WorldWideScience

Sample records for maize hybrid breeding

  1. Genomic Prediction of Single Crosses in the Early Stages of a Maize Hybrid Breeding Pipeline

    Directory of Open Access Journals (Sweden)

    Dnyaneshwar C. Kadam

    2016-11-01

    Full Text Available Prediction of single-cross performance has been a major goal of plant breeders since the beginning of hybrid breeding. Recently, genomic prediction has shown to be a promising approach, but only limited studies have examined the accuracy of predicting single-cross performance. Moreover, no studies have examined the potential of predicting single crosses among random inbreds derived from a series of biparental families, which resembles the structure of germplasm comprising the initial stages of a hybrid maize breeding pipeline. The main objectives of this study were to evaluate the potential of genomic prediction for identifying superior single crosses early in the hybrid breeding pipeline and optimize its application. To accomplish these objectives, we designed and analyzed a novel population of single crosses representing the Iowa Stiff Stalk synthetic/non-Stiff Stalk heterotic pattern commonly used in the development of North American commercial maize hybrids. The performance of single crosses was predicted using parental combining ability and covariance among single crosses. Prediction accuracies were estimated using cross-validation and ranged from 0.28 to 0.77 for grain yield, 0.53 to 0.91 for plant height, and 0.49 to 0.94 for staygreen, depending on the number of tested parents of the single cross and genomic prediction method used. The genomic estimated general and specific combining abilities showed an advantage over genomic covariances among single crosses when one or both parents of the single cross were untested. Overall, our results suggest that genomic prediction of single crosses in the early stages of a hybrid breeding pipeline holds great potential to redesign hybrid breeding and increase its efficiency.

  2. Farmers' adoption of maize (Zea mays L.). Hybrids and persistence of landraces in Southwest China: implications for policy and breeding

    NARCIS (Netherlands)

    Li, Jingsong; Lammerts Van Bueren, E.; Jiggins, Janice; Leeuwis, C.

    2012-01-01

    This paper examines changes in the distribution of maize hybrids and landraces in the mountainous areas of southwest China over 1998–2008, farmers’ reasons for cultivar adoption and the implications for national policies in relation to seed production and breeding, based on baseline data and a

  3. Biotechnology in maize breeding

    Directory of Open Access Journals (Sweden)

    Mladenović-Drinić Snežana

    2004-01-01

    Full Text Available Maize is one of the most important economic crops and the best studied and most tractable genetic system among monocots. The development of biotechnology has led to a great increase in our knowledge of maize genetics and understanding of the structure and behaviour of maize genomes. Conventional breeding practices can now be complemented by a number of new and powerful techniques. Some of these often referred to as molecular methods, enable scientists to see the layout of the entire genome of any organism and to select plants with preferred characteristics by "reading" at the molecular level, saving precious time and resources. DNA markers have provided valuable tools in various analyses ranging from phylogenetic analysis to the positional cloning of genes. Application of molecular markers for genetic studies of maize include: assessment of genetic variability and characterization of germ plasm, identification and fingerprinting of genotypes, estimation of genetic distance, detection of monogamic and quantitative trait loci, marker assisted selection, identification of sequence of useful candidate genes, etc. The development of high-density molecular maps which has been facilitated by PCR-based markers, have made the mapping and tagging of almost any trait possible and serve as bases for marker assisted selection. Sequencing of maize genomes would help to elucidate gene function, gene regulation and their expression. Modern biotechnology also includes an array of tools for introducing or deieting a particular gene or genes to produce plants with novel traits. Development of informatics and biotechnology are resulted in bioinformatic as well as in expansion of microarrey technique. Modern biotechnologies could complement and improve the efficiency of traditional selection and breeding techniques to enhance agricultural productivity.

  4. Breeding of speciality maize for industrial purposes

    OpenAIRE

    Pajić Zorica; Radosavljević Milica; Filipović Milomir; Todorović Goran; Srdić Jelena; Pavlov Milovan

    2010-01-01

    The breeding programme on speciality maize with specific traits was established at the Maize Research Institute, Zemun Polje, several decades ago. The initial material was collected, new methods applying to breeding of speciality maize, i.e. popping maize, sweet maize and white-seeded maize, were introduced. The aim was to enhance and improve variability of the initial material for breeding these three types of maize. Then, inbred lines of good combining abilities were developed and used as c...

  5. Breeding of maize types with specific traits at the Maize Research Institute, Zemun Polje

    Directory of Open Access Journals (Sweden)

    Pajić Zorica

    2007-01-01

    Full Text Available Maize is primarily grown as an energy crop, but the use of different specific versions, such as high-oil maize, high-lysine maize, waxy maize, white-seeded maize, popping maize and sweet maize, is quite extensive. Speciality maize, due to its traits and genetic control of these traits, requires a particular attention in handling breeding material during the processes of breeding. It is especially related to prevention of uncontrolled pollination. In order to provide successful selection for a certain trait, the following specific procedures in evaluation of the trait are necessary: the estimation of a popping volume and flake quality in popping maize; the determination of sugars and harvest maturity in sweet maize; the determination of oil in selected samples of high-oil maize types, and so forth. Breeding programmes for speciality maize, except high-amylose maize, have been implemented at the Maize Research Institute, Zemun Polje, Belgrade, for the last 45 years. A great number of high-yielding sweet maize hybrids, popping maize, high-oil and high-lysine, flint and white-seeded maize hybrids were developed during this 45-year period. Auspicious selection and breeding for these traits is facilitated by the abundant genetic variability and technical and technological possibilities necessary for successful selection.

  6. Genetic resources in maize breeding

    Directory of Open Access Journals (Sweden)

    Anđelković Violeta

    2017-01-01

    Full Text Available Maize, wheat and rice are the most important cereals grown in the world. It is predicted that by 2025 maize is likely to become the crop with the greatest production globally. Conservation of maize germplasm provides the main resources for increased food and feed production. Conservation in gene banks (ex-situ is dominant strategy for maize conservation. More than 130 000 maize accessions, e.g. about 40% of total number, are stored in ten largest gene banks worldwide and Maize Research Institute Zemun Polje (MRIZP gene bank, with about 6000 accessions, is among them. Organized collecting missions started in 1961. in the former Yugoslavian territory, and up today, more than 2000 local maize landraces were stored. Pre-breeding activities that refer to identification of desirable traits from unadapted germplasm within genebank, result in materials expected to be included in breeding programs. Successful examples are LAMP, GEM and GENRES projects. At the end of XX century, at MRIZP genebank two pre-breeding activities were undertaken: eco-core and elite-core collections were created and landraces fulfilled particular criteria were chosen. In the last decade, MRIZP genebank collection was used for identification of sources for drought tolerance and improved grain quality. According to agronomic traits and general combining ability, two mini-core collections were created and included in commercial breeding programs.

  7. Breeding of maize types with specific traits at the Maize Research Institute, Zemun Polje

    OpenAIRE

    Pajić Zorica

    2007-01-01

    Maize is primarily grown as an energy crop, but the use of different specific versions, such as high-oil maize, high-lysine maize, waxy maize, white-seeded maize, popping maize and sweet maize, is quite extensive. Speciality maize, due to its traits and genetic control of these traits, requires a particular attention in handling breeding material during the processes of breeding. It is especially related to prevention of uncontrolled pollination. In order to provide successful selection for a...

  8. Ion beam biotechnology and its application to maize breeding

    International Nuclear Information System (INIS)

    Yu Lixia; Li Wenjian; Dong Xicun; Zhou Libin; Ma Shuang

    2008-01-01

    Since the mid of 1980's, ion beam had been widely used in mutagenic breeding of various crops. Ion beam biotechnology had provided a new way for improving corn variety and creating new germplasm resources, and had promoted the development of maize breeding. The ion beam characteristics, the mutagenic mechanism and its application in maize breeding were described. (authors)

  9. Combining Maize Base Germplasm for Cold Tolerance Breeding

    OpenAIRE

    Rodríguez Graña, Víctor Manuel; Butrón Gómez, Ana María; Sandoya Miranda, Germán; Ordás Pérez, Amando; Revilla Temiño, Pedro

    2007-01-01

    Early planting can contribute to increased grain yield of maize (Zea mays L.), but it requires cold tolerance. A limited number of cold-tolerant maize genotypes have been reported. The objectives of this study were to test a new strategy to improve cold tolerance in maize searching for broad x narrow genetic combinations that may be useful as base populations for breeding programs, to compare genotype performance under cold-controlled and field conditions, and to establish the major genetic e...

  10. Genomic-based-breeding tools for tropical maize improvement.

    Science.gov (United States)

    Chakradhar, Thammineni; Hindu, Vemuri; Reddy, Palakolanu Sudhakar

    2017-12-01

    Maize has traditionally been the main staple diet in the Southern Asia and Sub-Saharan Africa and widely grown by millions of resource poor small scale farmers. Approximately, 35.4 million hectares are sown to tropical maize, constituting around 59% of the developing worlds. Tropical maize encounters tremendous challenges besides poor agro-climatic situations with average yields recorded <3 tones/hectare that is far less than the average of developed countries. On the contrary to poor yields, the demand for maize as food, feed, and fuel is continuously increasing in these regions. Heterosis breeding introduced in early 90 s improved maize yields significantly, but genetic gains is still a mirage, particularly for crop growing under marginal environments. Application of molecular markers has accelerated the pace of maize breeding to some extent. The availability of array of sequencing and genotyping technologies offers unrivalled service to improve precision in maize-breeding programs through modern approaches such as genomic selection, genome-wide association studies, bulk segregant analysis-based sequencing approaches, etc. Superior alleles underlying complex traits can easily be identified and introgressed efficiently using these sequence-based approaches. Integration of genomic tools and techniques with advanced genetic resources such as nested association mapping and backcross nested association mapping could certainly address the genetic issues in maize improvement programs in developing countries. Huge diversity in tropical maize and its inherent capacity for doubled haploid technology offers advantage to apply the next generation genomic tools for accelerating production in marginal environments of tropical and subtropical world. Precision in phenotyping is the key for success of any molecular-breeding approach. This article reviews genomic technologies and their application to improve agronomic traits in tropical maize breeding has been reviewed in

  11. Accuracy of genomic selection in European maize elite breeding populations.

    Science.gov (United States)

    Zhao, Yusheng; Gowda, Manje; Liu, Wenxin; Würschum, Tobias; Maurer, Hans P; Longin, Friedrich H; Ranc, Nicolas; Reif, Jochen C

    2012-03-01

    Genomic selection is a promising breeding strategy for rapid improvement of complex traits. The objective of our study was to investigate the prediction accuracy of genomic breeding values through cross validation. The study was based on experimental data of six segregating populations from a half-diallel mating design with 788 testcross progenies from an elite maize breeding program. The plants were intensively phenotyped in multi-location field trials and fingerprinted with 960 SNP markers. We used random regression best linear unbiased prediction in combination with fivefold cross validation. The prediction accuracy across populations was higher for grain moisture (0.90) than for grain yield (0.58). The accuracy of genomic selection realized for grain yield corresponds to the precision of phenotyping at unreplicated field trials in 3-4 locations. As for maize up to three generations are feasible per year, selection gain per unit time is high and, consequently, genomic selection holds great promise for maize breeding programs.

  12. Prospects for Hybrid Breeding in Bioenergy Grasses

    DEFF Research Database (Denmark)

    Aguirre, Andrea Arias; Studer, Bruno; Frei, Ursula

    2012-01-01

    , we address crucial topics to implement hybrid breeding, such as the availability and development of heterotic groups, as well as biological mechanisms for hybridization control such as self-incompatibility (SI) and male sterility (MS). Finally, we present potential hybrid breeding schemes based on SI...... of different hybrid breeding schemes to optimally exploit heterosis for biomass yield in perennial ryegrass (Lolium perenne L.) and switchgrass (Panicum virgatum), two perennial model grass species for bioenergy production. Starting with a careful evaluation of current population and synthetic breeding methods...

  13. Genetic characterization of early maturing maize hybrids (Zea mays L. obtained by protein and RAPD markers

    Directory of Open Access Journals (Sweden)

    Bauer Iva

    2005-01-01

    Full Text Available Knowledge of maize germplasm genetic diversity is important for planning breeding programmes, germplasm conservation per se etc. Genetic variability of maize hybrids grown in the fields is also very important because genetic uniformity implies risks of genetic vulnerability to stress factors and can cause great losts in yield. Early maturing maize hybrids are characterized by shorter vegetation period and they are grown in areas with shorter vegetation season. Because of different climatic conditions in these areas lines and hybrids are developed with different features in respect to drought resistance and disease resistance. The objective of our study was to characterize set of early maturing maize hybrids with protein and RAPD markers and to compare this clasification with their pedigree information. RAPD markers gave significantly higher rate of polymorphism than protein markers. Better corelation was found among pedigree information and protein markers.

  14. Maize forage aptitude: Combining ability of inbred lines and stability of hybrids

    Directory of Open Access Journals (Sweden)

    Luis Máximo Bertoia

    2014-12-01

    Full Text Available Breeding of forage maize should combine improvement achieved for grain with the specific needs of forage hybrids. Production stability is important when maize is used for silage if the planting area is not in the ideal agronomic environment. The objectives of the present research were: (i to quantify environmental and genetic and their interaction effects on maize silage traits; (ii to identify possible heterotic groups for forage aptitude and suggest the formation of potential heterotic patterns, and (iii to identify suitable inbred line combinations for producing hybrids with forage aptitude. Forty-five hybrids derived from diallelic crosses (without reciprocals among ten inbred lines of maize were evaluated in this study. Combined ANOVA over environments showed differences between genotypes (G, environments (E, and their interactions (GEI. Heritability (H2, and genotypic and phenotypic correlations were estimated to evaluate the variation in and relationships between forage traits. Postdictive and predictive AMMI models were fitted to determine the importance of each source of variation, G, E, and GEI, and to select genotypes simultaneously on yield, quality and stability. A predominance of additive effects was found in the evaluated traits. The heterotic pattern Reid-BSSS × Argentine flint was confirmed for ear yield (EY and harvest index (HI. High and broad genetic variation was found for stover and whole plant traits. Some inbred lines had genes with differential breeding aptitude for ear and stover. Stover and ear yield should be the main breeding objectives in maize forage breeding.

  15. Farmers’ desired traits and selection criteria for maize varieties and their implications for maize breeding: A case study from KwaZulu-Natal Province, South Africa

    Directory of Open Access Journals (Sweden)

    Julia Sibiya

    2013-08-01

    Full Text Available Adoption of hybrids and improved varieties has remained low in the smallholder farming sector of South Africa, despite maize being the staple food crop for the majority of households. The objective of this study was to establish preferred maize characteristics by farmers which can be used as selection criteria by maize breeders in crop improvement. Data were collected from three villages of a selected smallholder farming area in South Africa using a survey covering 300 households and participatory rural appraisal methodology. Results indicated a limited selection of maize varieties grown by farmers in the area compared to other communities in Africa. More than 97% of the farmers grew a local landrace called Natal-8-row or IsiZulu. Hybrids and improved open pollinated varieties were planted by less than 40% of the farmers. The Natal-8-row landrace had characteristics similar to landraces from eastern and southern Africa and closely resembled Hickory King, a landrace still popular in Southern Africa. The local landrace was preferred for its taste, recycled seed, tolerance to abiotic stresses and yield stability. Preferred characteristics of maize varieties were high yield and prolificacy, disease resistance, early maturity, white grain colour, and drying and shelling qualities. Farmers were willing to grow hybrids if the cost of seed and other inputs were affordable and their preferences were considered. Our results show that breeding opportunities exist for improving the farmers’ local varieties and maize breeders can take advantage of these preferred traits and incorporate them into existing high yielding varieties.

  16. Breeding for Quality Protein Maize (QPM Varieties: A Review

    Directory of Open Access Journals (Sweden)

    Liliane N. Tandzi

    2017-11-01

    Full Text Available The nutritional evaluation of quality protein maize (QPM in feeding trials has proved its nutritional superiority over non-QPM varieties for human and livestock consumption. The present paper reviews some of the most recent achievements in development of QPM varieties using both conventional and molecular breeding under stressed and non-stressed environments. It is evident that numerous QPM varieties have been developed and released around the world over the past few decades. While the review points out some gaps in information or research efforts, challenges associated with adoption QPM varieties are highlighted and suggestions to overcome them are presented. The adoption of released varieties and challenges facing QPM production at the farmer level are also mentioned. Several breeding methods have been conventionally used to develop QPM varieties in stressed (drought, low soil nitrogen, resistance to grey leaf spot, Turcicum leaf blight, ear rot, and Striga and non-stressed environments. At least three genetic loci have been found to be implicated in controlling the levels of a protein synthesis factor correlated with lysine. They have been mapped on chromosomes 2, 4, and 7. While the use of molecular approaches will improve the efficiency and speed of variety development, the cost implications might limit the use of these technologies in the developing world. More emphasis should be given to breeding QPM for tolerance to environmental stresses, such as low soil pH, heat, and combined heat and drought stress. The post-harvest attack of QPM grains should also be considered. The adoption of QPM genotypes by farmers has been found to be limited mainly due to the minimal collaboration between maize breeders, farmers, agricultural extension workers, and other relevant stakeholders, as well as the need for isolating QPM varieties from normal maize. Therefore, there is need to use participatory plant breeding (PPB and/or participatory variety

  17. Evaluation of genotype x environment interactions in maize hybrids using GGE biplot analysis

    Directory of Open Access Journals (Sweden)

    Fatma Aykut Tonk

    2011-01-01

    Full Text Available Seventeen hybrid maize genotypes were evaluated at four different locations in 2005 and 2006 cropping seasonsunder irrigated conditions in Turkey. The analysis of variance showed that mean squares of environments (E, genotypes (G andGE interactions (GEI were highly significant and accounted for 74, 7 and 19 % of treatment combination sum squares, respectively.To determine the effects of GEI on grain yield, the data were subjected to the GGE biplot analysis. Maize hybrid G16 can be proposedas reliably growing in test locations for high grain yield. Also, only the Yenisehir location could be best representative of overalllocations for deciding about which experimental hybrids can be recommended for grain yield in this study. Consequently, using ofgrain yield per plant instead of grain yield per plot in hybrid maize breeding programs could be preferred by private companies dueto some advantages.

  18. Molecular genetics: Step by step implementation in maize breeding

    Directory of Open Access Journals (Sweden)

    Konstantinov Kosana

    2007-01-01

    Full Text Available Efficiency in plant breeding is determined primarily by the ability to screen for genetic polymorphism, productivity and yield stability early in program. Dependent on the knowledge about the biochemical bases of the trait and nature of its genetic control, trait could be modified either through mutagenesis of genes controlling it or through the transfer of already existing mutant genes, controlling desired trait to different plant genotypes by classic crossing. Objective of this report is to present partly results on the investigation of the possibilities to apply ionizing radiations (fast neutrons, γ -rays and chemical mutagens (EI, iPMS, EMS, ENU to get maize and wheat mutants with increased amount and improved protein quality. Besides this approach in mutation breeding, results on the very early investigation of biochemical background of opaque -2 mutation including use of coupled cell - free RNA and protein synthesis containing components from both wild and opaque - 2 maize genotypes (chromatin, RNA polymerase, microsomall fraction, protein bodies will be presented. Partial results on opaque - 2 gene incorporation in different genetic background are reviewed. Part of report is dealing with different classes of molecular markers (proteins, RFLP, AFLP, RAPD, and SSR application in maize genome polymorphism investigation. Besides application of different molecular markers classes in the investigation of heterosis phenomena they are useful in biochemical pathway of important traits control determination as well. .

  19. Genetic Factors Involved in Fumonisin Accumulation in Maize Kernels and Their Implications in Maize Agronomic Management and Breeding.

    Science.gov (United States)

    Santiago, Rogelio; Cao, Ana; Butrón, Ana

    2015-08-20

    Contamination of maize with fumonisins depends on the environmental conditions; the maize resistance to contamination and the interaction between both factors. Although the effect of environmental factors is a determinant for establishing the risk of kernel contamination in a region, there is sufficient genetic variability among maize to develop resistance to fumonisin contamination and to breed varieties with contamination at safe levels. In addition, ascertaining which environmental factors are the most important in a region will allow the implementation of risk monitoring programs and suitable cultural practices to reduce the impact of such environmental variables. The current paper reviews all works done to address the influence of environmental variables on fumonisin accumulation, the genetics of maize resistance to fumonisin accumulation, and the search for the biochemical and/or structural mechanisms of the maize plant that could be involved in resistance to fumonisin contamination. We also explore the outcomes of breeding programs and risk monitoring of undertaken projects.

  20. Hybrid reactors: Nuclear breeding or energy production?

    International Nuclear Information System (INIS)

    Piera, Mireia; Lafuente, Antonio; Abanades, Alberto; Martinez-Val, J.M.

    2010-01-01

    After reviewing the long-standing tradition on hybrid research, an assessment model is presented in order to characterize the hybrid performance under different objectives. In hybrids, neutron multiplication in the subcritical blanket plays a major role, not only for energy production and nuclear breeding, but also for tritium breeding, which is fundamental requirement in fusion-fission hybrids. All three objectives are better achieved with high values of the neutron multiplication factor (k-eff) with the obvious and fundamental limitation that it cannot reach criticality under any event, particularly, in the case of a loss of coolant accident. This limitation will be very important in the selection of the coolant. Some general considerations will be proposed, as guidelines for assessing the hybrid potential in a given scenario. Those guidelines point out that hybrids can be of great interest for the future of nuclear energy in a framework of Sustainable Development, because they can contribute to the efficient exploitation of nuclear fuels, with very high safety features. Additionally, a proposal is presented on a blanket specially suited for fusion-fission hybrids, although this reactor concept is still under review, and new work is needed for identifying the most suitable blanket composition, which can vary depending on the main objective of the hybrid.

  1. Achievements in NS rapeseed hybrids breeding

    Directory of Open Access Journals (Sweden)

    Marjanović-Jeromela Ana

    2016-01-01

    Full Text Available The increased production of oilseed rape (Brassica napus L. is evident on a global scale, but also in Serbia in the last decade. Rapeseed is used primarily for vegetable oil and processing industry, but also as a source of protein for animal feed and green manure. Following the cultivation of varieties, breeding and cultivation of hybrid rapeseed started in the 1990's, to take advantage of heterosis in F1 generation, while protecting the breeder's rights during seed commercialization. The breeding of hybrid oilseed rape requires high quality starting material (lines with good combining abilities for introduction of male sterility. Ogura sterility system is primarily used at the Institute of Field and Vegetable Crops, Novi Sad, Serbia. To use this system, separate lines are modified with genes for cytoplasmic male sterility (cms female line - mother line and restoration of fertility (Rf male lines - father line. In order to maintain the sterility of the mother line it is necessary to produce a maintainer line of cytoplasmic male sterility. Creation of these lines and hybrids at the Institute of Field and Vegetable Crops was successfully monitored with intense use of cytogenetic laboratory methods. The structure and vitality of pollen, including different phases during meiosis were checked so that cms stability was confirmed during the introduction of these genes into different lines. Rapeseed breeding program in Serbia resulted in numerous varieties through collaboration of researchers engaged in breeding and genetics of this plant species. So far, in addition to 12 varieties of winter rapeseed and two varieties of spring rapeseed, a new hybrid of winter rapeseed NS Ras was registered in Serbia. NS Ras is an early-maturing hybrid characterized by high seed yield and oil content. Average yield of NS Ras for two seasons and three sites was 4256 kg ha-1 of seed and 1704 kg ha-1 of oil. Three promising winter rapeseed hybrids are in the process of

  2. Agronomic potentials of quality protein maize hybrids developed in ...

    African Journals Online (AJOL)

    Agronomic potentials of quality protein maize hybrids developed in Ghana. ... Ghana Journal of Agricultural Science ... and Wheat Improvement (CIMMYT) were evaluated on research stations and in farmers\\' fields in Ghana from 1995 to 1996.

  3. Molecular breeding for developing drought tolerant and disease resistant maize in sub Saharan Africa

    Science.gov (United States)

    The International Maize and Wheat Improvement Center (CIMMYT), in collaboration with public and private partners, is working on developing and disseminating drought tolerant maize for sub Saharan Africa (SSA) using pedigree selection and molecular breeding. In this paper, we provide an overview of ...

  4. Mixing of maize and wheat genomic DNA by somatic hybridization in regenerated sterile maize plants.

    Science.gov (United States)

    Szarka, B.; Göntér, I.; Molnár-Láng, M.; Mórocz, S.; Dudits, D.

    2002-07-01

    Intergeneric somatic hybridization was performed between albino maize ( Zea mays L.) protoplasts and mesophyll protoplasts of wheat ( Triticum aestivum L.) by polyethylene glycol (PEG) treatments. None of the parental protoplasts were able to produce green plants without fusion. The maize cells regenerated only rudimentary albino plantlets of limited viability, and the wheat mesophyll protoplasts were unable to divide. PEG-mediated fusion treatments resulted in hybrid cells with mixed cytoplasm. Six months after fusion green embryogenic calli were selected as putative hybrids. The first-regenerates were discovered as aborted embryos. Regeneration of intact, green, maize-like plants needed 6 months of further subcultures on hormone-free medium. These plants were sterile, although had both male and female flowers. The cytological analysis of cells from callus tissues and root tips revealed 56 chromosomes, but intact wheat chromosomes were not observed. Using total DNA from hybrid plants, three RAPD primer combinations produced bands resembling the wheat profile. Genomic in situ hybridization (GISH) using total wheat DNA as a probe revealed the presence of wheat DNA islands in the maize chromosomal background. The increased viability and the restored green color were the most-significant new traits as compared to the original maize parent. Other intermediate morphological traits of plants with hybrid origin were not found.

  5. Productivity of Maize hybrid maturity classes in Savanna ...

    African Journals Online (AJOL)

    With the continued development and release of such hybrids, there is need to continue to screen them in order to ascertain their potential productivity in different agro-ecologies. A study was, therefore, carried out between June and October 2011, to screen nine hybrid varieties of maize for growth and yield potentials in two ...

  6. NS maize hybrids in production regions of Serbia

    Directory of Open Access Journals (Sweden)

    Stojaković Milisav

    2010-01-01

    Full Text Available Fifteen NS maize hybrids of FAO 300-700 maturity groups were evaluated in strip trials (plot size 1,120 m2 at 30 locations in Serbia. In all locations including all production regions, the most yielding hybrid was NS 6030 with average yield of 10.9 t ha-1. The additive Main Effects and Multiplicative Interaction (AMMI and the sites regression (SREG models were used to study basic structure of G x E interactions and the possible existence of different mega-environments in Serbian maize growing regions in 2009. The results of the 15 hybrids x 10 locations for grain yield in maize showed by biplot technique indicate several specific location-hybrid deviations (the AMMI biplot, and possible existence of at least one mega-environment (the GGE biplot. .

  7. Modern maize hybrids in Northeast China exhibit increased yield potential and resource use efficiency despite adverse climate change.

    Science.gov (United States)

    Chen, Xiaochao; Chen, Fanjun; Chen, Yanling; Gao, Qiang; Yang, Xiaoli; Yuan, Lixing; Zhang, Fusuo; Mi, Guohua

    2013-03-01

    The impact of global changes on food security is of serious concern. Breeding novel crop cultivars adaptable to climate change is one potential solution, but this approach requires an understanding of complex adaptive traits for climate-change conditions. In this study, plant growth, nitrogen (N) uptake, and yield in relation to climatic resource use efficiency of nine representative maize cultivars released between 1973 and 2000 in China were investigated in a 2-year field experiment under three N applications. The Hybrid-Maize model was used to simulate maize yield potential in the period from 1973 to 2011. During the past four decades, the total thermal time (growing degree days) increased whereas the total precipitation and sunshine hours decreased. This climate change led to a reduction of maize potential yield by an average of 12.9% across different hybrids. However, the potential yield of individual hybrids increased by 118.5 kg ha(-1)  yr(-1) with increasing year of release. From 1973 to 2000, the use efficiency of sunshine hours, thermal time, and precipitation resources increased by 37%, 40%, and 41%, respectively. The late developed hybrids showed less reduction in yield potential in current climate conditions than old cultivars, indicating some adaptation to new conditions. Since the mid-1990s, however, the yield impact of climate change exhibited little change, and even a slight worsening for new cultivars. Modern breeding increased ear fertility and grain-filling rate, and delayed leaf senescence without modification in net photosynthetic rate. The trade-off associated with delayed leaf senescence was decreased grain N concentration rather than increased plant N uptake, therefore N agronomic efficiency increased simultaneously. It is concluded that modern maize hybrids tolerate the climatic changes mainly by constitutively optimizing plant productivity. Maize breeding programs in the future should pay more attention to cope with the limiting

  8. Structural properties of maize hybrids established by infrared spectra

    Directory of Open Access Journals (Sweden)

    Radenović Čedomir N.

    2015-01-01

    Full Text Available This paper discusses the application of the infrared (IR spectroscopy method for determination of structural properties of maize hybrid grains. The IR spectrum of maize grain has been registered in the following hybrids: ZP 341, ZP 434 and ZP 505. The existence of spectral bands varying in both number and intensity, as well as their shape, frequency and kinetics have been determined. They have been determined by valence oscillations and deformation oscillations of the following organic compounds: alkanes, alkenes, alkynes, amides, alcohols, ethers, carboxylic acids, esters and aldehydes and ketones, characteristic for biogenic compounds such as carbohydrates, proteins and lipids. In this way, possible changes in the grain structure of observed maize hybrids could be detected.

  9. Fatty acid composition of maize germ oil from high-oil hybrids wet-milling processing

    Directory of Open Access Journals (Sweden)

    Jovanović Petar Lj.

    2005-01-01

    Full Text Available Maize germ was obtained by wet-milling laboratory processing of domestic high-oil maize hybrids. After separation, the germ was subjected to extraction of maize oil. Fatty acid composition of maize germ oil was determined by gas chromatography. The results showed very high levels of unsaturated fatty acids and a constant sum of oleic and linoleic acids in oils of different maize hybrids.

  10. Hybrid recreation by reverse breeding in Arabidopsis thaliana.

    Science.gov (United States)

    Wijnker, Erik; Deurhof, Laurens; van de Belt, Jose; de Snoo, C Bastiaan; Blankestijn, Hetty; Becker, Frank; Ravi, Maruthachalam; Chan, Simon W L; van Dun, Kees; Lelivelt, Cilia L C; de Jong, Hans; Dirks, Rob; Keurentjes, Joost J B

    2014-04-01

    Hybrid crop varieties are traditionally produced by selecting and crossing parental lines to evaluate hybrid performance. Reverse breeding allows doing the opposite: selecting uncharacterized heterozygotes and generating parental lines from them. With these, the selected heterozygotes can be recreated as F1 hybrids, greatly increasing the number of hybrids that can be screened in breeding programs. Key to reverse breeding is the suppression of meiotic crossovers in a hybrid plant to ensure the transmission of nonrecombinant chromosomes to haploid gametes. These gametes are subsequently regenerated as doubled-haploid (DH) offspring. Each DH carries combinations of its parental chromosomes, and complementing pairs can be crossed to reconstitute the initial hybrid. Achiasmatic meiosis and haploid generation result in uncommon phenotypes among offspring owing to chromosome number variation. We describe how these features can be dealt with during a reverse-breeding experiment, which can be completed in six generations (∼1 year).

  11. POTENTIAL OF COMMERCIAL MAIZE HYBRIDS TO GENERATE INBRED LINES IN BREEDING PROGRAMS POTENCIAL DE HÍBRIDOS COMERCIAIS DE MILHO PARA OBTENÇÃO DE LINHAGENS EM PROGRAMAS DE MELHORAMENTO

    Directory of Open Access Journals (Sweden)

    Maria Elisa Ayres Guidetti Zagatto Paterniani

    2010-08-01

    Full Text Available

    With the objective of identifying the best commercial hybrids to extract maize lines, a top cross scheme of 49 endogamic partial lines (S3 was carried out with the IA33 tester. The resultant hybrids were evaluated for grain yield, in Campinas, Mococa, and Palmital (São Paulo State, Brazil, in two agricultural years (2005/2006 and 2006/2007, in a randomized block design, with three replications, in two experiments (TC1 and TC2. Individual and group variance analysis and a grouped analysis of the experiments with common treatments were carried out, for each place. The top cross hybrids were grouped according to the line origins. Afterwards, orthogonal contrasts were carried out by using the Student’s t test, in order to compare the hybrid groups. It was verified that the use of commercial hybrids to extract lines is an interesting strategy. In general, it was also verified that the top cross hybrid groups, whose lines originated from the AG1051, Master, and XL357 hybrids, obtained high yield, with a higher potential for lines extraction.

    KEY-WORDS: Zea mays L.; top cross hybrids; partially endogamic lines (S3.

    O presente trabalho teve por objetivo identificar os melhores híbridos comerciais para extração de linhagens de milho. Para isto, foram

  12. productivity of maize hybrid maturity classes in savanna agro

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    11, ... it requires fertile, well-drained loam soil, well- ... This was equivalent to 320 g per ... Agronomic characteristics of hybrid varieties of maize used in the field experiment in ... moisture content, at which figure it is believed to ..... Textural class.

  13. FERMENTATION PROCESS CHARACTERISTICS OF DIFFERENT MAIZE SILAGE HYBRIDS

    Directory of Open Access Journals (Sweden)

    Daniel Bíro

    2009-03-01

    Full Text Available The aim of this study was to detect the fermentation process differences in different hybrid maize silage. We conserved in laboratory conditions hybrids of whole maize plants with different length of the vegetative period (FAO number. Maize hybrids for silage were harvested in the vegetation stage of the milk-wax maturity of corn and the content of dry matter was from 377.7 to 422.8 g.kg-1. The highest content of dry matter was typical for silages made from the hybrids with FAO number 310 (400.0 g.kg-1 and FAO 300a (400.4 g.kg-1. The content of desirable lactic acid ranged from 23.7 g.kg-1 of dry matter (FAO 350 to 58.9 g.kg-1 of dry matter (FAO 420. We detected the occurrence of undesirable butyric acid in silages from hybrids FAO 250, 300b, 310 and 380. The highest content of total alcohols we found in silages made from hybrid with FAO number 240 (25.2 g.kg-1 of dry matter. Ammonia contents were in tested silages from 0.153 (FAO 270 to 0.223 g.kg-1 of dry matter (FAO 240. The lowest value of silage titration acidity we analyzed in silage made from hybrid FAO 420 (3.66. We observed in maize silages with different length of plant maturity tested in the experiment differences in content of lactic acid, total alcohols, titration acidity, pH and content of fermentation products.

  14. In-vitro mutation breeding technology in maize

    International Nuclear Information System (INIS)

    Nesticky, M.

    1988-08-01

    Gamma-irradiation and in-vitro culture, separately or combined, as a tool for inducing mutation in maize were evaluated. This type of research has been hampered in maize because (i) maize is a cross pollinating crop and highly heterozygous and (ii) embryogenesis and plant regeneration of plants from in-vitro culture have been difficult. In the present study, carefully designed and elaborated experiments were conducted using an inbred line CH1 31 which is capable of somatic embryogenesis for the subject of mutagenesis and another line Bu 8Ro 2 for the test cross partner. Results showed: 1) Both the regeneration of plants from in-vitro culture and gamma-irradiation induced a similar spectrum of morphological variation. Although the variation with somaclones was more frequent that radiation induced mutations under the conditions used, combination of explant irradiation and in-vitro culture gave the highest frequencies of genetic variation. 2) Some of the mutations in quantitative characters can be recogned in heterozygous state. 3) Mutation can cause variation in combining ability (extent of heterosis). 4) Efficiency at embryogenesis differs with genotypes of maize. 3 refs, 11 figs, 4 tabs

  15. Characterization of Indian and exotic quality protein maize (QPM ...

    African Journals Online (AJOL)

    Polymorphism analysis and genetic diversity of normal maize and quality protein maize (QPM) inbreds among locally well adapted germplasm is a prerequisite for hybrid maize breeding program. The diversity analyses of 48 maize accessions including Indian and exotic germplasm using 75 simple sequence repeat (SSR) ...

  16. Stability analysis of maize hybrids across north west of Pakistan

    International Nuclear Information System (INIS)

    Rahman, H.; Durreshawar; Ali, S.; Iftikhar, F.; Khalil, I.H.; Shah, S.M.A.; Ahmad, H.

    2010-01-01

    Stability analysis was carried out to study stability in performance and genotype x environment interactions for 18 maize hybrids across three locations of NWFP i.e., Agricultural University Peshawar (AUP), Agricultural Research Station (ARS), Baffa, (Mansehra) and Cereal Crops Research Institute (CCRI), Pirsabak (Nowshera), during 2006. Data were recorded on different morphological and yield parameters. Analysis of variance indicated significant differences among the three locations for all the traits studied. Hybrids showed significant differences for all parameters except anthesis silking interval (ASI) and ear height, which were non significant across the three locations. The hybrid x location interactions also revealed significant differences for days to 50% silking, days to 50% anthesis, ASI, grain moisture at harvest and grain yield per hectare while non significant differences were observed for plant height and ear height. Based on yield performance of hybrids across the three locations, Baffa ranked first as compared to the other two locations. Hybrid DK-1 x EV-9806 was the highest yielding across the three locations followed by hybrid AGB-108, while the lowest yield was observed for hybrid CSCY. Stability in performance was evident for hybrid CS-2Y2 with regard to days required for silking and anthesis. Stability in anthesis silking interval (ASI) was manifested for hybrid CS-222. Hybrid AGB-108 was comparatively stable for grain yield across the tested locations. Remaining hybrids seemed to be considerably influenced by Genotype x environment interactions encountered at the tested locations and location specific selection has to be made while selecting a maize hybrid for a particular location. (author)

  17. The plus-hybrid effect on the grain yield of two ZP maize hybrids

    Directory of Open Access Journals (Sweden)

    Božinović Sofija

    2010-01-01

    Full Text Available The combined effect of cytoplasmic male sterility and xenia on maize hybrid traits is referred to as the plus-hybrid effect. Two studied ZP hybrids differently responded to this effect for grain yield. All plus-hybrid combinations of the firstly observed hybrid had a higher yield than their fertile counterparts, but not significantly, while only one combination of the second hybrid positively responded, also without statistical significance. It seems that the observed effect mostly depended on the genotype of the female component.

  18. Characterizing the population structure and genetic diversity of maize breeding germplasm in Southwest China using genome-wide SNP markers.

    Science.gov (United States)

    Zhang, Xiao; Zhang, Hua; Li, Lujiang; Lan, Hai; Ren, Zhiyong; Liu, Dan; Wu, Ling; Liu, Hailan; Jaqueth, Jennifer; Li, Bailin; Pan, Guangtang; Gao, Shibin

    2016-08-31

    Maize breeding germplasm used in Southwest China has high complexity because of the diverse ecological features of this area. In this study, the population structure, genetic diversity, and linkage disequilibrium decay distance of 362 important inbred lines collected from the breeding program of Southwest China were characterized using the MaizeSNP50 BeadChip with 56,110 single nucleotide polymorphisms (SNPs). With respect to population structure, two (Tropical and Temperate), three (Tropical, Stiff Stalk and non-Stiff Stalk), four [Tropical, group A germplasm derived from modern U.S. hybrids (PA), group B germplasm derived from modern U.S. hybrids (PB) and Reid] and six (Tropical, PB, Reid, Iowa Stiff Stalk Synthetic, PA and North) subgroups were identified. With increasing K value, the Temperate group showed pronounced hierarchical structure with division into further subgroups. The Genetic Diversity of each group was also estimated, and the Tropical group was more diverse than the Temperate group. Seven low-genetic-diversity and one high-genetic-diversity regions were collectively identified in the Temperate, Tropical groups, and the entire panel. SNPs with significant variation in allele frequency between the Tropical and Temperate groups were also evaluated. Among them, a region located at 130 Mb on Chromosome 2 showed the highest genetic diversity, including both number of SNPs with significant variation and the ratio of significant SNPs to total SNPs. Linkage disequilibrium decay distance in the Temperate group was greater (2.5-3 Mb) than that in the entire panel (0.5-0.75 Mb) and the Tropical group (0.25-0.5 Mb). A large region at 30-120 Mb of Chromosome 7 was concluded to be a region conserved during the breeding process by comparison between S37, which was considered a representative tropical line in Southwest China, and its 30 most similar derived lines. For the panel covered most of widely used inbred lines in Southwest China, this work

  19. Somatically segregating clone of apomictic maize-tripsacum hybrid

    International Nuclear Information System (INIS)

    Yudin, B.F.; Lukina, L.A.

    1988-01-01

    The results of further study on clone AM-5, isolated in the progeny of γ-irradiated plants of the apomictic hybrid of maize with tripsacum (2n = 38) are reported. The variegated-leaf seedlings of the clone segregate somatically and produce variegated, mottled, green (phenotypically normal) plants in different ratios in the apomictic progenies. The variegated, and to a lesser degree, green segregants segregate further. The mottled apomictics as well as mottled branches of variegated seedlings maintain their phenotype on transplantation, however, these is a progressive enhancement of the characters of vegetative lethality. Lethals of two extra maize genomes to the AM-5 nucleus does not affect significantly the scope and nature of segregation. At the same time, the loss of tripsacum genome restores normal phenotype. Clone AM-5 is an example of hybrid apomictic form causing significant morphological variability, which is, nevertheless, not related with apomictic and reversion to the sexual process

  20. Estimation of Production KWS Maize Hybrids Using Nonlinear Regression

    Directory of Open Access Journals (Sweden)

    Florica MORAR

    2018-06-01

    Full Text Available This article approaches the model of non-linear regression and the method of smallest squares with examples, including calculations for the model of logarithmic function. This required data obtained from a study which involved the observation of the phases of growth and development in KWS maize hybrids in order to analyze the influence of the MMB quality indicator on grain production per hectare.

  1. RESOURCE ALLOCATION IN A MAIZE BREEDING PROGRAM FOR NATIVE RESISTANCE TO WESTERN CORN ROOTWORM

    Directory of Open Access Journals (Sweden)

    Ivan Brkić

    2012-06-01

    Full Text Available The objective of this study was to determine the optimum allocation of the number of plants sampled per plot and number of locations and years required for screening maize genotypes for reduced root damage caused by western corn rootworm (WCR larvae, major pest of maize in Croatia, Europe and in the USA. Field trials were conducted on two locations Eastern Croatia, a major maize production area with natural WCR occurrence under continuous maize growing conditions. The trials were set as an incomplete lattice block design in two replications in 2007, 2008 and 2009 including 128 genotypes from various maize gene-pools. Our results suggest that the effect of year and respective interactions including year were the most important factors in maize breeding programs for native resistance to WCR. Thus, screening germplasm for WCR resistance should be made in a multi-year experiment, but not necessarily as a multi-location experiment. Resource optimization should be done by reducing number of roots per plot to minimum 4 sampled plants due to small within-plot environmental variance.

  2. Setting Up Decision-Making Tools toward a Quality-Oriented Participatory Maize Breeding Program

    Science.gov (United States)

    Alves, Mara L.; Brites, Cláudia; Paulo, Manuel; Carbas, Bruna; Belo, Maria; Mendes-Moreira, Pedro M. R.; Brites, Carla; Bronze, Maria do Rosário; Gunjača, Jerko; Šatović, Zlatko; Vaz Patto, Maria C.

    2017-01-01

    Previous studies have reported promising differences in the quality of kernels from farmers' maize populations collected in a Portuguese region known to produce maize-based bread. However, several limitations have been identified in the previous characterizations of those populations, such as a limited set of quality traits accessed and a missing accurate agronomic performance evaluation. The objectives of this study were to perform a more detailed quality characterization of Portuguese farmers' maize populations; to estimate their agronomic performance in a broader range of environments; and to integrate quality, agronomic, and molecular data in the setting up of decision-making tools for the establishment of a quality-oriented participatory maize breeding program. Sixteen farmers' maize populations, together with 10 other maize populations chosen for comparison purposes, were multiplied in a common-garden experiment for quality evaluation. Flour obtained from each population was used to study kernel composition (protein, fat, fiber), flour's pasting behavior, and bioactive compound levels (carotenoids, tocopherols, phenolic compounds). These maize populations were evaluated for grain yield and ear weight in nine locations across Portugal; the populations' adaptability and stability were evaluated using additive main effects and multiplication interaction (AMMI) model analysis. The phenotypic characterization of each population was complemented with a molecular characterization, in which 30 individuals per population were genotyped with 20 microsatellites. Almost all farmers' populations were clustered into the same quality-group characterized by high levels of protein and fiber, low levels of carotenoids, volatile aldehydes, α- and δ-tocopherols, and breakdown viscosity. Within this quality-group, variability on particular quality traits (color and some bioactive compounds) could still be found. Regarding the agronomic performance, farmers' maize populations

  3. Setting Up Decision-Making Tools toward a Quality-Oriented Participatory Maize Breeding Program

    Directory of Open Access Journals (Sweden)

    Mara L. Alves

    2017-12-01

    Full Text Available Previous studies have reported promising differences in the quality of kernels from farmers' maize populations collected in a Portuguese region known to produce maize-based bread. However, several limitations have been identified in the previous characterizations of those populations, such as a limited set of quality traits accessed and a missing accurate agronomic performance evaluation. The objectives of this study were to perform a more detailed quality characterization of Portuguese farmers' maize populations; to estimate their agronomic performance in a broader range of environments; and to integrate quality, agronomic, and molecular data in the setting up of decision-making tools for the establishment of a quality-oriented participatory maize breeding program. Sixteen farmers' maize populations, together with 10 other maize populations chosen for comparison purposes, were multiplied in a common-garden experiment for quality evaluation. Flour obtained from each population was used to study kernel composition (protein, fat, fiber, flour's pasting behavior, and bioactive compound levels (carotenoids, tocopherols, phenolic compounds. These maize populations were evaluated for grain yield and ear weight in nine locations across Portugal; the populations' adaptability and stability were evaluated using additive main effects and multiplication interaction (AMMI model analysis. The phenotypic characterization of each population was complemented with a molecular characterization, in which 30 individuals per population were genotyped with 20 microsatellites. Almost all farmers' populations were clustered into the same quality-group characterized by high levels of protein and fiber, low levels of carotenoids, volatile aldehydes, α- and δ-tocopherols, and breakdown viscosity. Within this quality-group, variability on particular quality traits (color and some bioactive compounds could still be found. Regarding the agronomic performance, farmers

  4. Breeding for Increased Water Use Efficiency in Corn (Maize) Using a Low-altitude Unmanned Aircraft System

    Science.gov (United States)

    Shi, Y.; Veeranampalayam-Sivakumar, A. N.; Li, J.; Ge, Y.; Schnable, J. C.; Rodriguez, O.; Liang, Z.; Miao, C.

    2017-12-01

    Low-altitude aerial imagery collected by unmanned aircraft systems (UAS) at centimeter-level spatial resolution provides great potential to collect high throughput plant phenotyping (HTP) data and accelerate plant breeding. This study is focused on UAS-based HTP for breeding increased water use efficiency in corn in eastern Nebraska. The field trail is part of an effort by the Genomes to Fields consortium effort to grow and phenotype many of the same corn (maize) hybrids at approximately 40 locations across the United States and Canada in order to stimulate new research in crop modeling, the development of new plant phenotyping technologies and the identification of genetic loci that control the adaptation of specific corn (maize) lines to specific environments. It included approximately 250 maize hybrids primary generated using recently off patent material from major seed companies. These lines are the closest material to what farmers are growing today which can be legally used for research purposes and genotyped by the public sector. During the growing season, a hexacopter equipped with a multispectral and a RGB cameras was flown and used to image this 1-hectare field trial near Mead, NE. Sensor data from the UAS were correlated directly with grain yield, measured at the end of the growing season, and were also be used to quantify other traits of interest to breeders including flowering date, plant height, leaf orientation, canopy spectral, and stand count. The existing challenges of field data acquisition (to ensure data quality) and development of effective image processing algorithms (such as detecting corn tassels) will be discussed. The success of this study and others like it will speed up the process of phenotypic data collection, and provide more accurate and detailed trait data for plant biologists, plant breeders, and other agricultural scientists. Employing advanced UAS-based machine vision technologies in agricultural applications have the potential

  5. Resistance to Aspergillus flavus in maize and peanut: Molecular biology, breeding, environmental stress, and future perspectives

    Directory of Open Access Journals (Sweden)

    Jake C. Fountain

    2015-06-01

    Full Text Available The colonization of maize (Zea mays L. and peanut (Arachis hypogaea L. by the fungal pathogen Aspergillus flavus results in the contamination of kernels with carcinogenic mycotoxins known as aflatoxins leading to economic losses and potential health threats to humans. The regulation of aflatoxin biosynthesis in various Aspergillus spp. has been extensively studied, and has been shown to be related to oxidative stress responses. Given that environmental stresses such as drought and heat stress result in the accumulation of reactive oxygen species (ROS within host plant tissues, host-derived ROS may play an important role in cross-kingdom communication between host plants and A. flavus. Recent technological advances in plant breeding have provided the tools necessary to study and apply knowledge derived from metabolomic, proteomic, and transcriptomic studies in the context of productive breeding populations. Here, we review the current understanding of the potential roles of environmental stress, ROS, and aflatoxin in the interaction between A. flavus and its host plants, and the current status in molecular breeding and marker discovery for resistance to A. flavus colonization and aflatoxin contamination in maize and peanut. We will also propose future directions and a working model for continuing research efforts linking environmental stress tolerance and aflatoxin contamination resistance in maize and peanut.

  6. Results of the use of induced mutants in maize breeding

    International Nuclear Information System (INIS)

    Balint, A.; Kovacs, Gezane; Hajos, Laszlone; Geczki, I.

    1979-01-01

    The investigated mutagens have the same effect on the increasing of protein content. In the case of WF9 mutants no essential improvement can be found compared with the untreated co trol selected for protein. ''Lines'' flowering 16-19 days earlier than controls were produced; the most effective agent of this production is the fast neutron. Mutation caused a significant change in their combining ability, but there were more negative variants than positive ones. Three hybrids with stronger stalk than that of MvSc 620 were obtained. Stalk standing ability of mutants did not improve. The flowering date of lines (male) is in r=+0.5672 +++ correlation to the yield of their test hybrid. Mutant lines in SC test cross seemed to be stable. The correlation of the yield of two years is r=+0.8659. The correlation of both the yield of test hybrids to the protein content of mutant lines (r=0.2307) and the flowering date of lines to their protein content (r=-0.3032) is loose. The earliest mutant line of WF9, which produced low crop (5000 kg/ha) when crossed with N6, gave a high-yielding hybrid when crossed with other lines. The average yield of eight combinations was 10050 kg/ha and the highest yield was 11680 kg/ha. (author)

  7. Changes in drought tolerance in maize associated with fifty years of breeding for yield in the US Corn Belt [Zea mays L.

    International Nuclear Information System (INIS)

    Campos, H.; Cooper, M.; Edmeades, G.O.; Löffler, C.; Schussler, J.R.; Ibanez, M.

    2006-01-01

    Understanding the changes underlying past breeding progress may help to focus research efforts and accelerate future genetic gains. The major abiotic stress affecting maize production on a worldwide basis is drought. We addressed the improvements in drought tolerance over a 50-year period of hybrid breeding by evaluating, under targeted stress conditions, a set of 18 Pioneer-brand hybrids that had been released during the 1953-2001 period. Stress treatments were designed as overlapping windows of water deficit covering the pre-flowering to late grain filling development stages. Data were collected on grain yield, yield components and anthesis-silking interval (ASI) and were analyzed using a linear mixed model approach. Genetic gain was measured as the slope of the regression of the trait on the year of hybrid release. Significant, positive genetic gains of varying magnitude were observed for grain yield in all windows of stress evaluated. The largest genetic gains for grain yield were observed under conditions of full irrigation and severe flowering stress. ASI and barrenness, especially under stress at flowering, were significantly reduced by selection. Though flowering remains the most susceptible stage to drought in maize, selection has reduced its negative effects and susceptibility during early grain filling is now of similar importance in many modern hybrids. Yield under drought at flowering has more than kept pace with the increase in yield potential because of the emphasis breeders have placed on improved floral synchrony [it

  8. BIOMETRICAL CHARACTERIZATION OF TEST SITES FOR MAIZE BREEDING

    Directory of Open Access Journals (Sweden)

    Domagoj Šimić

    2003-12-01

    Full Text Available Yield stability of genotypes and analysis of genotype×environment interaction (GEI as important objects in analyses of multienvironment trials are well documented in Croatia. However, little is known about suitability and biometrical characters of the sites where genotypes should be tested. Objectives of this study were in combined analysis of balanced maize trials i to compare test sites in joint linear regression analysis and ii to compare several stability models by clustering test sites in order to assess biometrical suitability of particular test sites. Partitioning of GEI sum of squares according to the symmetrical joint linear regression analysis revealed highly significant Tukey's test, heterogeneity of environmental regressions and residual deviations. Mean grain yields, within-macroenvironment error mean squares, and stability parameters varied considerably among 16 macroenvironments. The highest grain yields were recorded in Osijek in both years and in Varaždin in 1996, with more than 11 t ha-1 . It seems that Feričanci would be optimum test site with relatively high and consistent yield and high values of entry mean squares indicating satisfactory differentiation among cultivars. However, four clustering methods generally did not correspond. According to three out of four clustering methods, two macroenvironments of Feričanci provide similar results. Employing other methods such as shifted multiplicative models, which effectively eliminate significant rank-change interaction, appears to be more reasonable.

  9. Ear leaf photosynthesis and related parameters of transgenic and non-GMO maize hybrids

    Science.gov (United States)

    Hybrid maize (Zea mays L.) has undergone transformation by using transgenic technology to include d-endotoxins for insect control and tolerance for the herbicides glyphosate and glufosinate . Maize hybrids are being grown with multiple transgenic traits into their genotype (stacked-gene). Limited...

  10. Genomics for greater efficiency in pigeonpea hybrid breeding

    Directory of Open Access Journals (Sweden)

    Rachit K Saxena

    2015-10-01

    Full Text Available Cytoplasmic genic male sterility based hybrid technology has demonstrated its immense potential in increasing the productivity of various crops, including pigeonpea. This technology has shown promise for breaking the long-standing yield stagnation in pigeonpea. There are difficulties in commercial hybrid seed production due to non-availability of field-oriented technologies such as time-bound assessment of genetic purity of hybrid seeds. Besides this, there are other routine breeding activities which are labour oriented and need more resources. These include breeding and maintenance of new fertility restorers and maintainer lines, diversification of cytoplasm, and incorporation of biotic and abiotic stress resistances. The recent progress in genomics research could accelerate the existing traditional efforts to strengthen the hybrid breeding technology. Marker based seed purity assessment, identification of heterotic groups; selection of new fertility restorers are few areas which have already been initiated. In this paper efforts have been made to identify critical areas and opportunities where genomics can play a leading role and assist breeders in accelerating various activities related to breeding and commercialization of pigeonpea hybrids.

  11. Natural uranium fueled light water moderated breeding hybrid power reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Schneider, A.; Misolovin, A.; Gilai, D.; Levin, P.

    The feasibility of fission-fusion hybrid reactors based on breeding light water thermal fission systems is investigated. The emphasis is on fuel-self-sufficient (FSS) hybrid power reactors that are fueled with natural uranium. Other LWHRs considered include FSS-LWHRs that are fueled with spent fuel from LWRs, and LWHRs which are to supplement LWRs to provide a tandem LWR-LWHR power economy that is fuel-self-sufficient

  12. Significant characteristics of the new maize hybrid Rubin-7

    Directory of Open Access Journals (Sweden)

    Jeličić Zora

    2003-01-01

    Full Text Available The Rubin-7 maize hybrid belongs to the FAO 700 maturity group. It is characterized by high yield potential for kernels, which was proven during investigations by the Committee for Species. During the three year monitoring period, from 1999 to 2001, the average yield of kernel was 9.412 t/ha which is 5% above the ZP 704 standard, and was highly statistically significant. Resistance to disease was high for Ustilago maydis 0.49, Fusarium spp. 0.13, and Exerohilum turcicum 1.25. Tolerance against Ostrinia nubilalis is 3-33. All of the above parameters and the agreeable phenotype of this hybrid indicate the value of Rubin-7. .

  13. Chronic irradiation effects on variability of maize and teosinte hybrids

    International Nuclear Information System (INIS)

    Cerny, J.; Ledecky, J.; Holas, J.

    1981-01-01

    The plants of the F 1 generation of the back-crosses of maize and teosinte, radiomutant RTZM no. 1 (B1 and B2), were exposed to chronic irradiation with doses from 1000 to 2000 R in a gamma field during their growing season. In the M 4 to F 4 progenies of the B1 hybrid, the correlation between lateness and a higher number of cobs, typical of teosinte, line RTZM no. 1, was significantly distorted. M 4 to F 4 generation lines, characterized by the required higher number of cobs and earliness and by a medium to good combining ability in silage mass yield, were selected from both back-cross hybrids. (author)

  14. Experimental hybrid evaluation of maize, for the Colombian Atlantic coast

    International Nuclear Information System (INIS)

    Urrea, R.; Navas Arboleda, A.A.; Mejia, S.; Ospina, J.G.

    1998-01-01

    To determine the yield potential and phenotypic stability four they were evaluated hybrid experimental simple and seven commercial witness of maize in eleven towns (L), during 1995 and 1996. The used experimental design was at random of complete blocks with four repetitions with parcels of four furrows of five m of longitude, distanced 0.90 m between furrows and 0.45 among blows (49 383 plts/ha) it Differ highly significant (smaller p 0.01) they were detected among genotype (G) and for the interaction G x L in the varieties yield. The analysis of stability of Eberhart and Russell (1966) it indicated that the genotypes had similar regression values; however, a clear tendency was observed to differentiate the behavior in yield of certain materials. The hybrid one experimental there are 76 and the commercial HR 661, they showed a good stability for yield

  15. High bioavailablilty iron maize (Zea mays L.) developed through molecular breeding provides more absorbable iron in vitro (Caco-2 model) and in vivo (Gallus gallus)

    Science.gov (United States)

    2013-01-01

    Background Iron (Fe) deficiency is the most common micronutrient deficiency worldwide. Iron biofortification is a preventative strategy that alleviates Fe deficiency by improving the amount of absorbable Fe in crops. In the present study, we used an in vitro digestion/Caco 2 cell culture model as the guiding tool for breeding and development of two maize (Zea mays L.) lines with contrasting Fe bioavailability (ie. Low and High). Our objective was to confirm and validate the in vitro results and approach. Also, to compare the capacities of our two maize hybrid varieties to deliver Fe for hemoglobin (Hb) synthesis and to improve the Fe status of Fe deficient broiler chickens. Methods We compared the Fe-bioavailability between these two maize varieties with the presence or absence of added Fe in the maize based-diets. Diets were made with 75% (w/w) maize of either low or high Fe-bioavailability maize, with or without Fe (ferric citrate). Chicks (Gallus gallus) were fed the diets for 6 wk. Hb, liver ferritin and Fe related transporter/enzyme gene-expression were measured. Hemoglobin maintenance efficiency (HME) and total body Hb Fe values were used to estimate Fe bioavailability from the diets. Results DMT-1, DcytB and ferroportin expressions were higher (P < 0.05) in the "Low Fe" group than in the "High Fe" group (no added Fe), indicating lower Fe status and adaptation to less Fe-bioavailability. At times, Hb concentrations (d 21,28,35), HME (d 21), Hb-Fe (as from d 14) and liver ferritin were higher in the "High Fe" than in the "Low Fe" groups (P < 0.05), indicating greater Fe absorption from the diet and improved Fe status. Conclusions We conclude that the High Fe-bioavailability maize contains more bioavailable Fe than the Low Fe-bioavailability maize, presumably due to a more favorable matrix for absorption. Maize shows promise for Fe biofortification; therefore, human trials should be conducted to determine the efficacy of consuming the high bioavailable

  16. Response of maize hybrids to varying potassium application in pakistan

    International Nuclear Information System (INIS)

    Haji, M.A.A.; Malik, A.U.; Ahmad, R.

    2009-01-01

    A field experiment was conducted in 2005 and 2006 to evaluate the growth, grain yield, N, P, K concentration in stalk, and quality parameters of three maize hybrids (Pioneer-30D55, Pioneer-3062 and Pioneer-3012) at different levels of potassium (0, 100, 150, 200, and 250 kg ha/sup -1/). Pioneer-30D55 surpassed other two hybrids in growth rate, grain yield (6.01 t ha /sup -1/), N (0.728%), P (0.078%), K (1.79%) concentration in stalk, crude starch (72.97%), protein (8.15%) and oil (4.46%) contents in grains. K application in all treatments significantly increased growth rate, grain yield, N, P, K concentration in stalk, and improved crude starch, protein and oil contents in grains over control. Maximum growth rate, grain yield (6.05 t ha-1), N (0.751% ), P (0.082%), K (1.86%) concentration in stalk, were recorded, when 200 kg K ha/sup -1/ was applied, and beyond this limit, tended to decline its growth rate, grain yield (6.02 t ha/sup -1/), N (0.743%), P (0.071%) and K (1.76%) concentration in stalk when 250 kg K ha-1 was applied, but continued to increase crude starch (72.65%), protein (8.31%) and oil (4.53%) contents in grains. Interactive effects of maize hybrids and potash application levels on growth, yield and N, P, K concentration in stalk, crude starch, oil, and protein contents in grains were, however, non significant. It was concluded that Pioneer-30D55 performed best with 200 kg K ha/sup -1/ when previous soil K status was 124.5 ppm. However, grain quality parameters were the best at 250 kg K ha/sup -1/ application. (author)

  17. Deducing hybrid performance from parental metabolic profiles of young primary roots of maize by using a multivariate diallel approach.

    Directory of Open Access Journals (Sweden)

    Kristen Feher

    Full Text Available Heterosis, the greater vigor of hybrids compared to their parents, has been exploited in maize breeding for more than 100 years to produce ever better performing elite hybrids of increased yield. Despite extensive research, the underlying mechanisms shaping the extent of heterosis are not well understood, rendering the process of selecting an optimal set of parental lines tedious. This study is based on a dataset consisting of 112 metabolite levels in young roots of four parental maize inbred lines and their corresponding twelve hybrids, along with the roots' biomass as a heterotic trait. Because the parental biomass is a poor predictor for hybrid biomass, we established a model framework to deduce the biomass of the hybrid from metabolite profiles of its parental lines. In the proposed framework, the hybrid metabolite levels are expressed relative to the parental levels by incorporating the standard concept of additivity/dominance, which we name the Combined Relative Level (CRL. Our modeling strategy includes a feature selection step on the parental levels which are demonstrated to be predictive of CRL across many hybrid metabolites. We demonstrate that these selected parental metabolites are further predictive of hybrid biomass. Our approach directly employs the diallel structure in a multivariate fashion, whereby we attempt to not only predict macroscopic phenotype (biomass, but also molecular phenotype (metabolite profiles. Therefore, our study provides the first steps for further investigations of the genetic determinants to metabolism and, ultimately, growth. Finally, our success on the small-scale experiments implies a valid strategy for large-scale experiments, where parental metabolite profiles may be used together with profiles of selected hybrids as a training set to predict biomass of all possible hybrids.

  18. Hybrid breeding in pepper (capsicum annuum L.)

    International Nuclear Information System (INIS)

    Milkova, L.; Daskalov, S.

    1981-01-01

    Male sterile forms of peppers with gene sterility were produced by ν- and X-irradiation of dry seeds of cv. Pazarjishka kapiya 794 and Zlaten medal and subsequent selection in M 2 . Male sterile lines suitable for developing hybrid cultivars intended for various kinds of production were obtained by backcrossing with lines and cultivars having valuable economic characters and high combining ability. The promising pepper Belasitsa, Prista, Lyulin and Strouma (all of them for early field production), and Izoumroud and Prevuzhoden (for glasshouse production) are described. (authors)

  19. Genome Wide Association Study for Drought, Aflatoxin Resistance, and Important Agronomic Traits of Maize Hybrids in the Sub-Tropics

    Science.gov (United States)

    Farfan, Ivan D. Barrero; De La Fuente, Gerald N.; Murray, Seth C.; Isakeit, Thomas; Huang, Pei-Cheng; Warburton, Marilyn; Williams, Paul; Windham, Gary L.; Kolomiets, Mike

    2015-01-01

    The primary maize (Zea mays L.) production areas are in temperate regions throughout the world and this is where most maize breeding is focused. Important but lower yielding maize growing regions such as the sub-tropics experience unique challenges, the greatest of which are drought stress and aflatoxin contamination. Here we used a diversity panel consisting of 346 maize inbred lines originating in temperate, sub-tropical and tropical areas testcrossed to stiff-stalk line Tx714 to investigate these traits. Testcross hybrids were evaluated under irrigated and non-irrigated trials for yield, plant height, ear height, days to anthesis, days to silking and other agronomic traits. Irrigated trials were also inoculated with Aspergillus flavus and evaluated for aflatoxin content. Diverse maize testcrosses out-yielded commercial checks in most trials, which indicated the potential for genetic diversity to improve sub-tropical breeding programs. To identify genomic regions associated with yield, aflatoxin resistance and other important agronomic traits, a genome wide association analysis was performed. Using 60,000 SNPs, this study found 10 quantitative trait variants for grain yield, plant and ear height, and flowering time after stringent multiple test corrections, and after fitting different models. Three of these variants explained 5–10% of the variation in grain yield under both water conditions. Multiple identified SNPs co-localized with previously reported QTL, which narrows the possible location of causal polymorphisms. Novel significant SNPs were also identified. This study demonstrated the potential to use genome wide association studies to identify major variants of quantitative and complex traits such as yield under drought that are still segregating between elite inbred lines. PMID:25714370

  20. Genetics of Resistance and Pathogenicity in the Maize/Setosphaeria turcica Pathosystem and Implications for Breeding

    Directory of Open Access Journals (Sweden)

    Ana L. Galiano-Carneiro

    2017-08-01

    Full Text Available Northern corn leaf blight (NCLB, the most devastating leaf pathogen in maize (Zea mays L., is caused by the heterothallic ascomycete Setosphaeria turcica. The pathogen population shows an extremely high genetic diversity in tropical and subtropical regions. Varietal resistance is the most efficient technique to control NCLB. Host resistance can be qualitative based on race-specific Ht genes or quantitative controlled by many genes with small effects. Quantitative resistance is moderately to highly effective and should be more durable combatting all races of the pathogen. Quantitative resistance must, however, be analyzed in many environments (= location × year combinations to select stable resistances. In the tropical and subtropical environments, quantitative resistance is the preferred option to manage NCLB epidemics. Resistance level can be increased in practical breeding programs by several recurrent selection cycles based on disease severity rating and/or by genomic selection. This review aims to address two important aspects of the NCLB pathosystem: the genetics of the fungus S. turcica and the modes of inheritance of the host plant maize, including successful breeding strategies regarding NCLB resistance. Both drivers of this pathosystem, pathogen, and host, must be taken into account to result in more durable resistance.

  1. Yields of ZP sweet maize hybrids in dependence on sowing densities

    Directory of Open Access Journals (Sweden)

    Srdić Jelena

    2008-01-01

    Full Text Available Sweet maize differs from maize of standard grain quality by many important traits that affect the ear appearance, and especially by traits controlling taste. The ear appearance trait encompasses the kernel row number, configuration, row pattern (direction and arrangement, seed set, kernel width and depth, ear shape and size. The quality of immature kernels is controlled by genes by which sweet maize differs from common maize. In order to obtain high-ranking and high-quality yields, it is necessary to provide the most suitable cropping practices for sweet maize hybrids developed at the Maize Research Institute, Zemun Polje. The adequate sowing density is one of more important elements of correct cropping practices. The objective of the present study was to determine the effect of four sowing densities in four ZP sweet maize hybrids of different FAO maturity groups on ear qualitative traits and yields obtained on chernozem type of soil in Zemun Polje. The observed traits of sweet maize (ear length, kernel row number, number of kernels per row, yield and shelling percentage significantly varied over years. The higher sowing density was the higher yield of sweet maize was, hence the highest ear yield of 9.67 t ha-1 , on the average for all four hybrids, was recorded at the highest sowing density of 70,000 plants ha-1. The highest yield was detected in the hybrid ZP 424su. The highest shelling percentage (67.81% was found in the hybrid ZP 521su at the sowing density of 60,000 plants ha-1. Generally, it can be stated that sweet maize hybrids of a shorter growing season (FAO 400 could be cultivated up to 70,000 plants ha-1, while those of a longer growing season (FAO 500 could be grown up to 60,000 plants ha-1. In such a way, the most favorable parameters of yields and the highest yields can be obtained.

  2. Induced mutations in apomictic variety of maize-tripsacum hybrid

    International Nuclear Information System (INIS)

    Yudin, B.F.; Lukina, L.A.

    1983-01-01

    Three generations of six mutants obtained by γ- and x-irradiation of seeds of highly apomictic variety of 38 chromosome maize-tripsacum hybrid have been studied. Radiomutants detected in M 2 preserved the mother type and constance in M 3 and M 4 . One of the mutants, as an exception, manifested somatic splitting, which resulted in the appearance of a new apomictic clone. Irradiation and mutation in some cases were accompanied by the appearance of seedlings with high chromosome numbers in mutant posterity, including apomicts with doubled number of chromosomes, as well as the increase of total part of sexual reproduction; the latter circumstance is considered as a result of modificator balance change caused by treatments. Doubling of chromosome number in 38-chromosome apomicts, according to preliminary data, does not affect significantly the way of reproduction; 76-chromosome forms preserve a high degree of a regular apomixis

  3. Cytoplasmic male sterility (CMS) in hybrid breeding in field crops.

    Science.gov (United States)

    Bohra, Abhishek; Jha, Uday C; Adhimoolam, Premkumar; Bisht, Deepak; Singh, Narendra P

    2016-05-01

    A comprehensive understanding of CMS/Rf system enabled by modern omics tools and technologies considerably improves our ability to harness hybrid technology for enhancing the productivity of field crops. Harnessing hybrid vigor or heterosis is a promising approach to tackle the current challenge of sustaining enhanced yield gains of field crops. In the context, cytoplasmic male sterility (CMS) owing to its heritable nature to manifest non-functional male gametophyte remains a cost-effective system to promote efficient hybrid seed production. The phenomenon of CMS stems from a complex interplay between maternally-inherited (mitochondrion) and bi-parental (nucleus) genomic elements. In recent years, attempts aimed to comprehend the sterility-inducing factors (orfs) and corresponding fertility determinants (Rf) in plants have greatly increased our access to candidate genomic segments and the cloned genes. To this end, novel insights obtained by applying state-of-the-art omics platforms have substantially enriched our understanding of cytoplasmic-nuclear communication. Concomitantly, molecular tools including DNA markers have been implicated in crop hybrid breeding in order to greatly expedite the progress. Here, we review the status of diverse sterility-inducing cytoplasms and associated Rf factors reported across different field crops along with exploring opportunities for integrating modern omics tools with CMS-based hybrid breeding.

  4. Breeding approaches in simultaneous selection for multiple stress tolerance of maize in tropical environments

    Directory of Open Access Journals (Sweden)

    Denić M.

