WorldWideScience

Sample records for maize expressing cry1

  1. Larval development of Spodoptera eridania (Cramer fed on leaves of Bt maize expressing Cry1F and Cry1F + Cry1A.105 + Cry2Ab2 proteins and its non-Bt isoline

    Directory of Open Access Journals (Sweden)

    Orcial Ceolin Bortolotto

    2015-03-01

    Full Text Available This study aimed to evaluate, in controlled laboratory conditions (temperature of 25±2 °C, relative humidity of 60±10%, and 14/10 h L/D photoperiod, the larval development of Spodoptera eridania (Cramer, 1784 (Lepidoptera, Noctuidae fed with leaves of Bt maize expressing Cry1F and Cry1F + Cry1A.105 + Cry2Ab2 insecticide proteins and its non-Bt isoline. Maize leaves triggered 100% of mortality on S. eridania larvae independently of being Bt or non-Bt plants. However, it was observed that in overall Bt maize (expressing a single or pyramided protein slightly affects the larval development of S. eridania, even under reduced leaf consumption. Therefore, these results showed that Cry1F and Cry1F + Cry1A.105 + Cry2Ab2 can affect the larval development of S. eridania, although it is not a target pest of this plant; however, more research is needed to better understand this evidence. Finally, this study confirms that non-Bt maize leaves are unsuitable food source to S. eridania larvae, suggesting that they are not a potential pest in maize fields.

  2. Baseline sensitivity of maize borers in India to the Bacillus thuringiensis insecticidal proteins Cry1A.105 and Cry2Ab2.

    Science.gov (United States)

    Jalali, Sushil K; Yadavalli, Lalitha; Ojha, Rakshit; Kumar, Pradyumn; Sulaikhabeevi, Suby B; Sharma, Reema; Nair, Rupa; Kadanur, Ravi C; Kamath, Subray P; Komarlingam, Mohan S

    2015-08-01

    Among the major pests of maize in India are two stem borers, Chilo partellus (Swinhoe) and Sesamia inferens (Walker), and an earworm, Helicoverpa armigera (Hübner). As a pest control strategy, transgenic Bacillus thuringiensis (Bt) maize hybrids are undergoing regulatory trials in India. We have determined the sensitivity of the target lepidopterans to the insecticidal Bt proteins expressed in Bt maize, as this determines product efficacy and the resistance management strategy to be adopted. Maize hybrids with event MON89034 express two insecticidal Bt proteins, Cry1A.105 and Cry2Ab2. Sensitivity profiles of 53 populations of C. partellus, 21 populations of S. inferens and 21 populations of H. armigera, collected between 2008 and 2013 from maize-growing areas in India, to Cry1A.105 and Cry2Ab2 proteins were generated through dose-response assays. Cry1A.105 protein was the most effective to neonates of C. partellus (mean MIC90 range 0.30-1.0 µg mL(-1) ) and H. armigera (mean MIC90 range 0.71-8.22 µg mL(-1) ), whereas Cry2Ab2 (mean MIC90 range 0.65-1.70 µg mL(-1) ) was the most effective to S. inferens. Populations of C. partellus, S. inferens and H. armigera were susceptible to the Bt proteins Cry1A.105 and Cry2Ab2. The Bt sensitivity data will serve as precommercialisation benchmarks for resistance monitoring purposes. © 2014 Society of Chemical Industry.

  3. Field-evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil.

    Science.gov (United States)

    Omoto, Celso; Bernardi, Oderlei; Salmeron, Eloisa; Sorgatto, Rodrigo J; Dourado, Patrick M; Crivellari, Augusto; Carvalho, Renato A; Willse, Alan; Martinelli, Samuel; Head, Graham P

    2016-09-01

    The first Bt maize in Brazil was launched in 2008 and contained the MON 810 event, which expresses Cry1Ab protein. Although the Cry1Ab dose in MON 810 is not high against fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), MON 810 provided commercial levels of control. To support insect resistance management in Brazil, the baseline and ongoing susceptibility of FAW was examined using protein bioassays, and the level of control and life history parameters of FAW were evaluated on MON 810 maize. Baseline diet overlay assays with Cry1Ab (16 µg cm(-2) ) caused 76.3% mortality to field FAW populations sampled in 2009. Moderate mortality (48.8%) and significant growth inhibition (88.4%) were verified in leaf-disc bioassays. In greenhouse trials, MON 810 had significantly less damage than non-Bt maize. The surviving FAW larvae on MON 810 (22.4%) had a 5.5 day increase in life cycle time and a 24% reduction in population growth rate. Resistance monitoring (2010-2015) showed a significant reduction in Cry1Ab susceptibility of FAW over time. Additionally, a significant reduction in the field efficacy of MON 810 maize against FAW was observed in different regions from crop season 2009 to 2013. The decrease in susceptibility to Cry1Ab was expected, but the specific contributions to this resistance by MON 810 maize cannot be distinguished from cross-resistance to Cry1Ab caused by exposure to Cry1F maize. Technologies combining multiple novel insecticidal traits with no cross-resistance to the current Cry1 proteins and high activity against the same target pests should be pursued in Brazil and similar environments. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  4. Impact of Cry3Bb1-expressing Bt maize on adults of the western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Meissle, Michael; Hellmich, Richard L; Romeis, Jörg

    2011-07-01

    Genetically engineered maize producing insecticidal Cry3Bb1 protein from Bacillus thuringiensis (Bt) is protected from root damage by corn rootworm larvae. An examination was made to establish whether western corn rootworm (Diabrotica virgifera virgifera) adults are affected by Cry3Bb1-expressing maize (MON88017) when feeding on above-ground tissue. In laboratory bioassays, adult D. v. virgifera were fed for 7 weeks with silk, leaves or pollen from Bt maize or the corresponding near-isoline. Male, but not female, survival was reduced in the Bt-leaf treatment compared with the control. Female weight was lower when fed Bt maize, and egg production was reduced in the Bt-silk treatment. ELISA measurements demonstrated that beetles feeding on silk were exposed to higher Cry3Bb1 concentrations than beetles collected from Bt-maize fields in the United States. In contrast to silk and pollen, feeding on leaves resulted in high mortality and low fecundity. Females feeding on pollen produced more eggs than on silk. C:N ratios indicated that silk does not provide enough nitrogen for optimal egg production. Direct effects of Cry3Bb1 on adult beetles could explain the observed effects, but varietal differences between Bt and control maize are also possible. The impact of Bt maize on adult populations, however, is likely to be limited. Copyright © 2011 Society of Chemical Industry.

  5. Consumption of Bt Maize Pollen Containing Cry1Ie Does Not Negatively Affect Propylea japonica (Thunberg (Coleoptera: Coccinellidae

    Directory of Open Access Journals (Sweden)

    Yonghui Li

    2017-03-01

    Full Text Available Propylea japonica (Thunberg (Coleoptera: Coccinellidae are prevalent predators and pollen feeders in East Asian maize fields. They are therefore indirectly (via prey and directly (via pollen exposed to Cry proteins within Bt-transgenic maize fields. The effects of Cry1Ie-producing transgenic maize pollen on the fitness of P. japonica was assessed using two dietary-exposure experiments in the laboratory. In the first experiment, survival, larval developmental time, adult fresh weight, and fecundity did not differ between ladybirds consuming Bt or non-Bt maize pollen. In the second experiment, none of the tested lethal and sublethal parameters of P. japonica were negatively affected when fed a rapeseed pollen-based diet containing Cry1Ie protein at 200 μg/g dry weight of diet. In contrast, the larval developmental time, adult fresh weight, and fecundity of P. japonica were significantly adversely affected when fed diet containing the positive control compound E-64. In both experiments, the bioactivity of the Cry1Ie protein in the food sources was confirmed by bioassays with a Cry1Ie-sensitive lepidopteran species. These results indicated that P. japonica are not affected by the consumption of Cry1Ie-expressing maize pollen and are not sensitive to the Cry1Ie protein, suggesting that the growing of Bt maize expressing Cry1Ie protein will pose a negligible risk to P. japonica.

  6. Cross-Resistance between Cry1 Proteins in Fall Armyworm (Spodoptera frugiperda) May Affect the Durability of Current Pyramided Bt Maize Hybrids in Brazil.

    Science.gov (United States)

    Bernardi, Daniel; Salmeron, Eloisa; Horikoshi, Renato Jun; Bernardi, Oderlei; Dourado, Patrick Marques; Carvalho, Renato Assis; Martinelli, Samuel; Head, Graham P; Omoto, Celso

    2015-01-01

    Genetically modified plants expressing insecticidal proteins from Bacillus thuringiensis (Bt) offer valuable options for managing insect pests with considerable environmental and economic benefits. Despite the benefits provided by Bt crops, the continuous expression of these insecticidal proteins imposes strong selection for resistance in target pest populations. Bt maize (Zea mays) hybrids have been successful in controlling fall armyworm (Spodoptera frugiperda), the main maize pest in Brazil since 2008; however, field-evolved resistance to the protein Cry1F has recently been reported. Therefore it is important to assess the possibility of cross-resistance between Cry1F and other Cry proteins expressed in Bt maize hybrids. In this study, an F2 screen followed by subsequent selection on MON 89034 maize was used to select an S. frugiperda strain (RR) able to survive on the Bt maize event MON 89034, which expresses the Cry1A.105 and Cry2Ab2 proteins. Field-collected insects from maize expressing the Cry1F protein (event TC1507) represented most of the positive (resistance allele-containing) (iso)families found. The RR strain showed high levels of resistance to Cry1F, which apparently also conferred high levels of cross resistance to Cry1A.105 and Cry1Ab, but had only low-level (10-fold) resistance to Cry2Ab2. Life history studies to investigate fitness costs associated with the resistance in RR strain revealed only small reductions in reproductive rate when compared to susceptible and heterozygous strains, but the RR strain produced 32.2% and 28.4% fewer females from each female relative to the SS and RS (pooled) strains, respectively. Consistent with the lack of significant resistance to Cry2Ab2, MON 89034 maize in combination with appropriate management practices continues to provide effective control of S. frugiperda in Brazil. Nevertheless, the occurrence of Cry1F resistance in S. frugiperda across Brazil, and the cross-resistance to Cry1Ab and Cry1A.105

  7. Cry1F resistance in fall armyworm Spodoptera frugiperda: single gene versus pyramided Bt maize.

    Science.gov (United States)

    Huang, Fangneng; Qureshi, Jawwad A; Meagher, Robert L; Reisig, Dominic D; Head, Graham P; Andow, David A; Ni, Xinzi; Kerns, David; Buntin, G David; Niu, Ying; Yang, Fei; Dangal, Vikash

    2014-01-01

    Evolution of insect resistance to transgenic crops containing Bacillus thuringiensis (Bt) genes is a serious threat to the sustainability of this technology. However, field resistance related to the reduced efficacy of Bt maize has not been documented in any lepidopteran pest in the mainland U.S. after 18 years of intensive Bt maize planting. Here we report compelling evidence of field resistance in the fall armyworm, Spodoptera frugiperda (J.E. Smith), to Cry1F maize (TC 3507) in the southeastern region of the U.S. An F2 screen showed a surprisingly high (0.293) Cry1F resistance allele frequency in a population collected in 2011 from non-Bt maize in south Florida. Field populations from non-Bt maize in 2012-2013 exhibited 18.8-fold to >85.4-fold resistance to purified Cry1F protein and those collected from unexpectedly damaged Bt maize plants at several locations in Florida and North Carolina had >85.4-fold resistance. In addition, reduced efficacy and control failure of Cry1F maize against natural populations of S. frugiperda were documented in field trials using Cry1F-based and pyramided Bt maize products in south Florida. The Cry1F-resistant S. frugiperda also showed a low level of cross-resistance to Cry1A.105 and related maize products, but not to Cry2Ab2 or Vip3A. The occurrence of Cry1F resistance in the U.S. mainland populations of S. frugiperda likely represents migration of insects from Puerto Rico, indicating the great challenges faced in achieving effective resistance management for long-distance migratory pests like S. frugiperda.

  8. Performance and cross-crop resistance of Cry1F-maize selected Spodoptera frugiperda on transgenic Bt cotton: implications for resistance management.

    Science.gov (United States)

    Yang, Fei; Kerns, David L; Brown, Sebe; Kurtz, Ryan; Dennehy, Tim; Braxton, Bo; Head, Graham; Huang, Fangneng

    2016-06-15

    Transgenic crops producing Bacillus thuringiensis (Bt) proteins have become a primary tool in pest management. Due to the intensive use of Bt crops, resistance of the fall armyworm, Spodoptera frugiperda, to Cry1F maize has occurred in Puerto Rico, Brazil, and some areas of the southeastern U.S. The sustainability of Bt crops faces a great challenge because the Cry1F-maize resistant S. frugiperda may also infest other Bt crops in multiple cropping ecosystems. Here we examined the survival and plant injury of a S. frugiperda population selected with Cry1F maize on three single-gene and five pyramided Bt cotton products. Larvae of Cry1F-susceptible (SS), -heterozygous (RS), and -resistant (RR) genotypes of S. frugiperda were all susceptible to the pyramided cotton containing Cry1Ac/Cry2Ab, Cry1Ac/Cry1F/Vip3A, Cry1Ab/Cry2Ae, or Cry1Ab/Cry2Ae/Vip3A, and the single-gene Cry2Ae cotton. Pyramided cotton containing Cry1Ac/Cry1F was effective against SS and RS, but not for RR. These findings show that the Cry1F-maize selected S. frugiperda can cause cross-crop resistance to other Bt crops expressing similar insecticidal proteins. Resistance management and pest management programs that utilize diversify mortality factors must be implemented to ensure the sustainability of Bt crops. This is especially important in areas where resistance to single-gene Bt crops is already widespread.

  9. Susceptibility and aversion of Spodoptera frugiperda (Lepidoptera: Noctuidae) to Cry1F Bt maize and considerations for insect resistance management.

    Science.gov (United States)

    Binning, Rachel R; Coats, Joel; Kong, Xiaoxiao; Hellmich, Richard L

    2014-02-01

    Bacillus thuringiensis (Bt) maize was developed primarily for North American pests such as European corn borer (Ostrinia nubilalis (Hübner)). However, most Bt maize products are also cultivated outside of North America, where the primary pests may be different and may have lower susceptibility to Bt toxins. Fall armyworm (Spodoptera frugiperda JE Smith) is an important pest and primary target of Bt maize in Central and South America. S. frugiperda susceptibility to Cry1F (expressed in event TC1507) is an example of a pest-by-toxin interaction that does not meet the high-dose definition. In this study, the behavioral and toxic response of S. frugiperda to Cry1F maize was investigated by measuring the percentage of time naive third instars spent feeding during a 3-min exposure. S. frugiperda also were exposed as third instars to Cry1F maize for 14 d to measure weight gain and survival. S. frugiperda demonstrated an initial, postingestive aversive response to Cry1F maize, and few larvae survived the 14 d exposure. The role of susceptibility and avoidance are discussed in the context of global IRM refuge strategy development for Bt products.

  10. Effects of insecticidal crystal proteins (Cry proteins) produced by genetically modified maize (Bt maize) on the nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Höss, Sebastian; Menzel, Ralph; Gessler, Frank; Nguyen, Hang T.; Jehle, Johannes A.; Traunspurger, Walter

    2013-01-01

    The genetically modified maize MON89034 × MON88017 expresses different crystal (Cry) proteins with pesticidal activity against the European corn borer (Cry1.105; Cry2Ab2) and the Western corn root worm (Cry3Bb1). Non-target organisms, such as soil nematodes, might be exposed to the Cry proteins that enter the soil in course of crop growing. Therefore, the risk of those proteins for nematodes was assessed by testing their toxic effects on Caenorhabditis elegans. All three insecticidal Cry proteins showed dose-dependent inhibitory effects on C. elegans reproduction (EC50: 0.12–0.38 μmol L −1 ), however, at concentrations that were far above the expected soil concentrations. Moreover, a reduced toxicity was observed when Cry proteins were added jointly. A C. elegans mutant strain deficient for receptors for the nematicidal Cry5B was also resistant against Cry1.105 and Cry2Ab2, suggesting that these Cry proteins bound to the same or similar receptors as nematicidal Cry proteins and thereby affect the reproduction of C. elegans. -- Highlights: •Insecticidal Cry proteins dose-dependently inhibited the reproduction of C. elegans. •Mixture toxicity was lower than expected from concentration-additive single effects. •Genes for MAPK-defense-pathway were up-regulated in presence of Cry protein mixture. •Knock-out strains deficient for Cry5B-receptors showed lower susceptibility to insecticidal Cry proteins. •Toxicity of insecticidal Cry-proteins on C. elegans occurred at concentrations far above expected field concentrations. -- Insecticidal Cry proteins expressed by genetically modified maize act on nematodes via a similar mode of action as nematicidal Cry proteins, however, at concentrations far above expected soil levels

  11. Effect of Stacked Insecticidal Cry Proteins from Maize Pollen on Nurse Bees (Apis mellifera carnica) and Their Gut Bacteria

    Science.gov (United States)

    Härtel, Stephan; Näther, Astrid; Dohrmann, Anja B.; Steffan-Dewenter, Ingolf; Tebbe, Christoph C.

    2013-01-01

    Honey bee pollination is a key ecosystem service to nature and agriculture. However, biosafety research on genetically modified crops rarely considers effects on nurse bees from intact colonies, even though they receive and primarily process the largest amount of pollen. The objective of this study was to analyze the response of nurse bees and their gut bacteria to pollen from Bt maize expressing three different insecticidal Cry proteins (Cry1A.105, Cry2Ab2, and Cry3Bb1). Naturally Cry proteins are produced by bacteria (Bacillus thuringiensis). Colonies of Apis mellifera carnica were kept during anthesis in flight cages on field plots with the Bt maize, two different conventionally bred maize varieties, and without cages, 1-km outside of the experimental maize field to allow ad libitum foraging to mixed pollen sources. During their 10-days life span, the consumption of Bt maize pollen had no effect on their survival rate, body weight and rates of pollen digestion compared to the conventional maize varieties. As indicated by ELISA-quantification of Cry1A.105 and Cry3Bb1, more than 98% of the recombinant proteins were degraded. Bacterial population sizes in the gut were not affected by the genetic modification. Bt-maize, conventional varieties and mixed pollen sources selected for significantly different bacterial communities which were, however, composed of the same dominant members, including Proteobacteria in the midgut and Lactobacillus sp. and Bifidobacterium sp. in the hindgut. Surprisingly, Cry proteins from natural sources, most likely B. thuringiensis, were detected in bees with no exposure to Bt maize. The natural occurrence of Cry proteins and the lack of detectable effects on nurse bees and their gut bacteria give no indication for harmful effects of this Bt maize on nurse honey bees. PMID:23533634

  12. Effect of stacked insecticidal Cry proteins from maize pollen on nurse bees (Apis mellifera carnica and their gut bacteria.

    Directory of Open Access Journals (Sweden)

    Harmen P Hendriksma

    Full Text Available Honey bee pollination is a key ecosystem service to nature and agriculture. However, biosafety research on genetically modified crops rarely considers effects on nurse bees from intact colonies, even though they receive and primarily process the largest amount of pollen. The objective of this study was to analyze the response of nurse bees and their gut bacteria to pollen from Bt maize expressing three different insecticidal Cry proteins (Cry1A.105, Cry2Ab2, and Cry3Bb1. Naturally Cry proteins are produced by bacteria (Bacillus thuringiensis. Colonies of Apis mellifera carnica were kept during anthesis in flight cages on field plots with the Bt maize, two different conventionally bred maize varieties, and without cages, 1-km outside of the experimental maize field to allow ad libitum foraging to mixed pollen sources. During their 10-days life span, the consumption of Bt maize pollen had no effect on their survival rate, body weight and rates of pollen digestion compared to the conventional maize varieties. As indicated by ELISA-quantification of Cry1A.105 and Cry3Bb1, more than 98% of the recombinant proteins were degraded. Bacterial population sizes in the gut were not affected by the genetic modification. Bt-maize, conventional varieties and mixed pollen sources selected for significantly different bacterial communities which were, however, composed of the same dominant members, including Proteobacteria in the midgut and Lactobacillus sp. and Bifidobacterium sp. in the hindgut. Surprisingly, Cry proteins from natural sources, most likely B. thuringiensis, were detected in bees with no exposure to Bt maize. The natural occurrence of Cry proteins and the lack of detectable effects on nurse bees and their gut bacteria give no indication for harmful effects of this Bt maize on nurse honey bees.

  13. Effect of stacked insecticidal Cry proteins from maize pollen on nurse bees (Apis mellifera carnica) and their gut bacteria.

    Science.gov (United States)

    Hendriksma, Harmen P; Küting, Meike; Härtel, Stephan; Näther, Astrid; Dohrmann, Anja B; Steffan-Dewenter, Ingolf; Tebbe, Christoph C

    2013-01-01

    Honey bee pollination is a key ecosystem service to nature and agriculture. However, biosafety research on genetically modified crops rarely considers effects on nurse bees from intact colonies, even though they receive and primarily process the largest amount of pollen. The objective of this study was to analyze the response of nurse bees and their gut bacteria to pollen from Bt maize expressing three different insecticidal Cry proteins (Cry1A.105, Cry2Ab2, and Cry3Bb1). Naturally Cry proteins are produced by bacteria (Bacillus thuringiensis). Colonies of Apis mellifera carnica were kept during anthesis in flight cages on field plots with the Bt maize, two different conventionally bred maize varieties, and without cages, 1-km outside of the experimental maize field to allow ad libitum foraging to mixed pollen sources. During their 10-days life span, the consumption of Bt maize pollen had no effect on their survival rate, body weight and rates of pollen digestion compared to the conventional maize varieties. As indicated by ELISA-quantification of Cry1A.105 and Cry3Bb1, more than 98% of the recombinant proteins were degraded. Bacterial population sizes in the gut were not affected by the genetic modification. Bt-maize, conventional varieties and mixed pollen sources selected for significantly different bacterial communities which were, however, composed of the same dominant members, including Proteobacteria in the midgut and Lactobacillus sp. and Bifidobacterium sp. in the hindgut. Surprisingly, Cry proteins from natural sources, most likely B. thuringiensis, were detected in bees with no exposure to Bt maize. The natural occurrence of Cry proteins and the lack of detectable effects on nurse bees and their gut bacteria give no indication for harmful effects of this Bt maize on nurse honey bees.

  14. Lack of detectable allergenicity in genetically modified maize containing "Cry" proteins as compared to native maize based on in silico & in vitro analysis.

    Directory of Open Access Journals (Sweden)

    Chandni Mathur

    Full Text Available Genetically modified, (GM crops with potential allergens must be evaluated for safety and endogenous IgE binding pattern compared to native variety, prior to market release.To compare endogenous IgE binding proteins of three GM maize seeds containing Cry 1Ab,1Ac,1C transgenic proteins with non GM maize.An integrated approach of in silico & in vitro methods was employed. Cry proteins were tested for presence of allergen sequence by FASTA in allergen databases. Biochemical assays for maize extracts were performed. Specific IgE (sIgE and Immunoblot using food sensitized patients sera (n = 39 to non GM and GM maize antigens was performed.In silico approaches, confirmed for non sequence similarity of stated transgenic proteins in allergen databases. An insignificant (p> 0.05 variation in protein content between GM and non GM maize was observed. Simulated Gastric Fluid (SGF revealed reduced number of stable protein fractions in GM then non GM maize which might be due to shift of constituent protein expression. Specific IgE values from patients showed insignificant difference in non GM and GM maize extracts. Five maize sensitized cases, recognized same 7 protein fractions of 88-28 kD as IgE bindng in both GM and non-GM maize, signifying absence of variation. Four of the reported IgE binding proteins were also found to be stable by SGF.Cry proteins did not indicate any significant similarity of >35% in allergen databases. Immunoassays also did not identify appreciable differences in endogenous IgE binding in GM and non GM maize.

  15. Characterization of Asian Corn Borer Resistance to Bt Toxin Cry1Ie

    Directory of Open Access Journals (Sweden)

    Yueqin Wang

    2017-06-01

    Full Text Available A strain of the Asian corn borer (ACB, Ostrinia furnacalis (Guenée, has evolved >800-fold resistance to Cry1Ie (ACB-IeR after 49 generations of selection. The inheritance pattern of resistance to Cry1Ie in ACB-IeR strain and its cross-resistance to other Bt toxins were determined through bioassay by exposing neonates from genetic-crosses to toxins incorporated into the diet. The response of progenies from reciprocal F1 crosses were similar (LC50s: 76.07 vs. 74.32 μg/g, which suggested the resistance was autosomal. The effective dominance (h decreased as concentration of Cry1Ie increased. h was nearly recessive or incompletely recessive on Cry1Ie maize leaf tissue (h = 0.02, but nearly dominant or incompletely dominant (h = 0.98 on Cry1Ie maize silk. Bioassay of the backcross suggested that the resistance was controlled by more than one locus. In addition, the resistant strain did not perform cross-resistance to Cry1Ab (0.8-fold, Cry1Ac (0.8-fold, Cry1F (0.9-fold, and Cry1Ah (1.0-fold. The present study not only offers the manifestation for resistance management, but also recommends that Cry1Ie will be an appropriate candidate for expression with Cry1Ab, Cry1Ac, Cry1F, or Cry1Ah for the development of Bt maize.

  16. Characterization of Asian Corn Borer Resistance to Bt Toxin Cry1Ie.

    Science.gov (United States)

    Wang, Yueqin; Yang, Jing; Quan, Yudong; Wang, Zhenying; Cai, Wanzhi; He, Kanglai

    2017-06-07

    A strain of the Asian corn borer (ACB), Ostrinia furnacalis (Guenée), has evolved >800-fold resistance to Cry1Ie (ACB-IeR) after 49 generations of selection. The inheritance pattern of resistance to Cry1Ie in ACB-IeR strain and its cross-resistance to other Bt toxins were determined through bioassay by exposing neonates from genetic-crosses to toxins incorporated into the diet. The response of progenies from reciprocal F₁ crosses were similar (LC 50 s: 76.07 vs. 74.32 μg/g), which suggested the resistance was autosomal. The effective dominance ( h ) decreased as concentration of Cry1Ie increased. h was nearly recessive or incompletely recessive on Cry1Ie maize leaf tissue ( h = 0.02), but nearly dominant or incompletely dominant ( h = 0.98) on Cry1Ie maize silk. Bioassay of the backcross suggested that the resistance was controlled by more than one locus. In addition, the resistant strain did not perform cross-resistance to Cry1Ab (0.8-fold), Cry1Ac (0.8-fold), Cry1F (0.9-fold), and Cry1Ah (1.0-fold). The present study not only offers the manifestation for resistance management, but also recommends that Cry1Ie will be an appropriate candidate for expression with Cry1Ab, Cry1Ac, Cry1F, or Cry1Ah for the development of Bt maize.

  17. Dominance of Cry1F resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae) on TC1507 Bt maize in Brazil.

    Science.gov (United States)

    Farias, Juliano R; Andow, David A; Horikoshi, Renato J; Sorgatto, Rodrigo J; dos Santos, Antonio C; Omoto, Celso

    2016-05-01

    Dominance of resistance has been one of the major parameters affecting the rate of evolution of resistance to Bt crops. High dose is the capacity of Bt crops to kill heterozygous insects and has been an essential component of the most successful strategy to manage resistance to these crops. Experiments were conducted to evaluate directly and indirectly whether the TC1507 event is high dose to Spodoptera frugiperda (JE Smith). About 8% of heterozygote neonate larvae were able to survive, complete larval development and emerge as normal adults on TC1507 leaves, while susceptible larvae could not survive for 5 days. The estimated dominance of resistance was 0.15 ± 0.09 and significantly higher than zero; therefore, the resistance to Cry1F expressed in TC1507 was not completely recessive. A 25-fold dilution of TC1507 maize leaf tissue in an artificial diet was able to cause a maximum mortality of only 37%, with growth inhibition of 82% at 7 days after larval infestation. Resistance to Cry1F in TC1507 maize is incompletely recessive in S. frugiperda. TC1507 maize is not high dose for S. frugiperda. Additional or alternative resistance management strategies, such as the replacement of single-trait Bt maize with pyramided Bt maize, which produces multiple proteins targeting the same insect pests, should be implemented wherever this technology is in use and S. frugiperda is the major pest. © 2015 Society of Chemical Industry.

  18. A Comparison of Soil microbial community structure, protozoa and nematodes in field plots of conventional and genetically modified maize expressing the Bacillus thuringiensis Cry1Ab toxin

    DEFF Research Database (Denmark)

    Griffiths, B. S.; Caul, S.; Thompson, J.

    2005-01-01

    Field trials were established at three European sites (Denmark, Eastern France, South-West France) of genetically modified maize (Zea mays L.) expressing the CryIAb Bacillus thuringiensis toxin (Bt), the near-isogenic non-Bt cultivar, another conventional maize cultivar and grass. Soil from Denmark......) and phospholipid fatty acid analysis (PLFA), and protozoa and nematodes in all samples. Individual differences within a site resulted from: greater nematode numbers under grass than maize on three occasions; different nematode populations under the conventional maize cultivars once; and two occasions when...... there was a reduced protozoan population under Bt maize compared to non-Bt maize. Microbial community structure within the sites only varied with grass compared to maize, with one occurrence of CLPP varying between maize cultivars (Bt versus a conventional cultivar). An overall comparison of Bt versus non-Bt maize...

  19. Inheritance of Cry1F resistance, cross-resistance and frequency of resistant alleles in Spodoptera frugiperda (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Vélez, A M; Spencer, T A; Alves, A P; Moellenbeck, D; Meagher, R L; Chirakkal, H; Siegfried, B D

    2013-12-01

    Transgenic maize, Zea maize L., expressing the Cry1F protein from Bacillus thuringiensis has been registered for Spodoptera frugiperda (J. E. Smith) control since 2003. Unexpected damage to Cry1F maize was reported in 2006 in Puerto Rico and Cry1F resistance in S. frugiperda was documented. The inheritance of Cry1F resistance was characterized in a S. frugiperda resistant strain originating from Puerto Rico, which displayed >289-fold resistance to purified Cry1F. Concentration-response bioassays of reciprocal crosses of resistant and susceptible parental populations indicated that resistance is recessive and autosomal. Bioassays of the backcross of the F1 generation crossed with the resistant parental strain suggest that a single locus is responsible for resistance. In addition, cross-resistance to Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba, Cry2Aa and Vip3Aa was assessed in the Cry1F-resistant strain. There was no significant cross-resistance to Cry1Aa, Cry1Ba and Cry2Aa, although only limited effects were observed in the susceptible strain. Vip3Aa was highly effective against susceptible and resistant insects indicating no cross-resistance with Cry1F. In contrast, low levels of cross-resistance were observed for both Cry1Ab and Cry1Ac. Because the resistance is recessive and conferred by a single locus, an F1 screening assay was used to measure the frequency of Cry1F-resistant alleles from populations of Florida and Texas in 2010 and 2011. A total frequency of resistant alleles of 0.13 and 0.02 was found for Florida and Texas populations, respectively, indicating resistant alleles could be found in US populations, although there have been no reports of reduced efficacy of Cry1F-expressing plants.

  20. Bt crops producing Cry1Ac, Cry2Ab and Cry1F do not harm the green lacewing, Chrysoperla rufilabris.

    Directory of Open Access Journals (Sweden)

    Jun-Ce Tian

    Full Text Available The biological control function provided by natural enemies is regarded as a protection goal that should not be harmed by the application of any new pest management tool. Plants producing Cry proteins from the bacterium, Bacillus thuringiensis (Bt, have become a major tactic for controlling pest Lepidoptera on cotton and maize and risk assessment studies are needed to ensure they do not harm important natural enemies. However, using Cry protein susceptible hosts as prey often compromises such studies. To avoid this problem we utilized pest Lepidoptera, cabbage looper (Trichoplusia ni and fall armyworm (Spodoptera frugiperda, that were resistant to Cry1Ac produced in Bt broccoli (T. ni, Cry1Ac/Cry2Ab produced in Bt cotton (T. ni, and Cry1F produced in Bt maize (S. frugiperda. Larvae of these species were fed Bt plants or non-Bt plants and then exposed to predaceous larvae of the green lacewing Chrysoperla rufilabris. Fitness parameters (larval survival, development time, fecundity and egg hatch of C. rufilabris were assessed over two generations. There were no differences in any of the fitness parameters regardless if C. rufilabris consumed prey (T. ni or S. frugiperda that had consumed Bt or non-Bt plants. Additional studies confirmed that the prey contained bioactive Cry proteins when they were consumed by the predator. These studies confirm that Cry1Ac, Cry2Ab and Cry1F do not pose a hazard to the important predator C. rufilabris. This study also demonstrates the power of using resistant hosts when assessing the risk of genetically modified plants on non-target organisms.

  1. Assessment of Inheritance and Fitness Costs Associated with Field-Evolved Resistance to Cry3Bb1 Maize by Western Corn Rootworm.

    Science.gov (United States)

    Paolino, Aubrey R; Gassmann, Aaron J

    2017-05-11

    The western corn rootworm, Diabrotica virgifera virgifera LeConte, is among the most serious insect pests of maize in North America. One strategy used to manage this pest is transgenic maize that produces one or more crystalline (Cry) toxins derived from the bacterium Bacillus thuringiensis (Bt). To delay Bt resistance by insect pests, refuges of non-Bt maize are grown in conjunction with Bt maize. Two factors influencing the success of the refuge strategy to delay resistance are the inheritance of resistance and fitness costs, with greater delays in resistance expected when inheritance of resistance is recessive and fitness costs are present. We measured inheritance and fitness costs of resistance for two strains of western corn rootworm with field-evolved resistance to Cry3Bb1 maize. Plant-based and diet-based bioassays revealed that the inheritance of resistance was non-recessive. In a greenhouse experiment, in which larvae were reared on whole maize plants in field soil, no fitness costs of resistance were detected. In a laboratory experiment, in which larvae experienced intraspecific and interspecific competition for food, a fitness cost of delayed larval development was identified, however, no other fitness costs were found. These findings of non-recessive inheritance of resistance and minimal fitness costs, highlight the potential for the rapid evolution of resistance to Cry3Bb1 maize by western corn rootworm, and may help to improve resistance management strategies for this pest.

  2. Assessment of Inheritance and Fitness Costs Associated with Field-Evolved Resistance to Cry3Bb1 Maize by Western Corn Rootworm

    Directory of Open Access Journals (Sweden)

    Aubrey R. Paolino

    2017-05-01

    Full Text Available The western corn rootworm, Diabrotica virgifera virgifera LeConte, is among the most serious insect pests of maize in North America. One strategy used to manage this pest is transgenic maize that produces one or more crystalline (Cry toxins derived from the bacterium Bacillus thuringiensis (Bt. To delay Bt resistance by insect pests, refuges of non-Bt maize are grown in conjunction with Bt maize. Two factors influencing the success of the refuge strategy to delay resistance are the inheritance of resistance and fitness costs, with greater delays in resistance expected when inheritance of resistance is recessive and fitness costs are present. We measured inheritance and fitness costs of resistance for two strains of western corn rootworm with field-evolved resistance to Cry3Bb1 maize. Plant-based and diet-based bioassays revealed that the inheritance of resistance was non-recessive. In a greenhouse experiment, in which larvae were reared on whole maize plants in field soil, no fitness costs of resistance were detected. In a laboratory experiment, in which larvae experienced intraspecific and interspecific competition for food, a fitness cost of delayed larval development was identified, however, no other fitness costs were found. These findings of non-recessive inheritance of resistance and minimal fitness costs, highlight the potential for the rapid evolution of resistance to Cry3Bb1 maize by western corn rootworm, and may help to improve resistance management strategies for this pest.

  3. Cry1F resistance among lepidopteran pests: a model for improved resistance management?

    Science.gov (United States)

    Vélez, Ana M; Vellichirammal, Neetha Nanoth; Jurat-Fuentes, Juan Luis; Siegfried, Blair D

    2016-06-01

    The Cry1Fa protein from the bacterium Bacillus thuringiensis (Bt) is known for its potential to control lepidopteran pests, especially through transgenic expression in maize and cotton. The maize event TC1507 expressing the cry1Fa toxin gene became commercially available in the United States in 2003 for the management of key lepidopteran pests including the European corn borer, Ostrinia nubilalis, and the fall armyworm, Spodoptera frugiperda. A high-dose/refuge strategy has been widely adopted to delay evolution of resistance to event TC1507 and other transgenic Bt crops. Efficacy of this strategy depends on the crops expressing a high dose of the Bt toxin to targeted pests and adjacent refuges of non-Bt host plants serving as a source of abundant susceptible insects. While this strategy has proved effective in delaying O. nubilalis resistance, field-evolved resistance to event TC1507 has been reported in S. frugiperda populations in Puerto Rico, Brazil, and the southeastern United States. This paper examines available information on resistance to Cry1Fa in O. nubilalis and S. frugiperda and discusses how this information identifies opportunities to refine resistance management recommendations for Bt maize. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. The interaction of two-spotted spider mites, Tetranychus urticae Koch, with Cry protein production and predation by Amblyseius andersoni (Chant) in Cry1Ac/Cry2Ab cotton and Cry1F maize.

    Science.gov (United States)

    Crops producing insecticidal crystal (Cry) proteins from the bacterium, Bacillus thuringiensis (Bt), are an important tool for managing lepidopteran pests on cotton and maize. However, the effects of these Bt crops on non-target organisms, especially natural enemies that provide biological control s...

  5. Effects of feeding Bt MON810 maize to pigs for 110 days on peripheral immune response and digestive fate of the cry1Ab gene and truncated Bt toxin.

    Directory of Open Access Journals (Sweden)

    Maria C Walsh

    Full Text Available BACKGROUND: The objective of this study was to evaluate potential long-term (110 days and age-specific effects of feeding genetically modified Bt maize on peripheral immune response in pigs and to determine the digestive fate of the cry1Ab gene and truncated Bt toxin. METHODOLOGY/PRINCIPAL FINDINGS: Forty day old pigs (n = 40 were fed one of the following treatments: 1 isogenic maize-based diet for 110 days (isogenic; 2 Bt maize-based diet (MON810 for 110 days (Bt; 3 Isogenic maize-based diet for 30 days followed by Bt maize-based diet for 80 days (isogenic/Bt; and 4 Bt maize-based diet (MON810 for 30 days followed by isogenic maize-based diet for 80 days (Bt/isogenic. Blood samples were collected during the study for haematological analysis, measurement of cytokine and Cry1Ab-specific antibody production, immune cell phenotyping and cry1Ab gene and truncated Bt toxin detection. Pigs were sacrificed on day 110 and digesta and organ samples were taken for detection of the cry1Ab gene and the truncated Bt toxin. On day 100, lymphocyte counts were higher (P<0.05 in pigs fed Bt/isogenic than pigs fed Bt or isogenic. Erythrocyte counts on day 100 were lower in pigs fed Bt or isogenic/Bt than pigs fed Bt/isogenic (P<0.05. Neither the truncated Bt toxin nor the cry1Ab gene were detected in the organs or blood of pigs fed Bt maize. The cry1Ab gene was detected in stomach digesta and at low frequency in the ileum but not in the distal gastrointestinal tract (GIT, while the Bt toxin fragments were detected at all sites in the GIT. CONCLUSIONS/SIGNIFICANCE: Perturbations in peripheral immune response were thought not to be age-specific and were not indicative of Th 2 type allergenic or Th 1 type inflammatory responses. There was no evidence of cry1Ab gene or Bt toxin translocation to organs or blood following long-term feeding.

  6. Eliminating host-mediated effects demonstrates Bt maize producing Cry1F has no adverse effects on the parasitoid Cotesia marginiventris

    Science.gov (United States)

    The fall armyworm, Spodoptera frugiperda, is an important pest of maize in the United States and many tropical areas in the western hemisphere. In 2001, Herculex I ® (Cry1F) maize was commercially planted in the United States to control Lepidoptera, including S. frugiperda. In 2006, a population of ...

  7. Larval development of Spodoptera eridania and Spodoptera frugiperda fed on fresh ear of field corn expressing the Bt proteins (Cry1F and Cry1F + Cry1A.105 + Cry2Ab2

    Directory of Open Access Journals (Sweden)

    Orcial Ceolin Bortolotto

    Full Text Available ABSTRACT: The objective of this study was to evaluate extent of larval period, larval survival (%, food consumption, and pupal biomass of Spodoptera eridania and Spodoptera frugiperda (Lepidoptera: Noctuidae fed on fresh ears of field corn expressing Bt proteins (Cry1F and Cry1F+Cry1A.105+Cry2Ab2. Larvae of Spodoptera spp. survived less than two days when they consumed Bt corncobs and showed 100% mortality. Spodoptera eridania reared on non-Bt corn cobs showed higher larval development (21.6 days than S. frugiperda (18.4 days and lower viability (56.4% and 80.2% for S. eridania and S. frugiperda , respectively. A higher amount of corn grains was consumed by S. eridania (5.4g than by S. frugiperda (3.9g. In summary, this study demonstrated that the toxins Cry1F and Cry1F + Cry1A.105 + Cry2Ab2 expressed in fresh corn cobs contributed to protect ears of corn against S. frugiperda and the non-target pest S. eridania . However, itis important to monitor non-Bt cornfields because of the potential of both species to cause damage to ear sof corn.

  8. Nitrogen Rate Effects on Cry3Bb1 and Cry3Bb1 + Cry34/35Ab1 Expression in Transgenic Corn Roots, Resulting Root Injury, and Corn Rootworm Beetle Emergence.

    Science.gov (United States)

    Leaf, T M; Ostlie, K R

    2017-06-01

    Nitrogen (N) application rates have been recommended historically for maximum economic yield of corn (Zea mays L.), but not for optimal expression or impacts of Bt (Bacillus thuringiensis Berliner) Cry protein(s) on target insects. This study explored the need to adjust N rates to optimize expression of corn rootworm-active Bt (Bt-RW) protein(s) in a single and a pyramided trait hybrid and resulting impacts on beetle emergence and root injury, under field conditions. The experiment featured a factorial treatment arrangement in a split-plot randomized complete block design with six N rates as the main plots and three hybrids (MON88017 expressing Cry3Bb1, MON88017 x DAS-59122 expressing Cry3Bb1 + Cry34/35Ab1, and a non-Bt-RW hybrid) as the subplots. Corn roots were sampled at the beginning of, and after, peak larval feeding to determine Bt-expression levels using an enzyme-linked immunosorbent assay. Beetles were collected every 2-3 d during emergence using cut-plant emergence cages. Cry3Bb1 expression was significantly reduced when little or no N was applied. Cry34Ab1 and Cry35Ab1 expression was highly variable and unaffected by N rate. Beetle emergence increased with N rate in the non-Bt-RW hybrid while root injury declined. Provided Bt-RW hybrids had sufficient applied N, root injury was relatively low. Results indicate that N management could affect Bt-RW expression and success of insect resistance management plans provided N is applied at rates that enhance production of susceptible beetles emerging from the non-Bt-RW (refuge) hybrid, and achieve optimal expression and efficacy of Bt traits. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Field Trial Performance of Herculex XTRA (Cry34Ab1/Cry35Ab1) and SmartStax (Cry34Ab1/Cry35Ab1 + Cry3Bb1) Hybrids and Soil Insecticides Against Western and Northern Corn Rootworms (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Johnson, K D; Campbell, L A; Lepping, M D; Rule, D M

    2017-06-01

    Western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), and northern corn rootworm, Diabrotica barberi Smith and Lawrence (Coleoptera: Chrysomelidae), are important insect pests in corn, Zea mays L. For more than a decade, growers have been using transgenic plants expressing proteins from the bacterium Bacillus thuringiensis (Bt) to protect corn roots from feeding. In 2011, western corn rootworm populations were reported to have developed resistance to Bt hybrids expressing Cry3Bb1 and later found to be cross-resistant to hybrids expressing mCry3A and eCry3.1Ab. The identification of resistance to Cry3 (Cry3Bb1, mCry3A, and eCry3.1Ab) hybrids led to concerns about durability and efficacy of products with single traits and of products containing a pyramid of a Cry3 protein and the binary Bt proteins Cry34Ab1 and Cry35Ab1. From 2012 to 2014, 43 field trials were conducted across the central United States to estimate root protection provided by plants expressing Cry34Ab1/Cry35Ab1 alone (Herculex RW) or pyramided with Cry3Bb1 (SmartStax). These technologies were evaluated with and without soil-applied insecticides to determine if additional management measures provided benefit where Cry3 performance was reduced. Trials were categorized for analysis based on rootworm damage levels on Cry3-expressing hybrids and rootworm feeding pressure within each trial. Across scenarios, Cry34Ab1/Cry35Ab1 hybrids provided excellent root protection. Pyramided traits provided greater root and yield protection than non-Bt plus a soil-applied insecticide, and only in trials where larval feeding pressure exceeded two nodes of damage did Cry34Ab1/Cry35Ab1 single-trait hybrids and pyramided hybrids show greater root protection from the addition of soil-applied insecticides. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Larval development of Spodoptera eridania and Spodoptera frugiperda fed on fresh ear of field corn expressing the Bt proteins (Cry1F and Cry1F + Cry1A.105 + Cry2Ab2)

    OpenAIRE

    Bortolotto,Orcial Ceolin; Bueno,Adeney de Freitas; Queiroz,Ana Paula de; Silva,Gabriela Vieira

    2016-01-01

    ABSTRACT: The objective of this study was to evaluate extent of larval period, larval survival (%), food consumption, and pupal biomass of Spodoptera eridania and Spodoptera frugiperda (Lepidoptera: Noctuidae ) fed on fresh ears of field corn expressing Bt proteins (Cry1F and Cry1F+Cry1A.105+Cry2Ab2). Larvae of Spodoptera spp. survived less than two days when they consumed Bt corncobs and showed 100% mortality. Spodoptera eridania reared on non-Bt corn cobs showed higher larval development (...

  11. Shared Midgut Binding Sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa Proteins from Bacillus thuringiensis in Two Important Corn Pests, Ostrinia nubilalis and Spodoptera frugiperda

    Science.gov (United States)

    Hernández-Rodríguez, Carmen Sara; Hernández-Martínez, Patricia; Van Rie, Jeroen; Escriche, Baltasar; Ferré, Juan

    2013-01-01

    First generation of insect-protected transgenic corn (Bt-corn) was based on the expression of Cry1Ab or Cry1Fa proteins. Currently, the trend is the combination of two or more genes expressing proteins that bind to different targets. In addition to broadening the spectrum of action, this strategy helps to delay the evolution of resistance in exposed insect populations. One of such examples is the combination of Cry1A.105 with Cry1Fa and Cry2Ab to control O. nubilalis and S. frugiperda. Cry1A.105 is a chimeric protein with domains I and II and the C-terminal half of the protein from Cry1Ac, and domain III almost identical to Cry1Fa. The aim of the present study was to determine whether the chimeric Cry1A.105 has shared binding sites either with Cry1A proteins, with Cry1Fa, or with both, in O. nubilalis and in S. frugiperda. Brush-border membrane vesicles (BBMV) from last instar larval midguts were used in competition binding assays with 125I-labeled Cry1A.105, Cry1Ab, and Cry1Fa, and unlabeled Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac, Cry1Fa, Cry2Ab and Cry2Ae. The results showed that Cry1A.105, Cry1Ab, Cry1Ac and Cry1Fa competed with high affinity for the same binding sites in both insect species. However, Cry2Ab and Cry2Ae did not compete for the binding sites of Cry1 proteins. Therefore, according to our results, the development of cross-resistance among Cry1Ab/Ac, Cry1A.105, and Cry1Fa proteins is possible in these two insect species if the alteration of shared binding sites occurs. Conversely, cross-resistance between these proteins and Cry2A proteins is very unlikely in such case. PMID:23861865

  12. The effect of nitrogen rate on transgenic corn Cry3Bb1 protein expression.

    Science.gov (United States)

    Marquardt, Paul T; Krupke, Christian H; Camberato, James J; Johnson, William G

    2014-05-01

    Combining herbicide-resistant and Bacillus thuringiensis (Bt) traits in corn (Zea mays L.) hybrids may affect insect resistance management owing to volunteer corn. Some Bt toxins may be expressed at lower levels by nitrogen-deficient corn roots. Corn plants with sublethal levels of Bt expression could accelerate the evolution of Bt resistance in target insects. The present objective was to quantify the concentration of Bt (Cry3Bb1) in corn root tissue with varying tissue nitrogen concentrations. Expression of Cry3Bb1 toxin in root tissue was highly variable, but there were no differences in the overall concentration of Cry3Bb1 expressed between roots taken from Cry3Bb1-positive volunteer and hybrid corn plants. The nitrogen rate did affect Cry3Bb1 expression in the greenhouse, less nitrogen resulted in decreased Cry3Bb1 expression, yet this result was not documented in the field. A positive linear relationship of plant nitrogen status on Cry3Bb1 toxin expression was documented. Also, high variability in Cry3Bb1 expression is potentially problematic from an insect resistance management perspective. This variability could create a mosaic of toxin doses in the field, which does not fit into the high-dose refuge strategy and could alter predictions about the speed of evolution of resistance to Cry3Bb1 in western corn rootworm Diabrotica virgifera virgifera LeConte. © 2013 Society of Chemical Industry.

  13. Expression of Cry1Ab and Cry2Ab by a polycistronic transgene with a self-cleavage peptide in rice.

    Directory of Open Access Journals (Sweden)

    Qichao Zhao

    Full Text Available Insect resistance to Bacillus thuringiensis (Bt crystal protein is a major threat to the long-term use of transgenic Bt crops. Gene stacking is a readily deployable strategy to delay the development of insect resistance while it may also broaden insecticidal spectrum. Here, we report the creation of transgenic rice expressing discrete Cry1Ab and Cry2Ab simultaneously from a single expression cassette using 2A self-cleaving peptides, which are autonomous elements from virus guiding the polycistronic viral gene expression in eukaryotes. The synthetic coding sequences of Cry1Ab and Cry2Ab, linked by the coding sequence of a 2A peptide from either foot and mouth disease virus or porcine teschovirus-1, regardless of order, were all expressed as discrete Cry1Ab and Cry2Ab at high levels in the transgenic rice. Insect bioassays demonstrated that the transgenic plants were highly resistant to lepidopteran pests. This study suggested that 2A peptide can be utilized to express multiple Bt genes at high levels in transgenic crops.

  14. Testing potential effects of maize expressing the Bacillus thuringiensis Cry1Ab endotoxin (Bt maize) on mycorrhizal fungal communities via DNA- and RNA-based pyrosequencing and molecular fingerprinting.

    Science.gov (United States)

    Verbruggen, Erik; Kuramae, Eiko E; Hillekens, Remy; de Hollander, Mattias; Kiers, E Toby; Röling, Wilfred F M; Kowalchuk, George A; van der Heijden, Marcel G A

    2012-10-01

    The cultivation of genetically modified (GM) crops has increased significantly over the last decades. However, concerns have been raised that some GM traits may negatively affect beneficial soil biota, such as arbuscular mycorrhizal fungi (AMF), potentially leading to alterations in soil functioning. Here, we test two maize varieties expressing the Bacillus thuringiensis Cry1Ab endotoxin (Bt maize) for their effects on soil AM fungal communities. We target both fungal DNA and RNA, which is new for AM fungi, and we use two strategies as an inclusive and robust way of detecting community differences: (i) 454 pyrosequencing using general fungal rRNA gene-directed primers and (ii) terminal restriction fragment length polymorphism (T-RFLP) profiling using AM fungus-specific markers. Potential GM-induced effects were compared to the normal natural variation of AM fungal communities across 15 different agricultural fields. AM fungi were found to be abundant in the experiment, accounting for 8% and 21% of total recovered DNA- and RNA-derived fungal sequences, respectively, after 104 days of plant growth. RNA- and DNA-based sequence analyses yielded most of the same AM fungal lineages. Our research yielded three major conclusions. First, no consistent differences were detected between AM fungal communities associated with GM plants and non-GM plants. Second, temporal variation in AMF community composition (between two measured time points) was bigger than GM trait-induced variation. Third, natural variation of AMF communities across 15 agricultural fields in The Netherlands, as well as within-field temporal variation, was much higher than GM-induced variation. In conclusion, we found no indication that Bt maize cultivation poses a risk for AMF.

  15. Field-Evolved Mode 1 Resistance of the Fall Armyworm to Transgenic Cry1Fa-Expressing Corn Associated with Reduced Cry1Fa Toxin Binding and Midgut Alkaline Phosphatase Expression

    Science.gov (United States)

    Jakka, Siva R. K.; Gong, Liang; Hasler, James; Banerjee, Rahul; Sheets, Joel J.; Narva, Kenneth; Blanco, Carlos A.

    2015-01-01

    Insecticidal protein genes from the bacterium Bacillus thuringiensis (Bt) are expressed by transgenic Bt crops (Bt crops) for effective and environmentally safe pest control. The development of resistance to these insecticidal proteins is considered the most serious threat to the sustainability of Bt crops. Resistance in fall armyworm (Spodoptera frugiperda) populations from Puerto Rico to transgenic corn producing the Cry1Fa insecticidal protein resulted, for the first time in the United States, in practical resistance, and Bt corn was withdrawn from the local market. In this study, we used a field-collected Cry1Fa corn-resistant strain (456) of S. frugiperda to identify the mechanism responsible for field-evolved resistance. Binding assays detected reduced Cry1Fa, Cry1Ab, and Cry1Ac but not Cry1Ca toxin binding to midgut brush border membrane vesicles (BBMV) from the larvae of strain 456 compared to that from the larvae of a susceptible (Ben) strain. This binding phenotype is descriptive of the mode 1 type of resistance to Bt toxins. A comparison of the transcript levels for putative Cry1 toxin receptor genes identified a significant downregulation (>90%) of a membrane-bound alkaline phosphatase (ALP), which translated to reduced ALP protein levels and a 75% reduction in ALP activity in BBMV from 456 compared to that of Ben larvae. We cloned and heterologously expressed this ALP from susceptible S. frugiperda larvae and demonstrated that it specifically binds with Cry1Fa toxin. This study provides a thorough mechanistic description of field-evolved resistance to a transgenic Bt crop and supports an association between resistance and reduced Cry1Fa toxin binding and levels of a putative Cry1Fa toxin receptor, ALP, in the midguts of S. frugiperda larvae. PMID:26637593

  16. F2 screen for resistance to Bacillus thuringiensis Cry2Ab2-maize in field populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) from the southern United States.

    Science.gov (United States)

    Niu, Ying; Qureshi, Jawwad A; Ni, Xinzhi; Head, Graham P; Price, Paula A; Meagher, Robert L; Kerns, David; Levy, Ronnie; Yang, Xiangbing; Huang, Fangneng

    2016-07-01

    The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is a target pest of transgenic maize and cotton expressing Bacillus thuringiensis (Bt) proteins in both North and South America. In 2013 and 2014, a total of 215 F2 two-parent families of S. frugiperda were established using single-pair mating of field individuals collected from seven locations in four states of the southern U.S.: Texas, Louisiana, Georgia, and Florida. The objective of the investigation was to detect resistance alleles in field populations to Cry2Ab2, a common Bt protein produced in transgenic maize and cotton. For each F2 family, 128 F2 neonates were screened on leaf tissue of Cry2Ab2 maize plants in the laboratory. A conservative estimate of the frequency of major Cry2Ab2 resistance alleles in S. frugiperda from the four states was 0.0023 with a 95% credibility interval of 0.0003-0.0064. In addition, six families were considered to likely possess minor resistance alleles at a frequency of 0.0082 with a 95% credibility interval of 0.0033-0.0152. One F2 family from Georgia (GA-15) was confirmed to possess a major resistance allele to the Cry2Ab2 protein. Larvae from this family survived well on whole maize plants expressing Cry2Ab2 protein and demonstrated a significant level (>15-fold) of resistance when fed with the same protein incorporated in a meridic diet. The detection of the major resistance allele along with the relatively abundant minor resistance alleles revealed in this study may have important implications for resistance management. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. First application of a microsphere-based immunoassay to the detection of genetically modified organisms (GMOs): quantification of Cry1Ab protein in genetically modified maize.

    Science.gov (United States)

    Fantozzi, Anna; Ermolli, Monica; Marini, Massimiliano; Scotti, Domenico; Balla, Branko; Querci, Maddalena; Langrell, Stephen R H; Van den Eede, Guy

    2007-02-21

    An innovative covalent microsphere immunoassay, based on the usage of fluorescent beads coupled to a specific antibody, was developed for the quantification of the endotoxin Cry1Ab present in MON810 and Bt11 genetically modified (GM) maize lines. In particular, a specific protocol was developed to assess the presence of Cry1Ab in a very broad range of GM maize concentrations, from 0.1 to 100% [weight of genetically modified organism (GMO)/weight]. Test linearity was achieved in the range of values from 0.1 to 3%, whereas fluorescence signal increased following a nonlinear model, reaching a plateau at 25%. The limits of detection and quantification were equal to 0.018 and 0.054%, respectively. The present study describes the first application of quantitative high-throughput immunoassays in GMO analysis.

  18. Assessment of fitness costs in Cry3Bb1 resistant and susceptible western corn rootworm (Coleoptera:Chrysomelidae) laboratory colonies

    Science.gov (United States)

    Maize production in the United States is dominated by plants genetically modified with transgenes from Bacillus thuringiensis (Bt). Varieties of Bt maize expressing Cry3Bb endotoxins that specifically target corn rootworms (genus Diabrotica) have proven highly efficacious. Howeve...

