WorldWideScience

Sample records for major chemical industries

  1. An operational centre for managing major chemical industrial accidents.

    Kiranoudis, C T; Kourniotis, S P; Christolis, M; Markatos, N C; Zografos, K G; Giannouli, I M; Androutsopoulos, K N; Ziomas, I; Kosmidis, E; Simeonidis, P; Poupkou, N

    2002-01-28

    The most important characteristic of major chemical accidents, from a societal perspective, is their tendency to produce off-site effects. The extent and severity of the accident may significantly affect the population and the environment of the adjacent areas. Following an accident event, effort should be made to limit such effects. Management decisions should be based on rational and quantitative information based on the site specific circumstances and the possible consequences. To produce such information we have developed an operational centre for managing large-scale industrial accidents. Its architecture involves an integrated framework of geographical information system (GIS) and RDBMS technology systems equipped with interactive communication capabilities. The operational centre was developed for Windows 98 platforms, for the region of Thriasion Pedion of West Attica, where the concentration of industrial activity and storage of toxic chemical is immense within areas of high population density. An appropriate case study is given in order to illuminate the use and necessity of the operational centre.

  2. Genomic mechanisms of stress tolerance for the industrial yeast Saccharomyces cerevisiae against major chemical classes of inhibitors

    Numerous toxic chemical compounds liberated from lignocellulosic biomass pretreatment inhibit subsequent microbial fermentation that pose a significant challenge to a sustainable and renewable bio-based fermentation industry. Toxin removal procedures by physical or chemical means are essentially imp...

  3. Decision support systems for major accident prevention in the chemical process industry : A developers' survey

    Reniers, Genserik L L; Ale, B. J.M.; Dullaert, W.; Foubert, B.

    2006-01-01

    Solid major accident prevention management is characterized by efficient and effective risk assessments. As a means of addressing the efficiency aspect, decision support analysis software is becoming increasingly available. This paper discusses the results of a survey of decision support tools for

  4. Chemicals Industry Vision

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  5. Genomic mechanisms of stress tolerance for the industrial yeast Saccharomyces cerevisiae against the major chemical classes of inhibitors derived from lignocellulosic biomass conversion

    Scientists at ARS developed tolerant industrial yeast that is able to reduce major chemical classes of inhibitors into less toxic or none toxic compounds while producing ethanol. Using genomic studies, we defined mechanisms of in situ detoxification involved in novel gene functions, vital cofactor r...

  6. The renewable chemicals industry

    Christensen, Claus H.; Rass-Hansen, J.; Marsden, Charlotte Clare

    2008-01-01

    per kilogram of desired product to illustrate in which processes the use of renewable resources lead to the most substantial reduction of CO2 emissions. The steps towards a renewable chemicals industry will most likely involve intimate integration of biocatalytic and conventional catalytic processes......The possibilities for establishing a renewable chemicals industry featuring renewable resources as the dominant feedstock rather than fossil resources are discussed in this Concept. Such use of biomass can potentially be interesting from both an economical and ecological perspective. Simple...

  7. Chemical and petrochemical industry

    Staszak, Katarzyna

    2018-03-01

    The potential sources of various metals in chemical and petrochemical processes are discussed. Special emphasis is put on the catalysts used in the industry. Their main applications, compositions, especially metal contents are presented both for fresh and spent ones. The focus is on the main types of metals used in catalysts: the platinum-group metals, the rare-earth elements, and the variety of transition metals. The analysis suggested that chemical and petrochemical sectors can be considered as the secondary source of metals. Because the utilization of spent refinery catalysts for metal recovery is potentially viable, different methods were applied. The conventional approaches used in metal reclamation as hydrometallurgy and pyrometallurgy, as well as new methods include bioleaching, were described. Some industrial solutions for metal recovery from spent solution were also presented.

  8. The future of the chemical industries

    Shinnar, R.

    1991-01-01

    As Lincoln, we first must ask where we are before we ask whither. I'd therefore like to define where our industry is and how it got there before we look at the challenges facing us. If we view the chemical and petroleum industries through the glass of macroeconomics, they look very healthy. Let's start with size. Table 1 shows that these two industries each provide about 10% of the total U.S. manufacturing output. This paper shows the fraction of the total GNP contributed by the chemical industry and by the petroleum industry and compares them with total manufacturing. The authors note that total manufacturing grew more slowly than the total GNP, whereas over the last 40 years, the chemical industry grew close to the rate of the GNP. For a large industry, this is the best we can hope for. The chemical industry is one of the very few major industries that has consistently maintained a positive trade balance

  9. Chemical products and industrial materials

    1995-12-01

    A compilation of all universities, industrial and governmental agencies in Quebec which are actively involved in research and development of chemical products and industrial materials derived from biomass products, was presented. Each entry presented in a standard format that included a description of the major research activities of the university or agency, the principal technologies used in the research, available research and analytical equipment, a description of the research personnel, names, and addresses of contact persons for the agency or university. Thirty entries were presented. These covered a wide diversity of activities including biotechnological research such as genetic manipulations, bioconversion, fermentation, enzymatic hydrolysis and physico-chemical applications such as bleaching, de-inking, purification and synthesis. tabs

  10. Managing major chemical accidents in China: Towards effective risk information

    He, G.; Zhang, L.; Lu, Y.; Mol, A.P.J.

    2011-01-01

    Chemical industries, from their very inception, have been controversial due to the high risks they impose on safety of human beings and the environment. Recent decades have witnessed increasing impacts of the accelerating expansion of chemical industries and chemical accidents have become a major

  11. Chemical Industry Bandwidth Study

    none,

    2006-12-01

    The Chemical Bandwidth Study provides a snapshot of potentially recoverable energy losses during chemical manufacturing. The advantage of this study is the use of "exergy" analysis as a tool for pinpointing inefficiencies.

  12. The chemical industry of Ukraine

    Novikov, I.N.

    1995-01-01

    This work deals with the chemical industry of Ukraine and more particularly with the restructuring proposed by the Ministry of Industry. After having presented some generalities the author focuses on the restructuring programme which includes the improvement of the fertilizers supply for agriculture, the development of facilities for basic organic synthesis, the increase of petroleum based chemicals production, the increase of consumer products production and the reorientation of the chemical industry to more accessible and alternative sources of raw materials such as black and brown coal, oil shale, coke, oil-refining gases, plant raw materials... (O.L.)

  13. Nuclear industry - challenges in chemical engineering

    Sen, S.; Sunder Rajan, N.S.; Balu, K.; Garg, R.K.; Murthy, L.G.K.; Ramani, M.P.S.; Rao, M.K.; Sadhukhan, H.K.; Venkat Raj, V.

    1978-01-01

    As chemical engineering processes and operations are closely involved in many areas of nuclear industry, the chemical engineer has a vital role to play in its growth and development. An account of the major achievements of the Indian chemical engineers in this field is given with view of impressing upon the faculty members of the Indian universities the need for taking appropriate steps to prepare chemical engineers suitable for nuclear industry. Some of the major achievements of the Indian chemical engineers in this field are : (1) separation of useful minerals from beach sand, (2) preparation of thorium nitrate of nuclear purity from monazite, (3) processing of zircon sand to obtain nuclear grade zirconium and its separation from hafnium to obtain zirconium metal sponge, (4) recovery of uranium from copper tailings, (5) economic recovery of nuclear grade uranium from low grade uranium ores found in India, (6) fuel reprocessing, (7) chemical processing of both low and high level radioactive wastes. (M.G.B.)

  14. SITO, Environmental Impact of Major Industrial Activities

    Mazzini, M.; Oriolo, F.

    1982-01-01

    1 - Description of problem or function: SITO evaluates the impact of major industrial activities on the environment. The method applied accounts for the alterations of ecological, physico-chemical, aesthetical and social values caused by the development of the considered activity. Such values are usually considered as not quantifiable but very important for the quality of the environment. 2 - Method of solution: The territory affected by the industrial project is described in a one-dimensional (for example a coast development) or two-dimensional representation as a lattice of square meshes of equal size. A major feature of the model is that the impact factors are considered with reference to each single mesh. The following vectors and matrices are evaluated: a) Matrix of environmental quality characteristics. It is the product of the environmental quality index matrix and the vector of weighting factors. b) Vector of the initial environmental values. It is the sum of the columns of matrix (a). c) Matrix obtained when the environmental quality characteristics matrix is multiplied by the vector of project action factors, taking into account distance effects. d) Vector of the final environmental values. This is the sum of columns of matrix (c)

  15. International Trade of Croatian Chemical Industry Summary

    Goran Buturac

    2009-07-01

    Full Text Available In this paper Croatian chemical industry in international trade is analyzed by applying k-means cluster method. The work is oriented toward the role and contribution of individual product groups in total trade patterns of chemical industry. The RCA indicator, GL index, RUV indicator and the share of individual chemical products in the total export of chemical industry are used as variables. The products at the fourdigit level of the SITC are used as objects. The cluster of chemical products in which Croatia has comparative advantages contributes significantly in export structure. At the same time this cluster consists of a few product types thus indicating strong export concentration of Croatian chemical industry. Regarding of the value of RUV indicator, Croatian chemical industry benefits most in the international trade with antibiotics and medicines that contain antibiotics. Beside fertilizers, these two products have the greatest share in the export structure. The great majority of the chemical products have the low level of intra-industry trade specialization.

  16. COMPOSITIONAL CHANGES OF MAJOR CHEMICAL ...

    Preferred Customer

    3Ege University, Department of Botany, Bornova, Izmir, Turkey ... received from seed germ [6], which is used as alternative protein source for the industry. The ... and sugars of carob pods during fruit development were studied as well.

  17. Managing major chemical accidents in China: Towards effective risk information

    He Guizhen; Zhang Lei; Lu Yonglong; Mol, Arthur P.J.

    2011-01-01

    Chemical industries, from their very inception, have been controversial due to the high risks they impose on safety of human beings and the environment. Recent decades have witnessed increasing impacts of the accelerating expansion of chemical industries and chemical accidents have become a major contributor to environmental and health risks in China. This calls for the establishment of an effective chemical risk management system, which requires reliable, accurate and comprehensive data in the first place. However, the current chemical accident-related data system is highly fragmented and incomplete, as different responsible authorities adopt different data collection standards and procedures for different purposes. In building a more comprehensive, integrated and effective information system, this article: (i) reviews and assesses the existing data sources and data management, (ii) analyzes data on 976 recorded major hazardous chemical accidents in China over the last 40 years, and (iii) identifies the improvements required for developing integrated risk management in China.

  18. The chemical industry - friend to the environment?

    1992-01-01

    ''The Chemical Industry - Friend to the Environment?'' was a symposium organised by the North East Region committee of the Industrial Division of the Royal Society of Chemistry. This volume contains typescripts from all the lectures given at the symposium. The general public appreciate the material comforts the Chemical Industry provides, for example textiles, ceramics, steel, speciality chemicals, drugs, prosthetics etc. However, for many their comfort is spoiled by the chemical poisoning of the environment through slag heaps, beaches and countryside littered with non-biodegradable unsightly plastic containers, poor air quality through NO x , CO 2 and chlorofluorocarbon emissions, and of course, nuclear waste. The occasional spillage of hazardous chemicals through road, rail and sea accidents do nothing to improve the Industry's image. The majority of these topics were discussed, though no one presumed to know how to remove the problems entirely but many suggestions were put forward as to how this might be achieved. Of the 13 papers presented three were specifically concerned with recycling of plastics, 9 with the environmental impacts of chemicals and one, which is indexed separately, was concerned with radioactive discharges into the environment from the Sellafield reprocessing plant. (Author)

  19. Review of tribological sinks in six major industries

    Imhoff, C.H.; Brown, D.R.; Hane, G.J.; Hutchinson, R.A.; Erickson, R.; Merriman, T.; Gruber, T.; Barber, S.

    1985-09-01

    Friction and material wear occur throughout all industries and are involved in many processes within each industry. These conditions make assessing tribological activity overall in industry very complex and expensive. Therefore, a research strategy to obtain preliminary information on only the most significant industrial tribological sinks was defined. The industries examined were selected according to both the magnitude of overall energy consumption (particularly machine drive) and the known presence of significant tribological sinks. The six industries chosen are as follows: mining, agriculture, primary metals, chemicals/refining, food, and pulp and paper. They were reviewed to identify and characterize the major tribology sinks. It was concluded that wear losses are greater than friction losses, and that reducing wear rates would improve industrial productivity.

  20. Applying industrial symbiosis to chemical industry: A literature review

    Cui, Hua; Liu, Changhao

    2017-08-01

    Chemical industry plays an important role in promoting the development of global economy and human society. However, the negative effects caused by chemical production cannot be ignored, which often leads to serious resource consumption and environmental pollution. It is essential for chemical industry to achieve a sustainable development. Industrial symbiosis is one of the key topics in the field of industrial ecology and circular economy, which has been identified as a creative path leading to sustainability. Based on an extensively searching for literatures on linking industrial symbiosis with chemical industry, this paper aims to review the literatures which involves three aspects: (1) economic and environmental benefits achieved by chemical industry through implementing industrial symbiosis, (2) chemical eco-industrial parks, (3) and safety issues for chemical industry. An outlook is also provided. This paper concludes that: (1) chemical industry can achieve both economic and environmental benefits by implementing industrial symbiosis, (2) establishing eco-industrial parks is essential for chemical industry to implement and improve industrial symbiosis, and (3) there is a close relationship between IS and safety issues of chemical industry.

  1. Chemical sensors for nuclear industry

    Gnanasekaran, K.I.

    2012-01-01

    Development of chemical sensors for detection of gases at trace levels for applications in nuclear industry will be highlighted. The sensors have to be highly sensitive, reliable and rugged with long term stability to operate in harsh industrial environment. Semiconductor and solid electrolyte based electrochemical sensors satisfy the requirements. Physico-chemical aspects underlying the development of H 2 sensors in sodium and in cover gas circuit of the Fast breeder reactors for its smooth functioning, NH 3 and H 2 S sensors for use in Heavy water production industries and NO x sensors for spent fuel reprocessing plants will be presented. Development of oxygen sensors to monitor the oxygen level in the reactor containments and sodium sensors for detection of sodium leakages will also be discussed. The talk will focus the general aspects of identification of the sensing material for the respective analyte species, development of suitable chemical route for preparing them as fine powders, the need for configuring them in thick film or thin film geometries and their performance. Pulsed laser deposition method, an elegant technique to prepare the high quality thin films of multicomponent oxides is demonstrated for preparation of nanostructured thin films of complex oxides and its use in tailoring the morphology of the complex sensing material in the desired form by optimizing the in-situ growth conditions. (author)

  2. Chemical Industry Waste water Treatment

    Nasr, F.A.; Doma, H.S.; El-Shafai, S.A.; Abdel-HaJim, H.S.

    2004-01-01

    Treatment of chemical industrial wastewater from building and construction chemicals factory and plastic shoes manufacturing factory was investigated. The two factories discharge their wastewater into the public sewerage network. The results showed the wastewater discharged from the building and construction chemicals factory was highly contaminated with organic compounds. The average values of COD and BOD were 2912 and 150 mg O 2 /l. Phenol concentration up to 0.3 mg/l was detected. Chemical treatment using lime aided with ferric chloride proved to be effective and produced an effluent characteristics in compliance with Egyptian permissible limits. With respect to the other factory, industrial wastewater was mixed with domestic wastewater in order to lower the organic load. The COD, BOD values after mixing reached 5239 and 2615 mg O 2 /l. The average concentration of phenol was 0.5 mg/l. Biological treatment using activated sludge or rotating biological contactor (RBe) proved to be an effective treatment system in terms of producing an effluent characteristic within the permissible limits set by the law

  3. The U.S. Chemical Industry, the Products It Makes

    Chemical and Engineering News, 1972

    1972-01-01

    This section of the annual report on the chemical industry presents data on these areas of chemical production: growth rates, man-made fibers; the 50 largest volume chemicals, major inorganics and organics, plastics, drugs, magnesium, and paint. Includes production figures for 1961, 1969, 1970, 1971 and percent change for 1970-71 and for 1961-71.…

  4. An outline of the Dutch chemical industry and petrochemical industry

    Heesen, Th.J.; Terwoert, J.; Hoefnagels, F.

    1996-03-01

    An overview is given of the most important processes and products of the chemical and petrochemical industry in the Netherlands. Also attention is paid to the material balance and the energy balance of those industries. refs

  5. Industrial chemical exposure: guidelines for biological monitoring

    Lauwerys, Robert R; Hoet, Perrine

    2001-01-01

    .... With Third Edition of Industrial Chemical Exposure you will understand the objectives of biological monitoring, the types of biological monitoring methods, their advantages and limitations, as well...

  6. Economic Aspects of the Chemical Industry

    Koleske, Joseph V.

    Within the formal disciplines of science at traditional universities, through the years, chemistry has grown to have a unique status because of its close correspondence with an industry and with a branch of engineering—the chemical industry and chemical engineering. There is no biology industry, but aspects of biology have closely related disciplines such as fish raising and other aquaculture, animal cloning and other facets of agriculture, ethical drugs of pharmaceutical manufacture, genomics, water quality and conservation, and the like. Although there is no physics industry, there are power generation, electricity, computers, optics, magnetic media, and electronics that exist as industries. However, in the case of chemistry, there is a named industry. This unusual correspondence no doubt came about because in the chemical industry one makes things from raw materials—chemicals—and the science, manufacture, and use of chemicals grew up together during the past century or so.

  7. Education-industry partnership: the chemical industry experience

    Bricknell, D.J.

    1994-01-01

    The European Chemical Industry and the Nuclear Power Industry share similar problems and hopefully can share similar solutions to them. A recent survey of public opinion conducted on behalf of the chemical industry has shown that the general public knows little about the industry and does not trust it to behave responsibly. The industry is responding in two ways: firstly to demonstrate that it is a responsible member of the community by operating to the highest safety and environmental standards and by being open in its dealings with the public on such matters. Secondly the industry is working with the education system to ensure that the public has the opportunity to gain a good education in science, is able to make rational judgments about risks and benefits and is better able to understand and accept the role of the chemical industry in society

  8. Control in the Chemical Industry

    Jones, R. G.

    1974-01-01

    Discusses various control techniques used in chemical processes, including measuring devices, controller functions, control valves, and feedforward and feedback actions. Applications of control to a real chemical plant are exemplified. (CC)

  9. Hazards of nuclear reactors and other major industrial complexes

    Farmer, F.R.

    1982-01-01

    Some of the problems of quantified risk analysis of the hazards of nuclear reactors and other major industrial complexes are raised particularly as seen by the proponents and opponents of atomic energy. These are exemplified by discussing the chemical accidents at Flixborough and Canvey Island and the Light Water Reactor Studies. The role of risk analysis in improving knowledge of the systems studies, improving methods of analysis, identifying weaknesses in systems and in improving engineering/maintenance/operation is also stressed. (U.K.)

  10. Transformation Leadership in Chemical Industry

    Alsherehy, Fahad A.

    2018-01-16

    SABIC is a global leader in diversified chemicals headquartered in Riyadh, Saudi Arabia. It manufactures on a global scale in the Americas, Europe, Middle East and Asia Pacific, making distinctly different kinds of products: chemicals, commodity and high performance plastics, agri-nutrients and metals. The company has more than 35,000 employees worldwide and operates in more than 50 countries, with innovation hubs in five key geographies ヨ USA, Europe, Middle East, South East Asia and North East Asia.

  11. Transformation Leadership in Chemical Industry

    Alsherehy, Fahad A.

    2018-01-01

    SABIC is a global leader in diversified chemicals headquartered in Riyadh, Saudi Arabia. It manufactures on a global scale in the Americas, Europe, Middle East and Asia Pacific, making distinctly different kinds of products: chemicals, commodity and high performance plastics, agri-nutrients and metals. The company has more than 35,000 employees worldwide and operates in more than 50 countries, with innovation hubs in five key geographies ヨ USA, Europe, Middle East, South East Asia and North East Asia.

  12. Beyond petrochemicals: The renewable chemicals industry

    Vennestrøm, P.N.R.; Osmundsen, Christian Mårup; Christensen, C.H.

    2011-01-01

    From petroleum to bioleum: Since biomass is a limited resource, it is necessary to consider its best use. The production of select chemicals from biomass, rather than its use as fuel, could effectively replace the use of petroleum in the chemical industry, but the inherent functionality of biomas...

  13. Job Relocation is High in Chemical Industry.

    Chemical and Engineering News, 1979

    1979-01-01

    The chances of an employee being relocated are higher in the chemical and plastics industries than in U.S. business as a whole. But the benefits provided by chemical and plastics companies to employees shifted to other locations are generally better than average. (Author/BB)

  14. The modern alchemy: The chemical industry

    Valencia Giraldo, Asdrubal

    2002-01-01

    A brief history is presented on the development of chemistry from the antiquity, through alchemy, iatrochemistry, electrochemistry, atomic theory and the XVII, XVIII, XIX and X X centuries discoveries up to modern chemistry, fine chemistry, chemical engineering and the modern chemical industry with all of its consequences

  15. Chemicals Industry New Process Chemistry Roadmap

    none,

    2000-08-01

    The Materials Technology I workshop was held in November 1998 to address future research needs for materials technology that will support the chemical industry. Areas covered included disassembly, recovery, reuse and renewable technology; new materials; and materials measurement and characterization. The Materials Technology II workshop was held in September 1999 and covered additives, modeling and prediction and an additional segment on new materials. Materials Technology Institute (MTI) for the Chemical Process Industries, Inc. and Air Products & Chemicals lead the workshops. The Materials Technology Roadmap presents the results from both workshops.

  16. Fifty-Year Trends in the Chemical Industry: What Do They Mean for Chemical Education?

    Tolman, Chadwick A.; Parshall, George W.

    1999-01-01

    Describes major changes that have occurred in the chemical industry over the last 50 years including trends in the development of products and processes, changes in chemical manufacturing, the globalization of business, and modifications of research laboratory practices. Discusses implications for chemistry education and predictions for future…

  17. Major recent trends in the oil industry

    Babusiaux, D.

    2000-01-01

    The article shows how globalisation of the petroleum industry continues to expand and accelerate with a strong trend to internalisation of national companies and corporate share capital. Globalisation tends to safeguard against shortages and the dependence of the West on the Middle East. Although geopolitical factors are important, it is economic considerations that are decisive. Technological innovation is the key to boosting competitiveness and offsetting the depletion of reserves. Worldwide, energy interdependence is growing but environmental factors cannot be overlooked. The behaviour of cartels with respect to pricing is explained

  18. Wireless sensor networks in chemical industry

    Minhas, A.A.; Jawad, S.

    2010-01-01

    Recent advances in wireless technology are a clear indication of the commercial promise of wireless networks. Industrial wireless sensing has now become more economical, efficient and secure as compared to traditional wired sensing. Wireless Sensor Networks (WSN) are successfully being used for process monitoring and control of many industrial plants. This paper explores how Chemical Industry in particular can benefit from the application of WSN technology. Various examples of successful implementation are cited. In order to address the industrial requirements, we propose a low power and low cost solution for process monitoring by implementing WSN. (author)

  19. Risk management programs in the chemical industry from Bhopal onward

    Cramer, J.J.; Greenberg, H.R.

    1992-01-01

    Chemical process safety has long been a consideration in industry but the tragedy at Bhopal in late 1984 resulted in significantly increased attention from industry, government, and the public. Whereas Bhopal had a major effect on regulations in the US, two earlier, highly publicized accidents affected regulations in the United Kingdom and Europe. A 1974 cyclohexane explosion at a chemical manufacturing plant in Flixborough, England, caused a number of fatalities, while a 1976 runaway reaction at a chemical works near Sevesco, Italy, contaminated surrounding farmland and water supplies with dioxin. Although the public's interest can be fickle, the residual concern from all these incidents has been sufficient to affect important regulatory and industry initiatives in the US and abroad. The development of the most important of the US initiatives are reviewed here. Common elements in various process safety management programs are noted and the latest regulatory developments reported. Application can be made to the nuclear industry

  20. Eastern Europe major opportunity for oil industry

    Kohlmorgen, T.

    1991-01-01

    The joint effort to overcome the political, technical, and commercial obstacles to adequate energy supply in Eastern Europe may pose one of the biggest entrepreneurial challenges of the decades to come. This article focuses on the former East Germany and Poland, Czechoslovakia, and Hungary. They are the markets most likely to be developed in the near future. The best data are available on East Germany. Therefore, the forecast material will concentrate on that region. But the trends seen there will apply to the other countries, keeping in mind though, that East Germany was regarded as the most advanced member of the Former East Bloc in industrial development. A look at some key economic data reveals the potential of the oil markets. Looking at per capita energy consumption, these countries were real world champions. In view of the low standard of living, this is the yardstick of living, this is the yardstick for an unbelievable waste of scarce resources and indicates a total lack of respect for the environment

  1. Nuclear techniques in coal and chemical industries

    Elbern, A.W.; Leal, C.A.

    1980-01-01

    The use of nuclear techniques for the determination of important parameters in industrial installations is exemplified; advantages of these techniques over other methods conventionally used are pointed out. The use of radiotracers in the study of physical and chemical phenomena occurring in the chemical industry is discussed. It is also shown that, using certain radioisotopes, it is possible to construct devices which enable, for example, the determination of the ash content in coal samples. These devices are economical and easy to be installed for the on-line control during coal transportation. (C.L.B.) [pt

  2. Research and chemical industry in 90's

    Trapasso, I.

    1992-01-01

    This paper examines the importance of research with respect to changes taking place within the chemical industry. Specific areas having a significant impact on the future evolution of the industry are identified. The chemical industry is highly R ampersand D intensive with respect to its overall sales volume, as well as, to R ampersand D levels in other industries; and R ampersand D has been a dominant factor influencing the restructuring, on a global scale, of this industry. In the 90's, the industry is expected to have a supply model which is based on the production of marketable high-technology products and integrated systems, developed through coordinated research in multi-disciplinary scientific fields. The optimum strategic and organizational strategies which are to be adopted by the industry during this decade are discussed with reference to the directions being taken by a large multi-national firm in developing strategies in various areas, e.g., new prime materials, environmental protection, pharmacology, and biotechnology. A look is given at recent developments in the sector of advanced polymers, with attention given to processes involving polymer genetics, new products with a wide range of applications and those offering a high level of environmental compatibility. A review of new materials development includes an assessment of prospects for biodegradable plastics based on natural carbohydrates

  3. Safety Considerations in the Chemical Process Industries

    Englund, Stanley M.

    There is an increased emphasis on chemical process safety as a result of highly publicized accidents. Public awareness of these accidents has provided a driving force for industry to improve its safety record. There has been an increasing amount of government regulation.

  4. Industrial emerging chemicals in the environment

    Vojinović-Miloradov Mirjana B.

    2014-01-01

    Full Text Available In the recent time, considerable interest has grown concerning the presence of the emerging industrial chemicals, EmIC. They are contaminants that have possible pathway to enter to the environment and they are dominantly released by industrial and anthropogenic activities. EmIC are applied in different fields using as industrial chemicals (new and recently recognized, global organic contaminants (flame retardant chemicals, pharmaceuticals (for both human and animal uses, endocrine-modulating compounds, biological metabolites, personal care products, household chemicals, nanomaterial (energy storage products, lubricants, anticorrosive and agriculture chemicals and others that are applied to a wide variety of everyday items such as clothing, upholstery, electronics and automobile interiors. NORMAN (Network of reference laboratories for monitoring of emerging environmental pollutants has established an open, dynamic, list of emerging substances and pollutants. EmIC have been recently detected in the environment due to their long-term presence, pseudo-persistence and increased use. Improvements in sophisticated analytical methods and time integrative passive sampling have enabled the identification and quantification of EmIC, in very low concentrations (ppb, ppt and lower, which likely have been present in all environmental mediums for decades. Passive technology is an innovative technique for the time-integrated measurement of emerging contaminants in water, sediment, soil and air. Passive samplers are simple handling cost-effective tool that could be used in environmental monitoring programmes. These devices are now being considered as a part of an emerging strategy for monitoring a range of emerging industrial chemicals and priority pollutants in the aquatic environment. EmIC are substances that are not included in the routine monitoring programmes and whose fate, behaviour and (ecotoxicological effects are still not well understood. Emerging

  5. Nuclear industry - challenges in chemical engineering

    Sen, S.; Sunder Rajan, N.S.; Balu, K.; Garg, R.K.; Murthy, L.G.K.; Ramani, M.P.S.; Rao, M.K.; Sadhukhan, H.K.; Venkat Raj, V.

    1978-01-01

    Chemical engineering processes and operations are closely involved in every step of the nuclear fuel cycle. Starting from mining and milling of the ore through the production of fuel and other materials and their use in nuclear reactors, fuel reprocessing, fissile material recycle and treatment and disposal of fission product wastes, each step presents a challenge to the chemical engineer to evolve and innovate processes and techniques for more efficient utilization of the energy in the atom. The requirement of high recovery of the desired components at high purity levels is in itself a challenge. ''Nuclear Grade'' specifications for materials put a requirement which very few industries can satisfy. Recovery of uranium and thorium from low grade ores, of heavy water from raw water, etc. are examples. Economical and large scale separation of isotopes particularly those of heavy elements is a task for which processess are under various stages of development. Further design of chemical plants such as fuel reprocessing plants and high level waste treatment plants, which are to be operated and maintained remotely due to the high levels of radio-activity call for engineering skills which are being continually evolved. In the reactor, analysis of the fluid mechanics and optimum design of heat removal system are other examples where a chemical engineer can play a useful role. In addition to the above, the activities in the nuclear industry cover a very wide range of chemical engineering applications, such as desalination and other energy intensive processes, radioisotope and radiation applications in industry, medicine and agriculture. (auth.)

  6. Vacuum technology in the chemical industry

    Jorisch, Wolfgang

    2015-01-01

    Based on the very successful German edition and a seminar held by the German Engineers` Association (VDI) on a regular basis for years now, this English edition has been thoroughly updated and revised to reflect the latest developments. It supplies in particular the special aspects of vacuum technology, applied vacuum pump types and vacuum engineering in the chemical, pharmaceutical and process industry application-segments. The text includes chapters dedicated to latest European regulations for operating in hazardous zones with vacuum systems, methods for process pressure control and regulati

  7. Health Impacts of Air Pollution around Major Industrial Areas

    Mathilde Pascal

    2013-01-01

    Full Text Available We performed a literature review to investigate how epidemiological studies have been used to assess the health consequences of living in the vicinity of industries. 77 papers on the chronic effects of air pollution around major industrial areas were reviewed. Major health themes were cancers (27 studies, morbidity (25 studies, mortality (7 studies, and birth outcome (7 studies. Only 3 studies investigated mental health. While studies were available from many different countries, a majority of papers came from the United Kingdom, Italy, and Spain. Several studies were motivated by concerns from the population or by previous observations of an overincidence of cases. Geographical ecological designs were largely used for studying cancer and mortality, including statistical designs to quantify a relationship between health indicators and exposure. Morbidity was frequently investigated through cross-sectional surveys on the respiratory health of children. Few multicenter studies were performed. In a majority of papers, exposed areas were defined based on the distance to the industry and were located from 20 km from the plants. Improving the exposure assessment would be an asset to future studies. Criteria to include industries in multicenter studies should be defined.

  8. Probabilistic safety assessment in the chemical and nuclear industries

    Fullwood, Ralph R

    2000-01-01

    Probabilistic Safety Analysis (PSA) determines the probability and consequences of accidents, hence, the risk. This subject concerns policy makers, regulators, designers, educators and engineers working to achieve maximum safety with operational efficiency. Risk is analyzed using methods for achieving reliability in the space program. The first major application was to the nuclear power industry, followed by applications to the chemical industry. It has also been applied to space, aviation, defense, ground, and water transportation. This book is unique in its treatment of chemical and nuclear risk. Problems are included at the end of many chapters, and answers are in the back of the book. Computer files are provided (via the internet), containing reliability data, a calculator that determines failure rate and uncertainty based on field experience, pipe break calculator, event tree calculator, FTAP and associated programs for fault tree analysis, and a units conversion code. It contains 540 references and many...

  9. Lessons learned from major accidents relating to ageing of chemical plants

    GYENES ZSUZSANNA; WOOD Maureen

    2016-01-01

    Major industrial accidents that occurred in the past and even recently, such as the Flixborough, UK in 1974, the ConocoPhillips, UK in 2001 and the Chevron, US in 2012 show that ageing is still a disturbing phenomenon present in chemical process industries. Further to these cases, it is estimated that 30 % of the major accidents reported in the eMARS accident database run by the Major Accident Hazards Bureau of the European Commission are connected to at least one ageing phenomenon. It is som...

  10. Carbon source in the future chemical industries

    Hofmann, Peter; Heinrich Krauch, Carl

    1982-11-01

    Rising crude oil prices favour the exploitation of hitherto unutilised energy carriers and the realisation of new technologies in all sectors where carbon is used. These changed economic constraints necessitate both savings in conventional petrochemistry and a change to oil-independent carbon sources in the chemical industry. While, in coal chemistry, the synthesis and process principles of petrochemistry — fragmentation of the raw material and subsequent buildup of molecular structures — can be maintained, the raw material structure largely remains unchanged in the chemistry of renewable raw materials. This lecture is to demonstrate the structural as well as the technological and energy criteria of the chemistry of alternative carbon sources, to forecast the chances of commercial realization and to discuss some promising fields of research and development.

  11. Ultrasonic filtration of industrial chemical solutions

    Cosma, T.

    1974-01-01

    The practical results obtained as a result of filtering industrial chemical solutions under continuous flow conditions with the aid of an ultrasonic filter are presented. The main part of the assembly consists of an ultrasonic generator with an output power of about 400 W and the filtration assembly, in which there is a magnetostrictive amplifier constructed for 20.5 kHz. In addition to ensuring a continuous flow of filtered solution, ultrasonic filters can be replaced or cleaned at intervals of time that are 8-10 times greater than in the case of mechanical filters. They yield considerably better results as far as the size of the filtered particles is concerned. The parameters on which filtration quality depends are also presented.

  12. The Asia/Pacific chemical industry

    Tattum, L.

    1993-01-01

    The year of the Rooster may herald interesting change for the Asia/Pacific region. Local dynamics are shifting away from Japan, the traditional motor of the region, now in recession toward China, which is increasingly catching the imagination of investors. Japan's lead in major petrochemicals has eroded since restructuring of domestic industry. Ten years ago Japan was the location for 76% of Asian ethylene capacity, according to Chem Systems. It also held 89% of styrene capacity, 69% of polyolefins, and 62% of polyvinyl chloride (PVC). Today it accounts for only 46% of Asian ethylene, 53% of styrene, 40% of polyolefin, and 37% of PVC capacity. Another country to watch is Vietnam many companies are waiting for sanctions to lift on US investment. When they do, this country of rich oil reserves but per capita income of only $200, will look to petrochemicals as a source of foreign investment

  13. Using game theory to improve safety within chemical industrial parks

    Reniers, Genserik

    2013-01-01

    Though the game-theoretic approach has been vastly studied and utilized in relation to economics of industrial organizations, it has hardly been used to tackle safety management in multi-plant chemical industrial settings. Using Game Theory for Improving Safety within Chemical Industrial Parks presents an in-depth discussion of game-theoretic modelling which may be applied to improve cross-company prevention and -safety management in a chemical industrial park.   By systematically analyzing game-theoretic models and approaches in relation to managing safety in chemical industrial parks, Using Game Theory for Improving Safety within Chemical Industrial Parks explores the ways game theory can predict the outcome of complex strategic investment decision making processes involving several adjacent chemical plants. A number of game-theoretic decision models are discussed to provide strategic tools for decision-making situations.   Offering clear and straightforward explanations of methodologies, Using Game Theor...

  14. A future perspective on the role of industrial biotechnology for chemicals production

    Woodley, John; Breuer, Michael; Mink, Daniel

    2013-01-01

    The development of recombinant DNA technology, the need for renewable raw materials and a green, sustainable profile for future chemical processes have been major drivers in the implementation of industrial biotechnology. The use of industrial biotechnology for the production of chemicals is well...... established in the pharmaceutical industry but is moving down the value chain toward bulk chemicals. Chemical engineers will have an essential role in the development of new processes where the need is for new design methods for effective implementation, just as much as new technology. Most interesting...

  15. Assessment of Physicochemical and Major Chemical Parameters of ...

    The study was undertaken to assess the physicochemical and major chemical parameters of water springs in Iddo Wara Wale area of Dale Sadi district of Kellem Wollega, Oromia, Ethiopia. A total of 20 L samples were collected from five densely populated springs, namely: Ittisa, Abba Moga, Kersa, Ele Gonda and Merfata ...

  16. The chemical industry of uranium in France

    Goldschmidt, B.

    1955-01-01

    The actual CEA program is concerned with the construction of two large graphite reactors, each of those containing at least one hundred tons of uranium metal with nuclear purity. The uranium for these two reactors will be regularly supplied by new resources discovered in France and Madagascar in the last five years. The working and treatment of such ore have led to the creation of an important french industry of which the general outline and principle are described. The operated ores have got different natures and concentration, individual characteristics are described for the main ores.The most high-grade ore are transported to a central plant in Bouchet near Paris; the low-grade ore are concentrated by physical methods or chemical processes of which principles and economy are studied with constancy. The acid processes are the only used until now, although the carbonated alkaline processes has been studied in France. The next following steps after the acid process until the obtention of uranium rich concentrate are described. The purification steps of uranium compounds to nuclear purity material are described as well as the steps to elaborate metal of which the purity grade will be specify. Finally, the economic aspects of uranium production difficulty will be considered in relation with technical progresses which we can expect to achieve in the future. (M.P.)

  17. Interventions to Encourage and Facilitate Greener Industrial Chemicals Selection

    Faulkner, David

    2017-01-01

    Despite their ubiquity in modern life, industrial chemicals are poorly regulated in the United States. Statutory law defines industrial chemicals as chemicals that are not foods, drugs, cosmetics, nor pesticides, but may be used in consumer products, and this distinction places them under the purview of the Toxic Substances Control Act (TSCA), which received a substantial update when the US congress passed a revision of the act in 2016. The revised law, the Frank R. Lautenberg Chemical Safety...

  18. Global process industry initiatives to reduce major accident hazards

    Pitblado, Robin [DNV Energy Houston, TX (United States). SHE Risk Management; Pontes, Jose [DNV Energy Rio de Janeiro, RJ (Brazil). Americas Region; Oliveira, Luiz [DNV Energy Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Since 2000, disasters at Texas City, Toulouse, Antwerp, Buncefield, P-36 and several near total loss events offshore in Norway have highlighted that major accident process safety is still a serious issue. Hopes that Process Safety Management or Safety Case regulations would solve these issues have not proven true. The Baker Panel recommended to BP several actions mainly around leadership, incentives, metrics, safety culture and more effective implementation of PSM systems. In Europe, an approach built around mechanical integrity and safety barriers, especially relating to technical safety systems, is being widely adopted. DNV has carried out a global survey of process industry initiatives, by interview and by literature review, for both upstream and downstream activities, to identify what the industry itself is planning to implement to enhance process safety in the next 5 - 10 years. This shows that an approach combining Baker Panel and EU barrier approaches and some nuclear industry real-time risk management approaches might be the best means to achieve a factor of 3-4 improvement in process safety. (author)

  19. Chemicals-Industry of the Future; Industrial Partnerships: Advancing Energy and Environmental Goals

    DOE Office of Industrial Technologies

    2001-01-01

    This tri-fold brochure describe the partnering activities of the Office of Industrial Technologies' (OIT) Industries of the Future (IOF) for Chemicals. Information on what works for the Chemicals industry, examples of successful partnerships, and benefits of partnering with OIT are included

  20. News from Online: Industrial Chemicals and Polymers

    Sweeney Judd, Carolyn

    1999-02-01

    Paper or plastic? I am asked this question every time I go grocery shopping. Asked another way, the question is, "Which polymer do you want?" To learn about polymers, go shopping at a great site from the University of Southern Mississippi, The Macrogalleria, a cyberwonderland of polymer fun at http://www.psrc.usm.edu/macrog/index.html . Plan to spend some time here. Bring along Chime and Shockwave plug-ins or download them from The Macrogalleria. The Macrogalleria shopping mall is divided into five levels. On the first level, Polymers are Everywhere at http:/ /www.psrc.usm.edu/macrog/floor1.html, you can visit stores selling sporting goods, food, and clothing. Learn about natural polymers in shoes and in French fries at http://www.psrc.usm.edu/macrog/natupoly.html . Find out about nylon in toothbrushes at http://www.psrc.usm.edu/macrog/nylon.html and about carbon fibers in tennis racquets at http://www.psrc.usm.edu/macrog /carfib.html-great graphics and even better chemistry. Skip up to level three for How They Work at http:/ /www.psrc.usm.edu/macrog/floor3.html. Take a look at the history of rubber on The Cross-linking Page at http:/ /www.psrc.usm.edu/macrog/xlink.html. Move on to level four for Makin' Polymers at http://www.psrc.usm.edu/macrog /floor4.html. Let's go right to the Ziegler-Natta Vinyl Polymerization at http://www.psrc.usm.edu/macrog/ziegler.html . Don't miss the humor in the initial explanation of the process. This page is excellent-with graphics, reactions, and a movie of a polymerization ( http://www.psrc.usm.edu/macrog/movies/zns.html ). This movie is worth seeing several times. Next take a look at another catalyst metallocene at http:/ /www.psrc.usm.edu/macrog/mcene.html. Explanations, graphics, and mechanisms help make this site worth visiting and great for teaching. Several people contributed to The Macrogalleria, with major contributions from Mark Michalovic of the University of Southern Mississippi. Grants were from POLYED, a joint committee

  1. Safety- and Risk Analysis Activities in Chemical Industry in Europe

    Kozine, Igor; Duijm, Nijs Jan; Lauridsen Kurt

    2001-01-01

    European and International mechanism of handling safety- and risk-related matters. So, the Organisation for Economic Co-operation and Development's (OECD) core objective on risk management is to support Member countries' efforts to develop national policies and actions, and, where appropriate, to develop and implement international risk management measures. In support of this objective, the OECD Risk Management Programme focuses on two areas: (1) developing methods and technical tools that can be used by OECD and Member countries to enhance their current risk management programmes; and (2) identifying specific chemical exposures of concern in Member countries and evaluating possible risk management opportunities. The current paper highlights the EU legislation on major accident hazards related to the chemical industry, differences in the national approaches to risk analyses in the process industry and European-scale activity in improving the understanding of the sources of uncertainty in risk assessments

  2. Biobased chemicals: the convergence of green chemistry with industrial biotechnology.

    Philp, Jim C; Ritchie, Rachael J; Allan, Jacqueline E M

    2013-04-01

    Policy issues around biobased chemicals are similar to those for biobased plastics. However, there are significant differences that arise from differences in production volumes and the more specific applications of most chemicals. The drivers for biobased chemicals production are similar to those for biobased plastics, particularly the environmental drivers. However, in Europe, biobased chemical production is further driven by the need to improve the competitiveness of the chemicals industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Major national human biomonitoring programs in chemical exposure assessment

    Judy Choi

    2015-07-01

    Full Text Available Human biomonitoring (HBM programs have been established in several countries around the world in order to monitor the levels of chemical exposures in the general population and qualify health risk assessment of national and international interest. Study design, population, sample collection, and chemical analysis must be considered when comparing and interpreting the results. In this review, the objectives and brief descriptions of the major national HBM programs in North America, Europe, and Asia are provided. Similarities and differences observed from a comparative analysis among these programs, including the stratification of data according to age, sex, socioeconomic background, etc. as well as the identification of chemical exposure associated with food intake, are discussed. Overall, although there are some discrepancies in the study designs among the reviewed national HBM programs, results from the programs can provide useful information such as chemical levels found within the general population of a country that can be compared. Furthermore, the results can be used by regulatory authorities or the government to enforce legislations in order to reduce the exposure of chemicals into the human body.

  4. Computer integrated manufacturing in the chemical industry : Theory & practice

    Ashayeri, J.; Teelen, A.; Selen, W.J.

    1995-01-01

    This paper addresses the possibilities of implementing Computer Integrated Manufacturing in the process industry, and the chemical industry in particular. After presenting some distinct differences of the process industry in relation to discrete manufacturing, a number of focal points are discussed.

  5. Management of change: Lessons learned from staff reductions in the chemical process industry

    Zwetsloot, G.I.J.M.; Gort, J.; Steijger, N.; Moonen, C.

    2007-01-01

    Increasing global competition and shareholder pressure are causing major changes in the chemical industry. Over the last decade companies have been continuously improving staff efficiency. As a result, most modern chemical plants can be regarded as lean. Plans to further reduce the number of staff

  6. Chemical industrial areas and their dynamic danger behaviour

    Reniers, Genserik L L; Audenaert, Amaryllis; Dullaert, W.; Soudan, K.

    2007-01-01

    Chemical industrial areas or so-called chemical clusters consist of various companies situated next to each other. Such areas are composed of hundreds of chemical installations exhibiting danger to a certain degree for initiating or continuing knock-on effects. In this paper, a methodology to model

  7. Milestones in 150 years of the chemical industry

    Morris, P.J.T.; Campbell, W.A.; Roberts, H.L.

    1991-01-01

    Milestones in 150 years of the Chemical Industry charts the history of the industry in its crucial role of meetings basic human needs. The book provides on overview of developments in the industry in the fields of health, clothing, energy, materials and information technology and sets the information in an historical context. It will be of interest to chemists in industry, academic, business and to the lay public. (author)

  8. Resilience of chemical industrial areas through attenuation-based security

    Reniers, G.L.L.; Sörensen, K.; Khan, F.; Amyotte, P.

    2014-01-01

    This paper investigates the possibility of attenuation-based security within chemical industrial areas. Representing chemical industrial areas as mathematical networks, we prove by case-study that the resilience to disaster of such areas may follow a power-law distribution. Furthermore, we examine what happens to the network when highly hazardous installations would be intelligently protected against malicious acts: the network disintegrates into separate smaller networks. Hence, islands are formed with no escalation danger in between. We conclude that it is possible to protect chemical industrial areas in such a way that they are more resilient against terrorism

  9. Major energy users and reforms of the German energy industry

    Pfaffenberger, W

    1994-06-01

    There is a historic tradition of industrial autoproduction of electricity in Germany. Major energy users in the past used to be and today often still are autoproducers of electric power. The public utility sector, according to present legal standards, operates in a framework that protects local and regional monopolies. The large consumers and autoproducers are an important countervailing power in the whole system of the electricity supply industry. Electric utilities (EU) in Germany are semi-public or private enterprises of a wide variety of size. The large producer utilities operate the high voltage grid on the basis of private contracts. Regional distribution companies mostly without a considerable share in production often in cooperation with local distributors deliver electricity (el) in the non-urban areas whereas mostly city owned EU supply the large cities often on the basis of considerable parts of autoproduction and often also with a considerable share of el produced in cogeneration plants. The equilibrium between the parts of this system in the past was ensured by a legal framework protecting local monopolies as well as long term contracts between producers and distributors. Deregulation trends inherent in European legislation on competition have threatened this stability. In the first phase resistance against a more competitive order seemed unanimous. In the meantime however the different actors had time to rethink their position: The European Council has now proposed a more moderate regulation. The German Government has made a proposal for some important changes in the Energy Law and connected passages in the Competition Law, which would introduce some more competitive elements into the system without anticipating the results of a competitive process.

  10. Chemical analysis for waste management in paint industries

    Nawaz, Z.; Naveed, S.; Shiekh, N.A.; Sagheer, K.

    2005-01-01

    The chemical analysis of paint industries waste has been carried out; the main emission sources are the heating of raw materials and lacquer. Also the waste from other applications and production contains high concentration of heavy metals, VOC's, COD, TDS with notable acidity and alkalinity. Based on the analysis it was observed that the major losses of production could be minimized. Further toxic effects of the waste material can be minimized. In this reference measures to minimize production losses should be adopted along with the proper management. These laboratory results also lead to the areas of emissions and waste production during manufacturing process. Solutions have been proposed for process development and integrated waste minimization. (author)

  11. Vulnerability assessment of chemical industry facilities in South Korea based on the chemical accident history

    Heo, S.; Lee, W. K.; Jong-Ryeul, S.; Kim, M. I.

    2016-12-01

    The use of chemical compounds are keep increasing because of their use in manufacturing industry. Chemical accident is growing as the consequence of the chemical use increment. Devastating damages from chemical accidents are far enough to aware people's cautious about the risk of the chemical accident. In South Korea, Gumi Hydrofluoric acid leaking accident triggered the importance of risk management and emphasized the preventing the accident over the damage reducing process after the accident occurs. Gumi accident encouraged the government data base construction relate to the chemical accident. As the result of this effort Chemical Safety-Clearing-house (CSC) have started to record the chemical accident information and damages according to the Harmful Chemical Substance Control Act (HCSC). CSC provide details information about the chemical accidents from 2002 to present. The detail informations are including title of company, address, business type, accident dates, accident types, accident chemical compounds, human damages inside of the chemical industry facilities, human damage outside of the chemical industry facilities, financial damages inside of the chemical industry facilities, and financial damages outside of the chemical industry facilities, environmental damages and response to the chemical accident. Collected the chemical accident history of South Korea from 2002 to 2015 and provide the spatial information to the each accident records based on their address. With the spatial information, compute the data on ArcGIS for the spatial-temporal analysis. The spatial-temporal information of chemical accident is organized by the chemical accident types, damages, and damages on environment and conduct the spatial proximity with local community and environmental receptors. Find the chemical accident vulnerable area of South Korea from 2002 to 2015 and add the vulnerable area of total period to examine the historically vulnerable area from the chemical accident in

  12. Creative research in the chemical industry

    These efforts have involved several collaborators including many from other institutions and offered multitudinous challenges calling for continuous creativity in industrial setups. I was fortunate to have had a conducive environment to be able to respond to these challenges. I attempt to offer the readers in the ensuing pages ...

  13. Biobased industrial chemicals from glutamic acid

    Lammens, T.M.

    2011-01-01

    In dit onderzoek is op zoek gegaan naar routes om van glutaminezuur vier producten te maken die van waarde zijn voor de industrie, die nu uit olie gemaakt worden. Dat zijn grondstoffen voor allerlei soorten kunststof, zoals nylon en rubbers. Het onderzoek laat zien dat alle vier die producten

  14. Sublethal effects of industrial chemicals on fish fingerlings (Tilapia ...

    STORAGESEVER

    2010-03-22

    Mar 22, 2010 ... Key words: Tilapia guineensis, industrial chemical, bioaccumulation, surfactants. ... product that has acceptable stability in oil pipelines. (Patton, 1995). .... assays were assessed with the two-factor ANOVA (analysis of.

  15. Membrane technology: in the chemical industry

    Nunes, S. P; Peinemann, K. V

    2001-01-01

    ... terephthalate) 15 22 23 32 37 5 5.1 5.2 5.3 5.4 Surface Modification of Membranes Chemical Oxidation 39 Plasma Treatment 40 Classical Organic Reactions 41 Polymer Grafting 41 39VI Contents 6 6.1 ...

  16. Accidents in chemical industry: are they foreseeable?

    Sonnemans, P.J.M.; Körvers, P.M.W.

    2006-01-01

    ‘Accidents recur,’ which is what Kletz [Kletz T. (1993). Lessons from disasters, how organisations have no memory and accidents recur. UK: Institution of Chemical Engineers] wrote in 1993. Indeed, despite all measures taken accidents may re-occur, but ‘disruptions’ in a process reoccur much more

  17. Olefin Recovery from Chemical Industry Waste Streams

    A.R. Da Costa; R. Daniels; A. Jariwala; Z. He; A. Morisato; I. Pinnau; J.G. Wijmans

    2003-11-21

    The objective of this project was to develop a membrane process to separate olefins from paraffins in waste gas streams as an alternative to flaring or distillation. Flaring these streams wastes their chemical feedstock value; distillation is energy and capital cost intensive, particularly for small waste streams.

  18. A methodology for overall consequence modeling in chemical industry

    Arunraj, N.S.; Maiti, J.

    2009-01-01

    Risk assessment in chemical process industry is a very important issue for safeguarding human and the ecosystem from damages caused to them. Consequence assessment is an integral part of risk assessment. However, the commonly used consequence estimation methods involve time-consuming complex mathematical models and simple assimilation of losses without considering all the consequence factors. This lead to the deterioration of quality of estimated risk value. So, the consequence modeling has to be performed in detail considering all major losses with optimal time to improve the decisive value of risk. The losses can be broadly categorized into production loss, assets loss, human health and safety loss, and environment loss. In this paper, a conceptual framework is developed to assess the overall consequence considering all the important components of major losses. Secondly, a methodology is developed for the calculation of all the major losses, which are normalized to yield the overall consequence. Finally, as an illustration, the proposed methodology is applied to a case study plant involving benzene extraction. The case study result using the proposed consequence assessment scheme is compared with that from the existing methodologies.

  19. Employment in the U.S. Chemical Industry. Chemical Work Force Tops 1.1 Million.

    Chemical and Engineering News, 1990

    1990-01-01

    The annual census of industrial employment, production workers, women, the workweek, scientists and engineers, chemical employment, wages, and productivity in the chemical industry is presented. Trends in the numbers of workers, productivity, and unit labor costs are illustrated in graphs. (CW)

  20. The Industrial Toxics Project: Targeting chemicals for environmental results

    Burch, W.M.

    1991-01-01

    In September, 1990, the Administrator of the US Environmental Protection Agency committed the Agency to a program of targeting chemicals for multi-media risk reduction activities through pollution prevention. The Industrial Toxics Project will place emphasis on obtaining voluntary commitments from industry to reduce releases of toxic chemicals to the air, water, and land with a goal of reducing releases nationwide by 33% by 1992 and 50% by 1995. An initial list of 18 chemicals have been selected based on recommendations from each Agency program. The chemicals selected are subject to reporting under the Toxic Chemical Release Inventory Program which will provide the basis for tracking progress. The chemicals are characterized by high production volume, toxicity and releases and present the potential for significant risk reduction through pollution prevention. This presentation will discuss the focus and direction of this new initiative

  1. Personalized Education Approaches for Chemical Engineering and Relevant Majors

    Zhao Feng-qing

    2016-01-01

    Full Text Available Personalized education has drawn increasing attention in universities these years. With the purpose of improving the studentss’ comprehensive ability and developing teaching strategies to ensure students’ education is tailored to their needs, we proposed Three-Stage Approach (TSA to enhance personalized education for chemical engineering and relevant majors: professional tutorial system--equipping with professional guidance teachers for freshman students to guide their learning activities and provide professional guidance; open experimental project--setting up open experimental projects for sophomore and junior students to choose freely; individualized education module--setting up 10 different individualized education modules for senior students to select. After years of practice, the personalized education model is improved day by day and proved effective and fruitful.

  2. The patterns of energy use in the chemical industry

    Steinmeyer, D.

    1997-01-01

    This paper was sculpted from a report commissioned by the Department of Energy to assess the impact of proposed energy taxes on energy use by the US chemical industry. The discussion of energy taxes is eliminated here, however the broader discussion of the impact of energy prices on energy use is retained. The US chemical industry is currently the world leader by many important measures, such as technology contributions and employment. This leadership traces to a slate of advantages: science base, low cost energy, large market and economic/political stability. The focus of this paper is on the patterns of energy use: (1) There is an optimum economic trade of capital against energy. Industry optimizes this trade to lower its costs. For the large volume chemicals which dominate energy use, this tradable capital cost exceeds energy cost by a factor of 1.5. (2) The capital/energy trade follows clearly defined rules. The basic rules are rooted in thermodynamics. (3) An increase in energy prices would result in a drop in process energy use: a doubling of process energy prices would cut process energy use by approximately 1/3 but the capital cost would be in excess of $100 billion if driven into a short time span, such as 5 years. This is because of the long useful lifetime of capital facilities. (4) Process energy is about half the total energy use, with feedstock being the balance. Feedstock use is much less sensitive to price. Restated, the doubling of energy price will result in roughly a 1/6 reduction in total energy use. (5) Technology progress will also reduce energy use. This reduction is distinct from the impact of energy price. Technological progress will be at least as important in reducing energy use as will energy pricing, for the foreseeable future. (6) Technology progress can be sorted into two themes: (a) Learning curve improvements, which are almost inherent in the production process and the nature of competition; and (b) Breakthroughs that happen in a

  3. Advances in chemical engineering in nuclear and process industries

    NONE

    1994-06-01

    Symposium on Advances in Chemical Engineering in Nuclear and Process Industries dealt with a wide spectrum of areas encompassing various industries such as nuclear, fertilizer, petrochemical, refinery and cement. The topics covered in the symposium dealt with the advancements in the existing fields of science and technologies as well as in some of the emerging technologies such as membrane technology, bio-chemical and photo-chemical engineering etc. with a special emphasis on nuclear related aspects. Papers relevant to INIS are indexed separately.

  4. Advances in chemical engineering in nuclear and process industries

    1994-06-01

    Symposium on Advances in Chemical Engineering in Nuclear and Process Industries dealt with a wide spectrum of areas encompassing various industries such as nuclear, fertilizer, petrochemical, refinery and cement. The topics covered in the symposium dealt with the advancements in the existing fields of science and technologies as well as in some of the emerging technologies such as membrane technology, bio-chemical and photo-chemical engineering etc. with a special emphasis on nuclear related aspects. Papers relevant to INIS are indexed separately

  5. Safety- and Risk Analysis Activities in Chemical Industry in Europe

    Kozine, Igor; Duijm, Nijs Jan; Lauridsen Kurt [Risoe National Laboratory, Roskilde (Denmark). Systems Analysis Department

    2001-07-01

    . In this respect there is a European and International mechanism of handling safety- and risk-related matters. So, the Organisation for Economic Co-operation and Development's (OECD) core objective on risk management is to support Member countries' efforts to develop national policies and actions, and, where appropriate, to develop and implement international risk management measures. In support of this objective, the OECD Risk Management Programme focuses on two areas: (1) developing methods and technical tools that can be used by OECD and Member countries to enhance their current risk management programmes; and (2) identifying specific chemical exposures of concern in Member countries and evaluating possible risk management opportunities. The current paper highlights the EU legislation on major accident hazards related to the chemical industry, differences in the national approaches to risk analyses in the process industry and European-scale activity in improving the understanding of the sources of uncertainty in risk assessments.

