent vertical mixing parameterization is implemented in the Community Climate System Model 4 and forced with energy conversion from the barotropic tides to internal waves. The structures of the resulting dissipation and diffusivity fields are compared......, however, depends greatly on the details of the vertical mixing parameterizations, where the new energetically consistent parameterization results in low thermocline diffusivities and a sharper and shallower thermocline. It is also investigated if the ocean state is more sensitive to a change in forcing...

  11. Energetical and economical assessment of the waste heat problem

    International Nuclear Information System (INIS)

    Demicheli, U.; Voort, E. van der; Schneiders, A.; Zegers, P.

    1977-01-01

    Electrical power plants produce large quantities of low grade heat that remain unused. For ecological reasons this waste heat must be dispersed by means of expensive cooling devices. Waste heat could be used in acquacultural and agricultural complexes this replacing large amounts of primary energy. Energetical and economical aspects are discussed. The state of the art of these and other utilisations is outlined. A different approach to the problem is to reduce the production of waste heat. Various strategies to achieve this challenge are outlined and their actual state and possible future developments are discussed. Finally, the various most promising utilizations are examined from an energetical point of view

  12. Elements of the new energetic policy in Macedonia

    International Nuclear Information System (INIS)

    Tomovski, Aleksandar

    1995-01-01

    In the field of the energetic policy and development in both energy production and energy consumption in Macedonia, one can fill an uncertainty and development concept absence. It is clear that this is a result of the stress that Macedonian economy suffers from after the disintegration of the former Yugoslavia as a market and economic unit, as well as of the establishment of different economic and market norms. It is obvious that in the energetics, as one of the basic economic sectors,the situation has to be stabilized very soon as well as in advance analysed right decisions have to be made. (author). 1 ill

  13. MOISTURE HUMIDITY EQUILIBRIUM OF WOOD CHIPS FROM ENERGETIC CROPS

    Directory of Open Access Journals (Sweden)

    Jan Barwicki

    2008-09-01

    Full Text Available Processes occurring during storage of wood chips for energetic or furniture industry purposes were presented. As a result of carried out investigations, dependences of temperature and relative humidity changes of surrounding air were shown. Modified Henderson equation can be utilized for computer simulation of storing and drying processes concerning wood chips for energetic and furniture industry purposes. It reflects also obtained results from experiments carried out with above mentioned material. Using computer simulation program we can examine different wood chips storing conditions to avoid overheating and loss problems.

  14. Energetics of coal substitution by briquettes of agricultural residues

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, Pallav; Tripathi, Arun Kumar; Kandpal, Tara Chandra [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2006-07-15

    The suitability of using biomass briquettes to substitute coal is debatable, as a substantial amount of energy is required for briquetting of biomass. In the present work, an attempt to evaluate the energetic viability of briquetting of agricultural residues compared with the energy embodied in coal in India has been made. Briquetting of agricultural residues is not found to be an energetically viable option even for locations at a distance of about 1500km from the coal pithead (even if the briquetting unit is located very close to the place of availability of the agricultural residues). A need for transportation of agricultural residues further pushes this critical distance upwards. (author)

  15. ENERGETIC EXTREMES IN REEF FISH OCCUPYING HARSH HABITATS

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2009-01-01

    document how relatively small changes in fin morphology has afforded some coral reef fish taxa with exceptional locomotor performance and energetic efficiency, and how this key attribute may have played a key role in the evolution and ecology of several diverse Indo-Pacific reef fish families. Using......-finned counterparts. We discuss how such differences in locomotor efficiency are pivotal to the habitat-use of these fishes, and how eco-energetic models may be used to provide new insights into spatial variations in fish demography and ecology among coral reef habitat zones....

  16. First spacecraft observations of energetic particles near comet Halley

    International Nuclear Information System (INIS)

    Somogyi, A.J.; Szegoe, K.; Gringauz, K.I.

    1986-04-01

    The TUENDE-M energetic particle instrument on board of VEGA-1 detected intense fluxes of energetic (>- 40 keV) ions in the vicinity of comet Halley, at a distance of 10sup(7) km. Three regions of different ion characteristics were identified. An outer region at several 10sup(6) km contains pick up ions in the solar wind. A second region of an extent of several 10sup(5) km inside the bow shock contains the most intense fluxes, whereas the innermost region of 10sup(4) km is characterized by lower intensities and sharp spikes around closest approach (8900 km from the nucleus). (author)

  17. Observations of Energetic Particle Escape at the Magnetopause: Early Results from the MMS Energetic Ion Spectrometer (EIS)

    Science.gov (United States)

    Cohen, I. J.; Mauk, B. H.; Anderson, B. J.; Westlake, J. H.; Sibeck, David Gary; Giles, Barbara L.; Pollock, C. J.; Turner, D. L.; Fennell, J. F.; Blake, J. B.; hide

    2016-01-01

    Energetic (greater than tens of keV) magnetospheric particle escape into the magnetosheath occurs commonly, irrespective of conditions that engender reconnection and boundary-normal magnetic fields. A signature observed by the Magnetospheric Multiscale (MMS) mission, simultaneous monohemispheric streaming of multiple species (electrons, H+, Hen+), is reported here as unexpectedly common in the dayside, dusk quadrant of the magnetosheath even though that region is thought to be drift-shadowed from energetic electrons. This signature is sometimes part of a pitch angle distribution evolving from symmetric in the magnetosphere, to asymmetric approaching the magnetopause, to monohemispheric streaming in the magnetosheath. While monohemispheric streaming in the magnetosheath may be possible without a boundary-normal magnetic field, the additional pitch angle depletion, particularly of electrons, on the magnetospheric side requires one. Observations of this signature in the dayside dusk sector imply that the static picture of magnetospheric drift-shadowing is inappropriate for energetic particle dynamics in the outer magnetosphere.

  18. Resistive interchange mode destabilized by helically trapped energetic ions and its effects on energetic ions and bulk plasmas

    International Nuclear Information System (INIS)

    Du, X.D.; Toi, K.; Osakabe, M.

    2014-10-01

    A resistive interchange mode with bursting behavior and rapid frequency chirping in the range less than 10 kHz is observed for the first time in the magnetic hill region of net current-free, low beta LHD (Large Helical Device) plasmas during high power injection of perpendicular neutral beams. The mode resonates with the precession motion of helically trapped energetic beam ions, following the resonant condition. The radial mode structure is found to be very similar to that of usual pressure-driven interchange mode, of which radial displacement eigenfunction has an even function around the rational surface. This beam driven mode is excited when the beta value of helically trapped energetic ions exceed a certain threshold. The radial transport of helically trapped energetic ions induced by the mode transiently generates significant radial electric field near the plasma peripheral region. Thus generated radial electric field clearly suppresses micro turbulence and improves bulk plasma confinement, suggesting strong flow shear generation. (author)

  19. Large-Scale Reactive Atomistic Simulation of Shock-induced Initiation Processes in Energetic Materials

    Science.gov (United States)

    Thompson, Aidan

    2013-06-01

    Initiation in energetic materials is fundamentally dependent on the interaction between a host of complex chemical and mechanical processes, occurring on scales ranging from intramolecular vibrations through molecular crystal plasticity up to hydrodynamic phenomena at the mesoscale. A variety of methods (e.g. quantum electronic structure methods (QM), non-reactive classical molecular dynamics (MD), mesoscopic continuum mechanics) exist to study processes occurring on each of these scales in isolation, but cannot describe how these processes interact with each other. In contrast, the ReaxFF reactive force field, implemented in the LAMMPS parallel MD code, allows us to routinely perform multimillion-atom reactive MD simulations of shock-induced initiation in a variety of energetic materials. This is done either by explicitly driving a shock-wave through the structure (NEMD) or by imposing thermodynamic constraints on the collective dynamics of the simulation cell e.g. using the Multiscale Shock Technique (MSST). These MD simulations allow us to directly observe how energy is transferred from the shockwave into other processes, including intramolecular vibrational modes, plastic deformation of the crystal, and hydrodynamic jetting at interfaces. These processes in turn cause thermal excitation of chemical bonds leading to initial chemical reactions, and ultimately to exothermic formation of product species. Results will be presented on the application of this approach to several important energetic materials, including pentaerythritol tetranitrate (PETN) and ammonium nitrate/fuel oil (ANFO). In both cases, we validate the ReaxFF parameterizations against QM and experimental data. For PETN, we observe initiation occurring via different chemical pathways, depending on the shock direction. For PETN containing spherical voids, we observe enhanced sensitivity due to jetting, void collapse, and hotspot formation, with sensitivity increasing with void size. For ANFO, we

  20. Major Sport Venues

    Data.gov (United States)

    Department of Homeland Security — The Major Public Venues dataset is composed of facilities that host events for the National Association for Stock Car Auto Racing, Indy Racing League, Major League...

  1. Major Depression Among Adults

    Science.gov (United States)

    ... Depressive Episode Among Adolescents Data Sources Share Major Depression Definitions Major depression is one of the most ... Bethesda, MD 20892-9663 Follow Us Facebook Twitter YouTube Google Plus NIMH Newsletter NIMH RSS Feed NIMH ...

  2. Development of radiopharmaceuticals and industrial constraints

    International Nuclear Information System (INIS)

    Zimmermann, R.

    2005-01-01

    The development process of a diagnostic or therapeutic radiopharmaceutical does not really differ from the development of a classical drug. Some specific properties of these nuclear medicine tools mainly linked to the ease to follow their distribution in the human body allow to save a couple of years out of the dozen of years required to bring a drug on the market. Overall development costs can be significantly reduced for the same reason. An industrial who wants to invest in such a business bases its analysis on other criteria that need to evaluate the medical, safety and regulatory environment at the time of drug launching. Competition is obviously a major decision criteria, but in order to evaluate the market potential, other data must be available such as the analysis of the medical landscape, the reimbursement issues, the technology evolution, the investment needs or the development of other imaging modalities, among others. In fact all these parameters concentrate toward a common criteria, the profitability of the project. Nuclear medicine moved from an art and crafts era towards the industrial era and hence plunged from the twentieth to the twenty first century in the economic reality with all its constraints and consequences. (author)

  3. MARICULTURE DEVELOPMENT IN INDONESIA: Prospects and Constraints

    Directory of Open Access Journals (Sweden)

    Michael A. Rimmer

    2010-12-01

    Full Text Available Mariculture is an important component of Indonesian fisheries and aquaculture production, directly contributing an estimated US$ 320 million in 2008. Because most mariculture production is focussed on producing for export markets, mariculture production is an important source of foreign earnings for the Indonesian economy. This paper reviews the current status and prospects for continuing development of mariculture in Indonesia. Currently the major mariculture commodity in Indonesia is seaweed for carrageenan production. Seaweed production accounts for 98% of total Indonesian mariculture production and 84% of value. The other major commodity groups are marine finfish and pearl oysters. Commodities being developed for mariculture in Indonesia include abalone and spiny lobsters. Prospects for continued development of mariculture in Indonesia appear positive. Indonesia has several advantages for mariculture development, including many potential mariculture sites, a stable tropical climate, and does not suffer from cyclonic storms. The Government of Indonesia is planning to increase aquaculture production substantially over the next four years, including mariculture production. Globally, demand for seafood products is expanding due to increasing population and increased per capita consumption of fish products. Constraints to the continued development of mariculture in Indonesia include: limited seed supply, particularly of species which cannot be economically produced in hatcheries, such as spiny lobsters; need to develop more efficient production systems for some marine finfish; the need to improve environmental sustainability by improving feeds and reducing environmental impacts; and market issues relating to environmental sustainability.