  19. Performance of laying hens fed diets containing DAS-59122-7 maize grain compared with diets containing nontransgenic maize grain.

    Science.gov (United States)

    Jacobs, C M; Utterback, P L; Parsons, C M; Rice, D; Smith, B; Hinds, M; Liebergesell, M; Sauber, T

    2008-03-01

    An experiment using 216 Hy-Line W-36 pullets was conducted to evaluate transgenic maize grain containing the cry34Ab1 and cry35Ab1 genes from a Bacillus thuringiensis (Bt) strain and the phosphinothricin ace-tyltransferase (pat) gene from Streptomyces viridochromogenes. Expression of the cry34Ab1 and cry35Ab1 genes confers resistance to corn rootworms, and the pat gene confers tolerance to herbicides containing glufosinate-ammonium. Pullets (20 wk of age) were placed in cage lots (3 hens/cage, 2 cages/lot) and were randomly assigned to 1 of 3 corn-soybean meal dietary treatments (12 lots/treatment) formulated with the following maize grains: near-isogenic control (control), conventional maize, and transgenic test corn line 59122 containing event DAS-59122-7. Differences between 59122 and control group means were evaluated with statistical significance at P < 0.05. Body weight and gain, egg production, egg mass, and feed efficiency for hens fed the 59122 corn were not significantly different from the respective values for hens fed diets formulated with control maize grain. Egg component weights, Haugh unit measures, and egg weight class distribution were similar regardless of the corn source. This research indicates that performance of hens fed diets containing 59122 maize grain, as measured by egg production and egg quality, was similar to that of hens fed diets formulated with near-isogenic corn grain.

  20. Characterization of field-evolved resistance to Bacillus thuringiensis-derived Cry1F δ-endotoxin in Spodoptera frugiperda populations from Argentina.

    Science.gov (United States)

    Chandrasena, Desmi I; Signorini, Ana M; Abratti, Gustavo; Storer, Nicholas P; Olaciregui, Magdalena L; Alves, Analiza P; Pilcher, Clinton D

    2018-03-01

    Transgenic maize (Zea mays L.) event TC1507 (Herculex ® I insect protection), expressing Cry1F δ-endotoxin derived from Bacillus thuringiensis var. aizawai, was commercialized in 2003 in the Americas. Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) susceptibility to Cry1F was monitored annually across several regions in Argentina using diagnostic concentration bioassays. Reduced performance of TC1507 maize against S. frugiperda was reported in 2013. A resistant population was established in the laboratory and the dominance of Cry1F resistance was characterized. During 2012-2015, high-survivorship of several populations was observed in the resistance monitoring program. Reciprocal crosses of a Cry1F-resistant population with a Cry1F-susceptible population were evaluated to calculate effective dominance (D ML ) based on mortality levels observed at 100 µg/ml Cry1F. Two additional dominance levels (D LC and D EC ) were calculated using lethal (LC 50 ) or effective concentration (EC 50 ) derived from concentration-response bioassays. Estimates indicated that Cry1F resistance in S. frugiperda in Argentina was either highly recessive (D ML = 0.005) or incompletely recessive (D LC frugiperda Cry1F field-evolved resistance in Argentina. The resistance to Cry1F in S. frugiperda populations collected in Argentina, is autosomal and incompletely recessive similar to the resistance reported in Brazil. © 2017 The Authors. Pest Management Science published by John Wiley © Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley © Sons Ltd on behalf of Society of Chemical Industry.

  1. Cry1A(b)16 toxin from Bacillus thuringiensis: Theoretical refinement of three-dimensional structure and prediction of peptides as molecular markers for detection of genetically modified organisms.

    Science.gov (United States)

    Plácido, Alexandra; Coelho, Andreia; Abreu Nascimento, Lucas; Gomes Vasconcelos, Andreanne; Fátima Barroso, Maria; Ramos-Jesus, Joilson; Costa, Vladimir; das Chagas Alves Lima, Francisco; Delerue-Matos, Cristina; Martins Ramos, Ricardo; Marani, Mariela M; Roberto de Souza de Almeida Leite, José

    2017-07-01

    Transgenic maize produced by the insertion of the Cry transgene into its genome became the second most cultivated crop worldwide. Cry gene from Bacillus thuringiensis kurstaki expresses protein derivatives of crystalline endotoxins which confer insect resistance onto the maize crop. Mandatory labeling of processed food containing or made by genetically modified organisms is in force in many countries, so, it is very urgent to develop fast and practical methods for GMO identification, for example, biosensors. In the absence of an available empirical structure of Cry1A(b)16 protein, a theoretical model was effectively generated, in this work, by homology modeling and molecular dynamics simulations based on two available homologous protein structures. Molecular dynamics simulations were carried out to refine the selected model, and an analysis of its global structure was performed. The refined models of Cry1A(b)16 showed a standard fold and structural characteristics similar to those seen in Bacillus thuringiensis Cry1A(a) insecticidal toxin and Bacillus thuringiensis serovar kurstaki Cry1A(c) toxin. After in silico analysis of Cry1A(b)16, two immunoreactive candidate peptides were selected and specific polyclonal antibodies were produced resulting in antibody-peptide interaction. Biosensing devices are expected to be developed for detection of the Cry1A(b) protein as a marker of transgenic maize in food. Proteins 2017; 85:1248-1257. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Life-History Traits of Spodoptera frugiperda Populations Exposed to Low-Dose Bt Maize.

    Science.gov (United States)

    Sousa, Fernanda F; Mendes, Simone M; Santos-Amaya, Oscar F; Araújo, Octávio G; Oliveira, Eugenio E; Pereira, Eliseu J G

    2016-01-01

    Exposure to Bacillus thuringiensis (Bt) toxins in low- and moderate-dose transgenic crops may induce sublethal effects and increase the rate of Bt resistance evolution, potentially compromising control efficacy against target pests. We tested this hypothesis using the fall armyworm Spodoptera frugiperda, a major polyphagous lepidopteran pest relatively tolerant to Bt notorious for evolving field-relevant resistance to single-gene Bt maize. Late-instar larvae were collected from Bt Cry1Ab and non-Bt maize fields in five locations in Brazil, and their offspring was compared for survival, development, and population growth in rearing environment without and with Cry1Ab throughout larval development. Larval survival on Cry1Ab maize leaves varied from 20 to 80% among the populations. Larvae reared on Cry1Ab maize had seven-day delay in development time in relation to control larvae, and such delay was shorter in offspring of armyworms from Cry1Ab maize. Population growth rates were 50-70% lower for insects continuously exposed to Cry1Ab maize relative to controls, showing the population-level effect of Cry1Ab, which varied among the populations and prior exposure to Cry1Ab maize in the field. In three out of five populations, armyworms derived from Bt maize reared on Cry1Ab maize showed higher larval weight, faster larval development and better reproductive performance than the armyworms derived from non-Bt maize, and one of these populations showed better performance on both Cry1Ab and control diets, indicating no fitness cost of the resistance trait. Altogether, these results indicate that offspring of armyworms that developed on field-grown, single-gene Bt Cry1Ab maize had reduced performance on Cry1Ab maize foliage in two populations studied, but in other three populations, these offspring had better overall performance on the Bt maize foliage than that of the armyworms from non-Bt maize fields, possibly because of Cry1Ab resistance alleles in these populations

  3. Environmental Impact of Genetically Modified Maize Expressing Cry1 Proteins

    DEFF Research Database (Denmark)

    Bartsch, Detlef; Devos, Yann; Hails, Rosie

    2010-01-01

    effects observed in the laboratory do not necessarily translate to field conditions. There are more than 10 years experience of cultivating GM maize worldwide and few long-term effects have been reported. For future research studies, modelling and monitoring are appropriate tools to investigate long......-term environmental effects during GMO cultivation....

  4. Transgenic rice plants expressing synthetic cry2AX1 gene exhibits resistance to rice leaffolder (Cnaphalocrosis medinalis).

    Science.gov (United States)

    Manikandan, R; Balakrishnan, N; Sudhakar, D; Udayasuriyan, V

    2016-06-01

    Bacillus thuringiensis is a major source of insecticidal genes imparting insect resistance in transgenic plants. Level of expression of transgenes in transgenic plants is important to achieve desirable level of resistance against target insects. In order to achieve desirable level of expression, rice chloroplast transit peptide sequence was fused with synthetic cry2AX1 gene to target its protein in chloroplasts. Sixteen PCR positive lines of rice were generated by Agrobacterium mediated transformation using immature embryos. Southern blot hybridization analysis of T 0 transgenic plants confirmed the integration of cry2AX1 gene in two to five locations of rice genome and ELISA demonstrated its expression. Concentration of Cry2AX1 in transgenic rice events ranged 5.0-120 ng/g of fresh leaf tissue. Insect bioassay of T 0 transgenic rice plants against neonate larvae of rice leaffolder showed larval mortality ranging between 20 and 80 % in comparison to control plant. Stable inheritance and expression of cry2AX1 gene was demonstrated in T 1 progenies through Southern and ELISA. In T 1 progenies, the highest concentration of Cry2AX1 and mortality of rice leaffolder larvae were recorded as 150 ng/g of fresh leaf tissue and 80 %, respectively. The Cry2AX1 expression even at a very low concentration (120-150 ng/g) in transgenic rice plants was found effective against rice leaffolder larvae.

  5. Cry1Ab treatment has no effects on viability of cultured porcine intestinal cells, but triggers Hsp70 expression.

    Directory of Open Access Journals (Sweden)

    Angelika Bondzio

    Full Text Available In vitro testing can contribute to reduce the risk that the use of genetically modified (GM crops and their proteins show unintended toxic effects. Here we introduce a porcine intestinal cell culture (IPEC-J2 as appropriate in vitro model and tested the possible toxic potential of Cry1Ab protein, commonly expressed in GM-maize. For comprehensive risk assessment we used WST-1 conversion and ATP content as metabolic markers for proliferation, lactate dehydrogenase release as indicator for cells with compromised membrane and transepithelial electrical resistance as parameter indicating membrane barrier function. The results were compared to the effects of valinomycin, a potassium ionophore, known to induce cytotoxic effects in most mammalian cell types. Whereas no toxicity was observed after Cry1Ab treatment, valinomycin induced a decrease in IPEC-J2 viability. This was confirmed by dynamic monitoring of cellular responses. Additionally, two dimensional differential in-gel electrophoresis was performed. Only three proteins were differentially expressed. The functions of these proteins were associated with responses to stress. The up-regulation of heat shock protein Hsp70 was verified by Western blotting as well as by enzyme-linked immunosorbent assay and may be related to a protective function. These findings suggest that the combination of in vitro testing and proteomic analysis may serve as a promising tool for mechanism based safety assessment.

  6. Field Performance of Bt Eggplants (Solanum melongena L. in the Philippines: Cry1Ac Expression and Control of the Eggplant Fruit and Shoot Borer (Leucinodes orbonalis Guenee.

    Directory of Open Access Journals (Sweden)

    Desiree M Hautea

    Full Text Available Plants expressing Cry proteins from the bacterium, Bacillus thuringiensis (Bt, have become a major tactic for controlling insect pests in maize and cotton globally. However, there are few Bt vegetable crops. Eggplant (Solanum melongena is a popular vegetable grown throughout Asia that is heavily treated with insecticides to control the eggplant fruit and shoot borer, Leucinodes orbonalis (EFSB. Herein we provide the first publicly available data on field performance in Asia of eggplant engineered to produce the Cry1Ac protein. Replicated field trials with five Bt eggplant open-pollinated (OP lines from transformation event EE-1 and their non-Bt comparators were conducted over three cropping seasons in the Philippines from 2010-2012. Field trials documented levels of Cry1Ac protein expressed in plants and evaluated their efficacy against the primary target pest, EFSB. Cry1Ac concentrations ranged from 0.75-24.7 ppm dry weight with the highest in the terminal leaves (or shoots and the lowest in the roots. Cry1Ac levels significantly increased from the vegetative to the reproductive stage. Bt eggplant lines demonstrated excellent control of EFSB. Pairwise analysis of means detected highly significant differences between Bt eggplant lines and their non-Bt comparators for all field efficacy parameters tested. Bt eggplant lines demonstrated high levels of control of EFSB shoot damage (98.6-100% and fruit damage (98.1-99.7% and reduced EFSB larval infestation (95.8-99.3% under the most severe pest pressure during trial 2. Moths that emerged from larvae collected from Bt plants in the field and reared in their Bt eggplant hosts did not produce viable eggs or offspring. These results demonstrate that Bt eggplant lines containing Cry1Ac event EE-1 provide outstanding control of EFSB and can dramatically reduce the need for conventional insecticides.

  7. Geographical and Temporal Variability in Susceptibility to Cry1F Toxin From Bacillus thuringiensis in Spodoptera frugiperda (Lepidoptera: Noctuidae) Populations in Brazil.

    Science.gov (United States)

    Farias, Juliano R; Horikoshi, Renato J; Santos, Antonio C; Omoto, Celso

    2014-12-01

    The genetically modified maize TC1507 event with the cry1F gene (Cry1F maize) has been used to control Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) in Brazil since the 2009-2010 cropping season. As part of the insect resistance management program, we conducted studies to determine the baseline susceptibility to Cry1F before the widespread planting of Cry1F maize. Subsequently, we evaluated the geographical and temporal variability of susceptibility to this toxin in populations of S. frugiperda collected from major maize-growing regions in Brazil. The baseline susceptibility to Cry1F was determined using a diet-overlay bioassay for a susceptible reference population and four field populations of S. frugiperda. We then monitored the susceptibility to Cry1F in 43 populations of S. frugiperda sampled in nine States of Brazil between 2011 and 2013. In the baseline study, the MIC50 (the concentration that inhibits molting to second instars in 50% of individuals) ranged from 3.59 to 72.47 ng Cry1F toxin per centimeter square. Based on the upper limit of the MIC99 value of the joint analysis from the baseline susceptibility data, the concentrations of 200 and 2,000 ng of Cry1F toxin per centimeter square were defined as diagnostic concentrations for potentially resistant individuals, and these were used to monitor the susceptibility of S. frugiperda to Cry1F. Survival at 2,000 ng Cry1F toxin per centimeter square increased significantly throughout the cropping seasons in S. frugiperda populations from São Paulo, Santa Catarina, Rio Grande do Sul, Bahia, Mato Grosso, Goiás, Mato Grosso do Sul, and Paraná. The highest survival (>50%) was reached in populations collected from Bahia, Mato Grosso, Goiás, Mato Grosso do Sul, and Paraná during the 2012-2013 cropping season. Therefore, a significant decrease in susceptibility to Cry1F was detected in S. frugiperda throughout cropping seasons, especially in regions with intensive maize production in Brazil

  8. Frequency of Cry1F resistance alleles in Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil.

    Science.gov (United States)

    Farias, Juliano R; Andow, David A; Horikoshi, Renato J; Bernardi, Daniel; Ribeiro, Rebeca da S; Nascimento, Antonio Rb do; Santos, Antonio C Dos; Omoto, Celso

    2016-12-01

    The frequency of resistance alleles is a major factor influencing the rate of resistance evolution. Here, we adapted the F 2 screen procedure for Spodoptera frugiperda (J. E. Smith) with a discriminating concentration assay, and extended associated statistical methods to estimate the frequency of resistance to Cry1F protein in S. frugiperda in Brazil when resistance was not rare. We show that F 2 screen is efficient even when the resistance frequency is 0.250. It was possible to screen 517 isoparental lines from 12 populations sampled in five states of Brazil during the first half of 2012. Western Bahia had the highest allele frequency of Cry1F resistance, 0.192, with a 95% confidence interval (CI) between 0.163 and 0.220. All other states had a similar and lower frequency varying from 0.042 in Paraná to 0.080 in Mato Grosso do Sul. The high frequency in western Bahia may be related to year-round availability of maize, the high population density of S. frugiperda, the lack of refuges and the high adoption rate of Cry1F maize. Cry1F resistance alleles were not rare and occurred at frequencies that have already compromised the useful life of TC1507 maize in western Bahia. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Field-evolved resistance to Bt maize in sugarcane borer (Diatraea saccharalis) in Argentina.

    Science.gov (United States)

    Grimi, Damián A; Parody, Betiana; Ramos, María Laura; Machado, Marcos; Ocampo, Federico; Willse, Alan; Martinelli, Samuel; Head, Graham

    2018-04-01

    Maize technologies expressing Bacillus thuringiensis (Bt) insecticidal proteins are widely used in Argentina to control sugarcane borer (Diatraea saccharalis Fabricius). Unexpected D. saccharalis damage was observed to Bt maize events TC1507 (expressing Cry1F) and MON 89034 × MON 88017 (expressing Cry1A.105 and Cry2Ab2) in an isolated area of San Luis Province. Diatraea saccharalis larvae were sampled from MON 89034 × MON 88017 fields in the area to generate a resistant strain (RR), which was subsequently characterized in plant and diet bioassays. Survivorship of the RR strain was high on TC1507 leaf tissue, intermediate on MON 89034 × MON 88017, and low on MON 810 (expressing Cry1Ab). The RR strain had high resistance to Cry1A.105 (186.74-fold) and no resistance to Cry2Ab2 in diet bioassays. These results indicate resistance to Cry1F and Cry1A.105 (and likely cross-resistance between them) but not to Cry1Ab or Cry2Ab2. Resistance to MON 89034 × MON 88017 was functionally recessive. Reviews of grower records suggest that resistance initially evolved to Cry1F, conferring cross-resistance to Cry1A.105, with low refuge compliance as the primary cause. A mitigation plan was implemented in San Luis that included technology rotation, field monitoring, and grower education on best management practices (BMPs) including refuges. In the affected area, the resistance to Cry1F and Cry1A.105 is being managed effectively through use of MON 89034 × MON 88017 and MON 810 in combination with BMPs, and no spread of resistance to other regions has been observed. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  10. Impact of genetically modified maize expressing Cry 3Bb1 on some non-target arthropods

    Czech Academy of Sciences Publication Activity Database

    Hussein, Hany; Svobodová, Zdeňka; Habuštová, Oxana; Půža, Vladimír; Sehnal, František

    2012-01-01

    Roč. 8, č. 10 (2012), s. 5124-5131 ISSN 1819-544X R&D Projects: GA MZe QH91093 Grant - others:projekt MOBITAG(CZ) REGPOT-2008-1, GA 229518 Institutional support: RVO:60077344 Keywords : MON 88017 * Cry3Bb1 * non-target organisms Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection http://www.aensiweb.com/jasr/jasr/2012/5124-5131.pdf

  11. Evaluation of two cotton varieties CRSP1 and CRSP2 for genetic transformation efficiency, expression of transgenes Cry1Ac + Cry2A, GT gene and insect mortality

    Directory of Open Access Journals (Sweden)

    Arfan Ali

    2016-03-01

    Full Text Available Expression of the transgene with a desirable character in crop plant is the ultimate goal of transgenic research. Transformation of two Bt genes namely Cry1Ac and Cry2A cloned as separate cassette under 35S promoter in pKHG4 plant expression vector was done by using shoot apex cut method of Agrobacterium. Molecular confirmation of putative transgenic cotton plants for Cry1Ac, Cry2A and GT gene was done through PCR and ELISA. Transformation efficiency of CRSP-1 and CRSP-2 was calculated to be 1.2 and 0.8% for Cry1Ac while 0.9 and 0.6% for Cry2A and 1.5 and 0.7% for GTG respectively. CRSP-1 was found to adopt natural environment (acclimatized earlier than CRSP-2 when exposed to sunlight for one month. Expression of Cry1Ac, Cry2A and GTG was found to be 1.2, 1 and 1.3 ng/μl respectively for CRSP-1 as compared to CRSP-2 where expression was recorded to be 0.9, 0.5 and 0.9 ng/μl respectively. FISH analysis of the transgenic CRSP-1 and CRSP-2 demonstrated the presence of one and two copy numbers respectively. Similarly, the response of CRSP-1 against Glyphosate @1900 ml/acre was far better with almost negligible necrotic spot and efficient growth after spray as compared to CRSP-2 where some plants were found to have necrosis and negative control where the complete decay of plant was observed after seven days of spray assay. Similarly, almost 100% mortality of 2nd instar larvae of Heliothis armigera was recorded after three days in CRSP-1 as compared CRSP-2 where insect mortality was found to be less than 90%. Quantitatively speaking non transgenic plants were found with 23–90% leaf damage by insect, while CRSP-1 was with less than 5% and CRSP-2 with 17%. Taken together CRSP1 was found to have better insect control and weedicide resistance along with its natural ability of genetic modification and can be employed by the valuable farmers for better insect control and simultaneously for better production.

  12. Detection of Genes that Determine Maize Grain Quality Characteristics and Resistance to Stress Factors

    Directory of Open Access Journals (Sweden)

    Markovskyi, O.V.

    2014-01-01

    Full Text Available 200 experimental maize samples (Maize Company were examined for the presence of genes that determine the quality characteristics of grain (wx and fl-2 genes, herbicide (bar (pat, epsps genes and insect (cry-genes resistance. The total DNA was extracted from maize living plant tissue. Primers to detect wx, fl-2, bar (pat, mepsps, CP4 epsps, cry1A(b, cry1F, cry1A.105, mcry3A, cry2Ab2, cry3Bb1, cry34Ab1, cry35Ab1 genes were designed and selected. Multiplex and Touchdown PCR were worked out. PCR amplification of certain sequences was carried out. No transgenes (bar (pat, mepsps, CP4 epsps, cry1A(b, cry1F, cry1A.105, mcry3A, cry2Ab2, cry3Bb1, cry34Ab1, cry35Ab1 were found among 200 analyzed experimental maize samples. At the same time, fl-2 gene was found in 41 samples, wx gene was found in 192 analyzed samples.

  13. Development of Monoclonal Antibodies Recognizing Linear Epitope: Illustration by Three Bacillus thuringiensis Crystal Proteins of Genetically Modified Cotton, Maize, and Tobacco.

    Science.gov (United States)

    Cao, Zhen; Zhang, Wei; Ning, Xiangxue; Wang, Baomin; Liu, Yunjun; Li, Qing X

    2017-11-22

    Bacillus thuringiensis Cry1Ac, Cry1Ia1, and Cry1Ie are δ-endotoxin insecticidal proteins widely implemented in genetically modified organisms (GMO), such as cotton, maize, and potato. Western blot assay integrates electrophoresis separation power and antibody high specificity for monitoring specific exogenous proteins expressed in GMO. Procedures for evoking monoclonal antibody (mAb) for Western blot were poorly documented. In the present study, Cry1Ac partially denatured at 100 °C for 5 min was used as an immunogen to develop mAbs selectively recognizing a linear epitope of Cry1Ac for Western blot. mAb 5E9C6 and 3E6E2 selected with sandwich ELISA strongly recognized the heat semidenatured Cry1Ac. Particularly, 3E6E2 recognized both E. coli and cotton seed expressed Cry1Ac in Western blot. Such strategy of using partially denatured proteins as immunogens and using sandwich ELISA for mAb screening was also successfully demonstrated with production of mAbs against Cry1Ie for Western blot assay in maize.

  14. Microarray detection and qPCR screening of potential biomarkers of Folsomia candida (Collembola: Isotomidae) exposed to Bt proteins (Cry1Ab and Cry1Ac)

    International Nuclear Information System (INIS)

    Yuan, Yiyang; Krogh, Paul Henning; Bai, Xue; Roelofs, Dick; Chen, Fajun; Zhu-Salzman, Keyan; Liang, Yuyong; Sun, Yucheng; Ge, Feng

    2014-01-01

    The impact of Bt proteins on non-target arthropods is less understood than their effects on target organisms where the mechanism of toxic action is known. Here, we report the effects of two Bt proteins, Cry1Ab and Cry1Ac, on gene expression in the non-target collembolan, Folsomia candida. A customized microarray was used to study gene expression in F. candida specimens that were exposed to Cry1Ab and Cry1Ac. All selected transcripts were subsequently confirmed by qPCR. Eleven transcripts were finally verified, and three of them were annotated. The responses of all eleven transcripts were tested in specimens for both Cry1Ab and Cry1Ac at a series of concentrations. These transcripts were separated into two and three groups for Cry1Ab and Cry1Ac, respectively, depend on their expression levels. However, those eleven transcripts did not respond to the Bt proteins in Bt-rice residues. -- Highlights: • We examined the effects of Bt proteins on gene expression of Folsomia candida. • Eleven transcripts were up-regulated by Bt proteins (Cry1Ab and Cry1Ac). • Only three of the eleven transcripts were annotated. • The responses of 11 transcripts were tested on both Cry1Ab and Cry1Ac. • These transcripts did not respond to the Bt proteins in Bt-rice residues. -- Eleven potential molecular biomarkers of Folsomia candida to Cry1Ab and Cry1Ac were screened by microarray and qPCR analysis

  15. Spodoptera frugiperda (J.E. Smith) with field-evolved resistance to Bt maize are susceptible to Bt pesticides.

    Science.gov (United States)

    Jakka, S R K; Knight, V R; Jurat-Fuentes, J L

    2014-10-01

    Field-evolved resistance to maize event TC1507 expressing the Cry1Fa toxin from Bacillus thuringiensis (Bt) was detected in populations of Spodoptera frugiperda from Puerto Rico. We tested for cross-resistance to purified Cry1A toxins and commercial Bt pesticides in susceptible (Benzon) and TC1507-resistant (456) strains of S. frugiperda. Larvae from the 456 strain exhibited cross-resistance to Cry1Ab and Cry1Ac toxins, while no differences in susceptibility to XenTari WG and DiPel ES pesticides were detected. These data support cross-resistance to toxins that share binding sites with Cry1Fa and no cross-resistance to Bt pesticides in S. frugiperda with field-evolved resistance to Bt maize. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Effects of Cry1Ab Transgenic Maize on Lifecycle and Biomarker Responses of the Earthworm, Eisenia Andrei

    Directory of Open Access Journals (Sweden)

    Mark Maboeta

    2012-12-01

    Full Text Available A 28-day study was conducted to determine the effects of the Bacillus thuringiensis Cry1Ab toxin on the earthworm Eisenia andrei. Previously, investigations have been limited to life-cycle level effects of this protein on earthworms, and mostly on E. fetida. In this study several endpoints were compared which included biomass changes, cocoon production, hatching success, a cellular metal-stress biomarker (Neutral Red Retention Time; NRRT and potential genotoxic effects in terms of Randomly Amplified Polymorphic DNA sequences (RAPDs. NRRT results indicated no differences between treatments (p > 0.36, and NRRT remained the same for both treatments at different times during the experiment (p = 0.18. Likewise, no significant differences were found for cocoon production (p = 0.32 or hatching success (p = 0.29. Conversely, biomass data indicated a significant difference between the control treatment and the Bt treatment from the second week onwards (p < 0.001, with the Bt treatment losing significantly more weight than the isoline treatment. Possible confounding factors were identified that might have affected the differences in weight loss between groups. From the RAPD profiles no conclusive data were obtained that could link observed genetic variation to exposure of E. andrei to Cry1Ab proteins produced by Bt maize.

  17. Microarray detection and qPCR screening of potential biomarkers of Folsomia candida (Collembola: Isotomidae) exposed to Bt proteins (Cry1Ab and Cry1Ac)

    DEFF Research Database (Denmark)

    Yuan, Yiyang; Krogh, Paul Henning; Bai, Xue

    2014-01-01

    The impact of Bt proteins on non-target arthropods is less understood than their effects on target organisms where the mechanism of toxic action is known. Here, we report the effects of two Bt proteins, Cry1Ab and Cry1Ac, on gene expression in the non-target collembolan, Folsomia candida....... A customized microarray was used to study gene expression in F. candida specimens that were exposed to Cry1Ab and Cry1Ac. All selected transcripts were subsequently confirmed by qPCR. Eleven transcripts were finally verified, and three of them were annotated. The responses of all eleven transcripts were...... tested in specimens for both Cry1Ab and Cry1Ac at a series of concentrations. These transcripts were separated into two and three groups for Cry1Ab and Cry1Ac, respectively, depend on their expression levels. However, those eleven transcripts did not respond to the Bt proteins in Bt-rice residues....

  18. Field-Evolved Resistance to Bt Maize by Western Corn Rootworm

    Science.gov (United States)

    Gassmann, Aaron J.; Petzold-Maxwell, Jennifer L.; Keweshan, Ryan S.; Dunbar, Mike W.

    2011-01-01

    Background Crops engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are planted on millions of hectares annually, reducing the use of conventional insecticides and suppressing pests. However, the evolution of resistance could cut short these benefits. A primary pest targeted by Bt maize in the United States is the western corn rootworm Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Methodology/Principal Findings We report that fields identified by farmers as having severe rootworm feeding injury to Bt maize contained populations of western corn rootworm that displayed significantly higher survival on Cry3Bb1 maize in laboratory bioassays than did western corn rootworm from fields not associated with such feeding injury. In all cases, fields experiencing severe rootworm feeding contained Cry3Bb1 maize. Interviews with farmers indicated that Cry3Bb1 maize had been grown in those fields for at least three consecutive years. There was a significant positive correlation between the number of years Cry3Bb1 maize had been grown in a field and the survival of rootworm populations on Cry3Bb1 maize in bioassays. However, there was no significant correlation among populations for survival on Cry34/35Ab1 maize and Cry3Bb1 maize, suggesting a lack of cross resistance between these Bt toxins. Conclusions/Significance This is the first report of field-evolved resistance to a Bt toxin by the western corn rootworm and by any species of Coleoptera. Insufficient planting of refuges and non-recessive inheritance of resistance may have contributed to resistance. These results suggest that improvements in resistance management and a more integrated approach to the use of Bt crops may be necessary. PMID:21829470

  19. Effective dominance of resistance of Spodoptera frugiperda to Bt maize and cotton varieties: implications for resistance management

    Science.gov (United States)

    Horikoshi, Renato J.; Bernardi, Daniel; Bernardi, Oderlei; Malaquias, José B.; Okuma, Daniela M.; Miraldo, Leonardo L.; Amaral, Fernando S. De A. E.; Omoto, Celso

    2016-10-01

    The resistance of fall armyworm (FAW), Spodoptera frugiperda, has been characterized to some Cry and Vip3A proteins of Bacillus thuringiensis (Bt) expressed in transgenic maize in Brazil. Here we evaluated the effective dominance of resistance based on the survival of neonates from selected Bt-resistant, heterozygous, and susceptible (Sus) strains of FAW on different Bt maize and cotton varieties. High survival of strains resistant to the Cry1F (HX-R), Cry1A.105/Cry2Ab (VT-R) and Cry1A.105/Cry2Ab/Cry1F (PW-R) proteins was detected on Herculex, YieldGard VT PRO and PowerCore maize. Our Vip3A-resistant strain (Vip-R) exhibited high survival on Herculex, Agrisure Viptera and Agrisure Viptera 3 maize. However, the heterozygous from HX-R × Sus, VT-R × Sus, PW-R × Sus and Vip-R × Sus had complete mortality on YieldGard VT PRO, PowerCore, Agrisure Viptera, and Agrisure Viptera 3, whereas the HX-R × Sus and Vip-R × Sus strains survived on Herculex maize. On Bt cotton, the HX-R, VT-R and PW-R strains exhibited high survival on Bollgard II. All resistant strains survived on WideStrike, but only PW-R and Vip-R × Sus survived on TwinLink. Our study provides useful data to aid in the understanding of the effectiveness of the refuge strategy for Insect Resistance Management of Bt plants.

  20. Assessment of the impact of Cry1Ab expression on insects dwelling on the maize plants

    Czech Academy of Sciences Publication Activity Database

    Habuštová, Oxana; Doležal, Petr; Hussein, H. M.; Spitzer, Lukáš; Turanli, F.; Růžička, Vlastimil; Sehnal, František

    2007-01-01

    Roč. 37, supplement 1 (2007), s. 50-51 ISSN 1738-2297. [International Congress of Insect Biotechnology and Industry. 19.08.2007-24.08.2007, Daegu] R&D Projects: GA AV ČR KJB6007304 Institutional research plan: CEZ:AV0Z50070508 Keywords : GM crops * Cry1Ab endotoxin * European corn borer Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection

  1. Lack of Detectable Allergenicity in Genetically Modified Maize Containing “Cry” Proteins as Compared to Native Maize Based on In Silico & In Vitro Analysis

    Science.gov (United States)

    Mathur, Chandni; Kathuria, Pooran C.; Dahiya, Pushpa; Singh, Anand B.

    2015-01-01

    Background Genetically modified, (GM) crops with potential allergens must be evaluated for safety and endogenous IgE binding pattern compared to native variety, prior to market release. Objective To compare endogenous IgE binding proteins of three GM maize seeds containing Cry 1Ab,1Ac,1C transgenic proteins with non GM maize. Methods An integrated approach of in silico & in vitro methods was employed. Cry proteins were tested for presence of allergen sequence by FASTA in allergen databases. Biochemical assays for maize extracts were performed. Specific IgE (sIgE) and Immunoblot using food sensitized patients sera (n = 39) to non GM and GM maize antigens was performed. Results In silico approaches, confirmed for non sequence similarity of stated transgenic proteins in allergen databases. An insignificant (p> 0.05) variation in protein content between GM and non GM maize was observed. Simulated Gastric Fluid (SGF) revealed reduced number of stable protein fractions in GM then non GM maize which might be due to shift of constituent protein expression. Specific IgE values from patients showed insignificant difference in non GM and GM maize extracts. Five maize sensitized cases, recognized same 7 protein fractions of 88-28 kD as IgE bindng in both GM and non-GM maize, signifying absence of variation. Four of the reported IgE binding proteins were also found to be stable by SGF. Conclusion Cry proteins did not indicate any significant similarity of >35% in allergen databases. Immunoassays also did not identify appreciable differences in endogenous IgE binding in GM and non GM maize. PMID:25706412

  2. Single amino acid insertions in extracellular loop 2 of Bombyx mori ABCC2 disrupt its receptor function for Bacillus thuringiensis Cry1Ab and Cry1Ac but not Cry1Aa toxins.

    Science.gov (United States)

    Tanaka, Shiho; Miyamoto, Kazuhisa; Noda, Hiroaki; Endo, Haruka; Kikuta, Shingo; Sato, Ryoichi

    2016-04-01

    In a previous report, seven Cry1Ab-resistant strains were identified in the silkworm, Bombyx mori; these strains were shown to have a tyrosine insertion at position 234 in extracellular loop 2 of the ABC transporter C2 (BmABCC2). This insertion was confirmed to destroy the receptor function of BmABCC2 and confer the strains resistance against Cry1Ab and Cry1Ac. However, these strains were susceptible to Cry1Aa. In this report, we examined the mechanisms of the loss of receptor function of the transporter by expressing mutations in Sf9 cells. After replacement of one or two of the five amino acid residues in loop 2 of the susceptible BmABCC2 gene [BmABCC2_S] with alanine, cells still showed susceptibility, retaining the receptor function. Five mutants with single amino acid insertions at position 234 in BmABCC2 were also generated, resulting in loop 2 having six amino acids, which corresponds to replacing the tyrosine insertion in the resistant BmABCC2 gene [BmABCC2_R(+(234)Y)] with another amino acid. All five mutants exhibited loss of function against Cry1Ab and Cry1Ac. These results suggest that the amino acid sequence in loop 2 is less important than the loop size (five vs. six amino acids) or loop structure for Cry1Ab and Cry1Ac activity. Several domain-swapped mutant toxins were then generated among Cry1Aa, Cry1Ab, and Cry1Ac, which are composed of three domains. Swapped mutants containing domain II of Cry1Ab or Cry1Ac did not kill Sf9 cells expressing BmABCC2_R(+(234)Y), suggesting that domain II of the Cry toxin is related to the interaction with the receptor function of BmABCC2. This also suggests that different reactions against Bt-toxins in some B. mori strains, that is, Cry1Ab resistance or Cry1Aa susceptibility, are attributable to structural differences in domain II of Cry1A toxins. Copyright © 2016. Published by Elsevier Inc.

  3. Potential factors impacting season-long expression of Cry1Ac in 13 commercial varieties of Bollgard® cotton

    Directory of Open Access Journals (Sweden)

    John J. Adamczyk, Jr.

    2001-11-01

    Full Text Available Thirteen commercial varieties of transgenic Cry1Ac Bacillus thuringiensis Berliner (Bt cotton were examined across two sites in 2000 for potential factors that impact endotoxin expression. In all cases, two varieties (NuCOTN 33B and DP 458B/RR, Delta and Pineland Co., Scott, MS expressed more Cry1Ac than the other 11 varieties in various plant structures. These two varieties share the same parental background (DP 5415. Furthermore, when the next generation of plants were tested in the greenhouse, the same varietal patterns were exhibited. These data strongly suggest that factors such as parental background had a stronger impact on the expression of Cry1Ac than the environment.

  4. Stacked Bt maize and arthropod predators: exposure to insecticidal Cry proteins and potential hazards

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Zdeňka; Shu, Y.; Skoková Habuštová, Oxana; Romeis, J.; Meissle, M.

    2017-01-01

    Roč. 284, č. 1859 (2017), č. článku 20170440. ISSN 0962-8452 Institutional support: RVO:60077344 Keywords : Bt maize * Cry proteins * environmental risk assessment Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection OBOR OECD: Agronomy, plant breeding and plant protection Impact factor: 4.940, year: 2016 http://rspb.royalsocietypublishing.org/content/284/1859/20170440

  5. Possibly similar genetic basis of resistance to Bacillus thuringiensis Cry1Ab protein in 3 resistant colonies of the sugarcane borer collected from Louisiana, USA.

    Science.gov (United States)

    Yang, Fei; Chen, Mao; Gowda, Anilkumar; Kerns, David L; Huang, Fangneng

    2018-04-01

    The sugarcane borer, Diatraea saccharalis (F.), is a major maize borer pest and a target of transgenic maize expressing Bacillus thuringiensis (Bt) proteins in South America and the mid-southern region of the United States. Evolution of resistance in target pest populations is a great threat to the long-term efficacy of Bt crops. In this study, we compared the genetic basis of resistance to Cry1Ab protein in 3 resistant colonies of sugarcane borer established from field populations in Louisiana, USA. Responses of larvae to the Cry1Ab protein for the parental and 10 other cross colonies were assayed in a diet-incorporated bioassay. All 3 resistant colonies were highly resistant to the Cry1Ab protein with a resistance ratio of >555.6 fold. No maternal effect or sex linkage was evident for the resistance in the 3 colonies; and the resistance was functionally nonrecessive at the Cry1Ab concentrations of ≤ 3.16 μg/g, but it became recessive at ≥10 μg/g. In an interstrain complementation test for allelism, the F 1 progeny from crosses between any 2 of the 3 resistant colonies exhibited the similar resistance levels as their parental colonies, indicating that the 3 colonies most likely shared a locus of Cry1Ab resistance. Results generated from this study should provide useful information in developing effective strategies for managing Bt resistance in the insect. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  6. Bt rice expressing Cry2Aa does not harm Cyrtorhinus lividipennis, a main predator of the nontarget herbivore Nilapavarta lugens.

    Directory of Open Access Journals (Sweden)

    Yu Han

    Full Text Available T2A-1 is a newly developed transgenic rice that expresses a synthesized cry2Aa gene driven by the maize ubiquitin promoter. T2A-1 exhibits high resistance against lepidopteran pests of rice. The brown planthopper, Nilapavarta lugens (Stål, is a main nontarget sap-sucking insect pest of rice, and Cyrtorhinus lividipennis (Reuter is the major predator of the eggs and young nymphs of planthoppers. As C. lividipennis may expose to the Cry2Aa protein via N. lugens, it is therefore essential to assess the potential effects of transgenic cry2Aa rice on this predator. In the present study, three experiments were conducted to evaluate the ecological risk of transgenic cry2Aa rice to C. lividipennis: (1 a direct feeding experiment in which C. lividipennis was fed an artificial diet containing Cry2Aa at the dose of 10-time higher than that it may encounter in the realistic field condition; (2 a tritrophic experiment in which the Cry2Aa protein was delivered to C. lividipennis indirectly through prey eggs or nymphs; (3 a realistic field experiment in which the population dynamics of C. lividipennis were investigated using vacuum-suction. Both direct exposure to elevated doses of the Cry2Aa protein and prey-mediated exposure to realistic doses of the protein did not result in significant detrimental effects on the development, survival, female ratio and body weight of C. lividipennis. No significant differences in population density and population dynamics were observed between C. lividipennis in transgenic cry2Aa and nontransgenic rice fields. It may be concluded that transgenic cry2Aa rice had no detrimental effects on C. lividipennis. This study represents the first report of an assessment continuum for the effects of transgenic cry2Aa rice on C. lividipennis.

  7. Effects of Bt-maize material on the life cycle of the land snail Cantareus aspersus

    DEFF Research Database (Denmark)

    Kramarz, Paulina; de Vaufleury, Annette; Gimbert, Frédéric

    2009-01-01

    ). For snails not previously exposed to Bt material, hatchability of eggs was similar in the soils tested. The outcome of the experiments indicates that, in growing snails, long-term exposure is needed to reveal an effect of Bt-maize. The hazard analysis of Bt-maize which we performed, based on a worst......Insect resistant Bt-maize (MON 810) expresses active Cry1Ab endotoxin derived from Bacillus thuringiensis (Bt). Snails constitute non-target soil species potentially exposed to Bt-toxin through consumption of plant material and soil in fields where transgenic plants have been grown. We studied...... the effect of the Cry1Ab toxin on survival, growth and egg hatchability of the snail Cantareus aspersus. From the age of 4 to 88 weeks, snails were fed either powdered Bt-maize or non-Bt-maize and exposed to soil samples collected after harvesting either the Bt-maize or non-Bt-maize. We applied four...

  8. Resistance to dual-gene Bt maize in Spodoptera frugiperda: selection, inheritance, and cross-resistance to other transgenic events.

    Science.gov (United States)

    Santos-Amaya, Oscar F; Rodrigues, João V C; Souza, Thadeu C; Tavares, Clébson S; Campos, Silverio O; Guedes, Raul N C; Pereira, Eliseu J G

    2015-12-17

    Transgenic crop "pyramids" producing two or more Bacillus thuringiensis (Bt) toxins active against the same pest are used to delay evolution of resistance in insect pest populations. Laboratory and greenhouse experiments were performed with fall armyworm, Spodoptera frugiperda, to characterize resistance to Bt maize producing Cry1A.105 and Cry2Ab and test some assumptions of the "pyramid" resistance management strategy. Selection of a field-derived strain of S. frugiperda already resistant to Cry1F maize with Cry1A.105 + Cry2Ab maize for ten generations produced resistance that allowed the larvae to colonize and complete the life cycle on these Bt maize plants. Greenhouse experiments revealed that the resistance was completely recessive (Dx = 0), incomplete, autosomal, and without maternal effects or cross-resistance to the Vip3Aa20 toxin produced in other Bt maize events. This profile of resistance supports some of the assumptions of the pyramid strategy for resistance management. However, laboratory experiments with purified Bt toxin and plant leaf tissue showed that resistance to Cry1A.105 + Cry2Ab2 maize further increased resistance to Cry1Fa, which indicates that populations of fall armyworm have high potential for developing resistance to some currently available pyramided maize used against this pest, especially where resistance to Cry1Fa was reported in the field.

  9. Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes

    Directory of Open Access Journals (Sweden)

    Moar William J

    2005-06-01

    Full Text Available Abstract Background Insecticidal toxins from Bacillus thuringiensis bind to receptors on midgut epithelial cells of susceptible insect larvae. Aminopeptidases N (APNs from several insect species have been shown to be putative receptors for these toxins. Here we report the cloning and expression analysis of four APN cDNAs from Spodoptera exigua. Results Suppression Subtractive Hybridization (SSH was used to construct cDNA libraries of genes that are up-and down-regulated in the midgut of last instar larvae of beet armyworm, S. exigua exposed to B. thuringiensis Cry1Ca toxin. Among the clones from the SSH libraries, cDNA fragments coding for two different APNs were obtained (APN2 and APN4. A similar procedure was employed to compare mRNA differences between susceptible and Cry1Ca resistant S. exigua. Among the clones from this last comparison, cDNA fragments belonging to a third APN (APN1 were detected. Using sequences obtained from the three APN cDNA fragments and degenerate primers for a fourth APN (APN3, the full length sequences of four S. exigua APN cDNAs were obtained. Northern blot analysis of expression of the four APNs showed complete absence of APN1 expression in the resistant insects, while the other three APNs showed similar expression levels in the resistant and susceptible insects. Conclusion We have cloned and characterized four different midgut APN cDNAs from S. exigua. Expression analysis revealed the lack of expression of one of these APNs in the larvae of a Cry1Ca-resistant colony. Combined with previous evidence that shows the importance of APN in the mode of action of B. thuringiensis toxins, these results suggest that the lack of APN1 expression plays a role in the resistance to Cry1Ca in this S. exigua colony.

  10. No impact of transgenic cry1C rice on the rove beetle Paederus fuscipes, a generalist predator of brown planthopper Nilaparvata lugens

    Science.gov (United States)

    Meng, Jiarong; Mabubu, Juma Ibrahim; Han, Yu; He, Yueping; Zhao, Jing; Hua, Hongxia; Feng, Yanni; Wu, Gang

    2016-07-01

    T1C-19 is newly developed transgenic rice active against lepidopteran pests, and expresses a synthesized cry1C gene driven by the maize ubiquitin promoter. The brown planthopper, Nilaparvata lugens, is a major non-target pest of rice, and the rove beetle (Paederus fuscipes) is a generalist predator of N. lugens nymphs. As P. fuscipes may be exposed to the Cry1C protein through preying on N. lugens, it is essential to assess the potential effects of transgenic cry1C rice on this predator. In this study, two experiments (a direct feeding experiment and a tritrophic experiment) were conducted to evaluate the ecological risk of cry1C rice to P. fuscipes. No significant negative effects were observed in the development, survival, female ratio and body weight of P. fuscipes in both treatments of direct exposure to elevated doses of Cry1C protein and prey-mediated exposure to realistic doses of the protein. This indicated that cry1C rice had no detrimental effects on P. fuscipes. This work represents the first study of an assessment continuum for the effects of transgenic cry1C rice on P. fuscipes. Use of the rove beetle as an indicator species to assess potential effects of genetically modified crops on non-target arthropods is feasible.

  11. A 52-week safety study in cynomolgus macaques for genetically modified rice expressing Cry1Ab/1Ac protein.

    Science.gov (United States)

    Mao, Jie; Sun, Xing; Cheng, Jian-Hua; Shi, Yong-Jie; Wang, Xin-Zheng; Qin, Jun-Jie; Sang, Zhi-Hong; He, Kun; Xia, Qing

    2016-09-01

    A 52-week feeding study in cynomolgus macaques was carried out to evaluate the safety of Bt rice Huahui 1 (HH1), a transgenic rice line expressing Cry1Ab/1Ac protein. Monkeys were fed a diet with 20% or 60% HH1 rice, 20% or 60% parental rice (Minghui 63, MH63), normal diet, normal diet spiked with purified recombinant Cry1Ab/1Ac fusion protein or bovine serum albumin (BSA) respectively. During the feeding trail, clinical observations were conducted daily, and multiple parameters, including body weight, body temperature, electrocardiogram, hematology, blood biochemistry, serum metabolome and gut microbiome were examined at regular intervals. Upon sacrifice, the organs were weighted, and the macroscopic, microscopic and electron microscopic examinations were performed. The results show no adverse or toxic effects of Bt rice HH1 or Cry1Ab/1Ac fusion protein on monkeys. Therefore, the present 52-week primate feeding study suggests that the transgenic rice containing Cry 1Ab/1Ac is equivalent to its parental rice line MH63. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Comparative analysis of the genetic basis of Cry1F resistance in two strains of Spodoptera frugiperda originated from Puerto Rico and Florida.

    Science.gov (United States)

    Camargo, Ana M; Castañera, Pedro; Farinós, Gema P; Huang, Fangneng

    2017-06-01

    The fall armyworm, Spodoptera frugiperda (J.E. Smith), is a major target pest of Bacillus thuringiensis (Bt) maize and cotton in America. Since the commercialization of Cry1F maize (event TC1507) in 2003, resistance to Cry1F maize in field populations of S. frugiperda has occurred in Puerto Rico, Brazil and the southeast region of the United States. In this paper, we conducted a comparative analysis of the inheritance of two Cry1F-resistant colonies of S. frugiperda originated from Puerto Rico (PR) and Florida (FL), respectively. The objective of the analysis was to determine if the genetic basis of the resistance was similar in the two different originated colonies. To accomplish the objective, besides PR, FL, and a known Cry1F-susceptible colony, 14 additional colonies were developed by reciprocal crosses among the three parents, F 1 by F 1 crosses, backcrosses, and intercolony-crosses between PR and FL. Larval mortalities of the 17 colonies were assayed on both Cry1F maize leaf tissue and Cry1F-treated diet at the concentrations of 3.16, 10.00, and 31.60µg/g. Resistance to Cry1F in both PR and FL was autosomal and recessive or incompletely recessive. Segregations in F 2 and backcrossed generations associated with FL fitted the Mendelian monogenic model well, while with PR the segregations did not follow the single gene model in some bioassays. Further analyses with the intercolony complementation tests showed a similar level of resistance in the F 1 progeny as their parents FL and PR. Together with the data, it was likely that a single (or a few tightly-linked) gene was involved in FL; PR shared the same locus of the major resistance gene as FL, but the resistance in PR might also be associated with additional minor factors. Information generated from this study should be useful in understanding the origin of Cry1F resistance in the U.S. mainland and developing effective strategies for Bt resistance management in S. frugiperda. Copyright © 2017 Elsevier Inc

  13. Soil Microbial and Faunal Community Responses to Bt-Maize and Insecticide in Two Soils

    DEFF Research Database (Denmark)

    Griffiths, B. S.; Caul, S.; Thompson, J.

    2006-01-01

    The effects of maize (Zea mays L.), genetically modified to express the Cry1Ab protein (Bt), and an insecticide on soil microbial and faunal communities were assessed in a glasshouse experiment. Soil for the experiment was taken from field sites where the same maize cultivars were grown to allow...

  14. Investigations of immunogenic, allergenic and adjuvant properties of Cry1Ab protein after intragastric exposure in a food allergy model in mice.

    Science.gov (United States)

    Andreassen, Monica; Bøhn, Thomas; Wikmark, Odd-Gunnar; Bodin, Johanna; Traavik, Terje; Løvik, Martinus; Nygaard, Unni Cecilie

    2016-05-04

    In genetically modified (GM) crops there is a risk that the inserted genes may introduce new allergens and/or adjuvants into the food and feed chain. The MON810 maize, expressing the insecticidal Cry1Ab toxin, is grown in many countries worldwide. In animal models, intranasal and intraperitoneal immunisations with the purified Cry1Ab proteins have induced immune responses, and feeding trials with Cry1Ab-containing feed have revealed some altered immune responses. Previous investigations have primarily measured antibody responses to the protein, while investigations of clinical food allergy symptoms, or allergy promotion (adjuvant effect) associated with the Cry1Ab protein are largely missing. We aimed to investigate immunogenic, allergenic and adjuvant properties of purified Cry1Ab toxin (trypCry1Ab, i.e., trypsin activated Cry1Ab) in a mouse model of food allergy. Female C3H/HeJ mice were immunized by intragastric gavage of 10 μg purified, trypsin activated Cry1Ab toxin (trypCry1Ab) alone or together with the food allergen lupin. Cholera toxin was added as a positive control for adjuvant effect to break oral tolerance. Clinical symptoms (anaphylaxis) as well as humoral and cellular responses were assessed. In contrast to results from previous airway investigations, we observed no indication of immunogenic properties of trypCry1Ab protein after repeated intragastric exposures to one dose, with or without CT as adjuvant. Moreover, the results indicated that trypCry1Ab given by the intragastric route was not able to promote allergic responses or anaphylactic reactions against the co-administered allergen lupin at the given dose. The study suggests no immunogenic, allergenic or adjuvant capacity of the given dose of trypCry1Ab protein after intragastric exposure of prime aged mice.

  15. Bacillus thuringiensis delta-endotoxin Cry1Ac domain III enhances activity against Heliothis virescens in some, but not all Cry1-Cry1Ac hybrids

    NARCIS (Netherlands)

    Karlova, R.B.; Weemen, W.M.J.; Naimov, S.; Ceron, J.; Dukiandjiev, S.; Maagd, de R.A.

    2005-01-01

    We investigated the role of domain III of Bacillus thuringiensis d-endotoxin Cry1Ac in determining toxicity against Heliothis virescens. Hybrid toxins, containing domain III of Cry1Ac with domains I and II of Cry1Ba, Cry1Ca, Cry1Da, Cry1Ea, and Cry1Fb, respectively, were created. In this way Cry1Ca,

  16. Field-Evolved Resistance in Corn Earworm to Cry Proteins Expressed by Transgenic Sweet Corn

    Science.gov (United States)

    Dively, Galen P.; Finkenbinder, Chad

    2016-01-01

    Background Transgenic corn engineered with genes expressing insecticidal toxins from the bacterium Bacillus thuringiensis (Berliner) (Bt) are now a major tool in insect pest management. With its widespread use, insect resistance is a major threat to the sustainability of the Bt transgenic technology. For all Bt corn expressing Cry toxins, the high dose requirement for resistance management is not achieved for corn earworm, Helicoverpa zea (Boddie), which is more tolerant to the Bt toxins. Methodology/Major Findings We present field monitoring data using Cry1Ab (1996–2016) and Cry1A.105+Cry2Ab2 (2010–2016) expressing sweet corn hybrids as in-field screens to measure changes in field efficacy and Cry toxin susceptibility to H. zea. Larvae successfully damaged an increasing proportion of ears, consumed more kernel area, and reached later developmental stages (4th - 6th instars) in both types of Bt hybrids (Cry1Ab—event Bt11, and Cry1A.105+Cry2Ab2—event MON89034) since their commercial introduction. Yearly patterns of H. zea population abundance were unrelated to reductions in control efficacy. There was no evidence of field efficacy or tissue toxicity differences among different Cry1Ab hybrids that could contribute to the decline in control efficacy. Supportive data from laboratory bioassays demonstrate significant differences in weight gain and fitness characteristics between the Maryland H. zea strain and a susceptible strain. In bioassays with Cry1Ab expressing green leaf tissue, Maryland H. zea strain gained more weight than the susceptible strain at all concentrations tested. Fitness of the Maryland H. zea strain was significantly lower than that of the susceptible strain as indicated by lower hatch rate, longer time to adult eclosion, lower pupal weight, and reduced survival to adulthood. Conclusions/Significance After ruling out possible contributing factors, the rapid change in field efficacy in recent years and decreased susceptibility of H. zea to Bt

  17. Effects of Bacillus thuringiensis CRY1A(c) d-endotoxin on growth ...

    African Journals Online (AJOL)

    The recent introduction of Bt maize and Bt cotton transgenic crops into Africa has raised concerns on their potential short and long-term ecological effects on the environment. The effects of Bacillus thuringiensis (Bt) Cry1A(c) d-endotoxin on the growth, nodulation and productivity of two leguminous plants grown in clay soil ...

  18. Aquatic degradation of Cry1Ab protein and decomposition dynamics of transgenic corn leaves under controlled conditions.

    Science.gov (United States)

    Böttger, Rita; Schaller, Jörg; Lintow, Sven; Gert Dudel, E

    2015-03-01

    The increasing cultivation of genetically modified corn plants (Zea mays) during the last decades is suggested as a potential risk to the environment. One of these genetically modified variety expressed the insecticidal Cry1Ab protein originating from Bacillus thuringiensis (Bt), resulting in resistance against Ostrinia nubilalis, the European corn borer. Transgenic litter material is extensively studied regarding the decomposition in soils. However, only a few field studies analyzed the fate of the Cry1Ab protein and the impact of green and senescent leaf litter from corn on the decomposition rate and related ecosystem functions in aquatic environments. Consequently, a microbial litter decomposition experiment was conducted under controlled semi-natural conditions in batch culture using two maize varieties: one variety with Cry1Ab and another one with the appertaining Iso-line as control treatment. The results showed no significant differences between the treatment with Cry1Ab and the Iso-line regarding loss of total mass in dry weight of 43% for Iso-line and 45% for Bt-corn litter, lignin content increased to 137.5% (Iso-line) and 115.7% (Bt-corn), and phenol loss decreased by 53.6% (Iso-line), 62.2% (Bt-corn) during three weeks of the experiment. At the end of the experiment Cry1Ab protein was still detected with 6% of the initial concentration. A slightly but significant lower cellulose content was found for the Cry1Ab treatment compared to the Iso-line litter at the end of the experiment. The significant higher total protein (25%) and nitrogen (25%) content in Bt corn, most likely due to the additionally expression of the transgenic protein, may increase the microbial cellulose degradation and decrease microbial lignin degradation. In conclusion a relevant year by year input of protein and therefore nitrogen rich Bt corn litter into aquatic environments may affect the balanced nutrient turnover in aquatic ecosystems. Copyright © 2014 Elsevier Inc. All rights

  19. Comparison of fumonisin contamination using HPLC and ELISA methods in bt and near-isogenic maize hybrids infested with European corn borer or western bean cutworm.