    2007-01-01

    Full Text Available Maize is the principal crop and major staple food in the most countries of Sub-Saharan Africa. However, due to the influence of abiotic and biotic stress factors, maize production faces serious constraints. Among the agro-ecological conditions, the main constraints are: lack and poor distribution of rainfall; low soil fertility; diseases (maize streak virus, downy mildew, leaf blights, rusts, gray leaf spot, stem/cob rots and pests (borers and storage pests. Among the socio-economic production constraints are: poor economy, serious shortage of trained manpower; insufficient management expertise, lack of use of improved varieties and poor cultivation practices. To develop desirable varieties, and thus consequently alleviate some of these constraints, appropriate breeding approaches and field-based methodologies in selection for multiple stress tolerance, were implemented. These approaches are mainly based on: a Crossing selected genotypes with more desirable stress tolerant and other agronomic traits; b Using the disease/pest spreader row method, combined with testing and selection of created progenies under strong to intermediate pressure of drought and low soil fertility in nurseries; and c Evaluation of the varieties developed in multi-location trials under low and "normal" inputs. These approaches provide testing and selection of large number of progenies, which is required for simultaneous selection for multiple stress tolerance. Data obtained revealed that remarkable improvement of the traits under selection was achieved. Biggest progress was obtained in selection for maize streak virus and downy mildew resistance, flintiness and earliness. In the case of drought stress, statistical analyses revealed significant negative correlation between yield and anthesis-silking interval, and between yield and days to silk, but positive correlation between yield and grain weight per ear.

  5. evaluation of striga-resistant early maize hybrids and test locations

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    to evaluate selected Striga-resistant maize (Zea mays L.) hybrids for grain yield and stability of .... Analysis of variance procedure is useful for ... however, variance components alone do not ... for analysing multi-environment trial MET data.

  6. Breeding for culinary and nutritional quality of common bean (Phaseolus vulgaris L. in intercropping systems with maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Rodino A.P.

    1999-01-01

    Full Text Available Common bean (Phaseolus vulgaris L. is widely intercropped with maize (Zea mays L. in the North of Spain. Breeding beans for multiple cropping systems is important for the development of a productive and sustainable agriculture, and is mainly oriented to minimize intercrop competition and to stabilize complementarity with maize. Most agricultural research on intercropping to date has focused on the agronomic and overall yield effects of the different species, but characters related with socio-economic and food quality aspects are also important. The effect of intercropping beans with maize on food seed quality traits was studied for thirty-five bush bean varieties under different environments in Galicia (Northwestern Spain. Parameters determining Asturian (Northern Spain white bean commercial and culinary quality have also been evaluated in fifteen accessions. There are significant differences between varieties in the selected cropping systems (sole crop, intercrop with field maize and intercrop with sweet maize for dry and soaked seed weight, coat proportion, crude protein, crude fat and moisture. Different white bean accessions have been chosen according to their culinary quality. Under these environmental conditions it appears that intercropping systems with sweet maize give higher returns than sole cropping system. It is also suggested that the culinary and nutritional quality potential of some white bean accessions could be the base material in a breeding programme the objectives of which are to develop varieties giving seeds with high food quality.

  7. Assessment of maize stem borer damage on hybrid maize varieties in Chitwan, Nepal

    OpenAIRE

    Buddhi Bahadur Achhami; Santa Bahadur BK; Ghana Shyam Bhandari

    2015-01-01

    Maize is the second most important cereal crop in Nepal. However, national figure of grain production still remains below than the world's average grain production per unit area. Thus, this experiment was designed to determine the suitable time of maize planting, and to assess the peak period of one of the major insects, maize stem borer, in Chitwan condition. The results showed that plant damage percentage as per the maize planting month varies significantly, and the average plant damage per...

  8. Investigating the breeding capabilities of hybrid soliton reactors

    International Nuclear Information System (INIS)

    Catsaros, N.; Gaveau, B.; Jaekel, M.-T.; Jejcic, A.; Maillard, J.; Maurel, G.; Savva, P.; Silva, J.

    2013-01-01

    Highlights: • ANET code simulates innovative reactor designs including Accelerator Driven Systems. • Preliminary analysis of thermal hybrid soliton reactor examines breeding capabilities. • Subsequent studies will aim at optimizing parameters examined in this analysis. • Breeding capacity could be obtained while preserving efficiency and reactor stability. -- Abstract: Nuclear energy industry asks for an optimized exploitation of available natural resources and a safe operation of reactors. A closed fuel cycle requires the mass of fissile material depleted in a reactor to be equal to or less than the fissile mass produced in the same or in other reactors. In this work, a simple closed cycle scheme is investigated, grounded on the use of a conceptual thermal water-cooled and moderated subcritical hybrid soliton reactor (HSR). The concept is a specific Accelerator Driven System (ADS) operating at lower power than usual pressurized water reactors (PWRs). This type of reactor can be inherently safe, since shutdown is achieved by simply interrupting the accelerator's power supply. In this work a preliminary investigation is attempted concerning the existence of conditions under which the operation of a thermal HSR in breeding regime is possible. For this purpose, a conceptual encapsulated core has been defined by choosing the magnitude of a set of parameters which are important from the neutronic point of view, such as core geometry and fuel composition. Indications of breeding operation regime for thermal HSR systems are sought by performing preliminary simulations of this core. For this purpose, the Monte Carlo code ANET, which is being developed based on the high energy physics code GEANT is utilized, as being capable of simulating particles’ transport and interactions produced, including also simulation of low energy neutrons transport. A simple analytical model is also developed and presented in order to investigate the conditions under which breeding in

  9. Hybridization among wild boars, local breeds and commercial breeds - preliminary results

    DEFF Research Database (Denmark)

    Iacolina, Laura; Bakan, Jana; Cubric-Curik, Vlatka

    . Hybridization with the domestic pig is known to occur in Europe, however the degree and extent of the phenomenon is not fully understood yet. Introgression is considered to be a treat to biodiversity and could lead to loss of local adaptation or introgression in the wild population of human selected genes....... A better understanding of the hybridization levels at European scale would provide an important tool for the development of management plans aimed at reducing human conflict but also at preserving biodiversity and genetic differentiation. Additionally, this information would provide new perspectives...... gradients in variability levels among the analysed wild and domestic populations. This preliminary results will be further investigated to address the possible presence of hybrid zone(s) in Europe and the possible implications for conservation and management of both wild populations and local pig breeds...

  10. Diallel analysis of maize hybrids for agronomic and bromatological forage traits

    Directory of Open Access Journals (Sweden)

    Matheus Henrique Silveira Mendes

    2015-05-01

    Full Text Available The aim of this study was to evaluate a diallel of maize hybrids for traits related to forage production and nutritional value. Six commercial hybrids were used as parents. The crosses were made according to a complete diallel design, obtaining the F1 and reciprocal crosses. The evaluations were performed in the main and second crop seasons in the 2010/2011 crop year at the Center for Technological Development in Agriculture of the Federal University of Lavras, located in Lavras, Minas Gerais State, Brazil. The experimental precision indicated by the coefficient of variation was good for all the traits measured. Significant differences were not observed among the crosses for traits related to the nutritional value of the forage. For fresh matter yield and dehusked ear yield, the general combining ability (GCA and specific combining ability (SCA effects were significant. Sowing in the second crop season reduced the yield and nutritional value of the forage. The interaction among the crosses and sowing seasons was not significant. For the beginning of an intrapopulational breeding program, the parent BM 3061 stands out by showing high estimates of GCA for the grain and forage yields.

  11. Breeding potential of S4 maize lines in topcrosses for agronomic and forage traits

    Directory of Open Access Journals (Sweden)

    Mariana Martins Marcondes

    2016-06-01

    Full Text Available This study aimed to evaluate the performance of 46 maize lines (S4 obtained from crosses between the commercial hybrids Penta x P30F53 in topcrosses with the commercial simple cross hybrid Dow8460 (tester and checks (hybrids Penta, P30F53, Dow8460 and Status. The grain yield was evaluated in two environments in Guarapuava, Paraná State, and the effects of genotype, environment and genotype x environment interaction were significant. The grain yield of the topcross hybrids ranged from 8,416 to 13,428 kg ha-1. The agronomic characteristics of the forage and the bromatological characteristics of the silage were evaluated in environment 1. The green mass yield of the forage ranged from 48,767 to 87,714 kg ha-1 and the dry mass yield ranged from 14,749 to 26,130 kg ha-1. The neutral detergent fiber content ranged from 44.85 to 58.45% and the acid detergent fiber content ranged from 28.28 to 37.06%. The relative feed value of the silage ranged between 100.5 and 138.5. The tester, hybrid Dow8460, was efficient to discriminate the relative performance of the S4 lines in the topcrosses.

  12. Obtaining of interspecific hybrids for pea introgressive breeding

    Directory of Open Access Journals (Sweden)

    Sergey Vasilevich Bobkov

    2015-09-01

    Full Text Available Background. Overcoming of reproductive isolation, identification and transfer of agronomic value genes from wild relatives into cultivated pea genomes is an important task for pea introgressive breeding. Materials and methods. Reciprocal hybridization of cultivated pea with wide set of P. fulvum accessions was conducted. Identification of hybrids was carried out with use of biochemical and morphological markers. Identification of unique protein was conducted with use of electrophoretic spectra of mature seeds. Results. Pea interspecific hybrids were obtained in two reciprocal directions of crosses. Cross efficiency in Р. sativum × P. fulvum and P. fulvum × Р. sativum combinations was 36 % and 7 %, respectively. All tested seeds in crosses Р. sativum × P. fulvum were hybrids. Crosses in direction P. fulvum × Р. sativum led to formation of puny seeds restricted in embryo growth. Protein markers of one seed derived in cross P. fulvum × Р. sativum proved its hybrid nature. Morphological markers demonstrated that plant derived from another cross was also a hybrid. Culture of immature embryos was developed for recovering plants in interspecific crosses. Morphogenic calli and regenerated plants were obtained in culture of immature embryos P. fulvum (И592589 × Р. sativum (Aest. Identification of unique protein 7 of P. fulvum was conducted. Inheritance of that protein was proved as monogenic dominant. Conclusion. Efficiency of hybridization in combination P. fulvum × Р. sativum was significantly less in compare to reciprocal one. All products of that cross combination were tested as hybrids. Unique protein 7 of P. fulvum was revealed as a result of mature seed electrophoretic spectra analysis. Inheritance of that protein was determined as monogenic dominant.

  13. On-Farm Study on Intercropping of Hybrid Maize with Different Short Duration Vegetables in the Charland of Tangail

    Directory of Open Access Journals (Sweden)

    MA Rahaman, MM Rahman, S Roy, M Ahmed, MS Bhuyan

    2015-12-01

    Full Text Available An experiment was conducted in charland at the Multi Location Testing (MLT site Bhuapur, Tangail during 2012-13 and 2013-14 under AEZ-8 to find out the suitable intercropping system of hybrid maize with different short duration vegetables with economic return. The experiment was laid out in RCB design with six dispersed (six farmers’ field replications. The hybrid maize (ver. BARI Hybrid maize-7, potato (Diamant, spinach (local, red amaranth (BARI Lalsak-1, Radish (BARI Mula-1 were used as the planting materials. Five treatment combinations viz. T1= Sole Maize, T2= 100% Maize (maize paired row + Potato (var. Diamant, T3= 100% Maize (maize paired row + Spinach (var. local, T4= 100% Maize (maize paired row + Red amaranth (var. BARI Lalshak-1 and T5= 100% Maize (Maize paired row + Radish (var. BARI Mula-1 were studied. Maize grain yield in intercropped combination varied from 5.59-7.62 t ha-1. But the highest grain yield (8.17 t ha-1 was obtained from sole maize. Maize equivalent yields in the intercrops situation ranged from 11.39-19.68 t ha-1 where highest maize equivalent yield 19.68 t ha-1 was recorded from the treatment T3 (100 % maize + spinach. The same combinations also gave highest gross return (Tk. 373930 ha-1 and gross margin (Tk. 258585 ha-1 as well as benefit cost ratio (3.24. Though highest grain yield was recorded from sole maize but equivalent yield and economic return was much lower than the treatment T3.

  14. KASPTM genotyping technology and its use in gene­tic-breeding programs (a study of maize

    Directory of Open Access Journals (Sweden)

    Н. Е. Волкова

    2017-06-01

    Full Text Available Purpose. To review publications relating to the key point of the genotyping technology that is competitive allele-specific polymerase chain reaction (which is called now Kompetitive Allele Specific PCR, KASPTM and its use in various genetic-breeding researching (a study of maize. Results. The essence of KASP-genotyping, its advantages are highlighted. The requirements for matrix DNA are presented, since the success of the KASP-analysis depends on its qua­lity and quantity. Examples of global projects of plant breeding for increasing crop yields using the KASP genoty­ping technology are given. The results of KASP genotyping and their introduction into breeding and seed production, in particular, for determining genetic identity, genetic purity, origin check, marker-assisted selection, etc. are presented using maize as an example. It is demonstrated how geno­mic selection according to KASP genotyping technology can lead to rapid genetic enhancement of drought resistance in maize. Comparison of the effectiveness of creating lines with certain traits (for example, combination of high grain yield and drought resistance using traditional breeding approaches (phenotype selection and molecular genetic methods (selection by markers was proved that it takes four seasons (two years in case of greenhouses in order to unlock the potential of the plant genotype using traditional self-pollination, test-crossing and definitions, while using markers, the population was enriched with target alleles during one season. At the same time, there was no need for a stress factor. Conclusions. KASP genotyping technology is a high-precision and effective tool for modern genetics and breeding, which is successfully used to study genetic diversity, genetic relationship, population structure, gene­tic identity, genetic purity, origin check, quantitative locus mapping, allele mapping, marker-assisted selection, marker-assisted breeding. It is expedient and timely to

  15. ALTERNATIVES TO IMPROVE HYBRIDIZATION EFFICIENCY IN Eucalyptus BREEDING PROGRAMS

    Directory of Open Access Journals (Sweden)

    Roselaine Cristina Pereira

    2002-01-01

    Full Text Available Simple and quick hybridization procedures and ways to keep pollen grains viable for long periods are sought in plant breeding programs to provide greater work flexibility. The presentstudy was carried out to assess the efficiency of pollinations made shortly after flower emasculationand the viability of stored pollen from Eucalyptus camaldulensis and Eucalyptus urophylla clones cultivated in Northwestern Minas Gerais State. Controlled pollinations were carried out at zero, one,three, five and seven days after emasculation. Hybridization efficiency was assessed by thepercentage of viable fruits, number of seeds produced per fruit, percentage of viable seeds and also bycytological observation of the pollen development along the style. Flower buds from clones of the twospecies were collected close to anthesis to assess the viability of pollen grain storage. Pollen was thencollected and stored in a freezer (-18oC for 1, 2 and 3 months. Pollen assessed was carried out by invitro and in vivo germination tests. The efficiency of the pollinations varied with their delay and alsobetween species. The greatest pollination efficiency was obtained when they were carried out on thethird and fifth day after emasculation, but those performed simultaneously with emasculationproduced enough seeds to allow this practice in breeding programs. The decrease in pollen viabilitywith storage was not sufficiently significant to preclude the use of this procedure in artificialhybridization.

  16. Use of wheat and maize protein mutants in breeding for improved protein quantity and quality

    International Nuclear Information System (INIS)

    Denic, M.; Dumanovic, J.; Misevic, D.; Konstantinov, K.; Fidler, D.; Stojanovic, Z.

    1984-01-01

    Selected offspring progenies (50 mutant lines) originating from mutation experiments with hexaploid wheat (cv. Bezostaya 1) were analysed for induced heritable variation in protein content, lysine content, grain yield and protein and lysine yields. Ten of these mutant lines were crossed with 11 local varieties. The protein and lysine contents were measured in the progenies of these crossings. The data showed better correlations of grain yield with protein and lysine yields than the protein and lysine contents with their corresponding yields. F 1 seeds showed higher lysine and protein contents than local varieties. Data with maize showed that: (1) the total endosperm protein content of modified opaque-2 types increases with an increase in the degree of normalization; (2) the lysine content in dry matter and protein in normalized o 2 kernels usually decreases with the increasing degree of normalization; (3) the lysine content in protein of modified o 2 kernels, is, in general, satisfactory up to the normalization of about 50% of endosperm. A desirable modification of o 2 endosperm within line A632o 2 was selected and crossed with o 2 lines. Most of the tested hybrids had a good protein quality, but endosperm modification was not evident in all hybrids. The o 2 gene was incorporated into high protein backgrounds. Besides a high protein content and quality, some of the hybrids tested had a comparable or higher yield than the o 2 check. (author)

  17. CORRELATION BETWEEN SEED TESTS AND FIELD EMERGENCE OF TWO MAIZE HYBRIDS (SC704 AND SC500)

    OpenAIRE

    A.A. ALILOO; B. SHOKATI

    2011-01-01

    Early emergence and stand establishment of maize (Zea mays L.) are considered to be the most important yield-contributing factors. The influence of seed vigor on these factors is vital. Therefore, five laboratory tests and field experiment were conducted on basis of a randomized complete block design (RCBD) with five replications in 2011, to evaluate the correlation among the seed vigor tests and field emergence of two maize hybrids (SC704 and SC500). In laboratory tests, differences between ...

  18. Effects of agroecological conditions and hybrid combinations on maize seed germination

    OpenAIRE

    Tabaković, M.; Glamočlija, Đ.; Jovanović, S.; Popović, V.; Simić, D.; Anđelković, S.

    2013-01-01

    Germination energy and seed germination of four maize combinations cultivated under different growing conditions were observed. Analysis of hybrid seed of four commercial combinations derived at the Maize Research Institute, Zemun Polje, grown in three locations, were done on the working sample of 4 x 100 seeds under laboratory conditions. The experimental data was processed for the mean and total variability (X and C.V.) for both seed traits and for each t...

  19. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production.

    Science.gov (United States)

    Whitford, Ryan; Fleury, Delphine; Reif, Jochen C; Garcia, Melissa; Okada, Takashi; Korzun, Viktor; Langridge, Peter

    2013-12-01

    Global food security demands the development and delivery of new technologies to increase and secure cereal production on finite arable land without increasing water and fertilizer use. There are several options for boosting wheat yields, but most offer only small yield increases. Wheat is an inbred plant, and hybrids hold the potential to deliver a major lift in yield and will open a wide range of new breeding opportunities. A series of technological advances are needed as a base for hybrid wheat programmes. These start with major changes in floral development and architecture to separate the sexes and force outcrossing. Male sterility provides the best method to block self-fertilization, and modifying the flower structure will enhance pollen access. The recent explosion in genomic resources and technologies provides new opportunities to overcome these limitations. This review outlines the problems with existing hybrid wheat breeding systems and explores molecular-based technologies that could improve the hybrid production system to reduce hybrid seed production costs, a prerequisite for a commercial hybrid wheat system.

  20. Screening for salt tolerance in maize (zea mays l.) hybrids at an early seedling stage

    International Nuclear Information System (INIS)

    Akram, M.; Mohsan; Ashraf, M.Y.; Ahmad, R.; Waraich, E.A.

    2010-01-01

    An efficient and simple mass screening technique for selection of maize hybrids for salt tolerance has been developed. Genetic variation for salt tolerance was assessed in hybrid maize (Zea mays L.) using solution-culture technique. The study was conducted in solution culture exposed to four salinity levels (control, 40, 80 and 120 mM NaCl). Seven days old maize seedlings were transplanted in themopol sheet in iron tubs containing one half strength Hoagland nutrient solutions and salinized with common salt (NaCl). The experiment was conducted in the rain protected wire house of Stress Physiology Laboratory of NIAB, Faisalabad, Pakistan. Ten maize hybrids were used for screening against four salinity levels. Seedling of each hybrid was compared for their growth under saline conditions as a percentage of the control values. Considerable variations were observed in the root, shoot length and biomass of different hybrids at different salinity levels. The leaf sample analyzed for inorganic osmolytes (sodium, potassium and calcium) showed that hybrid Pioneer 32B33 and Pioneer 30Y87 have high biomass, root shoot fresh weight and high ratio and showed best salt tolerance performance at all salinity levels on overall basis. (author)

  1. Use of Genomic Estimated Breeding Values Results in Rapid Genetic Gains for Drought Tolerance in Maize

    Directory of Open Access Journals (Sweden)

    B.S. Vivek

    2017-03-01

    Full Text Available More than 80% of the 19 million ha of maize ( L. in tropical Asia is rainfed and prone to drought. The breeding methods for improving drought tolerance (DT, including genomic selection (GS, are geared to increase the frequency of favorable alleles. Two biparental populations (CIMMYT-Asia Population 1 [CAP1] and CAP2 were generated by crossing elite Asian-adapted yellow inbreds (CML470 and VL1012767 with an African white drought-tolerant line, CML444. Marker effects of polymorphic single-nucleotide polymorphisms (SNPs were determined from testcross (TC performance of F families under drought and optimal conditions. Cycle 1 (C1 was formed by recombining the top 10% of the F families based on TC data. Subsequently, (i C2[PerSe_PS] was derived by recombining those C1 plants that exhibited superior per se phenotypes (phenotype-only selection, and (ii C2[TC-GS] was derived by recombining a second set of C1 plants with high genomic estimated breeding values (GEBVs derived from TC phenotypes of F families (marker-only selection. All the generations and their top crosses to testers were evaluated under drought and optimal conditions. Per se grain yields (GYs of C2[PerSe_PS] and that of C2[TC-GS] were 23 to 39 and 31 to 53% better, respectively, than that of the corresponding F population. The C2[TC-GS] populations showed superiority of 10 to 20% over C2[PerSe-PS] of respective populations. Top crosses of C2[TC-GS] showed 4 to 43% superiority of GY over that of C2[PerSe_PS] of respective populations. Thus, GEBV-enabled selection of superior phenotypes (without the target stress resulted in rapid genetic gains for DT.

  2. EVALUATION OF HYBRIDS FROM SIMPLE CROSSES USING MAIZE ELITE LANDRACES WITH FORAGE OUTSTANDING CHARACTERISTICS FOR A MEXICAN ARID LAND

    Directory of Open Access Journals (Sweden)

    José L. García Hernández

    2013-04-01

    Full Text Available The Comarca Lagunera region is the most important area of maize forage in México. In this region; which is shared by the Mexican States of Coahuila and Durango, are used a great amount of hybrids and varieties of maize imported from other countries. Generally, these genotypes are not completely adapted to the soil and/or climatic conditions of the region. These antecedents lead scientists to pursuit for genotypes with the best adaptation to such conditions. The present investigation was carried out with the aim to find the best hybrids from the crosses of ten self-pollinating landraces following a diallel mating design. The landraces were obtained from different institutions: a the International Maize and Wheat Improvement Center (CIMMYT, b the “Antonio Narro” Agrarian Autonomist University (UAAAN, and c the National Institute of Agriculture, Forestry and Livestock Research (INIFAP. The following variables were evaluated from the hybrids: whole plant fresh matter yield (FMY, whole plant dry matter (DMY, fresh fruit yield (FFY fresh stem yield (FSY, and fresh foliar yield (FLY. All variables reported as t ha-1. The Griffing statistical analysis was used to determine the general combining ability (GCA, and the specific combining ability (SCA. The highest values of GCA were obtained for the landraces M7, M8, and M9. The hybrids with highest SCA were: M5xM7, M2xM7, M6x10, M4xM8, M5xM8, M8xM10, M2xM5, M1xM10 and M6xM9. Two of these hybrids (M5xM7 and M2xM7 also showed the highest values for FMY and DMY. In conclusion, there is enough variability on FMY and DMY to believe on the possibility to find the most appropriate hybrid for the targeted region, and also to extend the breeding program to other arid lands in México

  3. Sunflower Hybrid Breeding: From Markers to Genomic Selection.

    Science.gov (United States)

    Dimitrijevic, Aleksandra; Horn, Renate

    2017-01-01

    In sunflower, molecular markers for simple traits as, e.g., fertility restoration, high oleic acid content, herbicide tolerance or resistances to Plasmopara halstedii, Puccinia helianthi , or Orobanche cumana have been successfully used in marker-assisted breeding programs for years. However, agronomically important complex quantitative traits like yield, heterosis, drought tolerance, oil content or selection for disease resistance, e.g., against Sclerotinia sclerotiorum have been challenging and will require genome-wide approaches. Plant genetic resources for sunflower are being collected and conserved worldwide that represent valuable resources to study complex traits. Sunflower association panels provide the basis for genome-wide association studies, overcoming disadvantages of biparental populations. Advances in technologies and the availability of the sunflower genome sequence made novel approaches on the whole genome level possible. Genotype-by-sequencing, and whole genome sequencing based on next generation sequencing technologies facilitated the production of large amounts of SNP markers for high density maps as well as SNP arrays and allowed genome-wide association studies and genomic selection in sunflower. Genome wide or candidate gene based association studies have been performed for traits like branching, flowering time, resistance to Sclerotinia head and stalk rot. First steps in genomic selection with regard to hybrid performance and hybrid oil content have shown that genomic selection can successfully address complex quantitative traits in sunflower and will help to speed up sunflower breeding programs in the future. To make sunflower more competitive toward other oil crops higher levels of resistance against pathogens and better yield performance are required. In addition, optimizing plant architecture toward a more complex growth type for higher plant densities has the potential to considerably increase yields per hectare. Integrative approaches

  4. Sunflower Hybrid Breeding: From Markers to Genomic Selection

    Science.gov (United States)

    Dimitrijevic, Aleksandra; Horn, Renate

    2018-01-01

    In sunflower, molecular markers for simple traits as, e.g., fertility restoration, high oleic acid content, herbicide tolerance or resistances to Plasmopara halstedii, Puccinia helianthi, or Orobanche cumana have been successfully used in marker-assisted breeding programs for years. However, agronomically important complex quantitative traits like yield, heterosis, drought tolerance, oil content or selection for disease resistance, e.g., against Sclerotinia sclerotiorum have been challenging and will require genome-wide approaches. Plant genetic resources for sunflower are being collected and conserved worldwide that represent valuable resources to study complex traits. Sunflower association panels provide the basis for genome-wide association studies, overcoming disadvantages of biparental populations. Advances in technologies and the availability of the sunflower genome sequence made novel approaches on the whole genome level possible. Genotype-by-sequencing, and whole genome sequencing based on next generation sequencing technologies facilitated the production of large amounts of SNP markers for high density maps as well as SNP arrays and allowed genome-wide association studies and genomic selection in sunflower. Genome wide or candidate gene based association studies have been performed for traits like branching, flowering time, resistance to Sclerotinia head and stalk rot. First steps in genomic selection with regard to hybrid performance and hybrid oil content have shown that genomic selection can successfully address complex quantitative traits in sunflower and will help to speed up sunflower breeding programs in the future. To make sunflower more competitive toward other oil crops higher levels of resistance against pathogens and better yield performance are required. In addition, optimizing plant architecture toward a more complex growth type for higher plant densities has the potential to considerably increase yields per hectare. Integrative approaches

  5. Sunflower Hybrid Breeding: From Markers to Genomic Selection

    Directory of Open Access Journals (Sweden)

    Aleksandra Dimitrijevic

    2018-01-01

    Full Text Available In sunflower, molecular markers for simple traits as, e.g., fertility restoration, high oleic acid content, herbicide tolerance or resistances to Plasmopara halstedii, Puccinia helianthi, or Orobanche cumana have been successfully used in marker-assisted breeding programs for years. However, agronomically important complex quantitative traits like yield, heterosis, drought tolerance, oil content or selection for disease resistance, e.g., against Sclerotinia sclerotiorum have been challenging and will require genome-wide approaches. Plant genetic resources for sunflower are being collected and conserved worldwide that represent valuable resources to study complex traits. Sunflower association panels provide the basis for genome-wide association studies, overcoming disadvantages of biparental populations. Advances in technologies and the availability of the sunflower genome sequence made novel approaches on the whole genome level possible. Genotype-by-sequencing, and whole genome sequencing based on next generation sequencing technologies facilitated the production of large amounts of SNP markers for high density maps as well as SNP arrays and allowed genome-wide association studies and genomic selection in sunflower. Genome wide or candidate gene based association studies have been performed for traits like branching, flowering time, resistance to Sclerotinia head and stalk rot. First steps in genomic selection with regard to hybrid performance and hybrid oil content have shown that genomic selection can successfully address complex quantitative traits in sunflower and will help to speed up sunflower breeding programs in the future. To make sunflower more competitive toward other oil crops higher levels of resistance against pathogens and better yield performance are required. In addition, optimizing plant architecture toward a more complex growth type for higher plant densities has the potential to considerably increase yields per hectare

  6. Influence of 24-epibrassinolide on seedling growth and distribution of mineral elements in two maize hybrids

    Directory of Open Access Journals (Sweden)

    Waisi Hadi K.

    2017-01-01

    Full Text Available In this study, influence of wide range of 24-epibrassinolide (24-EBL on early growth potential of two maize hybrids (ZP 434 and ZP 704 was examined. Paper concerns germination, seedling biomass, important chlorophylls content, and redistribution of elements (heavy metals and microelements, in a seedlings of the maize hybrids, as influenced by different 24-EBL concentrations. It was found that hybrids react differently to exogenously applied hormone. The biggest differences between two examined maize hybrids considering the germination level were reached with the lowest values at 86% for ZP 704 and 72% for ZP 434, gained at the highest applied concentration of 24-EBL. Seedlings of hybrid ZP 434 reacted positively moderately in the case of shoot length and biomass under the influence of 24-EBL, but seedlings of hybrid ZP 704 had lower values of these parameters under the influence of the phytohormone. Chlorophyll a/b ratios showed that photosynthetic apparatus of seedlings of the hybrids is not active in this stage of development. It was established that 24-EBL affects seedling growth and re-allocation of naturally present mineral elements in early growth stages and that could be one of the reason for poorer growth of ZP 704 treated with various concentrations of 24-EBL, comparing to control. When applied in lower concentrations, 24-EBL is blocking toxic elements such as chromium and nickel to relocate to vital parts of plant, what was case in hybrid ZP704. In case of ZP 434, lower concentrations of 24-EBL are affecting re-allocation of Cu and Cr and these findings suggest that maize hybrid seedlings treated with lower concentrations of 24-EBL could survive and be successful in polluted areas. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR31080

  7. Performance evaluation of commercial maize hybrids across diverse Terai environments during the winter season in Nepal

    Directory of Open Access Journals (Sweden)

    Mahendra Prasad Tripathi

    2016-12-01

    Full Text Available The hybrid maize cultivars of multinational seed companies are gradually being popular among the farmers in Nepal. This paper reports on research finding of 117 maize hybrids of 20 seed companies assessed for grain yield and other traits at three sites in winter season of 2011 and 2012. The objective of the study was to identify superior maize hybrids suitable for winter time planting in eastern, central and inner Terai of Nepal. Across site analysis of variance revealed that highly significant effect of genotype and genotype × environment interaction (GEI on grain yield of commercial hybrids. Overall, 47 genotypes of 16 seed companies identified as high yielding and stable based on superiority measures. The statistical analysis ranked topmost three genotypes among tested hybrids as P3856 (10515 kg ha-1, Bisco prince (8763 kg ha-1 as well as Shaktiman (8654 kg ha-1 in the first year; and 3022 (8378 kg ha-1, Kirtiman manik (8323 kg ha-1 as well as Top class (7996 kg ha-1 in the second year. It can be concluded that stable and good performing hybrids identified as potential commercial hybrids for general cultivation on similar environments in Nepal.

  8. Assessment of maize stem borer damage on hybrid maize varieties in Chitwan, Nepal

    Directory of Open Access Journals (Sweden)

    Buddhi Bahadur Achhami

    2015-12-01

    Full Text Available Maize is the second most important cereal crop in Nepal. However, national figure of grain production still remains below than the world's average grain production per unit area. Thus, this experiment was designed to determine the suitable time of maize planting, and to assess the peak period of one of the major insects, maize stem borer, in Chitwan condition. The results showed that plant damage percentage as per the maize planting month varies significantly, and the average plant damage percentage by stem borer was up to 18.11%. Length of the feeding tunnel in maize stem was significantly higher in January than July. In case of exit holes made by borer counted more than four holes per plant that were planted in the month of January. All in all, except the tunnel length measurement per plant, we observed similar pattern in other borer damage parameters such as exit whole counts and plant damage percentage within the tested varieties. Stem borer damage was not significantly affect on grain yield.

  9. Genomic Analyses Reveal the Influence of Geographic Origin, Migration, and Hybridization on Modern Dog Breed Development

    Directory of Open Access Journals (Sweden)

    Heidi G. Parker

    2017-04-01

    Full Text Available There are nearly 400 modern domestic dog breeds with a unique histories and genetic profiles. To track the genetic signatures of breed development, we have assembled the most diverse dataset of dog breeds, reflecting their extensive phenotypic variation and heritage. Combining genetic distance, migration, and genome-wide haplotype sharing analyses, we uncover geographic patterns of development and independent origins of common traits. Our analyses reveal the hybrid history of breeds and elucidate the effects of immigration, revealing for the first time a suggestion of New World dog within some modern breeds. Finally, we used cladistics and haplotype sharing to show that some common traits have arisen more than once in the history of the dog. These analyses characterize the complexities of breed development, resolving longstanding questions regarding individual breed origination, the effect of migration on geographically distinct breeds, and, by inference, transfer of trait and disease alleles among dog breeds.

  10. The Reaction of some Maize Hybrids, Created at ARDS TURDA, to Fusarium spp. Infection

    Directory of Open Access Journals (Sweden)

    Laura ȘOPTEREAN

    2017-05-01

    Full Text Available The most important disease of maize in Romania are stalk and ear rot, which caused yield losses in average of 20%. The resistant hibrids represent one of the most efficient solution for reducing the field loses caused by Fusarium spp. on the maize (Nagy et al., 2006. Diseases caused by Fusarium spp. can affect the yield and grain quality of maize because of contamination with numerous mycotoxins produced by these fungi (Czembor et al., 2015. The purpose of this paper was to know more about the reaction of different maize hybrids to Fusarium and the evaluating the effect of ear rot on the yield ability and mycotoxins accumulation. The experiments carried out at ARDS Turda, during four years (2012-2015. The biological material was represented by 8 hybrids, from different maturity groups, tested in two infection conditions with Fusarium spp. (natural and artificial infections. The temperature and rainfalls of the four years of experiments corresponding to the vegetation of maize (april-september are influenced favourably the pathogenesis of stalk and ear rot caused by Fusarium spp. and a good discrimination of the resistance reaction of genotypes. Fusarium ear rot has significantly affected production capacity and chemical composition of corn hybrids tested. In conditions of artificial infection with Fusarium spp. was a decrease in the content of starch, fat and increased protein content compared with artificially inoculated variants. The quantity of fumonizin B1+B2 has reached to 5630 μg/kg in conditions of artificial infection. There are negative correlations between production capacity and degree of attack of fusarium ear rot; depending on the reacting genotypes tested increasing disease causes production decrease. The response of maize hybrids to Fusarium infection is influenced by infection and climatic conditions. These factors affect production both in terms of quantity and quality and accumulation of mycotoxins.

  11. Response of S.C.704 maize hybrid seed production to planting pattern

    African Journals Online (AJOL)

    In order to determine the best planting pattern for producing the S.C.704 hybrid seed of maize, a field experiment was conducted in 2007 at Safiabad Dezful Research Center via a complete block design with four treatments and replicates each. The treatments were: D1 (one row each of paternal and maternal lines), D2 (two ...

  12. Effect of silage maize hybrid (dry down vs. stay green) on dairy cow performance

    NARCIS (Netherlands)

    Zom, R.L.G.; Schooten, van H.A.; Laar, van H.

    2008-01-01

    A randomized block design experiment was conducted to evaluate the effects of two contrasting silage maize hybrids (DD: dry down vs. SG: stay green) harvested at 33% dry matter (DM) on in situ degradation and dairy cow performance. Thirty-eight Red-HF cows were assigned to two silage treatments and

  13. Analysis of Adoption Spell of Hybrid Maize in the Central Rift Valley ...

    African Journals Online (AJOL)

    This paper estimates farm household level determinants of the speed of adoption of hybrid maize in the central rift valley of Ethiopia in the framework of the dynamic time on cross-sectional data. Descriptive statistics and duration model were used to study the objectives of the study. The results from descriptive analysis ...

  14. Preliminary neutronics calculation of fusion-fission hybrid reactor breeding spent fuel assembly

    International Nuclear Information System (INIS)

    Ma Xubo; Chen Yixue; Gao Bin

    2013-01-01

    The possibility of using the fusion-fission hybrid reactor breeding spent fuel in PWR was preliminarily studied in this paper. According to the fusion-fission hybrid reactor breeding spent fuel characteristics, PWR assembly including fusion-fission hybrid reactor breeding spent fuel was designed. The parameters such as fuel temperature coefficient, moderator temperature coefficient and their variation were investigated. Results show that the neutron properties of uranium-based assembly and hybrid reactor breeding spent fuel assembly are similar. The design of this paper has a smaller uniformity coefficient of power at the same fissile isotope mass percentage. The results will provide technical support for the future fusion-fission hybrid reactor and PWR combined with cycle system. (authors)

  15. The response of parental components of ZP maize hybrids to effects of herbicides

    Directory of Open Access Journals (Sweden)

    Stefanović Lidija

    2007-01-01

    Full Text Available The response of four inbred lines, parental components of ZP maize hybrids, to effects of six herbicides applied after emergence of both, maize and weeds, was observed in the present study. The following herbicides were applied in the 2-3-leaf stage of maize: isoxaflutole (Merlin 750-WG in the amount of 0.135 kg ha-1, nicosulfuron (Motivell in the amount of 1.25 l ha-1, foramsulfuron (Equip in the amount of 2.0 l ha-1, dicamba + rimsulfuron (Tarot plus in the amount of 0.3 kg ha-1, mezotrion (Callisto in the amount of 0.25 l ha-1 and thifensulfuron-methyl (Grid in the amount of 0.02 kg ha-1. The phytotoxic effect of herbicides on the maize grain yield was evaluated according to the 1-9 EWRC scale. Maize inbreds showed different susceptibility depending on the applied herbicide. The least favourable effects in both years for all genotypes were obtained in the treatments with Tarot plus and Grid, in which the lowest values of maize grain yield were recorded.

  16. Evaluation of quality protein maize hybrids for yield, association of ...

    African Journals Online (AJOL)

    The study was initiated with the objectives to evaluate quality protein maize pipeline varieties in terms of yield and yield related traits, and to investigate association of yield with its components and other desirable traits at Bako. Eighteen genotypes were planted in randomized complete block design with three replications.

  17. Effect of Maize Hybrid Maturity and Grain Hardness on Fumonisin and Zearalenone Contamination

    Directory of Open Access Journals (Sweden)

    Amedeo Reyneri

    2011-02-01

    Full Text Available The level of resistance in commercial hybrids for Fusarium ear rot is still not in general adequate to prevent unacceptable toxin concentrations in field. The purpose of this experiment was to verify the behaviour of commercial dent maize hybrids for fumonisin and zearalenone contamination and to identify the variety traits that influence the production of these toxins. Field experiments were carried out in 2000, 2001 and 2002 to evaluate the effect of maize hybrid maturity and endosperm hardness on European Corn Borer (ECB incidence, fungal ear rot incidence and severity and on fumonisin B1 and zearalenone contents. Nineteen yellow soft commercial hybrids, from the 500, 600 and 700 FAO maturity groups, were compared in 4 sites in NW Italy. Hybrid were grouped in 3 endosperm hardness categories (hard, intermediate, soft in function of Hard/Soft (H/S endosperm ratio. No effect due to endosperm hardness or hybrid maturity on the ECB infestation or fungal ear rot incidence and severity was observed. Grain hardness significant influenced fumonisin B1 content: hard endosperm hybrids showed 50% lower contamination than soft hybrids. The presence of fumonisin B1 in the grain of different maturity hybrids only resulted to be significantly different in 2001 experiment, with a mean concentration 2 times higher in the later hybrids (FAO rating 700 compared to the medium and medium-late hybrids. The zearalenone content never resulted to be significantly different in function of the endosperm hardness, while, late maturing hybrids, in which grain moisture content decreases slowly below 30%, are more susceptible to zearalenone contamination. This research has highlighted the presence of variety traits that can influence mycotoxin contamination. An accurate choice of hybrid, considering the territorial and cultivation context, could contribute to achieve products, that contain mycotoxins, which do not exceed the maximum international and UE regulation levels.

  18. Studies on Screening of Maize (Zea mays L.) Hybrids under Drought Stress Conditions

    OpenAIRE

    Zahoor Ahmad

    2015-01-01

    Drought is one of the most serious problems posing a grave threat to cereals production including maize. Two experiments (lab and wire house) were conducted to screen out the most tolerant and most sensitive maize hybrids (7386, 6525, Hycorn, 9696, 32B33, 3672, MMRI and 31P41) under artificial imposing drought stress by PEG-6000 and under water stress applied after seedling emergence. In first experiment five water stress levels such as zero (control), -0.2 MPa, -0.4 MPa, -0.6 MPa, and -0.8 M...

  19. Genetic, Genomic, and Breeding Approaches to Further Explore Kernel Composition Traits and Grain Yield in Maize

    Science.gov (United States)

    Da Silva, Helena Sofia Pereira

    2009-01-01

    Maize ("Zea mays L.") is a model species well suited for the dissection of complex traits which are often of commercial value. The purpose of this research was to gain a deeper understanding of the genetic control of maize kernel composition traits starch, protein, and oil concentration, and also kernel weight and grain yield. Germplasm with…

  20. Estimation of heterosis in yield and yield attributing traits in single cross hybrids of maize

    Directory of Open Access Journals (Sweden)

    Hari Prasad Sharma

    2016-12-01

    Full Text Available A field experiment was conducted at National Maize Research Program, Rampur, Chitwan, Nepal during winter season from 6th October, 2015 to 5th March 2016 to estimate different heterosis on single cross maize hybrids . Thirteen maize hybrids were tested randomized complete block design with three replications. Hybrid namely RML-98/RL-105 gave the highest standard heterosis (57.5% for grain yield over CP-666 followed by RML-4/NML-2 (32.6%, RML-95/RL-105 (29% and RML-5/RL-105 (20.6%. The hybrid RML-98/RL-105 produced the highest standard heterosis (75.1% for grain yield over Rajkumar followed by RML-4/NML-2(50.2%, RML-95/RL-105(46.6%, RML-5/RL-105 and (35.7%. Mid and better parent heterosis were significantly higher for yield and yield attributes viz. ear length, ear diameter, no of kernel row per ear, no of kernel per row and test weight. The highest positive mid-parent heterosis for grain yield was found in RML-98/RL-105 followed by RML-5/RL-105, RML-95/RL-105, and RML-4/NML-2. For the grain yield the better parent heterosis was the highest in RML-98/RL-105, followed by RML-5/RL-105, RML-95/RL-105, and RML-4/NML-2. These results suggested that maize production can be maximized by cultivating hybrids namely RML-98/RL-105, RML-5/RL-105, RML-95/RL-105, and RML-4/NML-2 .

  1. Weed Competition and its Effects on Pwani Hybrid 1 Maize Grain Yields in Coastal Kenya

    International Nuclear Information System (INIS)

    Kamau, G.M.; Saha, H.M.

    1999-01-01

    Weed competition is a serious constraint to maize production in coastal Kenya. A trial to asses the effects of weed competition on performance of maize was planted at Regional Research Centre-Mtwapa and Msabaha Research Sub-centre-Malindi in 1992. Pwani hybrid 1 maize was used in the trials. Weeding was done at weekly intervals from germination up to the sixth week in an additive weed removal system and plots maintained weed free afterwards. A weedy and a weed free plot were used as checks. Data on plant counts plant heights, weed biomass, weed identification and maize grain yield at 15 % MC were all recorded. There was a significant difference between weed and weedy free plots for grain yield, plant height and weed biomass for both sites. A 53% maize grain yield reduction due to weed competition was recorded. A 3% grain yield reduction equivalent to 1.03 bags for every week's delay in weeding after the first to weeks was realised for both sites. There was a corresponding grain yield loss as delay in weeding increased

  2. Development of cold and drought tolerant short-season maize germplasm for fuel and feed utilization

    Directory of Open Access Journals (Sweden)

    Marcelo J Carena

    2013-04-01

    Full Text Available Maize has become a profitable alternative for North Dakota (ND farmers and ranchers. However, U.S. northern industry hybrids still lack cold and drought stress tolerance as well as adequate grain quality for ethanol and feedstock products. Moreover, there is a need to increase the value of feedstock operations before and after ethanol utilization. The ND maize breeding program initiated the development of hybrids with high quality protein content through the Early Quality Protein Maize for Feedstock (EarlyQPMF project. The North Dakota State University (NDSU maize breeding program acts as a genetic provider to foundation seed companies, retailer seed companies, processing industry, and breeders nationally and internationally. In the past 10 years, NDSU was awarded 9 PVP maize certificates and released 38 maize products. Within those, 13 inbred lines were exclusively released to a foundation seed company for commercial purposes. In addition, 2 hybrids were identified for commercial production in central and western ND.

  3. Genetic characterization of Bombyx mori (Lepidoptera: Bombycidae) breeding and hybrid lines with different geographic origins.

    Science.gov (United States)

    Furdui, Emilia M; Mărghitaş, Liviu A; Dezmirean, Daniel S; Paşca, Ioan; Pop, Iulia F; Erler, Silvio; Schlüns, Ellen A

    2014-01-01

    The domesticated silkworm Bombyx mori L. comprises a large number of geographical breeds and hybrid lines. Knowing the genetic structure of those may provide information to improve the conservation of commercial lines by estimating inbreeding over generations and the consequences of excessive use of those lineages. Here, we analyzed the genetic diversity of seven breeds and eight hybrid lines from Eastern Europe and Asia using highly polymorphic microsatellites markers to determine its genetical impact on their use in global breeding programs. No consistent pattern of deviation from Hardy-Weinberg equilibrium was found for most breed and hybrids; and the absence of a linkage disequilibrium also suggests that the strains are in equilibrium. A principal coordinate analysis revealed a clear separation of two silkworm breeds from the rest: one (IBV) originated from India and the other one (RG90) from Romania/Japan. The tendency of the other breeds from different geographic origins to cluster together in a general mix might be due to similar selection pressures (climate and anthropogenic factors) in different geographic locations. Phylogenetic analyses grouped the different silkworm breeds but not the hybrids according to their geographic origin and confirmed the pattern found in the principal coordinate analysis. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  4. The Potential of Tohono O'odham Z16 Maize as a New Breeding Germplasm for semi-Arid Areas of South East Kenya

    International Nuclear Information System (INIS)

    Shisanya, C.A.; Hornetz, B.

    1999-01-01

    The major objective of these study was to evaluate the potential of new maize variety in semi-arid environment of Southeast Kenya, with a view to making recommendations on its suitability for incorporation into the maize breeding programme at the national Dryland Farming Research Centre (NDFRC), Katumani, Kenya. Aspects like Phenology, crop water requirements and the diurnal leaf water potential (LWP) of Tohono O'odham Z16 (TOZ16) maize (Zea mays L.) were compared to those of locally grown varieties, Makueni DLC (MDLC) and Katumani composite B, (KCB) under two water treatments: irrigated and unirrigated, to determine its suitability for the maize breeding programme. The experiment design was randomized complete block design with four replicates per treatment. under irrigation treatment, TOZ16 attained physiological maturity within 70 days compared to 95 and 110 days for MDLC and KCB, respectively. under unirrigated treatment, leaf rolling was more pronounced with TOZ16 as compared to MDLC and KBC. These has been shown to be evidence for plant adaption to water stress and results in a marked reduction in effective leaf area thus reducing radiation load. MDLC and KBC are required ca. 41% and 52% more water than TOZ16, respectively. Under irrigation treatment, TOZ16 maize attained a minimum leaf water potential (LWP) of approximately-2.38 MPa compared to -2.85 and -3.00 MPa attained by MDLC and KBC respectively. The susceptibility of these latter two maize varieties to water stress was evidence by the fact that they quickly increased their hydrature level early in the morning compared to TOZ16 which tend to maintain its lower level for relatively longer period of time. Following these study it is strongly that TOZ16 be incorporated into the maize-breeding programme at NDFRC. The study shows that TOZ16 possesses physiological characteristics that could be positively exploited by plant breeders in the search of drought adapted maize cultivars for the semi-arid areas of

  5. Nonadditive protein accumulation patterns in Maize (Zea mays L.) hybrids during embryo development.

    Science.gov (United States)

    Marcon, Caroline; Schützenmeister, André; Schütz, Wolfgang; Madlung, Johannes; Piepho, Hans-Peter; Hochholdinger, Frank

    2010-12-03

    Heterosis describes the superior performance of heterozygous F(1)-hybrid plants compared to their homozygous parental inbred lines. In the present study, heterosis was detected for length, weight, and the time point of seminal root primordia initiation in maize (Zea mays L.) embryos of the reciprocal F(1)-hybrids UH005xUH250 and UH250xUH005. A two-dimensional gel electrophoresis (2-DE) proteome survey of the most abundant proteins of the reciprocal hybrids and their parental inbred lines 25 and 35 days after pollination revealed that 141 of 597 detected proteins (24%) exhibited nonadditive accumulation in at least one hybrid. Approximately 44% of all nonadditively accumulated proteins displayed an expression pattern that was not distinguishable from the low parent value. Electrospray ionization-tandem mass spectrometry (ESI-MS/MS) analyses and subsequent functional classification of the 141 proteins revealed that development, protein metabolism, redox-regulation, glycolysis, and amino acid metabolism were the most prominent functional classes among nonadditively accumulated proteins. In 35-day-old embryos of the hybrid UH250xUH005, a significant up-regulation of enzymes related to glucose metabolism which often exceeded the best parent values was observed. A comparison of nonadditive protein accumulation between rice and maize embryo data sets revealed a significant overlap of nonadditively accumulated proteins suggesting conserved organ- or tissue-specific regulatory mechanisms in monocots related to heterosis.

  6. Maize x Teosinte Hybrid Cobs Do Not Prevent Crop Gene Introgression.

    Science.gov (United States)

    Chavez, Nancy B; Flores, Jose J; Martin, Joseph; Ellstrand, Norman C; Guadagnuolo, Roberto; Heredia, Sylvia; Welles, Shana R

    2012-06-01

    Maize x Teosinte Hybrid Cobs Do Not Prevent Crop Gene Introgression. Whether introgression from crops to wild relatives can occur is an important component of transgene risk assessment. In the case of maize, which co-occurs with its wild relative teosinte in Mexico, the possibility of introgression has been controversial. Maize is cross-compatible with teosinte, and spontaneous hybridization is known to occur. Some scientists have hypothesized that the maize x teosinte cob infructescence will prevent progeny dispersal, thus preventing introgression. Motivated by a prior study where we found maize x teosinte hybrid fruits naturally dispersed under field conditions, we tested whether hybrid cobs hold their fruits as tightly as maize cobs. We found the force required to detach hybrid fruits was substantially and significantly less than that for maize. Consequently, we expect that introgression of transgenes from maize into teosinte in Mexico should occur largely unimpeded by the hybrid cob.La mazorca o elote híbrido de maíz x teocintle no impide la introgresión de genes transgénicos provenientes del cultivo. La introgresión entre el maíz cultivado y el maíz silvestre, o teocintle, es un componente importante en la evaluación ambiental relacionada con los riesgos de la introducción de genes transgénicos. La posibilidad de introgresión entre el maíz domesticado y el teocintle ha sido un tema controversial, en particular en México, donde maíz y teocintle coexisten. El maíz es compatible con el teocintle y la hibridización espontánea ocurre entre ellos. Algunos científicos han planteado como hipótesis que al cruzar el maíz con teocintle, la estructura interna de la infrutescencia que sujeta los frutos conocida como la mazorca de maíz o el elote, impide la dispersión de la progenie evitando que la introgresión ocurra. Los resultados de un estudio previo evidencian la dispersión de los frutos híbridos del maíz x teocintle en condiciones naturales

  7. Evaluation of Physiological Responses of Maize Hybrids to different Nitrogen levels in Kerman Province, Iran

    Directory of Open Access Journals (Sweden)

    M Madadizadeh

    2017-10-01

    Full Text Available Introduction Nitrogen is one of the most abundant elements on earth and major essential for crop growth and development that is heavily used in modern agriculture to maximize yields. Among cereals, maize (Zea mays L. is an important food and feed crop which ranks third after wheat and rice in the world. As N fertilizer costs remain relatively high and environmental concerns over excessive N application increase, the objectives of the present study were: (i to compare maize hybrids growth and yield responses to N rates, (ii to determine optimum N rate for maize grain yield production, (iii to explore the physiological functions controlling maize growth and yield and (iv to identify more effective physiological indices in maize grain production under N stress as well as potential condition. Materials and Methods Two field experiments were conducted in 2014 and 2015 at the Experimental Field of Kerman Agricultural and Natural Resources Research Center, Kerman, Iran. The experiment was laid out as a randomized complete block design with factorial arrangement of treatments and three replications. Four nitrogen rates (0, 92, 220 and 368 kg N ha-1 were applied to three maize hybrids (KSC 704, Maxima and TWC 604. Statistical analysis was done using SAS software (version 9.4. Results and Discussion Due to a significant lack of homogeneity of variance across the two years, data from the two years were treated as independent experiments and analyzed separately. Results showed that both N rates and hybrids had significant effect on growth indices and maize grain yield. The interaction between genotype and N rate was significant for grain yield in 2015 (P < 0.01. Thus, physical slicing was used to do mean comparison. Results showed that KSC 704 and Maxima had quite similar responses to N rates and with an increase in N fertilization, their grain yield also increased. This response, however, was different in case of TWC 604 so that 92 kg N ha-1 showed maximum

  8. Complementation contributes to transcriptome complexity in maize (Zea mays L.) hybrids relative to their inbred parents

    Science.gov (United States)

    Paschold, Anja; Jia, Yi; Marcon, Caroline; Lund, Steve; Larson, Nick B.; Yeh, Cheng-Ting; Ossowski, Stephan; Lanz, Christa; Nettleton, Dan; Schnable, Patrick S.; Hochholdinger, Frank

    2012-01-01

    Typically, F1-hybrids are more vigorous than their homozygous, genetically distinct parents, a phenomenon known as heterosis. In the present study, the transcriptomes of the reciprocal maize (Zea mays L.) hybrids B73×Mo17 and Mo17×B73 and their parental inbred lines B73 and Mo17 were surveyed in primary roots, early in the developmental manifestation of heterotic root traits. The application of statistical methods and a suitable experimental design established that 34,233 (i.e., 86%) of all high-confidence maize genes were expressed in at least one genotype. Nearly 70% of all expressed genes were differentially expressed between the two parents and 42%–55% of expressed genes were differentially expressed between one of the parents and one of the hybrids. In both hybrids, ∼10% of expressed genes exhibited nonadditive gene expression. Consistent with the dominance model (i.e., complementation) for heterosis, 1124 genes that were expressed in the hybrids were expressed in only one of the two parents. For 65 genes, it could be shown that this was a consequence of complementation of genomic presence/absence variation. For dozens of other genes, alleles from the inactive inbred were activated in the hybrid, presumably via interactions with regulatory factors from the active inbred. As a consequence of these types of complementation, both hybrids expressed more genes than did either parental inbred. Finally, in hybrids, ∼14% of expressed genes exhibited allele-specific expression (ASE) levels that differed significantly from the parental-inbred expression ratios, providing further evidence for interactions of regulatory factors from one parental genome with target genes from the other parental genome. PMID:23086286

  9. Some results of applied interspecific hybridization in sunflower breeding

    International Nuclear Information System (INIS)

    Tsvetkova, F.

    1976-01-01

    Investigations on the interspecific hybridization in sunflower, aimed at developing a diversified initial selection material, were carried out Wild species of the diploid, tetraploid and hexaploid groups, varieties, hybrids, and selfed-lines of cultivated sunflower were used for crossings. To overcome incrossability between the species and sterility in the hybrids the method of f;cilitating of crossability by mutual gra'fting and gamma-rays treatment of seeds and pollen were applied. Results showed that: 1. By the method of interspecific hybridization forms might be produced resistant to more important diseases. 2. Interspecific hybridization in combination with other methods of selection might produce varieties and hybrids with a complex of valuable qualities. 3. Crossings between wild species and cultivated sunflower gave progenies with gene rale sterility. 4. The species H.tuberosus, H.scaberimus, H.arωphylus and H.lenticularis possess genes of full fertility restoration. (author)

  10. Improving sustainability of maize to ethanol processing by plant breeding and process optimization

    NARCIS (Netherlands)

    Slegers, P.M.; Torres Salvador, A.F.; Boxtel, van A.J.B.; Trindade, L.M.

    2017-01-01

    Efficient management of plant resources is essential for a sustainable biobased economy. The biomass conversion efficiency and sustainability performance depend greatly on the choice of feedstock and the applied processing technology. The aim of this research was to enhance the biomass use of maize

  11. A hybrid framework for assessing maize drought vulnerability in Sub-Saharan Africa

    Science.gov (United States)

    Kamali, B.; Abbaspour, K. C.; Wehrli, B.; Yang, H.

    2017-12-01

    Drought has devastating impacts on crop yields. Quantifying drought vulnerability is the first step to better design of mitigation policies. The vulnerability of crop yield to drought has been assessed with different methods, however they lack a standardized base to measure its components and a procedure that facilitates spatial and temporal comparisons. This study attempts to quantify maize drought vulnerability through linking the Drought Exposure Index (DEI) to the Crop Failure Index (CFI). DEI and CFI were defined by fitting probability distribution functions to precipitation and maize yield respectively. To acquire crop drought vulnerability index (CDVI), DEI and CFI were combined in a hybrid framework which classifies CDVI with the same base as DEI and CFI. The analysis were implemented on Sub-Saharan African countries using maize yield simulated with the Environmental Policy Integrated Climate (EPIC) model at 0.5° resolution. The model was coupled with the Sequential Uncertainty Fitting algorithm for calibration at country level. Our results show that Central Africa and those Western African countries located below the Sahelian strip receive higher amount of precipitation, but experience high crop failure. Therefore, they are identified as more vulnerable regions compared to countries such as South Africa, Tanzania, and Kenya. We concluded that our hybrid approach complements information on crop drought vulnerability quantification and can be applied to different regions and scales.

  12. Metabolic robustness in young roots underpins a predictive model of maize hybrid performance in the field.

    Science.gov (United States)

    de Abreu E Lima, Francisco; Westhues, Matthias; Cuadros-Inostroza, Álvaro; Willmitzer, Lothar; Melchinger, Albrecht E; Nikoloski, Zoran

    2017-04-01

    Heterosis has been extensively exploited for yield gain in maize (Zea mays L.). Here we conducted a comparative metabolomics-based analysis of young roots from in vitro germinating seedlings and from leaves of field-grown plants in a panel of inbred lines from the Dent and Flint heterotic patterns as well as selected F 1 hybrids. We found that metabolite levels in hybrids were more robust than in inbred lines. Using state-of-the-art modeling techniques, the most robust metabolites from roots and leaves explained up to 37 and 44% of the variance in the biomass from plants grown in two distinct field trials. In addition, a correlation-based analysis highlighted the trade-off between defense-related metabolites and hybrid performance. Therefore, our findings demonstrated the potential of metabolic profiles from young maize roots grown under tightly controlled conditions to predict hybrid performance in multiple field trials, thus bridging the greenhouse-field gap. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  13. Effective use of physical/chemical mutagens in crop hybrid breeding in China

    International Nuclear Information System (INIS)

    Liu Luxiang; Wang Jing

    2001-01-01

    Crop heterosis utilization was one of the greatest achievements in the agriculture production in the 20th century. It is proved that every breakthrough in crop hybrid breeding was predicated on the discovery or successful development of new heterosis germplasm. In recent years, in order to open up the scope and ways of using crop heterosis, it has been paid much close attention to apply mutation techniques to hybrid breeding. Useful tool materials like male sterile mutant lines, fertile restoration mutants in many crops have been obtained by effective use of physical/chemical mutagens. Brief introduction is made in this paper on the newest research improvement concerning the effective use of the techniques of mutation induction in China to create special useful genes, enrich the diversity of germplasm and promote the rapid development of crop hybrid breeding. (author)

  14. Effective use of physical/chemical mutagens in crop hybrid breeding in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu Luxiang; Wang Jing [Chinese Academy of Agricultural Sciences, Institute for Application of Atomic Energy, Beijing (China)

    2001-03-01

    Crop heterosis utilization was one of the greatest achievements in the agriculture production in the 20th century. It is proved that every breakthrough in crop hybrid breeding was predicated on the discovery or successful development of new heterosis germplasm. In recent years, in order to open up the scope and ways of using crop heterosis, it has been paid much close attention to apply mutation techniques to hybrid breeding. Useful tool materials like male sterile mutant lines, fertile restoration mutants in many crops have been obtained by effective use of physical/chemical mutagens. Brief introduction is made in this paper on the newest research improvement concerning the effective use of the techniques of mutation induction in China to create special useful genes, enrich the diversity of germplasm and promote the rapid development of crop hybrid breeding. (author)

  15. Analysis of stability and adaptability of QPM hybrids of maize growing in different Colombian agroecological zones

    Directory of Open Access Journals (Sweden)

    Ever Andrés vargas Escobar

    2016-01-01

    Full Text Available Energy is maize´s biggest contribution for humans and animals. Scientist have been trying to increase its protein level since 1896, it wasn´t until the 60´s when the opaque gene O2 was discovered. In its recessive state, the gene causes the quality of the maize protein to increase, due to the growth of the Globulin protein and the reduction of Zein protein. Known as Quality Protein Maize (QPM, they can double the essential amino acids Lysine and Tryptophan´s percentages when compared with normal maize endosperm. In a commercial scenario, there is a need for high yielding genotypes adapted to different environments; it is also desirable to have a better protein quality. In the present study, 9 yellow endosperm QPM hybrids, developed by FENALCE from CIMMYT´s germoplasm and a normal commercial endosperm check were tested in 6 agro ecological zones: Wet Caribbean, Dry Caribbean, Orinoco, Valley of the Cauca River, Valley of the Magdalena River and the Coffee Growing Zone. A randomized complete block design was used in 17 environments and four repetitions. Variables concerning the plant and yield components were measured, but for this study the grain yield was the only taken. Additionally samples were taken to assess the content of Tryptophan. The stability and adaptability analysis was made using the Eberhart and Russell, Lin and Binns and AMMI models. The QPM hybrid that stood out for all the environments was QPM 303 and QPM 305 for unfavorable environments. Both retain their biochemical characteristics of protein quality and are stable in the evaluated environments according to the statistical models that were used.

  16. Dependence of the productivity of maize and soybean intercropping systems on hybrid type and plant arrangement pattern

    Directory of Open Access Journals (Sweden)

    Dolijanović Željko

    2013-01-01

    Full Text Available Intercropping systems could improve utilization of the most important resources (soil, water and nutrients, provide a better control of weeds, pests and diseases, and finally higher productivity, especially under rain-fed growing conditions. This study aimed to determine the effects of three maize (Zea mays L. prolific hybrids (FAO 500, 600 and 700 and the spatial intercrop patterns on the above-ground biomass and grain yields of maize and soybean (Glycine max L. Merrill, on chernozem soil type at Zemun Polje, Belgrade, in 2003, 2004 and 2005. The experimental design was a complete randomized block with four replications and three treatments: 3 rows of maize and 3 rows of soybean in strips for each maize hybrid (three variants, 3 rows of maize and 3 rows of soybean in alternate rows for each hybrid (another three variants and monocrops of both maize and soybeans. To optimize the ecological and economic benefits of maize/soybean intercrop in terms of yield, variety selection and compatibility of the component crops should be made using established agronomic management practices involving the two crops. Suitable maize varieties for maize/soybean intercrop systems are varieties that have less dense canopy. These varieties would therefore have lesser shading effect to the understory beans. However, establishment of an appropriate spatial arrangement of the component crops would be essential to alleviate negative effects especially on the less competitive crop. The intercropping system in alternate rows showed significantly higher above-ground biomass and grain yields in comparation with both the strip intercropping system and maize monocrops in 2004. Soybean gave significantly lower above-ground biomass and grain yield in intercrops than in monocrops. Maize prolific hybrid growing in intercropping with soybean as legume crop, increased productivity of cropping system, especially in favourable agroecological conditions. Maize and soybean yields

  17. Study of improvement of indices maize line to establish their position in hybrids

    Directory of Open Access Journals (Sweden)

    Oxana DIRZU-COCOS

    2015-12-01

    Full Text Available Corn (Zea mays L. crop that is grown on large areas - over 140 million hectares worldwide, and 400-500 thousand ha in Moldova due to production potential broad diversity of use as food for humans, animals, birds raw material for industrial processing. The upward trend in average yields achieved is largely attributed to the improvement of scientific programs. Select the line with the characters and traits that are transmitted hereditary hybrids and contribute to their performance, ensure progress in improvement. Therefore, the process of creating inbred lines associated with combining ability testing as a measure of productivity conferred hybrids, is significant research programs. Orientation purpose of improved maize hybrids to formulas and simple change to a superior capitalization heterosis effect and perfect uniformity of plant requires changes in methodology for the creation, evaluation and classification of inbred lines.

  18. Seed quality and water use characteristics of maize landraces compared with selected commercial hybrids

    Directory of Open Access Journals (Sweden)

    Farai Mazvimbakupa

    2015-03-01

    Full Text Available Understanding seed quality and water use characteristics of maize (Zea mays L. landraces will improve food security among subsistence farmers who still cultivate them. The objective of this study was to evaluate seed quality and water use characteristics of two maize landraces (GQ1 and GQ2 compared with two commercial hybrids (SC701 and PAN53. Seed quality was determined by the standard germination, electrical conductivity, and tetrazolium tests. A controlled environment study was conducted in which the landraces were compared with hybrids across three water treatments (30% ETc; 50% ETc, and 80% ETc. Although landrace GQ2 performed at par with the hybrids, overall, seed quality tests showed that hybrids had superior seed quality than landraces. This was also confirmed by highly significant emergence results (P < 0.001 from pot trials where SC701 and PAN53 had higher emergence (100% and 94.44%, respectively compared with GQ2 (86.11% and GQ1 (61.11%. Subjecting landraces and hybrids to water stress (50% and 30% ETc resulted in shorter plants with fewer leaves and earlier tasselling compared with non-stressed plants (80% ETc. Plant height for the 30% ETc water treatment was 156.1 cm compared with 175.8 cm for the 80% ETc water treatment, while plants under the 30% ETc water treatment tasseled at 105.4 d compared with 129.5 d for the 80% ETc water treatment. The GQ2 landrace continued to perform similar to, and often better, than the hybrid varieties, especially under stress conditions. Yield was poor under controlled conditions. Performance of the GQ2 landrace for both seed quality tests and under controlled conditions shows that landraces remain an important germplasm resource.

  19. BREEDING OF F1 HYBRIDS OF PUMPKIN FOR CANNING INDUSTRY

    Directory of Open Access Journals (Sweden)

    A. M. Shantasov

    2016-01-01

    Full Text Available As a result of crossing with patty pan squash with male sterility, the new parent lines of Cucurbita реро L., «ANZH» and «ANZ», with the original set of morphological traits («kabakson» based on the gene of male sterility of functional type were developed. The F1 hybrids with economically valuable features were obtained. These hybrids are characterized by small fruits of pickling types, high yield and biochemical content.

  20. Composition of open pollinated varieties and newly developed hybrids for yield and contributing trials in maize

    International Nuclear Information System (INIS)

    Malik, H.N.; Ara, I.; Naeem, M.; Hussain, M.; Hanif, M.; Yousaf, M.M.

    2010-01-01

    Eighteen hybrids and 13 open pollinated varieties of maize were evaluated at the National Agricultural Research Centre, Islamabad during kharif 2007. Significant differences were observed for days to 50% tasseling and silking, plant height, ear height, number of kernel rows per ear, number of grain per row, 100 grain weight. grain moisture and grain yield. The hybrids NT-6622 and NT-6651 ranked top and second in grain yield by producing 7842 and 7759 kg ha/sup -1/, respectively. Generally the hybrids produced more grain yield than the open pollinated varieties. Days to 50% tasseling ranged from 47.33 (EV-1098) to 64 (NT- 6632) while for silking varied from 47.67 (EV-1098) to 63.33 (30-K-95). The variety Soan-3 (149 cm) was the shortest and hybrid 30-K-95 (202.3 cm) was the tallest amongst all the varieties and hybrids. Ear height ranged from 70.33 (Soan-3) to 107 cm (NT-6651) while number of kernel rows per ear varied from 12 (NT-6622, 30- K95, 2512 and 2514) to 18 (R-2207). The hybrid P-30-25 produced the maximum number of grains (51) Grast-8288 produced the lowest (29). One hundred grain weight ranged from 23g (EV-6098) to 39g (2512). (author)

  1. A suitable pricing strategy for hybrid maize seed in South Africa

    OpenAIRE

    2012-01-01

    M.B.A. A general increase in price elasticity on farming inputs as well as increasing pressure on South African subsidiaries of international companies makes it important for a well-planned pricing strategy. This is accentuated by the fact that pricing is normally done only once a year in seed companies in South Africa, and customers are unlikely to accept more frequent price changes. The aim of this study is to determine a suitable pricing strategy for hybrid maize seed for Monsanto in So...

  2. Scoping studies of 233U breeding fusion fission hybrid

    International Nuclear Information System (INIS)

    Maniscalco, J.A.; Hansen, L.F.; Allen, W.O.

    1978-05-01

    Neutronic calculations have been carried out in order to design a laser fusion driven hybrid blanket which maximizes 233 U production per unit of thermal energy (greater than or equal to 1 kg/MW/sub T/-year) with acceptable fusion energy multiplication (M/sub F/ approximately 4). Two hybrid blankets, a thorium and a uranium-thorium blanket, are discussed in detail and their performance is evaluated by incorporating them into an existing hybrid design (the LLL/Bechtel design). The overall performance of the two laser fusion driven 233 U producers is discussed and estimates are given of (1) the number of equivalent thermal power fission reactors (LWR, HWR, SSCR and HTGR) that these fusion breeders can fuel, (2) their capital cost, and (3) the cost of electricity in the combined fusion breder-converter reactor scenario

  3. Scoping studies of 233U breeding fusion fission hybrid

    International Nuclear Information System (INIS)

    Maniscalco, J.A.; Hansen, L.F.; Allen, W.O.