  4. Constraints to commercialization of algal fuels.

    Science.gov (United States)

    Chisti, Yusuf

    2013-09-10

    Production of algal crude oil has been achieved in various pilot scale facilities, but whether algal fuels can be produced in sufficient quantity to meaningfully displace petroleum fuels, has been largely overlooked. Limitations to commercialization of algal fuels need to be understood and addressed for any future commercialization. This review identifies the major constraints to commercialization of transport fuels from microalgae. Algae derived fuels are expensive compared to petroleum derived fuels, but this could change. Unfortunately, improved economics of production are not sufficient for an environmentally sustainable production, or its large scale feasibility. A low-cost point supply of concentrated carbon dioxide colocated with the other essential resources is necessary for producing algal fuels. An insufficiency of concentrated carbon dioxide is actually a major impediment to any substantial production of algal fuels. Sustainability of production requires the development of an ability to almost fully recycle the phosphorous and nitrogen nutrients that are necessary for algae culture. Development of a nitrogen biofixation ability to support production of algal fuels ought to be an important long term objective. At sufficiently large scale, a limited supply of freshwater will pose a significant limitation to production even if marine algae are used. Processes for recovering energy from the algal biomass left after the extraction of oil, are required for achieving a net positive energy balance in the algal fuel oil. The near term outlook for widespread use of algal fuels appears bleak, but fuels for niche applications such as in aviation may be likely in the medium term. Genetic and metabolic engineering of microalgae to boost production of fuel oil and ease its recovery, are essential for commercialization of algal fuels. Algae will need to be genetically modified for improved photosynthetic efficiency in the long term. Copyright © 2013 Elsevier B.V. All

  5. Optimal Stopping with Information Constraint

    International Nuclear Information System (INIS)

    Lempa, Jukka

    2012-01-01

    We study the optimal stopping problem proposed by Dupuis and Wang (Adv. Appl. Probab. 34:141–157, 2002). In this maximization problem of the expected present value of the exercise payoff, the underlying dynamics follow a linear diffusion. The decision maker is not allowed to stop at any time she chooses but rather on the jump times of an independent Poisson process. Dupuis and Wang (Adv. Appl. Probab. 34:141–157, 2002), solve this problem in the case where the underlying is a geometric Brownian motion and the payoff function is of American call option type. In the current study, we propose a mild set of conditions (covering the setup of Dupuis and Wang in Adv. Appl. Probab. 34:141–157, 2002) on both the underlying and the payoff and build and use a Markovian apparatus based on the Bellman principle of optimality to solve the problem under these conditions. We also discuss the interpretation of this model as optimal timing of an irreversible investment decision under an exogenous information constraint.

  6. Health constraints of Cart Horses in the Dry warm, Sub-moist tepid ...

    African Journals Online (AJOL)

    The objectives of this study were to identify the major health and welfare constraints of cart horses in the dry warm, sub-moist tepid and moist cool climatic zones of Ethiopia. The study was cross sectional and a total of 837 horses were examined. Five major health problems and welfare issues were identified. Lymphangitis ...

  7. Spatial structure of the plasma sheet boundary layer at distances greater than 180 RE as derived from energetic particle measurements on GEOTAIL

    Directory of Open Access Journals (Sweden)

    T. Yamamoto

    Full Text Available We have analyzed the onsets of energetic particle bursts detected by the ICS and STICS sensors of the EPIC instrument on board the GEOTAIL spacecraft in the deep magnetotail (i.e., at distances greater than 180 RE. Such bursts are commonly observed at the plasma-sheet boundary layer (PSBL and are highly collimated along the magnetic field. The bursts display a normal velocity dispersion (i.e., the higher-speed particles are seen first, while the progressively lower speed particles are seen later when observed upon entry of the spacecraft from the magnetotail lobes into the plasma sheet. Upon exit from the plasma sheet a reverse velocity dispersion is observed (i.e., lower-speed particles disappear first and higher-speed particles disappear last. Three major findings are as follows. First, the tailward-jetting energetic particle populations of the distant-tail plasma sheet display an energy layering: the energetic electrons stream along open PSBL field lines with peak fluxes at the lobes. Energetic protons occupy the next layer, and as the spacecraft moves towards the neutral sheet progressively decreasing energies are encountered systematically. These plasma-sheet layers display spatial symmetry, with the plane of symmetry the neutral sheet. Second, if we consider the same energy level of energetic particles, then the H+ layer is confined within that of the energetic electron, the He++ layer is confined within that of the proton, and the oxygen layer is confined within the alpha particle layer. Third, whenever the energetic electrons show higher fluxes inside the plasma sheet as compared to those at the boundary layer, their angular distribution is isotropic irrespective of the Earthward or tailward character of fluxes, suggesting a closed field line topology.

  8. Spatial structure of the plasma sheet boundary layer at distances greater than 180 RE as derived from energetic particle measurements on GEOTAIL

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    1997-10-01

    Full Text Available We have analyzed the onsets of energetic particle bursts detected by the ICS and STICS sensors of the EPIC instrument on board the GEOTAIL spacecraft in the deep magnetotail (i.e., at distances greater than 180 RE. Such bursts are commonly observed at the plasma-sheet boundary layer (PSBL and are highly collimated along the magnetic field. The bursts display a normal velocity dispersion (i.e., the higher-speed particles are seen first, while the progressively lower speed particles are seen later when observed upon entry of the spacecraft from the magnetotail lobes into the plasma sheet. Upon exit from the plasma sheet a reverse velocity dispersion is observed (i.e., lower-speed particles disappear first and higher-speed particles disappear last. Three major findings are as follows. First, the tailward-jetting energetic particle populations of the distant-tail plasma sheet display an energy layering: the energetic electrons stream along open PSBL field lines with peak fluxes at the lobes. Energetic protons occupy the next layer, and as the spacecraft moves towards the neutral sheet progressively decreasing energies are encountered systematically. These plasma-sheet layers display spatial symmetry, with the plane of symmetry the neutral sheet. Second, if we consider the same energy level of energetic particles, then the H+ layer is confined within that of the energetic electron, the He++ layer is confined within that of the proton, and the oxygen layer is confined within the alpha particle layer. Third, whenever the energetic electrons show higher fluxes inside the plasma sheet as compared to those at the boundary layer, their angular distribution is isotropic irrespective of the Earthward or tailward character of fluxes, suggesting a closed field line topology.

  9. Foreshock waves as observed in energetic ion flux

    Czech Academy of Sciences Publication Activity Database

    Petrukovich, A. A.; Chugunova, O. M.; Inamori, T.; Kudela, Karel; Štetiarová, J.

    2017-01-01

    Roč. 122, č. 5 (2017), s. 4895-4904 ISSN 2169-9380 R&D Projects: GA MŠk EF15_003/0000481 Institutional support: RVO:61389005 Keywords : foreshock * waves * bow shock * energetic particles Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 2.733, year: 2016

  10. Pulsations of Energetic Electron Pulsations In Association With Substorm Onset

    Science.gov (United States)

    Åsnes, A.; Stadsnes, J.; Bjordal, J.; Østgaard, N.; Haaland, S.; Rosenberg, T. J.; Detrick, D. L.

    The Polar Ionospheric X-ray Imaging Experiment (PIXIE) is giving detailed images of the energetic electron precipitation when the POLAR satellite is near perigee over the Antarctica. In this area the PIXIE images have a spatial resolution of the order of 100 km, and a temporal resolution of 10 s can be obtained. In this paper we present the results of a study focusing on the onset and expansion of a substorm occuring on July 24, 1998. In this event we observe strong modulations of the energetic electron precipitation with period around 1 minute following substorm onset. The pulsations were restricted to a narrow magnetic local time sector in the pre-midnight region, about 0.5 hours wide, and showed movement towards higher latitudes and earlier lo- cal times. The event will be discussed in context of measurements from ground sta- tions and satellites in geosynchronous orbit. Precipitation of energetic electrons will be compared with VLF/ELF ground measurements. Features in the energetic elec- tron precipitation will be mapped to the magnetospheric equatorial plane by field line tracing.

  11. Cholesterol-induced protein sorting: an analysis of energetic feasibility

    DEFF Research Database (Denmark)

    Lundbaek, J A; Andersen, O S; Werge, T

    2003-01-01

    thickness. In this model, Golgi proteins with short TMDs would be excluded from cholesterol-enriched domains (lipid rafts) that are incorporated into transport vesicles destined for the plasma membrane. Although attractive, this model remains unproven. We therefore evaluated the energetic feasibility...

  12. Creating high energy density in nuclei with energetic antiparticles

    International Nuclear Information System (INIS)

    Gibbs, W.R.

    1986-01-01

    The possibility of creating a phase change in nuclear matter using energetic antiprotons and antideuterons is examined. It is found that energy densities of the order of 2 GeV/c can be obtained for periods of approx.2 fm/c with the proper experimental selection of events. 10 refs., 7 figs

  13. The Prudent Parent : Energetic Adjustments in Avian Breeding

    NARCIS (Netherlands)

    Drent, R.H.; Daan, S.

    1980-01-01

    1. Energetics of reproduction in birds is reviewed with the question in mind how the parent adjusts its effort in relation to prevailing environmental conditions in order to maximize the output of young in its lifetime. Emphasis is on proximate controls, rather than ultimate factors measurable in

  14. Study on the Energetic Parameters in a Photothermic Sensor with ...

    African Journals Online (AJOL)

    Study on the Energetic Parameters in a Photothermic Sensor with Black Polymeric Film. ... The evolution of incidental solar illumination on the horizontal plan of sensor and the temperature distribution are studied. Results showed that the ... Keywords: film, solar energy, greenhouse effect, design, radiation, illumination.

  15. Investigation of energetic particle induced geodesic acoustic mode

    Science.gov (United States)

    Schneller, Mirjam; Fu, Guoyong; Chavdarovski, Ilija; Wang, Weixing; Lauber, Philipp; Lu, Zhixin

    2017-10-01

    Energetic particles are ubiquitous in present and future tokamaks due to heating systems and fusion reactions. Anisotropy in the distribution function of the energetic particle population is able to excite oscillations from the continuous spectrum of geodesic acoustic modes (GAMs), which cannot be driven by plasma pressure gradients due to their toroidally and nearly poloidally symmetric structures. These oscillations are known as energetic particle-induced geodesic acoustic modes (EGAMs) [G.Y. Fu'08] and have been observed in recent experiments [R. Nazikian'08]. EGAMs are particularly attractive in the framework of turbulence regulation, since they lead to an oscillatory radial electric shear which can potentially saturate the turbulence. For the presented work, the nonlinear gyrokinetic, electrostatic, particle-in-cell code GTS [W.X. Wang'06] has been extended to include an energetic particle population following either bump-on-tail Maxwellian or slowing-down [Stix'76] distribution function. With this new tool, we study growth rate, frequency and mode structure of the EGAM in an ASDEX Upgrade-like scenario. A detailed understanding of EGAM excitation reveals essential for future studies of EGAM interaction with micro-turbulence. Funded by the Max Planck Princeton Research Center. Computational resources of MPCDF and NERSC are greatefully acknowledged.

  16. Theoretical Studies of Small-System Thermodynamics in Energetic Materials

    Science.gov (United States)

    2016-01-06

    SECURITY CLASSIFICATION OF: This is a comprehensive theoretical research program to investigate the fundamental principles of small-system thermodynamics ...a.k.a. nanothermodynamics). The proposed work is motivated by our desire to better understand the fundamental dynamics and thermodynamics of...for Public Release; Distribution Unlimited Final Report: Theoretical Studies of Small-System Thermodynamics in Energetic Materials The views, opinions

  17. Structural, energetic and electronic properties of intercalated boron ...

    Indian Academy of Sciences (India)

    2National Institute for R&D of Isotopic and Molecular Technologies, Cluj-Napoca 400 293, Romania. MS received 8 November 2010; revised 28 March 2012. Abstract. The effects of chirality and the intercalation of transitional metal atoms inside single walled BN nano- tubes on structural, energetic and electronic properties ...