    Science.gov (United States)

    Bowers, Erin; Hellmich, Richard; Munkvold, Gary

    2014-07-09

    Field trials were conducted from 2007 to 2010 to compare grain fumonisin levels among non-Bt maize hybrids and Bt hybrids with transgenic protection against manual infestations of European corn borer (ECB) and Western bean cutworm (WBC). HPLC and ELISA were used to measure fumonisin levels. Results of the methods were highly correlated, but ELISA estimates were higher. Bt hybrids experienced less insect injury, Fusarium ear rot, and fumonisin contamination compared to non-Bt hybrids. WBC infestation increased fumonisin content compared to natural infestation in non-Bt and hybrids expressing Cry1Ab protein in five of eight possible comparisons; in Cry1F hybrids, WBC did not impact fumonisins. These results indicate that WBC is capable of increasing fumonisin levels in maize. Under WBC infestation, Cry1F mitigated this risk more consistently than Cry1Ab or non-Bt hybrids. Transgenically expressed Bt proteins active against multiple lepidopteran pests can provide broad, consistent reductions in the risk of fumonisin contamination.

  20. DDB1-Mediated CRY1 Degradation Promotes FOXO1-Driven Gluconeogenesis in Liver.

    Science.gov (United States)

    Tong, Xin; Zhang, Deqiang; Charney, Nicholas; Jin, Ethan; VanDommelen, Kyle; Stamper, Kenneth; Gupta, Neil; Saldate, Johnny; Yin, Lei

    2017-10-01

    Targeted protein degradation through ubiquitination is an important step in the regulation of glucose metabolism. Here, we present evidence that the DDB1-CUL4A ubiquitin E3 ligase functions as a novel metabolic regulator that promotes FOXO1-driven hepatic gluconeogenesis. In vivo, hepatocyte-specific Ddb1 deletion leads to impaired hepatic gluconeogenesis in the mouse liver but protects mice from high-fat diet-induced hyperglycemia. Lack of Ddb1 downregulates FOXO1 protein expression and impairs FOXO1-driven gluconeogenic response. Mechanistically, we discovered that DDB1 enhances FOXO1 protein stability via degrading the circadian protein cryptochrome 1 (CRY1), a known target of DDB1 E3 ligase. In the Cry1 depletion condition, insulin fails to reduce the nuclear FOXO1 abundance and suppress gluconeogenic gene expression. Chronic depletion of Cry1 in the mouse liver not only increases FOXO1 protein but also enhances hepatic gluconeogenesis. Thus, we have identified the DDB1-mediated CRY1 degradation as an important target of insulin action on glucose homeostasis. © 2017 by the American Diabetes Association.

  1. Management of Field-Evolved Resistance to Bt Maize in Argentina: A Multi-Institutional Approach

    Science.gov (United States)

    Signorini, Ana M.; Abratti, Gustavo; Grimi, Damián; Machado, Marcos; Bunge, Florencia F.; Parody, Betiana; Ramos, Laura; Cortese, Pablo; Vesprini, Facundo; Whelan, Agustina; Araujo, Mónica P.; Podworny, Mariano; Cadile, Alejandro; Malacarne, María F.

    2018-01-01

    Evolution of resistance to control measures in insect populations is a natural process, and management practices are intended to delay or mitigate resistance when it occurs. During the 2012/13 season the first reports of unexpected damage by Diatraea saccharalis on some Bt maize hybrids occurred in the northeast of San Luis province, Argentina. The affected Bt technologies were Herculex I® (HX-TC1507) and VT3PRO® (MON 89034 × MON 88017*). Event TC1507 expresses Cry1F and event MON 89034 expresses Cry1A.105 and Cry2Ab2, whichr are all Bt proteins with activity against the lepidopterans D. saccharalis and Spodoptera frugiperda (MON 88017 expresses the protein Cry3Bb1 for control of coleopteran insects and the enzyme CP4EPSPS for glyphosate tolerance). The affected area is an isolated region surrounded by sierra systems to the northeast and west, with a hot semi-arid climate, long frost-free period, warm winters, hot dry summers, and woody shrubs as native flora. To manage and mitigate the development of resistance, joint actions were taken by the industry, growers and Governmental Agencies. Hybrids expressing Vip3A protein (event MIR162) and/or Cry1Ab protein (events MON 810 and Bt11) as single or stacked events are used in early plantings to control the first generations of D. saccharalis, and in later plantings date's technologies with good control of S. frugiperda. A commitment was made to plant the refuge, and pest damage is monitored. As a result, maize production in the area is sustainable and profitable with yields above the average. PMID:29888224

  2. Induction of Manduca sexta Larvae Caspases Expression in Midgut Cells by Bacillus thuringiensis Cry1Ab Toxin

    Directory of Open Access Journals (Sweden)

    Helena Porta

    2011-01-01

    Full Text Available Bacillus thuringiensis produces crystal toxins known as Cry that are highly selective against important agricultural and human health-related insect pests. Cry proteins are pore-forming toxins that interact with specific receptors in the midgut cell membrane of susceptible larvae making pores that cause osmotic shock, leading finally to insect death. In the case of pore-forming toxins that are specific to mammalian cells, death responses at low doses may induce apoptosis or pyroptosis, depending on the cell type. The death mechanism induced by Cry toxins in insect midgut cells is poorly understood. Here, we analyze the caspases expression by RT-PCR analysis, showing that the initial response of Manduca sexta midgut cells after low dose of Cry1Ab toxin administration involves a fast and transient accumulation of caspase-1 mRNA, suggesting that pyroptosis was activated by Cry1Ab toxin as an initial response but was repressed later. In contrast, caspase-3 mRNA requires a longer period of time of toxin exposure to be activated but presents a sustained activation, suggesting that apoptosis may be a cell death mechanism induced also at low dose of toxin.

  3. Improved insecticidal toxicity by fusing Cry1Ac of Bacillus thuringiensis with Av3 of Anemonia viridis.

    Science.gov (United States)

    Yan, Fu; Cheng, Xing; Ding, Xuezhi; Yao, Ting; Chen, Hanna; Li, Wenping; Hu, Shengbiao; Yu, Ziquan; Sun, Yunjun; Zhang, Youming; Xia, Liqiu

    2014-05-01

    Av3, a neurotoxin of Anemonia viridis, is toxic to crustaceans and cockroaches but inactive in mammals. In the present study, Av3 was expressed in Escherichia coli Origami B (DE3) and purified by reversed-phase liquid chromatography. The purified Av3 was injected into the hemocoel of Helicoverpa armigera, rendering the worm paralyzed. Then, Av3 was expressed alone or fusion expressed with the Cry1Ac in acrystalliferous strain Cry(-)B of Bacillus thuringiensis. The shape of Cry1Ac was changed by fusion with Av3. The expressed fusion protein, Cry1AcAv3, formed irregular rhombus- or crescent-shaped crystalline inclusions, which is quite different from the shape of original Cry1Ac crystals. The toxicity of Cry1Ac was improved by fused expression. Compared with original Cry1Ac expressed in Cry(-)B, the oral toxicity of Cry1AcAv3 to H. armigera was elevated about 2.6-fold. No toxicity was detected when Av3 was expressed in Cry(-)B alone. The present study confirmed that marine toxins could be used in bio-control and implied that fused expression with other insecticidal proteins could be an efficient way for their application.

  4. Fitness costs of Cry1F resistance in two populations of fall armyworm, Spodoptera frugiperda (J.E. Smith), collected from Puerto Rico and Florida.

    Science.gov (United States)

    Dangal, Vikash; Huang, Fangneng

    2015-05-01

    The development of resistance in target pest populations is a threat to the sustainability of transgenic crops expressing Bacillus thuringiensis (Bt) proteins. Fall armyworm, Spodoptera frugiperda (J.E. Smith), is a major target pest of Bt maize in North and South America. This insect is the first target pest that has developed field resistance to Bt maize at multiple locations in these regions. The objective of this study was to assess the fitness costs associated with the Cry1F resistance in two populations of S. frugiperda collected from Puerto Rico (RR-PR) and Florida (RR-FL). In the study, fitness costs were evaluated by comparing survival, growth, and developmental time of seven populations of S. frugiperda on (1) non-Bt meridic diet and (2) non-Bt maize leaf tissue and non-Bt diet. The seven populations were RR-PR, RR-FL, a Bt-susceptible strain (Bt-SS), and four F1 populations developed from reciprocal crosses between Bt-SS and the two resistant populations. Biological parameters measured were neonate-to-adult survivorship, neonate-to-adult developmental time, 10day larval weight on non-Bt maize leaf tissue, pupal weight, and sex ratios. Results of the study show that the Cry1F resistance in both RR-PR and RR-FL was associated with considerable fitness costs, especially for the Florida population. Compared to the Bt-susceptible population, RR-PR showed an average of 61.1% reduction in larval weight, 20.4% less in neonate-to-adult survivorship, and 3.7days delay in neonate-to-adult developmental time. These fitness costs for RR-FL were 66.9%, 31.7% and 4.4days, respectively. The fitness costs of RR-PR and RR-FL appeared to be non-recessive. The results indicate that a diversified genetic basis may exist for the Cry1F resistance in S. frugiperda. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Monitoring of Sesamia nonagrioides resistance to MON 810 maize in the European Union: lessons from a long-term harmonized plan.

    Science.gov (United States)

    Farinós, Gema P; Hernández-Crespo, Pedro; Ortego, Félix; Castañera, Pedro

    2018-03-01

    Use of MON 810 maize (Zea mays), which expresses the insecticidal protein Cry1Ab from Bacillus thuringiensis (Bt maize), is a highly effective method to control Sesamia nonagrioides (Lefèbvre), a key maize pest in Mediterranean countries. Monitoring programs to assess the potential development of resistance of target pests to Bt maize are mandatory in the European Union (EU). Here we report the results of the S. nonagrioides resistance monitoring plan implemented for MON 810 maize in the EU between 2004 and 2015 and reassess the different components of this long-term harmonized plan. No major shifts in the susceptibility of S. nonagrioides to the Cry1Ab protein have occurred over time. The reassessment of this long-term program has identified some practical and technical constraints, allowing us to provide specific recommendations for improvement: use reference strains instead of susceptibility baselines as comparators for field-collected populations; shift from dose-response bioassays to diagnostic concentrations; and focus monitoring on areas with high adoption rates, such as the Ebro basin in Spain. There are no signs of field resistance of S. nonagrioides to the Cry1Ab protein of MON 810 maize. Specific recommendations for improvement are provided, based on the knowledge and experience accumulated through the implementation of this unique EU-wide harmonized plan. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Effects of genetically modified maize events expressing Cry34Ab1, Cry35Ab1, Cry1F, and CP4 EPSPS proteins on arthropod complex food webs.

    Science.gov (United States)

    Pálinkás, Zoltán; Kiss, József; Zalai, Mihály; Szénási, Ágnes; Dorner, Zita; North, Samuel; Woodward, Guy; Balog, Adalbert

    2017-04-01

    Four genetically modified (GM) maize ( Zea mays L.) hybrids (coleopteran resistant, coleopteran and lepidopteran resistant, lepidopteran resistant and herbicide tolerant, coleopteran and herbicide tolerant) and its non-GM control maize stands were tested to compare the functional diversity of arthropods and to determine whether genetic modifications alter the structure of arthropods food webs. A total number of 399,239 arthropod individuals were used for analyses. The trophic groups' number and the links between them indicated that neither the higher magnitude of Bt toxins (included resistance against insect, and against both insects and glyphosate) nor the extra glyphosate treatment changed the structure of food webs. However, differences in the average trophic links/trophic groups were detected between GM and non-GM food webs for herbivore groups and plants. Also, differences in characteristic path lengths between GM and non-GM food webs for herbivores were observed. Food webs parameterized based on 2-year in-field assessments, and their properties can be considered a useful and simple tool to evaluate the effects of Bt toxins on non-target organisms.

  7. Pollen contamination in seed mixture increases the dominance of resistance to Bt maize in Spodoptera frugiperda (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Yang, Fei; Kerns, David L; Brown, Sebe; Head, Graham P; Huang, Fangneng

    2017-11-01

    Seed mixture, also called 'RIB', has been used to provide refuge populations for delaying insect resistance. Pollen contamination in RIB could result in refuge kernels of non-Bt maize expressing variable Bt proteins. Data are lacking regarding the impact of pollen contamination on evolution of resistance for ear-feeding insects. Here, we used Spodoptera frugiperda and Cry1F-maize as a model to examine if pollen contamination in RIB increases the dominance of insect resistance. Pollen contamination caused >66% refuge kernels in 5:95% (non-Bt:Bt) and 20:80% RIBs to express Cry1F protein. Survival at adult stage on pure non-Bt ears was similar (54.4-63.3%) among Cry1F-susceptible (SS), Cry1F-resistant (RR) and Cry1F-heterozygous (RS) S. frugiperda. On Bt ears, survival was similar between SS and RS (0.0-1.7%), but it was significantly less than that of RR (59.2%). On the two RIB refuge ears, survival at adult stage for RS (42.3% in 5:95% RIB; 50.0% in 20:80% RIB) was significantly higher than for SS (8.7% in 5:95% RIB; 10.0% in 20:80% RIB). The results suggest that pollen contamination in RIB could increase the dominance of resistance for ear-feeding insects by significantly reducing susceptible refuge populations and supporting higher survival of heterozygotes relative to homozygous susceptible insects. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. MAPK Signaling Pathway Alters Expression of Midgut ALP and ABCC Genes and Causes Resistance to Bacillus thuringiensis Cry1Ac Toxin in Diamondback Moth

    Science.gov (United States)

    Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhu, Xun; Baxter, Simon W.; Zhou, Xuguo; Jurat-Fuentes, Juan Luis; Zhang, Youjun

    2015-01-01

    Insecticidal crystal toxins derived from the soil bacterium Bacillus thuringiensis (Bt) are widely used as biopesticide sprays or expressed in transgenic crops to control insect pests. However, large-scale use of Bt has led to field-evolved resistance in several lepidopteran pests. Resistance to Bt Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.), was previously mapped to a multigenic resistance locus (BtR-1). Here, we assembled the 3.15 Mb BtR-1 locus and found high-level resistance to Cry1Ac and Bt biopesticide in four independent P. xylostella strains were all associated with differential expression of a midgut membrane-bound alkaline phosphatase (ALP) outside this locus and a suite of ATP-binding cassette transporter subfamily C (ABCC) genes inside this locus. The interplay between these resistance genes is controlled by a previously uncharacterized trans-regulatory mechanism via the mitogen-activated protein kinase (MAPK) signaling pathway. Molecular, biochemical, and functional analyses have established ALP as a functional Cry1Ac receptor. Phenotypic association experiments revealed that the recessive Cry1Ac resistance was tightly linked to down-regulation of ALP, ABCC2 and ABCC3, whereas it was not linked to up-regulation of ABCC1. Silencing of ABCC2 and ABCC3 in susceptible larvae reduced their susceptibility to Cry1Ac but did not affect the expression of ALP, whereas suppression of MAP4K4, a constitutively transcriptionally-activated MAPK upstream gene within the BtR-1 locus, led to a transient recovery of gene expression thereby restoring the susceptibility in resistant larvae. These results highlight a crucial role for ALP and ABCC genes in field-evolved resistance to Cry1Ac and reveal a novel trans-regulatory signaling mechanism responsible for modulating the expression of these pivotal genes in P. xylostella. PMID:25875245

  9. MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in diamondback moth.

    Directory of Open Access Journals (Sweden)

    Zhaojiang Guo

    2015-04-01

    Full Text Available Insecticidal crystal toxins derived from the soil bacterium Bacillus thuringiensis (Bt are widely used as biopesticide sprays or expressed in transgenic crops to control insect pests. However, large-scale use of Bt has led to field-evolved resistance in several lepidopteran pests. Resistance to Bt Cry1Ac toxin in the diamondback moth, Plutella xylostella (L., was previously mapped to a multigenic resistance locus (BtR-1. Here, we assembled the 3.15 Mb BtR-1 locus and found high-level resistance to Cry1Ac and Bt biopesticide in four independent P. xylostella strains were all associated with differential expression of a midgut membrane-bound alkaline phosphatase (ALP outside this locus and a suite of ATP-binding cassette transporter subfamily C (ABCC genes inside this locus. The interplay between these resistance genes is controlled by a previously uncharacterized trans-regulatory mechanism via the mitogen-activated protein kinase (MAPK signaling pathway. Molecular, biochemical, and functional analyses have established ALP as a functional Cry1Ac receptor. Phenotypic association experiments revealed that the recessive Cry1Ac resistance was tightly linked to down-regulation of ALP, ABCC2 and ABCC3, whereas it was not linked to up-regulation of ABCC1. Silencing of ABCC2 and ABCC3 in susceptible larvae reduced their susceptibility to Cry1Ac but did not affect the expression of ALP, whereas suppression of MAP4K4, a constitutively transcriptionally-activated MAPK upstream gene within the BtR-1 locus, led to a transient recovery of gene expression thereby restoring the susceptibility in resistant larvae. These results highlight a crucial role for ALP and ABCC genes in field-evolved resistance to Cry1Ac and reveal a novel trans-regulatory signaling mechanism responsible for modulating the expression of these pivotal genes in P. xylostella.

  10. Mating Success, Longevity, and Fertility of Diabrotica virgifera virgifera LeConte (Chrysomelidae: Coleoptera in Relation to Body Size and Cry3Bb1-Resistant and Cry3Bb1-Susceptible Genotypes

    Directory of Open Access Journals (Sweden)

    Bryan Wade French

    2015-11-01

    Full Text Available Insect resistance to population control methodologies is a widespread problem. The development of effective resistance management programs is often dependent on detailed knowledge regarding the biology of individual species and changes in that biology associated with resistance evolution. This study examined the reproductive behavior and biology of western corn rootworm beetles of known body size from lines resistant and susceptible to the Cry3Bb1 protein toxin expressed in transgenic Bacillus thuringiensis maize. In crosses between, and within, the resistant and susceptible genotypes, no differences occurred in mating frequency, copulation duration, courtship duration, or fertility; however, females mated with resistant males showed reduced longevity. Body size did not vary with genotype. Larger males and females were not more likely to mate than smaller males and females, but larger females laid more eggs. Moderately strong, positive correlation occurred between the body sizes of successfully mated males and females; however, weak correlation also existed for pairs that did not mate. Our study provided only limited evidence for fitness costs associated with the Cry3Bb1-resistant genotype that might reduce the persistence in populations of the resistant genotype but provided additional evidence for size-based, assortative mating, which could favor the persistence of resistant genotypes affecting body size.

  11. Subchronic feeding study of DAS-59122-7 maize grain in Sprague-Dawley rats.

    Science.gov (United States)

    Malley, Linda A; Everds, Nancy E; Reynolds, Julia; Mann, Peter C; Lamb, Ian; Rood, Tracy; Schmidt, Jean; Layton, Raymond J; Prochaska, Lee M; Hinds, Mark; Locke, Mary; Chui, Chok-Fun; Claussen, Fred; Mattsson, Joel L; Delaney, Bryan

    2007-07-01

    59122 is a transgenic maize line containing event DAS-59122-7 that expresses the corn rootworm (CRW) specific pesticidal Cry34Ab1 and Cry35Ab1 proteins from Bacillus thuringiensis (Bt) Berliner strain PS149B1 and the phosphinothricin-N-acetyltransferase (PAT) protein from Streptomyces viridochromogenes for tolerance to the herbicidal ingredient glufosinate-ammonium. For the current study, 59122 maize grain, non-transgenic near-isogenic maize grain (091), and a commercially available non-transgenic reference maize grain (33R77) were grown under conditions simulating commercial farming practices. Adult Sprague-Dawley rats (12/sex/group) were fed diets formulated with 35% maize grain from either 59122, 091, or 33R77, or one of two separate lots of commercially available rodent chow prepared with commercially available corn (35%) in accordance with the standards of Purina Mills Labdiet 5002 for approximately 90 days. All diets possessed similar nutritional and contaminant profiles. The transgenic proteins were detected only in diets prepared with 59122 maize grain and were stable over the course of the study. Compared to control groups, no adverse diet-related differences were observed in rats fed diets formulated with 59122 maize grain with respect to body weight/gain, food consumption/efficiency, clinical signs of toxicity, mortality, ophthalmology, neurobehavioral (FOB and motor activity) assessments, clinical pathology (hematology, clinical chemistry, coagulation, and urinalysis), and pathology (organ weights and gross and microscopic pathology). Results from this study indicate that 59122 maize grain is nutritionally equivalent to and as safe as conventional maize grain.

  12. Cry1Ac Protein expression in tissues of potato (solanumtuberosum spp. andigena) transgenic lines var. Diacol Capiro

    International Nuclear Information System (INIS)

    Vanegas Araujo, Pablo Andres; Blanco Martinez, Jennifer Teresa; Chaparro Giraldo, Alejandro

    2010-01-01

    The potato plant is the fourth most important crop in the world. In Colombia around 2.8 million tons are produced annually economically supporting 90000 families. In the country, the major economic impact in the crop is caused by Tecia solanivora that originates loses up to 100% in the tuber production. The genetic plant breeding related to the introduction of Cry genes which codify insecticidal crystal proteins is an alternative for reducing the insect attack in commercial crops. In this work, the insertion, transcription and expression of Cry1Ac gen was characterized in different tissues and three development stages of two transgenic lines of Solanum tuberosum variety Diacol Capiro that were previously transformed by Agrobacterium tumefaciens method. The characterization was realized by PCR, RT-PCR and ELISA techniques. The gen insertion and transcription was confirmed using primers for Cry1Ac gen that amplified a specific band of 766 bp. The protein expression levels were higher than 45 µg/g and were not significantly different between the analyzed lines or the three development stages. Furthermore, taking into account some relevant phenotypic features, no significant differences were found between transgenic lines and controls. The results suggest that monitoring and biosecurity assays are necessary with this vegetal material because their high level expression inside all the tissues analyzed that could affect non-targeted insects.

  13. Comparison and validation of methods to quantify Cry1Ab toxin from Bacillus thuringiensis for standardization of insect bioassays.

    Science.gov (United States)

    Crespo, André L B; Spencer, Terence A; Nekl, Emily; Pusztai-Carey, Marianne; Moar, William J; Siegfried, Blair D

    2008-01-01

    Standardization of toxin preparations derived from Bacillus thuringiensis (Berliner) used in laboratory bioassays is critical for accurately assessing possible changes in the susceptibility of field populations of target pests. Different methods were evaluated to quantify Cry1Ab, the toxin expressed by 80% of the commercially available transgenic maize that targets the European corn borer, Ostrinia nubilalis (Hübner). We compared three methods of quantification on three different toxin preparations from independent sources: enzyme-linked immunosorbent assay (ELISA), sodium dodecyl sulfate-polyacrylamide gel electrophoresis and densitometry (SDS-PAGE/densitometry), and the Bradford assay for total protein. The results were compared to those obtained by immunoblot analysis and with the results of toxin bioassays against susceptible laboratory colonies of O. nubilalis. The Bradford method resulted in statistically higher estimates than either ELISA or SDS-PAGE/densitometry but also provided the lowest coefficients of variation (CVs) for estimates of the Cry1Ab concentration (from 2.4 to 5.4%). The CV of estimates obtained by ELISA ranged from 12.8 to 26.5%, whereas the CV of estimates obtained by SDS-PAGE/densitometry ranged from 0.2 to 15.4%. We standardized toxin concentration by using SDS-PAGE/densitometry, which is the only method specific for the 65-kDa Cry1Ab protein and is not confounded by impurities detected by ELISA and Bradford assay for total protein. Bioassays with standardized Cry1Ab preparations based on SDS-PAGE/densitometry showed no significant differences in LC(50) values, although there were significant differences in growth inhibition for two of the three Cry1Ab preparations. However, the variation in larval weight caused by toxin source was only 4% of the total variation, and we conclude that standardization of Cry1Ab production and quantification by SDS-PAGE/densitometry may improve data consistency in monitoring efforts to identify changes in

  14. Expression of the sigma35 and cry2AB genes involved in Bacillus thuringiensis virulence Expressão dos genes sigma35 e cry2AB envolvidos na virulência de Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Ana Maria Guidelli-Thuler

    2009-06-01

    Full Text Available There are several genes involved in Bacillus thuringiensis sporulation. The regulation and expression of these genes results in an upregulation in Cry protein production, and this is responsible for the death of insect larvae infected by Bacillus thuringiensis. Gene expression was monitored in Bacillus thuringiensis during three developmental phases. DNA macroarrays were constructed for selected genes whose sequences are available in the GenBank database. These genes were hybridized to cDNA sequences from B. thuringiensis var. kurstaki HD-1. cDNA probes were synthesized by reverse transcription from B. thuringiensis RNA templates extracted during the exponential (log growth, stationary and sporulation phases, and labeled with 33PadCTP. Two genes were differentially expressed levels during the different developmental phases. One of these genes is related to sigma factor (sigma35, and the other is a cry gene (cry2Ab. There were differences between the differential levels of expression of various genes and among the expression detected for different combinations of the sigma factor and cry2Ab genes. The maximum difference in expression was observed for the gene encoding sigma35 factor in the log phase, which was also expressed at a high level during the sporulation phase. The cry2Ab gene was only expressed at a high level in the log phase, but at very low levels in the other phases when compared to the sigma35.Muitos genes estão envolvidos nos mecanismos de esporulação da bactéria Bacillus thuringiensis. A regulação e expressão desses genes resultam em uma produção massiva da proteína Cry, responsável pela morte das larvas de muitos insetos. Neste trabalho monitorou-se a expressão de genes de Bacillus thuringiensis, ao longo de três fases de seu desenvolvimento. Foram construídos macroarrays de DNA dos genes selecionados, cujas seqüências estão disponibilizadas no GenBank. Estes genes foram hibridizados com cDNAs obtidos de B

  15. Expression of a Chimeric Gene Encoding Insecticidal Crystal Protein Cry1Aabc of Bacillus thuringiensis in Chickpea (Cicer arietinum L.) Confers Resistance to Gram Pod Borer (Helicoverpa armigera Hubner.).

    Science.gov (United States)

    Das, Alok; Datta, Subhojit; Thakur, Shallu; Shukla, Alok; Ansari, Jamal; Sujayanand, G K; Chaturvedi, Sushil K; Kumar, P A; Singh, N P

    2017-01-01

    Domain swapping and generation of chimeric insecticidal crystal protein is an emerging area of insect pest management. The lepidopteran insect pest, gram pod borer ( Helicoverpa armigera H.) wreaks havoc to chickpea crop affecting production. Lepidopteran insects were reported to be controlled by Bt ( cryI ) genes. We designed a plant codon optimized chimeric Bt gene ( cry1Aabc ) using three domains from three different cry1A genes (domains I, II, and III from cry1Aa , cry1Ab , and cry1Ac , respectively) and expressed it under the control of a constitutive promoter in chickpea ( cv . DCP92-3) to assess its effect on gram pod borer. A total of six transgenic chickpea shoots were established by grafting into mature fertile plants. The in vitro regenerated (organogenetic) shoots were selected based on antibiotic kanamycin monosulfate (100 mg/L) with transformation efficiency of 0.076%. Three transgenic events were extensively studied based on gene expression pattern and insect mortality across generations. Protein expression in pod walls, immature seeds and leaves (pre- and post-flowering) were estimated and expression in pre-flowering stage was found higher than that of post-flowering. Analysis for the stable integration, expression and insect mortality (detached leaf and whole plant bioassay) led to identification of efficacious transgenic chickpea lines. The chimeric cry1Aabc expressed in chickpea is effective against gram pod borer and generated events can be utilized in transgenic breeding program.

  16. Expression of a Chimeric Gene Encoding Insecticidal Crystal Protein Cry1Aabc of Bacillus thuringiensis in Chickpea (Cicer arietinum L. Confers Resistance to Gram Pod Borer (Helicoverpa armigera Hubner.

    Directory of Open Access Journals (Sweden)

    Alok Das

    2017-08-01

    Full Text Available Domain swapping and generation of chimeric insecticidal crystal protein is an emerging area of insect pest management. The lepidopteran insect pest, gram pod borer (Helicoverpa armigera H. wreaks havoc to chickpea crop affecting production. Lepidopteran insects were reported to be controlled by Bt (cryI genes. We designed a plant codon optimized chimeric Bt gene (cry1Aabc using three domains from three different cry1A genes (domains I, II, and III from cry1Aa, cry1Ab, and cry1Ac, respectively and expressed it under the control of a constitutive promoter in chickpea (cv. DCP92-3 to assess its effect on gram pod borer. A total of six transgenic chickpea shoots were established by grafting into mature fertile plants. The in vitro regenerated (organogenetic shoots were selected based on antibiotic kanamycin monosulfate (100 mg/L with transformation efficiency of 0.076%. Three transgenic events were extensively studied based on gene expression pattern and insect mortality across generations. Protein expression in pod walls, immature seeds and leaves (pre- and post-flowering were estimated and expression in pre-flowering stage was found higher than that of post-flowering. Analysis for the stable integration, expression and insect mortality (detached leaf and whole plant bioassay led to identification of efficacious transgenic chickpea lines. The chimeric cry1Aabc expressed in chickpea is effective against gram pod borer and generated events can be utilized in transgenic breeding program.

  17. Evidence of field-evolved resistance of Spodoptera frugiperda to Bt corn expressing Cry1F in Brazil that is still sensitive to modified Bt toxins.

    Science.gov (United States)

    Monnerat, Rose; Martins, Erica; Macedo, Cristina; Queiroz, Paulo; Praça, Lilian; Soares, Carlos Marcelo; Moreira, Helio; Grisi, Isabella; Silva, Joseane; Soberon, Mario; Bravo, Alejandra

    2015-01-01

    Brazil ranked second only to the United States in hectares planted to genetically modified crops in 2013. Recently corn producers in the Cerrado region reported that the control of Spodoptera frugiperda with Bt corn expressing Cry1Fa has decreased, forcing them to use chemicals to reduce the damage caused by this insect pest. A colony of S. frugiperda was established from individuals collected in 2013 from Cry1Fa corn plants (SfBt) in Brazil and shown to have at least more than ten-fold higher resistance levels compared with a susceptible colony (Sflab). Laboratory assays on corn leaves showed that in contrast to SfLab population, the SfBt larvae were able to survive by feeding on Cry1Fa corn leaves. The SfBt population was maintained without selection for eight generations and shown to maintain high levels of resistance to Cry1Fa toxin. SfBt showed higher cross-resistance to Cry1Aa than to Cry1Ab or Cry1Ac toxins. As previously reported, Cry1A toxins competed the binding of Cry1Fa to brush border membrane vesicles (BBMV) from SfLab insects, explaining cross-resistance to Cry1A toxins. In contrast Cry2A toxins did not compete Cry1Fa binding to SfLab-BBMV and no cross-resistance to Cry2A was observed, although Cry2A toxins show low toxicity to S. frugiperda. Bioassays with Cry1AbMod and Cry1AcMod show that they are highly active against both the SfLab and the SfBt populations. The bioassay data reported here show that insects collected from Cry1Fa corn in the Cerrado region were resistant to Cry1Fa suggesting that resistance contributed to field failures of Cry1Fa corn to control S. frugiperda.

  18. Inheritance Patterns, Dominance and Cross-Resistance of Cry1Ab- and Cry1Ac-Selected Ostrinia furnacalis (Guenée

    Directory of Open Access Journals (Sweden)

    Tiantao Zhang

    2014-09-01

    Full Text Available Two colonies of Asian corn borer, Ostrinia furnacalis (Guenée, artificially selected from a Bt-susceptible colony (ACB-BtS for resistance to Cry1Ab (ACB-AbR and Cry1Ac (ACB-AcR toxins, were used to analyze inheritance patterns of resistance to Cry1 toxins. ACB-AbR and ACB-AcR evolved significant levels of resistance, with resistance ratios (RR of 39-fold and 78.8-fold to Cry1Ab and Cry1Ac, respectively. The susceptibility of ACB-AbR larvae to Cry1Ac and Cry1F toxins, which had not previously been exposed, were significantly reduced, being >113-fold and 48-fold, respectively. Similarly, susceptibility of ACB-AcR larvae to Cry1Ab and Cry1F were also significantly reduced (RR > nine-fold, RR > 18-fold, respectively, indicating cross-resistance among Cry1Ab, Cry1Ac, and Cry1F toxins. However, ACB-AbR and ACB-AcR larvae were equally susceptible to Cry1Ie as were ACB-BtS larvae, indicating no cross-resistance between Cry1Ie and Cry1Ab or Cry1Ac toxins; this may provide considerable benefits in preventing or delaying the evolution of resistance in ACB to Cry1Ab and Cry1Ac toxins. Backcrossing studies indicated that resistance to Cry1Ab toxin was polygenic in ACB-AbR, but monogenic in ACB-AcR, whilst resistance to Cry1Ac toxin was primarily monogenic in both ACB-AbR and ACB-AcR, but polygenic as resistance increased.

  19. Expression of Cry1Ac toxin-binding region in Plutella xyllostella cadherin-like receptor and studying their interaction mode by molecular docking and site-directed mutagenesis.

    Science.gov (United States)

    Hu, Xiaodan; Zhang, Xiao; Zhong, Jianfeng; Liu, Yuan; Zhang, Cunzheng; Xie, Yajing; Lin, Manman; Xu, Chongxin; Lu, Lina; Zhu, Qing; Liu, Xianjin

    2018-05-01

    Cadherin-like protein has been identified as the primary Bacillus thuringiensis (Bt) Cry toxin receptor in Lepidoptera pests and plays a key role in Cry toxin insecticidal. In this study, we successfully expressed the putative Cry1Ac toxin-binding region (CR7-CR11) of Plutella xylostella cadherin-like in Escherichia coli BL21 (DE3). The expressed CR7-CR11 fragment showed binding ability to Cry1Ac toxin under denaturing (Ligand blot) and non-denaturing (ELISA) conditions. The three-dimensional structure of CR7-CR11 was constructed by homology modeling. Molecular docking results of CR7-CR11 and Cry1Ac showed that domain II and domain III of Cry1Ac were taking part in binding to CR7-CR11, while CR7-CR8 was the region of CR7-CR11 in interacting with Cry1Ac. The interaction of toxin-receptor complex was found to arise from hydrogen bond and hydrophobic interaction. Through the computer-aided alanine mutation scanning, amino acid residues of Cry1Ac (Met341, Asn442 and Ser486) and CR7-CR11 (Asp32, Arg101 and Arg127) were predicted as the hot spot residues involved in the interaction of the toxin-receptor complex. At last, we verified the importance role of these key amino acid residues by binding assay. These results will lay a foundation for further elucidating the insecticidal mechanism of Cry toxin and enhancing Cry toxin insecticidal activity by molecular modification. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Comparison of grain from corn rootworm resistant transgenic DAS-59122-7 maize with non-transgenic maize grain in a 90-day feeding study in Sprague-Dawley rats.

    Science.gov (United States)

    He, X Y; Huang, K L; Li, X; Qin, W; Delaney, B; Luo, Y B

    2008-06-01

    DAS-59122-7 (59122) is a transgenic maize (Zea mays L.) that contains genes encoding Cry34Ab1 and Cry35Ab1 proteins from Bacillus thuringiensis Berliner strain 149B1 and phosphinothricin acetyltransferase (PAT) protein from Streptomyces viridochromogenes. Expression of these proteins in planta confers resistance to corn rootworms and other Coleopteran parasites and tolerance to herbicides containing glufosinate ammonium, respectively. In the current study, processed flours from 59122 maize grain or its near isogenic control line (091) were used at two concentrations (50% and 70% wt/wt) to produce diets that were fed to rats for 90 days in accordance with Chinese toxicology guidelines (GB15193.13-2003). A commercial AIN93G diet was used as an additional negative control. No significant differences in body weight and feed utilization were observed between rats consuming diets formulated with 59122 and 091 Control corn. Statistical differences (p<0.05) were observed in certain hematology and serum chemistry response variables between rats consuming diets formulated with 59122 or 091 Control flour compared to AIN93G diet. However, the mean value of these response variables in the 59122 groups were not statistically different from those observed in diets formulated with corresponding high and low concentrations of the flour from the 091 Control maize grain. Therefore, the statistical differences were considered to be related to consumption of diets containing high concentrations of maize flour (compared to AIN93G diets) regardless of source rather than to consumption of flour from 59122 maize grain. The results from this study demonstrated that 59122 maize grain is as safe as non-transgenic maize grain.

  1. Chilo suppressalis and Sesamia inferens display different susceptibility responses to Cry1A insecticidal proteins.

    Science.gov (United States)

    Li, Bo; Xu, Yangyang; Han, Cao; Han, Lanzhi; Hou, Maolin; Peng, Yufa

    2015-10-01

    Chilo suppressalis and Sesamia inferens are important lepidopteran rice pests that occur concurrently in rice-growing areas of China. The development of transgenic rice expressing Cry1A insecticidal proteins has provided a useful strategy for controlling these pests. This study evaluated the baseline susceptibilities of C. suppressalis and S. inferens to Cry1A, as well as their responses to selection with Cry1A. Wide geographic variation in susceptibility was observed across all field populations. Within a given population, the LC50 of both Cry1Ab and Cry1Ac against S. inferens was drastically higher than that of C. suppressalis. Large LC50 differences (74.6-fold) were detected between the two species for Cry1Ab in the Poyang population, while small differences (3.6-fold) were detected for Cry1Ac in the Changsha population. The Cry1Ac LC50 of C. suppressalis and S. inferens increased 8.4- and 4.4-fold after 21 and eight selection generations respectively. Additionally, the estimated realised heritabilities (h(2) ) of Cry1Ac tolerance were 0.11 in C. suppressalis and 0.292 in S. inferens. S. inferens exhibited a significantly lower susceptibility and more rapidly evolved resistance to Cry1A compared with C. suppressalis. Therefore, S. inferens is more likely to evolve increased resistance, which threatens the sustainability of rice expressing Cry1A protein. © 2014 Society of Chemical Industry.

  2. Near-Isogenic Cry1F-Resistant Strain of Spodoptera frugiperda (Lepidoptera: Noctuidae) to Investigate Fitness Cost Associated With Resistance in Brazil.

    Science.gov (United States)

    Horikoshi, Renato J; Bernardi, Oderlei; Bernardi, Daniel; Okuma, Daniela M; Farias, Juliano R; Miraldo, Leonardo L; Amaral, Fernando S A; Omoto, Celso

    2016-04-01

    Field-evolved resistance to Cry1F maize in Spodoptera frugiperda (J.E. Smith) populations in Brazil was reported in 2014. In this study, to investigate fitness costs, we constructed a near-isogenic S. frugiperda-resistant strain (R-Cry1F) using Cry1F-resistant and Cry1F-susceptible strains sharing a close genetic background. A near-isogenic R-Cry1F strain was obtained by eight repeated backcrossings, each followed by sib-mating and selection among resistant and susceptible strains. Fitness cost parameters were evaluated by comparing the biological performance of resistant, susceptible, and heterozygous strains on artificial diet. Fitness parameters monitored included development time and survival rates of egg, larval, pupal, and egg-to-adult periods; sex ratio; adult longevity; timing of preoviposition, oviposition, and postoviposition; fecundity; and fertility. A fertility life table was also calculated. The near-isogenic R-Cry1F strain showed lower survival rate of eggs (32%), when compared with Sus and reciprocal crosses (41 and 55%, respectively). The number of R-Cry1F insects that completed the life cycle was reduced to ∼25%, compared with the Sus strain with ∼32% reaching the adult stage. The mean generation time (T) of R-Cry1F strain was ∼2 d shorter than R-Cry1F♂×Sus♀ and Sus strains. The reproductive parameters of R-Cry1F strain were similar to the Sus strain. However, fewer females were produced by R-Cry1F strain than R-Cry1F♀×Sus♂ and more females than R-Cry1F♂×Sus♀. In summary, no relevant fitness costs are observed in a near-isogenic Cry1F-resistant strain of S. frugiperda, indicating stability of resistance to Cry1F protein in Brazilian populations of this species in the absence of selection pressure.

  3. Chloroplast localization of Cry1Ac and Cry2A protein- an alternative way of insect control in cotton

    Directory of Open Access Journals (Sweden)

    Adnan Muzaffar

    2015-01-01

    Full Text Available BACKGROUND: Insects have developed resistance against Bt-transgenic plants. A multi-barrier defense system to weaken their resistance development is now necessary. One such approach is to use fusion protein genes to increase resistance in plants by introducing more Bt genes in combination. The locating the target protein at the point of insect attack will be more effective. It will not mean that the non-green parts of the plants are free of toxic proteins, but it will inflict more damage on the insects because they are at maximum activity in the green parts of plants. RESULTS: Successful cloning was achieved by the amplification of Cry2A, Cry1Ac, and a transit peptide. The appropriate polymerase chain reaction amplification and digested products confirmed that Cry1Ac and Cry2A were successfully cloned in the correct orientation. The appearance of a blue color in sections of infiltrated leaves after 72 hours confirmed the successful expression of the construct in the plant expression system. The overall transformation efficiency was calculated to be 0.7%. The amplification of Cry1Ac-Cry2A and Tp2 showed the successful integration of target genes into the genome of cotton plants. A maximum of 0.673 μg/g tissue of Cry1Ac and 0.568 μg/g tissue of Cry2A was observed in transgenic plants. We obtained 100% mortality in the target insect after 72 hours of feeding the 2nd instar larvae with transgenic plants. The appearance of a yellow color in transgenic cross sections, while absent in the control, through phase contrast microscopy indicated chloroplast localization of the target protein. CONCLUSION: Locating the target protein at the point of insect attack increases insect mortality when compared with that of other transgenic plants. The results of this study will also be of great value from a biosafety point of view.

  4. Downregulation and Mutation of a Cadherin Gene Associated with Cry1Ac Resistance in the Asian Corn Borer, Ostrinia furnacalis (Guenée

    Directory of Open Access Journals (Sweden)

    Tingting Jin

    2014-09-01

    Full Text Available Development of resistance in target pests is a major threat to long-term use of transgenic crops expressing Bacillus thuringiensis (Bt Cry toxins. To manage and/or delay the evolution of resistance in target insects through the implementation of effective strategies, it is essential to understand the basis of resistance. One of the most important mechanisms of insect resistance to Bt crops is the alteration of the interactions between Cry toxins and their receptors in the midgut. A Cry1Ac-selected strain of Asian corn borer (ACB, Ostrinia furnacalis, a key pest of maize in China, evolved three mutant alleles of a cadherin-like protein (OfCAD (MPR-r1, MPR-r2 and MPR-r3, which mapped within the toxin-binding region (TBR. Each of the three mutant alleles possessed two or three amino acid substitutions in this region, especially Thr1457→Ser. In highly resistant larvae (ACB-Ac200, MPR-r2 had a 26-amino acid residue deletion in the TBR, which resulted in reduced binding of Cry1Ac compared to the MPR from the susceptible strain, suggesting that the number of amino acid deletions influences the level of resistance. Furthermore, downregulation of OfCAD gene (ofcad transcription was observed in the Cry1Ac resistant strain, ACB-Ac24, suggesting that Cry1Ac resistance in ACB is associated with the downregulation of the transcript levels of the cadherin-like protein gene. The OfCAD identified from ACB exhibited a high degree of similarity to other members of the cadherin super-family in lepidopteran species.

  5. Effects of a diet containing genetically modified rice expressing the Cry1Ab/1Ac protein (Bacillus thuringiensis toxin) on broiler chickens.

    Science.gov (United States)

    Li, Zeyang; Gao, Yang; Zhang, Minhong; Feng, Jinghai; Xiong, Yandan

    2015-01-01

    The aim of this study was to evaluate the effect of feeding Bacillus thuringiensis (Bt) rice expressing the Cry1Ab/1Ac protein on broiler chicken. The genetically modified (GM) Bt rice was compared with the corresponding non-GM rice regarding performance of feeding groups, their health status, relative organ weights, biochemical serum parameters and occurrence of Cry1Ab/1Ac gene fragments. One hundred and eighty day-old Arbor Acres female broilers with the same health condition were randomly allocated to the two treatments (6 replicate cages with 15 broilers in each cage per treatment). They received diets containing GM rice (GM group) or its parental non-GM rice (non-GM group) at 52-57% of the air-dried diet for 42 days. The results show that the transgenic rice had a similar nutrient composition as the non-GM rice and had no adverse effects on chicken growth, biochemical serum parameters and necropsy during the 42-day feeding period. In birds fed the GM rice, no transgenic gene fragments were detected in the samples of blood, liver, kidneys, spleen, jejunum, ileum, duodenum and muscle tissue. In conclusion, the results suggest that Bt rice expressing Cry1Ab/1Ac protein has no adverse effects on broiler chicken. Therefore, it can be considered as safe and used as feed source for broiler chicken.

  6. Transgenic cotton plants expressing Cry1Ia12 toxin confer resistance to fall armyworm (Spodoptera frugiperda and cotton boll weevil (Anthonomus grandis

    Directory of Open Access Journals (Sweden)

    Raquel Sampaio Oliveira

    2016-02-01

    Full Text Available Gossypium hirsutum (commercial cooton is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (through the pollen-tube pathway technique using an DNA expression cassette harboring the cry1Ia12 gene, driven by CaMV35S promoter. The T0 transgenic cotton plants were initially selected with kanamycin and posteriorly characterized with PCR and Southern blot experiments to confirm the genetic transformation. Western blot and ELISA assays indicated the transgenic cotton plants with higher Cry1Ia12 protein expression levels to be further tested in the control of two major G. hirsutum insect pests. Bioassays with T1 plants revealed the Cry1Ia12 protein toxicity on Spodoptera frugiperda larvae, as evidenced by mortality up to 40% and a significant delay in the development of the target insects compared to untransformed controls (up to 30-fold. Also, a significant reduction of Anthonomus grandis emerging adults (up to 60% was observed when the insect larvae were fed on T1 floral buds. All the larvae and adult insect survivors on the transgenic lines were weaker and significantly smaller compared to the non-transformed plants. Therefore, this study provides GM cotton plant with simultaneous resistance against the Lepidopteran (S. frugiperda and the Coleopteran (A. grandis insect orders, and all data suggested that the Cry1Ia12 toxin could effectively enhance the cotton transgenic plants resistance to both insect pests.

  7. Transgenic Cotton Plants Expressing Cry1Ia12 Toxin Confer Resistance to Fall Armyworm (Spodoptera frugiperda) and Cotton Boll Weevil (Anthonomus grandis).

    Science.gov (United States)

    de Oliveira, Raquel S; Oliveira-Neto, Osmundo B; Moura, Hudson F N; de Macedo, Leonardo L P; Arraes, Fabrício B M; Lucena, Wagner A; Lourenço-Tessutti, Isabela T; de Deus Barbosa, Aulus A; da Silva, Maria C M; Grossi-de-Sa, Maria F

    2016-01-01

    Gossypium hirsutum (commercial cooton) is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (through the pollen-tube pathway technique) using an DNA expression cassette harboring the cry1Ia12 gene, driven by CaMV35S promoter. The T0 transgenic cotton plants were initially selected with kanamycin and posteriorly characterized by PCR and Southern blot experiments to confirm the genetic transformation. Western blot and ELISA assays indicated the transgenic cotton plants with higher Cry1Ia12 protein expression levels to be further tested in the control of two major G. hirsutum insect pests. Bioassays with T1 plants revealed the Cry1Ia12 protein toxicity on Spodoptera frugiperda larvae, as evidenced by mortality up to 40% and a significant delay in the development of the target insects compared to untransformed controls (up to 30-fold). Also, an important reduction of Anthonomus grandis emerging adults (up to 60%) was observed when the insect larvae were fed on T1 floral buds. All the larvae and adult insect survivors on the transgenic lines were weaker and significantly smaller compared to the non-transformed plants. Therefore, this study provides GM cotton plant with simultaneous resistance against the Lepidopteran (S. frugiperda), and the Coleopteran (A. grandis) insect orders, and all data suggested that the Cry1Ia12 toxin could effectively enhance the cotton transgenic plants resistance to both insect pests.

  8. Transgenic Cotton Plants Expressing Cry1Ia12 Toxin Confer Resistance to Fall Armyworm (Spodoptera frugiperda) and Cotton Boll Weevil (Anthonomus grandis)

    Science.gov (United States)

    de Oliveira, Raquel S.; Oliveira-Neto, Osmundo B.; Moura, Hudson F. N.; de Macedo, Leonardo L. P.; Arraes, Fabrício B. M.; Lucena, Wagner A.; Lourenço-Tessutti, Isabela T.; de Deus Barbosa, Aulus A.; da Silva, Maria C. M.; Grossi-de-Sa, Maria F.

    2016-01-01

    Gossypium hirsutum (commercial cooton) is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (through the pollen-tube pathway technique) using an DNA expression cassette harboring the cry1Ia12 gene, driven by CaMV35S promoter. The T0 transgenic cotton plants were initially selected with kanamycin and posteriorly characterized by PCR and Southern blot experiments to confirm the genetic transformation. Western blot and ELISA assays indicated the transgenic cotton plants with higher Cry1Ia12 protein expression levels to be further tested in the control of two major G. hirsutum insect pests. Bioassays with T1 plants revealed the Cry1Ia12 protein toxicity on Spodoptera frugiperda larvae, as evidenced by mortality up to 40% and a significant delay in the development of the target insects compared to untransformed controls (up to 30-fold). Also, an important reduction of Anthonomus grandis emerging adults (up to 60%) was observed when the insect larvae were fed on T1 floral buds. All the larvae and adult insect survivors on the transgenic lines were weaker and significantly smaller compared to the non-transformed plants. Therefore, this study provides GM cotton plant with simultaneous resistance against the Lepidopteran (S. frugiperda), and the Coleopteran (A. grandis) insect orders, and all data suggested that the Cry1Ia12 toxin could effectively enhance the cotton transgenic plants resistance to both insect pests. PMID:26925081

  9. A comprehensive assessment of the effects of Bt cotton on Coleomegilla maculata demonstrates no detrimental effects by Cry1Ac and Cry2Ab.

    Directory of Open Access Journals (Sweden)

    Yunhe Li

    Full Text Available The ladybird beetle, Coleomegilla maculata (DeGeer, is a common and abundant predator in many cropping systems. Its larvae and adults are predaceous, feeding on aphids, thrips, lepidopteran larvae and plant tissues, such as pollen. Therefore, this species is exposed to insecticidal proteins expressed in insect-resistant, genetically engineered cotton expressing Cry proteins derived from Bacillus thuringiensis (Bt. A tritrophic bioassay was conduced to evaluate the potential impact of Cry2Ab- and Cry1Ac-expressing cotton on fitness parameters of C. maculata using Bt-susceptible and -resistant larvae of Trichoplusia ni as prey. Coleomegilla maculata survival, development time, adult weight and fecundity were not different when they were fed with resistant T. ni larvae reared on either Bt or control cotton. To ensure that C. maculata were not sensitive to the tested Cry toxins independent from the plant background and to add certainty to the hazard assessment, C. maculata larvae were fed artificial diet incorporated with Cry2Ab, Cry1Ac or both at >10 times higher concentrations than in cotton tissue. Artificial diet containing E-64 was included as a positive control. No differences were detected in any life-table parameters between Cry protein-containing diet treatments and the control diet. In contrast, larvae of C. maculata fed the E-64 could not develop to the pupal stage and the 7-d larval weight was significantly negatively affected. In both feeding assays, the stability and bioactivity of Cry proteins in the food sources were confirmed by ELISA and sensitive-insect bioassays. Our results show that C. maculata is not affected by Bt cotton and is not sensitive to Cry2Ab and Cry1Ac at concentrations exceeding the levels in Bt cotton, thus demonstrating that Bt cotton will pose a negligible risk to C. maculata. More importantly, this study demonstrates a comprehensive system for assessing the risk of genetically modified plants on non

  10. Intracellular and Extracellular Expression of Bacillus thuringiensis Crystal Protein Cry5B in Lactococcus lactis for Use as an Anthelminthic

    Science.gov (United States)

    Durmaz, Evelyn; Hu, Yan; Aroian, Raffi V.

    2015-01-01

    The Bacillus thuringiensis crystal (Cry) protein Cry5B (140 kDa) and a truncated version of the protein, tCry5B (79 kDa), are lethal to nematodes. Genes encoding the two proteins were separately cloned into a high-copy-number vector with a strong constitutive promoter (pTRK593) in Lactococcus lactis for potential oral delivery against parasitic nematode infections. Western blots using a Cry5B-specific antibody revealed that constitutively expressed Cry5B and tCry5B were present in both cells and supernatants. To increase production, cry5B was cloned into the high-copy-number plasmid pMSP3535H3, carrying a nisin-inducible promoter. Immunoblotting revealed that 3 h after nisin induction, intracellular Cry5B was strongly induced at 200 ng/ml nisin, without adversely affecting cell viability or cell membrane integrity. Both Cry5B genes were also cloned into plasmid pTRK1061, carrying a promoter and encoding a transcriptional activator that invoke low-level expression of prophage holin and lysin genes in Lactococcus lysogens, resulting in a leaky phenotype. Cry5B and tCry5B were actively expressed in the lysogenic strain L. lactis KP1 and released into cell supernatants without affecting culture growth. Lactate dehydrogenase (LDH) assays indicated that Cry5B, but not LDH, leaked from the bacteria. Lastly, using intracellular lysates from L. lactis cultures expressing both Cry5B and tCry5B, in vivo challenges of Caenorhabditis elegans worms demonstrated that the Cry proteins were biologically active. Taken together, these results indicate that active Cry5B proteins can be expressed intracellularly in and released extracellularly from L. lactis, showing potential for future use as an anthelminthic that could be delivered orally in a food-grade microbe. PMID:26682852

  11. Stable integration and expression of a cry1Ia gene conferring resistance to fall armyworm and boll weevil in cotton plants.

    Science.gov (United States)

    Silva, Carliane Rc; Monnerat, Rose; Lima, Liziane M; Martins, Érica S; Melo Filho, Péricles A; Pinheiro, Morganna Pn; Santos, Roseane C

    2016-08-01

    Boll weevil is a serious pest of cotton crop. Effective control involves applications of chemical insecticides, increasing the cost of production and environmental pollution. The current genetically modified Bt crops have allowed great benefits to farmers but show activity limited to lepidopteran pests. This work reports on procedures adopted for integration and expression of a cry transgene conferring resistance to boll weevil and fall armyworm by using molecular tools. Four Brazilian cotton cultivars were microinjected with a minimal linear cassette generating 1248 putative lines. Complete gene integration was found in only one line (T0-34) containing one copy of cry1Ia detected by Southern blot. Protein was expressed in high concentration at 45 days after emergence (dae), decreasing by approximately 50% at 90 dae. Toxicity of the cry protein was demonstrated in feeding bioassays revealing 56.7% mortality to boll weevil fed buds and 88.1% mortality to fall armyworm fed leaves. A binding of cry1Ia antibody was found in the midgut of boll weevils fed on T0-34 buds in an immunodetection assay. The gene introduced into plants confers resistance to boll weevil and fall armyworm. Transmission of the transgene occurred normally to T1 progeny. All plants showed phenotypically normal growth, with fertile flowers and abundant seeds. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  12. An ultrasensitive label-free electrochemiluminescent immunosensor for measuring Cry1Ab level and genetically modified crops content.

    Science.gov (United States)

    Gao, Hongfei; Wen, Luke; Wu, Yuhua; Fu, Zhifeng; Wu, Gang

    2017-11-15

    The development of genetically modified (GM) insect-resistant crops has aroused great public concern about the risks on the eco-environment resulting from a release of toxic Cry proteins (such as Cry1Ab) to the soil. Therefore, it is of crucial importance to measure the Cry proteins level and the GM crops content. Here, we have tested for the first time a method that uses novel carbon nanospheres (CNPs) label-free electrochemiluminescent (ECL) immunosensor for the ultrasensitive quantification of Cry1Ab and GM crops. In this work, novel CNPs were prepared from printer toner with a very facile approach, and linked with anti-Cry1Ab antibodies to modify a golden working electrode. The immunoreaction between Cry1Ab and its antibody formed an immunocomplex on the bioreceptor region of the sensor, which inhibited electron transfer between the electrode surface and the ECL substance, leading to a decrease of ECL response. Under the optimal conditions, the fabricated label-free ECL immunosensor determined Cry1Ab down to 3.0pgmL -1 within a linear range of 0.010-1.0ngmL -1 , showing significant improvement of sensitivity than that of most previous reports. Meanwhile, the proposed method was successfully applied for GM rice BT63 and GM maize MON810 detections down to 0.010% and 0.020%, respectively. Due to its outstanding advantages such as high sensitivity, ideal selectivity, simple fabrication, rapid detection, and low cost, the developed method can be considered as a powerful and pioneering tool for GM crops detection. Its use can also be extended to other toxin protein sensing in foods. Copyright © 2017. Published by Elsevier B.V.

  13. Mice deficient in cryptochrome 1 (Cry1-/- exhibit resistance to obesity induced by a high fat diet

    Directory of Open Access Journals (Sweden)

    Guy eGriebel

    2014-04-01

    Full Text Available Disruption of circadian clock enhances the risk of metabolic syndrome, obesity, and type 2 diabetes. Circadian clocks rely on a highly regulated network of transcriptional and translational loops that drive clock-controlled gene expression. Among these transcribed clock genes are cryptochrome (CRY family members, which comprise Cry1 and Cry2. While the metabolic effects of deletion of several core components of the clock gene machinery have been well characterized, those of selective inactivation of Cry1 or Cry2 genes have not been described. In this study we demonstrate that ablation of Cry1, but not Cry2, prevents high-fat diet (HFD-induced obesity in mice. Despite similar caloric intake, Cry1-/- mice on HFD gained markedly less weight (-18 % at the end of the 16-week experiment and displayed reduced fat accumulation compared to wild-type (WT littermates (-61 %, suggesting increased energy expenditure. Analysis of serum lipid and glucose profiles showed no difference between Cry1-/- and WT mice. Both Cry1-/- and Cry2-/- mice are indistinguishable from WT controls in body weight, fat and protein contents, and food consumption when they are allowed unlimited access to a standard rodent diet. We conclude that although CRY signaling may not be essential for the maintenance of energy homeostasis under steady-state nutritional conditions, Cry1 may play a role in readjusting energy balance under changing nutritional circumstances. These studies reinforce the important role of circadian clock genes in energy homeostasis and suggest that Cry1 is a plausible target for antiobesity therapy.