    1978-01-01

    Neutronic calculations have been carried out in order to design a laser fusion driven hybrid blanket which maximizes 233 U production per unit of thermal energy (greater than or equal to 1 kg/MW/sub T/-year) with acceptable fusion energy multiplication (M/sub F/ approx. 4). Two hybrid blankets, a thorium and a uranium--thorium blanket, are discussed in detail and their performance is evaluated by incorporating them into an existing hybrid design (the LLL/Bechtel design). The overall performance of the two laser fusion driven 233 U producers is discussed and estimates are given of (1) the number of equivalent thermal power fission reactors (LWR, HWR, SSCR and HTGR) that these fusion breeders can fuel, (2) their capital cost, and (3) the cost of electricity in the combined fusion breeder-converter reactor scenario

  4. Biochemical and physical kernel properties of a standard maize hybrid in different TopCross™ Blends

    Directory of Open Access Journals (Sweden)

    Jelena Vancetovic

    Full Text Available ABSTRACT A pilot experiment was undertaken in order to examine high oil populations of maize (Zea mays L. to be used as pollinators in TopCross blends with commercial ZP341 standard hybrid. Five high oil populations (HOPs from the Maize Research Institute (MRI gene bank were chosen for this research, according to their high grain oil content, synchrony between silking of ZP341 and anthesis of the populations and good agronomic performances in 2012. Selfing of ZP341 and HOPs, as well as crosses of ZP341 cmsS sterile × HOPs were carried out in 2013. Oil content, fatty acid composition, protein and tryptophan content, and physical characteristics of the obtained kernels were measured. Four HOPs showed significant positive influence on the oil content in the TopCrosses (TC, 16.85 g kg−1 on average. Oleic acid, which is the principal monounsaturated fatty acid, was significantly lower in all HOPs and all TCs, while selfed ZP341 had almost twice the average value typical for standard maize. However, this decrease in TCs was in a narrow range from 1 % (in TC-3 to 5 % (in TC-4 and the oleic content of TCs was on average higher by 60 % compared to the typical standard maize. Different favorable and unfavorable significant changes were detected in fatty acid compositions, protein and tryptophan contents and physical kernel properties for each potential TC combination. Results indicate differences in gene effects present in different TC combinations and underscore the need to examine each potential TC blend by conducting similar simple experiments.

  5. The behavior of maize hybrids generated from contrasting progenies regarding the use of nitrogen

    Directory of Open Access Journals (Sweden)

    Fernando Lisboa Guedes

    2014-11-01

    Full Text Available The purpose of this study was to evaluate the performance of maize hybrids synthesized from contrasting genotypes with regard to the use of nitrogen that were selected for their performance in topcrosses. Sixty-seven S0:1 progenies derived from the germplasm bank of Ufla were evaluated in topcross combinations with two testers  at two nitrogen levels. The six progenies with the greatest tolerance and responsiveness to nitrogen (RT and the five with the least tolerance and responsiveness (RnTn were selected and, were, afterwards, crossed in a complete diallel, for a total of 55 hybrid combinations. The following genetic parameters were estimated: genetic variance among the hybrids (σ^2G, broad sense heritability in the mean of the hybrids, and selective accuracy (r^2gg. It was observed that the genetic parameters were greater in the environments with available nitrogen and that the early selection by performance in topcrosses of progenies tolerant to low N levels may not be made with high intensity. The hybrids tolerant to low N levels were obtained by crossing contrasting parents.

  6. Tillage and planting density affect the performance of maize hybrids in Chitwan, Nepal

    Directory of Open Access Journals (Sweden)

    Tika Baladur Karki

    2015-12-01

    Full Text Available To find out whether the different tillage methods at different planting densities affect the performance of maize hybrids, an experiment was carried out at National Maize Research Program, Rampur during spring season of 2013 and 2014. The experiment was laid out in strip plot design with three replications having 12 treatments. The vertical factor was tillage with conservation tillage (No Tillage + residue=NT and conventional tillage (CT and the horizontal factor were genotypes (Rampur Hybrid-2 and RML-32/RML-17 and in split planting geometries (75cm × 25cm =53333 plants/ha, 70cm × 25cm=57142 plant/ha and 60cm ×25cm= 66666 plants/ha. In both the years, the highest number of cobs (73,177 and 67638/ha was recorded at planting density of 66666/ha. NT had the highest no of kernel rows/cob (14.01 as against 12.12 in CT in 2014. The highest number of kernels (27.3 and 29.29 per row was recorded in NT during 2013 and 2014 respectively. Similarly, in 2014, the highest number of kernels were found in RML-32/RMl-17 (29.17/row and planting density of 53333/ha (28.46/row. In 2013, RML-32/RML-17 produced the highest test weight of 363.94g over the Rampur hybrid-2 with 362.17g. Significantly the highest grain yield of 9240.00 kg/ha in 2013 and 7459.80 kg/ha in 2014 at planting geometry of 65cm ×25cm were recorded. No effects was found by tillage methods for grain yields of maize in 2013, but was found in 2014 (7012.18 kg in NT compared to 6037.59 kg/ha in CT. NT and wider spaced crop matured earlier in both the years; however Rampur hybrid-2 matured earlier to RML-32/RML-17 in 2013. In 2014, harvest index of 47.85 % was recorded in planting geometry of 66666/ha, the highest benefit cost ratio of 1.36 was worked out in NT and 1.46 at the density of 66666/ha. The highest value of 2.46% of soil organic matter was recorded in NT as compared to 2.43% in CT.

  7. Post-silking Factor Consequences for N Efficiency Changes Over 38 Years of Commercial Maize Hybrids

    Directory of Open Access Journals (Sweden)

    Keru Chen

    2017-10-01

    Full Text Available Hybrid selection in maize (Zea mays L. over the decades has increased post-silking dry matter (PostDM and nitrogen (PostN accumulation, often with an accompanying increase in one or more N use efficiency (NUE metrics such as partial factor productivity (PFP, N conversion efficiency (NCE, and N internal efficiency (NIE. More certainty on the underlying mechanisms of how PostDM and PostN changes over time have contributed to NUE gains or losses in modern-era hybrids can only be realized by directly comparing hybrids of different eras in the context of production-system-relevant management systems. A two-year and two-location field study was conducted in Indiana with two N rates (55 and 220 kg N ha−1, three plant densities (54,000, 79,000, and 104,000 plants ha−1 and eight commercial hybrids that were released by a single seed company from 1967 to 2005. The main treatment effects of N rate, density, and hybrid dominated the PostDM and PostN responses, and there were no significant two-way or three-way interactions. Total dry matter at maturity gains averaged 80 kg ha−1 year−1 of hybrid release when averaged over locations, plant densities and N rates. Total N contents at maturity increased 0.68 kg ha−1 year−1, primarily due to annual increases in grain N content (0.8 kg ha−1 year−1. Post-silking N uptake rate increased 0.44 kg ha−1 year−1 for these era hybrids in more favorable production site-years. Slopes of grain N concentration increases per unit PostN gain were similar for all hybrids. Gains in average PFP over time were considerably higher at the low N rate (0.9 kg ha−1 year−1 than at the high N rate (0.3 kg kg−1 year−1. Hybrid gains in NIE were evident from 1967 to 1994, but not thereafter. The low N rate and higher plant densities also increased relative NIE and NCE values, but without hybrid interactions. There was no consistent trend of NIE or NCE gains in these hybrids primarily because grain and whole-plant N

  8. Comparison of different inoculating methods to evaluate the pathogenicity and virulence of Aspergillus niger on two maize hybrids

    Science.gov (United States)

    A two-year field study was conducted to determine the effects of inoculation techniques on the aggressiveness of Aspergillus niger kernel infection in A. flavus resistant and susceptible maize hybrids. Ears were inoculated with the silk-channel, side-needle, and spray techniques 7 days after midsilk...

  9. Insect damages on structural, morphologic and composition of Bt maize hybrids to silage

    Directory of Open Access Journals (Sweden)

    Geraldo Balieiro Neto

    2013-03-01

    Full Text Available It was aimed to evaluate the effect of insect damage on the morphologic and structural characteristics and chemical composition from maize hybrids DKB 390 and AG 8088 with the Cry1Ab trait versus its nonbiotech counterpart. The GMO did not receive insecticide application and the conventional hybrids received one deltametrina (2.8% application at 42 days. The damages caused bySpodoptera frugiperda and Helicoverpa zea in hybrids with Cry1Ab were smaller than its nonbiotech counterpart. After harvest, 95 days after seedling plants were separated in stalks, ears, leafs, dead leafs and floral pennant. The experimental design was randomized block in factorial arrangement 2 x 2. The height of plant and height of ear, percentage and amount of dead leafs from hybrids with the Cry1Ab were higher than its nonbiotech counterpart. There was higher nutrients transfer from stalks to grain filling and smaller rate stalks:ear on transgenic plant. The quality of the transgenic plants can be better when harvest earlier, by increasing no fiber carbohydrates, but when harvest latter, by increasing stalk percentage and stalk lignin content.

  10. Effect of organic fertilizers on maize production in Eastern Georgia

    Science.gov (United States)

    Jolokhava, Tamar; Kenchiashvili, Naira; Tarkhnishvili, Maia; Ghambashidze, Giorgi

    2016-04-01

    Maize remains to be the most important cereal crop in Georgia. Total area of arable land under cereal crops production equals to 184 thousands hectares (FAO statistical yearbook, 2014), from which maize takes the biggest share. Leading position of maize among other cereal crops is caused by its dual purpose as food and feed product. In Spite of a relatively high production of maize to other cereals there is still a high demand on it, especially as feed for animal husbandry. The same tendency is seen in organic production, where producers of livestock and poultry products require organically grown maize, the average yield of which is much less than those produced conventionally. Therefore, it is important to increase productivity of maize in organic farms. Current study aimed to improve maize yield using locally produced organic fertilizers and to compare them to the effect of mineral fertilizers. The study was carried out in Eastern Georgia under dry subtropical climate conditions on local hybrid of maize. This is the first attempt to use hybrid maize (developed with organic plant breeding method) in organic field trials in Georgia. The results shown, that grain yield from two different types of organic fertilizers reached 70% of the yields achieved with industrial mineral fertilizers. As on farm level differences between organic and conventional maize production are much severe, the results from the field trials seems to be promising for future improvement of organic cereal crop production.

  11. Breeding of lilies and tulips—Interspecific hybridization and genetic background—

    Science.gov (United States)

    Marasek-Ciolakowska, Agnieszka; Nishikawa, Tomotaro; Shea, Daniel J.; Okazaki, Keiichi

    2018-01-01

    Lilies and tulips (Liliaceae family) are economically very important ornamental bulbous plants. Here, we summarize major breeding goals, the role of an integrated method of cut-style pollination and fertilization followed by embryo rescue and mitotic and meiotic polyploidization involved in new assortment development. Both crops have been subjected to extensive interspecific hybridization followed by selection. Additionally, spontaneous polyploidization has played a role in their evolution. In lilies, there is a tendency to replace diploids with polyploid cultivars, whereas in tulip a majority of the cultivars that exist today are still diploid except for triploid Darwin hybrid tulips. The introduction of molecular cytogenetic techniques such as genomic in situ hybridization (GISH) permitted the detailed studies of genome composition in lily and tulip interspecific hybrids and to follow the chromosome inheritance in interspecific crosses. In addition, this review presents the latest information on phylogenetic relationship in lily and tulip and recent developments in molecular mapping using different DNA molecular techniques. PMID:29681746

  12. FORAGE YIELD, CHEMICAL COMPOSITION AND IN VITRO GAS PRODUCTION OF YELLOW HYBRID MAIZE GROWN IN MEXICO

    Directory of Open Access Journals (Sweden)

    Lizbeth Esmeralda Roblez Jimenez

    2017-12-01

    Full Text Available Maize is the most important forage in feed cattle, due to its higher energy content, however, it is characterized by its wide range of varieties and the possibility of generating a large quantity of final products. The objective of the present study was to evaluate and compare the forage yield, chemical composition and in vitro gas production as fresh and hay of a local yellow criollo maize and six varieties of yellow hybrid maize (HIT13, CML460, PIONER, COPPER, CDMO80001 and CLO80902. Fresh and dry yield did not show differences between treatments (P>0.05, their chemical composition (g / kg DM showed differences (P ˂ 0.05 for the protein content by various storage methods ranging from 59.87 to 59.61 g kg-1 DM per conservation method, NDF ranged from 591 to 686 g kg-1 DM by variety and by the method ranged from 619 to 639 g kg -1 DM, ADF ranged from 298 to 345 g kg-1 DM by variety and 317 to 340 g kg-1 DM by conservation method; ADL ranged from 58 to 41 g kg-1 DM by variety and 41 to 57 g kg-1 DM by conservation method, in vitro gas production  there were no differences (P>0.05 between varieties and conservation method. It is concluded that according to the results obtained, the varieties studied show the same forage yields in both hay and fresh, chemical composition, and in vitro gas production.

  13. Spatial structure and climatic adaptation in African maize revealed by surveying SNP diversity in relation to global breeding and landrace panels.

    Directory of Open Access Journals (Sweden)

    Ola T Westengen

    Full Text Available BACKGROUND: Climate change threatens maize productivity in sub-Saharan Africa. To ensure food security, access to locally adapted genetic resources and varieties is an important adaptation measure. Most of the maize grown in Africa is a genetic mix of varieties introduced at different historic times following the birth of the trans-Atlantic economy, and knowledge about geographic structure and local adaptations is limited. METHODOLOGY: A panel of 48 accessions of maize representing various introduction routes and sources of historic and recent germplasm introductions in Africa was genotyped with the MaizeSNP50 array. Spatial genetic structure and genetic relationships in the African panel were analysed separately and in the context of a panel of 265 inbred lines representing global breeding material (based on 26,900 SNPs and a panel of 1127 landraces from the Americas (270 SNPs. Environmental association analysis was used to detect SNPs associated with three climatic variables based on the full 43,963 SNP dataset. CONCLUSIONS: The genetic structure is consistent between subsets of the data and the markers are well suited for resolving relationships and admixture among the accessions. The African accessions are structured in three clusters reflecting historical and current patterns of gene flow from the New World and within Africa. The Sahelian cluster reflects original introductions of Meso-American landraces via Europe and a modern introduction of temperate breeding material. The Western cluster reflects introduction of Coastal Brazilian landraces, as well as a Northeast-West spread of maize through Arabic trade routes across the continent. The Eastern cluster most strongly reflects gene flow from modern introduced tropical varieties. Controlling for population history in a linear model, we identify 79 SNPs associated with maximum temperature during the growing season. The associations located in genes of known importance for abiotic stress

  14. Stability Parameters for Grain Yield and its Component Traits in Maize Hybrids of Different FAO Maturity Groups

    Directory of Open Access Journals (Sweden)

    Dragan Djurovic

    2014-12-01

    Full Text Available An objective evaluation of maize hybrids in intensive cropping systems requires identification not only of yield components and other agronomically important traits but also of stability parameters. Grain yield and its components were assessed in 11 maize hybrids with different lengths of growing season (FAO 300-700 maturity groups using analysis of variance and regression analysis at three different locations in Western Serbia. The test hybrids and locations showed significant differences in grain yield, grain moisture content at maturity, 1,000-kernel weight and ear length. A significant interaction was observed between all traits and the environment. The hybrids with higher mean values of the traits, regardless of maturity group, generally exhibited sensitivity i.e. adaptation to more favourable environmental conditions as compared to those having lower mean values. Regression coefficient (bi values for grain yield mostly suggested no significant differences relative to the mean. The medium-season hybrid gave high yields and less favourable values of stability parameters at most locations and in most years, as compared to mediumlate hybrids. As compared to medium-early hybrids, medium-late hybrids (FAO 600 and 700 mostly exhibited unfavourable values of stability parameters i.e. a specific response and better adaptation to favourable environmental conditions, and gave higher average yields. Apart from producing lower average yields, FAO 300 and 400 hybrids showed higher yield stability as compared to the other hybrids tested. Medium-late hybrids had higher yields and showed a better response to favourable environmental conditions compared to early-maturing hybrids. Therefore, they can be recommended for intensive cultural practices and low-stress environments. Due to their more favourable stability parameter values, medium-early hybrids can be recommended for low-intensity cultural practices and stressful environments.

  15. Overcoming hybridization barriers by the secretion of the maize pollen tube attractant ZmEA1 from Arabidopsis ovules.

    Science.gov (United States)

    Márton, Mihaela L; Fastner, Astrid; Uebler, Susanne; Dresselhaus, Thomas

    2012-07-10

    A major goal of plant reproduction research is to understand and overcome hybridization barriers so that the gene pool of crop plants can be increased and improved upon. After successful pollen germination on a receptive stigma, the nonmotile sperm cells of flowering plants are transported via the pollen tube (PT) to the egg apparatus for the achievement of double fertilization. The PT path is controlled by various hybridization mechanisms probably involving a larger number of species-specific molecular interactions. The egg-apparatus-secreted polymorphic peptides ZmEA1 in maize and LURE1 and LURE2 in Torenia fournieri as well as TcCRP1 in T. concolor were shown to be required for micropylar PT guidance, the last step of the PT journey. We report here that ZmEA1 attracts maize PTs in vitro and arrests their growth at higher concentrations. Furthermore, it binds to the subapical region of maize PT tips in a species-preferential manner. To overcome hybridization barriers at the level of gametophytic PT guidance, we expressed ZmEA1 in Arabidopsis synergid cells. Secreted ZmEA1 enabled Arabidopsis ovules to guide maize PT in vitro in a species-preferential manner to the micropylar opening of the ovule. These results demonstrate that the egg-apparatus-controlled reproductive-isolation barrier of PT guidance can be overcome even between unrelated plant families. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Competitive Expression of Endogenous Wheat CENH3 May Lead to Suppression of Alien ZmCENH3 in Transgenic Wheat × Maize Hybrids.

    Science.gov (United States)

    Chen, Wei; Zhu, Qilin; Wang, Haiyan; Xiao, Jin; Xing, Liping; Chen, Peidu; Jin, Weiwei; Wang, Xiu-E

    2015-11-20

    Uniparental chromosome elimination in wheat × maize hybrid embryos is widely used in double haploid production of wheat. Several explanations have been proposed for this phenomenon, one of which is that the lack of cross-species CENH3 incorporation may act as a barrier to interspecies hybridization. However, it is unknown if this mechanism applies universally. To study the role of CENH3 in maize chromosome elimination of wheat × maize hybrid embryos, maize ZmCENH3 and wheat αTaCENH3-B driven by the constitutive CaMV35S promoter were transformed into wheat variety Yangmai 158. Five transgenic lines for ZmCENH3 and six transgenic lines for αTaCENH3-B were identified. RT-PCR analysis showed that the transgene could be transcribed at a low level in all ZmCENH3 transgenic lines, whereas transcription of endogenous wheat CENH3 was significantly up-regulated. Interestingly, the expression levels of both wheat CENH3 and ZmCENH3 in the ZmCENH3 transgenic wheat × maize hybrid embryos were higher than those in the non-transformed Yangmai 158 × maize hybrid embryos. This indicates that the alien ZmCENH3 in wheat may induce competitive expression of endogenous wheat CENH3, leading to suppression of ZmCENH3 over-expression. Eliminations of maize chromosomes in hybrid embryos of ZmCENH3 transgenic wheat × maize and Yangmai 158 × maize were compared by observations on micronuclei presence, by marker analysis using maize SSRs (simple sequence repeats), and by FISH (fluorescence in situ hybridization) using 45S rDNA as a probe. The results indicate that maize chromosome elimination events in the two crosses are not significantly different. Fusion protein ZmCENH3-YFP could not be detected in ZmCENH3 transgenic wheat by either Western blotting or immnunostaining, whereas accumulation and loading of the αTaCENH3-B-GFP fusion protein was normal in αTaCENH3-B transgenic lines. As ZmCENH3-YFP did not accumulate after AM114 treatment, we speculate that low levels of Zm

  17. Interspecific hybrids between Paspalum plicatulum and P. oteroi: a key tool for forage breeding

    Directory of Open Access Journals (Sweden)

    Patricia Elda Novo

    2016-08-01

    Full Text Available ABSTRACT Grama-tio-pedro (Paspalum oteroi Swallen is a rare stoloniferous grass of the Plicatula group of Paspalum, well adapted to continuous grazing in areas subject to seasonal flooding in the Pantanal region, in central western Brazil. The species is a facultative apomictic (asexual reproduction by seed tetraploid, sporadically cultivated on Pantanal farms, propagated either by cuttings or seed. Due to its potential for extensive cultivation and forage quality, Grama-tio-pedro appears as a candidate for genetic improvement within the Plicatula group through plant breeding. We used a colchicine-induced sexual autotetraploid genotype of P. plicatulum Michx. to obtain interspecific hybrids using the apomictic species, P. oteroi, as pollen donor. The very similar meiotic chromosome behavior observed in both parents, with main quadrivalent and bivalent associations, suggested that P. oteroi is a natural autotetraploid. The hybrids showed less irregular meiotic behavior with fewer quadrivalents and more bivalents than either parent. Fertility among interspecific hybrids varied from complete sterility in some of them to seed productions in others that were approximately twice as much as for either parent. The great variability of seed set performance may well be a drastic genetic consequence of joining two homologous chromosome sets of P. plicatulum together with two homologous sets of P. oteroi that, in turn, have some homeology between them. Most hybrids reproduce by sexual means, thus, they could be used as female parents in backcrosses and in crosses with other species of the Plicatula group for interspecific gene transferring in breeding programs.

  18. Development of cytoplasmic-nuclear male sterility, its inheritance, and potential use in hybrid pigeonpea breeding.

    Science.gov (United States)

    Saxena, Kul B; Ravikoti, V Kumar; Dalvi, Vijay A; Pandey, Lalji B; Gaddikeri, Guruprasad

    2010-01-01

    Pigeonpea [Cajanus cajan (L.) Millsp.] is a unique food legume because of its partial (20-30%) outcrossing nature, which provides an opportunity to breed commercial hybrids. To achieve this, it is essential to have a stable male-sterility system. This paper reports the selection of a cytoplasmic-nuclear male-sterility (CMS) system derived from an interspecific cross between a wild relative of pigeonpea (Cajanus sericeus Benth. ex. Bak.) and a cultivar. This male-sterility source was used to breed agronomically superior CMS lines in early (ICPA 2068), medium (ICPA 2032), and late (ICPA 2030) maturity durations. Twenty-three fertility restorers and 30 male-sterility maintainers were selected to develop genetically diverse hybrid combinations. Histological studies revealed that vacuolation of growing tetrads and persistence of tetrad wall were primary causes of the manifestation of male sterility. Genetic studies showed that 2 dominant genes, of which one had inhibitory gene action, controlled fertility restoration in the hybrids. The experimental hybrids such as TK 030003 and TK 030009 in early, ICPH 2307 and TK 030625 in medium, and TK 030861 and TK 030851 in late maturity groups exhibited 30-88% standard heterosis in multilocation trials.

  19. Probabilities for profitable fungicide use against gray leaf spot in hybrid maize.

    Science.gov (United States)

    Munkvold, G P; Martinson, C A; Shriver, J M; Dixon, P M

    2001-05-01

    ABSTRACT Gray leaf spot, caused by the fungus Cercospora zeae-maydis, causes considerable yield losses in hybrid maize grown in the north-central United States and elsewhere. Nonchemical management tactics have not adequately prevented these losses. The probability of profitably using fungicide application as a management tool for gray leaf spot was evaluated in 10 field experiments under conditions of natural inoculum in Iowa. Gray leaf spot severity in untreated control plots ranged from 2.6 to 72.8% for the ear leaf and from 3.0 to 7.7 (1 to 9 scale) for whole-plot ratings. In each experiment, fungicide applications with propiconazole or mancozeb significantly reduced gray leaf spot severity. Fungicide treatment significantly (P hybrid). The highest probabilities occurred in the 1995 experiments with the most susceptible hybrid. Probabilities were almost always higher for a single application of propiconazole than for two applications. These results indicate that a single application of propiconazole frequently can be profitable for gray leaf spot management in Iowa, but the probability of a profitable application is strongly influenced by hybrid susceptibility. The calculation of probabilities for positive net returns was more informative than mean separation in terms of assessing the economic success of the fungicide applications.

  20. A study on application of the combination of hybridization with γ-radiation in wheat breeding

    International Nuclear Information System (INIS)

    Wang Jinxiang

    1989-11-01

    F 0 and F 1 dry seeds of winter wheat were irradiated by 60 Co γ-rays. The biological effects of M 1 , variation frequency and useful types of M 2 were investigated. Percentages of the selectivities of M 2 , M 3 and M 4 were also evaluated. The results showed that the seeds treated by combining hybridization with γ-radiation could increase variation frequency by 6∼44%, useful types by 13∼34%, and percentages of the selectivities by 6∼70%, as compared with the seeds treated only by the hybridization. Thus, the strains with high yield and protein were selected. It indicates that to combine the hybridization with γ-radiation is one of the ways for raising efficiency of wheat breeding

  1. Characterization of mature maize (Zea mays L.) root system architecture and complexity in a diverse set of Ex-PVP inbreds and hybrids.

    Science.gov (United States)

    Hauck, Andrew L; Novais, Joana; Grift, Tony E; Bohn, Martin O

    2015-01-01

    The mature root system is a vital plant organ, which is critical to plant performance. Commercial maize (Zea mays L.) breeding has resulted in a steady increase in plant performance over time, along with noticeable changes in above ground vegetative traits, but the corresponding changes in the root system are not presently known. In this study, roughly 2500 core root systems from field trials of a set of 10 diverse elite inbreds formerly protected by Plant Variety Protection plus B73 and Mo17 and the 66 diallel intercrosses among them were evaluated for root traits using high throughput image-based phenotyping. Overall root architecture was modeled by root angle (RA) and stem diameter (SD), while root complexity, the amount of root branching, was quantified using fractal analysis to obtain values for fractal dimension (FD) and fractal abundance (FA). For each trait, per se line effects were highly significant and the most important contributor to trait performance. Mid-parent heterosis and specific combining ability was also highly significant for FD, FA, and RA, while none of the traits showed significant general combining ability. The interaction between the environment and the additive line effect was also significant for all traits. Within the inbred and hybrid generations, FD and FA were highly correlated (rp ≥ 0.74), SD was moderately correlated to FD and FA (0.69 ≥ rp ≥ 0.48), while the correlation between RA and other traits was low (0.13 ≥ rp ≥ -0.40). Inbreds with contrasting effects on complexity and architecture traits were observed, suggesting that root complexity and architecture traits are inherited independently. A more comprehensive understanding of the maize root system and the way it interacts with the environment will be useful for defining adaptation to nutrient acquisition and tolerance to stress from drought and high plant densities, critical factors in the yield gains of modern hybrids.

  2. 14CO2-fixation and nitrate reductase activity in vivo in relation to hybrid vigour in maize

    International Nuclear Information System (INIS)

    Balasubramanian, V.; Shanthakumari, P.; Sinha, S.K.

    1977-01-01

    Dry matter accumulation in maize shoots, leaf area, 14 CO 2 -fixation and nitrate reductase activity in vivo were measured in the field grown heterotic hybrid CM 400x CM 300 and its inbred parents CM 300 and CM 400 from seedling to maturity. Rates of dry matter accumulation and leaf area development were higher in the hybrid during the initial vegetative phase than in the inbreds. The hybrid had more absolute level of 14 CO 2 -fixation and nitrate reductase activity, although the rates of these processes on unit weight basis were not higher than those of inbreds. It is concluded that the rapid development of leaf area in hybrids during the early stages of vegetative growth is probably important for hybrid vigour. (author)

  3. Impact of selection on maize root traits and rhizosphere interactions

    Science.gov (United States)

    Schmidt, J. E.; Gaudin, A. C. M.

    2017-12-01

    Effects of domestication and breeding on maize have been well-characterized aboveground, but impacts on root traits and rhizosphere processes remain unclear. Breeding in high-inorganic-input environments may have negatively affected the ability of modern maize to acquire nutrients through foraging and microbial interactions in marginal and/or organically managed soils. Twelve maize genotypes representing a selection gradient (teosintes, landraces, open-pollinated parents of modern elite germplasm, and modern hybrids released 1934-2015) were grown in three soils varying in intensity of long-term management (unfertilized, organic, conventional) in the greenhouse. Recruitment of rhizosphere microbial communities, nutrient acquisition, and plant productivity were affected by genotype-by-soil interactions. Maize genotypes exhibit significant variation in their ability to obtain nutrients from soils of different management history, indicating the potential for re-integration of beneficial root and rhizosphere traits to increase adaptation to low-input agroecosystems.

  4. Past and prospects of forage maize breeding in Europe. II. History, germplasm evolution and correlative agronomic changes

    NARCIS (Netherlands)

    Barriere, Y.; Alber, D.; Dolstra, O.; Lapierre, C.; Motto, M.; Ordas, A.; Waes, Van J.; Vlasminkel, L.; Welcker, C.; Monod, J.P.

    2006-01-01

    Although maize was early recognized as an excellent forage plant soon after its introduction in Europe, during a long time it was only bred for grain traits. However, the first recommendations of maize varieties for specific forage use are probably those given in the French VILMORIN-ANDRIEUX

  5. Comparative assessment of maize lines produced by different breeding methods using both microbiological and metabolic profiling tools

    CSIR Research Space (South Africa)

    Barros, E

    2006-02-01

    Full Text Available This study is about the South African maize samples that have been analysed for mycotoxins, for presence of F.verticillioides and for metabolic profiling. 26 maize cultivars are used , and 50 kernels were plated on 10 PCNB agar plates using...

  6. Experimental hybrid evaluation of maize, for the Colombian Atlantic coast; Evaluacion de hibridos experimentales de maiz para la costa Atlantica colombiana

    Energy Technology Data Exchange (ETDEWEB)

    Urrea, R; Navas Arboleda, A A; Mejia, S; Ospina, J G

    1998-07-01

    To determine the yield potential and phenotypic stability four they were evaluated hybrid experimental simple and seven commercial witness of maize in eleven towns (L), during 1995 and 1996. The used experimental design was at random of complete blocks with four repetitions with parcels of four furrows of five m of longitude, distanced 0.90 m between furrows and 0.45 among blows (49 383 plts/ha) it Differ highly significant (smaller p 0.01) they were detected among genotype (G) and for the interaction G x L in the varieties yield. The analysis of stability of Eberhart and Russell (1966) it indicated that the genotypes had similar regression values; however, a clear tendency was observed to differentiate the behavior in yield of certain materials. The hybrid one experimental there are 76 and the commercial HR 661, they showed a good stability for yield.

  7. Time of planting and choice of maize hybrids in controlling WCR (Diabrotica virgifera virgifera Le Conte) in Serbia and Montenegro.

    Science.gov (United States)

    Baca, F; Videnovic, Z; Erski, P; Stankovic, R; Dobrikovic, Danica

    2003-01-01

    Effects of the length of growing season of maize hybrids (FAO maturity groups 400, 500, 600 and 700) and planting dates on the maize crop, as an attractive supplemental feeding for western corn rootworm (WCR) beetles and larval survival, were observed in two locations of South Banat, during a three-year (1997-1999) and a two-year period (2001 and 2002). The feeding attraction of the maize crop for WCR beetles and survival of larvae were evaluated in dependency of the variable "plant lodging". The following results were obtained: First location: A. Plant lodging over time of planting and applied insecticides. 1. Early planting: 44.2%, 77.6%, and 76.7% for FAO 400, 500 and 600, respectively. 2. Late planting: 4.7%, 14.9%, and 7.9% for FAO 400, 500 and 600, respectively. B. Plant lodging over time of planting and cropping practices: 1. Early planting without insecticide application 72.2%, and with insecticide application 7.3%. The efficacy of application of insecticide carbofurane (Furadan 350 FS, dosage 4.0 liter/ha) in larval control was 89.9%. 2. Late planting without insecticide application, plant lodging was 47.7%, and with insecticide application 8.1%. The efficacy of application of insecticide carbofurane (Furadan 350 FS, dosage 4.0 l/ha-1) in larval control was 83.0%. Early planting resulted in greater survival of larvae; hence plant lodging was 10 times greater in early than in late planting. The percentage of lodged plants indicates that the maize crop in late planting was more attractive to imagoes. Therefore, more lodged plants were observed in the treatment where late planting preceded. Second location: Plant lodging as dependent on "treatments" 1. Regular plantings: 90.7% in untreated control and 76.2% in insecticide treated variant. The efficacy of insecticide application in control of high larval population was 16.0%. 2. Replanting date: 12.2% in untreated and 4.4% in treated variant. The efficacy of insecticide in control of low larval population

  8. Effect of Genetics, Environment, and Phenotype on the Metabolome of Maize Hybrids Using GC/MS and LC/MS.

    Science.gov (United States)

    Tang, Weijuan; Hazebroek, Jan; Zhong, Cathy; Harp, Teresa; Vlahakis, Chris; Baumhover, Brian; Asiago, Vincent

    2017-06-28

    We evaluated the variability of metabolites in various maize hybrids due to the effect of environment, genotype, phenotype as well as the interaction of the first two factors. We analyzed 480 forage and the same number of grain samples from 21 genetically diverse non-GM Pioneer brand maize hybrids, including some with drought tolerance and viral resistance phenotypes, grown at eight North American locations. As complementary platforms, both GC/MS and LC/MS were utilized to detect a wide diversity of metabolites. GC/MS revealed 166 and 137 metabolites in forage and grain samples, respectively, while LC/MS captured 1341 and 635 metabolites in forage and grain samples, respectively. Univariate and multivariate analyses were utilized to investigate the response of the maize metabolome to the environment, genotype, phenotype, and their interaction. Based on combined percentages from GC/MS and LC/MS datasets, the environment affected 36% to 84% of forage metabolites, while less than 7% were affected by genotype. The environment affected 12% to 90% of grain metabolites, whereas less than 27% were affected by genotype. Less than 10% and 11% of the metabolites were affected by phenotype in forage and grain, respectively. Unsupervised PCA and HCA analyses revealed similar trends, i.e., environmental effect was much stronger than genotype or phenotype effects. On the basis of comparisons of disease tolerant and disease susceptible hybrids, neither forage nor grain samples originating from different locations showed obvious phenotype effects. Our findings demonstrate that the combination of GC/MS and LC/MS based metabolite profiling followed by broad statistical analysis is an effective approach to identify the relative impact of environmental, genetic and phenotypic effects on the forage and grain composition of maize hybrids.

  9. Expression of endogenous proteins in maize hybrids in a multi-location field trial in India.

    Science.gov (United States)

    Gutha, Linga R; Purushottam, Divakar; Veeramachaneni, Aruna; Tigulla, Sarita; Kodappully, Vikas; Enjala, Chandana; Rajput, Hitendrasinh; Anderson, Jennifer; Hong, Bonnie; Schmidt, Jean; Bagga, Shveta

    2018-05-17

    Genetically modified (GM) crops undergo large scale multi-location field trials to characterize agronomics, composition, and the concentration of newly expressed protein(s) [herein referred to as transgenic protein(s)]. The concentration of transgenic proteins in different plant tissues and across the developmental stages of the plant is considered in the safety assessment of GM crops. Reference or housekeeping proteins are expected to maintain a relatively stable expression pattern in healthy plants given their role in cellular functions. Understanding the effects of genotype, growth stage and location on the concentration of endogenous housekeeping proteins may provide insight into the contribution these factors could have on transgenic protein concentrations in GM crops. The concentrations of three endogenous proteins (actin, elongation factor 1-alpha, and glyceraldehyde 3-phosphate dehydrogenase) were measured in several different maize hybrids grown across multiple field locations over 2 years. Leaf samples were collected from healthy plants at three developmental stages across the growing seasons, and protein concentrations were quantified by indirect enzyme-linked immunosorbent assay (ELISA) for each protein. In general, the concentrations of these three endogenous proteins were relatively consistent across hybrid backgrounds, when compared within one growth stage and location (2-26%CV), whereas the concentrations of proteins in the same hybrid and growth stage across different locations were more variable (12-64%CV). In general, the protein concentrations in 2013 and 2014 show similar trends in variability. Some degree of variability in protein concentrations should be expected for both transgenic and endogenous plant-expressed proteins. In the case of GM crops, the potential variation in protein concentrations due to location effects is captured in the current model of multi-location field testing.

  10. A Histological Study of Aspergillus flavus Colonization of Wound Inoculated Maize Kernels of Resistant and Susceptible Maize Hybrids in the Field

    Directory of Open Access Journals (Sweden)

    Gary L. Windham

    2018-04-01

    Full Text Available Aspergillus flavus colonization in developing kernels of maize single-cross hybrids resistant (Mp313E × Mp717 and susceptible (GA209 × T173 to aflatoxin accumulation was determined in the field over three growing seasons (2012–2014. Plants were hand pollinated, and individual kernels were inoculated with a needle dipped in a suspension of A. flavus conidia 21 days after pollination. Kernels were harvested at 1- to 2-day intervals from 1 to 21 days after inoculation (DAI. Kernels were placed in FAA fixative, dehydrated, embedded in paraffin, sectioned, and stained with toluidine blue. Kernels were also collected additional kernels for aflatoxin analyses in 2013 and 2014. At 2 DAI, A. flavus hyphae were observed among endosperm cells in the susceptible hybrid, but colonization of the endosperm in the resistant hybrid was limited to the wound site of the resistant hybrid. Sections of the scutellum of the susceptible hybrid were colonized by A. flavus by 5 DAI. Fungal growth was slower in the resistant hybrid compared to the susceptible hybrid. By 10 DAI, A. flavus had colonized a large section of the embryo in the susceptible hybrid; whereas in the resistant hybrid, approximately half of the endosperm had been colonized and very few cells in the embryo were colonized. Fungal colonization in some of the kernels of the resistant hybrid was slowed in the aleurone layer or at the endosperm-scutellum interface. In wounded kernels with intact aleurone layers, the fungus spread around the kernel between the pericarp and aleurone layer with minimal colonization of the endosperm. Aflatoxin B1 was first detected in susceptible kernel tissues 8 DAI in 2013 (14 μg/kg and 2014 (18 μg/kg. The resistant hybrid had significantly lower levels of aflatoxin accumulation compared to the susceptible hybrid at harvests 10, 21, and 28 DAI in 2013, and 20 and 24 DAI in 2014. Our study found differential A. flavus colonization of susceptible and resistant kernel

  11. Estimation of technical efficiency and it's determinants in the hybrid maize production in district chiniot: a cobb douglas model approach

    International Nuclear Information System (INIS)

    Naqvi, S.A.A.; Ashfaq, M.

    2014-01-01

    High yielding crop like maize is very important for countries like Pakistan, which is third cereal crop after wheat and rice. Maize accounts for 4.8 percent of the total cropped area and 4.82 percent of the value of agricultural production. It is grown all over the country but major areas are Sahiwal, Okara and Faisalabad. Chiniot is one of the distinct agroecological domains of central Punjab for the maize cultivation, that's why this district was selected for the study and the technical efficiency of hybrid maize farmers was estimated. The primary data of 120 farmers, 40 farmers from each of the three tehsils of Chiniot were collected in the year 2011. Causes of low yields for various farmers than the others, while using the same input bundle were estimated. The managerial factors causing the inefficiency of production were also measured. The average technical efficiency was estimated to be 91 percent, while it was found to be 94.8, 92.7 and 90.8 for large, medium and small farmers, respectively. Stochastic frontier production model was used to measure technical efficiency. Statistical software Frontier 4.1 was used to analyse the data to generate inferences because the estimates of efficiency were produced as a direct output from package. It was concluded that the efficiency can be enhanced by covering the inefficiency from the environmental variables, farmers personal characteristics and farming conditions. (author)

  12. Creation of a high yielding recombinant maize hybrid for the production of a microbicide for the prevention of HIV-1 transmission

    CSIR Research Space (South Africa)

    Barros, E

    2010-06-01

    Full Text Available The aim of this study was to use conventional breeding to increase the production in maize of the human monoclonal antibody 2G12, known to have potential therapeutic properties in the prevention of HIV-1 transmission. The recombinant antibody...

  13. Individual and combined (Plus-hybrid effect of cytoplasmic male sterility and xenia on maize grain yield

    Directory of Open Access Journals (Sweden)

    Sofija Bozinovic

    2015-06-01

    Full Text Available Plus-hybrid effect refere to a combined effect of cytoplasmic male sterility (CMS and xenia in maize (Zea mays L. It could be used in commercial production by growing a mixture of 80% CMS hybrid and 20% of another fertile hybrid. The aim of this research was to examine individual and combined CMS and xenia effects on two hybrids widely grown in Serbia. Sterile and fertile versions of ZP 1 and ZP 2 hybrids (three-way; Iodent x Lancaster dents were used as females, while ZP 1, ZP 2, ZP 3, ZP 4, and ZP 5 (three-way or single cross; Iodent (BSSS x Lancaster dents were used as pollinators. All of them belong to medium maturity group. The trial was set up at one location in Serbia (Zemun Polje in 2009, 2010, and 2011. Molecular analysis of the five genotypes was done using simple sequence repeat (SSR primers. Plus-hybrid effect on grain yield ranged from -6.2% to 6.2%; on thousand kernel weight from -1.7% to 5.2%; on number of kernels per area from -1.0% to 8.0%. The poor response could be due to a use of three-way instead of single cross hybrids in S type of sterility. Modified Rogers' distance between hybrids was in the range 0.211 to 0.378 and was not relevant for the effect, which depended mostly on the sterile hybrid genotype and the fertile hybrid pollinator ability. This approach should be more suitable for female hybrids with slightly poorer performance, already being produced on a sterile base.

  14. PARTICULARITIES OF WHITE HEAD CABBAGE F1 HYBRID BREEDING FOR PRIDNESTROVIAN MOLDAVIAN REPUBLIC CONDITIONS

    Directory of Open Access Journals (Sweden)

    L. I. Shpak

    2016-01-01

    Full Text Available A model of late maturing F1 hybrid of white head cabbage for long-term storing and suitable for national recipe “golubci” have been developed based on requirements for varieties and F1 hybrids grown in the South in the conditions of drought, high temperatures and low air humidity. Combining ability of seven self-incompatible inbred lines of white head cabbage was studied by the system of full diallel crosses in conditions of Pridnestrovian Moldavian Republic. These lines were developed on the base of heat tolerant varieties ‘Biruchekutskaya’, ‘Volna’, ‘Lada’, ‘Moldavanka’ and ‘Kharkovskaya Zimnyaya’ bred in the south. Out of 42 hybrid combinations studied 15 significantly surpassed in productivity the variety ‘Zavadovskaya’ that is traditionally grown by local farmers for pickling and recipe “golubci”. High GCA effects for productivity showed the following breeding lines: Bu1, Ml3 and Kl5. Polygenes, controlling the high yield ability, mainly were dominant and single-directed, however the correlation betweenyield ability and GCA effect was middle, r=0.63±0.35. No correlation was observed inbreeding line between GCA effect and truly heterosis effect in hybrid combinations (r=0.19. Disease resistance analysis revealed lines Bu1 and Kl5 that had shown resistance to Fusarium yellows. Two hybrid combination Kl5xBu1 and Ml3xBu1 were highly tolerant to thrips attacks according to analysis of all promising hybrid combinations, carried out in natural infection background. Weak correlation was observed between the number of damaged leaves in cabbage head and dry matter content, r=0.41±0.21, and also there is no correlation revealed with sugar contents, ascorbic acid and nitrate content. High tolerance of hybrids with participation of line Bu1 explained the partial dominance nature of the trait. Hybrid combinations Kl5xBu1 and Ml3xBu1 called ‘Batal’ and ‘Shedevr’, respectively, included in registry of Moldova and

  15. Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene

    OpenAIRE

    Chang, Zhenyi; Chen, Zhufeng; Wang, Na; Xie, Gang; Lu, Jiawei; Yan, Wei; Zhou, Junli; Tang, Xiaoyan; Deng, Xing Wang

    2016-01-01

    Nuclear male sterility is common in flowering plants, but its application in hybrid breeding and seed production is limited because of the inability to propagate a pure male sterile line for commercial hybrid seed production. Here, we characterized a rice nuclear gene essential for sporophytic male fertility and constructed a male sterility system that can propagate the pure male sterile seeds on a large scale. This system is fundamentally advantageous over the current cytoplasmic male steril...

  16. "New" seed in "old" China : impact of CIMMYT Collaborative Programme on maize breeding in South-Western China

    NARCIS (Netherlands)

    Song, Y.

    1998-01-01

    China is the most populated country with the most limited amount of arable land per head of the population in the world. Development and distribution of modern varieties of the three staples, rice, wheat and maize, to insure national food security, have been the core tasks and first

  17. Communities of endophytic microorganisms in different developmental stages from a local variety as well as transgenic and conventional isogenic hybrids of maize.

    Science.gov (United States)

    da Silva, Kelly Justin; de Armas, Rafael Dutra; Soares, Cláudio Roberto F S; Ogliari, Juliana Bernardi

    2016-11-01

    The diversity of endophytic microorganisms may change due to the genotype of the host plant and its phenological stage. In this study we evaluated the effect of phenological stage, transgenes and genetic composition of maize on endophytic bacterial and fungal communities. The maize populations were composed of a local variety named Rosado (RS) and three isogenic hybrids. One isogenic hybrid was not genetically modified (NGM). Another hybrid (Hx) contained the transgenes cry1F and pat (T1507 event), which provide resistance to insects of the order Lepidoptera and tolerance to the glufosinate-ammonium herbicide, respectively. The third hybrid (Hxrr) contained the transgene cp4 epsps (NK603 event) combined with the transgenes cry1F and pat (T1507 event), which allow tolerance to the Roundup Ready herbicide, besides the characteristics of Hx. Evaluation of the foliar tissue was done through PCR-DGGE analysis, with specific primers for bacteria and fungi within four phenological stages of maize. The endophytic bacteria were only clustered by phenological stages; the structure of the fungal community was clustered by maize genotypes in each phenological stage. The fungal community from the local variety RS was different from the three hybrids (NGM, Hx and Hxrr) within the four evaluated stages. In the reproductive stage, the fungal community from the two transgenic hybrids (Hx and Hxrr) were separated, and the Hxrr was different from NGM, in the two field experiments. This research study showed that the genetic composition of the maize populations, especially the presence of transgenes, is the determining factor for the changes detected in the endophytic fungal community of maize leaves.

  18. Hybrid-breeding of medicinally used valerian (Valeriana officinalis L. s.l.. A possible concept developing new varieties?

    Directory of Open Access Journals (Sweden)

    Penzkofer, Michael

    2016-07-01

    Full Text Available The aim of this work was to develop and verify a new concept for breeding new hybrid-varieties of valerian without a male sterility system. For this the cross-pollination rate and the performance of inbreeded plants must be determined.

  19. Impact of sowing time, hybrid and environmental conditions on the contamination of maize by emerging mycotoxins and fungal metabolites

    Directory of Open Access Journals (Sweden)

    Massimo Blandino

    2017-09-01

    Full Text Available Mycotoxins and other fungal metabolites represent the most insidious safety risks to cereal food and the feed chain. Optimising agronomic practices is one of the main strategies adopted to minimise the contents of these undesirable substances in grain-based commodities. The aim of this study was to investigate the effect of the combination of sowing times and hybrids on the occurrence of emerging mycotoxins and fungal metabolites in maize. Field experiments were carried out in 2 sowing times (early vs late and 3 maize hybrids were compared in the 2014 and 2015 growing seasons. Overall, 37 fungal metabolites produced by Fusarium and Alternaria species were detected. Apart from fumonisins type B (FBs, other metabolites produced by Fusarium verticillioides and F. proliferatum, such as fumonisins type A, fusaric acid, bikaverin and fusaproliferin, were also detected in all of the samples. Fusarin C was found in 61% of the samples. Deoxynivalenol (DON, deoxynivalenol-3-glucoside, culmorin and zearalenone, all of which are produced prevalently by Fusarium graminearum and F. culmorum, were found in all the samples. Their contents were clearly affected by the meteorological trend: the highest contamination was detected in the 2014 growing season, which was characterised by abundant rainfall and lower temperatures from flowering to maize ripening. Among the mycotoxins produced by other Fusarium species, aurofusarin was found to clearly be associated with DON, while moniliformin and beauvericin followed the same behaviour as the FBs. A late sowing time significantly increased the FBs and fumonisin- associated mycotoxins in both growing seasons. The increase in contamination with the delay of sowing was more pronounced in the 2015 growing season, as the environmental conditions were less favourable to the infection of other Fusarium species. The effect of sowing time on DON and DON-associated mycotoxins produced conflicting results for the two growing

  20. Natural uranium fueled light water moderated breeding hybrid power reactors: a feasibility study

    International Nuclear Information System (INIS)

    Greenspan, E.; Schneider, A.; Misolovin, A.; Gilai, D.; Levin, P.

    1978-06-01

    The first part of the study consists of a thorough investigation of the properties of subcritical thermal lattices for hybrid reactor applications. Light water is found to be the best moderator for (fuel-self-sufficient) FSS hybrid reactors for power generation. Several lattice geometries and compositions of particular promise for LWHRs are identified. Using one of these lattices, fueled with natural uranium, the performance of several concepts of LWHR blankets is investigated, and optimal blanket designs are identified. The effect of blanket coverage efficiency and the feasibility of separating the functions of tritium breeding and of power generation to different blankets are investigated. Optimal iron-water shields for LWHRs are also determined. The performance of generic types of LWHRs is evaluated. The evolution of the blanket properties with burnup is evaluated and fuel management schemes are briefly examined. The feasibility of using the lithium system of the blanket to control the blanket power amplitude and shape is also investigated. A parametric study of the energy balance of LWHR power plants is carried out, and performance parameters expected from LWHRs are estimated. Discussions are given of special features of LWHRs and their fuel cycle

  1. Maize variety and method of production

    Science.gov (United States)

    Pauly, Markus; Hake, Sarah; Kraemer, Florian J

    2014-05-27

    The disclosure relates to a maize plant, seed, variety, and hybrid. More specifically, the disclosure relates to a maize plant containing a Cal-1 allele, whose expression results in increased cell wall-derived glucan content in the maize plant. The disclosure also relates to crossing inbreds, varieties, and hybrids containing the Cal-1 allele to produce novel types and varieties of maize plants.

  2. Comparative studies on testicular and epididymal morphology, and serum hormone concentrations in foxes and the hybrids during the breeding season.

    Science.gov (United States)

    Yang, T A; Yang, Y H; Peng, Y H; Cong, B; Diao, Y F; Bao, K; Hu, P F; Song, X C; Liu, L L; Yang, Y F; Xing, X M; Yang, F H

    2016-05-01

    The silver fox and the blue fox belong to different genera, and the hybrid males are fully or partially sterile. In the present study, the objective was to evaluate the causes of hybrid male sterility, and therefore analyze the differences in testicular, and epididymal morphology and serum hormone concentrations among silver foxes, blue foxes, and the hybrids during the breeding season. Samples were collected from 20 male silver foxes, 20 male blue foxes, 15 male HSBs (silver fox female × blue fox male hybrids) and 14 male HBSs (blue fox male × silver fox female hybrids), respectively. Seminal evaluation showed large numbers of sperm present in the semen of blue foxes and silver foxes, but no sperm present in the hybrids. Mean testicular volume and the diameter of seminiferous tubules in silver foxes and blue foxes were greater than in the hybrids; and there were many Sertoli cells, spermatogenic cells, and sperm in silver foxes and blue foxes, while spermatogenic cells decreased with no sperm in the hybrids. Mean serum LH and prolactin concentrations in silver foxes and blue foxes were less and testosterone was greater than in the hybrids (P<0.05). The results indicate that germ cell meioses in the hybrids were arrested at the prophase stage of meiosis, and that lesser concentrations of testosterone and greater concentrations of LH and prolactin can inhibit the completion of spermatogenesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Nitrogen-15 uptake by whole plants and root callus cultures of inbred maize lines and their F1 hybrids

    International Nuclear Information System (INIS)

    Mladenova, Y.; Karadimova, M.

    1981-01-01

    The uptake of nitrogen-15 by 3 maize genotypes was investigated. Comparative analysis of N15 assimilation and distribution in the organs of intact plants of two self-pollinated lines and their F1 hybrid and also in a callus tissue of roots of the same genotypes was made. From the results the conclusion is drawn that the N-use efficiency of the female line is higher than that of the male line both in intact plants and callus tissues from roots. This fact indicates that the N-use efficiency is determined not only by the functions of the cells in the shoots, suggesting the participation of the photosynthetic carboxylases but also by the functions of cells without a photosynthesizing apparatus. The N-use efficiency in the F1 hybrid manifests ''heterosis'', in spite of the intact plants or root callus tissues are being studied. (author)

  4. Development of a set of SSR markers for genetic polymorphism detection and interspecific hybrid jute breeding

    Directory of Open Access Journals (Sweden)

    Dipnarayan Saha

    2017-10-01

    Full Text Available Corchorus capsularis (white jute and C. olitorius (dark jute are the two principal cultivated species of jute that produce natural bast fiber of commercial importance. We have identified 4509 simple sequence repeat (SSR loci from 34,163 unigene sequences of C. capsularis to develop a non-redundant set of 2079 flanking primer pairs. Among the SSRs, trinucleotide repeats were most frequent (60% followed by dinucleotide repeats (37.6%. Annotation of the SSR-containing unigenes revealed their putative functions in various biological and molecular processes, including responses to biotic and abiotic signals. Eighteen expressed gene-derived SSR (eSSR markers were successfully mapped to the existing single-nucleotide polymorphism (SNP linkage map of jute, providing additional anchor points. Amplification of 72% of the 74 randomly selected primer pairs was successful in a panel of 24 jute accessions, comprising five and twelve accessions of C. capsularis and C. olitorius, respectively, and seven wild jute species. Forty-three primer pairs produced an average of 2.7 alleles and 58.1% polymorphism in a panel of 24 jute accessions. The mean PIC value was 0.34 but some markers showed PIC values higher than 0.5, suggesting that these markers can efficiently measure genetic diversity and serve for mapping of quantitative trait loci (QTLs in jute. A primer polymorphism survey with parents of a wide-hybridized population between a cultivated jute and its wild relative revealed their efficacy for interspecific hybrid identification. For ready accessibility of jute eSSR primers, we compiled all information in a user-friendly web database, JuteMarkerdb (http://jutemarkerdb.icar.gov.in/ for the first time in jute. This eSSR resource in jute is expected to be of use in characterization of germplasm, interspecific hybrid and variety identification, and marker-assisted breeding of superior-quality jute.

  5. Photosynthetic properties of erect leaf maize inbred lines as the efficient photo-model in breeding and seed production

    Directory of Open Access Journals (Sweden)

    Radenović Čedomir N.

    2003-01-01

    Full Text Available The initial idea of this study was a hypothesis that erect leaf maize inbred lines were characterized by properties of an efficient photo-model and that as such were very desirable in increasing the number of plants per area unit (plant density in the process of contemporary selection and seed production. The application of a non-invasive bioluminescence-photosynthetic method, suitable for the efficiency estimation of the photo-model, verified the hypothesis. Obtained photosynthetic properties of observed erect leaf maize inbred lines were based on the effects and characteristics of thermal processes of delayed chlorophyll fluorescence occurring in their thylakoid membranes. The temperature dependence of the delayed chlorophyll fluorescence intensity phase transitions (critical temperatures in the thylakoid membranes and activation energy are the principal parameters of the thermal processes. Based on obtained photosynthetic properties it is possible to select erect leaf maize inbred lines that are resistant and tolerant to high and very high temperatures, as well as, to drought. They could be good and efficient photo-models wherewith.

  6. Diallel analyze of yield and progress of the severity of leaf diseases in maize hybrids in two population density

    Directory of Open Access Journals (Sweden)

    Marcos Ventura Faria

    2015-02-01

    Full Text Available Seven commercial maize hybrids (AS1575, 2B688, Penta, GNZ2004, AG8021, Sprint e P30F53 were intercrossed in a complete diallel, excluded reciprocal, obtaining 21 crosses. The 28 treatments were evaluated in two environments characterized by different densities (62,500 and 90,000 plants ha-1, with the aim of selecting the most promising parents for generating base population to obtain lines. Two experiments were carried out in Guarapuava-PR, at randomized block design with three replications. We estimated the general (GCA and specific (SCA combining abilities for yield and disease severity assessed by the area under the common rust (Puccinia sorghi progress curve (AURPC and the area under the leaf spot (Cercospora zeae-maydis progress curve (AULPC. The effects of GCA and SCA were significant for grain yield and diseases severity in both densities, revealing the importance of both additive and non-additive effects. There GCA x densities interaction was significant only for grain yield. Crossings P30F53 x AG8021 and P30F53 x Penta had negative estimates of SCA for AURPC and AULPC on the environments average. Hybrids GNZ 2004 and P30F53 stood out showing positive GCA for grain yield and negative for AURPC and AULPC in both densities and therefore are recommended for generating base populations for obtaining lines adapted for both densities, conventional and denser plantings, given the current trends in management of maize.

  7. The effect of Nitrogen on Radiation Use Efficiency and Growth indices of Maize Hybrids (Zea mays L. under Kermanshah Condition

    Directory of Open Access Journals (Sweden)

    M Ahmadi

    2018-02-01

    Full Text Available Introduction Dry matter produced by crops is a function of absorbed radiation and radiation use efficiency. Radiation use efficiency is an effective approach to quantify total dry matter accumulation. It is defined as biomass produced by plant for solar radiation absorbed during growing season. Radiation use efficiency is often calculated from the linear regression slope between total dry matter accumulation and cumulative solar radiation absorbed. It is affected by species, weather conditions, crop management, plant development stages, and the production of photosynthesis compounds. Among the factors of agronomic management, nitrogen fertilizer and crop species are the most important aspects that affect the radiation use efficiency. Therefore, by considering the fact that Kermanshah province has favorable condition in terms of more natural resources such as solar radiation, the aims of the present study were evaluation of nitrogen effect on radiation use efficiency, growth indices and yield of some current maize hybrids. Materials and Methods A split plot experiment was done based on randomized complete block design with 4 replications at 2014. Treatments were 4 levels of nitrogen fertilizer application (40%, 70%, 100% and 140% of the maize demand to nitrogen which based on the amount recommended by soil experiment equivalent to 138, 238, 350 and 483 kg.ha-1 of urea as main plots and 3 maize hybrids KSC-704, BC-678 and Simon as sub plots. Leaf area index and total dry matter yield measured during growing season. Crop growth rate and relative growth ratio calculated by differentiation from fitted equation on total dry matter yield data. In order to calculate radiation use efficiency, sunny hours for Kermanshah latitude obtained from the nearest weather station. Daily solar radiation simulated by the method cited by Goudriaan and Van Laar (1993 for growing season. The absorbed radiation in each stage obtained through the multiplication simulated

  8. Breeding of a new early season indica rice variety Ganzaoxian 56 by irradiation, anther culture and hybridization

    International Nuclear Information System (INIS)

    Huang Yingjin; Liu Yibai; Kuang Huiyun; Xu Zhengjin

    2005-01-01

    Ganzaoxian 56 is a new early season indica rice variety, which was bred in the College of Agronomy of Jiangxi Agricultural University by the integrative breeding techniques of radiation, anther culture and hybridization. Its main characteristics were as follows: super quality, high yield, high tolerance to heat-forced maturity, suitable maturity and high resistance to rice blast. It was registered by Crop Cultivar Registration Committee of Jiangxi Province on March 19, 2004. The breeding process of Ganzaoxian 56, main characteristics and the value of its exploitation and application were described in this paper. (authors)

  9. Making better maize plants for sustainable grain production in a changing climate.

    Science.gov (United States)

    Gong, Fangping; Wu, Xiaolin; Zhang, Huiyong; Chen, Yanhui; Wang, Wei

    2015-01-01

    Achieving grain supply security with limited arable land is a major challenge in the twenty-first century, owing to the changing climate and increasing global population. Maize plays an increasingly vital role in global grain production. As a C4 plant, maize has a high yield potential. Maize is predicted to become the number one cereal in the world by 2020. However, maize production has plateaued in many countries, and hybrid and production technologies have been fully exploited. Thus, there is an urgent need to shape maize traits and architectures for increased stress tolerance and higher yield in a changing climate. Recent achievements in genomics, proteomics, and metabolomics have provided an unprecedented opportunity to make better maize. In this paper, we discuss the current challenges and potential of maize production, particularly in China. We also highlight the need for enhancing maize tolerance to drought and heat waves, summarize the elite shoot and root traits and phenotypes, and propose an ideotype for sustainable maize production in a changing climate. This will facilitate targeted maize improvement through a conventional breeding program combined with molecular techniques.

  10. Reticulate phylogeny of gastropod-shell-breeding cichlids from Lake Tanganyika – the result of repeated introgressive hybridization

    Directory of Open Access Journals (Sweden)

    Blanc Michel

    2007-01-01

    Full Text Available Abstract Background The tribe Lamprologini is the major substrate breeding lineage of Lake Tanganyika's cichlid species flock. Among several different life history strategies found in lamprologines, the adaptation to live and breed in empty gastropod shells is probably the most peculiar. Although shell-breeding arose several times in the evolutionary history of the lamprologines, all obligatory and most facultative shell-breeders belong to the so called "ossified group", a monophyletic lineage within the lamprologine cichlids. Since their distinctive life style enables these species to live and breed in closest vicinity, we hypothesized that these cichlids might be particularly prone to accidental hybridization, and that introgression might have affected the evolutionary history of this cichlid lineage. Results Our analyses revealed discrepancies between phylogenetic hypotheses based on mitochondrial and nuclear (AFLP data. While the nuclear phylogeny was congruent with morphological, behavioral and ecological characteristics, several species – usually highly specialized shell-breeders – were placed at contradicting positions in the mitochondrial phylogeny. The discordant phylogenies strongly suggest repeated incidents of introgressive hybridization between several distantly related shell-breeding species, which reticulated the phylogeny of this group of cichlids. Long interior branches and high bootstrap support for many interior nodes in the mitochondrial phylogeny argue against a major effect of ancient incomplete lineage sorting on the phylogenetic reconstruction. Moreover, we provide morphological and genetic (mtDNA and microsatellites evidence for ongoing hybridization among distantly related shell-breeders. In these cases, the territorial males of the inferred paternal species are too large to enter the shells of their mate, such that they have to release their sperm over the entrance of the shell to fertilize the eggs. With sperm

  11. Adaptability and performance of short-season maize hybrids in the southern high plains

    Science.gov (United States)

    Drought incidences change with year and location, and are prevalent in the Southern High Plains where annual rainfall is low and highly variable and most maize and other crops are irrigated. The low rainfall and groundwater overuse are leading to shortages of water for crop irrigation in this regio...

  12. Soil water capture trends over 50 years of single-cross maize (Zea mays L.) breeding in the US corn-belt.

    Science.gov (United States)

    Reyes, Andres; Messina, Carlos D; Hammer, Graeme L; Liu, Lu; van Oosterom, Erik; Lafitte, Renee; Cooper, Mark

    2015-12-01

    Breeders have successfully improved maize (Zea mays L.) grain yield for the conditions of the US corn-belt over the past 80 years, with the past 50 years utilizing single-cross hybrids. Long-term improvement for grain yield under water-limited conditions has also been reported. Grain yield under water-limited conditions depends on water use, water use efficiency, and harvest index. It has been hypothesized that long-term genetic gain for yield could be due, in part, to increased water capture from the soil. This hypothesis was tested using a set of elite single-cross hybrids that were released by DuPont Pioneer between 1963 and 2009. Eighteen hybrids were grown in the field during 2010 and 2011 growing seasons at Woodland, CA, USA. Crops grew predominantly on stored soil water and drought stress increased as the season progressed. Soil water content was measured to 300cm depth throughout the growing season. Significant water extraction occurred to a depth of 240-300cm and seasonal water use was calculated from the change in soil water over this rooting zone. Grain yield increased significantly with year of commercialization, but no such trend was observed for total water extraction. Therefore, the measured genetic gain for yield for the period represented by this set of hybrids must be related to either increased efficiency of water use or increased carbon partitioning to the grain, rather than increased soil water uptake. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Using Leaf-level Hyperspectral Reflectance Data to Analyze Genetic Gain in CIMMYT Maize Hybrids

    Data.gov (United States)

    US Agency for International Development — A set of recent CIMMYT era hybrids - spanning from the early 1990s to the late 2000s - was analyzed. The hybrids were grown in four different environments in two...

  14. The disadvantages of being a hybrid during drought: A combined analysis of plant morphology, physiology and leaf proteome in maize

    Science.gov (United States)

    Benešová, Monika; Fischer, Lukáš; Haisel, Daniel; Hnilička, František; Hniličková, Helena; Jedelský, Petr L.; Kočová, Marie; Rothová, Olga; Tůmová, Lenka; Wilhelmová, Naďa

    2017-01-01

    A comparative analysis of various parameters that characterize plant morphology, growth, water status, photosynthesis, cell damage, and antioxidative and osmoprotective systems together with an iTRAQ analysis of the leaf proteome was performed in two inbred lines of maize (Zea mays L.) differing in drought susceptibility and their reciprocal F1 hybrids. The aim of this study was to dissect the parent-hybrid relationships to better understand the mechanisms of the heterotic effect and its potential association with the stress response. The results clearly showed that the four examined genotypes have completely different strategies for coping with limited water availability and that the inherent properties of the F1 hybrids, i.e. positive heterosis in morphological parameters (or, more generally, a larger plant body) becomes a distinct disadvantage when the water supply is limited. However, although a greater loss of photosynthetic efficiency was an inherent disadvantage, the precise causes and consequences of the original predisposition towards faster growth and biomass accumulation differed even between reciprocal hybrids. Both maternal and paternal parents could be imitated by their progeny in some aspects of the drought response (e.g., the absence of general protein down-regulation, changes in the levels of some carbon fixation or other photosynthetic proteins). Nevertheless, other features (e.g., dehydrin or light-harvesting protein contents, reduced chloroplast proteosynthesis) were quite unique to a particular hybrid. Our study also confirmed that the strategy for leaving stomata open even when the water supply is limited (coupled to a smaller body size and some other physiological properties), observed in one of our inbred lines, is associated with drought-resistance not only during mild drought (as we showed previously) but also during more severe drought conditions. PMID:28419152

  15. Assessing the adaptive capacity of maize hybrids to climate change in an irrigated district of Southern Italy

    Science.gov (United States)

    Monaco, Eugenia; Bonfante, Antonello; De Mascellis, Roberto; Alfieri, Silvia Maria; Menenti, Massimo; De Lorenzi, Francesca

    2013-04-01

    Climate change will cause significant changes in water distribution and availability; as a consequence the water resources in some areas (like Mediterranean regions) will be limiting factors to the cultivation of some species, included cereals. So the perspective of climate change requires an analysis of the adaptation possibilities of food and fiber species currently cultivated. A powerful tool for adaptation is the relevant intra-specific biodiversity of crops. The knowledge, for different crop cultivars, of the responses to different environmental conditions (e.g. yield response functions to water regime) can be a tool to identify adaptation options to future climate. Moreover, simulation models of water flow in the soil-plant-atmosphere system can be coupled with future climate scenarios to predict the soil water regime also accounting for different irrigation scheduling options. In this work the adaptive capacity of maize hybrids (Zea mays L.) was evaluated in an irrigated district of Southern Italy (the "Destra Sele" plain, an area of about 18.000 ha), where maize is extensively grown for water buffalo feeding. Horticultural crops (tomato, fennel, artichoke) are grown, as well. The methodology applied is based on two complementary elements: - a database on climatic requirements of 30 maize hybrids: the yield response functions to water availability were determined from experimental data derived both from scientific literature and from field trials carried out by ISAFOM-CNR. These functions were applied to describe the behaviour of the hybrids with respect to the relative evapotranspiration deficit; - the simulation performed by the agro-hydrological model SWAP (soil-water-plant and atmosphere), to determine the future soil water regime at landscape scale. Two climate scenarios were studied: "past" (1961-1990) and "future" (2021-2050). Future climate scenarios were generated within the Italian National Project AGROSCENARI. Climate scenarios at low spatial

  16. Introgression of genetic material from Zea mays ssp. Mexicana into cultivated maize was facilitated by tissue culture

    International Nuclear Information System (INIS)

    Wang, L.; Gu, X.; Qu, M.; Luan, J.; Zhang, J.

    2012-01-01

    Zea mays ssp. mexicana, a wild relative of cultivated maize (Z. mays ssp. mays), is a useful gene resource for maize breeding. In this study, two populations were generated by conventional breeding scheme (population I) or tissue culture regime (population II), respectively, to introgress genetic material of Z. mays ssp. mexicana into maize. Karyotype analysis showed that the arm ratios of 10 pairs of chromosomes in parent maize Ye515 and derivative lines from 2 different populations with 26% and 38% chromosome variation frequencies, respectively. Alien chromatin was detected in the root tip cells of progeny plants through genomic in situ hybridization (GISH). There were 3.3 chromosomes carrying alien chromatin on average in population I and 6.5 in population II. The hybridization signals were located mainly at the terminal or sub terminal regions of the chromosomes and the sizes were notably variant among lines. Based on those results, it is concluded that the introgression of genetic material from Z. mays ssp. mexicana into cultivated maize was facilitated by tissue culture, and subsequently some excellent materials for maize breeding were created. (author)

  17. Comparison of fumonisin contamination using HPLC and ELISA methods in bt and near-isogenic maize hybrids infested with European corn borer or western bean cutworm.

    Science.gov (United States)

    Bowers, Erin; Hellmich, Richard; Munkvold, Gary

    2014-07-09

    Field trials were conducted from 2007 to 2010 to compare grain fumonisin levels among non-Bt maize hybrids and Bt hybrids with transgenic protection against manual infestations of European corn borer (ECB) and Western bean cutworm (WBC). HPLC and ELISA were used to measure fumonisin levels. Results of the methods were highly correlated, but ELISA estimates were higher. Bt hybrids experienced less insect injury, Fusarium ear rot, and fumonisin contamination compared to non-Bt hybrids. WBC infestation increased fumonisin content compared to natural infestation in non-Bt and hybrids expressing Cry1Ab protein in five of eight possible comparisons; in Cry1F hybrids, WBC did not impact fumonisins. These results indicate that WBC is capable of increasing fumonisin levels in maize. Under WBC infestation, Cry1F mitigated this risk more consistently than Cry1Ab or non-Bt hybrids. Transgenically expressed Bt proteins active against multiple lepidopteran pests can provide broad, consistent reductions in the risk of fumonisin contamination.

  18. Cross-Resistance between Cry1 Proteins in Fall Armyworm (Spodoptera frugiperda) May Affect the Durability of Current Pyramided Bt Maize Hybrids in Brazil.