  18. Electron energetics in the expanding solar wind via Helios observations

    Czech Academy of Sciences Publication Activity Database

    Štverák, Štěpán; Trávníček, Pavel M.; Hellinger, Petr

    2015-01-01

    Roč. 120, č. 10 (2015), s. 8177-8193 ISSN 2169-9380 R&D Projects: GA ČR GAP209/12/2041; GA ČR GA15-17490S Institutional support: RVO:67985815 Keywords : solar wind * electrons energetics * transport processes Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.318, year: 2015

  19. Complete cost insertion in the evaluation within the energetic planning

    International Nuclear Information System (INIS)

    Reis, Lineu Belico dos; Udaeta, Miguel Edgar Morales; Carvalho, Claudio Elias

    1999-01-01

    The article discusses the environment, social and economic costs in the energetic planning. In this context, it is introduced the Complete Costs Evaluation boarding and it is presented a case study based on a kind of fertilizer produced in Sao Paulo, a Brazilian state. Quantitative and qualitative evaluation were also presented and the results were discussed

  20. National energetic balance. Statistical compilation 1985-1991

    International Nuclear Information System (INIS)

    1992-01-01

    Compiles the statistical information supplied by governmental and private institutions which integrate the national energetic sector in Paraguay. The first part, refers to the whole effort of energy; second, energy transformation centres and the last part presents the energy flows, consolidated balances and other economic-power indicators

  1. Energetic Requirements for Growth and Maintenance of the Cape ...

    African Journals Online (AJOL)

    Energetic requirements for growth and maintenance of the Cape gannet (Sula capensis) were studied by hand-rearing captive chicks and keeping juveniles in captivity at constant mass. Daily gain in mass was linear until 60 days of age; after 82 days the chicks lost mass prior to attaining fledging age (97 days).

  2. Degradation of Energetic Compounds using Zero-Valent Iron (ZVI)

    Science.gov (United States)

    2012-03-01

    aquatic plants, thermophilic biological regeneration of GAC, Fenton’s oxidation, electrolytic oxidation and anaerobic fluidized bed reactor. However...attack by oxygenase enzymes (Bruhn et al., 1987). Therefore, these energetic compounds are often removed from wastewater by costly physical-chemical... enzymes (Bruhn et al., 1987; Knackmuss, 1996). Chemical oxidation methods (e.g., advanced oxidation processes) are also ineffective because of the

  3. The effect of stability treatmetn on the surface energetics of ...

    African Journals Online (AJOL)

    The effect of stability treatmetn on the surface energetics of inhalation grade lactose. IP Okoye. Abstract. No Abstract. Global Journal of Pure and Applied Physics Vol. 14 (1) 2008 pp.85-88. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  4. Biomass consumption for energetic purpose in the household sector

    International Nuclear Information System (INIS)

    Gerardi, V.; Perrella, G.

    1999-01-01

    The report shows the results of a sampling survey performed to determine the biomass consumption for energetic purpose in the household sector. In particular, the methodology and sampling plan adopted to get a result with an error, at national level, of ±2.4%. are illustrated. Data are described and discusses [it

  5. Chemical physics of decomposition of energetic materials. Problems and prospects

    International Nuclear Information System (INIS)

    Smirnov, Lev P

    2004-01-01

    The review is concerned with analysis of the results obtained in the kinetic and mechanistic studies on decomposition of energetic materials (explosives, powders and solid propellants). It is shown that the state-of-the art in this field is inadequate to the potential of modern chemical kinetics and chemical physics. Unsolved problems are outlined and ways of their solution are proposed.

  6. Proton thermal energetics in the solar wind: Helios reloaded

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, P.; Štverák, Štěpán; Matteini, L.; Velli, M.

    2013-01-01

    Roč. 118, č. 4 (2013), s. 1351-1365 ISSN 2169-9380 Institutional support: RVO:68378289 Keywords : solar wind * proton energetics * turbulent heating Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/jgra.50107/abstract

  7. Ultrafast Vibrational Spectrometer for Engineered Nanometric Energetic Materials

    National Research Council Canada - National Science Library

    Dlott, Dana

    2002-01-01

    .... The needed equipment was ordered and installed, and assembled into a working SFG set up that has been tested on a model system consisting of a self assembled monolayer of alkane on gold. The next step will be to finish integrating the carbon dioxide laser system and to begin looking at aluminum based energetic materials.

  8. New fluidized bed reactor for coating of energetic materials

    NARCIS (Netherlands)

    Abadjieva, E.; Huijser, T.; Creyghton, Y.L.M.; Heijden, A.E.D.M. van der

    2009-01-01

    The process of altering and changing the properties of the energetic materials by coating has been studied extensively by several scientific groups. According to the desired application different coating techniques have been developed and applied to achieve satisfactory results. Among the already

  9. Energetic lanthanide complexes: coordination chemistry and explosives applications

    International Nuclear Information System (INIS)

    Manner, V W; Barker, B J; Sanders, V E; Laintz, K E; Scott, B L; Preston, D N; Sandstrom, M; Reardon, B L

    2014-01-01

    Metals are generally added to organic molecular explosives in a heterogeneous composite to improve overall heat and energy release. In order to avoid creating a mixture that can vary in homogeneity, energetic organic molecules can be directly bonded to high molecular weight metals, forming a single metal complex with Angstrom-scale separation between the metal and the explosive. To probe the relationship between the structural properties of metal complexes and explosive performance, a new series of energetic lanthanide complexes has been prepared using energetic ligands such as NTO (5-nitro-2,4-dihydro-1,2,4-triazole-3-one). These are the first examples of lanthanide NTO complexes where no water is coordinated to the metal, demonstrating novel control of the coordination environment. The complexes have been characterized by X-ray crystallography, NMR and IR spectroscopies, photoluminescence, and sensitivity testing. The structural and energetic properties are discussed in the context of enhanced blast effects and detection. Cheetah calculations have been performed to fine-tune physical properties, creating a systematic method for producing explosives with 'tailor made' characteristics. These new complexes will be benchmarks for further study in the field of metalized high explosives.

  10. Energetic transitions by the French engineers and scientists

    International Nuclear Information System (INIS)

    Wiltz, Bruno

    2014-01-01

    The energetic transition concerns the French scientists and engineers very much (1 million) because they are a lot involved in research, innovation, development, exploitation and generally in industry, in a field of fast-changing environment and of vital national interest, which, despite the absence of dominant classical resources, has remarkable potentials. (O.M.)

  11. Local protoplanetary disk ionisation by T Tauri star energetic particles

    Science.gov (United States)

    Fraschetti, F.; Drake, J.; Cohen, O.; Garraffo, C.

    2017-10-01

    The evolution of protoplanetary disks is believed to be driven largely by viscosity. The ionization of the disk that gives rise to viscosity is caused by X-rays from the central star or by energetic particles released by shock waves travelling into the circumstellar medium. We have performed test-particle numerical simulations of GeV-scale protons traversing a realistic magnetised wind of a young solar mass star with a superposed small-scale turbulence. The large-scale field is generated via an MHD model of a T Tauri wind, whereas the isotropic (Kolmogorov power spectrum) turbulent component is synthesised along the particles' trajectories. We have combined Chandra observations of T Tauri flares with solar flare scaling for describing the energetic particle spectrum. In contrast with previous models, we find that the disk ionization is dominated by X-rays except within narrow regions where the energetic particles are channelled onto the disk by the strongly tangled and turbulent field lines; the radial thickness of such regions broadens with the distance from the central star (5 stellar radii or more). In those regions, the disk ionization due to energetic particles can locally dominate the stellar X-rays, arguably, out to large distances (10, 100 AU) from the star.

  12. Regional and municipal energetic statistics - Sao Paulo State - 1987

    International Nuclear Information System (INIS)

    1989-01-01

    The main Brazilian energetic information for subsidizing planning studies in regional and municipal level are presented, including data for the year 1987 that represent the sale of the main petroleum by-product and hydrated alcohol and the electricity consumption. (C.G.C.)

  13. Determining the energetics of vicinal perovskite oxide surfaces

    NARCIS (Netherlands)

    Wessels, W.A.; Bollmann, Tjeerd Rogier Johannes; Koster, Gertjan; Zandvliet, Henricus J.W.; Rijnders, Augustinus J.H.M.

    2017-01-01

    The energetics of vicinal SrTiO3(001) and DyScO3(110), prototypical perovskite vicinal surfaces, has been studied using topographic atomic force microscopy imaging. The kink formation and strain relaxation energies are extracted from a statistical analysis of the step meandering. Both perovskite

  14. Linear determining equations for differential constraints

    International Nuclear Information System (INIS)

    Kaptsov, O V

    1998-01-01

    A construction of differential constraints compatible with partial differential equations is considered. Certain linear determining equations with parameters are used to find such differential constraints. They generalize the classical determining equations used in the search for admissible Lie operators. As applications of this approach equations of an ideal incompressible fluid and non-linear heat equations are discussed

  15. Optimal Portfolio Choice with Wash Sale Constraints

    DEFF Research Database (Denmark)

    Astrup Jensen, Bjarne; Marekwica, Marcel

    2011-01-01

    We analytically solve the portfolio choice problem in the presence of wash sale constraints in a two-period model with one risky asset. Our results show that wash sale constraints can heavily affect portfolio choice of investors with unrealized losses. The trading behavior of such investors...

  16. Freedom and constraint analysis and optimization

    NARCIS (Netherlands)

    Brouwer, Dannis Michel; Boer, Steven; Aarts, Ronald G.K.M.; Meijaard, Jacob Philippus; Jonker, Jan B.

    2011-01-01

    Many mathematical and intuitive methods for constraint analysis of mechanisms have been proposed. In this article we compare three methods. Method one is based on Grüblers equation. Method two uses an intuitive analysis method based on opening kinematic loops and evaluating the constraints at the

  17. Network Design with Node Degree Balance Constraints

    DEFF Research Database (Denmark)

    Pedersen, Michael Berliner; Crainic, Teodor Gabriel

    This presentation discusses an extension to the network design model where there in addition to the flow conservation constraints also are constraints that require design conservation. This means that the number of arcs entering and leaving a node must be the same. As will be shown the model has ...

  18. Constraint solving for direct manipulation of features

    NARCIS (Netherlands)

    Lourenco, D.; Oliveira, P.; Noort, A.; Bidarra, R.

    2006-01-01

    In current commercial feature modeling systems, support for direct manipulation of features is not commonly available. This is partly due to the strong reliance of such systems on constraints, but also to the lack of speed of current constraint solvers. In this paper, an approach to the optimization

  19. A Temporal Concurrent Constraint Programming Calculus

    DEFF Research Database (Denmark)

    Palamidessi, Catuscia; Valencia Posso, Frank Darwin

    2001-01-01

    The tcc model is a formalism for reactive concurrent constraint programming. In this paper we propose a model of temporal concurrent constraint programming which adds to tcc the capability of modeling asynchronous and non-deterministic timed behavior. We call this tcc extension the ntcc calculus...

  20. Modifier constraints in alkali ultraphosphate glasses

    DEFF Research Database (Denmark)

    Rodrigues, B.P.; Mauro, J.C.; Yue, Yuanzheng

    2014-01-01

    In applying the recently introduced concept of cationic constraint strength [J. Chem. Phys. 140, 214501 (2014)] to bond constraint theory (BCT) of binary phosphate glasses in the ultraphosphate region of xR2O-(1-x)P2O5 (with x ≤ 0.5 and R = {Li, Na, Cs}), we demonstrate that a fundamental limitat...

  1. Specifying Dynamic and Deontic Integrity Constraints

    NARCIS (Netherlands)

    Wieringa, Roelf J.; Meyer, John-Jules; Weigand, Hans

    In the dominant view of knowledge bases (KB's), a KB is a set of facts (atomic sentences) and integrity constraints (IC's). An IC is then a sentence which must at least be consistent with the other sentences in the KB, This view obliterates the distinction between, for example, the constraint that

  2. Physics of energetic particle-driven instabilities in the START spherical tokamak

    International Nuclear Information System (INIS)

    McClements, K.G.; Gryaznevich, M.P.; Akers, R.J.; Appel, L.C.; Counsell, G.F.; Roach, C.M.; Sharapov, S.E.; Majeski, R.