  14. Mice deficient in cryptochrome 1 (cry1 (-/-)) exhibit resistance to obesity induced by a high-fat diet.

    Science.gov (United States)

    Griebel, Guy; Ravinet-Trillou, Christine; Beeské, Sandra; Avenet, Patrick; Pichat, Philippe

    2014-01-01

    Disruption of circadian clock enhances the risk of metabolic syndrome, obesity, and type 2 diabetes. Circadian clocks rely on a highly regulated network of transcriptional and translational loops that drive clock-controlled gene expression. Among these transcribed clock genes are cryptochrome (CRY) family members, which comprise Cry1 and Cry2. While the metabolic effects of deletion of several core components of the clock gene machinery have been well characterized, those of selective inactivation of Cry1 or Cry2 genes have not been described. In this study, we demonstrate that ablation of Cry1, but not Cry2, prevents high-fat diet (HFD)-induced obesity in mice. Despite similar caloric intake, Cry1 (-/-) mice on HFD gained markedly less weight (-18%) at the end of the 16-week experiment and displayed reduced fat accumulation compared to wild-type (WT) littermates (-61%), suggesting increased energy expenditure. Analysis of serum lipid and glucose profiles showed no difference between Cry1 (-/-) and WT mice. Both Cry1 (-/-) and Cry2 (-/-) mice are indistinguishable from WT controls in body weight, fat and protein contents, and food consumption when they are allowed unlimited access to a standard rodent diet. We conclude that although CRY signaling may not be essential for the maintenance of energy homeostasis under steady-state nutritional conditions, Cry1 may play a role in readjusting energy balance under changing nutritional circumstances. These studies reinforce the important role of circadian clock genes in energy homeostasis and suggest that Cry1 is a plausible target for anti-obesity therapy.

  15. Expression of hybrid fusion protein (Cry1Ac::ASAL) in transgenic rice plants imparts resistance against multiple insect pests.

    Science.gov (United States)

    Boddupally, Dayakar; Tamirisa, Srinath; Gundra, Sivakrishna Rao; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao

    2018-05-31

    To evolve rice varieties resistant to different groups of insect pests a fusion gene, comprising DI and DII domains of Bt Cry1Ac and carbohydrate binding domain of garlic lectin (ASAL), was constructed. Transgenic rice lines were generated and evaluated to assess the efficacy of Cry1Ac::ASAL fusion protein against three major pests, viz., yellow stem borer (YSB), leaf folder (LF) and brown planthopper (BPH). Molecular analyses of transgenic plants revealed stable integration and expression of the fusion gene. In planta insect bioassays on transgenics disclosed enhanced levels of resistance compared to the control plants. High insect mortality of YSB, LF and BPH was observed on transgenics compared to that of control plants. Furthermore, honeydew assays revealed significant decreases in the feeding ability of BPH on transgenic plants as compared to the controls. Ligand blot analysis, using BPH insects fed on cry1Ac::asal transgenic rice plants, revealed a modified receptor protein-binding pattern owing to its ability to bind to additional receptors in insects. The overall results authenticate that Cry1Ac::ASAL protein is endowed with remarkable entomotoxic effects against major lepidopteran and hemipteran insects. As such, the fusion gene appears promising and can be introduced into various other crops to control multiple insect pests.

  16. Influences of Cry1Ac broccoli on larval survival and oviposition of diamondback moth.

    Science.gov (United States)

    Yi, Dengxia; Cui, Shusong; Yang, Limei; Fang, Zhiyuan; Liu, Yumei; Zhuang, Mu; Zhang, Yangyong

    2015-01-01

    Larval survival and oviposition behavior of three genotypes of diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), (homozygous Cry1Ac-susceptibile, Cry1Ac-resistant, and their F1 hybrids), on transgenic Bacillus thuringiensis (Bt) broccoli expressing different levels of Cry1Ac protein were evaluated in laboratory. These Bt broccoli lines were designated as relative low, medium, and high, respectively, according to the Cry1Ac content. Untransformed brocccoli plants were used as control. Larval survival of diamondback moth on non-Bt leaves was not significantly different among the three genotypes. The Cry1Ac-resistant larvae could survive on the low level of Bt broccoli plants, while Cry1Ac-susceptible and F1 larvae could not survive on them. The three genotypes of P. xylostella larvae could not survive on medium and high levels of Bt broccoli. In oviposition choice tests, there was no significant difference in the number of eggs laid by the three P. xylostella genotypes among different Bt broccoli plants. The development of Cry1Ac-susceptible and Cry1Ac-resistant P. xylostella on intact Bt plants was also tested in greenhouse. All susceptible P. xylostella larvae died on all Bt plants, while resistant larvae could survive on broccoli, which expresses low Cry1Ac protein under greenhouse conditions. The results of the greenhouse trials were similar to that of laboratory tests. This study indicated that high dose of Bt toxins in broccoli cultivars or germplasm lines is required for effective resistance management. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  17. High Expression of Cry1Ac Protein in Cotton (Gossypium hirsutum by Combining Independent Transgenic Events that Target the Protein to Cytoplasm and Plastids.

    Directory of Open Access Journals (Sweden)

    Amarjeet Kumar Singh

    Full Text Available Transgenic cotton was developed using two constructs containing a truncated and codon-modified cry1Ac gene (1,848 bp, which was originally characterized from Bacillus thuringiensis subspecies kurstaki strain HD73 that encodes a toxin highly effective against many lepidopteran pests. In Construct I, the cry1Ac gene was cloned under FMVde, a strong constitutively expressing promoter, to express the encoded protein in the cytoplasm. In Construct II, the encoded protein was directed to the plastids using a transit peptide taken from the cotton rbcSIb gene. Genetic transformation experiments with Construct I resulted in a single copy insertion event in which the Cry1Ac protein expression level was 2-2.5 times greater than in the Bacillus thuringiensis cotton event Mon 531, which is currently used in varieties and hybrids grown extensively in India and elsewhere. Another high expression event was selected from transgenics developed with Construct II. The Cry protein expression resulting from this event was observed only in the green plant parts. No transgenic protein expression was observed in the non-green parts, including roots, seeds and non-green floral tissues. Thus, leucoplasts may lack the mechanism to allow entry of a protein tagged with the transit peptide from a protein that is only synthesized in tissues containing mature plastids. Combining the two events through sexual crossing led to near additive levels of the toxin at 4-5 times the level currently used in the field. The two high expression events and their combination will allow for effective resistance management against lepidopteran insect pests, particularly Helicoverpa armigera, using a high dosage strategy.

  18. Cloning of the cryptochrome-encoding PeCRY1 gene from Populus euphratica and functional analysis in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ke Mao

    Full Text Available Cryptochromes are photolyase-like blue/UV-A light receptors that evolved from photolyases. In plants, cryptochromes regulate various aspects of plant growth and development. Despite of their involvement in the control of important plant traits, however, most studies on cryptochromes have focused on lower plants and herbaceous crops, and no data on cryptochrome function are available for forest trees. In this study, we isolated a cryptochrome gene, PeCRY1, from Euphrates poplar (Populus euphratica, and analyzed its structure and function in detail. The deduced PeCRY1 amino acid sequence contained a conserved N-terminal photolyase-homologous region (PHR domain as well as a C-terminal DQXVP-acidic-STAES (DAS domain. Secondary and tertiary structure analysis showed that PeCRY1 shares high similarity with AtCRY1 from Arabidopsis thaliana. PeCRY1 expression was upregulated at the mRNA level by light. Using heterologous expression in Arabidopsis, we showed that PeCRY1 overexpression rescued the cry1 mutant phenotype. In addition, PeCRY1 overexpression inhibited hypocotyl elongation, promoted root growth, and enhanced anthocyanin accumulation in wild-type background seedlings grown under blue light. Furthermore, we examined the interaction between PeCRY1 and AtCOP1 using a bimolecular fluorescence complementation (BiFc assay. Our data provide evidence for the involvement of PeCRY1 in the control of photomorphogenesis in poplar.

  19. Genetic engineering of cotton with a novel cry2AX1 gene to impart insect resistance against Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Karunamurthy Dhivya

    2016-09-01

    Full Text Available Embryogenic calli of cotton (Coker310 were cocultivated with the Agrobacterium tumefaciens strain LBA4404 harbouring the codon-optimised, chimeric cry2AX1 gene consisting of sequences from cry2Aa and cry2Ac genes isolated from Indian strains of Bacillus thuringiensis. Forty-eight putative transgenic plants were regenerated, and PCR analysis of these plants revealed the presence of the cry2AX1 gene in 40 plants. Southern blot hybridisation analysis of selected transgenic plants confirmed stable T-DNA integration in the genome of transformed plants. The level of Cry2AX1 protein expression in PCR positive plants ranged from 4.9 to 187.5 ng g-1 of fresh tissue. A transgenic cotton event, TP31, expressing the cry2AX1 gene showed insecticidal activity of 56.66 per cent mortality against Helicoverpa armigera in detached leaf disc bioassay. These results indicate that the chimeric cry2AX1 gene expressed in transgenic cotton has insecticidal activity against H. armigera.

  20. Effects of 90-Day Feeding of Transgenic Maize BT799 on the Reproductive System in Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Qian-ying Guo

    2015-12-01

    Full Text Available BT799 is a genetically modified (GM maize plant that expresses the Cry1Ac gene from Bacillus thuringiensis (Bt. The Cry1Ac gene was introduced into maize line Zhen58 to encode the Bt crystal protein and thus produce insect-resistant maize BT799. Expression of Bt protein in planta confers resistance to Lepidopteran pests and corn rootworms. The present study was designed to investigate any potential effects of BT799 on the reproductive system of male rats and evaluate the nutritional value of diets containing BT799 maize grain in a 90-day subchronic rodent feeding study. Male Wistar rats were fed with diets containing BT799 maize flours or made from its near isogenic control (Zhen58 at a concentration of 84.7%, nutritionally equal to the standard AIN-93G diet. Another blank control group of male rats were treated with commercial AIN-93G diet. No significant differences in body weight, hematology and serum chemistry results were observed between rats fed with the diets containing transgenic BT799, Zhen58 and the control in this 13-week feeding study. Results of serum hormone levels, sperm parameters and relative organ/body weights indicated no treatment-related side effects on the reproductive system of male rats. In addition, no diet-related changes were found in necropsy and histopathology examinations. Based on results of the current study, we did not find any differences in the parameters tested in our study of the reproductive system of male rats between BT799 and Zhen58 or the control.

  1. Frequency of Cry1F Non-Recessive Resistance Alleles in North Carolina Field Populations of Spodoptera frugiperda (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Li, Guoping; Reisig, Dominic; Miao, Jin; Gould, Fred; Huang, Fangneng; Feng, Hongqiang

    2016-01-01

    Fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), is a target species of transgenic corn (Zea mays L.) that expresses single and pyramided Bacillus thuringiensis (Bt) toxin. In 2014, S. frugiperda were collected from a light trap in North Carolina, and a total of 212 F1/F2 isofemale lines of S. frugiperda were screened for resistance to Bt and non-Bt corn. All of the 212 isolines were susceptible to corn tissue expressing Cry1A.105 + Cry2Ab, Cry1F + Cry1A.105 + Cry2Ab, and Cry1F + Cry1Ab + Vip3Aa20. Growth rate bioassays were performed to isolate non-recessive Bt resistance alleles. Seven individuals out of the 212 isofemale lines carried major non-recessive alleles conferring resistance to Cry1F. A pooled colony was created from the seven individuals. This colony was 151.21 times more resistant to Cry1F than a known-susceptible population and was also resistant to Cry1A.105, but was not resistant to Cry2Ab and Vip3Aa20. The results demonstrate that field populations of S. frugiperda collected from North Carolina are generally susceptible to Cry1F, but that some individuals carry resistant alleles. The data generated in this study can be used as baseline data for resistance monitoring.

  2. Transgenic cotton expressing Cry10Aa toxin confers high resistance to the cotton boll weevil.

    Science.gov (United States)

    Ribeiro, Thuanne Pires; Arraes, Fabricio Barbosa Monteiro; Lourenço-Tessutti, Isabela Tristan; Silva, Marilia Santos; Lisei-de-Sá, Maria Eugênia; Lucena, Wagner Alexandre; Macedo, Leonardo Lima Pepino; Lima, Janaina Nascimento; Santos Amorim, Regina Maria; Artico, Sinara; Alves-Ferreira, Márcio; Mattar Silva, Maria Cristina; Grossi-de-Sa, Maria Fatima

    2017-08-01

    Genetically modified (GM) cotton plants that effectively control cotton boll weevil (CBW), which is the most destructive cotton insect pest in South America, are reported here for the first time. This work presents the successful development of a new GM cotton with high resistance to CBW conferred by Cry10Aa toxin, a protein encoded by entomopathogenic Bacillus thuringiensis (Bt) gene. The plant transformation vector harbouring cry10Aa gene driven by the cotton ubiquitination-related promoter uceA1.7 was introduced into a Brazilian cotton cultivar by biolistic transformation. Quantitative PCR (qPCR) assays revealed high transcription levels of cry10Aa in both T 0 GM cotton leaf and flower bud tissues. Southern blot and qPCR-based 2 -ΔΔCt analyses revealed that T 0 GM plants had either one or two transgene copies. Quantitative and qualitative analyses of Cry10Aa protein expression showed variable protein expression levels in both flower buds and leaves tissues of T 0 GM cotton plants, ranging from approximately 3.0 to 14.0 μg g -1 fresh tissue. CBW susceptibility bioassays, performed by feeding adults and larvae with T 0 GM cotton leaves and flower buds, respectively, demonstrated a significant entomotoxic effect and a high level of CBW mortality (up to 100%). Molecular analysis revealed that transgene stability and entomotoxic effect to CBW were maintained in T 1 generation as the Cry10Aa toxin expression levels remained high in both tissues, ranging from 4.05 to 19.57 μg g -1 fresh tissue, and the CBW mortality rate remained around 100%. In conclusion, these Cry10Aa GM cotton plants represent a great advance in the control of the devastating CBW insect pest and can substantially impact cotton agribusiness. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Population Level Purifying Selection and Gene Expression Shape Subgenome Evolution in Maize.

    Science.gov (United States)

    Pophaly, Saurabh D; Tellier, Aurélien

    2015-12-01

    The maize ancestor experienced a recent whole-genome duplication (WGD) followed by gene erosion which generated two subgenomes, the dominant subgenome (maize1) experiencing fewer deletions than maize2. We take advantage of available extensive polymorphism and gene expression data in maize to study purifying selection and gene expression divergence between WGD retained paralog pairs. We first report a strong correlation in nucleotide diversity between duplicate pairs, except for upstream regions. We then show that maize1 genes are under stronger purifying selection than maize2. WGD retained genes have higher gene dosage and biased Gene Ontologies consistent with previous studies. The relative gene expression of paralogs across tissues demonstrates that 98% of duplicate pairs have either subfunctionalized in a tissuewise manner or have diverged consistently in their expression thereby preventing functional complementation. Tissuewise subfunctionalization seems to be a hallmark of transcription factors, whereas consistent repression occurs for macromolecular complexes. We show that dominant gene expression is a strong determinant of the strength of purifying selection, explaining the inferred stronger negative selection on maize1 genes. We propose a novel expression-based classification of duplicates which is more robust to explain observed polymorphism patterns than the subgenome location. Finally, upstream regions of repressed genes exhibit an enrichment in transposable elements which indicates a possible mechanism for expression divergence. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Potential allergenicity research of Cry1C protein from genetically modified rice.

    Science.gov (United States)

    Cao, Sishuo; He, Xiaoyun; Xu, Wentao; Luo, Yunbo; Ran, Wenjun; Liang, Lixing; Dai, Yunqing; Huang, Kunlun

    2012-07-01

    With the development of genetically modified crops, there has been a growing interest in available approaches to assess the potential allergenicity of novel gene products. We were not sure whether Cry1C could induce allergy. We examined the protein with three other proteins to determine the potential allergenicity of Cry1C protein from genetically modified rice. Female Brown Norway (BN) rats received 0.1 mg peanut agglutinin (PNA), 1mg potato acid phosphatase (PAP), 1mg ovalbumin (OVA) or 5 mg purified Cry1C protein dissolved in 1 mL water by daily gavage for 42 days to test potential allergenicity. Ten days after the last gavage, rats were orally challenged with antigens, and physiologic and immunologic responses were studied. In contrast to sensitization with PNA, PAP and OVA Cry1C protein did not induce antigen-specific IgG2a in BN rats. Cytokine expression, serum IgE and histamine levels and the number of eosinophils and mast cells in the blood of Cry1C group rats were comparable to the control group rats, which were treated with water alone. As Cry1C did not show any allergenicity, we make the following conclusion that the protein could be safety used in rice or other plants. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Influence of transgenic rice expressing a fused Cry1Ab/1Ac protein on frogs in paddy fields.

    Science.gov (United States)

    Wang, Jia-Mei; Chen, Xiu-Ping; Liang, Yu-Yong; Zhu, Hao-Jun; Ding, Jia-Tong; Peng, Yu-Fa

    2014-11-01

    As genetic engineering in plants is increasingly used to control agricultural pests, it is important to determine whether such transgenic plants adversely affect non-target organisms within and around cultivated fields. The cry1Ab/1Ac fusion gene from Bacillus thuringiensis (Bt) has insecticidal activity and has been introduced into rice line Minghui 63 (MH63). We evaluated the effect of transgenic cry1Ab/1Ac rice (Huahui 1, HH1) on paddy frogs by comparing HH1 and MH63 rice paddies with and without pesticide treatment. The density of tadpoles in rice fields was surveyed at regular intervals, and Cry1Ab/1Ac protein levels were determined in tissues of tadpoles and froglets collected from the paddy fields. In addition, Rana nigromaculata froglets were raised in purse nets placed within these experimental plots. The survival, body weight, feeding habits, and histological characteristics of the digestive tract of these froglets were analyzed. We found that the tadpole density was significantly decreased immediately after pesticide application, and the weight of R. nigromaculata froglets of pesticide groups was significantly reduced compared with no pesticide treatment, but we found no differences between Bt and non-Bt rice groups. Moreover, no Cry1Ab/1Ac protein was detected in tissue samples collected from 192 tadpoles and froglets representing all four experimental groups. In addition, R. nigromaculata froglets raised in purse seines fed primarily on stem borer and non-target insects, and showed no obvious abnormality in the microstructure of their digestive tracts. Based on these results, we conclude that cultivation of transgenic cry1Ab/1Ac rice does not adversely affect paddy frogs.

  6. Construction of occluded recombinant baculoviruses containing the full-length cry1Ab and cry1Ac genes from Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    B.M. Ribeiro

    1998-06-01

    Full Text Available The administration of baculoviruses to insects for bioassay purposes is carried out, in most cases, by contamination of food surfaces with a known amount of occlusion bodies (OBs. Since per os infection is the natural route of infection, occluded recombinant viruses containing crystal protein genes (cry1Ab and cry1Ac from Bacillus thuringiensis were constructed for comparison with the baculovirus prototype Autographa californica nucleopolyhedrovirus (AcNPV. The transfer vector pAcUW2B was used for construction of occluded recombinant viruses. The transfer vector containing the crystal protein genes was cotransfected with linearized DNA from a non-occluded recombinant virus. The isolation of recombinant viruses was greatly facilitated by the reduction of background "wild type" virus and the increased proportion of recombinant viruses. Since the recombinant viruses containing full-length and truncated forms of the crystal protein genes did not seem to improve the pathogenicity of the recombinant viruses when compared with the wild type AcNPV, and in order to compare expression levels of the full-length crystal proteins produced by non-occluded and occluded recombinant viruses the full-length cry1Ab and cry1Ac genes were chosen for construction of occluded recombinant viruses. The recombinant viruses containing full-length and truncated forms of the crystal protein genes did not seem to improve its pathogenicity but the size of the larvae infected with the recombinant viruses was significantly smaller than that of larvae infected with the wild type virus.

  7. Bt Jute Expressing Fused δ-Endotoxin Cry1Ab/Ac for Resistance to Lepidopteran Pests

    Directory of Open Access Journals (Sweden)

    Shuvobrata Majumder

    2018-01-01

    Full Text Available Jute (Corchorus sp. is naturally occurring, biodegradable, lignocellulosic-long, silky, golden shiny fiber producing plant that has great demands globally. Paper and textile industries are interested in jute because of the easy availability, non-toxicity and high yield of cellulosic biomass produced per acre in cultivation. Jute is the major and most industrially used bast fiber-producing crop in the world and it needs protection from insect pest infestation that decreases its yield and quality. Single locus integration of the synthetically fused cry1Ab/Ac gene of Bacillus thuringiensis (Bt in Corchorus capsularis (JRC 321 by Agrobacterium tumefaciens-mediated shoot tip transformation provided 5 potent Bt jute lines BT1, BT2, BT4, BT7 and BT8. These lines consistently expressed the Cry1Ab/Ac endotoxin ranging from 0.16 to 0.35 ng/mg of leaf, in the following generations (analyzed upto T4. The effect of Cry1Ab/Ac endotoxin was studied against 3 major Lepidopteran pests of jute- semilooper (Anomis sabulifera Guenee, hairy caterpillar (Spilarctia obliqua Walker and indigo caterpillar (Spodoptera exigua Hubner by detached leaf and whole plant insect bioassay on greenhouse-grown transgenic plants. Results confirm that larvae feeding on transgenic plants had lower food consumption, body size, body weight and dry weight of excreta compared to non-transgenic controls. Insect mortality range among transgenic feeders was 66–100% for semilooper and hairy caterpillar and 87.50% for indigo caterpillar. Apart from insect resistance, the transgenic plants were at par with control plants in terms of agronomic parameters and fiber quality. Hence, these Bt jutes in the field would survive Lepidopteran pest infestation, minimize harmful pesticide usage and yield good quality fiber.

  8. Bacillus thuringiensis Cry3Aa protoxin intoxication of Tenebrio molitor induces widespread changes in the expression of serine peptidase transcripts.

    Science.gov (United States)

    Oppert, Brenda; Martynov, Alexander G; Elpidina, Elena N

    2012-09-01

    The yellow mealworm, Tenebrio molitor, is a pest of stored grain products and is sensitive to the Bacillus thuringiensis (Bt) Cry3Aa toxin. As digestive peptidases are a determining factor in Cry toxicity and resistance, we evaluated the expression of peptidase transcripts in the midgut of T. molitor larvae fed either a control or Cry3Aa protoxin diet for 24 h (RNA-Seq), or in larvae exposed to the protoxin for 6, 12, or 24 h (microarrays). Cysteine peptidase transcripts (9) were similar to cathepsins B, L, and K, and their expression did not vary more than 2.5-fold in control and Cry3Aa-treated larvae. Serine peptidase transcripts (48) included trypsin, chymotrypsin and chymotrypsin-like, elastase 1-like, and unclassified serine peptidases, as well as homologs lacking functional amino acids. Highly expressed trypsin and chymotrypsin transcripts were severely repressed, and most serine peptidase transcripts were expressed 2- to 15-fold lower in Cry3Aa-treated larvae. Many serine peptidase and homolog transcripts were found only in control larvae. However, expression of a few serine peptidase transcripts was increased or found only in Cry3Aa-treated larvae. Therefore, Bt intoxication significantly impacted the expression of serine peptidases, potentially important in protoxin processing, while the insect maintained the production of critical digestive cysteine peptidases. Published by Elsevier Inc.

  9. Evaluation of Cytotoxicity, Genotoxicity and Hematotoxicity of the Recombinant Spore-Crystal Complexes Cry1Ia, Cry10Aa and Cry1Ba6 from Bacillus thuringiensis in Swiss Mice

    Directory of Open Access Journals (Sweden)

    Ingrid de Souza Freire

    2014-09-01

    Full Text Available The insecticidal properties of Cry-endotoxins from Bacillus thuringiensis (Bt have long been used as spore-crystals in commercial spray formulations for insect control. Recently, some Bt-endotoxin genes have been cloned in many different plants. Toxicological evaluations of three spore-crystal endotoxins, BtCry1Ia, BtCry10Aa and BtCry1Ba6 from B. thuringiensis, were carried out on mice to understand their adverse effects on hematological systems and on genetic material. These three spore-crystals have shown toxic activity to the boll weevil, which is one of the most aggressive pests of the cotton crop. Cry1Ia, Cry10Aa and Cry1Ba6 did not increase the micronucleus frequency in the peripheral erythrocytes of mice and did not cause changes in the frequency of polychromatic erythrocytes. However, some hematologic disburbances were observed, specifically related to Cry1Ia and Cry1Ba6, respectively, for the erythroid and lymphoid lineage. Thus, although the profile of such adverse side effects can be related to their high level of exposure, which is not commonly found in the environment, results showed that these Bt spore-crystals were not harmless to mice, indicating that each spore-crystal endotoxin presents a characteristic profile of toxicity and might be investigated individually.

  10. Spatio Temporal Expression Pattern of an Insecticidal Gene (cry2A in Transgenic Cotton Lines

    Directory of Open Access Journals (Sweden)

    Allah BAKHSH

    2012-11-01

    Full Text Available The production of transgenic plants with stable, high-level transgene expression is important for the success of crop improvement programs based on genetic engineering. The present study was conducted to evaluate genomic integration and spatio temporal expression of an insecticidal gene (cry2A in pre-existing transgenic lines of cotton. Genomic integration of cry2A was evaluated using various molecular approaches. The expression levels of cry2A were determined at vegetative and reproductive stages of cotton at regular intervals. These lines showed a stable integration of insecticidal gene in advance lines of transgenic cotton whereas gene expression was found variable with at various growth stages as well as in different plant parts throughout the season. The leaves of transgenic cotton were found to have maximum expression of cry2A gene followed by squares, bolls, anthers and petals. The protein level in fruiting part was less as compared to other parts showing inconsistency in gene expression. It was concluded that for culturing of transgenic crops, strategies should be developed to ensure the foreign genes expression efficient, consistent and in a predictable manner.

  11. Dominant negative phenotype of Bacillus thuringiensis Cry1Ab, Cry11Aa and Cry4Ba mutants suggest hetero-oligomer formation among different Cry toxins.

    NARCIS (Netherlands)

    Carmona, D.; Rodriguez-Almazan, C.; Munoz-Garay, C.; Portugal, L.; Perez, C.; Maagd, de R.A.; Bakker, P.; Soberon, M.; Bravo, A.

    2011-01-01

    Background - Bacillus thuringiensis Cry toxins are used worldwide in the control of different insect pests important in agriculture or in human health. The Cry proteins are pore-forming toxins that affect the midgut cell of target insects. It was shown that non-toxic Cry1Ab helix a-4 mutants had a

  12. Hydroxylation of recombinant human collagen type I alpha 1 in transgenic maize co-expressed with a recombinant human prolyl 4-hydroxylase

    Directory of Open Access Journals (Sweden)

    Pappu Kameshwari M

    2011-06-01

    Full Text Available Abstract Background Collagens require the hydroxylation of proline (Pro residues in their triple-helical domain repeating sequence Xaa-Pro-Gly to function properly as a main structural component of the extracellular matrix in animals at physiologically relevant conditions. The regioselective proline hydroxylation is catalyzed by a specific prolyl 4-hydroxylase (P4H as a posttranslational processing step. Results A recombinant human collagen type I α-1 (rCIα1 with high percentage of hydroxylated prolines (Hyp was produced in transgenic maize seeds when co-expressed with both the α- and β- subunits of a recombinant human P4H (rP4H. Germ-specific expression of rCIα1 using maize globulin-1 gene promoter resulted in an average yield of 12 mg/kg seed for the full-length rCIα1 in seeds without co-expression of rP4H and 4 mg/kg seed for the rCIα1 (rCIα1-OH in seeds with co-expression of rP4H. High-resolution mass spectrometry (HRMS analysis revealed that nearly half of the collagenous repeating triplets in rCIα1 isolated from rP4H co-expressing maize line had the Pro residues changed to Hyp residues. The HRMS analysis determined the Hyp content of maize-derived rCIα1-OH as 18.11%, which is comparable to the Hyp level of yeast-derived rCIα1-OH (17.47% and the native human CIa1 (14.59%, respectively. The increased Hyp percentage was correlated with a markedly enhanced thermal stability of maize-derived rCIα1-OH when compared to the non-hydroxylated rCIα1. Conclusions This work shows that maize has potential to produce adequately modified exogenous proteins with mammalian-like post-translational modifications that may be require for their use as pharmaceutical and industrial products.

  13. Impact of transgenic soybean expressing Cry1Ac and Cry1F proteins on the non-target arthropod community associated with soybean in Brazil.

    Science.gov (United States)

    Marques, Luiz H; Santos, Antonio C; Castro, Boris A; Storer, Nicholas P; Babcock, Jonathan M; Lepping, Miles D; Sa, Verissimo; Moscardini, Valéria F; Rule, Dwain M; Fernandes, Odair A

    2018-01-01

    Field-scale studies that examine the potential for adverse effects of Bt crop technology on non-target arthropods may supplement data from laboratory studies to support an environmental risk assessment. A three year field study was conducted in Brazil to evaluate potential for adverse effects of cultivating soybean event DAS-81419-2 that produces the Cry1Ac and Cry1F proteins. To do so, we examined the diversity and abundance of non-target arthropods (NTAs) in Bt soybean in comparison with its non-Bt near isoline, with and without conventional insecticide applications, in three Brazilian soybean producing regions. Non-target arthropod abundance was surveyed using Moericke traps (yellow pan) and pitfall trapping. Total abundance (N), richness (S), Shannon-Wiener (H'), Simpson's (D) and Pielou's evenness (J) values for arthropod samples were calculated for each treatment and sampling period (soybean growth stages). A faunistic analysis was used to select the most representative NTAs which were used to describe the NTA community structure associated with soybean, and to test for effects due to the treatments effects via application of the Principal Response Curve (PRC) method. Across all years and sites, a total of 254,054 individuals from 190 taxa were collected by Moericke traps, while 29,813 individuals from 100 taxa were collected using pitfall traps. Across sites and sampling dates, the abundance and diversity measurements of representative NTAs were not significantly affected by Bt soybean as compared with non-sprayed non-Bt soybean. Similarly, community analyses and repeated measures ANOVA, when applicable, indicated that neither Bt soybean nor insecticide sprays altered the structure of the NTA communities under study. These results support the conclusion that transgenic soybean event DAS-81419-2 producing Cry1Ac and Cry1F toxins does not adversely affect the NTA community associated with soybean.

  14. Proteomics-based identification of midgut proteins correlated with Cry1Ac resistance in Plutella xylostella (L.).

    Science.gov (United States)

    Xia, Jixing; Guo, Zhaojiang; Yang, Zezhong; Zhu, Xun; Kang, Shi; Yang, Xin; Yang, Fengshan; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Xu, Weijun; Zhang, Youjun

    2016-09-01

    The diamondback moth, Plutella xylostella (L.), is a worldwide pest of cruciferous crops and can rapidly develop resistance to many chemical insecticides. Although insecticidal crystal proteins (i.e., Cry and Cyt toxins) derived from Bacillus thuringiensis (Bt) have been useful alternatives to chemical insecticides for the control of P. xylostella, resistance to Bt in field populations of P. xylostella has already been reported. A better understanding of the resistance mechanisms to Bt should be valuable in delaying resistance development. In this study, the mechanisms underlying P. xylostella resistance to Bt Cry1Ac toxin were investigated using two-dimensional differential in-gel electrophoresis (2D-DIGE) and ligand blotting for the first time. Comparative analyses of the constitutive expression of midgut proteins in Cry1Ac-susceptible and -resistant P. xylostella larvae revealed 31 differentially expressed proteins, 21 of which were identified by mass spectrometry. Of these identified proteins, the following fell into diverse eukaryotic orthologous group (KOG) subcategories may be involved in Cry1Ac resistance in P. xylostella: ATP-binding cassette (ABC) transporter subfamily G member 4 (ABCG4), trypsin, heat shock protein 70 (HSP70), vacuolar H(+)-ATPase, actin, glycosylphosphatidylinositol anchor attachment 1 protein (GAA1) and solute carrier family 30 member 1 (SLC30A1). Additionally, ligand blotting identified the following midgut proteins as Cry1Ac-binding proteins in Cry1Ac-susceptible P. xylostella larvae: ABC transporter subfamily C member 1 (ABCC1), solute carrier family 36 member 1 (SLC36A1), NADH dehydrogenase iron-sulfur protein 3 (NDUFS3), prohibitin and Rap1 GTPase-activating protein 1. Collectively, these proteomic results increase our understanding of the molecular resistance mechanisms to Bt Cry1Ac toxin in P. xylostella and also demonstrate that resistance to Bt Cry1Ac toxin is complex and multifaceted. Copyright © 2016 Elsevier B.V. All

  15. Co-expression network analysis of duplicate genes in maize (Zea mays L.) reveals no subgenome bias.

    Science.gov (United States)

    Li, Lin; Briskine, Roman; Schaefer, Robert; Schnable, Patrick S; Myers, Chad L; Flagel, Lex E; Springer, Nathan M; Muehlbauer, Gary J

    2016-11-04

    Gene duplication is prevalent in many species and can result in coding and regulatory divergence. Gene duplications can be classified as whole genome duplication (WGD), tandem and inserted (non-syntenic). In maize, WGD resulted in the subgenomes maize1 and maize2, of which maize1 is considered the dominant subgenome. However, the landscape of co-expression network divergence of duplicate genes in maize is still largely uncharacterized. To address the consequence of gene duplication on co-expression network divergence, we developed a gene co-expression network from RNA-seq data derived from 64 different tissues/stages of the maize reference inbred-B73. WGD, tandem and inserted gene duplications exhibited distinct regulatory divergence. Inserted duplicate genes were more likely to be singletons in the co-expression networks, while WGD duplicate genes were likely to be co-expressed with other genes. Tandem duplicate genes were enriched in the co-expression pattern where co-expressed genes were nearly identical for the duplicates in the network. Older gene duplications exhibit more extensive co-expression variation than younger duplications. Overall, non-syntenic genes primarily from inserted duplications show more co-expression divergence. Also, such enlarged co-expression divergence is significantly related to duplication age. Moreover, subgenome dominance was not observed in the co-expression networks - maize1 and maize2 exhibit similar levels of intra subgenome correlations. Intriguingly, the level of inter subgenome co-expression was similar to the level of intra subgenome correlations, and genes from specific subgenomes were not likely to be the enriched in co-expression network modules and the hub genes were not predominantly from any specific subgenomes in maize. Our work provides a comprehensive analysis of maize co-expression network divergence for three different types of gene duplications and identifies potential relationships between duplication types

  16. Agronomic performance, chromosomal stability and resistance to velvetbean caterpillar of transgenic soybean expressing cry1Ac gene Performance agronômica, estabilidade cromossômica e resistência à lagarta-da-soja em soja transgênica que expressa o gene cry1Ac

    Directory of Open Access Journals (Sweden)

    Milena Schenkel Homrich

    2008-07-01

    Full Text Available The objective of this work was to analyze the agronomic performance and chromosomal stability of transgenic homozygous progenies of soybean [Glycine max (L. Merrill.], and to confirm the resistance of these plants against Anticarsia gemmatalis. Eleven progenies expressing cry1Ac, hpt and gusA genes were evaluated for agronomic characteristics in relation to the nontransformed parent IAS 5 cultivar. Cytogenetical analysis was carried out on transgenic and nontransgenic plants. Two out of the 11 transgenic progenies were also evaluated, in vitro and in vivo, for resistance to A. gemmatalis. Two negative controls were used in resistance bioassays: a transgenic homozygous line, containing only the gusA reporter gene, and nontransgenic 'IAS 5' plants. The presence of cry1Ac transgene affected neither the development nor the yield of plants. Cytogenetical analysis showed that transgenic plants presented normal karyotype. In detached-leaf bioassay, cry1Ac plants exhibited complete efficacy against A. gemmatalis, whereas negative controls were significantly damaged. Whole-plant feeding assay confirmed a very high protection of cry1Ac against velvetbean caterpillar, while nontransgenic 'IAS 5' plants and homozygous gusA line exhibited 56.5 and 71.5% defoliation, respectively. The presence of cry1Ac transgene doesn't affect the majority of agronomic traits (including yield of soybean and grants high protection against A. gemmatalis.O objetivo deste trabalho foi analisar a performance agronômica e a estabilidade cromossômica de progênies transgênicas homozigotas de soja [Glycine max (L. Merrill.], e confirmar a resistência dessas plantas a Anticarsia gemmatalis. Onze progênies com expressão dos genes cry1Ac, hpt e gusA foram avaliadas quanto às características agronômicas, em relação à cultivar parental IAS 5 não transformada. Análises citogenéticas foram realizadas em plantas transgênicas e não transgênicas. Duas das 11 prog

  17. Diversity of Bacillus thuringiensis strains in the maize and bean phylloplane and their respective soils in Colombia.

    Science.gov (United States)

    Jara, S; Maduell, P; Orduz, S

    2006-07-01

    To evaluate the distribution of Bacillus thuringiensis strains from maize and bean phylloplane and their respective soils. B. thuringiensis was isolated from the phylloplane and soil of maize and bean from three municipalities in Antioquia, Colombia. Ninety six samples of phylloplane and 24 of soil were analyzed. A total of 214 isolates were obtained from 96 phylloplane samples while 59 isolates were recovered from 24 soil samples. Sixty five per cent and 12% of the phylloplane and soil isolates, respectively, showed activity against Spodoptera frugiperda. These isolates contained delta-endotoxin proteins of 57 and 130 kDa. The most toxic isolates against S. frugiperda had the genotype cry1Aa, cry1Ac, cry1B, and cry1D. In contrast, 27% of the phylloplane isolates and 88% of the soil isolates were active against Culex quinquefasciatus and had protein profiles similar to B. thuringiensis serovar. medellin and B. thuringiensis serovar. israelensis. The most active isolates contain cry4 and cry11 genes. The predominant population of B. thuringiensis on the phylloplane harbored the cry1 gene and was active against S. frugiperda, whereas in soil, isolates harboring cry11 gene and active against C. quinquefasciatus were the majority. The predominance of specific B. thuringiensis populations, both on the leaves and in the soil, suggests the presence of selection in B. thuringiensis populations on the studied environment.

  18. Baseline sensitivity of lepidopteran corn pests in India to Cry1Ab insecticidal protein of Bacillus thuringiensis.

    Science.gov (United States)

    Jalali, Sushil K; Lalitha, Yadavalli; Kamath, Subray P; Mohan, Komarlingam S; Head, Graham P

    2010-08-01

    Genetically engineered corn (Bt corn) expressing Bacillus thuringiensis Berliner insecticidal protein Cry1Ab is a biotechnological option being considered for management of lepidopteran corn pests in India. As a resistance management practice it was essential to determine the sensitivity of multiple populations of the stalk borer Chilo partellus (Swinhoe), pink borer Sesamia inferens (Walker) and the cob borer Helicoverpa armigera (Hübner) to Cry1Ab protein through bioassays. The insect populations were collected during growing seasons of Rabi 2005 (October 2005 to February 2006) and Kharif 2006 (May to September 2006). Multiple populations of the three lepidopteran corn pests were found to be susceptible to Cry1Ab. Median lethal concentrations (LC(50)) ranged between 0.008 and 0.068 microg Cry1Ab mL(-1) diet for 18 populations of C. partellus (across two seasons), between 0.12 and 1.99 microg mL(-1) for seven populations of H. armigera and between 0.46 and 0.56 microg mL(-1) for two populations of S. inferens. Dose-response concentrations for lethality and growth inhibition have been determined to mark baseline sensitivity of multiple populations of key lepidopteran corn pests in India to Cry1Ab protein. These benchmark values will be referenced while monitoring resistance to Cry1Ab should Bt corn hybrids expressing Cry1Ab be approved for commercial cultivation in India. Copyright (c) 2010 Society of Chemical Industry.

  19. Identification and Characterization of Hyphantria cunea Aminopeptidase N as a Binding Protein of Bacillus thuringiensis Cry1Ab35 Toxin

    Directory of Open Access Journals (Sweden)

    Yakun Zhang

    2017-11-01

    Full Text Available The fall webworm, Hyphantria cunea (Drury is a major invasive pest in China. Aminopeptidase N (APN isoforms in lepidopteran larvae midguts are known for their involvement in the mode of action of insecticidal crystal (Cry proteins from Bacillus thuringiensis. In the present work, we identified a putative Cry1Ab toxin-binding protein, an APN isoform designated HcAPN3, in the midgut of H. cunea by ligand blot and mass spectrometry. HcAPN3 was highly expressed throughout all larval developmental stages and was abundant in the midgut and hindgut tissues. HcAPN3 was down-regulated at 6 h, then was up-regulated significantly at 12 h and 24 h after Cry1Ab toxin treatment. We expressed HcAPN3 in insect cells and detected its interaction with Cry1Ab toxin by ligand blot assays. Furthermore, RNA interference (RNAi against HcAPN3 using oral delivery and injection of double-stranded RNA (dsRNA resulted in a 61–66% decrease in transcript level. Down-regulating of the expression of HcAPN3 was closely associated with reduced susceptibility of H. cunea to Cry1Ab. In addition, the HcAPN3E fragment peptide expressed in Escherichia coli enhanced Cry1Ab toxicity against H. cunea larvae. This work represents the first evidence to suggest that an APN in H. cunea is a putative binding protein involved in Cry1Ab susceptibility.

  20. Bt rice harbouring cry genes controlled by a constitutive or wound-inducible promoter: protection and transgene expression under Mediterranean field conditions.

    Science.gov (United States)

    Breitler, Jean Christophe; Vassal, Jean Michel; del Mar Catala, Maria; Meynard, Donaldo; Marfà, Victoria; Melé, Enric; Royer, Monique; Murillo, Isabel; San Segundo, Blanca; Guiderdoni, Emmanuel; Messeguer, Joaquima

    2004-09-01

    Seven homozygous transgenic lines of two European commercial cultivars of rice (Ariete (A) and Senia (S)), harbouring the cry1B or cry1Aa Bacillus thuringiensis (Bt) delta-endotoxin genes, were field evaluated for protection from striped stem borer (SSB) (Chilo suppressalis) damage during the 2001 and 2002 summer crop seasons in the Delta de l'Ebre region, Spain. The plant codon-optimized toxin gene was placed under the control of the promoter of either the constitutive ubi1 gene or the wound-inducible mpi gene from maize. Stable, high-level, insecticidal protein accumulation was observed throughout root, leaf and seed tissues of field-grown plants harbouring the cry1B (lines A64.1, A33.1, A3.4 and S98.9) or cry1Aa (lines S05.1 and A19.14) genes under the control of the ubi1 promoter. Conversely, no toxin was detected in unwounded vegetative tissues of the A9.1 line harbouring the cry1B gene controlled by the mpi promoter, indicating that natural environmental stresses did not trigger the activity of the wound-inducible promoter. However, the toxin accumulated at 0.2% total soluble proteins in A9.1 sheath tissue exhibiting brown lesions resulting from SSB damage. The agronomical traits and performance of the transgenic lines were generally comparable with parental controls, except in the two lines accumulating Cry1Aa, which exhibited a high frequency of plants non-true to type. Natural infestation was assisted with manual infestations of L2/L3 SSB larvae in border control plants surrounding the experimental plots, which served as a reservoir for the second-cycle SSB population. The observation of damage (brown lesions and dead hearts) during the crop season and dissection of plants at harvest stage revealed a range of protection amongst the transgenic lines, which was highly consistent with the level of toxin accumulation and with previous experience in greenhouse assays. Lines A3.4 and S05.1 were found to exhibit stable and full protection against SSB attacks

  1. Effects of ensiling of Bacillus thuringiensis (Bt) maize (MON810) on ...

    African Journals Online (AJOL)

    The study investigated the degradation of the Bt protein (Cry1Ab) in Bt maize during ensiling and chemical composition of the silage. Two laboratory studies were conducted at the University of Fort Hare. One Bacillus thuringiensis (Bt) maize cultivar (DKC80-12B) and its isoline (DKC80-10) in the 2008/2009 study and two Bt ...

  2. Biocontrol of the Sugarcane Borer Eldana saccharina by Expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA Genes in Sugarcane-Associated Bacteria

    Science.gov (United States)

    Downing, Katrina J.; Leslie, Graeme; Thomson, Jennifer A.

    2000-01-01

    The cry1Ac7 gene of Bacillus thuringiensis strain 234, showing activity against the sugarcane borer Eldana saccharina, was cloned under the control of the tac promoter. The fusion was introduced into the broad-host-range plasmid pKT240 and the integration vector pJFF350 and without the tac promoter into the broad-host-range plasmids pML122 and pKmM0. These plasmids were introduced into a Pseudomonas fluorescens strain isolated from the phylloplane of sugarcane and the endophytic bacterium Herbaspirillum seropedicae found in sugarcane. The ptac-cry1Ac7 construct was introduced into the chromosome of P. fluorescens using the integration vector pJFF350 carrying the artificial interposon Omegon-Km. Western blot analysis showed that the expression levels of the integrated cry1Ac7 gene were much higher under the control of the tac promoter than under the control of its endogenous promoter. It was also determined that multicopy expression in P. fluorescens and H. seropedicae of ptac-cry1Ac7 carried on pKT240 caused plasmid instability with no detectable protein expression. In H. seropedicae, more Cry1Ac7 toxin was produced when the gene was cloned under the control of the Nmr promoter on pML122 than in the opposite orientation and bioassays showed that the former resulted in higher mortality of E. saccharina larvae than the latter. P. fluorescens 14::ptac-tox resulted in higher mortality of larvae than did P. fluorescens 14::tox. An increased toxic effect was observed when P. fluorescens 14::ptac-tox was combined with P. fluorescens carrying the Serratia marcescens chitinase gene chiA, under the control of the tac promoter, integrated into the chromosome. PMID:10877771

  3. Cry1Ab protein from Bt transgenic rice does not residue in rhizosphere soil

    International Nuclear Information System (INIS)

    Wang Haiyan; Ye Qingfu; Wang Wei; Wu Licheng; Wu Weixiang

    2006-01-01

    Expression of Cry1Ab protein in Bt transgenic rice (KMD) and its residue in the rhizosphere soil during the whole growth in field, as well as degradation of the protein from KMD straw in five soils under laboratory incubation were studied. The residue of Cry1Ab protein in KMD rhizosphere soil was undetectable (below the limit of 0.5 ng/g air-dried soil). The Cry1Ab protein contents in the shoot and root of KMD were 3.23-8.22 and 0.68-0.89 μg/g (fresh weight), respectively. The half-lives of the Cry1Ab protein in the soils amended with KMD straw (4%, w/w) ranged from 11.5 to 34.3 d. The residence time of the protein varied significantly in a Fluvio-marine yellow loamy soil amended with KMD straw at the rate of 3, 4 and 7%, with half-lives of 9.9, 13.8 and 18 d, respectively. In addition, an extraction method for Cry1Ab protein in soil was developed, with extraction efficiencies of 46.4-82.3%. - Cry1Ab protein was not detected in the rhizosphere soil of field-grown Bt transgenic rice

  4. Transformation and evaluation of Cry1Ac+Cry2A and GTGene in Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Agung Nugroho Puspito

    2015-11-01

    Full Text Available More than 50 countries around the globe cultivate cotton on a large scale. It is a major cash crop of Pakistan and is considered white gold because it is highly important to the economy of Pakistan. In addition to its importance, cotton cultivation faces several problems, such as insect pests, weeds, and viruses. In the past, insects have been controlled by insecticides, but this method caused a severe loss to the economy. However, conventional breeding methods have provided considerable breakthroughs in the improvement of cotton, but it also has several limitations. In comparison with conventional methods, biotechnology has the potential to create genetically modified plants that are environmentally safe and economically viable. In this study, a local cotton variety VH 289 was transformed with two Bt genes (Cry1Ac and Cry2A and a herbicide resistant gene (cp4 EPSPS using the Agrobacterium mediated transformation method. The constitutive CaMV 35S promoter was attached to the genes taken from Bacillus thuringiensis (Bt and to an herbicide resistant gene during cloning, and this promoter was used for the expression of the genes in cotton plants. This construct was used to develop the Glyphosate Tolerance Gene (GTGene for herbicide tolerance and insecticidal gene (Cry1Ac and Cry2A for insect tolerance in the cotton variety VH 289. The transgenic cotton variety performed 85% better compared with the non-transgenic variety. The study results suggest that farmers should use the transgenic cotton variety for general cultivation to improve the production of cotton.

  5. Predator Preference for Bt-Fed Spodoptera frugiperda (Lepidoptera: Noctuidae) Prey: Implications for Insect Resistance Management in Bt Maize Seed Blends.

    Science.gov (United States)

    Svobodová, Z; Burkness, E C; Skoková Habuštová, O; Hutchison, W D

    2017-06-01

    Understanding indirect, trophic-level effects of genetically engineered plants, expressing insecticidal proteins derived from the bacterium, Bacillus thuringiensis (Bt), is essential to the ecological risk assessment process. In this study, we examine potential indirect, trophic-level effects of Bt-sensitive prey using the predator, Harmonia axyridis (Pallas), feeding upon Spodoptera frugiperda (J.E. Smith) larvae, which had delayed development (lower body mass) following ingestion of Cry1Ab maize leaves. We found no adverse effects on development and survival when H. axyridis larvae were fed S. frugiperda larvae that had fed on Cry1Ab maize tissue. Presence of Cry1Ab in H. axyridis decreased considerably after switching to another diet within 48 h. In a no-choice assay, H. axyridis larvae consumed more Bt-fed S. frugiperda than non-Bt-fed larvae. Preference for S. frugiperda feeding on Bt maize was confirmed in subsequent choice assays with H. axyridis predation on Bt-fed, 1-5-d-old S. frugiperda larvae. We suggest that H. axyridis preferred prey, not based on whether it had fed on Bt or non-Bt maize, but rather on larval mass, and they compensated for the nutritional deficiency of lighter larvae through increased consumption. Pest larvae with variable levels of resistance developing on Bt diet are often stunted versus sensitive larvae developing on non-Bt diet. It is possible that such larvae may be preferentially removed from local field populations. These results may have implications for insect resistance management and may be played out under field conditions where seed blends of Bt and non-Bt hybrids are planted. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Fate of Transgenic DNA from Orally Administered Bt MON810 Maize and Effects on Immune Response and Growth in Pigs

    Science.gov (United States)

    Walsh, Maria C.; Buzoianu, Stefan G.; Gardiner, Gillian E.; Rea, Mary C.; Gelencsér, Eva; Jánosi, Anna; Epstein, Michelle M.; Ross, R. Paul; Lawlor, Peadar G.

    2011-01-01

    We assessed the effect of short-term feeding of genetically modified (GM: Bt MON810) maize on immune responses and growth in weanling pigs and determined the fate of the transgenic DNA and protein in-vivo. Pigs were fed a diet containing 38.9% GM or non-GM isogenic parent line maize for 31 days. We observed that IL-12 and IFNγ production from mitogenic stimulated peripheral blood mononuclear cells decreased (PGM maize exposure. While Cry1Ab-specific IgG and IgA were not detected in the plasma of GM maize-fed pigs, the detection of the cry1Ab gene and protein was limited to the gastrointestinal digesta and was not found in the kidneys, liver, spleen, muscle, heart or blood. Feeding GM maize to weanling pigs had no effect on growth performance or body weight. IL-6 and IL-4 production from isolated splenocytes were increased (PGM maize while the proportion of CD4+ T cells in the spleen decreased. In the ileum, the proportion of B cells and macrophages decreased while the proportion of CD4+ T cells increased in GM maize-fed pigs. IL-8 and IL-4 production from isolated intraepithelial and lamina propria lymphocytes were also increased (PGM maize. In conclusion, there was no evidence of cry1Ab gene or protein translocation to the organs and blood of weaning pigs. The growth of pigs was not affected by feeding GM maize. Alterations in immune responses were detected; however, their biologic relevance is questionable. PMID:22132091

  7. Acquisition of Cry1Ac protein by non-target arthropods in Bt soybean fields.

    Directory of Open Access Journals (Sweden)

    Huilin Yu

    Full Text Available Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac content using enzyme-linked immunosorbent assay (ELISA. Among the 22 species/taxa for which three samples were analysed, toxin concentration was highest in the grasshopper Atractomorpha sinensis and represented about 50% of the concentration in soybean leaves. Other species/taxa did not contain detectable toxin or contained a concentration that was between 1 and 10% of that detected in leaves. These Cry1Ac-positive arthropods included a number of mesophyll-feeding Hemiptera, a cicadellid, a curculionid beetle and, among the predators, a thomisid spider and an unidentified predatory bug belonging to the Anthocoridae. Within an arthropod species/taxon, the Cry1Ac content sometimes varied between life stages (nymphs/larvae vs. adults and sampling dates (before, during, and after flowering. Our study is the first to provide information on Cry1Ac-expression levels in soybean plants and Cry1Ac concentrations in non-target arthropods in Chinese soybean fields. The data will be useful for assessing the risk of non-target arthropod exposure to Cry1Ac in soybean.

  8. Acquisition of Cry1Ac Protein by Non-Target Arthropods in Bt Soybean Fields

    Science.gov (United States)

    Yu, Huilin; Romeis, Jörg; Li, Yunhe; Li, Xiangju; Wu, Kongming

    2014-01-01

    Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac content using enzyme-linked immunosorbent assay (ELISA). Among the 22 species/taxa for which three samples were analysed, toxin concentration was highest in the grasshopper Atractomorpha sinensis and represented about 50% of the concentration in soybean leaves. Other species/taxa did not contain detectable toxin or contained a concentration that was between 1 and 10% of that detected in leaves. These Cry1Ac-positive arthropods included a number of mesophyll-feeding Hemiptera, a cicadellid, a curculionid beetle and, among the predators, a thomisid spider and an unidentified predatory bug belonging to the Anthocoridae. Within an arthropod species/taxon, the Cry1Ac content sometimes varied between life stages (nymphs/larvae vs. adults) and sampling dates (before, during, and after flowering). Our study is the first to provide information on Cry1Ac-expression levels in soybean plants and Cry1Ac concentrations in non-target arthropods in Chinese soybean fields. The data will be useful for assessing the risk of non-target arthropod exposure to Cry1Ac in soybean. PMID:25110881

  9. Structural studies of {delta}-endotoxin Cry 1 C from Bacillus thuringiensis

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, B.G.; Garratt, R.C.; Oliva, G. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Fisica; Lemos, M.V.F. [UNESP, Jaboticabal, SP (Brazil). Dept. de Biologia Aplicada Agropecuaria; Arantes, O.M.N. [Universidade Estadual de Londrina, PR (Brazil). Dept. de Biologia Geral

    1996-12-31

    Full text. The {delta}-endotoxins are a family of crystal protein by a soil bacterium, Bacillus thuringiensis. The study of these proteins has been of great interest due to their highly specific activity against insects of the orders Lepidoptera, Diptera and Coleoptera. Thus, the {delta}a-endotoxins have been used for more than two decades as biological insecticides to control agricultural pests and, more recently, insects vectors of some diseases. The knowledge of their three-dimensional structures is very important to understand their mechanism of action and their high specificity. To date, the structure of only three proteins of the {delta}-endotoxins family have been reported: Cry3A, a coleopteran-specific toxin (beetle toxin){sup 1}, Cry1Aa, a lepidopteran-specific toxin (butterfly toxin){sup 2} and CytB, a dipteran-specific toxin (mosquito toxin){sup 3} Our work is aimed at the determination of the crystallographic structure by X-ray diffraction of {delta}-endotoxin Cry1C, also toxic to insects of the Lepidoptera order but towards families other than those affected by Cry1Aa. A comparison between these structures may lead to important conclusions about the reasons for the specificity and would allow the planning of mutants with more efficient activity. The cry1C gene was cloned into an adequate vector and expressed in an acrystalliferous B. thuringiensis strain. After cell culture and sporulation the microcrystals of Cry1C were separated by ultra-centrifugation in sacharose. The protoxin inclusion bodies were activated by commercial trpsin and the protease-resistant core was purified by anion-exchange chromatography. Crystallization experiments are being conducted in order to obtain single crystals suitable for diffraction measurements. We intend to use the Protein Crystallograph Station of the LNLS to collect data as soon as it is available and we have suitable crystals. (author) 3 refs.

  10. Structural studies of δ-endotoxin Cry 1 C from Bacillus thuringiensis

    International Nuclear Information System (INIS)

    Guimaraes, B.G.; Garratt, R.C.; Oliva, G.; Lemos, M.V.F.; Arantes, O.M.N.