  6. Occupational chemical exposures in artificial organic fiber industries

    Guirguis, S S; Cohen, M B

    1984-05-01

    This review discusses artificial organic fibers that are produced from materials of natural origin such as rayons, cellulose triacetates and proteins; or made from polymerised chemicals such as polyamides, polyesters, polyvinyls, modacrylics, carbon fibers, polyolefins, polyurethane and polytetrafluoroethylene. Chemicals involved include monomers, solvents, flame retardants, pigments and other additives. Occupational exposure to chemicals in the production stages are discussed and also the potential health hazards involved are reviewed. Current exposure levels, engineering controls and work practices for some of the chemicals used in the Ontario artificial fiber industry are discussed. Recommendations are made for areas that need further study and/or investigation.

  7. Chemical characteristics of the major thermal springs of Montana

    Mariner, R.H.; Presser, T.S.; Evans, W.C.

    1976-07-01

    Twenty-one thermal springs in western Montana were sampled for chemical, isotope, and gas compositions. Most of the springs issue dilute to slightly saline sodium-bicarbonate waters of neutral to slightly alkaline pH. A few of the springs issue sodium-mixed anion waters of near neutral pH. Fluoride concentrations are high in most of the thermal waters, up to 18 miligrams per litre, while F/Cl ratios range from 3/1 in the dilute waters to 1/10 in the slightly saline waters. Most of the springs are theoretically in thermodynamic equilibrium with respect to calcite and fluorite. Nitrogen is the major gas escaping from most of the hot springs; however, Hunters Hot Springs issue principally methane. The deuterium content of the hot spring waters is typical of meteoric water in western Montana. Geothermal calculations based on silica concentrations and Na-K-Ca ratios indicate that most of the springs are associated with low temperature aquifers (less than 100/sup 0/C). Chalcedony may be controlling the silica concentrations in these low temperature aquifers even in ''granitic'' terranes.

  8. Coal chemical industry and its sustainable development in China

    Xie, Kechang; Li, Wenying; Zhao, Wei

    2010-01-01

    China is rich in coal resource, which is vital for energy security in this country. In early 21st century, the coal chemical industry in China will be oriented to the development of high efficiency, safety, cleanliness, and optimum utilization. In this review, the authors present an introduction to the utilization status of primary energy production and consumption in China. Since 2005, fundamental research studies, supported by the Ministry of Science and Technology of Chinese National Basic Research Program, have been carried out at Taiyuan University of Technology. The Ministry stresses that the new coal chemical industry should be developed in a sustainable manner to realize effective utilization of energy. Moreover, upgrading the high technology to improve actively the recycling processes of coal chemical engineering is of strategic importance to realize the modern coal chemical engineering.

  9. The chemical industry - a danger to nuclear power plants

    Voigtsberger, P.

    1976-01-01

    Nuclear power stations could contaminate large areas with radioactivity when destroyed by strong external influences. In Germany, authorities try to cope with this danger firstly by making certain demands on the strength of the reactor shell and secondly by imposing strict safety regulations on dangerous industrial plants in the surroundings of the reactor. In the case of chemical industry, this means: If a chemical plant and a nuclear reactor lie closely together, special stress is given to explosion pretection measures in the form of primary explosion protection, e.g. strong sealing of inflammable gases and liquids handled in the immediate neighbourhood of the reactor. (orig.) [de

  10. Host Response to Environmental Hazards: Using Literature, Bioinformatics, and Computation to Derive Candidate Biomarkers of Toxic Industrial Chemical Exposure

    2015-10-01

    military threat chemicals with adverse health effects and clinical outcomes to improve diagnostic potential after exposure to toxic industrial...end organ injury following chemical exposures in the field. Markers of end-organ injury and toxicity and other health effects markers, particularly...Biomarkers of Toxic Industrial Chemical Exposure Major Jonathan D. Stallings *1 , Danielle L. Ippolito 1 , Anders Wallqvist 2 , B. Claire McDyre 3 , and

  11. Chemical investigation of the effluents of selected chemical industries in NWFP (Pakistan)

    Jan, M.R.; Shah, J.; Shah, H.

    2002-01-01

    Samples of effluents were collected from the waste water drains of selected chemical industries, located at small industries estate Kohat Road Peshawar on monthly basis from November 1994 to October 1995. These samples were studied for physico chemical properties and heavy metals like Pb, Ag, Cu, Zn, Fe, Cr, Cd, Mn and Ni using spectroscopic techniques. The results of our investigation are presented and discussed. (author)

  12. A Review of Tribological Sinks in Six Major Industries

    1985-09-01

    limestone𔃽’ Crushed and broken granite Construction sand and gravel^3’ Industrial sand^3’ Bentonite Fire clay Fuller’s earth Kaolin and...lubricant was intended to combat. In some shaft mining applications, the lubricant must be deliberately diluted with water to reduce fire hazards. This...belts. Monorail or overhead trams take many forms. The item is supported from or hung from two or more wheels on the monorail . The units may be self

  13. Industrial hygiene survey. CF Chemicals, Inc., Bartow, Florida

    Stephenson, F.; Cassady, M.

    1977-10-01

    An industrial hygiene survey was conducted by NIOSH at CF Chemicals, Bartow, Florida on August 9-12, 1976 as part of a study of the phosphate industry. A description is given of the plant, and the medical, safety, and industrial hygiene programs. During the study, 8-hour time weighted averages were determined for exposure to arsenic, cadmium, chromium, vanadium, phosphoric acid, and sulfuric acid for workers involved in cleaning out phosphoric acid reactor vessels. General area samples were collected for fluorides, radon, and uranium. The results came within the OSHA standards except for two fluoride samples

  14. Industrial hygiene survey. IMC, Phosphate Chemical Complex, New Wales, Florida

    Stephenson, F.; Cassady, M.

    1977-10-01

    An industrial hygiene survey was conducted by NIOSH at IMC Phosphate Chemical Complex, New Wales, Florida, on June 7-11, 1976, as part of a study of the phosphate industry. Phosphate fertilizer manufacturing, the plant, and the medical, safety, and industrial hygiene programs are described. During the study 8-hour time weighted averages were determined for exposure to arsenic, cadmium, chromium, vanadium, phosphoric acid, and sulfuric acid for workers involved in cleaning out phosphoric acid reactor vessels. General area samples were collected for fluorides, radon, and uranium. Several samples were above the NIOSH recommended levels for arsenic and chromium

  15. STANDARD CALCULATION PER PRODUCT IN THE CHEMICAL FERTILIZER INDUSTRY

    Ion Ionescu

    2016-12-01

    Full Text Available The main goal of the research is to present a way of organising the managerial accounting of totally and semi finished product obtained in chemical fertilizer industry entities. For this study, we analyzed the current principle of managerial accounting to an entity in the studied area, in order to emphasize the need of organizing and implementing a modern accounting management to control the cost and increase the performance of the entities in this area, starting from the premise that there are sufficient similarities between entities in the field. Research carried out has revealed that currently, the costing is organized in terms of using traditional methods and that it is necessary to organize and implement an accounting management based on the use of modern methods, namely the method of standard costs combined with the method of centres of costs. The major implications of the proposed system for the investigated field consist of determining a relevant cost-oriented management entity, highlighting the shortcomings of traditional methods of cost

  16. Calculation of the actual cost in the chemical fertilizer industry

    Ion Ionescu

    2017-12-01

    Full Text Available The main goal of the research is to present a way of organising the managerial accounting of totally and semi finished product obtained in chemical fertilizer industry entities. For this study, we analyzed the current principle of managerial accounting to an entity in the studied area, in order to emphasize the need of organizing and implementing a modern accounting management to control the cost and increase the performance of the entities in this area, starting from the premise that there are sufficient similarities between entities in the field. The research has highlighted the fact that, nowadays, the cost calculation is organized using traditional methods, which focus on the monthly determination of the actual unit cost per product (semi-fabric and that it is necessary to organize and implement a managerial accounting, based on the use of a modern method, namely the standard cost method combined with cost centre method. The major implications of the proposed system for the researched field are the monthly calculation of actual costs per cost centres, the calculation of the actual cost per product, as the final cost carrier, to be performed over longer periods of time, usually, quarterly.

  17. Metallurgical engineering and inspection practices in the chemical process industries

    Moller, G.E.

    1987-01-01

    The process industries, in particular the petroleum refining industry, adopted materials engineering and inspection (ME and I) practices years ago and regularly updated them because they were faced with the handling and refining of flammable, toxic, and corrosive feed stocks. These industries have a number of nonproprietary techniques and procedures, some of which may be applicable in the nuclear power generation field. Some specific inspection and engineering techniques used by the process industries within the framework of the guidelines for inspections and worthy of detailed description include the following: (1) sentry drilling or safety drilling of piping subject to relatively uniform corrosion, such as feedwater heater piping, steam piping, and extraction steam piping; (2) on-stream radiography for thickness measurement and detection of unusual conditions - damaged equipment such as valve blockage; (3) critical analysis of the chemical and refining processes for the relative probability of corrosion; (4) communication of valuable experience within the industry; (5) on-stream ultrasonic thickness testing; and (6) on-stream and off-stream crack and flaw detection. The author, trained in the petroleum refining industry but versed in electric utilities, pulp and paper, chemical process, marine, mining, water handling, waste treatment, and geothermal processes, discusses individual practices of these various industries in the paper

  18. Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents.

    Bobbitt, N Scott; Mendonca, Matthew L; Howarth, Ashlee J; Islamoglu, Timur; Hupp, Joseph T; Farha, Omar K; Snurr, Randall Q

    2017-06-06

    Owing to the vast diversity of linkers, nodes, and topologies, metal-organic frameworks can be tailored for specific tasks, such as chemical separations or catalysis. Accordingly, these materials have attracted significant interest for capture and/or detoxification of toxic industrial chemicals and chemical warfare agents. In this paper, we review recent experimental and computational work pertaining to the capture of several industrially-relevant toxic chemicals, including NH 3 , SO 2 , NO 2 , H 2 S, and some volatile organic compounds, with particular emphasis on the challenging issue of designing materials that selectively adsorb these chemicals in the presence of water. We also examine recent research on the capture and catalytic degradation of chemical warfare agents such as sarin and sulfur mustard using metal-organic frameworks.

  19. Radiation protection in the pharmaceutical-chemical industry

    Griesser, R.

    1992-01-01

    Some aspects of the use of ionizing radiation in research in the pharmaceutical and chemical industries will be discussed, the emphasis being placed on the handling of open radioactive materials in research laboratories. The compliance with official regulations and the preparation of company internal radiation protection regulations are described. 1 tab., 9 refs

  20. Near miss reporting in the chemical process industry: an overview

    Schaaf, van der T.W.

    1995-01-01

    The research programme described in this paper focuses on the human component of system failure in general, and more specifically on the design and implementation of information systems for registration and analysis of so called near misses (or: near accidents) in the chemical process industry. Its

  1. The chemical composition and industrial quality of Barite ...

    ... that the mineralization is of high industrial quality and compares favourably with the Azara barite deposits of the Benue Trough. The quality of the barite meets American Petroleum institute (API) requirements for use as drilling mud. KEYWORDS: Barite, mineralization, quality, chemical composition, southeastern Nigeria.

  2. Problems the chemical industry of Japan faces and future prospects

    Ishida, Shin' ichi

    1989-01-01

    Industry proceeds for the fiscal 1988 are expected to increase remarkably as they did in the previous year with 4.9% increase in revenue and 18.8% increase in profit (ordinary profit) from the previous year. The conditions of material industry are especially favorable and chemical industry is also expected to prosper as it did in the previous year. Problems this prospering chemical industry is facing are introduced in this report. Firstly, it is necessary to improve productivity by adopting more information and promoting factory automation in order to strengthen competition. The future of chemical industry depends on the introduction of information. Secondly, as demands of users are becoming more diversified, and cycles of products shorter, shortening of development terms is essential. It is necessary, therefore, to predict the demands of users in advance and seek after custom products. Thirdly, selection of product bases is required; it might be necessary to consider producing some product items abroad. Moreover, it is desirable to increase investments in investigation and pursue creativity putting much stress on basic investigations. 2 figs., 11 tabs.

  3. Process Control Systems in the Chemical Industry: Safety vs. Security

    Jeffrey Hahn; Thomas Anderson

    2005-04-01

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  4. [Occupational digestive diseases in chemical industry workers of West Siberia].

    Pomytkina, T E; Pershin, A N

    2010-01-01

    The high incidence of chronic digestive diseases is recorded in chemical industry workers exposed to the isolated action of noxious substances. The aim of the investigation was to make a hygienic assessment of the risk for occupational digestive diseases in chemical industry workers exposed to a combination of noxious drugs. The working conditions and the prevalence of digestive diseases were studied in 4120 workers engaged in chemical and auxiliary processes. Under the isolated action of noxious substances, the workers had an average of 35% increase in the incidence of digestive diseases than unexposed ones (p 4.0-11.1 and 3.5-10.7 times higher, respectively (p < 0.05) than in the unexposed subjects.

  5. Risk management: Role of societal factors in major industrial accidents

    Hovden, J.; Rausand, M.; Sergeev, G.

    1995-01-01

    The paper discusses factors influencing the occurrence of major accidents in complex technological systems. Societal factors are identified as most significant in this context. Important types of societal factors are pin-pointed and discussed. The safety situation in the former Soviet Union and in today's Russian is described. The calamities at Chernobyl, Three Mile Island, and partly also Bhopal are discussed, and the role of societal factors identified. A main point of view is that it is not surprising that these catastrophes happened in the then existing conditions. What is surprising is that they did not happen earlier exclamation point

  6. CO2 emissions and reduction potential in China's chemical industry

    Zhu, Bing; Zhou, Wenji; Hu, Shanying; Li, Qiang; Griffy-Brown, Charla; Jin, Yong

    2010-01-01

    GHG (Increasing greenhouse gas) emissions in China imposes enormous pressure on China's government and society. The increasing GHG trend is primarily driven by the fast expansion of high energy-intensive sectors including the chemical industry. This study investigates energy consumption and CO 2 emissions in the processes of chemical production in China through calculating the amounts of CO 2 emissions and estimating the reduction potential in the near future. The research is based on a two-level perspective which treats the entire industry as Level one and six key sub-sectors as Level two, including coal-based ammonia, calcium carbide, caustic soda, coal-based methanol, sodium carbonate, and yellow phosphorus. These two levels are used in order to address the complexity caused by the fact that there are more than 40 thousand chemical products in this industry and the performance levels of the technologies employed are extremely uneven. Three scenarios with different technological improvements are defined to estimate the emissions of the six sub-sectors and analyze the implied reduction potential in the near future. The results highlight the pivotal role that regulation and policy administration could play in controlling the CO 2 emissions by promoting average technology performances in this industry.

  7. Enhanced formulations for neutralization of chemical, biological and industrial toxants

    Tucker, Mark D [Albuqueque, NM

    2008-06-24

    An enhanced formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The enhanced formulation according to the present invention is non-toxic and non-corrosive and can be delivered by a variety of means and in different phases. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator and water.

  8. Bentonite chemical modification for use in industrial effluents

    Laranjeira, E.; Pinto, M.R.O.; Rodrigues, D.P.; Costa, B.P.; Guimaraes, P.L.F.

    2010-01-01

    The present work aims at synthesizing organoclays using a layered silicate of regional importance, bentonite clay, for the treatment of industrial effluents. The choice of clay to be organophilized was based on cation exchange capacity (CEC). Bentonite with higher CTC was called AN 35 (92 meq/100 g), and therefore was the one that suffered the chemical modification with salt cetyl trimethyl ammonium Cetremide, provided by Vetec.The unmodified and modified clays were characterized by FTIR and XDR. The data obtained through the characterizations confirmed the acquisition of bentonite organoclay thus suggesting its subsequent application in the treatment of industrial effluents. (author)

  9. Implementation of high-dose chemical dosimetry for industrial facilities

    Conceicao, Cirilo Cezar Sant'Anna da

    2006-01-01

    The purpose of this work is the implementation of methodology for high dose measurements using chemical dosimeters in liquid phase, traceable to the international metrology system, and make available in the country, the standard of high-dose to industrial irradiation facilities and research irradiators, trough the quality program with comparative measurements and direct use of the standard dosimeters in routine. The use of these low cost dosimetry systems in industrial irradiation facilities, assists to the certification requirements and it can reduce the costs with dosimetry for approximately 20% of the total dosimetry costs, using these systems in routine measurements and validation process, largely substituting the imported PMMA dosimeters, among others. (author)

  10. A Profile of Tax Subsidies and Investment Behavior in Six Major Polluting Industries (1997)

    Reviews investment trends in pollution control technology to determine existing patterns and to highlight the likely investment incentives that six industries, metals mining, petroleum, primary metals, pulp and paper, chemicals, and electric utilities.

  11. Modeling emergency evacuation for major hazard industrial sites

    Georgiadou, Paraskevi S.; Papazoglou, Ioannis A.; Kiranoudis, Chris T.; Markatos, Nikolaos C.

    2007-01-01

    A model providing the temporal and spatial distribution of the population under evacuation around a major hazard facility is developed. A discrete state stochastic Markov process simulates the movement of the evacuees. The area around the hazardous facility is divided into nodes connected among themselves with links representing the road system of the area. Transition from node-to-node is simulated as a random process where the probability of transition depends on the dynamically changed states of the destination and origin nodes and on the link between them. Solution of the Markov process provides the expected distribution of the evacuees in the nodes of the area as a function of time. A Monte Carlo solution of the model provides in addition a sample of actual trajectories of the evacuees. This information coupled with an accident analysis which provides the spatial and temporal distribution of the extreme phenomenon following an accident, determines a sample of the actual doses received by the evacuees. Both the average dose and the actual distribution of doses are then used as measures in evaluating alternative emergency response strategies. It is shown that in some cases the estimation of the health consequences by the average dose might be either too conservative or too non-conservative relative to the one corresponding to the distribution of the received dose and hence not a suitable measure to evaluate alternative evacuation strategies

  12. A new material for chemical industry - wood polymer composites

    Majali, A.B.; Patil, N.D.

    1979-01-01

    The paper outlines the advantages of the radiation cured wood-polymer composites (WPC) for application in certain critical areas of chemical industry. The wood-polymer composite made filterpress frames and plates were tested in a chemical plant. The entire exercise is elaborated. The radiation cured wood exhibited a considerably extended useful life in alkaline and acidic solutions. Composites based on teak wood showed a remarkable improvement with a nominal polymer loading of 10%. The reports of accelerated aging test of WPC are also presented. (auth.)

  13. Emergency planning and preparedness for the deliberate release of toxic industrial chemicals.

    Russell, David; Simpson, John

    2010-03-01

    Society in developed and developing countries is hugely dependent upon chemicals for health, wealth, and economic prosperity, with the chemical industry contributing significantly to the global economy. Many chemicals are synthesized, stored, and transported in vast quantities and classified as high production volume chemicals; some are recognized as being toxic industrial chemicals (TICs). Chemical accidents involving chemical installations and transportation are well recognized. Such chemical accidents occur with relative frequency and may result in large numbers of casualties with acute and chronic health effects as well as fatalities. The large-scale production of TICs, the potential for widespread exposure and significant public health impact, together with their relative ease of acquisition, makes deliberate release an area of potential concern. The large numbers of chemicals, together with the large number of potential release scenarios means that the number of possible forms of chemical incident are almost infinite. Therefore, prior to undertaking emergency planning and preparedness, it is necessary to prioritize risk and subsequently mitigate. This is a multi-faceted process, including implementation of industrial protection layers, substitution of hazardous chemicals, and relocation away from communities. Residual risk provides the basis for subsequent planning. Risk-prioritized emergency planning is a tool for identifying gaps, enhancing communication and collaboration, and for policy development. It also serves to enhance preparedness, a necessary prelude to preventing or mitigating the public health risk to deliberate release. Planning is an iterative and on-going process that requires multi-disciplinary agency input, culminating in the formation of a chemical incident plan complimentary to major incident planning. Preparedness is closely related and reflects a state of readiness. It is comprised of several components, including training and exercising

  14. Reactive formulations for a neutralization of toxic industrial chemicals

    Tucker, Mark D [Albuqueruqe, NM; Betty, Rita G [Rio Rancho, NM

    2006-10-24

    Decontamination formulations for neutralization of toxic industrial chemicals, and methods of making and using same. The formulations are effective for neutralizing malathion, hydrogen cyanide, sodium cyanide, butyl isocyanate, carbon disulfide, phosgene gas, capsaicin in commercial pepper spray, chlorine gas, anhydrous ammonia gas; and may be effective at neutralizing hydrogen sulfide, sulfur dioxide, formaldehyde, ethylene oxide, methyl bromide, boron trichloride, fluorine, tetraethyl pyrophosphate, phosphorous trichloride, arsine, and tungsten hexafluoride.

  15. Metabolic engineering is key to a sustainable chemical industry.

    Murphy, Annabel C

    2011-08-01

    The depletion of fossil fuel stocks will prohibit their use as the main feedstock of future industrial processes. Biocatalysis is being increasingly used to reduce fossil fuel reliance and to improve the sustainability, efficiency and cost of chemical production. Even with their current small market share, biocatalyzed processes already generate approximately US$50 billion and it has been estimated that they could be used to produce up to 20% of fine chemicals by 2020. Until the advent of molecular biological technologies, the compounds that were readily accessible from renewable biomass were restricted to naturally-occurring metabolites. However, metabolic engineering has considerably broadened the range of compounds now accessible, providing access to compounds that cannot be otherwise reliably sourced, as well as replacing established chemical processes. This review presents the case for continued efforts to promote the adoption of biocatalyzed processes, highlighting successful examples of industrial chemical production from biomass and/or via biocatalyzed processes. A selection of emerging technologies that may further extend the potential and sustainability of biocatalysis are also presented. As the field matures, metabolic engineering will be increasingly crucial in maintaining our quality of life into a future where our current resources and feedstocks cannot be relied upon.

  16. [Exposure to hazardous chemical substances in furniture industry].

    Pośniak, Małgorzata; Kowalska, Joanna; Makhniashvili, Ivan

    2005-01-01

    The aim of the study was to assess the exposure to organic solvents in plants of the furniture industry. Studies were conducted in five furniture plants. Hazardous chemicals present in the air at workposts were determined by capillary gas chromatography with mass spectrometry and flame ionization detection. The analysis of air samples collected at the workposts allowed to identify the following chemicals occurring during varnishing and cleaning of furniture surface elements: acetone, butan-2-one, ethyl, isobutyl and methoxypropyl acetate, 4-methylpentan-2-on, toluene, ethylbenzene and xylenes. Indices characteristic of combined exposure ranged from 0.13 to 1.67 and exceeded the limit value at 21% of workposts. The results of the study indicate that chemicals present at representative workposts during the furniture production are harmful to health of workers, especially those involved in varnishing and cleaning of furniture elements.

  17. Reducing aquatic hazards of industrial chemicals: probabilistic assessment of sustainable molecular design guidelines.

    Connors, Kristin A; Voutchkova-Kostal, Adelina M; Kostal, Jakub; Anastas, Paul; Zimmerman, Julie B; Brooks, Bryan W

    2014-08-01

    Basic toxicological information is lacking for the majority of industrial chemicals. In addition to increasing empirical toxicity data through additional testing, prospective computational approaches to drug development aim to serve as a rational basis for the design of chemicals with reduced toxicity. Recent work has resulted in the derivation of a "rule of 2," wherein chemicals with an octanol-water partition coefficient (log P) less than 2 and a difference between the lowest unoccupied molecular orbital and the highest occupied molecular orbital (ΔE) greater than 9 (log P9 eV) are predicted to be 4 to 5 times less likely to elicit acute or chronic toxicity to model aquatic organisms. The present study examines potential reduction of aquatic toxicity hazards from industrial chemicals if these 2 molecular design guidelines were employed. Probabilistic hazard assessment approaches were used to model the likelihood of encountering industrial chemicals exceeding toxicological categories of concern both with and without the rule of 2. Modeling predicted that utilization of these molecular design guidelines for log P and ΔE would appreciably decrease the number of chemicals that would be designated to be of "high" and "very high" concern for acute and chronic toxicity to standard model aquatic organisms and end points as defined by the US Environmental Protection Agency. For example, 14.5% of chemicals were categorized as having high and very high acute toxicity to the fathead minnow model, whereas only 3.3% of chemicals conforming to the design guidelines were predicted to be in these categories. Considerations of specific chemical classes (e.g., aldehydes), chemical attributes (e.g., ionization), and adverse outcome pathways in representative species (e.g., receptor-mediated responses) could be used to derive future property guidelines for broader classes of contaminants. © 2014 SETAC.

  18. EUROPEAN CHEMICAL INDUSTRY COMPETITIVENESS: HISTORICAL TRENDS AND DEVELOPMENT PROSPECTS

    Dmytro Gladkykh

    2015-11-01

    Full Text Available The purpose of the paper is to analyze historical trends and development prospects of the European chemical industry competitiveness. It is concluded that the chemical industry is one of the EU’s most successful spheres, boasting €527 billion in sales in 2013, making it the second-largest global manufacture. Methodology. To explain the competitiveness of the EU chemical branch in the global market, it is proposed the constant-market share methodology to chemical exports coupled with econometric analysis. Results. The constant market share (CMS approach to assessing competitiveness, developed in the 1970 s for analysis of trade, is based on the principle that changes in the geographic and product structures of exports will affect a country’s export growth relative to that of the world, and that is way its global export market share. There were analyzed the EU biggest exporters (Germany, France, Italy, UK, Spain, Netherlands, Belgium, Poland, the USA, Japan; China, India, Saudi Arabia, Brazil. Practical implication. The analysis presents the results of competitiveness assessment in a different way, showing the average annual growth rate of EU and world chemical exports in the top section and then decomposing the gap between the two into that thanks to growth dynamics (structure effect and competitive effect. It is defined a lot of factors that are important to industrial competitiveness. On the cost side, in many industries labor is a large enough share of overall production costs that international differences in salaries can have a large bearing on competitiveness. Costs are also affected by a variety of government policies. It is also defined that innovation is one of the most important factors, which opens up new opportunities both in terms of new products and more efficient processes for manufacturing existing products. Value/originality. Given analysis helps to understand the causes and factors that have an impact on the European

  19. Energy Saving Potential, Costs and Uncertainties in the Industry: A Case Study of the Chemical Industry in Germany

    Bühler, Fabian; Guminski, Andrej; Gruber, Anna

    2017-01-01

    In Germany, 19.6 % of the industrial final energy consumption (FEC) can be allocated to the chemical industry. Energy efficiency measures with focus on the chemical industry could thus significantly contribute to reaching the German goal of reducing greenhouse gas emissions by 80 % in 2050 compared...

  20. Three essays on major trends in a slow clockspeed industry : the case of industrial automation

    Tunkelo, T.

    2014-01-01

    The motivation for this research initiated from the abrupt rise and fall of minicomputers which were initially used both for industrial automation and business applications due to their significantly lower cost than their predecessors, the mainframes. Later industrial automation developed its own vertically integrated hardware and software to address the application needs of uninterrupted operations, real-time control and resilience to harsh environmental conditions. This has led to the creat...

  1. [The pharmaceutical industry in the industrial chemical group: the National Union of Chemical-Pharmaceutical Laboratories (1919-1936)].

    Nozal, Raúl Rodríquez

    2011-01-01

    The pharmaceutical industry associations, as it happened with other businesses, had a significant rise during the dictatorship of Primo de Rivera and II Republic. The 'Cámara Nacional de Industrias Químicas', in Barcelona, represented the national chemical industry to its ultimate assimilation by the 'Organización Sindical' in 1939. In this association, matters relating to pharmaceutical products -- which we will especially deal with in this work -- were managed by the 'Unión Nacional de Laboratorios Químico-Farmacéuticos', which defended the interests of pharmaceutical companies in the presence of government authorities, using the resources and mechanisms also managed by business pressure groups. The inclusion of industrial pharmacy in the Chemical lobby separated the pharmaceutical industry from traditional exercise and its corporate environment. this created ups and downs, conflicts of interests and finally, love and hate relationships with their colleagues of the pharmacy work placement and, of course, with the association that represented them: the 'Unión Farmacéutica Nacional'.

  2. FACTORS INFLUENCING ORGANIZATIONAL STRUCTURE IN THE FOOD MANUFACTURING, CHEMICAL, AGRICULTURAL WHOLESALING AND BIOTECHNOLOGY INDUSTRIES

    Maude Roucan-Kane

    2009-01-01

    The objective of this study is to identify factors determining a business investment strategy (i.e., the choice of investment commitment and form of organizational structure) in the food manufacturing, chemical, agricultural wholesaling and biotechnology industries. Propositions regarding strategic alliance theories are tested on over 400 inter-firm collaborative agreements using secondary data from major US and European companies for the 1994-97 period. Results suggest that transactions with...

  3. Mercapturic acids as biomarkers of exposure to electrophilic chemicals: applications to environmental and industrial chemicals.

    de Rooij, B.M.; Commandeur, J.N.M.; Vermeulen, N.P.E.

    1998-01-01

    The use of mercapturic acids (N-acetyl-L-cysteine S-conjugates, MAs) in the biological monitoring of human exposure to environmental and industrial chemicals is receiving more and more attention. Mercapturic acids (MAs) are formed from glutathione (GSH) S-conjugates via the MA-pathway. Although this

  4. Chemical production from industrial by-product gases: Final report

    Lyke, S.E.; Moore, R.H.

    1981-04-01

    The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

  5. Nanotechnology in the Chemical Industry - Opportunities and Challenges

    Qian Qiuzhao; Boxman, Arthur; Chowdhry, Uma

    2003-01-01

    The traditional chemical industry has become a largely mature industry with many commodity products based on established technologies. Therefore, new product and market opportunities will more likely come from speciality chemicals, and from new functionalities obtained from new processing technologies as well as new microstructure control methodologies. It is a well-known fact that in addition to its molecular structure, the microstructure of a material is key to determining its properties. Controlling structures at the micro- and nano-levels is therefore essential to new discoveries. For this article, we define nanotechnology as the controlled manipulation of nanomaterials with at least one dimension less than 100nm.Nanotechnology is emerging as one of the principal areas of investigation that is integrating chemistry and materials science, and in some cases integrating these with biology to create new and yet undiscovered properties that can be exploited to gain new market opportunities. In this article market opportunities for nanotechnology will be presented from an industrial perspective covering electronic, biomedical, performance materials, and consumer products. Manufacturing technology challenges will be identified, including operations ranging from particle formation, coating, dispersion, to characterization, modeling, and simulation. Finally, a nanotechnology innovation roadmap is proposed wherein the interplay between the development of nanoscale building blocks, product design, process design, and value chain integration is identified. A suggestion is made for an R and D model combining market pull and technology push as a way to quickly exploit the advantages in nanotechnology and translate these into customer benefits

  6. Analysis of the corporate political activity of major food industry actors in Fiji

    Mialon, Melissa; Swinburn, Boyd; Wate, Jillian; Tukana, Isimeli; Sacks, Gary

    2016-01-01

    Background Non-communicable diseases (NCDs) are the leading cause of mortality in Fiji, a middle-income country in the Pacific. Some food products processed sold and marketed by the food industry are major contributors to the NCD epidemic, and the food industry is widely identified as having strong economic and political power. However, little research has been undertaken on the attempts by the food industry to influence public health-related policies and programs in its favour. The ?corporat...

  7. [Evaluating work intensity in major and auxiliary occupations of by-product coke industry].

    Smagulov, N K; Alpysbayeva, Zh T

    2015-01-01

    The article covers evaluation of work strain in major and auxiliary occupations of by-product coke industry. The study results conclude that occupational activity of by-product coke industry workers, under exposure to occupational hazards, affects the workers' performance. Major occupations workers demonstrate higher level of functional strain of CNS, poor concentration of attention and lower ability to switch over, decreased general performance, vs. the auxiliary occupations workers who demonstrated increased cardiovascular and neuro-muscular strain due to occupational activity.

  8. Irradiation of starches for industrial uses: Chemical and physical effects

    Gonzalez, Maria E.

    1999-01-01

    Corn and cassava starches have been irradiated with gamma doses from 10 to 180 kGy and pastes have been prepared by boiling the starches in water. The rheological properties of the pastes have been determined showing that the 10 kGy dose reduces sharply the viscosity of the aqueous pastes. The solubility of the irradiated starches has been also studied. The cassava starch irradiated with 180 kGy is soluble in boiling water and remains soluble at room temperature. After some considerations on the chemical effects of the irradiation it is concluded that the irradiation technique is suitable to replace the chemical treatment in many industrial applications of the starch. (author)

  9. How the chemical industry can benefit from PRA

    Guymer, P.; Kaiser, G.D.; Mc Kelvey, T.W.; Hannaman, G.W.

    1986-01-01

    Probabilistic Risk Assessment (PRA) is a method of quantifying the frequency of occurrence and the magnitude of the consequences of accidents in systems that contain hazardous materials such as radioactive fission products, and toxic, flammable or explosive chemicals. The frequency and the magnitude of the consequences are the basic elements of any definition or risk, which is often simply expressed as the product of frequency and magnitude, summed over all accident sequences. PRA is now a mature technique that has been used to estimate risk for a number of industrial facilities. In this paper the author gives examples of beneficial uses of PRA

  10. Survey on the Use of LCA in European Chemical Industry

    Olsen, Stig Irving

    1999-01-01

    During 1997 a questionnaire was sent to 40 European chemical manufacturers representing different positions in the supply chain. 25 companies (62.5%) responded, of which 23 had been involved in LCA to some degree. The questionnaire consisted of 30 questions divided into four parts dealing...... industry has taken up the LCA methodology and is testing its applicability for their purposes, although they still feel the methodology is a bit immature. The resources devoted to LCA depends to a great extent on the company's position in the supply chain and on the size of the company. Many of the LCA...

  11. Undisclosed chemicals--implications for risk assessment: a case study from the mining industry.

    Singh, Khareen; Oates, Christopher; Plant, Jane; Voulvoulis, Nikolaos

    2014-07-01

    Many of the chemicals used in industry can be hazardous to human health and the environment, and some formulations can have undisclosed ingredients and hazards, increasing the uncertainty of the risks posed by their use. The need for a better understanding of the extent of undisclosed information in chemicals arose from collecting data on the hazards and exposures of chemicals used in typical mining operations (copper, platinum and coal). Four main categories of undisclosed chemicals were defined (incomplete disclosure; chemicals with unspecific identities; relative quantities of ingredients not stated; and trade secret ingredients) by reviewing material safety data sheet (MSDS) omissions in previous studies. A significant number of chemicals (20% of 957 different chemicals) across the three sites had a range of undisclosed information, with majority of the chemicals (39%) having unspecific identities. The majority of undisclosed information was found in commercially available motor oils followed by cleaning products and mechanical maintenance products, as opposed to reagents critical to the main mining processes. All three types of chemicals had trade secrets, unspecific chemical identities and incomplete disclosures. These types of undisclosed information pose a hindrance to a full understanding of the hazards, which is made worse when combined with additional MSDS omissions such as acute toxicity endpoints (LD50) and/or acute aquatic toxicity endpoints (LC50), as well as inadequate hazard classifications of ingredients. The communication of the hazard information in the MSDSs varied according to the chemical type, the manufacturer and the regulations governing the MSDSs. Undisclosed information can undermine occupational health protection, compromise the safety of workers in industry, hinder risk assessment procedures and cause uncertainty about future health. It comes down to the duty of care that industries have towards their employees. With a wide range of

  12. Improving the Practical Education of Chemical and Pharmaceutical Engineering Majors in Chinese Universities

    Zhao, Feng-qing; Yu, Yi-feng; Ren, Shao-feng; Liu, Shao-jie; Rong, Xin-yu

    2014-01-01

    Practical education in chemical engineering has drawn increasing attention in recent years. This paper discusses two approaches to teaching and learning about experiments among upper-level chemical and pharmaceutical engineering majors in China. On the basis of years of experience in teaching chemical and pharmaceutical engineering, we propose the…

  13. Toxic industrial chemicals and chemical weapons: exposure, identification, and management by syndrome.

    Tomassoni, Anthony J; French, Robert N E; Walter, Frank G

    2015-02-01

    Toxidromes aid emergency care providers in the context of the patient presenting with suspected poisoning, unexplained altered mental status, unknown hazardous materials or chemical weapons exposure, or the unknown overdose. The ability to capture an adequate chemical exposure history and to recognize toxidromes may reduce dependence on laboratory tests, speed time to delivery of specific antidote therapy, and improve selection of supportive care practices tailored to the etiologic agent. This article highlights elements of the exposure history and presents selected toxidromes that may be caused by toxic industrial chemicals and chemical weapons. Specific antidotes for toxidromes and points regarding their use, and special supportive measures, are presented. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Energy use and energy intensity of the U.S. chemical industry

    Worrell, E.; Phylipsen, D.; Einstein, D.; Martin, N.

    2000-04-01

    The U.S. chemical industry is the largest in the world, and responsible for about 11% of the U.S. industrial production measured as value added. It consumes approximately 20% of total industrial energy consumption in the U.S. (1994), and contributes in similar proportions to U.S. greenhouse gas emissions. Surprisingly, there is not much information on energy use and energy intensity in the chemical industry available in the public domain. This report provides detailed information on energy use and energy intensity for the major groups of energy-intensive chemical products. Ethylene production is the major product in terms of production volume of the petrochemical industry. The petrochemical industry (SIC 2869) produces a wide variety of products. However, most energy is used for a small number of intermediate compounds, of which ethylene is the most important one. Based on a detailed assessment we estimate fuel use for ethylene manufacture at 520 PJ (LHV), excluding feedstock use. Energy intensity is estimated at 26 GJ/tonne ethylene (LHV), excluding feedstocks.The nitrogenous fertilizer production is a very energy intensive industry, producing a variety of fertilizers and other nitrogen-compounds. Ammonia is the most important intermediate chemical compound, used as basis for almost all products. Fuel use is estimated at 268 PJ (excluding feedstocks) while 368 PJ natural gas is used as feedstock. Electricity consumption is estimated at 14 PJ. We estimate the energy intensity of ammonia manufacture at 39.3 GJ/tonne (including feedstocks, HHV) and 140 kWh/tonne, resulting in a specific primary energy consumption of 40.9 GJ/tonne (HHV), equivalent to 37.1 GJ/tonne (LHV). Excluding natural gas use for feedstocks the primary energy consumption is estimated at 16.7 GJ/tonne (LHV). The third most important product from an energy perspective is the production of chlorine and caustic soda. Chlorine is produced through electrolysis of a salt-solution. Chlorine production is

  15. Lipids: From Chemical Structures, Biosynthesis, and Analyses to Industrial Applications.

    Li-Beisson, Yonghua; Nakamura, Yuki; Harwood, John

    2016-01-01

    Lipids are one of the major subcellular components, and play numerous essential functions. As well as their physiological roles, oils stored in biomass are useful commodities for a variety of biotechnological applications including food, chemical feedstocks, and fuel. Due to their agronomic as well as economic and societal importance, lipids have historically been subjected to intensive studies. Major current efforts are to increase the energy density of cell biomass, and/or create designer oils suitable for specific applications. This chapter covers some basic aspects of what one needs to know about lipids: definition, structure, function, metabolism and focus is also given on the development of modern lipid analytical tools and major current engineering approaches for biotechnological applications. This introductory chapter is intended to serve as a primer for all subsequent chapters in this book outlining current development in specific areas of lipids and their metabolism.

  16. Evolution of nuclear chemical industry in France; Evolution de l'industrie chimique nucleaire en France

    Fould, M H [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    The present characteristics can be summarized in one word: expansion. Impelled by the CEA, but also by such organisations as the Electricite de France and the Merchant Marine, the French nuclear effort for the years 1957-1961 reaches about 600 thousand millions francs; over half this sum will be spent by chemical industry on research, pilot installations, construction of plants and delivery. The aim is to work efficiently, quickly and profitably. This is achieved through close collaboration between the big state organisations and private industry. It is chiefly along the following lines that this large scale effort is carried on: - thorough chemical treatment of increasing tonnages of ores from the French Union, with the aim of producing pure, plentiful and cheap uranium. - careful preparation of nuclear fuels, economical and perfectly adapted to the various types of reactor in operation or under construction. - Further treatment of irradiated fuels to extract the plutonium completely, as well as the uranium and certain fission products. industrial manufacture of material of nuclear purity or corrosion resistant required by the technology of energy producing or research reactors. - Supply to the many foreign or French users of isotopes and radioactive tracers required by medicine, industry and agriculture in ever-increasing numbers. - Meticulous chemical treatment of gaseous or liquid effluent in strictly controlled stations in order that reactors and their annexes will be perfectly safe to use. This account shows the great extent of the effort laid out by a young, energetic chemical industry in full swing. Having made sure of its techniques and set up numerous installations it is fully in a position to confront the French atomic programme. In addition it is able and anxious to associate with the developments of foreign atomic industry, especially EURATOM and Eurochemic. (author) [French] Un mot en resume les caracteristiques presentes: l'expansion. Sous l

  17. The pharmaceutical industry in the industrial chemical group: The National Union of Chemical-Pharmaceutical Laboratories (1919-1936

    Rodríguez Nozal, Raúl

    2011-12-01

    Full Text Available The pharmaceutical industry associations, as it happened with other businesses, had a significant rise during the dictatorship of Primo de Rivera and II Republic. The Cámara Nacional de Industrias Químicas, in Barcelona, represented the national chemical industry to its ultimate assimilation by the Organización Sindical in 1939. In this association, matters relating to pharmaceutical products —which we will specially deal with in this work— were managed by the Unión Nacional de Laboratorios Químico-Farmacéuticos, which defended the interests of pharmaceutical companies in the presence of government authorities, using the resources and mechanisms also managed by business pressure groups. The inclusion of industrial pharmacy in the Chemical lobby separated the pharmaceutical industry from traditional exercise and its corporate environment. This created ups and downs, conflicts of interests and finally, love and hate relationships with their colleagues of the pharmacy work placement and, of course, with the association that represented them: the Unión Farmacéutica Nacional.

    El asociacionismo farmacéutico industrial, al igual que ocurriera con otras actividades empresariales, experimentó un notable auge durante la Dictadura de Primo de Rivera y la II República. La Cámara Nacional de Industrias Químicas, desde Barcelona, representó a la industria química nacional hasta su asimilación definitiva por la Organización Sindical franquista, en 1939. Dentro de esta asociación, los asuntos relacionados con los productos farmacéuticos, a los que prestaremos especial atención en este trabajo, fueron gestionados por la Unión Nacional de Laboratorios Químico- Farmacéuticos, que defendió los intereses de los productores de medicamentos industriales ante las autoridades gubernamentales, utilizando para ello recursos y mecanismos también manejados por otros grupos empresariales de presión. La inclusión de la farmacia industrial

  18. Application of large radiation sources in chemical processing industry

    Krishnamurthy, K.

    1977-01-01

    Large radiation sources and their application in chemical processing industry are described. A reference has also been made to the present developments in this field in India. Radioactive sources, notably 60 Co, are employed in production of wood-plastic and concrete-polymer composites, vulcanised rubbers, polymers, sulfochlorinated paraffin hydrocarbons and in a number of other applications which require deep penetration and high reliability of source. Machine sources of electrons are used in production of heat shrinkable plastics, insulation materials for cables, curing of paints etc. Radiation sources have also been used for sewage hygienisation. As for the scene in India, 60 Co sources, gamma chambers and batch irradiators are manufactured. A list of the on-going R and D projects and organisations engaged in research in this field is given. (M.G.B.)

  19. Materials of 44. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    2001-01-01

    Scientific assemblies of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry are the most important chemical meeting organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects was proposed as scientific sessions and symposia topics: solid state chemistry; didactics of chemistry; electrochemistry; biologically active compounds; geochemistry; organic chemistry; physical chemistry; environment quality and protection; coordination chemistry; chemical technology; polymers; explosive materials; analytical chemistry; theoretical chemistry

  20. PETROS - Worldwide Databank of Major Element Chemical Analyses of Igneous Rocks

    National Oceanic and Atmospheric Administration, Department of Commerce — PETROS is a worldwide data bank of major element chemical analyses of igneous rocks compiled for research and teaching purposes by Dr. Felix Mutschler and Staff at...

  1. Assessment of the energy requirements and selected options facing major consumers within the Egyptian industrial and agricultural sectors. Final report

    1978-05-31

    The objectives of the energy assessment study of Egypt are to develop an understanding of the current status of the principal energy users in Egypt's industrial and agricultural sectors; to estimate the energy demand and efficiency for each selected subsector within these major sectors; to identify opportunities for fuel type changes, technology switches, or production pattern changes which might increase the efficiency with which Egypt's energy is used both now and in the future: and based on options identified, to forecast energy efficiencies for selected Egyptian subsectors for the years 1985 and 2000. Study results are presented for the iron and steel, aluminium, fertilizer, chemical, petrochemical, cement, and textile industries and automotive manufacturers. Study results for drainage, irrigation, and mechanization procedures in the agricultural sector and food processing sector are also presented. (MCW)

  2. A combined chemical and biological assessment of industrial contamination in an estuarine system in Kerala, India.

    Dsikowitzky, Larissa; Nordhaus, Inga; Sujatha, C H; Akhil, P S; Soman, Kunjupilai; Schwarzbauer, Jan

    2014-07-01

    The Cochin Backwaters in India are part of the Vembanad-Kol system, which is a protected wetland and one of the largest estuarine ecosystems in South Asia. The backwaters are a major supplier of fisheries resources and are developed as tourist destination. Periyar River discharges into the northern arm of the system and receives effluents from chemical, petrochemical and metal processing industries which release huge amounts of wastewaters after little treatment. We investigated water and sediment contamination in the industrial vicinity and at one station further away including organic and inorganic contaminants. In total 83 organic contaminants were found, e.g. well known priority pollutants such as endosulfan, hexachlorobenzene, DDT, hexachlorocyclohexane and their metabolites, which likely stem from the industrial manufacturing of organochlorine pesticides. Furthermore, several benzothiazole, dibenzylamine and dicyclohexylamine derivatives were detected, which indicated inputs from rubber producing facilities. Several of these compounds have not been reported as environmental contaminants so far. A comparison of organic contaminant and trace hazardous element concentrations in sediments with reported sediment quality guidelines revealed that adverse effects on benthic species are likely at all stations. The chemical assessment was combined with an investigation of macrobenthic diversity and community composition. Benthic organisms were completely lacking at the site with the highest trace hazardous element concentrations. Highest species numbers, diversity indices and abundances were recorded at the station with the greatest distance to the industrial area. Filter feeders were nearly completely lacking, probably leading to an impairment of the filter function in this area. This study shows that a combination of chemical and biological methods is an innovative approach to achieve a comprehensive characterization of industrial contamination, to evaluate

  3. Alternative routes for the chemical industry regarding US shale gas

    Kneissel, B. [Stratley AG, Koeln (Germany)

    2013-11-01

    Cracking ethane from wet shale gas in North America sets a bench mark to global ethylene production costs. Regarding very attractive ethane prices from extraction of low cost wet shale gas we suggest in North America ethylene production costs will roughly vary between 400 and 600 $/ t. As in other parts of the world, except Middle East, the availability of ethane seems to be more limited other sources for ethylene, such as methane, coal and biomass are investigated. Oxidative coupling of methane (OCM) has its limits and may only lead to competitive production costs for large scale operations. Coal converted to ethylene via calcium carbide and subsequent hydrogenation may hardly be a viable answer. Ethylene derived by dehydration of ethanol from fermentation of corn sugar may be an answer for very low crop prices. Further research on the conversion of methane with emphasis on its industrial implementation as a major carbon resource is recommended. (orig.)

  4. Insect-gene-activity detection system for chemical and biological warfare agents and toxic industrial chemicals

    Mackie, Ryan S.; Schilling, Amanda S.; Lopez, Arturo M.; Rayms-Keller, Alfredo

    2002-02-01

    Detection of multiple chemical and biological weapons (CBW) agents and/or complex mixtures of toxic industrial chemicals (TIC) is imperative for both the commercial and military sectors. In a military scenario, a multi-CBW attack would create confusion, thereby delaying decontamination and therapeutic efforts. In the commercial sector, polluted sites invariably contain a mixture of TIC. Novel detection systems capable of detecting CBW and TIC are sorely needed. While it may be impossible to build a detector capable of discriminating all the possible combinations of CBW, a detection system capable of statistically predicting the most likely composition of a given mixture is within the reach of current emerging technologies. Aquatic insect-gene activity may prove to be a sensitive, discriminating, and elegant paradigm for the detection of CBW and TIC. We propose to systematically establish the expression patterns of selected protein markers in insects exposed to specific mixtures of chemical and biological warfare agents to generate a library of biosignatures of exposure. The predicting capabilities of an operational library of biosignatures of exposures will allow the detection of emerging novel or genetically engineered agents, as well as complex mixtures of chemical and biological weapons agents. CBW and TIC are discussed in the context of war, terrorism, and pollution.

  5. Competency test for selecting majors to produce competitive vocational graduates in industry

    Jiwa Permana Agus Aan

    2018-01-01

    Full Text Available President of Indonesia, Jokowi reoriented vocational school graduate toward demand driven graduates that is graduates who have certificate and skill required by industry. The initial stage of the new student on vocational school is choosing a major. At first step, students often confuse in choosing the majors they want. The mistake of choosing a department will be a set beck to the motivation of learning and skill, later will impade students future career. Thus competence test is needed to helping them in choosing the majors according to their competence. The solution to this problem is to conduct online competency tests for new students. The Results of research with 60 responden, 78% corresponds stated that the majors they were in match with their interests. Then the remaining 22% did not match. But the result of the competency assessment of students in match with the majors of is 40% and 60% of students need counseling for selection majors.

  6. Ashwagandha leaf derived withanone protects normal human cells against the toxicity of methoxyacetic acid, a major industrial metabolite.

    Priyandoko, Didik; Ishii, Tetsuro; Kaul, Sunil C; Wadhwa, Renu

    2011-05-04

    The present day lifestyle heavily depends on industrial chemicals in the form of agriculture, cosmetics, textiles and medical products. Since the toxicity of the industrial chemicals has been a concern to human health, the need for alternative non-toxic natural products or adjuvants that serve as antidotes are in high demand. We have investigated the effects of Ayurvedic herb Ashwagandha (Withania somnifera) leaf extract on methoxyacetic acid (MAA) induced toxicity. MAA is a major metabolite of ester phthalates that are commonly used in industry as gelling, viscosity and stabilizer reagents. We report that the MAA cause premature senescence of normal human cells by mechanisms that involve ROS generation, DNA and mitochondrial damage. Withanone protects cells from MAA-induced toxicity by suppressing the ROS levels, DNA and mitochondrial damage, and induction of cell defense signaling pathways including Nrf2 and proteasomal degradation. These findings warrant further basic and clinical studies that may promote the use of withanone as a health adjuvant in a variety of consumer products where the toxicity has been a concern because of the use of ester phthalates.

  7. Ashwagandha leaf derived withanone protects normal human cells against the toxicity of methoxyacetic acid, a major industrial metabolite.

    Didik Priyandoko

    Full Text Available The present day lifestyle heavily depends on industrial chemicals in the form of agriculture, cosmetics, textiles and medical products. Since the toxicity of the industrial chemicals has been a concern to human health, the need for alternative non-toxic natural products or adjuvants that serve as antidotes are in high demand. We have investigated the effects of Ayurvedic herb Ashwagandha (Withania somnifera leaf extract on methoxyacetic acid (MAA induced toxicity. MAA is a major metabolite of ester phthalates that are commonly used in industry as gelling, viscosity and stabilizer reagents. We report that the MAA cause premature senescence of normal human cells by mechanisms that involve ROS generation, DNA and mitochondrial damage. Withanone protects cells from MAA-induced toxicity by suppressing the ROS levels, DNA and mitochondrial damage, and induction of cell defense signaling pathways including Nrf2 and proteasomal degradation. These findings warrant further basic and clinical studies that may promote the use of withanone as a health adjuvant in a variety of consumer products where the toxicity has been a concern because of the use of ester phthalates.

  8. Chemical Industry R&D Roadmap for Nanomaterials By Design. From Fundamentals to Function

    none,

    2003-12-01

    Vision2020 agreed to join NNI and the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (DOE/EERE) in sponsoring the "Nanomaterials and the Chemical Industry Roadmap Workshop" on September 30-October 2, 2002. This roadmap, Chemical Industry R&D Roadmap for Nanomaterials By Design: From Fundamentals to Function, is based on the scientific priorities expressed by workshop participants from the chemical industry, universities, and government laboratories.

  9. Analysis of the corporate political activity of major food industry actors in Fiji.

    Mialon, Melissa; Swinburn, Boyd; Wate, Jillian; Tukana, Isimeli; Sacks, Gary

    2016-05-10

    Non-communicable diseases (NCDs) are the leading cause of mortality in Fiji, a middle-income country in the Pacific. Some food products processed sold and marketed by the food industry are major contributors to the NCD epidemic, and the food industry is widely identified as having strong economic and political power. However, little research has been undertaken on the attempts by the food industry to influence public health-related policies and programs in its favour. The "corporate political activity" (CPA) of the food industry includes six strategies (information and messaging; financial incentives; constituency building; legal strategies; policy substitution; opposition fragmentation and destabilisation). For this study, we aimed to gain a detailed understanding of the CPA strategies and practices of major food industry actors in Fiji, interpreted through a public health lens. We implemented a systematic approach to monitor the CPA of the food industry in Fiji for three months. It consisted of document analysis of relevant publicly available information. In parallel, we conducted semi-structured interviews with 10 stakeholders involved in diet- and/or public health-related issues in Fiji. Both components of the study were thematically analysed. We found evidence that the food industry adopted a diverse range of strategies in an attempt to influence public policy in Fiji, with all six CPA strategies identified. Participants identified that there is a substantial risk that the widespread CPA of the food industry could undermine efforts to address NCDs in Fiji. Despite limited public disclosure of information, such as data related to food industry donations to political parties and lobbying, we were able to identify many CPA practices used by the food industry in Fiji. Greater transparency from the food industry and the government would help strengthen efforts to increase their accountability and support NCD prevention. In other low- and middle-income countries, it

  10. Summaries of the 40. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    1997-01-01

    Annual 40. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry has been held in Gdansk on 22-26 September 1997. The most valuable scientific results obtained in Polish Laboratories have been presented in 22 main sections and 7 symposia directed especially at following subjects: analytical chemistry, biochemistry, solid state chemistry and material science, physical chemistry, heteroorganic and coordination chemistry, medical and pharmaceutical chemistry, metalorganic chemistry, inorganic and organic chemistry, polymers chemistry, chemistry and environment protection, theoretical chemistry, chemical didactics, photochemistry, radiation chemistry and chemical kinetics, chemical engineering, catalysis, crystallochemistry, chemical technology, electrochemistry, and instrumental methods

  11. Potential applications of carbon dioxide in chemical industry; Moegliche Nutzungen von Kohlendioxid in der chemischen Industrie

    Behr, Arno; Neuberg, Stefan [Technische Univ. Dortmund (Germany)

    2009-10-15

    Up to now, the use of carbon dioxide as a renewable C. carbon source plays in the current public debate on CCS technology only a minor role. Though, the chemical utilization of the generally unreactive classified molecule provides same very interesting synthesis routes, which take place without toxic starting materials like phosgene. In this review a number of syntheses using CO{sub 2}, which are currently in development, will be briefly presented. Although most of them have only been investigated on laboratory or miniplant scale and require further development, they demonstrate the high potential of carbon dioxide in industrial syntheses far beyond the traditional applications such as urea or salicylic acid syntheses. Concepts for the synthesis of formic acid and a {delta}-lactone, as well as developments in photosynthesis will be presented. A crucial role in nearly all these conversions plays the catalytic activation of carbon dioxide. (orig.)

  12. Economic consequences of major accidents in the industrial plants: The case of a nuclear power plant

    Fraix, J.

    1989-09-01

    These last years, newspapers head-lines have reported various accidents (Mexico City, Bhopal, Chernobyl, ...) which have drawn attention to the fact that the major technological risk is now a reality and that, undoubtedly, industrial decision-makers ought to integrate it into their preoccupations. In addition to the sometimes considerable human problems such accidents engender, their economic consequences may be such that they become significant on a national or even international scale. The aim of the present paper is to analyse these economic effects by using the particular context of a nuclear power plant. The author has deliberately limited his subject to the consequences of a major accident, that is to say a sudden event, theoretically unforeseen and beyond man's control. The qualification major means an accident of which the consequences extend far beyond the industrial plant itself. The direct and indirect economic consequences are analysed from the responsibility point of view as well as from the national and international community's point of view. A paragraph explains how the coverage of the costs can rely on the cooperation of a number of parties: responsible company, state, insurers, customers, etc. The study is broadly based on the experience resulting from the two major accidents which happened in the nuclear industry these last years (Three Mile Island in 1979 and Chernobyl in 1986) and makes use of more theoretical considerations, for example in the field of the economic evaluation of human life. (author). 58 refs, 2 figs, 12 tabs

  13. Physico-Chemical parameters and trace-metals concentration in effluents from various industries in vicinity of Lahore

    Gulfraz, M.; Ahmad, T.; Afzal, H.