    1999-01-01

    The recent use of neutral beam injection (NBI) in the UKAEA small tight aspect ratio tokamak (START) has provided the first opportunity to study experimentally the physics of energetic ions in spherical tokamak (ST) plasmas. In such devices the ratio of major radius to minor radius R 0 /a is of order unity. Several distinct classes of NBI-driven instability have been observed at frequencies up to 1 MHz during START discharges. These observations are described, and possible interpretations are given. Equilibrium data, corresponding to times of beam-driven wave activity, are used to compute continuous shear Alfven spectra: toroidicity and high plasma beta give rise to wide spectral gaps, extending up to frequencies of several times the Alfven gap frequency. In each of these gaps Alfvenic instabilities could, in principle, be driven by energetic ions. Chirping modes observed at high beta in this frequency range have bandwidths comparable to or greater than the gap widths. Instability drive in START is provided by beam ion pressure gradients (as in conventional tokamaks), and also by positive gradients in beam ion velocity distributions, which arise from velocity-dependent charge exchange losses. It is shown that fishbone-like bursts observed at a few tens of kHz can be attributed to internal kink mode excitation by passing beam ions, while narrow-band emission at several hundred kHz may be due to excitation of fast Alfven (magnetosonic) eigenmodes. In the light of our understanding of energetic particle-driven instabilities in START, the possible existence of such instabilities in larger STs is discussed. (author)

  3. Estimating heats of detonation and detonation velocities of aromatic energetic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Keshavarz, Mohammad Hossein [Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr, P. O. Box 83145/115 (Iran)

    2008-12-15

    A new method is introduced to predict reliable estimation of heats of detonation of aromatic energetic compounds. At first step, this procedure assumes that the heat of detonation of an explosive compound of composition C{sub a}H{sub b}N{sub c}O{sub d} can be approximated as the difference between the heat of formation of all H{sub 2}O-CO{sub 2} arbitrary (H{sub 2}O, CO{sub 2}, N{sub 2}) detonation products and that of the explosive, divided by the formula weight of the explosive. Overestimated results based on (H{sub 2}O-CO{sub 2} arbitrary) can be corrected in the next step. Predicted heats of detonation of pure energetic compounds with the product H{sub 2}O in the liquid state for 31 aromatic energetic compounds have a root mean square (rms) deviation of 2.08 and 0.34 kJ g{sup -1} from experiment for (H{sub 2}O-CO{sub 2} arbitrary) and new method, respectively. The new method also gives good results as compared to the second sets of decomposition products, which consider H{sub 2},N{sub 2}, H{sub 2}O,CO, and CO{sub 2} as major gaseous products. It is shown here how the predicted heats of detonation by the new method can be used to obtain reliable estimation of detonation velocity over a wide range of loading densities. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  4. Effects of sublethal exposure to lead on levels of energetic compounds in Procambarus clarkii (Girard, 1852)

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.; Torreblanca, A.; Del Ramo, J.; Diaz-Mayans, J. (Univ. of Valencia (Spain))

    1994-05-01

    Lead is neither essential nor beneficial to living organisms; all existing data show that its metabolic effects are adverse. Lead is toxic to all phyla of aquatic biota. Most of the lead discharged into surface water is rapidly incorporated into suspended and bottom sediments. The American red crayfish, Procambarus clarkii, lives in a wide range of environmental conditions that include highly polluted waters. Lead present in take sediments can be available to aquatic animals such as P. clarkii because it is a detritivor and burrow into the sediment. In fact, we found remarkable levels of lead in tissues of P. clarkii caught in Albufera Lake and kept 15 days in clean water (e. g. 223 [mu]g/g dry weight in gills). Furthermore, P. clarkii has a high capacity for lead accumulation from water, and gills were the most important tissue of lead accumulation. Among effects that contaminants have on the physiology of the organisms, energetic state variables are important, since they will alter both survival and reproduction. Hepatopancreas is a major site for the energetic reserve in crayfish and is a site of lead accumulation, although metal concentration in this organ is not as high as gills. The purpose of this study was to examine changes in energy reserves in hepatopancreas and gills of the crayfish P. clarkii, in response to sublethal exposure to lead. Gills are directly exposed to contaminants in the environment, and they are the first organ showing alterations by the action of the contaminants. Hepatopancreas was also chosen due to both, its relevance in the energetic metabolism and its role in heavy metal detoxification mechanisms.

  5. Dual scattering foil design for poly-energetic electron beams

    International Nuclear Information System (INIS)

    Kainz, K K; Antolak, J A; Almond, P R; Bloch, C D; Hogstrom, K R

    2005-01-01

    The laser wakefield acceleration (LWFA) mechanism can accelerate electrons to energies within the 6-20 MeV range desired for therapy application. However, the energy spectrum of LWFA-generated electrons is broad, on the order of tens of MeV. Using existing laser technology, the therapeutic beam might require a significant energy spread to achieve clinically acceptable dose rates. The purpose of this work was to test the assumption that a scattering foil system designed for a mono-energetic beam would be suitable for a poly-energetic beam with a significant energy spread. Dual scattering foil systems were designed for mono-energetic beams using an existing analytical formalism based on Gaussian multiple-Coulomb scattering theory. The design criterion was to create a flat beam that would be suitable for fields up to 25 x 25 cm 2 at 100 cm from the primary scattering foil. Radial planar fluence profiles for poly-energetic beams with energy spreads ranging from 0.5 MeV to 6.5 MeV were calculated using two methods: (a) analytically by summing beam profiles for a range of mono-energetic beams through the scattering foil system, and (b) by Monte Carlo using the EGS/BEAM code. The analytic calculations facilitated fine adjustments to the foil design, and the Monte Carlo calculations enabled us to verify the results of the analytic calculation and to determine the phase-space characteristics of the broadened beam. Results showed that the flatness of the scattered beam is fairly insensitive to the width of the input energy spectrum. Also, results showed that dose calculated by the analytical and Monte Carlo methods agreed very well in the central portion of the beam. Outside the useable field area, the differences between the analytical and Monte Carlo results were small but significant, possibly due to the small angle approximation. However, these did not affect the conclusion that a scattering foil system designed for a mono-energetic beam will be suitable for a poly-energetic

  6. Energetics, Biomechanics, and Performance in Masters' Swimmers: A Systematic Review.

    Science.gov (United States)

    Ferreira, Maria I; Barbosa, Tiago M; Costa, Mário J; Neiva, Henrique P; Marinho, Daniel A

    2016-07-01

    Ferreira, MI, Barbosa, TM, Costa, MJ, Neiva, HP, and Marinho, DA. Energetics, biomechanics, and performance in masters' swimmers: a systematic review. J Strength Cond Res 30(7): 2069-2081, 2016-This study aimed to summarize evidence on masters' swimmers energetics, biomechanics, and performance gathered in selected studies. An expanded search was conducted on 6 databases, conference proceedings, and department files. Fifteen studies were selected for further analysis. A qualitative evaluation of the studies based on the Quality Index (QI) was performed by 2 independent reviewers. The studies were thereafter classified into 3 domains according to the reported data: performance (10 studies), energetics (4 studies), and biomechanics (6 studies). The selected 15 articles included in this review presented low QI scores (mean score, 10.47 points). The biomechanics domain obtained higher QI (11.5 points), followed by energetics and performance (10.6 and 9.9 points, respectively). Stroke frequency (SF) and stroke length (SL) were both influenced by aging, although SF is more affected than SL. Propelling efficiency (ηp) decreased with age. Swimming performance declined with age. The performance declines with age having male swimmers deliver better performances than female counterparts, although this difference tends to be narrow in long-distance events. One single longitudinal study is found in the literature reporting the changes in performance over time. The remaining studies are cross-sectional designs focusing on the energetics and biomechanics. Overall, biomechanics parameters, such as SF, SL, and ηp, tend to decrease with age. This review shows the lack of a solid body of knowledge (reflected in the amount and quality of the articles published) on the changes in biomechanics, energetics, and performance of master swimmers over time. The training programs for this age-group should aim to preserve the energetics as much as possible and, concurrently, improve the

  7. Energetic aspects of skeletal muscle contraction: implications of fiber types.

    Science.gov (United States)

    Rall, J A

    1985-01-01

    In this chapter fundamental energetic properties of skeletal muscles as elucidated from isolated muscle preparations are described. Implications of these intrinsic properties for the energetic characterization of different fiber types and for the understanding of locomotion have been considered. Emphasis was placed on the myriad of physical and chemical techniques that can be employed to understand muscle energetics and on the interrelationship of results from different techniques. The anaerobic initial processes which liberate energy during contraction and relaxation are discussed in detail. The high-energy phosphate (approximately P) utilized during contraction and relaxation can be distributed between actomyosin ATPase or cross-bridge cycling (70%) and the Ca2+ ATPase of the sacroplasmic reticulum (30%). Muscle shortening increases the rate of approximately P hydrolysis, and stretching a muscle during contraction suppresses the rate of approximately P hydrolysis. The economy of an isometric contraction is defined as the ratio of isometric mechanical response to energetic cost and is shown to be a fundamental intrinsic parameter describing muscle energetics. Economy of contraction varies across the animal kingdom by over three orders of magnitude and is different in different mammalian fiber types. In mammalian skeletal muscles differences in economy of contraction can be attributed mainly to differences in the specific actomyosin and Ca2+ ATPase of muscles. Furthermore, there is an inverse relationship between economy of contraction and maximum velocity of muscle shortening (Vmax) and maximum power output. This is a fundamental relationship. Muscles cannot be economical at developing and maintaining force and also exhibit rapid shortening. Interestingly, there appears to be a subtle system of unknown nature that modulates the Vmax and economy of contraction. Efficiency of a work-producing contraction is defined and contrasted to the economy of contraction

  8. Transport, Acceleration and Spatial Access of Solar Energetic Particles

    Science.gov (United States)

    Borovikov, D.; Sokolov, I.; Effenberger, F.; Jin, M.; Gombosi, T. I.

    2017-12-01

    Solar Energetic Particles (SEPs) are a major branch of space weather. Often driven by Coronal Mass Ejections (CMEs), SEPs have a very high destructive potential, which includes but is not limited to disrupting communication systems on Earth, inflicting harmful and potentially fatal radiation doses to crew members onboard spacecraft and, in extreme cases, to people aboard high altitude flights. However, currently the research community lacks efficient tools to predict such hazardous SEP events. Such a tool would serve as the first step towards improving humanity's preparedness for SEP events and ultimately its ability to mitigate their effects. The main goal of the presented research is to develop a computational tool that provides the said capabilities and meets the community's demand. Our model has the forecasting capability and can be the basis for operational system that will provide live information on the current potential threats posed by SEPs based on observations of the Sun. The tool comprises several numerical models, which are designed to simulate different physical aspects of SEPs. The background conditions in the interplanetary medium, in particular, the Coronal Mass Ejection driving the particle acceleration, play a defining role and are simulated with the state-of-the-art MHD solver, Block-Adaptive-Tree Solar-wind Roe-type Upwind Scheme (BATS-R-US). The newly developed particle code, Multiple-Field-Line-Advection Model for Particle Acceleration (M-FLAMPA), simulates the actual transport and acceleration of SEPs and is coupled to the MHD code. The special property of SEPs, the tendency to follow magnetic lines of force, is fully taken advantage of in the computational model, which substitutes a complicated 3-D model with a multitude of 1-D models. This approach significantly simplifies computations and improves the time performance of the overall model. Also, it plays an important role of mapping the affected region by connecting it with the origin of

  9. Enhanced Resolution Maps of Energetic Neutral Atoms from IBEX

    Science.gov (United States)

    Teodoro, L. A.; Elphic, R. C.; Janzen, P.; Reisenfeld, D.; Wilson, J. T.