    1996-01-01

    Full text. The δ-endotoxins are a family of crystal protein by a soil bacterium, Bacillus thuringiensis. The study of these proteins has been of great interest due to their highly specific activity against insects of the orders Lepidoptera, Diptera and Coleoptera. Thus, the δa-endotoxins have been used for more than two decades as biological insecticides to control agricultural pests and, more recently, insects vectors of some diseases. The knowledge of their three-dimensional structures is very important to understand their mechanism of action and their high specificity. To date, the structure of only three proteins of the δ-endotoxins family have been reported: Cry3A, a coleopteran-specific toxin (beetle toxin) 1 , Cry1Aa, a lepidopteran-specific toxin (butterfly toxin) 2 and CytB, a dipteran-specific toxin (mosquito toxin) 3 Our work is aimed at the determination of the crystallographic structure by X-ray diffraction of δ-endotoxin Cry1C, also toxic to insects of the Lepidoptera order but towards families other than those affected by Cry1Aa. A comparison between these structures may lead to important conclusions about the reasons for the specificity and would allow the planning of mutants with more efficient activity. The cry1C gene was cloned into an adequate vector and expressed in an acrystalliferous B. thuringiensis strain. After cell culture and sporulation the microcrystals of Cry1C were separated by ultra-centrifugation in sacharose. The protoxin inclusion bodies were activated by commercial trpsin and the protease-resistant core was purified by anion-exchange chromatography. Crystallization experiments are being conducted in order to obtain single crystals suitable for diffraction measurements. We intend to use the Protein Crystallograph Station of the LNLS to collect data as soon as it is available and we have suitable crystals. (author)

  11. Inadvertent presence of genetically modified elements in maize food ...

    African Journals Online (AJOL)

    owner

    2013-07-31

    Jul 31, 2013 ... The maize imported into Kenya contained Bt genetic elements. Nevertheless, the .... obtained from various open air markets and retail shops located in ... Magic, Bokomo and Temmy) was not successful. Assessment of cry1Ab ...

  12. "When I Want to Cry I Can't": Inability to Cry Following SSRI Treatment.

    Science.gov (United States)

    Holguín-Lew, Jorge Carlos; Bell, Vaughan

    2013-12-01

    We describe seven cases of patients with an inability to cry after treatment with selective serotonin re-uptake inhibitor (SSRI) medication, even during sad or distressing situations that would have normally initiated a crying episode, in the light of the role of the serotonergic system in emotional expression. Case series drawn from patients attended in a secondary care psychiatry service. While excessive crying without emotional distress has been previously reported in the literature, and is associated with reduced serotonin function, these reports suggest cases of the reverse dissociation, where emotional distress and an urge to cry was present, but crying was impaired. Although the case series presented here is new, these cases are consistent with the neuroscience of crying and their relationship with serotonergic function, and provide preliminary evidence for a double dissociation between subjective emotional experience and the behavioural expression of crying. This helps to further illuminate the neuroscience of emotional expression and suggests the possibility that the phenomenon is an under-recognised adverse effect of SSRI treatment. Copyright © 2013 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  13. EFSA Panel on Genetically Modified Organisms (GMO); Scientific Opinion on an application (EFSAGMO-NL-2012-107) for the placing on the market of maize MON 810 pollen under Regulation (EC) No 1829/2003 from Monsanto

    DEFF Research Database (Denmark)

    Sørensen, Ilona Kryspin

    In this opinion, the EFSA GMO Panel addresses the safety of maize MON 810 pollen to complete the scope of an application (RX-MON 810) for the marketing of genetically modified maize MON 810 with the use of MON 810 pollen as or in food. Data on molecular characterisation of maize MON 810 did...... apply to the Cry1Ab protein expressed in MON 810 pollen. While the EFSA GMO Panel is not in a position to conclude on the safety of maize pollen in or as food in general, it concludes that the genetic modification in maize MON 810 does not constitute an additional health risk if maize MON 810 pollen...

  14. Effects of feeding Bt maize to sows during gestation and lactation on maternal and offspring immunity and fate of transgenic material.

    Directory of Open Access Journals (Sweden)

    Stefan G Buzoianu

    Full Text Available BACKGROUND: We aimed to determine the effect of feeding transgenic maize to sows during gestation and lactation on maternal and offspring immunity and to assess the fate of transgenic material. METHODOLOGY/PRINCIPAL FINDINGS: On the day of insemination, sows were assigned to one of two treatments (n = 12/treatment; 1 non-Bt control maize diet or 2 Bt-MON810 maize diet, which were fed for ~143 days throughout gestation and lactation. Immune function was assessed by leukocyte phenotyping, haematology and Cry1Ab-specific antibody presence in blood on days 0, 28 and 110 of gestation and at the end of lactation. Peripheral-blood mononuclear cell cytokine production was investigated on days 28 and 110 of gestation. Haematological analysis was performed on offspring at birth (n = 12/treatment. Presence of the cry1Ab transgene was assessed in sows' blood and faeces on day 110 of gestation and in blood and tissues of offspring at birth. Cry1Ab protein presence was assessed in sows' blood during gestation and lactation and in tissues of offspring at birth. Blood monocyte count and percentage were higher (P<0.05, while granulocyte percentage was lower (P<0.05 in Bt maize-fed sows on day 110 of gestation. Leukocyte count and granulocyte count and percentage were lower (P<0.05, while lymphocyte percentage was higher (P<0.05 in offspring of Bt maize-fed sows. Bt maize-fed sows had a lower percentage of monocytes on day 28 of lactation and of CD4(+CD8(+ lymphocytes on day 110 of gestation, day 28 of lactation and overall (P<0.05. Cytokine production was similar between treatments. Transgenic material or Cry1Ab-specific antibodies were not detected in sows or offspring. CONCLUSIONS/SIGNIFICANCE: Treatment differences observed following feeding of Bt maize to sows did not indicate inflammation or allergy and are unlikely to be of major importance. These results provide additional data for Bt maize safety assessment.

  15. Hyperactivity of the Arabidopsis cryptochrome (cry1) L407F mutant is caused by a structural alteration close to the cry1 ATP-binding site.

    Science.gov (United States)

    Orth, Christian; Niemann, Nils; Hennig, Lars; Essen, Lars-Oliver; Batschauer, Alfred

    2017-08-04

    Plant cryptochromes (cry) act as UV-A/blue light receptors. The prototype, Arabidopsis thaliana cry1, regulates several light responses during the life cycle, including de-etiolation, and is also involved in regulating flowering time. The cry1 photocycle is initiated by light absorption by its FAD chromophore, which is most likely fully oxidized (FAD ox ) in the dark state and photoreduced to the neutral flavin semiquinone (FADH°) in its lit state. Cryptochromes lack the DNA-repair activity of the closely related DNA photolyases, but they retain the ability to bind nucleotides such as ATP. The previously characterized L407F mutant allele of Arabidopsis cry1 is biologically hyperactive and seems to mimic the ATP-bound state of cry1, but the reason for this phenotypic change is unclear. Here, we show that cry1 L407F can still bind ATP, has less pronounced photoreduction and formation of FADH° than wild-type cry1, and has a dark reversion rate 1.7 times lower than that of the wild type. The hyperactivity of cry1 L407F is not related to a higher FADH° occupancy of the photoreceptor but is caused by a structural alteration close to the ATP-binding site. Moreover, we show that ATP binds to cry1 in both the dark and the lit states. This binding was not affected by cry1's C-terminal extension, which is important for signal transduction. Finally, we show that a recently discovered chemical inhibitor of cry1, 3-bromo-7-nitroindazole, competes for ATP binding and thereby diminishes FADH° formation, which demonstrates that both processes are important for cry1 function. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Efficient genetic transformation of okra (Abelmoschus esculentus (L.) Moench) and generation of insect-resistant transgenic plants expressing the cry1Ac gene.

    Science.gov (United States)

    Narendran, M; Deole, Satish G; Harkude, Satish; Shirale, Dattatray; Nanote, Asaram; Bihani, Pankaj; Parimi, Srinivas; Char, Bharat R; Zehr, Usha B

    2013-08-01

    Agrobacterium -mediated transformation system for okra using embryos was devised and the transgenic Bt plants showed resistance to the target pest, okra shoot, and fruit borer ( Earias vittella ). Okra is an important vegetable crop and progress in genetic improvement via genetic transformation has been impeded by its recalcitrant nature. In this paper, we describe a procedure using embryo explants for Agrobacterium-mediated transformation and tissue culture-based plant regeneration for efficient genetic transformation of okra. Twenty-one transgenic okra lines expressing the Bacillus thuringiensis gene cry1Ac were generated from five transformation experiments. Molecular analysis (PCR and Southern) confirmed the presence of the transgene and double-antibody sandwich ELISA analysis revealed Cry1Ac protein expression in the transgenic plants. All 21 transgenic plants were phenotypically normal and fertile. T1 generation plants from these lines were used in segregation analysis of the transgene. Ten transgenic lines were selected randomly for Southern hybridization and the results confirmed the presence of transgene integration into the genome. Normal Mendelian inheritance (3:1) of cry1Ac gene was observed in 12 lines out of the 21 T0 lines. We selected 11 transgenic lines segregating in a 3:1 ratio for the presence of one transgene for insect bioassays using larvae of fruit and shoot borer (Earias vittella). Fruit from seven transgenic lines caused 100 % larval mortality. We demonstrate an efficient transformation system for okra which will accelerate the development of transgenic okra with novel agronomically useful traits.

  17. Epigeic spiders are not affected by the genetically modified maize MON 88017

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Zdeňka; Habuštová, Oxana; Sehnal, František; Holec, M.; Hussein, Hany

    2013-01-01

    Roč. 137, 1-2 (2013), s. 56-67 ISSN 0931-2048 R&D Projects: GA MZe QH91093; GA MZe QI91A229 Grant - others:MOBITAG project(CZ) 7FP-REGPOT-2008-1, GA 229518 Institutional support: RVO:60077344 Keywords : Bt maize * HT maize * Cry3Bb1 Subject RIV: EH - Ecology, Behaviour Impact factor: 1.701, year: 2013 http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0418.2012.01727.x/pdf

  18. Population dynamics of Sesamia inferens on transgenic rice expressing Cry1Ac and CpTI in southern China.

    Science.gov (United States)

    Han, Lanzhi; Liu, Peilei; Wu, Kongming; Peng, Yufa; Wang, Feng

    2008-10-01

    Genetically modified insect-resistant rice lines containing the cry1Ac gene from Bacillus thuringiensis (Bt) or the CpTI (cowpea trypsin inhibitor) gene developed for the management of lepidopterous pests are highly resistant to the major target pests, Chilo suppressalis (Walker), Cnaphalocrocis medinalis (Guenée), and Scirpophaga incertulas (Walker), in the main rice-growing areas of China. However, the effects of these transgenic lines on Sesamia inferens (Walker), an important lepidopterous rice pest, are currently unknown. Because different insect species have varying susceptibility to Bt insecticidal proteins that may affect population dynamics, research into the effects of these transgenic rice lines on the population dynamics of S. inferens was conducted in Fuzhou, southern China, in 2005 and 2006. The results of laboratory, field cage, and field plot experiments show that S. inferens has comparatively high susceptibility to the transgenic line during the early growing season, with significant differences observed in larval density and infestation levels between transgenic and control lines. Because of a decrease in Cry1Ac levels in the plant as it ages, the transgenic line provided only a low potential for population suppression late in the growing season. There is a correlation between the changing expression of Cry1Ac and the impact of transgenic rice on the population dynamics of S. inferens during the season. These results indicate that S. inferens may become a major pest in fields of prospective commercially released transgenic rice, and more attention should be paid to developing an effective alternative management strategy.

  19. Food safety assessment of Cry8Ka5 mutant protein using Cry1Ac as a control Bt protein.

    Science.gov (United States)

    Farias, Davi Felipe; Viana, Martônio Ponte; Oliveira, Gustavo Ramos; Santos, Vanessa Olinto; Pinto, Clidia Eduarda Moreira; Viana, Daniel Araújo; Vasconcelos, Ilka Maria; Grossi-de-Sa, Maria Fátima; Carvalho, Ana Fontenele Urano

    2015-07-01

    Cry8Ka5 is a mutant protein from Bacillus thuringiensis (Bt) that has been proposed for developing transgenic plants due to promising activity against coleopterans, like Anthonomus grandis (the major pest of Brazilian cotton culture). Thus, an early food safety assessment of Cry8Ka5 protein could provide valuable information to support its use as a harmless biotechnological tool. This study aimed to evaluate the food safety of Cry8Ka5 protein following the two-tiered approach, based on weights of evidence, proposed by ILSI. Cry1Ac protein was used as a control Bt protein. The history of safe use revealed no convincing hazard reports for Bt pesticides and three-domain Cry proteins. The bioinformatics analysis with the primary amino acids sequence of Cry8Ka5 showed no similarity to any known toxic, antinutritional or allergenic proteins. The mode of action of Cry proteins is well understood and their fine specificity is restricted to insects. Cry8Ka5 and Cry1Ac proteins were rapidly degraded in simulated gastric fluid, but were resistant to simulated intestinal fluid and heat treatment. The LD50 for Cry8Ka5 and Cry1Ac was >5000 mg/kg body weight when administered by gavage in mice. Thus, no expected relevant risks are associated with the consumption of Cry8Ka5 protein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Effects of Transgenic cry1Ca Rice on the Development of Xenopus laevis.

    Directory of Open Access Journals (Sweden)

    Xiuping Chen

    Full Text Available In fields of genetically modified, insect-resistant rice expressing Bacillus thuringiensis (Bt proteins, frogs are exposed to Bt Cry proteins by consuming both target and non-target insects, and through their highly permeable skin. In the present study, we assessed the potential risk posed by transgenic cry1Ca rice (T1C-19 on the development of a frog species by adding purified Cry1Ca protein or T1C-19 rice straw into the rearing water of Xenopus laevis tadpoles, and by feeding X. laevis froglets diets containing rice grains of T1C-19 or its non-transformed counterpart MH63. Our results showed that there were no significant differences among groups receiving 100 μg L-1 or 10 μg L-1 Cry1Ca and the blank control in terms of time to completed metamorphosis, survival rate, body weight, body length, organ weight and liver enzyme activity after being exposed to the Cry1Ca (P > 0.05. Although some detection indices in the rice straw groups were significantly different from those of the blank control group (P < 0.05, there was no significant difference between the T1C-19 and MH63 rice straw groups. Moreover, there were no significant differences in the mortality rate, body weight, daily weight gain, liver and fat body weight of the froglets between the T1C-19 and MH63 dietary groups after 90 days, and there were no abnormal pathological changes in the stomach, intestines, livers, spleens and gonads. Thus, we conclude that the planting of transgenic cry1Ca rice will not adversely affect frog development.

  1. A 90 day safety assessment of genetically modified rice expressing Cry1Ab/1Ac protein using an aquatic animal model.

    Science.gov (United States)

    Zhu, Hao-Jun; Chen, Yi; Li, Yun-He; Wang, Jia-Mei; Ding, Jia-Tong; Chen, Xiu-Ping; Peng, Yu-Fa

    2015-04-15

    In fields of transgenic Bt rice, frogs are exposed to Bt proteins through consumption of both target and nontarget insects. In the present study, we assessed the risk posed by transgenic rice expressing a Cry1Ab/1Ac fusion protein (Huahui 1, HH1) on the development of Xenopus laevis. For 90 days, froglets were fed a diet with 30% HH1 rice, 30% parental rice (Minghui 63, MH63), or no rice as a control. Body weight and length were measured every 15 days. After sacrificing the froglets, we performed a range of biological, clinical, and pathological assessments. No significant differences were found in body weight (on day 90: 27.7 ± 2.17, 27.4 ± 2.40, and 27.9 ± 1.67 g for HH1, MH63, and control, respectively), body length (on day 90: 60.2 ± 1.55, 59.3 ± 2.33, and 59.7 ± 1.64 mm for HH1, MH63, and control, respectively), animal behavior, organ weight, liver and kidney function, or the microstructure of some tissues between the froglets fed on the HH1-containing diet and those fed on the MH63-containing or control diets. This indicates that frog development was not adversely affected by dietary intake of Cry1Ab/1Ac protein.

  2. CRY Drives Cyclic CK2-Mediated BMAL1 Phosphorylation to Control the Mammalian Circadian Clock.

    Directory of Open Access Journals (Sweden)

    Teruya Tamaru

    Full Text Available Intracellular circadian clocks, composed of clock genes that act in transcription-translation feedback loops, drive global rhythmic expression of the mammalian transcriptome and allow an organism to anticipate to the momentum of the day. Using a novel clock-perturbing peptide, we established a pivotal role for casein kinase (CK-2-mediated circadian BMAL1-Ser90 phosphorylation (BMAL1-P in regulating central and peripheral core clocks. Subsequent analysis of the underlying mechanism showed a novel role of CRY as a repressor for protein kinase. Co-immunoprecipitation experiments and real-time monitoring of protein-protein interactions revealed that CRY-mediated periodic binding of CK2β to BMAL1 inhibits BMAL1-Ser90 phosphorylation by CK2α. The FAD binding domain of CRY1, two C-terminal BMAL1 domains, and particularly BMAL1-Lys537 acetylation/deacetylation by CLOCK/SIRT1, were shown to be critical for CRY-mediated BMAL1-CK2β binding. Reciprocally, BMAL1-Ser90 phosphorylation is prerequisite for BMAL1-Lys537 acetylation. We propose a dual negative-feedback model in which a CRY-dependent CK2-driven posttranslational BMAL1-P-BMAL1 loop is an integral part of the core clock oscillator.

  3. Integration of ethylene and jasmonic acid signaling pathways in the expression of maize defense protein Mir1-CP.

    Science.gov (United States)

    Ankala, A; Luthe, D S; Williams, W P; Wilkinson, J R

    2009-12-01

    In plants, ethylene and jasmonate control the defense responses to multiple stressors, including insect predation. Among the defense proteins known to be regulated by ethylene is maize insect resistance 1-cysteine protease (Mir1-CP). This protein is constitutively expressed in the insect-resistant maize (Zea mays) genotype Mp708; however, its abundance significantly increases during fall armyworm (Spodoptera frugiperda) herbivory. Within 1 h of herbivory by fall armyworm, Mir1-CP accumulates at the feeding site and continues to increase in abundance until 24 h without any increase in its transcript (mir1) levels. To resolve this discrepancy and elucidate the role of ethylene and jasmonate in the signaling of Mir1-CP expression, the effects of phytohormone biosynthesis and perception inhibitors on Mir1-CP expression were tested. Immunoblot analysis of Mir1-CP accumulation and quantitative reverse-transcriptase polymerase chain reaction examination of mir1 levels in these treated plants demonstrate that Mir1-CP accumulation is regulated by both transcript abundance and protein expression levels. The results also suggest that jasmonate functions upstream of ethylene in the Mir1-CP expression pathway, allowing for both low-level constitutive expression and a two-stage defensive response, an immediate response involving Mir1-CP accumulation and a delayed response inducing mir1 transcript expression.

  4. Transgenic rice plants expressing a fused protein of Cry1Ab/Vip3H has resistance to rice stem borers under laboratory and field conditions.

    Science.gov (United States)

    Chen, Yang; Tian, Jun-Ce; Shen, Zhi-Chen; Peng, Yu-Fa; Hu, Cui; Guo, Yu-Yuan; Ye, Gong-Yin

    2010-08-01

    Six transgenic rice, Oryza sativa L., lines (G6H1, G6H2, G6H3, G6H4, G6H5, and G6H6) expressing a fused Cry1Ab/Vip3H protein, were evaluated for resistance against the Asiatic rice borer, Chilo suppressalis (Walker) (Lepidoptera: Crambidae), and the stem borer Sesamia inferens (Walker) (Lepidoptera: Noctuidae) in the laboratory and field. The bioassay results indicated that the mortality of Asiatic rice borer and S. inferens neonate larvae on six transgenic lines from seedling to filling stage was up to 100% at 168 h after infestation. The cumulative feeding area by Asiatic rice borer neonate larvae on all transgenic lines was significantly reduced compared with the untransformed parental 'Xiushui 110' rice. A 2-yr field evaluation showed that damage during the vegetative stage (deadheart) or during the reproductive stage (whitehead) caused by Asiatic rice borer and S. inferens for transgenic lines was much lower than the control. For three lines (G6H1, G6H2, and G6H6), no damage was found during the entire growing period. Estimation of fused Cry1Ab/Vip3H protein concentrations using PathoScreen kit for Bt-Cry1Ab/1Ac protein indicated that the expression levels of Cry1Ab protein both in main stems (within the average range of 0.006-0.073% of total soluble protein) and their flag leaves (within the average range of 0.001-0.038% of total soluble protein) were significantly different among six transgenic lines at different developmental stages. Both laboratory and field researches suggested that the transgenic rice lines have considerable potential for protecting rice from attack by both stem borers.

  5. The psychophysiology of crying.

    Science.gov (United States)

    Gross, J J; Frederickson, B L; Levenson, R W

    1994-09-01

    Two conflicting views have emerged as to why people cry when they are sad. One suggests that crying serves homeostasis by facilitating recovery; the other suggests that crying produces an aversive high-arousal state that motivates behavior aimed at ending the tears. To test hypotheses drawn from these views, we showed a short film known to elicit sadness to 150 women. During this film, 33 subjects spontaneously cried and 117 did not. Subjects who cried exhibited more expressive behavior and reported feeling more sadness and pain than did subjects who did not cry. Crying also was associated with increases in somatic and autonomic nervous system activity. The increases in autonomic activity could not be accounted for solely by the increases in somatic activity. Crying is thus associated with an aversive state, including negative emotion and a complex mixture of sympathetic, parasympathetic, and somatic activation, and we speculate about the functional implications of these findings.

  6. Use of endophytic diazotrophic bacteria as a vector to express the cry3A gene from Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Salles Joana Falcão

    2000-01-01

    Full Text Available The goal of this study was to evaluate the potential of endophytic diazotrophic bacteria as a vector to express a cry gene from Bacillus thuringiensis, envisaging the control of pests that attack sugarcane plants. The endophytic nitrogen-fixing bacteria Gluconacetobacter diazotrophicus strain BR11281 and Herbaspirillum seropedicae strain BR11335 were used as models. The cry3A gene was transferred by conjugation using a suicide plasmid and the recombinant strains were selected by their ability to fix nitrogen in semi-solid N-free medium. The presence of the cry gene was detected by Southern-blot using an internal fragment of 1.0 kb as a probe. The production of delta-endotoxin by the recombinant H. seropedicae strain was detected by dot blot while for G. diazotrophicus the Western-blot technique was used. In both cases, a specific antibody raised against the B. thuringiensis toxin was applied. The delta-endotoxin production showed by the G. diazotrophicus recombinant strain was dependent on the nitrogen fixing conditions since the cry3A gene was fused to a nif promoter. In the case of H. seropedicae the delta-endotoxin expression was not affected by the promoter (rhi used. These results suggest that endophytic diazotrophic bacteria can be used as vectors to express entomopathogenic genes envisaging control of sugarcane pests.

  7. Down-regulation of a novel ABC transporter gene (Pxwhite) is associated with Cry1Ac resistance in the diamondback moth, Plutella xylostella (L.).

    Science.gov (United States)

    Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Xia, Jixing; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun

    2015-04-01

    Biopesticides or transgenic crops based on Cry toxins from the soil bacterium Bacillus thuringiensis (Bt) effectively control agricultural insect pests. The sustainable use of Bt biopesticides and Bt crops is threatened, however, by the development of Cry resistance in the target pests. The diamondback moth, Plutella xylostella (L.), is the first pest that developed resistance to a Bt biopesticide in the field, and a recent study has shown that the resistance of P. xylostella to Cry1Ac is caused by a mutation in an ATP-binding cassette (ABC) transporter gene (ABCC2). In this study, we report that down-regulation of a novel ABC transporter gene from ABCG subfamily (Pxwhite) is associated with Cry1Ac resistance in P. xylostella. The full-length cDNA sequence of Pxwhite was cloned and analyzed. Spatial-temporal expression detection revealed that Pxwhite was expressed in all tissues and developmental stages, and highest expressed in Malpighian tubule tissue and in egg stage. Sequence variation analysis of Pxwhite indicated the absence of constant non-synonymous mutations between susceptible and resistant strains, whereas midgut transcript analysis showed that Pxwhite was remarkably reduced in all resistant strains and further reduced when larvae of the moderately resistant SZ-R strain were subjected to selection with Cry1Ac toxin. Furthermore, RNA interference (RNAi)-mediated suppression of Pxwhite gene expression significantly reduced larval susceptibility to Cry1Ac toxin, and genetic linkage analysis confirmed that down-regulation of Pxwhite gene is tightly linked to Cry1Ac resistance in P. xylostella. To our knowledge, this is the first report indicating that Pxwhite gene is involved in Cry1Ac resistance in P. xylostella. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Characterization of lepidopteran-specific cry1 and cry2 gene harbouring native Bacillus thuringiensis isolates toxic against Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Showkat Ahmad Lone

    2017-09-01

    Full Text Available Bacillus thuringiensis (Bt based biopesticides are feasible alternatives to chemical pesticides. Here, we present the distribution of lepidopteran-specific cry1 and cry2 genes in native B. thuringiensis. Forty four out of 86 colonies were found to harbour crystals by phase contrast microscopy exhibiting a Bt index of 0.51. PCR analysis resulted in the amplification of cry1 in 24 and cry2 in 14 isolates. Twelve of the isolates showed presence of both cry1 and cry2, while 18 isolates did not show presence of either of the genes. Toxicity screening using spore-crystal mixtures against 2nd instar larvae of Helicoverpa armigera revealed that the isolates (50% were either mildly toxic or not toxic (36.36%, and only 13.63% were toxic. The results are interesting, particularly so because the same isolates were previously reported to contain lepidopteran specific vip3A genes also, hence can complement the toxicity of the isolates harbouring vip3A genes.

  9. Recombinant Cry1Ia protein is highly toxic to cotton boll weevil (Anthonomus grandis Boheman) and fall armyworm (Spodoptera frugiperda).

    Science.gov (United States)

    Martins, E S; Aguiar, R W D S; Martins, N F; Melatti, V M; Falcão, R; Gomes, A C M M; Ribeiro, B M; Monnerat, R G

    2008-05-01

    To evaluate the activity of cry1Ia gene against cotton pests, Spodoptera frugiperda and Anthonomus grandis. Had isolated and characterized a toxin gene from the Bacillus thuringiensis S1451 strain which have been previously shown to be toxic to S. frugiperda and A. grandis. The toxin gene (cry1Ia) was amplified by PCR, sequenced, and cloned into the genome of a baculovirus. The Cry1Ia protein was expressed in baculovirus infected insect cells, producing protein inclusions in infected cells. The Cry1Ia protein has used in bioassays against to S. frugiperda and A. grandis. Bioassays using the purified recombinant protein showed high toxicity to S. frugiperda and A. grandis larvae. Molecular modelling of the Cry1Ia protein translated from the DNA sequence obtained in this work, showed that this protein possibly posses a similar structure to the Cry3A protein. Ultrastructural analysis of midgut cells from A. grandis incubated with the Cry1Ia toxin, showed loss of microvilli integrity. The results indicate that the cry1Ia is a good candidate for the construction of transgenic plants resistant to these important cotton pests.

  10. Sequence and expression of two cry8 genes from Bacillus thuringiensis INTA Fr7-4, a native strain from Argentina.

    Science.gov (United States)

    Navas, Laura E; Berretta, Marcelo F; Pérez, Melisa P; Amadio, Ariel F; Ortiz, Elio M; Sauka, Diego H; Benintende, Graciela B; Zandomeni, Rubén O

    2014-01-01

    We found and characterized two cry8 genes from the Bacillus thuringiensis strain INTA Fr7-4 isolated in Argentina. These genes, cry8Kb3 and cry8Pa3, are located in a tandem array within a 13,200-bp DNA segment sequenced from a preparation of total DNA. They encode 1,169- and 1,176-amino-acid proteins, respectively. Both genes were cloned with their promoter sequences and the proteins were expressed separately in an acrystalliferous strain of B. thuringiensis leading to the formation of ovoid crystals in the recombinant strains. The toxicity against larvae of Anthonomus grandis Bh. (Coleoptera: Curculionidae) of a spore-crystal suspension from the recombinant strain containing cry8Pa3 was similar to that of the parent strain INTA Fr7-4. © 2014 S. Karger AG, Basel.

  11. Immunotoxicological Evaluation of Genetically Modified Rice Expressing Cry1Ab/Ac Protein (TT51-1) by a 6-Month Feeding Study on Cynomolgus Monkeys

    OpenAIRE

    Tan, Xiaoyan; Zhou, Xiaobing; Tang, Yao; Lv, Jianjun; Zhang, Lin; Sun, Li; Yang, Yanwei; Miao, Yufa; Jiang, Hua; Chen, Gaofeng; Huang, Zhiying; Wang, Xue

    2016-01-01

    The present study was performed to evaluate the food safety of TT51-1, a new type of genetically modified rice that expresses the Cry1Ab/Ac protein (Bt toxin) and is highly resistant to most lepidopteran pests. Sixteen male and 16 female cynomolgus monkeys were randomly divided into four groups: conventional rice (non-genetically modified rice, non-GM rice), positive control, 17.5% genetically modified rice (GM rice) and 70% GM rice. Monkeys in the non-GM rice, positive control, and GM rice g...

  12. Harmonia axyridis (Coleoptera: Coccinellidae) Exhibits No Preference between Bt and Non-Bt Maize Fed Spodoptera frugiperda (Lepidoptera: Noctuidae)

    Science.gov (United States)

    Dutra, Carla C.; Koch, Robert L.; Burkness, Eric C.; Meissle, Michael; Romeis, Joerg; Hutchison, William D.; Fernandes, Marcos G.

    2012-01-01

    A recent shift in managing insect resistance to genetically engineered (GE) maize consists of mixing non-GE seed with GE seed known as “refuge in a bag”, which increases the likelihood of predators encountering both prey fed Bt and prey fed non-Bt maize. We therefore conducted laboratory choice-test feeding studies to determine if a predator, Harmonia axyridis, shows any preference between prey fed Bt and non-Bt maize leaves. The prey species was Spodoptera frugiperda, which were fed Bt maize (MON-810), expressing the single Cry1Ab protein, or non-Bt maize. The predators were third instar larvae and female adults of H. axyridis. Individual predators were offered Bt and non-Bt fed prey larvae that had fed for 24, 48 or 72 h. Ten and 15 larvae of each prey type were offered to third instar and adult predators, respectively. Observations of arenas were conducted at 1, 2, 3, 6, 15 and 24 h after the start of the experiment to determine the number and type of prey eaten by each individual predator. Prey larvae that fed on non-Bt leaves were significantly larger than larvae fed Bt leaves. Both predator stages had eaten nearly all the prey by the end of the experiment. However, in all combinations of predator stage and prey age, the number of each prey type consumed did not differ significantly. ELISA measurements confirmed the presence of Cry1Ab in leaf tissue (23–33 µg/g dry weight) and S. frugiperda (2.1–2.2 µg/g), while mean concentrations in H. axyridis were very low (0.01–0.2 µg/g). These results confirm the predatory status of H. axyridis on S. frugiperda and that both H. axyridis adults and larvae show no preference between prey types. The lack of preference between Bt-fed and non-Bt-fed prey should act in favor of insect resistance management strategies using mixtures of GE and non-GE maize seed. PMID:23024772

  13. Identification of Bacillus thuringiensis Cry1AbMod binding-proteins from Spodoptera frugiperda.

    Science.gov (United States)

    Martínez de Castro, Diana L; García-Gómez, Blanca I; Gómez, Isabel; Bravo, Alejandra; Soberón, Mario

    2017-12-01

    Bacillus thuringiensis Cry toxins are currently used for pest control in transgenic crops but evolution of resistance by the insect pests threatens the use of this technology. The Cry1AbMod toxin was engineered to lack the alpha helix-1 of the parental Cry1Ab toxin and was shown to counter resistance to Cry1Ab and Cry1Ac toxins in different insect species including the fall armyworm Spodoptera frugiperda. In addition, Cry1AbMod showed enhanced toxicity to Cry1Ab-susceptible S. frugiperda populations. To gain insights into the mechanisms of this Cry1AbMod-enhanced toxicity, we isolated the Cry1AbMod toxin binding proteins from S. frugiperda brush border membrane vesicles (BBMV), which were identified by pull-down assay and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The LC-MS/MS results indicated that Cry1AbMod toxin could bind to four classes of aminopeptidase (N1, N3, N4 y N5) and actin, with the highest amino acid sequence coverage acquired for APN 1 and APN4. In addition to these proteins, we found other proteins not previously described as Cry toxin binding proteins. This is the first report that suggests the interaction between Cry1AbMod and APN in S. frugiperda. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Functional diversity of staphylinid beetles (Coleoptera: Staphylinidae) in maize fields: testing the possible effect of genetically modified, insect resistant maize

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Zdeňka; Skoková Habuštová, Oxana; Boháč, J.; Sehnal, František

    2016-01-01

    Roč. 106, č. 4 (2016), s. 432-445 ISSN 0007-4853 R&D Projects: GA MZe QH91093 Grant - others:GA JU(CZ) 038/2014/P; project MOBILITY(CZ) 7AMB14SK096 Program:7A Institutional support: RVO:60077344 Keywords : GM crops * Bt maize * Cry3Bb1 Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 1.758, year: 2016

  15. Managing fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), with Bt maize and insecticides in southern Brazil.

    Science.gov (United States)

    Burtet, Leonardo M; Bernardi, Oderlei; Melo, Adriano A; Pes, Maiquel P; Strahl, Thiago T; Guedes, Jerson Vc

    2017-12-01

    Maize plants expressing insecticidal proteins of Bacillus thuringiensis are valuable options for managing fall armyworm (FAW), Spodoptera frugiperda, in Brazil. However, control failures were reported, and therefore insecticides have been used to control this species. Based on these, we evaluated the use of Bt maize and its integration with insecticides against FAW in southern Brazil. Early-planted Agrisure TL, Herculex, Optimum Intrasect and non-Bt maize plants were severely damaged by FAW and required up to three insecticidal sprays. In contrast, YieldGard VT Pro, YieldGard VT Pro 3, PowerCore, Agrisure Viptera and Agrisure Viptera 3 showed little damage and did not require insecticides. Late-planted Bt maize plants showed significant damage by FAW and required up to four sprays, with the exceptions of Agrisure Viptera and Agrisure Viptera 3. Exalt (first and second sprays); Lannate + Premio (first spray) and Avatar (second spray); and Karate + Match (first spray) and Ampligo (second spray) were the most effective insecticides against FAW larvae in Bt and non-Bt maize. Maize plants expressing Cry proteins exhibited FAW control failures in southern Brazil, necessitating insecticidal sprays. In contrast, Bt maize containing the Vip3Aa20 protein remained effective against FAW. However, regardless of the insecticide used against FAW surviving on Bt maize, grain yields were similar. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Toxicological, Biochemical, and Histopathological Analyses Demonstrating That Cry1C and Cry2A Are Not Toxic to Larvae of the Honeybee, Apis mellifera.

    Science.gov (United States)

    Wang, Yuan-Yuan; Li, Yun-He; Huang, Zachary Y; Chen, Xiu-Ping; Romeis, Jörg; Dai, Ping-Li; Peng, Yu-Fa

    2015-07-15

    The honey bee, Apis mellifera, is commonly used as a test species for the regulatory risk assessment of insect-resistant genetically engineered (IRGE) plants. In the current study, a dietary exposure assay was developed, validated, and used to assess the potential toxicity of Cry1C and Cry2A proteins from Bacillus thuringiensis (Bt) to A. mellifera larvae; Cry1C and Cry2A are produced by different IRGE crops. The assay, which uses the soybean trypsin inhibitor (SBTI) as a positive control and bovine serum albumin (BSA) as a negative control, was used to measure the responses of A. mellifera larvae to high concentrations of Cry1C and Cry2A. Survival was reduced and development was delayed when larvae were fed SBTI (1 mg/g diet) but were unaffected when larvae were fed BSA (400 μg/g), Cry1C (50 μg/g), or Cry2A (400 μg/g). The enzymatic activities of A. mellifera larvae were not altered and their midgut brush border membranes (BBMs) were not damaged after being fed with diets containing BSA, Cry1C, or Cry2A; however, enzymatic activities were increased and BBMs were damaged when diets contained SBTI. The study confirms that Cry1C and Cry2A have no acute toxicity to A. mellifera larvae at concentrations >10 times higher than those detected in pollen from Bt plants.

  17. KPNB1 mediates PER/CRY nuclear translocation and circadian clock function.

    Science.gov (United States)

    Lee, Yool; Jang, A Reum; Francey, Lauren J; Sehgal, Amita; Hogenesch, John B

    2015-08-29

    Regulated nuclear translocation of the PER/CRY repressor complex is critical for negative feedback regulation of the circadian clock of mammals. However, the precise molecular mechanism is not fully understood. Here, we report that KPNB1, an importin β component of the ncRNA repressor of nuclear factor of activated T cells (NRON) ribonucleoprotein complex, mediates nuclear translocation and repressor function of the PER/CRY complex. RNAi depletion of KPNB1 traps the PER/CRY complex in the cytoplasm by blocking nuclear entry of PER proteins in human cells. KPNB1 interacts mainly with PER proteins and directs PER/CRY nuclear transport in a circadian fashion. Interestingly, KPNB1 regulates the PER/CRY nuclear entry and repressor function, independently of importin α, its classical partner. Moreover, inducible inhibition of the conserved Drosophila importin β in lateral neurons abolishes behavioral rhythms in flies. Collectively, these data show that KPNB1 is required for timely nuclear import of PER/CRY in the negative feedback regulation of the circadian clock.

  18. Screening for single-chain variable fragment antibodies against multiple Cry1 toxins from an immunized mouse phage display antibody library.

    Science.gov (United States)

    Dong, Sa; Bo, Zongyi; Zhang, Cunzheng; Feng, Jianguo; Liu, Xianjin

    2018-04-01

    Single-chain variable fragment (scFv) is a kind of antibody that possess only one chain of the complete antibody while maintaining the antigen-specific binding abilities and can be expressed in prokaryotic system. In this study, scFvs against Cry1 toxins were screened out from an immunized mouse phage displayed antibody library, which was successfully constructed with capacity of 6.25 × 10 7  CFU/mL. Using the mixed and alternative antigen coating strategy and after four rounds of affinity screening, seven positive phage-scFvs against Cry1 toxins were selected and characterized. Among them, clone scFv-3H9 (MG214869) showing relative stable and high binding abilities to six Cry1 toxins was selected for expression and purification. SDS-PAGE indicated that the scFv-3H9 fragments approximately 27 kDa were successfully expressed in Escherichia coli HB2151 strain. The purified scFv-3H9 was used to establish the double antibody sandwich enzyme-linked immunosorbent assay method (DAS-ELISA) for detecting six Cry1 toxins, of which the lowest detectable limits (LOD) and the lowest quantitative limits (LOQ) were 3.14-11.07 and 8.22-39.44 ng mL -1 , respectively, with the correlation coefficient higher than 0.997. The average recoveries of Cry1 toxins from spiked rice leaf samples were ranged from 84 to 95%, with coefficient of variation (CV) less than 8.2%, showing good accuracy for the multi-residue determination of six Cry1 toxins in agricultural samples. This research suggested that the constructed phage display antibody library based on the animal which was immunized with the mixture of several antigens under the same category can be used for the quick and effective screening of generic antibodies.

  19. Sixteen Years of Bt Maize in the EU Hotspot: Why Has Resistance Not Evolved?

    Directory of Open Access Journals (Sweden)

    Pedro Castañera

    Full Text Available The majority of Bt maize production in the European Union (EU is concentrated in northeast Spain, which is Europe's only hotspot where resistance might evolve, and the main target pest, Sesamia nonagrioides, has been exposed to Cry1Ab maize continuously since 1998. The cropping system in northeast Spain has some similar characteristics to those that probably led to rapid resistance failures in two other target noctuid maize pests. These include repeated cultivation of Bt maize in the same fields, low use of refuges, recurring exposure of larvae to non-high dose concentrations of Cry1Ab toxin during the first years of cultivation, low migratory potential, and production concentrated in an irrigated region with few alternative hosts. Available data reveal no evidence of resistance in S. nonagrioides after 16 years of use. We explore the possible reasons for this resistance management success using evolutionary models to consider factors expected to accelerate resistance, and those expected to delay resistance. Low initial adoption rates and the EU policy decision to replace Event 176 with MON 810 Bt maize were key to delaying resistance evolution. Model results suggest that if refuge compliance continues at the present 90%, Bt maize might be used sustainably in northeast Spain for at least 20 more years before resistance might occur. However, obtaining good estimates of the present R allele frequency and level of local assortative mating are crucial to reduce uncertainty about the future success of resistance management.

  20. 40 CFR 180.1154 - CryIA(c) and CryIC derived delta-endotoxins of Bacillus thuringiensis var. kurstaki encapsulated...

    Science.gov (United States)

    2010-07-01

    ... expression plasmid and cloning vector genetic constructs. 180.1154 Section 180.1154 Protection of Environment... RESIDUES IN FOOD Exemptions From Tolerances § 180.1154 CryIA(c) and CryIC derived delta-endotoxins of... plasmid and cloning vector genetic constructs. CryIA(c) and CryIC derived delta-endotoxins of Bacillus...

  1. Cry3A δ-endotoxin gene mutagenized for enhanced toxicity

    African Journals Online (AJOL)

    Bacillus thuringiensis Cry3A gene was redesigned for high expression in Norwegian spruce and the sequence was slightly modified to allow for simple N- and C- terminal deletions and domain II loop 1 exchange for synthetic oligos. Modified Cry3A toxins from 13 variants of the synthetic gene were expressed in Escherichia ...

  2. Confirmation of a predicted lack of IgE binding to Cry3Bb1 from genetically modified (GM) crops.

    Science.gov (United States)

    Nakajima, Osamu; Koyano, Satoru; Akiyama, Hiroshi; Sawada, Jun-Ichi; Teshima, Reiko

    2010-04-01

    Some GM crops including MON863 corn and stack varieties contain Cry3Bb1 protein. Cry3Bb1 is very important from the standpoint of assessing the safety of GM crops. In this study Cry3Bb1 was assessed from the standpoint of possible binding to IgE from allergy patients. First, an ELISA that was improved in our laboratory was used to test serum samples from 13 corn allergy patients in the United States with recombinant Cry3Bb1 expressed in Escherichia coli, and serum samples from 55 patients in Japan with various food allergies were also assayed. Two samples from the Japanese allergy patients were suspected of being positive, but Western blotting analysis with purified Cry3Bb1 indicated that the binding between IgE and Cry3Bb1 was nonspecific. Ultimately, no specific binding between IgE and recombinant Cry3Bb1 was detected. Next, all proteins extracted from MON863 corn and non-GM corn were probed with IgE antibodies in serum samples from the corn allergy patients by Western blotting, but the staining patterns of MON863 and non-GM corn were similar, meaning that unintended allergic reactions to MON863 are unlikely to occur. Our study provides additional information that confirms the predicted lack of IgE binding to Cry3Bb1 in people with existing food allergies. Copyright 2009 Elsevier Inc. All rights reserved.

  3. Risk Assessment of Genetically Engineered Maize Resistant to Diabrotica spp.: Influence on Above-Ground Arthropods in the Czech Republic.

    Directory of Open Access Journals (Sweden)

    Zdeňka Svobodová

    Full Text Available Transgenic maize MON88017, expressing the Cry3Bb1 toxin from Bacillus thuringiensis (Bt maize, confers resistance to corn rootworms (Diabrotica spp. and provides tolerance to the herbicide glyphosate. However, prior to commercialization, substantial assessment of potential effects on non-target organisms within agroecosystems is required. The MON88017 event was therefore evaluated under field conditions in Southern Bohemia in 2009-2011, to detect possible impacts on the above-ground arthropod species. The study compared MON88017, its near-isogenic non-Bt hybrid DK315 (treated or not treated with the soil insecticide Dursban 10G and two non-Bt reference hybrids (KIPOUS and PR38N86. Each hybrid was grown on five 0.5 ha plots distributed in a 14-ha field with a Latin square design. Semiquantitative ELISA was used to verify Cry3Bb1 toxin levels in the Bt maize. The species spectrum of non-target invertebrates changed during seasons and was affected by weather conditions. The thrips Frankliniella occidentalis was the most abundant species in all three successive years. The next most common species were aphids Rhopalosiphum padi and Metopolophium dirhodum. Frequently observed predators included Orius spp. and several species within the Coccinellidae. Throughout the three-year study, analysis of variance indicated some significant differences (P<0.05. Multivariate analysis showed that the abundance and diversity of plant dwelling insects was similar in maize with the same genetic background, for both Bt (MON88017 and non-Bt (DK315 untreated or insecticide treated. KIPOUS and PR38N86 showed some differences in species abundance relative to the Bt maize and its near-isogenic hybrid. However, the effect of management regime on arthropod community was insignificant and accounted only for a negligible portion of the variability.

  4. Does Cry1Ab protein affect learning performances of the honey bee Apis mellifera L. (Hymenoptera, Apidae)?

    Science.gov (United States)

    Ramirez-Romero, R; Desneux, N; Decourtye, A; Chaffiol, A; Pham-Delègue, M H

    2008-06-01

    Genetically modified Bt crops are increasingly used worldwide but side effects and especially sublethal effects on beneficial insects remain poorly studied. Honey bees are beneficial insects for natural and cultivated ecosystems through pollination. The goal of the present study was to assess potential effects of two concentrations of Cry1Ab protein (3 and 5000 ppb) on young adult honey bees. Following a complementary bioassay, our experiments evaluated effects of the Cry1Ab on three major life traits of young adult honey bees: (a) survival of honey bees during sub-chronic exposure to Cry1Ab, (b) feeding behaviour, and (c) learning performance at the time that honey bees become foragers. The latter effect was tested using the proboscis extension reflex (PER) procedure. The same effects were also tested using a chemical pesticide, imidacloprid, as positive reference. The tested concentrations of Cry1Ab protein did not cause lethal effects on honey bees. However, honey bee feeding behaviour was affected when exposed to the highest concentration of Cry1Ab protein, with honey bees taking longer to imbibe the contaminated syrup. Moreover, honey bees exposed to 5000 ppb of Cry1Ab had disturbed learning performances. Honey bees continued to respond to a conditioned odour even in the absence of a food reward. Our results show that transgenic crops expressing Cry1Ab protein at 5000 ppb may affect food consumption or learning processes and thereby may impact honey bee foraging efficiency. The implications of these results are discussed in terms of risks of transgenic Bt crops for honey bees.

  5. CRY 1AB trangenic cowpea obtained by nodal electroporation ...

    African Journals Online (AJOL)

    Electroporation-mediated genetic transformation was used to introduce Cry 1 Ab insecticidal gene into cowpea. Nodal buds were electroporated in planta with a plasmid carrying the Cry 1Ab and antibiotic resistance npt II genes driven by a 35S CaMV promoter. T1 seeds derived from electroporated branches were selected ...

  6. Consequences for Protaphorura armata (Collembola: Onychiuridae) following exposure to genetically modified Bacillus thuringiensis (Bt) maize and non-Bt maize

    DEFF Research Database (Denmark)

    Heckmann, Lars-Henrik; Griffiths, Bryan S; Caul, Sandra

    2006-01-01

    Studies on the effect of genetically modified Bacillus thuringiensis (Bt) crops on true soil dwelling non-target arthropods are scarce. The objective of this study was to assess the influence of a 4-week exposure to two Bt maize varieties (Cry1Ab) Cascade and MEB307 on the collembolan Protaphorur...

  7. Ethylene Contributes to maize insect resistance1-Mediated Maize Defense against the Phloem Sap-Sucking Corn Leaf Aphid1[OPEN

    Science.gov (United States)

    Louis, Joe; Basu, Saumik; Varsani, Suresh; Castano-Duque, Lina; Jiang, Victoria; Williams, W. Paul; Felton, Gary W.; Luthe, Dawn S.

    2015-01-01

    Signaling networks among multiple phytohormones fine-tune plant defense responses to insect herbivore attack. Previously, it was reported that the synergistic combination of ethylene (ET) and jasmonic acid (JA) was required for accumulation of the maize insect resistance1 (mir1) gene product, a cysteine (Cys) proteinase that is a key defensive protein against chewing insect pests in maize (Zea mays). However, this study suggests that mir1-mediated resistance to corn leaf aphid (CLA; Rhopalosiphum maidis), a phloem sap-sucking insect pest, is independent of JA but regulated by the ET-signaling pathway. Feeding by CLA triggers the rapid accumulation of mir1 transcripts in the resistant maize genotype, Mp708. Furthermore, Mp708 provided elevated levels of antibiosis (limits aphid population)- and antixenosis (deters aphid settling)-mediated resistance to CLA compared with B73 and Tx601 maize susceptible inbred lines. Synthetic diet aphid feeding trial bioassays with recombinant Mir1-Cys Protease demonstrates that Mir1-Cys Protease provides direct toxicity to CLA. Furthermore, foliar feeding by CLA rapidly sends defensive signal(s) to the roots that trigger belowground accumulation of the mir1, signifying a potential role of long-distance signaling in maize defense against the phloem-feeding insects. Collectively, our data indicate that ET-regulated mir1 transcript accumulation, uncoupled from JA, contributed to heightened resistance to CLA in maize. In addition, our results underscore the significance of ET acting as a central node in regulating mir1 expression to different feeding guilds of insect herbivores. PMID:26253737

  8. Midgut GPI-anchored proteins with alkaline phosphatase activity from the cotton boll weevil (Anthonomus grandis) are putative receptors for the Cry1B protein of Bacillus thuringiensis.

    Science.gov (United States)

    Martins, Erica Soares; Monnerat, Rose Gomes; Queiroz, Paulo Roberto; Dumas, Vinicius Fiuza; Braz, Shélida Vasconcelos; de Souza Aguiar, Raimundo Wagner; Gomes, Ana Cristina Menezes Mendes; Sánchez, Jorge; Bravo, Alejandra; Ribeiro, Bergmann Morais

    2010-02-01

    Cry toxins from Bacillus thuringiensis (Bt) are used for insect control. They interact with specific receptors located on the host cell surface and are activated by host proteases following receptor binding resulting in midgut epithelial cells lysis. In this work we had cloned, sequenced and expressed a cry1Ba toxin gene from the B thuringiensis S601 strain which was previously shown to be toxic to Anthonomus grandis, a cotton pest. The Cry1Ba6 protein expressed in an acrystaliferous B. thuringiensis strain was toxic to A. grandis in bioassays. The binding of Cry1Ba6 toxin to proteins located in the midgut brush border membrane of A. grandis was analyzed and we found that Cry1Ba6 binds to two proteins (62 and 65kDa) that showed alkaline phosphatase (ALP) activity. This work is the first report that shows the localization of Cry toxin receptors in the midgut cells of A. grandis. 2009. Published by Elsevier Ltd.

  9. Effects of the cryptochrome CryB from Rhodobacter sphaeroides on global gene expression in the dark or blue light or in the presence of singlet oxygen.

    Directory of Open Access Journals (Sweden)

    Sebastian Frühwirth

    Full Text Available Several regulators are controlling the formation of the photosynthetic apparatus in the facultatively photosynthetic bacterium Rhodobacter sphaeroides. Among the proteins affecting photosynthesis gene expression is the blue light photoreceptor cryptochrome CryB. This study addresses the effect of CryB on global gene expression. The data reveal that CryB does not only influence photosynthesis gene expression but also genes for the non-photosynthetic energy metabolism like citric acid cycle and oxidative phosphorylation. In addition several genes involved in RNA processing and in transcriptional regulation are affected by a cryB deletion. Although CryB was shown to undergo a photocycle it does not only affect gene expression in response to blue light illumination but also in response to singlet oxygen stress conditions. While there is a large overlap in these responses, some CryB-dependent effects are specific for blue-light or photooxidative stress. In addition to protein-coding genes some genes for sRNAs show CryB-dependent expression. These findings give new insight into the function of bacterial cryptochromes and demonstrate for the first time a function in the oxidative stress response.

  10. 40 CFR 174.506 - Bacillus thuringiensis Cry34Ab1 and Cry35Ab1 proteins in corn; exemption from the requirement of...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry34Ab1 and Cry35Ab1 proteins in corn; exemption from the requirement of a tolerance. 174.506 Section 174.506 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS...

  11. Susceptibility of Anthonomus grandis (cotton boll weevil) and Spodoptera frugiperda (fall armyworm) to a cry1ia-type toxin from a Brazilian Bacillus thuringiensis strain.

    Science.gov (United States)

    Grossi-de-Sa, Maria Fatima; Quezado de Magalhaes, Mariana; Silva, Marilia Santos; Silva, Shirley Margareth Buffon; Dias, Simoni Campos; Nakasu, Erich Yukio Tempel; Brunetta, Patricia Sanglard Felipe; Oliveira, Gustavo Ramos; Neto, Osmundo Brilhante de Oliveira; Sampaio de Oliveira, Raquel; Soares, Luis Henrique Barros; Ayub, Marco Antonio Zachia; Siqueira, Herbert Alvaro Abreu; Figueira, Edson L Z

    2007-09-30

    Different isolates of the soil bacterium Bacillus thuringiensis produce multiple crystal (Cry) proteins toxic to a variety of insects, nematodes and protozoans. These insecticidal Cry toxins are known to be active against specific insect orders, being harmless to mammals, birds, amphibians, and reptiles. Due to these characteristics, genes encoding several Cry toxins have been engineered in order to be expressed by a variety of crop plants to control insectpests. The cotton boll weevil, Anthonomus grandis, and the fall armyworm, Spodoptera frugiperda, are the major economically devastating pests of cotton crop in Brazil, causing severe losses, mainly due to their endophytic habit, which results in damages to the cotton boll and floral bud structures. A cry1Ia-type gene, designated cry1Ia12, was isolated and cloned from the Bt S811 strain. Nucleotide sequencing of the cry1Ia12 gene revealed an open reading frame of 2160 bp, encoding a protein of 719 amino acid residues in length, with a predicted molecular mass of 81 kDa. The amino acid sequence of Cry1Ia12 is 99% identical to the known Cry1Ia proteins and differs from them only in one or two amino acid residues positioned along the three domains involved in the insecticidal activity of the toxin. The recombinant Cry1Ia12 protein, corresponding to the cry1Ia12 gene expressed in Escherichia coli cells, showed moderate toxicity towards first instar larvae of both cotton boll weevil and fall armyworm. The highest concentration of the recombinant Cry1Ia12 tested to achieve the maximum toxicities against cotton boll weevil larvae and fall armyworm larvae were 230 microg/mL and 5 microg/mL, respectively. The herein demonstrated insecticidal activity of the recombinant Cry1Ia12 toxin against cotton boll weevil and fall armyworm larvae opens promising perspectives for the genetic engineering of cotton crop resistant to both these devastating pests in Brazil.

  12. Phage-Mediated Immuno-PCR for Ultrasensitive Detection of Cry1Ac Protein Based on Nanobody.

    Science.gov (United States)

    Liu, Yuanyuan; Jiang, Dongjian; Lu, Xin; Wang, Wei; Xu, Yang; He, Qinghua

    2016-10-11

    The widespread use of Cry proteins in transgenic plants for insect control has raised concerns about the environment and food safety in the public. An effective detection method for introduced Cry proteins is of significance for environmental risk assessment and product quality control. This paper describes a novel phage mediated immuno-PCR (iPCR) for the ultrasensitive determination of Cry proteins based on nanobodies. Three nanobodies against Cry1Ac protein were obtained from a naı̈ve phage displayed nanobody library without animal immunization process and were applied to the iPCR assay for Cry1Ac. The phage-mediated iPCR for Cry1Ac based on nanobodies showed a dynamic range of 0.001-100 ng/mL and a limit detection of 0.1 pg/mL. Specific measurement of this established method was performed by testing cross-reativity of other Cry1Ac analogues, and the result showed negligible cross-reactivity with other test Cry proteins (Cry1Ab, Cry1F, Cry3B). Furthermore, the phage-mediated iPCR based on nanobody should be easily applicable to the detection of many other Cry proteins.

  13. Establishment of a sensitive time-resolved fluoroimmunoassay for detection of Bacillus thuringiensis Cry1Ie toxin based nanobody from a phage display library.

    Science.gov (United States)

    Xu, Chongxin; Liu, Xiaoqin; Zhang, Cunzheng; Zhang, Xiao; Zhong, Jianfeng; Liu, Yuan; Hu, Xiaodan; Lin, Manman; Liu, Xianjin

    2017-02-01

    Cry1Ie toxin was an insect-resistant protein used in genetically modified crops (GMC). In this study, a large human VH gene nanobodies phage displayed library was employed to select anti-Cry1Ie toxin antibody by affinity panning. After 5 rounds of panning, total 12 positive monoclonal phage particles were obtained. One of the identified positive phage nanobody was expressed in E.coli BL21 and the purified protein was indicated as a molecular mass of approximately 20 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Then a sensitive indirect competitive time-resolved fluoroimmunoassay (IC-TRFIA) was established for detection of Cry1Ie toxin by the purified protein. The working range of detection for Cry1Ie toxin standards in the IC-TRFIA were 0.08-6.44 ng mL -1 and the medium inhibition of control (IC 50 ) was 0.73 ng mL -1 . It showed a weak cross-reactivity with Cry1Ab toxin (at 5.6%), but did not recognize Cry1B, Cry1C, Cry1F, and Cry2A toxins (were <0.1%). The average recoveries of Cry1Ie toxin from respectively spiked in rice, corn and soil samples were in the range of 83.5%-96.6% and with a coefficient of variation (CV) among 2.0%-8.6%. These results showed the IC-TRFIA was promising for detection of Cry1Ie toxin in agricultural and environmental samples. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Increased long-flight activity triggered in beet armyworm by larval feeding on diet containing Cry1Ac protoxin.