    2003-01-01

    Increasing problem of pollution has become serious in almost all big cities of Pakistan. The industrial effluents (Liquid waste) discharged by different industries are drained into streams/nallahs, which ultimately join the waterways (streams, lakes, rivers or sea). The effluent samples from five industries, like Tanneries, Chemicals, Pharmaceuticals, Fertilizers and metal/electroplating, working in Lahore, Sheikhupura and Kalashahkaku were selected for analysis. The parameters, like Temperature, pH, conductivity, hardness, alkalinity, total dissolved solids, chemical oxygen demands, phosphate, nitrate, nitrite, major cations (Na, K, Ca, Mg) and heavy/trace metals, were studied. The results were compared with National environmental Quality standards (NEQS). It was further observed that when effluents of industries join fresh water of stream, lakes or rivers, this causes severe water-pollution and damages the flora and fauna. Suggestions for effective control of water-pollution are also given. (author)

  14. Fate of chemical warfare agents and toxic industrial chemicals in landfills.

    Bartelt-Hunt, Shannon L; Barlaz, Morton A; Knappe, Detlef R U; Kjeldsen, Peter

    2006-07-01

    One component of preparedness for a chemical attack is planning for the disposal of contaminated debris. To assess the feasibility of contaminated debris disposal in municipal solid waste (MSW) landfills, the fate of selected chemical warfare agents (CWAs) and toxic industrial chemicals (TICs) in MSW landfills was predicted with a mathematical model. Five blister agents [sulfur mustard (HD), nitrogen mustard (HN-2), lewisite (L), ethyldichloroarsine (ED), and phosgene oxime (CX)], eight nerve agents [tabun (GA), sarin (GB), soman (GD), GE, GF, VX, VG, and VM], one riot-control agent [CS], and two TICs [furan and carbon disulfide] were studied. The effects of both infiltration (climate) and contaminant biodegradability on fate predictions were assessed. Model results showed that hydrolysis and gas-phase advection were the principal fate pathways for CWAs and TICs, respectively. Apart from CX and the TICs, none of the investigated compounds was predicted to persist in a landfill for more than 5 years. Climate had little impact on CWA/TIC fate, and biodegradability was only important for compounds with long hydrolysis half-lives. Monte Carlo simulations were performed to assess the influence of uncertainty in model input parameters on CWA/TIC fate predictions. Correlation analyses showed that uncertainty in hydrolysis rate constants was the primary contributor to variance of CWA fate predictions, while uncertainty in the Henry's Law constant and landfill gas-production rate accounted for most of the variance of TIC fate predictions. CWA hydrolysates were more persistent than the parent CWAs, but limited information is available on abiotic or biotic transformation rates for these chemicals.

  15. Methodology for national risk analysis and prioritization of toxic industrial chemicals.

    Taxell, Piia; Engström, Kerstin; Tuovila, Juha; Söderström, Martin; Kiljunen, Harri; Vanninen, Paula; Santonen, Tiina

    2013-01-01

    The identification of chemicals that pose the greatest threat to human health from incidental releases is a cornerstone in public health preparedness for chemical threats. The present study developed and applied a methodology for the risk analysis and prioritization of industrial chemicals to identify the most significant chemicals that pose a threat to public health in Finland. The prioritization criteria included acute and chronic health hazards, physicochemical and environmental hazards, national production and use quantities, the physicochemical properties of the substances, and the history of substance-related incidents. The presented methodology enabled a systematic review and prioritization of industrial chemicals for the purpose of national public health preparedness for chemical incidents.

  16. Chemical, procedural and economical evaluation of carbon dioxide as feedstock in the chemical industry

    Otto, Alexander

    2015-01-01

    The utilisation of CO 2 as feedstock in the chemical industry represents an alternative to the geological storage, which is legally limited and socially debated. Generally, scientific publications about the utilisation of CO 2 in chemical reactions typically address the feasibility of the syntheses without paying attention to the CO 2 reduction potential or the economy in contrast to the conventional process of production. The aim of this doctoral thesis is to identify chemical reactions with CO 2 as feedstock, which have the potential to reduce CO 2 emissions. These reactions are evaluated concerning the industrial realization, CO 2 balance and economy compared to the conventional processes. To achieve this, 123 reactions from the literature were collected and evaluated with the help of selection criteria developed specifically for this application. The criteria consider both, the quantitative potential to reduce CO 2 and possible economical interests in these reactions. Additional to the process of the evaluation of the reactions, a CO 2 reduction potential of 1.33 % of the greenhouse gas emissions within the European Union could be calculated. For the chemicals formic acid, oxalic acid, formaldehyde, methanol, urea and dimethyl ether, which most fully satisfy the selection criteria, a direct comparison of the CO 2 based process with the conventional process is performed. By literature data, process designs, and simulations, it has been shown that the highest reductions of CO 2 emissions can be achieved for methanol with 1.43 kg CO2 /kg MeOH and dimethyl ether with 2.17 kg CO2 /kg DME , but only with the assumption that the necessary hydrogen for the CO 2 based reaction is produced by electrolysis operated with renewable energy. Overall, the CO 2 based production processes of methanol and dimethyl ether could reduce 0.059 % of the greenhouse gas emissions of the European Union (EU) if all conventional processes are substituted in the EU. Finally, for the CO 2

  17. Progress in reorganization of international oil industry and moves of majors

    (Institute of Energy Economics, Tokyo (Japan))

    1988-10-15

    Of oil majors, Texaco, Chevron and Mobil have become depressed because of the sharp decrease in oil abundance due to the OPEC members' nationalization policy of resources in the first half of 1970's, whereas Exxon and Shell, who have made steady efforts in investment for exploration and development, have grown. BP has made a wide stride by acquisitions. Business acquisitions and mergers are increasing again in oil industries of Europe and U.S. with the dull oil price as the background. A particular feature of this trend is active involvement of western firms in North Sea oil. Oil producing countries are actively penetrating in downstream markets of consuming countries to establish stable selling routes. Whereas two directions are possible for changes in the international petroleum industry, that is, either coordinated action of producing countries and majors or increased competition among them, the age of co-existence and co-prosperity is most probable. 1 figure.

  18. Comparative Advantage, Exchange Rates, and Sectoral Trade Balances of Major Industrial Countries

    Stephen S. Golub

    1994-01-01

    This paper uses a Ricardian framework to clarify the role of microeconomic and macroeconomic factors governing the time-series and cross-sectional behavior of sectoral trade balances. Unit labor costs and trade balances are calculated for several sectors for the seven major industrial countries. The time-series and cross-sectional variation in sectoral unit labor costs is decomposed into relative productivity, wage differentials, and exchange rate variations. The main findings are that change...

  19. The impact of semiconductor, electronics and optoelectronic industries on downstream perfluorinated chemical contamination in Taiwanese rivers

    Lin, Angela Yu-Chen; Panchangam, Sri Chandana; Lo, Chao-Chun

    2009-01-01

    This study provides the first evidence on the influence of the semiconductor and electronics industries on perfluorinated chemicals (PFCs) contamination in receiving rivers. We have quantified ten PFCs, including perfluoroalkyl sulfonates (PFASs: PFBS, PFHxS, PFOS) and perfluoroalkyl carboxylates (PFCAs: PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA) in semiconductor, electronic, and optoelectronic industrial wastewaters and their receiving water bodies (Taiwan's Keya, Touchien, and Xiaoli rivers). PFOS was found to be the major constituent in semiconductor wastewaters (up to 0.13 mg/L). However, different PFC distributions were found in electronics plant wastewaters; PFOA was the most significant PFC, contributing on average 72% to the effluent water samples, followed by PFOS (16%) and PFDA (9%). The distribution of PFCs in the receiving rivers was greatly impacted by industrial sources. PFOS, PFOA and PFDA were predominant and prevalent in all the river samples, with PFOS detected at the highest concentrations (up to 5.4 μg/L). - The semiconductor, electronics and optoelectronic industries are the primary source of PFC contamination in downstream aqueous environments

  20. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY TOXIC INDUSTRIAL CHEMICALS

    One of the reported effects for exposure to many of the toxic industrial chemicals is DNA damage. The present study describes a simple, rapid and innovative assay to detect DNA damage resulting from exposure of surrogate DNA to toxic industrial chemicals (acrolein, allylamine, ch...

  1. Designing continuous safety improvement within chemical industrial areas

    Reniers, G.L.L.; Ale, B. J.M.; Dullaert, W.; Soudan, K.

    This article provides support in organizing and implementing novel concepts for enhancing safety on a cluster level of chemical plants. The paper elaborates the requirements for integrating Safety Management Systems of chemical plants situated within a so-called chemical cluster. Recommendations of

  2. Chemical reactor development : from laboratory synthesis to industrial production

    Thoenes, D.

    1998-01-01

    Chemical Reactor Development is written primarily for chemists and chemical engineers who are concerned with the development of a chemical synthesis from the laboratory bench scale, where the first successful experiments are performed, to the design desk, where the first commercial reactor is

  3. Regional air pollution caused by a simultaneous destruction of major industrial sources during the 1999 air campaign in Yugoslavia

    Vukmirovic, Z.B.; Unkasevic, M.; Lazic, L.; Tosic, I.; Joksimovich, V.

    2002-01-01

    During NATO's 78 day Kosovo war, 24 March-10 June 1999, almost daily attacks on major industrial sources have caused numerous industrial accidents in Serbia. These accidents resulted in releases of many hazardous chemical substances including the persistent organic pollutants (POPs). Important detection of some POPs in fine aerosol form took place at Xanthi in Greece and reported to the scientific world. The paper focuses on two pollution episodes: (a) 6-8 April; and (b) 18-20 April. Using the Eta model trajectory analysis, the regional pollutant transport from industrial sites in northern Serbia (Novi Sad) and in the Belgrade vicinity (Pancevo), respectively, almost simultaneously bombed at midnight between 17 and 18 April, corroborated measurements at Xanthi. At the same time the pollutant puff was picked up at about 3000 m and transported to Bulgaria, Romania, Ukraine, Moldavia and the Black Sea. The low-level trajectories from Pancevo below 1000 m show pollutant transport towards Belgrade area in the first 12 hours. The POP washout in central and southern Serbia in the second episode was deemed to have constituted the principal removal mechanism. In this episode maximum POP wet deposition was found in central Serbia and along the 850 hPa trajectory towards south-eastern Serbia and the Bulgarian border. The most intensive bombing of major industrial sources was in April 1999 in which maximum number of days with precipitation (20-26 a month) was registered in central and south-western Serbia in comparison with the period of 1960-1990. Maximum monthly precipitation sums, higher than 100 mm, appeared in central and north-eastern Serbia, while a deficit, less than 50 mm, was registered in north-western and southern Serbia. (author)

  4. Emergence and legitimation of an expertise in the field of 'major industrial hazards'

    Vallet, Benedicte

    1989-01-01

    A look at industrial safety management in France immediately points out to attempts at transferring safety concepts, methods and procedures from the nuclear field to chemical industry. Such transfer is being analyzed here from a sociological point of view, mainly as a strategy from some professional groups to consolidate and expand their area of competence, at a time when the issue of technological risks gains momentum. Nevertheless, such transfer implies some difficulties, due to structural differences between the two sectors as well as to the industrialists will to keep their prerogatives over their own field. Against this background, the relationships between industrialists, safety professionals and state engineers are examined to see how they influence the emergence of a new body of experts. (author)

  5. Abstracts Book of 42. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    1999-01-01

    Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry is the most important chemical forum of Polish chemists organised annually. The state of art of many fundamental and applied investigations have been presented and discussed. The following scientific sessions and microsymposia have been proposed: plenary session, analytical chemistry, inorganic chemistry, organic chemistry, chemistry and environment, chemistry and technology of polymers, chemistry didactics, electrochemistry, young scientists forum, chemical technology, chemical engineering, high energetics materials, computers in research and teaching of chemistry, structure modelling and polymer properties, silicon-organic compounds

  6. Abstracts Book of Jubilee Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    2000-01-01

    Scientific Assemblies of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry are most important chemical discussion forum organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects was proposed as sections and symposia topics: organic chemistry, physical chemistry (chemical kinetics, catalysis, thermodynamics), membranes and membrane processes, biological chemistry, biotechnology, metalorganic compounds and complexes, polymer chemistry, crystallochemical study, spectroscopy in nowadays chemistry, supramolecular chemistry, chemistry and technology of coal, high-energetic materials, environment protection, didactics in chemistry, radiation chemistry, photochemistry, electrochemistry, chemistry and technology of carbohydrates, theoretical and computer chemistry, young scientists forum, history of chemistry

  7. Environmental profiles on chemicals (EPC): A substitution tool i.a. used in the textile industry

    Larsen, Henrik Fred; Hansen, John; Laursen, Søren E.

    2002-01-01

    When dealing with cleaner technology and product development within industries using a lot of different chemicals, substitution is essential. In many cases substitution of hazardous chemicals with less hazardous ones will diminish the environmental impact from the industry in question. But among...... many different chemicals it can be difficult to prioritize and evaluate areas for substitution. The EPC-tool was thus developed and it has been used successfully within the Danish printing industry and the Polish textile industry. The EPC tool combines key emission and key consumption figures...... with hazard assessments of the chemicals used in production and thus creates an environmental profile of the industry, process or product in question. The preceding EPCs are used for pointing out hazardous chemicals used in relatively high quantities and therefore candidates for substitution. The EPCs created...

  8. Antioxidants as potential medical countermeasures for chemical warfare agents and toxic industrial chemicals.

    McElroy, Cameron S; Day, Brian J

    2016-01-15

    The continuing horrors of military conflicts and terrorism often involve the use of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs). Many CWA and TIC exposures are difficult to treat due to the danger they pose to first responders and their rapid onset that can produce death shortly after exposure. While the specific mechanism(s) of toxicity of these agents are diverse, many are associated either directly or indirectly with increased oxidative stress in affected tissues. This has led to the exploration of various antioxidants as potential medical countermeasures for CWA/TIC exposures. Studies have been performed across a wide array of agents, model organisms, exposure systems, and antioxidants, looking at an almost equally diverse set of endpoints. Attempts at treating CWAs/TICs with antioxidants have met with mixed results, ranging from no effect to nearly complete protection. The aim of this commentary is to summarize the literature in each category for evidence of oxidative stress and antioxidant efficacy against CWAs and TICs. While there is great disparity in the data concerning methods, models, and remedies, the outlook on antioxidants as medical countermeasures for CWA/TIC management appears promising. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Understanding the tolerance of the industrial yeast Saccharomyces cerevisiae against a major class of toxic aldehyde compounds.

    Liu, ZongLin Lewis

    2018-07-01

    Development of the next-generation biocatalyst is vital for fermentation-based industrial applications and a sustainable bio-based economy. Overcoming the major class of toxic compounds associated with lignocellulose-to-biofuels conversion is one of the significant challenges for new strain development. A significant number of investigations have been made to understand mechanisms of the tolerance for industrial yeast. It is humbling to learn how complicated the cell's response to the toxic chemicals is and how little we have known about yeast tolerance in the universe of the living cell. This study updates our current knowledge on the tolerance of industrial yeast against aldehyde inhibitory compounds at cellular, molecular and the genomic levels. It is comprehensive yet specific based on reproducible evidence and cross confirmed findings from different investigations using varied experimental approaches. This research approaches a rational foundation toward a more comprehensive understanding on the yeast tolerance. Discussions and perspectives are also proposed for continued exploring the puzzle of the yeast tolerance to aid the next-generation biocatalyst development.

  10. Best practices in incident investigation in the chemical process industries with examples from the industry sector and specifically from Nova Chemicals

    Morrison, Lisa M.

    2004-01-01

    This paper will summarize best practices in incident investigation in the chemical process industries and will provide examples from both the industry sector and specifically from NOVA Chemicals. As a sponsor of the Center for Chemical Process Safety (CCPS), an industry technology alliance of the American Institute of Chemical Engineers, NOVA Chemicals participates in a number of working groups to help develop best practices and tools for the chemical process and associated industries in order to advance chemical process safety. A recent project was to develop an update on guidelines for investigating chemical process incidents. A successful incident investigation management system must ensure that all incidents and near misses are reported, that root causes are identified, that recommendations from incident investigations identify appropriate preventive measures, and that these recommendations are resolved in a timely manner. The key elements of an effective management system for incident investigation will be described. Accepted definitions of such terms as near miss, incident, and root cause will be reviewed. An explanation of the types of incident classification systems in use, along with expected levels of follow-up, will be provided. There are several incident investigation methodologies in use today by members of the CCPS; most of these methodologies incorporate the use of several tools. These tools include: timelines, sequence diagrams, causal factor identification, brainstorming, checklists, pre-defined trees, and team-defined logic trees. Developing appropriate recommendations and then ensuring their resolution is the key to prevention of similar events from recurring, along with the sharing of lessons learned from incidents. There are several sources of information on previous incidents and lessons learned available to companies. In addition, many companies in the chemical process industries use their own internal databases to track recommendations from

  11. An novel identification method of the environmental risk sources for surface water pollution accidents in chemical industrial parks.

    Peng, Jianfeng; Song, Yonghui; Yuan, Peng; Xiao, Shuhu; Han, Lu

    2013-07-01

    The chemical industry is a major source of various pollution accidents. Improving the management level of risk sources for pollution accidents has become an urgent demand for most industrialized countries. In pollution accidents, the released chemicals harm the receptors to some extent depending on their sensitivity or susceptibility. Therefore, identifying the potential risk sources from such a large number of chemical enterprises has become pressingly urgent. Based on the simulation of the whole accident process, a novel and expandable identification method for risk sources causing water pollution accidents is presented. The newly developed approach, by analyzing and stimulating the whole process of a pollution accident between sources and receptors, can be applied to identify risk sources, especially on the nationwide scale. Three major types of losses, such as social, economic and ecological losses, were normalized, analyzed and used for overall consequence modeling. A specific case study area, located in a chemical industry park (CIP) along the Yangtze River in Jiangsu Province, China, was selected to test the potential of the identification method. The results showed that there were four risk sources for pollution accidents in this CIP. Aniline leakage in the HS Chemical Plant would lead to the most serious impact on the surrounding water environment. This potential accident would severely damage the ecosystem up to 3.8 km downstream of Yangtze River, and lead to pollution over a distance stretching to 73.7 km downstream. The proposed method is easily extended to the nationwide identification of potential risk sources.

  12. 15 CFR 710.4 - Overview of scheduled chemicals and examples of affected industries.

    2010-01-01

    ... examples of affected industries. 710.4 Section 710.4 Commerce and Foreign Trade Regulations Relating to... REGULATIONS (CWCR) § 710.4 Overview of scheduled chemicals and examples of affected industries. The following provides examples of the types of industries that may be affected by the CWCR (parts 710 through 729 of...

  13. The ARIPAR project: analysis of the major accident risks connected with industrial and transportation activities in the Ravenna area

    Egidi, Demetrio; Foraboschi, Franco P.; Spadoni, Gigliola; Amendola, Aniello

    1995-01-01

    The paper describes the ARIPAR project aimed at the assessment of the major accident risks connected with storage, process and transportation of dangerous substances in the densely populated Ravenna area in Italy, which includes a large complex of chemical and petrochemical plants and minor industries, essentially distributed around an important commercial port. Large quantities of dangerous goods are involved in various transportation forms connected with the industrial and commercial activity of the port. The project started by making a complete inventory of fixed installations and transportation activities capable of provoking major fire, explosion and toxic release events; then relevant accident scenarios were developed for the single hazard sources; probabilities were assigned to the events and consequences were evaluated; finally iso-risk contours and F-N diagrams were evaluated both for the single sources and for the overall area. This required the development of a particular methodology for analysis of area risk and of associated software packages which allowed examination of the relative importance of the different activities and typologies of materials involved. The methodological approach and the results have proved to be very useful for the priority-ranking of risk mitigating interventions and physical planning in a complex area

  14. Security risk assessment and protection in the chemical and process industry

    Reniers, Genserik; van Lerberghe, Paul; van Gulijk, Coen

    2014-01-01

    This article describes a security risk assessment and protection methodology that was developed for use in the chemical- and process industry in Belgium. The approach of the method follows a risk-based approach that follows desing principles for chemical safety. That approach is beneficial for workers in the chemical industry because they recognize the steps in this model from familiar safety models .The model combines the rings-of-protection approach with generic security practices including...

  15. Analysis of root causes of major hazard precursors (hydrocarbon leaks) in the Norwegian offshore petroleum industry

    Vinnem, Jan Erik; Hestad, Jon Andreas; Kvaloy, Jan Terje; Skogdalen, Jon Espen

    2010-01-01

    The offshore petroleum industry in Norway reports major hazard precursors to the authorities, and data are available for the period 1996 through 2009. Barrier data have been reported since 2002, as have data from an extensive questionnaire survey covering working environment, organizational culture and perceived risk among all employees on offshore installations. Several attempts have been made to analyse different data sources in order to discover relations that may cast some light on possible root causes of major hazard precursors. These previous attempts were inconclusive. The study presented in this paper is the most extensive study performed so far. The data were analysed using linear regression. The conclusion is that there are significant correlations between number of leaks and safety climate indicators. The discussion points to possible root causes of major accidents.

  16. Economic Value Approach to Industrial Water Demand Management, A Case Study of Chemical Plants

    morteza tahami pour zarandi

    2017-03-01

    Full Text Available Limitations in water supply to meet the increasing demand have encouraged both planners and researchers to focus attention on water demand management, in which such economic tools as the water pricing system play a major role. A fundamental component of the pricing system is the estimation of the economic value of water, which reflects a firm’s maximum affordable water price or the ultimate elasticity of industrial water. The present study was conducted to estimate the economic value of water for basic chemical plants, excluding fertilizers and nitrogen compounds (code 2411, representing the four-digit ISIC industrial codes which account for about 14% of the total industrial water consumption. The econometric method of production function within the framework of panel data and the residual method were used. Data were collected from the Census of medium-sized businesses carried out by the Statistical Center of Iran over the period 1997–2013.  Results showed that one cubic meter of water allocated to the plants surveyed creates a value of 3,7071 Rials, which shows a large gap with the current purchase price of 5685 Rials. Moreover, it was found that the present water prices account for only about 1.3 percent of the total production cost of basic chemicals, excluding fertilizers and nitrogen compounds. It may, thus, be concluded that it is reasonable to increase the present water tariffs and discriminate among the various manufacturing codes by differences in tariffs in order to achieve water demand management goals. Finally, the information emerging from the study may be exploited to improve the revenues earned by water authorities or to carry out feasibility studies of industrial water development projects.

  17. Estimates of inter-fuel substitution possibilities in Chinese chemical industry

    Lin, Boqiang; Wesseh, Presley K.

    2013-01-01

    The chemical sector is a key driver of China's remarkable growth record and accounts for about 10% of the country's GDP. This has made the industry energy-intensive and consequently a major contributor to greenhouse gas emissions (GHG) and other pollutants. This study has attempted to investigate the potential for inter-fuel substitution between coal, oil, natural gas and electricity in Chinese chemical sector by employing a translog production and cost function. Ridge regression procedure was adopted to estimate the parameters of the function. Estimation results show that all energy inputs are substitutes. In addition, the study produces evidence that the significant role of coal in the Chinese chemical fuel mix converges over time, albeit slowly. These results suggest that price-based policies, coupled with capital subsidy programs can be adopted to redirect technology use towards cleaner energy sources like electricity and natural gas; hence, retaining the ability to fuel the chemical sector, while also mitigating GHG emissions. Notwithstanding, one must understand that the extent to which substituting electricity for coal will be effective depends on the extent to which coal or oil is used in generating electricity. The findings of this study provide general insights and underscore the importance of Chinese government policies that focus on installed capacity of renewable electricity, energy intensity targets as well as merger of enterprises. - Highlights: • Potential for inter-fuel substitution in Chinese chemical sector is investigated. • Oil, natural gas and electricity are found to be substitutes for coal. • Coal dominance in Chinese chemical fuel mix is found to converge over time. • Price-based policies and capital-subsidies are needed to redirect technology use. • Results support policies concerning renewables, energy-intensity targets and mergers

  18. Major advances in globalization and consolidation of the artificial insemination industry.

    Funk, D A

    2006-04-01

    The artificial insemination (AI) industry in the United States has gone through many consolidations, mergers, and acquisitions over the past 25 yr. There are 5 major AI companies in the United States today: 3 large cooperatives, 1 private company, and 1 public company. The latter 2 have majority ownership outside of the United States. The AI industry in the United States progeny-tests more than 1,000 Holstein young sires per year. Because healthy, mature dairy bulls are capable of producing well over 100,000 straws of frozen semen per year, only a relatively small number of bulls are needed to breed the world's population of dairy cows. Most AI companies in the United States do not own many, if any, females and tend to utilize the same maternal families in their breeding programs. Little differences exist among the selection programs of the AI companies in the United States. The similarity of breeding programs and the extreme semen-production capabilities of bulls have contributed to difficulties the AI companies have had in developing genetically different product lines. Exports of North American Holstein genetics increased steadily from the 1970s into the 1990s because of the perceived superiority of North American Holsteins for dairy traits compared with European strains, especially for production. The breeding industry moved towards international genetic evaluations of bulls in the 1990s, with the International Bull Evaluation Service (Interbull) in Sweden coordinating the evaluations. The extensive exchange of elite genetics has led to a global dairy genetics industry with bulls that are closely related, and the average inbreeding level for the major dairy breeds continues to increase. Genetic markers have been used extensively and successfully by the industry for qualitative traits, especially for recessive genetic disorders, but markers have had limited impact for quantitative traits. Selection emphasis continues to migrate away from production traits and

  19. Review on Chemical treatment of Industrial Waste Water * OPSAHU

    MICHAEL HORSFALL

    water is used and lot of wastewater generated from industries due their processes and washing purpose. A large ..... for coagulation–precipitation of cosmetic wastewater industry (Aloui ..... Gregor, J.E., Nokes, C.J., Fenton, E., 1997. Optimising ...

  20. Chemical composition of the major components of PM in different sites at the Metropolitan Region of Chile

    Reyes, F.; Castillo, M. A.; Rubio, M.; Gramsch, E.; Vasquez, Y.; Oyola, P.

    2013-05-01

    Santiago, Chile's capital is one of most polluted megacity (5.5 million of people) of the world. Currently, PM2.5 annual concentration is over 2.2 times the Chilean standard (20 μg/m3). Continuous measurements of non-refractory PM1.0 (sulfate, nitrate, chloride, ammonium and organics aerosols), black carbon, and PM2,5 mass concentration were determined using Aerosol Chemical Speciation Monitor (ACSM, Aerodyne Research, Inc), absorption coefficient monitor (SIMCA, Santiago University) and dustrack monitor (TSI Inc) in order to know the temporal variability of the major components of PM. The measurements were carried out at kerbside, urban background, industrial and mixed residential/industrial locations during year 2012 and -2013. Meteorological data (Relative Humidity, temperature, wind speed, wind direction and precipitations) were obtained from the air quality network operated by the environmental authority. The results show strong correlation with the metropolitan region major sources. Multiple regression analysis indicates that precipitations have a strong impact on PM1.0 soluble components; relative humidity has effects only on chloride, sulfate and black carbon. Chloride concentration decrease when temperature is increasing. The perceptual contribution of each component is similar among all sites. All sites shows that OA (Organics Aerosol) as the major constituent of PM1.0 (>50%), followed of nitrates (>13%). Sulfate could be used to differentiate the industrial site; due to there is a strong impact of SO2 emission. Combustion sources direct impact can be seen at BC contribution at industrial and kerbside site. Also, the OA/BC ratio shows slow value at kerbside (3.05) and industrial (3.26) site, and higher at urban background site (4.15). Aged organics aerosols are majority found at all sites (f43/f44 plot), indicating that regional background is strong in all results. These results will be compared with size distribution measurements available from previous

  1. Achieving a Carbon Neutral Society without Industry Contraction in the Five Major Steel Producing Countries

    Kyunsuk Choi

    2016-05-01

    Full Text Available This study analyzed the direct and indirect CO2 emissions of the energy-intensive basic metals industry, in particular steels, using the distributions of various energy sources, including coal/peat, oil, and electricity, from an input–output table. An analysis of five major steel producing countries indicated that direct CO2 emissions increased 1.4-fold and that indirect CO2 emissions increased by more than two-fold between 1995 and 2010. The elasticity of the CO2 emissions and the total energy costs indicated that Korea, Japan, and Germany are sensitive to energy sources from the electric power industry, whereas China and the US are more sensitive to energy sources pertaining to the coal and oil industry. Using the available forest area and photosynthesis, the potential neutralization ability of CO2 was estimated using the eco-CO2 index. The US yielded the highest CO2 neutralization ability of 66.1%, whereas Korea yielded a CO2 neutralization ability of 15%. Future trends of the 2030 eco-CO2 index revealed China and Korea will rapidly lose their neutralization ability resulting in a net negative neutralization ability if left unabated. The significant decline in the eco-CO2 index for the basic metals industry may be inhibited by utilizing bamboo wood charcoal for pulverized coal injection (PCI in the steelmaking process.

  2. Treatment of food-agro (sugar industry wastewater with copper metal and salt: Chemical oxidation and electro-oxidation combined study in batch mode

    Anurag Tiwari

    2017-06-01

    Full Text Available Sugar industry is one of the major industries which have been included in the polluting industries list by the World Bank. Different pollution monitoring agencies like State and National Pollution Control Boards have been made compulsory for each industry to set up a waste water treatment plants. In treatment system, single treatments of effluent are not effective to manage the dischargeable limit. So an attempted has been made to treat sugar industry wastewater with electrochemical and chemical process by using copper as electrode and chemical. Electrochemical process shows 81% chemical oxygen demand and 83.5% color reduction at pH 6, electrode distance 20 mm, current density 178 A m−2 and 120 min treatment time. The combined treatment results show 98% chemical oxygen demand and 99.5% color removal at 8 mM mass loading and pH 6 with copper sulphate.

  3. Economic feasibility of an energy efficiency project for a steam distribution system in a chemical industry

    Flavia Melo Menezes

    2017-12-01

    Full Text Available The burning of fossil fuels majorly contributes to the increase in global warming, and it represents 93% of greenhouse gases emissions in the chemical industry. Most of the energy demand in this sector is associated with steam systems, where 1/3 of the energy efficiency opportunities are located in its distribution system. However, most of the literature focuses on the design of new systems. Those that deal with existing systems, not always use simple and available methods. Furthermore, they address energy losses of steam systems only due to thermal insulation, ignoring those due to leakages of traps. Given this context, the purpose of this paper is to determine the economic feasibility of an energy efficiency project for a steam distribution system in a chemical industry, located in the metropolitan region of Salvador, Brazil. First, the energy lost in the steam distribution system through heat insulation and steam traps was estimated by applying thermodynamic principles, and technic consulting, respectively. Then, investments were estimated using commercial prices for new thermal insulation and steam traps. Finally, an economic evaluation of the improvement project was made, through the construction of a cash flow, and calculation of economic indicators: payback time, net present value (NPV, and internal rate of return (IRR. Economic indicators showed that the project is economically viable. The NPV and IRR reached approximately 5 million reais, and 66% per year, respectively. Additionally, this project also had social and environmental benefits, such as a reduction in greenhouse gases emissions, and increased local water availability.

  4. Identification and chemical characterization of industrial particulate matter sources in southwest Spain.

    Alastuey, Andrés; Querol, Xavier; Plana, Feliciano; Viana, Mar; Ruiz, Carmen R; Sánchez de la Campa, Ana; de la Rosa, Jesús; Mantilla, Enrique; García dos Santos, Saul

    2006-07-01

    A detailed physical and chemical characterization of coarse particulate matter (PM10) and fine particulate matter (PM2.5) in the city of Huelva (in Southwestern Spain) was carried out during 2001 and 2002. To identify the major emission sources with a significant influence on PM10 and PM2.5, a methodology was developed based on the combination of: (1) real-time measurements of levels of PM10, PM2.5, and very fine particulate matter (PM1); (2) chemical characterization and source apportionment analysis of PM10 and PM2.5; and (3) intensive measurements in field campaigns to characterize the emission plumes of several point sources. Annual means of 37, 19, and 16 microg/m3 were obtained for the study period for PM10, PM2.5, and PM1, respectively. High PM episodes, characterized by a very fine grain size distribution, are frequently detected in Huelva mainly in the winter as the result of the impact of the industrial emission plumes on the city. Chemical analysis showed that PM at Huelva is characterized by high PO4(3-) and As levels, as expected from the industrial activities. Source apportionment analyses identified a crustal source (36% of PM10 and 31% of PM2.5); a traffic-related source (33% of PM10 and 29% of PM2.5), and a marine aerosol contribution (only in PM10, 4%). In addition, two industrial emission sources were identified in PM10 and PM2.5: (1) a petrochemical source, 13% in PM10 and 8% in PM2.5; and (2) a mixed metallurgical-phosphate source, which accounts for 11-12% of PM10 and PM2.5. In PM2.5 a secondary source has been also identified, which contributed to 17% of the mass. A complete characterization of industrial emission plumes during their impact on the ground allowed for the identification of tracer species for specific point sources, such as petrochemical, metallurgic, and fertilizer and phosphate production industries.

  5. Research on the competitiveness and development strategy of china's modern coal chemical industry

    Wang, Q.; Han, Y. J.; Yu, Z. F.

    2016-08-01

    China's modern coal chemical industry has grown into a certain scale after over a decade of development, and remarkable progress has been made in key technologies. But as oil price collapsed since 2015, the economic benefit of the industry also slumped, with loud controversies in China over the necessity of modern coal chemical industry. The research believes that the modern coal chemical industry plays a positive role in the clean and sustainable exploitation of coal in China. It makes profit when oil price is no lower than 60/bbl, and outperforms petrochemical in terms of cost effectiveness when the price is between 60/bbl and 80/bbl. Given the low oil price and challenges posed by environmental protection and water restraints, we suggest that the state announce a guideline quickly, with adjusted tax policies and an encouragement to technological innovation, so that the modern coal chemical industry in China can grow sound and stable.

  6. Globalization : the challenge of the 1990s for the chemical industry

    Wilcock, D.

    1992-01-01

    The challenges facing the chemical industry in Canada were discussed. In recent years, Canada has scored low in polls measuring public confidence in the chemical industry. The industry is also suffering from continuing recession, global competition, increased environmental demands and strict legislation. The impact of globalization, total quality management, free trade, environmental concerns, and government policies on the chemical industry were reviewed. In the view of this author (President and CEO of Dow Chemicals) globalization is not a matter of choice, it is an industry imperative. Survival in the globalized economy will require not only to be successful competitors, but even more importantly to be successful cooperators with other stakeholders, and successful in forming partnerships with customers

  7. A multi-attribute Systemic Risk Index for comparing and prioritizing chemical industrial areas

    Reniers, G.L.L.; Sörensen, K.; Dullaert, W.

    2012-01-01

    Measures taken to decrease interdependent risks within chemical industrial areas should be based on quantitative data from a holistic (cluster-based) point of view. Therefore, this paper examines the typology of networks representing industrial areas to formulate recommendations to more effectively protect a chemical cluster against existing systemic risks. Chemical industrial areas are modeled as two distinct complex networks and are prioritized by computing two sub-indices with respect to existing systemic safety and security risks (using Domino Danger Units) and supply chain risks (using units from an ordinal expert scale). Subsequently, a Systemic Risk Index for the industrial area is determined employing the Borda algorithm, whereby the systemic risk index considers both a safety and security network risk index and a supply chain network risk index. The developed method allows decreasing systemic risks within chemical industrial areas from a holistic (inter-organizational and/or inter-cluster) perspective. An illustrative example is given.

  8. The impact of semiconductor, electronics and optoelectronic industries on downstream perfluorinated chemical contamination in Taiwanese rivers.

    Lin, Angela Yu-Chen; Panchangam, Sri Chandana; Lo, Chao-Chun

    2009-04-01

    This study provides the first evidence on the influence of the semiconductor and electronics industries on perfluorinated chemicals (PFCs) contamination in receiving rivers. We have quantified ten PFCs, including perfluoroalkyl sulfonates (PFASs: PFBS, PFHxS, PFOS) and perfluoroalkyl carboxylates (PFCAs: PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA) in semiconductor, electronic, and optoelectronic industrial wastewaters and their receiving water bodies (Taiwan's Keya, Touchien, and Xiaoli rivers). PFOS was found to be the major constituent in semiconductor wastewaters (up to 0.13 mg/L). However, different PFC distributions were found in electronics plant wastewaters; PFOA was the most significant PFC, contributing on average 72% to the effluent water samples, followed by PFOS (16%) and PFDA (9%). The distribution of PFCs in the receiving rivers was greatly impacted by industrial sources. PFOS, PFOA and PFDA were predominant and prevalent in all the river samples, with PFOS detected at the highest concentrations (up to 5.4 microg/L).

  9. On Study of Teaching Reform of Organic Chemistry Course in Applied Chemical Industry Technology

    Zhang, Yunshen

    2017-11-01

    with the implementation of new curriculum reform, the education sees great changes in teaching methods. Teaching reform is profound in organic chemistry course in applied chemical industry technology. However, many problems which have never been noticed before occur when reform programs are implemented which harm students’ ability for learning and enthusiasm in side face. This paper proposes reform measures like combining theory and practice, improving professional quality, supplementing professional needs and integrating teaching into life after analyzing organic chemistry course teaching in applied chemical industry technology currently, hoping to play a role of reference for organic chemistry course teaching reform in applied chemical industry technology.

  10. Profile of the chemicals industry in California: Californiaindustries of the future program

    Galitsky, Christina; Worrell, Ernst

    2004-06-01

    The U.S. Department of Energy (DOE) Office of Industrial Technologies (OIT) established the Industries of the Future (IOF) program to increase energy efficiency, reduce waste production and to improve competitiveness, currently focusing on nine sectors. The IOF is a partnership strategy involving industry, the research community and the government, working together to identify technology needs, promote industrial partnerships and implement joint measures with all partners involved. The State Industries of the Future (SIOF) program delivers the accomplishments of the national Industries of the Future strategy to the local level, to expand the technology opportunities to a larger number of partners and reach smaller businesses and manufacturers that were not initially involved in the IOF effort. The state programs bring together industry, academia, and state agencies to address the important issues confronting industry in the state. These public-private coalitions facilitate industry solutions locally and enhance economic development. California has started a State Industries of the Future effort, in collaboration with the U.S. Department of Energy. The California Energy Commission (CEC) is leading the SIOF program in California, as part of many other programs to improve the energy efficiency and performance of industries in California. The California State IOF program aims to build a network of participants from industry, academia and government in four selected industrial sectors as a basis for the development of a strategic partnership for industrial energy efficient technology in the state. In California the IOF effort focuses petroleum refining, chemical processing, food processing and electronics. As part of this effort, the SIOF program will develop roadmaps for technology development for the selected sectors. On the basis of the roadmap, the program will develop successful projects with co-funding from state and federal government, and promote industry

  11. Abstracts Book of 41. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    1998-01-01

    Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry is the most important scientific forum of Polish Chemists. The state of the art in many basic, fundamental and applied investigations has been presented and discussed. The following scientific sessions and microsymposia have been proposed: theoretical chemistry; molecular interactions; metal compounds - chemical, physical, electronic and biological aspects; catalysis and surface physico-chemistry; polymers - radiochemistry, modifications, physics and analytical methods; organic and bioorganic chemistry; physico-chemistry of condensed matter; chemical metallurgy; environmental protection; inorganic technology; chemistry and technology of coal; radiation chemistry; analytical chemistry; chemical engineering; young scientists forum; chemical didactics; petrochemistry; energetic materials; membranes and membrane processes; medical chemistry

  12. Progress of environmental management and risk assessment of industrial chemicals in China.

    Wang, Hong; Yan, Zhen-Guang; Li, Hong; Yang, Ni-Yun; Leung, Kenneth M Y; Wang, Yi-Zhe; Yu, Ruo-Zhen; Zhang, Lai; Wang, Wan-Hua; Jiao, Cong-Ying; Liu, Zheng-Tao

    2012-06-01

    With China's rapid economic growth, chemical-related environmental issues have become increasingly prominent, and the environmental management of chemicals has garnered increased attention from the government. This review focuses on the current situation and the application of risk assessment in China's environmental management of industrial chemicals. The related challenges and research needs of the country are also discussed. The Chinese government promulgated regulations for the import and export of toxic chemicals in 1994. Regulations for new chemical substances came into force in 2003, and were revised in 2010 based on the concept of risk management. In order to support the implementation of new regulations, Guidance for Risk Assessment of Chemicals is under development in an attempt to provide the concepts and techniques of risk assessment. With increasing concern and financial support from Chinese government, China is embarking on the fast track of research and development in environmental management of industrial chemicals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Carcinogenicity tests of certain environmental and industrial chemicals

    Weisburger, E.K.; Ulland, B.M.; Nam, J.; Gart, J.J.; Weisburger, J.H.

    1981-01-01

    Fourteen chemicals of varied uses were tested for carcinogenicity by oral administration in male and female Charles River CD rats. Under the conditions of the tests, propane sultone, propylene imine, and ethylenethiourea, in addition to the positive control N-2-fluorenylacetamide, were carcinogenic. Avadex, bis(2-chloroethyl) ether, the potassium salt of bis(2-hydroxyethyl) dithiocarbamic acid, ethylene carbonate, and semicarbazide hydrochloride were not carcinogenic under the test conditions. Dithiooxamide, glycerol alpha-monochlorohydrin, and thiosemicarbazide gave somewhat ambiguous results, though administered at high enough dose levels to be toxic. An inadequate number of animals survived treatments with sodium azide, sodium bisulfide, and vinylene carbonate, or the animals may not have received sufficiently high doses of the test chemicals to provide maximum test sensitivity. However, there were no indications that these three chemicals were carcinogenic under the test conditions

  14. the chemical composition and industrial quality of barite ...

    PROF EKWUEME

    important properties when considering the suitability of barite for non-drilling applications. Barite has various uses. For instance, high purity grades of barite with fine and well-sorted particles are used as fillers in marine and industrial paints, in brake lining/friction materials and in plastics. A specialized use of barite based on ...

  15. Implementation Plan for Chemical Industry R&D Roadmap for Nanomaterials by Design

    none,

    2006-04-01

    The purpose of this effort is to develop an implementation plan to realize the vision and goals identified in the Chemical Industry R&D Roadmap for Nanomaterials By Design: From Fundamentals to Function.

  16. Factors Influencing the Spatial Distribution of Organochlorine Pesticides in Soils surrounding Chemical Industrial Parks

    Wang, G.; Lu, Y.L.; Wang, T.Y.; Zhang, X.; Han, J.Y.; Luo, W.; Shi, Y.J.; Li, J.; Jiao, W.T.

    2009-01-01

    Topsoil samples (n = 105) were collected to Study the distribution of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) residues in the vicinity of chemical industrial parks in Tianjin, China. The occurrence and distribution of target organochlorine pesticides (OCPs) were mapped

  17. Health Risk Assessment of Harmful Chemicals: Case Study in a Petrochemical Industry

    M. Motovagheh

    2011-01-01

    Full Text Available Background and aims In the most chemical process industries, workers are exposed to various chemicals and working with these chemicals without considering safety and health considerations can lead to different harmful symptoms. For deciding about control measures and reducing risk to acceptable level , it is necessary to assess the health risk of exposing to harmful chemicals by aid of specific risk assessment techniques in the process industries. The purpose of this study was to assess the health risks arising from the exposures to chemicals in a petrochemical industry.  methods A simple and applied method was used for health risk assessment of chemicals in a petrochemical industry. Firstly job tasks and work process were determined and then different chemicals in each tasks identified and risk ranking was calculated in each job task by aid of hazard and exposure rate.   Results The result showed that workers are exposed to 10 chemicals including Methyl ethyl ketone, Epichlorohydrin, Sulfuric acid, Phenol, Chlorobenzene, Toluene, Isopropanol, Methylene chloride, Chlorideric Acid and Acetone during their work in plant. From these chemicals, the highest risk level was for Epichlorohydrin in the jobs of tank and utility operations and maintenance workers. The next high risk level was for Epichlorohydrin in technical inspecting and Methyl ethyl ketone in Tank and utility operations operator.     Conclusion Hazard information and monitoring data of chemical agents in the chemical industries can be used for assessing health risks from exposures to chemicals and ranking jobs by their risk level. These data can be used for resource allocation for control measures and reducing risk level to acceptable level.    

  18. Public perception and attitude towards chemical industry park in Dalian, Bohai Rim.

    He, Guizhen; Chen, Chunci; Zhang, Lei; Lu, Yonglong

    2018-04-01

    Recent decade has witnessed accelerating expansion of chemical industry and increasing conflicts between the local citizens, governmental authorities and project developers, especially in some coastal and port cities in China. Development and transformation of chemical industrial parks has been adopted as a national initiative recently. However, there is a paucity of research examining public perspectives on chemical industrial parks and their risks. Aiming to understand public perception, attitude, and response and the factors underlying the support/acceptance of chemical industry park, this paper investigated 418 residents neighboring to two chemical industrial parks, Dalian in Bohai Rim through face-to-face questionnaire survey. The results showed the knowledge of the respondents on the chemical industrial parks development was very limited. The respondents had complex perceptions on the environmental impacts, risks control, social-economic benefits, and problem awareness. The current levels of information disclosure and public participation were very low. The central governmental official (44.3%) was the most trustworthy group by the respondents. Only 5.5% and 23.2% of the respondents supported the construction of a new CIP nearby and far away their homes, whilst 13% thought new CIP project as acceptable. The spearman correlation analysis results showed a strong NIMBY effect (Not In My Backyard). Factor analysis results demonstrated five latent factors: knowledge, benefit, information, trust, and participation. Multiple linear regression analysis indicated how socio-demographic differences and five latent factors might impact on the support/acceptance of the chemical industrial parks. Education level, trust, information, and participation were significant predictors of public support/acceptance level. This study contributes to our limited knowledge and understanding of public sentiments to the chemical industry parks in China. Copyright © 2017 Elsevier Ltd

  19. Possibilities for recovery and prospects of the Serbian chemical industry in the light of sustainable development

    Đukić Petar M.

    2014-01-01

    Full Text Available There are numerous dilemmas related to the meaning of common terms associated with modern economic sectors, and especially the ones concerning industry. Chemical industry is a typical example of a term which changes rapidly and qualitatively, exactly with the pace of changing of the very technology based on knowledge, procedure, processes, raw materials, energy, as well as on the products themselves and on the way of their use. Numerous difficulties caused by huge changes in global market, by transition of command economies towards market system, as well as by the latest global economic-financial crisis, have brought the chemical industry in modern Serbia to an unenviable position. We cannot generally claim that chemical industry is collapsing, but the recovery of the whole chemical industry, as well as of the industry in general, necessitates many favourable presumptions from the environment, as well as strategic, systemic and operative measures, of the state within the so-called industry policy, as well as of the very companies which deal with chemical industry. The re-industrialization strategy, adopted officially during the first crisis blow, but to the full extent only during the prolonged crisis period in Serbia (2009-2013 should not be based on direct state incentives, but above all on the institutional infrastructure and business environment improvement which will lead to the investments in technological reconstruction and re-organization of the entire sector. However, chemical industry cannot be observed as a chance for economic growth per se, nor it can lead to higher employment rate in such a short period of time, but above all to productive use of profession, or of growth potential based on knowledge factor. This is why a proper evolution and prosperity of the Serbian chemical industry can be comprehended, not only through contribution of one separate sector, but as complementary and useful technologies within many other industries

  20. Chemical and Physical Sensing in the Petroleum Industry

    Disko, Mark

    2008-03-01

    World-scale oil, gas and petrochemical production relies on a myriad of advanced technologies for discovering, producing, transporting, processing and distributing hydrocarbons. Sensing systems provide rapid and targeted information that can be used for expanding resources, improving product quality, and assuring environmentally sound operations. For example, equipment such as reactors and pipelines can be operated with high efficiency and safety with improved chemical and physical sensors for corrosion and hydrocarbon detection. At the interface between chemical engineering and multiphase flow physics, ``multi-scale'' phenomena such as catalysis and heat flow benefit from new approaches to sensing and data modeling. We are combining chemically selective micro-cantilevers, fiber optic sensing, and acoustic monitoring with statistical data fusion approaches to maximize control information. Miniaturized analyzers represent a special opportunity, including the nanotech-based quantum cascade laser systems for mid-infrared spectroscopy. Specific examples for use of these new micro-systems include rapid monocyclic aromatic molecule identification and measurement under ambient conditions at weight ppb levels. We see promise from emerging materials and devices based on nanotechnology, which can one day be available at modest cost for impact in existing operations. Controlled surface energies and emerging chemical probes hold the promise for reduction in greenhouse gas emissions for current fuels and future transportation and energy technologies.

  1. Strategy of Construction and Demolition Waste Management after Chemical Industry Facilities Removal

    Tashkinova, I. N.; Batrakova, G. M.; Vaisman, Ya I.

    2017-06-01

    Mixed waste products are generated in the process of irrelevant industrial projects’ removal if conventional techniques of their demolition and dismantling are applied. In Russia the number of unused chemical industry facilities including structures with high rate of wear is growing. In removing industrial buildings and production shops it is used conventional techniques of demolition and dismantling in the process of which mixed waste products are generated. The presence of hazardous chemicals in these wastes makes difficulties for their use and leads to the increasing volume of unutilized residues. In the process of chemical industry facilities’ removal this fact takes on special significance as a high level of hazardous chemicals in the waste composition demands for the realization of unprofitable measures aimed at ensuring environmental and industrial safety. The proposed strategy of managing waste originated from the demolition and dismantling of chemical industry facilities is based on the methodology of industrial metabolism which allows identifying separate material flows of recycled, harmful and ballast components, performing separate collection of components during removal and taking necessary preventive measures. This strategy has been tested on the aniline synthesis plant being in the process of removal. As a result, a flow of 10 wt. %, subjected to decontamination, was isolated from the total volume of construction and demolition waste (C&D waste). The considered approach allowed using the resource potential of more than 80wt. % of waste and minimizing the disposed waste volume.

  2. Toxicity assessment of industrial chemicals and airborne contaminants: transition from in vivo to in vitro test methods: a review.

    Bakand, S; Winder, C; Khalil, C; Hayes, A

    2005-12-01

    Exposure to occupational and environmental contaminants is a major contributor to human health problems. Inhalation of gases, vapors, aerosols, and mixtures of these can cause a wide range of adverse health effects, ranging from simple irritation to systemic diseases. Despite significant achievements in the risk assessment of chemicals, the toxicological database, particularly for industrial chemicals, remains limited. Considering there are approximately 80,000 chemicals in commerce, and an extremely large number of chemical mixtures, in vivo testing of this large number is unachievable from both economical and practical perspectives. While in vitro methods are capable of rapidly providing toxicity information, regulatory agencies in general are still cautious about the replacement of whole-animal methods with new in vitro techniques. Although studying the toxic effects of inhaled chemicals is a complex subject, recent studies demonstrate that in vitro methods may have significant potential for assessing the toxicity of airborne contaminants. In this review, current toxicity test methods for risk evaluation of industrial chemicals and airborne contaminants are presented. To evaluate the potential applications of in vitro methods for studying respiratory toxicity, more recent models developed for toxicity testing of airborne contaminants are discussed.

  3. A FLUORESCENCE-BASED SCREENING ASSAY FOR DNA DAMAGE INDUCED BY GENOTOXIC INDUSTRIAL CHEMICALS

    The possibility of deliberate or accidental release of toxic chemicals in industrial, commercial or residential settings has indicated a need for rapid, cost-effective and versatile monitoring methods to prevent exposures to humans and ecosystems. Because many toxic industrial c...

  4. Physio-Chemical Analysis of Industrial Effluents in parts of Edo ...

    Physio-Chemical Analysis of Industrial Effluents in parts of Edo States Nigeria. ... Journal of Applied Sciences and Environmental Management ... particularly, surface water results from all activities of man involving indiscriminate waste disposal from industry such as effluents into waterways, waste, agricultural waste, and all ...

  5. Accidents, often the result of an 'uncontrolled business process' - a study in the (Dutch) chemical industry

    Sonnemans, P.J.M.; Körvers, P.M.W.; Brombacher, A.C.; Beek, van P.C.; Reinders, J.E.A.

    2003-01-01

    Often companies in the (petro-) chemical industry claim that all possible countermeasures against potential accidents have been taken and therefore accidents are unforeseeable. In this paper we question this statement by analysing the pre-warning signals (precursors) preceding a number of industrial

  6. Urinary screening for potentially genotoxic exposures in a chemical industry

    Ahlborg, G. Jr.; Bergstroem, B.H.; Hogstedt, C.; Einistoe, P.S.; Sorsa, M.

    1985-10-01

    Mutagenic activity, measured by the bacterial fluctuation assay and thioether concentration in urine from workers at a chemical plant producing pharmaceuticals and explosives, was determined before and after exposure. Of 12 groups only those exposed to trinitrotoluene (n = 14) showed a significant increase in mutagenic activity using Salmonella typhimurium TA 98 without any exogenous metabolic system. The same strain responded only weakly when the S-9 mix was used; with Escherichia coli WP2 uvrA no effect of exposure was observed. Urinary thioether concentration was higher among smokers than among non-smokers, but occupational exposure had no effect. Urinary mutagenicity testing may be a useful tool for screening potentially genotoxic exposures in complex chemical environments.

  7. Potential Applications of Peroxidases in the Fine Chemical Industries

    Casella, Luigi; Monzani, Enrico; Nicolis, Stefania

    A description of selected types of reactions catalyzed by heme peroxidases is given. In particular, the discussion is focused mainly on those of potential interest for fine chemical synthesis. The division into subsections has been done fromthe point of view of the enzyme action, i.e., giving emphasis to themechanismof the enzymatic reaction, and from that of the substrate, i.e., analyzing the type of transformation promoted by the enzyme. These two approaches have several points in common.

  8. Economically compatible climate protection for Germany as a major site of industry

    Fahl, U.; Laege, E.; Schaumann, P.; Voss, A.

    1996-01-01

    National climate protection policy must be designed in such a way as to ensure its compatibility with the economy and full employment. In this context, cost-efficient measures for reducing greenhouse gas emissions which achieve a maximum cut in greenhouse gases for each Mark that is spent are of paramount importance. Climate protection, the strengthening of Germany as a major site of industry and a sphere of life, sustainable development and the safeguarding of power supply are all one. Political and economic action must have this fact in mind. This is the background against which the possibilities for economically compatible and climate-friendly reduction of energy-related greenhouse gas emissions in Germany are discussed. (orig.) [de

  9. Forecasting global developments in the basic chemical industry for environmental policy analysis

    Broeren, M.L.M.|info:eu-repo/dai/nl/371687438; Saygin, D.; Patel, M.K.

    The chemical sector is the largest industrial energy user, but detailed analysis of its energy use developments lags behind other energy-intensive sectors. A cost-driven forecasting model for basic chemicals production is developed, accounting for regional production costs, demand growth and stock

  10. Value chain management for commodities: a case study from the chemical industry

    Kannegiesser, M.; Günther, H.O.; Beek, van P.; Grunow, M.; Habla, C.

    2009-01-01

    We present a planning model for chemical commodities related to an industry case. Commodities are standard chemicals characterized by sales and supply volatility in volume and value. Increasing and volatile prices of crude oil-dependent raw materials require coordination of sales and supply

  11. Technology Roadmap: Energy and GHG reductions in the chemical industry via catalytic processes

    NONE

    2013-06-01

    The chemical industry is a large energy user; but chemical products and technologies also are used in a wide array of energy saving and/or renewable energy applications so the industry has also an energy saving role. The chemical and petrochemical sector is by far the largest industrial energy user, accounting for roughly 10% of total worldwide final energy demand and 7% of global GHG emissions. The International Council of Chemical Associations (ICCA) has partnered with the IEA and DECHEMA (Society for Chemical Engineering and Biotechnology) to describe the path toward further improvements in energy efficiency and GHG reductions in the chemical sector. The roadmap looks at measures needed from the chemical industry, policymakers, investors and academia to press on with catalysis technology and unleash its potential around the globe. The report uncovers findings and best practice opportunities that illustrate how continuous improvements and breakthrough technology options can cut energy use and bring down greenhouse gas (GHG) emission rates. Around 90% of chemical processes involve the use of catalysts – such as added substances that increase the rate of reaction without being consumed by it – and related processes to enhance production efficiency and reduce energy use, thereby curtailing GHG emission levels. This work shows an energy savings potential approaching 13 exajoules (EJ) by 2050 – equivalent to the current annual primary energy use of Germany.

  12. Workshop on Indian Chemical Industry: perspectives on safety, cleaner production and environment production

    Ham, J.M.

    1996-01-01

    A Workshop on "Indian Chemical Industry: Perspectives on Safety, Cleaner Production and Environmental Protection" was held on 3, 4 and 5 January 1996, in Bombay, India. The main objective of the workshop, which was organised jointly by the Government of India, UNIDO/UNDP and the Indian Chemical

  13. The Risk Implications of Globalisation: An Exploratory Analysis of 105 Major Industrial Incidents (1971–2010)

    Beck, Matthias

    2016-01-01

    This paper revisits work on the socio-political amplification of risk, which predicts that those living in developing countries are exposed to greater risk than residents of developed nations. This prediction contrasts with the neoliberal expectation that market driven improvements in working conditions within industrialising/developing nations will lead to global convergence of hazard exposure levels. It also contradicts the assumption of risk society theorists that there will be an ubiquitous increase in risk exposure across the globe, which will primarily affect technically more advanced countries. Reviewing qualitative evidence on the impact of structural adjustment reforms in industrialising countries, the export of waste and hazardous waste recycling to these countries and new patterns of domestic industrialisation, the paper suggests that workers in industrialising countries continue to face far greater levels of hazard exposure than those of developed countries. This view is confirmed when a data set including 105 major multi-fatality industrial disasters from 1971 to 2000 is examined. The paper concludes that there is empirical support for the predictions of socio-political amplification of risk theory, which finds clear expression in the data in a consistent pattern of significantly greater fatality rates per industrial incident in industrialising/developing countries. PMID:26978378

  14. The Risk Implications of Globalisation: An Exploratory Analysis of 105 Major Industrial Incidents (1971-2010).

    Beck, Matthias

    2016-03-10

    This paper revisits work on the socio-political amplification of risk, which predicts that those living in developing countries are exposed to greater risk than residents of developed nations. This prediction contrasts with the neoliberal expectation that market driven improvements in working conditions within industrialising/developing nations will lead to global convergence of hazard exposure levels. It also contradicts the assumption of risk society theorists that there will be an ubiquitous increase in risk exposure across the globe, which will primarily affect technically more advanced countries. Reviewing qualitative evidence on the impact of structural adjustment reforms in industrialising countries, the export of waste and hazardous waste recycling to these countries and new patterns of domestic industrialisation, the paper suggests that workers in industrialising countries continue to face far greater levels of hazard exposure than those of developed countries. This view is confirmed when a data set including 105 major multi-fatality industrial disasters from 1971 to 2000 is examined. The paper concludes that there is empirical support for the predictions of socio-political amplification of risk theory, which finds clear expression in the data in a consistent pattern of significantly greater fatality rates per industrial incident in industrialising/developing countries.