    2017-12-01

    The discovery by the Interstellar Boundary Explorer (IBEX) of a "Ribbon" in the measurements of Energetic Neutral Particles (ENA) was a major surprise that lead to the re-thinking of the Physics underpinning the heliosphere-intergalactic medium boundary dynamics. Several physical models have been proposed and tested in their ability to mimic the IBEX observations. Some of the ENA IBEX's include the following features: 1) The presence of fine structure within the ribbon suggests that the physical properties of it exhibit small-scale spacial structure and possibly rapid small-scale variations. 2) The ribbon is a fairly narrow feature at low energies and broadens with increasing energy;The IBEX detectors were designed to maximize count rate by incorporating wide angular and broad energy acceptance. Thus far, the existing mapping software used by the IBEX Science Operation Center has not been design with the "Ribbon" ( 20o wide) in mind: the current generation of maps are binned in 6o longitude pixels by 6o latitude pixels (so the pixels are all of the same size in angle and are quite "blocky"). Furthermore, the instrumental point spread function has not been deconvolved, making any potential narrow features broader than they are. An improvement in the spatial resolution of the IBEX maps would foster a better understanding of the Ribbon and its substructure, and thus reply to some of the basic and profound questions related to its origin, the nature of the outer boundaries of the our solar system and the surrounding interstellar Galactic medium.Here we report on the application of the Bayesian image reconstruction algorithm "Speedy Pixons" to the ENA data with the aim to sharpen the ENA IBEX maps. A preliminary application allow us to conclude that: The peaks in the count rate do appear to be more enhanced in the reconstruction; The reconstruction is clearly denoised; The "Ribbon" is better defined in the reconstruction. We are currently studying the implications of

  10. Solar system constraints on disformal gravity theories

    International Nuclear Information System (INIS)

    Ip, Hiu Yan; Schmidt, Fabian; Sakstein, Jeremy

    2015-01-01

    Disformal theories of gravity are scalar-tensor theories where the scalar couples derivatively to matter via the Jordan frame metric. These models have recently attracted interest in the cosmological context since they admit accelerating solutions. We derive the solution for a static isolated mass in generic disformal gravity theories and transform it into the parameterised post-Newtonian form. This allows us to investigate constraints placed on such theories by local tests of gravity. The tightest constraints come from preferred-frame effects due to the motion of the Solar System with respect to the evolving cosmological background field. The constraints we obtain improve upon the previous solar system constraints by two orders of magnitude, and constrain the scale of the disformal coupling for generic models to ℳ ∼> 100 eV. These constraints render all disformal effects irrelevant for cosmology

  11. Short-sale Constraints and Credit Runs

    DEFF Research Database (Denmark)

    Venter, Gyuri

    ), creditors with high private signals are more lenient to roll over debt, and a bank with lower asset quality remains solvent. This leads to higher allocative efficiency in the real economy. My result thus implies that the decrease in average informativeness due to short-sale constraints can be more than......This paper studies how short-sale constraints affect the informational efficiency of market prices and the link between prices and economic activity. I show that under short-sale constraints security prices contain less information. However, short-sale constraints increase the informativeness...... the price of an asset the bank holds. I show that short-selling constraints in the financial market lead to the revival of self-fulfilling beliefs about the beliefs and actions of others, and create multiple equilibria. In the equilibrium where agents rely more on public information (i.e., the price...

  12. Revisiting the simplicity constraints and coherent intertwiners

    International Nuclear Information System (INIS)

    Dupuis, Maite; Livine, Etera R

    2011-01-01

    In the context of loop quantum gravity and spinfoam models, the simplicity constraints are essential in that they allow one to write general relativity as a constrained topological BF theory. In this work, we apply the recently developed U(N) framework for SU(2) intertwiners to the issue of imposing the simplicity constraints to spin network states. More particularly, we focus on solving on individual intertwiners in the 4D Euclidean theory. We review the standard way of solving the simplicity constraints using coherent intertwiners and we explain how these fit within the U(N) framework. Then we show how these constraints can be written as a closed u(N) algebra and we propose a set of U(N) coherent states that solves all the simplicity constraints weakly for an arbitrary Immirzi parameter.

  13. Constraint and loneliness in agoraphobia: an empirical investigation.

    Science.gov (United States)

    Pehlivanidis, A; Koulis, S; Papakostas, Y

    2014-01-01

    While progress in the aetiopathology and treatment of panic disorder is indisputable, research regarding agoraphobia lacks behind. One significant-yet untested- theory by Guidano and Liotti, suggests the existence of inner representations of fear of "constraint" and fear of "loneliness" as two major schemata, important in the pathogenesis and manifestation of agoraphobia. Activation of these schemata may occur in situations in which the patient: (a) feels as in an inescapable trap (constraint) or (b) alone, unprotected and helpless (loneliness). Upon activation, the "constraint" schema elicits such symptoms as asphyxiation, chest pain, difficult breathing, motor agitation and muscular tension, while the "loneliness" schema elicits such symptoms as sensation of tachycardia, weakness of limbs, trembling or fainting. Activation of these schemata by content-compatible stimuli is expected to trigger various, yet distinct, response patterns, both of which are indiscriminately described within the term "agoraphobia". In order to investigate this hypothesis and its possible clinical applications, several mental and physical probes were applied to 20 patients suffering primarily from agoraphobia, and their responses and performance were recorded. Subjects also completed the "10-item Agoraphobia Questionnaire" prepared by our team aiming at assessing cognitions related to Guidano and Liotti's notion of "loneliness" and "constraint". Breath holding (BH) and Hyperventilation (HV) were selected as physical probes. BH was selected as an easily administered hypercapnea - induced clinical procedure, because of its apparent resemblance to the concept of "constraint". Subjects were instructed to hold their breath for as long as they could and stop at will. Similarly, it was hypothesized that HV might represent a physical "loneliness" probe, since it can elicit such symptoms as dizziness, paraesthesias, stiff muscles, cold hands or feet and trembling, reminiscent of a "collapsing

  14. Hamiltonian constraint in polymer parametrized field theory

    International Nuclear Information System (INIS)

    Laddha, Alok; Varadarajan, Madhavan

    2011-01-01

    Recently, a generally covariant reformulation of two-dimensional flat spacetime free scalar field theory known as parametrized field theory was quantized using loop quantum gravity (LQG) type ''polymer'' representations. Physical states were constructed, without intermediate regularization structures, by averaging over the group of gauge transformations generated by the constraints, the constraint algebra being a Lie algebra. We consider classically equivalent combinations of these constraints corresponding to a diffeomorphism and a Hamiltonian constraint, which, as in gravity, define a Dirac algebra. Our treatment of the quantum constraints parallels that of LQG and obtains the following results, expected to be of use in the construction of the quantum dynamics of LQG: (i) the (triangulated) Hamiltonian constraint acts only on vertices, its construction involves some of the same ambiguities as in LQG and its action on diffeomorphism invariant states admits a continuum limit, (ii) if the regulating holonomies are in representations tailored to the edge labels of the state, all previously obtained physical states lie in the kernel of the Hamiltonian constraint, (iii) the commutator of two (density weight 1) Hamiltonian constraints as well as the operator correspondent of their classical Poisson bracket converge to zero in the continuum limit defined by diffeomorphism invariant states, and vanish on the Lewandowski-Marolf habitat, (iv) the rescaled density 2 Hamiltonian constraints and their commutator are ill-defined on the Lewandowski-Marolf habitat despite the well-definedness of the operator correspondent of their classical Poisson bracket there, (v) there is a new habitat which supports a nontrivial representation of the Poisson-Lie algebra of density 2 constraints.

  15. Molecular Theory of Detonation Initiation: Insight from First Principles Modeling of the Decomposition Mechanisms of Organic Nitro Energetic Materials.

    Science.gov (United States)

    Tsyshevsky, Roman V; Sharia, Onise; Kuklja, Maija M

    2016-02-19

    This review presents a concept, which assumes that thermal decomposition processes play a major role in defining the sensitivity of organic energetic materials to detonation initiation. As a science and engineering community we are still far away from having a comprehensive molecular detonation initiation theory in a widely agreed upon form. However, recent advances in experimental and theoretical methods allow for a constructive and rigorous approach to design and test the theory or at least some of its fundamental building blocks. In this review, we analyzed a set of select experimental and theoretical articles, which were augmented by our own first principles modeling and simulations, to reveal new trends in energetic materials and to refine known existing correlations between their structures, properties, and functions. Our consideration is intentionally limited to the processes of thermally stimulated chemical reactions at the earliest stage of decomposition of molecules and materials containing defects.

  16. Energetic integration of processes: a case of practical application in the petroleum exploitation and production area in Mexico

    International Nuclear Information System (INIS)

    Rangel D, H.; Rodriguez T, M.A.

    1994-01-01

    The energetic integration of processes also called Pinch technology has reached the maturity by means of its development and application in different parts of the world, producing enormous savings in energy and capital, nevertheless. In Latin America countries, particularly in Mexico, not much is done respect of its practical application, and for this reason, the majority of the industrial processes operate with high costs of energy and capital. The infrastructure of the Mexican Petroleum Industry represents a great potential to make efficient the use of materials and energetic resources. In this work, with a vision of saving energy and capital, the traditional process of crude oil dehydration is analyzed. By means of the application of Pinch technology there were proposed modifications to the existing process, intended for the saving of energy and capital and to avoid unnecessary consumption of cooling water. (Author)

  17. Molecular Theory of Detonation Initiation: Insight from First Principles Modeling of the Decomposition Mechanisms of Organic Nitro Energetic Materials

    Directory of Open Access Journals (Sweden)

    Roman V. Tsyshevsky

    2016-02-01

    Full Text Available This review presents a concept, which assumes that thermal decomposition processes play a major role in defining the sensitivity of organic energetic materials to detonation initiation. As a science and engineering community we are still far away from having a comprehensive molecular detonation initiation theory in a widely agreed upon form. However, recent advances in experimental and theoretical methods allow for a constructive and rigorous approach to design and test the theory or at least some of its fundamental building blocks. In this review, we analyzed a set of select experimental and theoretical articles, which were augmented by our own first principles modeling and simulations, to reveal new trends in energetic materials and to refine known existing correlations between their structures, properties, and functions. Our consideration is intentionally limited to the processes of thermally stimulated chemical reactions at the earliest stage of decomposition of molecules and materials containing defects.

  18. Kinetic and energetic analysis of lipid accumulation in batch culture of Rhodotorula glutinis

    Energy Technology Data Exchange (ETDEWEB)

    Pan, J.G.; Rhee, J.S.

    1986-01-01

    Kinetic and energetic analyses were made to describe the accumulation of lipid Rhodotorula glutinis more quantitatively. Accumulation of lipid in yeast was controlled by kinetic factors. The energetic efficiency of lipid formation was higher than that of growth. 18 references.

  19. Global Energetics of Solar Flares. VI. Refined Energetics of Coronal Mass Ejections

    Science.gov (United States)

    Aschwanden, Markus J.

    2017-09-01

    In this study, we refine the coronal mass ejection (CME) model that was presented in an earlier study of the global energetics of solar flares and associated CMEs and apply it to all (860) GOES M- and X-class flare events observed during the first seven years (2010-2016) of the Solar Dynamics Observatory (SDO) mission. The model refinements include (1) the CME geometry in terms of a 3D volume undergoing self-similar adiabatic expansion, (2) the solar gravitational deceleration during the propagation of the CME, which discriminates between eruptive and confined CMEs, (3) a self-consistent relationship between the CME center-of-mass motion detected during EUV dimming and the leading-edge motion observed in white-light coronagraphs, (4) the equipartition of the CME’s kinetic and thermal energies, and (5) the Rosner-Tucker-Vaiana scaling law. The refined CME model is entirely based on EUV-dimming observations (using Atmospheric Imager Assembly (AIA)/SDO data) and complements the traditional white-light scattering model (using Large-Angle and Spectrometric Coronagraph Experiment (LASCO)/Solar and Heliospheric Observatory data), and both models are independently capable of determining fundamental CME parameters. Comparing the two methods, we find that (1) LASCO is less sensitive than AIA in detecting CMEs (in 24% of the cases), (2) CME masses below {m}{cme}≲ {10}14 g are underestimated by LASCO, (3) AIA and LASCO masses, speeds, and energies agree closely in the statistical mean after the elimination of outliers, and (4) the CME parameters speed v, emission measure-weighted flare peak temperature T e , and length scale L are consistent with the following scaling laws: v\\propto {T}e1/2, v\\propto {({m}{cme})}1/4, and {m}{cme}\\propto {L}2.

  20. Few-body hypernuclear constraints

    International Nuclear Information System (INIS)

    Gibson, B.F.