    Directory of Open Access Journals (Sweden)

    Xing Fu Jiang

    Full Text Available Evaluating ecological safety and conducting pest risk analysis for transgenic crops are vitally important before their commercial planting. The beet armyworm, Spodoptera exigua, a long-distance migratory insect pest, is not a direct target of transgenic Cry1Ac-expressing cotton in China, but nevertheless it has recently become an important pest. Migrants leaving their natal field arrive in other appropriate habitat far away in a short time, often followed by larval outbreaks. S. exigua has low susceptibility to Cry1Ac. However, our results from laboratory experiments identified (i sublethal effects of Cry1Ac protoxin on larval development rate, larval and pupal weight, and adult lifetime fecundity, and (ii increased long-flight behavior triggered by Cry1Ac which may contribute to larval outbreaks elsewhere. No significant differences in larval mortality, pupation rate, adult emergence rate, longevity, pre-oviposition period, or oviposition period were observed between controls and larvae fed on artificial diet incorporating a low concentration of Cry1Ac protoxin. The negative sublethal effects on some developmental and reproductive traits and lack of effect on others suggest they do not contribute to the observed severity of S. exigua outbreaks after feeding on Cry1Ac cotton. Interestingly, the percentage of long fliers increased significantly when larvae were reared on diet containing either of two low-dose treatments of Cry1Ac, suggesting a possible increased propensity to disperse long distances triggered by Cry1Ac. We hypothesize that negative effects on development and reproduction caused by Cry1Ac in the diet are offset by increased flight propensity triggered by the poor food conditions, thereby improving the chances of escaping adverse local conditions before oviposition. Increased long-flight propensity in turn may amplify the area damaged by outbreak populations. This phenomenon might be common in other migratory insect pests receiving

  15. Synergism and Antagonism between Bacillus thuringiensis Vip3A and Cry1 Proteins in Heliothis virescens, Diatraea saccharalis and Spodoptera frugiperda

    Science.gov (United States)

    Lemes, Ana Rita Nunes; Davolos, Camila Chiaradia; Legori, Paula Cristina Brunini Crialesi; Fernandes, Odair Aparecido; Ferré, Juan; Lemos, Manoel Victor Franco; Desiderio, Janete Apparecida

    2014-01-01

    Second generation Bt crops (insect resistant crops carrying Bacillus thuringiensis genes) combine more than one gene that codes for insecticidal proteins in the same plant to provide better control of agricultural pests. Some of the new combinations involve co-expression of cry and vip genes. Because Cry and Vip proteins have different midgut targets and possibly different mechanisms of toxicity, it is important to evaluate possible synergistic or antagonistic interactions between these two classes of toxins. Three members of the Cry1 class of proteins and three from the Vip3A class were tested against Heliothis virescens for possible interactions. At the level of LC50, Cry1Ac was the most active protein, whereas the rest of proteins tested were similarly active. However, at the level of LC90, Cry1Aa and Cry1Ca were the least active proteins, and Cry1Ac and Vip3A proteins were not significantly different. Under the experimental conditions used in this study, we found an antagonistic effect of Cry1Ca with the three Vip3A proteins. The interaction between Cry1Ca and Vip3Aa was also tested on two other species of Lepidoptera. Whereas antagonism was observed in Spodoptera frugiperda, synergism was found in Diatraea saccharalis. In all cases, the interaction between Vip3A and Cry1 proteins was more evident at the LC90 level than at the LC50 level. The fact that the same combination of proteins may result in a synergistic or an antagonistic interaction may be an indication that there are different types of interactions within the host, depending on the insect species tested. PMID:25275646

  16. No impact of Bt soybean that express Cry1Ac protein on biological traits of Euschistus heros (Hemiptera, Pentatomidae and its egg parasitoid Telenomus podisi (Hymenoptera, Platygastridae

    Directory of Open Access Journals (Sweden)

    Gabriela Vieira Silva

    2014-09-01

    Full Text Available No impact of Bt soybean that express Cry1Ac protein on biological traits of Euschistus heros (Hemiptera, Pentatomidae and its egg parasitoid Telenomus podisi (Hymenoptera, Platygastridae. Biological traits of the stink bug Euschistus heros and its main biological control agent Telenomus podisi were evaluated under controlled environmental conditions (25 ± 2ºC; 60 ± 10% RH; and 14/10 h photoperiod by placing first instar nymphs into Petri dishes with pods originating from two soybean isolines (Bt-soybean MON 87701 × MON 89788, which expresses the Cry1Ac protein, and its near non-Bt isoline A5547 where they remained until the adult stage. Due to gregarious behavior exhibited by first instar nymphs, they were individualized only when at the second instar. Adults were separated by sex and weighed, and pronotum width of each individual was subsequently measured. They were placed into plastic boxes containing soybean grains of the same soybean isoline as food source. Egg viability and female fecundity were assessed in adult individuals. Adult females of T. podisi (up to 24h old were placed with eggs of E. heros from mothers reared on both soybean isolines. Nymphal development time, insect weight, pronotum width, sex ratio, female fecundity, and egg viability (% emergence of Euschistus heros did not differ between treatments. Eggto-adult development time, female longevity, sex ratio, and percentage of parasitized eggs were not impacted by the Bt-soybean (expressing Cry1Ac protein. Results indicate that the Bt-soybean, MON 87701 × MON 89788, has no direct significant impact on the two studied species.

  17. Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize.

    Science.gov (United States)

    Shen, Bo; Allen, William B; Zheng, Peizhong; Li, Changjiang; Glassman, Kimberly; Ranch, Jerry; Nubel, Douglas; Tarczynski, Mitchell C

    2010-07-01

    Increasing seed oil production is a major goal for global agriculture to meet the strong demand for oil consumption by humans and for biodiesel production. Previous studies to increase oil synthesis in plants have focused mainly on manipulation of oil pathway genes. As an alternative to single-enzyme approaches, transcription factors provide an attractive solution for altering complex traits, with the caveat that transcription factors may face the challenge of undesirable pleiotropic effects. Here, we report that overexpression of maize (Zea mays) LEAFY COTYLEDON1 (ZmLEC1) increases seed oil by as much as 48% but reduces seed germination and leaf growth in maize. To uncouple oil increase from the undesirable agronomic traits, we identified a LEC1 downstream transcription factor, maize WRINKLED1 (ZmWRI1). Overexpression of ZmWRI1 results in an oil increase similar to overexpression of ZmLEC1 without affecting germination, seedling growth, or grain yield. These results emphasize the importance of field testing for developing a commercial high-oil product and highlight ZmWRI1 as a promising target for increasing oil production in crops.

  18. Molecular basis for vulnerability to mitochondrial and oxidative stress in a neuroendocrine CRI-G1 cell line.

    Directory of Open Access Journals (Sweden)

    Natasha Chandiramani

    2011-01-01

    Full Text Available Many age-associated disorders (including diabetes, cancer, and neurodegenerative diseases are linked to mitochondrial dysfunction, which leads to impaired cellular bioenergetics and increased oxidative stress. However, it is not known what genetic and molecular pathways underlie differential vulnerability to mitochondrial dysfunction observed among different cell types.Starting with an insulinoma cell line as a model for a neuronal/endocrine cell type, we isolated a novel subclonal line (named CRI-G1-RS that was more susceptible to cell death induced by mitochondrial respiratory chain inhibitors than the parental CRI-G1 line (renamed CRI-G1-RR for clarity. Compared to parental RR cells, RS cells were also more vulnerable to direct oxidative stress, but equally vulnerable to mitochondrial uncoupling and less vulnerable to protein kinase inhibition-induced apoptosis. Thus, differential vulnerability to mitochondrial toxins between these two cell types likely reflects differences in their ability to handle metabolically generated reactive oxygen species rather than differences in ATP production/utilization or in downstream apoptotic machinery. Genome-wide gene expression analysis and follow-up biochemical studies revealed that, in this experimental system, increased vulnerability to mitochondrial and oxidative stress was associated with (1 inhibition of ARE/Nrf2/Keap1 antioxidant pathway; (2 decreased expression of antioxidant and phase I/II conjugation enzymes, most of which are Nrf2 transcriptional targets; (3 increased expression of molecular chaperones, many of which are also considered Nrf2 transcriptional targets; (4 increased expression of β cell-specific genes and transcription factors that specify/maintain β cell fate; and (5 reconstitution of glucose-stimulated insulin secretion.The molecular profile presented here will enable identification of individual genes or gene clusters that shape vulnerability to mitochondrial dysfunction and

  19. Effect of gamma irradiation on nutritional components and Cry1Ab protein in the transgenic rice with a synthetic cry1Ab gene from Bacillus thuringiensis

    International Nuclear Information System (INIS)

    Wu Dianxing; Ye Qingfu; Wang Zhonghua; Xia Yingwu

    2004-01-01

    The effects of gamma irradiation on the transgenic rice containing a synthetic cry1Ab gene from Bacillus thuringiensis were investigated. There was almost no difference in the content of the major nutritional components, i.e. crude protein, crude lipid, eight essential amino acids and total ash between the irradiated grains and the non-irradiated transgenic rice. However, the amounts of Cry1Ab protein and apparent amylose in the irradiated transgenic rice were reduced significantly by the doses higher than 200 Gy. In vivo observation showed that Cry1Ab protein contents also decreased in the fresh leaf tissues of survival seedlings after irradiation with 200 Gy or higher doses and showed inhibition of seedling growth. The results indicate that gamma irradiation might improve the quality of transgenic rice due to removal of the toxic Cry1Ab protein

  20. The midgut cadherin-like gene is not associated with resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella (L.).

    Science.gov (United States)

    Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun

    2015-03-01

    The Gram-positive bacterium Bacillus thuringiensis (Bt) produces Cry toxins that have been used to control important agricultural pests. Evolution of resistance in target pests threatens the effectiveness of these toxins when used either in sprayed biopesticides or in Bt transgenic crops. Although alterations of the midgut cadherin-like receptor can lead to Bt Cry toxin resistance in many insects, whether the cadherin gene is involved in Cry1Ac resistance of Plutella xylostella (L.) remains unclear. Here, we present experimental evidence that resistance to Cry1Ac or Bt var. kurstaki (Btk) in P. xylostella is not due to alterations of the cadherin gene. The bona fide P. xylostella cadherin cDNA sequence was cloned and analyzed, and comparisons of the cadherin cDNA sequence among susceptible and resistant P. xylostella strains confirmed that Cry1Ac resistance was independent of mutations in this gene. In addition, real-time quantitative PCR (qPCR) indicated that cadherin transcript levels did not significantly differ among susceptible and resistant P. xylostella strains. RNA interference (RNAi)-mediated suppression of cadherin gene expression did not affect larval susceptibility to Cry1Ac toxin. Furthermore, genetic linkage assays using four cadherin gDNA allelic biomarkers confirmed that the cadherin gene is not linked to resistance against Cry1Ac in P. xylostella. Taken together, our findings demonstrate that Cry1Ac resistance of P. xylostella is independent of the cadherin gene. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Sex stereotypes influence adults' perception of babies' cries.

    Science.gov (United States)

    Reby, David; Levréro, Florence; Gustafsson, Erik; Mathevon, Nicolas

    2016-04-14

    Despite widespread evidence that gender stereotypes influence human parental behavior, their potential effects on adults' perception of babies' cries have been overlooked. In particular, whether adult listeners overgeneralize the sex dimorphism that characterizes the voice of adult speakers (men are lower-pitched than women) to their perception of babies' cries has not been investigated. We used playback experiments combining natural and re-synthesised cries of 3 month-old babies to investigate whether the interindividual variation in the fundamental frequency (pitch) of cries affected adult listeners' identification of the baby's sex, their perception the baby's femininity and masculinity, and whether these biases interacted with their perception of the level of discomfort expressed by the cry. We show that low-pitched cries are more likely to be attributed to boys and high-pitched cries to girls, despite the absence of sex differences in pitch. Moreover, low-pitched boys are perceived as more masculine and high-pitched girls are perceived as more feminine. Finally, adult men rate relatively low-pitched cries as expressing more discomfort when presented as belonging to boys than to girls. Such biases in caregivers' responses to babies' cries may have implications on children's immediate welfare and on the development of their gender identity.

  2. Induction of rapid and selective cell necrosis in Drosophila using Bacillus thuringiensis Cry toxin and its silkworm receptor.

    Science.gov (United States)

    Obata, Fumiaki; Tanaka, Shiho; Kashio, Soshiro; Tsujimura, Hidenobu; Sato, Ryoichi; Miura, Masayuki

    2015-07-08

    Genetic ablation of target cells is a powerful tool to study the origins and functions of cells, tissue regeneration, or pathophysiology in a human disease model in vivo. Several methods for selective cell ablation by inducing apoptosis have been established, using exogenous toxins or endogenous proapoptotic genes. However, their application is limited to cells with intact apoptotic machinery. Herein, we established a method for inducing rapid and selective cell necrosis by the pore-forming bacterial toxin Cry1Aa, which is specifically active in cells expressing the Cry1Aa receptor (CryR) derived from the silkworm Bombyx mori. We demonstrated that overexpressing CryR in Drosophila melanogaster tissues induced rapid cell death of CryR-expressing cells only, in the presence of Cry1Aa toxin. Cry/CryR system was effective against both proliferating cells in imaginal discs and polyploid postmitotic cells in the fat body. Live imaging analysis of cell ablation revealed swelling and subsequent osmotic lysis of CryR-positive cells after 30 min of incubation with Cry1Aa toxin. Osmotic cell lysis was still triggered when apoptosis, JNK activation, or autophagy was inhibited, suggesting that Cry1Aa-induced necrotic cell death occurred independently of these cellular signaling pathways. Injection of Cry1Aa into the body cavity resulted in specific ablation of CryR-expressing cells, indicating the usefulness of this method for in vivo cell ablation. With Cry toxins from Bacillus thuringiensis, we developed a novel method for genetic induction of cell necrosis. Our system provides a "proteinous drill" for killing target cells through physical injury of the cell membrane, which can potentially be used to ablate any cell type in any organisms, even those that are resistant to apoptosis or JNK-dependent programmed cell death.

  3. Bacillus thuringiensis delta-endotoxin Cry1 hybrid proteins with increased activity against the Colorado potato beetle

    NARCIS (Netherlands)

    Naimov, S.; Weemen-Hendriks, M.; Dukiandjiev, S.; Maagd, de R.A.

    2001-01-01

    Cry1 delta-endotoxins of Bacillus thuringiensis are generally active against lepidopteran insects, but Cry1Ba and Cry1Ia have additional, though low, levels of activity against coleopterans such as the Colorado potato beetle. Here we report the construction of Cry1Ba/Cry1Ia hybrid toxins which have

  4. Cry, Baby, Cry: Expression of Distress As a Biomarker and Modulator in Autism Spectrum Disorder

    Science.gov (United States)

    Hiroi, Noboru; Scattoni, Maria Luisa

    2017-01-01

    Abstract Background: Early diagnosis of autism spectrum disorder is critical, because early intensive treatment greatly improves its prognosis. Methods: We review studies that examined vocalizations of infants with autism spectrum disorder and mouse models of autism spectrum disorder as a potential means to identify autism spectrum disorder before the symptomatic elements of autism spectrum disorder emerge. We further discuss clinical implications and future research priorities in the field. Results: Atypical early vocal calls (i.e., cry) may represent an early biomarker for autism spectrum disorder (or at least for a subgroup of children with autism spectrum disorder), and thus can assist with early detection. Moreover, cry is likely more than an early biomarker of autism spectrum disorder; it is also an early causative factor in the development of the disorder. Specifically, atypical crying, as recently suggested, might induce a “self-generated environmental factor” that in turn, influences the prognosis of the disorder. Because atypical crying in autism spectrum disorder is difficult to understand, it may have a negative impact on the quality of care by the caregiver (see graphical abstract). Conclusions: Evidence supports the hypothesis that atypical vocalization is an early, functionally integral component of autism spectrum disorder. PMID:28204487

  5. Study of the allergenic potential of Bacillus thuringiensis Cry1Ac toxin following intra-gastric administration in a murine model of food-allergy.

    Science.gov (United States)

    Santos-Vigil, Karla I; Ilhuicatzi-Alvarado, Damaris; García-Hernández, Ana L; Herrera-García, Juan S; Moreno-Fierros, Leticia

    2018-06-07

    Cry1Ac toxin, from Bacillus thuringiensis, is widely used as a biopesticide and expressed in genetically modified (GM) plants used for human and animal consumption. Since Cry1Ac is also immunogenic and able to activate macrophages, it is crucial to thoroughly evaluate the immunological effects elicited after intra-gastric administration. The allergenic potential of purified Cry1Ac was assessed and compared with that induced in a murine model of food-allergy to ovalbumin (OVA), in which animals are sensitized with the adjuvant Cholera toxin (CT). Mice were weekly intragastrically administered with: i) vehicle phosphate-buffered saline (PBS), ii) OVA, iii) OVA plus CT iv) Cry1Ac or v) OVA plus Cry1Ac. Seven weeks after, mice were intragastrically challenged and allergic reactions along with diverse allergy related immunological parameters were evaluated at systemic and intestinal level. The groups immunized with, Cry1Ac, OVA/Cry1Ac or OVA/CT developed moderate allergic reactions, induced significant IgE response and increased frequencies of intestinal granulocytes, IgE+ eosinophils and IgE+ lymphocytes. These same groups also showed colonic lymphoid hyperplasia, notably in humans, this has been associated with food allergy and intestinal inflammation. Although the adjuvant and allergenic potential of CT were higher than the effects of Cry1Ac, the results show that applied intra-gastrically at 50 μg doses, Cry1Ac is immunogenic, moderately allergenic and able to provoke intestinal lymphoid hyperplasia. Moreover, Cry1Ac is also able to induce anaphylaxis, since when mice were intragastrically sensitized with increasing doses of Cry1Ac, with every dose tested, a significant drop in rectal temperature was recorded after intravenous challenge. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Susceptibility and aversion of Spodoptera frugiperda to Cry1F Bt maize and considerations for insect resistance management

    Science.gov (United States)

    Bacillus thuringiensis (Bt) maize was developed primarily for North American pests such as European corn borer (Ostrinia nubilalis Hubner). However, most Bt maize products also are cultivated outside of North America, where the primary pests are different and often have lower susceptibility to Bt to...

  7. Transgenic potato plants expressing cry3A gene confer resistance to Colorado potato beetle.

    Science.gov (United States)

    Mi, Xiaoxiao; Ji, Xiangzhuo; Yang, Jiangwei; Liang, Lina; Si, Huaijun; Wu, Jiahe; Zhang, Ning; Wang, Di

    2015-07-01

    The Colorado potato beetle (Leptinotarsa decemlineata Say, CPB) is a fatal pest, which is a quarantine pest in China. The CPB has now invaded the Xinjiang Uygur Autonomous Region and is constantly spreading eastward in China. In this study, we developed transgenic potato plants expressing cry3A gene. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the cry3A gene expressed in leaves, stems and roots of the transgenic plants under the control of CaMV 35S promoter, while they expressed only in leaves and stems under the control of potato leaf and stem-specific promoter ST-LS1. The mortality of the larvae was higher (28% and 36%) on the transgenic plant line 35S1 on the 3rd and 4th days, and on ST3 (48%) on the 5th day after inoculation with instar larvae. Insect biomass accumulation on the foliage of the transgenic plant lines 35S1, 35S2 and ST3 was significantly lower (0.42%, 0.43% and 0.42%). Foliage consumption was lowest on transgenic lines 35S8 and ST2 among all plant foliage (7.47 mg/larvae/day and 12.46 mg/larvae/day). The different transgenic plant foliages had varied inhibition to larval growth. The survivors on the transgenic lines obviously were smaller than their original size and extremely weak. The transgenic potato plants with CPB resistance could be used to develop germplasms or varieties for controlling CPB damage and halting its spread in China. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  8. A 90-day dietary toxicity study of genetically modified rice T1C-1 expressing Cry1C protein in Sprague Dawley rats.

    Directory of Open Access Journals (Sweden)

    Xueming Tang

    Full Text Available In a 90-day study, Sprague Dawley rats were fed transgenic T1C-1 rice expressing Cry1C protein and were compared with rats fed non-transgenic parental rice Minghui 63 and rats fed a basal diet. No adverse effects on animal behavior or weight gain were observed during the study. Blood samples were collected and analyzed, and standard hematological and biochemical parameters were compared. A few of these parameters were found to be significantly different, but were within the normal reference intervals for rats of this breed and age, and were thus not considered to be treatment-related. Following sacrifice, a large number of organs were weighed, and macroscopic and histopathological examinations were performed with no changes reported. The aim of this study was to use a known animal model to determine the safety of the genetically modified (GM rice T1C-1. The results showed no adverse or toxic effects due to T1C-1 rice when tested in this 90-day study.

  9. A 90-day dietary toxicity study of genetically modified rice T1C-1 expressing Cry1C protein in Sprague Dawley rats.

    Science.gov (United States)

    Tang, Xueming; Han, Fangting; Zhao, Kai; Xu, Yan; Wu, Xiao; Wang, Jinbin; Jiang, Lingxi; Shi, Wei

    2012-01-01

    In a 90-day study, Sprague Dawley rats were fed transgenic T1C-1 rice expressing Cry1C protein and were compared with rats fed non-transgenic parental rice Minghui 63 and rats fed a basal diet. No adverse effects on animal behavior or weight gain were observed during the study. Blood samples were collected and analyzed, and standard hematological and biochemical parameters were compared. A few of these parameters were found to be significantly different, but were within the normal reference intervals for rats of this breed and age, and were thus not considered to be treatment-related. Following sacrifice, a large number of organs were weighed, and macroscopic and histopathological examinations were performed with no changes reported. The aim of this study was to use a known animal model to determine the safety of the genetically modified (GM) rice T1C-1. The results showed no adverse or toxic effects due to T1C-1 rice when tested in this 90-day study.

  10. Assessment of potential adjuvanticity of Cry proteins.

    Science.gov (United States)

    Joshi, Saurabh S; Barnett, Brian; Doerrer, Nancy G; Glenn, Kevin; Herman, Rod A; Herouet-Guicheney, Corinne; Hunst, Penny; Kough, John; Ladics, Gregory S; McClain, Scott; Papineni, Sabitha; Poulsen, Lars K; Rascle, Jean-Baptiste; Tao, Ai-Lin; van Ree, Ronald; Ward, Jason; Bowman, Christal C

    2016-08-01

    Genetically modified (GM) crops have achieved success in the marketplace and their benefits extend beyond the overall increase in harvest yields to include lowered use of insecticides and decreased carbon dioxide emissions. The most widely grown GM crops contain gene/s for targeted insect protection, herbicide tolerance, or both. Plant expression of Bacillus thuringiensis (Bt) crystal (Cry) insecticidal proteins have been the primary way to impart insect resistance in GM crops. Although deemed safe by regulatory agencies globally, previous studies have been the basis for discussions around the potential immuno-adjuvant effects of Cry proteins. These studies had limitations in study design. The studies used animal models with extremely high doses of Cry proteins, which when given using the ig route were co-administered with an adjuvant. Although the presumption exists that Cry proteins may have immunostimulatory activity and therefore an adjuvanticity risk, the evidence shows that Cry proteins are expressed at very low levels in GM crops and are unlikely to function as adjuvants. This conclusion is based on critical review of the published literature on the effects of immunomodulation by Cry proteins, the history of safe use of Cry proteins in foods, safety of the Bt donor organisms, and pre-market weight-of-evidence-based safety assessments for GM crops. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Potential subchronic food safety of the stacked trait transgenic maize GH5112E-117C in Sprague-Dawley rats.

    Science.gov (United States)

    Han, Shiwen; Zou, Shiying; He, Xiaoyun; Huang, Kunlun; Mei, Xiaohong

    2016-08-01

    The food safety of stacked trait genetically modified (GM) maize GH5112E-117C containing insect-resistance gene Cry1Ah and glyphosate-resistant gene G2-aroA was evaluated in comparison to non-GM Hi-II maize fed to Sprague-Dawley rats during a 90-day subchronic feeding study. Three different dietary concentrations (12.5, 25 and 50 %, w/w) of the GM maize were used or its corresponding non-GM maize. No biologically significant differences in the animals' clinical signs, body weights, food consumption, hematology, clinical chemistry, organ weights and histopathology were found between the stacked trait GM maize groups, and the non-GM maize groups. The results of the 90-day subchronic feeding study demonstrated that the stacked trait GM maize GH5112E-117C is as safe as the conventional non-GM maize Hi-II.

  12. Nitrogen transporter and assimilation genes exhibit developmental stage-selective expression in maize (Zea mays L.) associated with distinct cis-acting promoter motifs.

    Science.gov (United States)

    Liseron-Monfils, Christophe; Bi, Yong-Mei; Downs, Gregory S; Wu, Wenqing; Signorelli, Tara; Lu, Guangwen; Chen, Xi; Bondo, Eddie; Zhu, Tong; Lukens, Lewis N; Colasanti, Joseph; Rothstein, Steven J; Raizada, Manish N

    2013-10-01

    Nitrogen is considered the most limiting nutrient for maize (Zea mays L.), but there is limited understanding of the regulation of nitrogen-related genes during maize development. An Affymetrix 82K maize array was used to analyze the expression of ≤ 46 unique nitrogen uptake and assimilation probes in 50 maize tissues from seedling emergence to 31 d after pollination. Four nitrogen-related expression clusters were identified in roots and shoots corresponding to, or overlapping, juvenile, adult, and reproductive phases of development. Quantitative real time PCR data was consistent with the existence of these distinct expression clusters. Promoters corresponding to each cluster were screened for over-represented cis-acting elements. The 8-bp distal motif of the Arabidopsis 43-bp nitrogen response element (NRE) was over-represented in nitrogen-related maize gene promoters. This conserved motif, referred to here as NRE43-d8, was previously shown to be critical for nitrate-activated transcription of nitrate reductase (NIA1) and nitrite reductase (NIR1) by the NIN-LIKE PROTEIN 6 (NLP6) in Arabidopsis. Here, NRE43-d8 was over-represented in the promoters of maize nitrate and ammonium transporter genes, specifically those that showed peak expression during early-stage vegetative development. This result predicts an expansion of the NRE-NLP6 regulon and suggests that it may have a developmental component in maize. We also report leaf expression of putative orthologs of nitrite transporters (NiTR1), a transporter not previously reported in maize. We conclude by discussing how each of the four transcriptional modules may be responsible for the different nitrogen uptake and assimilation requirements of leaves and roots at different stages of maize development.

  13. Cloning of partial cry1Ac gene from an indigenous isolate of Bacillus ...

    African Journals Online (AJOL)

    The discoveries of novel cry genes of Bacillus thuringiensis (Bt) with higher toxicity are important for the development of new products. The cry1 family genes are more toxic to the lepidopteran insects according to the previous reports. In the present study, nine indigenous isolates of Bt were used for screening of cry1 genes ...

  14. Expression of a maize Myb transcription factor driven by a putative silk-specific promoter significantly enhances resistance to Helicoverpa zea in transgenic maize.

    Science.gov (United States)

    Johnson, Eric T; Berhow, Mark A; Dowd, Patrick F

    2007-04-18

    Hi II maize (Zea mays) plants were engineered to express maize p1 cDNA, a Myb transcription factor, controlled by a putative silk specific promoter, for secondary metabolite production and corn earworm resistance. Transgene expression did not enhance silk color, but about half of the transformed plant silks displayed browning when cut, which indicated the presence of p1-produced secondary metabolites. Levels of maysin, a secondary metabolite with insect toxicity, were highest in newly emerged browning silks. The insect resistance of transgenic silks was also highest at emergence, regardless of maysin levels, which suggests that other unidentified p1-induced molecules likely contributed to larval mortality. Mean survivor weights of corn earworm larvae fed mature browning transgenic silks were significantly lower than weights of those fed mature nonbrowning transgenic silks. Some transgenic pericarps browned with drying and contained similar molecules found in pericarps expressing a dominant p1 allele, suggesting that the promoter may not be silk-specific.

  15. Congenital asymmetric crying face: a case report

    Directory of Open Access Journals (Sweden)

    Semra Kara

    2011-12-01

    Full Text Available Congenital asymmetric crying face is an anomalia caused by unilateral absence or weakness of depressor anguli oris muscle The major finding of the disease is the absence or weakness in the outer and lower movement of the commissure during crying. The other expression muscles are normal and the face is symmetric at rest. The asymmetry in congenital asymmetric crying face is most evident during infancy but decreases by age. Congenital asymmetric crying face can be associated with cervicofacial, musclebone, respiratory, genitourinary and central nervous system anomalia. It is diagnosed by physical examination. This paper presents a six days old infant with Congenital asymmetric crying face and discusses the case in terms of diagnosis and disease features.

  16. Construction and characterisation of near-isogenic Plutella xylostella (Lepidoptera: Plutellidae) strains resistant to Cry1Ac toxin.

    Science.gov (United States)

    Zhu, Xun; Lei, Yanyuan; Yang, Yanjv; Baxter, Simon W; Li, Jianhong; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Guo, Zhaojiang; Fu, Wei; Zhang, Youjun

    2015-02-01

    Resistance to insecticidal Bacillus thuringiensis (Bt) toxins has arisen in multiple populations of the worldwide Brassica pest Plutella xylostella (L.). To help elucidate the mechanism of resistance to Bt Cry1Ac toxin in a population from Florida, two pairs of near-isogenic lines (NILs) were developed. NILs were generated using either backcross or recombinant inbred line methodologies and evaluated for near-isogenicity with inter-simple-sequence-repeat (ISSR) markers. Backcross line BC6F4 maintained a similar level of Cry1Ac resistance to parental strain DBM1Ac-R (>5000-fold) yet showed 98.24% genetic similarity to the susceptible parental strain DBM1Ac-S. Single-pair backcrosses between DBM1Ac-S and BC6F4 revealed that Cry1Ac resistance was controlled by one recessive autosomal locus. BC6F4 exhibited high levels of cross-resistance to Cry1Ab and Cry1Ah but not to Cry1Ca or Cry1Ie. Near-isogenic strains were constructed to provide a reliable biological system to investigate the mechanism of Cry1Ac resistance in P. xylostella. These data suggest that resistance to Cry1Ac, Cry1Ab and Cry1Ah is probably caused by the alteration of a common receptor not recognised by Cry1Ca or Cry1Ie. Understanding Bt toxin cross-resistance provides valuable information to consider when developing pest control strategies to delay resistance evolution. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.

  17. Identification of small secreted peptides (SSPs) in maize and expression analysis of partial SSP genes in reproductive tissues.

    Science.gov (United States)

    Li, Ye Long; Dai, Xin Ren; Yue, Xun; Gao, Xin-Qi; Zhang, Xian Sheng

    2014-10-01

    Maize 1,491 small secreted peptides were identified, which were classified according to the character of peptide sequences. Partial SSP gene expressions in reproductive tissues were determined by qRT-PCR. Small secreted peptides (SSPs) are important cell-cell communication messengers in plants. Most information on plant SSPs come from Arabidopsis thaliana and Oryza sativa, while little is known about the SSPs of other grass species such as maize (Zea mays). In this study, we identified 1,491 SSP genes from maize genomic sequences. These putative SSP genes were distributed throughout the ten maize chromosomes. Among them, 611 SSPs were classified into 198 superfamilies according to their conserved domains, and 725 SSPs with four or more cysteines at their C-termini shared similar cysteine arrangements with their counterparts in other plant species. Moreover, the SSPs requiring post-translational modification, as well as defensin-like (DEFL) proteins, were identified. Further, the expression levels of 110 SSP genes were analyzed in reproductive tissues, including male flower, pollen, silk, and ovary. Most of the genes encoding basal-layer antifungal peptide-like, small coat proteins-like, thioredoxin-like proteins, γ-thionins-like, and DEFL proteins showed high expression levels in the ovary and male flower compared with their levels in silk and mature pollen. The rapid alkalinization factor-like genes were highly expressed only in the mature ovary and mature pollen, and pollen Ole e 1-like genes showed low expression in silk. The results of this study provide basic information for further analysis of SSP functions in the reproductive process of maize.

  18. Recombinant Bacillus thuringiensis subsp. kurstaki HD73 strain that synthesizes Cry1Ac and chimeric ChiA74∆sp chitinase inclusions.

    Science.gov (United States)

    González-Ponce, Karen S; Casados-Vázquez, Luz E; Salcedo-Hernández, Rubén; Bideshi, Dennis K; Del Rincón-Castro, María C; Barboza-Corona, José E

    2017-05-01

    In this study, the endochitinase chiA74 gene lacking its secretion signal peptide sequence (chiA74∆sp) was fused in frame with the sequence coding for the C-terminal crystallization domain and transcription terminator of cry1Ac. The chimeric gene was expressed under the strong pcytA-p/STAB-SD promoter system in an acrystalliferous Cry - B strain of Bacillus thuringiensis and B. thuringiensis subsp. kurstaki HD73. We showed that the chimeric ChiA74∆sp produced amorphous inclusions in both Cry - B and HD73. In addition to the amorphous inclusions putatively composed of the chimera, bipyramidal Cry1Ac crystals, smaller than the wild-type crystal, were observed in recombinant HD73, and chitinase activity was remarkably higher (75-fold) in this strain when compared with parental HD73. Moreover, we observed that lyophilized samples of a mixture containing Cry1Ac, amorphous inclusions, and spores maintained chitinase activity. Amorphous inclusions could not be separated from Cry1Ac crystals by sucrose gradient centrifugation. Interestingly, the chitinase activity of purified Cry1Ac/amorphous inclusions was 51-fold higher compared to purified Cry1Ac inclusions of parental HD73, indicating that the increased enzymatic activity was due primarily to the presence of the atypical amorphous component. The possibility that the chimera is occluded with the Cry1Ac crystal, thereby contributing to the increased endochitinolytic activity, cannot be excluded. Finally, bioassays against larvae of Spodoptera frugiperda with spore/crystals of HD73 or spore-crystal ChiA74∆sp chimeric inclusions of recombinant HD73 strain showed LC 50 s of 396.86 and 290.25 ng/cm 2 , respectively. Our study suggests a possible practical application of the chimera in formulations of B. thuringiensis-based lepidopteran larvicides.

  19. Unique Aspects of Cryptochrome in Chronobiology and Metabolism, Pancreatic β-Cell Dysfunction, and Regeneration: Research into Cysteine414-Alanine Mutant CRY1

    OpenAIRE

    Satoshi Okano

    2016-01-01

    Cryptochrome proteins (CRYs), which can bind noncovalently to cofactor (chromophore) flavin adenine dinucleotide (FAD), occur widely among organisms. CRYs play indispensable roles in the generation of circadian rhythm in mammals. Transgenic mice (Tg mice), ubiquitously expressing mouse CRY1 having a mutation in which cysteine414 (the zinc-binding site of CRY1) being replaced with alanine, display unique phenotypes in their circadian rhythms. Moreover, male Tg mice exhibit symptoms of diabetes...

  20. I thought that I heard you laughing: Contextual facial expressions modulate the perception of authentic laughter and crying.

    Science.gov (United States)

    Lavan, Nadine; Lima, César F; Harvey, Hannah; Scott, Sophie K; McGettigan, Carolyn

    2015-01-01

    It is well established that categorising the emotional content of facial expressions may differ depending on contextual information. Whether this malleability is observed in the auditory domain and in genuine emotion expressions is poorly explored. We examined the perception of authentic laughter and crying in the context of happy, neutral and sad facial expressions. Participants rated the vocalisations on separate unipolar scales of happiness and sadness and on arousal. Although they were instructed to focus exclusively on the vocalisations, consistent context effects were found: For both laughter and crying, emotion judgements were shifted towards the information expressed by the face. These modulations were independent of response latencies and were larger for more emotionally ambiguous vocalisations. No effects of context were found for arousal ratings. These findings suggest that the automatic encoding of contextual information during emotion perception generalises across modalities, to purely non-verbal vocalisations, and is not confined to acted expressions.

  1. A New Method for in Situ Measurement of Bt-Maize Pollen Deposition on Host-Plant Leaves

    Directory of Open Access Journals (Sweden)

    Rudolph Vögel

    2011-02-01

    Full Text Available Maize is wind pollinated and produces huge amounts of pollen. In consequence, the Cry toxins expressed in the pollen of Bt maize will be dispersed by wind in the surrounding vegetation leading to exposure of non-target organisms (NTO. NTO like lepidopteran larvae may be affected by the uptake of Bt-pollen deposited on their host plants. Although some information is available to estimate pollen deposition on host plants, recorded data are based on indirect measurements such as shaking or washing off pollen, or removing pollen with adhesive tapes. These methods often lack precision and they do not include the necessary information such as the spatial and temporal variation of pollen deposition on the leaves. Here, we present a new method for recording in situ the amount and the distribution of Bt-maize pollen deposited on host plant leaves. The method is based on the use of a mobile digital microscope (Dino-Lite Pro, including DinoCapture software, which can be used in combination with a notebook in the field. The method was evaluated during experiments in 2008 to 2010. Maize pollen could be correctly identified and pollen deposition as well as the spatial heterogeneity of maize pollen deposition was recorded on maize and different lepidopteran host plants (Centaurea scabiosa, Chenopodium album, Rumex spp., Succina pratensis and Urtica dioica growing adjacent to maize fields.

  2. A 90-day safety study of genetically modified rice expressing Cry1Ab protein (Bacillus thuringiensis toxin) in Wistar rats

    DEFF Research Database (Denmark)

    Schrøder, Malene; Poulsen, Morten; Wilcks, Andrea

    2007-01-01

    An animal model for safety assessment of genetically modified foods was tested as part of the SAFOTEST project. In a 90-day feeding study on Wistar rats, the transgenic KMD1 rice expressing Cry1Ab protein was compared to its non-transgenic parental wild type, Xiushui 11. The KMD1 rice contained 15......, macroscopic and histopathological examinations were performed with only minor changes to report. The aim of the study was to use a known animal model in performance of safety assessment of a GM crop, in this case KMD1 rice. The results show no adverse or toxic effects of KMD1 rice when tested in the design...... used in this 90-day study. Nevertheless the experiences from this study lead to the overall conclusion that safety assessment for unintended effects of a GM crop cannot be done without additional test group(s)....

  3. Susceptibility of The Asian Corn Borer, Ostrinia furnacalis, to Bacillus thuringiensis Toxin CRY1AC

    Directory of Open Access Journals (Sweden)

    Aye Kyawt Kyawt Ei

    2008-07-01

    Full Text Available The larval susceptibility of the Asian corn borer, Ostrinia furnacalis (Guenee (Lepidoptera: Crambidae, to a Bacillus thuringiensis protein (Cry1Ac was evaluated using insect feeding bioassays. The founding population of O. furnacalis was originally collected from the experimental station of UGM at Kalitirto and had been reared in the laboratory for three generations using an artificial diet “InsectaLf”. The tested instars were exposed on diets treated with a series of concentrations of Cry1Ac for one week. The LC50 values on the seventh day after treatment for 1st, 2nd, 3rd and 4th instars were 7.79, 21.12, 113.66, and 123.17 ppm, respectively, showing that the higher the instars the lesser the susceptibility to Cry1Ac. When the neonates were exposed to sublethal concentrations of Cry1Ac (0.0583, 0.116, and 0.5830 ppm, growth and development of the surviving larvae were inhibited. The fecundity and viability of females produced from treated larvae decreased with increasing the concentrations. These findings indicate that Cry1Ac is toxic to larva of O. furnacalis and has chronic effects to larvae surviving from Cry1Ac ingestion.   Kepekaan larva penggerek batang jagung Asia, Ostrinia furnacalis (Guenee (Lepidoptera: Crambidae, terhadap protein Bacillus thuringiensis Cry1Ac diuji dengan metode celup pakan. Larva berasal dari pertanaman jagung di KP-4, UGM di Kalitirto dan telah dikembangbiakkan di laboratorium menggunakan pakan buatan (InsectaLF selama tiga generasi sebelum digunakan untuk pengujian. Larva O. furnacalis yang diuji dipaparkan pada pakan buatan yang telah dicelupkan pada seri konsentrasi Cry1Ac. Nilai LC50 pada hari ketujuh setelah perlakukan untuk instar 1, 2, 3, dan 4 berturut-turut adalah 0,79; 21,12; 113,66; dan 123,17 ppm. Hal ini menunjukkan bahwa instar yang semakin tinggi tingkat kepekaannya terhadap Cry1Ac semakin menurun. Larva yang baru menetas dan diberi pakan yang telah dicelupkan pada konsentrasi sublethal Cry1Ac

  4. Sublethal effects of Cry 1F Bt corn and clothianidin on black cutworm (Lepidoptera: Noctuidae) larval development.

    Science.gov (United States)

    Kullik, Sigrun A; Sears, Mark K; Schaafsma, Arthur W

    2011-04-01

    Black cutworm, Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae), is an occasional pest of maize (corn), Zea mays L., that may cause severe stand losses and injury to corn seedlings. The efficacy of the neonicotinoid seed treatment clothianidin at two commercially available rates and their interaction with a transgenic corn hybrid (Bt corn), trait expressing the Bacillus thuringiensis variety aizawai insecticidal toxin Cry 1Fa2, against black cutworm larvae was investigated. Clothianidin at a rate of 25 mg kernel(-1) on Bt corn increased larval mortality and reduced larval weight gains additively. In contrast, weights of larvae fed non-Bt corn seedlings treated with clothianidin at a rate of 25 mg kernel(-1) increased significantly, suggesting either compensatory overconsumption, hormesis, or hormoligosis. Both Bt corn alone and clothianidin at a rate of 125 mg kernel(-1) applied to non-Bt corn seedlings caused increased mortality and reduced larval weight gains. In two field trials, plots planted with Bt corn hybrids consistently had the highest plant populations and yields, regardless of whether they were treated with clothianidin at the lower commercial rate of 25 mg kernel(-1) The use of Bt corn alone or in combination with the low rate of clothianidin (25 mg kernel(-1)) seems suitable as a means of suppressing black cutworm in no-tillage cornfields, although rescue treatments may still be necessary under severe infestations. Clothianidin alone at the low rate of 25 mg kernel(-1) is not recommended for black cutworm control until further studies of its effects on larval physiology and field performance have been completed.

  5. Expression and characterization of a recombinant maize CK-2 alpha subunit

    DEFF Research Database (Denmark)

    Boldyreff, B; Meggio, F; Dobrowolska, G

    1993-01-01

    to support the immunological data also by biochemical and biophysical experiments the availability of a recombinant CK-2 alpha from maize was a prerequisite. A maize cDNA clone of maize CK-2 alpha was expressed in the bacterial strain BL21 (DE3). The recombinant protein was purified to homogeneity; its......CKIIB, one of the CK-2 like enzymes which have been isolated from maize, has been shown to be a monomeric enzyme that cross-reacts with anti CK-2 alpha specific antibodies suggesting a possible relationship between the two proteins (Dobrowolska et al. (1992) Eur. J. Biochem. 204, 299-303). In order...... molecular mass on one-dimensional SDS PAGE was estimated to be 36.5 kDa. The calculated molecular mass according to the amino acid composition is 39,228 Da (332 amino acids). The recombinant maize CK-2 alpha (rmCK-2 alpha) exhibited mostly the same properties as the recombinant human CK-2 alpha (rhCK-2...

  6. Quantification of toxins in a Cry1Ac?+?CpTI cotton cultivar and its potential effects on the honey bee Apis mellifera L.

    OpenAIRE

    Han, Peng; Niu, Chang-Ying; Lei, Chao-Liang; Cui, Jin-Jie; Desneux, Nicolas

    2010-01-01

    Transgenic Cry1Ac?+?CpTI cotton (CCRI41) is increasingly planted throughout China. However, negative effects of this cultivar on the honey bee Apis mellifera L., the most important pollinator for cultivated ecosystem, remained poorly investigated. The objective of our study was to evaluate the potential side effects of transgenic Cry1Ac?+?CpTI pollen from cotton on young adult honey bees A. mellifera L. Two points emphasized the significance of our study: (1) A higher expression level of inse...

  7. Transcriptome analyses reveal the involvement of both C and N termini of cryptochrome 1 in its regulation of phytohormone-responsive gene expression in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Wenxiu eWang

    2016-03-01

    Full Text Available Cryptochromes (CRY are blue-light photoreceptors that mediate various light responses in plants and animals. It has long been demonstrated that Arabidopsis CRY (CRY1 and CRY2 C termini (CCT1 and CCT2 mediate light signaling through direct interaction with COP1. Most recently, CRY1 N terminus (CNT1 has been found to be involved in CRY1 signaling independent of CCT1, and implicated in the inhibition of gibberellin acids (GA/brassinosteroids (BR/auxin-responsive gene expression. Here, we performed RNA-Seq assay using transgenic plants expressing CCT1 fused to β-glucuronidase (GUS-CCT1, abbreviated as CCT1, which exhibit a constitutively photomorphogenic phenotype, and compared the results with those obtained previously from cry1cry2 mutant and the transgenic plants expressing CNT1 fused to nuclear localization signal sequence (NLS-tagged YFP (CNT1-NLS-YFP, abbreviated as CNT1, which display enhanced responsiveness to blue light. We found that 2,903 (67.85% of the CRY-regulated genes are regulated by CCT1 and that 1,095 of these CCT1-regulated genes are also regulated by CNT1. After annotating the gene functions, we found that CCT1 is involved in mediating CRY1 regulation of phytohormone-responsive genes, like CNT1, and that about half of the up-regulated genes by GA/BR/auxin are down-regulated by CCT1 and CNT1, consistent with the antagonistic role for CRY1 and these phytohormones in regulating hypocotyl elongation. Physiological studies showed that both CCT1 and CNT1 are likely involved in mediating CRY1 reduction of seedlings sensitivity to GA under blue light. Furthermore, protein expression studies demonstrate that the inhibition of GA promotion of HY5 degradation by CRY1 is likely mediated by CCT1, but not by CNT1. These results give genome-wide transcriptome information concerning the signaling mechanism of CRY1, unraveling possible involvement of its C and N termini in its regulation of response of GA and likely other phytohormones.

  8. Maize variety and method of production

    Science.gov (United States)

    Pauly, Markus; Hake, Sarah; Kraemer, Florian J

    2014-05-27

    The disclosure relates to a maize plant, seed, variety, and hybrid. More specifically, the disclosure relates to a maize plant containing a Cal-1 allele, whose expression results in increased cell wall-derived glucan content in the maize plant. The disclosure also relates to crossing inbreds, varieties, and hybrids containing the Cal-1 allele to produce novel types and varieties of maize plants.

  9. [Transformation and expression of specific insecticide gene Bt cry3A in resident endogenetic bacteria isolated from Apriona germari (Hope) larvae intestines].

    Science.gov (United States)

    Zhongkang, Wang; Wei, He; Guoxiong, Peng; Yuxian, Xia; Qiang, Li; Youping, Yin

    2008-09-01

    Transforming the specific insecticidal gene Bt cry3A into the dominant resident endogenetic bacteria in intestines of Apriona germari (Hope) larvae to construct transgenic bacteria that can colonize and express the insecticidal gene Bt cry3A perfectly in intestines of Apriona germari (Hope) larvae. We isolated and identified the dominant resident endogenetic bacteria by traditional methods and molecular method based of 16S rDNA analysis. Two Escherichia coli--Bacillus thuringiensis shuttle plasmid pHT305a and pHT7911 which contained specific insecticidal gene Bt cry3A were transformed into two resident endogenetic bacteria Brevibacillus brevis Ag12 and Bacillus thuringiensis Ag13 isolated from A. germari larvae intestines respectively by electro-transformation. Eighteen species of bacteria have isolated and identified from Apriona germari larvae intestines and two of them (Brevibacillus brevis Ag12 and Bacillus thuringiensis Ag13) were selected as starting bacteria to recieve the Bt cry3A. The 4 transgenic engineering strains Ag12-7911, Ag12-305a, Ag13-7911 and Ag13-305a were obtained successfully and validated by testing the plasmid stability in recombinants, transformants vegetal properties, crystal poisonous protein observation, expressional protein SDS-PAGE. The Bt cry3A gene had been transformed into Brevibacillus brevis and Bacillus thuringiensis. Both bioassay and examination of the engineering strains in intestines after feeding them to larvae showed that all these transformant strains (Brevibacillus brevis Ag12-305a, Bacillus thurigiensis Ag13-305a, Brevibacillus brevis Ag12-7911 and Bacillus thurigiensis Ag13-7911) could colonize and express 65 kDa protoxin in intestines of A. germari larvae and had insecticidal activity. We obtained four transgenic bacteria that can colonize and express the target insecticide gene Bt cry3A in A. germari larvae. They may be developed as a new insecticide.

  10. Isolation, structural analysis, and expression characteristics of the maize nuclear factor Y gene families

    International Nuclear Information System (INIS)

    Zhang, Zhongbao; Li, Xianglong; Zhang, Chun; Zou, Huawen; Wu, Zhongyi

    2016-01-01

    NUCLEAR FACTOR-Y (NF-Y) has been shown to play an important role in growth, development, and response to environmental stress. A NF-Y complex, which consists of three subunits, NF-YA, NF-YB, and, NF-YC, binds to CCAAT sequences in a promoter to control the expression of target genes. Although NF-Y proteins have been reported in Arabidopsis and rice, a comprehensive and systematic analysis of ZmNF-Y genes has not yet been performed. To examine the functions of ZmNF-Y genes in this family, we isolated and characterized 50 ZmNF-Y (14 ZmNF-YA, 18 ZmNF-YB, and 18 ZmNF-YC) genes in an analysis of the maize genome. The 50 ZmNF-Y genes were distributed on all 10 maize chromosomes, and 12 paralogs were identified. Multiple alignments showed that maize ZmNF-Y family proteins had conserved regions and relatively variable N-terminal or C-terminal domains. The comparative syntenic map illustrated 40 paralogous NF-Y gene pairs among the 10 maize chromosomes. Microarray data showed that the ZmNF-Y genes had tissue-specific expression patterns in various maize developmental stages and in response to biotic and abiotic stresses. The results suggested that ZmNF-YB2, 4, 8, 10, 13, and 16 and ZmNF-YC6, 8, and 15 were induced, while ZmNF-YA1, 3, 4, 6, 7, 10, 12, and 13, ZmNF-YB15, and ZmNF-YC3 and 9 were suppressed by drought stress. ZmNF-YA3, ZmNF-YA8 and ZmNF-YA12 were upregulated after infection by the three pathogens, while ZmNF-YA1 and ZmNF-YB2 were suppressed. These results indicate that the ZmNF-Ys may have significant roles in the response to abiotic and biotic stresses. - Highlights: • We indicated a total of 50 members of ZmNF-Y gene family in maize genome. • We analyzed gene structure, protein architecture of ZmNF-Y genes. • Evolution pattern and phylogenic relationships were analyzed among 50 ZmNF-Y genes. • Expression pattern of ZmNF-Ys were detected in various maize tissues. • Transcript levels of ZmNF-Ys were measured under various abiotic and biotic stresses.

  11. Cloning and expression of a sorghum gene with homology to maize vp1. Its potential involvement in pre-harvest sprouting resistance.

    Science.gov (United States)

    Carrari, F; Perez-Flore, L; Lijavetzky, D; Enciso, S; Sanchez, R; Benech-Arnold, R; Iusem, N

    2001-04-01

    Pre-harvest sprouting (PHS) in sorghum is related to the lack of a normal dormancy level during seed development and maturation. Based on previous evidence that seed dormancy in maize is controlled by the vp1 gene, we used a PCR-based approach to isolate two Sorghum bicolor genomic and cDNA clones from two genotypes exhibiting different PHS behaviour and sensitivity to abscisic acid (ABA). The two 699 amino acid predicted protein sequences differ in two residues at positions 341 (Gly or Cys within the repression domain) and 448 (Pro or Ser) and show over 80, 70 and 60% homology to maize, rice and oat VP1 proteins respectively. Expression analysis of the sorghum vp1 gene in the two lines shows a slightly higher level of vp1 mRNA in the embryos susceptible to PHS than in those resistant to PHS during embryogenesis. However, timing of expression was different between these genotypes during this developmental process. Whereas for the former the main peak of expression was observed at 20 days after pollination (DAP), the peak in the latter was found at later developmental stages when seed maturation was almost complete. Under favourable germination conditions and in the presence of fluridone (an inhibitor of ABA biosynthesis), sorghum vp1 mRNA showed to be consistently correlated with sensitivity to ABA but not with ABA content and dormancy.

  12. Rhythmic diel pattern of gene expression in juvenile maize leaf.

    Directory of Open Access Journals (Sweden)

    Maciej Jończyk

    Full Text Available BACKGROUND: Numerous biochemical and physiological parameters of living organisms follow a circadian rhythm. Although such rhythmic behavior is particularly pronounced in plants, which are strictly dependent on the daily photoperiod, data on the molecular aspects of the diurnal cycle in plants is scarce and mostly concerns the model species Arabidopsis thaliana. Here we studied the leaf transcriptome in seedlings of maize, an important C4 crop only distantly related to A. thaliana, throughout a cycle of 10 h darkness and 14 h light to look for rhythmic patterns of gene expression. RESULTS: Using DNA microarrays comprising ca. 43,000 maize-specific probes we found that ca. 12% of all genes showed clear-cut diel rhythms of expression. Cluster analysis identified 35 groups containing from four to ca. 1,000 genes, each comprising genes of similar expression patterns. Perhaps unexpectedly, the most pronounced and most common (concerning the highest number of genes expression maxima were observed towards and during the dark phase. Using Gene Ontology classification several meaningful functional associations were found among genes showing similar diel expression patterns, including massive induction of expression of genes related to gene expression, translation, protein modification and folding at dusk and night. Additionally, we found a clear-cut tendency among genes belonging to individual clusters to share defined transcription factor-binding sequences. CONCLUSIONS: Co-expressed genes belonging to individual clusters are likely to be regulated by common mechanisms. The nocturnal phase of the diurnal cycle involves gross induction of fundamental biochemical processes and should be studied more thoroughly than was appreciated in most earlier physiological studies. Although some general mechanisms responsible for the diel regulation of gene expression might be shared among plants, details of the diurnal regulation of gene expression seem to differ

  13. Binding site concentration explains the differential susceptibility of Chilo suppressalis and Sesamia inferens to Cry1A-producing rice.

    Science.gov (United States)

    Han, Lanzhi; Han, Chao; Liu, Zewen; Chen, Fajun; Jurat-Fuentes, Juan Luis; Hou, Maolin; Peng, Yufa

    2014-08-01

    Chilo suppressalis and Sesamia inferens are two important lepidopteran rice pests that occur concurrently during outbreaks in paddy fields in the main rice-growing areas of China. Previous and current field tests demonstrate that the transgenic rice line Huahui 1 (HH1) producing a Cry1Ab-Cry1Ac hybrid toxin from the bacterium Bacillus thuringiensis reduces egg and larval densities of C. suppressalis but not of S. inferens. This differential susceptibility to HH1 rice correlates with the reduced susceptibility to Cry1Ab and Cry1Ac toxins in S. inferens larvae compared to C. suppressalis larvae. The goal of this study was to identify the mechanism responsible for this differential susceptibility. In saturation binding assays, both Cry1Ab and Cry1Ac toxins bound with high affinity and in a saturable manner to midgut brush border membrane vesicles (BBMV) from C. suppressalis and S. inferens larvae. While binding affinities were similar, a dramatically lower concentration of Cry1A toxin binding sites was detected for S. inferens BBMV than for C. suppressalis BBMV. In contrast, no significant differences between species were detected for Cry1Ca toxin binding to BBMV. Ligand blotting detected BBMV proteins binding Cry1Ac or Cry1Ca toxins, some of them unique to C. suppressalis or S. inferens. These data support that reduced Cry1A binding site concentration is associated with a lower susceptibility to Cry1A toxins and HH1 rice in S. inferens larvae than in C. suppressalis larvae. Moreover, our data support Cry1Ca as a candidate for pyramiding efforts with Cry1A-producing rice to extend the activity range and durability of this technology against rice stem borers. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Transcriptome profiling of the intoxication response of Tenebrio molitor larvae to Bacillus thuringiensis Cry3Aa protoxin.

    Science.gov (United States)

    Oppert, Brenda; Dowd, Scot E; Bouffard, Pascal; Li, Lewyn; Conesa, Ana; Lorenzen, Marcé D; Toutges, Michelle; Marshall, Jeremy; Huestis, Diana L; Fabrick, Jeff; Oppert, Cris; Jurat-Fuentes, Juan Luis

    2012-01-01

    Bacillus thuringiensis (Bt) crystal (Cry) proteins are effective against a select number of insect pests, but improvements are needed to increase efficacy and decrease time to mortality for coleopteran pests. To gain insight into the Bt intoxication process in Coleoptera, we performed RNA-Seq on cDNA generated from the guts of Tenebrio molitor larvae that consumed either a control diet or a diet containing Cry3Aa protoxin. Approximately 134,090 and 124,287 sequence reads from the control and Cry3Aa-treated groups were assembled into 1,318 and 1,140 contigs, respectively. Enrichment analyses indicated that functions associated with mitochondrial respiration, signalling, maintenance of cell structure, membrane integrity, protein recycling/synthesis, and glycosyl hydrolases were significantly increased in Cry3Aa-treated larvae, whereas functions associated with many metabolic processes were reduced, especially glycolysis, tricarboxylic acid cycle, and fatty acid synthesis. Microarray analysis was used to evaluate temporal changes in gene expression after 6, 12 or 24 h of Cry3Aa exposure. Overall, microarray analysis indicated that transcripts related to allergens, chitin-binding proteins, glycosyl hydrolases, and tubulins were induced, and those related to immunity and metabolism were repressed in Cry3Aa-intoxicated larvae. The 24 h microarray data validated most of the RNA-Seq data. Of the three intoxication intervals, larvae demonstrated more differential expression of transcripts after 12 h exposure to Cry3Aa. Gene expression examined by three different methods in control vs. Cry3Aa-treated larvae at the 24 h time point indicated that transcripts encoding proteins with chitin-binding domain 3 were the most differentially expressed in Cry3Aa-intoxicated larvae. Overall, the data suggest that T. molitor larvae mount a complex response to Cry3Aa during the initial 24 h of intoxication. Data from this study represent the largest genetic sequence dataset for T. molitor

  15. Transcriptome profiling of the intoxication response of Tenebrio molitor larvae to Bacillus thuringiensis Cry3Aa protoxin.