  15. Monitoring the Evolution of Major Chemical Compound in Dairy Products During Shelf-Life by FTIR

    Adriana Păucean

    2014-11-01

    Full Text Available Fourier-transform infrared (FTIR spectroscopy is considered to be a comprehensive and sensitive method to characterize the chemical composition and for detection of molecular changes in different samples. In this study, FTIRspectroscopy  was employed as an rapid and low-cost technique in order to characterize the FTIR spectra and identify appropriate spectral regions for dairy product fermented by a lactic culture consisting by species of Lactococcus lactis and Leuconostoc mesenteroides. A second objective was to monitore the key chemical compounds (lactose, lactic acid, flavors during fermentation and refrigerated storage (1-21 days, at 4-6°C. By FT-IR fingerprint during fermentation we identified changes of the spectra pattern with specific increasing or decreasing peaks for lactose, lactic acid, esters, aromatic compounds, aminoacids, fatty acids. Also the technique was able to identify chemical compounds involved in the microbial activity such as phosphates and phosphorylated carbohydrates during fermentation and dairy product shelf-life. All the major chemical compounds recorded significant increaments during fermentation and refrigerated storage comparing with the raw milk.

  16. Chemical properties of soils treated with biological sludge from gelatin industry

    Rita de Cássia Melo Guimarães

    2012-04-01

    Full Text Available The impact of agro-industrial organic wastes in the environment can be reduced when used in agriculture. From the standpoint of soil fertility, residue applications can increase the organic matter content and provide nutrients for plants. This study evaluated the effect of biological sludge from gelatin industry on the chemical properties of two Ultisols (loamy sand and sandy clay and an Oxisol (clay. The experiment lasted 120 days and was carried out in laboratory in a completely randomized design with factorial arrangement, combining the three soils and six biological sludge rates (0, 100, 200, 300, 400, and 500 m³ ha-1, with three replications. Biological sludge rates of up to 500 m³ ha-1 decreased soil acidity and increased the effective cation exchange capacity (CEC and N, Ca, Mg, and P availability, without exceeding the tolerance limit for Na. The increase in exchangeable base content, greater than the effective CEC, indicates that the major part of cations added by the sludge remains in solution and can be lost by leaching.

  17. Essentials of water systems design in the oil, gas, and chemical processing industries

    Bahadori, Alireza; Boyd, Bill

    2013-01-01

    Essentials of Water Systems Design in the Oil, Gas and Chemical Processing Industries provides valuable insight for decision makers by outlining key technical considerations and requirements of four critical systems in industrial processing plants—water treatment systems, raw water and plant water systems, cooling water distribution and return systems, and fire water distribution and storage facilities. The authors identify the key technical issues and minimum requirements related to the process design and selection of various water supply systems used in the oil, gas, and chemical processing industries. This book is an ideal, multidisciplinary work for mechanical engineers, environmental scientists, and oil and gas process engineers.

  18. Risk zoning around nuclear power plants in comparison to other major hazardous industrial installations

    Kirchsteiger, Christian

    2006-01-01

    The background and current status of the information basis leading to the definition of risk and emergency zones around Nuclear Power Plants (NPPs) in different countries in Europe and beyond are analysed. Although dependable plant-specific Probabilistic Safety Assessment (PSA) of Level 2 and/or Level 3 could in principle provide sufficiently detailed input to define the geographical dimension of a NPP's risk and emergency zones, the analysis of the status in some European and other countries shows that other, 'deterministic' approaches using a Reference Accident are actually used in practice. Regarding use of Level 2 PSA for emergency planning, the approach so far has been to use the Level 2 PSA information retrospectively to provide the justification for the choice of Reference Accident(s) used to define the emergency plans and Emergency Planning Zones (EPZs). There are significant differences in the EPZs that are defined in different countries, ranging from about 1 km to 30 km. Further, there is a striking contrast in the extent of using probabilistic information to define emergency zones between the nuclear and other high risk industry sectors, such as the chemical process industry, and the reasons for these differences are not entirely clear, but seem to be more related to risk perception than actual risk potential. Finally, based on consensus discussions at a recent JRC/OECD International Seminar on Risk and Emergency Zoning around NPPs, recommendations are given in the areas of more comprehensive use of available risk information for risk zoning purposes, risk communication and comparative risk assessment. (author)

  19. Computational screening of functional groups for capture of toxic industrial chemicals in porous materials.

    Kim, Ki Chul; Fairen-Jimenez, David; Snurr, Randall Q

    2017-12-06

    A thermodynamic analysis using quantum chemical methods was carried out to identify optimal functional group candidates that can be included in metal-organic frameworks and activated carbons for the selective capture of toxic industrial chemicals (TICs) in humid air. We calculated the binding energies of 14 critical TICs plus water with a series of 10 functional groups attached to a naphthalene ring model. Using vibrational calculations, the free energies of adsorption were calculated in addition to the binding energies. Our results show that, in these systems, the binding energies and free energies follow similar trends. We identified copper(i) carboxylate as the optimal functional group (among those studied) for the selective binding of the majority of the TICs in humid air, and this functional group exhibits especially strong binding for sulfuric acid. Further thermodynamic analysis shows that the presence of water weakens the binding strength of sulfuric acid with the copper carboxylate group. Our calculations predict that functionalization of aromatic rings would be detrimental to selective capture of COCl 2 , CO 2 , and Cl 2 under humid conditions. Finally, we found that forming an ionic complex, H 3 O + HSO 4 - , between H 2 SO 4 and H 2 O via proton transfer is not favorable on copper carboxylate.

  20. Land-use planning risk estimates for a chemical industrial park in China - A longitudinal study

    Hu, Xinsheng; Wu, Zongzhi; Hedlund, Frank Huess

    2018-01-01

    A chemical industrial park (CIP) can centralize the management of companies and facilitate mutual communication between different businesses. Due to these advantages, an increasing number of chemical companies are forced into CIP, especially in developing countries such as China. Thus, the land......-site risk levels are still low and within the acceptable region, the study concludes that the authorities should review carefully and monitor the risk level in case of future development activities around and within the chemical industrial park, e.g. preserving a buffer zone should be considered. For future...

  1. Radiation chemical technology of industrial polymer reagents development

    Kudaibergenov, S.; Nurkeeva, Z.; Mun, G.; Sigitov, V.; Maltzeva, R.; Petukhov, V.; Tchekushin, A.

    1996-01-01

    The goal of this project is to develop the technology of producing of polymeric reagents from the raw materials of Kazakstan for application in medicine, agriculture, enhanced oil recovery and ecology. To achieve the objectives the next technological lines or operations (Blocks) should be realized: 1. Rectification column and distilling apparatus for purification of monomers and solvents including analytical equipment to control the quality of the final product; 2. Irradiation of reaction mixture by either gamma-irradiation source Co-60; 3. Purification of polymer reagents; 4. Producing of commercial products. It is supposed that the power irradiation devices for producing of hydrogels will be mounted on the research atomic reactor of the Almaty Branch of the Institute of Atomic Energy of the National Nuclear Center. There are high qualification personal which has much experience in radioactive materials operating. Irradiation technologies will provide the low cost of hydrogels, approximately 250-300 US$ per 1 ton. Expected results. One can expect that the realization of this project allows to produce hydrogels in industrial scale to cover partly the requirements of medicine, agriculture, oil industry and ecology

  2. Research progress on catalytic denitrification technology in chemical industry

    Jin, Yezhi

    2017-12-01

    In recent years, due to the rising emission of NOx annually, attention has been aroused widely by people on more and more severe environmental problems. This paper first discusses applying NOx removal and control technologies and relating chemical principles. Of many technologies, selective reduction reaction (SCR) is the most widely used. Catalysts, the concentration of NOx at the entrance of SCR catalytic reactor, reaction temperature, NH3/NOx mole ratio and NH3 slip rate analyzed later contributes to the removal efficiency of NOx. Finally, the processing and configuration of SCR de-NOx system are briefly introduced.

  3. Determinants of job stress in chemical process industry: A factor analysis approach.

    Menon, Balagopal G; Praveensal, C J; Madhu, G

    2015-01-01

    Job stress is one of the active research domains in industrial safety research. The job stress can result in accidents and health related issues in workers in chemical process industries. Hence it is important to measure the level of job stress in workers so as to mitigate the same to avoid the worker's safety related problems in the industries. The objective of this study is to determine the job stress factors in the chemical process industry in Kerala state, India. This study also aims to propose a comprehensive model and an instrument framework for measuring job stress levels in the chemical process industries in Kerala, India. The data is collected through a questionnaire survey conducted in chemical process industries in Kerala. The collected data out of 1197 surveys is subjected to principal component and confirmatory factor analysis to develop the job stress factor structure. The factor analysis revealed 8 factors that influence the job stress in process industries. It is also found that the job stress in employees is most influenced by role ambiguity and the least by work environment. The study has developed an instrument framework towards measuring job stress utilizing exploratory factor analysis and structural equation modeling.

  4. Plant dermatitis-isolation and chemical investigation of the major vesicant principle of Smodingium argutum

    Gorst-Allman, C.P.; Steyn, P.S.; Wells, M.J.; Fourie, D.M.C.

    1987-01-01

    Dermatitis precipitated by contact with sensitizing or irritating plants can be a persistent and disabling condition. Although presenting a characteristic clinical appearance, its infrequent occurrence oftenresults in difficulty in diagnosis to those unfamiliar with its effects. The most common cause of plant dermatitis in the Southern Transvaal is Smodingium argutum, an indigenous member of the family Anacardiaceae. The major vesicant principle of Smodingium argutum has been isolated for the first time, and its structure determined on the basis of spectroscopic and chemical evidence. 13 C n.m.r. and 1 H n.m.r. data for compounds are given

  5. Plant dermatitis-isolation and chemical investigation of the major vesicant principle of Smodingium argutum

    Gorst-Allman, C P; Steyn, P S; Heyl, T; Wells, M J; Fourie, D M.C.

    1987-03-01

    Dermatitis precipitated by contact with sensitizing or irritating plants can be a persistent and disabling condition. Although presenting a characteristic clinical appearance, its infrequent occurrence oftenresults in difficulty in diagnosis to those unfamiliar with its effects. The most common cause of plant dermatitis in the Southern Transvaal is Smodingium argutum, an indigenous member of the family Anacardiaceae. The major vesicant principle of Smodingium argutum has been isolated for the first time, and its structure determined on the basis of spectroscopic and chemical evidence. /sup 13/C n.m.r. and /sup 1/H n.m.r. data for compounds are given.

  6. Research, climate, energy : Questions of destiny for the chemical industry

    Kastinen, A., email: aimo.kastinen@chemind.fi

    2010-07-01

    Registration for the first phase of Reach finishes at the end of November. Then we will see whether the standard of legislation has been set correctly in respect of the EU's operational ability. If it isn't, significant problems will result for the community's treatment of materials and the EU's competitiveness, and Reach's value as a global model will become questionable. Also, the CLP regulation concerning classification, labelling and packaging of chemicals will start to come into effect as from the beginning of December. In the first phase, the question is one of classification of substances, and gradually the requirements will be applied to mixtures too. At the same time, Safety Data Sheets shall be renewed in accordance with their own transition period. The current product legislation concerning chemicals shall be fully revised by the mid-point of the decade, but before then company safety officers will have to do lots of work to change the previous routines

  7. Chemical studies on some radionuclides in industrial wastes

    Ibrahim, M.F.A.

    2006-01-01

    in this thesis, there is much concern about the technologically enhanced-naturally occurring radioactive materials (TE-NORM) associated with phosphate fertilizers and chemical materials production in abu Zaabal Company, Egypt. the phosphogypsum (PG)wastes associated with the phosporic acid produced was found to contain high concentrations of radioactivity than that exists naturally (i.e., background). this chapter includes sufficient information about the different sources of the environmental radioactivities as well as TE-NORM associated with phosphate fertilizers and oil and gas production facilities . it includes also, information about the history, methods used in detection and measurements, limits, trials of TE-NORM treatment . it contains some aspects on the chemistry and radiochemistry of radium and radon. also, this chapter includes the aim of the present work.this chapter includes preparation of all required samples for analysis, as well as chemicals and reagents used in the experimental work .it includes also, description of the different spectroscopic instruments used. which are: HPGe γ-ray spectrometry,α-spectrometry, X-ray diffraction(XRD), x-ray fluorescence (XRF), and IR-spectrometry. the energy and efficiency calibrations of both γ and α-spectrometry are also presented

  8. Hydrogen fluoride (HF) substance flow analysis for safe and sustainable chemical industry.

    Kim, Junbeum; Hwang, Yongwoo; Yoo, Mijin; Chen, Sha; Lee, Ik-Mo

    2017-11-01

    In this study, the chemical substance flow of hydrogen fluoride (hydrofluoric acid, HF) in domestic chemical industries in 2014 was analyzed in order to provide a basic material and information for the establishment of organized management system to ensure safety during HF applications. A total of 44,751 tons of HF was made by four domestic companies (in 2014); import amount was 95,984 tons in 2014 while 21,579 tons of HF was imported in 2005. The export amount of HF was 2180 tons, of which 2074 ton (China, 1422 tons, U.S. 524 tons, and Malaysia, 128 tons) was exported for the manufacturing of semiconductors. Based on the export and import amounts, it can be inferred that HF was used for manufacturing semiconductors. The industries applications of 161,123 tons of HF were as follows: manufacturing of basic inorganic chemical substance (27,937 tons), manufacturing of other chemical products such as detergents (28,208 tons), manufacturing of flat display (24,896 tons), and manufacturing of glass container package (22,002 tons). In this study, an analysis of the chemical substance flow showed that HF was mainly used in the semiconductor industry as well as glass container manufacturing. Combined with other risk management tools and approaches in the chemical industry, the chemical substance flow analysis (CSFA) can be a useful tool and method for assessment and management. The current CSFA results provide useful information for policy making in the chemical industry and national systems. Graphical abstract Hydrogen fluoride chemical substance flows in 2014 in South Korea.

  9. Chemical composition and antiprotozoal activities of Colombian Lippia spp essential oils and their major components

    Patricia Escobar

    2010-03-01

    Full Text Available The chemical composition and biological activities of 19 essential oils and seven of their major components were tested against free and intracellular forms of Leishmania chagasi and Trypanosoma cruzi parasites as well as Vero and THP-1 mammalian cell lines. The essential oils were obtained from different species of Lippia, a widely distributed genus of Colombian plants. They were extracted by microwave radiation-assisted hydro-distillation and characterised by GC-FID and GC-MS. The major components were geranial, neral, limonene, nerol, carvacrol, p-cymene, γ-terpinene, carvone and thymol. The essential oil of Lippia alba exhibited the highest activity against T. cruzi epimastigotes and intracellular amastigotes with an IC50 of 5.5 μg/mL and 12.2 μg/mL, respectively. The essential oil of Lippia origanoides had an IC50 of 4.4 μg/mL in L. chagasi promastigotes and exhibited no toxicity in mammalian cells. Thymol (IC50 3.2 ± 0.4 μg/mL and S-carvone (IC50 6.1 ± 2.2 μg/mL, two of the major components of the active essential oils, were active on intracellular amastigotes of T. cruziinfected Vero cells, with a selective index greater than 10. None of the essential oils or major components tested in this study was active on amastigotes of L. chagasi infected THP-1 cells.

  10. Profiles of Major Suppliers to the Automotive Industry : Vol. 2. Iron, Steel and Aluminum Suppliers to the Automotive Industry

    1982-08-01

    This study summarizes extensive information collected over a two-year period (October 1978 to October 1980) on suppliers of parts and components, materials, and machine tools to the automotive industry in the United States. The objective of the study...

  11. Profiles of Major Suppliers to the Automotive Industry : Vol. 7. Machine Tool Suppliers to the Automotive Industry.

    1982-08-01

    This study summarizes extensive information collected over a two-year period (October 1978 to October 1980) on suppliers of parts and components, materials, and machine tools to the automotive industry in the United States. The objective of the study...

  12. Co-Exposure with Fullerene May Strengthen Health Effects of Organic Industrial Chemicals

    Lehto, M.; Karilainen, T.; Rog, T.

    2014-01-01

    In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C-60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene...... which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C-60 and organic chemicals represent different...... co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C-60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C-60 that is more...

  13. Progress of environmental management and risk assessment of industrial chemicals in China

    Wang Hong; Yan Zhenguang; Li Hong; Yang Niyun; Leung, Kenneth M.Y.; Wang Yizhe; Yu Ruozhen; Zhang Lai; Wang Wanhua; Jiao Congying

    2012-01-01

    With China’s rapid economic growth, chemical-related environmental issues have become increasingly prominent, and the environmental management of chemicals has garnered increased attention from the government. This review focuses on the current situation and the application of risk assessment in China’s environmental management of industrial chemicals. The related challenges and research needs of the country are also discussed. The Chinese government promulgated regulations for the import and export of toxic chemicals in 1994. Regulations for new chemical substances came into force in 2003, and were revised in 2010 based on the concept of risk management. In order to support the implementation of new regulations, Guidance for Risk Assessment of Chemicals is under development in an attempt to provide the concepts and techniques of risk assessment. With increasing concern and financial support from Chinese government, China is embarking on the fast track of research and development in environmental management of industrial chemicals. - This paper reviews the current situation of industrial chemical management in China, and discusses the application of risk assessment and further research needs in this field.

  14. Why finding costs are now a major problem [in the US petroleum industry

    Gaddis, D.; Brock, H.; Boynton, C.

    1993-01-01

    A major problem facing the US petroleum industry is the higher average finding costs that now exist within the US compared to the average finding costs outside the US. It has been argued that federal lands and offshore areas need to be open for drilling in order to reduce average finding costs in the US. Certainly, the development of a national energy policy must acknowledge the importance of finding costs. Financial analysts for some time have acknowledged the importance of finding costs in evaluating individual energy firms. Analysts expect mergers when it is cheaper for companies to purchase reserves than to find them. Just as industry-average finding costs are a key determinant of long-term market prices for oil and gas, relative finding costs are a key determinant of a company's stock market value. Division managers are now judged regularly by top management on the basis of relative finding costs. The heavy use of finding costs data is causing its own problems, however, because there is as yet no standard for calculating and reporting those costs. This article analyzes the strengths and weaknesses of conventional techniques for determining finding costs. Our goal is a finding costs measure that is a reliable indicator of future profitability. Conceptually, a finding cost figure is a measurement of how much it costs a company to find a barrel of oil or an mcf of gas. The figure is arrived at by dividing the figure for costs incurred during a specified period by the volume (barrels or mcfs) of reserve added during the same period. (author)

  15. Education in petrochemical industry as prevention from chemical terrorism

    Mesaric, B.; Habek, R.; Loncarevic, M.

    2009-01-01

    Technical and technological accidents in petrochemical industry, with possible catastrophic consequences, caused by anthropogenic activity (technical or technological malfunction, terror, or war destruction ), usually accompanied by great human losses and material damage and high intensity of events in a relatively short period of time, which requires a quick action of emergency responders, process personnel and the high degree of self-organized endangered population for treatment in these kind of accidents. This implies a high qualification and skills for the treatment of accidents of all factors of rescue and protection such as: process personnel, emergency responders (fire-fighters, technical services), other workers as well as the endangered population. Managing the system of protection and rescue in communities with such risks requires maximum responsibility of local authorities and management of petrochemical plants. Petrokemija Kutina, with its many years of experience as a target for military and terrorist attacks, actively participated in the creation of laws and systems of protection and rescue in the Republic of Croatia, and also in creating standard operating procedures on local and regional level, and is also ready to share its own experiences with other similar factories using toxic substances in the production processes.(author)

  16. Selling in a Dying Business: An Analysis of Trends During a Period of Major Market Transition in the Funeral Industry.

    Beard, Virginia R; Burger, William C

    2017-01-01

    As a result of recent economic changes in the United States and cultural changes among the population, the funeral industry has experienced a "legitimation crisis." The objective of this research is to examine new advertising and marketing strategies engaged in by professionals in the funeral industry to respond to market and cultural changes that have affected both the funeral industry at large and the role of the funeral director as a participant in this industry. A meta-analysis of articles from issues of the industry trade journal American Funeral Director for the years 2008 through 2015 was conducted. Two major themes emerged from the data. First, that funeral home owners should respond to market changes by using their assets for diverse reasons and second that forms of community engagement can create feelings of goodwill that will increase usage and loyalty from families. Within each of these major themes, a variety of subthemes emerged from the data.

  17. Federal agencies active in chemical industry-related research and development

    NONE

    1995-09-29

    The Energy Policy Act of 1992 calls for a program to further the commercialization of renewable energy and energy efficient technologies for the industrial sector.. The primary objective of the Office of Industrial Technologies Chemical Industry Team is to work in partnership with the US chemical industry to maximize economic, energy, and environmental benefits through research and development of innovative technologies. This document was developed to inventory organizations within the federal government on current chemical industry-related research and development. While an amount of funding or number of projects specifically relating to chemical industry research and development was not defined in all organizations, identified were about 60 distinct organizations representing 7 cabinet-level departments and 4 independent agencies, with research efforts exceeding $3.5 billion in fiscal year 1995. Effort were found to range from less than $500 thousand per year at the Departments of Agriculture and the Interior to over $100 million per year at the Departments of Commerce, Defense, Energy, and Health and Human Services and the National Aeronautics and Space Administration. The total number of projects in these programs exceeded 10,000. This document is complete to the extent that agencies volunteered information. Additions, corrections, and changes are encouraged and will be incorporated in future revisions.

  18. Process Equipment Failure Mode Analysis in a Chemical Industry

    J. Nasl Seraji

    2008-04-01

    Full Text Available Background and aims   Prevention of potential accidents and safety promotion in chemical processes requires systematic safety management in them. The main objective of this study was analysis of important process equipment components failure modes and effects in H2S and CO2  isolation from extracted natural gas process.   Methods   This study was done in sweetening unit of an Iranian gas refinery. Failure Mode and Effect Analysis (FMEA used for identification of process equipments failures.   Results   Totally 30 failures identified and evaluated using FMEA. P-1 blower's blade breaking and sour gas pressure control valve bearing tight moving had maximum risk Priority number (RPN, P-1 body corrosion and increasing plug lower side angle of reach DEAlevel control valve  in tower - 1 were minimum calculated RPN.   Conclusion   By providing a reliable documentation system for equipment failures and  incidents recording, maintaining of basic information for later safety assessments would be  possible. Also, the probability of failures and effects could be minimized by conducting preventive maintenance.

  19. Towards consistent and reliable Dutch and international energy statistics for the chemical industry

    Neelis, M.L.; Pouwelse, J.W.

    2008-01-01

    Consistent and reliable energy statistics are of vital importance for proper monitoring of energy-efficiency policies. In recent studies, irregularities have been reported in the Dutch energy statistics for the chemical industry. We studied in depth the company data that form the basis of the energy statistics in the Netherlands between 1995 and 2004 to find causes for these irregularities. We discovered that chemical products have occasionally been included, resulting in statistics with an inconsistent system boundary. Lack of guidance in the survey for the complex energy conversions in the chemical industry in the survey also resulted in large fluctuations for certain energy commodities. The findings of our analysis have been the basis for a new survey that has been used since 2007. We demonstrate that the annual questionnaire used for the international energy statistics can result in comparable problems as observed in the Netherlands. We suggest to include chemical residual gas as energy commodity in the questionnaire and to include the energy conversions in the chemical industry in the international energy statistics. In addition, we think the questionnaire should be explicit about the treatment of basic chemical products produced at refineries and in the petrochemical industry to avoid system boundary problems

  20. A study of particulate emissions during 23 major industrial fires: Implications for human health.

    Griffiths, Simon D; Chappell, Philip; Entwistle, Jane A; Kelly, Frank J; Deary, Michael E

    2018-03-01

    Public exposure to significantly elevated levels of particulate matter (PM) as a result of major fires at industrial sites is a worldwide problem. Our paper describes how the United Kingdom developed its Air Quality in Major Incidents (AQinMI) service to provide fire emission plume concentration data for use by managers at the time of the incident and to allow an informed public health response. It is one of the first civilian services of its type anywhere in the world. Based on the involvement of several of the authors in the AQinMI service, we describe the service's function, detail the nature of fires covered by the service, and report for the first time on the concentration ranges of PM to which populations may be exposed in major incident fires. We also consider the human health impacts of short-term exposure to significantly elevated PM concentrations and reflect on the appropriateness of current short-term guideline values in providing public health advice. We have analysed monitoring data for airborne PM (≤10μm, PM 10 ;≤2.5μm, PM 2.5 and ≤1.0μm, PM 1 ) collected by AQinMI teams using an Osiris laser light scattering monitor, the UK Environment Agency's 'indicative standard' equipment, during deployment to 23 major incident industrial fires. In this context, 'indicative' is applied to monitoring equipment that provides confirmation of the presence of particulates and indicates a measured mass concentration value. Incident-averaged concentrations ranged from 38 to 1450μgm -3 for PM 10 and 7 to 258μgm -3 for PM 2.5 . Of concern was that, for several incidents, 15-min averaged concentrations reached >6500μgm -3 for PM 10 and 650μgm -3 for PM 2.5 , though such excursions tended to be of relatively short duration. In the absence of accepted very short-term (15-min to 1-h) guideline values for PM 10 and PM 2.5, we have analysed the relationship between the 1-h and 24-h threshold values and whether the former can be used as a predictor of longer

  1. Relationship Between Tourism Industry Development and Economic Growth in Major ASEAN Countries.

    Othman, Redzuan; Salleh, Norlida Hanim Mohd

    2008-01-01

    ABSTRAK Penulisan ini bertujuan mengkaji corak hubungan antara pembangunan ekonomi dengan pertumbuhan industri pelancong di beberapa negara utama ASEAN iaitu Malaysia, Thailand, Singapura dan Indonesia. Khususnya kajian cuba menguji hipotesis sama ada perkembangan industri pelancongan sebagai perangsang kepada pertumbuhan ekonomi (tourism-led economic growth - (TLG) atau pertumbuhan ekonomi sebagai perangsang kepada perkembangan industri pelancongan (economic growth-led tourism – GLT). Untuk ...

  2. The association of the original OSHA chemical hazard communication standard with reductions in acute work injuries/illnesses in private industry and the industrial releases of chemical carcinogens.

    Oleinick, Arthur

    2014-02-01

    OSHA predicted the original chemical Hazard Communication Standard (HCS) would cumulatively reduce the lost workday acute injury/illness rate for exposure events by 20% over 20 years and reduce exposure to chemical carcinogens. JoinPoint trend software identified changes in the rate of change of BLS rates for days away from work for acute injuries/illnesses during 1992-2009 for manufacturing and nonmanufacturing industries for both chemical, noxious or allergenic injury exposure events and All other exposure events. The annual percent change in the rates was used to adjust observed numbers of cases to estimate their association with the standard. A case-control study of EPA's Toxic Release Inventory 1988-2009 data compared carcinogen and non-carcinogens' releases. The study estimates that the HCS was associated with a reduction in the number of acute injuries/illnesses due to chemical injury exposure events over the background rate in the range 107,569-459,395 (Hudson method/modified BIC model) depending on whether the HCS is treated as a marginal or sole factor in the decrease. Carcinogen releases have declined at a substantially faster rate than control non-carcinogens. The previous HCS standard was associated with significant reductions in chemical event acute injuries/illnesses and chemical carcinogen exposures. © 2013 Wiley Periodicals, Inc.

  3. Evaluation model for safety capacity of chemical industrial park based on acceptable regional risk

    Guohua Chen; Shukun Wang; Xiaoqun Tan

    2015-01-01

    The paper defines the Safety Capacity of Chemical Industrial Park (SCCIP) from the perspective of acceptable regional risk. For the purpose of exploring the evaluation model for the SCCIP, a method based on quantitative risk assessment was adopted for evaluating transport risk and to confirm reasonable safety transport capacity of chemical industrial park, and then by combining with the safety storage capacity, a SCCIP evaluation model was put forward. The SCCIP was decided by the smaller one between the largest safety storage capacity and the maximum safety transport capacity, or else, the regional risk of the park will exceed the acceptable level. The developed method was applied to a chemical industrial park in Guangdong province to obtain the maximum safety transport capacity and the SCCIP. The results can be realized in the regional risk control of the park effectively.

  4. New life for the chemical industry: the significance of coal gasification. [Japan

    Shimizu, Y

    1985-01-01

    The current status of the cement, petrochemical and chemical divisions of Ube Industries, Ltd. is outlined. Accounts are given of the outlook for the petrochemical division and how it is coping with the present situation; of how the application of new coal gasification technology and the resulting maintenance of the competitive power of the company's ammonia on international markets has revived the chemical division; and of how the industrial gases division is benefiting from a 20% cut in gasification costs, obtained using the new gasification process. Other topics mentioned include the increasing specialization of the chemical division; the accelerated pace of development resulting from joint efforts by industry, government and the universities; the eradication of the adverse effects of a hierarchical organizational structure; and pioneering technology development where the emphasis is not on self-completion.

  5. The application of nuclear energy to the Canadian chemical process industry

    Robertson, R.F.S.

    1976-03-01

    A study has been made to determine what role nuclear energy, either electrical or thermal, could play in the Canadian chemical process industry. The study was restricted to current-scale CANDU type power reactors. It is concluded that the scale of operation of the chemical industry is rarely large enough to use blocks of electrical power (e) of 500 MW or thermal power (t) of 1500 MW. Thus, with a few predictable exceptions, the role of nuclear energy in the Canadian chemical industry will be as a general thermal/electrical utility supplier, serving a variety of customers in a particular geographic area. This picture would change if nuclear steam generators of 20 to 50 MW(t) become available and are economically competitive. (author)

  6. Origin of major element chemical trends in DSDP Leg 37 basalts, Mid-Atlantic Ridge

    Byerly, G.R.; Wright, T.L.

    1978-01-01

    In this paper we summarize the major element chemical variation for basalts from the Deep Sea Drilling Project Leg 37 and relate it to stratigraphic position in each of five drilling sites. Least-squares techniques are successfully used to quantify the nature and extent of alteration in these basalts, and to correct the major element analysis back to a magmatic, or alteration-free, composition on the assumption that alteration takes place in two ways: (1) secondary minerals are introduced into veins and vesicles, and (2) CO2 and H2O react with components in the rock to form a simple alteration assemblage. A chemical stratigraphy is defined for these basalts by grouping lavas whose chemistries are related by low-pressure phenocryst-liquid differentiation as identified by least-squares calculation. Major chemical-stratigraphic units are as much as 200 m thick; correlations of these units can be made between the holes at site 332 (about 100 m apart), but not between the other sites. Compositions of parental magmas are calculated by extrapolating low-pressure variations to a constant value of 9% MgO. The differences in these extrapolated compositions reflect high-pressure processes, and suggest that clinopyroxene may be an important phase in either intermediate-level fractionation of basaltic liquids, or as a residual phase during the partial melting which produces these basaltic liquids. Several of the basaltic liquids calculated as parental to the Leg 37 basalts have CaO contents greater than 14% and indicate that the oceanic mantle is richer in CaO and Al2O3 than values used in pyrolite models for the upper mantle. A model for magma generation and eruption beneath the Mid-Atlantic Ridge embodies the following characteristics: 1. (1) Separate magma batches are generated in the mantle. 2. (2) Each of these may be erupted directly or stored at shallow depth where significant fractionation takes place. Common fractionation processes are inferred to be gravitative

  7. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.

    Jullesson, David; David, Florian; Pfleger, Brian; Nielsen, Jens

    2015-11-15

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals

    Jullesson, David; David, Florian; Pfleger, Brian

    2015-01-01

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played...... chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes....... an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine...

  9. Profiles of Major Suppliers to the Automotive Industry : Vol. 3. Plastics, Glass and Fiberglass Suppliers to the Automotive Industry

    1982-08-01

    This study summarizes extensive information collected over a two-year period (October 1978 to 1980) on suppliers of parts and components, materials, and machine tools to the automotive industry in the United States. The objective of the study was to ...

  10. Predicting work-related flow in the chemical industry / Erika Maree

    Maree, Erika

    2008-01-01

    In a new world of work characterised by competitiveness, benchmarking, technological innovation and efficiency, the South African chemical industry needs to function at an optimal level to meet the demands of its stakeholders and employees. The industry needs leadership of the highest standard and an efficient, productive workforce. The objective of this study was to determine the relationship between leader empowering behaviour, self-efficacy, job resources and work-related flow for empl...

  11. Emission characteristics and chemical components of size-segregated particulate matter in iron and steel industry

    Jia, Jia; Cheng, Shuiyuan; Yao, Sen; Xu, Tiebing; Zhang, Tingting; Ma, Yuetao; Wang, Hongliang; Duan, Wenjiao

    2018-06-01

    As one of the highest energy consumption and pollution industries, the iron and steel industry is regarded as a most important source of particulate matter emission. In this study, chemical components of size-segregated particulate matters (PM) emitted from different manufacturing units in iron and steel industry were sampled by a comprehensive sampling system. Results showed that the average particle mass concentration was highest in sintering process, followed by puddling, steelmaking and then rolling processes. PM samples were divided into eight size fractions for testing the chemical components, SO42- and NH4+ distributed more into fine particles while most of the Ca2+ was concentrated in coarse particles, the size distribution of mineral elements depended on the raw materials applied. Moreover, local database with PM chemical source profiles of iron and steel industry were built and applied in CMAQ modeling for simulating SO42- and NO3- concentration, results showed that the accuracy of model simulation improved with local chemical source profiles compared to the SPECIATE database. The results gained from this study are expected to be helpful to understand the components of PM in iron and steel industry and contribute to the source apportionment researches.

  12. Acid-resistant organic coatings for the chemical industry: a review

    Møller, Victor Buhl; Dam-Johansen, Kim; Frankær, Sarah Maria Grundahl

    2017-01-01

    Industries that work with acidic chemicals in their processes need to make choices on how to properly contain the substances and avoid rapid corrosion of equipment. Certain organic coatings and linings can be used in such environments, either to protect vulnerable construction materials, or......, in combination with fiber reinforcement, to replace them. However, degradation mechanisms of organic coatings in acid service are not thoroughly understood and relevant quantitative investigations are scarce. This review describes the uses and limitations of acid-resistant coatings in the chemical industry...

  13. Implementation of Responsible Care in the chemical industry: Evidence from Greece

    Evangelinos, K.I.; Nikolaou, I.E.; Karagiannis, A.

    2010-01-01

    The chemical industry can be held accountable for numerous large-scale accidents which have led to the release of dangerous hazardous materials, pollutants and toxic chemicals into the environment, two well-known examples being the Union Carbide Bhopal disaster and the Three Mile Island tragedy). To ensure environmental protection and the Health and Safety (H and S) of communities, the chemical industry has voluntarily adopted integrated management programs such as the Responsible Care Program. The theoretical body of relevant literature attempts to explain the origin of the Responsible Care Program (RCP) through socio-political and economic theories. At the same time, the empirical research examines the ways in which various factors affect the choice of the chemical industry in their adoption of the RCP. This paper contributes to the debate by examining the challenges and barriers faced by the Greek chemical industry when adopting RCP, the environmental and H and S issues that prevail and finally, the extent of participation of stakeholders in the planning of RCP in the sector.

  14. Epidemiological findings of major chemical attacks in the Syrian war are consistent with civilian targeting: a short report.

    Rodriguez-Llanes, Jose M; Guha-Sapir, Debarati; Schlüter, Benjamin-Samuel; Hicks, Madelyn Hsiao-Rei

    2018-01-01

    Evidence of use of toxic gas chemical weapons in the Syrian war has been reported by governmental and non-governmental international organizations since the war started in March 2011. To date, the profiles of victims of the largest chemical attacks in Syria remain unknown. In this study, we used descriptive epidemiological analysis to describe demographic characteristics of victims of the largest chemical weapons attacks in the Syrian war. We analysed conflict-related, direct deaths from chemical weapons recorded in non-government-controlled areas by the Violation Documentation Center, occurring from March 18, 2011 to April 10, 2017, with complete information on the victim's date and place of death, cause and demographic group. 'Major' chemical weapons events were defined as events causing ten or more direct deaths. As of April 10, 2017, a total of 1206 direct deaths meeting inclusion criteria were recorded in the dataset from all chemical weapons attacks regardless of size. Five major chemical weapons attacks caused 1084 of these documented deaths. Civilians comprised the majority ( n  = 1058, 97.6%) of direct deaths from major chemical weapons attacks in Syria and combatants comprised a minority of 2.4% ( n  = 26). In the first three major chemical weapons attacks, which occurred in 2013, children comprised 13%-14% of direct deaths, ranging in numbers from 2 deaths among 14 to 117 deaths among 923. Children comprised higher proportions of direct deaths in later major chemical weapons attacks, forming 21% ( n  = 7) of 33 deaths in the 2016 major attack and 34.8% ( n  = 32) of 92 deaths in the 2017 major attack. Our finding of an extreme disparity in direct deaths from major chemical weapons attacks in Syria, with 97.6% of victims being civilians and only 2.4% being combatants provides evidence that major chemical weapons attacks were indiscriminate or targeted civilians directly; both violations of International Humanitarian Law (IHL). Identifying and

  15. Energy crisis and changes in the structure of the chemical industry

    Dedov, A G

    1980-01-01

    The effect of the energy crisis together with higher prices and inflation on the chemical industry is reviewed. One effect has been the search for more energy-efficient processes and more widely available raw materials. Measures taken by the industry have included the control of expenses and losses, utilization of secondary materials and energy resources and the development of new technological growth of the industry and has shifted emphasis to small-scale rather than large-scale chemical production. Capital has also been used more for modernizing existing equipment and facilities than for new construction, and industrialized countries have invested more heavily in developing countries. Trade relations between socialist and western countries have also improved. Improvements have been made in the production of aromatic hydrocarbons by extraction with the use of more efficient solvents, in catalytic and thermic hydrodealkylation of toluene, in the chlorine and nitrogen industries, in phosphorus and phosphoric acid production and in benzene and butadiene production. A new scheme for hydroxylamine production and a new technology for styrene and methanol production have been developed. Direct hydration of propylene has been introduced into the production of isopropanol and propylene ammonolysis has been used to obtain acrylonitrile. Changes in the chemical industry have reduced energy consumption per production unit by 14.2% in the U.S.A. in 1977 in comparison with 1972 and by 14.0% in Common Market countries during 1970-1976.

  16. An Energy Efficiency Evaluation Method Based on Energy Baseline for Chemical Industry

    Yao, Dong-mei; Zhang, Xin; Wang, Ke-feng; Zou, Tao; Wang, Dong; Qian, Xin-hua

    2016-01-01

    According to the requirements and structure of ISO 50001 energy management system, this study proposes an energy efficiency evaluation method based on energy baseline for chemical industry. Using this method, the energy plan implementation effect in the processes of chemical production can be evaluated quantitatively, and evidences for system fault diagnosis can be provided. This method establishes the energy baseline models which can meet the demand of the different kinds of production proce...

  17. The growing importance of covering payment risks in the chemical industry

    Timmermann, M. (Michael)

    2008-01-01

    The first dark clouds are gathering on the economic horizon of the chemical industry and may cause an unattractive dip in otherwise impressive growth.With the oil price remaining high, concerns that global economic growth is cooling and ever fiercer competition, the outlook is gloomy. There is also uncertainty about the reform of the European Community Regulation on chemicals, REACH, the financial impact ofwhich is still impossible to predict formost companies. Such lists of possible causes o...

  18. Co-exposure with fullerene may strengthen health effects of organic industrial chemicals.

    Maili Lehto

    Full Text Available In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C60 and organic chemicals represent different co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C60 that is more cytotoxic than benzaldehyde alone, and for a filtered mixture of m-cresol and C60 that is slightly less cytotoxic than m-cresol. Hydrophobicity of chemicals correlates with co-effects when secretion of pro-inflammatory cytokines IL-1β and TNF-α is considered. Complementary atomistic molecular dynamics simulations reveal that C60 co-aggregates with all chemicals in aqueous environment. Stable aggregates have a fullerene-rich core and a chemical-rich surface layer, and while essentially all C60 molecules aggregate together, a portion of organic molecules remains in water.

  19. Industrial Fuel Gas Demonstration Plant Program. Task III, Demonstration plant safety, industrial hygiene, and major disaster plan (Deliverable No. 35)

    None

    1980-03-01

    This Health and Safety Plan has been adopted by the IFG Demonstration Plant managed by Memphis Light, Gas and Water at Memphis, Tennessee. The plan encompasses the following areas of concern: Safety Plan Administration, Industrial Health, Industrial Safety, First Aid, Fire Protection (including fire prevention and control), and Control of Safety Related Losses. The primary objective of this plan is to achieve adequate control of all potentially hazardous activities to assure the health and safety of all employees and eliminate lost work time to both the employees and the company. The second objective is to achieve compliance with all Federal, state and local laws, regulations and codes. Some thirty specific safe practice instruction items are included.

  20. Used solid catalysts from chemical and petrochemical industries; Les catalyseurs solides uses de l`industrie chimique et du raffinage petrolier

    NONE

    1996-10-01

    A comprehensive survey of the solid catalysts used in the chemical and petrochemical industries is presented; information on solid catalyst market demand prospective for 1998, the nature of solid catalysts used in the various industrial sectors and for the various chemical products production, the european catalysts manufacturers, solid catalyst poisons and inhibitors according to the various types of chemical reactions, mean compositions of used solid catalysts, an assessment of the volume of used solid catalysts generated by chemical and petrochemical industries, the various ways of solid catalyst regeneration and disposal, the potential for off-site regeneration of used catalysts, and French and European regulations, is presented

  1. Chemical composition of sewage sludge of domestic and industrial areas of Hyderabad

    Ansari, T.P.; Kazi, T.G.; Kazi, G.H.

    2001-01-01

    A study on chemical composition sewage sludge of domestic and industrial areas of Hyderabad city has been carried out. The sludge samples were collected from various domestic and industrial areas of Hyderabad, over a period of 3 months. Analysis of sludge samples for different micro-nutrients and toxic elements has been accomplished by reliable analytical methods using atomic absorption, UV and colorimeter. It is observed that the levels of copper, nickel, zinc, lead and cadmium are higher in sludge samples of industrial area than those of domestic areas of Hyderabad. (author)

  2. The approach to risk analysis in three industries: nuclear power, space systems, and chemical process

    Garrick, B.J.

    1988-01-01

    The aerospace, nuclear power, and chemical processing industries are providing much of the incentive for the development and application of advanced risk analysis techniques to engineered systems. Risk analysis must answer three basic questions: What can go wrong? How likely is it? and What are the consequences? The result of such analyses is not only a quantitative answer to the question of 'What is the risk', but, more importantly, a framework for intelligent and visible risk management. Because of the societal importance of the subject industries and the amount of risk analysis activity involved in each, it is interesting to look for commonalities, differences, and, hopefully, a basis for some standardization. Each industry has its strengths: the solid experience base of the chemical industry, the extensive qualification and testing procedures of the space industry, and the integrative and quantitative risk and reliability methodologies developed for the nuclear power industry. In particular, most advances in data handling, systems interaction modeling, and uncertainty analysis have come from the probabilistic risk assessment work in the nuclear safety field. In the final analysis, all three industries would greatly benefit from a more deliberate technology exchange program in the rapidly evolving discipline of quantitative risk analysis. (author)

  3. Preventing external domino accidents : A framework for enhancing cooperation in the Chemical Process Industry (CPI)

    Reniers, G.; Dullaert, W.; Soudan, K.

    2005-01-01

    Empirical research on major accident safety in the second largest chemical cluster worldwide, the Antwerp port area, supports the design of a meta-technical framework for optimizing external domino prevention. First, the majority of Seveso top tier companies have expressed a willingness to cooperate

  4. Shaping a novel security approach in chemical industrial clusters to prevent large-scale domino events

    Reniers, Genserik L L; Dullaert, Wout; Soudan, Karel

    2009-01-01

    Two aspects are important when it comes to guaranteeing an effective and efficient security policy in a chemical industrial cluster. The first issue involves obtaining an acceptable level of collaboration between the different enterprises forming the cluster. The second topic is to ensure that an

  5. SCREENING FOR TOXIC INDUSTRIAL CHEMICALS USING SEMIPERMEABLE MEMBRANE DEVICES WITH RAPID TOXICITY ASSAYS

    A time-integrated sampling device interfaced with two toxicity-based assays is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethylsulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...

  6. VAPOR SAMPLING DEVICE FOR INTERFACE WITH MICROTOX ASSAY FOR SCREENING TOXIC INDUSTRIAL CHEMICALS

    A time-integrated sampling system interfaced with a toxicity-based assay is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethyl sulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...

  7. Status and direction of waste minimization in the chemical and petrochemical industries

    Englande Junior, A.J. [Tulane Univ., New Orleans, LA (United States). School of Public Health and Tropical Medicine

    1993-12-31

    This paper presents an evaluation of the status and direction of toxic/hazardous waste reduction in chemical and petrochemical industries from an international perspective. In almost all cases studied savings have resulted. The importance of pollution prevention by `clean technologies` instead of remediation is stressed. 6 refs., 4 tabs.

  8. Revolutionizing safety and security in the chemical and process industry: applying the CHESS concept

    Reniers, G.L.L.M.E.; Khakzad Rostami, N.

    2017-01-01

    This paper argues that a new concept, summarized as ‘CHESS’, should be used in the chemical industry to further substantially advance safety (where we use the term in a broad sense, that is, safety and physical security, amongst others). The different domains that need to be focused upon, and where

  9. Status and direction of waste minimization in the chemical and petrochemical industries

    Englande, Junior, A J [Tulane Univ., New Orleans, LA (United States). School of Public Health and Tropical Medicine

    1994-12-31

    This paper presents an evaluation of the status and direction of toxic/hazardous waste reduction in chemical and petrochemical industries from an international perspective. In almost all cases studied savings have resulted. The importance of pollution prevention by `clean technologies` instead of remediation is stressed. 6 refs., 4 tabs.

  10. NONPROCESS SOLVENT USE IN THE FURNITURE REFINISHING AND REPAIR INDUSTRY: EVALUATION OF ALTERNATIVE CHEMICAL STRIPPERS

    The report gives results of an evaluation of the feasibility of using alternatives to high volatile organic compound/hazardous air pollutant (VOC/HAP) solvent-based, chemical strippers that are currently used in the furniture repair and refinishing industry to remove both traditi...

  11. Potential Challenges Faced by the U.S. Chemicals Industry under a Carbon Policy

    Andrea Bassi

    2009-09-01

    Full Text Available Chemicals have become the backbone of manufacturing within industrialized economies. Being energy-intensive materials to produce, this sector is threatened by policies aimed at combating and adapting to climate change. This study examines the worst-case scenario for the U.S. chemicals industry when a medium CO2 price policy is employed. After examining possible industry responses, the study goes on to identify and provide a preliminary evaluation of potential opportunities to mitigate these impacts. If climate regulations are applied only in the United States, and no action is taken to invest in advanced low- and no-carbon technologies to mitigate the impacts of rising energy costs, the examination shows that climate policies that put a price on carbon could have substantial impacts on the competiveness of the U.S. chemicals industry over the next two decades. In the long run, there exist technologies that are available to enable the chemicals sector to achieve sufficient efficiency gains to offset and manage the additional energy costs arising from a climate policy.

  12. Plasma for electrification of chemical industry : a case study on CO2 reduction

    Van Rooij, G.J.; Akse, H.N.; Bongers, W.A.; Van De Sanden, M.C.M.

    2018-01-01

    Significant growth of the share of (intermittent) renewable power in the chemical industry is imperative to meet increasingly stricter limits on CO2 exhaust that are being implemented within Europe. This paper aims to evaluate the potential of a plasma process that converts input CO2 into a pure

  13. Plasma for Electrification of Chemical Industry: a Case Study on CO2 Reduction

    van Rooij, G. J.; Akse, H.; Bongers, W.; van de Sanden, M. C. M.

    2018-01-01

    Significantly increasing the share of (intermittent) renewable power in the chemical industry is imperative to meet increasingly stricter limits on CO2 exhaust that are being implemented within Europe. This paper aims to evaluate the potential of a plasma process that converts input CO2 into a pure

  14. An Alternative Educational Approach for an Inorganic Chemistry Laboratory Course in Industrial and Chemical Engineering

    Garces, Andres; Sanchez-Barba, Luis Fernando

    2011-01-01

    We describe an alternative educational approach for an inorganic chemistry laboratory module named "Experimentation in Chemistry", which is included in Industrial Engineering and Chemical Engineering courses. The main aims of the new approach were to reduce the high levels of failure and dropout on the module and to make the content match the…

  15. Communicating CSR and Business Identity in the Chemical Industry through Mission Slogans

    Verboven, Hans

    2011-01-01

    This article analyzes the communication of corporate social responsibility (CSR) and corporate image in the chemical industry through mission slogans. Morsing's (2006) CSR communication framework is adapted for a comparative analysis of the strategies behind mission slogans. By grouping rhetorical strategies in a mission slogan into a mission…

  16. А construction of management of enterprises charges is in chemical industry

    Gura, N.; Radchenko, K.

    2010-01-01

    In the article the essence and value of conception of "administrative account" are defined, the debatable questions of constructing of administrative account and its structure are considered. The methods of charge accounting are considered at the enterprises of chemical industry. The essence of introduction and usage of modern information technologies are stated.

  17. European Union-Emission Trading Scheme: outlook for the chemical industry

    Coussy, P.; Alberola, E.

    2013-01-01

    From 2013, under the European Union Emissions Trading Scheme (EU-ETS), Europe will cap its emissions of nitrous oxide (N 2 O) and per-fluorocarbons (PFC) from the chemical industry. Besides, 336 chemical industry facilities will be forced to limit their emissions at 45.8 million tons of CO 2 per year from 2013 to 2020. At date August 1, 2012, almost 70% of the carbon credits issued by the clean development mechanism (CDM) were carried out mainly through the destruction of hydro-fluorocarbons (HFC-23) (42%) and N 2 O (22%). The contribution of emission reductions through chemical processes in the Joint Implementation (JI) projects is smaller but still amounted to 32% of all projects. From 1 May 2013 the European Union will refuse CDM and JI credits from emission reductions of HFC-23 and N 2 O. The issues of the introduction of the chemical industry in the EU-ETS in the context of low CO 2 prices and limited validity of CDM and JI chemical projects are high. Therefore, domestic CO 2 emissions reductions from energy consumption of the chemistry sector will take a larger share. (authors)

  18. Utilization of oleo-chemical industry by-products for biosurfactant production

    2013-01-01

    Biosurfactants are the surface active compounds produced by micro-organisms. The eco-friendly and biodegradable nature of biosurfactants makes their usage more advantageous over chemical surfactants. Biosurfactants encompass the properties of dropping surface tension, stabilizing emulsions, promoting foaming and are usually non- toxic and biodegradable. Biosurfactants offer advantages over their synthetic counterparts in many applications ranging from environmental, food, and biomedical, cosmetic and pharmaceutical industries. The important environmental applications of biosurfactants include bioremediation and dispersion of oil spills, enhanced oil recovery and transfer of crude oil. The emphasis of present review shall be with reference to the commercial production, current developments and future perspectives of a variety of approaches of biosurfactant production from the micro-organisms isolated from various oil- contaminated sites and from the by-products of oleo-chemical industry wastes/ by-products viz. used edible oil, industrial residues, acid oil, deodorizer distillate, soap-stock etc. PMID:24262384

  19. Feeding a sustainable chemical industry: do we have the bioproducts cart before the feedstocks horse?

    Dale, Bruce E

    2017-09-21

    A sustainable chemical industry cannot exist at scale without both sustainable feedstocks and feedstock supply chains to provide the raw materials. However, most current research focus is on producing the sustainable chemicals and materials. Little attention is given to how and by whom sustainable feedstocks will be supplied. In effect, we have put the bioproducts cart before the sustainable feedstocks horse. For example, bulky, unstable, non-commodity feedstocks such as crop residues probably cannot supply a large-scale sustainable industry. Likewise, those who manage land to produce feedstocks must benefit significantly from feedstock production, otherwise they will not participate in this industry and it will never grow. However, given real markets that properly reward farmers, demand for sustainable bioproducts and bioenergy can drive the adoption of more sustainable agricultural and forestry practices, providing many societal "win-win" opportunities. Three case studies are presented to show how this "win-win" process might unfold.

  20. Radiation purification of the chemical industry effluents and possibilities of realization of this method

    Petryaev, E.P.; Kovalevskaya, A.M.; Shlyk, V.G.; Savushkin, I.A.; Kazazyan, V.T.

    1977-01-01

    Radiation-chemical methods for synthetic fibre industry effluents purification from cyanides, sulphides and monomers, as well as for disinfection of circulation water and improvement in sedimental and filtering properties of waste active slurry in petrochemical industry are described. Chemical plant effluents are purified by 70-90% from cyanides at the dose rate of 0,3 - 0,5 Mrad, by 60 - 70% from sulphides and monomers at the dose of 0,2 Mrad. Circulation water of petroleum processing plant is disinfected at the dose of 0,08 Mrad; the rates of filtration and sedimentation of waste active slurry increase two and three fold, correspondingly, at the dose of 0,6 Mrad. The power of radiation sources required for the industrial realization of radiation purification of liquid wastes has been calculated

  1. Profiles of Major Suppliers to the Automotive Industry : Vol. 1. Overview.

    1982-08-01

    This study summarizes extensive information collected over a two-year period (October 1978 to October 1980) on suppliers of parts and components, materials, and machine tools to the automotive industry in the United States. The objective of the study...

  2. Profiles of Major Suppliers to the Automotive Industry : Vol. 5. Multinational Automotive Parts and Components Suppliers

    1982-08-01

    This study summarizes extensive information collected over a two-year period (October 1978 to October 1980) on suppliers of parts and components, materials, and machine tools to the automotive industry in the United States. The objective of the study...

  3. Profiles of Major Suppliers to the Automotive Industry : Vol. 6. Foreign Automotive Parts and Components Suppliers.

    1982-08-01

    This study summarizes extensive information collected over a two-year period (October 1978 to October 1980) on suppliers of parts and components, materials, and machine tools to the automotive industry in the United States. The objective of the study...

  4. Characterization of the conformational equilibrium between the two major substates of RNase A using NMR chemical shifts.

    Camilloni, Carlo; Robustelli, Paul; De Simone, Alfonso; Cavalli, Andrea; Vendruscolo, Michele

    2012-03-07

    Following the recognition that NMR chemical shifts can be used for protein structure determination, rapid advances have recently been made in methods for extending this strategy for proteins and protein complexes of increasing size and complexity. A remaining major challenge is to develop approaches to exploit the information contained in the chemical shifts about conformational fluctuations in native states of proteins. In this work we show that it is possible to determine an ensemble of conformations representing the free energy surface of RNase A using chemical shifts as replica-averaged restraints in molecular dynamics simulations. Analysis of this surface indicates that chemical shifts can be used to characterize the conformational equilibrium between the two major substates of this protein. © 2012 American Chemical Society

  5. Engineering propionibacteria as versatile cell factories for the production of industrially important chemicals: advances, challenges, and prospects.

    Guan, Ningzi; Zhuge, Xin; Li, Jianghua; Shin, Hyun-Dong; Wu, Jing; Shi, Zhongping; Liu, Long

    2015-01-01

    Propionibacteria are actinobacteria consisting of two principal groups: cutaneous and dairy. Cutaneous propionibacteria are considered primary pathogens to humans, whereas dairy propionibacteria are widely used in the food and pharmaceutical industries. Increasing attention has been focused on improving the performance of dairy propionibacteria for the production of industrially important chemicals, and significant advances have been made through strain engineering and process optimization in the production of flavor compounds, nutraceuticals, and antimicrobial compounds. In addition, genome sequencing of several propionibacteria species has been completed, deepening understanding of the metabolic and physiological features of these organisms. However, the metabolic engineering of propionibacteria still faces several challenges owing to the lack of efficient genome manipulation tools and the existence of various types of strong restriction-modification systems. The emergence of systems and synthetic biology provides new opportunities to overcome these bottlenecks. In this review, we first introduce the major species of propionibacteria and their properties and provide an overview of their functions and applications. We then discuss advances in the genome sequencing and metabolic engineering of these bacteria. Finally, we discuss systems and synthetic biology approaches for engineering propionibacteria as efficient and robust cell factories for the production of industrially important chemicals.