    Science.gov (United States)

    Bernardi, Daniel; Salmeron, Eloisa; Horikoshi, Renato Jun; Bernardi, Oderlei; Dourado, Patrick Marques; Carvalho, Renato Assis; Martinelli, Samuel; Head, Graham P; Omoto, Celso

    2015-01-01

    Genetically modified plants expressing insecticidal proteins from Bacillus thuringiensis (Bt) offer valuable options for managing insect pests with considerable environmental and economic benefits. Despite the benefits provided by Bt crops, the continuous expression of these insecticidal proteins imposes strong selection for resistance in target pest populations. Bt maize (Zea mays) hybrids have been successful in controlling fall armyworm (Spodoptera frugiperda), the main maize pest in Brazil since 2008; however, field-evolved resistance to the protein Cry1F has recently been reported. Therefore it is important to assess the possibility of cross-resistance between Cry1F and other Cry proteins expressed in Bt maize hybrids. In this study, an F2 screen followed by subsequent selection on MON 89034 maize was used to select an S. frugiperda strain (RR) able to survive on the Bt maize event MON 89034, which expresses the Cry1A.105 and Cry2Ab2 proteins. Field-collected insects from maize expressing the Cry1F protein (event TC1507) represented most of the positive (resistance allele-containing) (iso)families found. The RR strain showed high levels of resistance to Cry1F, which apparently also conferred high levels of cross resistance to Cry1A.105 and Cry1Ab, but had only low-level (10-fold) resistance to Cry2Ab2. Life history studies to investigate fitness costs associated with the resistance in RR strain revealed only small reductions in reproductive rate when compared to susceptible and heterozygous strains, but the RR strain produced 32.2% and 28.4% fewer females from each female relative to the SS and RS (pooled) strains, respectively. Consistent with the lack of significant resistance to Cry2Ab2, MON 89034 maize in combination with appropriate management practices continues to provide effective control of S. frugiperda in Brazil. Nevertheless, the occurrence of Cry1F resistance in S. frugiperda across Brazil, and the cross-resistance to Cry1Ab and Cry1A.105

  19. Growth and yield response of hybrid maize (Zea mays L. to phosphorus levels in sandy loam soil of Chitwan Valley, Nepal

    Directory of Open Access Journals (Sweden)

    Bandhu Raj Baral

    2015-06-01

    Full Text Available To evaluate the phosphorus response on winter hybrid maize, a field experiment was conducted at farm land of National Maize Research Program, Rampur, Chitwan, Nepal on 2012 and 2013. Seven levels of Phosphorus i.e. 0, 20, 40, 60, 80, 100 and 120 kg P2O5 ha-1 were applied along with 160:40 kg N:K2O ha-1. The experiment was laid out in randomized complete block design with three replications. Hybrid maize RML 32 × RML 17 was used for this study. Analysis of variance showed that plant height (cm, dry matter accumulation (g, number of kernels per row, 1000 grain weight (g and grain yield (ton ha-1 were significantly affected with Phosphorus level. The results showed that the trend of increment was positive for grain yield with increased P level from 0 to 80 kg P2O5 ha-1. The highest grain yield (10.77 ton ha-1 was measured when 120 kg P2O5 ha-1 is applied. It is concluded that 80 kg P2O5 ha-1 can be applied in winter season for hybrid maize RML-32 × RML-17 in Chitwan valley low land irrigated condition. Further studies are necessary on different soil types, seasons, management system and varieties to get more information about the most proper addition of P on maize. DOI: http://dx.doi.org/10.3126/ije.v4i2.12634 International Journal of Environment Vol.4(2 2015: 147-156

  20. The dependence of maize (Zea mays hybrids yielding potential on the water amounts reaching the soil surface

    Directory of Open Access Journals (Sweden)

    Kresović Branka

    2013-01-01

    Full Text Available The aim of the present study was to observe the response of maize hybrids under rainfed and irrigation conditions of the soil in order to establish the dependence of yielding potential on the water amounts reaching the soil surface during the growing season. The four-replicate trail was set up according to the randomised complete-block design on chernozem. Pre-watering soil moisture was approximately 70% of field water capacity, and soil moisture was established thermogravimetrically. During the five-year studies, the following differences in yields could be as follows: 12.68 t ha-1 (ZP 341; 12.76 t ha-1 (ZP 434; 13.17 t ha-1 (ZP 578; 14.03 t ha-1 (ZP 684 and 13.75 t ha-1 (ZP 704 under conditions of 440 mm, 440 mm, 424 mm, 457 mm and 466 mm of water, respectively. The hybrid ZP 341, i.e. ZP 578 expressed the highest, i.e. the lowest tolerance in dry relative seasons, respectively. The reduction of the water amount for every 10 mm decreased the yield by 119.4 kg ha-1 (ZP 341, 156.7 kg ha-1 (ZP 434, 172.3 kg ha-1 (ZP 578, 148.9 kg ha-1 (ZP 684 and 151.1 kg ha-1 (ZP 704. [Projekat Ministarstva nauke Republike Srbije, br. TR 31037

  1. Evaluation on reaction of late maturing maize hybrids and lines to Fusarium ear rot.

    Directory of Open Access Journals (Sweden)

    M. Haddadi

    2015-03-01

    Full Text Available Abstract. In order to evaluate and determine resistance rates of different corn genotypes to Fusarium ear rot, 22 inbred lines and 19 late and medium maturity hybrids in 2009 and 17 inbred lines and 14 late and medium maturity hybrids were planted in Qarakheil Agricultural Research Station in 2010. Each line and hybrid were planted separately. For each experiment a randomized complete block design with three replications was used. Plant ears were inoculated by Nail th Punch method at the 10 day after anthesis. When the disease symptoms were observed, evaluation of each line and genotype was done based on percentage and severity of the disease symptom. The result in 2009 showed that 14 hybrids were tolerant. Hybrids of K3640/3 X MO17, K166B X K18, K166B X K19/1 and K3547/4 X MO17 were resistant. One hybrid was susceptible. Pure lines of K18 and K LM77007/7-2-6-3-1-2-1 were resistant. 14 tolerance lines and 6 susceptible lines were shown. In 2010 hybrids of K166B X K18 and K3653/2 X K18 were resistant. The other hybrids were tolerant. Pure lines of K3547/3 and K18 were resistant. Five tolerance lines were also shown.

  2. Differential Response of a Maize Hybrid and its Parental Lines to Salinity Stress

    Czech Academy of Sciences Publication Activity Database

    Procházková, Dagmar; Sairam, R.; Lekshmy, S.; Wilhelmová, Naděžda

    2013-01-01

    Roč. 49, č. 1 (2013), s. 9-15 ISSN 1212-1975 R&D Projects: GA ČR GA521/07/0470 Institutional research plan: CEZ:AV0Z50380511 Keywords : antioxidant enzymes * Na+ * proline Subject RIV: GE - Plant Breeding Impact factor: 0.486, year: 2013 http://agriculturejournals.cz/publicFiles/84696.pdf

  3. Improving Wheat for Drought Tolerance by Using Hybridization and Mutation Breeding Procedures

    International Nuclear Information System (INIS)

    Al-Azab, K.F.

    2013-01-01

    In an attempt to develop drought tolerant genotypes of bread wheat, two procedures, i.e. mutation breeding and hybridization were used to induce new genetic variation. Four field and two laboratory experiments were conducted during the seasons 2008/2009 through 2011/2012. A preliminary experiment proved that the dose of 350 Gy gamma rays was the best for induction of useful mutations in seven wheat irradiated (I) genotypes. The M 2 populations of these genotypes exhibited differences in the magnitude of ranges, phenotypic (PCV) and genotypic (GCV) coefficient of variation and heritability for studied traits under water stress and non-stress conditions. The highest expected gain from selection (GA) for grain yield/plant (GYPP) was shown by Sids-4 (I) and Sakha-61 (I) under well watering (WW) and Aseel-5 (I) and Sids-4 (I) under water stress (WS) conditions. Analyses of F 1 and F 2 diallel crosses among six of these genotypes proved the predominance of non additive variance in the F 1 s and additive variance in the F 2 s under both WW and WS for most studied traits. The predicted GA from selection in the F 2 s reached a maximum of (23.4 %) for GYPP under WW and 14.3 % for spike length (SL) under WS. Selection for high GYPP and other desirable traits was practiced in the M 2 and F 2 populations under WW and WS. Progenies of these selections (53 M 3 and 109 F 3 families) and their seven parents were evaluated under WW and WS. Selection under WS was more efficient than that under WW for the use under WS. Twelve families (7 M 3 s and 5 F 2 s) significantly out yielded their parents by at least 15 % under WS considered as drought tolerant genotypes were characterized for agronomic traits and on the DNA level. The SSR analysis proved that these 12 families are genetically different from their parents, with an average of 86.67 % polymorphism. SSR assay permitted the identification of seven unique markers (5 positive and 2 negative) for three drought tolerant wheat genotypes

  4. Yield stability and adaptability of maize hybrids based on GGE biplot analysis characteristics

    Directory of Open Access Journals (Sweden)

    Marcio Balestre

    2009-01-01

    Full Text Available The objective of this study was to evaluate stability and adaptability of the grain yield of commercial intervarietalmaize hybrids by the GGE (Genotype and Genotype by Environment Interaction biplot and AMMI (Additive Main Effects andMultiplicative Interaction analyses. Two intervarietal hybrids (BIO 2 and BIO4 were evaluated together with single, doubleand three-way cross hybrids. The performance of the intervarietal hybrid BIO 4 was superior to all double and three-waycross hybrids and outmatched the single-cross hybrids by 43%. In terms of stability, BIO 2 was more stable than BIO4, whichis desirable, but biological stability, which is not necessarily desirable, was also observed, since the yield was below theenvironmental mean. The graphical GGE biplot analysis was superior to the AMMI1 since a greater portion of the sum ofsquares of GE and G+GE was captured and the predictive accuracy was higher. On the other hand, the AMMI2 graphoutperformed the GGE biplot in predictive accuracy and explanation of G + GE and GE, although the difference in accuracywas smaller than between GGE2 and AMMI1.

  5. Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops.

    Science.gov (United States)

    Wu, Yongzhong; Fox, Tim W; Trimnell, Mary R; Wang, Lijuan; Xu, Rui-Ji; Cigan, A Mark; Huffman, Gary A; Garnaat, Carl W; Hershey, Howard; Albertsen, Marc C

    2016-03-01

    We have developed a novel hybridization platform that utilizes nuclear male sterility to produce hybrids in maize and other cross-pollinating crops. A key component of this platform is a process termed Seed Production Technology (SPT). This process incorporates a transgenic SPT maintainer line capable of propagating nontransgenic nuclear male-sterile lines for use as female parents in hybrid production. The maize SPT maintainer line is a homozygous recessive male sterile transformed with a SPT construct containing (i) a complementary wild-type male fertility gene to restore fertility, (ii) an α-amylase gene to disrupt pollination and (iii) a seed colour marker gene. The sporophytic wild-type allele complements the recessive mutation, enabling the development of pollen grains, all of which carry the recessive allele but with only half carrying the SPT transgenes. Pollen grains with the SPT transgenes exhibit starch depletion resulting from expression of α-amylase and are unable to germinate. Pollen grains that do not carry the SPT transgenes are nontransgenic and are able to fertilize homozygous mutant plants, resulting in nontransgenic male-sterile progeny for use as female parents. Because transgenic SPT maintainer seeds express a red fluorescent protein, they can be detected and efficiently separated from seeds that do not contain the SPT transgenes by mechanical colour sorting. The SPT process has the potential to replace current approaches to pollen control in commercial maize hybrid seed production. It also has important applications for other cross-pollinating crops where it can unlock the potential for greater hybrid productivity through expanding the parental germplasm pool. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Investigation of tritium and 233U breeding in a fission-fusion hybrid reactor fuelling with ThO2

    International Nuclear Information System (INIS)

    Yildiz, K.; Sahin, S.; Sahin, H. M.; Acir, A.; Yalcin, S.; Altinok, T.; Bayrak, M.; Alkan, M.; Durukan, O.

    2007-01-01

    In the world, thorium reserves are three times more than natural Uranium reserves. It is planned in the near future that nuclear reactors will use thorium as a fuel. Thorium is not a fissile isotope because it doesn't make fission with thermal neutrons so it could be converted to 2 33U isotope which has very high quality fission cross-section with thermal neutrons. 2 33U isotope can be used in present LWRs as an enrichment fuel. In the fusion reactors, tritium is the most important fossil fuel. Because tritium is not natural isotope, it has to be produced in the reactor. The purpose of this work is to investigate the tritium and 2 33U breeding in a fission-fusion hybrid reactor fuelling with ThO 2 for Δt=10 days during a reactor operation period in five years. The neutronic analysis is performed on an experimental hybrid blanket geometry. In the center of the hybrid blanket, there is a line neutron source in a cylindrical cavity, which simulates the fusion plasma chamber where high energy neutrons (14.1 MeV) are produced. The conventional fusion reaction delivers the external neutron source for blankets following, 2 D + 3 T →? 4 He (3.5 MeV) + n (14.1 MeV). (1) The fuel zone made up of natural-ThO 2 fuel and it is cooled with different coolants. In this work, five different moderator materials, which are Li 2 BeF 4 , LiF-NaF-BeF 2 , Li 2 0Sn 8 0, natural Lithium and Li 1 7Pb 8 3, are used as coolants. The radial reflector, called tritium breeding zones, is made of different Lithium compounds and graphite in sandwich structure. In the work, eight different Lithium compounds were used as tritium breeders in the tritium breeding zones, which are Li 3 N, Li 2 O, Li 2 O 2 , Li 2 TiO 3 , Li 4 SiO 3 , Li 2 ZrO 3 , LiBr and LiH. Neutron transport calculations are conducted in spherical geometry with the help of SCALE4.4A SYSTEM by solving the Boltzmann transport equation with code CSAS and XSDRNPM, under consideration of unresolved and resolved resonances, in S 8 -P 3

  7. Effect of phosphorus and zinc on growth and their uptake in hybrid maize grown in a calcareous alluvial soil

    International Nuclear Information System (INIS)

    Parik, B.L.; Santikari, A.K.; Das, S.K.; Chowdhury, B.

    1977-01-01

    Hybrid maize (Zea mays L., var. Ganga 101) was grown in glasshouse at different levels of phosphorus with and without zinc, in a calcareous alluvial soil of North Bihar. Phosphorus was applied at 0, 11, 22, 44 and 88 ppm as tagged P in single superphosphats. Zinc was applied at 0 and 10 ppm as 65 ZnCl 2 . Application of phosphorus and zinc significantly increased the dry matter yield up to P 44 . Higher dose of P resulted in depressed growth accompanied by decreased zinc concentration and uptake by plants, exhibiting zinc deficiency symptoms. Higher levels of P and Zn increased their concentrations in the plant, but their total uptake was reduced at P 88 . With higher levels of P the percent utilization of fertilizer P decreased, while in zinc treated soils uptake of fertilizer P increased. Percent utilization of added zinc increased with increase in P levels upto P 44 and decreased thereafter, although at this level of P a greater percentage of zinc was derived from the fertilizer. (author)

  8. Performance of Variety Cross Hybrids of Maize (Zea Mays L.) in the ...

    African Journals Online (AJOL)

    However, the dissemination of these improved varieties is limited because of a low level of interest of seed producers in the production and marketing of OPV seed. ... Twenty-nine variety cross hybrids and nine parental OPVs/populations along two checks were tested in randomized complete block design with three ...

  9. Selection for drought tolerance in two tropical maize populations ...

    African Journals Online (AJOL)

    Drought is a major factor limiting maize (Zea mays L.) yield in much of the world. The need to breed maize cultivars with improved drought tolerance is apparent. This study compared two maize populations, ZM601 and ZM607 for drought tolerance during flowering, the most drought-vulnerable period for the maize plant.

  10. Epigenetic changes and transposon reactivation in Thai rice hybrids. Molecular Breeding

    NARCIS (Netherlands)

    Kantama, L.; Junbuathong, S.; Sakulkoo, J.; Jong, de J.H.S.G.M.; Apisitwanich, S.

    2013-01-01

    Inter- or intraspecific hybridization is the first step in transferring exogenous traits to the germplasm of a recipient crop. One of the complicating factors is the occurrence of epigenetic modifications of the hybrids, which in turn can change their gene expression and phenotype. In this study we

  11. Maize germplasm of eastern Croatia with native resistance to western corn rootworm (Diabrotica virgifera virgifera LeConte

    Directory of Open Access Journals (Sweden)

    Brkić Andrija

    2017-01-01

    Full Text Available The western corn rootworm (Diabrotica virgifera virgifera LeConte; WCR is a serious maize pest in Croatia. The species was first registered in Europe in the early 1990s and since then became one of the most dangerous maize pests, especially in parts of Central and Southeast Europe. Larvae that feed on the maize roots cause the most serious damages in maize fields. Management of this pest is difficult and expensive, with possible serious impact on the environment. Native (or host-plant resistance of maize against WCR could provide new economically and ecologically sustainable options in WCR management. Main goal of this study was to assess the variability of maize germplasm, correlations among resistance traits, and detect potential sources of resistance that could be used in breeding programs in order to develop hybrids with higher level of resistance against WCR. To our knowledge, the first native resistant hybrid is yet to be registered. Results showed great variability of estimated germplasm. Effect of the genotype was significant in all environments, as well as many interactions between genotype and the environment. Significant interactions emphasize the importance of the environment in WCR native resistance research. Significant positive correlations among all traits were detected. Several inbred lines were selected as a potentially useful germplasm for resistance breeding programs.

  12. Genomic prediction in early selection stages using multi-year data in a hybrid rye breeding program.

    Science.gov (United States)

    Bernal-Vasquez, Angela-Maria; Gordillo, Andres; Schmidt, Malthe; Piepho, Hans-Peter

    2017-05-31

    The use of multiple genetic backgrounds across years is appealing for genomic prediction (GP) because past years' data provide valuable information on marker effects. Nonetheless, single-year GP models are less complex and computationally less demanding than multi-year GP models. In devising a suitable analysis strategy for multi-year data, we may exploit the fact that even if there is no replication of genotypes across years, there is plenty of replication at the level of marker loci. Our principal aim was to evaluate different GP approaches to simultaneously model genotype-by-year (GY) effects and breeding values using multi-year data in terms of predictive ability. The models were evaluated under different scenarios reflecting common practice in plant breeding programs, such as different degrees of relatedness between training and validation sets, and using a selected fraction of genotypes in the training set. We used empirical grain yield data of a rye hybrid breeding program. A detailed description of the prediction approaches highlighting the use of kinship for modeling GY is presented. Using the kinship to model GY was advantageous in particular for datasets disconnected across years. On average, predictive abilities were 5% higher for models using kinship to model GY over models without kinship. We confirmed that using data from multiple selection stages provides valuable GY information and helps increasing predictive ability. This increase is on average 30% higher when the predicted genotypes are closely related with the genotypes in the training set. A selection of top-yielding genotypes together with the use of kinship to model GY improves the predictive ability in datasets composed of single years of several selection cycles. Our results clearly demonstrate that the use of multi-year data and appropriate modeling is beneficial for GP because it allows dissecting GY effects from genomic estimated breeding values. The model choice, as well as ensuring

  13. Potential for fissile breeding with the fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Bender, D.J.; Lee, J.D.

    1976-01-01

    The general features of the mirror reactor design are discussed. Details of the blanket-coil geometry are shown. The inside face of the blanket segments are divided into individual pressure vessels. These submodules contain fissile breeding material located directly behind the first wall, a fusile breeding material behind the fertile breeder, and then coolant inlet and outlet plena. Two blankets are examined and compared in this study. One contains natural uranium plus 7 wt. percent Mo, the second contains thorium metal. The performance of these blankets is discussed

  14. Advances and prospects for induced mutation breeding in Helongjiang Province

    International Nuclear Information System (INIS)

    Sun Guangzu

    1995-12-01

    Induced mutation breeding employed on soybean, spring wheat, maize, millet, fiber flax, chinese cabbage, kidney been and garlic in Heilongjiang province. Thirty-six new varieties had introduced and released from 1980 to 1994, made up 20.6% of total released varieties for the same period, accumulated cultivated area of 3.746 million hm 2 , and increased the income of formers to US dollar 168 million; 72 mutants having specific and utilizing values and traits have also been bred in the province. Basic research such as radiation breeding in combination with distant hybridization, biotechnology, and application new induced factors, improving selection methods, have been achieved; 91 articles have been published. These researches play an important role for increasing induced mutation breeding. Three items of suggestion to develop induced mutation breeding are made. (1 tab.)

  15. Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene.

    Science.gov (United States)

    Chang, Zhenyi; Chen, Zhufeng; Wang, Na; Xie, Gang; Lu, Jiawei; Yan, Wei; Zhou, Junli; Tang, Xiaoyan; Deng, Xing Wang

    2016-12-06

    The breeding and large-scale adoption of hybrid seeds is an important achievement in agriculture. Rice hybrid seed production uses cytoplasmic male sterile lines or photoperiod/thermo-sensitive genic male sterile lines (PTGMS) as female parent. Cytoplasmic male sterile lines are propagated via cross-pollination by corresponding maintainer lines, whereas PTGMS lines are propagated via self-pollination under environmental conditions restoring male fertility. Despite huge successes, both systems have their intrinsic drawbacks. Here, we constructed a rice male sterility system using a nuclear gene named Oryza sativa No Pollen 1 (OsNP1). OsNP1 encodes a putative glucose-methanol-choline oxidoreductase regulating tapetum degeneration and pollen exine formation; it is specifically expressed in the tapetum and miscrospores. The osnp1 mutant plant displays normal vegetative growth but complete male sterility insensitive to environmental conditions. OsNP1 was coupled with an α-amylase gene to devitalize transgenic pollen and the red fluorescence protein (DsRed) gene to mark transgenic seed and transformed into the osnp1 mutant. Self-pollination of the transgenic plant carrying a single hemizygous transgene produced nontransgenic male sterile and transgenic fertile seeds in 1:1 ratio that can be sorted out based on the red fluorescence coded by DsRed Cross-pollination of the fertile transgenic plants to the nontransgenic male sterile plants propagated the male sterile seeds of high purity. The male sterile line was crossed with ∼1,200 individual rice germplasms available. Approximately 85% of the F1s outperformed their parents in per plant yield, and 10% out-yielded the best local cultivars, indicating that the technology is promising in hybrid rice breeding and production.

  16. Estimates for Genetic Variance Components in Reciprocal Recurrent Selection in Populations Derived from Maize Single-Cross Hybrids

    Directory of Open Access Journals (Sweden)

    Matheus Costa dos Reis

    2014-01-01

    Full Text Available This study was carried out to obtain the estimates of genetic variance and covariance components related to intra- and interpopulation in the original populations (C0 and in the third cycle (C3 of reciprocal recurrent selection (RRS which allows breeders to define the best breeding strategy. For that purpose, the half-sib progenies of intrapopulation (P11 and P22 and interpopulation (P12 and P21 from populations 1 and 2 derived from single-cross hybrids in the 0 and 3 cycles of the reciprocal recurrent selection program were used. The intra- and interpopulation progenies were evaluated in a 10×10 triple lattice design in two separate locations. The data for unhusked ear weight (ear weight without husk and plant height were collected. All genetic variance and covariance components were estimated from the expected mean squares. The breakdown of additive variance into intrapopulation and interpopulation additive deviations (στ2 and the covariance between these and their intrapopulation additive effects (CovAτ found predominance of the dominance effect for unhusked ear weight. Plant height for these components shows that the intrapopulation additive effect explains most of the variation. Estimates for intrapopulation and interpopulation additive genetic variances confirm that populations derived from single-cross hybrids have potential for recurrent selection programs.

  17. Cluster Analysis of Maize Inbred Lines

    Directory of Open Access Journals (Sweden)

    Jiban Shrestha

    2016-12-01

    Full Text Available The determination of diversity among inbred lines is important for heterosis breeding. Sixty maize inbred lines were evaluated for their eight agro morphological traits during winter season of 2011 to analyze their genetic diversity. Clustering was done by average linkage method. The inbred lines were grouped into six clusters. Inbred lines grouped into Clusters II had taller plants with maximum number of leaves. The cluster III was characterized with shorter plants with minimum number of leaves. The inbred lines categorized into cluster V had early flowering whereas the group into cluster VI had late flowering time. The inbred lines grouped into the cluster III were characterized by higher value of anthesis silking interval (ASI and those of cluster VI had lower value of ASI. These results showed that the inbred lines having widely divergent clusters can be utilized in hybrid breeding programme.

  18. Synergy between root hydrotropic response and root biomass in maize (Zea mays L.) enhances drought avoidance.

    Science.gov (United States)

    Eapen, Delfeena; Martínez-Guadarrama, Jesús; Hernández-Bruno, Oralia; Flores, Leonardo; Nieto-Sotelo, Jorge; Cassab, Gladys I

    2017-12-01

    Roots of higher plants change their growth direction in response to moisture, avoiding drought and gaining maximum advantage for development. This response is termed hydrotropism. There have been few studies of root hydrotropism in grasses, particularly in maize. Our goal was to test whether an enhanced hydrotropic response of maize roots correlates with a better adaptation to drought and partial/lateral irrigation in field studies. We developed a laboratory bioassay for testing hydrotropic response in primary roots of 47 maize elite DTMA (Drought Tolerant Maize for Africa) hybrids. After phenotyping these hybrids in the laboratory, selected lines were tested in the field. Three robust and three weak hybrids were evaluated employing three irrigation procedures: normal irrigation, partial lateral irrigation and drought. Hybrids with a robust hydrotropic response showed growth and developmental patterns, under drought and partial lateral irrigation, that differed from weak hydrotropic responders. A correlation between root crown biomass and grain yield in hybrids with robust hydrotropic response was detected. Hybrids with robust hydrotropic response showed earlier female flowering whereas several root system traits, such as projected root area, median width, maximum width, skeleton width, skeleton nodes, average tip diameter, rooting depth skeleton, thinner aboveground crown roots, as well as stem diameter, were considerably higher than in weak hydrotropic responders in the three irrigation procedures utilized. These results demonstrate the benefit of intensive phenotyping of hydrotropism in primary roots since maize plants that display a robust hydrotropic response grew better under drought and partial lateral irrigation, indicating that a selection for robust hydrotropism might be a promising breeding strategy to improve drought avoidance in maize. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Use of hybridization (F1 in forage sorghum (Sorghum bicolor (L. Moench breeding

    Directory of Open Access Journals (Sweden)

    Pataki Imre

    2010-01-01

    Full Text Available In plants with bisexual flowers, the development of hybrids and F1 seed production is only possible by using cytoplasmatic male sterility. The discovery of such sterility and the maintainers has made it possible to utilize the phenomenon of heterosis to improve yields and yield components in forage sorghum. It has been shown that the best way to develop forage sorghum hybrids is to cross grain sorghum as the female parent and Sudan grass as the male. The objective of this study was to develop a forage sorghum hybrid for the production of green matter to be used either fresh or for silage. The sorghum hybrid developed in these efforts (Siloking is intended for multiple cutting, as the basal nodes produce buds and regrowth takes place. The performance of the new hybrid with respect to yield and quality was compared to that of the forage sorghum cultivar NS Džin. In a two-year study conducted under different growing conditions in four locations, Siloking produced an average green matter yield of 86.29 t ha-1 (two cuts, a dry matter yield of 25.34 t ha-1, and a crude protein content of 11.85 %. Siloking outperformed NS Džin in terms of yield and quality. .

  20. Effect of Maize Hybrid and Foliar Fungicides on Yield Under Low Foliar Disease Severity Conditions.

    Science.gov (United States)

    Mallowa, Sally O; Esker, Paul D; Paul, Pierce A; Bradley, Carl A; Chapara, Venkata R; Conley, Shawn P; Robertson, Alison E

    2015-08-01

    Foliar fungicide use in the U.S. Corn Belt increased in the last decade; however, questions persist pertaining to its value and sustainability. Multistate field trials were established from 2010 to 2012 in Illinois, Iowa, Ohio, and Wisconsin to examine how hybrid and foliar fungicide influenced disease intensity and yield. The experimental design was in a split-split plot with main plots consisting of hybrids varying in resistance to gray leaf spot (caused by Cercospora zeae-maydis) and northern corn leaf blight (caused by Setosphaera turcica), subplots corresponding to four application timings of the fungicide pyraclostrobin, and sub-subplots represented by inoculations with either C. zeae-maydis, S. turcica, or both at two vegetative growth stages. Fungicide application (VT/R1) significantly reduced total disease severity relative to the control in five of eight site-years (P<0.05). Disease was reduced by approximately 30% at Wisconsin in 2011, 20% at Illinois in 2010, 29% at Iowa in 2010, and 32 and 30% at Ohio in 2010 and 2012, respectively. These disease severities ranged from 0.2 to 0.3% in Wisconsin in 2011 to 16.7 to 22.1% in Illinois in 2010. The untreated control had significantly lower yield (P<0.05) than the fungicide-treated in three site-years. Fungicide application increased the yield by approximately 6% at Ohio in 2010, 5% at Wisconsin in 2010 and 6% in 2011. Yield differences ranged from 8,403 to 8,890 kg/ha in Wisconsin 2011 to 11,362 to 11,919 kg/ha in Wisconsin 2010. Results suggest susceptibility to disease and prevailing environment are important drivers of observed differences. Yield increases as a result of the physiological benefits of plant health benefits under low disease were not consistent.

  1. Relações de causa e efeito em espigas de milho relacionadas aos tipos de híbridos Path analysis on maize spikes characteristics related of the hybrid type

    Directory of Open Access Journals (Sweden)

    Sidinei José Lopes

    2007-12-01

    of the maize spikes is related directly or indirectly with the morphologic characteristics of the spikes and if this relationship depends on the type of hybrid: single, triple or double. The maize experiment was accomplished in the year 2004/2005, in Santa Maria’s Federal University, with six treatments, that were composed of two single hybrids, two triple hybrids and two double hybrids. The experiment design was a randomized complete block with three replications. The plot was of two lines with five meters length with 0.8m between lines and density of 55,000 plants ha-1. The correlations between the morphologic characteristics of the maize spikes and the weight of grains were outspread in direct and indirect effects. The number of grains lines by spike is correlated with grains weight just in the double hybrid (0.5298 and this correlation is due to the positive indirect effect of the number of grains by spike (0.8875 and negative for weight of 100 grains (-0.3795. The selection of spikes with larger weight of 100 grains and larger number of grains by spike has direct effect on the increase of the grain weight by spike for single and triple hybrid, but in the double hybrid, the number of grains by spike just has direct effect on grains weight. The relationships among the maize spikes characteristics are dependent of the genotypes, what should complicate a little more the job of the crop breeding when selecting genotypes for larger grain weight by spike.

  2. The Role of Polyploidization and Interspecific Hybridization in the Breeding of Ornamental Crops

    NARCIS (Netherlands)

    Marasek-Ciolakowska, A.; Arens, P.F.P.; Tuyl, van J.M.

    2016-01-01

    Polyploidy and hybridisation are critical processes in plant evolution and speciation. Many current agricultural crops are either natural or agricultural hybrids or polyploids, including potato, sugarcane, wheat, strawberries, and banana. There is a great deal of potential to utilise these natural

  3. Reduction of ploidy level by androgenesis in intergeneric Lolium-Festuca hybrids for turf grass breeding

    Czech Academy of Sciences Publication Activity Database

    Kopecký, David; Lukaszewski, A.J.; Gibeault, V.

    2005-01-01

    Roč. 45, č. 1 (2005), s. 274-281 ISSN 0011-183X Institutional research plan: CEZ:AV0Z50380511 Keywords : anther culture * pentaploid hybrids * perenne L. Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.925, year: 2005

  4. Breeding of early restorer Fuhui 306 and predominant performance of F1 hybrid combinations

    International Nuclear Information System (INIS)

    Wu Wanyi; Liu Yongqiang; Wu Maoli; Xue Xingqiong

    2004-01-01

    Fuhui 306, an early rice restorer with strong restoring ability, short growth period (86 days) and no restriction of separating areas in seed production, was bred by radiation treatment. F 1 hybrid combinations with different mature period were developed when cross with different sterile lines, that combination would be widely applied to meet the requirement of different ecological environment and harvest period. (authors)

  5. Molecular Breeding of Rice Restorer Lines and Hybrids for Brown Planthopper (BPH) Resistance Using the Bph14 and Bph15 Genes.

    Science.gov (United States)

    Wang, Hongbo; Ye, Shengtuo; Mou, Tongmin

    2016-12-01

    The development of hybrid rice is a practical approach for increasing rice production. However, the brown planthopper (BPH), Nilaparvata lugens Stål, causes severe yield loss of rice (Oryza sativa L.) and can threaten food security. Therefore, breeding hybrid rice resistant to BPH is the most effective and economical strategy to maintain high and stable production. Fortunately, numerous BPH resistance genes have been identified, and abundant linkage markers are available for molecular marker-assisted selection (MAS) in breeding programs. Hence, we pyramided two BPH resistance genes, Bph14 and Bph15, into a susceptive CMS restorer line Huahui938 and its derived hybrids using MAS to improve the BPH resistance of hybrid rice. Three near-isogenic lines (NILs) with pyramided Bph14 and Bph15 were obtained by molecular marker-assisted backcross (MAB) and phenotypic selection. The genomic components of these NILs were detected using the whole-genome SNP (Single nucleotide polymorphism) array, RICE6K, suggesting that the recurrent parent genome (RPG) recovery of the NILs was 87.88, 87.70 and 86.62 %, respectively. BPH bioassays showed that the improved NILs and their derived hybrids carrying homozygous Bph14 and Bph15 were resistant to BPH. However, the hybrids with heterozygous Bph14 and Bph15 remained susceptible to BPH. The developed NILs showed no significant differences in major agronomic traits and rice qualities compared with the recurrent parent. Moreover, the improved hybrids derived from the NILs exhibited better agronomic performance and rice quality compared with the controls under natural field conditions. This study demonstrates that it is essential to stack Bph14 and Bph15 into both the maternal and paternal parents for developing BPH-resistant hybrid rice varieties. The SNP array with abundant DNA markers is an efficient tool for analyzing the RPG recovery of progenies and can be used to monitor the donor segments in NILs, thus being extremely important

  6. A breeding strategy to harness flavor diversity of Saccharomyces interspecific hybrids and minimize hydrogen sulfide production.

    Science.gov (United States)

    Bizaj, Etjen; Cordente, Antonio G; Bellon, Jennifer R; Raspor, Peter; Curtin, Chris D; Pretorius, Isak S

    2012-06-01

    Industrial food-grade yeast strains are selected for traits that enhance their application in quality production processes. Wine yeasts are required to survive in the harsh environment of fermenting grape must, while at the same time contributing to wine quality by producing desirable aromas and flavors. For this reason, there are hundreds of wine yeasts available, exhibiting characteristics that make them suitable for different fermentation conditions and winemaking practices. As wine styles evolve and technical winemaking requirements change, however, it becomes necessary to improve existing strains. This becomes a laborious and costly process when the targets for improvement involve flavor compound production. Here, we demonstrate a new approach harnessing preexisting industrial yeast strains that carry desirable flavor phenotypes - low hydrogen sulfide (H(2) S) production and high ester production. A low-H(2) S Saccharomyces cerevisiae strain previously generated by chemical mutagenesis was hybridized independently with two ester-producing natural interspecies hybrids of S. cerevisiae and Saccharomyces kudriavzevii. Deficiencies in sporulation frequency and spore viability were overcome through use of complementary selectable traits, allowing successful isolation of several novel hybrids exhibiting both desired traits in a single round of selection. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. Reciprocal Genetics: Identifying QTL for General and Specific Combining Abilities in Hybrids Between Multiparental Populations from Two Maize (Zea mays L.) Heterotic Groups.

    Science.gov (United States)

    Giraud, Héloïse; Bauland, Cyril; Falque, Matthieu; Madur, Delphine; Combes, Valérie; Jamin, Philippe; Monteil, Cécile; Laborde, Jacques; Palaffre, Carine; Gaillard, Antoine; Blanchard, Philippe; Charcosset, Alain; Moreau, Laurence

    2017-11-01

    Several plant and animal species of agricultural importance are commercialized as hybrids to take advantage of the heterosis phenomenon. Understanding the genetic architecture of hybrid performances is therefore of key importance. We developed two multiparental maize ( Zea mays L.) populations, each corresponding to an important heterotic group (dent or flint) and comprised of six connected biparental segregating populations of inbred lines (802 and 822 lines for each group, respectively) issued from four founder lines. Instead of using "testers" to evaluate their hybrid values, segregating lines were crossed according to an incomplete factorial design to produce 951 dent-flint hybrids, evaluated for four biomass production traits in eight environments. QTL detection was carried out for the general-combining-ability (GCA) and specific-combining-ability (SCA) components of hybrid value, considering allelic effects transmitted from each founder line. In total, 42 QTL were detected across traits. We detected mostly QTL affecting GCA, 31% (41% for dry matter yield) of which also had mild effects on SCA. The small impact of dominant effects is consistent with the known differentiation between the dent and flint heterotic groups and the small percentage of hybrid variance due to SCA observed in our design (∼20% for the different traits). Furthermore, most (80%) of GCA QTL were segregating in only one of the two heterotic groups. Relative to tester-based designs, use of hybrids between two multiparental populations appears highly cost efficient to detect QTL in two heterotic groups simultaneously. This presents new prospects for selecting superior hybrid combinations with markers. Copyright © 2017 by the Genetics Society of America.

  8. Varietal improvement of Brassica species through introduction, hybridization and mutation breeding techniques

    International Nuclear Information System (INIS)

    Rhaman, A.

    1988-11-01

    Germplasm of Brassica campestris and Brassica juncea was collected from various parts of Bangladesh and evaluated for yield, oil content etc. prior to the breeding programme. Seeds of the B. campestris variety YS-52, possessing good agronomic characteristics, were treated with mutagens (gamma rays and sodium azide) to widen the genetic variation. Mutants were selected for higher yield and resistance against Alternaria brassicae. The two mutant lines BINA 1 and BINA 2 were selected exceeding the parent variety considerably in yield and disease resistance. They are candidates for recommended varieties. Brassica juncea variety RCM 625 was treated with gamma rays and EMS. Four higher yielding and earlier maturing mutants are being evaluated further. 6 tabs

  9. Genetics of resistance to stored grain weevil (Sitophilus oryzae L. in maize

    Directory of Open Access Journals (Sweden)

    Rajkumar Zunjare

    2015-12-01

    Full Text Available Stored grain weevil (Sitophilus oryzae has emerged as important storage grain pest of maize, causing substantial economic losses. Owing to high costs and environmental hazards of pesticides, host plant resistance holds promise for effective control of weevils. In the present study, a set of experimental maize hybrids generated using line × tester mating design were evaluated against S. oryzae. Significant variation for grain weight loss (GWL (6.0–49.1%, number of insect progeny emerged (NIP (17.8–203.3, grain hardness (GH (263.1–495.4 N, and pericarp thickness (PT (60.3–161.0 μm was observed. Strong positive association was observed between GWL and NIP. GH and PT did not show any correlation with GWL and NIP. Additive and non-additive gene actions were important for both GWL and NIP. Promising inbreds and experimental crosses identified can be effectively utilized in the resistance breeding programme. In majority of promising crosses having desirable SCA effects, one of the parents had desirable GCA effects, indicating that selection of inbred parents based on per se performance for generating resistant crosses may be possible. The commercial hybrid checks were highly susceptible compared to experimental hybrids. The inbreds and experimental hybrids identified hold promise in developing weevil resistant maize cultivars offering sustainable solution to management of weevils in maize.

  10. Hybrid breeding in pepper (capsicum annuum L. ). [Gamma and x radiation

    Energy Technology Data Exchange (ETDEWEB)

    Milkova, L; Daskalov, S [Akademiya na Selskostopanskite Nauki, Sofia (Bulgaria). Inst. po Genetika

    1981-01-01

    Male sterile forms of peppers with gene sterility were produced by ..gamma..- and X-irradiation of dry seeds of cv. Pazarjishka kapiya 794 and Zlaten medal and subsequent selection in M/sub 2/. Male sterile lines suitable for developing hybrid cultivars intended for various kinds of production were obtained by backcrossing with lines and cultivars having valuable economic characters and high combining ability. The promising pepper Belasitsa, Prista, Lyulin and Strouma (all of them for early field production), and Izoumroud and Prevuzhoden (for glasshouse production) are described.

  11. Assessment of stability and plasticity of new hybrids of maize (Zea mays L. under the conditions of Polissia and Steppe zones of Ukraine

    Directory of Open Access Journals (Sweden)

    Л. М. Присяжнюк

    2016-05-01

    Full Text Available Purpose. To select promising high productive maize hyb­rids of middle-early maturity group in terms of stability and plasticity of main economic characters. Methods. Field study, laboratory test, analytical procedure and statistical evaluation. Results. 14 maize hybrids recorded in the State Register of Plant Varieties Suitable for Dissemination in Ukraine in 2015 were studied for plasticity and stability of such traits as productivity, protein and starch content. Intensive highly-plastic hybrid ‘SI Tiptop’ was selected among the studied ones for productivity trait that can respond properly to changes of growing conditions. It was defined that for the starch content such hybrids as ‘SI Tiptop’, ‘SI Enigma’, ‘SI Arioso’, ‘Svich 38’, ‘Svich 35’, ‘HU 8653’, ‘Zdobutok’ and ‘SI Contrakt’ belonged to the intensive type and combined rather high values and the stability of the studied trait under variable conditions. The following hybrids as ‘NS 2642’, ‘DK S3016’, ‘Svich 38’, ‘NS 2632’ were qualified as intensive for protein content and appeared to be highly-plastic but stability values of this trait were low. ‘Svich 38’ hybrid was intensive simultaneously for two traits such as protein and starch content and showed rather high values of plasticity. ‘SI Tiptop’, ‘SI Enigma’ and ‘Svich 35’ were defined as hybrids of extensive type that provided stable protein content in adverse cultivation conditions. Conclusions. On the condition that intensive crop growing technologies should be used, for obtaining stable yields it is advisable to sow only highly-plastic hybrids that can adapt to unfavorable environmental factors, including ‘SI Tiptop’ – for productivity trait, ‘Zdobutok’ and ‘SI Kontrakt’ – for starch content, ‘MAC 24N‘, ‘NA 2642‘ and ‘Danubio’ – for protein content.

  12. Development of maizeSNP3072, a high-throughput compatible SNP array, for DNA fingerprinting identification of Chinese maize varieties.

    Science.gov (United States)

    Tian, Hong-Li; Wang, Feng-Ge; Zhao, Jiu-Ran; Yi, Hong-Mei; Wang, Lu; Wang, Rui; Yang, Yang; Song, Wei

    2015-01-01

    Single nucleotide polymorphisms (SNPs) are abundant and evenly distributed throughout the maize ( Zea mays L.) genome. SNPs have several advantages over simple sequence repeats, such as ease of data comparison and integration, high-throughput processing of loci, and identification of associated phenotypes. SNPs are thus ideal for DNA fingerprinting, genetic diversity analysis, and marker-assisted breeding. Here, we developed a high-throughput and compatible SNP array, maizeSNP3072, containing 3072 SNPs developed from the maizeSNP50 array. To improve genotyping efficiency, a high-quality cluster file, maizeSNP3072_GT.egt, was constructed. All 3072 SNP loci were localized within different genes, where they were distributed in exons (43 %), promoters (21 %), 3' untranslated regions (UTRs; 22 %), 5' UTRs (9 %), and introns (5 %). The average genotyping failure rate using these SNPs was only 6 %, or 3 % using the cluster file to call genotypes. The genotype consistency of repeat sample analysis on Illumina GoldenGate versus Infinium platforms exceeded 96.4 %. The minor allele frequency (MAF) of the SNPs averaged 0.37 based on data from 309 inbred lines. The 3072 SNPs were highly effective for distinguishing among 276 examined hybrids. Comparative analysis using Chinese varieties revealed that the 3072SNP array showed a better marker success rate and higher average MAF values, evaluation scores, and variety-distinguishing efficiency than the maizeSNP50K array. The maizeSNP3072 array thus can be successfully used in DNA fingerprinting identification of Chinese maize varieties and shows potential as a useful tool for germplasm resource evaluation and molecular marker-assisted breeding.

  13. A model of a successful utilization of a high genetic potential of maize yield

    Directory of Open Access Journals (Sweden)

    Pavlov Milovan

    2008-01-01

    Full Text Available The principle of a system, defined as a ZP system, implying corresponding relationship among research, seed production and seed marketing, is that each segment within the system has its tasks and responsibilities, as well as, a clear interest. This system was established at the Maize Research Institute, Zemun Polje, almost half a century ago. The crucial characteristic is that this system encompasses obtained results of scientific accomplishments (patent - a released hybrid, optimal utilisation of the environmental conditions, facilities for seed drying, processing and packing, staff and transport capacities. The ZP system provides the economic interest of all participants in studies and the maize seed production. The fundamental base of the quality seed production within the ZP system is a multidisciplinary programme on maize breeding, as well as, 535 released hybrids with standard and specific traits. According to regulations in foreign countries, approximately 100 ZP maize hybrids have been released abroad. Agroecological conditions in Serbia are favorable for the development of the best genotypes and the production of basic and certified maize seed. There 10 processing plants that apply recent technologies in the maize seed processing procedure. Several generations of experts have been trained and gained experience within the maize seed production. Three seed testing laboratories have been accredited by the International Seed Testing Association. According to regulations in Serbia, monitoring of seed production under field conditions, and further on, during the processing practice is done only by designate authorities. This study presents one of successful systems of the seed production organization applicable in countries with similar conditions.

  14. The evaluation of heterosis for romanian maize germplasm

    International Nuclear Information System (INIS)

    Dorina, B.

    2015-01-01

    In this study, five inbred maize lines and ten F1 cross combinations were evaluated in a completely randomized block, in three recursions, placed in unirrigable conditions at the Agricultural Research Development Station (ARDS) Simnic, in 2009. After the heterosis of the F1 cross combinations was evaluated, high genetic differences between parents were noticed. The obtained results suggested that among the six studied parameters, only two the grain yield and the plant heights are relevant for an objective evaluation of heterosis phenomenon. It is recommended that the 4 x 5 and 1 x 5 cross combinations which recorded (for most of the analyzed parameters) the highest degrees of occurrence, both for heterosis over mid parent and for heterobeltiosis, should be used in the maize breeding program to exploit the hybrid vigor. (author)

  15. Maize production in mid hills of Nepal: from food to feed security

    OpenAIRE

    Krishna Prasad Timsina; Yuga Nath Ghimire; Jeevan Lamichhane

    2016-01-01

    This study was undertaken in 2016 to analyze the production and utilization of maize in Nepal. Sixty maize growers from Kavre and Lamjung districts were selected using purposive, cluster and simple random sampling techniques. Similarly, six feed industries and five maize experts from Chitwan district were also interviewed. Study shows 56% of the total areas were used for maize production and 50% of the maize areas were covered by hybrid maize. There was no practice of contract maize productio...

  16. In vitro haploid zygotic embryogenesis due to pollination with maize pollen and induced in vitro androgenesis in Czech wheat breeding genotypes

    Czech Academy of Sciences Publication Activity Database

    Vagera, Jiří; Nesvadba, Z.; Martinek, P.; Ohnoutková, Ludmila

    2001-01-01

    Roč. 47, č. 5 (2001), s. 193-200 ISSN 0370-663X R&D Projects: GA ČR GA521/01/1383; GA ČR GV521/96/K117 Institutional research plan: CEZ:AV0Z5038910 Keywords : haploid zygote * embryogenesis * maize pollen Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.237, year: 2001

  17. Temporal dynamics of microbial communities in the rhizosphere of two genetically modified (GM) maize hybrids in tropical agrosystems

    NARCIS (Netherlands)

    Cotta, Simone Raposo; Franco Dias, Armando Cavalcante; Marriel, Ivanildo Evodio; Gomes, Eliane Aparecida; van Elsas, Jan Dirk; Seldin, Lucy

    The use of genetically modified (GM) plants still raises concerns about their environmental impact. The present study aimed to evaluate the possible effects of GM maize, in comparison to the parental line, on the structure and abundance of microbial communities in the rhizosphere. Moreover, the

  18. Grain Yield and Fusarium Ear Rot of Maize Hybrids Developed From Lines With Varying Levels of Resistance

    Science.gov (United States)

    Fusarium ear rot, caused by Fusarium verticillioides and other Fusarium spp. is found in all U.S. maize growing regions. Affected grain often contains carcinogenic mycotoxins called fumonisins. We tested the hypothesis that inbred lines with greater resistance to fumonisin contamination would pro...

  19. Insecticidal effect and impact of fitness of three diatomaceous earths on different maize hybrids for the eco-friendly control of the invasive stored-product pest Prostephanus truncatus (Horn).

    Science.gov (United States)

    Kavallieratos, Nickolas G; Athanassiou, Christos G; Peteinatos, Gerassimos G; Boukouvala, Maria C; Benelli, Giovanni

    2018-04-01

    Diatomaceous earths (DEs) are able to successfully protect grain commodities from noxious stored-product insect and mite infestations; however, their effectiveness may be moderated by the grain hybrid or variety they are applied to. There is a gap of information on the comparison of the efficacy of different DEs when are applied on different maize hybrids against Prostephanus truncatus (Horn). Therefore, here we tested three commercially available DEs (DEA-P at 75 and 150 ppm, Protect-It at 500 ppm, and PyriSec at 500 ppm) on five different maize hybrids (Calaria, Doxa, Rio Grande, Sisco, and Studio) for the control of P. truncatus adults in terms of mortality (at 7 and 14 days), progeny production, properties of the infested maize hybrids (number and weight of kernels with or without holes, number of holes per kernel) and the adherence level of the tested DEs to the kernels. DEA-P was very effective at 75 ppm while a considerable proportion of the exposed P. truncatus adults was still alive after 14 days of exposure on all maize hybrids treated with 500 ppm of Protect-It or PyriSec, even though it was 3.3 times higher than the maximal application tested dose of DEA-P. Apart from parental mortality, DEA-P was able to reduce P. truncatus progeny production in all hybrids contrary to Protect-It or PyriSec. The adherence ratios were always higher for DEA-P than Protect-It or PyriSec to all maize hybrids. The highest numbers of kernels (or weight of kernels) without holes were noticed after their treatment with DEA-P. Doxa and Sisco performed better than Calaria, Rio Grande, or Studio based on the differences found concerning the numbers of kernels without holes at treatments with DEA-P and Protect-It. Overall, the findings of our study indicate the high potentiality of DEA-P as protectant of different maize hybrids to P. truncatus infestations at low doses, a fact that could help the eco-friendly management of this noxious species in the stored

  20. COMPARATIVE RESEARCHE REGARDING METABOLIC PROFILE OF THE CALIFORNIAN, NEW ZEALAND WHITE, GRAND CHINCHILLA MEAT RABIT BREEDS AND THE F1 NZCH HYBRIDS

    Directory of Open Access Journals (Sweden)

    DANIELA-MARCELA TOBĂ (GOINA

    2008-10-01

    Full Text Available Precious biological characteristics of rabbits make their breeding a very profitable occupation. The rabbit meat, organoleptically same to the white meat, is rich in proteins, but low in fats. Biological researched done in direction to elucidate the biochemical systems that are the basis for organism physiological processes, have revealed that the level in which this process are develop directly influence the rabbits productivity capacity. 60 rabbit’s heads was used as biological material, distributed in: 15 Californian, 15 New Zeeland White, 15 Grand Chinchilla and 15 F1NZCH hybrids obtained from cross-breeding the New Zeeland White as maternal form and Grand Chinchilla as paternal form. Blood was sampled from the rabbit and was biochemical analyzed. The studied indices were: total protein, albumin, urea, uric acid, creatinine, total bilirubine, cholesterol, triglyceride and glucose. The experimental lot formed from F1 NZCH hybrids registered a concentration of 2.1 mg/dl uric acid, and in the other three lots the concentration was under 2 mg/dl. In all four lots, uric acid value was in normal limits. The determined creatinine registered very low values, under 1 mg/dl, at the low limit of reference values. At hybrids from New Zeeland White as maternal form and Grand Chinchilla as paternal form, in equal environmental conditions, the serum biochemical analysis haven’t registered significant differences compared to pure breeds individuals.

  1. SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines

    Directory of Open Access Journals (Sweden)

    Smith Oscar

    2002-10-01

    Full Text Available Abstract Background Recent studies of ancestral maize populations indicate that linkage disequilibrium tends to dissipate rapidly, sometimes within 100 bp. We set out to examine the linkage disequilibrium and diversity in maize elite inbred lines, which have been subject to population bottlenecks and intense selection by breeders. Such population events are expected to increase the amount of linkage disequilibrium, but reduce diversity. The results of this study will inform the design of genetic association studies. Results We examined the frequency and distribution of DNA polymorphisms at 18 maize genes in 36 maize inbreds, chosen to represent most of the genetic diversity in U.S. elite maize breeding pool. The frequency of nucleotide changes is high, on average one polymorphism per 31 bp in non-coding regions and 1 polymorphism per 124 bp in coding regions. Insertions and deletions are frequent in non-coding regions (1 per 85 bp, but rare in coding regions. A small number (2–8 of distinct and highly diverse haplotypes can be distinguished at all loci examined. Within genes, SNP loci comprising the haplotypes are in linkage disequilibrium with each other. Conclusions No decline of linkage disequilibrium within a few hundred base pairs was found in the elite maize germplasm. This finding, as well as the small number of haplotypes, relative to neutral expectation, is consistent with the effects of breeding-induced bottlenecks and selection on the elite germplasm pool. The genetic distance between haplotypes is large, indicative of an ancient gene pool and of possible interspecific hybridization events in maize ancestry.

  2. Garlic breeding system innovations

    NARCIS (Netherlands)

    Zheng, S.J.; Kamenetsky, R.; Féréol, L.; Barandiaran, X.; Rabinowitch, H.D.; Chovelon, V.; Kik, C.

    2007-01-01

    This review outlines innovative methods for garlic breeding improvement and discusses the techniques used to increase variation like mutagenesis and in vitro techniques, as well as the current developments in florogenesis, sexual hybridization, genetic transformation and mass propagation. Sexual

  3. Maize sugary enhancer1 (se1) is a presence-absence variant of a previously uncharacterized gene and development of educational videos to raise the profile of plant breeding and improve curricula

    Science.gov (United States)

    Haro von Mogel, Karl J.

    Carbohydrate metabolism is a biologically, economically, and culturally important process in crop plants. Humans have selected many crop species such as maize (Zea mays L.) in ways that have resulted in changes to carbohydrate metabolic pathways, and understanding the underlying genetics of this pathway is therefore exceedingly important. A previously uncharacterized starch metabolic pathway mutant, sugary enhancer1 (se1), is a recessive modifier of sugary1 (su1) sweet corn that increases the sugar content while maintaining an appealing creamy texture. This allele has been incorporated into many sweet corn varieties since its discovery in the 1970s, however, testing for the presence of this allele has been difficult. A genetic stock was developed that allowed the presence of se1 to be visually scored in segregating ears, which were used to genetically map se1 to the deletion of a single gene model located on the distal end of the long arm of chromosome 2. An analysis of homology found that this gene is specific to monocots, and the gene is expressed in the endosperm and developing leaf. The se1 allele increased water soluble polysaccharide (WSP) and decreased amylopectin in maize endosperm, but there was no overall effect on starch content in mature leaves due to se1. This discovery will lead to a greater understanding of starch metabolism, and the marker developed will assist in breeding. There is a present need for increased training for plant breeders to meet the growing needs of the human population. To raise the profile of plant breeding among young students, a series of videos called Fields of Study was developed. These feature interviews with plant breeders who talk about what they do as plant breeders and what they enjoy about their chosen profession. To help broaden the education of students in college biology courses, and assist with the training of plant breeders, a second video series, Pollination Methods was developed. Each video focuses on one or two

  4. Sex-Specific Arrival Times on the Breeding Grounds: Hybridizing Migratory Skuas Provide Empirical Support for the Role of Sex Ratios.

    Science.gov (United States)

    Lisovski, Simeon; Fröhlich, Anne; von Tersch, Matthew; Klaassen, Marcel; Peter, Hans-Ulrich; Ritz, Markus S

    2016-04-01

    In migratory animals, protandry (earlier arrival of males on the breeding grounds) prevails over protogyny (females preceding males). In theory, sex differences in timing of arrival should be driven by the operational sex ratio, shifting toward protogyny in female-biased populations. However, empirical support for this hypothesis is, to date, lacking. To test this hypothesis, we analyzed arrival data from three populations of the long-distance migratory south polar skua (Catharacta maccormicki). These populations differed in their operational sex ratio caused by the unidirectional hybridization of male south polar skuas with female brown skuas (Catharacta antarctica lonnbergi). We found that arrival times were protandrous in allopatry, shifting toward protogyny in female-biased populations when breeding in sympatry. This unique observation is consistent with theoretical predictions that sex-specific arrival times should be influenced by sex ratio and that protogyny should be observed in populations with female-biased operational sex ratio.

  5. Attraction, Feeding Preference, and Performance of Spodoptera frugiperda Larvae (Lepidoptera: Noctuidae) Reared on Two Varieties of Maize.

    Science.gov (United States)

    De La Rosa-Cancino, Wilmar; Rojas, Julio C; Cruz-Lopez, Leopolodo; Castillo, Alfredo; Malo, Edi A

    2016-04-01

    The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is an economically important pest of maize and other crops in the Americas. Studies suggest that modern varieties of maize lost some of their natural defense mechanisms against herbivores during domestication and agricultural selection. In the present study, we evaluated the attraction, feeding preference (host fidelity and consumption rate), and performance of S. frugiperda larvae reared on hybrid (Pioneer P4063W) and landrace (Tuxpeño) varieties of maize. We also evaluated the damage caused by S. frugiperda to Pioneer and Tuxpeño maize plants in the field. We found that fifth-instar larvae were more attracted to Pioneer plants than to Tuxpeño plants in a Y-tube olfactometer. Additionally, the fall armyworm larvae showed more fidelity to Pioneer leaves than to Tuxpeño leaves. However, the larval consumption rate was similar for both types of maize plants. The life cycle of S. frugiperda was significantly longer when the larvae were reared on Tuxpeño leaves than on Pioneer leaves. In the field, the Pioneer variety was infested with more S. frugiperda larvae than the Tuxpeño variety. Thus, our results provide evidence that modern varieties of maize may have lost some of their defensive traits during selective breeding. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Production of antihypertensive peptides by enzymatic zein hydrolysate from maize-zea mays ssp. mexicana introgression line

    International Nuclear Information System (INIS)

    Wang, L.; Zhang, X.; Qiao, Y.; Qu, M.

    2014-01-01

    Teosintes are essential gene reservoir for maize breeding improvement, among which Zea mays ssp. mexicana has many valuable traits deserved to be transferred into maize genetic background. In this study, one maize-teosinte introgression line SD00100 was selected from the population of Zea mays ssp. mexicana as wild parent. This introgression line manifested the outstanding agricultural traits similar to maize parent Ye 515 and alien genetic material was identified by genomic in situ hybridization (GISH). To produce bioactive peptides with potent angiotensin converting enzyme (ACE) inhibitory activity, zein extracted from endosperm meal was then undergone enzymatic hydrolysis with thermolysin and the hydrolysate was then filtered through a 3 kDa cut-off membrane. ACE inhibitory activity of permeate from Ye 515 and SD00100 was evaluated by RP-HPLC. The IC50 values of the peptides obtained from maize parent and the introgression line were 96.9 micro g/ml and 22.9 micro g/ml, respectively, with significant difference between them. Our results showed that an outstanding inbred maize line was obtained for production of antihypertensive peptides as well as for further development of functional food. (author)

  7. Adaptability and stability of maize varieties using mixed model methodology

    Directory of Open Access Journals (Sweden)

    Walter Fernandes Meirelles

    2012-01-01

    Full Text Available The objective of this study was to evaluate the performance, adaptability and stability of corn cultivars simultaneously in unbalanced experiments, using the method of harmonic means of the relative performance of genetic values. The grain yield of 45 cultivars, including hybrids and varieties, was evaluated in 49 environments in two growing seasons. In the 2007/2008 growing season, 36 cultivars were evaluated and in 2008/2009 25 cultivars, of which 16 were used in both seasons. Statistical analyses were performed based on mixed models, considering genotypes as random and replications within environments as fixed factors. The experimental precision in the combined analyses was high (accuracy estimates > 92 %. Despite the existence of genotype x environment interaction, hybrids and varieties with high adaptability and stability were identified. Results showed that the method of harmonic means of the relative performance of genetic values is a suitable method for maize breeding programs.

  8. Application of a method based on the measurement of radiation reflectance when estimating the sensitivity of selected grain maize hybrids to the herbicide CALLISTO 480 SC + ATPLUS 463

    Directory of Open Access Journals (Sweden)

    Michal Vondra

    2009-01-01

    Full Text Available The application of methods based on measurements of photosynthesis efficiency is now more and more popular and used not only for the evaluation of the efficiency of herbicides but also for the estimation of their phytotoxicity to the cultivated crop. These methods enable to determine also dif­fe­ren­ces in the sensitivity of cultivars and/or hybrids to individual herbicides. The advantage of these methods consists above all in the speed and accuracy of measuring.In a field experiment, the sensitivity of several selected grain maize hybrids (EDENSTAR, NK AROBASE, NK LUGAN, LG 33.30 and NK THERMO to the herbicide CALLISTO 480 SC + ATPLUS 463 was tested for a period of three years. The sensitivity to a registered dose of 0.25 l . ha−1 + 0.5 % was measured by means of the apparatus PS1 meter, which could measure the reflected radiation. Measurements of sensitivity of hybrids were performed on the 2nd, 3rd, 4th, 5th and 8th day after the application of the tested herbicide, i.e. in the growing stage of the 3rd–5th leaf. Plant material was harvested using a small-plot combine harvester SAMPO 2010. Samples were weighed and converted to the yield with 15 % of moisture in grain DM.The obtained three-year results did not demonstrate differences in sensitivity of tested hybrids to the registered dose of the herbicide CALLISTO 480 SC + ATPLUS 463 (i.e. 0.25 l . ha−1 + 0,5 %. Recorded results indicated that for the majority of tested hybrids the most critical were the 4th and the 5th day after the application; on these days the average PS1 values were the highest at all. In years 2005 and 2007, none of the tested hybrids exceeded the limit value 15 (which indicated a certain decrease in the efficiency of photosynthesis. Although in 2006 three of tested hybrids showed a certain decrease in photosynthetic activity (i.e. EDENSTAR and NK AROBASE on the 3rd day and NK LUGAN on the 2nd–4th day after the application, no visual symptoms

  9. Tolerância à toxicidade de alumínio de linhagens e híbridos de milho em solução nutritiva Aluminium toxicity tolerance of maize inbred lines and hybrids evaluated in nutrient solution

    Directory of Open Access Journals (Sweden)

    Maria Elisa Ayres Guidetti Zagatto Paterniani

    2002-04-01

    Full Text Available Avaliaram-se dez linhagens de milho do programa de melhoramento do Instituto Agronômico (IAC, em cruzamentos dialélicos e os 45 híbridos resultantes quanto à tolerância à toxicidade de alumínio em laboratório. Estimou-se a tolerância pelo comprimento líquido da radícula (CLR de plântulas em solução nutritiva contendo 4,5 mg.L-1 de alumínio, em ensaio sob delineamento experimental de blocos casualizados com quatro repetições, utilizando-se como padrões linhagens sensível e tolerante de IAC Taiúba. Apresentam-se, ainda, resultados da produtividade desses cruzamentos em ensaios de campo. Identificaram-se linhagens que constituem fontes de tolerância (L 06 e L 09 e híbridos tolerantes à toxicidade de alumínio com elevada produtividade em solos corrigidos. Na análise dialélica, o desdobramento dos efeitos de tratamentos, em capacidade geral (CGC e específica (CEC de combinação, indicou a predominância de efeitos aditivos na manifestação da tolerância ao alumínio tóxico. Obtiveram-se elevados valores de heterose, indicando a existência de interações não alélicas na manifestação do CLR. O híbrido HS 10X11 (denominado IAC 21 aliou alta produtividade e tolerância ao alumínio, apresentando a maior estimativa da CEC para CLR.Ten inbred lines and the resulting forty-five hybrids from the maize IAC breeding program were evaluated for Al tolerance by the nutrient solution technique. Net radicle lengths (CLR of plants grown with 4.5 mg.L-1 were used to estimate Al tolerance. The experimental design was randomized complete block with four replications, and it was used two divergent inbred lines IAC Taiuba as control for Al tolerance and sensitivity, respectively. In addition to these data, it is shown also the grain yield of the same materials from field plots. It was identified two inbred lines (L 06 and L 09 as Al tolerance sources and hybrids potentially adapted to acid soil conditions (tolerant to Al toxicity

  10. Analysis of recombination QTLs, segregation distortion, and epistasis for fitness in maize multiple populations using ultra-high-density markers

    Science.gov (United States)

    Understanding the maize genomic features would be useful for the study of genetic diversity and evolution and for maize breeding. Here, we used two maize nested association mapping (NAM) populations separately derived in China (CN-NAM) and the US (US-NAM) to explore the maize genomic features. The t...

  11. Regional hybrid broccoli trials provide a means to further breeding efforts of this increasingly important vegetable crop

    Science.gov (United States)

    A Coordinated Agricultural Project (CAP) entitled “Establishing an Eastern Broccoli Industry” is funded under the Specialty Crop Research Initiative (SCRI), and a primary component of the project is a system of regional hybrid broccoli trials conducted along the eastern seaboard. Hybrids currently ...

  12. Strategic Marketing Problems in the Uganda Maize Seed Industry

    OpenAIRE

    Larson, Donald W.; Mbowa, Swaibu

    2004-01-01

    Strategic marketing issues and challenges face maize seed marketing firms as farmers increasingly adopt hybrid varieties in a modernizing third world country such as Uganda. The maize seed industry of Uganda has changed dramatically from a government owned, controlled, and operated industry to a competitive market oriented industry with substantial private firm investment and participation. The new maize seed industry is young, dynamic, growing and very competitive. The small maize seed marke...

  13. Novel CMS lines in pigeonpea [Cajanus cajan (L. Millspaugh] derived from cytoplasmic substitutions, and their effective restoration and deployment in hybrid breeding

    Directory of Open Access Journals (Sweden)

    Abhishek Bohra

    2017-02-01

    Full Text Available The availability of stable cytoplasmic male sterile (CMS or A lines coupled with a robust restoration system (R lines is an essential prerequisite for efficient hybrid breeding. CMS-enabled hybrid technology holds immense potential to enhance the long-stagnant productivity of pigeonpea. In the present investigation, cytoplasmic substitutions were made in the nuclear backgrounds of early-maturing pigeonpea varieties or lines. Three new CMS lines (ICPL 88039A, Pusa 992A, and DPP 3-2A resulted from genetic crosses involving cytoplasmic donors from A2 (GT 288A and A4 (ICPA 2089 categories. In addition to visual inspection of anthers, pollen-staining techniques and scanning electron microscopy (SEM analysis were used to confirm pollen sterility. Further, given the relevance of the plant mitochondrial genome to CMS manifestation, 25 mitochondrion-specific DNA markers were assayed on these newly developed A lines and isogenic maintainer (B lines. DNA polymorphism between Pusa 992A and Pusa 992B as revealed by the nad7a_del marker confirmed the successful combination of sterilizing cytoplasm (A4 and nonrestoring nuclear background (Pusa 992. Such cytoplasm-specific DNA markers are required for A2-CMS as well. Further, to assess restoration ability, potential restorers were crossed with these CMS lines, and as a consequence, promising A × R combinations exhibiting 100% pollen fertility could be identified. In parallel, we also analyzed the inheritance patterns underlying fertility restoration using ICPL 88039A-derived F2 and BC1F1 populations, and established a monogenic dominant model to explain the phenomenon of A2-CMS restoration. In summary, we report the successful development of new CMS lines and describe their effective deployment in hybrid breeding of pigeonpea.

  14. Successful Wide Hybridization and Introgression Breeding in a Diverse Set of Common Peppers (Capsicum annuum) Using Different Cultivated Ají (C. baccatum) Accessions as Donor Parents

    Science.gov (United States)

    2015-01-01

    Capsicum baccatum, commonly known as ají, has been reported as a source of variation for many different traits to improve common pepper (C. annuum), one of the most important vegetables in the world. However, strong interspecific hybridization barriers exist between them. A comparative study of two wide hybridization approaches for introgressing C. baccatum genes into C. annuum was performed: i) genetic bridge (GB) using C. chinense and C. frutescens as bridge species; and, ii) direct cross between C. annuum and C. baccatum combined with in vitro embryo rescue (ER). A diverse and representative collection of 18 accessions from four cultivated species of Capsicum was used, including C. annuum (12), C. baccatum (3), C. chinense (2), and C. frutescens (1). More than 5000 crosses were made and over 1000 embryos were rescued in the present study. C. chinense performed as a good bridge species between C. annuum and C. baccatum, with the best results being obtained with the cross combination [C. baccatum (♀) × C. chinense (♂)] (♀) × C. annuum (♂), while C. frutescens gave poor results as bridge species due to strong prezygotic and postzygotic barriers. Virus-like-syndrome or dwarfism was observed in F1 hybrids when both C. chinense and C. frutescens were used as female parents. Regarding the ER strategy, the best response was found in C. annuum (♀) × C. baccatum (♂) crosses. First backcrosses to C. annuum (BC1s) were obtained according to the crossing scheme [C. annuum (♀) × C. baccatum (♂)] (♀) × C. annuum (♂) using ER. Advantages and disadvantages of each strategy are discussed in relation to their application to breeding programmes. These results provide breeders with useful practical information for the regular utilization of the C. baccatum gene pool in C. annuum breeding. PMID:26642059

  15. Genotypic variation for maize weevil resistance in eastern and ...

    African Journals Online (AJOL)

    ACSS

    Uganda Journal of Agricultural Sciences by National Agricultural Research Organisation ... damage, median development period, Dobie's index of susceptibility, and ... resistance and grain yield, suggesting that breeding for maize weevil ...

  16. Sub-Saharan African maize-based foods

    NARCIS (Netherlands)

    Ekpa, Onu; Palacios-Rojas, Natalia; Kruseman, Gideon; Fogliano, Vincenzo; Linnemann, Anita R.

    2018-01-01

    The demand for maize in Sub-Saharan Africa will triple by 2050 due to rapid population growth, while challenges from climate change will threaten agricultural productivity. Most maize breeding programmes have focused on improving agronomic properties and have paid relatively little attention to

  17. Potencial genético de um sintético de milho de grãos duros para formação de híbridos Genetic potential of a flint maize synthetic for hybrid production

    Directory of Open Access Journals (Sweden)

    Elto Eugenio Gomes e Gama

    2003-08-01

    Full Text Available O objetivo deste estudo foi determinar através das estimativas de parâmetros genéticos o potencial de um sintético de milho de grãos duros e de ciclo semiprecoce, para a formação de híbridos e/ou melhoramento intrapopulacional. Foram utilizadas 142 progênies endogâmicas S2 do Sin EEL Flint, em cruzamentos topcrosses com um Sintético heteroticamente contrastante. Essas progênies topcrosses foram avaliadas utilizando-se o delineamento em látice simples 12 x 12, e em dois locais de teste. Os maiores valores médios para PED foram observados para os topcrosses n.º 101 (12069kg ha-1 e nº 72 (11068Kg ha-1, tendo o primeiro apresentado comportamento específico para Londrina, e o segunda demonstrado comportamento superior nos dois ambientes. Os valores das estimativas dos parâmetros estudados foram semelhantes aos encontrados em alguns estudos conduzidos em condições tropicais. O grupo de progênies S2 da Sin EEL Flint conduziu a valores médios de , CVg e h² similares aos encontrados na literatura para outros genótipos. Observa-se que esse Sintético possui suficiente variabilidade genética e potencial para extração de linhagens para formação de híbridos e como germoplasma em programas de melhoramento.The objective of this study was to determine the genetic potential of a semi-early maize synthetic with flint type kernel (Sin EEL Flint. The estimation of genetic parameters was obtained with S2 progenies, and the performance of the progenies in hybrid combinations were evaluated. One hundred fourty-two S2 progenies of Sin EEL Flint were used. They were obtained by top crossings with a contrasting heterotic synthetic of dent type kernel. These topcross progenies were tested in a lattice design 12 x 12 with two replications in two locations, Sete Lagoas and Londrina. The selected topcross nº 101, with specific adaptation for Londrina. and nº72, being adapted to both locations, were the best yieldings (PED with 12069Kg ha-1 and

  18. Plant breeding by using radiation mutation - Development of disease tolerant lines of hotpepper by using radiation and interspecific hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Su; Song, Hi Sup; Kim, Jin Kyu; Shin, In Chul [Nongwoo Seed Co., Suwon (Korea)

    2000-04-01

    To obtain disease resistant mutant lines, 6 inbred lines were hotppepers were irradiated with 250Gy of gamma ray and crossed between cultivar and wild species. 1) 4500 M{sub 1} plants were cultivated for obtaining M{sub 2} seed in 6 inbred lines of hotpeppers irradiated with 250 Gy of gamma ray. 2) Crossability was not generally existed among interspecific crosses, crossability between C. annum and C. chacoense was successful except crosses between C. annum, C. pubescens and C. eximium. 3) The embryo disected 45 days after pollination was suitable for embryo culture. 4) Hybrid plants were obtained from the embryo culture of the combination between C. annum and C. chacoense, while abnormal hybrid plants occurred from the combination between C. annum and C. baccatum. 15 refs., 4 figs., 4 tabs. (Author)

  19. Breeding of a xylose-fermenting hybrid strain by mating genetically engineered haploid strains derived from industrial Saccharomyces cerevisiae.