    1993-01-01

    Since the discovery of the first hyperfragment in a balloon flown emulsion stack some two score years ago, physicists have worked to understand how the addition of the strangeness degree of freedom alters the picture of nuclei and the baryon-baryon force. Because the Λ and Σ masses differ markedly from that of the proton and neutron, SU (3) symmetry is broken. How it is broken is a question of importance to the fundamental understanding of the baryon-baryon interaction. New dynamical symmetries, forbidden by the Pauli principle in conventional nuclei, appear. Three-body forces play a more significant role. A binding anomaly in A = 5 as well as a possible spin inversion between ground and excited states in A = 4 appear. Surprisingly narrow structure near the threshold for Σ production has been reported in the 4 He (K - , π - ) spectrum while no corresponding structure is observed in the companion 4 He(K - , π + ) spectrum; this has been interpreted as evidence for a Σ 4 He bound state. Finally, the reported observation of ΛΛ-hypernuclei, in particular ΛΛ 6 He, bears directly upon the possibilities for the prediction of a bound H particle--the S = -2 dibaryon. Although it is not feasible to invert the analysis and determine the interaction from the data on few-body systems, it is possible to utilize these data to constrain the models, provided one is careful. The author will explore briefly the constraints which the few-body data impose and the level of understanding that has been achieved

  1. Aerial Thermography for Energetic Modelling of Cities

    Directory of Open Access Journals (Sweden)

    Gabriele Bitelli

    2015-02-01

    Full Text Available The rising attention to energy consumption problems is renewing interest in the applications of thermal remote sensing in urban areas. The research presented here aims to test a methodology to retrieve information about roof surface temperature by means of a high resolution orthomosaic of airborne thermal infrared images, based on a case study acquired over Bologna (Italy. The ultimate aim of such work is obtaining datasets useful to support, in a GIS environment, the decision makers in developing adequate strategies to reduce energy consumption and CO2 emission. In the processing proposed, the computing of radiometric quantities related to the atmosphere was performed by the Modtran 5 radiative transfer code, while an object-oriented supervised classification was applied on a WorldView-2 multispectral image, together with a high-resolution digital surface model (DSM, to distinguish among the major roofing material types and to model the effects of the emissivity. The emissivity values were derived from literature data, except for some roofing materials, which were measured during ad hoc surveys, by means of a thermal camera and a contact probe. These preliminary results demonstrate the high sensitivity of the model to the variability of the surface emissivity and of the atmospheric parameters, especially transmittance and upwelling radiance.

  2. Hydrogen molecules inside fullerene C70: quantum dynamics, energetics, maximum occupancy, and comparison with C60.

    Science.gov (United States)

    Sebastianelli, Francesco; Xu, Minzhong; Bacić, Zlatko; Lawler, Ronald; Turro, Nicholas J

    2010-07-21

    Recent synthesis of the endohedral complexes of C(70) and its open-cage derivative with one and two H(2) molecules has opened the path for experimental and theoretical investigations of the unique dynamic, spectroscopic, and other properties of systems with multiple hydrogen molecules confined inside a nanoscale cavity. Here we report a rigorous theoretical study of the dynamics of the coupled translational and rotational motions of H(2) molecules in C(70) and C(60), which are highly quantum mechanical. Diffusion Monte Carlo (DMC) calculations were performed for up to three para-H(2) (p-H(2)) molecules encapsulated in C(70) and for one and two p-H(2) molecules inside C(60). These calculations provide a quantitative description of the ground-state properties, energetics, and the translation-rotation (T-R) zero-point energies (ZPEs) of the nanoconfined p-H(2) molecules and of the spatial distribution of two p-H(2) molecules in the cavity of C(70). The energy of the global minimum on the intermolecular potential energy surface (PES) is negative for one and two H(2) molecules in C(70) but has a high positive value when the third H(2) is added, implying that at most two H(2) molecules can be stabilized inside C(70). By the same criterion, in the case of C(60), only the endohedral complex with one H(2) molecule is energetically stable. Our results are consistent with the fact that recently both (H(2))(n)@C(70) (n = 1, 2) and H(2)@C(60) were prepared, but not (H(2))(3)@C(70) or (H(2))(2)@C(60). The ZPE of the coupled T-R motions, from the DMC calculations, grows rapidly with the number of caged p-H(2) molecules and is a significant fraction of the well depth of the intermolecular PES, 11% in the case of p-H(2)@C(70) and 52% for (p-H(2))(2)@C(70). Consequently, the T-R ZPE represents a major component of the energetics of the encapsulated H(2) molecules. The inclusion of the ZPE nearly doubles the energy by which (p-H(2))(3)@C(70) is destabilized and increases by 66% the

  3. Formulation and Testing of Paraffin-Based Solid Fuels Containing Energetic Additives for Hybrid Rockets

    Science.gov (United States)

    Larson, Daniel B.; Boyer, Eric; Wachs,Trevor; Kuo, Kenneth K.; Story, George

    2012-01-01

    Many approaches have been considered in an effort to improve the regression rate of solid fuels for hybrid rocket applications. One promising method is to use a fuel with a fast burning rate such as paraffin wax; however, additional performance increases to the fuel regression rate are necessary to make the fuel a viable candidate to replace current launch propulsion systems. The addition of energetic and/or nano-sized particles is one way to increase mass-burning rates of the solid fuels and increase the overall performance of the hybrid rocket motor.1,2 Several paraffin-based fuel grains with various energetic additives (e.g., lithium aluminum hydride (LiAlH4) have been cast in an attempt to improve regression rates. There are two major advantages to introducing LiAlH4 additive into the solid fuel matrix: 1) the increased characteristic velocity, 2) decreased dependency of Isp on oxidizer-to-fuel ratio. The testing and characterization of these solid-fuel grains have shown that continued work is necessary to eliminate unburned/unreacted fuel in downstream sections of the test apparatus.3 Changes to the fuel matrix include higher melting point wax and smaller energetic additive particles. The reduction in particle size through various methods can result in more homogeneous grain structure. The higher melting point wax can serve to reduce the melt-layer thickness, allowing the LiAlH4 particles to react closer to the burning surface, thus increasing the heat feedback rate and fuel regression rate. In addition to the formulation of LiAlH4 and paraffin wax solid-fuel grains, liquid additives of triethylaluminum and diisobutylaluminum hydride will be included in this study. Another promising fuel formulation consideration is to incorporate a small percentage of RDX as an additive to paraffin. A novel casting technique will be used by dissolving RDX in a solvent to crystallize the energetic additive. After dissolving the RDX in a solvent chosen for its compatibility

  4. Simulation of charge generation and transport in semi-conductors under energetic-particle bombardment

    International Nuclear Information System (INIS)

    Martin, R.C.

    1990-01-01

    The passage of energetic ions through semiconductor devices generates excess charge which can produce logic upset, memory change, and device damage. This single event upset (SEU) phenomenon is increasingly important for satellite communications. Experimental and numerical simulation of SEUs is difficult because of the subnanosecond times and large charge densities within the ion track. The objective of this work is twofold: (1) the determination of the track structure and electron-hole pair generation profiles following the passage of an energetic ion; (2) the development and application of a new numerical method for transient charge transport in semiconductor devices. A secondary electron generation and transport model, based on the Monte Carlo method, is developed and coupled to an ion transport code to simulate ion track formation in silicon. A new numerical method is developed for the study of transient charge transport. The numerical method combines an axisymmetric quadratic finite-element formulation for the solution of the potential with particle simulation methods for electron and hole transport. Carrier transport, recombination, and thermal generation of both majority and minority carriers are included. To assess the method, transient one-dimensional solutions for silicon diodes are compared to a fully iterative finite-element method. Simulations of charge collection from ion tracks in three-dimensional axisymmetric devices are presented and compared to previous work. The results of this work for transient current pulses following charged ion passage are in agreement with recent experimental data

  5. Type II solar radio bursts, interplanetary shocks, and energetic particle events

    International Nuclear Information System (INIS)

    Cane, H.V.; Stone, R.G.

    1984-01-01

    Using the ISEE 3 radio astronomy experiment data we have identified 37 interplanetary type II bursts in the period 1978 September to 1981 December. We lists these events and the associated phenomena. The events are preceded by intense, soft X-ray events with long decay times and type II or type IV bursts, or both, at meter wavelengths. The meter wavelength type II bursts are usually intense and exhibit herringbone structure. The extension of the herringbone structure into the kilometer wavelength range appears as a fast drift radio feature which we refer to as a shock associated radio event. The shock associated event is an important diagnostic for the presence of a strong shock and particle acceleration. The majority of the interplanetary type II bursts are associated with energetic particle events. Our results support other studies which indicate that energetic soalr particles detected at 1 A.U. are generatd by shock acceleration. From a preliminary analysis of the available data there appears to be a high correlation with white light coronal transients. The transients are fast: i.e., velocities greater than 500 km s -1

  6. A coordinated two-satellite study of energetic electron precipitation events

    International Nuclear Information System (INIS)

    Imhof, W.L.; Nakano, G.H.; Gaines, E.E.; Reagan, J.B.

    1975-01-01

    A new technique for studying the spatial/temporal variations of energetic electron precipitation events is investigated. Data are presented in which precipitating electrons were measured simultaneously on two coordinated polar-orbiting satellites and the bremsstrahlung produced by the electrons precipitating into the atmosphere was observed from one of the satellites. Two electron spectrometers measuring the intensities and energy spectra of electrons of >130 keV were located on the oriented satellite 1971-089A (altitude, approx. =800 km), whereas a single similar spectrometer measuring electrons of >160 keV was located on the spinning low-altitude (approx.750 km) satellite 1972-076B. The X rays of >50 keV were measured with a 50-cm 3 germanium spectrometer placed on the 1972-076B satellite. With the coordinated data a study is made of events in which large fluctuations were observed in the precipitating energetic electron intensities. In the examples presented the satellite X ray data alone demonstrate that the spatially integrated electron influx was constant in time, and when the X ray data are combined with the direct electron measurements from the two satellites, the resulting data suggest that the major features in the flux profiles were primarily spatial in nature. The combination of X ray and electron measurements from two satellites is shown to provide an important method for studying and attempting to resolve spatial and temporal effects

  7. Constraint Handling Rules with Binders, Patterns and Generic Quantification

    NARCIS (Netherlands)

    Serrano, Alejandro; Hage, J.

    2017-01-01

    Constraint Handling Rules provide descriptions for constraint solvers. However, they fall short when those constraints specify some binding structure, like higher-rank types in a constraint-based type inference algorithm. In this paper, the term syntax of constraints is replaced by λ-tree syntax, in

  8. Integrating ergonomics knowledge into business-driven design projects: The shaping of resource constraints in engineering consultancy

    DEFF Research Database (Denmark)

    Hall-Andersen, Lene Bjerg; Neumann, W. Patrick; Broberg, Ole

    2016-01-01

    participants were interviewed. METHODS: Data were collected applying semi-structured interviews, observations, and documentary studies. Interviews were transcribed, coded, and categorized into themes. RESULTS: From the analysis five overall themes emerged as major constituents of resource constraints: 1...

  9. Prospects after Major Trauma

    NARCIS (Netherlands)

    Holtslag, H.R.

    2007-01-01

    Introduction. After patients survived major trauma, their prospects, in terms of the consequences for functioning, are uncertain, which may impact severely on patient, family and society. The studies in this thesis describes the long-term outcomes of severe injured patients after major trauma. In

  10. A numerical simulation of solar energetic particle dropouts during impulsive events

    International Nuclear Information System (INIS)

    Wang, Y.; Qin, G.; Zhang, M.; Dalla, S.

    2014-01-01

    This paper investigates the conditions for producing rapid variations of solar energetic particle (SEP) intensity commonly known as 'dropouts'. In particular, we use numerical model simulations based on solving the focused transport equation in the three-dimensional Parker interplanetary magnetic field to put constraints on the properties of particle transport coefficients in both directions perpendicular and parallel to the magnetic field. Our calculations of the temporal intensity profile of 0.5 and 5 MeV protons at the Earth show that the perpendicular diffusion must be small while the parallel mean free path is long in order to reproduce the phenomenon of SEP dropouts. When the parallel mean free path is a fraction of 1 AU and the observer is located at 1 AU, the perpendicular to parallel diffusion ratio must be below 10 –5 if we want to see the particle flux dropping by at least several times within 3 hr. When the observer is located at a larger solar radial distance, the perpendicular to parallel diffusion ratio for reproducing the dropouts should be even lower than that in the case of 1 AU distance. A shorter parallel mean free path or a larger radial distance from the source to observer will cause the particles to arrive later, making the effects of perpendicular diffusion more prominent and SEP dropouts disappear. All of these effects require the magnetic turbulence that resonates with the particles to be low everywhere in the inner heliosphere.