  6. Research on industrial 10kW CO2 laser achieves major breakthrough

    1991-01-01

    The industrial 10kW CO2 laser is one of the items which the industrially developed nations are competing to develop. This laser is capable of continuous output power of over 10kW and can operate continuously for more than 6 hours. The 10kW CO2 laser developed as a key task of China's 7th Five-Year Plan and all its technological targets such as output power, electrooptical conversion efficiency and primary charging continuous operating time, have reached the level of world advancement, allowing China to enter the ranks of international advancement in the area of laser technology. The industrial 10kW CO2 laser can have wide application in such areas of industry as heat treating, machining, welding and surface treatment in industries such as steel, automobiles, ship building and aircraft manufacturing. For instance, using the high-efficiency laser beams of this 10kW laser to treat rollers, fan blades and automotive cylinder blocks can increase the life of these parts and produce large economic benefits. At present, industrial tests of gear welding is already being done on this 10kW laser.

  7. A calibrated energy end-use model for the U.S. chemical industry

    Ozalp, N.; Hyman, B.

    2005-01-01

    The chemical industry is the second largest energy user after the petroleum industry in the United States. This paper provided a model for onsite steam and power generation in the chemical industry, as well as an end-use of the industrial gas manufacturing sector. The onsite steam and power generation model included the actual conversion efficiencies of prime movers in the sector. The energy end-use model also allocated combustible fuel and renewable energy inputs among generic end-uses including intermediate conversions through onsite power and steam generation. The model was presented in the form of a graphical depiction of energy flows. Results indicate that 35 per cent of the energy output from boilers is used for power generation, whereas 45 per cent goes directly to end-uses and 20 per cent to waste heat tanks for recovery in the chemical industry. The end-use model for the industrial gas manufacturing sector revealed that 42 per cent of the fuel input goes to onsite steam and power generation, whereas 58 per cent goes directly to end-uses. Among the end-uses, machine drive was the biggest energy user. It was suggested that the model is applicable to all other industries and is consistent with U.S. Department of Energy data for 1998. When used in conjunction with similar models for other years, it can be used to identify changes and trends in energy utilization at the prime mover level of detail. An analysis of the economic impact of energy losses can be based on the results of this model. Cascading of waste heat from high temperature processes to low temperature processes could be integrated into the model. 20 refs., 4 tabs., 8 figs

  8. Application of the natural cellulosic supports modified chemically for the treatment of the industrial effluents

    Kassale, A.; Elbariji, S.; Lacherai, A.; Elamine, M.; Kabli, H.; Albourine, A.

    2009-01-01

    The process of purification and discoloration of industrial waters (and particularly effluents of the textile industry) can meet major difficulties: certain dyes agents get through the devices of purge without being to stop. the cost of equipment and products of purification is prohibitive. Finally, in many cases, the discoloration can be only partial because waters to be treated containing mixtures of dyes of different nature, the material of purification can be effective only screw/screw of some of them. (Author)

  9. A review of the epidemiological methods used to investigate the health impacts of air pollution around major industrial areas.

    Pascal, Mathilde; Pascal, Laurence; Bidondo, Marie-Laure; Cochet, Amandine; Sarter, Hélène; Stempfelet, Morgane; Wagner, Vérène

    2013-01-01

    We performed a literature review to investigate how epidemiological studies have been used to assess the health consequences of living in the vicinity of industries. 77 papers on the chronic effects of air pollution around major industrial areas were reviewed. Major health themes were cancers (27 studies), morbidity (25 studies), mortality (7 studies), and birth outcome (7 studies). Only 3 studies investigated mental health. While studies were available from many different countries, a majority of papers came from the United Kingdom, Italy, and Spain. Several studies were motivated by concerns from the population or by previous observations of an overincidence of cases. Geographical ecological designs were largely used for studying cancer and mortality, including statistical designs to quantify a relationship between health indicators and exposure. Morbidity was frequently investigated through cross-sectional surveys on the respiratory health of children. Few multicenter studies were performed. In a majority of papers, exposed areas were defined based on the distance to the industry and were located from 20 km from the plants. Improving the exposure assessment would be an asset to future studies. Criteria to include industries in multicenter studies should be defined.

  10. Inter-firm R&D networks in the global software industry : An overview of major trends and patterns

    Cloodt, M.M.A.H.; Hagedoorn, J.; Roijakkers, N.

    2010-01-01

    This paper presents an analysis of some major historical trends in inter-firm R&D partnering in the international software industry during the period 1970–1999. Our research demonstrates an overall growth pattern of newly made R&D partnerships and reveals the important role played by leading firms.

  11. Influence of major-groove chemical modifications of DNA on transcription by bacterial RNA polymerases.

    Raindlová, Veronika; Janoušková, Martina; Slavíčková, Michaela; Perlíková, Pavla; Boháčová, Soňa; Milisavljevič, Nemanja; Šanderová, Hana; Benda, Martin; Barvík, Ivan; Krásný, Libor; Hocek, Michal

    2016-04-20

    DNA templates containing a set of base modifications in the major groove (5-substituted pyrimidines or 7-substituted 7-deazapurines bearing H, methyl, vinyl, ethynyl or phenyl groups) were prepared by PCR using the corresponding base-modified 2'-deoxyribonucleoside triphosphates (dNTPs). The modified templates were used in an in vitro transcription assay using RNA polymerase from Bacillus subtilis and Escherichia coli Some modified nucleobases bearing smaller modifications (H, Me in 7-deazapurines) were perfectly tolerated by both enzymes, whereas bulky modifications (Ph at any nucleobase) and, surprisingly, uracil blocked transcription. Some middle-sized modifications (vinyl or ethynyl) were partly tolerated mostly by the E. colienzyme. In all cases where the transcription proceeded, full length RNA product with correct sequence was obtained indicating that the modifications of the template are not mutagenic and the inhibition is probably at the stage of initiation. The results are promising for the development of bioorthogonal reactions for artificial chemical switching of the transcription. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Review and Comparison of the Search Effectiveness and User Interface of Three Major Online Chemical Databases

    Bharti, Neelam; Leonard, Michelle; Singh, Shailendra

    2016-01-01

    Online chemical databases are the largest source of chemical information and, therefore, the main resource for retrieving results from published journals, books, patents, conference abstracts, and other relevant sources. Various commercial, as well as free, chemical databases are available. SciFinder, Reaxys, and Web of Science are three major…

  13. Hurricane Harvey, Houston's Petrochemical Industry, and US Chemical Safety Policy: Impacts to Environmental Justice Communities

    Goldman, G. T.; Johnson, C.; Gutierrez, A.; Declet-Barreto, J.; Berman, E.; Bergman, A.

    2017-12-01

    When Hurricane Harvey made landfall outside Houston, Texas, the storm's wind speeds and unprecedented precipitation caused significant damage to the region's petrochemical infrastructure. Most notably, the company Arkema's Crosby facility suffered a power failure that led to explosions and incineration of six of its peroxide tanks. Chemicals released into the air from the explosions sent 15 emergency responders to the hospital with severe respiratory conditions and led to the evacuation of hundreds of surrounding households. Other petrochemical facilities faced other damages that resulted in unsafe and acute chemical releases into the air and water. What impacts did such chemical disasters have on the surrounding communities and emergency responders during Harvey's aftermath? What steps might companies have taken to prevent such chemical releases? And what chemical safety policies might have ensured that such disaster risks were mitigated? In this talk we will report on a survey of the extent of damage to Houston's oil and gas infrastructure and related chemical releases and discuss the role of federal chemical safety policy in preventing and mitigating the potential for such risks for future storms and other extreme weather and climate events. We will also discuss how these chemical disasters created acute toxics exposures on environmental justice communities already overburdened with chronic exposures from the petrochemical industry.

  14. Investigating positive leadership, psychological empowerment, work engagement and satisfaction with life in a chemical industry

    Tersia Nel

    2015-11-01

    Research purpose: The objective of this study was to investigate whether perceived positive leadership behaviour could predict psychological empowerment, work engagement, and satisfaction with life of employees in a chemical organisation in South Africa and whether positive leadership behaviour has an indirect effect on employees work engagement and satisfaction with life by means of psychological empowerment. Motivation for the study: The motivation for this study arose from the evident gap in academic literature as well as in terms of practical implications for the chemical industry regarding positive leadership behaviour, psychological empowerment, work engagement and satisfaction with life of employees. Research design, approach and method: A cross-sectional survey design was used with a convenience sample (n = 322. Structural equation modelling (SEM was used to examine the structural relationships between the constructs. Main findings: Statistically significant relationships were found between positive leadership behaviour, psychological empowerment, work engagement and satisfaction with life of employees. Positive leadership has an indirect effect on work engagement and satisfaction with life via psychological empowerment. Practical/managerial implications: This study adds to the lack of literature in terms of positive leadership, psychological empowerment, work engagement and satisfaction with life within a chemical industry. It can also assist managers and personnel within the chemical industry to understand and perhaps further investigate relationships that exist between the above mentioned concepts. Contribution/value-add: It is recommended that leadership discussions, short training programs and individual coaching about positive leadership and particularly psychological empowerment take place.

  15. Economic potential of natural gas-fired cogeneration--analysis of Brazil's chemical industry

    Szklo, A.S.; Soares, J.B.; Tolmasquim, M.T.

    2004-01-01

    This paper attempts to estimate the technical and economic potential for natural gas-fired cogeneration (NGCHP) in Brazil's chemical industry as well as also analyses the impacts of specific incentive policies on the economic feasibility of this potential. Currently, the NGCHP installed capacity at Brazil's chemical industry is still quite a low figure, although the chemical plants are under heavy pressures to: (1) cut costs; and (2) show a rising awareness of the importance of power service quality, underscored even more heavily by Brazil's recent power crisis. According this study, a natural gas-fired remaining technical potential of 1.4 GW is noted in the Brazilian chemical industry. Financing policies showed to be the stand-alone policy that would be most successful for ensuring the economic feasibility of this technical potential. Nevertheless, this policy proved to be affected by the economic scenario under consideration, which includes world oil prices, electricity tariff and foreign exchange ratio possible paths. Consequently, the key issue is related to the ability to assess which economic scenario is rated as more probable by possible future investors in NGCHP, and then selecting the most appropriate incentive policy

  16. Microarray technology for major chemical contaminants analysis in food: current status and prospects.

    Zhang, Zhaowei; Li, Peiwu; Hu, Xiaofeng; Zhang, Qi; Ding, Xiaoxia; Zhang, Wen

    2012-01-01

    Chemical contaminants in food have caused serious health issues in both humans and animals. Microarray technology is an advanced technique suitable for the analysis of chemical contaminates. In particular, immuno-microarray approach is one of the most promising methods for chemical contaminants analysis. The use of microarrays for the analysis of chemical contaminants is the subject of this review. Fabrication strategies and detection methods for chemical contaminants are discussed in detail. Application to the analysis of mycotoxins, biotoxins, pesticide residues, and pharmaceutical residues is also described. Finally, future challenges and opportunities are discussed.

  17. Chemical and Microbiological Analysis of Certain Water Sources and Industrial Wastewater Samples in Dakahlia Governorate

    El-Fadaly, H.; El-Defrawy, M.M.; El-Zawawy, F.; Makia, D.

    1999-01-01

    The chemical analysis included quantitative measurement of electrical conductivity, alkalinity , hardness sulphate, ph, total dissolved solids, chloride, as well as dissolved oxygen was carried out. The microbiological examination for different water sources and industrial wastewater samples was also conducted. some of heavy metals, Co 2+ Cu 2+ Fe 3+ and Mn 2+ were determined in fresh water, while other metals, such as Cr 6+ , Co 2+ , Zn 2+ and Ni 2+ were measured in industrial wastewater. Results of the chemical analysis showed that all measured parameters were found within the limitation either national or international law, except some samples which showed higher values than the permissible limits for some measured parameters. The microbiological analysis exhibited presence of yeasts, fungi and bacteria. Most bacterial isolates were short rod, spore formers as well as coccoid shaped bacteria. The efficiency of water treatment process on the reduction of microbial load was also calculated. Regarding the pathogenic bacteria, data showed that neither water samples nor industrial wastewater contain pathogens when using specific cultivation media for the examination. Furthermore, data proved the possibility of recycling of the tested industrial wastewater on which some microorganisms can grow. Data showed that the percent of heavy metals removal can reach to more than 70% in some cases as a result to bacterial treatment of industrial wastewater

  18. Industry

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  19. 78 FR 68461 - Guidance for Industry: Studies To Evaluate the Utility of Anti-Salmonella Chemical Food Additives...

    2013-11-14

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-1994-D-0007] Guidance for Industry: Studies To Evaluate the Utility of Anti- Salmonella Chemical Food Additives in Feeds... Industry: Studies to Evaluate the Utility of Anti-Salmonella Chemical Food Additives in Feeds,'' and is...

  20. Chemical composition of arctic snow: concentration levels and regional distribution of major elements.

    de Caritat, Patrice; Hall, Gwendy; Gìslason, Sigurdur; Belsey, William; Braun, Marlene; Goloubeva, Natalia I; Olsen, Hans Kristian; Scheie, Jon Ove; Vaive, Judy E

    2005-01-05

    At the end of the northern winter 1996/1997, 21 snow samples were collected from 17 arctic localities in Norway, Sweden, Finland, Svalbard, Russia, Alaska, Canada, Greenland and Iceland. Major element concentrations of the filtered (0.45 mum) melted snow indicate that most samples are consistent with a diluted seawater composition. Deviations from this behaviour indicate additional SO(4)(2-) and Cl(-) relative to seawater, suggesting a minor contribution from (probably local) coal combustion emissions (Alaska, Finland, Sweden, Svalbard). The samples with the highest Na and Cl(-) content (Canada, Russia) also have higher Na/SO(4)(2-) and Cl(-)/SO(4)(2-) ratios than seawater, suggesting a slight contamination from (probably local) deicing activities. Local soil or rock dust inputs in the snow are indicated by 'excess' Ca contents (Alaska, Svalbard, Greenland, Sweden). No overall relationship was found between pH (range: 4.6-6.1) and total or non-seasalt SO(4)(2-) (NSS), suggesting that acidification due to long-range transport of SO(2) pollution is not operating on an arctic-wide scale. In a few samples (Alaska, Finland, Sweden, Svalbard), a significant proportion (>50%) of SO(4)(2-) is non-marine in origin. Sources for this non-marine SO(4)(2-) need not all be found in long-range atmospheric transport and more likely sources are local industry (Finland, Sweden), road traffic (Alaska) or minor snow-scooting traffic (one Svalbard locality). A few samples from northern Europe show a relatively weak trend of decreasing pH with increasing NO(3)(-).

  1. Environmental impact of industrial sludge stabilization/solidification products: chemical or ecotoxicological hazard evaluation?

    Silva, Marcos A R; Testolin, Renan C; Godinho-Castro, Alcione P; Corrêa, Albertina X R; Radetski, Claudemir M

    2011-09-15

    Nowadays, the classification of industrial solid wastes is not based on risk analysis, thus the aim of this study was to compare the toxicity classifications based on the chemical and ecotoxicological characterization of four industrial sludges submitted to a two-step stabilization/solidification (S/S) processes. To classify S/S products as hazardous or non-hazardous, values cited in Brazilian chemical waste regulations were adopted and compared to the results obtained with a battery of biotests (bacteria, alga and daphnids) which were carried out with soluble and leaching fractions. In some cases the hazardous potential of industrial sludge was underestimated, since the S/S products obtained from the metal-mechanics and automotive sludges were chemically classified as non-hazardous (but non-inert) when the ecotoxicity tests showed toxicity values for leaching and soluble fractions. In other cases, the environmental impact was overestimated, since the S/S products of the textile sludges were chemically classified as non-inert (but non-hazardous) while ecotoxicity tests did not reveal any effects on bacteria, daphnids and algae. From the results of the chemical and ecotoxicological analyses we concluded that: (i) current regulations related to solid waste classification based on leachability and solubility tests do not ensure reliable results with respect to environmental protection; (ii) the two-step process was very effective in terms of metal immobilization, even at higher metal-concentrations. Considering that S/S products will be subject to environmental conditions, it is of great interest to test the ecotoxicity potential of the contaminants release from these products with a view to avoiding environmental impact given the unreliability of ecotoxicological estimations originating from chemical analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Biogeochemical features technogenic pollution of soils under the influence chemical industry

    Kuraeva I.V.

    2015-09-01

    Full Text Available The physico-chemical properties of soil (pH, organic matter content, cation exchange capacity. The regularities of the distribution of total and mobile forms of heavy metals in soil sediments in the territory of Shostka Sumy region under the influence of the chemical industry and in the background areas. Biogeochemical indicators obtained content of microscopic fungi and their species, the most characteristic of the study of soils, which can be used as an additional criterion for ecological and geochemical studies.

  3. Engineering modular polyketide synthases for production of biofuels and industrial chemicals.

    Cai, Wenlong; Zhang, Wenjun

    2018-04-01

    Polyketide synthases (PKSs) are one of the most profound biosynthetic factories for producing polyketides with diverse structures and biological activities. These enzymes have been historically studied and engineered to make un-natural polyketides for drug discovery, and have also recently been explored for synthesizing biofuels and industrial chemicals due to their versatility and customizability. Here, we review recent advances in the mechanistic understanding and engineering of modular PKSs for producing polyketide-derived chemicals, and provide perspectives on this relatively new application of PKSs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Preparation of industrial chemicals by acid leaching from the koga nepheline syenite, southern Swat, lesser Himalayas-Pakistan

    Nizami, A.R.

    2012-01-01

    This paper encompasses the study on the preparation of industrial chemicals by acid leaching from the Koga nepheline syenite, Southern Swat, Lesser Himalayas-Pakistan. These rocks have been studied in detail by many workers to exploit their industrial utility in the form of powdered rock material in glass and ceramics and steel industry. The present authors for the first time carried out acid leaching studies and prepared a number of industrial chemicals, like, alumina, aluminium sulphate, sodium and ammonium alums, sodium sulphate) and sodium bisulphate by simple chemical reactions at bench scale successfully. The developed process is simple and economically viable. It is recommended to exploit this process in cottage industry in the mountainous areas hosting these rocks for the benefit of local population. The research and development work for production of these chemicals at pilot plant and industrial scale is recommended as well. (author)

  5. An exploratory study of services marketing in global markets: major areas of inquiry for the health care services industry.

    Young, S; Erdem, S A

    1996-01-01

    It has been stated that one of the major challenges for the international marketer is the design of an efficient strategy for marketing services to international markets. This paper reviews some of the issues associated with services marketing in global markets along with the basic variables of service industries. An exploratory assessment of the health care services industry results in a list composed of several inquiry areas which should be examined by multinational companies. It is hoped that the review of the issues raised in this paper provides a basis for decision making and further research.

  6. The changing employment relationship in the chemical industry : the role of the employment- and psychological contract / Elsabé Keyser.

    Keyser, Elsabé

    2010-01-01

    Understanding the employment relationship in the chemical industry in South Africa and organisational change within it is crucial to the understanding of the changing employment and psychological contract within this industry. This study focused on the employment- and psychological contracts, as well as employees ' work-outcomes (organisational commitment, job insecurity, job performance and intention to quit). Employees from the chemical industry were targeted and a cross-sectional survey...

  7. Value chain management for commodities: a case study from the chemical industry

    Kannegiesser, M.; Gunther, H.O.; van Beek, P.

    2009-01-01

    decisions by volume and value throughout the value chain to ensure profitability. Contract and spot demand differentiation with volatile and uncertain spot prices, spot sales quantity flexibility, spot sales price-quantity functions and variable raw material consumption rates in production are problem...... quantity, price and supply decisions throughout the value chain. A two-phase optimization approach supports robust planning ensuring minimum profitability even in case of worst-case spot sales price scenarios. Model evaluations with industry case data demonstrate the impact of elasticities, variable raw......We present a planning model for chemical commodities related to an industry case. Commodities are standard chemicals characterized by sales and supply volatility in volume and value. Increasing and volatile prices of crude oil-dependent raw materials require coordination of sales and supply...

  8. Feasibility of cogeneration systems in chemical industry; Viabilidade de sistemas de cogeracao em industria quimica

    Costa, Moises Henrique de Andrade; Balestieri, Jose Antonio Perrella [UNESP, Guaratingueta, SP (Brazil). Faculdade de Engenharia

    1998-07-01

    The increasing penetration of natural gas in the Brazilian energetic market, some industries as pulp and paper, chemical and that ones related to the food and beverage processes are some of the ones that are more interested in the cogeneration practice based on the burning of this fossil fuel. An analysis of a photographic chemical industry consumption data revealed that combined cycles and Diesel units were the most suitable for thermal following strategy, considering that the four compression chillers must be maintained, and steam or gas cycles in the case of a complete substitution for absorption chillers and the same strategy. The economic attractiveness was done according to the internal return rate and payback, revealing that the investment can be returned in short time. (author)

  9. Utilization of secondary energy - major uses in the fermentation and beverage industries

    Koch, H J

    1986-01-01

    With 18,5% the fermentation and beverage industry (not including liquors, wine and champagne) has the highest share of energy consumption within the food industry. At the same time, these two branches dispose of high secondary energy potentials which remain to be exploited yet. Secondary energy utilization primarily consists in the economic cooling of wort providing for the utilization of process water (80-82/sup 0/C), utilization of air-containing or air-void water vapors from wort boiling processes for technological heating processes, utilization of refrigerator super-heat enthalpies, the use of energy, conserving high-short heaters for larger units, in particular, and utilization of flue gas enthalpies with gaseous energy sources as the most efficient ones.

  10. Economic consequences of the German environmental liability act: Capital market response for the chemical industry

    Bartsch, Elga

    1997-01-01

    The Environmental Liability Act (Umwelthaftungsgesetz) enacted January 1, 1991 is claimed to have substantially tightened the environmental liability regime in Germany. The economic consequences of the amendment of the German environmental liability legislation initiated by the Sandoz accident are investigated for a portfolio of firms in the chemical industry. By means of an event study it is determined whether the UmweltHG has led to a revision of expectations regarding the profitability of ...

  11. Sorption and desorption of the industrial chemical MCHM into polymer pipes, liners and activated carbon

    Ahart, Megan Leanne

    2015-01-01

    Polyethylene pipes and epoxy or polyurethane linings are increasingly used in drinking water infrastructure. As a recent introduction to the water industry, there are still many unknowns about how polymers will behave in the distribution system specifically relating to sorption and desorption of chemical contaminants. This study is in response to a spill of 4-methylcyclohexane methanol (MCHM) that occurred in January 2014 contaminating the drinking water of nine counties in West Virginia. Thi...

  12. Data solutions for the 21st century: CEFIC's vision and intentions. The European Chemical Industry Council.

    Money, C D

    2001-02-01

    Information on workplace exposures to chemicals has a role and importance that goes beyond compliance with occupational exposure limits (OELs). In particular, the increasing use of exposure data in regulatory risk assessment processes places added demands on the need to collect such information. Industry's challenge is to respond to these developments in a manner that ensures data are obtained, archived, and analyzed to standards consistent with evolving stakeholder expectations.

  13. Integrated Environmental Risk Assessment and Whole-Process Management System in Chemical Industry Parks

    Shao, Chaofeng; Yang, Juan; Tian, Xiaogang; Ju, Meiting; Huang, Lei

    2013-01-01

    Chemical industry parks in China are considered high-risk areas because they present numerous risks that can damage the environment, such as pollution incidents. In order to identify the environmental risks and the principal risk factors in these areas, we have developed a simple physical model of a regional environmental risk field (ERF) using existing dispersal patterns and migration models. The regional ERF zoning was also conducted and a reference value for diagnostic methods was develope...

  14. Information strategy on major industrial risks in the department of Bouches-du-Rhone

    Lalo, Anne P.

    1989-01-01

    The accidents which took place lately in the industry, and their sometimes dramatic consequences for neighbouring populations (in Seveso, Mexico City, Bhopal, Chernobyl), show that the solving of industrial safety problems obviously goes beyond specialized technical language, and implies a calling up of the whole community. As early as 1976 French legislation took this into account since the control of classified plants requires a public inquiry including a danger study. The 'Seveso' European Clause is a reminder of this principle, as its Article 8 emphasizes the necessity of an information of the public and the staff of plants, following danger studies, and after the working out of Internal Operation Plans (Plans d'Operation Internes, P.O.I.) and Special Intervention Plans (Plans Particuliers d'Intervention, P.P.I.). In France, with its 40 establishments out of 330 plants concerned by the Seveso Clause, the Provence-Alpes-Cote d'Azur region ranks second after Haute-Normandie among French regions. Most of these plants (33 out of 40) are concentrated in the industrial zone of Fos-sur-Mer in the departement of Bouches-du-Rhone. According to the clauses of Article 21 of the Act of July 22, 1987, and Article 9 of the Executive Order of May 6, 1988, the Prefect must make out brochures giving the instructions for the population living in the enforcement zone of the intervention plans. In November 1988 the Provence-Alpes-Cote d'Azur region will launch a large information campaign on the subject. In order to determine the intervention stragegy of this campaign an inquiry was conducted by the IUT2 (Grenoble) and we give its main conclusions. This study aims at evaluating the sensitivity of the public regarding industrial risks and their confidence towards the management of the risks

  15. Consumer demands: Major problems facing industry in a consumer-driven society.

    Harrington, G

    1994-01-01

    Demand is driven by conventional market forces over much of the world among consumers with strong positive attitudes to meat as a nutritious, tasty and premium food; price in relation to income, availability, quality (including leanness) and relevance to life-style remain the dominant forces operating. But in the developed world, there are emerging concerns about how meat is produced, which are likely to have negative effects on demand, particularly that of the current younger generation, and which may well begin to affect Government policies towards the meat industry. The industry needs to establish strong information and education programmes, but also to examine its procedures to provide greater consumer assurance about practises and controls. Also the scientists and technologists serving the industry need to help it move towards sustainable lower input, less environmentally damaging systems, less reliance on drugs, stimulants and additives, sensitive exploitation of the new genetics and with more consideration for the animals involved. Copyright © 1993. Published by Elsevier Ltd.

  16. SPIN-UP and Preparing Undergraduate Physics Majors for Careers in Industry

    Howes, Ruth

    2011-03-01

    Seven years ago, the Strategic Programs for Innovations in Undergraduate Physics (SPIN-UP) Report produced by the National Task Force on Undergraduate Physics identified several key characteristics of thriving undergraduate physics departments including steps these departments had taken to prepare students better for careers in industry. Today statistical data from AIP shows that almost 40% of students graduating with a degree in physics seek employment as soon as they graduate. Successful undergraduate physics programs have taken steps to adapt their rigorous physics programs to ensure that graduating seniors have the skills they need to enter the industrial workplace as well as to go on to graduate school in physics. Typical strategies noted during a series of SPIN-UP workshops funded by a grant from NSF to APS, AAPT, and AIP include flexible curricula, early introduction of undergraduates to research techniques, revised laboratory experiences that provide students with skills they need to move directly into jobs, and increased emphasis on ``soft'' skills such as communication and team work. Despite significant success, undergraduate programs face continuing challenges in preparing students to work in industry, most significantly the fact that there is no job called ``physicist'' at the undergraduate level. supported by grant NSF DUE-0741560.

  17. Succession planning and staff retention challenges: An industrial outlook and major risks

    Sindisiwe Bonisile Maphisa

    2017-07-01

    Full Text Available The sugar manufacturing industry in the emerging economy is potentially at high risk of not achieving its goals of increasing production output. This is due to higher than average age of growers, nonexistence of effective succession planning to expedite the transition to a new generation of growers, related increasing departure of farmers from the industry and difficulty in attracting new talent to the industry due to the high cost of entry. This research sought to explore managements’ perceptions of succession planning and the impact it has on retention at a Sugar Manufacturing Company. In order to achieve the research aim and objectives, a qualitative approach was utilised in the form of an exploratory case study. A single case study was also chosen because this is a critical, unique and revelatory case and the researchers had access to the case previously inaccessible to empirical research. Purposive sampling was used and total of 15 managers participated in this study. The study found that the company is not doing enough to implement succession planning programmes even though there are potential candidates who can be trained and developed into management positions.

  18. A versatile transfection assay system to evaluate the biological effects of diverse industrial chemicals.

    Koizumi, Shinji; Ohno, Shotaro; Otsuka, Fuminori

    2012-01-01

    Gene expression processes are now recognized as important targets of the toxic effects exerted by industrial chemicals. The transient transfection assay is a powerful tool to evaluate such effects. Thus, we developed a versatile assay system by constructing a basic reporter plasmid in which the regulatory DNA sequence to be studied can easily be substituted. To verify the performance of this system, reporter plasmids carrying any of the three distinct regulatory sequences, estrogen responsive element (ERE), glucocorticoid responsive element (GRE) and xenobiotic responsive element (XRE) were constructed. After transfection of human cells, these plasmids successfully expressed the relevant reporter genes in response to specific inducers, β-estradiol, dexamethasone and 3-methylcholanthrene, respectively. Several industrial chemicals were assayed using these reporter plasmids, and the ability of p-dimethylaminoazobenzene to elevate GRE- and XRE-mediated transcription was detected. α-Naphthylamine and o-tolidine were also observed to increase the XRE-mediated response. The transfection assay system established here will be useful to evaluate the effects of a wide variety of industrial chemicals.

  19. Integrated Environmental Risk Assessment and Whole-Process Management System in Chemical Industry Parks

    Shao, Chaofeng; Yang, Juan; Tian, Xiaogang; Ju, Meiting; Huang, Lei

    2013-01-01

    Chemical industry parks in China are considered high-risk areas because they present numerous risks that can damage the environment, such as pollution incidents. In order to identify the environmental risks and the principal risk factors in these areas, we have developed a simple physical model of a regional environmental risk field (ERF) using existing dispersal patterns and migration models. The regional ERF zoning was also conducted and a reference value for diagnostic methods was developed to determine risk-acceptable, risk-warning, and risk-mitigation zones, which can provide a risk source layout for chemical industry parks. In accordance with the environmental risk control requirements, this study focused on the three stages of control and management of environmental risk and established an environmental risk management system including risk source identification and assessment, environmental safety planning, early risk warning, emergency management, assessment of environmental effects, and environmental remediation of pollution accidents. By using this model, the environmental risks in Tianjin Binhai New Area, the largest chemical industry park in China, were assessed and the environmental risk zoning map was drawn, which suggested the existence of many unacceptable environmental risks in this area. Thus, relevant suggestions have been proposed from the perspective of the adjustment of risk source layout, intensified management of environmental risk control and so on. PMID:23603866

  20. Integrated environmental risk assessment and whole-process management system in chemical industry parks.

    Shao, Chaofeng; Yang, Juan; Tian, Xiaogang; Ju, Meiting; Huang, Lei

    2013-04-19

    Chemical industry parks in China are considered high-risk areas because they present numerous risks that can damage the environment, such as pollution incidents. In order to identify the environmental risks and the principal risk factors in these areas, we have developed a simple physical model of a regional environmental risk field (ERF) using existing dispersal patterns and migration models. The regional ERF zoning was also conducted and a reference value for diagnostic methods was developed to determine risk-acceptable, risk-warning, and risk-mitigation zones, which can provide a risk source layout for chemical industry parks. In accordance with the environmental risk control requirements, this study focused on the three stages of control and management of environmental risk and established an environmental risk management system including risk source identification and assessment, environmental safety planning, early risk warning, emergency management, assessment of environmental effects, and environmental remediation of pollution accidents. By using this model, the environmental risks in Tianjin Binhai New Area, the largest chemical industry park in China, were assessed and the environmental risk zoning map was drawn, which suggested the existence of many unacceptable environmental risks in this area. Thus, relevant suggestions have been proposed from the perspective of the adjustment of risk source layout, intensified management of environmental risk control and so on.

  1. Integrated Environmental Risk Assessment and Whole-Process Management System in Chemical Industry Parks

    Lei Huang

    2013-04-01

    Full Text Available Chemical industry parks in China are considered high-risk areas because they present numerous risks that can damage the environment, such as pollution incidents. In order to identify the environmental risks and the principal risk factors in these areas, we have developed a simple physical model of a regional environmental risk field (ERF using existing dispersal patterns and migration models. The regional ERF zoning was also conducted and a reference value for diagnostic methods was developed to determine risk-acceptable, risk-warning, and risk-mitigation zones, which can provide a risk source layout for chemical industry parks. In accordance with the environmental risk control requirements, this study focused on the three stages of control and management of environmental risk and established an environmental risk management system including risk source identification and assessment, environmental safety planning, early risk warning, emergency management, assessment of environmental effects, and environmental remediation of pollution accidents. By using this model, the environmental risks in Tianjin Binhai New Area, the largest chemical industry park in China, were assessed and the environmental risk zoning map was drawn, which suggested the existence of many unacceptable environmental risks in this area. Thus, relevant suggestions have been proposed from the perspective of the adjustment of risk source layout, intensified management of environmental risk control and so on.

  2. Relation Between Sustainability‑Related Communication and Competitiveness in the Chemical Industry

    Jaroslava Hyršlová

    2017-01-01

    Full Text Available Interests of companies in the sustainability‑related communication have risen considerably in recent years. This paper focuses on the current state of sustainability‑related reporting in chemical industry companies registered in the Association of Chemical Industry in the Czech Republic. It deals with the form and the content of reporting, the importance of different stakeholders in this process as well as benefits of the sustainability‑related communication and its impacts on competitiveness of the company. This paper summarizes the results of a research executed in the year 2014. The results of the research showed that chemical industry companies were aware of the significance of sustainability‑related communication and they utilized various types of sustainability‑related reports for this communication. Companies prefer to report on the environmental and social aspects of their activities primarily in their annual reports, or they issue separate environmental reports. The research verified the relationship between the sustainability‑related communication and competitiveness. A suitable established high quality system of communication that provides sufficient information and meets the information requirements of the key stakeholders may significantly contribute to reputation improvement, to increased attractiveness of the company as an employer and thereby to maintain, to improve respectively, the level of a company’s competitiveness.

  3. The removal of dinitrochlorobenzene from industrial residuals by liquid-liquid extraction with chemical reaction

    G. C. M. Ferreira

    2007-09-01

    Full Text Available Nitrochlorobenzenes (NCBs are very important in the chemical industry since they have been used as raw material for the manufacture of crop protection products, as active ingredients in the pharmaceutical industry, as pigments and as antioxidants as well as for other uses. In industrial processes, NCBs are produced by monochlorobenzene (MCB nitration reactions and one of the main residuals formed is dinitrochlorobenzene (DNCB, which is mainly composed of the isomer 2,4DNCB. This subproduct, although of commercial interest when in its pure state, is generally incinerated due to the high costs of recovery treatment and purification. The objective of this study is to present an alternative to the treatment of industrial residuals containing DNCB. The technique consists of converting DNCB into sodium dinitrophenolate, which is very soluble in water and is also easy to reuse. For this purpose, liquid-liquid extraction with chemical reaction (alkaline hydrolysis with a rotating disc contactor (RDC is used. Experimental data on MCB nitration reactions as well as alkaline hydrolysis using a rotating disc contactor are presented.

  4. Temporally delineated sources of major chemical species in high Arctic snow

    K. M. Macdonald

    2018-03-01

    Full Text Available Long-range transport of aerosol from lower latitudes to the high Arctic may be a significant contributor to climate forcing in the Arctic. To identify the sources of key contaminants entering the Canadian High Arctic an intensive campaign of snow sampling was completed at Alert, Nunavut, from September 2014 to June 2015. Fresh snow samples collected every few days were analyzed for black carbon, major ions, and metals, and this rich data set provided an opportunity for a temporally refined source apportionment of snow composition via positive matrix factorization (PMF in conjunction with FLEXPART (FLEXible PARTicle dispersion model potential emission sensitivity analysis. Seven source factors were identified: sea salt, crustal metals, black carbon, carboxylic acids, nitrate, non-crustal metals, and sulfate. The sea salt and crustal factors showed good agreement with expected composition and primarily northern sources. High loadings of V and Se onto Factor 2, crustal metals, was consistent with expected elemental ratios, implying these metals were not primarily anthropogenic in origin. Factor 3, black carbon, was an acidic factor dominated by black carbon but with some sulfate contribution over the winter-haze season. The lack of K+ associated with this factor, a Eurasian source, and limited known forest fire events coincident with this factor's peak suggested a predominantly anthropogenic combustion source. Factor 4, carboxylic acids, was dominated by formate and acetate with a moderate correlation to available sunlight and an oceanic and North American source. A robust identification of this factor was not possible; however, atmospheric photochemical reactions, ocean microlayer reaction, and biomass burning were explored as potential contributors. Factor 5, nitrate, was an acidic factor dominated by NO3−, with a likely Eurasian source and mid-winter peak. The isolation of NO3− on a separate factor may reflect its complex atmospheric

  5. A Study on an Executive Technique and Activation of Clean Production in Chemical Industry

    Kong, Seong Yong; Lee, Hee Seok; Kim, Kang Seok [Korea Environment Institute, Seoul (Korea)

    2000-12-01

    Clean production does not only make the sustainable development possible through preventing the deterioration of the environmental pollution from the expansion of industrialization but also enhance the company's competitiveness. Clean production is required by all industrial fields but is the most important in chemical industry. The Government has made efforts to change the domestic industrial structure to the environmental-friendly structure through developing the research. However, the domestic industry has not yet activated overall except some large companies, which has concretized the activation of clean production. Especially, the medium and small companies are more sluggish due to the inferiority of capital and technology. With recognizing that the main body of clean production is a company, the effort based on the Government and the academic world, without companies' positive, will cannot help being limited in effects. Therefore, it is necessary to trigger the schemes that urge the companies' motivation to show the effects from the support that have concentrated in hardware like technology until now. It seems to be very important that the guidebook for clean production, which a company can easily adopt, is developed and spread. This report provides the guidebook for clean production that managers and engineers can easily understand and approach in a producing field and presents the scheme to promote clean production, for chemical industry that is seriously required clean production. Even if the presented contents are not perfect, they can be applied to the development of the Government's policy and the administrative activities of companies for clean production as a useful data. 53 refs., 5 figs., 30 tabs.

  6. Anaerobic baffled reactor coupled with chemical precipitation for treatment and toxicity reduction of industrial wastewater.

    Laohaprapanona, Sawanya; Marquesa, Marcia; Hogland, William

    2014-01-01

    This study describes the reduction of soluble chemical oxygen demand (CODs) and the removal of dissolved organic carbon (DOC), formaldehyde (FA) and nitrogen from highly polluted wastewater generated during cleaning procedures in wood floor manufacturing using a laboratory-scale biological anaerobic baffled reactor followed by chemical precipitation using MgCI2 .6H20 + Na2HPO4. By increasing the hydraulic retention time from 2.5 to 3.7 and 5 days, the reduction rates of FA, DOC and CODs of nearly 100%, 90% and 83%, respectively, were achieved. When the Mg:N:P molar ratio in the chemical treatment was changed from 1:1:1 to 1.3:1:1.3 at pH 8, the NH4+ removal rate increased from 80% to 98%. Biologically and chemically treated wastewater had no toxic effects on Vibrio fischeri and Artemia salina whereas chemically treated wastewater inhibited germination of Lactuca sativa owing to a high salt content. Regardless of the high conductivity of the treated wastewater, combined biological and chemical treatment was found to be effective for the removal of the organic load and nitrogen, and to be simple to operate and to maintain. A combined process such as that investigated could be useful for on-site treatment of low volumes of highly polluted wastewater generated by the wood floor and wood furniture industries, for which there is no suitable on-site treatment option available today.

  7. Chemical profile of size-fractionated soils collected in a semiarid industrial area of Argentina

    Morales Del Mastro, Anabella; Pereyra, Marcelo; Londonio, Agustín; Pereyra, Victoria; Rebagliati, Raúl Jiménez; Dawidowski, Laura; Gómez, Darío; Smichowski, Patricia

    2014-12-01

    A study was undertaken to assess the chemical profile of soil collected in Bahía Blanca (Argentina). In this industrial city, semiarid soils are affected by different industrial and agricultural activities, the presence of a saltpeter extraction facility, traffic and increasing urbanization. Sixteen soil samples (superficial and sub-superficial) were collected. Samples were sieved in two fractions (A plasma optical emission spectrometry (ICP OES). Anions (Cl-, F-, SO42-) and cations (K+, Na+ and NH4+) were determined by high performance liquid chromatography (HPLC) after an aqueous extraction. As expected, crustal elements namely, Al, Ca, Fe, Mg and Ti exhibited the highest concentrations. Mean elemental concentration ranged from Na+ ≅ SO42- > K+ > NO3-. Three indicators, namely, (i) coefficient of variation, (ii) coefficient of divergence and (iii) ratio of elemental concentration with respect to Ca were used to assess chemical, spatial and inter-profile variability. Chloride > Ca > Na+ > Mo > SO42-, dominated the variability indicating that these are key chemical markers for future assessment of crustal contribution to airborne particles in the area. The ratios Xi/Ca allowed discriminating the soil of the semi-arid region surrounding Bahía Blanca. The chemical profiles obtained in this study, particularly those of topsoil, will be a key input to characterize soil resuspension and its contribution to airborne particulate matter in a forthcoming receptor model analysis.

  8. Energy price slump and policy response in the coal-chemical industry district : a case study of Ordos with a system dynamics model

    Wang, Delu; Ma, Gang; Song, Xuefeng; Liu, Yun

    2017-01-01

    We employ system dynamics method towards a coal-chemical industry district economy evolution model, using coal industry, the coal-chemical industry, their downstream industries, and the manufacture-related service industry. Moreover, we construct energy price and policy response scenarios based on Ordos’ management experience. The results show that the energy price slump had a negative impact on the overall economic development of the coal-chemical industry district, despite promoting non-res...

  9. Toxic industrial chemicals (TICs) as asymmetric weapons: the design basis threat

    Skinner, L.

    2009-01-01

    Asymmetric warfare concepts relate well to the use of improvised chemical weapons against urban targets. Sources of information on toxic industrial chemicals (TICs) and lists of high threat chemicals are available that point to likely choices for an attack. Accident investigations can be used as a template for attacks, and to judge the possible effectiveness of an attack using TICs. The results of a chlorine rail car accident in South Carolina, USA and the Russian military assault on a Moscow theater provide many illustrative points for similar incidents that mighty be carried out deliberately. Computer modeling of outdoor releases shows how an attack might take into consideration issues of stand-off distance and dilution. Finally, the preceding may be used to estimate with some accuracy the design basis threat posed by the used of TICs as weapons.(author)

  10. Measurement of intra-industry trade (ITT) of Iran with ten selective major trading partners using Grubel-Lloyd Index

    Muhammad Emadi

    2016-01-01

    This paper was conducted to measure intra-industry trade of Iran with ten selective major trading partners including the United Arab Emirates, Germany, China, Republic of Korea, Italy, India, Japan, Turkey, Spain, and Singapore using Grubel-Lloyd index. Due to the development of cross-border economic relationships, these countries try to find and present an appropriate model for production, import, and export of goods and identification of business opportunities and comparative advantages. Th...

  11. Forecasting global developments in the basic chemical industry for environmental policy analysis

    Broeren, M.L.M.; Saygin, D.; Patel, M.K.

    2014-01-01

    The chemical sector is the largest industrial energy user, but detailed analysis of its energy use developments lags behind other energy-intensive sectors. A cost-driven forecasting model for basic chemicals production is developed, accounting for regional production costs, demand growth and stock turnover. The model determines the global production capacity placement, implementation of energy-efficient Best Practice Technology (BPT) and global carbon dioxide (CO 2 ) emissions for the period 2010–2030. Subsequently, the effects of energy and climate policies on these parameters are quantified. About 60% of new basic chemical production capacity is projected to be placed in non-OECD regions by 2030 due to low energy prices. While global production increases by 80% between 2010 and 2030, the OECD's production capacity share decreases from 40% to 20% and global emissions increase by 50%. Energy pricing and climate policies are found to reduce 2030 CO 2 emissions by 5–15% relative to the baseline developments by increasing BPT implementation. Maximum BPT implementation results in a 25% reduction. Further emission reductions require measures beyond energy-efficient technologies. The model is useful to estimate general trends related to basic chemicals production, but improved data from the chemical sector is required to expand the analysis to additional technologies and chemicals. - Highlights: • We develop a global cost-driven forecasting model for the basic chemical sector. • We study regional production, energy-efficient technology, emissions and policies. • Between 2010 and 2030, 60% of new chemicals capacity is built in non-OECD regions. • Global CO 2 emissions rise by 50%, but climate policies may limit this to 30–40%. • Measures beyond energy efficiency are needed to prevent increasing CO 2 emissions

  12. Asymmetric catalysis in Brazil: development and potential for advancement of Brazilian chemical industry

    Braga, Antonio Luiz; Luedtke, Diogo Seibert; Schneider, Paulo Henrique; Andrade, Leandro Helgueira; Paixao, Marcio Weber

    2013-01-01

    The preparation of enantiomerically pure or enriched substances is of fundamental importance to pharmaceutical, food, agrochemical, and cosmetics industries and involves a growing market of hundreds of billions of dollars. However, most chemical processes used for their production are not environmentally friendly because in most cases, stoichiometric amounts of chiral inductors are used and substantial waste is produced. In this context, asymmetric catalysis has emerged as an efficient tool for the synthesis of enantiomerically enriched compounds using chiral catalysts. More specifically, considering the current scenario in the Brazilian chemical industry, especially that of pharmaceuticals, the immediate prospect for the use of synthetic routes developed in Brazil in an enantioselective fashion or even the discovery of new drugs is practically null. Currently, the industrial production of drugs in Brazil is primarily focused on the production of generic drugs and is basically supported by imports of intermediates from China and India. In order to change this panorama and move forward toward the gradual incorporation of genuinely Brazilian synthetic routes, strong incentive policies, especially those related to continuous funding, will be needed. These incentives could be a breakthrough once we establish several research groups working in the area of organic synthesis and on the development and application of chiral organocatalysts and ligands in asymmetric catalysis, thus contributing to boost the development of the Brazilian chemical industry. Considering these circumstances, Brazil can benefit from this opportunity because we have a wide biodiversity and a large pool of natural resources that can be used as starting materials for the production of new chiral catalysts and are creating competence in asymmetric catalysis and related areas. This may decisively contribute to the growth of chemistry in our country. (author)

  13. Role of knowledge based engineering in Heavy Water Plants and its relevance to chemical industry

    Sonde, R.R.

    2002-01-01

    The development of heavy water technology under the Department of Atomic Energy in India is carried out based on a mission oriented programme and this was backed up by a committed and highly trained manpower with a single minded pursuit to achieve the goal of making India self-sufficient in this challenging area. The paper gives step by step methodology followed in completion of the above mission which has become a benchmark in the chemical industry. A large sized chemical industry (Heavy Water plant being once such industry) has many features which are similar. The process design typically includes design of reactors, distillation columns, heat exchange networks, fluid transfer machinery, support utility systems etc. Besides, there are other issues like safety engineering, selection of materials, commissioning strategies and operating philosophies which are quite common to almost all chemical industries. Heavy water board has engineered and set up large scale heavy water plants and the technology for production of heavy water is completely assimilated in India and this paper tries to bring about some of the strategies which were instrumental in achieving this. The story of success in this technology can most certainly be followed in development of any other process technology. The important factors in the development of this technology is based on integration of R and D, process design, engineering backup, safety features, role of good construction and project management and good operating practices. One more important fact in this technology development is continuous improvement in operation and use of knowledge based engineering for debottlenecking. (author)

  14. Approval of the first biosimilar antibodies in Europe: a major landmark for the biopharmaceutical industry.

    Beck, Alain; Reichert, Janice M

    2013-01-01

    In a defining moment for the European Medicines Agency (EMA) and the biopharmaceutical industry, on June 27, 2013 EMA's Committee for Medicinal Products for Human Use adopted a positive opinion for two biosimilar infliximab products (Celltrion's Remsima® and Hospira's Inflectra®), and recommended that they be approved for marketing in the European Union (EU). The European Commission's decision on an application is typically issued 67 d after an opinion is provided; thus, decisions are expected in early September 2013. If approved, the products will comprise the first biosimilar antibody made available to patients in a highly regulated market, although launch may be delayed due to an extension of the reference product's (Remicade®) patent in the EU.

  15. Regional air pollution caused by a simultaneous destruction of major industrial sources in a war zone. The case of April Serbia in 1999

    Vukmirović, Zorka B.; Unkašević, Miroslava; Lazić, Lazar; Tošić, Ivana

    During NATO's 78-day Kosovo war, 24 March-10 June 1999, almost daily attacks on major industrial sources have caused numerous industrial accidents in Serbia. These accidents resulted in releases of many hazardous chemical substances including the persistent organic pollutants (POPs). Detection of some important POPs in fine aerosol form took place at Xanthi in Greece and reported to the scientific world. The paper focuses on two pollution episodes: (a) 6-8 April; and (b) 18-20 April. Using the Eta model trajectory analysis, the regional pollutant transport from industrial sites in Northern Serbia (Novi Sad) and in the Belgrade vicinity (Pančevo), respectively, almost simultaneously bombed at midnight between 17 and 18 April, corroborated measurements at Xanthi. At the same time the pollutant puff was picked up at about 3000 m and transported to Bulgaria, Romania, Ukraine, Moldavia and the Black Sea. The low-level trajectories from Pančevo below 1000 m show pollutant transport towards Belgrade area in the first 12 h. The POP washout in central and southern Serbia in the second episode was deemed to have constituted the principal removal mechanism. Maximum POP wet deposition was found in central Serbia and along the 850 hPa trajectory towards south-eastern Serbia and the Bulgarian border.

  16. Physical, chemical and radioactive characterization of co-products from titanium dioxide industry for valorization in the cement industry

    Gazquez, M.J.; Mantero, J.; Bolivar, J.P.; Garcia-Tenorio, R.; Vaca, F.

    2011-01-01

    The present study was conducted to characterize the raw materials (ilmenite and slag), waste (red gypsum) and several co-products (sulphate monohydrate and sulphate heptahydrated) form the titanium dioxide industry in relation to their elemental composition (major, minor and trace elements), granulometry, mineralogy, microscopic morphology, physical composition and radioactive content in order to apply this knowledge in the valorization of the co-products in the fields such a as construction, civil engineering, etc. In particular, the main properties of cements produced with different proportions of red gypsum were studied, and the obtained improvements, in relation to Ordinary Portland Cements (OPC) were evaluated. It was also demonstrated that the levels of pollutants and the radioactive content in the produced RG cements, remain within the regulated safety limits. (Author). 38 refs.

  17. Maintenance Management Systems in the Czech Enterprises of Chemical and Food Industries

    Lenka Branska

    2016-12-01

    Full Text Available Purpose of the article: The aim of this article is to use the results of the qualitative research to describe the current form of maintenance systems used in enterprises of chemical and food industries, and then to discuss and generalize the results. Methodology/methods: The primary qualitative research was conducted in five companies, which can be regarded as typical representatives of the industries. The main objective of the primary research in individual companies was to determine how they perform the strategic and tactical operational planning of maintenance, implementation of these plans and their control. Individual interviews with respondents were used as the research method. The results of the research were processed using the content analysis method. Subsequently, comparison of the findings from individual businesses and subsequent synthesis thereof was performed, which allowed making generalizations. Scientific aim: The scientific aim of the article is to develop knowledge in the field of maintenance management by specifying the form of the maintenance systems utilized in Czech enterprises of the chemical and food industries and identifying the main opportunities for their improvement. Findings: Czech enterprises of the chemical and food industries utilize maintenance management systems. These systems are aimed at prevention, emphasizing the planning of maintenance activities in fixed periodic intervals. Also, they often utilize diagnostic maintenance. However, the maintenance systems currently used cannot be considered fully operational, with regard to the relatively large volume of after-failure repairs. Conclusions: Production equipment maintenance systems are irreplaceable in chemical and food industry enterprises, but there is great potential for improvement. Improvement should be focused on the area of strategic as well as tactical and operational planning of production equipment maintenance. In terms of strategy, the biggest

  18. Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production.

    Chen, Xianzhong; Zhou, Li; Tian, Kangming; Kumar, Ashwani; Singh, Suren; Prior, Bernard A; Wang, Zhengxiang

    2013-12-01

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, more bulk and/or fine chemicals are produced by bioprocesses, replacing the traditional energy and fossil based intensive route. The Gram-negative rod-shaped bacterium, Escherichia coli has been studied extensively on a fundamental and applied level and has become a predominant host microorganism for industrial applications. Furthermore, metabolic engineering of E. coli for the enhanced biochemical production has been significantly promoted by the integrated use of recent developments in systems biology, synthetic biology and evolutionary engineering. In this review, we focus on recent efforts devoted to the use of genetically engineered E. coli as a sustainable platform for the production of industrially important biochemicals such as biofuels, organic acids, amino acids, sugar alcohols and biopolymers. In addition, representative secondary metabolites produced by E. coli will be systematically discussed and the successful strategies for strain improvements will be highlighted. Moreover, this review presents guidelines for future developments in the bio-based chemical production using E. coli as an industrial platform. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Physico-chemical and toxicological assessment of liquid wastes from olive processing-related industries.

    Pierantozzi, Pierluigi; Zampini, Catiana; Torres, Mariela; Isla, María I; Verdenelli, Romina A; Meriles, José M; Maestri, Damián

    2012-01-30

    In the last few years, agricultural uses of waste waters from olive processing-related industries have been gaining interest mainly with a view to composting or bio-fertilizers. The present work examines physico-chemical, toxicological and geno-toxicological properties of three liquid wastes, namely olive mill wastewater (OMWW), olive wet husk and olive brine. The effect of OMWW spreading on soil microbial activity and biomass was also evaluated. Data from Artemia salina and Lactuca sativa toxicity tests indicated high levels of lethality, and inhibitory effects on seed germination and seedling growth of all olive wastes. The genotoxicity assays using Allium cepa tests showed contrasting results. At high concentrations, olive wastes caused inhibition or suppression of mitosis. However, they did not produce induced anaphase aberrations. Data on reversion of Salmonella thyphimurium strains using the Ames test indicated that the olive wastes did not present mutagenic activity. Results from the field experiment showed that OMWW at a 500 m(3) ha(-1) had the highest values of both soil microbial activity and biomass after 3 months of the amendment application. This work adds new data for environmental risk assessment of olive industrial wastes. Direct use of olive wastes for agricultural purposes should be limited owing to their possible chemotoxic, phytotoxic and antimicrobial effects. Copyright © 2011 Society of Chemical Industry.

  20. Risk analysis in the chemical industry; Analisis de riesgos en la industria quimica

    Rea Soto, Rogelio; Sandoval Valenzuela, Salvador [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2000-07-01

    The Instituto de Investigaciones Electricas has a group of risk analysis (GAR), specialized in the most advanced methodologies to apply them in diverse industries of the productive sector, such as the nuclear, the oil and the chemical industries. In this work the integrated methodology that the GAR uses to make risk analysis in the chemical and oil industries is described. These analyses have as an objective to make a meticulous evaluation of the system design, the operation practices, the maintenance and inspection policies and the emergency plans. [Spanish] El Instituto de Investigaciones Electricas cuenta con un grupo de analisis de riesgo (GAR), especializado en las metodologias mas avanzadas para aplicarlas en diversas industrias del sector productivo, como lo son la nuclear, la petrolera y la quimica. En este trabajo se describe la metodologia integrada que el GAR utiliza para realizar analisis de riesgos en las industrias quimica y petrolera. Estos analisis tienen como objetivo realizar una minuciosa evaluacion del diseno del sistema, las practicas de operacion, las politicas de mantenimiento e inspeccion y los planes de emergencia.

  1. In vitro methods for hazard assessment of industrial chemicals – opportunities and challenges

    Chin Lin eWong

    2015-05-01

    Full Text Available Allergic contact dermatitis (ACD is a delayed-type hypersensitivity immune reaction mediated by T-lymphocytes as a result of repeated exposure of an allergen primarily on skin. ACD accounts for up to 95% of occupational skin diseases (OSDs, with epoxy resins implicated as one of the most common causes of ACD. Efficient high-throughput in vitro screening for accurate identification of compounds and materials that may pose hazardous risks in the workplace is crucial. At present, the murine local lymph node assay (LLNA is the ‘method of choice’ for predicting the sensitizing potency of contact allergens. As the 3Rs principles of reduction, refinement and replacement in animal testing has gained political and economic momentum, several in vitro screening methods have been developed for identifying potential contact allergens. To date, these latter methods have been utilized primarily to assess the skin sensitizing potential of the chemical components of cosmetic products with scant research attention as to the applicability of these methods to industrial chemicals, particularly epoxy resins. Herein we review the currently utilized in vitro methods and identify the knowledge gaps with regard to assessing the generalizability of in vitro screening methods for assessing the skin sensitizing potential of industrial chemicals.

  2. Interactions Between Industrial Yeasts and Chemical Contaminants in Grape Juice Affect Wine Composition Profile

    Etjen Bizaj

    2014-01-01

    Full Text Available The interaction between four industrial wine yeast strains and grape juice chemical contaminants during alcoholic fermentation was studied. Industrial strains of Saccharomyces cerevisiae (AWRI 0838, S. cerevisiae mutant with low H2S production phenotype (AWRI 1640, interspecies hybrid of S. cerevisiae and S. kudriavzevii (AWRI 1539 and a hybrid of AWRI 1640 and AWRI 1539 (AWRI 1810 were exposed separately to fungicides pyrimethanil (Pyr, 10 mg/L and fenhexamid (Fhx, 10 mg/L, as well as to the most common toxin produced by moulds on grapes, ochratoxin A (OTA, 5 μg/L, during alcoholic fermentation of Vitis vinifera L. cv. Sauvignon blanc juice. Contaminants were found to strongly impair fermentation performance and metabolic activity of all yeast strains studied. The chemical profile of wine was analyzed by HPLC (volatile acidity, concentrations of ethanol, fructose, glucose, glycerol and organic acids and the aromatic profile was analyzed using a stable isotope dilution technique using GC/MS (ethyl esters, acetates and aromatic alcohols and Kitagawa tubes (H2S. The chemical composition of wine with added contaminants was in all cases significantly different from the control. Of particular note is that the quantity of aromatic compounds produced by yeast was significantly lower. Yeast’s capacity to remove contaminants from wine at the end of the alcoholic fermentation, and after extended contact (7 days was determined. All the strains were able to remove contaminants from the media, moreover, after extended contact, the concentration of contaminants was in most cases lower.