    Science.gov (United States)

    Inoue, Hiroyuki; Hashimoto, Seitaro; Matsushika, Akinori; Watanabe, Seiya; Sawayama, Shigeki

    2014-12-01

    The industrial Saccharomyces cerevisiae IR-2 is a promising host strain to genetically engineer xylose-utilizing yeasts for ethanol fermentation from lignocellulosic hydrolysates. Two IR-2-based haploid strains were selected based upon the rate of xylulose fermentation, and hybrids were obtained by mating recombinant haploid strains harboring heterogeneous xylose dehydrogenase (XDH) (wild-type NAD(+)-dependent XDH or engineered NADP(+)-dependent XDH, ARSdR), xylose reductase (XR) and xylulose kinase (XK) genes. ARSdR in the hybrids selected for growth rates on yeast extract-peptone-dextrose (YPD) agar and YP-xylose agar plates typically had a higher activity than NAD(+)-dependent XDH. Furthermore, the xylose-fermenting performance of the hybrid strain SE12 with the same level of heterogeneous XDH activity was similar to that of a recombinant strain of IR-2 harboring a single set of genes, XR/ARSdR/XK. These results suggest not only that the recombinant haploid strains retain the appropriate genetic background of IR-2 for ethanol production from xylose but also that ARSdR is preferable for xylose fermentation.

  20. Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor.

    Science.gov (United States)

    Zhang, Danfeng; Wu, Suowei; An, Xueli; Xie, Ke; Dong, Zhenying; Zhou, Yan; Xu, Liwen; Fang, Wen; Liu, Shensi; Liu, Shuangshuang; Zhu, Taotao; Li, Jinping; Rao, Liqun; Zhao, Jiuran; Wan, Xiangyuan

    2018-02-01

    Although hundreds of genetic male sterility (GMS) mutants have been identified in maize, few are commercially used due to a lack of effective methods to produce large quantities of pure male-sterile seeds. Here, we develop a multicontrol sterility (MCS) system based on the maize male sterility 7 (ms7) mutant and its wild-type Zea mays Male sterility 7 (ZmMs7) gene via a transgenic strategy, leading to the utilization of GMS in hybrid seed production. ZmMs7 is isolated by a map-based cloning approach and encodes a PHD-finger transcription factor orthologous to rice PTC1 and Arabidopsis MS1. The MCS transgenic maintainer lines are developed based on the ms7-6007 mutant transformed with MCS constructs containing the (i) ZmMs7 gene to restore fertility, (ii) α-amylase gene ZmAA and/or (iii) DNA adenine methylase gene Dam to devitalize transgenic pollen, (iv) red fluorescence protein gene DsRed2 or mCherry to mark transgenic seeds and (v) herbicide-resistant gene Bar for transgenic seed selection. Self-pollination of the MCS transgenic maintainer line produces transgenic red fluorescent seeds and nontransgenic normal colour seeds at a 1:1 ratio. Among them, all the fluorescent seeds are male fertile, but the seeds with a normal colour are male sterile. Cross-pollination of the transgenic plants to male-sterile plants propagates male-sterile seeds with high purity. Moreover, the transgene transmission rate through pollen of transgenic plants harbouring two pollen-disrupted genes is lower than that containing one pollen-disrupted gene. The MCS system has great potential to enhance the efficiency of maize male-sterile line propagation and commercial hybrid seed production. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Genome-Wide Prediction of the Performance of Three-Way Hybrids in Barley

    Directory of Open Access Journals (Sweden)

    Zuo Li

    2017-03-01

    Full Text Available Predicting the grain yield performance of three-way hybrids is challenging. Three-way crosses are relevant for hybrid breeding in barley ( L. and maize ( L. adapted to East Africa. The main goal of our study was to implement and evaluate genome-wide prediction approaches of the performance of three-way hybrids using data of single-cross hybrids for a scenario in which parental lines of the three-way hybrids originate from three genetically distinct subpopulations. We extended the ridge regression best linear unbiased prediction (RRBLUP and devised a genomic selection model allowing for subpopulation-specific marker effects (GSA-RRBLUP: general and subpopulation-specific additive RRBLUP. Using an empirical barley data set, we showed that applying GSA-RRBLUP tripled the prediction ability of three-way hybrids from 0.095 to 0.308 compared with RRBLUP, modeling one additive effect for all three subpopulations. The experimental findings were further substantiated with computer simulations. Our results emphasize the potential of GSA-RRBLUP to improve genome-wide hybrid prediction of three-way hybrids for scenarios of genetically diverse parental populations. Because of the advantages of the GSA-RRBLUP model in dealing with hybrids from different parental populations, it may also be a promising approach to boost the prediction ability for hybrid breeding programs based on genetically diverse heterotic groups.

  2. Historical genomics of North American maize

    NARCIS (Netherlands)

    Heerwaarden, van J.; Hufford, M.B.; Ross-Ibarra, J.

    2012-01-01

    Since the advent of modern plant breeding in the 1930s, North American maize has undergone a dramatic adaptation to high-input agriculture. Despite the importance of genetic contributions to historical yield increases, little is known about the underlying genomic changes. Here we use high-density

  3. The transcriptome landscape of early maize meiosis

    Science.gov (United States)

    Meiosis, particularly meiotic recombination, is a major factor affecting yield and breeding of plants. To gain insight into the transcriptome landscape during early initiation steps of meiotic recombination, we profiled early prophase I meiocytes from maize using RNA-seq. Our analyses of genes prefe...

  4. Potencial de híbridos simples de milho para extração de linhagens Potential of maize single hybrids to generate inbred lines

    Directory of Open Access Journals (Sweden)

    Odair Bison

    2003-04-01

    favorable alleles at a frequency of 0.5. Therefore, identification of promising single hybrid populations for inbred line extraction is strategic to increase the efficiency of breeding programs. The populations derived from the two commercial single hybrids AG9012 and C333 were assessed to estimate their capacity to inbred line extraction using the genetic and phenotypic parameters estimate, the m+a estimate and Jinks & Pooni (1976 methodology. Two sets of 169 S1 families derived from each hybrid population were assessed during the 1999/2000 growing season in the experimental area of the Biology Department at UFLA in Lavras, MG. The families were assessed in two simple 13 x 13 lattices in 3 m single row plots. The assessed traits were: a incidence of Phaeosphaeria maydis in two sowing periods; b plant height; c ear height; and, d de-hulled ear yield. It was detected that inbred lines with good "per se" performance can be obtained. The C333 hybrid derived population was the most promising for breeding purposes due to its resistance to Phaeosphaeria maydis associated with a higher mean and greater potential to generate superior inbred lines. The Jinks & Pooni (1976 methodology gave more informations to help the population choice than the m+a estimate. However, when it's possible, both can be used together to help the plant breeders to make a choice.

  5. Romanian maize

    DEFF Research Database (Denmark)

    Sauer, Johannes; Balint, Borbala

    This research aims at shedding empirical light on the relative efficiency of small-scale maize producers in Romania. Farmers in transition countries still face heavily distorted price systems resulting from imperfect market conditions and socioeconomic and institutional constraints. To capture...

  6. REML/BLUP and sequential path analysis in estimating genotypic values and interrelationships among simple maize grain yield-related traits.

    Science.gov (United States)

    Olivoto, T; Nardino, M; Carvalho, I R; Follmann, D N; Ferrari, M; Szareski, V J; de Pelegrin, A J; de Souza, V Q

    2017-03-22

    Methodologies using restricted maximum likelihood/best linear unbiased prediction (REML/BLUP) in combination with sequential path analysis in maize are still limited in the literature. Therefore, the aims of this study were: i) to use REML/BLUP-based procedures in order to estimate variance components, genetic parameters, and genotypic values of simple maize hybrids, and ii) to fit stepwise regressions considering genotypic values to form a path diagram with multi-order predictors and minimum multicollinearity that explains the relationships of cause and effect among grain yield-related traits. Fifteen commercial simple maize hybrids were evaluated in multi-environment trials in a randomized complete block design with four replications. The environmental variance (78.80%) and genotype-vs-environment variance (20.83%) accounted for more than 99% of the phenotypic variance of grain yield, which difficult the direct selection of breeders for this trait. The sequential path analysis model allowed the selection of traits with high explanatory power and minimum multicollinearity, resulting in models with elevated fit (R 2 > 0.9 and ε analysis is effective in the evaluation of maize-breeding trials.

  7. Evaluation of the combining ability of mutant maize lines

    Directory of Open Access Journals (Sweden)

    V. Valkova

    2016-09-01

    Full Text Available Abstract. The study shows the results of a preliminary evaluation of the combining ability for grain yield of 17 mutant maize lines. For the purpose the top cross method for early testing and the mathematical model of Savchenko for analysis of the general and the specific combining ability were used. The lines were tested on three testers with high general combining ability that belong to two genetic groups: K 46 52 and XM 552 from SSS and N 192 – Lancaster. For the purposes of evaluation of the productive abilities of the received top cross two preliminary varietal experiments were carried out at the experimental field of Maize Research Institute, Knezha As a result of the conducted experimental work and the analysis it was found that the highest general combining ability have lines XM 11 6 and XM 12 1. These lines can be included as components of high-yielding synthetics or as testers in analyzing crosses to determine general combining ability in early stages of the selection process. The above lines with high specific combining ability – XM 11 13 and XM 11 46 are suitable for inclusion in combinations to develop high-yielding hybrids. Three of the tested lines XM 11 7 11 XM 10 and XM 11 11 have both high GCA and SCA. These lines can be used in corresponding breeding in the selection programs.

  8. The First Record of Case of the Imperial Eagle and the Steppe Eagle Successful Breeding in the Mixed Pair in Western Kazakhstan and Records of Probable Hybrids of These Species in Russia and Kazakhstan

    Directory of Open Access Journals (Sweden)

    Igor V. Karyakin

    2016-04-01

    Full Text Available Facts mentioned in paper give evidence of the possibility of forming the mixed pairs between Steppe and Imperial Eagles, breeding success and fertility of hybrids. All the observed mixed pairs were found in the contact zone of the two species on the periphery of the Steppe Eagle breeding range under conditions of either decrease in numbers of one species (Steppe Eagle and the growth of another (in Western Kazakhstan, or decline in numbers of both species and the lack of birds of their own species (in Dauria. Considering the fact that the number of Steppe Eagles continues to decline, the hybridization process may amplify and this phenomenon requires a more thorough examination.

  9. Exploring Identity-By-Descent Segments and Putative Functions Using Different Foundation Parents in Maize.

    Directory of Open Access Journals (Sweden)

    Xun Wu

    Full Text Available Maize foundation parents (FPs play no-alternative roles in hybrid breeding because they were widely used in the development of new lines and hybrids. The combination of different identity-by-descent (IBD segments and genes could account for the formation patterns of different FPs, and knowledge of these IBD regions would provide an extensive foundation for the development of new candidate FP lines in future maize breeding. In this paper, a panel of 304 elite lines derived from FPs, i.e., B73, 207, Mo17, and Huangzaosi (HZS, was collected and analyzed using 43,252 single nucleotide polymorphism (SNP markers. Most IBD segments specific to particular FP groups were identified, including 116 IBD segments in B73, 105 in Mo17, 111 in 207, and 190 in HZS. In these regions, 423 quantitative trait nucleotides (QTNs associated with 15 agronomic traits and 804 candidate genes were identified. Some known adaptation-related genes, e.g., dwarf8 and vgt1 in HZS, zcn8 and epc in Mo17, and ZmCCT in 207, were validated as being tightly linked to particular IBD segments. In addition, numerous new candidate genes were also identified. For example, GRMZM2G154278 in HZS, which belongs to the cell cycle control family, was closely linked to a QTN of the ear height/plant height (EH/PH trait; GRMZM2G051943 in 207, which encodes an endochitinase precursor (EP chitinase, was closely linked to a QTN for kernel density; and GRMZM2G170586 in Mo17 was closely linked to a QTN for ear diameter. Complex correlations among these genes were also found. Many IBD segments and genes were included in the formation of FP lines, and complex regulatory networks exist among them. These results provide new insights on the genetic basis of complex traits and provide new candidate IBD regions or genes for the improvement of special traits in maize production.

  10. QTL Mapping of Kernel Number-Related Traits and Validation of One Major QTL for Ear Length in Maize.

    Science.gov (United States)

    Huo, Dongao; Ning, Qiang; Shen, Xiaomeng; Liu, Lei; Zhang, Zuxin

    2016-01-01

    The kernel number is a grain yield component and an important maize breeding goal. Ear length, kernel number per row and ear row number are highly correlated with the kernel number per ear, which eventually determines the ear weight and grain yield. In this study, two sets of F2:3 families developed from two bi-parental crosses sharing one inbred line were used to identify quantitative trait loci (QTL) for four kernel number-related traits: ear length, kernel number per row, ear row number and ear weight. A total of 39 QTLs for the four traits were identified in the two populations. The phenotypic variance explained by a single QTL ranged from 0.4% to 29.5%. Additionally, 14 overlapping QTLs formed 5 QTL clusters on chromosomes 1, 4, 5, 7, and 10. Intriguingly, six QTLs for ear length and kernel number per row overlapped in a region on chromosome 1. This region was designated qEL1.10 and was validated as being simultaneously responsible for ear length, kernel number per row and ear weight in a near isogenic line-derived population, suggesting that qEL1.10 was a pleiotropic QTL with large effects. Furthermore, the performance of hybrids generated by crossing 6 elite inbred lines with two near isogenic lines at qEL1.10 showed the breeding value of qEL1.10 for the improvement of the kernel number and grain yield of maize hybrids. This study provides a basis for further fine mapping, molecular marker-aided breeding and functional studies of kernel number-related traits in maize.

  11. Structural, functional and evolutionary characterization of major drought transcription factors families in maize

    Science.gov (United States)

    Mittal, Shikha; Banduni, Pooja; Mallikarjuna, Mallana G.; Rao, Atmakuri R.; Jain, Prashant A.; Dash, Prasanta K.; Thirunavukkarasu, Nepolean

    2018-05-01

    Drought is one of the major threats to maize production. In order to improve the production and to breed tolerant hybrids, understanding the genes and regulatory mechanisms during drought stress is important. Transcription factors (TFs) play a major role in gene regulation and many TFs have been identified in response to drought stress. In our experiment, a set of 15 major TF families comprising 1436 genes was structurally and functionally characterized using in-silico tools and a gene expression assay. All 1436 genes were mapped on 10 chromosome of maize. The functional annotation indicated the involvement of these genes in ABA signaling, ROS scavenging, photosynthesis, stomatal regulation, and sucrose metabolism. Duplication was identified as the primary force in divergence and expansion of TF families. Phylogenetic relationship was developed individually for each TF family as well as combined TF families. Phylogenetic analysis grouped the TF family of genes into TF-specific and mixed groups. Phylogenetic analysis of genes belonging to various TF families suggested that the origin of TFs occurred in the lineage of maize evolution. Gene structure analysis revealed that more number of genes were intron-rich as compared to intronless genes. Drought-responsive CRE’s such as ABREA, ABREB, DRE1 and DRECRTCOREAT have been identified. Expression and interaction analyses identified leaf-specific bZIP TF, GRMZM2G140355, as a potential contributor toward drought tolerance in maize. We also analyzed protein-protein interaction network of 269 drought-responsive genes belonging to different drought-related TFs. The information generated on structural and functional characteristics, expression and interaction of the drought-related TF families will be useful to decipher the drought tolerance mechanisms and to derive drought-tolerant genotypes in maize.

  12. Hybrid corn and the unsettled question of heterosis

    Indian Academy of Sciences (India)

    Julien Berlan

    Early in 1907, Hugo de Vries published his book, Plant Breeding, comments on ... In a single stroke, Shull solved the political economy problems of plant breeding ... Improvement, the authoritative reference for maize of the American Society of.

  13. Development of Erect Leaves in a Modern Maize Hybrid is Associated with Reduced Responsiveness to Auxin and Light of Young Seedlings in vitro

    Czech Academy of Sciences Publication Activity Database

    Fellner, Martin; Ford, E.D.; Van Volkenburgh, E.

    2006-01-01

    Roč. 1, č. 4 (2006), s. 201-211 ISSN 1559-2316 R&D Projects: GA MŠk 1P05ME792 Institutional research plan: CEZ:AV0Z50380511 Keywords : auxin * auxin-binding protein * growth * leaf angle * light * maize Subject RIV: EF - Botanics

  14. Genetic Vulnerability and the Relationship of Commercial Germplasms of Maize in Brazil with the Nested Association Mapping Parents.

    Directory of Open Access Journals (Sweden)

    Luciano Rogério Braatz de Andrade

    Full Text Available A few breeding companies dominate the maize (Zea mays L. hybrid market in Brazil: Monsanto® (35%, DuPont Pioneer® (30%, Dow Agrosciences® (15%, Syngenta® (10% and Helix Sementes (4%. Therefore, it is important to monitor the genetic diversity in commercial germplasms as breeding practices, registration and marketing of new cultivars can lead to a significant reduction of the genetic diversity. Reduced genetic variation may lead to crop vulnerabilities, food insecurity and limited genetic gains following selection. The aim of this study was to evaluate the genetic vulnerability risk by examining the relationship between the commercial Brazilian maize germplasms and the Nested Association Mapping (NAM Parents. For this purpose, we used the commercial hybrids with the largest market share in Brazil and the NAM parents. The hybrids were genotyped for 768 single nucleotide polymorphisms (SNPs, using the Illumina Goldengate® platform. The NAM parent genomic data, comprising 1,536 SNPs for each line, were obtained from the Panzea data bank. The population structure, genetic diversity and the correlation between allele frequencies were analyzed. Based on the estimated effective population size and genetic variability, it was found that there is a low risk of genetic vulnerability in the commercial Brazilian maize germplasms. However, the genetic diversity is lower than those found in the NAM parents. Furthermore, the Brazilian germplasms presented no close relations with most NAM parents, except B73. This indicates that B73, or its heterotic group (Iowa Stiff Stalk Synthetic, contributed to the development of the commercial Brazilian germplasms.

  15. Genetic Vulnerability and the Relationship of Commercial Germplasms of Maize in Brazil with the Nested Association Mapping Parents.

    Science.gov (United States)

    Andrade, Luciano Rogério Braatz de; Fritsche Neto, Roberto; Granato, Ítalo Stefanine Correia; Sant'Ana, Gustavo César; Morais, Pedro Patric Pinho; Borém, Aluízio

    2016-01-01

    A few breeding companies dominate the maize (Zea mays L.) hybrid market in Brazil: Monsanto® (35%), DuPont Pioneer® (30%), Dow Agrosciences® (15%), Syngenta® (10%) and Helix Sementes (4%). Therefore, it is important to monitor the genetic diversity in commercial germplasms as breeding practices, registration and marketing of new cultivars can lead to a significant reduction of the genetic diversity. Reduced genetic variation may lead to crop vulnerabilities, food insecurity and limited genetic gains following selection. The aim of this study was to evaluate the genetic vulnerability risk by examining the relationship between the commercial Brazilian maize germplasms and the Nested Association Mapping (NAM) Parents. For this purpose, we used the commercial hybrids with the largest market share in Brazil and the NAM parents. The hybrids were genotyped for 768 single nucleotide polymorphisms (SNPs), using the Illumina Goldengate® platform. The NAM parent genomic data, comprising 1,536 SNPs for each line, were obtained from the Panzea data bank. The population structure, genetic diversity and the correlation between allele frequencies were analyzed. Based on the estimated effective population size and genetic variability, it was found that there is a low risk of genetic vulnerability in the commercial Brazilian maize germplasms. However, the genetic diversity is lower than those found in the NAM parents. Furthermore, the Brazilian germplasms presented no close relations with most NAM parents, except B73. This indicates that B73, or its heterotic group (Iowa Stiff Stalk Synthetic), contributed to the development of the commercial Brazilian germplasms.

  16. Genetic Vulnerability and the Relationship of Commercial Germplasms of Maize in Brazil with the Nested Association Mapping Parents

    Science.gov (United States)

    Fritsche Neto, Roberto; Granato, Ítalo Stefanine Correia; Sant’Ana, Gustavo César; Morais, Pedro Patric Pinho; Borém, Aluízio

    2016-01-01

    A few breeding companies dominate the maize (Zea mays L.) hybrid market in Brazil: Monsanto® (35%), DuPont Pioneer® (30%), Dow Agrosciences® (15%), Syngenta® (10%) and Helix Sementes (4%). Therefore, it is important to monitor the genetic diversity in commercial germplasms as breeding practices, registration and marketing of new cultivars can lead to a significant reduction of the genetic diversity. Reduced genetic variation may lead to crop vulnerabilities, food insecurity and limited genetic gains following selection. The aim of this study was to evaluate the genetic vulnerability risk by examining the relationship between the commercial Brazilian maize germplasms and the Nested Association Mapping (NAM) Parents. For this purpose, we used the commercial hybrids with the largest market share in Brazil and the NAM parents. The hybrids were genotyped for 768 single nucleotide polymorphisms (SNPs), using the Illumina Goldengate® platform. The NAM parent genomic data, comprising 1,536 SNPs for each line, were obtained from the Panzea data bank. The population structure, genetic diversity and the correlation between allele frequencies were analyzed. Based on the estimated effective population size and genetic variability, it was found that there is a low risk of genetic vulnerability in the commercial Brazilian maize germplasms. However, the genetic diversity is lower than those found in the NAM parents. Furthermore, the Brazilian germplasms presented no close relations with most NAM parents, except B73. This indicates that B73, or its heterotic group (Iowa Stiff Stalk Synthetic), contributed to the development of the commercial Brazilian germplasms. PMID:27780247

  17. Bases morfofisiológicas para maior tolerância dos híbridos modernos de milho a altas densidades de plantas Morpho-physiological bases for greater tolerance of modern maize hybrids to high plant densities

    Directory of Open Access Journals (Sweden)

    Luís Sangoi

    2002-08-01

    Full Text Available O lançamento de híbridos de milho tolerantes ao aumento da densidade de plantas contribuiu para o incremento do potencial produtivo da cultura na segunda metade do século XX. Objetiva-se com esta revisão de literatura discutir características morfológicas, fisiológicas, fenológicas e alométricas que contribuíram para maior adaptação do milho a elevadas densidades de plantas. Os processos de seleção utilizados pelos melhoristas minimizaram a natureza protândrica da planta, reduzindo o tamanho do pendão. Isso propiciou desenvolvimento alométrico mais equilibrado entre as inflorescências masculina e feminina, limitou a esterilidade feminina e favoreceu a sincronia entre antese e espigamento. O ideotipo de planta compacto dos híbridos modernos, caracterizado pela presença de plantas baixas, com menor número de folhas e folhas eretas, melhorou a qualidade da luz no interior do dossel, contribuindo para reduzir a dominância apical do pendão sobre as espigas. A menor produção de fitomassa reduziu a competição intra-específica e aumentou a eficiência de uso dos fatores ambientais, disponibilizando mais carboidratos para atender às diferentes demandas da planta na fase reprodutiva. O maior equilíbrio nas relações entre fonte e dreno contribuiu para retardar a senescência foliar, resultando em maior absorção de nutrientes e maior eficiência de uso do nitrogênio. O desenvolvimento de híbridos com menor estatura e espigas mais próximas do solo reduziu a quantidade de plantas acamadas e quebradas. A compreensão das bases morfofisiológicas responsáveis pela maior tolerância do milho à competição intra-específica auxiliará melhoristas e fisiologistas a maximizar a eficiência do arranjo de plantas para alcançar altos rendimentos.The release of maize hybrids tolerant to high plant densities has contributed to enhance the potential for grain yield in this crop in the second half of last century. This review aims

  18. Developing Inset Resistant Maize Varieties for Food Security in Kenya

    International Nuclear Information System (INIS)

    Mugo, S.

    2002-01-01

    The Insect Resistant Maize for Africa (IRMA) project aims at increasing maize production and food security through development and deployment of stem borer resistant maize germplasm developed using conventional and through biotechnology methods such as Bt maize. Bt maize offers farmers an effective and practical option for controlling stem borers. It was recognized that the development and routine use of Bt maize will require addressing relevant bio-safety, environmental, and community concerns and research and information gathering activities are in place to address these concerns and research and information gathering activities are in place to address these concerns. Suitable Bt gene have been acquired or synthesized and back-crossed into elite maize germplasm at CIMMYT-Mexico, and the effective Cry-proteins against the major maize stem borers in Kenya were identified to better target pests. Stem borer resistant maize germplasm is being developed through conventional breeding, using locally adapted and exotic germplasm. for safe and effective deployment of Bt maize,studies on its impacts on target and non-target arthropods as well as studies on the effects of Bt maize on key non-target arthropods as well as studies on gene flow are underway. Insect resistance management strategies are being developed through quantifying the effectiveness, ???. Socioeconomic impact studies are revealing factors in the society that may influence the adoption of Bt maize in Kenya. Also, baseline data, essential for the monitoring and evaluation of the Bt maize technology in Kenya, has been established. Technology transfer and capacity building, creating awareness and communications have received attention in the project. This paper describes the major research activities as they relate to development of the stem bore resistant maize germplasm

  19. Ornamental Plant Breeding

    Directory of Open Access Journals (Sweden)

    Flávia Barbosa Silva Botelho

    2015-04-01

    Full Text Available World’s ornamental plant market, including domestic market of several countries and its exports, is currently evaluated in 107 billion dollars yearly. Such estimate highlights the importance of the sector in the economy of the countries, as well as its important social role, as it represents one of the main activities, which contributes to income and employment. Therefore a well-structured plant breeding program, which is connected with consumers’ demands, is required in order to fulfill these market needs globally. Activities related to pre-breeding, conventional breeding, and breeding by biotechnological techniques constitute the basis for the successful development of new ornamental plant cultivars. Techniques that involve tissue culture, protoplast fusion and genetic engineering greatly aid conventional breeding (germplasm introduction, plant selection and hybridization, aiming the obtention of superior genotypes. Therefore it makes evident, in the literature, the successful employment of genetic breeding, since it aims to develop plants with commercial value that are also competitive with the ones available in the market.

  20. Genomic Selection for Drought Tolerance Using Genome-Wide SNPs in Maize

    Directory of Open Access Journals (Sweden)

    Thirunavukkarasu Nepolean

    2017-04-01

    Full Text Available Traditional breeding strategies for selecting superior genotypes depending on phenotypic traits have proven to be of limited success, as this direct selection is hindered by low heritability, genetic interactions such as epistasis, environmental-genotype interactions, and polygenic effects. With the advent of new genomic tools, breeders have paved a way for selecting superior breeds. Genomic selection (GS has emerged as one of the most important approaches for predicting genotype performance. Here, we tested the breeding values of 240 maize subtropical lines phenotyped for drought at different environments using 29,619 cured SNPs. Prediction accuracies of seven genomic selection models (ridge regression, LASSO, elastic net, random forest, reproducing kernel Hilbert space, Bayes A and Bayes B were tested for their agronomic traits. Though prediction accuracies of Bayes B, Bayes A and RKHS were comparable, Bayes B outperformed the other models by predicting highest Pearson correlation coefficient in all three environments. From Bayes B, a set of the top 1053 significant SNPs with higher marker effects was selected across all datasets to validate the genes and QTLs. Out of these 1053 SNPs, 77 SNPs associated with 10 drought-responsive transcription factors. These transcription factors were associated with different physiological and molecular functions (stomatal closure, root development, hormonal signaling and photosynthesis. Of several models, Bayes B has been shown to have the highest level of prediction accuracy for our data sets. Our experiments also highlighted several SNPs based on their performance and relative importance to drought tolerance. The result of our experiments is important for the selection of superior genotypes and candidate genes for breeding drought-tolerant maize hybrids.

  1. Slave Breeding

    OpenAIRE

    Sutch, Richard

    1986-01-01

    This paper reviews the historical work on slave breeding in the ante-bellum United States. Slave breeding consisted of interference in the sexual life of slaves by their owners with the intent and result of increasing the number of slave children born. The weight of evidence suggests that slave breeding occurred in sufficient force to raise the rate of growth of the American slave population despite evidence that only a minority of slave-owners engaged in such practices.

  2. Optimized breeding strategies for multiple trait integration: II. Process efficiency in event pyramiding and trait fixation.

    Science.gov (United States)

    Peng, Ting; Sun, Xiaochun; Mumm, Rita H

    2014-01-01

    Multiple trait integration (MTI) is a multi-step process of converting an elite variety/hybrid for value-added traits (e.g. transgenic events) through backcross breeding. From a breeding standpoint, MTI involves four steps: single event introgression, event pyramiding, trait fixation, and version testing. This study explores the feasibility of marker-aided backcross conversion of a target maize hybrid for 15 transgenic events in the light of the overall goal of MTI of recovering equivalent performance in the finished hybrid conversion along with reliable expression of the value-added traits. Using the results to optimize single event introgression (Peng et al. Optimized breeding strategies for multiple trait integration: I. Minimizing linkage drag in single event introgression. Mol Breed, 2013) which produced single event conversions of recurrent parents (RPs) with ≤8 cM of residual non-recurrent parent (NRP) germplasm with ~1 cM of NRP germplasm in the 20 cM regions flanking the event, this study focused on optimizing process efficiency in the second and third steps in MTI: event pyramiding and trait fixation. Using computer simulation and probability theory, we aimed to (1) fit an optimal breeding strategy for pyramiding of eight events into the female RP and seven in the male RP, and (2) identify optimal breeding strategies for trait fixation to create a 'finished' conversion of each RP homozygous for all events. In addition, next-generation seed needs were taken into account for a practical approach to process efficiency. Building on work by Ishii and Yonezawa (Optimization of the marker-based procedures for pyramiding genes from multiple donor lines: I. Schedule of crossing between the donor lines. Crop Sci 47:537-546, 2007a), a symmetric crossing schedule for event pyramiding was devised for stacking eight (seven) events in a given RP. Options for trait fixation breeding strategies considered selfing and doubled haploid approaches to achieve homozygosity

  3. How yield relates to ash content, Delta 13C and Delta 18O in maize grown under different water regimes.

    Science.gov (United States)

    Cabrera-Bosquet, Llorenç; Sánchez, Ciro; Araus, José Luis

    2009-11-01

    Stable isotopes have proved a valuable phenotyping tool when breeding for yield potential and drought adaptation; however, the cost and technical skills involved in isotope analysis limit its large-scale application in breeding programmes. This is particularly so for Delta(18)O despite the potential relevance of this trait in C(4) crops. The accumulation of minerals (measured as ash content) has been proposed as an inexpensive way to evaluate drought adaptation and yield in C(3) cereals, but little is known of the usefulness of this measure in C(4) cereals such as maize (Zea mays). The present study investigates how yield relates to ash content, Delta(13)C and Delta(18)O, and evaluates the use of ash content as an alternative or complementary criterion to stable isotopes in assessing yield potential and drought resistance in maize. A set of tropical maize hybrids developed by CIMMYT were subjected to different water availabilities, in order to induce water stress during the reproductive stages under field conditions. Ash content and Delta(13)C were determined in leaves and kernels. In addition, Delta(18)O was measured in kernels. Water regime significantly affected yield, ash content and stable isotopes. The results revealed a close relationship between ash content in leaves and the traits informing about plant water status. Ash content in kernels appeared to reflect differences in sink-source balance. Genotypic variation in grain yield was mainly explained by the combination of ash content and Delta(18)O, whilst Delta(13)C did not explain a significant percentage of such variation. Ash content in leaves and kernels proved a useful alternative or complementary criterion to Delta(18)O in kernels for assessing yield performance in maize grown under drought conditions.

  4. Incomplete dominance of deleterious alleles contributes substantially to trait variation and heterosis in maize.

    Directory of Open Access Journals (Sweden)

    Jinliang Yang

    2017-09-01

    Full Text Available Deleterious alleles have long been proposed to play an important role in patterning phenotypic variation and are central to commonly held ideas explaining the hybrid vigor observed in the offspring of a cross between two inbred parents. We test these ideas using evolutionary measures of sequence conservation to ask whether incorporating information about putatively deleterious alleles can inform genomic selection (GS models and improve phenotypic prediction. We measured a number of agronomic traits in both the inbred parents and hybrids of an elite maize partial diallel population and re-sequenced the parents of the population. Inbred elite maize lines vary for more than 350,000 putatively deleterious sites, but show a lower burden of such sites than a comparable set of traditional landraces. Our modeling reveals widespread evidence for incomplete dominance at these loci, and supports theoretical models that more damaging variants are usually more recessive. We identify haplotype blocks using an identity-by-decent (IBD analysis and perform genomic prediction analyses in which we weigh blocks on the basis of complementation for segregating putatively deleterious variants. Cross-validation results show that incorporating sequence conservation in genomic selection improves prediction accuracy for grain yield and other fitness-related traits as well as heterosis for those traits. Our results provide empirical support for an important role for incomplete dominance of deleterious alleles in explaining heterosis and demonstrate the utility of incorporating functional annotation in phenotypic prediction and plant breeding.

  5. Incomplete dominance of deleterious alleles contributes substantially to trait variation and heterosis in maize.

    Science.gov (United States)

    Yang, Jinliang; Mezmouk, Sofiane; Baumgarten, Andy; Buckler, Edward S; Guill, Katherine E; McMullen, Michael D; Mumm, Rita H; Ross-Ibarra, Jeffrey

    2017-09-01

    Deleterious alleles have long been proposed to play an important role in patterning phenotypic variation and are central to commonly held ideas explaining the hybrid vigor observed in the offspring of a cross between two inbred parents. We test these ideas using evolutionary measures of sequence conservation to ask whether incorporating information about putatively deleterious alleles can inform genomic selection (GS) models and improve phenotypic prediction. We measured a number of agronomic traits in both the inbred parents and hybrids of an elite maize partial diallel population and re-sequenced the parents of the population. Inbred elite maize lines vary for more than 350,000 putatively deleterious sites, but show a lower burden of such sites than a comparable set of traditional landraces. Our modeling reveals widespread evidence for incomplete dominance at these loci, and supports theoretical models that more damaging variants are usually more recessive. We identify haplotype blocks using an identity-by-decent (IBD) analysis and perform genomic prediction analyses in which we weigh blocks on the basis of complementation for segregating putatively deleterious variants. Cross-validation results show that incorporating sequence conservation in genomic selection improves prediction accuracy for grain yield and other fitness-related traits as well as heterosis for those traits. Our results provide empirical support for an important role for incomplete dominance of deleterious alleles in explaining heterosis and demonstrate the utility of incorporating functional annotation in phenotypic prediction and plant breeding.

  6. Evaluation of maize inbred lines for resistance to pre-harvest aflatoxin and fumonisin contamination in the field

    Directory of Open Access Journals (Sweden)

    Baozhu Guo

    2017-06-01

    Full Text Available Two important mycotoxins, aflatoxin and fumonisin, are among the most potent naturally occurring carcinogens, contaminating maize (Zea mays and affecting crop yield and quality. Resistance of maize to pre-harvest mycotoxin contamination, specifically aflatoxin produced by Aspergillus flavus and fumonisin produced by Fusarium verticillioides, is a goal in breeding programs that screen for these important traits with the aim of developing resistant commercial hybrids. We conducted two years of field evaluations on 87 inbred lines originating primarily in China and Mexico and not previously screened for resistance. The objectives of our study were to identify resistant germplasm for breeding purposes and to examine possible relationships between resistances to the two mycotoxins. Aflatoxin and fumonisin were present in samples harvested from all lines in both years. Concentrations of total aflatoxin ranged from 52.00 ± 20.00 to 1524.00 ± 396.00 μg kg−1, while those of fumonisin ranged from 0.60 ± 0.06 to 124.00 ± 19.50 mg kg−1. The inbred lines TUN15, TUN61, TUN37, CY2, and TUN49 showed the lowest aflatoxin accumulation and CN1, GT601, TUN09, TUN61, and MP717 the lowest fumonisin accumulation. TUN61 showed the lowest accumulation of both mycotoxins. This study confirmed previous observations that high levels of aflatoxin can coexist with fumonisin, with 55 maize lines showing a positive correlation coefficient between the concentrations of aflatoxin and fumonisin and 32 lines showing a negative correlation coefficient. These selected lines, particularly TUN61, may provide sources of resistance to mycotoxin contamination in breeding programs. However, the mechanism of resistance in this germplasm remains to be identified. Future research should also address factors that influence the fungus–plant interaction, such as herbivory and environmental stress.

  7. Zealactones. Novel natural strigolactones from maize

    NARCIS (Netherlands)

    Charnikhova, Tatsiana V.; Gaus, Katharina; Lumbroso, Alexandre; Sanders, Mark; Vincken, Jean Paul; Mesmaeker, de Alain; Ruyter-Spira, Carolien P.; Screpanti, Claudio; Bouwmeester, Harro J.

    2017-01-01

    In the root exudate and root extracts of maize hybrid cv NK Falkone seven putative strigolactones were detected using UPLC-TQ-MS-MS. All seven compounds displayed MS-MS-fragmentation common for strigolactones and particularly the presence of a fragment of m/z 97 Da, which may indicate the

  8. Integrating Plant Science and Crop Modeling: Assessment of the Impact of Climate Change on Soybean and Maize Production.

    Science.gov (United States)

    Fodor, Nándor; Challinor, Andrew; Droutsas, Ioannis; Ramirez-Villegas, Julian; Zabel, Florian; Koehler, Ann-Kristin; Foyer, Christine H

    2017-11-01

    Increasing global CO2 emissions have profound consequences for plant biology, not least because of direct influences on carbon gain. However, much remains uncertain regarding how our major crops will respond to a future high CO2 world. Crop model inter-comparison studies have identified large uncertainties and biases associated with climate change. The need to quantify uncertainty has drawn the fields of plant molecular physiology, crop breeding and biology, and climate change modeling closer together. Comparing data from different models that have been used to assess the potential climate change impacts on soybean and maize production, future yield losses have been predicted for both major crops. When CO2 fertilization effects are taken into account significant yield gains are predicted for soybean, together with a shift in global production from the Southern to the Northern hemisphere. Maize production is also forecast to shift northwards. However, unless plant breeders are able to produce new hybrids with improved traits, the forecasted yield losses for maize will only be mitigated by agro-management adaptations. In addition, the increasing demands of a growing world population will require larger areas of marginal land to be used for maize and soybean production. We summarize the outputs of crop models, together with mitigation options for decreasing the negative impacts of climate on the global maize and soybean production, providing an overview of projected land-use change as a major determining factor for future global crop production. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  9. Studies on performance of some open-pollinated maize cultivars in ...

    African Journals Online (AJOL)

    Plant density and nitrogen (N) fertilizer responses of one local and three improved open-pollinated cultivars of maize (Zea mays L.) developed in different eras of maize breeding were studied on sandy-loam Alfisols in the Guinea savanna zone of Ghana in 1992 and 1993. A split-plot design was used in which plant ...

  10. Farmer perceptions on maize cultivars in the marginal eastern belt of ...

    African Journals Online (AJOL)

    Productivity of maize (Zea mays) is low in the small-holder sector of Zimbabwe because the crop is grown under stress-prone environments and limited resources. The objective of this study was to investigate farmer perceptions on maize cultivars and their implications for breeding. Participatory rural appraisal and ...

  11. Quantitative Trait Loci Mapping of Western Corn Rootworm (Coleoptera: Chrysomelidae) Host Plant Resistance in Two Populations of Doubled Haploid Lines in Maize (Zea mays L.).

    Science.gov (United States)

    Bohn, Martin O; Marroquin, Juan J; Flint-Garcia, Sherry; Dashiell, Kenton; Willmot, David B; Hibbard, Bruce E

    2018-02-09

    Over the last 70 yr, more than 12,000 maize accessions have been screened for their level of resistance to western corn rootworm, Diabrotica virgifera virgifera (LeConte; Coleoptera: Chrysomelidae), larval feeding. Less than 1% of this germplasm was selected for initiating recurrent selection or other breeding programs. Selected genotypes were mostly characterized by large root systems and superior root regrowth after root damage caused by western corn rootworm larvae. However, no hybrids claiming native (i.e., host plant) resistance to western corn rootworm larval feeding are currently commercially available. We investigated the genetic basis of western corn rootworm resistance in maize materials with improved levels of resistance using linkage disequilibrium mapping approaches. Two populations of topcrossed doubled haploid maize lines (DHLs) derived from crosses between resistant and susceptible maize lines were evaluated for their level of resistance in three to four different environments. For each DHL topcross an average root damage score was estimated and used for quantitative trait loci (QTL) analysis. We found genomic regions contributing to western corn rootworm resistance on all maize chromosomes, except for chromosome 4. Models fitting all QTL simultaneously explained about 30 to 50% of the genotypic variance for root damage scores in both mapping populations. Our findings confirm the complex genetic structure of host plant resistance against western corn rootworm larval feeding in maize. Interestingly, three of these QTL regions also carry genes involved in ascorbate biosynthesis, a key compound we hypothesize is involved in the expression of western corn rootworm resistance. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Ultrastructure and Dimensions of Chloroplasts in Leaves of Three Maize (Zea mays L.) Inbred Lines and their F1 Hybrids Grown Under Moderate Chilling Stress

    Czech Academy of Sciences Publication Activity Database

    Kutík, J.; Holá, D.; Kočová, M.; Rothová, O.; Haisel, Daniel; Wilhelmová, Naděžda; Tichá, I.

    2004-01-01

    Roč. 42, č. 3 (2004), s. 447-455 ISSN 0300-3604 R&D Projects: GA ČR GA522/01/0846 Institutional research plan: CEZ:AV0Z5038910 Keywords : bundle sheath cells * electron microscopy * genotypes Subject RIV: GE - Plant Breeding Impact factor: 0.734, year: 2004

  13. Diallel crossing among maize populations for resistance to fall armyworm

    Directory of Open Access Journals (Sweden)

    Alvarez María del Pilar

    2002-01-01

    Full Text Available Among the insects infecting the maize (Zea mays L. crop in Brazil, the fall armyworm (Spodoptera frugiperda Smith, 1797, Lepdoptera: Noctuidae is considered one of the most important because it causes the highest damage to yield. Genetic resistance to the fall armyworm has be an effective control strategy. The main objective of this work was to evaluate new germplasm sources for resistance to the fall armyworm, the key pest for the maize crop in Brazil. A partial diallel design between 20 varieties of Brazilian germplasm and nine exotic and semi-exotic varieties of different origin was used. The 180 crosses and 29 parental varieties along with two commercial checks were evaluated in three locations in the State of São Paulo State (Brasil. Fall armyworm resistance (FAWR under artificial and natural infestations, grain yield (GY, and plant height (PH were analyzed. The populations CMS14C and MIRT, and hybrid São José x MIRT showed the highest resistance, with values of 1.8, 1.7 and 1.4, respectively. Populations PMI9401 and PR91B, and the hybrid CMS14C x (B97xITU had best yields, with 4893, 3858 and 5677 kg ha-1, respectively. Heterosis ranged from -28% to 47% for FAWR and from -21% to 125% for GY, with mean values of -0,43% and 31%, respectively. Genotype by environment interaction was not significant for FAWR. The effects of varieties and heterosis were significant for all traits, showing that both additive and dominance effects may be important as sources of variation. For FAWR, only specific heterosis presented significance, suggesting strong genetic divergence between specific pairs of parental populations. Brasilian populations PMI9302 and São José, and the exotic population PR91B presented high performance per se, and also in croses for FAWR and GY. Crosses PMI9401 x (Cuba110 x EsalqPB1 and São José x MIRT presented high specific heterosis effects for both characters. These populations can be useful to be introgressed in maize

  14. Pollen-Mediated Gene Flow in Maize: Implications for Isolation Requirements and Coexistence in Mexico, the Center of Origin of Maize.

    Science.gov (United States)

    Baltazar, Baltazar M; Castro Espinoza, Luciano; Espinoza Banda, Armando; de la Fuente Martínez, Juan Manuel; Garzón Tiznado, José Antonio; González García, Juvencio; Gutiérrez, Marco Antonio; Guzmán Rodríguez, José Luis; Heredia Díaz, Oscar; Horak, Michael J; Madueño Martínez, Jesús Ignacio; Schapaugh, Adam W; Stojšin, Duška; Uribe Montes, Hugo Raúl; Zavala García, Francisco

    2015-01-01

    Mexico, the center of origin of maize (Zea mays L.), has taken actions to preserve the identity and diversity of maize landraces and wild relatives. Historically, spatial isolation has been used in seed production to maintain seed purity. Spatial isolation can also be a key component for a strategy to minimize pollen-mediated gene flow in Mexico between transgenic maize and sexually compatible plants of maize conventional hybrids, landraces, and wild relatives. The objective of this research was to generate field maize-to-maize outcrossing data to help guide coexistence discussions in Mexico. In this study, outcrossing rates were determined and modeled from eight locations in six northern states, which represent the most economically important areas for the cultivation of hybrid maize in Mexico. At each site, pollen source plots were planted with a yellow-kernel maize hybrid and surrounded by plots with a white-kernel conventional maize hybrid (pollen recipient) of the same maturity. Outcrossing rates were then quantified by assessing the number of yellow kernels harvested from white-kernel hybrid plots. The highest outcrossing values were observed near the pollen source (12.9% at 1 m distance). The outcrossing levels declined sharply to 4.6, 2.7, 1.4, 1.0, 0.9, 0.5, and 0.5% as the distance from the pollen source increased to 2, 4, 8, 12, 16, 20, and 25 m, respectively. At distances beyond 20 m outcrossing values at all locations were below 1%. These trends are consistent with studies conducted in other world regions. The results suggest that coexistence measures that have been implemented in other geographies, such as spatial isolation, would be successful in Mexico to minimize transgenic maize pollen flow to conventional maize hybrids, landraces and wild relatives.

  15. Harnessing maize biodiversity

    Science.gov (United States)

    Maize is a remarkably diverse species, adapted to a wide range of climatic conditions and farming practices. The latitudinal range of maize is immense, ranging from 54°N in Alberta, Canada, to 45°S in the province of Chubut, Argentina. In terms of altitude, maize is cultivated from sea level to 4000...

  16. Status and prospects of maize research in Nepal

    Directory of Open Access Journals (Sweden)

    Govind KC

    2015-12-01

    Full Text Available Food and nutritional securities are the major threats coupled with declining factor productivity and climate change effects in Nepal. Maize being the principal food crops of the majority of the hill people and source of animal feed for ever growing livestock industries in Terai of Nepal. Despite the many efforts made to increase the maize productivity in the country, the results are not much encouraging. Many of the maize based technologies developed and recommended for the farmers to date are not fully adopted. Therefore, problem is either on technology development or on dissemination or on both. Considering the above facts, some of the innovative and modern approaches of plant breeding and crop management technologies to increase the maize yield need to be developed and disseminated. There is a need for location-specific maize production technologies, especially for lowland winter maize, marginal upland maize production system, and resource poor farmers. Research efforts can be targeted to address both yield potential and on-farm yields by reducing the impacts of abiotic and biotic constraints. Therefore, in order to streamline the future direction of maize research in Nepal, an attempt has been made in this article to highlight the present status and future prospects with few key pathways.

  17. Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2015-10-01

    Full Text Available Wild maize (teosinte has been reported to be less susceptible to pests than their modern maize (corn relatives. Endophytes, defined as microbes that inhabit plants without causing disease, are known for their ability to antagonize plant pests and pathogens. We hypothesized that the wild relatives of modern maize may host endophytes that combat pathogens. Fusarium graminearum is the fungus that causes Gibberella Ear Rot (GER in modern maize and produces the mycotoxin, deoxynivalenol (DON. In this study, 215 bacterial endophytes, previously isolated from diverse maize genotypes including wild teosintes, traditional landraces and modern varieties, were tested for their ability to antagonize F. graminearum in vitro. Candidate endophytes were then tested for their ability to suppress GER in modern maize in independent greenhouse trials. The results revealed that three candidate endophytes derived from wild teosintes were most potent in suppressing F. graminearum in vitro and GER in a modern maize hybrid. These wild teosinte endophytes could suppress a broad spectrum of fungal pathogens of modern crops in vitro. The teosinte endophytes also suppressed DON mycotoxin during storage to below acceptable safety threshold levels. A fourth, less robust anti-fungal strain was isolated from a modern maize hybrid. Three of the anti-fungal endophytes were predicted to be Paenibacillus polymyxa, along with one strain of Citrobacter. Microscopy studies suggested a fungicidal mode of action by all four strains. Molecular and biochemical studies showed that the P. polymyxa strains produced the previously characterized anti-Fusarium compound, fusaricidin. Our results suggest that the wild relatives of modern crops may serve as a valuable reservoir for endophytes in the ongoing fight against serious threats to modern agriculture. We discuss the possible impact of crop evolution and domestication on endophytes in the context of plant defense.

  18. Metabolizable energy, nitrogen balance, and ileal digestibility of amino acids in quality protein maize for pigs

    Science.gov (United States)

    2014-01-01

    Background To compare the nutritional value and digestibility of five quality protein maize (QPM) hybrids to that of white and yellow maize, two experiments were carried out in growing pigs. In experiment 1, the energy metabolizability and the nitrogen balance of growing pigs fed one of five QPM hybrid diets were compared against those of pigs fed white or yellow maize. In experiment 2, the apparent and standardized ileal digestibility (AID and SID, respectively) of proteins and amino acids from the five QPM hybrids were compared against those obtained from pigs fed white and yellow maize. In both experiments, the comparisons were conducted using contrasts. Results The dry matter and nitrogen intakes were higher in the pigs fed the QPM hybrids (P digestibility (P digestible lysine than normal maize. PMID:25045520

  19. Managing meiotic recombination in plant breeding

    NARCIS (Netherlands)

    Wijnker, T.G.; Jong, de J.H.S.G.M.

    2008-01-01

    Crossover recombination is a crucial process in plant breeding because it allows plant breeders to create novel allele combnations on chromosomes that can be used for breeding superior F1 hybrids. Gaining control over this process, in terms of increasing crossover incidence, altering crossover

  20. Proteomics of Maize Root Development.

    Science.gov (United States)

    Hochholdinger, Frank; Marcon, Caroline; Baldauf, Jutta A; Yu, Peng; Frey, Felix P

    2018-01-01

    Maize forms a complex root system with structurally and functionally diverse root types that are formed at different developmental stages to extract water and mineral nutrients from soil. In recent years proteomics has been intensively applied to identify proteins involved in shaping the three-dimensional architecture and regulating the function of the maize root system. With the help of developmental mutants, proteomic changes during the initiation and emergence of shoot-borne, lateral and seminal roots have been examined. Furthermore, root hairs were surveyed to understand the proteomic changes during the elongation of these single cell type structures. In addition, primary roots have been used to study developmental changes of the proteome but also to investigate the proteomes of distinct tissues such as the meristematic zone, the elongation zone as well as stele and cortex of the differentiation zone. Moreover, subcellular fractions of the primary root including cell walls, plasma membranes and secreted mucilage have been analyzed. Finally, the superior vigor of hybrid seedling roots compared to their parental inbred lines was studied on the proteome level. In summary, these studies provide novel insights into the complex proteomic interactions of the elaborate maize root system during development.

  1. Proteomics of Maize Root Development

    Directory of Open Access Journals (Sweden)

    Frank Hochholdinger

    2018-03-01

    Full Text Available Maize forms a complex root system with structurally and functionally diverse root types that are formed at different developmental stages to extract water and mineral nutrients from soil. In recent years proteomics has been intensively applied to identify proteins involved in shaping the three-dimensional architecture and regulating the function of the maize root system. With the help of developmental mutants, proteomic changes during the initiation and emergence of shoot-borne, lateral and seminal roots have been examined. Furthermore, root hairs were surveyed to understand the proteomic changes during the elongation of these single cell type structures. In addition, primary roots have been used to study developmental changes of the proteome but also to investigate the proteomes of distinct tissues such as the meristematic zone, the elongation zone as well as stele and cortex of the differentiation zone. Moreover, subcellular fractions of the primary root including cell walls, plasma membranes and secreted mucilage have been analyzed. Finally, the superior vigor of hybrid seedling roots compared to their parental inbred lines was studied on the proteome level. In summary, these studies provide novel insights into the complex proteomic interactions of the elaborate maize root system during development.

  2. Fungal Diversity of Maize (Zea Mays L. Grains

    Directory of Open Access Journals (Sweden)

    Gulbis Kaspars

    2016-06-01

    Full Text Available Maize is becoming more and more important crop for dairy farming as forage and as substrate for biogas production. The mycotoxin producing fungi can spoil feed, reduce cattle productivity and cause health problems. The aim of this research was to study the mycoflora of maize grains in order to clarify the fungal composition and verify the presence of potential mycotoxin producing fungi. The grain samples were collected from different maize hybrid performance trial in Research and Study farm “Vecauce” of Latvia University of Agriculture in 2014. The fungi from 14 genera were isolated from surface sterilized grains. The most abundant were Alternaria, Fusarium and Penicillium spp. Mycotoxin producing fungi are present in maize grain mycoflora, and there is a risk that maize production can contain mycotoxins.

  3. Marker-assisted selection in maize: current status, potential, limitations and perspectives from the private and public sectors

    International Nuclear Information System (INIS)

    Ragot, M.; Lee, M.

    2007-01-01

    More than twenty-five years after the advent of DNA markers, marker-assisted selection (MAS) has become a routine component of some private maize breeding programmes. Line conversion has been one of the most productive applications of MAS in maize breeding, reducing time to market and resulting in countless numbers of commercial products. Recently, applications of MAS for forward breeding have been shown to increase significantly the rate of genetic gain when compared with conventional breeding. Costs associated with MAS are still very high. Further improvements in marker technologies, data handling and analysis, phenotyping and nursery operations are needed to realize the full benefits of MAS for private maize breeding programmes and to allow the transfer of proven approaches and protocols to public breeding programmes in developing countries. (author)

  4. Study on the in vitro culture of cut plants in wheat haploid embryo induction by a wheat × maize cross

    Institute of Scientific and Technical Information of China (English)

    Jian GU; Kun LIU; Shaoxiang LI; Yuxian TIAN; Hexian YANG; Mujun YANG

    2008-01-01

    The wheat × maize system is one of the most effective ways to produce haploids in wheat. Whether and how it could be successfully applied in practical breeding mostly depends upon the efficiency of haploid embryo pro-duction. To perfect the protocols of haploid embryo induc-tion, the efficiency of haploid embryo production between in vitro culture of cut plant and intact plant growth for hybrid spikes with two F1 wheat hybrids and two maize varieties was compared. Effects of different cutting plant times and formulas of nutrient solutions for cut plant cul-ture on haploid embryo formation were also studied. Results indicated that the embryo rate of in vitro culture was 3.29 times that of intact plant growth, with the figures of 31.6% vs 9.6%, respectively. The optimal time for cut plant culture was 24 h after pollination. Formulas of nutri-ent solutions significantly affected the efficiency of haploid embryo induction. With an embryo rate of 0-35.5%, add-could raise the caryopsis and embryo rates. According to this study, the best medium for cut plant culture was: phate, with which a caryopsis rate of 95% and an embryo rate of about 30% could be obtained.

  5. Aflatoxins and fumonisin contamination of marketed maize, maize ...

    African Journals Online (AJOL)

    Aflatoxins and fumonisin contamination of marketed maize, maize bran and maize used as animal feed in northern ... PROMOTING ACCESS TO AFRICAN RESEARCH ... African Journal of Food, Agriculture, Nutrition and Development.

  6. Genetic diversity in South African maize (Zea mays L.) genotypes as ...

    African Journals Online (AJOL)

    Charlotte Mienie

    varied between 6 and 36 per locus for the total population screened. When looking at the separate populations tested, the mean number of alleles per locus was the highest for the yellow maize breeding lines, which also had the highest entries in the screening program (Table. 2). In PCoA of the RD of the breeding lines, the ...

  7. [Contamination with genetically modified maize MON863 of processed foods on the market].

    Science.gov (United States)

    Ohgiya, Yoko; Sakai, Masaaki; Miyashita, Taeko; Yano, Koichi

    2009-06-01

    Genetically modified maize MON863 (MON863), which has passed a safety examination in Japan, is commercially cultivated in the United States as a food and a resource for fuel. Maize is an anemophilous flower, which easily hybridizes. However, an official method for quantifying the content of MON863 has not been provided yet in Japan. We here examined MON863 contamination in maize-processed foods that had no labeling indicating of the use of genetically modified maize.From March 2006 to July 2008, we purchased 20 frozen maize products, 8 maize powder products, 7 canned maize products and 4 other maize processed foods. Three primer pairs named MON 863 primer, MON863-1, and M3/M4 for MON863-specific integrated cassette were used for qualitative polymerase chain reaction (PCR). A primer pair "SSIIb-3" for starch synthase gene was used to confirm the quality of extracted DNA. The starch synthase gene was detected in all samples. In qualitative tests, the MON863-specific fragments were detected in 7 (18%) maize powder products out of the 39 processed foods with all the three primer pairs.We concluded that various maize processed foods on the market were contaminated with MON863. It is important to accumulate further information on MON863 contamination in maize-processed foods that have no label indication of the use of genetically modified maize.

  8. THE IMPORTANCE OF WESTERN CORN ROOTWORM IN CONTINUOUS MAIZE

    Directory of Open Access Journals (Sweden)

    Marija Ivezić

    2006-06-01

    Full Text Available Western Corn Rootworm (Diabrotica virgifera virgifera LeConte is considered to be one of the most important and potentially most severe pest of maize worldwide. The pest was detected in Croatia for the first time in 1995. Since then it has been spread over all areas with maize production in Croatia. The economically most efficient and preventive control measure is crop rotation and growing maize hybrids that show tolerance to WCR. The trials were settled in the area near Dubosevica where in 2002 and 2003 the economic damages caused by WCR were up to 80%. The aim of this investigation is to determine damages on maize root caused by WCR and loss in grain yield on commercial maize hybrids in continuous farming. Pheromone traps, type Csal♀m♂N®, were used in order to monitor WCR population dynamics. In the period of two months, 366 WCR adult beetles in total were captured. Root damage was evaluated according to Iowa Node Injury Scale and grain yield was measured and corrected to 14% moisture. Furthermore, the plant lodging, as a consequence of larval feeding, was assessed. The results have shown that root damage for hybrid Bc 5982 was 1.15, and 0.73 damage was on Pr 35p 12 roots. The grain yield obtained from hybrid Bc 5982 was 11.7 t/ha, and Pr 35p 12 had 12.3 t/ha. Statistical analyses showed that there were no significant differences in root damage and losses in grain yield between the two investigated hybrids. Results of this investigation indicate that growing maize for 2 to 3 years in continuous farming, in the same field, would not cause economically significant loss in maize gain yield.

  9. Aflatoxin Accumulation in a Maize Diallel Cross

    Directory of Open Access Journals (Sweden)

    W. Paul Williams

    2015-06-01

    Full Text Available Aflatoxins, produced by the fungus Aspergillus flavus, occur naturally in maize. Contamination of maize grain with aflatoxin is a major food and feed safety problem and greatly reduces the value of the grain. Plant resistance is generally considered a highly desirable approach to reduction or elimination of aflatoxin in maize grain. In this investigation, a diallel cross was produced by crossing 10 inbred lines with varying degrees of resistance to aflatoxin accumulation in all possible combinations. Three lines that previously developed and released as sources of resistance to aflatoxin accumulation were included as parents. The 10 parental inbred lines and the 45 single crosses making up the diallel cross were evaluated for aflatoxin accumulation in field tests conducted in 2013 and 2014. Plants were inoculated with an A. flavus spore suspension seven days after silk emergence. Ears were harvested approximately 60 days later and concentration of aflatoxin in the grain determined. Parental inbred lines Mp717, Mp313E, and Mp719 exhibited low levels (3–12 ng/g of aflatoxin accumulation. In the diallel analysis, both general and specific combining ability were significant sources of variation in the inheritance of resistance to aflatoxin accumulation. General combining ability effects for reduced aflatoxin accumulation were greatest for Mp494, Mp719, and Mp717. These lines should be especially useful in breeding for resistance to aflatoxin accumulation. Breeding strategies, such as reciprocal recurrent selection, would be appropriate.

  10. Production of haploid plants from ten hybrids of bread wheat (Triticum aestivum L. through wide hybridization with maize (Zea mays L. Producción de plantas haploides a partir de 10 híbridos de trigo para pan (Triticum aestivum L. mediante hibridación interespecífica con maíz (Zea mays L.

    Directory of Open Access Journals (Sweden)

    L.E. Torres

    2010-12-01

    Full Text Available The aim of this work was to obtain haploid plants of bread wheat through wide hybridization with maize. The experimental material included ten bread wheat hybrids (female parent and one population of maize (pollen donor. Two assays were carried out in two different seasons (summer and winter. Wheat spikes were manually emasculated, each spike was pollinated twice with fresh pollen of maize and a solution of 2,4-D (100 mg l-1 was sprayed on pollinated florets and injected in the upper internode. Fifteen and 21 days after pollination caryopses were removed and surface sterilized. Embryos were cultured in tubes containing B5 medium. The ten hybrid combinations produced caryopses, but only eight of these hybrids produced embryos and, in six of them, the recovered embryos developed into haploid plantlets. The results showed that there is genotypic influence of the wheat parents on the percentage of haploid embryo formation, in accordance with the results obtained by other authors. Regardless of the genotype, the sowing season and the harvest date, 69.4% of the pollinated flowers gave place to the formation of caryopses, 5.5% of these caryopses developed into presumably haploid embryos (for their morphological phenotypes and 26.1 % of the recovered embryos developed into haploid plantlets.El objetivo del presente trabajo fue obtener plantas haploides de trigo para pan mediante hibridación interespecífica con maíz. Se utilizaron 10 híbridos de trigo para pan (madre y una población de maíz (donante de polen; se llevaron a cabo dos ensayos en distintas estaciones de cultivo. Cada espiga de trigo fue emasculada manualmente y polinizada dos veces con polen fresco de maíz; las flores polinizadas se pulverizaron con una solución de 2,4-D (100 mg l-1, la que también se inyectó en la base de la espiga. Las semillas se cosecharon a los 15 y 21 días posteriores a la polinización. Los embriones recuperados se colocaron en tubos conteniendo medio de

  11. Meiotic transmission of an in vitro-assembled autonomous maize minichromosome.

    Directory of Open Access Journals (Sweden)

    Shawn R Carlson

    2007-10-01

    Full Text Available Autonomous chromosomes are generated in yeast (yeast artificial chromosomes and human fibrosarcoma cells (human artificial chromosomes by introducing purified DNA fragments that nucleate a kinetochore, replicate, and segregate to daughter cells. These autonomous minichromosomes are convenient for manipulating and delivering DNA segments containing multiple genes. In contrast, commercial production of transgenic crops relies on methods that integrate one or a few genes into host chromosomes; extensive screening to identify insertions with the desired expression level, copy number, structure, and genomic location; and long breeding programs to produce varieties that carry multiple transgenes. As a step toward improving transgenic crop production, we report the development of autonomous maize minichromosomes (MMCs. We constructed circular MMCs by combining DsRed and nptII marker genes with 7-190 kb of genomic maize DNA fragments containing satellites, retroelements, and/or other repeats commonly found in centromeres and using particle bombardment to deliver these constructs into embryogenic maize tissue. We selected transformed cells, regenerated plants, and propagated their progeny for multiple generations in the absence of selection. Fluorescent in situ hybridization and segregation analysis demonstrated that autonomous MMCs can be mitotically and meiotically maintained. The MMC described here showed meiotic segregation ratios approaching Mendelian inheritance: 93% transmission as a disome (100% expected, 39% transmission as a monosome crossed to wild type (50% expected, and 59% transmission in self crosses (75% expected. The fluorescent DsRed reporter gene on the MMC was expressed through four generations, and Southern blot analysis indicated the encoded genes were intact. This novel approach for plant transformation can facilitate crop biotechnology by (i combining several trait genes on a single DNA fragment, (ii arranging genes in a defined

  12. Genetic characterization of the 28 maize landraces in Paraná State

    Directory of Open Access Journals (Sweden)

    Sara Regina Silvestrin Rovaris

    2017-08-01

    Full Text Available The characterization of maize landraces is extremely important in breeding programs for use of these genotypes as sources of genetic variability. The objective of this study was to quantitatively characterize 28 populations of maize landraces from the state of Paraná using the estimates of the effects of varieties and heterosis parents and the general combining ability, thereby assessing the main agronomic traits. In the crop of 2008/09, 56 inter-varietal hybrids, obtained through a topcross, 28 populations of maize landraces and three check varieties were evaluated for female flowering (FF, plant height (PH, ear height (EH and grain mass (GY. The treatments were evaluated in a randomized block design, with two replications, at three Paraná State locations: the Experimental Center of the Agronomic Institute of Paraná in Londrina (IAPAR and the experimental units of Pato Branco and Ponta Grossa. The data were submitted to an analysis of variance, considering a fixed model for genotypes and a random model for environments; the averages grouped by the Scott-Knott test, along with intersections of topcrosses, were analyzed according to a readapted model proposed by Oliveira et al. (1997. According to estimates of the parental effects, the GI 133 population showed the most promising estimates for all characteristics. The GI 088 and GI 173 populations stood out with promising estimates of the effects of heterosis. The conclusion is that the populations GI 133 and GI 173 may be indicated for recurrent selection programs or participation in obtaining composites.

  13. Genetic diversity in South African maize ( Zea mays L.) genotypes as ...

    African Journals Online (AJOL)

    One thousand and forty three (1043) maize genotypes including white and yellow maize inbred lines as well as hybrids from the public germplasm collection were characterized with 80 microsatellite markers distributed throughout the genome. A total of 1874 alleles were amplified and used in the genetic diversity analysis.

  14. DNA fingerprinting of maize seed lots to establish genetic purity using SSR markers.

    Science.gov (United States)

    Most countries in sub-Saharan Africa (SSA) grow open pollinated maize varieties (OPVs) because seed of maize OPVs can be recycled for several seasons with minimal yield reduction due to inbreeding as compared to hybrids. However, OPVs are heterogeneous, and some local seed suppliers attempt to take ...

  15. The nutritive value of quality protein maize in the diets of broiler ...

    African Journals Online (AJOL)

    Two experiments, each lasting 6 weeks, were conducted to evaluate quality protein maize (QPM) as a feed gredient for broiler chickens. In Experiment 1, either normal hybrid maize (NM) or QPM was used as the sole source of protein and amino acids, and the diets were balanced for vitamins and minerals by the addition of ...

  16. Chemical and nutritional values of maize and maize products ...

    African Journals Online (AJOL)

    Maize and maize products in selected grain markets within Kaduna, Nigeria, were obtained and investigated for proximate and mineral composition analysis using Atomic Absorption Spectrophotometer (AAS) and flame photometer. Proximate composition of maize and maize products were in the range of 11.6- 20 .0% ...

  17. Resistance of maize varieties to the maize weevil Sitophilus zeamais

    African Journals Online (AJOL)

    This study aimed at evaluating commonly used maize varieties, collected from Melkasa and Bako Agricultural Research Centers and Haramaya University, Ethiopia, against the maize weevil Sitophilus zeamais Motsch., one of the most important cosmopolitan stored product pests in maize. A total of 13 improved maize ...

  18. Identification of Genes Potentially Associated with the Fertility Instability of S-Type Cytoplasmic Male Sterility in Maize via Bulked Segregant RNA-Seq.

    Directory of Open Access Journals (Sweden)

    Aiguo Su

    Full Text Available S-type cytoplasmic male sterility (CMS-S is the largest group among the three major types of CMS in maize. CMS-S exhibits fertility instability as a partial fertility restoration in a specific nuclear genetic background, which impedes its commercial application in hybrid breeding programs. The fertility instability phenomenon of CMS-S is controlled by several minor quantitative trait locus (QTLs, but not the major nuclear fertility restorer (Rf3. However, the gene mapping of these minor QTLs and the molecular mechanism of the genetic modifications are still unclear. Using completely sterile and partially rescued plants of fertility instable line (FIL-B, we performed bulk segregant RNA-Seq and identified six potential associated genes in minor effect QTLs contributing to fertility instability. Analyses demonstrate that these potential associated genes may be involved in biological processes, such as floral organ differentiation and development regulation, energy metabolism and carbohydrates biosynthesis, which results in a partial anther exsertion and pollen fertility restoration in the partially rescued plants. The single nucleotide polymorphisms (SNPs identified in two potential associated genes were validated to be related to the fertility restoration phenotype by KASP marker assays. This novel knowledge contributes to the understanding of the molecular mechanism of the partial fertility restoration of CMS-S in maize and thus helps to guide the breeding programs.

  19. Differential resistance reaction of maize genotypes to maize stem borer (Chilo partellus Swinhoe at Chitwan, Nepal

    Directory of Open Access Journals (Sweden)

    Ghanashyam Bhandari

    2016-12-01

    Full Text Available Maize stem borer (MSB, Chilo partellus Swinhoe, Lepidoptera: Pyralidae is one of the most important insect pest of maize in Nepal. Host plant resistance is the cost-effective, ecologically sound and stable approach to reduce damage by stem borers. Forty four maize genotypes were screened for resistance to maize stem borer at the research field of National Maize Research Program, Rampur during spring seasons (March to June of two consecutive years 2013 and 2014. The maize genotypes were evaluated in randomized complete block design with three replications and data were collected on foliar damage rating, tunnel length and number of exit holes made by the borer. The foliar damage and tunnel length damage were significant for genotypes for both the years. The exit holes were not significant in 2013 but significant in 2014 ranging from 2-6 scale. The foliar rating ranged from 2 to 5.5 in 2013 and 1.1 to 4.5 in 2014 on a 1-9 rating scale. The highly resistant genotypes (10 cm scale. The least susceptible genotypes (<5 cm were RampurSO3F8, RampurSO3FQ02 and RampurS10F18. The genotypes having least exit holes (2.0 in 2014 were RampurSO3F8, RampurSO3FQ02, RampurS10F18. Thus less damage parameters were observed in R-POP-2, RML-5/RML-8, RampurSO3F8, RampurSO3FQ02 and RampurS10F18 and therefore they can be used as parents or as sources of resistance in breeding program.

  20. Breeding for mechanised sesame production in Australia

    International Nuclear Information System (INIS)

    Beech, D.F.; Imrie, B.C.