  11. QCD unitarity constraints on Reggeon Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Kovner, Alex [Physics Department, University of Connecticut,2152 Hillside Road, Storrs, CT 06269 (United States); Levin, Eugene [Departemento de Física, Universidad Técnica Federico Santa María,and Centro Científico-Tecnológico de Valparaíso,Avda. Espana 1680, Casilla 110-V, Valparaíso (Chile); Department of Particle Physics, Tel Aviv University,Tel Aviv 69978 (Israel); Lublinsky, Michael [Physics Department, Ben-Gurion University of the Negev,Beer Sheva 84105 (Israel); Physics Department, University of Connecticut,2152 Hillside Road, Storrs, CT 06269 (United States)

    2016-08-04

    We point out that the s-channel unitarity of QCD imposes meaningful constraints on a possible form of the QCD Reggeon Field Theory. We show that neither the BFKL nor JIMWLK nor Braun’s Hamiltonian satisfy the said constraints. In a toy, zero transverse dimensional case we construct a model that satisfies the analogous constraint and show that at infinite energy it indeed tends to a “black disk limit' as opposed to the model with triple Pomeron vertex only, routinely used as a toy model in the literature.

  12. QCD unitarity constraints on Reggeon Field Theory

    International Nuclear Information System (INIS)

    Kovner, Alex; Levin, Eugene; Lublinsky, Michael

    2016-01-01

    We point out that the s-channel unitarity of QCD imposes meaningful constraints on a possible form of the QCD Reggeon Field Theory. We show that neither the BFKL nor JIMWLK nor Braun’s Hamiltonian satisfy the said constraints. In a toy, zero transverse dimensional case we construct a model that satisfies the analogous constraint and show that at infinite energy it indeed tends to a “black disk limit' as opposed to the model with triple Pomeron vertex only, routinely used as a toy model in the literature.

  13. Liquidity Constraints and Fiscal Stabilization Policy

    DEFF Research Database (Denmark)

    Kristoffersen, Mark Strøm

    It is often claimed that the presence of liquidity constrained households enhances the need for and the effects of fi…scal stabilization policies. This paper studies this in a model of a small open economy with liquidity constrained households. The results show that the consequences of liquidity...... constraints are more complex than previously thought: The optimal stabilization policy in case of productivity shocks is independent of the liquidity constraints, and the presence of liquidity constraints tends to reduce the need for an active policy stabilizing productivity shocks....

  14. Use of dose constraints for occupational exposure

    International Nuclear Information System (INIS)

    Kaijage, Tunu

    2015-02-01

    The use of dose constraints for occupational exposure was reviewed in this project. The role of dose constraints as used in optimization of protection of workers was described. Different issues to be considered in application of the concept and challenges associated with their implementation were also discussed. The situation where dose constraints could be misinterpreted to dose limits is also explained as the two are clearly differentiated by the International Commission of Radiological Protection (ICRP) Publication 103. Moreover, recommendations to all parties responsible for protection and safety of workers were discussed. (au)

  15. Constraint satisfaction problems CSP formalisms and techniques

    CERN Document Server

    Ghedira, Khaled

    2013-01-01

    A Constraint Satisfaction Problem (CSP) consists of a set of variables, a domain of values for each variable and a set of constraints. The objective is to assign a value for each variable such that all constraints are satisfied. CSPs continue to receive increased attention because of both their high complexity and their omnipresence in academic, industrial and even real-life problems. This is why they are the subject of intense research in both artificial intelligence and operations research. This book introduces the classic CSP and details several extensions/improvements of both formalisms a

  16. Expressing Model Constraints Visually with VMQL

    DEFF Research Database (Denmark)

    Störrle, Harald

    2011-01-01

    ) for specifying constraints on UML models. We examine VMQL's usability by controlled experiments and its expressiveness by a representative sample. We conclude that VMQL is less expressive than OCL, although expressive enough for most of the constraints in the sample. In terms of usability, however, VMQL......OCL is the de facto standard language for expressing constraints and queries on UML models. However, OCL expressions are very difficult to create, understand, and maintain, even with the sophisticated tool support now available. In this paper, we propose to use the Visual Model Query Language (VMQL...

  17. Energetic Surface Smoothing of Complex Metal-Oxide Thin Films

    International Nuclear Information System (INIS)

    Willmott, P.R.; Herger, R.; Schlepuetz, C.M.; Martoccia, D.; Patterson, B.D.

    2006-01-01

    A novel energetic smoothing mechanism in the growth of complex metal-oxide thin films is reported from in situ kinetic studies of pulsed laser deposition of La 1-x Sr x MnO 3 on SrTiO 3 , using x-ray reflectivity. Below 50% monolayer coverage, prompt insertion of energetic impinging species into small-diameter islands causes them to break up to form daughter islands. This smoothing mechanism therefore inhibits the formation of large-diameter 2D islands and the seeding of 3D growth. Above 50% coverage, islands begin to coalesce and their breakup is thereby suppressed. The energy of the incident flux is instead rechanneled into enhanced surface diffusion, which leads to an increase in the effective surface temperature of ΔT≅500 K. These results have important implications on optimal conditions for nanoscale device fabrication using these materials

  18. Observations of interplanetary energetic ion enhancements near magnetic sector boundaries

    International Nuclear Information System (INIS)

    Briggs, P.R.; Armstrong, T.P.

    1984-01-01

    We have examined all energetic medium nuclei (carbon, nitrogen, and oxygen) flux increases observed all the satellites IMP 7 and IMP 8 at 1 AU during Bartels rotations 1906-1974. After removing flare-related increases, the remaining 14 ''events'' were compared to interplanetary magnetic field and solar wind parameters. We have discovered a class of flux enhancements in which the ion increases occur close to the onset of magnetic sector boundary crossings. We interpret this observation as a facilitated access to 1 AU of energetic ions from the corona or chromopshere via the magnetic sector structure. It appears that this access is more significant for medium than for lighter nuclei, ''suggesting a possible charge- or rigidity-dependent transport mechanism

  19. Selection of low-risk design guidelines for energetic events

    International Nuclear Information System (INIS)

    Ferguson, D.; Marchaterre, J.; Graham, J.

    1982-01-01

    This paper recommends the establishment of specific design guidelines for protection against potential, but low-probability, energetic events. These guidelines recognize the plant protective features incorporated to prevent such events, as well as the inherent capability of the plant to accommodate a certain level of energy release. Further, their application is recommended within the context of necessary standardized and agreed-upon acceptance criteria which are less restrictive than ASME code requirements. The paper provides the background upon which the selection of the design is made, including the characterization of energetic events dependent on various core-design parameters, and including the necessity of a low-risk design balanced between prevention of accidents and the mitigation of consequences

  20. Monte Carlo simulations of the Galileo energetic particle detector

    International Nuclear Information System (INIS)

    Jun, I.; Ratliff, J.M.; Garrett, H.B.; McEntire, R.W.

    2002-01-01

    Monte Carlo radiation transport studies have been performed for the Galileo spacecraft energetic particle detector (EPD) in order to study its response to energetic electrons and protons. Three-dimensional Monte Carlo radiation transport codes, MCNP version 4B (for electrons) and MCNPX version 2.2.3 (for protons), were used throughout the study. The results are presented in the form of 'geometric factors' for the high-energy channels studied in this paper: B1, DC2, and DC3 for electrons and B0, DC0, and DC1 for protons. The geometric factor is the energy-dependent detector response function that relates the incident particle fluxes to instrument count rates. The trend of actual data measured by the EPD was successfully reproduced using the geometric factors obtained in this study

  1. Collective phenomena with energetic particles in fusion plasmas

    International Nuclear Information System (INIS)

    Breizman, B.N.; Berk, H.L.; Candy, J.

    2001-01-01

    Recent progress in the theory of collective modes driven by energetic particles, as well as interpretations of fast particle effects observed in fusion-related experiments, are described. New developments in linear theory include: (a) Alfven-mode frequency gap widening due to energetic trapped ions, (b) interpretation of JET results for plasma pressure effect on TAE modes, and (c) ''counter'' propagation of TAE modes due to trapped fast ion anisotropy. The new nonlinear results are: (a) theoretical explanation for the pitchfork splitting effect observed in TAE experiments on JET, (b) existence of coherent structures with strong frequency chirping due to kinetic instability, (c) self-consistent nonlinear theory for fishbone instabilities, and (d) intermittent quasilinear diffusion model for anomalous fast particle losses. (author)

  2. Collective phenomena with energetic particles in fusion plasmas

    International Nuclear Information System (INIS)

    Breizman, B.N.; Berk, H.L.; Candy, J.

    1999-01-01

    Recent progress in the theory of collective modes driven by energetic particles, as well as interpretations of fast particle effects observed in fusion-related experiments, are described. New developments in linear theory include: (a) Alfven-mode frequency gap widening due to energetic trapped ions, (b) interpretation of JET results for plasma pressure effect on TAE modes, and (c) 'counter' propagation of TAE modes due to trapped fast ion anisotropy. The new nonlinear results are: (a) theoretical explanation for the pitchfork splitting effect observed in TAE experiments on JET, (b) existence of coherent structures with strong frequency chirping due to kinetic instability, (c) self-consistent nonlinear theory for fishbone instabilities, and (d) intermittent quasilinear diffusion model for anomalous fast particle losses. (author)

  3. The minimal energetic requirement of sustained awareness after brain injury

    DEFF Research Database (Denmark)

    Stender, Johan; Mortensen, Kristian Nygaard; Thibaut, Aurore

    2016-01-01

    of glucose has been proposed as an indicator of consciousness [2 and 3]. Likewise, FDG-PET may contribute to the clinical diagnosis of disorders of consciousness (DOCs) [4 and 5]. However, current methods are non-quantitative and have important drawbacks deriving from visually guided assessment of relative...... changes in brain metabolism [4]. We here used FDG-PET to measure resting state brain glucose metabolism in 131 DOC patients to identify objective quantitative metabolic indicators and predictors of awareness. Quantitation of images was performed by normalizing to extracerebral tissue. We show that 42......% of normal cortical activity represents the minimal energetic requirement for the presence of conscious awareness. Overall, the cerebral metabolic rate accounted for the current level, or imminent return, of awareness in 94% of the patient population, suggesting a global energetic threshold effect...

  4. Plasma Interaction and Energetic Particle Dynamics near Callisto

    Science.gov (United States)

    Liuzzo, L.; Simon, S.; Feyerabend, M.; Motschmann, U. M.

    2017-12-01

    Callisto's magnetic environment is characterized by a complex admixture of induction signals from its conducting subsurface ocean, the interaction of corotating Jovian magnetospheric plasma with the moon's ionosphere and induced dipole, and the non-linear coupling between the effects. In contrast to other Galilean moons, ion gyroradii near Callisto are comparable to its size, requiring a kinetic treatment of the interaction region near the moon. Thus, we apply the hybrid simulation code AIKEF to constrain the competing effects of plasma interaction and induction. We determine their influence on the magnetic field signatures measured by Galileo during various Callisto flybys. We use the magnetic field calculated by the model to investigate energetic particle dynamics and their effect on Callisto's environment. From this, we provide a map of global energetic particle precipitation onto Callisto's surface, which may contribute to the generation of its atmosphere.

  5. Transport of energetic electrons in a fully ionized hydrogen plasma

    International Nuclear Information System (INIS)

    Bai, T.