  3. Measuring the Productivity of Energy Consumption of Major Industries in China: A DEA-Based Method

    Xishuang Han

    2014-01-01

    Full Text Available Data envelopment analysis can be applied to measure the productivity of multiple input and output decision-making units. In addition, the data envelopment analysis-based Malmquist productivity index can be used as a tool for measuring the productivity change during different time periods. In this paper, we use an input-oriented model to measure the energy consumption productivity change from 1999 to 2008 of fourteen industry sectors in China as decision-making units. The results show that there are only four sectors that experienced effective energy consumption throughout the whole reference period. It also shows that these sectors always lie on the efficiency frontier of energy consumption as benchmarks. The other ten sectors experienced inefficiency in some two-year time periods and the productivity changes were not steady. The data envelopment analysis-based Malmquist productivity index provides a good way to measure the energy consumption and can give China's policy makers the information to promote their strategy of sustainable development.

  4. The Study of Social Intelligence of Students Majoring in “Industrial and civil construction”

    Iatsevich Olga

    2017-01-01

    Full Text Available The article tackles the question of the interconnection between the components of social intelligence (the N. Hall test and the D. V. Lyusin questionnaire test Emln and self-presentation tactics (the S. Lee, B. Quigley scale. To win on the market of vacancies the graduates have to know how to present themselves and their own projects, and have high social intelligence. The survey of 147 Russian students of Tyumen Industrial university has shown that the subjects with high and low levels of emotional awareness tend to resort to intimidation and managing behavior and emotions as well as such assertive self-presentation tactics as entitlement and blasting. Students with a developed ability to manage their emotions more often than the others declare their virtues and past achievements. Examinees with low and with high ability to control their emotional states can be characterized by negative and critical evaluation of others. The authors emphasize the research prospects of individual human resources where social intelligence as one of the components of the behavioral control is seen as a predictor of various self-presentation tactics, protective and assertive in particular.

  5. Use of wastes in high-temperature processes of the chemical industry; Verwertung von Abfaellen in Hochtemperaturprozessen der chemischen Industrie

    Seifert, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany); Domschke, T.; Steinebrunner, K. [BASF AG, Ludwigshafen am Rhein (Germany)

    1998-09-01

    The examples presented in this paper from diverse application areas of the chemical industry serve as an illustration of the many different ways in which wastes can be used for high-temperature processes in this branch. A review of the environmentally friendly concepts implemented at BASF AG in Ludwigshafen in the course of the past five years gives an idea of the immense potential opened up by a consistent application of the four-stage model for the prevention, reduction, and utilisation of wastes. In this period it was possible to reduce waste arisings by 34%, down from a potential 2 million tons, physically recycle 51%, and convert 11.5% to energy. This left a comparatively small fraction of 3.5%, or 70,000 tons, to be disposed of in an environmentally acceptable way. Furthermore, the amount of pollutants produced per tonne of products sold fell from 40.6 kg in 1987 to 6.7 kg in 1997. [Deutsch] Die Beispiele aus den unterschiedlichsten Anwendungsbereichen der chemischen Industrie koennen als Auswahl der vielfaeltigen Verwertungsmoeglichkeiten von Abfaellen in Hochtemperaturprozessen der Chemie betrachtet werden. Das immense Potential, das sich durch konsequente Anwendung des 4-Stufen-Modells zur Vermeidung, Verminderung und Verwertung von Abfaellen eroeffnet, zeigt sich in einer Fuenfjahresbilanz der umgesetzten Umweltschutzbetrachtungen in der BASF AG in Ludwigshafen. So konnten in diesem Zeitraum von potentiellen 2 Mio t Abfall/a ca. 34% vermieden und vermindert, 51% stofflich und 11,5% energetisch verwertet werden, so dass nur noch ein geringer Anteil von 3,5%, entsprechend ca. 70000 t/a, umweltgerecht entsorgt werden musste. Dies fuehrte auch zu einer drastischen Reduktion der auf der Tonne Verkaufsprodukt bezogenen Menge an umweltbelastenden Stoffen von 40,6 kg im Jahre 1987 auf 6,7 kg im Jahre 1997. (orig.)

  6. Terrestrial Gamma Radiation Exposure Measurement and Risk Estimates in the Environments of Major Industries In Ota, Nigeria

    Abodunrin Oluwasayo Peter

    2016-11-01

    Full Text Available When fast estimates are required, the in-situ method is more appropriate as this allows for quick results; preventing further exposure of the public and permitting quick intervention. Measurements of the terrestrial gamma radiation exposure have been carried out in the environments of major industries in Ota using a portable survey meter. The motivation for this study resulted from the uncertainty in the general public opinion on the effect of the presence, and activities of some of these industries in their environment. Measurements were taken twice daily within the vicinity of each industry to determine the dose levels. The mean values obtained range from 0.11 – 1.80 µSv/h. These values are within the results obtained from normal background areas except for site number 10. Annual effective dose values range from 0.25 – 5.21 mSv with a mean value of 1.21 mSv. Routine activities in some of these environments may have contributed significantly to the ambient natural background radiation resulting in high values as obtained in some of these locations. The total risks disparately estimated for cancer and genetic effects resulting from the results obtained range from 0.17 x 10-4 – 3.80 x 10-4 with a mean value of 0.94 x 10-4. These levels are within the range of the average annual risk for accidental death for all industries.

  7. Chemical, procedural and economical evaluation of carbon dioxide as feedstock in the chemical industry; Chemische, verfahrenstechnische und oekonomische Bewertung von Kohlendioxid als Rohstoff in der chemischen Industrie

    Otto, Alexander

    2015-07-01

    The utilisation of CO{sub 2} as feedstock in the chemical industry represents an alternative to the geological storage, which is legally limited and socially debated. Generally, scientific publications about the utilisation of CO{sub 2} in chemical reactions typically address the feasibility of the syntheses without paying attention to the CO{sub 2} reduction potential or the economy in contrast to the conventional process of production. The aim of this doctoral thesis is to identify chemical reactions with CO{sub 2} as feedstock, which have the potential to reduce CO{sub 2} emissions. These reactions are evaluated concerning the industrial realization, CO{sub 2} balance and economy compared to the conventional processes. To achieve this, 123 reactions from the literature were collected and evaluated with the help of selection criteria developed specifically for this application. The criteria consider both, the quantitative potential to reduce CO{sub 2} and possible economical interests in these reactions. Additional to the process of the evaluation of the reactions, a CO{sub 2} reduction potential of 1.33 % of the greenhouse gas emissions within the European Union could be calculated. For the chemicals formic acid, oxalic acid, formaldehyde, methanol, urea and dimethyl ether, which most fully satisfy the selection criteria, a direct comparison of the CO{sub 2} based process with the conventional process is performed. By literature data, process designs, and simulations, it has been shown that the highest reductions of CO{sub 2} emissions can be achieved for methanol with 1.43 kg{sub CO2}/kg{sub MeOH} and dimethyl ether with 2.17 kg{sub CO2}/kg{sub DME}, but only with the assumption that the necessary hydrogen for the CO{sub 2} based reaction is produced by electrolysis operated with renewable energy. Overall, the CO{sub 2} based production processes of methanol and dimethyl ether could reduce 0.059 % of the greenhouse gas emissions of the European Union (EU) if

  8. Analysis of the major chemical compositions in Fuzhuan brick-tea ...

    Fuzhuan brick-tea, a fungal-fermented tea, is commonly consumed in northwest China; in places such as Sinkiang and Tibet and is thought to be helpful in digestion. To better understand Fuzhuan brick-tea and its function on digestion, the Fuzhuan brick-tea's chemical compounds were surveyed at pivotal process phases, ...

  9. Some major aspects of the chemical behavior of rare earth oxides: An overview

    Bernal, S.; Blanco, G.; Calvino, J.J.; Omil, J.A. Perez; Pintado, J.M.

    2006-01-01

    The chemical behavior of sesquioxides and higher rare earth oxides is briefly reviewed. In the first case processes implying no change in the lanthanoid oxidation state are considered, whereas in the second one the analysis is focused on their redox behavior

  10. NREL Scientist Selected for Major Award by the American Chemical Society

    contributions to the advancement of surface chemistry. The 160,000-member American Chemical Society selected Dr Chemistry. The award recognizes his many research, teaching, writing and administrative accomplishments adjunct professor of chemistry, physics and engineering at the University of Denver and the author or co

  11. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes.

    Shi, Jing; Wang, Yangdong; Yang, Weimin; Tang, Yi; Xie, Zaiku

    2015-12-21

    The kaleidoscopic applications of zeolite catalysts (zeo-catalysts) in petrochemical processes has been considered as one of the major accomplishments in recent decades. About twenty types of zeolite have been industrially applied so far, and their versatile porous architectures have contributed their most essential features to affect the catalytic efficiency. This review depicts the evolution of pore models in zeolite catalysts accompanied by the increase in industrial and environmental demands. The indispensable roles of modulating pore models are outlined for zeo-catalysts for the enhancement of their catalytic performances in various industrial processes. The zeolites and related industrial processes discussed range from the uni-modal micropore system of zeolite Y (12-ring micropore, 12-R) in fluid catalytic cracking (FCC), zeolite ZSM-5 (10-R) in xylene isomerization and SAPO-34 (8-R) in olefin production to the multi-modal micropore system of MCM-22 (10-R and 12-R pocket) in aromatic alkylation and the hierarchical pores in FCC and catalytic cracking of C4 olefins. The rational construction of pore models, especially hierarchical features, is highlighted with a careful classification from an industrial perspective accompanied by a detailed analysis of the theoretical mechanisms.

  12. AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report

    Petersen, G.; Bair, K.; Ross, J. [eds.

    1994-03-01

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

  13. Advances of radioisotope for design, intensification and optimization of processes and operations in chemical industry

    Joshi, J.B.

    2002-01-01

    Full text: In chemical industries different processes and operations involve a variety of multiphase contacting schemes for optimal production schedule in terms of ease of handling, time and money. A number of parameters will have to be optimized for this purpose. Further more, during the operation of a process plant, a number of problems such as reduction in process efficiency, deterioration in product quality etc. are encountered due to malfunctioning of one or more components. The successful operation of an industry depends on the early detection of the problems for appropriate remedial action. These are conveniently carried out by the application of radioisotopes either directly or in sealed condition depending upon the problem to be addressed. In this talk both types of radiotracer applications are discussed by taking specific examples

  14. How to promote energy conservation in China’s chemical industry

    Lin, Boqiang; Long, Houyin

    2014-01-01

    Fossil fuel consumption in China’s chemical industry accounted for 19.7% of the total industrial fossil fuel consumption, and the industry has become the second highest energy intensive sector in the country. Therefore, it is extremely urgent and important to study the problems related to fossil fuel consumption in the industry. This paper adopts the factor decomposition and the EG co-integration methods to investigate the influencing factors of fossil energy consumption and measure the saving potential of fossil fuel. The paper concludes that the influencing factors can be divided into positive driving factors (labor productivity effect and sector scale effect) and negative driving factors (energy intensity effect and energy structure effect). Among them, labor productivity and energy intensity are the main factors affecting fossil fuel demand. The largest saving potentials of fossil fuels are predicted to be 23.3 Mtce in 2015 and 70.6 Mtce in 2020 under the middle scenario and 46.8 Mtce in 2015 and 100.5 Mtce in 2020 under the ideal scenario, respectively. Finally, this paper provides some policy implications on fossil fuel conservation. - Highlights: • Labor productivity and energy intensity are crucial driving factors. • The relationship among variables is co-integrated. • The result of the EG co-integration is the same as that of LMDI. • ECM displays the short-term fluctuation of fossil fuel consumption. • Under the scenario analysis, there is a huge energy saving potential

  15. Major depression

    Depression - major; Depression - clinical; Clinical depression; Unipolar depression; Major depressive disorder ... providers do not know the exact causes of depression. It is believed that chemical changes in the ...

  16. Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries: Main Report

    2002-10-01

    This report assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performance and efficiency improvements.

  17. Steam system opportunity assessment for the pulp and paper, chemical manufacturing, and petroleum refining industries: Main report

    None, None

    2002-10-01

    This report assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performance and efficiency improvements.

  18. Physico-chemical treatment of liquid waste on an industrial plant for electrocoagulation.

    Mlakar, Matej; Levstek, Marjetka; Stražar, Marjeta

    2017-10-01

    Wastewater from washing, oil separators, the metal processing and detergent industries, was tested and treated for treatment of different types of liquid waste at industrial level at Domžale-Kamnik Wastewater Treatment Plant (WWTP). The effect of implementing the electrocoagulation (EC) and flotation processes, respectively, is analysed and includes the duration of the EC implementation, voltage, number of electrodes, and chemical addition, as well as the pH effect and conductivity. The tests were performed not only on various types of liquid waste, but also on different mixtures of liquid waste. Laboratory analysis of the samples before and after EC have shown an effective reduction not only in organic loads in accordance with the COD (chemical oxygen demand) parameter, but also in mineral oil content, toxic metal concentration, and surfactants. The COD in liquid waste from the detergent industry was reduced by 73% and the content of surfactants by 64%. In liquid waste from the metal processing industry, the COD decreased by up to 95%, while the content of toxic metals decreased from 59 to 99%. Similar phenomena were shown in liquid waste from oil separators, where the COD was reduced to 33% and the concentration of mineral oils by 99%. Some of the liquid wastes were mixed together in the ratio 1:1, thus allowing testing of the operation of EC technology in heterogeneous liquid waste, where the final result proved to be effective cleaning as well. After treatment in the process of EC, the limit values of the treated water proved appropriate for discharge into the sewerage system.

  19. Colorimetric sensor array for determination and identification of toxic industrial chemicals.

    Feng, Liang; Musto, Christopher J; Kemling, Jonathan W; Lim, Sung H; Zhong, Wenxuan; Suslick, Kenneth S

    2010-11-15

    A low-cost yet highly sensitive colorimetric sensor array for the detection and identification of toxic industrial chemicals (TICs) has been developed. The sensor consists of a disposable array of cross-responsive nanoporous pigments whose colors are changed by diverse chemical interactions with analytes. Clear differentiation among 20 different TICs has been easily achieved at both their IDLH (immediately dangerous to life or health) concentration within 2 min of exposure and PEL (permissible exposure limit) concentration within 5 min of exposure with no errors or misclassifications. Detection limits are generally well below the PEL (in most cases below 5% of PEL) and are typically in the low ppb range. The colorimetric sensor array is not responsive to changes in humidity or temperature over a substantial range. The printed arrays show excellent batch to batch reproducibility and long shelf life (greater than 3 months).

  20. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    Essack, Magbubah; Alzubaidy, Hanin S.; Bajic, Vladimir B.; Archer, John A. C.

    2014-01-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review. PMID:25356733

  1. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    Essack, Magbubah

    2014-10-29

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  2. An Energy Efficiency Evaluation Method Based on Energy Baseline for Chemical Industry

    Dong-mei Yao

    2016-01-01

    Full Text Available According to the requirements and structure of ISO 50001 energy management system, this study proposes an energy efficiency evaluation method based on energy baseline for chemical industry. Using this method, the energy plan implementation effect in the processes of chemical production can be evaluated quantitatively, and evidences for system fault diagnosis can be provided. This method establishes the energy baseline models which can meet the demand of the different kinds of production processes and gives the general solving method of each kind of model according to the production data. Then the energy plan implementation effect can be evaluated and also whether the system is running normally can be determined through the baseline model. Finally, this method is used on cracked gas compressor unit of ethylene plant in some petrochemical enterprise; it can be proven that this method is correct and practical.

  3. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    Essack, Magbubah; Alzubaidy, Hanin S.; Bajic, Vladimir B.; Archer, John A.C.

    2014-01-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  4. Testing in power plant construction as well as in the petrochemical and chemical industry

    Riess, N.; Schittko, H.

    1978-01-01

    In general, the upgrading of requirements for the most different fields of engineering is also characterized by a corresponding effort in testing. In this context especially nondestructive tests of materials are of outstanding importance. In the fields of power plant construction (among others, components for nuclear power plants) as well as petrochemical and chemical industry considered here, almost all nondestructive test methods are applied. This paper discusses not so much theoretical testing problems, but rather test objects as well as specifications and testing equipment. (orig./HP) [de

  5. Elimination of micropollutants and hazardous substances at the source in the chemical and pharmaceutical industry.

    Blöcher, C

    2007-01-01

    Industrial wastewater, especially from chemical and pharmaceutical production, often contains substances that need to be eliminated before being discharged into a biological treatment plant and following water bodies. This can be done within the production itself, in selected waste water streams or in a central treatment plant. Each of these approaches has certain advantages and disadvantages. Furthermore, a variety of wastewater treatment processes exist that can be applied at each stage, making it a challenging task to choose the best one in economic and ecological terms. In this work a general approach for that and examples from practice are discussed.

  6. Status of chemical elements in Atlantic Forest tree species near an industrial complex

    Araujo, A.L.L.; Fernandes, E.A.N.; Franca, E.J.; Bacchi, M.A.

    2008-01-01

    Environmental quality assessment studies have been conducted with tree species largely distributed in the Atlantic Forest. Leaf and soil samples were collected in the conservation unit Parque Estadual da Serra do Mar (PESM) nearby the industrial complex of Cubatao, Sao Paulo State, Brazil, and analyzed for chemical elements by instrumental neutron activation analysis. Results were compared to background values obtained in the Parque Estadual Carlos Botelho (PECB). The higher As, Fe, Hg and Zn mass fractions in the tree leaves of PESM indicated anthropogenic influence on this conservation unit. (author)

  7. A study of the potential of plasma processing in the chemical industry

    Estey, P.N.; Connolly, T.J.

    1984-01-01

    This work describes a systematic approach to determine the potential for plasma processing in the United States chemical industry. A model was developed that describes the physical inputs and outputs from a plasma based processing system. Based on these mass flows and the energy flows to the processor an economic assessment of the plasma processing system is made. This economic assessment which also includes the capital costs of the processor, can be used to determine if the plasma system is competitive with the conventional system

  8. The chemical industry of uranium in France; L'industrie chimique de l'uranium en France

    Goldschmidt, B [Commissariat a l' Energie Atomique, Paris (France). Centre d' Etudes Nucleaires

    1955-07-01

    The actual CEA program is concerned with the construction of two large graphite reactors, each of those containing at least one hundred tons of uranium metal with nuclear purity. The uranium for these two reactors will be regularly supplied by new resources discovered in France and Madagascar in the last five years. The working and treatment of such ore have led to the creation of an important french industry of which the general outline and principle are described. The operated ores have got different natures and concentration, individual characteristics are described for the main ores.The most high-grade ore are transported to a central plant in Bouchet near Paris; the low-grade ore are concentrated by physical methods or chemical processes of which principles and economy are studied with constancy. The acid processes are the only used until now, although the carbonated alkaline processes has been studied in France. The next following steps after the acid process until the obtention of uranium rich concentrate are described. The purification steps of uranium compounds to nuclear purity material are described as well as the steps to elaborate metal of which the purity grade will be specify. Finally, the economic aspects of uranium production difficulty will be considered in relation with technical progresses which we can expect to achieve in the future. (M.P.)

  9. Thermodynamic properties for applications in chemical industry via classical force fields.

    Guevara-Carrion, Gabriela; Hasse, Hans; Vrabec, Jadran

    2012-01-01

    Thermodynamic properties of fluids are of key importance for the chemical industry. Presently, the fluid property models used in process design and optimization are mostly equations of state or G (E) models, which are parameterized using experimental data. Molecular modeling and simulation based on classical force fields is a promising alternative route, which in many cases reasonably complements the well established methods. This chapter gives an introduction to the state-of-the-art in this field regarding molecular models, simulation methods, and tools. Attention is given to the way modeling and simulation on the scale of molecular force fields interact with other scales, which is mainly by parameter inheritance. Parameters for molecular force fields are determined both bottom-up from quantum chemistry and top-down from experimental data. Commonly used functional forms for describing the intra- and intermolecular interactions are presented. Several approaches for ab initio to empirical force field parameterization are discussed. Some transferable force field families, which are frequently used in chemical engineering applications, are described. Furthermore, some examples of force fields that were parameterized for specific molecules are given. Molecular dynamics and Monte Carlo methods for the calculation of transport properties and vapor-liquid equilibria are introduced. Two case studies are presented. First, using liquid ammonia as an example, the capabilities of semi-empirical force fields, parameterized on the basis of quantum chemical information and experimental data, are discussed with respect to thermodynamic properties that are relevant for the chemical industry. Second, the ability of molecular simulation methods to describe accurately vapor-liquid equilibrium properties of binary mixtures containing CO(2) is shown.

  10. Equilibrium approach towards water resource management and pollution control in coal chemical industrial park.

    Xu, Jiuping; Hou, Shuhua; Xie, Heping; Lv, Chengwei; Yao, Liming

    2018-08-01

    In this study, an integrated water and waste load allocation model is proposed to assist decision makers in better understanding the trade-offs between economic growth, resource utilization, and environmental protection of coal chemical industries which characteristically have high water consumption and pollution. In the decision framework, decision makers in a same park, each of whom have different goals and preferences, work together to seek a collective benefit. Similar to a Stackelberg-Nash game, the proposed approach illuminates the decision making interrelationships and involves in the conflict coordination between the park authority and the individual coal chemical company stockholders. In the proposed method, to response to climate change and other uncertainties, a risk assessment tool, Conditional Value-at-Risk (CVaR) and uncertainties through reflecting parameters and coefficients using probability and fuzzy set theory are integrated in the modeling process. Then a case study from Yuheng coal chemical park is presented to demonstrate the practicality and efficiency of the optimization model. To reasonable search the potential consequences of different responses to water and waste load allocation strategies, a number of scenario results considering environmental uncertainty and decision maker' attitudes are examined to explore the tradeoffs between economic development and environmental protection and decision makers' objectives. The results are helpful for decision/police makers to adjust current strategies adapting for current changes. Based on the scenario analyses and discussion, some propositions and operational policies are given and sensitive adaptation strategies are presented to support the efficient, balanced and sustainable development of coal chemical industrial parks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Yeast Tok1p channel is a major contributor to membrane potential maintenance under chemical stress

    Zahumenský, J.; Jančíková, I.; Drietomská, A.; Švenkrtová, Andrea; Hlaváček, Otakar; Hendrych, T.; Plášek, J.; Sigler, Karel; Gášková, D.

    2017-01-01

    Roč. 1859, č. 10 (2017), s. 1974-1985 ISSN 0005-2736 R&D Projects: GA ČR(CZ) GA15-08225S; GA MŠk LH13049; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Chemical stress * Depolarization * Fluorescent probe diS-C-3(3) Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.498, year: 2016

  12. STUDY REGARDING THE CORELATION BETWEEN SOMATIC CELLS COUNT AND MAJOR CHEMICAL COMPOUNDS IN RAW MILK

    S. ACATINCĂI

    2008-10-01

    Full Text Available This study approaches the dynamic of somatic cells number and chemical composition of milk during 13 months of control. The study also investigates the correlations between the number of somatic cells and some chemical parameters in milk. Studies were carried out on Romanian Black and White cows between March 2005 and March 2006 at the Didactical farm of the Banat University of Agricultural Sciences Timisoara. As quality indicator, the number of somatic cells has different values among the controls. Average values for the 13 months of control, with the exception of three controls, were below maximum limit admitted from 1th of January 2007 (600000 SCC/ml milk. There weren’t any significant differences for SCC between the two seasons. Chemical parameters in milk varied in close limits and the differences were not significant, with one exception for fat percent. Fat percent is higher (p<0.05 in the cold season 3.87% compared with 3.55% during the warm season. Somatic cells number is weak correlated with lactose and strong correlated with proteins.

  13. A study on evaluation of public dose for hypothetical exposure from industrial sources in major Indian cities

    Chandrasekaran, S.; Sivasubramanian, K.; Venkatraman, B.

    2016-01-01

    With expanding industrial establishments in India, the requirements for quality Assurance (QA) have become stringent at every stages of process including selection of raw material, manufacturing process and packing and transport. Radiography, a non-destructive method is widely employed for QA testing. Inadvertent handling or loss of these sources may result in exposure of public/workers to higher levels of ionizing radiation. A well planned emergency preparedness is essential to manage any such untoward incidents. Dose estimation to members of public involved is the major challenge as the time available is very short and eases of availability/labs surrounding the location. This paper determines the dose up to 30m distance as prescribed in AERB safety guidelines and using the population data of four major metropolitan cities in India, public dose is also estimated

  14. High-grade use of waste propane streams in the Dutch chemical industry. An exploratory study in the context of the Chemical Industry Roadmap; Hoogwaardig gebruik van reststromen propaan in de Nederlandse chemische industrie. Een verkenning binnen de Routekaart Chemie

    De Buck, A.; Afman, M.R.; Croezen, H.J.; Van Lieshout, M.

    2012-09-15

    In the context of the Dutch chemical industry's Roadmap the industry is actively seeking concrete ways of improving the efficiency of its products and processes. One option is to make higher-grade use of current waste streams, as feedstocks for other products, for example. This study focuses on propane waste streams from the oil and gas processing industry. Today these are used partly as fuel (fuel gas) but there are no technical barriers to converting propane to propylene, which can then be used as a feedstock. Higher-grade use of this particular waste stream leads to CO2 emission reductions in the production chain. Given the high market price of propylene, such a move may also be economically attractive. The study focuses on the Rotterdam region, because propane suppliers and companies seeking propylene are in closest proximity there [Dutch] In het kader van de Routekaart Chemie is de chemische industrie actief op zoek naar concrete opties om in haar processen en producten de efficiency te verhogen. Een route is daarbij om reststromen hoogwaardiger te benutten en in te zetten als grondstof voor andere producten. Dit onderzoek richt zich op reststromen propaan uit de olie- en gasverwerkende industrie. Deze worden nu deels als brandstof (stookgas) ingezet maar technisch is het mogelijk propaan om te zetten in propeen, dat als grondstof voor de chemische industrie kan worden gebruikt. Door het hoogwaardiger benutten van deze reststroom wordt in de keten een reductie van CO2 gerealiseerd. Tegelijk kan het economisch interessant zijn, vanwege de hoge marktprijzen van propeen. De studie focust op de regio Rotterdam, omdat leveranciers van propaan en afnemers van propeen daar het meest dichtbij elkaar gevestigd zijn.

  15. Science and the Nonscience Major: Addressing the Fear Factor in the Chemical Arena Using Forensic Science

    Labianca, Dominick A.

    2007-01-01

    This article describes an approach to minimizing the "fear factor" in a chemistry course for the nonscience major, and also addresses relevant applications to other science courses, including biology, geology, and physics. The approach emphasizes forensic science and affords students the opportunity to hone their analytical skills in an…

  16. Emergency Response System for Pollution Accidents in Chemical Industrial Parks, China

    Weili Duan

    2015-07-01

    Full Text Available In addition to property damage and loss of lives, environment pollution, such as water pollution and air pollution caused by accidents in chemical industrial parks (CIPs is a significant issue in China. An emergency response system (ERS was therefore planned to properly and proactively cope with safety incidents including fire and explosions occurring in the CIPs in this study. Using a scenario analysis, the stages of emergency response were divided into three levels, after introducing the domino effect, and fundamental requirements of ERS design were confirmed. The framework of ERS was composed mainly of a monitoring system, an emergency command center, an action system, and a supporting system. On this basis, six main emergency rescue steps containing alarm receipt, emergency evaluation, launched corresponding emergency plans, emergency rescue actions, emergency recovery, and result evaluation and feedback were determined. Finally, an example from the XiaoHu Chemical Industrial Park (XHCIP was presented to check on the integrality, reliability, and maneuverability of the ERS, and the result of the first emergency drill with this ERS indicated that the developed ERS can reduce delays, improve usage efficiency of resources, and raise emergency rescue efficiency.

  17. [Technology upgrades and exposure to chemical agents: results of the PPTP study in the footwear industry].

    Gianoli, Enrica; Brusoni, Daniela; Cornaggia, Nicoletta; Saretto, Gianni

    2012-01-01

    In the present work the chemical compositions of the products used in shoes manufacturing are reported. The data were collected over the period 2004-2007 in 156 shoe factories in Vigevano area during a study aiming the evaluation of safety conditions and occupational exposure to hazardous chemicals of the employees. The study was part of a regional project for "Occupational cancer prevention in the footwear industry". In the first phase of the study an information form on production cycle, products used and their composition was filled during preliminary audit. In the second phase of the study an in depth qualitative/quantitative evaluation of professional exposure was conducted in 13 selected shoe factories. Data analysis showed the increase in use of water-based adhesives at expense of solvent-based adhesives, the reduction to less than 3.5 weight %, and up to 1 weight %, of n-hexane concentration in solvent mixtures, the increase in use of products containing less hazardous ketones, esters, cyclohexane and heptane. Only in very few cases, products containing from 4 to 12 weight% of toluene were used. These data attest a positive trend in workers risks prevention in shoes industry.

  18. The safety and efficacy of contact lens wear in the industrial and chemical workplace.

    Tyhurst, Keith; McNett, Ryan; Bennett, Edward

    2007-11-01

    The use and safety of contact lenses in the industrial and chemical workplace has often been questioned since the 1960s because of many unconfirmed reports of ocular injury resulting from contact lens wear. Because of these urban legends, contact lens wear has been banned or wearers have been required to wear additional personal protective equipment (PPE) not required of non-contact lens wearers. Literature review via Medline and Google search. Research has shown that contact lenses typically provide protective benefits that decrease the severity of ocular injury and improve worker performance. While contact lens wear contraindications do exist, in most cases, and with proper precautions, contact lens wear is still possible. Industrial and chemical companies need to establish written contact lens use policies based on current studies that have shown the safety of workplace contact lens wear when combined with the same PPE required of non-contact lens wearers. Practitioners need to discuss, with their contact lens patients, the additional responsibilities required to maintain proper lens hygiene and proper PPE in the workplace.

  19. Applicable safety-related design and operations considerations from the oil and chemical industries

    Mulvihill, R.J.; Deshotels, R.L.; Master, C.A.

    1987-01-01

    Fluor Daniel has conducted several hazards and risk analyses on petroleum and chemical facilities. These analyses included qualitative hazards and operability (HAZOP) studies, preliminary hazards analyses, and qualitative fault-tree analysis as well as quantitative event-tree/fault-tree risk analysis. Several design-related problem areas were uncovered as a result of these analyses as well as deficiencies in operations and maintenance. Design deficiency areas include potential common-mode failures associated with redundant functions sharing a common distributed digital control (DDC) logic circuit board and failures in pressure relief systems. Many of the design weaknesses and potential operator errors discussed have a direct counterpart in nuclear fuel processing plants and nuclear power reactors. Counterparts that are discussed are common cause/common mode failures in control systems and failures in pressure relief systems. Overpressurization of piping and vessels resulting in rupture is discussed. Mitigating design features and operations procedures that have been implemented in the chemical process industry are described and their applicability to the nuclear industry is discussed

  20. Physico-chemical properties of Brazilian cocoa butter and industrial blends. Part I Chemical composition, solid fat content and consistency

    Ribeiro, A. P. B.

    2012-03-01

    Full Text Available A comparative study of the primary properties of six cocoa butter samples, representative of industrial blends and cocoa butter extracted from fruits cultivated in different geographical areas in Brazil is presented. The samples were evaluated according to fatty acid composition, triacylglycerol composition, regiospecific distribution, melting point, solid fat content and consistency. The results allowed for differentiating the samples according to their chemical compositions, thermal resistance properties, hardness characteristics, as well as technological adequacies and potential use in regions with tropical climates.

    En este trabajo se presenta un estudio comparativo de las propiedades primarias de mantecas de cacao, representativas de las mezclas industriales, y de la manteca de cacao original de diferentes zonas geográficas de Brasil. Las muestras fueron evaluadas de acuerdo a la composición de ácidos grasos, composición de triglicéridos, distribución de los ácidos grasos en las moléculas de triglicéridos, punto de fusión, contenido de grasa sólida y consistencia. Los resultados permitieron diferenciar las muestras por su composición química, propiedades de resistencia térmica, características de dureza, así como en materia de adecuaciones tecnológicas y los usos potenciales en las regiones de clima tropical.

  1. Modeling the binding affinity of structurally diverse industrial chemicals to carbon using the artificial intelligence approaches.

    Gupta, Shikha; Basant, Nikita; Rai, Premanjali; Singh, Kunwar P

    2015-11-01

    Binding affinity of chemical to carbon is an important characteristic as it finds vast industrial applications. Experimental determination of the adsorption capacity of diverse chemicals onto carbon is both time and resource intensive, and development of computational approaches has widely been advocated. In this study, artificial intelligence (AI)-based ten different qualitative and quantitative structure-property relationship (QSPR) models (MLPN, RBFN, PNN/GRNN, CCN, SVM, GEP, GMDH, SDT, DTF, DTB) were established for the prediction of the adsorption capacity of structurally diverse chemicals to activated carbon following the OECD guidelines. Structural diversity of the chemicals and nonlinear dependence in the data were evaluated using the Tanimoto similarity index and Brock-Dechert-Scheinkman statistics. The generalization and prediction abilities of the constructed models were established through rigorous internal and external validation procedures performed employing a wide series of statistical checks. In complete dataset, the qualitative models rendered classification accuracies between 97.04 and 99.93%, while the quantitative models yielded correlation (R(2)) values of 0.877-0.977 between the measured and the predicted endpoint values. The quantitative prediction accuracies for the higher molecular weight (MW) compounds (class 4) were relatively better than those for the low MW compounds. Both in the qualitative and quantitative models, the Polarizability was the most influential descriptor. Structural alerts responsible for the extreme adsorption behavior of the compounds were identified. Higher number of carbon and presence of higher halogens in a molecule rendered higher binding affinity. Proposed QSPR models performed well and outperformed the previous reports. A relatively better performance of the ensemble learning models (DTF, DTB) may be attributed to the strengths of the bagging and boosting algorithms which enhance the predictive accuracies. The

  2. Chemical speciation of trace metals in the industrial sludge of Dhaka City, Bangladesh.

    Islam, Md Saiful; Al-Mamun, Md Habibullah; Feng, Ye; Tokumura, Masahiro; Masunaga, Shigeki

    2017-07-01

    The objective of this study was to assess total concentration and chemical fractionation of trace metals in the industrial wastewater and sludge collected from seven different types of industries in Dhaka City, Bangladesh. The sludge from industries is either dumped on landfills or reused as secondary resources in order to preserve natural resources. Metals were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The ranges of Cr, Ni, Cu, As, Cd, and Pb in the sludges were 1.4-9,470, 4.8-994, 12.8-444, 2.2-224, 1.9-46.0 and 1.3-87.0 mg/kg, respectively. As a whole, the average concentrations of trace metals in samples were in the decreasing order of Cr > Ni > Cu > As > Pb > Cd. The results of the Community Bureau of Reference (BCR) sequential extraction showed that the studied metals were predominantly associated with the residual fraction followed by the oxidizable fraction. The study revealed that the mobile fractions of trace metals are poorly predictable from the total content, and bioavailability of all fractions of elements tends to decrease.

  3. Chemical Manufacturing and Refining Industry Legitimacy: Reflective Management, Trust, Precrisis Communication to Achieve Community Efficacy.

    Heath, Robert L; Lee, Jaesub

    2016-06-01

    Calls for emergency right-to-know in the 1980s, and, in the 1990s, risk management planning, motivated U.S. chemical manufacturing and refining industries to operationalize a three-pronged approach to risk minimization and communication: reflective management to increase legitimacy, operational safety programs to raise trust, and community engagement designed to facilitate citizens' emergency response efficacy. To assess these management, operational, and communication initiatives, communities (often through Local Emergency Planning Committees) monitored the impact of such programs. In 2012, the fourth phase of a quasi-longitudinal study was conducted to assess the effectiveness of operational change and community outreach in one bellwether community. This study focuses on legitimacy, trust, and response efficacy to suggest that an industry can earn legitimacy credits by raising its safety and environmental impact standards, by building trust via that change, and by communicating emergency response messages to near residents to raise their response efficacy. As part of its campaign to demonstrate its concern for community safety through research, planning, and implementation of safe operations and viable emergency response systems, this industry uses a simple narrative of risk/emergency response-shelter-in-place-communicated by a spokes-character: Wally Wise Guy. © 2015 Society for Risk Analysis.

  4. Justice perceptions of performance management practices in a company in the chemical industry

    Thanasagree Govender

    2015-11-01

    Full Text Available The sustainability of corporations globally is becoming increasingly problematic. Combined with the unique challenges of an operating entity, this could potentially expose the profitability of sustainable businesses on a daily basis. The purpose of this study is to evaluate employees’ justice perceptions of performance management practices in a company in the chemical industry. The population includes all the employees in the chemical industry that was used in this study. A total of 140 questionnaires were issued to all the employees in an organisation which had undergone a performance appraisal and 102 respondents completed the surveys, giving a response rate of 72 per cent. A cross-sectional survey design was used in this study. The justice perceptions were measured according to an existing framework developed by Thurston and McNall (2010. The framework is founded on a hypothesised four-factor model constructed according to theories on organisational justice. The employees of the organisation in the chemical sector were involved in this study. Descriptive statistical analyses were used to measure perceptions of justice based on theories on organisational justice. The measuring instrument used was based on recognised models and theories. The study supports the construct validity of the measuring instrument and the reliability of the scales used. The justice constructs were used to identify specific items in the performance management practice that required improvement. The implications of the results are that continual interventions are required if employee commitment and productivity levels are to improve, resulting in a positive impact on business performance. Significant differences in perceptions by demographic groups were reported and discussed. This study explored the importance of understanding justice perceptions of performance management practices as an enabler for sustained business performance. Further, the study confirmed that

  5. Industrial energy efficiency in light of climate change negotiations: Comparing major developing countries and the U.S

    Phylipsen, D.; Price, L.; Worrell, E.; Blok, K.

    1999-01-01

    In light of the commitments accepted within the Framework Convention on Climate Change there is an increasing need for useful information on energy consumption and energy efficiency. Governments can use this information in designing policies to reduce greenhouse gas emissions and prioritizing energy savings options. International comparison of energy efficiency can provide a benchmark against which a country's performance can be measured and policies can be evaluated. A methodology for international comparisons of industrial energy efficiency was developed by the International Network on Energy Demand analysis in the Industrial Sector. In this paper this methodology is used to analyze the energy efficiency of two energy-intensive industries in major developing countries. Energy consumption trends are shown for the steel and cement industry and an analysis is made of technologies used. In light of the Byrd-Hagel resolution, which states that the US will not ratify any climate treaty unless it also mandates commitments to limit greenhouse gas emissions for developing countries, the energy efficiency in the two sectors is compared to that of the US. The analysis shows that in the iron and steel sector South Korea and Brazil are more energy-efficient than the US, while Mexico has achieved a comparable energy efficiency level in recent years. For cement, South Korea, Brazil and Mexico are the most efficient countries analyzed. In recent years, China, and especially, India appear to have achieved energy efficiency levels, more or less comparable to that of the US. In light of data constraints, however, further analysis is required

  6. Biocidal Potential and Chemical Composition of Industrial Essential Oils from Hyssopus officinalis, Lavandula × intermedia var. Super, and Santolina chamaecyparissus.

    Ortiz de Elguea-Culebras, Gonzalo; Sánchez-Vioque, Raúl; Berruga, María Isabel; Herraiz-Peñalver, David; González-Coloma, Azucena; Andrés, María Fé; Santana-Méridas, Omar

    2018-01-01

    This work presents the biocidal (insecticidal, ixodicidal, nematicidal, and phytotoxic) effects and chemical compositions of three essential oils obtained from the industrial steam distillation (IEOs) of hyssop (Hyssopus officinalis L.), lavandin (Lavandula × intermedia or L. × hybrida var. Super), and cotton lavender (Santolina chamaecyparissus L.). Their chemical composition analyzed by gas chromatography coupled to mass spectrometry showed 1,8-cineole (53%) and β-pinene (16%) as the major components of H. officinalis, linalyl acetate (38%) and linalool (29%) of L. × intermedia; and 1,8-cineole (10%) and 8-methylene-3-oxatricyclo[5.2.0.0 2,4 ]nonane (8%) in S. chamaecyparissus. The biocidal tests showed that L. × intermedia IEO was the most active against the insect Spodoptera littoralis and toxic to the tick Hyalomma lusitanicum, IEO of H. officinalis was strongly active against S. littoralis, and finally, S. chamaecyparissus IEO was a strong antifeedant against the aphid Rhopalosiphum padi, toxic to H. lusitanicum and with moderate effects against Leptinotarsa decemlineata, S. littoralis, and Lolium perenne. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  7. Chemical compounds related to nutraceutical and industrial qualities of non-transgenic soybean genotypes.

    Carrera, Constanza S; Dardanelli, Julio L; Soldini, Diego O

    2014-05-01

    Information about the chemical profile of soybean seed is valuable for breeding programs aimed at obtaining value-added products to meet the demands of niche markets. The objective of this study was to determine seed composition of non-transgenic soybean genotypes with specialty characters in different environments of Argentina. Protein and oil contents ranged from 396 to 424 g kg⁻¹ and from 210 to 226 g kg⁻¹, respectively. Oleic and linolenic acid ratio, the general indicator of oil quality, varied from 2.7 to 3.8. The oil contained high levels of total tocopherols (1429-1558 mg kg⁻¹) and the meal exhibited high levels of total isoflavones (2.91-4.62 mg g⁻¹). The biplot showed that oleic, linoleic and linolenic acids, γ-, δ- and total tocopherols, genistin, malonyl daidzin and genistin, acetyl daidzin and glycitin and total isoflavones allowed the greatest discrimination among the genotypes studied. Different chemical profiles of each non-transgenic genotype analyzed were established and, therefore, their identity was defined. These results are important for breeders who intend to obtain new genotypes with improved meal and oil quality, as well as for processors and exporters, who could use them directly as raw material for soyfood processing for nutraceutical purposes. © 2013 Society of Chemical Industry.

  8. Lethal toxicity of industrial chemicals to early life stages of Tilapia guineensis.

    Ezemonye, L I N; Ogeleka, D F; Okieimen, F E

    2008-08-30

    The toxic effects of industrial chemicals on three early life stages of an economically important fish, Tilapia guineensis were investigated using the Organisation for Economic Cooperation and Development (OECD) # 203 recommended semi-static renewal bioassay. The assessment was necessary for the uncontrollable disposal of Neatex (liquid detergent) and Norust CR 486 (corrosion inhibitor) into the Niger Delta environment of Nigeria. The estimated 96-h LC(50) for 7-, 14- and 28-day-old fish in Norust CR 486 exposure was considered "more toxic" than Neatex in all life stages and was dependent on species age, exposure duration and environment. In the fresh water test, for Neatex and Norust CR 486 exposures for day 7, 14 and 28, the 96-h LC50 were 8.79, 17.10 and 82.42 mg/l and 5.55, 13.58 and 20.21 mg/l, respectively. In the brackish test, 15.42 and 46.52 mg/l, not determined (ND) and 7.35, 13.95 and 24.50mg/l were obtained. Differential toxicity was observed in the fresh and brackish water fish for the two chemicals and controls at pchemicals provides a rationale for regulatory surveillance and monitoring of both chemicals in the fragile Niger Delta environment.

  9. Sorghum as a renewable feedstock for production of fuels and industrial chemicals

    Nhuan P. Nghiem

    2016-01-01

    Full Text Available Considerable efforts have been made in the USA and other countries to develop renewable feedstocks for production of fuels and chemicals. Among these, sorghum has attracted strong interest because of its many good characteristics such as rapid growth and high sugar accumulation, high biomass production potential, excellent nitrogen usage efficiency, wide adaptability, drought resistance, and water lodging tolerance and salinity resistance. The ability to withstand severe drought conditions and its high water usage efficiency make sorghum a good renewable feedstock suitable for cultivation in arid regions, such as the southern US and many areas in Africa and Asia. Sorghum varieties include grain sorghum, sweet sorghum, and biomass sorghum. Grain sorghum, having starch content equivalent to corn, has been considered as a feedstock for ethanol production. Its tannin content, however, may cause problems during enzyme hydrolysis. Sweet sorghum juice contains sucrose, glucose and fructose, which are readily fermentable by Saccharomyces cerevisiae and hence is a good substrate for ethanol fermentation. The enzyme invertase, however, needs to be added to convert sucrose to glucose and fructose if the juice is used for production of industrial chemicals in fermentation processes that employ microorganisms incapable of metabolizing sucrose. Biomass sorghum requires pretreatment prior to enzymatic hydrolysis to generate fermentable sugars to be used in the subsequent fermentation process. This report reviews the current knowledge on bioconversion of sorghum to fuels and chemicals and identifies areas that deserve further studies.

  10. Organic carbon, and major and trace element dynamic and fate in a large river subjected to poorly-regulated urban and industrial pressures (Sebou River, Morocco)

    Hayzoun, H. [Université de Toulon, PROTEE, EA 3819, 83957 La Garde (France); LIMOM, Faculté des Sciences Dhar El Mehraz, Université Sidi Mohamed Ben Abdellah, Dhar El Mehraz B.P. 1796 Atlas, Fès 30000 (Morocco); Garnier, C., E-mail: cgarnier@univ-tln.fr [Université de Toulon, PROTEE, EA 3819, 83957 La Garde (France); Durrieu, G.; Lenoble, V.; Le Poupon, C. [Université de Toulon, PROTEE, EA 3819, 83957 La Garde (France); Angeletti, B. [Centre Européen de Recherche et d' Enseignement de Géosciences de l' Environnement UMR 6635 CNRS — Aix-Marseille Université, FR ECCOREV, Europôle Méditerranéen de l' Arbois, 13545 Aix-en-Provence (France); Ouammou, A. [LIMOM, Faculté des Sciences Dhar El Mehraz, Université Sidi Mohamed Ben Abdellah, Dhar El Mehraz B.P. 1796 Atlas, Fès 30000 (Morocco); Mounier, S. [Université de Toulon, PROTEE, EA 3819, 83957 La Garde (France)

    2015-01-01

    An annual-basis study of the impacts of the anthropogenic inputs from Fez urban area on the water geochemistry of the Sebou and Fez Rivers was conducted mostly focusing on base flow conditions, in addition to the sampling of industrial wastewater characteristic of the various pressures in the studied environment. The measured trace metals dissolved/particulate partitioning was compared to the ones predicted using the WHAM-VII chemical speciation code. The Sebou River, upstream from Fez city, showed a weakly polluted status. Contrarily, high levels of major ions, organic carbon and trace metals were encountered in the Fez River and the Sebou River downstream the Fez inputs, due to the discharge of urban and industrial untreated and hugely polluted wastewaters. Trace metals were especially enriched in particles with levels even exceeding those recorded in surface sediments. The first group of elements (Al, Fe, Mn, Ti, U and V) showed strong inter-relationships, impoverishment in Fez particles/sediments and stable partition coefficient (Kd), linked to their lithogenic origin from Sebou watershed erosion. Conversely, most of the studied trace metals/metalloids, originated from anthropogenic sources, underwent significant changes of Kd and behaved non-conservatively in the Sebou/Fez water mixing. Dissolved/particulate partitioning was correctly assessed by WHAM-VII modeling for Cu, Pb and Zn, depicting significant differences in chemical speciation in the Fez River when compared to that in the Sebou River. The results of this study demonstrated that a lack of compliance in environmental regulations certainly explained this poor status. - Highlights: • Pristine status of the Sebou River, Morrocco's main river, upstream Fez (1 M inhabitants) • The Fez River collecting Fez's urban/industrial wastewaters is heavily polluted. • The Fez discharge into the Sebou induces an increase of contaminant levels. • Change in partitioning and chemical speciation of

  11. Organic carbon, and major and trace element dynamic and fate in a large river subjected to poorly-regulated urban and industrial pressures (Sebou River, Morocco)

    Hayzoun, H.; Garnier, C.; Durrieu, G.; Lenoble, V.; Le Poupon, C.; Angeletti, B.; Ouammou, A.; Mounier, S.

    2015-01-01

    An annual-basis study of the impacts of the anthropogenic inputs from Fez urban area on the water geochemistry of the Sebou and Fez Rivers was conducted mostly focusing on base flow conditions, in addition to the sampling of industrial wastewater characteristic of the various pressures in the studied environment. The measured trace metals dissolved/particulate partitioning was compared to the ones predicted using the WHAM-VII chemical speciation code. The Sebou River, upstream from Fez city, showed a weakly polluted status. Contrarily, high levels of major ions, organic carbon and trace metals were encountered in the Fez River and the Sebou River downstream the Fez inputs, due to the discharge of urban and industrial untreated and hugely polluted wastewaters. Trace metals were especially enriched in particles with levels even exceeding those recorded in surface sediments. The first group of elements (Al, Fe, Mn, Ti, U and V) showed strong inter-relationships, impoverishment in Fez particles/sediments and stable partition coefficient (Kd), linked to their lithogenic origin from Sebou watershed erosion. Conversely, most of the studied trace metals/metalloids, originated from anthropogenic sources, underwent significant changes of Kd and behaved non-conservatively in the Sebou/Fez water mixing. Dissolved/particulate partitioning was correctly assessed by WHAM-VII modeling for Cu, Pb and Zn, depicting significant differences in chemical speciation in the Fez River when compared to that in the Sebou River. The results of this study demonstrated that a lack of compliance in environmental regulations certainly explained this poor status. - Highlights: • Pristine status of the Sebou River, Morrocco's main river, upstream Fez (1 M inhabitants) • The Fez River collecting Fez's urban/industrial wastewaters is heavily polluted. • The Fez discharge into the Sebou induces an increase of contaminant levels. • Change in partitioning and chemical speciation of

  12. Bioactive assessment of selected marine red algae against leishmania major and chemical constituents of osmundea pinnatifida

    Haq, T.; Khan, F.A.; Begum, R.; Munshi, A.B.

    2011-01-01

    Present bioconversion studies were carried out to convert drifted seaweed biomass into bioactive organic compost. Chemical analysis of the collected seaweed biomass from the Karachi coast revealed 60.30 % organic matter. Aerobic composting method i.e., windrow composting technique was applied for the conversion of collected seaweed biomass into organic compost. Employing this technique almost 70% biomass was converted into organic compost. On analysis, the compost obtained by the above method showed 2.3% Nitrogen, 0.86% Phosphate and 1.8% Potassium. Results for the analysis of heavy metals showed Mercury 0.05 mg / kg, Arsenic BDL Cadmium 0.080 mg / kg and Copper 7.1 mg / kg. Results for the biological evaluation of seaweed compost showed 78% germabilty while the Biogold and cow dung showed 83 and 60% germabilty. (author)

  13. Can Coffee Chemical Compounds and Insecticidal Plants Be Harnessed for Control of Major Coffee Pests?

    Green, Paul W C; Davis, Aaron P; Cossé, Allard A; Vega, Fernando E

    2015-11-04

    Pests and pathogens threaten coffee production worldwide and are difficult to control using conventional methods, such as insecticides. We review the literature on the chemistry of coffee, concentrating on compounds most commonly reported from Coffea arabica and Coffea canephora. Differences in chemistry can distinguish coffee species and varieties, and plants grown under different biogeographic conditions exhibit different chemotypes. A number of chemical groups, such as alkaloids and caffeoylquinic acids, are known to be insecticidal, but most studies have investigated their effects on coffee quality and flavor. More research is required to bridge this gap in knowledge, so that coffee can be bred to be more resistant to pests. Furthermore, we report on some pesticidal plants that have been used for control of coffee pests. Locally sourced pesticidal plants have been underutilized and offer a sustainable alternative to conventional insecticides and could be used to augment breeding for resilience of coffee plants.

  14. A combined approach to investigate the toxicity of an industrial landfill's leachate: Chemical analyses, risk assessment and in vitro assays

    Baderna, D.; Maggioni, S.; Boriani, E.; Gemma, S.; Molteni, M.; Lombardo, A.; Colombo, A.; Bordonali, S.; Rotella, G.; Lodi, M.; Benfenati, E.

    2011-01-01

    Solid wastes constitute an important and emerging problem. Landfills are still one of the most common ways to manage waste disposal. The risk assessment of pollutants from landfills is becoming a major environmental issue in Europe, due to the large number of sites and to the importance of groundwater protection. Furthermore, there is lack of knowledge for the environmental, ecotoxicological and toxicological characteristics of most contaminants contained into landfill leacheates. Understanding leachate composition and creating an integrated strategy for risk assessment are currently needed to correctly face the landfill issues and to make projections on the long-term impacts of a landfill, with particular attention to the estimation of possible adverse effects on human health and ecosystem. In the present study, we propose an integrated strategy to evaluate the toxicity of the leachate using chemical analyses, risk assessment guidelines and in vitro assays using the hepatoma HepG2 cells as a model. The approach was applied on a real case study: an industrial waste landfill in northern Italy for which data on the presence of leachate contaminants are available from the last 11 years. Results from our ecological risk models suggest important toxic effects on freshwater fish and small rodents, mainly due to ammonia and inorganic constituents. Our results from in vitro data show an inhibition of cell proliferation by leachate at low doses and cytotoxic effect at high doses after 48 h of exposure. - Research highlights: → We study the toxicity of leachate from a non-hazardous industrial waste landfill. → We perform chemical analyses, risk assessments and in vitro assays on HepG2 cells. → Risk models suggest toxic effects due to ammonia and inorganic constituents. → In vitro assays show that leachate inhibits cell proliferation at low doses. → Leachate can induce cytotoxic effects on HepG2 cells at high doses.

  15. Chemical Characterization of Major and Minor Compounds of Nut Oils: Almond, Hazelnut, and Pecan Nut

    Gabriel D. Fernandes

    2017-01-01

    Full Text Available The aim of this work was to characterize the major and minor compounds of laboratory-extracted and commercial oils from sweet almond, hazelnut, and pecan nut. Oils from sweet almond, hazelnut, and pecan nut were obtained by means of an expeller system, while the corresponding commercial oils were provided from Vital Âtman (BR. The contents of triacylglycerols, fatty acids, aliphatic and terpenic alcohols, desmethyl-, methyl-, and dimethylsterols, squalene, and tocopherols were determined. Oleic, palmitic, and linoleic acids were the main fatty acids. Desmethylsterols were the principal minor compounds with β-sitosterol being the most abundant component. Low amounts of aliphatic and terpenic alcohols were also found. The major tocopherol in hazelnut and sweet almond oils was α-tocopherol, whereas γ-tocopherol prevailed in pecan nut oil. Principal component analysis made it possible for us to differentiate among samples, as well as to distinguish between commercial and laboratory-extracted oils. Heatmap highlighted the main variables featuring each sample. Globally, these results have brought a new approach on nut oil characterization.

  16. Assessing potential forest and steel inter-industry residue utilisation by sequential chemical extraction

    Makela, M.

    2012-10-15

    Traditional process industries in Finland and abroad are facing an emerging waste disposal problem due recent regulatory development which has increased the costs of landfill disposal and difficulty in acquiring new sites. For large manufacturers, such as the forest and ferrous metals industries, symbiotic cooperation of formerly separate industrial sectors could enable the utilisation waste-labeled residues in manufacturing novel residue-derived materials suitable for replacing commercial virgin alternatives. Such efforts would allow transforming the current linear resource use and disposal models to more cyclical ones and thus attain savings in valuable materials and energy resources. The work described in this thesis was aimed at utilising forest and carbon steel industry residues in the experimental manufacture of novel residue-derived materials technically and environmentally suitable for amending agricultural or forest soil properties. Single and sequential chemical extractions were used to compare the pseudo-total concentrations of trace elements in the manufactured amendment samples to relevant Finnish statutory limit values for the use of fertilizer products and to assess respective potential availability under natural conditions. In addition, the quality of analytical work and the suitability of sequential extraction in the analysis of an industrial solid sample were respectively evaluated through the analysis of a certified reference material and by X-ray diffraction of parallel sequential extraction residues. According to the acquired data, the incorporation of both forest and steel industry residues, such as fly ashes, lime wastes, green liquor dregs, sludges and slags, led to amendment liming capacities (34.9-38.3%, Ca equiv., d.w.) comparable to relevant commercial alternatives. Only the first experimental samples showed increased concentrations of pseudo-total cadmium and chromium, of which the latter was specified as the trivalent Cr(III). Based on

  17. Variations in chemical fingerprints and major flavonoid contents from the leaves of thirty-one accessions of Hibiscus sabdariffa L.

    Wang, Jin; Cao, Xianshuang; Ferchaud, Vanessa; Qi, Yadong; Jiang, Hao; Tang, Feng; Yue, Yongde; Chin, Kit L

    2016-06-01

    The leaves of Hibiscus sabdariffa L. have been used as traditional folk medicines for treating high blood pressure and fever. There are many accessions of H. sabdariffa L. throughout the world. To assess the chemical variations of 31 different accessions of H. sabdariffa L., fingerprinting analysis and quantitation of major flavonoids were performed by high-performance liquid chromatography (HPLC). The HPLC method was validated for linearity, sensitivity, precision, repeatability and accuracy. A quadrupole-time-of-flight mass spectrometry (Q-TOF-MS) was applied for the characterization of major compounds. A total of 9 compounds were identified, including 6 flavonoids and 3 phenolic acids. In the fingerprint analysis, similarity analysis (SA) and principal component analysis (PCA) were used to differentiate the 31 accessions of H. sabdariffa L. Based on the results of PCA and SA, the samples No. 15 and 19 appeared much different from the main group. The total content of five flavonoids varied greatly among different accessions, ranging from 3.35 to 23.30 mg/g. Rutin was found to be the dominant compound and the content of rutin could contribute to chemical variations among different accessions. This study was helpful to understand the chemical variations between different accessions of H. sabdariffa L., which could be used for quality control. © 2015 The Authors Biomedical Chromatography Published by John Wiley & Sons Ltd. © 2015 The Authors Biomedical Chromatography Published by John Wiley & Sons Ltd.