    2001-01-01

    Introduction of sesame germplasm from Myanmar and Mexico was not satisfactory for successful development of the Australian sesame industry. Therefore, a national breeding programme was undertaken by CSIRO and the Northern Territory Department of Primary Industry and Fisheries (NTDPIF). The main traits considered for selection were latitudinal adaptation, temperature response, growth habit, determinacy, palatability, capsules per leaf axil, seed shattering and seed dormancy. The CSIRO breeding efforts started in 1989 with a hybridization programme using germplasm from Japan, Mexico, Myanmar, Rep. of Korea and Venezuela. This programme resulted in selection in the F 6 generation of branched types released under the names 'Beech's choice' and 'Aussie Gold'. The NTDPIF sesame breeding programme started in 1993 with hybridization of introductions. The Mexican cultivar 'Yori 77' was selected for release, and after several years of intraline selection the uniculm cultivar 'Edith' was released in 1996. Further breeding continues to improve seed retention and resistance to charcoal rot. (author)

  1. From many, one: genetic control of prolificacy during maize domestication.

    Directory of Open Access Journals (Sweden)

    David M Wills

    2013-06-01

    Full Text Available A reduction in number and an increase in size of inflorescences is a common aspect of plant domestication. When maize was domesticated from teosinte, the number and arrangement of ears changed dramatically. Teosinte has long lateral branches that bear multiple small ears at their nodes and tassels at their tips. Maize has much shorter lateral branches that are tipped by a single large ear with no additional ears at the branch nodes. To investigate the genetic basis of this difference in prolificacy (the number of ears on a plant, we performed a genome-wide QTL scan. A large effect QTL for prolificacy (prol1.1 was detected on the short arm of chromosome 1 in a location that has previously been shown to influence multiple domestication traits. We fine-mapped prol1.1 to a 2.7 kb "causative region" upstream of the grassy tillers1 (gt1 gene, which encodes a homeodomain leucine zipper transcription factor. Tissue in situ hybridizations reveal that the maize allele of prol1.1 is associated with up-regulation of gt1 expression in the nodal plexus. Given that maize does not initiate secondary ear buds, the expression of gt1 in the nodal plexus in maize may suppress their initiation. Population genetic analyses indicate positive selection on the maize allele of prol1.1, causing a partial sweep that fixed the maize allele throughout most of domesticated maize. This work shows how a subtle cis-regulatory change in tissue specific gene expression altered plant architecture in a way that improved the harvestability of maize.

  2. Evaluation of intervarietal maize hybrids through partial diallel cross, considering four environments/ Avaliação de híbridos intervarietais de milho por meio de cruzamento dialélico parcial, considerando quatro ambientes

    Directory of Open Access Journals (Sweden)

    Pedro Mário de Araújo

    2006-06-01

    Full Text Available In the summer season of 2004/2005, 12 intervarietal maize hybrids, crossed by the partial diallel scheme 3 x 4, the seven parental populations and three checks were evaluated at Iapar Experimental Stations in Londrina, Pato Branco, Ponta Grossa e Guarapuava. The objective was to identify crosses for future work with recurrent selection, inbred lines extraction and composite synthesis. For Heterosis variation cause, the differences were determined (PForam avaliados 12 híbridos intervarietais de milho (Zea mays L., cruzados em esquema dialélico parcial 3 x 4 mais as sete populações parentais e 3 testemunhas. Os ensaios foram implantados nas estações experimentais do Iapar em Londrina, Pato Branco, Ponta Grossa e Guarapuava. O objetivo foi avaliar um conjunto de sete populações no sentido de se estimar parâmetros que venham a auxiliar na escolha de materiais para posteriores trabalhos com seleção recorrente, extração de linhagens e síntese de compostos. Para a fonte Heterose as diferenças foram constatadas (p < 0,01 para as variáveis produtividade de grãos e florescimento feminino, indicando que os cruzamentos foram superiores aos pais. Em relação aos valores de Capacidade Geral de Combinação para rendimento, os parentais do grupo-1, PC 9407 e BR 106, obtiveram como valores 36,7 e 171,1 kg.ha-1, respectivamente, e os parentais do grupos-2, PC 9701 e PC 9502, apresentaram valores de 131,1 e 56,8 kg.ha-1, respectivamente,. Para a Capacidade Específica de Combinação, os maiores valores foram para PC 9701 x BR 106 (205,4 kg.ha-1 e PC 9502 x PC 9407 (135,3 kg.ha-1, assim como as maiores médias de produtividade de grãos dos cruzamentos avaliados (9.297 e 9.018 kg.ha-1, respectivamente. As populações PC 9701, BR 106, PC 9502 e PC 9407 são promissoras fontes para a extração de linhagens visando desenvolvimento de híbridos, síntese de compostos e trabalhos com seleção recorrente.

  3. In vitro technology for mutation breeding

    International Nuclear Information System (INIS)

    1986-10-01

    The ultimate aim of the Co-ordinated Research Programme on In Vitro Technology for Mutation Breeding is to provide new effective tools for plant breeders to construct new cultivars, thus increasing agricultural production of food, feed and industrial raw material, particularly in developing countries. The participants of the research co-ordination meetings considered the potential of new advances of agricultural biotechnology, especially the use of in vitro techniques for mutation breeding. They discussed and co-ordinated plans in conjunction with the impact on plant breeding of novel technologies, such as use of somaclonal variation, cell hybridization and molecular genetics

  4. Mutation breeding in diffrent types of pepper

    International Nuclear Information System (INIS)

    2010-01-01

    This project was carried out under the collaboration of TAEK, SANAEM, and BATEM within 1999-2005 period. The aim of this project was to create new pepper varieties in Sera Demre 8 (green pepper) and ST59 (green pepper) cultivars which are important greenhouse cultivars by using mutation breeding methods. The Effective Mutagen Dose (ED50) was calculated by linear regression analyses. According to results, 166 Gy dose was found as ED50. At the end of the breeding cycle 14 new mutant lines were obtained from mutant population. These mutant lines are still using as genitor for F1 hybrid pepper breeding programs

  5. Influence of planting methods on root development, crop productivity and water use efficiency in maize hybrids Influencia de métodos de siembra sobre el desarrollo radical, productividad y eficiencia del uso del agua en híbridos de maíz

    Directory of Open Access Journals (Sweden)

    Muhammad B. Khan

    2012-12-01

    Full Text Available Optimum planting methods better ensure water and nutrient supply through improved root development resulting in better crop growth and productivity. This study was conducted to evaluate the effects of planting methods on root development, crop allometry, water use efficiency (WUE, productivity and economic returns of different maize (Zea mays L. hybrids. Maize hybrids NK-6621, Pioneer-30Y87, and Pioneer-30Y58 were sown on beds, ridges, and flat surface. Ridge sowing was better followed by bed sowing; while amongst the hybrids, 'Pioneer-30Y87' performed the best. Well-developed root system, with longer primary root, more number of lateral roots and higher root growth rate, was observed in 'Pioneer-30Y87' planted on ridges, which led to higher WUE, grain yield and its related traits. The same hybrid exhibited higher leaf area index and crop growth rate, and maximum net return and benefit:cost ratio sowed on ridges. Overall, the ridge sowing improved root development resulting in better allometry, productivity (5.45 t ha-1, and WUE (1.345 kg m-3, in all the maize hybrids. Although maize hybrids exhibited different response to different planting methods; maximum grain yield (5.63 t ha-1, WUE (1.41 kg m-3, and net economic returns were observed from hybrid Pioneer-30Y87.Métodos óptimos de siembra aseguran mejor suministro de agua y nutrientes a través del mejorado desarrollo de raíces que resulta en mejor crecimiento y productividad de los cultivos. Este estudio se realizó para evaluar los efectos de los métodos de siembra en el desarrollo de las raíces, alometría de cultivos, uso eficiente del agua (WUE, productividad y rentabilidad económica de diferentes híbridos de maíz (Zea mays L.. Híbridos de maíz NK-6621, Pioneer 30Y87, y 30Y58-Pioneer se sembraron en camas, surcos, y superficie plana. La siembra en surco fue mejor, seguida por siembra en cama, mientras entre los híbridos, 'Pioneer 30Y87' tuvo los mejores resultados. Se observ

  6. Nitrogen effects on maize yield following groundnut in rotation on ...

    African Journals Online (AJOL)

    SERVER

    2007-07-04

    way cross hybrid 'R215' was hand-planted at two seeds per planting station on ... Maize grain. N uptake was calculated as the product of dry matter yield and .... saved from farmer crops and no fertilizer) on farmers' fields. Causes ...

  7. Combing Ability Analysis ofamong Early Generation Maize Inbred ...

    African Journals Online (AJOL)

    dagne.cimdom

    estimate combining ability effects of locally developed and introduced early generation maize inbred lines for grain ... variance revealed significant difference among the hybrids for all studied traits. General ... Guto LMS5, L15 x SC22 and L20 x TSC22) gave significantly higher grain yield advantage over the two standard ...

  8. Maize cultivar performance under diverse organic production systems

    Science.gov (United States)

    Maize cultivar performance can vary widely among different production systems. The need for high-performing hybrids for organic systems with wide adaptation to various macroenvironments is becoming increasingly important. The goal of this study was to characterize inbred lines developed by distinc...

  9. Assessment of genetic variability of maize inbred lines and their ...

    African Journals Online (AJOL)

    Assessment of genetic variability of maize inbred lines and their hybrids under normal and drought conditions. ... Nigeria Agricultural Journal ... Analysis of variance revealed significant differences for most of the characters under study which indicates the presence of sufficient amount of variability offering ample scope for ...

  10. Physiological, vascular and nanomechanical assessment of hybrid poplar leaf traits in micropropagated plants and plants propagated from root cuttings: A contribution to breeding programs.

    Science.gov (United States)

    Ďurkovič, Jaroslav; Husárová, Hana; Javoříková, Lucia; Čaňová, Ingrid; Šuleková, Miriama; Kardošová, Monika; Lukáčik, Ivan; Mamoňová, Miroslava; Lagaňa, Rastislav

    2017-09-01

    Micropropagated plants experience significant stress from rapid water loss when they are transferred from an in vitro culture to either greenhouse or field conditions. This is caused both by inefficient stomatal control of transpiration and the change to a higher light intensity and lower humidity. Understanding the physiological, vascular and biomechanical processes that allow micropropagated plants to modify their phenotype in response to environmental conditions can help to improve both field performance and plant survival. To identify changes between the hybrid poplar [Populus tremula × (Populus × canescens)] plants propagated from in vitro tissue culture and those from root cuttings, we assessed leaf performance for any differences in leaf growth, photosynthetic and vascular traits, and also nanomechanical properties of the tracheary element cell walls. The micropropagated plants showed significantly higher values for leaf area, leaf length, leaf width and leaf dry mass. The greater leaf area and leaf size dimensions resulted from the higher transpiration rate recorded for this stock type. Also, the micropropagated plants reached higher values for chlorophyll a fluorescence parameters and for the nanomechanical dissipation energy of tracheary element cell walls which may indicate a higher damping capacity within the primary xylem tissue under abiotic stress conditions. The performance of the plants propagated from root cuttings was superior for instantaneous water-use efficiency which signifies a higher acclimation capacity to stressful conditions during a severe drought particularly for this stock type. Similarities were found among the majority of the examined leaf traits for both vegetative plant origins including leaf mass per area, stomatal conductance, net photosynthetic rate, hydraulic axial conductivity, indicators of leaf midrib vascular architecture, as well as for the majority of cell wall nanomechanical traits. This research revealed that

  11. Maize production in mid hills of Nepal: from food to feed security

    Directory of Open Access Journals (Sweden)

    Krishna Prasad Timsina

    2016-12-01

    Full Text Available This study was undertaken in 2016 to analyze the production and utilization of maize in Nepal. Sixty maize growers from Kavre and Lamjung districts were selected using purposive, cluster and simple random sampling techniques. Similarly, six feed industries and five maize experts from Chitwan district were also interviewed. Study shows 56% of the total areas were used for maize production and 50% of the maize areas were covered by hybrid maize. There was no practice of contract maize production. The results revealed that 60%, 25% and 3% of the grain were used for animal feed, food and seed respectively in hill districts. Whereas the remaining amount of the maize (12% was sold to the different buyers. The proportion of maize feed supply to different animals in the study area was varying. Result shows that at least 1.5 million tons of maize is required only to the feed industries affiliated with national feed industry association in Nepal. Similarly, out of total maize used in feed production, 87% of the maize was imported from India each year by feed industries. Analysis shows negative correlation between scale of feed production and use of domestic maize due to unavailability of required quantity of maize in time. The major pre-condition of feed industries for maize buying was moisture content which must be equal or less than 14%. Very little or no inert materials and physical injury, free from fungal attack and bigger size were also the criteria for maize buying. However, some of the feed industries were also thinking about protein and amino acid contents. Result shows 13% and 8.5% increasing demand of poultry feed and animal feed, respectively over the last five year in Nepal. Most likely, maize is known as a means of food security in Nepal, however, in the context of changing utilization patterns at the farm level and also tremendous increasing demand of maize at the industry level suggest to give more focus on development and dissemination of

  12. Radiation preservation of maize

    International Nuclear Information System (INIS)

    Wasito.

    1980-01-01

    Radiation preservation of maize was carried out. Radiation doses and sources, shielding materials, packaging materials, chemical radiation effects, biological radiation effects, were discussed. Experimental methods, samples and accessories were also presented. (SMN)

  13. Maize (Zea mays L.).

    Science.gov (United States)

    Frame, Bronwyn; Warnberg, Katey; Main, Marcy; Wang, Kan

    2015-01-01

    Agrobacterium tumefaciens-mediated transformation is an effective method for introducing genes into maize. In this chapter, we describe a detailed protocol for genetic transformation of the maize genotype Hi II. Our starting plant material is immature embryos cocultivated with an Agrobacterium strain carrying a standard binary vector. In addition to step-by-step laboratory transformation procedures, we include extensive details in growing donor plants and caring for transgenic plants in the greenhouse.

  14. PLANT DENSITY AND AGRONOMIC TRAITS OF MAIZE HYBRIDS IN NARROW ROW SPACING DENSIDADE DE PLANTAS E CARACTERÍSTICAS AGRONÔMICAS DE HÍBRIDOS DE MILHO SOB ESPAÇAMENTO REDUZIDO ENTRE LINHAS

    Directory of Open Access Journals (Sweden)

    Cleber Morais Guimarães

    2007-09-01

    Full Text Available

    The objective of this study was to evaluate the behavior of maize hybrids cultivated under different population densities in narrow row spacing (0.45 m. Two field experiments were installed to evaluate six commercial hybrids (A 2555, A 2288, AG 9010, AG 6690, P 30F88 and Valent grown in five plant densities (40,000; 53,000; 71,000; 84,000; and 97,000 plants per hectare, in Goiânia and Jataí, Goiás State, during the growing season of 2002/2003. The experimental design was a randomized complete blocks, arranged in a 6x5 factorial design with four replicates. In the Goiânia experiment, the treatments were carried out using a split plot design. In the experiment of Goiânia, the treatments were carried out using a split plot design. The means of ear insertion, plant height, stalk lodging, ear length, ear diameter, corncob diameter, kernels per ear, weight of 100 kernels and grain yield was significantly influenced by plant density in both experiments. Grain yield was increased for plant densities higher than 70,000 plants per hectare, indicating that the use of narrow row spacing associated to the presence of shorter plant stature hybrids, favors enhancements in plant density. The grain yield was significantly affected by the interaction between hybrid and plant density in both fields. This indicates that, depending of the hybrid, the reduction of row spacing to 0.45 m is a managing practice that allows an increment in the sowing density.

    KEY-WORDS: Zea mays; cultivar; plant arrangement; agronomic trait; grain yield.

    O objetivo deste trabalho foi avaliar o comportamento de híbridos de milho (A 2555, A 2288, AG 9010, AG 6690, P 30F88 e Valent, cultivados em diferentes densidades populacionais (40 mil, 53 mil, 71 mil, 84 mil e 97 mil plantas por hectare e sob espaçamento reduzido

  15. Advances of mutation breeding in Heilongjiang Province, China

    International Nuclear Information System (INIS)

    Sun Guangzu

    1989-01-01

    45 t/ha (sometime 105 t/ha) and was cultivated so far on 13.000 ha. Fibre flax: 'Heiyi No. 4' released in 1979, was bred by crossing the induced mutant γ-67-1-681 with the line 6409-640. This variety possesses drought and salt tolerance, lodging resistance, high yield and good fibre quality. The fibre yield was 0.75 t/ha on light-salty soil, the highest yield 1.22 t/ha. The cultivated area so far amounts to 20.000 ha. These mutant cultivars created an additional farmers income estimated at US$ 55,000,000. 2. The following mutant lines proved to be very valuable germplasm for cross breeding: (a) early maturity - Soybean mutant Har 75-6222 requires only 80 days to maturity. It is 32 days earlier than the parent. Sorghum mutant Lifu 119-3 is 20 days earlier than the parent. Maize mutant Longfu 1747 is 15 days earlier than the parent. (b) high yield - Soybean mutant Har 77-7594 yielded 4.45 t/ha, 48% more than the control. The hybrid sorghum 11A x fuxin 9-1 (the male parent is a radiation induced mutant) yielded 9.5 t/ha, 30% more than the control. The mutant of wheat Longfu 80-7006 yielded 5.2 t/ha, 40% more than the control. (c) disease resistance - Wheat mutant Longfu 5009 resists root rot. Millet mutant Nan 72-4 resists mildew. Maize mutant Longfu 508 resists leaf blight. Maize mutant Longfu 6227 resists head smut. The mutant of chinese cabbage 79-21-2 resists downy mildew. (d) good quality - The oil content of several soybean mutants is 1-2% higher than the parents and ranges from 23.4% to 46.4%. The sugar content of the muskmelon mutant 407 is 10% higher than the parent. The fibre ratio of flax mutant γ-7015-4 was 22.8%, about 5% higher than the parent. (e) tolerance to adverse environment - The soybean mutant Longfu 73-8955 possesses salt tolerance. The yield was 13.8% more than the control on salty soil. The soybean variety Heilong No. 16 has good shade tolerance. The leaves have more stomata, the grana are bigger. The mutant of fibre flax γ-67-681 possesses

  16. Advances of mutation breeding in Heilongjiang Province, China

    Energy Technology Data Exchange (ETDEWEB)

    Guangzu, Sun [Institute for Application of Atomic Energy, Heilongjiang Academy of Agricultural Sciences, Harbin (China)

    1989-01-01

    yields about 45 t/ha (sometime 105 t/ha) and was cultivated so far on 13.000 ha. Fibre flax: 'Heiyi No. 4' released in 1979, was bred by crossing the induced mutant {gamma}-67-1-681 with the line 6409-640. This variety possesses drought and salt tolerance, lodging resistance, high yield and good fibre quality. The fibre yield was 0.75 t/ha on light-salty soil, the highest yield 1.22 t/ha. The cultivated area so far amounts to 20.000 ha. These mutant cultivars created an additional farmers income estimated at US$ 55,000,000. 2. The following mutant lines proved to be very valuable germplasm for cross breeding: (a) early maturity - Soybean mutant Har 75-6222 requires only 80 days to maturity. It is 32 days earlier than the parent. Sorghum mutant Lifu 119-3 is 20 days earlier than the parent. Maize mutant Longfu 1747 is 15 days earlier than the parent. (b) high yield - Soybean mutant Har 77-7594 yielded 4.45 t/ha, 48% more than the control. The hybrid sorghum 11A x fuxin 9-1 (the male parent is a radiation induced mutant) yielded 9.5 t/ha, 30% more than the control. The mutant of wheat Longfu 80-7006 yielded 5.2 t/ha, 40% more than the control. (c) disease resistance - Wheat mutant Longfu 5009 resists root rot. Millet mutant Nan 72-4 resists mildew. Maize mutant Longfu 508 resists leaf blight. Maize mutant Longfu 6227 resists head smut. The mutant of chinese cabbage 79-21-2 resists downy mildew. (d) good quality - The oil content of several soybean mutants is 1-2% higher than the parents and ranges from 23.4% to 46.4%. The sugar content of the muskmelon mutant 407 is 10% higher than the parent. The fibre ratio of flax mutant {gamma}-7015-4 was 22.8%, about 5% higher than the parent. (e) tolerance to adverse environment - The soybean mutant Longfu 73-8955 possesses salt tolerance. The yield was 13.8% more than the control on salty soil. The soybean variety Heilong No. 16 has good shade tolerance. The leaves have more stomata, the grana are bigger. The mutant of fibre flax

  17. Breeds of cattle

    NARCIS (Netherlands)

    Buchanan, David S.; Lenstra, Johannes A.

    2015-01-01

    This chapter gives an overview on the different breeds of cattle (Bos taurus and B. indicus). Cattle breeds are presented and categorized according to utility and mode of origin. Classification and phylogeny of breeds are also discussed. Furthermore, a description of cattle breeds is provided.

  18. Present state and problems of mutation breeding

    Energy Technology Data Exchange (ETDEWEB)

    Balint, A. (Agrartudomanyi Egyetem, Goedoelloe (Hungary))

    1983-09-01

    The major achievements and problems of mutation breeding are discussed according to recent international references. Examples for the production of microorganism resistant tobacco, maize, cabbage, disease resistant sugar cane and some freeze resistant plants are listed. Special opportunities offered by mutation to increase photosynthesis and to improve yields are discussed. The significance of the new techniques to produce induced mutants by means of tissue cultures, to fix N/sub 2/ for leguminosae and to affect the activities of N/sub 2/ fixing microorganisms is emphasized.

  19. Stability Performance of Inductively Coupled Plasma Mass Spectrometry-Phenotyped Kernel Minerals Concentration and Grain Yield in Maize in Different Agro-Climatic Zones.

    Science.gov (United States)

    Mallikarjuna, Mallana Gowdra; Thirunavukkarasu, Nepolean; Hossain, Firoz; Bhat, Jayant S; Jha, Shailendra K; Rathore, Abhishek; Agrawal, Pawan Kumar; Pattanayak, Arunava; Reddy, Sokka S; Gularia, Satish Kumar; Singh, Anju Mahendru; Manjaiah, Kanchikeri Math; Gupta, Hari Shanker

    2015-01-01

    Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS) revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg(-1); zinc: 5.41 to 30.85 mg kg(-1); manganese: 3.30 to 17.73 mg kg(-1); copper: 0.53 to 5.48 mg kg(-1)) and grain yield (826.6 to 5413 kg ha(-1)). Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%), manganese (41.34%) and copper (41.12%), and environment main effects for both kernel zinc (40.5%) and grain yield (37.0%). Genotype main effect plus genotype-by-environment interaction (GGE) biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV) as the better representative of the AMMI stability parameters. Dynamic stability parameter GGE distance (GGED) showed strong and positive correlation with both mean kernel concentrations and grain yield. Inbreds (CM-501, SKV-775, HUZM-185) identified from the present investigation will be useful in

  20. Stability Performance of Inductively Coupled Plasma Mass Spectrometry-Phenotyped Kernel Minerals Concentration and Grain Yield in Maize in Different Agro-Climatic Zones.

    Directory of Open Access Journals (Sweden)

    Mallana Gowdra Mallikarjuna

    Full Text Available Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg(-1; zinc: 5.41 to 30.85 mg kg(-1; manganese: 3.30 to 17.73 mg kg(-1; copper: 0.53 to 5.48 mg kg(-1 and grain yield (826.6 to 5413 kg ha(-1. Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p < 0.05 and across locations (r = 0.44, p < 0.01. Variance components of the additive main effects and multiplicative interactions (AMMI model showed significant genotype and genotype × environment interaction for kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%, manganese (41.34% and copper (41.12%, and environment main effects for both kernel zinc (40.5% and grain yield (37.0%. Genotype main effect plus genotype-by-environment interaction (GGE biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV as the better representative of the AMMI stability parameters. Dynamic stability

  1. Mutation breeding in vegetable crops

    International Nuclear Information System (INIS)

    Yamaguchi, Takashi

    1984-01-01

    Vegetables breed by seeds and vegetative organs. In main vegetables, the differentiation of clopping types, the adoption of monoculture and year-round production and shipment are carried out, adapting to various socio-economic and cultivation conditions. Protected agriculture has advanced mainly for fruit vegetables, and the seeds for sale have become almost hybrid varieties. Reflecting the situation like this, the demand for breeding is diversified and characteristic, and the case of applying mutation breeding seems to be many. The present status of the mutation breeding of vegetables is not yet well under way, but about 40 raised varieties have been published in the world. The characters introduced by induced mutation and irradiation were compact form, harvesting aptitude, the forms and properties of stems and leaves, anti-lodging property, the size, form and uniformity of fruits, male sterility and so on. The radiation sources used were mostly gamma ray or X-ray, but sometimes, combined irradiation was used. As the results obtained in Japan, burdocks as an example of gamma ray irradiation to seeds, tomatoes as an example of inducing the compound resistance against disease injury and lettuces as an example of internal beta irradiation are reported. (Kako, I.)

  2. Measuring Maize Seedling Drought Response in Search of Tolerant Germplasm

    Directory of Open Access Journals (Sweden)

    Dirk Hays

    2013-02-01

    Full Text Available To identify and develop drought tolerant maize (Zea mays L., high-throughput and cost-effective screening methods are needed. In dicot crops, measuring survival and recovery of seedlings has been successful in predicting drought tolerance but has not been reported in C4 grasses such as maize. Seedlings of sixty-two diverse maize inbred lines and their hybrid testcross progeny were evaluated for germination, survival and recovery after a series of drought cycles. Genotypic differences among inbred lines and hybrid testcrosses were best explained approximately 13 and 18 days after planting, respectively. Genotypic effects were significant and explained over 6% of experimental variance. Specifically three inbred lines had significant survival, and 14 hybrids had significant recovery. However, no significant correlation was observed between hybrids and inbreds (R2 = 0.03, indicating seedling stress response is more useful as a secondary screening parameter in hybrids than in inbred lines per se. Field yield data under full and limited irrigation indicated that seedling drought mechanisms were independent of drought responses at flowering in this study.

  3. Physiological response of wheat, maize and cotton to gamma irradiation

    International Nuclear Information System (INIS)

    Sharabash, M.T.M.; Gaweesh, S.S.M.; Orabi, I.O.A.; Hammad, A.H.A.

    1988-01-01

    Grains of wheat triticum aestivum vulgare cv. Giza 155, maize Zea mays cv. double hybrid strain 17 S and cotton seeds Gossypium barbadence cv. Giza 67 were irradiated with successive doses of gamma rays from 0 to 64 Krad. Irradiating wheat grains with 1 Krad, maize grains with 0.5 Krad and cotton seeds with 4 Krad stimulated their germination and enhanced the growth of seedlings and their chlorophyll content. Also, these doses activated Alpha- and Beta-Amylase in the seeds. Higher doses had suppression effects. Peroxidase value in the seedlings of the three species was accelerated progressively in concomitant with the increase in the dosage

  4. The Role of Biodiversity, Traditional Knowledge and Participatory Plant Breeding in Climate Change Adaptation in Karst Mountain Areas in SW China

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yiching; Li, Jingsong [Center for Chinese Agricultural Policy (China)

    2011-07-15

    This is a report of a country case study on the impacts of climate change and local people's adaptation. The research sites are located in the karst mountainous region in 3 SW China provinces - Guangxi, Guizhou and Yunnan – an area inhabited by 33 ethnic groups of small farmers and the poor, with rich Plant Genetic Resources (PGR) and culture. Climate change is exacerbating already harsh natural conditions and impacting on biodiversity of remote farmers living in extreme poverty, with very limited arable land. Genetic diversity has also suffered from the adoption of high yielding hybrids. Yet traditional varieties, related TK and Participatory Plant Breeding (PPB) for maize and rice are showing real potential for resilience and adaptation.

  5. A(maize)ing attraction: gravid Anopheles arabiensis are attracted and oviposit in response to maize pollen odours.

    Science.gov (United States)

    Wondwosen, Betelehem; Hill, Sharon R; Birgersson, Göran; Seyoum, Emiru; Tekie, Habte; Ignell, Rickard

    2017-01-23

    Maize cultivation contributes to the prevalence of malaria mosquitoes and exacerbates malaria transmission in sub-Saharan Africa. The pollen from maize serves as an important larval food source for Anopheles mosquitoes, and females that are able to detect breeding sites where maize pollen is abundant may provide their offspring with selective advantages. Anopheles mosquitoes are hypothesized to locate, discriminate among, and select such sites using olfactory cues, and that synthetic volatile blends can mimic these olfactory-guided behaviours. Two-port olfactometer and two-choice oviposition assays were used to assess the attraction and oviposition preference of gravid Anopheles arabiensis to the headspace of the pollen from two maize cultivars (BH-660 and ZM-521). Bioactive compounds were identified using combined gas chromatography and electroantennographic detection from the headspace of the cultivar found to be most attractive (BH-660). Synthetic blends of the volatile compounds were then assessed for attraction and oviposition preference of gravid An. arabiensis, as above. Here the collected headspace volatiles from the pollen of two maize cultivars was shown to differentially attract and stimulate oviposition in gravid An. arabiensis. Furthermore, a five-component synthetic maize pollen odour blend was identified, which elicited the full oviposition behavioural repertoire of the gravid mosquitoes. The cues identified from maize pollen provide important substrates for the development of novel control measures that modulate gravid female behaviour. Such measures are irrespective of indoor or outdoor feeding and resting patterns, thus providing a much-needed addition to the arsenal of tools that currently target indoor biting mosquitoes.

  6. Maize nutrient uptake affected by genotype and fertilization

    Directory of Open Access Journals (Sweden)

    Đalović Ivica

    2015-01-01

    Full Text Available The content of nutrients in maize are commonly related with fertilization and soil quality and rarely explained with the individual hybrid properties. Therefore, the aim of this study is to access a long term fertilization system on ear leaf of Mg, Fe, Mn and Cu content in six maize hybrids(NS 3014, NS 4015, NS 5043, NS 6010, NS 6030 and NS 7020. Samples were collected from a long-term experiment at the Rimski Šančevi experimental field of the Institute of Field and Vegetable Crops in Novi Sad. The study included maize monoculture and 2-year rotations with the application of NPK and manure. Results showed that ear Mg content was influenced with the treatments, hybrid and their interaction and ranged from 1.77-2.69 g kg-1. Iron variability was significantly affected with the treatments and interaction (hybrid x treatments in range from 103.2 to151.9g kg-1. The ear manganese content (41.1-63.6g kg-1 derived from treatments and hybrid effect and Cu (12.3-23.6 g kg-1 was significantly influenced with treatments. Across all treatments, in average, NS6030 had higher values of nutrient and NS3014 was lower in ear nutrient content. This indicates that vegetation length could favor nutrient accumulation. Obtained results suggested that even on fairly productive soil such as Chernozem hybrid selection and the balanced fertilization is crucial for managing the maize nutrient content. [Projekat Ministarsva nauke Republike Srbije, br. TR031073

  7. Efeito xênia em híbridos de milho visando ao aumento da produtividade por meio de marcadores microssatélites Xenia effect in maize hybrids aiming increased yields by microsatellite markers

    Directory of Open Access Journals (Sweden)

    Reginaldo Roberto Lüders

    2008-01-01

    , with natural and controlled pollination, were carried out at two sites in the State of Minas Gerais (in Experimental area of Biology Department of Universidade Federal de Lavras - UFLA and UFLA farm, known as "Vitorinha" during 2004/2005, in order to verify and quantify the xenia effects in maize. In both experiments microsatellite markers were used to discriminate kernels derived from crosses and from self-pollination, to detect the xenia effect. Three single cross hybrids were used P 30F90, A 2555 and DKB 333 B, and all possible crosses between them were established, including reciprocal ones. In both trials, composite kernels samples taken from the mid-region of 10 randomly collected ears were evaluated. Based on the evaluated obtained data, through analyses of variance and test "t" for means from unpaired data, the xenia effect on the individual grain weight and the weight of 100 kernels was estimated. The use of microsatellite markers could effectively differentiate the crosses from the selfings in both experiments in all possible combinations of the commercial hybrids used. According to the hybrids involved in the crosses, and the condition pollinator/receptor of each one, xenia effects of different magnitudes were observed. Crosses with 100% allopollen resulted in a 7.3% (2.8 g increase of the weight of 100 grains compared to those with only 50% allopolen, demonstrating an influence of the greater pressure of foreign pollen on the trait increase. In open-pollinated plants, a mean effect of 12.6% (varying from 7.4 to 16.5% was observed in the increase of individual grain weight. With 100% foreign pollen, the mean xenia effect was 13.1% on the weight of 100 grains and 8.7% on the individual grain weight, while increments of 15.4% and 16.6% in these traits, respectively, were observed in the most favorable crosses.

  8. Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction.

    Science.gov (United States)

    Bandeira E Sousa, Massaine; Cuevas, Jaime; de Oliveira Couto, Evellyn Giselly; Pérez-Rodríguez, Paulino; Jarquín, Diego; Fritsche-Neto, Roberto; Burgueño, Juan; Crossa, Jose

    2017-06-07

    Multi-environment trials are routinely conducted in plant breeding to select candidates for the next selection cycle. In this study, we compare the prediction accuracy of four developed genomic-enabled prediction models: (1) single-environment, main genotypic effect model (SM); (2) multi-environment, main genotypic effects model (MM); (3) multi-environment, single variance G×E deviation model (MDs); and (4) multi-environment, environment-specific variance G×E deviation model (MDe). Each of these four models were fitted using two kernel methods: a linear kernel Genomic Best Linear Unbiased Predictor, GBLUP (GB), and a nonlinear kernel Gaussian kernel (GK). The eight model-method combinations were applied to two extensive Brazilian maize data sets (HEL and USP data sets), having different numbers of maize hybrids evaluated in different environments for grain yield (GY), plant height (PH), and ear height (EH). Results show that the MDe and the MDs models fitted with the Gaussian kernel (MDe-GK, and MDs-GK) had the highest prediction accuracy. For GY in the HEL data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 9 to 32%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 9 to 49%. For GY in the USP data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 0 to 7%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 34 to 70%. For traits PH and EH, gains in prediction accuracy of models with GK compared to models with GB were smaller than those achieved in GY. Also, these gains in prediction accuracy decreased when a more difficult prediction problem was studied. Copyright © 2017 Bandeira e Sousa et al.

  9. Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction

    Directory of Open Access Journals (Sweden)

    Massaine Bandeira e Sousa

    2017-06-01

    Full Text Available Multi-environment trials are routinely conducted in plant breeding to select candidates for the next selection cycle. In this study, we compare the prediction accuracy of four developed genomic-enabled prediction models: (1 single-environment, main genotypic effect model (SM; (2 multi-environment, main genotypic effects model (MM; (3 multi-environment, single variance G×E deviation model (MDs; and (4 multi-environment, environment-specific variance G×E deviation model (MDe. Each of these four models were fitted using two kernel methods: a linear kernel Genomic Best Linear Unbiased Predictor, GBLUP (GB, and a nonlinear kernel Gaussian kernel (GK. The eight model-method combinations were applied to two extensive Brazilian maize data sets (HEL and USP data sets, having different numbers of maize hybrids evaluated in different environments for grain yield (GY, plant height (PH, and ear height (EH. Results show that the MDe and the MDs models fitted with the Gaussian kernel (MDe-GK, and MDs-GK had the highest prediction accuracy. For GY in the HEL data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 9 to 32%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 9 to 49%. For GY in the USP data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 0 to 7%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 34 to 70%. For traits PH and EH, gains in prediction accuracy of models with GK compared to models with GB were smaller than those achieved in GY. Also, these gains in prediction accuracy decreased when a more difficult prediction problem was studied.

  10. Correlation and path analysis on main agronomic traits of progeny from space mutation maize inbred lines

    International Nuclear Information System (INIS)

    Zhang Caibo; Wu Zhangdong; Xu Wei; Rong Tingzhao; Cao Moju

    2013-01-01

    In order to discover and utilize the valuable resources from spaceflight mutagenesis maize offspring effectively, cross combinations derived from the offspring of three different maize inbred lines induced by space flight were made to investigate the yield and related agronomic traits under different environmental conditions. Correlation and path analysis indicated that the factors affecting the yield of combinations varied with different mutagenic materials and environmental effects with larger effect coming from environment. Therefore, different selection strategies should be chosen for different induced maize. For the 08-641 mutagenic material, the 100-kernel weight should be first considered to select while taking into account the number of rows per ear and kernels per row. For the RP125 mutagenic material, the kernels per row should be first selected, and then to select the 100-kernels weight and the number of rows per ear traits. For 18-599 mutagenic material, the 100-seed weight should be first selected, then the plant height, ear diameter, ear height, kernels rate and other traits should be selected in different environments. Combined with field resistance, plant types and other traits, excellent maize inbred lines with high yield potential from space mutagenesis offspring were selected. Thus study has obtained some breeding materials useful for further breeding purpose, and provide a reference method as how to use the spaceflight induced materials for for maize breeding. (authors)

  11. Organic breeding: New trend in plant breeding

    Directory of Open Access Journals (Sweden)

    Berenji Janoš

    2009-01-01

    Full Text Available Organic breeding is a new trend in plant breeding aimed at breeding of organic cultivars adapted to conditions and expectations of organic plant production. The best proof for the need of organic cultivars is the existence of interaction between the performances of genotypes with the kind of production (conventional or organic (graph. 1. The adaptation to low-input conditions of organic production by more eddicient uptake and utilization of plant nutrients is especially important for organic cultivars. One of the basic mechanism of weed control in organic production is the competition of organic cultivars and weeds i.e. the enhanced ability of organic cultivars to suppress the weeds. Resistance/tolerance to diseases and pests is among the most important expectations toward the organic cultivars. In comparison with the methods of conventional plant breeding, in case of organic plant breeding limitations exist in choice of methods for creation of variability and selection classified as permitted, conditionally permitted and banned. The use of genetically modified organisms and their derivated along with induced mutations is not permitted in organic production. The use of molecular markers in organic plant breeding is the only permitted modern method of biotechnology. It is not permitted to patent the breeding material of organic plant breeding or the organic cultivars. .

  12. Recurrent population improvement of rice breeding facilitated with male sterility

    International Nuclear Information System (INIS)

    Fujimaki, Hiroshi

    1982-01-01

    A new rice breeding system has been developed, making use of genic male sterility to utilize diverse breeding materials and to promote genetic recombination. In this system, recurrent selection technique and introgressive hybridization were used to increase the frequencies of producing desired genotypes and to improve the population in succession. To promote genetic recombination by the recurrent selection technique, intermating within the population is necessary, and to introduce useful germ plasms by the introgressive hybridization, back crossing with new genetic material is necessary. These can be done efficiently by using the recessive alleles for male sterility, and the representative models for thisF type of breeding were presented. (Kaihara, S.)

  13. Simulating of Top-Cross system for enhancement of antioxidants in maize grain

    Directory of Open Access Journals (Sweden)

    Jelena Vancetovic

    2014-04-01

    Full Text Available Blue maize (Zea mays L. is grown for its high content of antioxidants. Conversion of yellow and white to blue maize is time consuming because several genes affect blue color. After each backcross selfing is needed for color to be expressed. In order to overcome the problem of time and effort needed for conversion to blue kernel color, we have set a pilot experiment simulating a Top-cross system for increasing antioxidants in maize grain. The idea is to alternately sow six rows of sterile standard quality hybrid and two rows of blue maize in commercial production. Five commercial ZP hybrids were crossed with a blue pop-corn population. Xenia effect caused by cross-pollination produced blue grain on all hybrids in the same year. Chemical analyses of the grains of five selfed original hybrids, five cross-pollinated hybrids and selfed blue popcorn pollinator were performed. Cross-fertilization with blue popcorn had different impact on antioxidant capacity and phytonutrients, increasing them significantly in some but not all cross-pollinated hybrids. Popcorn blue pollinator had higher values for all the analyzed traits than either selfed or cross-pollinated hybrids. Selfed vs. pollinated hybrids showed significant difference for total antioxidant capacity (p<0.1, total phenolics and total yellow pigments (p<0.01, with the increase of total phenolics and decrease of total yellow pigments in pollinated ones. Total flavonoids showed a little non-significant decrease in pollinated hybrids, while total anthocyanins were not detected in selfed yellow hybrids. Blue maize obtained this way has shown good potential for growing high quality phytonutrient genotypes.

  14. Hybrid mimics and hybrid vigor in Arabidopsis

    Science.gov (United States)

    Wang, Li; Greaves, Ian K.; Groszmann, Michael; Wu, Li Min; Dennis, Elizabeth S.; Peacock, W. James

    2015-01-01

    F1 hybrids can outperform their parents in yield and vegetative biomass, features of hybrid vigor that form the basis of the hybrid seed industry. The yield advantage of the F1 is lost in the F2 and subsequent generations. In Arabidopsis, from F2 plants that have a F1-like phenotype, we have by recurrent selection produced pure breeding F5/F6 lines, hybrid mimics, in which the characteristics of the F1 hybrid are stabilized. These hybrid mimic lines, like the F1 hybrid, have larger leaves than the parent plant, and the leaves have increased photosynthetic cell numbers, and in some lines, increased size of cells, suggesting an increased supply of photosynthate. A comparison of the differentially expressed genes in the F1 hybrid with those of eight hybrid mimic lines identified metabolic pathways altered in both; these pathways include down-regulation of defense response pathways and altered abiotic response pathways. F6 hybrid mimic lines are mostly homozygous at each locus in the genome and yet retain the large F1-like phenotype. Many alleles in the F6 plants, when they are homozygous, have expression levels different to the level in the parent. We consider this altered expression to be a consequence of transregulation of genes from one parent by genes from the other parent. Transregulation could also arise from epigenetic modifications in the F1. The pure breeding hybrid mimics have been valuable in probing the mechanisms of hybrid vigor and may also prove to be useful hybrid vigor equivalents in agriculture. PMID:26283378

  15. Identification of sources of resistance to anthracnose stalk rot in maize

    Directory of Open Access Journals (Sweden)

    Alessandro Nicoli

    Full Text Available ABSTRACT: Adoption of resistant cultivars is the primary measure used to control anthracnose stalk rot. The goal of this study was to identify maize-resistant genotypes to anthracnose stalk rot, which are similar to the hybrid 2B710. Experiments were performed at Embrapa Maize and Sorghum experimental fields in Brazil. The first experimental trial evaluated 234 maize lines as well as two commercials hybrids, BRS1010 (susceptible and 2B710 (resistant. Artificial inoculations were performed with a strain at the blister (R2 phase, and evaluation of disease severity was performed after 30 days. The second experimental trial evaluated 48 maize lines and hybrids, inoculated with two Colletotrichum graminicola strains. In the first trial, eight resistance groups were formed, and the last lines were more resistant, as was the hybrid 2B710, with values between 11.50% and 23.0% of severity. In the second trial, there was an interaction between the two factors, lines and isolates, and the lines often showed the same reaction features as those obtained in the first trial. However, the disease severity was higher for most lines, even when using other isolates. These lines with effective levels of resistance could be used in future studies of inheritance, in programs to develop hybrids, and to identify molecular markers associated with resistance to anthracnose stalk rot in maize.

  16. Stacked Bt maize and arthropod predators: exposure to insecticidal Cry proteins and potential hazards

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Zdeňka; Shu, Y.; Skoková Habuštová, Oxana; Romeis, J.; Meissle, M.

    2017-01-01

    Roč. 284, č. 1859 (2017), č. článku 20170440. ISSN 0962-8452 Institutional support: RVO:60077344 Keywords : Bt maize * Cry proteins * environmental risk assessment Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection OBOR OECD: Agronomy, plant breeding and plant protection Impact factor: 4.940, year: 2016 http://rspb.royalsocietypublishing.org/content/284/1859/20170440

  17. Seeds, hands and lands : maize genetic resources of highland Guatemala in space and time

    NARCIS (Netherlands)

    Etten, van J.

    2006-01-01

    Crop genetic resources are an important aspect of agricultural production. Agricultural innovation through plant breeding is generally seen as an efficient means to support food security and economic development in poor areas. Modern varieties of maize, a major cereal and the subject of this study,

  18. Mutation breeding in jute

    International Nuclear Information System (INIS)

    Joshua, D.C.

    1980-01-01

    Mutagenic studies in jute in general dealt with the morphological abnormalities of the M 1 generation in great detail. Of late, induction of a wide spectrum of viable mutations have been reported in different varieties of both the species. Mutations affecting several traits of agronomic importance such as, plant height, time of flowering, fibre yield and quality, resistance to pests and diseases are also available. Cytological analysis of a large collection of induced mutants resulted in the isolation of seven trisomics in an olitorius variety. Several anatomical parameters which are the components of fibre yield, have also received attention. Some mutants with completely altered morphology were used for interpreting the evolution of leaf shape in Tiliaceas and related families. A capsularis variety developed using mutation breeding technique has been released for cultivation. Several others, including derivatives of inter-mutant hybridization have been found to perform well at different locations in the All India Coordinated Trials. Presently, chemical mutagenesis and induction of mutants of physiological significance are receiving considerable attention. The induced variability is being used in genetic and linkage studies. (author)

  19. Vigor-S, a new system for evaluating the physiological potential of maize seeds

    OpenAIRE

    Castan, Danielle Otte Carrara; Gomes-Junior, Francisco Guilhien; Marcos-Filho, Julio

    2018-01-01

    ABSTRACT: The refinement of vigor tests and the possibility of utilizing computer resources for the effective evaluation of the seed physiological potential have attracted considerable interest from research and seed technologists. The aim of this study was to evaluate the physiological potential of maize seeds using the newly-created Automated Analysis of Seed Vigor System (Vigor-S) compared with other recommended seed vigor tests; two maize hybrids were used, each represented by seven seed ...

  20. Molecular confirmation of Maize rayado fino virus as the Brazilian corn streak virus

    OpenAIRE

    Hammond,Rosemarie Wahnbaeck; Bedendo,Ivan Paulo

    2005-01-01

    Maize rayado fino virus (MRFV), present in various countries in Latin America, has shown similarities to corn streak virus that occurs in Brazil, regarding pathogenic, serological and histological characteristics. In the current report both virus were molecularly compared to confirm the similarities between them. MRFV was identified by nucleic acid hybridization in samples of maize tissues exhibiting symptoms of "corn stunt" disease, collected from two Brazilian States - São Paulo and Minas G...

  1. Bibliography. Examples of literature related to the use of induced mutations in cross-breeding

    International Nuclear Information System (INIS)

    Micke, A.

    1976-01-01

    The bibliography contains about 400 references arranged alphabetically under the following 20 headings: Genetic analysis of mutants; Mutant gene combination and interaction; Pleiotropy versus linkage; Genetic background; Heterosis and overdominance; Mutations in heterozygous plants such as vegetatively propagated plants; Mutations in hybrids of self-pollinators; Distant hybridization; Increasing recombination; Alteration in the reproductive system; Alteration of photoperiodic response; Self and cross-incompatibility; Male or female sterility; Adaptability of mutants and mutant hybrids; Mutation induction in cross pollinators; Dwarfing mutant genes in cross-breeding; Protein mutants in cross-breeding; Disease resistant mutants in cross-breeding; Practical cross-breeding programmes using mutants; Spontaneous versus induced genetic diversity

  2. Future perspectives of in vitro culture and plant breeding

    DEFF Research Database (Denmark)

    Kuligowska, Katarzyna; Lütken, Henrik Vlk; Hegelund, Josefine Nymark

    2015-01-01

    Conventional breeding and plant improvement increasingly become inadequate to keep up with progression and high quality demands. Thus biotechnological techniques are more and more adopted. Initially, biotechnological tools have supported conventional breeding by in vitro culture techniques......, comprising micropropagation, speeding up multiplication and improving uniformity. Also, crossing barriers of incompatible plants have been overcome using in vitro methods and embryo rescue techniques in wide hybridization approaches. Marker-assisted breeding is employed for targeted selection of DNA...... fragments from parental plants in respect to identification of desired characteristics in offspring or among hybrid plants. Phylogeny-assisted breeding and knowledge about genetic relationships support the ability to develop new hybrids. Finally, chemical and radiation induced mutagenesis are established...

  3. Characteristics important for organic breeding of vegetable crops

    Directory of Open Access Journals (Sweden)

    Zdravković Jasmina

    2010-01-01

    Full Text Available The remarkable development and application of new genetic The Institute for Vegetable Crops possesses a rich germplasm collection of vegetables, utilized as gene resource for breeding specific traits. Onion and garlic breeding programs are based on chemical composition improvement. There are programs for identification and use of genotypes characterized by high tolerance to economically important diseases. Special attention is paid to breeding cucumber and tomato lines tolerant to late blight. As a result, late blight tolerant pickling cucumber line, as well as late blight tolerant tomato lines and hybrids are realized. Research on bean drought stress tolerance is initiated. Lettuce breeding program including research on spontaneous flora is started and interspecies hybrids were observed as possible genetic variability source. It is important to have access to a broad range of vegetable genotypes in order to meet the needs of organic agriculture production. Appreciating the concept of sustainable agriculture, it is important to introduce organic agriculture programs in breeding institutions.

  4. Lessons From Paired Data From exPVP Maize Lines in Agronomic Field Trials and RGB And Hyperspectral Time-Series Imaging In Controlled Environments

    Science.gov (United States)

    Schnable, J. C.; Pandey, P.; Ge, Y.; Xu, Y.; Qiu, Y.; Liang, Z.

    2017-12-01

    Maize Zea mays ssp. mays is one of three crops, along with rice and wheat, responsible for more than 1/2 of all calories consumed around the world. Increasing the yield and stress tolerance of these crops is essential to meet the growing need for food. The cost and speed of plant phenotyping is currently the largest constraint on plant breeding efforts. Datasets linking new types of high throughput phenotyping data collected from plants to the performance of the same genotypes under agronomic conditions across a wide range of environments are essential for developing new statistical approaches and computer vision based tools. A set of maize inbreds and hybrids - primarily recently off patent lines - were phenotyped using a high throughput platform at University of Nebraska-Lincoln. These lines have been previously subjected to high density genotyping, and scored for a core set of 13 phenotypes in field trials across 13 North American states in 2014, 2015, 2016, and 2017. Correlations between image-based measurements and manual measurements demonstrated the feasibility of quantifying variation in plant architecture using image data. However, we demonstrate that naive approaches to measuring traits such as biomass where are developed without integrating genotypic information can introduce nonrandom measurement errors which are confounded with variation between plant accessions. Analysis of hyperspectral image data demonstrated unique signatures from stem tissue which were not identified using aerial imagry. Integrating heritable phenotypes from high-throughput phenotyping data with field data from different environments can reveal previously unknown factors influencing yield plasticity.

  5. Fusarium graminearum and Fusarium verticillioides infection on maize seeds

    Directory of Open Access Journals (Sweden)

    Dayana Portes Ramos

    2014-03-01

    Full Text Available The previous knowledge of the infection process and pathogens behavior, for evaluating the physiological potential of maize seeds, is essential for decision making on the final destination of lots that can endanger sowing. This research was carried out in order to study the minimum period required for maize seeds contamination by Fusarium graminearum Schwabe and Fusarium verticillioides (Sacc. Nirenberg, as well as these pathogens influence on seed germination and vigor, by using the cold test. Three maize seeds hybrids, kept in contact with the pathogens for different periods, were evaluated with and without surface disinfection. After determining the most suitable period, new samples were contaminated by F. graminearum and F. verticillioides, under different infection levels, and subjected to germination tests in sand. The cold test was conducted with healthy and contaminated seeds, at different periods, in a cold chamber. The contact of maize seeds with F. graminearum and F. verticillioides for 16 hours was enough to cause infection. F. graminearum and F. verticillioides did not affect the maize seeds germination, however, F. graminearum reduced the vigor of seeds lots.

  6. Studies on maize inbred lines susceptibility to herbicides

    Directory of Open Access Journals (Sweden)

    Stefanović Lidija

    2010-01-01

    Full Text Available This paper presents the analysis of results obtained during long- term studies on the response of maize inbred lines to herbicides. Under the agroecological conditions of Zemun Polje the response (reaction of maize inbred lines to herbicides of different classes was investigated. Biological tests were performed and some agronomic, morphological, physiological and biochemical parameters were determined when the response of maize inbred lines to herbicides was estimated. The use of active ingredients of herbicides from triazine, acetanilide, thiocarbamate to new chemical groups (sulfonylurea etc., have been resulted in changes in weed suppression and susceptibility of inbred lines. Obtained results show that effects of herbicides on susceptible maize genotypes can be different: they can slowdown the growth and development and affect the plant height; they can also affect the stages of the tassel and ear development and at the end they can reduced grain yield of the tested inbreds. Numerous studies confirmed the existence of differences in susceptibility level of maize genotypes in relation to herbicides. According to gained results the recommendations for growers are made on the possibility of the application of new herbicides in the hybrid seed production.

  7. Mutation breeding in vegetable crops

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Takashi

    1984-03-01

    Vegetables breed by seeds and vegetative organs. In main vegetables, the differentiation of clopping types, the adoption of monoculture and year-round production and shipment are carried out, adapting to various socio-economic and cultivation conditions. Protected agriculture has advanced mainly for fruit vegetables, and the seeds for sale have become almost hybrid varieties. Reflecting this situation, the demand for breeding is diversified and characteristic. The present status of mutation breeding of vegetables is not yet well under way, but reports of about 40 raised varieties have been published in the world. The characters introduced by induced mutation and irradiation are compact form, harvesting aptitude, the forms and properties of stems and leaves, anti-lodging property, the size, form and uniformity of fruits, male sterility and so on. The radiation sources used were mostly gamma ray or X-ray, but sometimes, combined irradiation was used. Results obtained in Japan include: burdocks as an example to gamma ray irradiation of seeds; tomatoes as an example of inducing compound resistance against disease injury; and lettuce as an example of internal beta irradiation. (Kako, I.).

  8. Intercropping Maize With Legumes for Sustainable Highland Maize Production

    Directory of Open Access Journals (Sweden)

    Adirek Punyalue

    2018-02-01

    Full Text Available Residue burning to prepare soil for maize growing deprives the soil of both protective cover and organic matter, and it exacerbates environmental issues such as Southeast Asia's haze problem. This paper reports on a study that evaluated the effectiveness of maize/legume intercropping as an alternative to maize cultivation with residue burning. Cowpea (Vigna unguiculata, mung bean (V. radiata, rice bean (V. umbellata, and lablab (Lablab purpureus were sown into a standing maize crop 30 days before harvest, and the results were compared with a maize crop grown using residue burning as the method for land preparation at Pang Da Agricultural Station in Chiang Mai, Thailand, in a replicated trial conducted over 3 growing seasons from 2012 to 2014. Intercropping increased maize grain yield by 31–53% and left 70–170% more residue containing 113–230% more nitrogen than the maize sown after residue burning, depending on the legume, and decreased weed dry weight by two-thirds after 2 seasons. Soil biodiversity was enriched by the intercrops, with a doubling in the spore density of arbuscular mycorrhizal fungi in the root-zone soil and increased abundance, diversity (Shannon index, and richness of the soil macrofauna. The abundance of soil animals increased with crop residue dry weight (r = 0.90, P < 0.05 and nitrogen content (r = 0.98, P < 0.01. The effect of intercropping on maize grain yield and accumulation of residue and nitrogen were then confirmed in a participatory experiment involving farmers in 2 highland villages in the Phrao and Chiang Dao districts of Chiang Mai Province with maize and rice bean in 2015. The effects of maize/legume intercropping—increased nitrogen accumulation and crop residue, enhanced soil biodiversity, suppression of weeds, and protection of the soil surface, which enabled the maize to be sown without land clearing with fire—should all contribute to sustainable highland maize production.

  9. The proteome and phosphoproteome of maize pollen uncovers fertility candidate proteins.

    Science.gov (United States)

    Chao, Qing; Gao, Zhi-Fang; Wang, Yue-Feng; Li, Zhe; Huang, Xia-He; Wang, Ying-Chun; Mei, Ying-Chang; Zhao, Biligen-Gaowa; Li, Liang; Jiang, Yu-Bo; Wang, Bai-Chen

    2016-06-01

    Maize is unique since it is both monoecious and diclinous (separate male and female flowers on the same plant). We investigated the proteome and phosphoproteome of maize pollen containing modified proteins and here we provide a comprehensive pollen proteome and phosphoproteome which contain 100,990 peptides from 6750 proteins and 5292 phosphorylated sites corresponding to 2257 maize phosphoproteins, respectively. Interestingly, among the total 27 overrepresented phosphosite motifs we identified here, 11 were novel motifs, which suggested different modification mechanisms in plants compared to those of animals. Enrichment analysis of pollen phosphoproteins showed that pathways including DNA synthesis/chromatin structure, regulation of RNA transcription, protein modification, cell organization, signal transduction, cell cycle, vesicle transport, transport of ions and metabolisms, which were involved in pollen development, the following germination and pollen tube growth, were regulated by phosphorylation. In this study, we also found 430 kinases and 105 phosphatases in the maize pollen phosphoproteome, among which calcium dependent protein kinases (CDPKs), leucine rich repeat kinase, SNF1 related protein kinases and MAPK family proteins were heavily enriched and further analyzed. From our research, we also uncovered hundreds of male sterility-associated proteins and phosphoproteins that might influence maize productivity and serve as targets for hybrid maize seed production. At last, a putative complex signaling pathway involving CDPKs, MAPKs, ubiquitin ligases and multiple fertility proteins was constructed. Overall, our data provides new insight for further investigation of protein phosphorylation status in mature maize pollen and construction of maize male sterile mutants in the future.

  10. Usage of γ-ray treatment for productivity increasing of maize

    International Nuclear Information System (INIS)

    Ilieva, V.; Dimov, K.

    2003-01-01

    The aim of this study is to determine the influence of γ irradiation on phosphorus nutrition and maize productivity increasing. The vegetation experiment with irradiated and non-irradiated maize seeds in controlled conditions (moisture and temperature) for determination of phosphorus and phosphorus-gypsum absorption was carried out. The influence of γ irradiation on maize growth, export of mineral elements in maize, phosphorus fertilizing and dry biomass of maize plants are presented. The effect of the moisture of γ irradiated maize seeds (sort 'Knezha' - 3L - 621) on dry substance and yield of green mass is also discussed. Based on the presented experimental data the following conclusion have been made: the maize seeds (sort 'Knezha, hybrid H-708) simulation is useful; in all variants of phosphorus-gypsum absorption the increasing of plant mass yield (absolutely dry) is observed; the absorbed phosphates reserve is enhanced twice; the efficiency of 32 P use in stimulated seeds is higher than in non-stimulated seeds; the phosphorus content in maize (sort 'Knezha' - 2L - 611) is increasing mainly in leaves after X-ray irradiation (750 - 1500 R); γ irradiation (7.5 Gy) stimulate the root system (18%) and side roots development and drying up overcome

  11. CYCLOXYDIM-TOLERANT MAIZE – BREEDERS STANDPOINT

    Directory of Open Access Journals (Sweden)

    G. Bekavac

    2008-09-01

    Full Text Available Cycloxydim-Tolerant Maize (CTM was developed by researches at the University of Minnesota. CTM plants were regenerated from tissue culture selected for callus growth in the presence of cycloxydim, and the resulting plants were shown to contain a nuclear mutation, expressed as a single, partially dominant gene (known as Acc1 that conferred tolerance to the herbicide. Cycloxydim is a systemic herbicide for post emergence application in dicot crops to selectively control grass weeds. Corn, like most grasses is susceptible to cycloxydim due to inhibited acetyl-coenzyimeA carboxylaze enzyme activity. There are two key benefits of this technology: first, cycloxydim applications in CTM hybrids can be delayed until the weed spectrum and population density exceed agro-economic threshold; second, cycloxydim can be applied at either stage of plant development with no effect on basic agronomic traits, compared to non treated plants. Nevertheless, this type of tolerance requires 2 genes to be fully effective, i.e. gene must be present in both inbred parents to provide complete tolerance in the resulting hybrid. Such type of tolerance doubles the chances for yield drag and doubles the number of inbred conversions needed. This also limits germplasm integration and increases time lag in developing hybrids. Despite these difficulties, many seed companies introduce tolerance to cycloxydim into their commercial inbreds, and many of them have already commercialized CTM hybrids. Finally, it came as a logical question what is more important – hybrid performance or new trait? Critical to the success of this technology has been yield performance of CTM hybrids. At the same time, performance and herbicide tolerance do not exclude each other and can surely co-exist. To be accepted, this coexistence must secure high profitability to corn producers. However, CTM hybrids will not replace conventional ones on a large scale, but could be used as a specific tool, or could

  12. Fusion-fission hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.

    1984-01-01

    This chapter discusses the range of characteristics attainable from hybrid reactor blankets; blanket design considerations; hybrid reactor designs; alternative fuel hybrid reactors; multi-purpose hybrid reactors; and hybrid reactors and the energy economy. Hybrid reactors are driven by a fusion neutron source and include fertile and/or fissile material. The fusion component provides a copious source of fusion neutrons which interact with a subcritical fission component located adjacent to the plasma or pellet chamber. Fissile fuel and/or energy are the main products of hybrid reactors. Topics include high F/M blankets, the fissile (and tritium) breeding ratio, effects of composition on blanket properties, geometrical considerations, power density and first wall loading, variations of blanket properties with irradiation, thermal-hydraulic and mechanical design considerations, safety considerations, tokamak hybrid reactors, tandem-mirror hybrid reactors, inertial confinement hybrid reactors, fusion neutron sources, fissile-fuel and energy production ability, simultaneous production of combustible and fissile fuels, fusion reactors for waste transmutation and fissile breeding, nuclear pumped laser hybrid reactors, Hybrid Fuel Factories (HFFs), and scenarios for hybrid contribution. The appendix offers hybrid reactor fundamentals. Numerous references are provided

  13. CROSSING OF HOLSTEIN HORSE BREED WITH SOME OTHER BREEDS

    Directory of Open Access Journals (Sweden)

    Josip Ljubešić

    2000-06-01

    Full Text Available An experiment of crossing a heavier-weight semi-breed horse (Holstein with mares of Croatian Posavian type draft horse resulted in possibility of such further crossing. Attained product meets today’s market requirements: firstly as an export-meat category that meets Italian market requirements, since other markets are not well known, secondly, it can be used as a sport-tourist-recreation horse. It must be pointed out that all produced hybrids did not meet the needs of these two basic criteria. In spite of being potential slaughtery head with good utilization, each produced head can be, according to its exterial properties, used as a sporttourist animal that showed certain usable values and results proven by the experiment. The hybrids showed some hereditory draft horse properties shown on enclosed photos. In addition, exterier measures show that former knowledge on hybrids can respond the question of a horse raising on non-utilized pastures which they got used to very well. Thus these horses are able to be estimated by their body development just as our native draft Posavian type horse including possibility of using them as a sport-tourist-recreation horse.

  14. Mutation breeding in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Neto, A T; Menten, J O.M. [Centro de Energia Nuclear na Agricultura, Piracicaba (Brazil); Ando, A

    1980-03-01

    How mutation induction is used for plant breeding in Brazil is reported. For upland rice, the combined treatment with gamma-ray and mutagens (ethylene imine or ethylmethane sulfonate) has been used on the variety, Dourado Precoce, and some mutants with shortculm length and/or earliness without altering the productivity have been obtained. A project on the quantitative and qualitative protein improvement in upland rice was also started in 1979. In corn, the effect of gamma-irradiation on heterosis has been analyzed, and it was found that the single hybrids from two parental lines derived from irradiated seeds had increased ear productivity. For beans (Phaseolus yulgaris), gamma-irradiation and chemical mutagens have been used to induce the mutants with different seed color, disease resistance to golden mosaic virus and Xanthomonas phaseoli, earliness, high productivity and high protein content. Some mutants with partly improved characters have been obtained in these experiments. Two varieties of wheat tolerant to aluminum toxicity have been obtained, but the one showed high lodging due to its unfavorable plant height, and the other was highly susceptible to culm rust. Therefore, irradiation experiments have been started to improve these characters. The projects involving the use of gamma-irradiation have been tested to obtain the mutant lines insensitive to photoperiod and resistant to bud-blight in soybean, the mutant lines resistant to mosaic virus in papaya, the photoperiod-insensitive mutants in sorghum, the mosaic virus resistant and non-flowering mutants in sugar cane, and the Fusarium and nematode-resistant mutants in black pepper.

  15. Maize kernel evolution:From teosinte to maize

    Science.gov (United States)

    Maize is the most productive and highest value commodity in the US and around the world: over 1 billion tons were produced each year in 2013 and 2014. Together, maize, rice and wheat comprise over 60% of the world’s caloric intake, with wide regional variability in the importance of each crop. The i...

  16. Assessment of the potential for gene flow from transgenic maize (Zea mays L.) to eastern gamagrass (Tripsacum dactyloides L.).

    Science.gov (United States)

    Lee, Moon-Sub; Anderson, Eric K; Stojšin, Duška; McPherson, Marc A; Baltazar, Baltazar; Horak, Michael J; de la Fuente, Juan Manuel; Wu, Kunsheng; Crowley, James H; Rayburn, A Lane; Lee, D K

    2017-08-01

    Eastern gamagrass (Tripsacum dactyloides L.) belongs to the same tribe of the Poaceae family as maize (Zea mays L.) and grows naturally in the same region where maize is commercially produced in the USA. Although no evidence exists of gene flow from maize to eastern gamagrass in nature, experimental crosses between the two species were produced using specific techniques. As part of environmental risk assessment, the possibility of transgene flow from maize to eastern gamagrass populations in nature was evaluated with the objectives: (1) to assess the seeds of eastern gamagrass populations naturally growing near commercial maize fields for the presence of a transgenic glyphosate-tolerance gene (cp4 epsps) that would indicate cross-pollination between the two species, and (2) to evaluate the possibility of interspecific hybridization between transgenic maize used as male parent and eastern gamagrass used as female parent. A total of 46,643 seeds from 54 eastern gamagrass populations collected in proximity of maize fields in Illinois, USA were planted in a field in 2014 and 2015. Emerged seedlings were treated with glyphosate herbicide and assessed for survival. An additional 48,000 seeds from the same 54 eastern gamagrass populations were tested for the presence of the cp4 epsps transgene markers using TaqMan ® PCR method. The results from these trials showed that no seedlings survived the herbicide treatment and no seed indicated presence of the herbicide tolerant cp4 epsps transgene, even though these eastern gamagrass populations were exposed to glyphosate-tolerant maize pollen for years. Furthermore, no interspecific hybrid seeds were produced from 135 hand-pollination attempts involving 1529 eastern gamagrass spikelets exposed to maize pollen. Together, these results indicate that there is no evidence of gene flow from maize to eastern gamagrass in natural habitats. The outcome of this study should be taken in consideration when assessing for environmental

  17. Breeding new improved clones for strawberry production in Brazil

    Directory of Open Access Journals (Sweden)

    Alexandre Gonçalves Galvão

    2017-04-01

    Full Text Available Breeding different strawberry genotypes and plant selection in Brazil could result in new cultivars with better environmental adaptations. The aim was to develop and select new F1 strawberry plants with higher potential yields. Twelve hybrid populations were obtained from breeding the cultivars Aromas, Camarosa, Dover, Festival, Oso Grande, Sweet Charlie and Tudla, and 42 F1 hybrids were obtained from each population. An augmented randomized block design was used. Productive traits were measured and heterosis was calculated for all traits. The breedings Dover x Aromas and Camarosa x Aromas both showed 28.6% of their hybrids with a total fruit mass that was higher than that of cv. Aromas, and 9.5 and 14.3% were higher than that of cv. Camarosa, respectively. The breeding of Camarosa x Aromas produced hybrids with high potential yields and a large average fruit mass that reached the commercial standard. Hybrids MCA12-93, MFA12-443 and MCA12-89 showed high potential yields and can be used as parents in strawberry breeding programs.

  18. Using maize as a model to study pollen tube growth and guidance, cross-incompatibility and sperm delivery in grasses.

    Science.gov (United States)

    Dresselhaus, Thomas; Lausser, Andreas; Márton, Mihaela L

    2011-09-01

    In contrast to animals and lower plants such as mosses and ferns, sperm cells of flowering plants (angiosperms) are immobile and require transportation to the female gametes via the vegetative pollen tube cell to achieve double fertilization. The path of the pollen tube towards the female gametophyte (embryo sac) has been intensively studied in many intra- and interspecific crossing experiments with the aim of increasing the gene pool of crop plants for greater yield, improved biotic and abiotic stress resistance, and for introducing new agronomic traits. Many attempts to hybridize different species or genotypes failed due to the difficulty for the pollen tubes in reaching the female gametophyte. Detailed studies showed that these processes are controlled by various self-incompatible (intraspecific) and cross-incompatible (interspecific) hybridization mechanisms. Understanding the molecular mechanisms of crossing barriers is therefore of great interest in plant reproduction, evolution and breeding research. In particular, pre-zygotic hybridization barriers related to pollen tube germination, growth, guidance and sperm delivery, which are considered the major hybridization controls in nature and thus also contribute to species isolation and speciation, have been intensively investigated. Despite this general interest, surprisingly little is known about these processes in the most important agronomic plant family, the Gramineae, Poaceae or grasses. Small polymorphic proteins and their receptors, degradation of sterility locus proteins and general compounds such as calcium, γ-aminobutyric acid or nitric oxide have been shown to be involved in progamic pollen germination, adhesion, tube growth and guidance, as well as sperm release. Most advances have been made in the Brassicaceae, Papaveraceae, Linderniaceae and Solanaceae families including their well-understood self-incompatibility (SI) systems. Grass species evolved similar mechanisms to control the penetration

  19. Genomic Selection in Plant Breeding: Methods, Models, and Perspectives.

    Science.gov (United States)

    Crossa, José; Pérez-Rodríguez, Paulino; Cuevas, Jaime; Montesinos-López, Osval; Jarquín, Diego; de Los Campos, Gustavo; Burgueño, Juan; González-Camacho, Juan M; Pérez-Elizalde, Sergio; Beyene, Yoseph; Dreisigacker, Susanne; Singh, Ravi; Zhang, Xuecai; Gowda, Manje; Roorkiwal, Manish; Rutkoski, Jessica; Varshney, Rajeev K

    2017-11-01

    Genomic selection (GS) facilitates the rapid selection of superior genotypes and accelerates the breeding cycle. In this review, we discuss the history, principles, and basis of GS and genomic-enabled prediction (GP) as well as the genetics and statistical complexities of GP models, including genomic genotype×environment (G×E) interactions. We also examine the accuracy of GP models and methods for two cereal crops and two legume crops based on random cross-validation. GS applied to maize breeding has shown tangible genetic gains. Based on GP results, we speculate how GS in germplasm enhancement (i.e., prebreeding) programs could accelerate the flow of genes from gene bank accessions to elite lines. Recent advances in hyperspectral image technology could be combined with GS and pedigree-assisted breeding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Genomic dairy cattle breeding

    DEFF Research Database (Denmark)

    Mark, Thomas; Sandøe, Peter

    2010-01-01

    the thoughts of breeders and other stakeholders on how to best make use of genomic breeding in the future. Intensive breeding has played a major role in securing dramatic increases in milk yield since the Second World War. Until recently, the main focus in dairy cattle breeding was on production traits...... it less accountable to the concern of private farmers for the welfare of their animals. It is argued that there is a need to mobilise a wide range of stakeholders to monitor developments and maintain pressure on breeding companies so that they are aware of the need to take precautionary measures to avoid...