    Directory of Open Access Journals (Sweden)

    Brenda Oppert

    Full Text Available Bacillus thuringiensis (Bt crystal (Cry proteins are effective against a select number of insect pests, but improvements are needed to increase efficacy and decrease time to mortality for coleopteran pests. To gain insight into the Bt intoxication process in Coleoptera, we performed RNA-Seq on cDNA generated from the guts of Tenebrio molitor larvae that consumed either a control diet or a diet containing Cry3Aa protoxin. Approximately 134,090 and 124,287 sequence reads from the control and Cry3Aa-treated groups were assembled into 1,318 and 1,140 contigs, respectively. Enrichment analyses indicated that functions associated with mitochondrial respiration, signalling, maintenance of cell structure, membrane integrity, protein recycling/synthesis, and glycosyl hydrolases were significantly increased in Cry3Aa-treated larvae, whereas functions associated with many metabolic processes were reduced, especially glycolysis, tricarboxylic acid cycle, and fatty acid synthesis. Microarray analysis was used to evaluate temporal changes in gene expression after 6, 12 or 24 h of Cry3Aa exposure. Overall, microarray analysis indicated that transcripts related to allergens, chitin-binding proteins, glycosyl hydrolases, and tubulins were induced, and those related to immunity and metabolism were repressed in Cry3Aa-intoxicated larvae. The 24 h microarray data validated most of the RNA-Seq data. Of the three intoxication intervals, larvae demonstrated more differential expression of transcripts after 12 h exposure to Cry3Aa. Gene expression examined by three different methods in control vs. Cry3Aa-treated larvae at the 24 h time point indicated that transcripts encoding proteins with chitin-binding domain 3 were the most differentially expressed in Cry3Aa-intoxicated larvae. Overall, the data suggest that T. molitor larvae mount a complex response to Cry3Aa during the initial 24 h of intoxication. Data from this study represent the largest genetic sequence

  16. Transportable data from non-target arthropod field studies for the environmental risk assessment of genetically modified maize expressing an insecticidal double-stranded RNA.

    Science.gov (United States)

    Ahmad, Aqeel; Negri, Ignacio; Oliveira, Wladecir; Brown, Christopher; Asiimwe, Peter; Sammons, Bernard; Horak, Michael; Jiang, Changjian; Carson, David

    2016-02-01

    As part of an environmental risk assessment, the potential impact of genetically modified (GM) maize MON 87411 on non-target arthropods (NTAs) was evaluated in the field. MON 87411 confers resistance to corn rootworm (CRW; Diabrotica spp.) by expressing an insecticidal double-stranded RNA (dsRNA) transcript and the Cry3Bb1 protein and tolerance to the herbicide glyphosate by producing the CP4 EPSPS protein. Field trials were conducted at 14 sites providing high geographic and environmental diversity within maize production areas from three geographic regions including the U.S., Argentina, and Brazil. MON 87411, the conventional control, and four commercial conventional reference hybrids were evaluated for NTA abundance and damage. Twenty arthropod taxa met minimum abundance criteria for valid statistical analysis. Nine of these taxa occurred in at least two of the three regions and in at least four sites across regions. These nine taxa included: aphid, predatory earwig, lacewing, ladybird beetle, leafhopper, minute pirate bug, parasitic wasp, sap beetle, and spider. In addition to wide regional distribution, these taxa encompass the ecological functions of herbivores, predators and parasitoids in maize agro-ecosystems. Thus, the nine arthropods may serve as representative taxa of maize agro-ecosystems, and thereby support that analysis of relevant data generated in one region can be transportable for the risk assessment of the same or similar GM crop products in another region. Across the 20 taxa analyzed, no statistically significant differences in abundance were detected between MON 87411 and the conventional control for 123 of the 128 individual-site comparisons (96.1%). For the nine widely distributed taxa, no statistically significant differences in abundance were detected between MON 87411 and the conventional control. Furthermore, no statistically significant differences were detected between MON 87411 and the conventional control for 53 out of 56 individual

  17. The Cry in the Holy Quran and the Effect on the Human Behavior

    Science.gov (United States)

    al-Domi, Mohammad Mahmoud

    2015-01-01

    This study aims that cry is the ideal way to release the negative emotions distress, sorrow, and sadness. Which sometimes is also a way to express situations of joy and pleasure of humans. The Almighty Allah also said about cry in The Holy Quran. The prophet pbuh also cry for the expressions of reverence and fear of Allah in perhaps the sort of…

  18. Identification and expression profiling analysis of TCP family genes involved in growth and development in maize.

    Science.gov (United States)

    Chai, Wenbo; Jiang, Pengfei; Huang, Guoyu; Jiang, Haiyang; Li, Xiaoyu

    2017-10-01

    The TCP family is a group of plant-specific transcription factors. TCP genes encode proteins harboring bHLH structure, which is implicated in DNA binding and protein-protein interactions and known as the TCP domain. TCP genes play important roles in plant development and have been evolutionarily and functionally elaborated in various plants, however, no overall phylogenetic analysis or expression profiling of TCP genes in Zea mays has been reported. In the present study, a systematic analysis of molecular evolution and functional prediction of TCP family genes in maize ( Z . mays L.) has been conducted. We performed a genome-wide survey of TCP genes in maize, revealing the gene structure, chromosomal location and phylogenetic relationship of family members. Microsynteny between grass species and tissue-specific expression profiles were also investigated. In total, 29 TCP genes were identified in the maize genome, unevenly distributed on the 10 maize chromosomes. Additionally, ZmTCP genes were categorized into nine classes based on phylogeny and purifying selection may largely be responsible for maintaining the functions of maize TCP genes. What's more, microsynteny analysis suggested that TCP genes have been conserved during evolution. Finally, expression analysis revealed that most TCP genes are expressed in the stem and ear, which suggests that ZmTCP genes influence stem and ear growth. This result is consistent with the previous finding that maize TCP genes represses the growth of axillary organs and enables the formation of female inflorescences. Altogether, this study presents a thorough overview of TCP family in maize and provides a new perspective on the evolution of this gene family. The results also indicate that TCP family genes may be involved in development stage in plant growing conditions. Additionally, our results will be useful for further functional analysis of the TCP gene family in maize.

  19. Cry64Ba and Cry64Ca, Two ETX/MTX2-Type Bacillus thuringiensis Insecticidal Proteins Active against Hemipteran Pests.

    Science.gov (United States)

    Liu, Yonglei; Wang, Yinglong; Shu, Changlong; Lin, Kejian; Song, Fuping; Bravo, Alejandra; Soberón, Mario; Zhang, Jie

    2018-02-01

    Genetically modified crops that express insecticidal Bacillus thuringiensis (Bt) proteins have become a primary approach for control of lepidopteran (moth) and coleopteran (beetle) pests that feed by chewing the plants. However, the sap-sucking insects (Hemiptera) are not particularly susceptible to Bt toxins. In this study, we describe two Cry toxins (Cry64Ba and Cry64Ca) from Bt strain 1012 that showed toxicity against two important hemipteran rice pests, Laodelphax striatellus and Sogatella furcifera Both of these proteins contain an ETX/MTX2 domain and share common sequence features with the β-pore-forming toxins. Coexpression of cry64Ba and cry64Ca genes in the acrystalliferous Bt strain HD73 - resulted in high insecticidal activity against both hemipteran pests. No toxicity was observed on other pests such as Ostrinia furnacalis , Plutella xylostella , or Colaphellus bowringi Also, no hemolytic activity or toxicity against cancer cells was detected. Binding assays showed specific binding of the Cry64Ba/Cry64Ca toxin complex to brush border membrane vesicles isolated from L. striatellus Cry64Ba and Cry64Ca are Bt Cry toxins highly effective against hemipteran pests and could provide a novel strategy for the environmentally friendly biological control of rice planthoppers in transgenic plants. IMPORTANCE In Asia, rice is an important staple food, whose production is threatened by rice planthoppers. To date, no effective Bacillus thuringiensis (Bt) protein has been shown to have activity against rice planthoppers. We cloned two Bt toxin genes from Bt strain 1012 that showed toxicity against small brown planthoppers ( Laodelphax striatellus ) and white-backed planthoppers ( Sogatella furcifera ). To our knowledge, the proteins encoded by the cry64Ba and cry64Ca genes are the most efficient insecticidal Bt Cry proteins with activity against hemipteran insects reported so far. Cry64Ba and Cry64Ca showed no toxicity against some lepidopteran or coleopteran pests

  20. Differential protection of Cry1Fa toxin against Spodoptera frugiperda larval gut proteases by cadherin orthologs correlates with increased synergism.

    Science.gov (United States)

    Rahman, Khalidur; Abdullah, Mohd Amir F; Ambati, Suresh; Taylor, Milton D; Adang, Michael J

    2012-01-01

    The Cry proteins produced by Bacillus thuringiensis (Bt) are the most widely used biopesticides effective against a range of crop pests and disease vectors. Like chemical pesticides, development of resistance is the primary threat to the long-term efficacy of Bt toxins. Recently discovered cadherin-based Bt Cry synergists showed the potential to augment resistance management by improving efficacy of Cry toxins. However, the mode of action of Bt Cry synergists is thus far unclear. Here we elucidate the mechanism of cadherin-based Cry toxin synergism utilizing two cadherin peptides, Spodoptera frugiperda Cad (SfCad) and Manduca sexta Cad (MsCad), which differentially enhance Cry1Fa toxicity to Spodoptera frugiperda neonates. We show that differential SfCad- and MsCad-mediated protection of Cry1Fa toxin in the Spodoptera frugiperda midgut correlates with differential Cry1Fa toxicity enhancement. Both peptides exhibited high affinity for Cry1Fa toxin and an increased rate of Cry1Fa-induced pore formation in S. frugiperda. However, only SfCad bound the S. frugiperda brush border membrane vesicle and more effectively prolonged the stability of Cry1Fa toxin in the gut, explaining higher Cry1Fa enhancement by this peptide. This study shows that cadherin fragments may enhance B. thuringiensis toxicity by at least two different mechanisms or a combination thereof: (i) protection of Cry toxin from protease degradation in the insect midgut and (ii) enhancement of pore-forming ability of Cry toxin.

  1. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin.

    Directory of Open Access Journals (Sweden)

    Linda J Gahan

    2010-12-01

    Full Text Available Transgenic crops producing insecticidal toxins from Bacillus thuringiensis (Bt are commercially successful in reducing pest damage, yet knowledge of resistance mechanisms that threaten their sustainability is incomplete. Insect resistance to the pore-forming Cry1Ac toxin is correlated with the loss of high-affinity, irreversible binding to the mid-gut membrane, but the genetic factors responsible for this change have been elusive. Mutations in a 12-cadherin-domain protein confer some Cry1Ac resistance but do not block this toxin binding in in vitro assays. We sought to identify mutations in other genes that might be responsible for the loss of binding. We employed a map-based cloning approach using a series of backcrosses with 1,060 progeny to identify a resistance gene in the cotton pest Heliothis virescens that segregated independently from the cadherin mutation. We found an inactivating mutation of the ABC transporter ABCC2 that is genetically linked to Cry1Ac resistance and is correlated with loss of Cry1Ac binding to membrane vesicles. ABC proteins are integral membrane proteins with many functions, including export of toxic molecules from the cell, but have not been implicated in the mode of action of Bt toxins before. The reduction in toxin binding due to the inactivating mutation suggests that ABCC2 is involved in membrane integration of the toxin pore. Our findings suggest that ABC proteins may play a key role in the mode of action of Bt toxins and that ABC protein mutations can confer high levels of resistance that could threaten the continued utilization of Bt-expressing crops. However, such mutations may impose a physiological cost on resistant insects, by reducing export of other toxins such as plant secondary compounds from the cell. This weakness could be exploited to manage this mechanism of Bt resistance in the field.

  2. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin.

    Science.gov (United States)

    Gahan, Linda J; Pauchet, Yannick; Vogel, Heiko; Heckel, David G

    2010-12-16

    Transgenic crops producing insecticidal toxins from Bacillus thuringiensis (Bt) are commercially successful in reducing pest damage, yet knowledge of resistance mechanisms that threaten their sustainability is incomplete. Insect resistance to the pore-forming Cry1Ac toxin is correlated with the loss of high-affinity, irreversible binding to the mid-gut membrane, but the genetic factors responsible for this change have been elusive. Mutations in a 12-cadherin-domain protein confer some Cry1Ac resistance but do not block this toxin binding in in vitro assays. We sought to identify mutations in other genes that might be responsible for the loss of binding. We employed a map-based cloning approach using a series of backcrosses with 1,060 progeny to identify a resistance gene in the cotton pest Heliothis virescens that segregated independently from the cadherin mutation. We found an inactivating mutation of the ABC transporter ABCC2 that is genetically linked to Cry1Ac resistance and is correlated with loss of Cry1Ac binding to membrane vesicles. ABC proteins are integral membrane proteins with many functions, including export of toxic molecules from the cell, but have not been implicated in the mode of action of Bt toxins before. The reduction in toxin binding due to the inactivating mutation suggests that ABCC2 is involved in membrane integration of the toxin pore. Our findings suggest that ABC proteins may play a key role in the mode of action of Bt toxins and that ABC protein mutations can confer high levels of resistance that could threaten the continued utilization of Bt-expressing crops. However, such mutations may impose a physiological cost on resistant insects, by reducing export of other toxins such as plant secondary compounds from the cell. This weakness could be exploited to manage this mechanism of Bt resistance in the field.

  3. Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transportors in maize (Zea mays L.)

    Science.gov (United States)

    A greenhouse experiment was conducted to study the expression of two phosphate (P) transporter genes ZEAma:Pht1;3 (epidermal-expressed) and ZEAma:Pht1;6 (AM specific induced, and expressed around arbuscules) in maize root to colonization by different arbuscular mycorrhizal (AM) fungal inoculants. No...

  4. Differential protein expression in maize (Zea mays) in response to ...

    African Journals Online (AJOL)

    Jane

    2011-07-27

    Jul 27, 2011 ... Accepted 25 May, 2011. Maize (Zea mays) is a major food stable in sub-Saharan Africa. .... has investigated differential expression at the proteome level, comparing this ..... GK, Jwa NS (2001). Characterization of rice (Oryza.

  5. Expression Patterns of Genes Involved in Ascorbate-Glutathione Cycle in Aphid-Infested Maize (Zea mays L.) Seedlings.

    Science.gov (United States)

    Sytykiewicz, Hubert

    2016-02-23

    Reduced forms of ascorbate (AsA) and glutathione (GSH) are among the most important non-enzymatic foliar antioxidants in maize (Zea mays L.). The survey was aimed to evaluate impact of bird cherry-oat aphid (Rhopalosiphum padi L.) or grain aphid (Sitobion avenae F.) herbivory on expression of genes related to ascorbate-glutathione (AsA-GSH) cycle in seedlings of six maize varieties (Ambrozja, Nana, Tasty Sweet, Touran, Waza, Złota Karłowa), differing in resistance to the cereal aphids. Relative expression of sixteen maize genes encoding isoenzymes of ascorbate peroxidase (APX1, APX2, APX3, APX4, APX5, APX6, APX7), monodehydroascorbate reductase (MDHAR1, MDHAR2, MDHAR3, MDHAR4), dehydroascorbate reductase (DHAR1, DHAR2, DHAR3) and glutathione reductase (GR1, GR2) was quantified. Furthermore, effect of hemipterans' attack on activity of APX, MDHAR, DHAR and GR enzymes, and the content of reduced and oxidized ascorbate and glutathione in maize plants were assessed. Seedling leaves of more resistant Z. mays varieties responded higher elevations in abundance of target transcripts. In addition, earlier and stronger aphid-triggered changes in activity of APX, MDHAR, DHAR and GR enzymes, and greater modulations in amount of the analyzed antioxidative metabolites were detected in foliar tissues of highly resistant Ambrozja genotype in relation to susceptible Tasty Sweet plants.

  6. Toxicity assessment of modified Cry1Ac1 proteins and genetically ...

    African Journals Online (AJOL)

    Owner

    2015-06-10

    Jun 10, 2015 ... Key words: Modified Cry1Ac1, food safety assessment, toxicity, insect- resistant rice Agb0101. INTRODUCTION. Genetically modified (GM) crops are becoming an increasingly important feature of the agricultural land- scapes. In 2013, approximately 175 million hectares of. GM crops were planted by 18 ...

  7. Communities of endophytic microorganisms in different developmental stages from a local variety as well as transgenic and conventional isogenic hybrids of maize.

    Science.gov (United States)

    da Silva, Kelly Justin; de Armas, Rafael Dutra; Soares, Cláudio Roberto F S; Ogliari, Juliana Bernardi

    2016-11-01

    The diversity of endophytic microorganisms may change due to the genotype of the host plant and its phenological stage. In this study we evaluated the effect of phenological stage, transgenes and genetic composition of maize on endophytic bacterial and fungal communities. The maize populations were composed of a local variety named Rosado (RS) and three isogenic hybrids. One isogenic hybrid was not genetically modified (NGM). Another hybrid (Hx) contained the transgenes cry1F and pat (T1507 event), which provide resistance to insects of the order Lepidoptera and tolerance to the glufosinate-ammonium herbicide, respectively. The third hybrid (Hxrr) contained the transgene cp4 epsps (NK603 event) combined with the transgenes cry1F and pat (T1507 event), which allow tolerance to the Roundup Ready herbicide, besides the characteristics of Hx. Evaluation of the foliar tissue was done through PCR-DGGE analysis, with specific primers for bacteria and fungi within four phenological stages of maize. The endophytic bacteria were only clustered by phenological stages; the structure of the fungal community was clustered by maize genotypes in each phenological stage. The fungal community from the local variety RS was different from the three hybrids (NGM, Hx and Hxrr) within the four evaluated stages. In the reproductive stage, the fungal community from the two transgenic hybrids (Hx and Hxrr) were separated, and the Hxrr was different from NGM, in the two field experiments. This research study showed that the genetic composition of the maize populations, especially the presence of transgenes, is the determining factor for the changes detected in the endophytic fungal community of maize leaves.

  8. Does the growing of Bt maize change populations or ecological functions of non-target animals compared to the growing of conventional non-GM maize? A systematic review protocol

    Science.gov (United States)

    Since 1996, genetically modified (GM) crops have been grown on an ever increasing area worldwide. Maize producing a Cry protein from the bacterium Bacillus thuringiensis (Bt) was among the first GM crops released for commercial production and it is the only GM crop currently cultivated in Europe. A ...

  9. Phage-Mediated Competitive Chemiluminescent Immunoassay for Detecting Cry1Ab Toxin by Using an Anti-Idiotypic Camel Nanobody.

    Science.gov (United States)

    Qiu, Yulou; Li, Pan; Dong, Sa; Zhang, Xiaoshuai; Yang, Qianru; Wang, Yulong; Ge, Jing; Hammock, Bruce D; Zhang, Cunzheng; Liu, Xianjin

    2018-01-31

    Cry toxins have been widely used in genetically modified organisms for pest control, raising public concern regarding their effects on the natural environment and food safety. In this work, a phage-mediated competitive chemiluminescent immunoassay (c-CLIA) was developed for determination of Cry1Ab toxin using anti-idiotypic camel nanobodies. By extracting RNA from camels' peripheral blood lymphocytes, a naive phage-displayed nanobody library was established. Using anti-Cry1Ab toxin monoclonal antibodies (mAbs) against the library for anti-idiotypic antibody screening, four anti-idiotypic nanobodies were selected and confirmed to be specific for anti-Cry1Ab mAb binding. Thereafter, a c-CLIA was developed for detection of Cry1Ab toxin based on anti-idiotypic camel nanobodies and employed for sample testing. The results revealed a half-inhibition concentration of developed assay to be 42.68 ± 2.54 ng/mL, in the linear range of 10.49-307.1 ng/mL. The established method is highly specific for Cry1Ab recognition, with negligible cross-reactivity for other Cry toxins. For spiked cereal samples, the recoveries of Cry1Ab toxin ranged from 77.4% to 127%, with coefficient of variation of less than 9%. This study demonstrated that the competitive format based on phage-displayed anti-idiotypic nanobodies can provide an alternative strategy for Cry toxin detection.

  10. Intraguild competition and enhanced survival of western bean cutworm (Lepidoptera: Noctuidae) on transgenic Cry1Ab (MON810) Bacillus thuringiensis corn.

    Science.gov (United States)

    Dorhout, David L; Rice, Marlin E

    2010-02-01

    The effect of genetically modified corn (event MON810, YieldGard Corn Borer) expressing the Bacillus thuringiensis sp. kurstaki (Berliner) (Bt) endotoxin, Cry1Ab, on the survival of western bean cutworm, Striacosta albicosta (Smith), larvae was examined during intraguild competition studies with either European corn borer, Ostrinia nubilalis (Hübner), or corn earworm, Helicoverpa zea (Boddie), larvae. Competition scenarios were constructed by using either a laboratory or field competition arena containing one of five different diets and one of 13 different larval size-by-species scenarios. The survival of western bean cutworms competing with corn earworms in the laboratory arenas on either a meridic diet or isoline corn silk diet was significantly lower (P corn earworm on a Cry1Ab-MON810 corn silk diet was significant higher (P corn borers generally did not alter the outcomes observed in the western bean cutworm and corn earworm only two-way competitions. These data suggest that Cry1Ab-MON810 corn may confer a competitive advantage to western bean cutworm larvae during intraguild competition, particularly from corn earworms, and that western bean cutworms become equal competitors only when they are of equal or larger size and the diet is Cry1Ab-MON810 corn.

  11. Binding specificity of Bacillus thuringiensis Cry1Aa for purified, native Bombyx mori aminopeptidase N and cadherin-like receptors

    Directory of Open Access Journals (Sweden)

    Jenkins Jeremy L

    2001-10-01

    Full Text Available Abstract Background To better understand the molecular interactions of Bt toxins with non-target insects, we have examined the real-time binding specificity and affinity of Cry1 toxins to native silkworm (Bombyx mori midgut receptors. Previous studies on B. mori receptors utilized brush border membrane vesicles or purifed receptors in blot-type assays. Results The Bombyx mori (silkworm aminopeptidase N (APN and cadherin-like receptors for Bacillus thuringiensis insecticidal Cry1Aa toxin were purified and their real-time binding affinities for Cry toxins were examined by surface plasmon resonance. Cry1Ab and Cry1Ac toxins did not bind to the immobilized native receptors, correlating with their low toxicities. Cry1Aa displayed moderate affinity for B. mori APN (75 nM, and unusually tight binding to the cadherin-like receptor (2.6 nM, which results from slow dissociation rates. The binding of a hybrid toxin (Aa/Aa/Ac was identical to Cry1Aa. Conclusions These results indicate domain II of Cry1Aa is essential for binding to native B. mori receptors and for toxicity. Moreover, the high-affinity binding of Cry1Aa to native cadherin-like receptor emphasizes the importance of this receptor class for Bt toxin research.

  12. Binding specificity of Bacillus thuringiensis Cry1Aa for purified, native Bombyx mori aminopeptidase N and cadherin-like receptors

    Science.gov (United States)

    Jenkins, Jeremy L; Dean, Donald H

    2001-01-01

    Background To better understand the molecular interactions of Bt toxins with non-target insects, we have examined the real-time binding specificity and affinity of Cry1 toxins to native silkworm (Bombyx mori) midgut receptors. Previous studies on B. mori receptors utilized brush border membrane vesicles or purifed receptors in blot-type assays. Results The Bombyx mori (silkworm) aminopeptidase N (APN) and cadherin-like receptors for Bacillus thuringiensis insecticidal Cry1Aa toxin were purified and their real-time binding affinities for Cry toxins were examined by surface plasmon resonance. Cry1Ab and Cry1Ac toxins did not bind to the immobilized native receptors, correlating with their low toxicities. Cry1Aa displayed moderate affinity for B. mori APN (75 nM), and unusually tight binding to the cadherin-like receptor (2.6 nM), which results from slow dissociation rates. The binding of a hybrid toxin (Aa/Aa/Ac) was identical to Cry1Aa. Conclusions These results indicate domain II of Cry1Aa is essential for binding to native B. mori receptors and for toxicity. Moreover, the high-affinity binding of Cry1Aa to native cadherin-like receptor emphasizes the importance of this receptor class for Bt toxin research. PMID:11722800

  13. Bacillus thuringiensis Cry1Ia10 and Vip3Aa protein interactions and their toxicity in Spodoptera spp. (Lepidoptera).

    Science.gov (United States)

    Bergamasco, V B; Mendes, D R P; Fernandes, O A; Desidério, J A; Lemos, M V F

    2013-02-01

    The polyphagous pests belonging to the genus Spodoptera are considered to be among the most important causes of damage and are widely distributed throughout the Americas'. Due to the extensive use of genetically modified plants containing Bacillus thuringiensis genes that code for insecticidal proteins, resistant insects may arise. To prevent the development of resistance, pyramided plants, which express multiple insecticidal proteins that act through distinct mode of actions, can be used. This study analyzed the mechanisms of action for the proteins Cry1Ia10 and Vip3Aa on neonatal Spodoptera frugiperda, Spodoptera albula, Spodoptera eridania and Spodoptera cosmioides larvae. The interactions of these toxins with receptors on the intestinal epithelial membrane were also analyzed by binding biotinylated toxins to brush border membrane vesicles (BBMVs) from the intestines of these insects. A putative receptor of approximately 65 kDa was found by ligand blotting in all of these species. In vitro competition assays using biotinylated proteins have indicated that Vip3Aa and Cry1Ia10 do not compete for the same receptor for S. frugiperda, S. albula and S. cosmioides and that Vip3Aa was more efficient than Cry1Ia10 when tested individually, by bioassays. A synergistic effect of the toxins in S. frugiperda, S. albula and S. cosmioides was observed when they were combined. However, in S. eridania, Cry1Ia10 and Vip3Aa might compete for the same receptor and through bioassays Cry1Ia10 was more efficient than Vip3Aa and showed an antagonistic effect when the proteins were combined. These results suggest that using these genes to develop pyramided plants may not prove effective in preventing the development of resistance in S. eridiana. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Field evolved resistance in Helicoverpa armigera (Lepidoptera: Noctuidae to Bacillus thuringiensis toxin Cry1Ac in Pakistan.

    Directory of Open Access Journals (Sweden)

    Anwaar H K Alvi

    Full Text Available Helicoverpa armigera (Hübner is one of the most destructive pests of several field and vegetable crops, with indiscriminate use of insecticides contributing to multiple instances of resistance. In the present study we assessed whether H. armigera had developed resistance to Bt cotton and compared the results with several conventional insecticides. Furthermore, the genetics of resistance was also investigated to determine the inheritance to Cry1Ac resistance. To investigate the development of resistance to Bt cotton, and selected foliar insecticides, H. armigera populations were sampled in 2010 and 2011 in several cotton production regions in Pakistan. The resistance ratios (RR for Cry1Ac, chlorpyrifos, profenofos, cypermethrin, spinosad, indoxacarb, abamectin and deltamethrin were 580-fold, 320-, 1110-, 1950-, 200-, 380, 690, and 40-fold, respectively, compared with the laboratory susceptible (Lab-PK population. Selection of the field collected population with Cry1Ac in 2010 for five generations increased RR to 5440-fold. The selection also increased RR for deltamethrin, chlorpyrifos, profenofos, cypermethrin, spinosad, indoxacarb, abamectin to 125-folds, 650-, 2840-, 9830-, 370-, 3090-, 1330-fold. The estimated LC(50s for reciprocal crosses were 105 µg/ml (Cry1Ac-SEL female × Lab-PK male and 81 g µg/ml (Lab-PK female × Cry1Ac-SEL male suggesting that the resistance to Cry1Ac was autosomal; the degree of dominance (D(LC was 0.60 and 0.57 respectively. Mixing of enzyme inhibitors significantly decreased resistance to Cry1Ac suggesting that the resistance to Cry1Ac and other insecticides tested in the present study was primarily metabolic. Resistance to Cry1Ac was probably due to a single but unstable factor suggesting that crop rotation with non-Bt cotton or other crops could reduce the selection pressure for H. armigera and improve the sustainability of Bt cotton.

  15. Genetic markers for western corn rootworm resistance to Bt toxin.

    Science.gov (United States)

    Flagel, Lex E; Swarup, Shilpa; Chen, Mao; Bauer, Christopher; Wanjugi, Humphrey; Carroll, Matthew; Hill, Patrick; Tuscan, Meghan; Bansal, Raman; Flannagan, Ronald; Clark, Thomas L; Michel, Andrew P; Head, Graham P; Goldman, Barry S

    2015-01-07

    Western corn rootworm (WCR) is a major maize (Zea mays L.) pest leading to annual economic losses of more than 1 billion dollars in the United States. Transgenic maize expressing insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are widely used for the management of WCR. However, cultivation of Bt-expressing maize places intense selection pressure on pest populations to evolve resistance. Instances of resistance to Bt toxins have been reported in WCR. Developing genetic markers for resistance will help in characterizing the extent of existing issues, predicting where future field failures may occur, improving insect resistance management strategies, and in designing and sustainably implementing forthcoming WCR control products. Here, we discover and validate genetic markers in WCR that are associated with resistance to the Cry3Bb1 Bt toxin. A field-derived WCR population known to be resistant to the Cry3Bb1 Bt toxin was used to generate a genetic map and to identify a genomic region associated with Cry3Bb1 resistance. Our results indicate that resistance is inherited in a nearly recessive manner and associated with a single autosomal linkage group. Markers tightly linked with resistance were validated using WCR populations collected from Cry3Bb1 maize fields showing significant WCR damage from across the US Corn Belt. Two markers were found to be correlated with both diet (R2 = 0.14) and plant (R2 = 0.23) bioassays for resistance. These results will assist in assessing resistance risk for different WCR populations, and can be used to improve insect resistance management strategies. Copyright © 2015 Flagel et al.

  16. Evaluation of SmartStax and SmartStax PRO maize against western corn rootworm and northern corn rootworm: efficacy and resistance management.

    Science.gov (United States)

    Head, Graham P; Carroll, Matthew W; Evans, Sean P; Rule, Dwain M; Willse, Alan R; Clark, Thomas L; Storer, Nicholas P; Flannagan, Ronald D; Samuel, Luke W; Meinke, Lance J

    2017-09-01

    Cases of western corn rootworm (WCR) field-evolved resistance to Cry3Bb1 and other corn rootworm (CRW) control traits have been reported. Pyramid products expressing multiple CRW traits can delay resistance compared to single trait products. We used field studies to assess the pyramid CRW corn products, SmartStax (expressing Cry3Bb1 and Cry34Ab1/Cry35Ab1) and SmartStax PRO (expressing Cry3Bb1, Cry34Ab1/Cry35Ab1 and DvSnf7), at locations with high WCR densities and possible Cry3Bb1 resistance, and to assess the reduction in adult emergence attributable to DvSnf7 and other traits. Insect resistance models were used to assess durability of SmartStax and SmartStax PRO to WCR resistance. SmartStax significantly reduced root injury compared to non-CRW-trait controls at all but one location with measurable WCR pressure, while SmartStax PRO significantly reduced root injury at all locations, despite evidence of Cry3Bb1 resistance at some locations. The advantage of SmartStax PRO over SmartStax in reducing root damage was positively correlated with root damage on non-CRW-trait controls. DvSnf7 was estimated to reduce WCR emergence by approximately 80-95%, which modeling indicated will improve durability of Cry3Bb1 and Cry34Ab1/Cry35Ab1 compared to SmartStax. The addition of DvSnf7 in SmartStax PRO can reduce root damage under high WCR densities and prolong Cry3Bb1 and Cry34Ab1/Cry35Ab1 durability. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize.

    Science.gov (United States)

    Wei, Kai-Fa; Chen, Juan; Chen, Yan-Feng; Wu, Ling-Juan; Xie, Dao-Xin

    2012-04-01

    The WRKY transcription factors function in plant growth and development, and response to the biotic and abiotic stresses. Although many studies have focused on the functional identification of the WRKY transcription factors, much less is known about molecular phylogenetic and global expression analysis of the complete WRKY family in maize. In this study, we identified 136 WRKY proteins coded by 119 genes in the B73 inbred line from the complete genome and named them in an orderly manner. Then, a comprehensive phylogenetic analysis of five species was performed to explore the origin and evolutionary patterns of these WRKY genes, and the result showed that gene duplication is the major driving force for the origin of new groups and subgroups and functional divergence during evolution. Chromosomal location analysis of maize WRKY genes indicated that 20 gene clusters are distributed unevenly in the genome. Microarray-based expression analysis has revealed that 131 WRKY transcripts encoded by 116 genes may participate in the regulation of maize growth and development. Among them, 102 transcripts are stably expressed with a coefficient of variation (CV) value of WRKY genes with the CV value of >15% are further analysed to discover new organ- or tissue-specific genes. In addition, microarray analyses of transcriptional responses to drought stress and fungal infection showed that maize WRKY proteins are involved in stress responses. All these results contribute to a deep probing into the roles of WRKY transcription factors in maize growth and development and stress tolerance.

  18. P1 epigenetic regulation in leaves of high altitude maize landraces: effect of UV-B radiation

    Directory of Open Access Journals (Sweden)

    Sebastian Pablo Rius

    2016-04-01

    Full Text Available P1 is a R2R3-MYB transcription factor that regulates the accumulation of a specific group of flavonoids in maize floral tissues, such as flavones and phlobaphenes. P1 is also highly expressed in leaves of maize landraces adapted to high altitudes and higher levels of UV-B radiation. In this work, we analyzed the epigenetic regulation of the P1 gene by UV-B in leaves of different maize landraces. Our results demonstrate that DNA methylation in the P1 proximal promoter, intron1 and intron2 is decreased by UV-B in all lines analyzed; however, the basal DNA methylation levels are lower in the landraces than in B73, a low altitude inbred line. DNA demethylation by UV-B is accompanied by a decrease in H3 methylation at Lys 9 and 27, and by an increase in H3 acetylation. smRNAs complementary to specific regions of the proximal promoter and of intron 2 3' end are also decreased by UV-B; interestingly, P1 smRNA levels are lower in the landraces than in B73 both under control conditions and after UV-B exposure, suggesting that smRNAs regulate P1 expression by UV-B in maize leaves. Finally, we investigated if different P1 targets in flower tissues are also regulated by this transcription factor in response to UV-B. Some targets analyzed show an induction in maize landraces in response to UV-B, with higher basal expression levels in the landraces than in B73; however, not all the transcripts analyzed were found to be regulated by UV-B in leaves.

  19. Insect damages on structural, morphologic and composition of Bt maize hybrids to silage

    Directory of Open Access Journals (Sweden)

    Geraldo Balieiro Neto

    2013-03-01

    Full Text Available It was aimed to evaluate the effect of insect damage on the morphologic and structural characteristics and chemical composition from maize hybrids DKB 390 and AG 8088 with the Cry1Ab trait versus its nonbiotech counterpart. The GMO did not receive insecticide application and the conventional hybrids received one deltametrina (2.8% application at 42 days. The damages caused bySpodoptera frugiperda and Helicoverpa zea in hybrids with Cry1Ab were smaller than its nonbiotech counterpart. After harvest, 95 days after seedling plants were separated in stalks, ears, leafs, dead leafs and floral pennant. The experimental design was randomized block in factorial arrangement 2 x 2. The height of plant and height of ear, percentage and amount of dead leafs from hybrids with the Cry1Ab were higher than its nonbiotech counterpart. There was higher nutrients transfer from stalks to grain filling and smaller rate stalks:ear on transgenic plant. The quality of the transgenic plants can be better when harvest earlier, by increasing no fiber carbohydrates, but when harvest latter, by increasing stalk percentage and stalk lignin content.

  20. The SULTR gene family in maize (Zea mays L.): Gene cloning and expression analyses under sulfate starvation and abiotic stress.

    Science.gov (United States)

    Huang, Qin; Wang, Meiping; Xia, Zongliang

    2018-01-01

    Sulfur is an essential macronutrient required for plant growth, development and stress responses. The family of sulfate transporters (SULTRs) mediates the uptake and translocation of sulfate in higher plants. However, basic knowledge of the SULTR gene family in maize (Zea mays L.) is scarce. In this study, a genome-wide bioinformatic analysis of SULTR genes in maize was conducted, and the developmental expression patterns of the genes and their responses to sulfate starvation and abiotic stress were further investigated. The ZmSULTR family includes eight putative members in the maize genome and is clustered into four groups in the phylogenetic tree. These genes displayed differential expression patterns in various organs of maize. For example, expression of ZmSULTR1;1 and ZmSULTR4;1 was high in roots, and transcript levels of ZmSULTR3;1 and ZmSULTR3;3 were high in shoots. Expression of ZmSULTR1;2, ZmSULTR2;1, ZmSULTR3;3, and ZmSULTR4;1 was high in flowers. Also, these eight genes showed differential responses to sulfate deprivation in roots and shoots of maize seedlings. Transcript levels of ZmSULTR1;1, ZmSULTR1;2, and ZmSULTR3;4 were significantly increased in roots during 12-day-sulfate starvation stress, while ZmSULTR3;3 and ZmSULTR3;5 only showed an early response pattern in shoots. In addition, dynamic transcriptional changes determined via qPCR revealed differential expression profiles of these eight ZmSULTR genes in response to environmental stresses such as salt, drought, and heat stresses. Notably, all the genes, except for ZmSULTR3;3, were induced by drought and heat stresses. However, a few genes were induced by salt stress. Physiological determination showed that two important thiol-containing compounds, cysteine and glutathione, increased significantly under these abiotic stresses. The results suggest that members of the SULTR family might function in adaptations to sulfur deficiency stress and adverse growing environments. This study will lay a

  1. Consumption of Bt Rice Pollen Containing Cry1C or Cry2A Protein Poses a Low to Negligible Risk to the Silkworm Bombyx mori (Lepidoptera: Bombyxidae)

    Science.gov (United States)

    Yang, Yan; Liu, Yue; Cao, Fengqin; Chen, Xiuping; Cheng, Lisheng; Romeis, Jörg; Li, Yunhe; Peng, Yufa

    2014-01-01

    By consuming mulberry leaves covered with pollen from nearby genetically engineered, insect-resistant rice lines producing Cry proteins derived from Bacillus thuringiensis (Bt), larvae of the domestic silkworm, Bombyx mori (Linnaeus) (Lepidoptera: Bombyxidae), could be exposed to insecticidal proteins. Laboratory experiments were conducted to assess the potential effects of Cry1C- or Cry2A-producing transgenic rice (T1C-19, T2A-1) pollen on B. mori fitness. In a short-term assay, B. mori larvae were fed mulberry leaves covered with different densities of pollen from Bt rice lines or their corresponding near isoline (control) for the first 3 d and then were fed mulberry leaves without pollen. No effect was detected on any life table parameter, even at 1800 pollen grains/cm2 leaf, which is much higher than the mean natural density of rice pollen on leaves of mulberry trees near paddy fields. In a long-term assay, the larvae were fed Bt and control pollen in the same way but for their entire larval stage (approximately 27 d). Bt pollen densities ≥150 grains/cm2 leaf reduced 14-d larval weight, increased larval development time, and reduced adult eclosion rate. ELISA analyses showed that 72.6% of the Cry protein was still detected in the pollen grains excreted with the feces. The low exposure of silkworm larvae to Cry proteins when feeding Bt rice pollen may be the explanation for the relatively low toxicity detected in the current study. Although the results demonstrate that B. mori larvae are sensitive to Cry1C and Cry2A proteins, the exposure levels that harmed the larvae in the current study are far greater than natural exposure levels. We therefore conclude that consumption of Bt rice pollen will pose a low to negligible risk to B. mori. PMID:25014054

  2. Validation of candidate genes putatively associated with resistance to SCMV and MDMV in maize (Zea mays L.) by expression profiling

    DEFF Research Database (Denmark)

    Uzarowska, Anna; Dionisio, Giuseppe; Sarholz, Barbara

    2009-01-01

    Background The potyviruses sugarcane mosaic virus (SCMV) and maize dwarf mosaic virus (MDMV) are major pathogens of maize worldwide. Two loci, Scmv1 and Scmv2, have ealier been shown to confer complete resistance to SCMV. Custom-made microarrays containing previously identified SCMV resistance...... the effectiveness and reliability of the combination of different expression profiling approaches for the identification and validation of candidate genes. Genes identified in this study represent possible future targets for manipulation of SCMV resistance in maize....

  3. Transcriptomic Analysis of Intestinal Tissues from Two 90-Day Feeding Studies in Rats Using Genetically Modified MON810 Maize Varieties.

    Science.gov (United States)

    Sharbati, Jutta; Bohmer, Marc; Bohmer, Nils; Keller, Andreas; Backes, Christina; Franke, Andre; Steinberg, Pablo; Zeljenková, Dagmar; Einspanier, Ralf

    2017-01-01

    Background: Global as well as specific expression profiles of selected rat tissues were characterized to assess the safety of genetically modified (GM) maize MON810 containing the insecticidal protein Cry1Ab. Gene expression was evaluated by use of Next Generation Sequencing (NGS) as well as RT-qPCR within rat intestinal tissues based on mandatory 90-day rodent feeding studies. In parallel to two 90-day feeding studies, the transcriptional response of rat tissues was assessed as another endpoint to enhance the mechanistic interpretation of GM feeding studies and/or to facilitate the generation of a targeted hypothesis. Rats received diets containing 33% GM maize (MON810) or near-isogenic control maize. As a site of massive exposure to ingested feed the transcriptomic response of ileal and colonic tissue was profiled via RT-qPCR arrays targeting apoptosis, DNA-damage/repair, unfolded protein response (UPR). For global RNA profiling of rat ileal tissue, we applied NGS. Results: No biological response to the GM-diet was observed in male and in female rat tissues. Transcriptome wide analysis of gene expression by RNA-seq confirmed these findings. Nevertheless, gene ontology (GO) analysis clearly associated a set of distinctly regulated transcripts with circadian rhythms. We confirmed differential expression of circadian clock genes using RT-qPCR and immunoassays for selected factors, thereby indicating physiological effects caused by the time point of sampling. Conclusion: Prediction of potential unintended effects of GM-food/feed by transcriptome based profiling of intestinal tissue presents a novel approach to complement classical toxicological testing procedures. Including the detection of alterations in signaling pathways in toxicity testing procedures may enhance the confidence in outcomes of toxicological trials. In this study, no significant GM-related changes in intestinal expression profiles were found in rats fed GM-maize MON810. Relevant alterations of

  4. Hypothalamic expression and moonlight-independent changes of Cry3 and Per4 implicate their roles in lunar clock oscillators of the lunar-responsive Goldlined spinefoot.

    Directory of Open Access Journals (Sweden)

    Riko Toda

    Full Text Available Lunar cycle-associated physiology has been found in a wide variety of organisms. Studies suggest the presence of a circalunar clock in some animals, but the location of the lunar clock is unclear. We previously found lunar-associated expression of transcripts for Cryptochrome3 gene (SgCry3 in the brain of a lunar phase-responsive fish, the Goldlined spinefoot (Siganus guttatus. Then we proposed a photoperiodic model for the lunar phase response, in which SgCry3 might function as a phase-specific light response gene and/or an oscillatory factor in unidentified circalunar clock. In this study, we have developed an anti-SgCRY3 antibody to identify SgCRY3-immunoreactive cells in the brain. We found immunoreactions in the subependymal cells located in the mediobasal region of the diencephalon, a crucial site for photoperiodic seasonal responses in birds. For further assessment of the lunar-responding mechanism and the circalunar clock, we investigated mRNA levels of Cry3 as well as those of the other clock(-related genes, Period (Per2 and Per4, in S. guttatus reared under nocturnal moonlight interruption or natural conditions. Not only SgCry3 but SgPer4 mRNA levels showed lunar phase-dependent variations in the diencephalon without depending on light condition during the night. These results suggest that the expressions of SgCry3 and SgPer4 are not directly regulated by moonlight stimulation but endogenously mediated in the brain, and implicate that circadian clock(-related genes may be involved in the circalunar clock locating within the mediobasal region of the diencephalon.

  5. Hypothalamic expression and moonlight-independent changes of Cry3 and Per4 implicate their roles in lunar clock oscillators of the lunar-responsive Goldlined spinefoot.

    Science.gov (United States)

    Toda, Riko; Okano, Keiko; Takeuchi, Yuki; Yamauchi, Chihiro; Fukushiro, Masato; Takemura, Akihiro; Okano, Toshiyuki

    2014-01-01

    Lunar cycle-associated physiology has been found in a wide variety of organisms. Studies suggest the presence of a circalunar clock in some animals, but the location of the lunar clock is unclear. We previously found lunar-associated expression of transcripts for Cryptochrome3 gene (SgCry3) in the brain of a lunar phase-responsive fish, the Goldlined spinefoot (Siganus guttatus). Then we proposed a photoperiodic model for the lunar phase response, in which SgCry3 might function as a phase-specific light response gene and/or an oscillatory factor in unidentified circalunar clock. In this study, we have developed an anti-SgCRY3 antibody to identify SgCRY3-immunoreactive cells in the brain. We found immunoreactions in the subependymal cells located in the mediobasal region of the diencephalon, a crucial site for photoperiodic seasonal responses in birds. For further assessment of the lunar-responding mechanism and the circalunar clock, we investigated mRNA levels of Cry3 as well as those of the other clock(-related) genes, Period (Per2 and Per4), in S. guttatus reared under nocturnal moonlight interruption or natural conditions. Not only SgCry3 but SgPer4 mRNA levels showed lunar phase-dependent variations in the diencephalon without depending on light condition during the night. These results suggest that the expressions of SgCry3 and SgPer4 are not directly regulated by moonlight stimulation but endogenously mediated in the brain, and implicate that circadian clock(-related) genes may be involved in the circalunar clock locating within the mediobasal region of the diencephalon.

  6. CRY2 is associated with rapid cycling in bipolar disorder patients.

    Directory of Open Access Journals (Sweden)

    Louise K Sjöholm

    2010-09-01

    Full Text Available Bipolar disorder patients often display abnormalities in circadian rhythm, and they are sensitive to irregular diurnal rhythms. CRY2 participates in the core clock that generates circadian rhythms. CRY2 mRNA expression in blood mononuclear cells was recently shown to display a marked diurnal variation and to respond to total sleep deprivation in healthy human volunteers. It was also shown that bipolar patients in a depressive state had lower CRY2 mRNA levels, nonresponsive to total sleep deprivation, compared to healthy controls, and that CRY2 gene variation was associated with winter depression in both Swedish and Finnish cohorts.Four CRY2 SNPs spanning from intron 2 to downstream 3'UTR were analyzed for association to bipolar disorder type 1 (n = 497, bipolar disorder type 2 (n = 60 and bipolar disorder with the feature rapid cycling (n = 155 versus blood donors (n = 1044 in Sweden. Also, the rapid cycling cases were compared with bipolar disorder cases without rapid cycling (n = 422. The haplotype GGAC was underrepresented among rapid cycling cases versus controls and versus bipolar disorder cases without rapid cycling (OR = 0.7, P = 0.006-0.02, whereas overrepresentation among rapid cycling cases was seen for AAAC (OR = 1.3-1.4, P = 0.03-0.04 and AGGA (OR = 1.5, P = 0.05. The risk and protective CRY2 haplotypes and their effect sizes were similar to those recently suggested to be associated with winter depression in Swedes.We propose that the circadian gene CRY2 is associated with rapid cycling in bipolar disorder. This is the first time a clock gene is implicated in rapid cycling, and one of few findings showing a molecular discrimination between rapid cycling and other forms of bipolar disorder.

  7. A toxin-binding alkaline phosphatase fragment synergizes Bt toxin Cry1Ac against susceptible and resistant Helicoverpa armigera.

    Directory of Open Access Journals (Sweden)

    Wenbo Chen

    Full Text Available Evolution of resistance by insects threatens the continued success of pest control using insecticidal crystal (Cry proteins from the bacterium Bacillus thuringiensis (Bt in sprays and transgenic plants. In this study, laboratory selection with Cry1Ac yielded five strains of cotton bollworm, Helicoverpa armigera, with resistance ratios at the median lethal concentration (LC50 of activated Cry1Ac ranging from 22 to 1700. Reduced activity and reduced transcription of an alkaline phosphatase protein that binds Cry1Ac was associated with resistance to Cry1Ac in the four most resistant strains. A Cry1Ac-binding fragment of alkaline phosphatase from H. armigera (HaALP1f was not toxic by itself, but it increased mortality caused by Cry1Ac in a susceptible strain and in all five resistant strains. Although synergism of Bt toxins against susceptible insects by toxin-binding fragments of cadherin and aminopeptidase N has been reported previously, the results here provide the first evidence of synergism of a Bt toxin by a toxin-binding fragment of alkaline phosphatase. The results here also provide the first evidence of synergism of a Bt toxin by any toxin-binding peptide against resistant insects.

  8. Uptake and bioaccumulation of Cry toxins by an aphidophagous predator

    International Nuclear Information System (INIS)

    Paula, Débora P.; Andow, David A.

    2016-01-01

    Uptake of Cry toxins by insect natural enemies has rarely been considered and bioaccumulation has not yet been demonstrated. Uptake can be demonstrated by the continued presence of Cry toxin after exposure has stopped and gut contents eliminated. Bioaccumulation can be demonstrated by showing uptake and that the concentration of Cry toxin in the natural enemy exceeds that in its food. We exposed larvae of the aphidophagous predator, Harmonia axyridis, to Cry1Ac and Cry1F through uniform and constant tritrophic exposure via an aphid, Myzus persicae, and looked for toxin presence in the pupae. We repeated the experiment using only Cry1F and tested newly emerged adults. Both Cry toxins were detected in pupae, and Cry1F was detected in recently emerged, unfed adults. Cry1Ac was present 2.05 times and Cry1F 3.09 times higher in predator pupae than in the aphid prey. Uptake and bioaccumulation in the third trophic level might increase the persistence of Cry toxins in the food web and mediate new exposure routes to natural enemies. - Highlights: • Uptake and bioaccumulation of two Cry toxins by a larval coccinellid was tested. • Uptake was demonstrated by presence of the toxins in pupae and adults. • Bioaccumulation was shown by higher toxin concentration in pupae than prey. • Cry1Ac was present 2.05× and Cry1F 3.09× higher in predator pupae than prey. • This might increase persistence of Cry toxins in food webs with new exposure routes. - Immatures of the predaceous coccinellid Harmonia axyridis can uptake and bioaccumulate Cry toxins delivered via their aphid prey.

  9. Characterization and expression of the maize β-carbonic anhydrase gene repeat regions.

    Science.gov (United States)

    Tems, Ursula; Burnell, James N

    2010-12-01

    In maize, carbonic anhydrase (CA; EC 4.2.1.1) catalyzes the first reaction of the C(4) photosynthetic pathway; it catalyzes the hydration of CO(2) to bicarbonate and provides an inorganic carbon source for the primary carboxylation reaction catalyzed by phosphoenolpyruvate (PEP) carboxylase. The β-CA isozymes from maize, as well as other agronomically important NADP-malic enzyme (NADP-ME) type C(4) crops, have remained relatively uncharacterized but differ significantly from the β-CAs of other C(4) monocot species primarily due to transcript length and the presence of repeat sequences. This research confirmed earlier findings of repeat sequences in maize CA transcripts, and demonstrated that the gene encoding these transcripts is also composed of repeat sequences. One of the maize CA genes was sequenced and found to encode two domains, with distinct groups of exons corresponding to the repeat regions of the transcript. We have also shown that expression of a single repeat region of the CA transcript produced active enzyme that associated as a dimer and was composed primarily of α-helices, consistent with that observed for other plant CAs. As the presence of repeat regions in the CA gene is unique to NADP-ME type C(4) monocot species, the implications of these findings in the context of the evolution of the location and function of this C(4) pathway enzyme are strongly suggestive of CA gene duplication resulting in an evolutionary advantage and a higher photosynthetic efficiency. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  10. Manejo de lepidópteros-praga na cultura do milho com o evento Bt piramidado Cry1A.105 e Cry2Ab2

    Directory of Open Access Journals (Sweden)

    José Magid Waquil

    2013-12-01

    Full Text Available O objetivo deste trabalho foi avaliar a eficácia do evento piramidado (MON 89034, que expressa as proteínas Cry1A.105 e Cry2Ab2, no controle dos principais lepidópteros-praga da cultura do milho no Brasil, Spodoptera frugiperda, Helicoverpa spp. e Diatraea saccharalis. Os ensaios foram conduzidos em quatro regiões do país, com o híbrido DKB 390, submetido a seis tratamentos: híbrido com o evento piramidado, híbrido com o evento que expressa apenas a proteína Cry1A(b (MON 810 e híbrido convencional (não Bt, todos com e sem manejo integrado de S. frugiperda. Para o evento piramidado, não foi necessário o controle químico em nenhum dos locais avaliados. Diferenças significativas foram observadas entre os tratamentos quanto aos danos e à presença de lagartas. Em geral, essas variáveis foram mais baixas no híbrido com o evento piramidado e mais altas no híbrido convencional, sem controle químico. Sob alta infestação, o controle químico reduziu os danos causados por S. frugiperda e D. saccharalis, tanto no evento que expressa apenas uma proteína, como no híbrido convencional. Com base nos danos causados pelos insetos, o evento piramidado Cry1A.105 e Cry2Ab2 é eficiente no controle dos principais lepidópteros-pragas do milho no Brasil.

  11. Production of the {sup 14}C-labeled insecticidal protein Cry1Ab for soil metabolic studies using a recombinant Escherichia coli in small-scale batch fermentations

    Energy Technology Data Exchange (ETDEWEB)

    Valldor, Petra; Miethling-Graff, Rona; Dockhorn, Susanne; Martens, Rainer; Tebbe, Christoph C. [Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig (Germany). Thuenen Institute (vTI) for Biodiversity

    2012-10-15

    Insecticidal Cry proteins naturally produced by Bacillus thuringiensis are a major recombinant trait expressed by genetically modified crops. They are released into the soil during and after cropping. The objective of this study was to produce {sup 14}C-labeled Cry1Ab proteins for soil metabolic studies in scope of their environmental risk assessment. Cry1Ab was synthesized as a protoxin by Escherichia coli HB101 pMP in 200-mL liquid batch culture fermentations and purified from inclusion bodies after trypsin digestion. For cultivation, U-{sup 14}C-glycerol was the main carbon source. Inclusion bodies were smaller and Cry1Ab yield was lower when the initial amount of total organic carbon in the cultivation broth was below 6.4 mg C L{sup -1}. Concentrations of 12.6 g {sup 14}C-labeled glycerol L{sup -1} (1 % v/v) resulted in the production of 17.1 mg {sup 14}C-Cry1Ab L{sup -1} cultivation medium. {sup 14}C mass balances showed that approx. 50 % of the label was lost by respiration and 20 % remained in the growth media, while the residual activity was associated with biomass. Depending on the production batch, 0.01 to 0.05 % of the total {sup 14}C originated from Cry1Ab. In the presence of 2.04 MBq {sup 14}C-labeled carbon sources, a specific activity of up to 268 Bq mg{sup -1} {sup 14}C-Cry1Ab was obtained. A more than threefold higher specific activity was achieved with 4.63 MBq and an extended cultivation period of 144 h. This study demonstrates that {sup 14}C-labeled Cry1Ab can be obtained from batch fermentations with E. coli in the presence of a simple {sup 14}C-labeled carbon source. It also provides a general strategy to produce {sup 14}C-labeled proteins useful for soil metabolic studies. (orig.)

  12. Intranasal Coadministration of the Cry1Ac Protoxin with Amoebal Lysates Increases Protection against Naegleria fowleri Meningoencephalitis

    Science.gov (United States)

    Rojas-Hernández, Saúl; Rodríguez-Monroy, Marco A.; López-Revilla, Rubén; Reséndiz-Albor, Aldo A.; Moreno-Fierros, Leticia

    2004-01-01

    Cry1Ac protoxin has potent mucosal and systemic adjuvant effects on antibody responses to proteins or polysaccharides. In this work, we examined whether Cry1Ac increased protective immunity against fatal Naegleria fowleri infection in mice, which resembles human primary amoebic meningoencephalitis. Higher immunoglobulin G (IgG) than IgA anti-N. fowleri responses were elicited in the serum and tracheopulmonary fluids of mice immunized by the intranasal or intraperitoneal route with N. fowleri lysates either alone or with Cry1Ac or cholera toxin. Superior protection against a lethal challenge with 5 × 104 live N. fowleri trophozoites was achieved for immunization by the intranasal route. Intranasal immunization of N. fowleri lysates coadministered with Cry1Ac increased survival to 100%; interestingly, immunization with Cry1Ac alone conferred similar protection to that achieved with amoebal lysates alone (60%). When mice intranasally immunized with Cry1Ac plus lysates were challenged with amoebae, both IgG and IgA mucosal responses were rapidly increased, but only the increased IgG response persisted until day 60 in surviving mice. The brief rise in the level of specific mucosal IgA does not exclude the role that this isotype may play in the early defense against this parasite, since higher IgA responses were detected in nasal fluids of mice intranasally immunized with lysates plus either Cry1Ac or cholera toxin, which, indeed, were the treatments that provided the major protection levels. In contrast, serum antibody responses do not seem to be related to the protection level achieved. Both acquired and innate immune systems seem to play a role in host defense against N. fowleri infection, but further studies are required to elucidate the mechanisms involved in protective effects conferred by Cry1Ac, which may be a valuable tool to improve mucosal vaccines. PMID:15271892

  13. Chromatin looping and epigenetic regulation at the maize b1 locus

    NARCIS (Netherlands)

    Louwers, M.L.D.