  18. Variations in chemical fingerprints and major flavonoid contents from the leaves of thirty‐one accessions of Hibiscus sabdariffa L.

    Wang, Jin; Cao, Xianshuang; Ferchaud, Vanessa; Jiang, Hao; Tang, Feng; Chin, Kit L.

    2015-01-01

    Abstract The leaves of Hibiscus sabdariffa L. have been used as traditional folk medicines for treating high blood pressure and fever. There are many accessions of H. sabdariffa L. throughout the world. To assess the chemical variations of 31 different accessions of H. sabdariffa L., fingerprinting analysis and quantitation of major flavonoids were performed by high‐performance liquid chromatography (HPLC). The HPLC method was validated for linearity, sensitivity, precision, repeatability and accuracy. A quadrupole‐time‐of‐flight mass spectrometry (Q‐TOF‐MS) was applied for the characterization of major compounds. A total of 9 compounds were identified, including 6 flavonoids and 3 phenolic acids. In the fingerprint analysis, similarity analysis (SA) and principal component analysis (PCA) were used to differentiate the 31 accessions of H. sabdariffa L. Based on the results of PCA and SA, the samples No. 15 and 19 appeared much different from the main group. The total content of five flavonoids varied greatly among different accessions, ranging from 3.35 to 23.30 mg/g. Rutin was found to be the dominant compound and the content of rutin could contribute to chemical variations among different accessions. This study was helpful to understand the chemical variations between different accessions of H. sabdariffa L., which could be used for quality control. © 2015 The Authors Biomedical Chromatography Published by John Wiley & Sons Ltd. PMID:26394363

  19. Metabolic engineering of strains: from industrial-scale to lab-scale chemical production.

    Sun, Jie; Alper, Hal S

    2015-03-01

    A plethora of successful metabolic engineering case studies have been published over the past several decades. Here, we highlight a collection of microbially produced chemicals using a historical framework, starting with titers ranging from industrial scale (more than 50 g/L), to medium-scale (5-50 g/L), and lab-scale (0-5 g/L). Although engineered Escherichia coli and Saccharomyces cerevisiae emerge as prominent hosts in the literature as a result of well-developed genetic engineering tools, several novel native-producing strains are gaining attention. This review catalogs the current progress of metabolic engineering towards production of compounds such as acids, alcohols, amino acids, natural organic compounds, and others.

  20. Plasma for electrification of chemical industry: a case study on CO2 reduction

    van Rooij, G. J.; Akse, H. N.; Bongers, W. A.; van de Sanden, M. C. M.

    2018-01-01

    Significant growth of the share of (intermittent) renewable power in the chemical industry is imperative to meet increasingly stricter limits on CO2 exhaust that are being implemented within Europe. This paper aims to evaluate the potential of a plasma process that converts input CO2 into a pure stream of CO to aid in renewable energy penetration in this sector. A realistic process design is constructed to serve as a basis for an economical analysis. The manufacturing cost price of CO is estimated at 1.2 kUS ton-1 CO. A sensitivity analysis shows that separation is the dominant cost factor, so that improving conversion is currently more effective to lower the price than e.g. energy efficiency.

  1. Development of an Electrolyte CPA Equation of state for Applications in the Petroleum and Chemical Industries

    Maribo-Mogensen, Bjørn

    to the CPA EoS in the absence of electrolytes, making it possible to extend the applicability of the CPA EoS while retaining backwards compatibility and resuing the parameters for non-electrolyte systems . There are many challenges related to thermodynamic modeling of mixtures containing electrolytes......This thesis extends the Cubic Plus Association (CPA) equation of state (EoS) to handle mixtures containing ions from fully dissociated salts. The CPA EoS has during the past 18 years been applied to thermodynamic modeling of a wide range of industrially important chemicals, mainly in relation...... rarely been applied to all types of thermodynamic equilibrium calculations relevant to electrolyte solutions. This project has aimed to determine the best recipe to deliver a complete thermodynamic model capable of handling electrolytes in mixed solvents and at a wide range of temperature and pressure...

  2. Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals.

    Hawkins, Aaron S; McTernan, Patrick M; Lian, Hong; Kelly, Robert M; Adams, Michael W W

    2013-06-01

    Non-photosynthetic routes for biological fixation of carbon dioxide into valuable industrial chemical precursors and fuels are moving from concept to reality. The development of 'electrofuel'-producing microorganisms leverages techniques in synthetic biology, genetic and metabolic engineering, as well as systems-level multi-omic analysis, directed evolution, and in silico modeling. Electrofuel processes are being developed for a range of microorganisms and energy sources (e.g. hydrogen, formate, electricity) to produce a variety of target molecules (e.g. alcohols, terpenes, alkenes). This review examines the current landscape of electrofuel projects with a focus on hydrogen-utilizing organisms covering the biochemistry of hydrogenases and carbonic anhydrases, kinetic and energetic analyses of the known carbon fixation pathways, and the state of genetic systems for current and prospective electrofuel-producing microorganisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. ESTIMATION OF INDUSTRIAL WASTE SAFETY BY THE “CHEMICAL OXYGEN DEMAND” INDEX

    A. S. Kayshev

    2015-01-01

    Full Text Available One of the indices of industrial waste safety including distillers grains is chemical oxygen demand (COD, and its value (53591÷64184 mg O/dm3 shows that it can be considered as unsustainable waste. This high value of COD is conditioned by the absence of toxins in distillers grains, and by concentration of biologically active substances after which isolation the distillers grains index lowers by 74%. This allows considering the distillers grains as environmentally safe. The results received evidence the necessity for consideration of COD index only as an index of oxidized substances, but not the criteria of waste pollution.

  4. Materials of 47. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry. Volume 3

    2004-01-01

    Scientific assemblies of Polish Chemical Society are the most important chemical meeting organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects was proposed as scientific sessions and symposia topics: organic chemistry, inorganic chemistry, physical chemistry, analytical chemistry, technology and chemical engineering, polymer chemistry, solid state chemistry, catalysis, biological chemistry, chemistry and technology of coal, environmental protection, didactics of chemistry, history of chemistry, young scientist forum

  5. Evidence of chemical exchange in recombinant Major Urinary Protein and quenching thereof upon pheromone binding

    Perazzolo, Chiara, E-mail: Chiara.Perazzolo@epfl.ch; Verde, Mariachiara [Ecole Polytechnique Federale de Lausanne, Institut des Sciences et Ingenierie Chimiques (Switzerland); Homans, Steve W. [University of Leeds, Institute of Molecular and Cellular Biology (United Kingdom); Bodenhausen, Geoffrey [Ecole Polytechnique Federale de Lausanne, Institut des Sciences et Ingenierie Chimiques (Switzerland)

    2007-05-15

    The internal dynamics of recombinant Major Urinary Protein (rMUP) have been investigated by monitoring transverse nitrogen-15 relaxation using multiple-echo Carr-Purcell-Meiboom-Gill (CPMG) experiments. While the ligand-free protein (APO-rMUP) features extensive evidence of motions on the milliseconds time scale, the complex with 2-methoxy-3-isobutylpyrazine (HOLO-rMUP) appears to be much less mobile on this time scale. At 308 K, exchange rates k{sub ex} = 500-2000 s{sup -1} were typically observed in APO-rMUP for residues located adjacent to a {beta}-turn comprising residues 83-87. These residues occlude an entry to the binding pocket and have been proposed to be a portal for ligand entry in other members of the lipocalin family, such as the retinol binding protein and the human fatty-acid binding protein. Exchange rates and populations are largely uncorrelated, suggesting local 'breathing' motions rather than a concerted global conformational change.

  6. Histolocalization and physico-chemical characterization of dihydrochalcones: Insight into the role of apple major flavonoids.

    Gaucher, Matthieu; Dugé de Bernonville, Thomas; Lohou, David; Guyot, Sylvain; Guillemette, Thomas; Brisset, Marie-Noëlle; Dat, James F

    2013-06-01

    Flavonoids, like other metabolites synthesized via the phenylpropanoid pathway, possess a wide range of biological activities including functions in plant development and its interaction with the environment. Dihydrochalcones (mainly phloridzin, sieboldin, trilobatin, phloretin) represent the major flavonoid subgroup in apple green tissues. Although this class of phenolic compounds is found in very large amounts in some tissues (≈200mg/g of leaf DW), their physiological significance remains unclear. In the present study, we highlight their tissue-specific localization in young growing shoots suggesting a specific role in important physiological processes, most notably in response to biotic stress. Indeed, dihydrochalcones could constitute a basal defense, in particular phloretin which exhibits a strong broad-range bactericidal and fungicidal activity. Our results also indicate that sieboldin forms complexes with iron with strong affinity, reinforcing its antioxidant properties and conferring to this dihydrochalcone a potential for iron seclusion and/or storage. The importance of localization and biochemical properties of dihydrochalcones are discussed in view of the apple tree defense strategy against both biotic and abiotic stresses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Evidence of chemical exchange in recombinant Major Urinary Protein and quenching thereof upon pheromone binding

    Perazzolo, Chiara; Verde, Mariachiara; Homans, Steve W.; Bodenhausen, Geoffrey

    2007-01-01

    The internal dynamics of recombinant Major Urinary Protein (rMUP) have been investigated by monitoring transverse nitrogen-15 relaxation using multiple-echo Carr-Purcell-Meiboom-Gill (CPMG) experiments. While the ligand-free protein (APO-rMUP) features extensive evidence of motions on the milliseconds time scale, the complex with 2-methoxy-3-isobutylpyrazine (HOLO-rMUP) appears to be much less mobile on this time scale. At 308 K, exchange rates k ex = 500-2000 s -1 were typically observed in APO-rMUP for residues located adjacent to a β-turn comprising residues 83-87. These residues occlude an entry to the binding pocket and have been proposed to be a portal for ligand entry in other members of the lipocalin family, such as the retinol binding protein and the human fatty-acid binding protein. Exchange rates and populations are largely uncorrelated, suggesting local 'breathing' motions rather than a concerted global conformational change

  8. The 'PROCESO' index: a new methodology for the evaluation of operational safety in the chemical industry

    Marono, M.; Pena, J.A.; Santamaria, J.

    2006-01-01

    The acknowledgement of industrial installations as complex systems in the early 1980s outstands as a milestone in the path to operational safety. Process plants are social-technical complex systems of a dynamic nature, whose properties depend not only on their components, but also on the inter-relations among them. A comprehensive assessment of operational safety requires a systemic approach, i.e. an integrated framework that includes all the relevant factors influencing safety. Risk analysis methodologies and safety management systems head the list of methods that point in this direction, but they normally require important plant resources. As a consequence, their use is frequently restricted to especially dangerous processes often driven by compliance with legal requirements. In this work a new safety index for the chemical industry, termed the 'Proceso' Index (standing for the Spanish terms for PROCedure for the Evaluation of Operational Safety), has been developed. PROCESO is based on the principles of systems theory, has a tree-like structure and considers 25 areas to guide the review of plant safety. The method uses indicators whose respective weight values have been obtained via an expert judgement technique. This paper describes the steps followed to develop this new Operational Safety Index, explains its structure and illustrates its application to process plants

  9. Chemical speciation of respirable suspended particulate matter during a major firework festival in India.

    Sarkar, Sayantan; Khillare, Pandit S; Jyethi, Darpa S; Hasan, Amreen; Parween, Musarrat

    2010-12-15

    Ambient respirable particles (PM ≤ 10 μm, denoted by PM(10)) were characterized with respect to 20 elements, 16 polycyclic aromatic hydrocarbons (PAHs), elemental and organic carbon (EC and OC) during a major firework event-the "Diwali" festival in Delhi, India. The event recorded extremely high 24-h PM(10) levels (317.2-616.8 μg m(-3), 6-12 times the WHO standard) and massive loadings of Ba (16.8 μg m(-3), mean value), K (46.8 μg m(-3)), Mg (21.3 μg m(-3)), Al (38.4 μg m(-3)) and EC (40.5 μg m(-3)). Elemental concentrations as high as these have not been reported previously for any firework episode. Concentrations of Ba, K, Sr, Mg, Na, S, Al, Cl, Mn, Ca and EC were higher by factors of 264, 18, 15, 5.8, 5, 4, 3.2, 3, 2.7, 1.6 and 4.3, respectively, on Diwali as compared to background values. It was estimated that firework aerosol contributed 23-33% to ambient PM(10) on Diwali. OC levels peaked in the post-Diwali samples, perhaps owing to secondary transformation processes. Atmospheric PAHs were not sourced from fireworks; instead, they correlated well with changes in traffic patterns indicating their primary source in vehicular emissions. Overall, the pollutant cocktail generated by the Diwali fireworks could be best represented with Ba, K and Sr as tracers. It was also found that chronic exposure to Diwali pollution is likely to cause at least a 2% increase in non-carcinogenic hazard index (HI) associated with Al, Mn and Ba in the exposed population. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Extremely Thermophilic Microorganisms as Metabolic Engineering Platforms for Production of Fuels and Industrial Chemicals

    Benjamin M Zeldes

    2015-11-01

    Full Text Available Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye towards potential technological

  11. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals

    Zeldes, Benjamin M.; Keller, Matthew W.; Loder, Andrew J.; Straub, Christopher T.; Adams, Michael W. W.; Kelly, Robert M.

    2015-01-01

    Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high

  12. Nature and prevalence of non-additive toxic effects in industrially relevant mixtures of organic chemicals.

    Parvez, Shahid; Venkataraman, Chandra; Mukherji, Suparna

    2009-06-01

    The concentration addition (CA) and the independent action (IA) models are widely used for predicting mixture toxicity based on its composition and individual component dose-response profiles. However, the prediction based on these models may be inaccurate due to interaction among mixture components. In this work, the nature and prevalence of non-additive effects were explored for binary, ternary and quaternary mixtures composed of hydrophobic organic compounds (HOCs). The toxicity of each individual component and mixture was determined using the Vibrio fischeri bioluminescence inhibition assay. For each combination of chemicals specified by the 2(n) factorial design, the percent deviation of the predicted toxic effect from the measured value was used to characterize mixtures as synergistic (positive deviation) and antagonistic (negative deviation). An arbitrary classification scheme was proposed based on the magnitude of deviation (d) as: additive (50%, class-IV) antagonistic/synergistic. Naphthalene, n-butanol, o-xylene, catechol and p-cresol led to synergism in mixtures while 1, 2, 4-trimethylbenzene and 1, 3-dimethylnaphthalene contributed to antagonism. Most of the mixtures depicted additive or antagonistic effect. Synergism was prominent in some of the mixtures, such as, pulp and paper, textile dyes, and a mixture composed of polynuclear aromatic hydrocarbons. The organic chemical industry mixture depicted the highest abundance of antagonism and least synergism. Mixture toxicity was found to depend on partition coefficient, molecular connectivity index and relative concentration of the components.

  13. Physico-chemical characterization of banana varieties resistant to black leaf streak disease for industrial purposes

    Rossana Catie Bueno de Godoy

    2016-01-01

    Full Text Available ABSTRACT: Cultivated bananas have very low genetic diversity making them vulnerable to diseases such as black-Sigatoka leaf spot. However, the decision to adopt a new banana variety needs to be based on a robust evaluation of agronomical and physical-chemical characteristics. Here, we characterize new banana varieties resistant to black-Sigatoka leaf spot and compare them to the most widely used traditional variety (Grand Naine. Each variety was evaluated for a range of physic-chemical attributes associated with industrial processing and flavor: pH, TTA, TSS/TTA, total sugars, reducing sugars and non-reducing sugars, humidity, total solids and yield. The Thap Maeo variety had the highest potential as a substitute for the Grand Naine variety, having higher levels of total soluble solids, reducing sugars, total sugars and humidity. The Caipira and FHIA 2 varieties also performed well in comparison with the Grand Naine variety. Cluster analysis indicated that the Grand Naine variety was closely associated with varieties from the Gross Michel subgroup (Bucaneiro, Ambrosia and Calipso and the Caipira variety, all of which come from the same AAA genomic group. It was concluded that several of the new resistant varieties could potentially substitute the traditional variety in areas affected by black-Sigatoka leaf spot disease.

  14. Residential tap water contamination following the Freedom Industries chemical spill: perceptions, water quality, and health impacts.

    Whelton, Andrew J; McMillan, LaKia; Connell, Matt; Kelley, Keven M; Gill, Jeff P; White, Kevin D; Gupta, Rahul; Dey, Rajarshi; Novy, Caroline

    2015-01-20

    During January 2014, an industrial solvent contaminated West Virginia’s Elk River and 15% of the state population’s tap water. A rapid in-home survey and water testing was conducted 2 weeks following the spill to understand resident perceptions, tap water chemical levels, and premise plumbing flushing effectiveness. Water odors were detected in all 10 homes sampled before and after premise plumbing flushing. Survey and medical data indicated flushing caused adverse health impacts. Bench-scale experiments and physiochemical property predictions showed flushing promoted chemical volatilization, and contaminants did not appreciably sorb into cross-linked polyethylene (PEX) pipe. Flushing reduced tap water 4-methylcyclohexanemethanol (4-MCHM) concentrations within some but not all homes. 4-MCHM was detected at unflushed (waters contained less 4-MCHM than the 1000 μg/L Centers for Disease Control drinking water limit, but one home exceeded the 120 μg/L drinking water limit established by independent toxicologists. Nearly all households refused to resume water use activities after flushing because of water safety concerns. Science based flushing protocols should be developed to expedite recovery, minimize health impacts, and reduce concentrations in homes when future events occur.

  15. Sampling and chemical analysis of smoke gas components from the SP Industry Calorimeter

    Maansson, M.; Blomqvist, P.; Isaksson, I.; Rosell, L.

    1995-12-31

    This report describes the sampling and chemical analyses of smoke gas components for combustion performed in the SP Industry Calorimeter, where continuous measurements of oxygen, carbon dioxide and carbon monoxide are an integrated part of the Calorimeter system. On-line measurements of nitrogen oxides and total amounts of unburnt hydrocarbons were performed. Hydrogen cyanide, hydrogen chloride and ammonia in the smoke were sampled and absorbed in impinger bottles and subsequently analyzed using wet chemical techniques. An adsorbent sampling system was designed to allow the identification and quantitative analysis of individual organic compounds in the smoke. Gas chromatography was utilized with a mass spectrometric detector for the identification and a FID for quantification of the total amounts as well as individual components. A procedure for cleaning the smoke gas duct in between the combustion experiments was designed and found to be effective. The materials studied were Nylon 66, polypropylene, polystyrene (with and without fire retardant), PVC, and chlorobenzene. A total of 19 large-scale tests were carried out. The mass of sample burnt ranged from 20 kg to 125 kg in an experiment. 14 refs, 11 tabs

  16. Pollution control in pulp and paper industrial effluents using integrated chemical-biological treatment sequences.

    El-Bestawy, Ebtesam; El-Sokkary, Ibrahim; Hussein, Hany; Keela, Alaa Farouk Abu

    2008-11-01

    The main objective of the present study was to improve the quality of pulp and paper industrial wastewater of two local mills RAKTA and El-Ahlia, Alexandria, Egypt, and to bring their pollutant contents to safe discharge levels. Quality improvement was carried out using integrated chemical and biological treatment approaches after their optimization. Chemical treatment (alum, lime, and ferric chloride) was followed by oxidation using hydrogen peroxide and finally biological treatment using activated sludge (90 min for RAKTA and 60 min for El-Ahlia effluents). Chemical coagulation produced low-quality effluents, while pH adjustment during coagulation treatment did not enhance the quality of the effluents. Maximum removal of the tested pollutants was achieved using the integrated treatment and the pollutants recorded residual concentrations (RCs) of 34.67, 17.33, 0.13, and 0.43 mg/l and 15.0, 11.0, 0.0, and 0.13 mg/l for chemical oxygen demand (COD), biochemical oxygen demand (BOD5), tannin and lignin, and silica in RAKTA and El-Ahlia effluents, respectively, all of which were below their maximum permissible limits (MPLs) for the safe discharge into water courses. Specific oxygen uptake rate (SOUR) and sludge volume index (SVI) values reflect good conditions and healthy activated sludge. Based on the previous results, optimized conditions were applied as bench scale on the raw effluents of RAKTA and El-Ahlia via the batch chemical and the biological treatment sequences proposed. For RAKTA effluents, the sequence was as follows: (1) coagulation with 375 mg/l FeCl3, (2) oxidation with 50 mg/l hydrogen peroxide, and (3) biological treatment using activated sludge with 2,000 mg/l initial concentration and 90 min hydraulic retention time (HRT), while for El-Ahlia raw effluents, the sequence was (1) coagulation with 250 mg/l FeCl3, (2) oxidation with 45 mg/l hydrogen peroxide, and (3) biological treatment using activated sludge with 2,000 mg/l initial concentration and 60

  17. The Ribble/Wyre observatory: Major, minor and trace elements in rivers draining from rural headwaters to the heartlands of the NW England historic industrial base

    Neal, Colin [Centre for Ecology and Hydrology, Wallingford, Crowmarsh Gifford, Wallingford, OXON, OX10 8BB (United Kingdom); Rowland, Phil, E-mail: apr@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster. Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP (United Kingdom); Scholefield, Paul; Vincent, Colin; Woods, Clive; Sleep, Darren [Centre for Ecology and Hydrology, Lancaster. Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP (United Kingdom)

    2011-03-15

    Information on a new observatory study of the water quality of two major river basins in northwestern England (the Ribble and Wyre) is presented. It covers upland, intermediate and lowland environments of contrasting pollution history with sufficient detail to examine transitional gradients. The upland rivers drain acidic soils subjected to long-term acidic deposition. Nonetheless, the acidic runoff from the soils is largely neutralised by high alkalinity groundwaters, although the rivers retain, perhaps as colloids, elements such as Al and Fe that are mobilised under acid conditions. The lowland rivers are contaminated and have variable water quality due to variable urban/industrial point and diffuse inputs reflecting local and regional differences in historic and contemporary sources. For most determinands, pollutant concentrations are not a major cause for concern although phosphate levels remain high. Set against earlier studies for other regions, there may be a general decline in pollutant levels and this is most clearly observed for boron where effluent inputs have declined significantly due to reductions in household products that are flushed down the drain. High concentrations of sodium and chloride occurred briefly after a severe cold spell due to flushing of road salts. A major inventory for water quality within rural, urban, industrial and agricultural typologies is provided within data summary attachments for over 50 water quality determinands. Within the next year, the full dataset will be made available from the CEH website. This, with ongoing monitoring, represents a platform for water quality studies across a wide range of catchment typologies pertinent to environmental management of clean and impacted systems within the UK. The study provides a base of research 'from source to sea' including extensions to the estuary and open sea for a semi-confined basin, the Irish Sea, where there are many issues of pollution inputs and contamination

  18. The Ribble/Wyre observatory: Major, minor and trace elements in rivers draining from rural headwaters to the heartlands of the NW England historic industrial base

    Neal, Colin; Rowland, Phil; Scholefield, Paul; Vincent, Colin; Woods, Clive; Sleep, Darren

    2011-01-01

    Information on a new observatory study of the water quality of two major river basins in northwestern England (the Ribble and Wyre) is presented. It covers upland, intermediate and lowland environments of contrasting pollution history with sufficient detail to examine transitional gradients. The upland rivers drain acidic soils subjected to long-term acidic deposition. Nonetheless, the acidic runoff from the soils is largely neutralised by high alkalinity groundwaters, although the rivers retain, perhaps as colloids, elements such as Al and Fe that are mobilised under acid conditions. The lowland rivers are contaminated and have variable water quality due to variable urban/industrial point and diffuse inputs reflecting local and regional differences in historic and contemporary sources. For most determinands, pollutant concentrations are not a major cause for concern although phosphate levels remain high. Set against earlier studies for other regions, there may be a general decline in pollutant levels and this is most clearly observed for boron where effluent inputs have declined significantly due to reductions in household products that are flushed down the drain. High concentrations of sodium and chloride occurred briefly after a severe cold spell due to flushing of road salts. A major inventory for water quality within rural, urban, industrial and agricultural typologies is provided within data summary attachments for over 50 water quality determinands. Within the next year, the full dataset will be made available from the CEH website. This, with ongoing monitoring, represents a platform for water quality studies across a wide range of catchment typologies pertinent to environmental management of clean and impacted systems within the UK. The study provides a base of research 'from source to sea' including extensions to the estuary and open sea for a semi-confined basin, the Irish Sea, where there are many issues of pollution inputs and contamination. - Research

  19. EDXRF applied to the chemical characterization of domestic and industrial sludges

    Silva, Gleyce Kelly A. da; Dutra, Emmanuel Damiliano; França, Elvis J. de

    2017-01-01

    The Energy Dispersion X-ray Fluorescence – EDXRF is a low-cost, fast, non-destructible analytical technique, useful for analyzing diverse geological samples. The determination of chemical elements by EDXRF in solid urban wastes is economic and operationally feasible, since the concentration of many heavy metals can be easily monitored. Besides, chemical elements as aluminum and some minerals that compose important natural cycles add valuable information for deciding the final destination of these wastes. The objective of this work was the obtaining the analytical curves for quantifying chemical elements by EDXRF in sewage sludge. For this, analytical portions (1 g) of the certified reference materials SRM 2781 Domestic Sludge and SRM 2782 Industrial Sludge produced by the National Institute of Standards and Technology (NIST) were transferred to polyethylene tubes and sealed at the top and bottom with polypropylene film specific for EDXRF analysis. Exactly 500 mg of each of the above SRMs were mixed by means of a ball mill for composing the SRM MIX, also analyzed for obtaining the analytical curves. All samples were analyzed in an atmosphere close to the vacuum (less than 30 Pa), with dead time less than 35%. For Al, As, Cu, Fe, K, Ni, Pb, Si, Ti and Zn, linear regressions have been fitted with respective linear coefficients higher than 0.95. To evaluate the quality of the analytical procedure, an independent test portion of the reference material SRM 2781 Sludge Domestic was used, calculating the Number En obtaining values between -1 and 1, range considered adequate for the quality assurance at the 95% confidence level. (author)

  20. [Physical and chemical characterization of industrial nixtamalized corn flour for human consumption in Central America].

    Bressani, R; Turcios, J C; Reyes, L; Mérida, R

    2001-09-01

    The objective of this study was the characterization of industrial nixtamalized maize flour for human consumption and which are marketed in Central America for some selected physical and chemical properties which may contribute to food composition information and help nutrition and micronutrient fortification programs. A total of 12 brands purchased in triplicate were obtained from supermarkets in Guatemala, El Salvador and Honduras. These samples were kept under refrigeration until analyzed. The physical parameters measured and results were the following: particle size with most samples having a high percentage of particles greater than 60 mesh, pH (5.4-7.5), water absorption index (WAI) (3.4-4.0 g gel/g sample), water soluble index (WSI) (4.8-7.8 g/100 g) and flour density (0.410-0.547 g/ml). The differences were statistically significant for all parameters measured, except for WAI. The chemical characteristics included, moisture, protein, fat, ash and dietetic fiber. Differences between flour samples were statistically significant except for fat content. Protein content was low, ranging between 6.7-8.1 g/100 g and total dietary fiber varied between 7.7-12.0 g/100 g. The samples were analyzed for phytic acid with a variation from 632 to 903 mg/100 g, with statistical significant differences. The samples were also analyzed for total and soluble (pH 7.5) iron, phosphorus, calcium, potassium, zinc, copper, manganese, and magnesium. The difference in the iron and calcium content between flour samples were statistically significant. The physical and chemical variability found between flour samples of nixtamalized maize was relatively high and it is recommended to establish quality standards through raw material and process standardization for greater effectiveness of nutrition programs and activities on micronutrient fortification which may be pursued in the future.

  1. EDXRF applied to the chemical characterization of domestic and industrial sludges

    Silva, Gleyce Kelly A. da; Dutra, Emmanuel Damiliano, E-mail: gleyce_kelly990@hotmail.com, E-mail: emmanuel.dutra@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); França, Elvis J. de, E-mail: ejfranca@cnen.gov.br [Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2017-07-01

    The Energy Dispersion X-ray Fluorescence – EDXRF is a low-cost, fast, non-destructible analytical technique, useful for analyzing diverse geological samples. The determination of chemical elements by EDXRF in solid urban wastes is economic and operationally feasible, since the concentration of many heavy metals can be easily monitored. Besides, chemical elements as aluminum and some minerals that compose important natural cycles add valuable information for deciding the final destination of these wastes. The objective of this work was the obtaining the analytical curves for quantifying chemical elements by EDXRF in sewage sludge. For this, analytical portions (1 g) of the certified reference materials SRM 2781 Domestic Sludge and SRM 2782 Industrial Sludge produced by the National Institute of Standards and Technology (NIST) were transferred to polyethylene tubes and sealed at the top and bottom with polypropylene film specific for EDXRF analysis. Exactly 500 mg of each of the above SRMs were mixed by means of a ball mill for composing the SRM MIX, also analyzed for obtaining the analytical curves. All samples were analyzed in an atmosphere close to the vacuum (less than 30 Pa), with dead time less than 35%. For Al, As, Cu, Fe, K, Ni, Pb, Si, Ti and Zn, linear regressions have been fitted with respective linear coefficients higher than 0.95. To evaluate the quality of the analytical procedure, an independent test portion of the reference material SRM 2781 Sludge Domestic was used, calculating the Number En obtaining values between -1 and 1, range considered adequate for the quality assurance at the 95% confidence level. (author)

  2. Chemical and Physical Characteristics of Soy Proteins for New Industrial Applications

    Arboleda Fernandez, Julio Cesar

    Despite of being environmentally friendly, biocompatible, rich in chemical functionality and abundant as residual materials, soy proteins (SPs) are used for low added value applications. In this work, SPs were studied and used as potentially useful biomacromolecules for different industrial applications with high added value. Initially the effect of acid hydrolysis of soy proteins as a potential route for subsequent surface modification was studied, finding that SP hydrolysates tend to form less aggregates and to adsorb at faster rates compared with unmodified SP; nevertheless, it was also found that the amount of protein adsorbed and water contact angle of the treated surface does not change significantly. Secondly, the gel forming properties of SPs were used to produce aerogels with densities in the order of 0.1 g/cm3. To improve their mechanical properties, the reinforcement of these materials with cellulose nanofibers was studied, obtaining composite aerogels with SP loadings as high as ca. 70% that display a compression modulus of 4.4 MPa, very close to the value obtained from the pure nanofibers aerogels. The composite materials gain moisture (up to 5%) in equilibrium with 50% RH air. Futhermore, their physical integrity is unchanged upon immersion in polar and non-polar solvents, exhibiting sorption rates dependent on the aerogel composition, morphology and swelling abilities. Finally, different soy protein based products and derivatives were used to enhance the dry strength properties of wood fibers in paper production. Experiments using soy flour, soy protein isolate, soy protein isolate hydrolysates, cationized soy flour, and soy flour combined with cationic starch and chitosan were done, obtaining satisfactory results when soy protein flour was utilized in combination with conventional treatments involving cationic polymers. The current results confirm the opportunity to valorize residual soy products that are underutilized today as alternatives to oil

  3. An Integrative Model of the Strategic Management Accounting at the Enterprises of Chemical Industry

    Aleksandra Vasilyevna Glushchenko

    2016-06-01

    Full Text Available Currently, the issues of information and analytical support of strategic management enabling to take timely and high-quality management decisions, are extremely relevant. Conflicting and poor information, haphazard collected in the practice of large companies from unreliable sources, affects the effective implementation of their development strategies and carries the threat of risk, by the increasing instability of the external environment. Thus chemical industry is one of the central places in the industry of Russia and, of course, has its specificity in the formation of the informationsupport system. Such an information system suitable for the development and implementation of strategic directions, changes in recognized competitive advantages of strategic management accounting. The issues of the lack of requirements for strategic accounting information, its inconsistency in the result of simultaneous accumulation in different parts and using different methods of calculation and assessment of indicators is impossible without a well-constructed model of organization of strategic management accounting. The purpose of this study is to develop such a model, the implementation of which will allow realizing the possibility of achieving strategic goals by harmonizing information from the individual objects of the strategic account to increase the functional effectiveness of management decisions with a focus on strategy. Case study was based on dialectical logic and methods of system analysis, and identifying causal relationships in building a model of strategic management accounting that contributes to the forecasts of its development. The study proposed to implement an integrative model of organization of strategic management accounting. The purpose of a phased implementation of this model defines the objects and tools of strategic management accounting. Moreover, it is determined that from the point of view of increasing the usefulness of management

  4. [Current status of hearing loss and related influencing factors in workers with noise exposure in refining and chemical industry].

    Wu, S S; Yu, J N; He, C H; Mu, H X; Wang, C; Zhang, Y; Zhang, C Y; Yu, S F; Li, X L

    2016-12-20

    Objective: To investigate the current status of hearing loss and related influencing factors in workers with noise exposure in refining and chemical industry. Methods: From August 2015 to March 2016, the investigation method of collecting the data of past occupational health examinations and measuring noise in working environment was used to enroll 8 672 male workers. Results: Of all workers, 11.6% were diagnosed with hearing loss. There were significant differences in the distribution of hearing impairment among workers exposed to noise at different ages, device types and types of work (χ(2)=17.80, 77.80 and 30.53, all P hearing loss in workers with noise exposure in refining and chemical industry. Conclusion: The level of noise exposure and working years with noise exposure are main influencing factors for hearing loss in workers with noise exposure in refining and chemical industry.

  5. Assessment of the impact of the European CO2 emissions trading scheme on the Portuguese chemical industry

    Tomas, R.A.F.; Ramoa Ribeiro, F.; Santos, V.M.S.; Gomes, J.F.P.; Bordado, J.C.M.

    2010-01-01

    This paper describes an assessment of the impact of the enforcement of the European carbon dioxide (CO 2 ) emissions trading scheme on the Portuguese chemical industry, based on cost structure, CO 2 emissions, electricity consumption and allocated allowances data from a survey to four Portuguese representative units of the chemical industry sector, and considering scenarios that allow the estimation of increases on both direct and indirect production costs. These estimated cost increases were also compared with similar data from other European Industries, found in the references and with conclusions from simulation studies. Thus, it was possible to ascertain the impact of buying extra CO 2 emission permits, which could be considered as limited. It was also found that this impact is somewhat lower than the impacts for other industrial sectors.

  6. Assessment of the impact of the European CO{sub 2} emissions trading scheme on the Portuguese chemical industry

    Tomas, R.A.F. [Artenius Sines, Zona Industrial, 7520 Sines (Portugal); Ramoa Ribeiro, F.; Bordado, J.C.M. [Centro de Engenharia Quimica e Biologica, IBB-Instituto de Biotecnologia e Bioengenharia, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Santos, V.M.S. [Instituto Superior de Economia e Gestao, R. do Quelhas, 6, 1200-781 Lisboa (Portugal); Gomes, J.F.P. [Centro de Engenharia Quimica e Biologica, IBB-Instituto de Biotecnologia e Bioengenharia, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Departamento de Engenharia Quimica, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro 1949-014 Lisboa (Portugal)

    2010-01-15

    This paper describes an assessment of the impact of the enforcement of the European carbon dioxide (CO{sub 2}) emissions trading scheme on the Portuguese chemical industry, based on cost structure, CO{sub 2} emissions, electricity consumption and allocated allowances data from a survey to four Portuguese representative units of the chemical industry sector, and considering scenarios that allow the estimation of increases on both direct and indirect production costs. These estimated cost increases were also compared with similar data from other European Industries, found in the references and with conclusions from simulation studies. Thus, it was possible to ascertain the impact of buying extra CO{sub 2} emission permits, which could be considered as limited. It was also found that this impact is somewhat lower than the impacts for other industrial sectors. (author)

  7. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers.

    Koutinas, Apostolis A; Vlysidis, Anestis; Pleissner, Daniel; Kopsahelis, Nikolaos; Lopez Garcia, Isabel; Kookos, Ioannis K; Papanikolaou, Seraphim; Kwan, Tsz Him; Lin, Carol Sze Ki

    2014-04-21

    The transition from a fossil fuel-based economy to a bio-based economy necessitates the exploitation of synergies, scientific innovations and breakthroughs, and step changes in the infrastructure of chemical industry. Sustainable production of chemicals and biopolymers should be dependent entirely on renewable carbon. White biotechnology could provide the necessary tools for the evolution of microbial bioconversion into a key unit operation in future biorefineries. Waste and by-product streams from existing industrial sectors (e.g., food industry, pulp and paper industry, biodiesel and bioethanol production) could be used as renewable resources for both biorefinery development and production of nutrient-complete fermentation feedstocks. This review focuses on the potential of utilizing waste and by-product streams from current industrial activities for the production of chemicals and biopolymers via microbial bioconversion. The first part of this review presents the current status and prospects on fermentative production of important platform chemicals (i.e., selected C2-C6 metabolic products and single cell oil) and biopolymers (i.e., polyhydroxyalkanoates and bacterial cellulose). In the second part, the qualitative and quantitative characteristics of waste and by-product streams from existing industrial sectors are presented. In the third part, the techno-economic aspects of bioconversion processes are critically reviewed. Four case studies showing the potential of case-specific waste and by-product streams for the production of succinic acid and polyhydroxyalkanoates are presented. It is evident that fermentative production of chemicals and biopolymers via refining of waste and by-product streams is a highly important research area with significant prospects for industrial applications.

  8. Eco-chemical knowledge, behavior and engagement of workers employed in the mineral fertilizer industry in Novi Sad

    Cvjetićanin Stanko

    2006-01-01

    Full Text Available The level of environmental pollution is influenced by the knowledge, behavior and ecological engagement of both the individual and society. The mineral fertilizer industry represents a potential source of pollution. The issue examined in this study is the level of eco-chemical knowledge, behavior and ecological engagement of the workers employed in the mineral fertilizer industry in Novi Sad. We have concluded that the workers hover low level of knowledge, behavior and engagement. The results obtained could be used for the selection of methods to enhance the eco-chemical knowledge of the employees.

  9. Detection and reduction of diffuse liquid and gas emissions in chemical and petrochemical industries; Ermittlung und Verminderung diffuser fluessiger und gasfoermiger Emissionen in der chemischen und petrochemischen Industrie

    Koeppke, K.E. [Witten-Herdecke Univ. gGmbH, Witten (Germany). Inst. fuer Umwelttechnik und Management; Cuhls, C. [Halle-Wittenberg Univ., Halle (Germany). Inst. fuer Umwelttechnik

    2002-09-01

    In order to improve environmental protection, VOC emissions from diffuse sources are of growing importance. For the first time in Germany the present research report gives a detailed presentation of: constructive measures for the avoidance and reduction of diffuse emissions, adequate assembling procedures for equipments and installations, technical possibilities of leak detection and, different methods for the estimation of total emissions from chemical and petrochemical production plants. On the basis of own investigations and monitoring measures taken at various plants of chemical and petrochemical industries different measuring techniques for leak detection as well as methods for the estimation of total emissions from diffuse sources are analysed and their limits are described. (orig.)

  10. To the partnership in Kanegafuchi Chemical Industry and solar cell; Kaneka, taiyo denchi de teikei he

    NONE

    1999-07-01

    Kanegafuchi Chemical Ind. clarified that the consultation was advanced in the direction in which the business cooperates with BP Amoco Corp. in international oil majors on the solar cell business on 11 th capital. In full amount fund subsidiary of the bell pool chemistry, the solar cell making and selling company is established in the joint venture in Europe and America, Asia, when the BP Amoco Corp. does capital participation in money mosquito solar tech which is the production marketer of solar cell. The plan which develops the amorphous solar cell of low cost which the bell pool chemistry developed in the world. The consultation of the partnership is also arranging prospect in the end June, and it seems to greatly jump by uniting with the BP Amoco Corp. of the largest hand. (translated by NEDO)

  11. Trends and patterns in inter-firm R&D networks in the global computer industry: a historical analysis of major developments during the period 1970-1999.

    Cloodt, M.M.A.H.; Hagedoorn, J.; Roijakkers, A.H.W.M.

    2006-01-01

    We present a historical analysis of major trends in inter-firm R&D partnering in the international computer industry during the period 1970-1999. We first discuss different modes of R&D cooperation in the context of the overall growth patterns in R&D partnerships. We also examine major changes in

  12. Biotechnology for renewable chemicals

    Borodina, Irina; Kildegaard, Kanchana Rueksomtawin; Jensen, Niels Bjerg

    2014-01-01

    The majority of the industrial organic chemicals are derived from fossil sources. With the oil and gas resources becoming limiting, biotechnology offers a sustainable alternative for production ofchemicals from renewable feedstocks. Yeast is an attractive cell factory forsustainable production...

  13. Industry

    Schindler, I.; Wiesenberger, H.

    2001-01-01

    This chapter of the environmental control report deals with the environmental impact of the industry in Austria. It gives a review of the structure and types of the industry, the legal framework and environmental policy of industrial relevance. The environmental situation of the industry in Austria is analyzed in detail, concerning air pollution (SO 2 , NO x , CO 2 , CO, CH 4 , N 2 O, NH 3 , Pb, Cd, Hg, dioxin, furans), waste water, waste management and deposit, energy and water consumption. The state of the art in respect of the IPPC-directives (European Integrated Pollution Prevention and Control Bureau) concerning the best available techniques of the different industry sectors is outlined. The application of European laws and regulations in the Austrian industry is described. (a.n.)

  14. R&D Cooperation and Knowledge Spillover Effects for Sustainable Business Innovation in the Chemical Industry

    Petr Hájek

    2018-04-01

    Full Text Available This paper investigates the influence of research and development (R&D cooperation on the creation of spillover effects for sustainable firms in the chemical industry. We explore the evidence for the origin of knowledge spillovers derived from cooperation amongst firms and universities and R&D organizations as well as to test the influence of internal/external financial support on these effects. The results confirm that when firms acquire knowledge from internal sources, this leads to increased innovation and sustainable performance. We have proved that internal expenditure results in increased internal knowledge spillovers. These findings may be specific for Central and Eastern (CEE transition countries, indicating their efforts to build path-dependent structures based on knowledge institutions and businesses as well as knowledge networks. However, this study also provides a more “global” contribution to the knowledge spillover effect theory. It shows that a firm’s cooperation both with universities and with other firms promotes different types of knowledge spillovers and can affect diverse modes of sustainable activities in innovation.

  15. Development and Field Trial of Dimpled-Tube Technology for Chemical Industry Process Heaters

    Yaroslav Chudnovsky; Aleksandr Kozlov

    2006-10-12

    Most approaches to increasing heat transfer rates in the convection sections of gas-fired process heaters involve the incorporation of fins, baffles, turbulizers, etc. to increase either the heat transfer surface area or turbulence or both. Although these approaches are effective in increasing the heat transfer rates, this increase is invariably accompanied by an associated increase in convection section pressure drop as well as, for heaters firing ‘dirty’ fuel mixtures, increased fouling of the tubes – both of which are highly undesirable. GTI has identified an approach that will increase heat transfer rates without a significant increase in pressure drop or fouling rate. Compared to other types of heat transfer enhancement approaches, the proposed dimpled tube approach achieves very high heat transfer rates at the lowest pressure drops. Incorporating this approach into convection sections of chemical industry fired process heaters may increase energy efficiency by 3-5%. The energy efficiency increase will allow reducing firing rates to provide the required heating duty while reducing the emissions of CO2 and NOx.

  16. Concept for Recycling Waste Biomass from the Sugar Industry for Chemical and Biotechnological Purposes.

    Modelska, Magdalena; Berlowska, Joanna; Kregiel, Dorota; Cieciura, Weronika; Antolak, Hubert; Tomaszewska, Jolanta; Binczarski, Michał; Szubiakiewicz, Elzbieta; Witonska, Izabela A

    2017-09-13

    The objective of this study was to develop a method for the thermally-assisted acidic hydrolysis of waste biomass from the sugar industry (sugar beet pulp and leaves) for chemical and biotechnological purposes. The distillates, containing furfural, can be catalytically reduced directly into furfurayl alcohol or tetrahydrofurfuryl alcohol. The sugars present in the hydrolysates can be converted by lactic bacteria into lactic acid, which, by catalytic reduction, leads to propylene glycol. The sugars may also be utilized by microorganisms in the process of cell proliferation, and the biomass obtained used as a protein supplement in animal feed. Our study also considered the effects of the mode and length of preservation (fresh, ensilage, and drying) on the yields of furfural and monosaccharides. The yield of furfural in the distillates was measured using gas chromatography with flame ionization detector (GC-FID). The content of monosaccharides in the hydrolysates was measured spectrophotometrically using enzymatic kits. Biomass preserved under all tested conditions produced high yields of furfural, comparable to those for fresh material. Long-term storage of ensiled waste biomass did not result in loss of furfural productivity. However, there were significant reductions in the amounts of monosaccharides in the hydrolysates.

  17. Physico-chemical studies of effluents and emission of ghee/edible oil industries in Pakistan

    Ahmed, I.; Ali, S.; Jan, M.R.

    1999-01-01

    Samples of the effluents from various Ghee/Edible Oil Industries were collected on fortnightly basis from July 1993 to June 1994 and the emissions from January to April 1994. Parameters such as temperature, pH, conductivity, total dissolved solids (TDS), total suspended solids (TSS), total alkalinity total acidity, total hardness, chemical oxygen demand (COD). chlorides, sulphates, phosphates, silica, calcium magnesium, sodium, and iron were determined in the effluents, Trace metals like copper, manganese, nickel, and zinc were determined by atomic absorption spectroscopy, whereas SO/sub 2/, CO CO/sub 2/, hydrocarbons, hydrogen, nitrogen, oxygen and argon were examined in the flue gases by Gas Chromatography and other standard techniques such as Orsat Gas Analyzer and Dragger Detection Tubes. Remedial measures were suggested for the pollutants exceeding the National Environmental Quality Standards, (NEQS). Parameters like chlorine, ammonia, sulphides, arsenic, cadmium, chromium, cobalt, lead and tin were also analyzed in the effluents and were found to be nil or below the detection limit, while particulate matters, HCl, chlorine, HF, H/sub 2/S, mercaptans and NH/sub 3/ were found to be nil in the flue gases. (author)

  18. A study on manufacturing technology of materials for fine chemical industry use (muscovite, sericite)

    Yang, Jung-Il; Shin, Hee-Young; Hwang, Seon-Kook; Ahn, Ji-Hwan; Bae, Kwang-Hyun [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    For the technical development on utilization of unused mineral resources, the study was carried out on the highly purification and mineral processing of domestic Sericite and Muscovite. This study was also carried out to make the functional materials for the use of fine chemical industry. Scope and content of study: 1) A study on the high purification and mineral processing for sericite and muscovite. 2) A study on the surface treatment of fine particles of sericite and muscovite. EDAX analysis on surface treated Mica shows that absorbed area on mica surface appears about 56 wt% when reaction period of 75 min. The result on image analysis on the surface treated mica comparing with that of EDAX analysis appears that the material was stabilized when passing the 1st yielding point. The dry process of surface modification on mica was applied by using {Theta}-composer. The result shows that whiteness of the mica increases upto 91 at 20 min. grinding period. Polymer microcapsulation was carried out on the mica surface. The result shows that materials appear excellent hydrophobic property which is one of important factors for making cosmetics. Based on the applying test of mineral processing on Dong-jin mica, the result shows that high quality mica is recovered. Especially, lithium mica produced in the mine will be further studied in the next year project. (author). 26 refs., 36 tabs., 61 figs.

  19. The major differences in chemical composition and antibacterial activity of two closely related Leonotis species (Lamiaceae may have taxonomic value

    J.N. Eloff

    2010-01-01

    Full Text Available Several Leonotis species are used widely for medicinal purposes in Africa. There have been drastic changes in the taxonomic treatment of Leonotis species during the past decade. Two species, L. dysophylla and L. microphylla occurring in Pretoria have been considered as varieties of the same species and as different species by different authors. Because Leonotis species are used widely as medicinal plants inter alia against bacterial infections, we decided to compare the chemical composition and antibacterial activity of four plants from each of two populations of the species. The chemical composition of acetone extracts of finely ground leaves was determined by thin layer chromatography followed by spraying with vanillin-sulphuric acid. There were hardly any differences between plants from the same population. There were major differences between the two species in the composition of pigments separated by thin layer chromatography and for compounds visualized with the vanillin-sulphuric acid spray reagent. This supported the viewpoint that the two species should not be considered as varieties. The major differences found in chemical composition indicate that chemical parameters may play an important role in resolving taxonomic differences. Because such a small quantity of material is needed, it may be feasible to analyze one or two leaves obtained from herbarium sheets as an additional taxonomic parameter. The antibacterial activity of the acetone extracts was determined using a two-fold serial dilution microplate method with tetrazolium violet as indicator of growth. The specific strains of the four most important nosocomial bacterial pathogens suggested by the United States National Committee for Clinical Laboratory Standards were used: Staphylococcus aureus (American Type Culture Collection 29213, Pseudomonas aeruginosa (ATCC 27853, Escherichia coli (ATCC 25922 and Enterococcus faecalis (ATCC 21212. The minimum inhibitory activity of the

  20. Chemical composition of meat (kernel) and nut water of major coconut (cocos nucifera l.) cultivars at coastal area of Pakistan

    Wahid, A.; Ahmad, S.S.; Butt, Z.

    2011-01-01

    Three varieties of the coconut (Tall, Dwarf and Hybrid) were subjected to analyse for physicochemical properties of meat and nut water, Sodium (Na), Moisture %, Ash %, Calcium (Ca), Iron (Fe), Magnesium (Mg), Cobalt (Co), Potassium (K), pH, Volatile matters, Caloric value (CV) and Total dissolved solids (TDS). The chemical analysis of Meat (mature and immature stage) showed high percentage of Mg and Na in study varieties. However, it was apparent that major portion of stored Ca, Mg, and Na were lodged in the nut water. The nutrients Na, K and Ca were high or less evenly distributed in the Kernel and Water, whereas there was nutrient a comparatively greater concentration of P and Mg in the Water. The K (56% to 81%) was higher in nut water as compared to other ones. The results showed Mg 45% to 70% and Na 1% to 53% in mature and immature meat, respectively. (author)

  1. [Incidence and risk factors of venous thromboembolism in major spinal surgery with no chemical or mechanical prophylaxis].

    Rojas-Tomba, F; Gormaz-Talavera, I; Menéndez-Quintanilla, I E; Moriel-Durán, J; García de Quevedo-Puerta, D; Villanueva-Pareja, F

    2016-01-01

    To evaluate the incidence of venous thromboembolism in spine surgery with no chemical and mechanical prophylaxis, and to determine the specific risk factors for this complication. A historical cohort was analysed. All patients subjected to major spinal surgery, between January 2010 and September 2014, were included. No chemical or mechanical prophylaxis was administered in any patient. Active mobilisation of lower limbs was indicated immediately after surgery, and early ambulation started in the first 24-48 hours after surgery. Clinically symptomatic cases were confirmed by Doppler ultrasound of the lower limbs or chest CT angiography. A sample of 1092 cases was studied. Thromboembolic events were observed in 6 cases (.54%); 3 cases (.27%) with deep venous thrombosis and 3 cases (.27%) with pulmonary thromboembolism. A lethal case was identified (.09%). There were no cases of major bleeding or epidural haematoma. The following risk factors were identified: a multilevel fusion at more than 4 levels, surgeries longer than 130 minutes, patients older than 70 years of age, hypertension, and degenerative scoliosis. There is little scientific evidence on the prevention of thromboembolic events in spinal surgery. In addition to the disparity of prophylactic methods indicated by different specialists, it is important to weigh the risk-benefit of intra- and post-operative bleeding, and even the appearance of an epidural haematoma. Prophylaxis should be assessed in elderly patients over 70 years old, who are subjected to surgeries longer than 130 minutes, when 4 or more levels are involved. Copyright © 2015 SECOT. Published by Elsevier Espana. All rights reserved.

  2. Chemical Industry Corrosion Management: A Comprehensive Information System (ASSET 2). Final Report

    John, Randy C. [Shell Global Solutions, Houston, TX (United States); Young, Arthur L. [Humberside Solutions, Toronto, ON (Canada); Pelton, Arthur D. [CRCT, Ecole Polytechnique de Montreal, Quebec (Canada); Thompson, William T. [Royal Military College of Canada, Kingston, ON (Canada); Wright, Ian G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2008-10-10

    The research sponsored by this project has greatly expanded the ASSET corrosion prediction software system to produce a world-class technology to assess and predict engineering corrosion of metals and alloys corroding by exposure to hot gases. The effort included corrosion data compilation from numerous industrial sources and data generation at Shell Oak Ridge National Laboratory and several other companies for selected conditions. These data were organized into groupings representing various combinations of commercially available alloys and corrosion by various mechanisms after acceptance via a critical screening process to ensure the data were for alloys and conditions, which were adequately well defined, and of sufficient repeatability. ASSET is the largest and most capable, publicly-available technology in the field of corrosion assessment and prediction for alloys corroding by high temperature processes in chemical plants, hydrogen production, energy conversion processes, petroleum refining, power generation, fuels production and pulp/paper processes. The problems addressed by ASSET are: determination of the likely dominant corrosion mechanism based upon information available to the chemical engineers designing and/or operating various processes and prediction of engineering metal losses and lifetimes of commercial alloys used to build structural components. These assessments consider exposure conditions (metal temperatures, gas compositions and pressures), alloy compositions and exposure times. Results of the assessments are determination of the likely dominant corrosion mechanism and prediction of the loss of metal/alloy thickness as a function of time, temperature, gas composition and gas pressure. The uses of these corrosion mechanism assessments and metal loss predictions are that the degradation of processing equipment can be managed for the first time in a way which supports efforts to reduce energy consumption, ensure structural integrity of equipment

  3. Recent advances in the production of value added chemicals and lipids utilizing biodiesel industry generated crude glycerol as a substrate - Metabolic aspects, challenges and possibilities: An overview.

    Vivek, Narisetty; Sindhu, Raveendran; Madhavan, Aravind; Anju, Alphonsa Jose; Castro, Eulogio; Faraco, Vincenza; Pandey, Ashok; Binod, Parameswaran

    2017-09-01

    One of the major ecological concerns associated with biodiesel production is the generation of waste/crude glycerol during the trans-esterification process. Purification of this crude glycerol is not economically viable. In this context, the development of an efficient and economically viable strategy would be biotransformation reactions converting the biodiesel derived crude glycerol into value added chemicals. Hence the process ensures the sustainability and waste management in biodiesel industry, paving a path to integrated biorefineries. This review addresses a waste to wealth approach for utilization of crude glycerol in the production of value added chemicals, current trends, challenges, future perspectives, metabolic approaches and the genetic tools developed for the improved synthesis over wild type microorganisms were described. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Carbon emissions reduction potential in the US chemicals and pulp and paper industries by applying CHP technologies

    Khrushch, M.; Worrell, E.; Price, L.; Martin, N.; Einstein, D.

    1999-01-01

    The chemical and the pulp/paper industries combined provide 55% of CHP generation in the US industry. Yet, significant potential for new CHP capacities exists in both industries. From the present steam consumption data, the authors estimate about 50 GW of additional technical potential for CHP in both industries. The reduced carbon emissions will be equivalent to 44% of the present carbon emissions in these industries. They find that most of the carbon emissions reductions can be achieved at negative costs. Depending on the assumptions used in calculations, the economic potential of CHP in these industries can be significantly lower, and carbon emissions mitigation costs can be much higher. Using sensitivity analyses, they determine that the largest effect on the CHP estimate have the assumptions in the costs of CHP technology, in the assumed discount rates, in improvements in efficiency of CHP technologies, and in the CHP equipment depreciation periods. Changes in fuel and electricity prices and the growth in the industries' steam demand have less of an effect. They conclude that the lowest carbon mitigation costs are achieved with the CHP facility is operated by the utility and when industrial company that owns the CHP unit can sell extra electricity and steam to the open wholesale market. Based on the results of the analyses they discuss policy implications

  5. The major stratospheric final warming in 2016: dispersal of vortex air and termination of Arctic chemical ozone loss

    G. L. Manney

    2016-12-01

    Full Text Available The 2015/16 Northern Hemisphere winter stratosphere appeared to have the greatest potential yet seen for record Arctic ozone loss. Temperatures in the Arctic lower stratosphere were at record lows from December 2015 through early February 2016, with an unprecedented period of temperatures below ice polar stratospheric cloud thresholds. Trace gas measurements from the Aura Microwave Limb Sounder (MLS show that exceptional denitrification and dehydration, as well as extensive chlorine activation, occurred throughout the polar vortex. Ozone decreases in 2015/16 began earlier and proceeded more rapidly than those in 2010/11, a winter that saw unprecedented Arctic ozone loss. However, on 5–6 March 2016 a major final sudden stratospheric warming ("major final warming", MFW began. By mid-March, the mid-stratospheric vortex split after being displaced far off the pole. The resulting offspring vortices decayed rapidly preceding the full breakdown of the vortex by early April. In the lower stratosphere, the period of temperatures low enough for chlorine activation ended nearly a month earlier than that in 2011 because of the MFW. Ozone loss rates were thus kept in check because there was less sunlight during the cold period. Although the winter mean volume of air in which chemical ozone loss could occur was as large as that in 2010/11, observed ozone values did not drop to the persistently low values reached in 2011.We use MLS trace gas measurements, as well as mixing and polar vortex diagnostics based on meteorological fields, to show how the timing and intensity of the MFW and its impact on transport and mixing halted chemical ozone loss. Our detailed characterization of the polar vortex breakdown includes investigations of individual offspring vortices and the origins and fate of air within them. Comparisons of mixing diagnostics with lower-stratospheric N2O and middle-stratospheric CO from MLS (long-lived tracers show rapid vortex erosion and

  6. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to- Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    Mac Dougall, James [Air Products and Chemicals, Inc., Allentown, PA (United States)

    2016-02-05

    Many U.S. manufacturing facilities generate unrecovered, low-grade waste heat, and also generate or are located near organic-content waste effluents. Bioelectrochemical systems, such as microbial fuel cells and microbial electrolysis cells, provide a means to convert organic-content effluents into electric power and useful chemical products. A novel biochemical electrical system for industrial manufacturing processes uniquely integrates both waste heat recovery and waste effluent conversion, thereby significantly reducing manufacturing energy requirements. This project will enable the further development of this technology so that it can be applied across a wide variety of US manufacturing segments, including the chemical, food, pharmaceutical, refinery, and pulp and paper industries. It is conservatively estimated that adoption of this technology could provide nearly 40 TBtu/yr of energy, or more than 1% of the U.S. total industrial electricity use, while reducing CO2 emissions by more than 6 million tons per year. Commercialization of this technology will make a significant contribution to DOE’s Industrial Technology Program goals for doubling energy efficiency and providing a more robust and competitive domestic manufacturing base.