  1. Eggplant variety breeding aerospace Hangqie No.4

    International Nuclear Information System (INIS)

    Wang Fuquan; Song Jianrong; Guo Zhenfang; Ding Yaohong; Kong Xiaojuan

    2012-01-01

    Hangqie No.4 is on the Shenzhou spacecraft carrying no. 3 local variety reported by four generations enterprise round tomato breeding 03-4-15-2-3-1 has breeding for female to the 18th retuning-type science technology and experimental satellite launch of the optimal tomato after 0448-1-3-1 has breeding for male parent, mixture of the generation of hybrid. Medium-early maturity, 667 m 2 production 5000 kg around. Plant growth potential of half erect, with strong sex is strong, leaves thicker, purple-brown, heart-shaped, flower violet, pulp green white, The weight of per fruit 0.15 ∼ 0.35 kg. It's can be planted in open land and protected area, and grow well. (authors)

  2. Eggplant variety breeding aerospace Hangqie No.4

    International Nuclear Information System (INIS)

    Wang Fuquan; Song Jianrong; Guo Zhenfang; Ding Yaohong; Kong Xiaojuan

    2011-01-01

    Hangqie No.4 is on the shenzhou spacecraft carrying no.3 local variety reported by four generations enterprise round tomato breeding 03-4-15-2-3-1 has breeding for female to the 18th retuning-type science technology and experimental satellite launch of the optimal tomato after 04-4-8-1-3-1 has breeding for male parent, mixture of the generation of hybrid. Medium-early maturity, 667 m 2 production 5000 kg around. Plant growth potential of half erect, with strong sex is strong, leaves thicker, purple-brown, heart-shaped, flower violet, pulp green white, The weight of per fruit 0.15∼0.35 kg. It's can be planted in open land and protected area, and grow well. (authors)

  3. Blé Poitou”, beginning of a participatory project for co-breeding (wheat and legumes)

    OpenAIRE

    Serpolay-Besson , Estelle; Goldringer , Isabelle; Aubin , Thibaud

    2012-01-01

    A group of farmers of the Poitou region in France, already expert in on-farm maize population selection, would like to acquire the same know-how with wheat and legume in co-breeding. They asked INRA to build a participatory breeding project with them with this view. The first year was dedicated to the cultivation and common evaluation of several varieties on a platform. More than having learnt how to breed wheat, the farmers say they have learnt how to observe wheat and are now able to do on-...

  4. Rapid Cycling Genomic Selection in a Multiparental Tropical Maize Population.

    Science.gov (United States)

    Zhang, Xuecai; Pérez-Rodríguez, Paulino; Burgueño, Juan; Olsen, Michael; Buckler, Edward; Atlin, Gary; Prasanna, Boddupalli M; Vargas, Mateo; San Vicente, Félix; Crossa, José

    2017-07-05

    Genomic selection (GS) increases genetic gain by reducing the length of the selection cycle, as has been exemplified in maize using rapid cycling recombination of biparental populations. However, no results of GS applied to maize multi-parental populations have been reported so far. This study is the first to show realized genetic gains of rapid cycling genomic selection (RCGS) for four recombination cycles in a multi-parental tropical maize population. Eighteen elite tropical maize lines were intercrossed twice, and self-pollinated once, to form the cycle 0 (C 0 ) training population. A total of 1000 ear-to-row C 0 families was genotyped with 955,690 genotyping-by-sequencing SNP markers; their testcrosses were phenotyped at four optimal locations in Mexico to form the training population. Individuals from families with the best plant types, maturity, and grain yield were selected and intermated to form RCGS cycle 1 (C 1 ). Predictions of the genotyped individuals forming cycle C 1 were made, and the best predicted grain yielders were selected as parents of C 2 ; this was repeated for more cycles (C 2 , C 3 , and C 4 ), thereby achieving two cycles per year. Multi-environment trials of individuals from populations C 0, C 1 , C 2 , C 3 , and C 4 , together with four benchmark checks were evaluated at two locations in Mexico. Results indicated that realized grain yield from C 1 to C 4 reached 0.225 ton ha -1 per cycle, which is equivalent to 0.100 ton ha -1  yr -1 over a 4.5-yr breeding period from the initial cross to the last cycle. Compared with the original 18 parents used to form cycle 0 (C 0 ), genetic diversity narrowed only slightly during the last GS cycles (C 3 and C 4 ). Results indicate that, in tropical maize multi-parental breeding populations, RCGS can be an effective breeding strategy for simultaneously conserving genetic diversity and achieving high genetic gains in a short period of time. Copyright © 2017 Zhang et al.

  5. Genome sequence of a 5,310-year-old maize cob provides insights into the early stages of maize domestication

    DEFF Research Database (Denmark)

    Ramos Madrigal, Jazmin; Smith, Bruce D.; Moreno Mayar, José Victor

    2016-01-01

    The complex evolutionary history of maize (Zea mays L. ssp. mays) has been clarified with genomic-level data from modern landraces and wild teosinte grasses [1, 2], augmenting archaeological findings that suggest domestication occurred between 10,000 and 6,250 years ago in southern Mexico [3, 4......]. Maize rapidly evolved under human selection, leading to conspicuous phenotypic transformations, as well as adaptations to varied environments [5]. Still, many questions about the domestication process remain unanswered because modern specimens do not represent the full range of past diversity due...... to abandonment of unproductive lineages, genetic drift, on-going natural selection, and recent breeding activity. To more fully understand the history and spread of maize, we characterized the draft genome of a 5,310-year-old archaeological cob excavated in the Tehuacan Valley of Mexico. We compare this ancient...

  6. Tritium breeding in fusion reactors

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1982-10-01

    Key technological problems that influence tritium breeding in fusion blankets are reviewed. The breeding potential of candidate materials is evaluated and compared to the tritium breeding requirements. The sensitivity of tritium breeding to design and nuclear data parameters is reviewed. A framework for an integrated approach to improve tritium breeding prediction is discussed with emphasis on nuclear data requirements

  7. Participatory breeding: tool for conservation of neglected and underutilized crops

    Directory of Open Access Journals (Sweden)

    Creucí Maria Caetano

    2015-08-01

    Full Text Available Although a significant number of plant species to be recognized as food, only a small fraction meets the protein demand of the world population. Breeding crops, with a very narrow genetic base, most likely will not counteract the adverse effects of climate change. On the contrary, the crops named as underutilized, neglected, orphaned, obsolete or minor, may contain the answers in their genomes to ensure safety and nutrition and food sovereignty of populations. Duly adapted to extreme growing conditions, these local varieties, such as indigenous and landraces of Colombian maize, are part of the cultural heritage of many ethnic groups or original peoples, that select, use and conserve these varieties. Besides these, another concept refers to the promising resources, also little used, although for different reasons. Therefore, Participatory Plant Breeding is a tool to promote traditional local varieties or underutilized crops, to meet the needs of communities. In the PPB, members of the production chain (farmers, breeders, technicians and others work together in the process of development of varieties, in a decentralized and participatory process. A PB program with Colombian maize germplasm resulted in the promotion of some local varieties. Alongside, new maize landraces to Colombia were described.

  8. Association and linkage analysis of aluminum tolerance genes in maize.

    Directory of Open Access Journals (Sweden)

    Allison M Krill

    Full Text Available BACKGROUND: Aluminum (Al toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble at low pH, inhibiting root growth and severely reducing yields. Maize is an important staple food and commodity crop in acidic soil regions, especially in South America and Africa where these soils are very common. Al exclusion and intracellular tolerance have been suggested as two important mechanisms for Al tolerance in maize, but little is known about the underlying genetics. METHODOLOGY: An association panel of 282 diverse maize inbred lines and three F2 linkage populations with approximately 200 individuals each were used to study genetic variation in this complex trait. Al tolerance was measured as net root growth in nutrient solution under Al stress, which exhibited a wide range of variation between lines. Comparative and physiological genomics-based approaches were used to select 21 candidate genes for evaluation by association analysis. CONCLUSIONS: Six candidate genes had significant results from association analysis, but only four were confirmed by linkage analysis as putatively contributing to Al tolerance: Zea mays AltSB like (ZmASL, Zea mays aluminum-activated malate transporter2 (ALMT2, S-adenosyl-L-homocysteinase (SAHH, and Malic Enzyme (ME. These four candidate genes are high priority subjects for follow-up biochemical and physiological studies on the mechanisms of Al tolerance in maize. Immediately, elite haplotype-specific molecular markers can be developed for these four genes and used for efficient marker-assisted selection of superior alleles in Al tolerance maize breeding programs.

  9. Tritium breeding materials

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Johnson, C.E.; Abdou, M.

    1984-03-01

    Tritium breeding materials are essential to the operation of D-T fusion facilities. Both of the present options - solid ceramic breeding materials and liquid metal materials are reviewed with emphasis not only on their attractive features but also on critical materials issues which must be resolved

  10. Tritium breeding materials

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Johnson, C.E.; Abdou, M.A.

    1984-01-01

    Tritium breeding materials are essential to the operation of D-T fusion facilities. Both of the present options - solid ceramic breeding materials and liquid metal materials are reviewed with emphasis not only on their attractive features but also on critical materials issues which must be resolved

  11. indigenous cattle breeds

    African Journals Online (AJOL)

    Received 31 August 1996; accepted 20 March /998. Mitochondrial DNA cleavage patterns from representative animals of the Afrikaner and Nguni sanga cattle breeds, indigenous to Southern Africa, were compared to the mitochondrial DNA cleavage patterns of the Brahman (zebu) and the Jersey. (taurine) cattle breeds.

  12. SEED INOCULATION WITH Azospirillum brasilense, ASSOCIATED WITH THE USE OF BIOREGULATORS IN MAIZE

    Directory of Open Access Journals (Sweden)

    ALESSANDRO DE LUCCA E BRACCINI

    2012-01-01

    Full Text Available The inoculation of seeds with the bacterium Azospirillum has been carried out in maize culture and other grasses. The application of growth bio-regulators is another technology whose results in maize culture have yet to become more widespread. Current study evaluates the agronomic effectiveness of seed inoculation with Azospirillum brasilense in maize, associated with the use of the growth regulator Stimulate ®. Triple hybrid maize CD 304 underwent the following treatments: 1 - control without nitrogen and without Azospirillum brasilense; 2 - Treatment without nitrogen but with Azospirillum brasilense; 3 - Treatment without nitrogen but with Azospirillum brasilense + Stimulate ®; 4 - Treatment with 50% of nitrogen dose recommended for maize culture; 5 - Treatment with 50% of nitrogen dose and inoculation with Azospirillum brasilense; 6 - Same as 5 but with Stimulate ®; 7 - Total N recommended; 8 - Total N recommended + Azospirillum brasilense ; 9 - Total N recommended + Azospirillum brasilense + Stimulate ®. The inoculation of maize seeds with Azospirillum brasilense increases plant height and grain yield when compared with rates in control. The use of 50% of N dose in sowing, associated with the inoculation of maize seeds with Azospirillum brasilense at 200 mL ha-1 (mixed to the seeds and associated with Stimulate ® (in foliar application, is viable.

  13. Advances in Maize Transformation Technologies and Development of Transgenic Maize.

    Science.gov (United States)

    Yadava, Pranjal; Abhishek, Alok; Singh, Reeva; Singh, Ishwar; Kaul, Tanushri; Pattanayak, Arunava; Agrawal, Pawan K

    2016-01-01

    Maize is the principal grain crop of the world. It is also the crop where genetic engineering has been employed to a great extent to improve its various traits. The ability to transform maize is a crucial step for application of gene technology in maize improvement. There have been constant improvements in the maize transformation technologies over past several years. The choice of genotype and the explant material to initiate transformation and the different types of media to be used in various stages of tissue culture can have significant impact on the outcomes of the transformation efforts. Various methods of gene transfer, like the particle bombardment, protoplast transformation, Agrobacterium -mediated, in planta transformation, etc., have been tried and improved over years. Similarly, various selection systems for retrieval of the transformants have been attempted. The commercial success of maize transformation and transgenic development is unmatched by any other crop so far. Maize transformation with newer gene editing technologies is opening up a fresh dimension in transformation protocols and work-flows. This review captures the various past and recent facets in improvement in maize transformation technologies and attempts to present a comprehensive updated picture of the current state of the art in this area.

  14. Tritium breeding blanket

    International Nuclear Information System (INIS)

    Smith, D.; Billone, M.; Gohar, Y.; Baker, C.; Mori, S.; Kuroda, T.; Maki, K.; Takatsu, H.; Yoshida, H.; Raffray, A.; Sviatoslavsky, I.; Simbolotti, G.; Shatalov, G.

    1991-01-01

    The terms of reference for ITER provide for incorporation of a tritium breeding blanket with a breeding ratio as close to unity as practical. A breeding blanket is required to assure an adequate supply of tritium to meet the program objectives. Based on specified design criteria, a ceramic breeder concept with water coolant and an austenitic steel structure has been selected as the first option and lithium-lead blanket concept has been chosen as an alternate option. The first wall, blanket, and shield are integrated into a single unit with separate cooling systems. The design makes extensive use of beryllium to enhance the tritium breeding ratio. The design goals with a tritium breeding ratio of 0.8--0.9 have been achieved and the R ampersand D requirements to qualify the design have been identified. 4 refs., 8 figs., 2 tabs

  15. Morphological variation in maize inbred lines

    Directory of Open Access Journals (Sweden)

    Jiban Shrestha

    2014-05-01

    Full Text Available In order to identify morphological variation in maize inbred lines, one hundred five inbred lines were planted under randomized complete block design with two replications at research field of National Maize Research Program, Rampur, Chitwan, Nepal during summer season (March to June, 2010. Descriptive statistics and cluster analysis were done. The results revealed a wide range of morphological variation among the tested inbred lines. The inbred lines grouped in cluster 4 namely PUTU-13, L-9, RL-105, RL-197, RL-103, RML-9, RML-41, RL-165, RL-36, RL-76, RL-125, RL-30-3, L-6, RL-107, RL-174, RL-41, L-13, RML-76 and L-5 had 0.833 days anthesis-silking interval and earlier in flowering (tasseling in 54.50 days and silking in 55.33 days. Moreover they consisted of 1.16 plant aspect, 1.25 ear aspect, 33.08 cm tassel length and 13.5 tassel branch number. Among tested lines, the above inbred lines had better morphological traits, so it was concluded that they were good candidates for development of hybrids and synthetic varieties. DOI: http://dx.doi.org/10.3126/ije.v3i2.10521 International Journal of the Environment Vol.3(2 2014: 98-107

  16. MaizeGDB: The Maize Genetics and Genomics Database.

    Science.gov (United States)

    Harper, Lisa; Gardiner, Jack; Andorf, Carson; Lawrence, Carolyn J

    2016-01-01

    MaizeGDB is the community database for biological information about the crop plant Zea mays. Genomic, genetic, sequence, gene product, functional characterization, literature reference, and person/organization contact information are among the datatypes stored at MaizeGDB. At the project's website ( http://www.maizegdb.org ) are custom interfaces enabling researchers to browse data and to seek out specific information matching explicit search criteria. In addition, pre-compiled reports are made available for particular types of data and bulletin boards are provided to facilitate communication and coordination among members of the community of maize geneticists.

  17. Evaluating the parameters of a mobile maize dryer in practice

    Directory of Open Access Journals (Sweden)

    Josef Los

    2013-01-01

    Full Text Available The method of drying maize for grain has been recently employed on a large scale in the Czech Republic not only thanks to new maize hybrids but also thanks to the existence of new models of drying plants. One of the new post-harvest lines is a plant in Lipoltice (mobile dryer installed in 2010, storage base in 2012 where basic operational measurements were made of the energy intensiveness of drying and operating parameters of the maize dryer were evaluated. The process of maize drying had two stages, i.e. pre-drying from the initial average grain humidity of 28.55% to 19.6% in the first stage, and the additional drying from 16.7% to a final storage grain humidity of 13.7%. Mean volumes of natural gas consumed per 1 t% for drying in the first and second stage amounted to 1.275 m3 and 1.56 m3, respectively. The total mean consumption of electric energy per 1 t% was calculated to be 1.372 kWh for the given configuration of the post-harvest line.

  18. Utility of RNA Sequencing for Analysis of Maize Reproductive Transcriptomes

    Directory of Open Access Journals (Sweden)

    Rebecca M. Davidson

    2011-11-01

    Full Text Available Transcriptome sequencing is a powerful method for studying global expression patterns in large, complex genomes. Evaluation of sequence-based expression profiles during reproductive development would provide functional annotation to genes underlying agronomic traits. We generated transcriptome profiles for 12 diverse maize ( L. reproductive tissues representing male, female, developing seed, and leaf tissues using high throughput transcriptome sequencing. Overall, ∼80% of annotated genes were expressed. Comparative analysis between sequence and hybridization-based methods demonstrated the utility of ribonucleic acid sequencing (RNA-seq for expression determination and differentiation of paralagous genes (∼85% of maize genes. Analysis of 4975 gene families across reproductive tissues revealed expression divergence is proportional to family size. In all pairwise comparisons between tissues, 7 (pre- vs. postemergence cobs to 48% (pollen vs. ovule of genes were differentially expressed. Genes with expression restricted to a single tissue within this study were identified with the highest numbers observed in leaves, endosperm, and pollen. Coexpression network analysis identified 17 gene modules with complex and shared expression patterns containing many previously described maize genes. The data and analyses in this study provide valuable tools through improved gene annotation, gene family characterization, and a core set of candidate genes to further characterize maize reproductive development and improve grain yield potential.

  19. High-Throughput Phenotyping and QTL Mapping Reveals the Genetic Architecture of Maize Plant Growth1[OPEN

    Science.gov (United States)

    Huang, Chenglong; Wu, Di; Qiao, Feng; Li, Wenqiang; Duan, Lingfeng; Wang, Ke; Xiao, Yingjie; Chen, Guoxing; Liu, Qian; Yang, Wanneng

    2017-01-01

    With increasing demand for novel traits in crop breeding, the plant research community faces the challenge of quantitatively analyzing the structure and function of large numbers of plants. A clear goal of high-throughput phenotyping is to bridge the gap between genomics and phenomics. In this study, we quantified 106 traits from a maize (Zea mays) recombinant inbred line population (n = 167) across 16 developmental stages using the automatic phenotyping platform. Quantitative trait locus (QTL) mapping with a high-density genetic linkage map, including 2,496 recombinant bins, was used to uncover the genetic basis of these complex agronomic traits, and 988 QTLs have been identified for all investigated traits, including three QTL hotspots. Biomass accumulation and final yield were predicted using a combination of dissected traits in the early growth stage. These results reveal the dynamic genetic architecture of maize plant growth and enhance ideotype-based maize breeding and prediction. PMID:28153923

  20. Changes in sunflower breeding over the last fifty years

    Directory of Open Access Journals (Sweden)

    Vear Felicity

    2016-03-01

    Full Text Available This article discusses changes in sunflower breeding objectives since the introduction of hybrid varieties 50 years ago. After a reminder of the importance of some early programmes, Canadian in particular, the present situation for each breeding objective is compared with those encountered earlier. Breeding for yield has changed from maximum possible yield under intensive agriculture to yield with resistance to abiotic stresses, moderate droughts and shallow soils in particular, helped by collaboration with agronomists to produce crop models. Breeding for oil has changed from quantity to quality and the value of seed meal is again becoming economically important. Necessary disease resistances vary with agronomic practises and selection pressure on pathogens according to varietal genetics. The possibilities of new types of sunflower are also discussed. Advances in genomics will change breeding procedures, but with rapidly changing molecular techniques, international collaboration is particularly important.

  1. Confirmação molecular do 'Maize rayado fino virus' como vírus da estria do milho

    OpenAIRE

    Hammond, Rosemarie Wahnbaeck; Bedendo, Ivan Paulo

    2005-01-01

    Maize rayado fino virus (MRFV), present in various countries in Latin America, has shown similarities to corn streak virus that occurs in Brazil, regarding pathogenic, serological and histological characteristics. In the current report both virus were molecularly compared to confirm the similarities between them. MRFV was identified by nucleic acid hybridization in samples of maize tissues exhibiting symptoms of "corn stunt" disease, collected from two Brazilian States - São Paulo and Minas G...

  2. Welfare in horse breeding

    DEFF Research Database (Denmark)

    Campbell, M.L.H.; Sandøe, Peter

    2015-01-01

    and identifies areas in which data is lacking. We suggest that all methods of horse breeding are associated with potential welfare problems, but also that the judicious use of ARTs can sometimes help to address those problems. We discuss how negative welfare effects could be identified and limited and how...... positive welfare effects associated with breeding might be maximised. Further studies are needed to establish an evidence base about how stressful or painful various breeding procedures are for the animals involved, and what the lifetime welfare implications of ARTs are for future animal generations....

  3. Dry matter production and partitioning of maize hybrids and dwarf unes at four plant populations Produção e distribuição de matéria seca de híbridos e linhagens anãs de milho em quatro populações

    Directory of Open Access Journals (Sweden)

    Luis Sangoi

    1997-03-01

    Full Text Available This experiment was conducted in Ames, Iowa, USA, to compare dry matter accumulation patterns of maize genotypes contrasting in height and leafiness, and to test whether reduction in plant height an leaf number through the use of dwarfing genes or earliness can improve grain dry matter allocation. Five plant genotypes were tested: a full season hybrid adapted to central lowa (NK 4525, a short season hybrid adapted to northern Minnesota (C1070, and three dwarf lines (156-A, 302-E and I17- A. The dwarves contained, respectively, the homozygous, independent, recessive dwarfing genes d3, d1 and br2. Each genotype was sown at four plant populations: 25, 50, 75 and 100.000 plants. ha-1. Hybrids had the greatest rates of decrease in total biomass and grain dry matter per plant when population was increased, though they also had larger absolute values of these variables at any given density. Hybrids produced more grain dry matter per unit of leaf area, and a higher harvest index, regardless the plant population used. Reduction in plant height or leaf number did not improve maize efficiency in producing and partitioning dry matter to the grain.Este experimento foi conduzido em Ames, Iowa, Estados Unidos, tendo como objetivos comparar os padrões de produção e distribuição de matéria seca de genótipos de milho contrastantes quanto a estatura e número de folhas, e verificar se a redução nestas características, mediante a utilização de genes para nanismo ou cultivares precoces, pode aumentar a eficiência da planta em alocar matéria seca para a produção de grãos. Cinco genótipos foram testados: um híbrido de ciclo normal adaptado à região central de lowa (NK 4525, um híbrido de ciclo precoce adaptado à região norte do estado de Minnesota (C 1070, e três linhagens anãs (156-A, 302-E and 117-A, contendo os genes recessivos de nanismo d3, d1 and br2, respectivamente Cada genótipo foi semeado em quatro populações, equivalentes a 25

  4. INFLUENCE OF TREATMENT ON MAIZE SEED QUALITY

    Directory of Open Access Journals (Sweden)

    Ivica Beraković

    2012-12-01

    Full Text Available Due to the increasing occurrence of major pests ON corn, hybrid seed is necessary to be protected against pests and seed corn should be treated with appropriately insecticides. Choosing better technological solutions and choosing and appropriate insecticide seed treatment for corn can significantly reduce pest attack and thus enhance the production of corn. The aim of this research was to obtain based upon result information on the impact of treatment on quality of maize seed as well as the means to improve the conditions of storage and preservation of semen quality. Investigation and checking if insecticide treated seed adverse phytotoxic effect on plant growth and development in field conditions. The results indicate a significant effect of insecticide seed treatments on germination energy and non standard germination. A very significant influence of treated seed storage was also found on quality seeds. Looking at the impact of the treated hybrid on germination vigor and standard germination, a very significant hybrid impact was found out. The highest quality of the seed semen during the study was noticed with the seed of hybrid “H2”, followed by hybrid “H1”, while the hybrids “H3” and “H4” possessed less. The research shows that hybrids “H2” and “H1” are more suitable for seed treatment with insecticides than “H3” and “H4” hybrids. The field observations and research results obtained indicate a very significant impact of the treated seed on the above ground parts of plants, above ground mass, stem thickness and a very significant impact on plant spacing. The positive effect of treatment with “T1” and “T3” insecticides is visible in all conducted field researches. Plants treated with common fungicides and insecticides “T1” and “T3” had a greater height of the above ground plant parts, a larger mass of the above ground stems, greater stem thickness and better plant density treatments, compared to

  5. Review: Towards the agroecological management of ruminants, pigs and poultry through the development of sustainable breeding programmes. II. Breeding strategies.

    Science.gov (United States)

    Phocas, F; Belloc, C; Bidanel, J; Delaby, L; Dourmad, J Y; Dumont, B; Ezanno, P; Fortun-Lamothe, L; Foucras, G; Frappat, B; González-García, E; Hazard, D; Larzul, C; Lubac, S; Mignon-Grasteau, S; Moreno, C R; Tixier-Boichard, M; Brochard, M

    2016-11-01

    Agroecology uses ecological processes and local resources rather than chemical inputs to develop productive and resilient livestock and crop production systems. In this context, breeding innovations are necessary to obtain animals that are both productive and adapted to a broad range of local contexts and diversity of systems. Breeding strategies to promote agroecological systems are similar for different animal species. However, current practices differ regarding the breeding of ruminants, pigs and poultry. Ruminant breeding is still an open system where farmers continue to choose their own breeds and strategies. Conversely, pig and poultry breeding is more or less the exclusive domain of international breeding companies which supply farmers with hybrid animals. Innovations in breeding strategies must therefore be adapted to the different species. In developed countries, reorienting current breeding programmes seems to be more effective than developing programmes dedicated to agroecological systems that will struggle to be really effective because of the small size of the populations currently concerned by such systems. Particular attention needs to be paid to determining the respective usefulness of cross-breeding v. straight breeding strategies of well-adapted local breeds. While cross-breeding may offer some immediate benefits in terms of improving certain traits that enable the animals to adapt well to local environmental conditions, it may be difficult to sustain these benefits in the longer term and could also induce an important loss of genetic diversity if the initial pure-bred populations are no longer produced. As well as supporting the value of within-breed diversity, we must preserve between-breed diversity in order to maintain numerous options for adaptation to a variety of production environments and contexts. This may involve specific public policies to maintain and characterize local breeds (in terms of both phenotypes and genotypes), which could

  6. Physiology of forage maize (Zea mays L.) in relation to its production and quality

    NARCIS (Netherlands)

    Struik, P.C.

    1983-01-01

    This thesis describes and discusses the quantitative effects of changes in temperature, light intensity and photoperiod on the development, dry-matter production, dry-matter distribution, digestibility and dry-matter content of forage maize. Cultivation techniques and hybrid choice are also

  7. An Indirect Defence Trait Mediated through Egg-Induced Maize Volatiles from Neighbouring Plants.

    Directory of Open Access Journals (Sweden)

    Daniel M Mutyambai

    Full Text Available Attack of plants by herbivorous arthropods may result in considerable changes to the plant's chemical phenotype with respect to emission of herbivore-induced plant volatiles (HIPVs. These HIPVs have been shown to act as repellents to the attacking insects as well as attractants for the insects antagonistic to these herbivores. Plants can also respond to HIPV signals from other plants that warn them of impending attack. Recent investigations have shown that certain maize varieties are able to emit volatiles following stemborer egg deposition. These volatiles attract the herbivore's parasitoids and directly deter further oviposition. However, it was not known whether these oviposition-induced maize (Zea mays, L. volatiles can mediate chemical phenotypic changes in neighbouring unattacked maize plants. Therefore, this study sought to investigate the effect of oviposition-induced maize volatiles on intact neighbouring maize plants in 'Nyamula', a landrace known to respond to oviposition, and a standard commercial hybrid, HB515, that did not. Headspace volatile samples were collected from maize plants exposed to Chilo partellus (Swinhoe (Lepidoptera: Crambidae egg deposition and unoviposited neighbouring plants as well as from control plants kept away from the volatile emitting ones. Behavioural bioassays were carried out in a four-arm olfactometer using egg (Trichogramma bournieri Pintureau & Babault (Hymenoptera: Trichogrammatidae and larval (Cotesia sesamiae Cameron (Hymenoptera: Braconidae parasitoids. Coupled Gas Chromatography-Mass Spectrometry (GC-MS was used for volatile analysis. For the 'Nyamula' landrace, GC-MS analysis revealed HIPV production not only in the oviposited plants but also in neighbouring plants not exposed to insect eggs. Higher amounts of EAG-active biogenic volatiles such as (E-4,8-dimethyl-1,3,7-nonatriene were emitted from these plants compared to control plants. Subsequent behavioural assays with female T. bournieri and

  8. Birds - Breeding [ds60

    Data.gov (United States)

    California Natural Resource Agency — This data set provides access to information gathered on annual breeding bird surveys in California using a map layer developed by the Department. This data layer...

  9. Influence of growing measures on weed interference and water status in maize

    Directory of Open Access Journals (Sweden)

    Simić Milena

    2017-01-01

    Full Text Available Growing modern hybrids in narrow plant spacing together with nitrogen and herbicide application gives an advantage to maize crops over weeds. The aim of the present investigation was to evaluate the effect of nitrogen form, maize row spacing and herbicide treatment on weed and maize biomass and water usage, as well as maize yield. The investigation was conducted at the Maize Research Institute Zemun Polje, Belgrade during 2014-2016. A field experiment was set up as a split-split-plot block design with four replications. The maize hybrid ZP388 was planted, and a standard and a slow-release form of urea were applied. For each N source, maize was grown at two row spacings: narrow of 50 cm, and standard of 70 cm, while weed control treatments included: C - without herbicide application, T - application of a pre-emergence mix of herbicides. Sowing was done in the second decade of April, 2014, 2015 and 2016. Six weeks after herbicide application, the fresh biomass of weeds uprooted from 1 m2 and aboveground biomass of ten crop plants per plot were measured together with dry matter after drying in a laboratory oven. Water content (% in weed and maize plants was calculated as a relation between fresh and dry biomass. Maize yield was measured at the end of each growing season and calculated with 14% of moisture. All data were processed by ANOVA. The fresh and dry biomass of weeds were significantly (P>0.05 higher in untreated control than in the treated variant, while differences in water content were not significant between the two treatments. Row spacing and urea form did not cause significant differences in weed parameters. Related to this, maize fresh and dry biomass, as well as water content, were higher in herbicide-treated variants than in control but differences were insignificant. Maize biomass was somewhat higher in 50 cm rows and after application of the slow-release urea fertilizer. Yield was higher from 70 cm rows and after application of

  10. Short communication: QTL mapping for ear tip-barrenness in maize

    Energy Technology Data Exchange (ETDEWEB)

    Ding, J.; Ma, J.; Chen, J.; Ai, T.; Li, Z.; Tian, Z.; Wu, S.; Chen, W.; Wu, J.

    2016-11-01

    Barren tip on corn ear is an important agronomic trait in maize, which is highly associated with grain yield. Understanding the genetic basis of tip-barrenness may help to reduce the ear tip-barrenness in breeding programs. In this study, ear tip-barrenness was evaluated in two environments in a F2:3 population, and it showed significant genotypic variation for ear tip-barrenness in both environments. Using mixed-model composite interval mapping method, three additive effects quantitative trait loci (QTL) for ear tip-barrenness were mapped on chromosomes 2, 3 and 6, respectively. They explained 16.6% of the phenotypic variation, and no significant QTL × Environment interactions and digenic interactions were detected. The results indicated that additive effect was the main genetic basis for ear tip-barrenness in maize. This is the first report of QTL mapped for ear tip-barrenness in maize. (Author)

  11. Comparison of whole-genome prediction models for traits with contrasting genetic architecture in a diversity panel of maize inbred lines

    Directory of Open Access Journals (Sweden)

    Riedelsheimer Christian

    2012-09-01

    Full Text Available Abstract Background There is increasing empirical evidence that whole-genome prediction (WGP is a powerful tool for predicting line and hybrid performance in maize. However, there is a lack of knowledge about the sensitivity of WGP models towards the genetic architecture of the trait. Whereas previous studies exclusively focused on highly polygenic traits, important agronomic traits such as disease resistances, nutrifunctional or climate adaptational traits have a genetic architecture which is either much less complex or unknown. For such cases, information about model robustness and guidelines for model selection are lacking. Here, we compared five WGP models with different assumptions about the distribution of the underlying genetic effects. As contrasting model traits, we chose three highly polygenic agronomic traits and three metabolites each with a major QTL explaining 22 to 30% of the genetic variance in a panel of 289 diverse maize inbred lines genotyped with 56,110 SNPs. Results We found the five WGP models to be remarkable robust towards trait architecture with the largest differences in prediction accuracies ranging between 0.05 and 0.14 for the same trait, most likely as the result of the high level of linkage disequilibrium prevailing in elite maize germplasm. Whereas RR-BLUP performed best for the agronomic traits, it was inferior to LASSO or elastic net for the three metabolites. We found the approach of genome partitioning of genetic variance, first applied in human genetics, as useful in guiding the breeder which model to choose, if prior knowledge of the trait architecture is lacking. Conclusions Our results suggest that in diverse germplasm of elite maize inbred lines with a high level of LD, WGP models differ only slightly in their accuracies, irrespective of the number and effects of QTL found in previous linkage or association mapping studies. However, small gains in prediction accuracies can be achieved if the WGP model is

  12. Deregulation of Lesotho's maize market

    OpenAIRE

    van Schalkwyk, Herman D.; van Zyl, Johan; Botha, P.W.; Bayley, B.

    1997-01-01

    During the past year, there have been major policy reforms in Lesotho and South Africa with respect to maize pricing and marketing. In Lesotho the impact of deregulation on producers, consumers and government revenues was substantially lower than it should have been, and as a result Lesotho was not able to reap the full benefits of these changes. This is partly because information on the changes to the maize marketing system did not reach the potential beneficiaries of the new system. Free an...

  13. What drives cooperative breeding?

    Directory of Open Access Journals (Sweden)

    Walter D Koenig

    2017-06-01

    Full Text Available Cooperative breeding, in which more than a pair of conspecifics cooperate to raise young at a single nest or brood, is widespread among vertebrates but highly variable in its geographic distribution. Particularly vexing has been identifying the ecological correlates of this phenomenon, which has been suggested to be favored in populations inhabiting both relatively stable, productive environments and in populations living under highly variable and unpredictable conditions. Griesser et al. provide a novel approach to this problem, performing a phylogenetic analysis indicating that family living is an intermediate step between nonsocial and cooperative breeding birds. They then examine the ecological and climatic conditions associated with these different social systems, concluding that cooperative breeding emerges when family living is favored in highly productive environments, followed secondarily by selection for cooperative breeding when environmental conditions deteriorate and within-year variability increases. Combined with recent work addressing the fitness consequences of cooperative breeding, Griesser et al.'s contribution stands to move the field forward by demonstrating that the evolution of complex adaptations such as cooperative breeding may only be understood when each of the steps leading to it are identified and carefully integrated.

  14. EFSA Panel on Genetically Modified Organisms (GMO); Scientific Opinion on application (EFSAGMO- NL-2007-39) for the placing on the market of insect resistant and herbicide tolerant genetically modified maize MON89034 x MON88017 for food and feed uses, import and processing under Regulation (EC

    DEFF Research Database (Denmark)

    Sørensen, Ilona Kryspin

    This opinion reports on an evaluation of a risk assessment for placing on the market the genetically modified herbicide tolerant and insect resistant maize MON89034 x MON88017 for food and feed uses, import and processing. Conventional breeding methods were used in the production of maize MON89034...

  15. Evaluation of the Morpho-physiology characteristics of maize inbred lines introduced from CIMMYT to identify the best candidates for planting in acidic soil in Jasinga, Indonesia

    Science.gov (United States)

    Lubis, K.; Sutjahjo, S. H.; Syukur, M.; Trikoesoemaningtyas

    2016-08-01

    Technological developments and climate change have affected crop planting strategies. For example, maize production has expanded to sub-optimal lands, including acidic soil common in areas like Indonesia. Breeding programs have created inbred lines of maize introduced from CIMMYT; they were tested locally in acidic soils to determine their adaptability and tolerance mechanisms. Breeds CLA 46 and NEI 9008 were found to be excellent candidates for acidic soil due to their ASI, high number of grains per year, and suitable dry seed weight.

  16. The effects of cytoplasmic male sterility and xenia on the chemical composition of maize grain

    Directory of Open Access Journals (Sweden)

    Vančetović Jelena

    2009-01-01

    Full Text Available Sterile hybrids often outyield their fertile counterparts, especially if pollinated by a genetically unrelated pollinator. The combined effect of cms and xenia is referred to as the Plus-hybrid effect. The objective of this study was to determine the individual, as well as, combining effect of cms and xenia on the maize grain chemical composition. The percent of oil, protein and starch in the grain was also observed. Two sterile hybrids, their fertile counterparts and five fertile pollinator-hybrids were selected for the studies. The three-replicate trial set up according to the split-plot experimental design was performed at Zemun Polje in 2008. The obtained results show that the effects of cms on the oil percent was not significant in the studied hybrid ZP 341, while it increased at the significance level of P = 0.1 in the second observed hybrid ZP 360. The effect of this factor on the protein and starch percent was also significant (P = 0.01 in some hybrid combinations. Xenia effects on all three chemical parameters were significant (P = 0.01 in some hybrid combinations. The gained results indicate that the identification of a good combination of two hybrids, in which one would be a sterile female component, and the other a pollinator, would end up not only in the increased yield, but also in the improved maize grain quality.

  17. The present state and problems of mutation breeding

    International Nuclear Information System (INIS)

    Balint, Andor

    1983-01-01

    The major achievements and problems of mutation breeding are discussed according to recent international references. Examples for the production of microorganism resistant tobacco, maize, cabbage, disease resistant sugar cane and some freeze resistant plants are listed. Special opportunities offered by mutation to increase photosynthesis and to improve yields are discussed. The significance of the new techniques to produce induced mutants by means of tissue cultures, to fix N 2 for leguminosae and to affect the activities of N 2 fixing microorganisms is emphasized. (V.N.)

  18. USING MAIZE (ZEA MAYS L. AS A SUGAR CROP

    Directory of Open Access Journals (Sweden)

    F.E. Below

    2008-09-01

    Full Text Available The increased demand for homegrown energy has created a market for new feedstocks for the growing biofuel industry. Plants with C4 photosynthesis are particularly suited as biofuel crops because of their high radiation, water, and nitrogen (N use efficiency. C4 species that store high levels of sucrose in their stalks such as sugarcane (Saccharum spp, sorghum (Sorghum bicolor L., and maize are especially useful. Maize has been repeatedly evaluated as a sugar crop during the last century, and prevention of pollination or ear removal is typically associated with the highest concentrations of stalk sugar. Elimination of the reproductive phase, however, usually results in accelerated leaf senescence, which is expected to limit sugar accumulation. We have developed a series of hybrids that exhibit photoperiod sensitivity as an approach to simultaneously increase biomass and sugar production by crossing seven tropical inbreds with the historic temperate inbred B73. We used a tropical parent to confer photoperiod sensitivity and to greatly delay flowering and increase the anthesis-silking interval, resulting in low seed set. When grown in temperate regions these hybrids produce abundant biomass and do not exhibit accelerated leaf senescence without grain, but rather remain green and accumulate sugars in their stalks. Total biomass (stover and grain, sucrose accumulation, and the response to N of these hybrids was determined and compared to a similar number of locally grown commercial grain hybrids. On average the tropical hybrids produced 20% more total biomass than the commercial hybrids, and they showed a smaller response to the addition of fertilizer N. Total biomass yields of tropical hybrids ranged from 16.3 to 27.5 Mg/ha (average of 23.5 Mg/ha and the stalk contained from 1.7 to 3.2 Mg/ha of sucrose (average of 2.6 Mg/ha. Increasing the N supply from 0 to 225 kg/ha increased the average biomass production of tropical hybrids by only 2.2 Mg

  19. Prediction of maize phenotype based on whole-genome single nucleotide polymorphisms using deep belief networks

    Science.gov (United States)

    Rachmatia, H.; Kusuma, W. A.; Hasibuan, L. S.

    2017-05-01

    Selection in plant breeding could be more effective and more efficient if it is based on genomic data. Genomic selection (GS) is a new approach for plant-breeding selection that exploits genomic data through a mechanism called genomic prediction (GP). Most of GP models used linear methods that ignore effects of interaction among genes and effects of higher order nonlinearities. Deep belief network (DBN), one of the architectural in deep learning methods, is able to model data in high level of abstraction that involves nonlinearities effects of the data. This study implemented DBN for developing a GP model utilizing whole-genome Single Nucleotide Polymorphisms (SNPs) as data for training and testing. The case study was a set of traits in maize. The maize dataset was acquisitioned from CIMMYT’s (International Maize and Wheat Improvement Center) Global Maize program. Based on Pearson correlation, DBN is outperformed than other methods, kernel Hilbert space (RKHS) regression, Bayesian LASSO (BL), best linear unbiased predictor (BLUP), in case allegedly non-additive traits. DBN achieves correlation of 0.579 within -1 to 1 range.

  20. Applying Mendelian rules in rapeseed (Brassica napus breeding

    Directory of Open Access Journals (Sweden)

    Marjanović-Jeromela Ana

    2016-01-01

    Full Text Available Rapeseed is one of the most important sources of edible oil, raw material for industry, as well as feed. The yield and quality of rapeseed have significantly been improved in recent decades as a result of intensive breeding and optimized production technology. The application of Mendel's rules in introducing monogenic traits has also contributed to success in rapeseed breeding. Rule 1, which refers to the uniformity of F1 generation, is now the basis of widespread development of rapeseed hybrids. Rule 2, dealing with genetic segregation in the F2 generation, is the basis for understanding the process of breeding lines. Rule 3, regarding the independent segregation of genes and traits, while exempting linked traits, is the basis of combining different desirable properties by selection. In the last few decades, the systematic use of Mendel's rules has contributed to the improvement of many properties of rapeseed, including tolerance to biotic and abiotic stress, yield and seed quality. Particular progress has been made in breeding for resistance to diseases, including the identification of molecular markers for marker-assisted selection. The next objective of rapeseed breeding is to create varieties with improved tolerance to environmental stress (e.g. frost, heat, and drought. Based on Mendel's rules, classical breeding methods and the latest developments in the field of molecular genetics and breeding, future progress is expected in the field of rapeseed breeding with an emphasis on polygenic, quantitative traits such as biomass, seed, and oil yield.

  1. FUNCTIONAL MALE STERILITY AND ITS USE IN BREEDING OF VEGETABLE AND MELON CROPS

    Directory of Open Access Journals (Sweden)

    A. N. Bocharnikov

    2014-01-01

    Full Text Available The article describes the manifestation of functional male sterility and its importance in the breeding of melons. Utilization of functional male sterility allows solving the problem effective hybrid seed production.

  2. FUNCTIONAL MALE STERILITY AND ITS USE IN BREEDING OF VEGETABLE AND MELON CROPS

    OpenAIRE

    A. N. Bocharnikov

    2014-01-01

    The article describes the manifestation of functional male sterility and its importance in the breeding of melons. Utilization of functional male sterility allows solving the problem effective hybrid seed production.

  3. Effects of airborne black carbon pollution on maize

    Science.gov (United States)

    Illes, Bernadett; Anda, Angela; Soos, Gabor

    2013-04-01

    The black carbon (BC) changes the radiation balance of the Earth and contributes to global warming. The airborne BC deposited on the surface of plant, changing the radiation balance, water balance and the total dry matter (TDM) content of plant. The objective of our study was to investigate the impact of soot originated from motor vehicle exhaust on maize. The field experiment was carried out in Keszthely Agrometeorological Research Station (Hungary) in three consecutive years (2010, 2011, 2012) of growing season. The test plant was the maize hybrid Sperlona (FAO 340) with short growing season. The BC was chemically "pure", which means that it is free any contaminants (e.g. heavy metals). The BC was coming from the Hankook Tyre Company (Dunaújváros, Hungary), where used that for improve the wear resistance of tires. We used a motorised sprayer of SP 415 type to spray the BC onto the leaf surface. The leaf area index (LAI) was measured each week on the same 12 sample maize in each treatment using an LI 3000A automatic planimeter (LI-COR, Lincoln, NE). Albedo was measured by pyranometers of the CMA-11 type (Kipp & Zonen, Vaisala), what we placed the middle of the plot of 0.3 ha. The effects of BC were studied under two different water supplies: evapotranspirometers of Thornthwaite type were used for "ad libitum" treatment and rainfed treatment in field plots. In 2010 and 2012, a big difference was not observed in the case of LAI in the effects of BC. However, in 2011 there was a significant difference. The LAI of the BC polluted maize was higher (10-15%, P<0.05), than the LAI of the control maize in the rainfed plot and in the ET chambers, respectively. The albedo of the BC contaminated maize decreased (15-30%, P<0.05) in all three years. We also detected that the green plant surface of maize increased on BC contaminated treatment. These results may suggest that the plant is able to absorb the additional carbon source through the leaves. The albedo decreased

  4. Impact of mutation breeding in rice

    International Nuclear Information System (INIS)

    Rutger, J.N.

    1992-01-01

    More cultivars have been developed in rice through the use of mutation breeding than in any other crop. Direct releases of mutants as cultivars began some 30 years ago, and now total 198 cultivars. During the last 20 years, increasing use has been made of induced mutants in cross-breeding programs, leading to 80 additional cultivars. Principal improvements through mutation breeding have been earlier maturity, short stature, and grain character modifications. Rice has been a popular subject of mutagenesis because it is the world's leading food crop, has diploid inheritance, and is highly self-pollinated. In recent years induced mutation has been exploited to develop breeding tool mutants, which are defined as mutants that in themselves may not have direct agronomic application but may be useful genetic tools for crop improvement. Examples include the eui gene, hull colour mutants, normal genetic male steriles, and environmentally sensitive genetic male steriles. The environmentally sensitive genetic male steriles, especially those in which male sterility can be turned on or off by different photoperiod lengths, show promise for simplifying hybrid rice seed production both in China and the USA. Future applications of mutation in rice include induction of unusual endosperm starch types, plant types with fewer but more productive tillers, dominant dwarfs, dominant genetic male steriles, extremely early maturing mutants, nutritional mutants, and in vitro-derived mutants for tolerance to herbicides or other growth stresses. Refs, 4 figs, 2 tabs

  5. Socio-economic assessment on maize production and adoption of open pollinated improved varieties in Dang, Nepal

    Directory of Open Access Journals (Sweden)

    Sanjiv Subedi

    2017-12-01

    Full Text Available Research was conducted from February to May, 2017 for socioeconomic assessment on maize production and adoption of open pollinated improved maize varieties in Dang district of Nepal. Altogether, 100 samples were taken by simple random sampling from the major maize growing areas and relevant publications were reviewed. Focal Group Discussion and Key Informant Survey were also done. Descriptive statistics, unpaired t-test, probit regression and indexing were used for data analysis using statistical tools- SPSS, STATA and MS-Excel. Probit econometric model revealed that ethnicity (1% level, gender (5% level, area under open pollinated improved maize (1% level, seed source dummy (1 % level and number of visits by farmers to agrovet (5% level significantly determined the adoption of open pollinated improved maize varieties. In addition, unpaired t-test revealed that the productivity of open pollinated improved maize varieties was significantly higher (at 1% level than local; also, the multinational companies' hybrids showed significantly higher productivity (at 1% level when compared to open pollinated improved varieties. Furthermore, indexing identified- lack of availability of quality seeds and fertilizers (I= 0.86 as the major problem associated with the maize production. Giving aggressive subsidy on open pollinated improved seeds and dealership to registered agrovets for selling the subsidy seeds could enhance the adoption. Moreover, government organizations working in the areas of agricultural extension and research must focus on adoption of open pollinated improved maize varieties among the farmers, substituting the local and developing the high yielding hybrid varieties in Nepal to increase the maize productivity.

  6. SEED AND POLLEN TTRANSMISSION OF A NEW UNIDENTIFIED MOTTLE DISORDER OF MAIZE IN INDONESIA

    Directory of Open Access Journals (Sweden)

    W. Wakman

    2018-01-01

    Full Text Available A new unidentified mottle disorder of maize Indonesia was found at the Research Institute for Maize and Other Cereals (RIMOC, Maros, South Sulawesi in 1995. Attempts to identify the disorder were made by mechanical inoculation, insect vector (Rhopalosiphum maidis and Peregrinus maidis transmission, seed and pollen transmission, electron microscopy, and serological test. Fifty seeds from each of 22 ears of Arjuna maize plants showing the disorder were planted and symptoms on the seedlings were recorder at 1, 2, and 3 weeks after planting. The percentage of seedlings showing the disorder ranged from 40 to 100. Pollen of affected Arjuna was then used to pollinate four sweet corn female flowers. Hybrid seeds (50 per ear of the crosses were planted and symptoms were recorded at 1, 2, and 3 weeks after planting. The results showed that percentage of seedlings showing the disorder ranged from 22 to 84. Electron microscopy and ELISA tests on 15 viruses and one phytospiroplasma antiserum however, gave negative results. Therefore, maize disorder at Maros was not identical to any known viral disease of maize. It could be a genetical disorder and has been given the name maize mottle.

  7. Practicable group testing method to evaluate weight/weight GMO content in maize grains.

    Science.gov (United States)

    Mano, Junichi; Yanaka, Yuka; Ikezu, Yoko; Onishi, Mari; Futo, Satoshi; Minegishi, Yasutaka; Ninomiya, Kenji; Yotsuyanagi, Yuichi; Spiegelhalter, Frank; Akiyama, Hiroshi; Teshima, Reiko; Hino, Akihiro; Naito, Shigehiro; Koiwa, Tomohiro; Takabatake, Reona; Furui, Satoshi; Kitta, Kazumi

    2011-07-13

    Because of the increasing use of maize hybrids with genetically modified (GM) stacked events, the established and commonly used bulk sample methods for PCR quantification of GM maize in non-GM maize are prone to overestimate the GM organism (GMO) content, compared to the actual weight/weight percentage of GM maize in the grain sample. As an alternative method, we designed and assessed a group testing strategy in which the GMO content is statistically evaluated based on qualitative analyses of multiple small pools, consisting of 20 maize kernels each. This approach enables the GMO content evaluation on a weight/weight basis, irrespective of the presence of stacked-event kernels. To enhance the method's user-friendliness in routine application, we devised an easy-to-use PCR-based qualitative analytical method comprising a sample preparation step in which 20 maize kernels are ground in a lysis buffer and a subsequent PCR assay in which the lysate is directly used as a DNA template. This method was validated in a multilaboratory collaborative trial.

  8. Molecular Basis of Resistance to Fusarium Ear Rot in Maize

    Directory of Open Access Journals (Sweden)

    Alessandra Lanubile

    2017-10-01

    Full Text Available The impact of climate change has been identified as an emerging issue for food security and safety, and the increased incidence of mycotoxin contamination in maize over the last two decades is considered a potential emerging hazard. Disease control by chemical and agronomic approaches is often ineffective and increases the cost of production; for this reason the exploitation of genetic resistance is the most sustainable method for reducing contamination. The review focuses on the significant advances that have been made in the development of transcriptomic, genetic and genomic information for maize, Fusarium verticillioides molds, and their interactions, over recent years. Findings from transcriptomic studies have been used to outline a specific model for the intracellular signaling cascade occurring in maize cells against F. verticillioides infection. Several recognition receptors, such as receptor-like kinases and R genes, are involved in pathogen perception, and trigger down-stream signaling networks mediated by mitogen-associated protein kinases. These signals could be orchestrated primarily by hormones, including salicylic acid, auxin, abscisic acid, ethylene, and jasmonic acid, in association with calcium signaling, targeting multiple transcription factors that in turn promote the down-stream activation of defensive response genes, such as those related to detoxification processes, phenylpropanoid, and oxylipin metabolic pathways. At the genetic and genomic levels, several quantitative trait loci (QTL and single-nucleotide polymorphism markers for resistance to Fusarium ear rot deriving from QTL mapping and genome-wide association studies are described, indicating the complexity of this polygenic trait. All these findings will contribute to identifying candidate genes for resistance and to applying genomic technologies for selecting resistant maize genotypes and speeding up a strategy of breeding to contrast disease, through plants

  9. IMAZAPYR-RESISTANT MAIZE TECHNOLOGY ADOPTION FOR ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    decisions by protecting maize (Zea mays L.) crop in western Kenya from Striga. Key Words: Adopters, Zea ... Africa, efficient and profitable production of maize is severely constrained by ..... gap by understanding its source. African. Journal of ...

  10. Studies on mutant breeding of Hibiscus syriacus

    International Nuclear Information System (INIS)

    Song, Hi Sup; Kim, Jin Kyu; Lee, Ki Un; Kim, Young Taik.

    1997-01-01

    Hibiscus has been known as a national flower of Korea. Hibiscus has such a characteristic of self-incompatibility that all the plant exist as natural hybrids and have heterogeneous genes. Many domestic 91 varieties of Hibiscus syriacus were collected. Radiosensitivity of H. Syriacus irradiated with γ-ray was investigated in plant cuttings. The plant height was reduced by 45% in 5KR irradiated group, compared to control group. The radiation dose of 5KR could be recommended for mutation breeding of Hibiscus cuttings. Radiosensitivity of γ-ray irradiated Hibiscus seed were investigated. The germination rate, survival rate and plant height was better in the 4KR irradiation plot than control. The radiation dose of 10∼12KR are recommended for mutation breeding of Hibiscus. Promising mutant lines were selected form the varieties of Hwarang, Wolsan no. 176, Ilpyondansim, Emille, Hanol, Yongkwang, Saeyongkwang, Chungmu, Imjinhong, Arang, Hungdansim-1 and Hongdansim-2. (author). 66 refs., 16 tabs., 13 figs

  11. Studies on mutant breeding of Hibiscus syriacus

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hi Sup; Kim, Jin Kyu; Lee, Ki Un; Kim, Young Taik

    1997-01-01

    Hibiscus has been known as a national flower of Korea. Hibiscus has such a characteristic of self-incompatibility that all the plant exist as natural hybrids and have heterogeneous genes. Many domestic 91 varieties of Hibiscus syriacus were collected. Radiosensitivity of H. Syriacus irradiated with {gamma}-ray was investigated in plant cuttings. The plant height was reduced by 45% in 5KR irradiated group, compared to control group. The radiation dose of 5KR could be recommended for mutation breeding of Hibiscus cuttings. Radiosensitivity of {gamma}-ray irradiated Hibiscus seed were investigated. The germination rate, survival rate and plant height was better in the 4KR irradiation plot than control. The radiation dose of 10{approx}12KR are recommended for mutation breeding of Hibiscus. Promising mutant lines were selected form the varieties of Hwarang, Wolsan no. 176, Ilpyondansim, Emille, Hanol, Yongkwang, Saeyongkwang, Chungmu, Imjinhong, Arang, Hungdansim-1 and Hongdansim-2. (author). 66 refs., 16 tabs., 13 figs.

  12. In potato breeding, fewer chromosomes may be better

    Science.gov (United States)

    The autotetraploid nature of the potato crop hinders breeding progress. In this paper, I describe the advantages of moving to a diploid inbred-hybrid system. This will allow us to reduce the genetic load in potato while assembling desirable combinations of genes. This effort requires us to generate ...

  13. Changes in Phenolic Acid Content in Maize during Food Product Processing.

    Science.gov (United States)

    Butts-Wilmsmeyer, Carrie J; Mumm, Rita H; Rausch, Kent D; Kandhola, Gurshagan; Yana, Nicole A; Happ, Mary M; Ostezan, Alexandra; Wasmund, Matthew; Bohn, Martin O

    2018-04-04

    The notion that many nutrients and beneficial phytochemicals in maize are lost due to food product processing is common, but this has not been studied in detail for the phenolic acids. Information regarding changes in phenolic acid content throughout processing is highly valuable because some phenolic acids are chemopreventive agents of aging-related diseases. It is unknown when and why these changes in phenolic acid content might occur during processing, whether some maize genotypes might be more resistant to processing induced changes in phenolic acid content than other genotypes, or if processing affects the bioavailability of phenolic acids in maize-based food products. For this study, a laboratory-scale processing protocol was developed and used to process whole maize kernels into toasted cornflakes. High-throughput microscale wet-lab analyses were applied to determine the concentrations of soluble and insoluble-bound phenolic acids in samples of grain, three intermediate processing stages, and toasted cornflakes obtained from 12 ex-PVP maize inbreds and seven hybrids. In the grain, insoluble-bound ferulic acid was the most common phenolic acid, followed by insoluble-bound p-coumaric acid and soluble cinnamic acid, a precursor to the phenolic acids. Notably, the ferulic acid content was approximately 1950 μg/g, more than ten-times the concentration of many fruits and vegetables. Processing reduced the content of the phenolic acids regardless of the genotype. Most changes occurred during dry milling due to the removal of the bran. The concentration of bioavailable soluble ferulic and p-coumaric acid increased negligibly due to thermal stresses. Therefore, the current dry milling based processing techniques used to manufacture many maize-based foods, including breakfast cereals, are not conducive for increasing the content of bioavailable phenolics in processed maize food products. This suggests that while maize is an excellent source of phenolics, alternative

  14. Effects of heat-shock treatment and genotype on radiosensitivity of maize seeds

    International Nuclear Information System (INIS)

    Yamagata, Hirotada; Tanisaka, Takatoshi; Harima, Kunio

    1975-01-01

    In order to clarify the internal and external factors responsible for radiosensitivity of seed, and to induce mutations more effectively, two experiments were conducted using maize. (1) Seeds of an inbred line were irradiated with γ rays at an extremely low temperature (-70 0 C) and then dipped in hot water (60 0 C, 30 sec.). Through such heat-shock treatment the radiosensitivity of maize seeds was remarkably reduced: LD 50 and RD 50 for growth rose as high as about three times and about twice, respectively. (2) Seeds of seven strains including four inbred lines, two single-cross hybrids and one double-cross hybrid were exposed to γ rays by the ordinary procedure. Hybrids, regardless of whether they were single cross or double cross, were clearly proved to surpass their parental strains in radiation tolerance, both in survival rate and in culm length. These descents of radiosensitivity were considered to be due mainly to the increased heterozygosity. (auth.)

  15. Maize, tropical (Zea mays L.).

    Science.gov (United States)

    Assem, Shireen K

    2015-01-01

    Maize (Zea mays L.) is the third most important food crop globally after wheat and rice. In sub-Saharan Africa, tropical maize has traditionally been the main staple of the diet; 95 % of the maize grown is consumed directly as human food and as an important source of income for the resource-poor rural population. The biotechnological approach to engineer biotic and abiotic traits implies the availability of an efficient plant transformation method. The production of genetically transformed plants depends both on the ability to integrate foreign genes into target cells and the efficiency with which plants are regenerated. Maize transformation and regeneration through immature embryo culture is the most efficient system to regenerate normal transgenic plants. However, this system is highly genotype dependent. Genotypes adapted to tropic areas are difficult to regenerate. Therefore, transformation methods used with model genotypes adapted to temperate areas are not necessarily efficient with tropical lines. Agrobacterium-mediated transformation is the method of choice since it has been first achieved in 1996. In this report, we describe a transformation method used successfully with several tropical maize lines. All the steps of transformation and regeneration are described in details. This protocol can be used with a wide variety of tropical lines. However, some modifications may be needed with recalcitrant lines.

  16. Zealactones. Novel natural strigolactones from maize.

    Science.gov (United States)

    Charnikhova, Tatsiana V; Gaus, Katharina; Lumbroso, Alexandre; Sanders, Mark; Vincken, Jean-Paul; De Mesmaeker, Alain; Ruyter-Spira, Carolien P; Screpanti, Claudio; Bouwmeester, Harro J

    2017-05-01

    In the root exudate and root extracts of maize hybrid cv NK Falkone seven putative strigolactones were detected using UPLC-TQ-MS-MS. All seven compounds displayed MS-MS-fragmentation common for strigolactones and particularly the presence of a fragment of m/z 97 Da, which may indicate the presence of the so-called D-ring, suggests they are strigolactones. The levels of all these putative strigolactones increased upon phosphate starvation and decreased upon fluridone (carotenoid biosynthesis inhibitor) treatment, both of which are a common response for strigolactones. All seven compounds were subsequently isolated with prep-HPLC-MS. They all exhibited Striga hermonthica seed germination inducing activity just as the synthetic strigolactone analog GR24. The structure of two of the seven compounds was elucidated by NMR spectroscopy as: methyl (2E,3E)-4-(3,3-dimethyl-5-oxo-2-(prop-1-en-2-yl)tetrahydrofuran-2-yl)-2-(((4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)but-3-enoate (two diastereomers 1a and 1b). Strigolactones (1a/b) are closely related to the methyl ester of carlactonoic acid (MeCLA) and heliolactone. However, they contain a unique 4,4-dimethyltetrahydrofuran-2-one motif as the "A-ring" instead of the classical (di)methylcyclohexene. Because these compounds were isolated from maize (Zea mays) we called them "zealactone 1a and 1b". The implications of this discovery for our view on strigolactones and their biosynthesis are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Genome-editing technologies and their potential application in horticultural crop breeding

    Science.gov (United States)

    Xiong, Jin-Song; Ding, Jing; Li, Yi

    2015-01-01

    Plant breeding, one of the oldest agricultural activities, parallels human civilization. Many crops have been domesticated to satisfy human's food and aesthetical needs, including numerous specialty horticultural crops such as fruits, vegetables, ornamental flowers, shrubs, and trees. Crop varieties originated through selection during early human civilization. Other technologies, such as various forms of hybridization, mutation, and transgenics, have also been invented and applied to crop breeding over the past centuries. The progress made in these breeding technologies, especially the modern biotechnology-based breeding technologies, has had a great impact on crop breeding as well as on our lives. Here, we first review the developmental process and applications of these technologies in horticultural crop breeding. Then, we mainly describe the principles of the latest genome-editing technologies and discuss their potential applications in the genetic improvement of horticultural crops. The advantages and challenges of genome-editing technologies in horticultural crop breeding are also discussed. PMID:26504570

  18. Studies on mutation breeding of hibiscus syriacuse

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hee Sub; Kim, Jin Kyu; Lee, Ki Un; Lim, Yong Taek [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-12-01

    Hibiscus has been known as a national flower of Korea. Hibiscus has ahch a characteristic of self-incompatibility that all the plants exist as natural hybrids and have heterogeneous genes. Thirth two domestic varieties were propagated. Radiosensitivity of H. syriacus irradiated with gamma ray was investigated in plant cuttings. The plant height was reduced by 45 percent in 5 kR irradiated group compared to control group. The radiation dose of 5 kR could be rrecommended for mutation breeding of Hibiscus cuttings. Promising mutant lines were selected form the varieties of Hwarang Wolsan 176, I1pyondansim and Emille. 6 tabs., 2 figs., 13 refs., 4 ills. (Author).

  19. Studies on mutation breeding of hibiscus syriacuse

    International Nuclear Information System (INIS)

    Song, Hee Sub; Kim, Jin Kyu; Lee, Ki Un; Lim, Yong Taek

    1995-12-01

    Hibiscus has been known as a national flower of Korea. Hibiscus has ahch a characteristic of self-incompatibility that all the plants exist as natural hybrids and have heterogeneous genes. Thirth two domestic varieties were propagated. Radiosensitivity of H. syriacus irradiated with gamma ray was investigated in plant cuttings. The plant height was reduced by 45 percent in 5 kR irradiated group compared to control group. The radiation dose of 5 kR could be rrecommended for mutation breeding of Hibiscus cuttings. Promising mutant lines were selected form the varieties of Hwarang Wolsan 176, I1pyondansim and Emille. 6 tabs., 2 figs., 13 refs., 4 ills. (Author)

  20. Development of breeding objectives for beef cattle breeding ...

    African Journals Online (AJOL)

    Mnr J F Kluyts

    However, to solve the simultaneous equations the ... The aggregate breeding value represents a fundamental concept, the breeding objective, which is ..... Two properties characterise a linear programming problem. The first is additivity, ...

  1. Maize Bioactive Peptides against Cancer

    Science.gov (United States)

    Díaz-Gómez, Jorge L.; Castorena-Torres, Fabiola; Preciado-Ortiz, Ricardo E.; García-Lara, Silverio

    2017-06-01

    Cancer is one of the main chronic degenerative diseases worldwide. In recent years, consumption of whole-grain cereals and their derived food products has been associated with reduction risks of various types of cancer. Cereals main biomolecules includes proteins, peptides, and amino acids present in different quantities within the grain. The nutraceutical properties associated with peptides exerts biological functions that promote health and prevent this disease. In this review, we report the current status and advances on maize peptides regarding bioactive properties that have been reported such as antioxidant, antihypertensive, hepatoprotective, and anti-tumour activities. We also highlighted its biological potential through which maize bioactive peptides exert anti-cancer activity. Finally, we analyse and emphasize the possible areas of application for maize peptides.

  2. Mapping and validation of quantitative trait loci for resistance to Cercospora zeae-maydis infection in tropical maize (Zea mays L.).

    Science.gov (United States)

    Pozar, Gilberto; Butruille, David; Silva, Heyder Diniz; McCuddin, Zoe Patterson; Penna, Julio Cesar Viglioni

    2009-02-01

    Breeding for resistance to gray leaf spot, caused by Cercospora zeae-maydis (Cz) is paramount for many maize environments, in particular under warm and humid growing conditions. In this study, we mapped and characterized quantitative trait loci (QTL) involved in the resistance of maize against Cz. We confirmed the impact of the QTL on disease severity using near-isogenic lines (NILs), and estimated their effects on three major agronomic traits using their respective near isogenic hybrids (NIHs), which we obtained by crossing the NILs with an inbred from a complementary heterotic pool. We further validated three of the four QTL that were mapped using the Multiple Interval Mapping approach and showed LOD values>2.5. NILs genotype included all combinations between favorable alleles of the two QTL located in chromosome 1 (Q1 in bin 1.05 and Q2 in bin 1.07), and the allele in chromosome 3 (Q3 in bin 3.07). Each of the three QTL separately significantly reduced the severity of Cz. However, we found an unfavorable epistatic interaction between Q1 and Q2: presence of the favorable allele at one of the QTL allele effectively nullified the effect of the favorable allele at the other. In contrast, the interaction between Q2 and Q3 was additive, promoting the reduction of the severity to a greater extent than the sum of their individual effects. When evaluating the NIH we found significant individual effects for Q1 and Q3 on gray leaf spot severity, for Q2 on stalk lodging and grain yield, and for Q3 on grain moisture and stalk lodging. We detected significant epitasis between Q1 and Q2 for grain moisture and between Q1 and Q3 for stalk lodging. These results suggest that the combination of QTL impacts the effectiveness of marker-assisted selection procedures in commercial product development programs.

  3. Sugar beet breeding

    Science.gov (United States)

    Sugar beet is a recent crop developed solely for extraction of the sweetener sucrose. Breeding and improvement of Beta vulgaris for sugar has a rich historical record. Sugar beet originated from fodder beet in the 1800s, and selection has increased sugar content from 4 to 6% then to over 18% today. ...

  4. Penguin breeding in Edinburgh

    NARCIS (Netherlands)

    Gillespie, T.H.; F.R.S.E.,; F.Z.S.,

    1939-01-01

    The Scottish National Zoological Park at Edinburgh has been notably successful in keeping and breeding penguins. It is happy in possessing as a friend and benefactor, Mr Theodore E. Salvesen, head of the firm of Christian Salvesen & Co., Leith, to whose interest and generosity it owes the great

  5. Beyond breeding area management

    DEFF Research Database (Denmark)

    Pedersen, Lykke; Thorup, Kasper; Tøttrup, Anders P.

    Every year, billions of songbirds migrate thousands of kilometres between their European breeding grounds and African overwintering area. As migratory birds are dependent on resources at a number of sites varying in both space and time, they are likely to be more vulnerable to environmental chang...... and provide important information for conservation management of migratory birds....

  6. Plant breeding and genetics

    Science.gov (United States)

    The ultimate goal of plant breeding is to develop improved crops. Improvements can be made in crop productivity, crop processing and marketing, and/or consumer quality. The process of developing an improved cultivar begins with intercrossing lines with high performance for the traits of interest, th...

  7. Mutation breeding in mangosteen

    International Nuclear Information System (INIS)

    Mohd Khalid Mohd Zain

    2002-01-01

    Mangosteen the queen of the tropical fruits is apomitic and only a cultivar is reported and it reproduces asexually. Conventional breeding is not possible and the other methods to create variabilities are through genetic engineering and mutation breeding. The former technique is still in the infantry stage in mangosteen research while the latter has been an established tool in breeding to improve cultivars. In this mutation breeding seeds of mangosteen were irradiated using gamma rays and the LD 50 for mangosteen was determined and noted to be very low at 10 Gy. After sowing in the seedbed, the seedlings were transplanted in polybags and observed in the nursery bed for about one year before planted in the field under old oil palm trees in Station MARDI, Kluang. After evaluation and screening, about 120 mutant mangosteen plants were selected and planted in Kluang. The plants were observed and some growth data taken. There were some mutant plants that have good growth vigour and more vigorous that the control plants. The trial are now in the fourth year and the plants are still in the juvenile stage. (Author)

  8. Plant Breeding Goes Microbial

    NARCIS (Netherlands)

    Wei, Zhong; Jousset, Alexandre

    Plant breeding has traditionally improved traits encoded in the plant genome. Here we propose an alternative framework reaching novel phenotypes by modifying together genomic information and plant-associated microbiota. This concept is made possible by a novel technology that enables the

  9. Putting the Function in Maize Genomics

    Directory of Open Access Journals (Sweden)

    Stephen P. Moose

    2009-07-01

    Full Text Available The 51st Maize Genetics Conference was held March 12–15, 2009 at Pheasant Run Resort in St. Charles, Illinois. Nearly 500 attendees participated in a scientific program (available at covering a wide range of topics which integrate the rich biology of maize with recent discoveries in our understanding of the highly dynamic maize genome. Among the many research themes highlighted at the conference, the historical emphasis on studying the tremendous phenotypic diversity of maize now serves as the foundation for maize as a leading experimental system to characterize the mechanisms that generate variation in complex plant genomes and associate evolutionary change with phenotypes of interest.

  10. R and D activities on radiation induced mutation breeding

    International Nuclear Information System (INIS)

    Lapade, A.G.; Asencion, A.B.; Santos, I.S.; Grafia, A.O.; Veluz, AM.S.; Barrida, A.C.; Marbella, L.J.