    1982-01-01

    In order to study the behavior of energetic electrons in astrophysical plasmas, I derive relationships among the Coulomb energy loss, travel distance, and pitch angle deflection due to Coulomb collisions, which hold when the Coulomb energy loss is only a small fraction of the initial energy. By using these relationships, I develop a Monte Carlo method of calculating how the pitch angle and spatial distributions of the energetic electrons change in a uniformly magnetized plasma as these electrons lose energy by Coulomb collisions, including a scheme to include the effects of the nonuniformity of the ambient magnetic field. The resulting computational framework provides an efficient and flexible system for incroporating the effects of Coulomb collisions in realistic geometries. This method is applied to a beam of monoenergetic electrons released along the magnetic field lines. Implications of the present results and future applications of this Monte Carlo method are discussed. Subject headings: hydromagnetics: plasmas: Sun: flares

  6. A new numerical technique to design satellite energetic electron detectors

    CERN Document Server

    Tuszewski, M G; Ingraham, J C

    2002-01-01

    Energetic charged particles trapped in the magnetosphere are routinely detected by satellite instruments. However, it is generally difficult to extract quantitative energy and angular information from such measurements because the interaction of energetic electrons with matter is rather complex. Beam calibrations and Monte-Carlo (MC) simulations are often used to evaluate a flight instrument once it is built. However, rules of thumb and past experience are common tools to design the instrument in the first place. Hence, we have developed a simple numerical procedure, based on analytical probabilities, suitable for instrumental design and evaluation. In addition to the geometrical response, the contributions of surface backscattering, edge penetration, and bremsstrahlung radiation are estimated. The new results are benchmarked against MC calculations for a simple test case. Complicated effects, such as the contribution of the satellite to the instrumental response, can be estimated with the new formalism.

  7. Monte Carlo simulations of the Galileo energetic particle detector

    CERN Document Server

    Jun, I; Garrett, H B; McEntire, R W

    2002-01-01

    Monte Carlo radiation transport studies have been performed for the Galileo spacecraft energetic particle detector (EPD) in order to study its response to energetic electrons and protons. Three-dimensional Monte Carlo radiation transport codes, MCNP version 4B (for electrons) and MCNPX version 2.2.3 (for protons), were used throughout the study. The results are presented in the form of 'geometric factors' for the high-energy channels studied in this paper: B1, DC2, and DC3 for electrons and B0, DC0, and DC1 for protons. The geometric factor is the energy-dependent detector response function that relates the incident particle fluxes to instrument count rates. The trend of actual data measured by the EPD was successfully reproduced using the geometric factors obtained in this study.

  8. Food environments select microorganisms based on selfish energetic behavior

    Directory of Open Access Journals (Sweden)

    Diego eMora

    2013-11-01

    Full Text Available Nutrient richness, and specifically the abundance of mono- and disaccharides that characterize several food matrixes, such as milk and grape juice, has allowed the speciation of lactic acid bacteria and yeasts with a high fermentation capacity instead of energetically favorable respiratory metabolism. In these environmental contexts, rapid sugar consumption and lactic acid or ethanol production, accumulation and tolerance, together with the ability to propagate in the absence of oxygen, are several of the ‘winning’ traits that have apparently evolved and become specialized to perfection in these fermenting microorganisms. Here, we summarize and discuss the evolutionary context that has driven energetic metabolism in food-associated microorganisms, using the dairy species Lactococcus lactis and Streptococcus thermophilus among prokaryotes and the bakers’ yeast Saccharomyces cerevisiae among eukaryotes as model organisms.

  9. Energetics and efficiency of a molecular motor model

    International Nuclear Information System (INIS)

    Fogedby, Hans C; Svane, Axel

    2013-01-01

    The energetics and efficiency of a linear molecular motor model proposed by Mogilner et al are analyzed from an analytical point of view. The model, which is based on protein friction with a track, is described by coupled Langevin equations for the motion in combination with coupled master equations for the ATP hydrolysis. Here the energetics and efficiency of the motor are addressed using a many body scheme with focus on the efficiency at maximum power (EMP). It is found that the EMP is reduced from about 10% in a heuristic description of the motor to about 1 per mille when incorporating the full motor dynamics, owing to the strong dissipation associated with the motor action. (paper)

  10. The new Russian energetic alliances: myths or reality

    International Nuclear Information System (INIS)

    Milov, Vladimir

    2015-07-01

    The author proposes an analysis of new partnerships on energy between Russia on the one side, and China and Turkey, on the other side, as these new partnerships are presented by the Russian government as alternatives to energy-related relationships with Western countries. In a first part, the author analyses energetic relationships between Russia and China with the Siberia Force project and, in a second part, relationships between Russia and Turkey with the 'Turkish Stream' project. By analysing these both relationships, the author notices that none of these new partners for Russia, i.e. China and Turkey, is ready to enter some kind of energetic big game which would be controlled by Russia, and that both of them, China and Turkey, rather keep on promoting their own interests in this sector. Both attempts (Siberia Force and Turkish Stream) then only appear as bilateral regional projects with a very limited global impact

  11. Barnacle geese achieve significant energetic savings by changing posture.

    Directory of Open Access Journals (Sweden)

    Peter G Tickle

    Full Text Available Here we report the resting metabolic rate in barnacle geese (Branta leucopsis and provide evidence for the significant energetic effect of posture. Under laboratory conditions flow-through respirometry together with synchronous recording of behaviour enabled a calculation of how metabolic rate varies with posture. Our principal finding is that standing bipedally incurs a 25% increase in metabolic rate compared to birds sitting on the ground. In addition to the expected decrease in energy consumption of hindlimb postural muscles when sitting, we hypothesise that a change in breathing mechanics represents one potential mechanism for at least part of the observed difference in energetic cost. Due to the significant effect of posture, future studies of resting metabolic rates need to take into account and/or report differences in posture.

  12. Barnacle geese achieve significant energetic savings by changing posture.

    Science.gov (United States)

    Tickle, Peter G; Nudds, Robert L; Codd, Jonathan R

    2012-01-01

    Here we report the resting metabolic rate in barnacle geese (Branta leucopsis) and provide evidence for the significant energetic effect of posture. Under laboratory conditions flow-through respirometry together with synchronous recording of behaviour enabled a calculation of how metabolic rate varies with posture. Our principal finding is that standing bipedally incurs a 25% increase in metabolic rate compared to birds sitting on the ground. In addition to the expected decrease in energy consumption of hindlimb postural muscles when sitting, we hypothesise that a change in breathing mechanics represents one potential mechanism for at least part of the observed difference in energetic cost. Due to the significant effect of posture, future studies of resting metabolic rates need to take into account and/or report differences in posture.

  13. Mechanisms of Stochastic Diffusion of Energetic Ions in Spherical Tori

    Energy Technology Data Exchange (ETDEWEB)

    Ya.I. Kolesnichenko; R.B. White; Yu.V. Yakovenko

    2001-01-18

    Stochastic diffusion of the energetic ions in spherical tori is considered. The following issues are addressed: (I) Goldston-White-Boozer diffusion in a rippled field; (ii) cyclotron-resonance-induced diffusion caused by the ripple; (iii) effects of non-conservation of the magnetic moment in an axisymmetric field. It is found that the stochastic diffusion in spherical tori with a weak magnetic field has a number of peculiarities in comparison with conventional tokamaks; in particular, it is characterized by an increased role of mechanisms associated with non-conservation of the particle magnetic moment. It is concluded that in current experiments on National Spherical Torus eXperiment (NSTX) the stochastic diffusion does not have a considerable influence on the confinement of energetic ions.

  14. Monitoring of the solar activity and solar energetic particles

    International Nuclear Information System (INIS)

    Akioka, Maki; Kubo, Yuki; Nagatsuma, Tsutomu; Ohtaka, Kazuhiro

    2009-01-01

    Solar activity is the source of various space weather phenomena in geospace and deep space. Solar X-ray radiation in flare, energetic particles, coronal mass ejection (CME) can cause various kind of disturbance near earth space. Therefore, detailed monitoring of the solar activity and its propagation in the interplanetary space is essential task for space weather. For example, solar energetic particle which sometimes affect spacecraft operation and manned space flight, is considered to be produced by solar flares and travelling shockwave caused by flares and CME. The research and development of monitoring technique and system for various solar activity has been an important topic of space weather forecast program in NICT. In this article, we will introduce the real time data acquisitions of STEREO and optical and radio observations of the Sun at Hiraiso Solar Observatory. (author)

  15. Erosion tests of materials by energetic particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Schechter, D.E.; Tsai, C.C.; Sluss, F.; Becraft, W.R.; Hoffman, D.J.

    1985-01-01

    The internal components of magnetic fusion devices must withstand erosion from and high heat flux of energetic plasma particles. The selection of materials for the construction of these components is important to minimize contamination of the plasma. In order to study various materials' comparative resistance to erosion by energetic particles and their ability to withstand high heat flux, water-cooled copper swirl tubes coated or armored with various materials were subjected to bombardment by hydrogen and helium particle beams. Materials tested were graphite, titanium carbide (TiC), chromium, nickel, copper, silver, gold, and aluminum. Details of the experimental arrangement and methods of application or attachment of the materials to the copper swirl tubes are presented. Results including survivability and mass losses are discussed.

  16. Dose constraints, what are they now?

    International Nuclear Information System (INIS)

    Lazo, T.

    2005-01-01

    The concept of a source-related dose constraint was first introduced in ICPR publication 60. The idea was to provide a number that individual exposures from a single, specific source should not exceed, and below which optimisation of protection should take place. Dose constraints were applied to occupational and public exposures from practices. In order to simplify and clarify the ICRP's recommendations, the latest draft, RPO5, presents dose constraints again, and with the same meaning as in publication 60. However, the dose constraints are now applied in all situations, not just practices. This new approach does provide simplification, in that a single concept is applied to all types of exposures (normal situations, accident situations, and existing situations). However, the approach and numerical values that are selected by regulatory authorities for the application of the concept, particularly in normal situations which are also subject to dose limits, will be crucial to the implementation of the system of radiological protection. (author)

  17. Biological constraints do not entail cognitive closure.

    Science.gov (United States)

    Vlerick, Michael

    2014-12-01

    From the premise that our biology imposes cognitive constraints on our epistemic activities, a series of prominent authors--most notably Fodor, Chomsky and McGinn--have argued that we are cognitively closed to certain aspects and properties of the world. Cognitive constraints, they argue, entail cognitive closure. I argue that this is not the case. More precisely, I detect two unwarranted conflations at the core of arguments deriving closure from constraints. The first is a conflation of what I will refer to as 'representation' and 'object of representation'. The second confuses the cognitive scope of the assisted mind for that of the unassisted mind. Cognitive closure, I conclude, cannot be established from pointing out the (uncontroversial) existence of cognitive constraints. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. institutional and resource constraints that inhibit contractor ...

    African Journals Online (AJOL)

    p2333147

    Keywords: Institutions; small-scale contractor performance; sugar industry. ABSTRACT ..... diverse cultural settings, women, specifically widowed or single women, have a .... constraints on business growth, such as the work limitations placed.

  19. Constraint theory multidimensional mathematical model management

    CERN Document Server

    Friedman, George J

    2017-01-01

    Packed with new material and research, this second edition of George Friedman’s bestselling Constraint Theory remains an invaluable reference for all engineers, mathematicians, and managers concerned with modeling. As in the first edition, this text analyzes the way Constraint Theory employs bipartite graphs and presents the process of locating the “kernel of constraint” trillions of times faster than brute-force approaches, determining model consistency and computational allowability. Unique in its abundance of topological pictures of the material, this book balances left- and right-brain perceptions to provide a thorough explanation of multidimensional mathematical models. Much of the extended material in this new edition also comes from Phan Phan’s PhD dissertation in 2011, titled “Expanding Constraint Theory to Determine Well-Posedness of Large Mathematical Models.” Praise for the first edition: "Dr. George Friedman is indisputably the father of the very powerful methods of constraint theory...

  20. Route constraints model based on polychromatic sets

    Science.gov (United States)

    Yin, Xianjun; Cai, Chao; Wang, Houjun; Li, Dongwu

    2018-03-01

    With the development of unmanned aerial vehicle (UAV) technology, the fields of its application are constantly expanding. The mission planning of UAV is especially important, and the planning result directly influences whether the UAV can accomplish the task. In order to make the results of mission planning for unmanned aerial vehicle more realistic, it is necessary to consider not only the physical properties of the aircraft, but also the constraints among the various equipment on the UAV. However, constraints among the equipment of UAV are complex, and the equipment has strong diversity and variability, which makes these constraints difficult to be described. In order to solve the above problem, this paper, referring to the polychromatic sets theory used in the advanced manufacturing field to describe complex systems, presents a mission constraint model of UAV based on polychromatic sets.