  7. 77 FR 61026 - Olive Oil: Conditions of Competition Between U.S. and Major Foreign Supplier Industries

    2012-10-05

    ... technology, product innovation, government support and other government intervention, exchange rates, and pricing and marketing regimes, plus the steps each respective industry is taking to increase its...

  8. Applying the three R's: Reduce, reuse, and recycle in the chemical industry.

    Mostafa, Mohamed K; Peters, Robert W

    2017-03-01

    Pollution prevention (P2) assessment was conducted by applying the three R's, reduce, reuse, and recycle, in a chemical industry for the purpose of reducing the amount of wastewater generated, reusing paint wastewater in the manufacture of cement bricks, recycling cooling water, and improving water usage efficiency. The results of this study showed that the annual wastewater flow generated from the paint manufacturing can be reduced from 1,100 m 3 to 488.4 m 3 (44.4% reduction) when a high-pressure hose is used. Two mixtures were prepared. The first mixture (A) contains cement, coarse aggregate, fine aggregate, Addicrete BVF, and clean water. The second mixture (B) contains the same components used in the first mixture, except that paint wastewater was used instead of the clean water. The prepared samples were tested for water absorption, toxicity, reactivity, compressive strength, ignitability, and corrosion. The tests results indicated that using paint wastewater in the manufacture of the cement bricks improved the mechanical properties of the bricks. The toxicity test results showed that the metals concentration in the bricks did not exceed the U.S. EPA limits. This company achieved the goal of zero liquid discharge (ZLD), especially after recycling 2,800 m 3 of cooling water. The total annual saving could reach $42,570 with a payback period of 41 days. This research focused on improving the water usage efficiency, reducing the quantity of wastewater generated, and potentially reusing wastewater in the manufacture of cement bricks. Reusing paint wastewater in the manufacture of the bricks prevents the hazardous pollutants in the wastewater (calcium carbonate, styrene acrylic resins, colored pigments, and titanium dioxide) from entering and polluting the surface water and the environment. We think that this paper will help to find the most efficient and cost-effective way to manage paint wastewater and conserve fresh water resources. We also believe that this

  9. Chemical durability of glass and glass-ceramic materials, developed in laboratory scale, from industrial oil shale residue. Preliminary results

    Araujo Fonseca, M.V. de; Souza Santos, P. de

    1990-01-01

    Industrial developments frequently drive to the natural resources extinction. The recycling era has come out a long time ago and it has been evident that great part of industrial work's problems are related to the pollution and the raw materials extinction. These problems should be solved, with advantages, through industrial residues recycling. This study deals with glass and glass-ceramics materials obtained from oil shale (Irati Formation-Sao Mateus do Sul-Parana State) industrialization residues. The reached results show that a controled devitrification of retorted oil shale glass improves its performance related to chemical attack. The crystallinity caracterization of the oil shales glass-ceramic was made through X-ray diffraction. (author) [pt

  10. Industrialization

    Lucy

    . African states as ... regarded as the most important ingredients that went to add value to land and labour in order for countries ... B. Sutcliffe Industry and Underdevelopment (Massachusetts Addison – Wesley Publishing Company. 1971), pp.

  11. Industrialization

    Lucy

    scholar, Walt W. Rostow presented and supported this line of thought in his analysis of ... A Brief Historical Background of Industrialization in Africa ... indicative) The western model allowed for the political economy to be shaped by market.

  12. Effect of water losses by evaporation and chemical reaction in an industrial slaker reactor

    Ricardo Andreola

    2007-03-01

    Full Text Available A dynamic model of the slaker reactor was developed and validated for Klabin Paraná Papéis causticizing system, responsable for white liquor generation used by the plant. The model considered water losses by evaporation and chemical reaction. The model showed a good agreement with the industrial plant measures of active alkali, total titratable alkali and temperature, without the need of adjustment of any parameter. The simulated results showed that the water consumption by the slaking reaction and evaporation exerted significant influence on the volumetric flow rate of limed liquor, which imposed a decrease of 4.6% in the amount of water in reactor outlet.Foi desenvolvido e testado um modelo dinâmico do reator de apagamento do sistema de caustificação da Klabin Paraná Papéis, responsável pela geração do licor branco utilizado na planta. O modelo contempla perdas de água por evaporação e por reação química e apresentou boa concordância com dados industriais de álcali ativo, álcali total titulável e temperatura, sem a necessidade de ajuste de nenhum parâmetro. Os resultados obtidos a partir de simulações revelam que o consumo de água pela reação de apagamento, bem como pela evaporação, exercem uma influência significativa sobre a vazão volumétrica na saída do reator, impondo uma diminuição de 4,6% sobre o teor de água na corrente de saída do reator em relação à alimentação.

  13. Chemical characterization of atmospheric particles and source apportionment in the vicinity of a steelmaking industry

    Almeida, S.M.; Lage, J.; Fernández, B.; Garcia, S.; Reis, M.A.; Chaves, P.C.

    2015-01-01

    The objective of this work was to provide a chemical characterization of atmospheric particles collected in the vicinity of a steelmaking industry and to identify the sources that affect PM 10 levels. A total of 94 PM samples were collected in two sampling campaigns that occurred in February and June/July of 2011. PM 2.5 and PM 2.5–10 were analyzed for a total of 22 elements by Instrumental Neutron Activation Analysis and Particle Induced X-ray Emission. The concentrations of water soluble ions in PM 10 were measured by Ion Chromatography and Indophenol-Blue Spectrophotometry. Positive Matrix Factorization receptor model was used to identify sources of particulate matter and to determine their mass contribution to PM 10 . Seven main groups of sources were identified: marine aerosol identified by Na and Cl (22%), steelmaking and sinter plant represented by As, Cr, Cu, Fe, Ni, Mn, Pb, Sb and Zn (11%), sinter plant stack identified by NH 4 + , K and Pb (12%), an unidentified Br source (1.8%), secondary aerosol from coke making and blast furnace (19%), fugitive emissions from the handling of raw material, sinter plant and vehicles dust resuspension identified by Al, Ca, La, Si, Ti and V (14%) and sinter plant and blast furnace associated essentially with Fe and Mn (21%). - Highlights: • Emissions from steelworks are very complex. • The larger steelworks contribution to PM 10 was from blast furnace and sinter plant. • Sinter plant stack emissions contributed for 12% of the PM 10 mass. • Secondary aerosol from coke making and blast furnace contributed for 19% of the PM 10 . • Fugitive dust emissions highly contribute to PM 10 mass

  14. Chemical characterization of atmospheric particles and source apportionment in the vicinity of a steelmaking industry

    Almeida, S.M., E-mail: smarta@ctn.ist.utl.pt [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 139.7 km, 2695-066 Bobadela LRS (Portugal); Lage, J. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 139.7 km, 2695-066 Bobadela LRS (Portugal); Fernández, B. [Global R& D, ArcelorMittal, Avilés (Spain); Garcia, S. [Instituto de Soldadura e Qualidade, Av. Prof. Dr. Cavaco Silva, 33, 2740-120 Porto Salvo (Portugal); Reis, M.A.; Chaves, P.C. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 139.7 km, 2695-066 Bobadela LRS (Portugal)

    2015-07-15

    The objective of this work was to provide a chemical characterization of atmospheric particles collected in the vicinity of a steelmaking industry and to identify the sources that affect PM{sub 10} levels. A total of 94 PM samples were collected in two sampling campaigns that occurred in February and June/July of 2011. PM{sub 2.5} and PM{sub 2.5–10} were analyzed for a total of 22 elements by Instrumental Neutron Activation Analysis and Particle Induced X-ray Emission. The concentrations of water soluble ions in PM{sub 10} were measured by Ion Chromatography and Indophenol-Blue Spectrophotometry. Positive Matrix Factorization receptor model was used to identify sources of particulate matter and to determine their mass contribution to PM{sub 10}. Seven main groups of sources were identified: marine aerosol identified by Na and Cl (22%), steelmaking and sinter plant represented by As, Cr, Cu, Fe, Ni, Mn, Pb, Sb and Zn (11%), sinter plant stack identified by NH{sub 4}{sup +}, K and Pb (12%), an unidentified Br source (1.8%), secondary aerosol from coke making and blast furnace (19%), fugitive emissions from the handling of raw material, sinter plant and vehicles dust resuspension identified by Al, Ca, La, Si, Ti and V (14%) and sinter plant and blast furnace associated essentially with Fe and Mn (21%). - Highlights: • Emissions from steelworks are very complex. • The larger steelworks contribution to PM{sub 10} was from blast furnace and sinter plant. • Sinter plant stack emissions contributed for 12% of the PM{sub 10} mass. • Secondary aerosol from coke making and blast furnace contributed for 19% of the PM{sub 10}. • Fugitive dust emissions highly contribute to PM{sub 10} mass.

  15. Overview of the cocoa pod borer, conopomorpha cramerella (Lepidoptera, Gracillariidae), a major pest for the cocoa industry.

    Conopomorpha cramerella is one of the most devastating pests of cocoa in Southeast Asia. This pest is currently responsible of a 40-60% loss of the cocoa production, which is worth about $500 million annually for the Indonesian cocoa industry alone. Because the cocoa industry in Indonesia is mainly ...

  16. One year online chemical speciation of submicron particulate matter (PM1) sampled at a French industrial and coastal site

    Zhang, Shouwen; Riffault, Véronique; Dusanter, Sébastien; Augustin, Patrick; Fourmentin, Marc; Delbarre, Hervé

    2015-04-01

    The harbor of Dunkirk (Northern France) is surrounded by different industrial plants (metallurgy, petrochemistry, food processing, power plant, etc.), which emit gaseous and particulate pollutants such as Volatile Organic Compounds (VOCs), oxides of nitrogen (NOx) and sulfur (SO2), and submicron particles (PM1). These emissions are poorly characterized and their impact on neighboring urban areas has yet to be assessed. Studies are particularly needed in this type of complex environments to get a better understanding of PM1sources, especially from the industrial sector, their temporal variability, and their transformation. Several instruments, capable of real-time measurements (temporal resolution ≤ 30 min), were deployed at a site located downwind from the industrial area of Dunkirk for a one-year duration (July 2013-September 2014). An Aerosol Chemical Speciation Monitor (ACSM) and an Aethalometer monitored the main chemical species in the non-refractory submicron particles and black carbon, respectively. Concomitant measurements of trace gases and wind speed and direction were also performed. This dataset was analyzed considering four wind sectors, characteristics of marine, industrial, industrial-urban, and urban influences, and the different seasons. We will present a descriptive analysis of PM1, showing strong variations of ambient concentrations, as well as evidences of SO2 to SO4 gas-particle conversion when industrial plumes reached the monitoring site. The organic fraction measured by ACSM (37% of the total mass on average) was analyzed using a source-receptor model based on Positive Matrix Factorization (PMF) to identify chemical signatures of main emission sources and to quantify the contribution of each source to the PM1 budget given the wind sector. Four main factors were identified: hydrocarbon organic aerosol (HOA), oxygenated organic aerosol (OOA), biomass burning organic aerosol (BBOA) and cooking-like organic aerosol (COA). Overall, the total PM

  17. The future of discovery chemistry: quo vadis? Academic to industrial--the maturation of medicinal chemistry to chemical biology.

    Hoffmann, Torsten; Bishop, Cheryl

    2010-04-01

    At Roche, we set out to think about the future role of medicinal chemistry in drug discovery in a project involving both Roche internal stakeholders and external experts in drug discovery chemistry. To derive a coherent strategy, selected scientists were asked to take extreme positions and to derive two orthogonal strategic options: chemistry as the traditional mainstream science and chemistry as the central entrepreneurial science. We believe today's role of medicinal chemistry in industry has remained too narrow. To provide the innovation that industry requires, medicinal chemistry must play its part and diversify at pace with our increasing understanding of chemical biology and network pharmacology. 2010 Elsevier Ltd. All rights reserved.

  18. Assessment of pre-industrial carbon dioxide content in the atmosphere using hydro-chemical data

    Heans, K.A.; Liaxin, Y.I.

    2001-01-01

    A hydrochemical method has been developed to calculate concentrations of carbon dioxide (CO 2 ) in the pre-industrial atmosphere and its relationship to climatic change. The following factors affect the Earth's climate: (1) the sun with all its processes, (2) the attraction of the moon that limits the axis of inclination of the Earth, and (3) the cycle of carbon dioxide and the greenhouse effect. An imbalance in the climate system would be a major global disaster that could be detrimental for life on Earth. Recent studies and temperature measurements have shown a trend in which air temperature has increased in the troposphere in the last 100 years, affecting the normal development of natural processes. Various phenomena result from climatic change, or the gradual heating of the Earth. These include the weakening of the glacial layer that covers the Earth's surface, cycles of prolonged slowing in freeze and thaw periods of aquatic surfaces, and increased air temperature in the troposphere which can also causes abnormal fluctuations of temperature in the atmosphere, resulting in heat waves and droughts. Gradual heating of the Earth can also result in rainy periods that produce devastating floods, hurricanes and extreme winds. Changes in water temperature can influence pH levels which affect certain marine species. An increase of 5 degrees C in the global average atmospheric temperature has created changes in 420 physical processes as well as in the behavior of plants and animals. The author stated that the most drastic factor that affects the balance of the Earth's climate is the actions of man interfering with the carbon cycle, as carbon dioxide plays a vital role in the formation of the greenhouse effect. The problem results from an imbalance of the carbon dioxide cycle when CO 2 emissions are increased through the combustion of fossil fuels. It was determined that before the beginning of the Industrial Revolution, carbon dioxide in the atmosphere was 256 ppm

  19. Top five industries resulting in injuries from acute chemical incidents—Hazardous Substance Emergency Events Surveillance, nine states, 1999-2008.

    Anderson, Ayana R; Wu, Jennifer

    2015-04-10

    Because industries using and/or producing chemicals are located in close proximity to populated areas, U.S. residents are at risk for unintentional chemical exposures. 1999-2008. The Hazardous Substances Emergency Events Surveillance (HSEES) system was operated by the Agency for Toxic Substances and Disease Registry during January 1991-September 2009 to collect data that would enable researchers to describe the public health consequences of chemical releases and to develop activities aimed at reducing the harm from such releases. This report summarizes data for the top five industries resulting in injuries from an acute chemical incident (lasting truck transportation, educational services, chemical manufacturing, utilities, and food manufacturing) accounted for approximately one third of all incidents in which persons were injured as a result of unintentional release of chemicals; the same five industries were responsible for approximately one third of all persons injured as a result of such releases. Acute chemical incidents in these five industries resulted in serious public health implications including the need for evacuations, morbidity, and mortality. PUBLIC HEALTH IMPLICATIONS: Targeting chemical incident prevention and preparedness activities towards these five industries provides an efficient use of resources for reducing chemical exposures. A variety of methods can be used to minimize chemical releases in industries. One example is the Occupational Safety and Health Administration's hierarchy of controls model, which focuses on controlling exposures to occupational hazards. The hierarchy includes elimination, substitution, engineering controls, administrative controls, and use of personal protective equipment.

  20. Genome-wide Escherichia coli stress response and improved tolerance towards industrially relevant chemicals

    Rau, Martin Holm; Calero Valdayo, Patricia; Lennen, Rebecca

    2016-01-01

    Economically viable biobased production of bulk chemicals and biofuels typically requires high product titers. During microbial bioconversion this often leads to product toxicity, and tolerance is therefore a critical element in the engineering of production strains. Here, a systems biology...... approach was employed to understand the chemical stress response of Escherichia coli, including a genome-wide screen for mutants with increased fitness during chemical stress. Twelve chemicals with significant production potential were selected, consisting of organic solvent-like chemicals (butanol......, hydroxy-γ-butyrolactone, 1,4-butanediol, furfural), organic acids (acetate, itaconic acid, levulinic acid, succinic acid), amino acids (serine, threonine) and membrane-intercalating chemicals (decanoic acid, geraniol). The transcriptional response towards these chemicals revealed large overlaps...

  1. Profiles of Major Suppliers to the Automotive Industry : Vol. 4. North American Automotive Parts and Components Suppliers

    1982-08-01

    This study summarizes extensive information collected over a two-year period (October 1978 to October 1980) on suppliers of parts and components, materials, and machine tools to the automotive industry in the United States. The objective of the study...

  2. Chemical modification of Art v 1, a major mugwort pollen allergen, by cis-aconitylation and citraconylation

    DRAGANA STANIĆ

    2009-04-01

    Full Text Available Art v 1 is the major allergen of mugwort (Artemisia vulgaris pollen, a significant cause of hay fever all over Europe. Specific immunotherapy is the only treatment modality for allergic disease. Application of modified allergens makes the treatment safer and more efficient. In this work, two out of three (citraconic anhydride, cis-aconitic anhydride, 2,3-dimethylmaleic anhydride tested anhydrides were proven to be suitable for chemical modifications of allergens. Art v 1 was modified by cis-aconitylation and citraconylation in order to obtain derivatives of Art v 1 that may be suitable for further immunological testing. Acylation of Art v 1 gave derivatives (caaArt v 1 and citArt v 1 with about 80 % modified amino groups. The derivatives were in the monomeric form and had dramatically reduced pI values. Both derivatives were relatively stable at neutral pH values, while the acyl groups undergo hydrolysis under acidic conditions. Modification of allergens by cis-aconitylation and citraconylation could be a new tool for obtaining allergoids.

  3. IMPLEMENTATION OF A SAFETY PROGRAM FOR THE WORK ACCIDENTS’ CONTROL. A CASE STUDY IN THE CHEMICAL INDUSTRY

    Edison Cesar de Faria Nogueira

    2015-03-01

    Full Text Available This article presents a case study related to the implementation of a Work Safety Program in a chemical industry, based on the Process Safety Program, PSP, of a huge energy company. The research was applied, exploratory, qualitative and with and data collection method through documentary and bibliographical research. There will be presented the main practices adopted in order to make the Safety Program a reality inside a chemical industry, its results and contributions for its better development. This paper proposes the implementation of a Safety Program must be preceded by a diagnosis of occupational safety and health management system and with constant critical analysis in order to make the necessary adjustments.

  4. Proceedings of the 3. International conference on waste management in the chemical and petrochemical industries. Volume 1 and 2.

    Lima, Francisco F.; Pereira Filho, Francisco A.; Almeida, Sergio A.S. [eds.

    1993-12-31

    To produce without pollution is today a mandate for the preservation of our society. To produce cleaner means to conserve energy and natural resources, to reduce the use of toxic substances, to invest in the evolution of products and production processes towards a minimum of residues. The Third International Conference on Waste Minimization in the Chemical and Petrochemical Industries addresses these challenging questions regarding waste minimization

  5. Proceedings of the 3. International conference on waste management in the chemical and petrochemical industries. Volume 1 and 2.

    Lima, Francisco F; Pereira Filho, Francisco A; Almeida, Sergio A.S. [eds.

    1994-12-31

    To produce without pollution is today a mandate for the preservation of our society. To produce cleaner means to conserve energy and natural resources, to reduce the use of toxic substances, to invest in the evolution of products and production processes towards a minimum of residues. The Third International Conference on Waste Minimization in the Chemical and Petrochemical Industries addresses these challenging questions regarding waste minimization

  6. Physical-chemical characteristics of an eco-friendly binder using ternary mixture of industrial wastes

    Nguyen, Hoang-Anh

    2015-09-01

    Full Text Available This study explores the physical-chemical characteristics of paste and mortar with an eco-friendly binder named as SFC cement, produced by a ternary mixture of industrial waste materials of ground granulated blast furnace slag (S, Class F fly ash (FFA, and circulating fluidized bed combustion fly ash (CFA. To trigger the hydration, the CFA, which acted as an alkaline-sulfate activator, was added to the blended mixture of slag and FFA. The water to binder ratio (W/B, curing regime, and FFA addition significantly affected the engineering performances and shrinkage/expansion of the SFC pastes and mortars. The SFC mortars had higher workability than that of ordinary Portland cement (OPC. With similar workability, the SFC mortars had compressive strengths and expansions comparable to OPC mortars. The main hydration products of the hardened SFC cement were ettringite (AFt and C-S-H/C-A-S-H. The transformation of the AFt to the monosulfates was observed as the hydration time increased.Este trabajo estudia las características fisicoquímicas de pastas y morteros con un ligante eco-amigable llamado cemento SFC, producido por una mezcla ternaria de materiales a partir de residuos industriales tales como escorias granuladas de alto horno (S, ceniza volante clase F (FFA, y cenizas volantes de combustión en lecho fluidizado circulante (CFA. Para desencadenar la hidratación, el CFA que actuó como un activador alcalino-sulfato se añadió a la mezcla combinada de escoria y FFA. La relación de agua/ligante (W/B, el tipo de curado, y la adición de FFA afectaron significativamente a las prestaciones mecánicas así como a la retracción/expansión de pastas y morteros de SFC. Los morteros SFC presentaron una trabajabilidad mayor que los correspondientes de cemento de Portland (OPC. Con una trabajabilidad similar, los morteros SFC presentaron resistencias mecánicas y expansión comparables a los morteros de OPC. Los principales productos de hidratación del

  7. Applications of Neutron Scattering in the Chemical Industry: Proton Dynamics of Highly Dispersed Materials, Characterization of Fuel Cell Catalysts, and Catalysts from Large-Scale Chemical Processes

    Albers, Peter W.; Parker, Stewart F.

    The attractiveness of neutron scattering techniques for the detailed characterization of materials of high degrees of dispersity and structural complexity as encountered in the chemical industry is discussed. Neutron scattering picks up where other analytical methods leave off because of the physico-chemical properties of finely divided products and materials whose absorption behavior toward electromagnetic radiation and electrical conductivity causes serious problems. This is demonstrated by presenting typical applications from large-scale production technology and industrial catalysis. These include the determination of the proton-related surface chemistry of advanced materials that are used as reinforcing fillers in the manufacture of tires, where interrelations between surface chemistry, rheological properties, improved safety, and significant reduction of fuel consumption are the focus of recent developments. Neutron scattering allows surface science studies of the dissociative adsorption of hydrogen on nanodispersed, supported precious metal particles of fuel cell catalysts under in situ loading at realistic gas pressures of about 1 bar. Insight into the occupation of catalytically relevant surface sites provides valuable information about the catalyst in the working state and supplies essential scientific input for tailoring better catalysts by technologists. The impact of deactivation phenomena on industrial catalysts by coke deposition, chemical transformation of carbonaceous deposits, and other processes in catalytic hydrogenation processes that result in significant shortening of the time of useful operation in large-scale plants can often be traced back in detail to surface or bulk properties of catalysts or materials of catalytic relevance. A better understanding of avoidable or unavoidable aspects of catalyst deactivation phenomena under certain in-process conditions and the development of effective means for reducing deactivation leads to more energy

  8. Energy price slump and policy response in the coal-chemical industry district: A case study of Ordos with a system dynamics model

    Wang, Delu; Ma, Gang; Song, Xuefeng; Liu, Yun

    2017-01-01

    We employ system dynamics method towards a coal-chemical industry district economy evolution model, using coal industry, the coal-chemical industry, their downstream industries, and the manufacture-related service industry. Moreover, we construct energy price and policy response scenarios based on Ordos’ management experience. The results show that the energy price slump had a negative impact on the overall economic development of the coal-chemical industry district, despite promoting non-resource industries. Furthermore, policies had different effects on the industry's output value and profit. In the long-term, developing alternative industries (AI) helps increase the industrial output value and profit. Decreasing value added tax (VAT) has immediate results and a distinctive effect on industrial short-term production value and profit, its long-term effect being limited. The effect of production limit (PL) on industrial profit is stronger than output value, and financial support (FS) is more conducive to improve the latter. However, coal mining and coal-chemical loan increases decrease the gross industrial profit level. Technology innovation (TI) has the best individual policy overall effect on production value and profits. Furthermore, the simultaneous implementation of PL, TI and AI can generate the synergy effect for each of them. And the simultaneous implementation of VAT and one or couple of other policies will generate the crowding-out effect both for VAT and other policies. - Highlights: • A system dynamics model of the coal-chemical industry district economy evolution in Ordos is constructed. • The impact of coal and oil prices slump on the output value and profit of each industry is revealed. • The differences in the effects especially cumulative effects of different response policies are clarified. • The crowding-out and synergy effects of policy implementation are analyzed.

  9. B827 Chemical Synthhesis Project - Industrial Control System Integration - Statement of Work & Specification with Attachments 1-14

    Wade, F. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-04-21

    The Chemical Synthesis Pilot Process at the Lawrence Livermore National Laboratory (LLNL) Site 300 827 Complex will be used to synthesize small quantities of material to support research and development. The project will modernize and increase current capabilities for chemical synthesis at LLNL. The primary objective of this project is the conversion of a non-automated hands-on process to a remoteoperation process, while providing enhanced batch process step control, stored recipe-specific parameter sets, process variable visibility, monitoring, alarm and warning handling, and comprehensive batch record data logging. This Statement of Work and Specification provides the industrial-grade process control requirements for the chemical synthesis batching control system, hereafter referred to as the “Control System” to be delivered by the System Integrator.

  10. Industrial Scale Synthesis of Carbon Nanotubes Via Fluidized Bed Chemical Vapor Deposition: A Senior Design Project

    Smith, York R.; Fuchs, Alan; Meyyappan, M.

    2010-01-01

    Senior year chemical engineering students designed a process to produce 10 000 tonnes per annum of single wall carbon nanotubes (SWNT) and also conducted bench-top experiments to synthesize SWNTs via fluidized bed chemical vapor deposition techniques. This was an excellent pedagogical experience because it related to the type of real world design…

  11. Industrialization of hot wire chemical vapor deposition for thin film applications

    Schropp, Ruud

    2015-01-01

    The consequences of implementing a Hot Wire Chemical Vapor Deposition (HWCVD) chamber into an existing in-line or roll-to-roll reactor are described. The hardware and operation of the HWCVD production reactor is compared to that of existing roll-to-roll reactors based on Plasma Enhanced Chemical

  12. Evaluating exposures to complex mixtures of chemicals during a new production process in the plastics industry

    Meijster, T.; Burstyn, I.; Wendel de Joode, B. van; Posthumus, M.A.; Kromhout, H.

    2004-01-01

    The goal of this study was to monitor emission of chemicals at a factory where plastics products were fabricated by a new robotic (impregnated tape winding) production process. Stationary and personal air measurements were taken to determine which chemicals were released and at what concentrations.

  13. Evaluating Exposures to Complex Mixtures of Chemicals During a New Production Process in the Plastics Industry

    Meijster, T.; Burstyn, I.; Wendel de Joode, van B.; Posthumus, M.A.; Kromhout, H.

    2004-01-01

    The goal of this study was to monitor emission of chemicals at a factory where plastics products were fabricated by a new robotic (impregnated tape winding) production process. Stationary and personal air measurements were taken to determine which chemicals were released and at what concentrations.

  14. Risk perception of aquatic pollution originated from chemical industry clusters in the coastal area of Jiangsu province, China.

    Yao, Hong; Liu, Bo; You, Zhen; Zhao, Li

    2018-02-01

    According to "the Layout Scheme of the Chemical Industry in Jiangsu Province From 2016 to 2030" and "the Development Planning in the Coastal Area of Jiangsu Province, China," several chemical industry clusters will be located in the coastal area of Jiangsu province, China, and the risk of surface water pollution will be inevitably higher in the densely populated region. To get to know the risk acceptance level of the residents near the clusters, public perception was analyzed from the five risk factors: the basic knowledge about the pollution, the negative effects on aquatic environment imposed by the clusters, the positive effects brought by the clusters, the trust of controlling aquatic pollution, and the acceptance of the clusters. Twenty-four statements were screened out to describe the five factors, and about 600 residents were covered in three typical clusters surveyed. On the whole, the youth showed a higher interest on the survey, and middle-aged people were likely to be more concerned about aquatic pollution incident. There was no significant difference on risk perception of the three clusters. The respondents investigated had good knowledge background on aquatic pollution and the residents identified with the benefits brought by the clusters. They were weak in risk awareness of pollution originated from the chemical enterprises' groups. Although the respondents regarded that chemical industry clusters did not expose all points of pollutants' generation to the public, they inclined to trust the administration agencies on controlling the pollution and welcome the construction of chemical clusters in their dwelling cities. Besides, risk perception showed obvious spatial distribution. The closer were the samples' sites to the clusters and the rivers receiving pollutants, the higher were the residents' perceived risk, benefit, and trust. However, there was no identical spatial difference on risk acceptance, which might be comprehensively influenced by various

  15. Effect of the major components of industrial air pollution on nonsymbiotic nitrogen-fixation activity in soil

    Islamov, S S; Chunderova, A I

    1976-01-01

    Industrial pollution of atmosphere inhibits the activity of non-symbiotic nitrogen fixation in soils. The inhibiting effect of polluted air can be explained by the presence of carbon monoxide and nitrogen dioxide in it. Sulfur dioxide does not depress the nitrogenase complex of aerobic and anaerobic nitrogen fixing microorganisms.

  16. The impact of conventional and nuclear industries on the population A comparative study of the radioactive and chemical aspects

    Coulon, R; Anguenot, F

    1988-01-01

    This study was carried out to make it possible to assess and localize in an objective manner the extent of the hazards and associated detrimental effects which are inherent in nuclear and non-nuclear industrial activities, among all the hazards to which the population of a given region is exposed. Rather than carry out a purely theoretical and speculative study a region was chosen as a basis to carry out a full- scale exercise, taking into account the existing real situation. The region chosen is situated in the south-east of France (Greater Rhone Delta) where almost all industrial activities can be found: electricity generating industries (thermal and nuclear power stations), the activities associated with them (extraction, processing, storage of waste, etc.) and industrial activities which are sources of pollution (refineries, chemical industries, etc.). To put the risks of all these activities (to workers, the public and the environment) in perspective, the case of other sources of risk, such as certain ag...

  17. Riskgov European Project. Comparative analysis of risk governance for radiological and chemical discharges of industrial installations. Final report

    Schneider, T.; Schieber, C.; Vaillant, L.; Heriard Dubreuil, G.; Gadbois, S.; Oudiz, A.; Bourgoignon, F.; Milochevitch, A.; PATERSON, J.; Brownless, G.; Bandle, T.; Hansson, S.O.; Hayenhjelm, M.

    2004-11-01

    The objective of the RISKGOV Project is to analyse and identify quality criteria for the governance of industrial activities giving rise to risks to people and the environment from radioactive and chemical discharges during normal operations. For this purpose, RISKGOV aims at: 1) analysing and comparing the elements contributing to the quality of governance systems associated with environmental discharges from nuclear and chemical installations; 2) providing a series of criteria to assess the quality of the governance of risk activities. In total, 8 case studies were conducted, covering radioactive and chemical releases related to local and international contexts and referring to innovative risk governance processes in France, Sweden and the United Kingdom: - The role of local liaison committees with regard to the management of discharges of installations: - France: Local liaison committee of the Gravelines Nuclear Power Plant, - Sweden: Local liaison committees of the Barsebaeck Nuclear Power Plant and the Rohm and Hass Chemical installation, - The dialogue process during the preparation of re-authorisation of radioactive discharges: - France: COGEMA-La Hague facility, - United-Kingdom: Devonport Royal Dockyard, - The dialogue process in a regional context: - France: Management of air quality around the industrial site of Etang de Berre, - The dialogue process in an international context: - Implementation of the OSPAR Convention for chemical and radioactive releases, - The abandonment of the Brent Spar offshore platform. The analysis was performed by a multidisciplinary research team and based notably on interviews with key stakeholders directly involved in these innovative risk governance processes. The following dimensions were addressed: a) The guiding principles of the decision-making process; b) The role of expertise; c) The stakeholders involvement process; d) The factors integrated into the decision-framing and decision-taking processes; e) The

  18. Identifying the origins of local atmospheric deposition in the steel industry basin of Luxembourg using the chemical and isotopic composition of the lichen Xanthoria parietina.

    Hissler, Christophe; Stille, Peter; Krein, Andreas; Geagea, Majdi Lahd; Perrone, Thierry; Probst, Jean-Luc; Hoffmann, Lucien

    2008-11-01

    Trace metal atmospheric contamination was assessed in one of the oldest European industrial sites of steel production situated in the southern part of the Grand-Duchy of Luxembourg. Using elemental ratios as well as Pb, Sr, and Nd isotopic compositions as tracers, we found preliminary results concerning the trace metal enrichment and the chemical/isotopic signatures of the most important emission sources using the lichen Xanthoria parietina sampled at 15 sites along a SW-NE transect. The concentrations of these elements decreased with increasing distance from the historical and actual steel-work areas. The combination of the different tracers (major elements, Rare Earth Element ratios, Pb, Sr and Nd isotopes) enabled us to distinguish between three principal sources: the historical steel production (old tailings corresponding to blast-furnace residues), the present steel production (industrial sites with arc electric furnace units) and the regional background (baseline) components. Other anthropogenic sources including a waste incinerator and major roads had only weak impacts on lichen chemistry and isotopic ratios. The correlation between the Sr and Nd isotope ratios indicated that the Sr-Nd isotope systems represented useful tools to trace atmospheric emissions of factories using scrap metal for steel production.

  19. Toxic Industrial Chemical Tests of Resistance to Permeation by Protective Suits

    Klemperer, Elizabeth

    2005-01-01

    A Natick program to select and test protective materials for soldiers and first responders who face a threat from chemical accidents or terrorist attacks was applied under Congressional legislation...

  20. Quantitative Exposure Assessment of Various Chemical Substances in a Wafer Fabrication Industry Facility

    Hyunhee Park

    2011-03-01

    Conclusion: Benzene, a known human carcinogen for leukemia, and arsine, a hematologic toxin, were not detected in wafer fabrication sites in this study. Among reproductive toxic substances, n-butyl acetate was not detected, but fluorides and PGMEA existed in small amounts in the air. This investigation was focused on the air-borne chemical concentrations only in regular working conditions. Unconditional exposures during spills and/or maintenance tasks and by-product chemicals were not included. Supplementary studies might be required.

  1. Towards benchmarking of multivariable controllers in chemical/biochemical industries: Plantwide control for ethylene glycol production

    Huusom, Jakob Kjøbsted; Bialas, Dawid Jan; Jørgensen, John Bagterp

    2011-01-01

    In this paper we discuss a simple yet realistic benchmark plant for evaluation and comparison of advanced multivariable control for chemical and biochemical processes. The benchmark plant is based on recycle-separator-recycle systems for ethylene glycol production and implemented in Matlab...... for education purposes (operator training, student education, etc) as well as scientific research into chemical process control where it enables rapid evaluation and comparison of advanced multivariable controllers as demonstrated in this study....

  2. Evolution of camel CYP2E1 and its associated power of binding toxic industrial chemicals and drugs.

    Kandeel, Mahmoud; Altaher, Abdullah; Kitade, Yukio; Abdelaziz, Magdi; Alnazawi, Mohamed; Elshazli, Kamal

    2016-10-01

    Camels are raised in harsh desert environment for hundreds of years ago. By modernization of live and the growing industrial revolution in camels rearing areas, camels are exposed to considerable amount of chemicals, industrial waste, environmental pollutions and drugs. Furthermore, camels have unique gene evolution of some genes to withstand living in harsh environments. In this work, the camel cytochrome P450 2E1 (CYP2E1) is compromised to detect its evolution rate and its power to bind with various chemicals, protoxins, procarcinogens, industrial toxins and drugs. In comparison with human CYP2E1, camel CYP2E1 more efficiently binds to small toxins as aniline, benzene, catechol, amides, butadiene, toluene and acrylamide. Larger compounds were more preferentially bound to the human CYP2E1 in comparison with camel CYP2E1. The binding of inhalant anesthetics was almost similar in both camel and human CYP2E1 coinciding with similar anesthetic effect as well as toxicity profiles. Furthermore, evolutionary analysis indicated the high evolution rate of camel CYP2E1 in comparison with human, farm and companion animals. The evolution rate of camel CYP2E1 was among the highest evolution rate in a subset of 57 different organisms. These results indicate rapid evolution and potent toxin binding power of camel CYP2E1. Copyright © 2016. Published by Elsevier Ltd.

  3. Long-term energy efficiency analysis requires solid energy statistics: The case of the German basic chemical industry

    Saygin, D.; Worrell, E.; Tam, C.; Trudeau, N.; Gielen, D.J.; Weiss, M.; Patel, M.K.

    2012-01-01

    Analyzing the chemical industry’s energy use is challenging because of the sector’s complexity and the prevailing uncertainty in energy use and production data. We develop an advanced bottom-up model (PIE-Plus) which encompasses the energy use of the 139 most important chemical processes. We apply this model in a case study to analyze the German basic chemical industry’s energy use and energy efficiency improvements in the period between 1995 and 2008. We compare our results with data from the German Energy Balances and with data published by the International Energy Agency (IEA). We find that our model covers 88% of the basic chemical industry’s total final energy use (including non-energy use) as reported in the German Energy Balances. The observed energy efficiency improvements range between 2.2 and 3.5% per year, i.e., they are on the higher side of the values typically reported in literature. Our results point to uncertainties in the basic chemical industry’s final energy use as reported in the energy statistics and the specific energy consumption values. More efforts are required to improve the quality of the national and international energy statistics to make them useable for reliable monitoring of energy efficiency improvements of the chemical industry. -- Highlights: ► An advanced model was developed to estimate German chemical industry’s energy use. ► For the base year (2000), model covers 88% of the sector’s total final energy use. ► Sector’s energy efficiency improved between 2.2 and 3.5%/yr between 1995 and 2008. ► Improved energy statistics are required for accurate monitoring of improvements.

  4. The development and application of dynamic operational risk assessment in oil/gas and chemical process industry

    Yang Xiaole; Mannan, M. Sam

    2010-01-01

    A methodology of dynamic operational risk assessment (DORA) is proposed for operational risk analysis in oil/gas and chemical industries. The methodology is introduced comprehensively starting from the conceptual framework design to mathematical modeling and to decision making based on cost-benefit analysis. The probabilistic modeling part of DORA integrates stochastic modeling and process dynamics modeling to evaluate operational risk. The stochastic system-state trajectory is modeled according to the abnormal behavior or failure of each component. For each of the possible system-state trajectories, a process dynamics evaluation is carried out to check whether process variables, e.g., level, flow rate, temperature, pressure, or chemical concentration, remain in their desirable regions. Component testing/inspection intervals and repair times are critical parameters to define the system-state configuration, and play an important role for evaluating the probability of operational failure. This methodology not only provides a framework to evaluate the dynamic operational risk in oil/gas and chemical industries, but also guides the process design and further optimization. To illustrate the probabilistic study, we present a case-study of a level control in an oil/gas separator at an offshore plant.

  5. Studies on the utilization of agricultural residues in the manufacture of pulp and paper, and industrial chemicals

    Joshi, V.S.; Kamath, G.P.; Basu, S.

    1980-03-15

    While demand for pulp and paper products in India is increasing at the annual rate of 7 to 8%, availability of cellulosic raw material to meet the ever increasing demand is becoming a serious problem. It has been estimated that bamboo, the traditional source of cellulosic raw material in India, even after ensuring the most scientific and best possible exploitation, could provide less than 50% of the requirement. In a big agricultural country like India, agri-residues like straws and bagasse, along with jute sticks, available in huge quantity, could provide substantial amount of cellulosic resources to the pulp and paper industry. Realizing the importance of agri-residue utilization in Indian economy, a series of research projects have been initiated and completed during the last 15 years to study the techno-economic feasibility of manufacturing pulp, paper, and industrial chemicals, based on rice and wheat straws, bagasse, and jute sticks. The economic advantages of the mechano-chemical pulping process, as compared to the conventional pressure, pulping process, for the conversion of agri-residues into pulp and paer is evaluated. For highlighting the importance of agri-residues in the field of useful chemical recovery possibilities, experimental data are given on the saccarification of agri-residues into reducing sugars by the simple acid hydrolysis method with the help of concentrated sulfuric acid.

  6. Anti-oxidant activity and major chemical component analyses of twenty-six commercially available essential oils

    Hsiao-Fen Wang

    2017-10-01

    Full Text Available This study analyzed 26 commercially available essential oils and their major chemical components to determine their antioxidant activity levels by measuring their total phenolic content (TPC, reducing power (RP, β-carotene bleaching (BCB activity, trolox equivalent antioxidant capacity (TEAC, and 1,1-diphenyl-2-picrylhydrazyl free radical scavenging (DFRS ability. The clove bud and thyme borneol essential oils had the highest RP, BCB activity levels, and TPC values among the 26 commercial essential oils. Furthermore, of the 26 essential oils, the clove bud and ylang ylang complete essential oils had the highest TEAC values, and the clove bud and jasmine absolute essential oils had the highest DFRS ability. At a concentration of 2.5 mg/mL, the clove bud and thyme borneol essential oils had RP and BCB activity levels of 94.56% ± 0.06% and 24.64% ± 0.03% and 94.58% ± 0.01% and 89.33% ± 0.09%, respectively. At a concentration of 1 mg/mL, the clove bud and thyme borneol essential oils showed TPC values of 220.00 ± 0.01 and 69.05 ± 0.01 mg/g relative to gallic acid equivalents, respectively, and the clove bud and ylang ylang complete essential oils had TEAC values of 809.00 ± 0.01 and 432.33 ± 0.01 μM, respectively. The clove bud and jasmine absolute essential oils showed DFRS abilities of 94.13% ± 0.01% and 78.62% ± 0.01%, respectively. Phenolic compounds of the clove bud, thyme borneol and jasmine absolute essential oils were eugenol (76.08%, thymol (14.36% and carvacrol (12.33%, and eugenol (0.87%, respectively. The phenolic compounds in essential oils were positively correlated with the RP, BCB activity, TPC, TEAC, and DFRS ability.

  7. Anti-oxidant activity and major chemical component analyses of twenty-six commercially available essential oils.

    Wang, Hsiao-Fen; Yih, Kuang-Hway; Yang, Chao-Hsun; Huang, Keh-Feng

    2017-10-01

    This study analyzed 26 commercially available essential oils and their major chemical components to determine their antioxidant activity levels by measuring their total phenolic content (TPC), reducing power (RP), β-carotene bleaching (BCB) activity, trolox equivalent antioxidant capacity (TEAC), and 1,1-diphenyl-2-picrylhydrazyl free radical scavenging (DFRS) ability. The clove bud and thyme borneol essential oils had the highest RP, BCB activity levels, and TPC values among the 26 commercial essential oils. Furthermore, of the 26 essential oils, the clove bud and ylang ylang complete essential oils had the highest TEAC values, and the clove bud and jasmine absolute essential oils had the highest DFRS ability. At a concentration of 2.5 mg/mL, the clove bud and thyme borneol essential oils had RP and BCB activity levels of 94.56% ± 0.06% and 24.64% ± 0.03% and 94.58% ± 0.01% and 89.33% ± 0.09%, respectively. At a concentration of 1 mg/mL, the clove bud and thyme borneol essential oils showed TPC values of 220.00 ± 0.01 and 69.05 ± 0.01 mg/g relative to gallic acid equivalents, respectively, and the clove bud and ylang ylang complete essential oils had TEAC values of 809.00 ± 0.01 and 432.33 ± 0.01 μM, respectively. The clove bud and jasmine absolute essential oils showed DFRS abilities of 94.13% ± 0.01% and 78.62% ± 0.01%, respectively. Phenolic compounds of the clove bud, thyme borneol and jasmine absolute essential oils were eugenol (76.08%), thymol (14.36%) and carvacrol (12.33%), and eugenol (0.87%), respectively. The phenolic compounds in essential oils were positively correlated with the RP, BCB activity, TPC, TEAC, and DFRS ability. Copyright © 2017. Published by Elsevier B.V.

  8. The Assessment of Risk Caused By Fire and Explosion in Chemical Process Industry: A Domino Effect-Based Study

    Kadri , Farid; Chatelet , E.; Lallement , Patrick

    2013-01-01

    International audience; In the field of risks analysis, the domino effect has been documented in technical literature since 1947. The accidents caused by the domino effect are the most destructive accidents related to industrial plants. Fire and explosion are among the most frequent primary accidents for a domino effect due to the units under pressure and the storage of flammable and dangerous substances. Heat radiation and overpressure are one of major factors leading to domino effect on ind...

  9. Evaluation of environmental policy instruments - a case study of the Finnish pulp and paper and chemical industries

    Hilden, M.; Lepola, J.; Mickwitz, P.; Palosaari, M.; Similae, J.; Sjoeblom, S.; Mulders, A.; Vedung, E.

    2002-01-01

    This research-based evaluation of environmental policy Instruments in Finland is focussed on regulatory instruments based on the Water Act, the Air Pollution Control Act and the Chemicals Act, on electricity taxation and on voluntary environmental management systems. The examined policy instruments have had several positive effects. They have directed major industrial point source polluters towards solving environmental problems. The transparency has been an important factor ensuring the success of the policy instruments and in avoiding the regulatory capture that could have thrived in a system largely based on negotiations between operators and authorities. The transparency has made it easy for Finnish firms to adopt environmental management systems and an open attitude to environmental reporting. The permit conditions have not directly resulted in innovations, but they have contributed to the diffusion of end-of-pipe technology and have contributed to innovations by expanding the market for environmentally better technical solutions. The permit systems have also indirectly contributed to innovations by creating a demand for environmental experts and environmental education. Networks have clearly developed as a consequence of and in response to regulatory instruments. These networks appear to have had their greatest significance prior to the permit procedures. The trend has been towards a greater emphasis of the communication in the networks prior to the presentation of an application in order to ensure a smoothly functioning permit process. In the networks contributing to innovations and the diffusion of innovations authorities have largely been outsiders, except when an innovation has become a de facto standard for permit conditions. The different kind of effects, the complexity of consequences and the uncertainties with respect to causes and effects mean that studies aiming at evaluating the overall worth and merit of an environmental policy instrument should

  10. Solvation phenomena in association theories with applications to oil & gas and chemical industries

    Kontogeorgis, Georgios; Folas, Georgios; Muro Sunè, Nuria

    2008-01-01

    Association theories e.g. those belonging to the SAFT family account explicitly for self- and cross-association (solvation) phenomena. Such phenomena are of great practical importance as they affect, often dramatically, the phase behaviour of many mixtures of industrial relevance. From the scient......Association theories e.g. those belonging to the SAFT family account explicitly for self- and cross-association (solvation) phenomena. Such phenomena are of great practical importance as they affect, often dramatically, the phase behaviour of many mixtures of industrial relevance. From...

  11. Respiratory and allergic health effects in a young population in proximity of a major industrial park in Oman.

    Alwahaibi, Adil; Zeka, Ariana

    2016-02-01

    Sohar industrial zone (SIZ), Oman, which started operating in 2006, contains many industries that potentially affect the health of the local population. This study's aim was to evaluate the health effects in a young population living near SIZ. Patient visits to state health clinics for acute respiratory diseases (ARD), asthma, conjunctivitis and dermatitis were obtained for the period of 2006 to 2010, for children ages 5 to 10, ≥20 km to represent high, intermediate and control exposure zones, respectively. Age-specific and gender-specific monthly counts of visits were modelled using generalised additive models controlling for time trends. The high and intermediate exposure zones were later combined together due to the similarity of associations. Exposure effect modification by age, gender and socioeconomic status (SES) was also tested. Living within 10 km from SIZ showed a greater association with ARD (risk ratio (RR)=2.5; 95% CI=2.3 to 2.7), asthma (RR=3.7; 95% CI=3.1 to 4.5), conjunctivitis (RR=3.1; 95% CI=2.9 to 3.5) and dermatitis (RR=2.7; 95% CI=2.5 to 3.0) when compared with the control zone. No differences in associations were found for gender and SES groups; greater effects were noticed in the ≤14-year-old group for asthma. This is the first study conducted in Oman to examine the health effects of a young population living near an industrial park. We hope that these findings will contribute in future developments of environmental health policies in Oman. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. Impact analysis of the implemented quality management system on business performances in pharmaceutical-chemical industry in Serbia

    Marinković Valentina D.

    2013-01-01

    Full Text Available International quality management standard (QMS ISO 9001 became widely accepted as a framework for product and/or services quality improvement. There are recent research conducted in order to define relationships and effects between the applied QMS and financial and/or non-financial business parameters. The effects of the applied pharmaceutical quality system (PQS on the business performances in Serbian pharmaceutical-chemical industry are analyzed in this paper using multivariate linear regression analysis. The empirical data were collected using a survey that was performed among experts from Serbian pharmaceutical-chemical industrial sector during 2010. An extensive questionnaire was used in the survey, grouping the questions in eight groups: Implementation of pharmaceutical quality system (AQ, Quality/strategy planning (QP, Human resource management (HR, Supply management (SM, Customer focus (CF, Process management (PM, Continuous improvement (CI, and Business results (BR. The primary goal of the research was to analyze the effects of the elements of first seven groups (AQ, QP, HR, SM, CF, PM, and CI that present various aspects of the implementation of PQS, on the elements of business results (BR. Based on empirical data, regression relations were formed to present the effects of all considered elements of PQS implementation on the business performance parameters (BR. The positive effects of PQS implementation on the business performances such as the assessment of performance indicators, continual products and/or services quality improvement, and efficient problem solving, are confirmed in the presented research for the Serbian pharmaceutical-chemical industrial sector. The results of the presented research will create a room for the improvement of the existing models in application, and for attracting interested parties that aim to commence this business standardization process. Hence, implementation of PQS is not only the regulatory

  13. EVALUATING THE EFFECT OF INDUSTRIAL EFFLUENTS ON CHEMICAL COMPOSITION OF SOIL IN VILLAGE DINGI, DISTRICT HARIPUR

    K. Asghar

    2016-08-01

    Full Text Available The present report is an outcome of research work conducted in Dingi village, District Haripur in 2012. The research aimed to assess and analyze the effects of industrial effluents on the soil fertility of the village, investigate contributing factors responsible for soil pollution and underlying causes creating the problems. Data analysis revealed that area had problems pertaining to water and soil quality. The key factors affecting soil fertility were the careless discharge of the untreated industrial effluents from Hattar Industrial Estate (HIE into the natural stream passing through village. The results were compared with the soil standards set by the World Wide Fund for Nature (WWF and European Committee Commission (ECC and all of these were exceeding the permissible limits and affecting the soil fertility. The soils were found not fit for agriculture. The investigation highlighted the need to take some effective steps to manage the monitoring program set for checking of industries by the government according to set rules and regulation.

  14. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 13: CHEMICAL INJECTION PUMPS

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  15. Utilisation of fly ash for the management of heavy metal containing primary chemical sludge generated in a leather manufacturing industry

    Sekaran, G.; Rao, B.P.; Ghanamani, A.; Rajamani, S. [Central Leather Research Institute, Chennai (India). Dept. of Environmental Technology

    2003-07-01

    The present study aims at disposal of primary chemical sludge generated in the tanning industry by solidification and stabilization process using flyash generated from thermal power plant along with binders and also on evaluating the leachability of heavy metal from the solidified product. The primary chemical sludge containing heavy metals iron and chromium were obtained from a garment leather manufacturing company at Chennai in India. The sludge was dried in open environment and it was powdered to fine size in a grinder. Binding increases stabilization of heavy metal in calcined sludge with refractory binders such as clay, fly ash, lime and ordinary Portland cement. Fly ash can be considered as the additional binder for producing stronger bricks, with high metal fixation efficiency, and minimum rate of removal of heavy metal and minimum diffusion co-efficient. 15 refs., 5 figs., 5 tabs.

  16. VOC removal and deodorization of effluent gases from an industrial plant by photo-oxidation, chemical oxidation, and ozonization.

    Domeño, Celia; Rodríguez-Lafuente, Angel; Martos, J M; Bilbao, Rafael; Nerín, Cristina

    2010-04-01

    The efficiency of photo-oxidation, chemical oxidation by sodium hypochlorite, and ozonization for the industrial-scale removal of volatile organic compounds (VOCs) and odors from gaseous emissions was studied by applying these treatments (in an experimental system) to substances passing through an emission stack of a factory producing maize derivatives. Absorption and ozonization were the most efficient treatment, removing 75% and 98% of VOCs, respectively, while photo-oxidation only removed about 59%. The emitted chemical compounds and odors were identified and quantified by gas chromatography-mass spectrometry (in full-scan mode). In addition to presenting the results, their implications for selecting optimal processes for treating volatile emissions are discussed.

  17. National symposium on commissioning and operating experiences in heavy water plants and associated chemical industries [Preprint volume

    1992-02-01

    A symposium on commissioning and operating experiences in heavy water plants and associated chemical industries (SCOPEX-92) was organised to share the experience and exchange the ideas among plant operators, designers, consultants and vendors in the areas of operation, commissioning and equipment performance. This pre-print volume has been brought out as an integrated source of information on commissioning and operation of heavy water plants. The following aspects of heavy water plants are covered: commissioning and operation, instrumentation and control, and safety and environment. (V.R.)

  18. Review of the impact of the Ukraine-EU free trade agreement on manufacturing industries (mechanical engineering, chemical and light industry

    Olga Usenko

    2007-03-01

    Full Text Available The article gives a definition to the concept of ‘deep integration’ taken by the Ukrainian Government as a framework concept for the establishment of a Ukraine-EU free trade area. The paper uses the term ‘deep free trade’ or ‘free trade area +’. It offers a review of the Ukrainian economy and its readiness to open such industries as mechanical engineering, chemical and light industry to free trade with the EU. It examines which cooperative steps might be taken in the sectors in question in the framework of a free trade area by identifying specific features of those sectors in Ukraine and the EU through SWOT analysis and review of certain provisions in relevant agreements between the EU and other countries. It proposes to forecast the possible impact of a free trade area on stakeholders’ position regarding the agreement by using the ‘stakeholder approach’ (identifying and classifying interest groups and the European Commission’s method of ‘impact assessment’. Based on the results of this research, conclusions are made concerning the fundamental negotiation principles for talks between Ukraine and the EU as to the economic and trade component of the new ‘enhanced agreement.

  19. Impacts of acute exposure of industrial chemicals and pesticides on the survival of fish (Tilapia guineensis and earthworms (Aporrectodea longa

    Doris F. Ogeleka

    2016-11-01

    Full Text Available Ecotoxicological effects of industrial chemicals (Rig wash, Oil eater, Nalco, Glycol™ and pesticides (Propoxur, Deltamethrin, Atrazine, Furadan on Tilapia guineensis (fish and Aporrectodea longa (earthworms were tested using the Organisation for Economic Cooperation and Development (OECD # 203 and 207 protocols. The water and soil ratings indicate that the test chemicals were toxic to the organisms. The estimated 96 hour lethal concentration LC50 values for Rig wash, Oil eater, Nalco EC1304A/COT 505, Glycol, Propoxur, and Deltamethrin were 26.34±0.46, 6.02±0.30, 3.07±0.14, 1.31±0.01, 20.91±0 and 0.01±0 mg/l respectively. In the earthworm bioassay, the estimated 14-day LC50 values for Rigwash, Oil eater, Nalco EC1304A/COT 505, Glycol, Atrazine and Furadan were 80.05±3.5, 151.55±10.7, 172.63±14.2, 63.72±2.43, 4.97±0 and 0.29±0 mg/kg respectively. Safety factors are arbitrarily built in around the LC50 values in order to arrive at environmentally tolerable concentrations. The concentration of a chemical in the receiving environment should not exceed 10% of the L50. The organisms exposed to the test chemicals showed significant difference when compared with the levels measured in the control group. The observed sensitivity of the test organisms to the chemicals indicates that adherence to standard safety limits/measures should be maintained during use and disposal of hazardous chemicals. This would ensure that the biotic components of the Nigerian Niger Delta ecosystem are prudently protected.

  20. Ethylene vinyl acetate polymer as a tool for passive sampling monitoring of hydrophobic chemicals in the salmon farm industry

    Tucca, Felipe; Moya, Heriberto; Barra, Ricardo

    2014-01-01

    Highlights: • The samplers allow the detection of hydrophobic chemicals in the marine environment. • The samplers reach equilibrium quickly, with days of deployment in the field. • The samplers have low costs and easy manipulation for monitoring programs. • A way to collect chemicals in the aquatic environment without human effort. - Abstract: Current monitoring programs are focused on hydrophobic chemicals detection in aquatic systems, which require the collection of high volumes of water samples at a given time. The present study documents the preliminary use of the polymer ethylene vinyl acetate (EVA) as a passive sampler for the detection of a hydrophobic chemical used by salmon industries such as cypermethrin. Initially, an experimental calibration in laboratory was performed to determine the cypermethrin equilibrium between sampler and aquatic medium, which was reached after seven days of exposure. A logarithm of partitioning coefficient EVA–water (log K EVA–W ) of 5.6 was reported. Field deployment of EVA samplers demonstrated average concentrations of cypermethrin in water to be 2.07 ± 0.7 ng L −1 close to salmon cages, while near-shore was 4.39 ± 0.8 ng L −1 . This was a first approach for assessing EVA samplers design as a tool of monitoring in water for areas with salmon farming activity