    1996-01-01

    This paper summarizes the accomplishments, prospects and future plans of mutation breeding for crop improvement at the Philippine Nuclear Research Institute (PNRI). Mutation induction has become a proven way creating variation within a crop variety and inducing desired attributes that cannot be found in nature or have been lost during evolution. Several improved varieties with desirable traits were successfully developed through induced mutation breeding at our research institute. In rice, mutation breeding has resulted in the development of new varieties: (1) PARC 2, (2) Milagrosa mutant, (3) Bengawan mutant and (4) Azmil mutant. Mutation breeding in leguminous crops has led to the induction of an improved L 114 soybean mutant that is shorter that the original variety but yield about 40% more. Several PAEC mungbean varieties characterized with long pods that are non-shattering were also induced. In asexually propagated crops, an increase in yield and chlorophyll mutants were obtained in sweet potatos. Likewise, chlorophyll mutant which look-like 'ornamental bromeliads' and a mutant with reduced spines have been developed in pineapple Queen variety. At present, we have started a new project in mutation breeding in ornamentals. Tissue culture is being utilized in our mutation breeding program. In the near future, radiation induced mutagenesis coupled with in vitro culture techniques on protoplast culture and somatic hybridization will be integrated into our mutation breeding program to facilitate the production of new crop varieties. (author)

  11. Biotechnological approach in crop improvement by mutation breeding in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Soeranto, H.; Sobrizal; Sutarto, Ismiyati; Manurung, Simon; Mastrizal [National Nuclear Energy Agency, Center for Research and Development of Isotope and Radiation Technology, Jakarta (Indonesia)

    2002-02-01

    Mutation breeding has become a proven method of improving crop varieties. Most research on plant mutation breeding in Indonesia is carried out at the Center for Research and Development of Isotope and Radiation Technology, National Nuclear Energy Agency (BATAN). Nowadays, a biotechnological approach has been incorporated in some mutation breeding researches in order to improve crop cultivars. This approach is simply based on cellular totipotency, or the ability to regenerate whole, flowering plants from isolated organs, pieces of tissue, individual cells, and protoplasts. Tissue culture technique has bee extensively used for micro propagation of disease-free plants. Other usage of this technique involves in various steps of the breeding process such as germplasm preservation, clonal propagation, and distant hybridization. Mutation breeding combined with tissue culture technique has made a significant contribution in inducing plant genetic variation, by improving selection technology, and by accelerating breeding time as for that by using anther or pollen culture. In Indonesia, research on mutation breeding combined with tissue culture techniques has been practiced in different crop species including rice, ginger, banana, sorghum etc. Specially in rice, a research on identification of DNA markers linked to blast disease resistance is now still progressing. A compiled report from some research activities is presented in this paper. (author)

  12. Global maize production, utilization, and consumption.

    Science.gov (United States)

    Ranum, Peter; Peña-Rosas, Juan Pablo; Garcia-Casal, Maria Nieves

    2014-04-01

    Maize (Zea mays), also called corn, is believed to have originated in central Mexico 7000 years ago from a wild grass, and Native Americans transformed maize into a better source of food. Maize contains approximately 72% starch, 10% protein, and 4% fat, supplying an energy density of 365 Kcal/100 g and is grown throughout the world, with the United States, China, and Brazil being the top three maize-producing countries in the world, producing approximately 563 of the 717 million metric tons/year. Maize can be processed into a variety of food and industrial products, including starch, sweeteners, oil, beverages, glue, industrial alcohol, and fuel ethanol. In the last 10 years, the use of maize for fuel production significantly increased, accounting for approximately 40% of the maize production in the United States. As the ethanol industry absorbs a larger share of the maize crop, higher prices for maize will intensify demand competition and could affect maize prices for animal and human consumption. Low production costs, along with the high consumption of maize flour and cornmeal, especially where micronutrient deficiencies are common public health problems, make this food staple an ideal food vehicle for fortification. © 2014 New York Academy of Sciences. The World Health Organization retains copyright and all other rights in the manuscript of this article as submitted for publication.

  13. On the Breeding of Bivoltine Breeds of the Silkworm, Bombyx mori L. (Lepidoptera: Bombycidae, Tolerant to High Temperature and High Humidity Conditions of the Tropics

    Directory of Open Access Journals (Sweden)

    Harjeet Singh

    2010-01-01

    Full Text Available The hot climatic conditions of tropics prevailing particularly in summer are contributing to the poor performance of the bivoltine breeds and the most important aspect is that many quantitative characters such as viability and cocoon traits decline sharply when temperature is high. Hence, in a tropical country like India, it is very essential to develop bivoltine breeds/hybrids which can withstand the high temperature stress conditions. This has resulted in the development of CSR18 × CSR19, compatible hybrid for rearing throughout the year by utilizing Japanese thermotolerant hybrids as breeding resource material. Though, the introduction of CSR18 × CSR19 in the field during summer months had considerable impact, the productivity level and returns realized do not match that of other productive CSR hybrids. Therefore, the acceptance level of this hybrid with the farmers was not up to the expected level. This has necessitated the development of a temperature tolerant hybrid with better productivity traits than CSR18 × CSR19. Though, it was a difficult task to break the negative correlation associated with survival and productivity traits, attempts on this line had resulted in the development of CSR46 × CSR47, a temperature tolerant bivoltine hybrid with better productivity traits than CSR18 × CSR19. However, though, these hybrids are tolerant to high temperature environments, they are not tolerant to many of the silkworm diseases. Keeping this in view, an attempt is made to develop silkworm hybrids tolerant to high temperature environments.

  14. Mutation breeding newsletter. No. 45

    International Nuclear Information System (INIS)

    2001-07-01

    This issue of the Mutation Breeding newsletter contains 39 articles dealing with radiation induced mutations and chemical mutagenesis techniques in plant breeding programs with the aims of improving crop productivity and disease resistance as well as exploring genetic variabilities

  15. Mirror hybrid reactors

    International Nuclear Information System (INIS)

    Moir, R.W.

    1978-01-01

    The fusion-fission hybrid is a combination of the fusion and fission processes, having features which are complementary. Fission energy is running out of readily available fuel, and fusion has extra neutrons which can be used to breed that fission fuel. Fusion would have to take on an extra burden of radioactivity, but this early application would give fusion, which does not work well enough now to make power, practical experience which may accelerate development of pure fusion

  16. Morphological Indices in Mangalitsa Breed

    Directory of Open Access Journals (Sweden)

    Eleonora Nistor

    2012-10-01

    Full Text Available Observations were made in several Mangalitsa farm from Hungary and Romania on Red, Blonde and Swallowbelliedvarieties. Body measurements were performed on a total of 175 individuals of Mangalitsa and Mangalitsa xDuroc hybrids. There are differences in physical development among Mangalitsa varieties: blond variety has the bestbody development followed by red and swallow-bellied varieties. The average body weight for Mangalitsa pigs was109.031.4 kg and the thoracic perimeter 115.180.95 cm. Results obtained indicate that body development ofMangalitsa pigs from Hungary area, are close to the breed standard. In average height at withers was 65.872.09 cm,while height at back was 72.591.2 cm. Low coefficient of variation for both measurements (CV%=1.83 for withersheigh and 1.52% for back height indicate that pigs populations in which measurements were made are veryhomogeneous.

  17. Species hybridization in the genus Pinus

    Science.gov (United States)

    Peter W. Garrett

    1979-01-01

    Results of a breeding program in which a large number of pine species were tested indicate that a number of species and hybrids may be useful in the northeastern United States. Austrian black pine x Japanese black pine and hybrids containing Japanese red pine all had good growth rates. While none of the soft pines grew faster than eastern white pine, a number of...

  18. Methods to classify maize cultivars in use efficiency and response to nitrogen

    Directory of Open Access Journals (Sweden)

    Cleiton Lacerda Godoy

    2013-10-01

    Full Text Available n plant breeding programs that aim to obtain cultivars with nitrogen (N use efficiency, the focus is on methods of selection and experimental procedures that present low cost, fast response, high repeatability, and can be applied to a large number of cultivars. Thus, the objectives of this study were to classify maize cultivars regarding their use efficiency and response to N in a breeding program, and to validate the methodology with contrasting doses of the nutrient. The experimental design was a randomized block with the treatments arranged in a split-plot scheme with three replicates and five N doses (0, 30, 60, 120 and 200 kg ha-1 in the plots, and six cultivars in subplots. We compared a method examining the efficiency and response (ER with two contrasting doses of N. After that, the analysis of variance, mean comparison and regression analysis were performed. In conclusion, the method of the use efficiency and response based on two N levels classifies the cultivars in the same way as the regression analysis, and it is appropriate in plant breeding routine. Thus, it is necessary to identify the levels of N required to discriminate maize cultivars in conditions of low and high N availability in plant breeding programs that aim to obtain efficient and responsive cultivars. Moreover, the analysis of the interaction genotype x environment at experiments with contrasting doses is always required, even when the interaction is not significant.

  19. COMPARATIVE RESEARCHES REGARDING THE BODY WEIGHT IN DIFERENT AGES OF NEW ZEALAND WHITE, GRAND CHINCHILLA RABIT BREEDS, AND THE F1 HIBRIDS OBTAINED AFTER THEIR CROSS-BREEDING

    Directory of Open Access Journals (Sweden)

    DANIELA-MARCELA TOBĂ (GOINA

    2008-10-01

    Full Text Available In rabbits breeding, the amelioration processes have a high importance because they are aimed to continuously increase the productions concomitantly with the decrease of specific consumption and unit costs. Cross-breeding of two genetically distinguished breeds can produce the heterozis effect, meaning an increase of the possibility that allow a higher productivity. 53 young rabbits were used as biological material, 3 interlinear simple female hybrids of New Zealand White (NZ being the maternal line and 3 interlinear simple male hybrids of Grand Chinchilla (CH form the paternal line. The 53 young rabbits were raised in identical environmental conditions so that their genetic potential to determinate the phonotypical expression. The rabbits weighing was done daily, at the same time, in equal foraging and drinking conditions. The rabbits were weaned at 30 days old, and until 80 days old were raised for meat. The two breeds used in the crossbreeding chart, respectively New Zealand White as maternal line and Grand Chinchilla as paternal line, have a good combinative characteristic, and on their hybrids is manifested the heterozis effect. In all the experimental, the hybrids from NZ x CH cross-breeding registered a corporal dynamic higher then the parental breeds.

  20. Quantitative trait loci mapping of western corn rootworm (Coleoptera: Chrysomelidae) host plant resistance in two populations of doubled haploid lines in maize (Zea mays L.)

    Science.gov (United States)

    Over the last 70 years, more than 12,000 maize accessions have been screened for their level of resistance to western corn rootworm, Diabrotica virgifera virgifera LeConte, larval feeding. Less than 1% of this germplasm was selected for initiating recurrent selection or other breeding programs. Sele...

  1. Maize starch biphasic pasting curves

    CSIR Research Space (South Africa)

    Nelles, EM

    2000-05-01

    Full Text Available (150–500 rev/min). The second pasting peak is attributed to the formation of complexes between amylose and low levels of lipid present in maize starch. When lipid was partially removed by extraction with methanol-chloroform (1: 3 v/v), the second...

  2. Mutation breeding in peas

    Energy Technology Data Exchange (ETDEWEB)

    Jaranowski, J [Institute of Genetics and Plant Breeding, Academy of Agriculture, Poznan (Poland); Micke, A [Joint FAO/IAEA Division of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development, International Atomic Energy Agency, Vienna (Austria)

    1985-02-01

    The pea as an ancient crop plant still today has wide uses and is an import source of food protein. It is also an important object for genetic studies and as such has been widely used in mutation induction experiments. However, in comparison with cereals this ancient crop plant (like several other grain legumes) has gained relatively little from advances in breeding. The review focuses on the prospects of genetic improvement of pea by induced mutations, discusses principles and gives methodological information. (author)

  3. Mutation breeding in peas

    International Nuclear Information System (INIS)

    Jaranowski, J.; Micke, A.

    1985-01-01

    The pea as an ancient crop plant still today has wide uses and is an import source of food protein. It is also an important object for genetic studies and as such has been widely used in mutation induction experiments. However, in comparison with cereals this ancient crop plant (like several other grain legumes) has gained relatively little from advances in breeding. The review focuses on the prospects of genetic improvement of pea by induced mutations, discusses principles and gives methodological information. (author)

  4. Overexpression of a modiifed AM79 aroA gene in transgenic maize confers high tolerance to glyphosate

    Institute of Scientific and Technical Information of China (English)

    REN Zhen-jing; CAO Gao-yi; ZHANG Yu-wen; LIU Yan; LIU Yun-jun

    2015-01-01

    It has previously been shown that a bacterial 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoding gene AM79 aroA can be a candidate gene to develop glyphosate-tolerant transgenic crops (Cao et al. 2012). In this study, AM79 aroA was redesigned using the plant biased codons and eliminating the motifs which would lead to the instability of mRNA, to create a synthetic gene that would be expressed highly in plant cel s. The redesigned and artiifcial y synthesized gene, named as mAM79, was cloned into plant expression vector pM3301UbiSpAM79, where mAM79 is fused with signal peptide sequence of pea rib-1,5-bisphospate carboxylase (rbcS) smal subunit and control ed by ubiquitin promoter. The plasmid was transformed into maize (Zea mays) immature embryos using Agrobacterium-mediated transformation method. Total 74 regenerated plants were obtained and PCR analysis showed that these transgenic plants had the integration of mAM79. Southern blot analysis was performed on the genomic DNA from four transgenic lines, and the result showed that one or two copies of mAM79 were integrated into maize genome. RT-PCR analysis result indicated that mAM79 was highly transcribed in transgenic maize plants. When sprayed with glyphosate, transgenic maize line AM85 and AM72 could tolerate 4-fold of commercial usage of glyphosate;however, al the non-transgenic maize plants were kil ed by glyphosate. The results in this study conifrmed that mAM79 could be used to develop glyphosate-tolerant maize, and the obtained transgenic maize lines could be used for the breeding of glyphosate-tolerant maize.

  5. Examination of alternative nuclear breeding methods

    International Nuclear Information System (INIS)

    Dreyfuss, D.J.; Augenstein, B.W.; Mooz, W.E.; Sher, P.A.

    1978-07-01

    This report presents a preliminary evaluation of the economics of using external source neutrons (provided by a DT fusion device or by a high-energy accelerator providing a proton or deuteron particle beam) for breeding fissile fuel, and compares these costs with those of the most intensively investigated reactor breeder (or internal neutron source breeder), the liquid metal fast breeder reactor (LMFBR). A simple evaluation model is used that calculates the net present discounted value, using a 10 percent discount rate of the cost to satisfy a specific demand for electricity over the period to 2050. Present discounted values of costs are estimated for four energy technologies: the uranium-fueled light water reactor (LWR), the LMFBR, the fusion hybrid breeder, and the accelerator-driven breeder. The latter two technologies produce fissile fuel which is then consumed in ordinary converter reactors. The discounted costs to produce electrical energy using the three breeding technologies to satisfy this demand are calculated and compared to a standard or base case where the LWR satisfies the demand. The cost differences between the base case and the three alternatives are compared to estimate the savings possible over the LWR base case. The conclusion is that the fusion hybrid breeder and the accelerator breeder, given our present information about the various technologies, promise to be competitive with reactor-based breeders such as the LMFBR and offer a number of qualitative advantages as well

  6. Breeding of hexaploid triticale for drought resistance

    Directory of Open Access Journals (Sweden)

    Г. В. Щипак

    2016-05-01

    Full Text Available Purpose. Analysis of hexaploid triticale breeding process for drought resistance through the use of systemic ecological tests in contrasting conditions. Methods. Dialectical, field, laboratory and statistical ones. Results. Medium-grown (‘Amos’, ‘Nikanor’, ‘Rarytet’, ‘Yaroslava’ and low-stem (‘HAD 69’, ‘HAD 86’, ‘HAD 110’, ‘Timofei’ multiline varieties of winter and alternate hexaploid triticale were developed with higher adaptability, potential yield of 9–12 tons per ha and high bread-making properties. Among the most drought resistant genotypes, such varieties as ‘Amos’, ‘Buket’, ‘Harne’, ‘Markiian’, ‘Kharroza’, ‘Shalanda’, ‘Nicanor’ and ‘Yaroslava’ showed high values of yield, plasticity and stability. Conclusions. The use of interspecific hybridization instead of intergeneric one in hexaploid triticale breeding, together with systemic testing of the hybrid material in contrasting agro-ecological zones, ensured the creation of multiline competitive varieties with an optimal combination of yield and adaptive properties

  7. The Genetic Basis of Natural Variation in Kernel Size and Related Traits Using a Four-Way Cross Population in Maize.

    Science.gov (United States)

    Chen, Jiafa; Zhang, Luyan; Liu, Songtao; Li, Zhimin; Huang, Rongrong; Li, Yongming; Cheng, Hongliang; Li, Xiantang; Zhou, Bo; Wu, Suowei; Chen, Wei; Wu, Jianyu; Ding, Junqiang

    2016-01-01

    Kernel size is an important component of grain yield in maize breeding programs. To extend the understanding on the genetic basis of kernel size traits (i.e., kernel length, kernel width and kernel thickness), we developed a set of four-way cross mapping population derived from four maize inbred lines with varied kernel sizes. In the present study, we investigated the genetic basis of natural variation in seed size and other components of maize yield (e.g., hundred kernel weight, number of rows per ear, number of kernels per row). In total, ten QTL affecting kernel size were identified, three of which (two for kernel length and one for kernel width) had stable expression in other components of maize yield. The possible genetic mechanism behind the trade-off of kernel size and yield components was discussed.

  8. Start codon targeted (scot polymorphism reveals genetic diversity in european old maize (zea mays l. Genotypes

    Directory of Open Access Journals (Sweden)

    Martin Vivodík

    2016-11-01

    Full Text Available Maize (Zea mays L. is one of the world's most important crop plants following wheat and rice, which provides staple food to large number of human population in the world. It is cultivated in a wider range of environments than wheat and rice because of its greater adaptability. Molecular characterization is frequently used by maize breeders as an alternative method for selecting more promising genotypes and reducing the cost and time needed to develop hybrid combinations. In the present investigation 40 genotypes of maize from Czechoslovakia, Hungary, Poland, Union of Soviet Socialist Republics, Slovakia and Yugoslavia were analysed using 20 Start codon targeted (SCoT markers. These primers produced total 114 fragments across 40 maize genotypes, of which 86 (76.43% were polymorphic with an average of 4.30 polymorphic fragments per primer and number of amplified fragments ranged from 2 (SCoT 45 to 8 (SCoT 28 and SCoT 63. The polymorphic information content (PIC value ranged from 0.374 (ScoT 45 to 0.846 (SCoT 28 with an average of 0.739. The dendrogram based on hierarchical cluster analysis using UPGMA algorithm was prepared. The hierarchical cluster analysis showed that the maize genotypes were divided into two main clusters. Unique maize genotype (cluster 1, Zuta Brzica, originating from Yugoslavia separated from others. Cluster 2 was divided into two main clusters (2a and 2b. Subcluster 2a contained one Yugoslavian genotype Juhoslavanska and subcluster 2b was divided in two subclusters 2ba and 2bb. The present study shows effectiveness of employing SCoT markers in analysis of maize, and would be useful for further studies in population genetics, conservation genetics and genotypes improvement.

  9. Evaluation for Multi Purpose Free Species for Inter Cropping with Maize

    International Nuclear Information System (INIS)

    Kimotho, L.M

    2002-01-01

    The continued increase in Kenya's population has forced people to move into the dry lands and hence increasing demand for food and tree products in these areas. This has forced farmers to clear the existing natural forests to pave way for agricultural activities. In order to address this problem an integrated approach of planting both trees and crops on farm has been adopted. A trial was established to compare the growth performance of some local and exotic timber tree species as well as examine their effect on maize (Zea mays) crop yield. the tree treatments included Acacia polyacantha, caesalpinia velutina, Grevillae robusta, melia azaderach, senna spectabilis and senna siamea, planted at 5m x 5m spacing, in a Randomized Complete Block Design with three (3) replicates. Maize crop (Dry Land Hybrid 1 -DH1) was used as inter-crop during November-January seasons. The maize was planted at a spacing of 90 cm by 40 cm. There was a control with no trees. Growth of the trees was based on increase in both height and girth while whilst the crop yield was asses d by estimating average plot yield under each species. Results indicated that, different tree species affected the maize grain yield differently: i.e. there was no tre effect on maize yield in the earlier stages but as the trees increased in age and hence size some species caused reduction in the maize grain yields while others did not cause any reduction as yet. However, depending on the individual needs various decisions could be made on whether to compromise the crop yields, which are minimal in order to attain some timber products in addition to food. The trial is continuing in order to establish how long each tree species would permit a maize crop

  10. Effect of seed inoculation with Azospirillum brasilense and nitrogen fertilization rates on maize plant yield and silage quality

    Directory of Open Access Journals (Sweden)

    Fernando Reimann Skonieski

    Full Text Available ABSTRACT The objective of this study was to determine the effect of Azospirillum brasilense inoculation and different nitrogen (N rates applied as topdressing on the productivity of a maize crop and the nutritional value of maize silage. Two experiments were conducted in the 2012/2013 and 2013/2014 harvests. Treatments were distributed in a randomized block design in a factorial arrangement, which consisted of two maize hybrids (AS 1572 and Defender coupled with nitrogen rates (0, 60, 120, 240, and 480 kg ha-1, inoculated or uninoculated with A. brasilense. Inoculated seeds were treated with the A. brasilense strains Ab-V5 and Ab-V6. Inoculation with A. brasilense showed interaction with the hybrids, agricultural years, and nitrogen rates for the maize plant yield. In the 2012/2013 agricultural year, inoculation increased the AS 1572 hybrid silage yield by 6.16% and, in the 2013/2014 harvest, A. brasilense inoculation produced an increase of 16.15% for the Defender hybrid. Nitrogen fertilization applied at 0, 60, and 120 kg ha-1 N benefited the plants inoculated with A. brasilense. The statistical equations revealed that N rates between 0 and 184 kg ha-1 in A. brasilense inoculated plants raised the plant productivity for silage when compared with the control plants. Regarding the nutritional value of the silage, inoculation with A. brasilense increased the ether extract levels and total digestible nutrients and reduced the amount of acid detergent fiber. For all this, positive results with inoculation for silage yield are dependent on nitrogen fertilization rate. Inoculation with A. brasilense can promote changes in the maize silage quality, but with obtained results it is not possible to definitely conclude upon nutritive value of maize silage.

  11. Effect of endosperm mutants on maize seed germination

    Directory of Open Access Journals (Sweden)

    Pajić Zorica

    2004-01-01

    Full Text Available The expression of genetic potential of yielding and quality of a certain genotype depends among other factors on seed quality. Seed is very important not only for the reproduction of the particular plant species, but also, for the contemporary plant production. Each part of maize seed (pericarp endosperm and germ has a specific function in the complex process of germination and emergence. The following three genotypes of different endosperm types were observed: ZPSC 42A (standard grain quality dent hybrid ZPSC 504 su (sweet maize hybrid with a sugary gene and ZPSyn.II sh2 (synthetic population with a shranken2 gene. Seed viability of the stated genotypes was determined by the accepted ISTA methods: standard method accelerating age and cold test. Obtained results point out to differences in the germination capacity of the observed genotypes. The greatest reduction of the germination capacity and the emergence rate was expressed by the application of the accelerating ageing method. Appeared differences are probably a result of the endosperm texture (type, grain weight, sugar content and pericarp thickens and composition.

  12. Reprodução endógena e mestiçagens dos escravos nas fazendas jesuíticas na capitania do Rio de Janeiro, 1759-1779 * Endogenous breeding and hybridism of the slaves in the Jesuits farms in the captaincy of Rio de Janeiro, 1759-1779

    Directory of Open Access Journals (Sweden)

    MÁRCIA AMANTINO

    2014-09-01

    Full Text Available Resumo: Este texto busca apresentar uma discussão a respeito da relação que os padres da Companhia de Jesus mantinham com a escravidão de negros na América portuguesa, mais especificamente na capitania do Rio de Janeiro, ao longo do período colonial. A análise procura entender seu comportamento e, ao mesmo tempo, identifica a Ordem como uma das maiores proprietárias de escravos no continente americano. A existência das fazendas inacianas fazia com que numerosos contingentes de escravos fossem incorporados aos seus bens, e os jesuítas passaram a ser efetivamente senhores de terras e de cativos, muitos deles nascidos em suas fazendas ou nas localidades próximas. Começava aí um dos vários problemas enfrentados pelos inacianos em terras brasileiras e, posteriormente, em diferentes partes das Américas.Palavras-chave: Jesuítas – Escravidão – Reprodução endógena – Mestiçagem.  Abstract: The following text aims to introduce a discussion about the relation that the priests of the Society of Jesus had with the black slavery in Portuguese America, more specifically in the captaincy of Rio de Janeiro during the colonial period. The analysis seeks to understand them not just as theorists regarding this theme, but also identifies the order as one of the biggest owners of slaves of the Americas. The existence of these farms did with many contingents of slaves were incorporated to their goods and the Jesuits become effectively Lords of land and men captive who were breeding in their regions or in the farms. Thus, began there, one of the many problems faced by the priests in Brazilian lands and, later, in different parts of the Americas.Keywords: Jesuits – Slavery – Endogenous breedingHybridism.

  13. Identification and Characterization of microRNAs during Maize Grain Filling.

    Science.gov (United States)

    Jin, Xining; Fu, Zhiyuan; Lv, Panqing; Peng, Qian; Ding, Dong; Li, Weihua; Tang, Jihua

    2015-01-01

    The grain filling rate is closely associated with final grain yield of maize during the period of maize grain filling. To identify the key microRNAs (miRNAs) and miRNA-dependent gene regulation networks of grain filling in maize, a deep-sequencing technique was used to research the dynamic expression patterns of miRNAs at four distinct developmental grain filling stages in Zhengdan 958, which is an elite hybrid and cultivated widely in China. The sequencing result showed that the expression amount of almost all miRNAs was changing with the development of the grain filling and formed in seven groups. After normalization, 77 conserved miRNAs and 74 novel miRNAs were co-detected in these four samples. Eighty-one out of 162 targets of the conserved miRNAs belonged to transcriptional regulation (81, 50%), followed by oxidoreductase activity (18, 11%), signal transduction (16, 10%) and development (15, 9%). The result showed that miRNA 156, 393, 396 and 397, with their respective targets, might play key roles in the grain filling rate by regulating maize growth, development and environment stress response. The result also offered novel insights into the dynamic change of miRNAs during the developing process of maize kernels and assisted in the understanding of how miRNAs are functioning about the grain filling rate.

  14. Extraction and characterization of natural cellulose fibers from maize tassel

    CSIR Research Space (South Africa)

    Maepa, CE

    2015-04-01

    Full Text Available This article reports on the extraction and characterization of novel natural cellulose fibers obtained from the maize (tassel) plant. Cellulose was extracted from the agricultural residue (waste biomaterial) of maize tassel. The maize tassel fibers...

  15. Aflatoxin levels in maize and maize products during the 2004 food ...

    African Journals Online (AJOL)

    Aflatoxin levels in maize and maize products during the 2004 food poisoning ... district were received at the National Public Health Laboratory Services (NPHLS). On analysis, they were found to be highly contaminated with aflatoxin B1.

  16. Transcriptomic response of maize primary roots to low temperatures at seedling emergence.

    Science.gov (United States)

    Di Fenza, Mauro; Hogg, Bridget; Grant, Jim; Barth, Susanne

    2017-01-01

    Maize ( Zea mays ) is a C 4 tropical cereal and its adaptation to temperate climates can be problematic due to low soil temperatures at early stages of establishment. In the current study we have firstly investigated the physiological response of twelve maize varieties, from a chilling condition adapted gene pool, to sub-optimal growth temperature during seedling emergence. To identify transcriptomic markers of cold tolerance in already adapted maize genotypes, temperature conditions were set below the optimal growth range in both control and low temperature groups. The conditions were as follows; control (18 °C for 16 h and 12 °C for 8 h) and low temperature (12 °C for 16 h and 6 °C for 8 h). Four genotypes were identified from the condition adapted gene pool with significant contrasting chilling tolerance. Picker and PR39B29 were the more cold-tolerant lines and Fergus and Codisco were the less cold-tolerant lines. These four varieties were subjected to microarray analysis to identify differentially expressed genes under chilling conditions. Exposure to low temperature during establishment in the maize varieties Picker, PR39B29, Fergus and Codisco, was reflected at the transcriptomic level in the varieties Picker and PR39B29. No significant changes in expression were observed in Fergus and Codisco following chilling stress. A total number of 64 genes were differentially expressed in the two chilling tolerant varieties. These two varieties exhibited contrasting transcriptomic profiles, in which only four genes overlapped. We observed that maize varieties possessing an enhanced root growth ratio under low temperature were more tolerant, which could be an early and inexpensive measure for germplasm screening under controlled conditions. We have identified novel cold inducible genes in an already adapted maize breeding gene pool. This illustrates that further varietal selection for enhanced chilling tolerance is possible in an already preselected gene pool.

  17. Transcriptomic response of maize primary roots to low temperatures at seedling emergence

    Directory of Open Access Journals (Sweden)

    Mauro Di Fenza

    2017-01-01

    Full Text Available Background Maize (Zea mays is a C4 tropical cereal and its adaptation to temperate climates can be problematic due to low soil temperatures at early stages of establishment. Methods In the current study we have firstly investigated the physiological response of twelve maize varieties, from a chilling condition adapted gene pool, to sub-optimal growth temperature during seedling emergence. To identify transcriptomic markers of cold tolerance in already adapted maize genotypes, temperature conditions were set below the optimal growth range in both control and low temperature groups. The conditions were as follows; control (18 °C for 16 h and 12 °C for 8 h and low temperature (12 °C for 16 h and 6 °C for 8 h. Four genotypes were identified from the condition adapted gene pool with significant contrasting chilling tolerance. Results Picker and PR39B29 were the more cold-tolerant lines and Fergus and Codisco were the less cold-tolerant lines. These four varieties were subjected to microarray analysis to identify differentially expressed genes under chilling conditions. Exposure to low temperature during establishment in the maize varieties Picker, PR39B29, Fergus and Codisco, was reflected at the transcriptomic level in the varieties Picker and PR39B29. No significant changes in expression were observed in Fergus and Codisco following chilling stress. A total number of 64 genes were differentially expressed in the two chilling tolerant varieties. These two varieties exhibited contrasting transcriptomic profiles, in which only four genes overlapped. Discussion We observed that maize varieties possessing an enhanced root growth ratio under low temperature were more tolerant, which could be an early and inexpensive measure for germplasm screening under controlled conditions. We have identified novel cold inducible genes in an already adapted maize breeding gene pool. This illustrates that further varietal selection for enhanced chilling

  18. Genome-wide association study identifies candidate genes for starch content regulation in maize kernels

    Directory of Open Access Journals (Sweden)

    Na Liu

    2016-07-01

    Full Text Available Kernel starch content is an important trait in maize (Zea mays L. as it accounts for 65% to 75% of the dry kernel weight and positively correlates with seed yield. A number of starch synthesis-related genes have been identified in maize in recent years. However, many loci underlying variation in starch content among maize inbred lines still remain to be identified. The current study is a genome-wide association study that used a set of 263 maize inbred lines. In this panel, the average kernel starch content was 66.99%, ranging from 60.60% to 71.58% over the three study years. These inbred lines were genotyped with the SNP50 BeadChip maize array, which is comprised of 56,110 evenly spaced, random SNPs. Population structure was controlled by a mixed linear model (MLM as implemented in the software package TASSEL. After the statistical analyses, four SNPs were identified as significantly associated with starch content (P ≤ 0.0001, among which one each are located on chromosomes 1 and 5 and two are on chromosome 2. Furthermore, 77 candidate genes associated with starch synthesis were found within the 100-kb intervals containing these four QTLs, and four highly associated genes were within 20-kb intervals of the associated SNPs. Among the four genes, Glucose-1-phosphate adenylyltransferase (APS1; Gene ID GRMZM2G163437 is known as an important regulator of kernel starch content. The identified SNPs, QTLs, and candidate genes may not only be readily used for germplasm improvement by marker-assisted selection in breeding, but can also elucidate the genetic basis of starch content. Further studies on these identified candidate genes may help determine the molecular mechanisms regulating kernel starch content in maize and other important cereal crops.

  19. A comparison of controlled self-pollination and open pollination results based on maize grain quality

    Directory of Open Access Journals (Sweden)

    Hanna Sulewska

    2014-05-01

    Full Text Available Maize (Zea mays L. grain endosperm is triploid (3n, of which 2n come from the male (transferred by pollen and only 1n from the female plant, thus a major impact of the male form can be expected on grain quality parameters. A good example of this relationship is the phenomenon of xenia. The aim of this study was to determine the effect of pollen on grain quality. The field experiment was conducted in 2011; seeds were harvested from eight cultivars: Bosman, Blask, Tur, Kozak, Bielik, Smok, SMH 220 and Kresowiak, derived from free pollination and controlled self-pollination of maize. Analyses of nutrient contents and starch content in the grain were conducted in the laboratory. In addition, 1000 grain weight and the hectoliter weight of all grain samples were recorded. The results confirmed differences in grain quality of maize hybrids obtained by self-pollination and by open pollination. Grain of maize plants obtained by open-pollination was characterised by higher contents of N-free extract and starch, and lower protein content. Undertaking further studies on this subject may indicate specific recommendations for agricultural practice, such as mixtures of hybrids with good combining abilities, which will contribute to improved grain quality without additional costs.

  20. Forages and Pastures Symposium: development of and field experience with drought-tolerant maize.

    Science.gov (United States)

    Soderlund, S; Owens, F N; Fagan, C

    2014-07-01

    Drought-tolerant maize hybrids currently are being marketed by several seed suppliers. Such hybrids were developed by phenotypic and marker-assisted selection or through genetic modification and tested by exposing these hybrids to various degrees of water restriction. As drought intensifies, crop yields and survival progressively decline. Water need differs among plants due to differences in root structure, evaporative loss, capacity to store water or enter temporary dormancy, and plant genetics. Availability of water differs widely not only with rainfall and irrigation but also with numerous soil and agronomic factors (e.g., soil type, slope, seeding rates, tillage practices). Reduced weed competition, enhanced pollen shed and silk production, and deep, robust root growth help to reduce the negative impacts of drought. Selected drought-tolerant maize hybrids have consistently yielded more grain even when drought conditions are not apparent either due to reduced use of soil water reserves before water restriction or due to greater tolerance of intermittent water shortages. In DuPont Pioneer trials, whole plant NDF digestibility of maize increased with water restriction, perhaps due to an increased leaf to stem ratio. Efficiency of water use, measured as dry matter or potential milk yield from silage per unit of available water, responded quadratically to water restriction, first increasing slightly but then decreasing as water restriction increased. For grain production, water restriction has its greatest negative impact during or after silking through reducing the number of kernels and reducing kernel filling. For silage production, water restriction during the vegetative growth stage negatively impacts plant height and biomass yield. Earlier planting and shorter season maize hybrids help to avoid midsummer heat stress during pollination and can reduce the number of irrigation events needed. Although drought tolerance of maize hybrids has been improved due to

  1. High-Throughput Phenotyping and QTL Mapping Reveals the Genetic Architecture of Maize Plant Growth.

    Science.gov (United States)

    Zhang, Xuehai; Huang, Chenglong; Wu, Di; Qiao, Feng; Li, Wenqiang; Duan, Lingfeng; Wang, Ke; Xiao, Yingjie; Chen, Guoxing; Liu, Qian; Xiong, Lizhong; Yang, Wanneng; Yan, Jianbing

    2017-03-01

    With increasing demand for novel traits in crop breeding, the plant research community faces the challenge of quantitatively analyzing the structure and function of large numbers of plants. A clear goal of high-throughput phenotyping is to bridge the gap between genomics and phenomics. In this study, we quantified 106 traits from a maize ( Zea mays ) recombinant inbred line population ( n = 167) across 16 developmental stages using the automatic phenotyping platform. Quantitative trait locus (QTL) mapping with a high-density genetic linkage map, including 2,496 recombinant bins, was used to uncover the genetic basis of these complex agronomic traits, and 988 QTLs have been identified for all investigated traits, including three QTL hotspots. Biomass accumulation and final yield were predicted using a combination of dissected traits in the early growth stage. These results reveal the dynamic genetic architecture of maize plant growth and enhance ideotype-based maize breeding and prediction. © 2017 American Society of Plant Biologists. All Rights Reserved.

  2. Genome-Wide Specific Selection in Three Domestic Sheep Breeds.

    Directory of Open Access Journals (Sweden)

    Huihua Wang

    Full Text Available Commercial sheep raised for mutton grow faster than traditional Chinese sheep breeds. Here, we aimed to evaluate genetic selection among three different types of sheep breed: two well-known commercial mutton breeds and one indigenous Chinese breed.We first combined locus-specific branch lengths and di statistical methods to detect candidate regions targeted by selection in the three different populations. The results showed that the genetic distances reached at least medium divergence for each pairwise combination. We found these two methods were highly correlated, and identified many growth-related candidate genes undergoing artificial selection. For production traits, APOBR and FTO are associated with body mass index. For meat traits, ALDOA, STK32B and FAM190A are related to marbling. For reproduction traits, CCNB2 and SLC8A3 affect oocyte development. We also found two well-known genes, GHR (which affects meat production and quality and EDAR (associated with hair thickness were associated with German mutton merino sheep. Furthermore, four genes (POL, RPL7, MSL1 and SHISA9 were associated with pre-weaning gain in our previous genome-wide association study.Our results indicated that combine locus-specific branch lengths and di statistical approaches can reduce the searching ranges for specific selection. And we got many credible candidate genes which not only confirm the results of previous reports, but also provide a suite of novel candidate genes in defined breeds to guide hybridization breeding.

  3. Genome-Wide Specific Selection in Three Domestic Sheep Breeds.

    Science.gov (United States)

    Wang, Huihua; Zhang, Li; Cao, Jiaxve; Wu, Mingming; Ma, Xiaomeng; Liu, Zhen; Liu, Ruizao; Zhao, Fuping; Wei, Caihong; Du, Lixin

    2015-01-01

    Commercial sheep raised for mutton grow faster than traditional Chinese sheep breeds. Here, we aimed to evaluate genetic selection among three different types of sheep breed: two well-known commercial mutton breeds and one indigenous Chinese breed. We first combined locus-specific branch lengths and di statistical methods to detect candidate regions targeted by selection in the three different populations. The results showed that the genetic distances reached at least medium divergence for each pairwise combination. We found these two methods were highly correlated, and identified many growth-related candidate genes undergoing artificial selection. For production traits, APOBR and FTO are associated with body mass index. For meat traits, ALDOA, STK32B and FAM190A are related to marbling. For reproduction traits, CCNB2 and SLC8A3 affect oocyte development. We also found two well-known genes, GHR (which affects meat production and quality) and EDAR (associated with hair thickness) were associated with German mutton merino sheep. Furthermore, four genes (POL, RPL7, MSL1 and SHISA9) were associated with pre-weaning gain in our previous genome-wide association study. Our results indicated that combine locus-specific branch lengths and di statistical approaches can reduce the searching ranges for specific selection. And we got many credible candidate genes which not only confirm the results of previous reports, but also provide a suite of novel candidate genes in defined breeds to guide hybridization breeding.

  4. Keeping the Genealogical Structure of Paternal Breed Nuclei in Pigs

    Directory of Open Access Journals (Sweden)

    Maria Voiculescu

    2012-05-01

    Full Text Available For a long period of time pigs as farm animals were considered producing a single ware, pork. Not very long ago the pork market became interested in lean meet. Some breeders tried to have it from the old breeds and lave a lent genetic progress. Other breeders decided to follow the hybridization schemes used in poultry to produce broilers. But in strains with high daily gain and gross muscles the sows fertility declined and by then by disjunction selection they have isolated strains of high fertility. Then the final animal for the market was the cross piglet obtained from these two kinds of strains or lines. The third kind of breeders decided to specializing breeds, selected for as much as possible muscle mass as paternal breeds and breeds specialized for high fertility as maternal breeds. The present paper will present the movement taking place in the genealogy of a breed nucleus of 200sows with closed reproduction. The goal of the families’ movement analysis is to find out how to ensure a convenient genealogy structure preventing consanguinity when some families are extinct by selection for daily gain.

  5. Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp. mays)

    Science.gov (United States)

    Mano, Y.; Omori, F.

    2013-01-01

    Background and Aims Nicaraguan teosinte (Zea nicaraguensis), a species found in frequently flooded areas, provides useful germplasm for breeding flooding-tolerant maize (Z. mays subsp. mays). The objective of this study was to select flooding-tolerant lines using a library of introgression lines (ILs), each containing a chromosome segment from Z. nicaraguensis in the maize inbred line Mi29. Methods To produce the ILs, a single F1 plant derived from a cross between maize Mi29 and Z. nicaraguensis was backcrossed to Mi29 three times, self-pollinated four times and genotyped using simple sequence repeat markers. Flooding tolerance was evaluated at the seedling stage under reducing soil conditions. Key Results By backcrossing and selfing, a series of 45 ILs were developed covering nearly the entire maize genome. Five flooding-tolerant lines were identified from among the ILs by evaluating leaf injury. Among these, line IL#18, containing a Z. nicaraguensis chromosome segment on the long arm of chromosome 4, showed the greatest tolerance to flooding, suggesting the presence of a major quantitative trait locus (QTL) in that region. The presence of the QTL was verified by examining flooding tolerance in a population segregating for the candidate region of chromosome 4. There was no significant relationship between the capacity to form constitutive aerenchyma and flooding tolerance in the ILs, indicating the presence of other factors related to flooding tolerance under reducing soil conditions. Conclusions A flooding-tolerant genotype, IL#18, was identified; this genotype should be useful for maize breeding. In addition, because the chromosome segments of Z. nicaraguensis in the ILs cover nearly the entire genome and Z. nicaraguensis possesses several unique traits related to flooding tolerance, the ILs should be valuable material for additional QTL detection and the development of flooding-tolerant maize lines. PMID:23877074

  6. Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp. mays).

    Science.gov (United States)

    Mano, Y; Omori, F

    2013-10-01

    Nicaraguan teosinte (Zea nicaraguensis), a species found in frequently flooded areas, provides useful germplasm for breeding flooding-tolerant maize (Z. mays subsp. mays). The objective of this study was to select flooding-tolerant lines using a library of introgression lines (ILs), each containing a chromosome segment from Z. nicaraguensis in the maize inbred line Mi29. To produce the ILs, a single F1 plant derived from a cross between maize Mi29 and Z. nicaraguensis was backcrossed to Mi29 three times, self-pollinated four times and genotyped using simple sequence repeat markers. Flooding tolerance was evaluated at the seedling stage under reducing soil conditions. By backcrossing and selfing, a series of 45 ILs were developed covering nearly the entire maize genome. Five flooding-tolerant lines were identified from among the ILs by evaluating leaf injury. Among these, line IL#18, containing a Z. nicaraguensis chromosome segment on the long arm of chromosome 4, showed the greatest tolerance to flooding, suggesting the presence of a major quantitative trait locus (QTL) in that region. The presence of the QTL was verified by examining flooding tolerance in a population segregating for the candidate region of chromosome 4. There was no significant relationship between the capacity to form constitutive aerenchyma and flooding tolerance in the ILs, indicating the presence of other factors related to flooding tolerance under reducing soil conditions. A flooding-tolerant genotype, IL#18, was identified; this genotype should be useful for maize breeding. In addition, because the chromosome segments of Z. nicaraguensis in the ILs cover nearly the entire genome and Z. nicaraguensis possesses several unique traits related to flooding tolerance, the ILs should be valuable material for additional QTL detection and the development of flooding-tolerant maize lines.

  7. "Achieving Mexico’s Maize Potential"

    OpenAIRE

    Antonio Turrent Fernández; Timothy A. Wise; Elise Garvey

    2012-01-01

    Rising agricultural prices, combined with growing import dependence, have driven Mexico’s food import bill over $20 billion per year and increased its agricultural trade deficit. Mexico imports one-third of its maize, overwhelmingly from the United States, but three million producers grow most of the country’s white maize, which is used primarily for tortillas and many other pluricultural products for human consumption. Yield gaps are large among the country’s small to medium-scale maize farm...

  8. Characterization of the imprinting and expression patterns of ZAG2 in maize endosperm and embryo

    Directory of Open Access Journals (Sweden)

    Chaoxian Liu

    2015-02-01

    Full Text Available ZAG2 has been identified as a maternally expressed imprinted gene in maize endosperm. Our study revealed that paternally inherited ZAG2 alleles were imprinted in maize endosperm and embryo at 14 days after pollination (DAP, and consistently imprinted in endosperm at 10, 12, 16, 18, 20, 22, 24, 26, and 28 DAP in reciprocal crosses between B73 and Mo17. ZAG2 alleles were also imprinted in reciprocal crosses between Zheng 58 and Chang 7-2 and between Huang C and 178. ZAG2 alleles exhibited differential imprinting in hybrids of 178 × Huang C and B73 × Mo17, while in other hybrids ZAG2 alleles exhibited binary imprinting. The tissue-specific expression pattern of ZAG2 showed that ZAG2 was expressed at a high level in immature ears, suggesting that ZAG2 plays important roles in not only kernel but ear development.

  9. The genetic architecture of leaf number and its genetic relationship to flowering time in maize.

    Science.gov (United States)

    Li, Dan; Wang, Xufeng; Zhang, Xiangbo; Chen, Qiuyue; Xu, Guanghui; Xu, Dingyi; Wang, Chenglong; Liang, Yameng; Wu, Lishuan; Huang, Cheng; Tian, Jinge; Wu, Yaoyao; Tian, Feng

    2016-04-01

    The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is frequently used as a measure of flowering time, a trait that is key to local environmental adaptation. Here, using a large set of 866 maize-teosinte BC2 S3 recombinant inbred lines genotyped by using 19,838 single nucleotide polymorphism markers, we conducted a comprehensive genetic dissection to assess the genetic architecture of leaf number and its genetic relationship to flowering time. We demonstrated that the two components of total leaf number, the number of leaves above (LA) and below (LB) the primary ear, were under relatively independent genetic control and might be subject to differential directional selection during maize domestication and improvement. Furthermore, we revealed that flowering time and leaf number are commonly regulated at a moderate level. The pleiotropy of the genes ZCN8, dlf1 and ZmCCT on leaf number and flowering time were validated by near-isogenic line analysis. Through fine mapping, qLA1-1, a major-effect locus that specifically affects LA, was delimited to a region with severe recombination suppression derived from teosinte. This study provides important insights into the genetic basis of traits affecting plant architecture and adaptation. The genetic independence of LA from LB enables the optimization of leaf number for ideal plant architecture breeding in maize. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. The Mechanisms of Maize Resistance to Fusarium verticillioides by comprehensive analysis of RNA-seq Data

    Directory of Open Access Journals (Sweden)

    Yanping Wang

    2016-11-01

    Full Text Available Fusarium verticillioides is the most commonly reported fungal species responsible for ear rot of maize which substantially reduces grain yield. It also results in a substantial accumulation of mycotoxins that give rise to toxic response when ingested by animals and humans. For inefficient control by chemical and agronomic measures, it thus becomes more desirable to select more resistant varieties. However, the molecular mechanisms underlying the infection process remain poorly understood, which hampers the application of quantitative resistance in breeding programs. Here, we reveal the disease-resistance mechanism of the maize inbred line of BT-1 which displays high resistance to ear rot using RNA high throughput sequencing. By analyzing RNA-seq data from the BT-1 kernels before and after F. verticillioides inoculation, we found that transcript levels of genes associated with key pathways are dramatically changed compared with the control treatment. Differential gene expression in ear rot resistant and susceptible maize was confirmed by RNA microarray and qRT-PCR analyses. Further investigation suggests that the small heat shock protein family, some secondary metabolites, and the signaling pathways of abscisic acid (ABA, jasmonic acid (JA or salicylic acids (SA may be involved in the pathogen-associated molecular pattern-triggered immunity against F. verticillioides. These data will not only provide new insights into the molecular resistant mechanisms against fungi invading, but may also result in the identification of key molecular factors associated with ear rot resistance in maize.

  11. Adapting to warmer climate through prolonged maize grain filling period in the US Midwest

    Science.gov (United States)

    Zhu, P.; Zhuang, Q.; Jin, Z.

    2017-12-01

    Climate warming is expected to negatively impact the US food productivity. How to adapt to the future warmer environment and meet the rising food requirement becomes unprecedented urgent. Continuous satellite observational data provides an opportunity to examine the historic responses of crop plants to climate variation. Here 16 years crop growing phases information across US Midwest is generated based on satellite observations. We found a prolonged grain-filling period during 2000-2015, which could partly explain the increasing trend in Midwest maize yield. This longer grain-filling period might be resulted from the adoption of longer maturity group varieties or more resistant varieties to temperature variation. Other management practice changes like advance in planting date could be also an effective way of adapting future warmer climate through lowering the possibility of exposure to heat and drought stresses. If the progress in breeding technology enables the maize grain-filling period to prolong with the current rate, the maize grain filling length could be longer and maize yield in Midwest could adapt to future climate despite of the warming.

  12. A review on threat of gray leaf spot disease of maize in Asia

    Directory of Open Access Journals (Sweden)

    Narayan Bahadur Dhami

    2015-12-01

    Full Text Available Biotic and biotic constraints are yield limiting factors in maize producing regions. Among these gray leaf spot is a yield limiting foliar disease of maize in high land regions of Asia. This review is done from related different national and international journals, thesis, books, research papers etc. The objectives of this review are to become familiar with genetics and inheritance, epidemiology, symptoms and disease management strategies etc. High relative humidity, temperature, minimum tillage and maize monoculture are important factors responsible for disease development. The sibling species of Cercospora zeae-maydis (Tehon and Daniels, 1925 Group I and Group II and Cercospora sorghai var. maydis (Chupp, 1954 are associated with this disease. Pathogens colonize in maize debris. Conidia are the source of inoculums for disease spread. Severe blighting of leaves reduces sugars, stalk lodging and causes premature death of plants resulting in yield losses of up to 100%. Disease management through cultural practices is provisional. The use of fungicides for emergencies is effective however; their prohibitive cost and detrimental effects on the environment are negative consequences. The inheritance of tolerance is quantitative with small additive effects. The introgression of resistant genes among the crosses of resistant germplasm enhances the resistance. The crosses of resistant and susceptible germplasm possess greater stability than the crosses of susceptible and resistant germplasm. The development of gray leaf spot tolerant populations through tolerance breeding principle is an economical and sustainable approach to manage the disease.

  13. Materials for breeding blankets

    International Nuclear Information System (INIS)

    Mattas, R.F.; Billone, M.C.

    1995-09-01

    There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as Primary Blanket Materials, which have the greatest influence in determining the overall design and performance, and Secondary Blanket Materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified

  14. Materials for breeding blankets

    International Nuclear Information System (INIS)

    Mattas, R.F.; Billone, M.C.

    1996-01-01

    There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as primary blanket materials, which have the greatest influence in determining the overall design and performance, and secondary blanket materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified. (orig.)

  15. Disseminating genetically modified (GM) maize technology to ...

    African Journals Online (AJOL)

    Disseminating genetically modified (GM) maize technology to smallholder farmers in the Eastern Cape province of South Africa: extension personnel's awareness of stewardship requirements and dissemination practices.

  16. Investigation of total seed storage proteins of pakistani and japanese maize (zea mays l.) through sds-page markers

    International Nuclear Information System (INIS)

    Shinwari, Z.K.

    2014-01-01

    The assessment of genetic diversity among the members of a species is of vital importance for successful breeding and adaptability. In the present study 83 genotypes of maize of Pakistani and Japanese origin were evaluated for the total seed storage proteins using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) through vertical slab unit. The total protein subunits were separated on 12% polyacrylamide gel using standard protocols. A total of 18 protein subunits were noted out of which 7 (39%) were monomorphic and 11 (61%) were polymorphic, with molecular weight ranging from 10 to 122 kDa. Coefficients of similarity among the accessions ranged between 0.89 and 1.00. The dendrogram obtained through UPGMA clustering method showed two main clusters: 1 and 2. First cluster comprised of 9 genotypes including Sahiwal-2002, while second cluster contained 74 genotypes including Aaiti-2002 and Sadaf. Over all a low level of polymorphism was observed in total seed storage protein patterns of maize genotypes from Pakistan as well as Japan. It is inferred from the present study that more genotypes of maize could be brought under study and more advanced biochemical techniques with more reliable results could be followed to bring assessment of genetic diversity of maize for planning breeding programs. (author)

  17. A Genome-Wide Association Study Reveals Genes Associated with Fusarium Ear Rot Resistance in a Maize Core Diversity Panel

    Science.gov (United States)

    Zila, Charles T.; Samayoa, L. Fernando; Santiago, Rogelio; Butrón, Ana; Holland, James B.

    2013-01-01

    Fusarium ear rot is a common disease of maize that affects food and feed quality globally. Resistance to the disease is highly quantitative, and maize breeders have difficulty incorporating polygenic resistance alleles from unadapted donor sources into elite breeding populations without having a negative impact on agronomic performance. Identification of specific allele variants contributing to improved resistance may be useful to breeders by allowing selection of resistance alleles in coupling phase linkage with favorable agronomic characteristics. We report the results of a genome-wide association study to detect allele variants associated with increased resistance to Fusarium ear rot in a maize core diversity panel of 267 inbred lines evaluated in two sets of environments. We performed association tests with 47,445 single-nucleotide polymorphisms (SNPs) while controlling for background genomic relationships with a mixed model and identified three marker loci significantly associated with disease resistance in at least one subset of environments. Each associated SNP locus had relatively small additive effects on disease resistance (±1.1% on a 0–100% scale), but nevertheless were associated with 3 to 12% of the genotypic variation within or across environment subsets. Two of three identified SNPs colocalized with genes that have been implicated with programmed cell death. An analysis of associated allele frequencies within the major maize subpopulations revealed enrichment for resistance alleles in the tropical/subtropical and popcorn subpopulations compared with other temperate breeding pools. PMID:24048647

  18. Genomic Predictability of Interconnected Biparental Maize Populations

    Science.gov (United States)

    Riedelsheimer, Christian; Endelman, Jeffrey B.; Stange, Michael; Sorrells, Mark E.; Jannink, Jean-Luc; Melchinger, Albrecht E.

    2013-01-01

    Intense structuring of plant breeding populations challenges the design of the training set (TS) in genomic selection (GS). An important open question is how the TS should be constructed from multiple related or unrelated small biparental families to predict progeny from individual crosses. Here, we used a set of five interconnected maize (Zea mays L.) populations of doubled-haploid (DH) lines derived from four parents to systematically investigate how the composition of the TS affects the prediction accuracy for lines from individual crosses. A total of 635 DH lines genotyped with 16,741 polymorphic SNPs were evaluated for five traits including Gibberella ear rot severity and three kernel yield component traits. The populations showed a genomic similarity pattern, which reflects the crossing scheme with a clear separation of full sibs, half sibs, and unrelated groups. Prediction accuracies within full-sib families of DH lines followed closely theoretical expectations, accounting for the influence of sample size and heritability of the trait. Prediction accuracies declined by 42% if full-sib DH lines were replaced by half-sib DH lines, but statistically significantly better results could be achieved if half-sib DH lines were available from both instead of only one parent of the validation population. Once both parents of the validation population were represented in the TS, including more crosses with a constant TS size did not increase accuracies. Unrelated crosses showing opposite linkage phases with the validation population resulted in negative or reduced prediction accuracies, if used alone or in combination with related families, respectively. We suggest identifying and excluding such crosses from the TS. Moreover, the observed variability among populations and traits suggests that these uncertainties must be taken into account in models optimizing the allocation of resources in GS. PMID:23535384

  19. Split application of glyphosate in herbicide-tolerant maize provides efficient weed control and favors beneficial epigeic arthropods

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Zdeňka; Skoková Habuštová, Oxana; Holec, J.; Holec, M.; Boháč, J.; Jursík, M.; Soukup, J.; Sehnal, František

    2018-01-01

    Roč. 251, JAN 01 (2018), s. 171-179 ISSN 0167-8809 Grant - others:GA ČR(CZ) L200961652 Institutional support: RVO:60077344 Keywords : herbicide-tolerant maize * weed management * conventional tillage Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection OBOR OECD: Agronomy, plant breeding and plant protection Impact factor: 4.099, year: 2016 http://www.sciencedirect.com/science/article/pii/S0167880917304188

  20. Seed vigour tests for predicting field emergence of maize under severe conditions

    OpenAIRE

    García de Yzaguirre, Álvaro; Lasa Dolhagaray, José Manuel

    1989-01-01

    [EN] With 40 to 50 different seed vigour tests available, appropiate procedures for choosing the best single test or combination the best predictors of seedling emergence of maize (Zea Mays L.) under severe conditions. Thirteen vigour tests and various field emergence trials were performed on six inbred lines and two commercial hybrids. The best single predictors of field emergence were identified by calculating simple correlation coefficients. The calculation of the geometric mean of the res...

  1. Genetics and biology of cytoplasmic male sterility (CMS) and its applications in forage and turf grass breeding

    OpenAIRE

    Islam Mohamed Shofiqul; Studer Bruno; Møller Ian Max; Asp Torben

    2014-01-01

    Hybrid breeding can exploit heterosis and thus offers opportunities to maximize yield quality and resistance traits in crop species. Cytoplasmic male sterility (CMS) is a widely applied tool for efficient hybrid seed production. Encoded in the mitochondrial genome CMS is maternally inherited and thus it can be challenging to apply in breeding schemes of allogamous self incompatible plant species such as perennial ryegrass. Starting with a general introduction to the origin and the function of...

  2. Potential of Using Manure to Improve Soil Fertility in A Maize/Bean Intercrop in the Drylands

    International Nuclear Information System (INIS)

    Buigutt, J.C.

    2002-01-01

    Low soil fertility as a limiting factor in maize and bean production in ASALS areas is a pertinent topic for investigation, owing to the importance of the crops as staple foods as well as sources of income and employment for the increasing population occasioned by high fertility rates and immigration from the congested high potential highlands. The use of readily available and cheaper sources of plant nutrients such as farm yard manure (FYM), under the common practice of intercropping is one way of sustaining agricultural production in the drylands. The objective of the study conducted in LM5 (under irrigation) and LM5 (under rainfed) Agro-ecological zones of Baringo district was to determine the potential of use FYM and bean intercropping to improve soil fertility for higher maize yields. The result showed that under maize pure stand the highest yields of 3.2 tons/ha were obtained under DAP though this was not significantly different with FYM, FYM+CAN and No Fertilizer treatments. Under intercrop the highest maize yields of 2.8 t/ha were obtained under FYM+CAN. Economic analysis showed that bean pure stand system gave the highest result net benefits followed by intercrop and lastly maize pure stand. The result further showed that the generally low crop yield coupled by low prices renders Katumani maize variety uneconomical to be grown under irrigation and that the higher yielding hybrids (eg H513 using FYM+CAN could be more profitable to farmers in both zones)

  3. Radiation mutation breeding

    International Nuclear Information System (INIS)

    Song, Hi Sup; Kim, Jae Sung; Kim, Jin Kyu; Shin, In Chul; Lim, Young Taek

    1998-04-01

    In order to develop an advanced technical knowledge for the selection of better mutants, some of the crops were irradiated and the mutation rate, the survival rate and the method for selction of a mutant were studied. Furthermore, this study aimed to obtain basic data applicable to the development of genetic resources by evaluation and analysis the specific character for selection of the superior mutant and its plant breeding. 1. selection of the mutant with a superior resistance against environment in the principal crops 1) New varieties of mutant rices such as Wonpyeongbyeo, Wongwangbyeo, Winmibyeo, and heogseon chalbeyeo (sticky forma) were registered in the national variety list and made an application to crop variety protection right. They are under review now. 2) We also keep on studying on the number of a grain of 8 lines of excellent mutant rice for the purpose of improvement of breeding . 3) We selected 3 lines which have a resistance to pod and stem blight in large soybean, 31 lines with small grain size and higher yield, 112 lines of soybean of cooking, 7 lines of low lipoxygenase content, and 12 lines with decreased phytic acid content by 20 % compared to the previous level. 2. Selection of advanced Mugunwha (Rose of Sharon) mutant 1) Bagseul, a new variety of mutant, was developed and 30 plantlets of it are being proliferated. 2) Fifty-three lines of a mutant having a various morphologies were selected

  4. Radiation mutation breeding

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hi Sup; Kim, Jae Sung; Kim, Jin Kyu; Shin, In Chul; Lim, Young Taek

    1998-04-01

    In order to develop an advanced technical knowledge for the selection of better mutants, some of the crops were irradiated and the mutation rate, the survival rate and the method for selction of a mutant were studied. Furthermore, this study aimed to obtain basic data applicable to the development of genetic resources by evaluation and analysis the specific character for selection of the superior mutant and its plant breeding. 1. selection of the mutant with a superior resistance against environment in the principal crops 1) New varieties of mutant rices such as Wonpyeongbyeo, Wongwangbyeo, Winmibyeo, and heogseon chalbeyeo (sticky forma) were registered in the national variety list and made an application to crop variety protection right. They are under review now. 2) We also keep on studying on the number of a grain of 8 lines of excellent mutant rice for the purpose of improvement of breeding . 3) We selected 3 lines which have a resistance to pod and stem blight in large soybean, 31 lines with small grain size and higher yield, 112 lines of soybean of cooking, 7 lines of low lipoxygenase content, and 12 lines with decreased phytic acid content by 20 % compared to the previous level. 2. Selection of advanced Mugunwha (Rose of Sharon) mutant 1) Bagseul, a new variety of mutant, was developed and 30 plantlets of it are being proliferated. 2) Fifty-three lines of a mutant having a various morphologies were selected.

  5. Breeds in danger of extintion and biodiversity

    OpenAIRE

    A. Blasco

    2008-01-01

    Some arguments currently used to support breed conservation are examined. The central point is that we cannot conserve all breeds because we do not have financial resources enough to keep everything (mainly in developing countries) and in many cases we do not have special reasons to conserve breeds. A breed is a human product and it should not be confused with specie. A breed can be generated or transformed. We can create synthetic breeds with the best characteristics of several breeds. Selec...

  6. The iojap gene in maize

    Energy Technology Data Exchange (ETDEWEB)

    Martienssen, Robert

    2001-12-01

    The classical maize mutant iojap (Iodent japonica) has variegated green and white leaves. Green sectors have cells with normal chloroplasts whereas white sectors have cells where plastids fail to differentiate. These mutant plastids, when transmitted through the female gametophyte, do not recover in the presence of wild type Iojap. We cloned the Ij locus, and we have investigated the mechanism of epigenetic inheritance and phenotypic expression. More recently, a modifier of this type of variegation, ''Inhibitor of striate'', has also been cloned. Both the iojap and inhibitor of striate proteins have homologs in bacteria and are members of ancient conserved families found in multiple species. These tools can be used to address fundamental questions of inheritance and variegation associated with this classical conundrum of maize genetics. Since the work of Rhoades there has been considerable speculation concerning the nature of the Iojap gene product, the origin of leaf variegation and the mechanism behind the material inheritance of defective plastids. This has made Iojap a textbook paradigm for cytoplasmic inheritance and nuclear-organellar interaction for almost 50 years. Cloning of the Iojap gene in maize, and homologs in other plants and bacteria, provides a new means to address the origin of heteroplastidity, variegation and cytoplasmic inheritance in higher plants.

  7. Mutation breeding newsletter. No. 43

    International Nuclear Information System (INIS)

    1997-10-01

    This issue of the Newsletter includes articles dealing with radiation induced mutation based plant breeding research findings aimed at improving productivity, disease resistance and tolerance of stress conditions

  8. Cacao breeding in Bahia, Brazil - strategies and results

    Directory of Open Access Journals (Sweden)

    Uilson Vanderlei Lopes

    2011-01-01

    Full Text Available Cacao was introduced in Bahia in 1756, becoming later the largest producer state in the country. In order to supportthe planting of cacao in the region, a breeding program was established by CEPEC at the beginning of the 1970s. For a long time,the program consisted in testing new hybrids (full-sibs and releasing a mixture of the best ones to farmers. Lately, particularly afterthe witches´ broom arrival in the region, in 1989, recurrent breeding strategies were implemented, aiming mainly the developmentof clones. From 1993 to 2010, more than 500 progenies, accumulating 30 thousand trees, were developed by crossing many parentswith resistance to witches´ broom, high yield and other traits. In this period, more than 500 clones were put in trials and 39 clonesand 3 hybrids were released to farmers. In this paper the strategies and results achieved by the program are reviewed. Overall theprogram has good interface with pathology and genomic programs.

  9. Textbook animal breeding : animal breeding andgenetics for BSc students

    NARCIS (Netherlands)

    Oldenbroek, Kor; Waaij, van der Liesbeth

    2014-01-01

    This textbook contains teaching material on animal breeding and genetics for BSc students. The text book started as an initiative of the Dutch Universities for Applied (Agricultural) Sciences. The textbook is made available by the Animal Breeding and Genomics Centre (ABGC) of Wageningen UR

  10. Array-based genotyping and genetic dissimilarity analysis of a set of maize inbred lines belonging to different heterotic groups

    Directory of Open Access Journals (Sweden)

    Jambrović Antun

    2014-01-01

    Full Text Available Here we describe the results of the detailed array-based genotyping obtained by using the Illumina MaizeSNP50 BeadChip of eleven inbred lines belonging to different heterotic groups relevant for maize breeding in Southeast Europe - European Corn Belt. The objectives of this study were to assess the utility of the MaizeSNP50 BeadChip platform by determining its descriptive power and to assess genetic dissimilarity of the inbred lines. The distribution of the SNPs was found not completely uniform among chromosomes, but average call rate was very high (97.9% and number of polymorphic loci was 33200 out of 50074 SNPs with known mapping position indicating descriptive power of the MaizeSNP50 BeadChip. The dendrogram obtained from UPGMA cluster analysis as well as principal component analysis (PCA confirmed pedigree information, undoubtedly distinguishing lines according to their background in two population varieties of Reid Yellow Dent and Lancaster Sure Crop. Dissimilarity analysis showed that all of the inbred lines could be distinguished from each other. Whereas cluster analysis did not definitely differentiate Mo17 and Ohio inbred lines, PCA revealed clear genetic differences between them. The studied inbred lines were confirmed to be genetically diverse, representing a large proportion of the genetic variation occurring in two maize heterotic groups.

  11. Decomposition and fertilizing effects of maize stover and chromolaena odorata on maize yield

    International Nuclear Information System (INIS)

    Tetteh, F.M.; Safo, E.Y.; Quansah, C.

    2008-01-01

    The quality, rates of decomposition and the fertilizing effect of chromolaena odorata, and maize stover were determined in field experiments as surface application or buried in litter bags. Studies on the effect of plant materials of contrasting qualities (maize stover and C. odorata) applied sole (10 Mg ha -1 ) and mixed, on maize grain and biomass yield were also conducted on the Asuansi (Ferric Acrisol) soil series. Total nitrogen content of the residues ranged from 0.85% in maize stover to 3.50% in C. odorata. Organic carbon ranged from 34.90% in C. odorata to 48.50% in maize stover. Phosphorus ranged from 0.10% in maize stover to 0.76% in C. odorata. In the wet season, the decomposition rate constants (k) were 0.0319 day -1 for C. odorata, and 0.0081 for maize stover. In the dry season, the k values were 0.0083 for C. odorata, and 0.0072 day -1 for maize stover. Burying of the plant materials reduced the half-life (t 50 ) periods from 18 to 10 days for C. odorata, and 45 to 20 days for maize stover. Maize grain yield of 2556 kg ha -1 was obtained in sole C. odorata (10 Mg ha -1 ) compared with 2167 kg ha -1 for maize stover. Mixing of maize stover and C. odorata residues improved the nutrient content as well as nutrient release by the mixtures resulting in greater maize grain yields in the mixtures than the sole maize stover treatment. It is recommended that C. odorata be used as green manure, mulching or composting material to improve fertility. (au)

  12. Maize and Arabidopsis ARGOS Proteins Interact with Ethylene Receptor Signaling Complex, Supporting a Regulatory Role for ARGOS in Ethylene Signal Transduction[OPEN

    Science.gov (United States)

    Shi, Jinrui; Wang, Hongyu; Habben, Jeffrey E.

    2016-01-01

    The phytohormone ethylene regulates plant growth and development as well as plant response to environmental cues. ARGOS genes reduce plant sensitivity to ethylene when overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). A previous genetic study suggested that the endoplasmic reticulum and Golgi-localized maize ARGOS1 targets the ethylene signal transduction components at or upstream of CONSTITUTIVE TRIPLE RESPONSE1, but the mechanism of ARGOS modulating ethylene signaling is unknown. Here, we demonstrate in Arabidopsis that ZmARGOS1, as well as the Arabidopsis ARGOS homolog ORGAN SIZE RELATED1, physically interacts with Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), an ethylene receptor interacting protein that regulates the activity of ETHYLENE RESPONSE1. The protein-protein interaction was also detected with the yeast split-ubiquitin two-hybrid system. Using the same yeast assay, we found that maize RTE1 homolog REVERSION-TO-ETHYLENE SENSITIVITY1 LIKE4 (ZmRTL4) and ZmRTL2 also interact with maize and Arabidopsis ARGOS proteins. Like AtRTE1 in Arabidopsis, ZmRTL4 and ZmRTL2 reduce ethylene responses when overexpressed in maize, indicating a similar mechanism for ARGOS regulating ethylene signaling in maize. A polypeptide fragment derived from ZmARGOS8, consisting of a Pro-rich motif flanked by two transmembrane helices that are conserved among members of the ARGOS family, can interact with AtRTE1 and maize RTL proteins in Arabidopsis. The conserved domain is necessary and sufficient to reduce ethylene sensitivity in Arabidopsis and maize. Overall, these results suggest a physical association between ARGOS and the ethylene receptor signaling complex via AtRTE1 and maize RTL proteins, supporting a role for ARGOS in regulating ethylene perception and the early steps of signal transduction in Arabidopsis and maize. PMID:27268962

  13. PERFORMANCE OF MAIZE (ZEA MAYS) CULTIVARS AS ...

    African Journals Online (AJOL)

    IBUKUN

    reported to have low remobilisation efficiency and reduced plasticity of seed weight to assimilate availability ... have indicated that the use of organo-mineral fertiliser in maize and melon gave high relative .... The soil physical and chemical characteristics of ..... yield in maize by examining genetic improvement and heterosis.

  14. (SSR) markers for drought tolerance in maize

    African Journals Online (AJOL)

    Maize is moderately sensitive to drought. Drought affects virtually all aspects of maize growth in varying degrees at all stages, from germination to maturity. Tolerance to drought is genetically and physiologically complicated and inherited quantitatively. Application of molecular-marker aided selection technique for ...

  15. Next generation breeding.

    Science.gov (United States)

    Barabaschi, Delfina; Tondelli, Alessandro; Desiderio, Francesca; Volante, Andrea; Vaccino, Patrizia; Valè, Giampiero; Cattivelli, Luigi

    2016-01-01

    The genomic revolution of the past decade has greatly improved our understanding of the genetic make-up of living organisms. The sequencing of crop genomes has completely changed our vision and interpretation of genome organization and evolution. Re-sequencing allows the identification of an unlimited number of markers as well as the analysis of germplasm allelic diversity based on allele mining approaches. High throughput marker technologies coupled with advanced phenotyping platforms provide new opportunities for discovering marker-trait associations which can sustain genomic-assisted breeding. The availability of genome sequencing information is enabling genome editing (site-specific mutagenesis), to obtain gene sequences desired by breeders. This review illustrates how next generation sequencing-derived information can be used to tailor genomic tools for different breeders' needs to revolutionize crop improvement. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Over-breeding

    International Nuclear Information System (INIS)