    2008-01-01

    In this thesis, the effect of epigenetic regulation on long-range chromatin looping is studied. As a model system we used two maize b1 epialleles involved in paramutation. Paramutation entails a trans-interaction between two alleles whereby one allele heritably changes the expression level of the

  14. Genetic Basis of Cry1F-Resistance in a Laboratory Selected Asian Corn Borer Strain and Its Cross-Resistance to Other Bacillus thuringiensis Toxins.

    Directory of Open Access Journals (Sweden)

    Yueqin Wang

    Full Text Available The Asian corn borer (ACB, Ostrinia furnacalis (Guenée (Lepidoptera: Crambidae, is the most destructive insect pest of corn in China. Susceptibility to the Cry1F toxin derived from Bacillus thuringiensis has been demonstrated for ACB, suggesting the potential for Cry1F inclusion as part of an insect pest management program. Insects can develop resistance to Cry toxins, which threatens the development and use of Bt formulations and Bt crops in the field. To determine possible resistance mechanisms to Cry1F, a Cry1F-resistant colony of ACB (ACB-FR that exhibited more than 1700-fold resistance was established through selection experiments after 49 generations of selection under laboratory conditions. The ACB-FR strain showed moderate cross-resistance to Cry1Ab and Cry1Ac of 22.8- and 26.9-fold, respectively, marginally cross-resistance to Cry1Ah (3.7-fold, and no cross-resistance to Cry1Ie (0.6-fold. The bioassay responses of progeny from reciprocal F1 crosses to different Cry1 toxin concentrations indicated that the resistance trait to Cry1Ab, Cry1Ac and Cry1F has autosomal inheritance with no maternal effect or sex linked. The effective dominance (h of F1 offspring was calculated at different concentrations of Cry1F, showing that h decreased as concentration of Cry1F increased. Finally, the analysis of actual and expected mortality of the progeny from a backcross (F1 × resistant strain indicated that the inheritance of the resistance to Cry1F in ACB-FR was due to more than one locus. The present study provides an understanding of the genetic basis of Cry1F resistance in ACB-FR and also shows that pyramiding Cry1F with Cry1Ah or Cry1Ie could be used as a strategy to delay the development of ACB resistance to Bt proteins.

  15. Binding site alteration is responsible for field-isolated resistance to Bacillus thuringiensis Cry2A insecticidal proteins in two Helicoverpa species.

    Directory of Open Access Journals (Sweden)

    Silvia Caccia

    Full Text Available BACKGROUND: Evolution of resistance by target pests is the main threat to the long-term efficacy of crops expressing Bacillus thuringiensis (Bt insecticidal proteins. Cry2 proteins play a pivotal role in current Bt spray formulations and transgenic crops and they complement Cry1A proteins because of their different mode of action. Their presence is critical in the control of those lepidopteran species, such as Helicoverpa spp., which are not highly susceptible to Cry1A proteins. In Australia, a transgenic variety of cotton expressing Cry1Ac and Cry2Ab (Bollgard II comprises at least 80% of the total cotton area. Prior to the widespread adoption of Bollgard II, the frequency of alleles conferring resistance to Cry2Ab in field populations of Helicoverpa armigera and Helicoverpa punctigera was significantly higher than anticipated. Colonies established from survivors of F(2 screens against Cry2Ab are highly resistant to this toxin, but susceptible to Cry1Ac. METHODOLOGY/PRINCIPAL FINDINGS: Bioassays performed with surface-treated artificial diet on neonates of H. armigera and H. punctigera showed that Cry2Ab resistant insects were cross-resistant to Cry2Ae while susceptible to Cry1Ab. Binding analyses with (125I-labeled Cry2Ab were performed with brush border membrane vesicles from midguts of Cry2Ab susceptible and resistant insects. The results of the binding analyses correlated with bioassay data and demonstrated that resistant insects exhibited greatly reduced binding of Cry2Ab toxin to midgut receptors, whereas no change in (125I-labeled-Cry1Ac binding was detected. As previously demonstrated for H. armigera, Cry2Ab binding sites in H. punctigera were shown to be shared by Cry2Ae, which explains why an alteration of the shared binding site would lead to cross-resistance between the two Cry2A toxins. CONCLUSION/SIGNIFICANCE: This is the first time that a mechanism of resistance to the Cry2 class of insecticidal proteins has been reported

  16. The distinct properties of natural and GM cry insecticidal proteins.

    Science.gov (United States)

    Latham, Jonathan R; Love, Madeleine; Hilbeck, Angelika

    2017-04-01

    The Cry toxins are a family of crystal-forming proteins produced by the bacterium Bacillus thuringiensis. Their mode of action is thought to be to create pores that disrupt the gut epithelial membranes of juvenile insects. These pores allow pathogen entry into the hemocoel, thereby killing the insect. Genes encoding a spectrum of Cry toxins, including Cry mutants, Cry chimaeras and other Cry derivatives, are used commercially to enhance insect resistance in genetically modified (GM) crops. In most countries of the world, such GM crops are regulated and must be assessed for human and environmental safety. However, such risk assessments often do not test the GM crop or its tissues directly. Instead, assessments rely primarily on historical information from naturally occurring Cry proteins and on data collected on Cry proteins (called 'surrogates') purified from laboratory strains of bacteria engineered to express Cry protein. However, neither surrogates nor naturally occurring Cry proteins are identical to the proteins to which humans or other nontarget organisms are exposed by the production and consumption of GM plants. To-date there has been no systematic survey of these differences. This review fills this knowledge gap with respect to the most commonly grown GM Cry-containing crops approved for international use. Having described the specific differences between natural, surrogate and GM Cry proteins this review assesses these differences for their potential to undermine the reliability of risk assessments. Lastly, we make specific recommendations for improving risk assessments.

  17. Developing Inset Resistant Maize Varieties for Food Security in Kenya

    International Nuclear Information System (INIS)

    Mugo, S.

    2002-01-01

    The Insect Resistant Maize for Africa (IRMA) project aims at increasing maize production and food security through development and deployment of stem borer resistant maize germplasm developed using conventional and through biotechnology methods such as Bt maize. Bt maize offers farmers an effective and practical option for controlling stem borers. It was recognized that the development and routine use of Bt maize will require addressing relevant bio-safety, environmental, and community concerns and research and information gathering activities are in place to address these concerns and research and information gathering activities are in place to address these concerns. Suitable Bt gene have been acquired or synthesized and back-crossed into elite maize germplasm at CIMMYT-Mexico, and the effective Cry-proteins against the major maize stem borers in Kenya were identified to better target pests. Stem borer resistant maize germplasm is being developed through conventional breeding, using locally adapted and exotic germplasm. for safe and effective deployment of Bt maize,studies on its impacts on target and non-target arthropods as well as studies on the effects of Bt maize on key non-target arthropods as well as studies on gene flow are underway. Insect resistance management strategies are being developed through quantifying the effectiveness, ???. Socioeconomic impact studies are revealing factors in the society that may influence the adoption of Bt maize in Kenya. Also, baseline data, essential for the monitoring and evaluation of the Bt maize technology in Kenya, has been established. Technology transfer and capacity building, creating awareness and communications have received attention in the project. This paper describes the major research activities as they relate to development of the stem bore resistant maize germplasm

  18. Toxicidade e capacidade de ligação de proteínas Cry1 a receptores intestinais de Helicoverpa armigera (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    Isis Sebastião

    2015-11-01

    Full Text Available Resumo: O objetivo deste trabalho foi avaliar a toxicidade e a capacidade de ligação das proteínas Cry1Aa, Cry1Ab, Cry1Ac e Cry1Ca, de Bacillus thuringiensis, a receptores intestinais de Helicoverpa armigera. Realizou-se análise de ligação das proteínas ativadas às vesículas de membrana da microvilosidade apical (VMMA do intestino médio deH. armigera, além de ensaios de competição heteróloga para avaliar sua capacidade de ligação. Cry1Ac destacou-se como a proteína mais tóxica, seguida por Cry1Ab e Cry1Aa. A proteína Cry1Ca não foi tóxica às lagartas e, portanto, não foi possível determinar os seus parâmetros de toxicidade CL50 e CL90. As proteínas Cry1Aa, Cry1Ab e Cry1Ac são capazes de se ligar a um mesmo receptor nas membranas intestinais, o que aumenta o risco do desenvolvimento de resistência cruzada. Portanto, a utilização conjunta dessas proteínas deve ser evitada.

  19. Distribution and Metabolism of Bt-Cry1Ac Toxin in Tissues and Organs of the Cotton Bollworm, Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Zhuoya Zhao

    2016-07-01

    Full Text Available Crystal (Cry proteins derived from Bacillus thuringiensis (Bt have been widely used in transgenic crops due to their toxicity against insect pests. However, the distribution and metabolism of these toxins in insect tissues and organs have remained obscure because the target insects do not ingest much toxin. In this study, several Cry1Ac-resistant strains of Helicoverpa armigera, fed artificial diets containing high doses of Cry1Ac toxin, were used to investigate the distribution and metabolism of Cry1Ac in their bodies. Cry1Ac was only detected in larvae, not in pupae or adults. Also, Cry1Ac passed through the midgut into other tissues, such as the hemolymph and fat body, but did not reach the larval integument. Metabolic tests revealed that Cry1Ac degraded most rapidly in the fat body, followed by the hemolymph, peritrophic membrane and its contents. The toxin was metabolized slowly in the midgut, but was degraded in all locations within 48 h. These findings will improve understanding of the functional mechanism of Bt toxins in target insects and the biotransfer and the bioaccumulation of Bt toxins in arthropod food webs in the Bt crop ecosystem.

  20. DNA degradation in genetically modified rice with Cry1Ab by food processing methods: implications for the quantification of genetically modified organisms.

    Science.gov (United States)

    Xing, Fuguo; Zhang, Wei; Selvaraj, Jonathan Nimal; Liu, Yang

    2015-05-01

    Food processing methods contribute to DNA degradation, thereby affecting genetically modified organism detection and quantification. This study evaluated the effect of food processing methods on the relative transgenic content of genetically modified rice with Cry1Ab. In steamed rice and rice noodles, the levels of Cry1Ab were ⩾ 100% and <83%, respectively. Frying and baking in rice crackers contributed to a reduction in Pubi and Cry1Ab, while microwaving caused a decrease in Pubi and an increase in Cry1Ab. The processing methods of sweet rice wine had the most severe degradation effects on Pubi and Cry1Ab. In steamed rice and rice noodles, Cry1Ab was the most stable, followed by SPS and Pubi. However, in rice crackers and sweet rice wine, SPS was the most stable, followed by Cry1Ab and Pubi. Therefore, Cry1Ab is a better representative of transgenic components than is Pubi because the levels of Cry1Ab were less affected compared to Pubi. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Cross-resistance to purified Bt proteins, Bt corn and Bt cotton in a Cry2Ab2-corn resistant strain of Spodoptera frugiperda.

    Science.gov (United States)

    Yang, Fei; Kerns, David L; Head, Graham P; Price, Paula; Huang, Fangneng

    2017-12-01

    Gene-pyramiding by combining two or more dissimilar Bacillus thuringiensis (Bt) proteins into a crop has been used to delay insect resistance. The durability of gene-pyramiding can be reduced by cross-resistance. Fall armyworm, Spodoptera frugiperda, is a major target pest of the Cry2Ab2 protein used in pyramided Bt corn and cotton. Here, we provide the first experimental evaluation of cross-resistance in S. frugiperda selected with Cry2Ab2 corn to multiple Bt sources including purified Bt proteins, Bt corn and Bt cotton. Concentration - response bioassays showed that resistance ratios for Cry2Ab2-resistant (RR) relative to Cry2Ab2-susceptible (SS) S. frugiperda were -1.4 for Cry1F, 1.2 for Cry1A.105, >26.7 for Cry2Ab2, >10.0 for Cry2Ae and -1.1 for Vip3A. Larvae of Cry2Ab2-heterozygous (RS), SS and RR S. frugiperda were all susceptible to Bt corn and Bt cotton containing Cry1 (Cry1F or Cry1A.105) and/or Vip3A proteins. Pyramided Bt cotton containing Cry1Ac + Cry2Ab2 or Cry1Ab + Cry2Ae were also effective against SS and RS, but not RR. These findings suggest that Cry2Ab2-corn-selected S. frugiperda is not cross-resistant to Cry1F, Cry1A.105 or Vip3A protein, or corn and cotton plants containing these Bt proteins, but it can cause strong cross-resistance to Cry2Ae and Bt crops expressing similar Bt proteins. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. From many, one: genetic control of prolificacy during maize domestication.

    Directory of Open Access Journals (Sweden)

    David M Wills

    2013-06-01

    Full Text Available A reduction in number and an increase in size of inflorescences is a common aspect of plant domestication. When maize was domesticated from teosinte, the number and arrangement of ears changed dramatically. Teosinte has long lateral branches that bear multiple small ears at their nodes and tassels at their tips. Maize has much shorter lateral branches that are tipped by a single large ear with no additional ears at the branch nodes. To investigate the genetic basis of this difference in prolificacy (the number of ears on a plant, we performed a genome-wide QTL scan. A large effect QTL for prolificacy (prol1.1 was detected on the short arm of chromosome 1 in a location that has previously been shown to influence multiple domestication traits. We fine-mapped prol1.1 to a 2.7 kb "causative region" upstream of the grassy tillers1 (gt1 gene, which encodes a homeodomain leucine zipper transcription factor. Tissue in situ hybridizations reveal that the maize allele of prol1.1 is associated with up-regulation of gt1 expression in the nodal plexus. Given that maize does not initiate secondary ear buds, the expression of gt1 in the nodal plexus in maize may suppress their initiation. Population genetic analyses indicate positive selection on the maize allele of prol1.1, causing a partial sweep that fixed the maize allele throughout most of domesticated maize. This work shows how a subtle cis-regulatory change in tissue specific gene expression altered plant architecture in a way that improved the harvestability of maize.

  3. Infant Cries Rattle Adult Cognition.

    Directory of Open Access Journals (Sweden)

    Joanna Dudek

    Full Text Available The attention-grabbing quality of the infant cry is well recognized, but how the emotional valence of infant vocal signals affects adult cognition and cortical activity has heretofore been unknown. We examined the effects of two contrasting infant vocalizations (cries vs. laughs on adult performance on a Stroop task using a cross-modal distraction paradigm in which infant distractors were vocal and targets were visual. Infant vocalizations were presented before (Experiment 1 or during each Stroop trial (Experiment 2. To evaluate the influence of infant vocalizations on cognitive control, neural responses to the Stroop task were obtained by measuring electroencephalography (EEG and event-related potentials (ERPs in Experiment 1. Based on the previously demonstrated existence of negative arousal bias, we hypothesized that cry vocalizations would be more distracting and invoke greater conflict processing than laugh vocalizations. Similarly, we expected participants to have greater difficulty shifting attention from the vocal distractors to the target task after hearing cries vs. after hearing laughs. Behavioral results from both experiments showed a cry interference effect, in which task performance was slower with cry than with laugh distractors. Electrophysiology data further revealed that cries more than laughs reduced attention to the task (smaller P200 and increased conflict processing (larger N450, albeit differently for incongruent and congruent trials. Results from a correlation analysis showed that the amplitudes of P200 and N450 were inversely related, suggesting a reciprocal relationship between attention and conflict processing. The findings suggest that cognitive control processes contribute to an attention bias to infant signals, which is modulated in part by the valence of the infant vocalization and the demands of the cognitive task. The findings thus support the notion that infant cries elicit a negative arousal bias that is

  4. Analyses of expressed sequence tags from the maize foliar pathogen Cercospora zeae-maydis identity novel genes expressed during vegetative infectious, and repoductive growth

    OpenAIRE

    Bluhm, B.H.; Lindquist, E.; Kema, G.H.J.; Goodwin, S.B.; Dunkle, L.D.

    2008-01-01

    The ascomycete fungus Cercospora zeae-maydis is an aggressive foliar pathogen of maize that causes substantial losses annually throughout the Western Hemisphere. Despite its impact on maize production, little is known about the regulation of pathogenesis in C. zeae-maydis at the molecular level. The objectives of this study were to generate a collection of expressed sequence tags (ESTs) from C. zeae-maydis and evaluate their expression during vegetative, infectious, and reproductive growth. R...

  5. Analyses of expressed sequence tags from the maize foliar pathogen Cercospora zeae-maydis identify novel genes expressed during vegetative, infectious, and reproductive growth

    OpenAIRE

    Bluhm, Burton H; Dhillon, Braham; Lindquist, Erika A; Kema, Gert HJ; Goodwin, Stephen B; Dunkle, Larry D

    2008-01-01

    Abstract Background The ascomycete fungus Cercospora zeae-maydis is an aggressive foliar pathogen of maize that causes substantial losses annually throughout the Western Hemisphere. Despite its impact on maize production, little is known about the regulation of pathogenesis in C. zeae-maydis at the molecular level. The objectives of this study were to generate a collection of expressed sequence tags (ESTs) from C. zeae-maydis and evaluate their expression during vegetative, infectious, and re...

  6. Protein Profiling Reveals Novel Proteins in Pollen and Pistil of W22 (ga1; Ga1 in Maize

    Directory of Open Access Journals (Sweden)

    Jin Yu

    2014-05-01

    Full Text Available Gametophytic factors mediate pollen-pistil interactions in maize (Zea mays L. and play active roles in limiting gene flow among maize populations and between maize and teosinte. This study was carried out to identify proteins and investigate the mechanism of gametophytic factors using protein analysis. W22 (ga1; which did not carry a gametophytic factor and W22 (Ga1, a near iso-genic line, were used for the proteome investigation. SDS-PAGE was executed to investigate proteins in the pollen and pistil of W22 (ga1 and W22 (Ga1. A total of 44 differentially expressed proteins were identified in the pollen and pistil on SDS-PAGE using LTQ-FTICR MS. Among the 44 proteins, a total of 24 proteins were identified in the pollen of W22 (ga1 and W22 (Ga1 whereas 20 differentially expressed proteins were identified from the pistil of W22 (ga1 and W22 (Ga1. However, in pollen, 2 proteins were identified only in the W22 (ga1 and 12 proteins only in the W22 (Ga1 whereas 10 proteins were confirmed from the both of W22 (ga1 and W22 (Ga1. In contrary, 10 proteins were appeared only in the pistil of W22 (ga1 and 7 proteins from W22 (Ga1 while 3 proteins confirmed in the both of W22 (ga1 and W22 (Ga1. Moreover, the identified proteins were generally involved in hydrolase activity, nucleic acid binding and nucleotide binding. These results help to reveal the mechanism of gametophytic factors and provide a valuable clue for the pollen and pistil research in maize.

  7. Dynamic Maize Responses to Aphid Feeding Are Revealed by a Time Series of Transcriptomic and Metabolomic Assays1[OPEN

    Science.gov (United States)

    Tzin, Vered; Fernandez-Pozo, Noe; Richter, Annett; Schmelz, Eric A.; Schoettner, Matthias; Schäfer, Martin; Ahern, Kevin R.; Meihls, Lisa N.; Kaur, Harleen; Huffaker, Alisa; Mori, Naoki; Degenhardt, Joerg; Mueller, Lukas A.; Jander, Georg

    2015-01-01

    As a response to insect attack, maize (Zea mays) has inducible defenses that involve large changes in gene expression and metabolism. Piercing/sucking insects such as corn leaf aphid (Rhopalosiphum maidis) cause direct damage by acquiring phloem nutrients as well as indirect damage through the transmission of plant viruses. To elucidate the metabolic processes and gene expression changes involved in maize responses to aphid attack, leaves of inbred line B73 were infested with corn leaf aphids for 2 to 96 h. Analysis of infested maize leaves showed two distinct response phases, with the most significant transcriptional and metabolic changes occurring in the first few hours after the initiation of aphid feeding. After 4 d, both gene expression and metabolite profiles of aphid-infested maize reverted to being more similar to those of control plants. Although there was a predominant effect of salicylic acid regulation, gene expression changes also indicated prolonged induction of oxylipins, although not necessarily jasmonic acid, in aphid-infested maize. The role of specific metabolic pathways was confirmed using Dissociator transposon insertions in maize inbred line W22. Mutations in three benzoxazinoid biosynthesis genes, Bx1, Bx2, and Bx6, increased aphid reproduction. In contrast, progeny production was greatly decreased by a transposon insertion in the single W22 homolog of the previously uncharacterized B73 terpene synthases TPS2 and TPS3. Together, these results show that maize leaves shift to implementation of physical and chemical defenses within hours after the initiation of aphid feeding and that the production of specific metabolites can have major effects in maize-aphid interactions. PMID:26378100

  8. Fitness costs and stability of Cry1Fa resistance in Brazilian populations of Spodoptera frugiperda.

    Science.gov (United States)

    Santos-Amaya, Oscar F; Tavares, Clébson S; Rodrigues, João Victor C; Campos, Silverio O; Guedes, Raul Narciso C; Alves, Analiza P; Pereira, Eliseu José G

    2017-01-01

    The presence of fitness costs of resistance to Bacillus thuringiensis (Bt) insecticidal proteins in insect populations may delay or even reverse the local selection of insect resistance to Bt transgenic crops, and deserves rigorous investigation. Here we assessed the fitness costs associated with Cry1Fa resistance in two strains of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), derived from field collections in different Brazilian regions and further selected in the laboratory for high levels of resistance to Cry1Fa using leaves of TC1507 corn. Fitness components were compared using paired resistant and susceptible strains with similar genetic backgrounds and F 1 generations from reciprocal crosses, all of them reared on non-transgenic corn leaves. No apparent life history costs in the larval stage were observed in the Bt-resistant strains. Moreover, the resistance remained stable for seven generations in the absence of selection, with no decrease in the proportion of resistant individuals. Larval respiration rates were also similar between resistant and susceptible homozygotes, and heterozygotes displayed respiration rates and demographic performance equal or superior to those of susceptible homozygotes. In combination, these results indicate the lack of strong fitness costs associated with resistance to Cry1Fa in the fall armyworm strains studied. These findings suggest that Cry1Fa resistance in S. frugiperda populations is unlikely to be counterselected in Cry1Fa-free environments. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Fitness costs associated with field-evolved resistance to Bt maize in Spodoptera frugiperda (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Jakka, S R K; Knight, V R; Jurat-Fuentes, J L

    2014-02-01

    Increasing adoption of transgenic crops expressing cry toxin genes from Bacillus thuringiensis (Bt crops) represents an augmented risk for development of insect resistance. While fitness costs can greatly influence the rate of resistance evolution, most available data related to Bt resistance have been obtained from laboratory-selected insect strains. In this article, we test the existence of fitness costs associated with high levels of field-evolved resistance to Bt maize event TC1507 in a strain of Spodoptera frugiperda (JE Smith) originated from maize fields in Puerto Rico. Fitness costs in resistant S. frugiperda were evaluated by comparing biological performance to susceptible insects when reared on meridic diet, maize or soybean leaf tissue, or cotton reproductive tissues. Parameters monitored included larval survival, larval and pupal weights, developmental time (larval and pupal), adult longevity, reproductive traits (fecundity and fertility), and sex ratio. We found that all monitored parameters were influenced to a similar extent by the host, independently of susceptibility to Bt maize. The only parameter that significantly differed between strains for all hosts was a longer larval developmental period in resistant S. frugiperda, which resulted in emergence asynchrony between susceptible and resistant adults. To test the relevance of fitness costs in resistant S. frugiperda, we performed a selection experiment to monitor the stability of resistance in a heterogeneous strain through 12 generations of rearing on meridic diet. Our data demonstrate lack of fitness costs relevant to stability of field-evolved resistance to Bt maize and help explain reported stability of field-evolved resistance in Puerto Rican populations of S. frugiperda.

  10. Expression of a truncated ATHB17 protein in maize increases ear weight at silking.

    Directory of Open Access Journals (Sweden)

    Elena A Rice

    Full Text Available ATHB17 (AT2G01430 is an Arabidopsis gene encoding a member of the α-subclass of the homeodomain leucine zipper class II (HD-Zip II family of transcription factors. The ATHB17 monomer contains four domains common to all class II HD-Zip proteins: a putative repression domain adjacent to a homeodomain, leucine zipper, and carboxy terminal domain. However, it also possesses a unique N-terminus not present in other members of the family. In this study we demonstrate that the unique 73 amino acid N-terminus is involved in regulation of cellular localization of ATHB17. The ATHB17 protein is shown to function as a transcriptional repressor and an EAR-like motif is identified within the putative repression domain of ATHB17. Transformation of maize with an ATHB17 expression construct leads to the expression of ATHB17Δ113, a truncated protein lacking the first 113 amino acids which encodes a significant portion of the repression domain. Because ATHB17Δ113 lacks the repression domain, the protein cannot directly affect the transcription of its target genes. ATHB17Δ113 can homodimerize, form heterodimers with maize endogenous HD-Zip II proteins, and bind to target DNA sequences; thus, ATHB17Δ113 may interfere with HD-Zip II mediated transcriptional activity via a dominant negative mechanism. We provide evidence that maize HD-Zip II proteins function as transcriptional repressors and that ATHB17Δ113 relieves this HD-Zip II mediated transcriptional repression activity. Expression of ATHB17Δ113 in maize leads to increased ear size at silking and, therefore, may enhance sink potential. We hypothesize that this phenotype could be a result of modulation of endogenous HD-Zip II pathways in maize.

  11. Expression of a truncated ATHB17 protein in maize increases ear weight at silking.

    Science.gov (United States)

    Rice, Elena A; Khandelwal, Abha; Creelman, Robert A; Griffith, Cara; Ahrens, Jeffrey E; Taylor, J Philip; Murphy, Lesley R; Manjunath, Siva; Thompson, Rebecca L; Lingard, Matthew J; Back, Stephanie L; Larue, Huachun; Brayton, Bonnie R; Burek, Amanda J; Tiwari, Shiv; Adam, Luc; Morrell, James A; Caldo, Rico A; Huai, Qing; Kouadio, Jean-Louis K; Kuehn, Rosemarie; Sant, Anagha M; Wingbermuehle, William J; Sala, Rodrigo; Foster, Matt; Kinser, Josh D; Mohanty, Radha; Jiang, Dongming; Ziegler, Todd E; Huang, Mingya G; Kuriakose, Saritha V; Skottke, Kyle; Repetti, Peter P; Reuber, T Lynne; Ruff, Thomas G; Petracek, Marie E; Loida, Paul J

    2014-01-01

    ATHB17 (AT2G01430) is an Arabidopsis gene encoding a member of the α-subclass of the homeodomain leucine zipper class II (HD-Zip II) family of transcription factors. The ATHB17 monomer contains four domains common to all class II HD-Zip proteins: a putative repression domain adjacent to a homeodomain, leucine zipper, and carboxy terminal domain. However, it also possesses a unique N-terminus not present in other members of the family. In this study we demonstrate that the unique 73 amino acid N-terminus is involved in regulation of cellular localization of ATHB17. The ATHB17 protein is shown to function as a transcriptional repressor and an EAR-like motif is identified within the putative repression domain of ATHB17. Transformation of maize with an ATHB17 expression construct leads to the expression of ATHB17Δ113, a truncated protein lacking the first 113 amino acids which encodes a significant portion of the repression domain. Because ATHB17Δ113 lacks the repression domain, the protein cannot directly affect the transcription of its target genes. ATHB17Δ113 can homodimerize, form heterodimers with maize endogenous HD-Zip II proteins, and bind to target DNA sequences; thus, ATHB17Δ113 may interfere with HD-Zip II mediated transcriptional activity via a dominant negative mechanism. We provide evidence that maize HD-Zip II proteins function as transcriptional repressors and that ATHB17Δ113 relieves this HD-Zip II mediated transcriptional repression activity. Expression of ATHB17Δ113 in maize leads to increased ear size at silking and, therefore, may enhance sink potential. We hypothesize that this phenotype could be a result of modulation of endogenous HD-Zip II pathways in maize.

  12. Expression of a Truncated ATHB17 Protein in Maize Increases Ear Weight at Silking

    Science.gov (United States)

    Creelman, Robert A.; Griffith, Cara; Ahrens, Jeffrey E.; Taylor, J. Philip; Murphy, Lesley R.; Manjunath, Siva; Thompson, Rebecca L.; Lingard, Matthew J.; Back, Stephanie L.; Larue, Huachun; Brayton, Bonnie R.; Burek, Amanda J.; Tiwari, Shiv; Adam, Luc; Morrell, James A.; Caldo, Rico A.; Huai, Qing; Kouadio, Jean-Louis K.; Kuehn, Rosemarie; Sant, Anagha M.; Wingbermuehle, William J.; Sala, Rodrigo; Foster, Matt; Kinser, Josh D.; Mohanty, Radha; Jiang, Dongming; Ziegler, Todd E.; Huang, Mingya G.; Kuriakose, Saritha V.; Skottke, Kyle; Repetti, Peter P.; Reuber, T. Lynne; Ruff, Thomas G.; Petracek, Marie E.; Loida, Paul J.

    2014-01-01

    ATHB17 (AT2G01430) is an Arabidopsis gene encoding a member of the α-subclass of the homeodomain leucine zipper class II (HD-Zip II) family of transcription factors. The ATHB17 monomer contains four domains common to all class II HD-Zip proteins: a putative repression domain adjacent to a homeodomain, leucine zipper, and carboxy terminal domain. However, it also possesses a unique N-terminus not present in other members of the family. In this study we demonstrate that the unique 73 amino acid N-terminus is involved in regulation of cellular localization of ATHB17. The ATHB17 protein is shown to function as a transcriptional repressor and an EAR-like motif is identified within the putative repression domain of ATHB17. Transformation of maize with an ATHB17 expression construct leads to the expression of ATHB17Δ113, a truncated protein lacking the first 113 amino acids which encodes a significant portion of the repression domain. Because ATHB17Δ113 lacks the repression domain, the protein cannot directly affect the transcription of its target genes. ATHB17Δ113 can homodimerize, form heterodimers with maize endogenous HD-Zip II proteins, and bind to target DNA sequences; thus, ATHB17Δ113 may interfere with HD-Zip II mediated transcriptional activity via a dominant negative mechanism. We provide evidence that maize HD-Zip II proteins function as transcriptional repressors and that ATHB17Δ113 relieves this HD-Zip II mediated transcriptional repression activity. Expression of ATHB17Δ113 in maize leads to increased ear size at silking and, therefore, may enhance sink potential. We hypothesize that this phenotype could be a result of modulation of endogenous HD-Zip II pathways in maize. PMID:24736658

  13. The effect of altered dosage of a mutant allele of Teosinte branched 1 (tb1-ref) on the root system of modern maize.

    Science.gov (United States)

    Gaudin, Amelie C M; McClymont, Sarah A; Soliman, Sameh S M; Raizada, Manish N

    2014-02-14

    There was ancient human selection on the wild progenitor of modern maize, Balsas teosinte, for decreased shoot branching (tillering), in order to allow more nutrients to be diverted to grain. Mechanistically, the decline in shoot tillering has been associated with selection for increased expression of the major domestication gene Teosinte Branched 1 (Tb1) in shoot primordia. Therefore, TB1 has been defined as a repressor of shoot branching. It is known that plants respond to changes in shoot size by compensatory changes in root growth and architecture. However, it has not been reported whether altered TB1 expression affects any plant traits below ground. Previously, changes in dosage of a well-studied mutant allele of Tb1 in modern maize, called tb1-ref, from one to two copies, was shown to increase tillering. As a result, plants with two copies of the tb1-ref allele have a larger shoot biomass than heterozygotes. Here we used aeroponics to phenotype the effects of tb1-ref copy number on maize roots at macro-, meso- and micro scales of development. An increase in the tb1-ref copy number from one to two copies resulted in: (1) an increase in crown root number due to the cumulative initiation of crown roots from successive tillers; (2) higher density of first and second order lateral roots; and (3) reduced average lateral root length. The resulting increase in root system biomass in homozygous tb1-ref mutants balanced the increase in shoot biomass caused by enhanced tillering. These changes caused homozygous tb1-ref mutants of modern maize to more closely resemble its ancestor Balsas teosinte below ground. We conclude that a decrease in TB1 function in maize results in a larger root system, due to an increase in the number of crown roots and lateral roots. Given that decreased TB1 expression results in a more highly branched and larger shoot, the impact of TB1 below ground may be direct or indirect. We discuss the potential implications of these findings for whole

  14. Detection by real-time PCR and pyrosequencing of the cry1Ab and cry1Ac genes introduced in genetically modified (GM) constructs.

    Science.gov (United States)

    Debode, Frederic; Janssen, Eric; Bragard, Claude; Berben, Gilbert

    2017-08-01

    The presence of genetically modified organisms (GMOs) in food and feed is mainly detected by the use of targets focusing on promoters and terminators. As some genes are frequently used in genetically modified (GM) construction, they also constitute excellent screening elements and their use is increasing. In this paper we propose a new target for the detection of cry1Ab and cry1Ac genes by real-time polymerase chain reaction (PCR) and pyrosequencing. The specificity, sensitivity and robustness of the real-time PCR method were tested following the recommendations of international guidelines and the method met the expected performance criteria. This paper also shows how the robustness testing was assessed. This new cry1Ab/Ac method can provide a positive signal with a larger number of GM events than do the other existing methods using double dye-probes. The method permits the analysis of results with less ambiguity than the SYBRGreen method recommended by the European Reference Laboratory (EURL) GM Food and Feed (GMFF). A pyrosequencing method was also developed to gain additional information thanks to the sequence of the amplicon. This method of sequencing-by-synthesis can determine the sequence between the primers used for PCR. Pyrosequencing showed that the sequences internal to the primers present differences following the GM events considered and three different sequences were observed. The sensitivity of the pyrosequencing was tested on reference flours with a low percentage GM content and different copy numbers. Improvements in the pyrosequencing protocol provided correct sequences with 50 copies of the target. Below this copy number, the quality of the sequence was more random.

  15. Enhanced water stress tolerance of transgenic maize plants over-expressing LEA Rab28 gene.

    Science.gov (United States)

    Amara, Imen; Capellades, Montserrat; Ludevid, M Dolors; Pagès, Montserrat; Goday, Adela

    2013-06-15

    Late Embryogenesis Abundant (LEA) proteins participate in plant stress responses and contribute to the acquisition of desiccation tolerance. In this report Rab28 LEA gene has been over-expressed in maize plants under a constitutive maize promoter. The expression of Rab28 transcripts led to the accumulation and stability of Rab28 protein in the transgenic plants. Native Rab28 protein is localized to nucleoli in wild type maize embryo cells; here we find by whole-mount immunocytochemistry that in root cells of Rab28 transgenic and wild-type plants the protein is also associated to nucleolar structures. Transgenic plants were tested for stress tolerance and resulted in sustained growth under polyethyleneglycol (PEG)-mediated dehydration compared to wild-type controls. Under osmotic stress transgenic seedlings showed increased leaf and root areas, higher relative water content (RWC), reduced chlorophyll loss and lower Malondialdehyde (MDA) production in relation to wild-type plants. Moreover, transgenic seeds exhibited higher germination rates than wild-type seeds under water deficit. Overall, our results highlight the presence of transgenic Rab28 protein in nucleolar structures and point to the potential of group 5 LEA Rab28 gene as candidate to enhance stress tolerance in maize plants. Copyright © 2013 Elsevier GmbH. All rights reserved.

  16. Enhanced pest resistance and increased phenolic production in maize callus transgenically expressing a maize chalcone isomerase -3 like gene

    Science.gov (United States)

    Significant losses in maize production are due to damage by insects and ear rot fungi. A gene designated as chalcone-isomerase-like, located in a quantitative trait locus for resistance to Fusarium ear rot fungi, was cloned from a Fusarium ear rot resistant inbred and transgenically expressed in mai...

  17. Increased frequency of pink bollworm resistance to Bt toxin Cry1Ac in China.

    Directory of Open Access Journals (Sweden)

    Peng Wan

    Full Text Available Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The main approach for delaying pest adaptation to Bt crops uses non-Bt host plants as "refuges" to increase survival of susceptible pests. To delay evolution of pest resistance to transgenic cotton producing Bt toxin Cry1Ac, the United States and some other countries have required refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. The "natural" refuge strategy focuses on cotton bollworm (Helicoverpa armigera, the primary target of Bt cotton in China that attacks many crops, but it does not apply to another major pest, pink bollworm (Pectinophora gossypiella, which feeds almost entirely on cotton in China. Here we report data showing field-evolved resistance to Cry1Ac by pink bollworm in the Yangtze River Valley of China. Laboratory bioassay data from 51 field-derived strains show that the susceptibility to Cry1Ac was significantly lower during 2008 to 2010 than 2005 to 2007. The percentage of field populations yielding one or more survivors at a diagnostic concentration of Cry1Ac increased from 0% in 2005-2007 to 56% in 2008-2010. However, the median survival at the diagnostic concentration was only 1.6% from 2008 to 2010 and failure of Bt cotton to control pink bollworm has not been reported in China. The early detection of resistance reported here may promote proactive countermeasures, such as a switch to transgenic cotton producing toxins distinct from Cry1A toxins, increased planting of non-Bt cotton, and integration of other management tactics together with Bt cotton.

  18. Four planting devices for planting no-till maize

    Directory of Open Access Journals (Sweden)

    Osei Bonsu Patterson

    2015-05-01

    Full Text Available An experiment was conducted at the CSIR-Crops Research Institute (CSIR-CRI Experimental station at Ejura in Ghana to compare the efficiency of four devices for planting no-till maize: Tractor drawn seeder, Chinese made jab planter, Locally made jab planter and a Cutlass. It took two (2 hours 48 minutes to plant one hectare of maize with the tractor drawn seeder, which was significantly (p less than 1% faster than all the planting methods. Cutlass was the slowest planting device lasting more than 14 hours per hectare. There was no significant difference in planting time between the Chinese planter and local planter. Economic analysis showed that cutlass planting produced the highest net benefit, whilst tractor drawn seeder produced the least benefit. In this study cutlass planting was done with precision by collaborating farmers. In actual farm situation however, hired laborers (planting gangs often plant in haste which often results in poor plant population leading to low yields. Tractor drawn seeders or jab planters could reduce drudgery in planting and encourage farm expansion.

  19. CRY2 genetic variants associate with dysthymia.

    Directory of Open Access Journals (Sweden)

    Leena Kovanen

    Full Text Available People with mood disorders often have disruptions in their circadian rhythms. Recent molecular genetics has linked circadian clock genes to mood disorders. Our objective was to study two core circadian clock genes, CRY1 and CRY2 as well as TTC1 that interacts with CRY2, in relation to depressive and anxiety disorders. Of these three genes, 48 single-nucleotide polymorphisms (SNPs whose selection was based on the linkage disequilibrium and potential functionality were genotyped in 5910 individuals from a nationwide population-based sample. The diagnoses of major depressive disorder, dysthymia and anxiety disorders were assessed with a structured interview (M-CIDI. In addition, the participants filled in self-report questionnaires on depressive and anxiety symptoms. Logistic and linear regression models were used to analyze the associations of the SNPs with the phenotypes. Four CRY2 genetic variants (rs10838524, rs7121611, rs7945565, rs1401419 associated significantly with dysthymia (false discovery rate q<0.05. This finding together with earlier CRY2 associations with winter depression and with bipolar type 1 disorder supports the view that CRY2 gene has a role in mood disorders.

  20. Different Effects of Bacillus thuringiensis Toxin Cry1Ab on Midgut Cell Transmembrane Potential of Mythimna separata and Agrotis ipsilon Larvae

    Directory of Open Access Journals (Sweden)

    Yingying Wang

    2015-12-01

    Full Text Available Bacillus thuringiensis (Bt Cry toxins from the Cry1A family demonstrate significantly different toxicities against members of the family Noctuidae for unknown reasons. In this study, membrane potential was measured and analyzed in freshly isolated midgut samples from Mythimna separata and Agrotis ipsilon larvae under oral administration and in vitro incubation with Bt toxin Cry1Ab to elucidate the mechanism of action for further control of these pests. Bioassay results showed that the larvae of M. separata achieved a LD50 of 258.84 ng/larva at 24 h after ingestion; M. separata larvae were at least eightfold more sensitive than A. ipsilon larvae to Cry1Ab. Force-feeding showed that the observed midgut apical-membrane potential (Vam of M. separata larvae was significantly depolarized from −82.9 ± 6.6 mV to −19.9 ± 7.2 mV at 8 h after ingestion of 1 μg activated Cry1Ab, whereas no obvious changes were detected in A. ipsilon larvae with dosage of 5 μg Cry1Ab. The activated Cry1Ab caused a distinct concentration-dependent depolarization of the apical membrane; Vam was reduced by 50% after 14.7 ± 0.2, 9.8 ± 0.4, and 7.6 ± 0.6 min of treatment with 1, 5, and 10 μg/mL Cry1Ab, respectively. Cry1Ab showed a minimal effect on A. ipsilon larvae even at 20 μg/mL, and Vam decreased by 26.3% ± 2.3% after 15 min. The concentrations of Cry1Ab displayed no significant effect on the basolateral side of the epithelium. The Vam of A. ipsilon (−33.19 ± 6.29 mV, n = 51 was only half that of M. separata (−80.94 ± 6.95 mV, n = 75. The different degrees of sensitivity to Cry1Ab were speculatively associated with various habits, as well as the diverse physiological or biochemical characteristics of the midgut cell membranes.

  1. pH-controlled Bacillus thuringiensis Cry1Ac protoxin loading and release from polyelectrolyte microcapsules.

    Directory of Open Access Journals (Sweden)

    Wenhui Yang

    Full Text Available Crystal proteins synthesized by Bacillus thuringiensis (Bt have been used as biopesticides because of their toxicity to the insect larval hosts. To protect the proteins from environmental stress to extend their activity, we have developed a new microcapsule formulation. Poly (acrylic acid (PAH and poly (styrene sulfonate (PSS were fabricated through layer-by-layer self-assembly based on a CaCO(3 core. Cry1Ac protoxins were loaded into microcapsules through layer-by-layer self-assembly at low pH, and the encapsulated product was stored in water at 4°C. Scanning electron microscopy (SEM was used to observe the morphology of the capsules. To confirm the successful encapsulation, the loading results were observed with a confocal laser scattering microscope (CLSM, using fluorescein-labeled Cry1Ac protoxin (FITC-Cry1Ac. The protoxins were released from the capsule under the alkaline condition corresponding to the midgut of certain insects, a condition which seldom exists elsewhere in the environment. The following bioassay experiment demonstrated that the microcapsules with Cry1Ac protoxins displayed approximately equivalent insecticidal activity to the Asian corn borer compared with free Cry1Ac protoxins, and empty capsules proved to have no effect on insects. Further result also indicated that the formulation could keep stable under the condition of heat and desiccation. These results suggest that this formulation provides a promising methodology that protects protoxins from the environment and releases them specifically in the target insects' midgut, which has shown potential as biopesticide in the field.

  2. Field response of aboveground non-target arthropod community to transgenic Bt-Cry1Ab rice plant residues in postharvest seasons.

    Science.gov (United States)

    Bai, Yao-Yu; Yan, Rui-Hong; Ye, Gong-Yin; Huang, Fangneng; Wangila, David S; Wang, Jin-Jun; Cheng, Jia-An

    2012-10-01

    Risk assessments of ecological effects of transgenic rice expressing lepidoptera-Cry proteins from Bacillus thuringiensis (Bt) on non-target arthropods have primarily focused on rice plants during cropping season, whereas few studies have investigated the effects in postharvest periods. Harvested rice fallow fields provide a critical over-wintering habitat for arthropods in the Chinese rice ecosystems, particularly in the southern region of the country. During 2006-08, two independent field trials were conducted in Chongqing, China to investigate the effects of transgenic Cry1Ab rice residues on non-target arthropod communities. In each trial, pitfall traps were used to sample arthropods in field plots planted with one non-Bt variety and two Bt rice lines expressing the Cry1Ab protein. Aboveground arthropods in the trial plots during the postharvest season were abundant, while community densities varied significantly between the two trials. A total of 52,386 individual insects and spiders, representing 93 families, was captured in the two trials. Predominant arthropods sampled were detritivores, which accounted for 91.9% of the total captures. Other arthropods sampled included predators (4.2%), herbivores (3.2%), and parasitoids (0.7%). In general, there were no significant differences among non-Bt and Bt rice plots in all arthropod community-specific parameters for both trials, suggesting no adverse impact of the Bt rice plant residues on the aboveground non-target arthropod communities during the postharvest season. The results of this study provide additional evidence that Bt rice is safe to non-target arthropod communities in the Chinese rice ecosystems.

  3. Larvicidal activity of Bacillus thuringiensis var. israelensis Cry11Aa toxin against Haemonchus contortus.

    Science.gov (United States)

    DE Lara, Ana Paula DE Souza Stori; Lorenzon, Lucas Bigolin; Vianna, Ana Muñoz; Santos, Francisco Denis Souza; Pinto, Luciano Silva; Aires Berne, Maria Elisabeth; Leite, Fábio Pereira Leivas

    2016-10-01

    Effective control of gastrointestinal parasites is necessary in sheep production. The development of anthelmintics resistance is causing the available chemically based anthelmintics to become less effective. Biological control strategies present an alternative to this problem. In the current study, we tested the larvicidal effects of Bacillus thuringiensis var. israelensis Cry11Aa toxin against Haemonchus contortus larvae. Bacterial suspensions [2 × 108 colony-forming units (CFU) g-1 of the feces] of B. thuringiensis var. israelensis and recombinant Escherichia coli expressing Cry11Aa toxin were added to naturally H. contortus egg-contaminated feces. The larvae were quantified, and significant reductions of 62 and 81% (P var. israelensis and recombinant E. coli expressing Cry11Aa toxin were then orally administered to lambs naturally infected with H. contortus. Twelve hours after administration, feces were collected and submitted to coprocultures. Significant larvae reductions (P var. israelensis is a promising new class of biological anthelmintics for treating sheep against H. contortus.

  4. Molecular cloning and functional analysis of a blue light receptor gene MdCRY2 from apple (Malus domestica).

    Science.gov (United States)

    Li, Yuan-Yuan; Mao, Ke; Zhao, Cheng; Zhao, Xian-Yan; Zhang, Rui-Fen; Zhang, Hua-Lei; Shu, Huai-Rui; Hao, Yu-Jin

    2013-04-01

    MdCRY2 was isolated from apple fruit skin, and its function was analyzed in MdCRY2 transgenic Arabidopsis. The interaction between MdCRY2 and AtCOP1 was found by yeast two-hybrid and BiFC assays. Cryptochromes are blue/ultraviolet-A (UV-A) light receptors involved in regulating various aspects of plant growth and development. Investigations of the structure and functions of cryptochromes in plants have largely focused on Arabidopsis (Arabidopsis thaliana), tomato (Solanum lycopersicum), pea (Pisum sativum), and rice (Oryza sativa). However, no data on the function of CRY2 are available in woody plants. In this study, we isolated a cryptochrome gene, MdCRY2, from apple (Malus domestica). The deduced amino acid sequences of MdCRY2 contain the conserved N-terminal photolyase-related domain and the flavin adenine dinucleotide (FAD) binding domain, as well as the C-terminal DQXVP-acidic-STAES (DAS) domain. Relationship analysis indicates that MdCRY2 shows the highest similarity to the strawberry FvCRY protein. The expression of MdCRY2 is induced by blue/UV-A light, which represents a 48-h circadian rhythm. To investigate the function of MdCRY2, we overexpressed the MdCRY2 gene in a cry2 mutant and wild type (WT) Arabidopsis, assessed the phenotypes of the resulting transgenic plants, and found that MdCRY2 functions to regulate hypocotyl elongation, root growth, flower initiation, and anthocyanin accumulation. Furthermore, we examined the interaction between MdCRY2 and AtCOP1 using a yeast two-hybrid assay and a bimolecular fluorescence complementation assay. These data provide functional evidence for a role of blue/UV-A light-induced MdCRY2 in controlling photomorphogenesis in apple.

  5. Why try (not to cry: Intra- and inter-personal motives for crying regulation

    Directory of Open Access Journals (Sweden)

    Gwenda eSimons

    2013-01-01

    Full Text Available This article discusses inter- and intra-personal motives for the regulation of crying, and presents illustrative findings from an online survey (N = 110 exploring why and how people regulate crying in their everyday lives. In line with current theorizing on emotion regulation and crying (e.g., Vingerhoets et al., 2000, we propose that emotional crying is regulated using both antecedent-focused techniques targeting the underlying emotion and response-focused techniques targeting the act of crying itself. Indeed, our survey respondents reported having used both antecedent- and response-focused strategies to either up-regulate or down-regulate their crying. Motives for crying regulation may be both inter- and intra-personal and may serve both immediate, pleasure motives and future, utility motives (Tamir, 2009. Our findings suggest that down-regulation attempts are often driven by inter-personal motives (e.g., protecting the well-being of others; impression management in addition to intra-personal motives such as maintaining subjective well-being, whereas up-regulation attempts are mostly driven by intra-personal motives. Further progress requires methodologies for manipulating or tracking regulation motives and strategies in real-time crying episodes.

  6. Crying in Middle Childhood: A Report on Gender Differences.

    Science.gov (United States)

    Jellesma, Francine C; Vingerhoets, Ad J J M

    2012-10-01

    The aims of this study were (1) to confirm gender differences in crying in middle childhood and (2) to identify factors that may explain why girls cry more than boys in a Dutch sample (North Holland and Utrecht). We examined 186 children's (age: 9-13 years) self-reports on crying, catharsis, seeking support for feelings, and internalizing feelings. Girls reported a greater crying frequency and crying proneness, and more emotional and physical catharsis after crying. In addition, they more frequently sought support for feelings and more often experienced sadness and somatic complaints than boys. Seeking help for negative feelings and the experience of sadness and somatic complaints were positively associated with crying frequency and crying proneness. Emotional catharsis was positively linked to crying proneness. Support was found for the potential mediating role of sadness and somatic complaints with respect to the gender difference in crying frequency and for the potential mediating role of emotional catharsis and somatic complaints for crying proneness. This study demonstrates that gender differences in crying frequency already exist in middle childhood and the findings suggest a linkage between these gender differences in crying and psychosocial factors.

  7. Transcriptomic Analysis of Intestinal Tissues from Two 90-Day Feeding Studies in Rats Using Genetically Modified MON810 Maize Varieties

    Directory of Open Access Journals (Sweden)

    Jutta Sharbati

    2017-12-01

    Full Text Available Background: Global as well as specific expression profiles of selected rat tissues were characterized to assess the safety of genetically modified (GM maize MON810 containing the insecticidal protein Cry1Ab. Gene expression was evaluated by use of Next Generation Sequencing (NGS as well as RT-qPCR within rat intestinal tissues based on mandatory 90-day rodent feeding studies. In parallel to two 90-day feeding studies, the transcriptional response of rat tissues was assessed as another endpoint to enhance the mechanistic interpretation of GM feeding studies and/or to facilitate the generation of a targeted hypothesis. Rats received diets containing 33% GM maize (MON810 or near-isogenic control maize. As a site of massive exposure to ingested feed the transcriptomic response of ileal and colonic tissue was profiled via RT-qPCR arrays targeting apoptosis, DNA-damage/repair, unfolded protein response (UPR. For global RNA profiling of rat ileal tissue, we applied NGS.Results: No biological response to the GM-diet was observed in male and in female rat tissues. Transcriptome wide analysis of gene expression by RNA-seq confirmed these findings. Nevertheless, gene ontology (GO analysis clearly associated a set of distinctly regulated transcripts with circadian rhythms. We confirmed differential expression of circadian clock genes using RT-qPCR and immunoassays for selected factors, thereby indicating physiological effects caused by the time point of sampling.Conclusion: Prediction of potential unintended effects of GM-food/feed by transcriptome based profiling of intestinal tissue presents a novel approach to complement classical toxicological testing procedures. Including the detection of alterations in signaling pathways in toxicity testing procedures may enhance the confidence in outcomes of toxicological trials. In this study, no significant GM-related changes in intestinal expression profiles were found in rats fed GM-maize MON810. Relevant

  8. Expressed sequence tags related to nitrogen metabolism in maize inoculated with Azospirillum brasilense.

    Science.gov (United States)

    Pereira-Defilippi, L; Pereira, E M; Silva, F M; Moro, G V

    2017-05-31

    The relative quantitative real-time expression of two expressed sequence tags (ESTs) codifying for key enzymes in nitrogen metabolism in maize, nitrate reductase (ZmNR), and glutamine synthetase (ZmGln1-3) was performed for genotypes inoculated with Azospirillum brasilense. Two commercial single-cross hybrids (AG7098 and 2B707) and two experimental synthetic varieties (V2 and V4) were raised under controlled greenhouse conditions, in six treatment groups corresponding to different forms of inoculation and different levels of nitrogen application by top-dressing. The genotypes presented distinct responses to inoculation with A. brasilense. Increases in the expression of ZmNR were observed for the hybrids, while V4 only displayed a greater level of expression when the plants received nitrogenous fertilization by top-dressing and there was no inoculation. The expression of the ZmGln1-3EST was induced by A. brasilense in the hybrids and the variety V4. In contrast, the variety V2 did not respond to inoculation.

  9. Field evidence for the exposure of ground beetles to Cry1Ab from transgenic corn.

    Science.gov (United States)

    Zwahlen, Claudia; Andow, David A

    2005-01-01

    Non-target organisms associated with the soil might be adversely affected by exposure to the CrylAb protein from Bacillus thuringiensis (Bt) in transgenic corn (Zea mays L.). To check for such exposure, we used ELISA to test for Cry1Ab in ground beetles collected live from fields with Bt corn residues and Bt corn (Bt/Bt), Bt corn residues and non-Bt crops (Bt/non-Bt), or non-Bt corn residues and non-Bt crops (non-Bt/non-Bt). In fields with Bt corn residues (Bt/Bt and Bt/non-Bt), Cry1Ab was present in all seven species of ground beetles examined (Agonum placidum, Bembidion rupicola, Clivina impressefrons, Cyclotrachelus iowensis, Harpalus pensylvanicus, Poecilus chalcites, and Poecilus lucublandus). For the two most abundant species, P. chalcites and P. lucublandus, the proportion of beetles with Cry1Ab was significantly higher in Bt/Bt fields (0.50-1.0) and Bt/non-Bt fields (0.41-0.50) than in non-Bt/non-Bt fields (0.0). This is the first field evidence that some ground beetle species are exposed to Cry1Ab. The implications of exposure on the performance of these non-target organisms are unclear.

  10. Physiological quality and amylase enzyme expression in maize seeds Qualidade fisiológica e expressão das enzimas amilases em sementes de milho

    Directory of Open Access Journals (Sweden)

    Gustavo Evangelista Oliveira

    2013-02-01

    Full Text Available The physiological quality of maize seeds is affected by the genotype. Thus, the study of expression of genes associated with this characteristic is important in the genotype selection process in breeding programs. The aim of this research was to study the expression of amylase enzymes associated with physiological quality of maize seeds with different genotypes and seed sizes. We further sought to assess the expression of these enzymes in dry and soaked seeds The experiment was conducted in the experimental area and the Central Seed Laboratory of the Department of Agriculture of the Universidade Federal de Lavras. Seeds of four maize inbred lines were used, classified in two sizes. The physiological quality of the seeds was evaluated by means of germination, seedling emergence, seedling emergence speed index and accelerated aging test. Expression of the alpha amylase enzyme was evaluated by the electrophoresis technique and expression of the alpha amylase B73, alpha amylase (LOC542522 and beta amylase 5 (amyb5 genes was studied by the qRT-PCR technique in dry and soaked seeds of the inbred lines. There is differentiated expression of amylase enzymes in maize seeds of inbred lines with different levels of physiological quality. higher expression of amylase enzymes is observed in soaked maize seeds. The expression of transcripts is higher in smaller as wellas in soaked maize seeds of inbred lines.A qualidade fisiológica de sementes de milho é influenciada pelo genótipo. Assim, o estudo da expressão de genes associados a essa característica é importante no processo de seleção de genótipos em programas de melhoramento. O objetivo neste trabalho foi estudar a expressão das enzimas amilases associadas à qualidade fisiológica de sementes de milho, de diferentes genótipos e tamanhos de sementes. Objetivou-se ainda avaliar a expressão dessas enzimas em sementes secas e embebidas. O experimento foi conduzido em área experimental e no

  11. Zinc oxide nanoparticle exposure triggers different gene expression patterns in maize shoots and roots

    International Nuclear Information System (INIS)

    Xun, Hongwei; Ma, Xintong; Chen, Jing; Yang, Zhongzhou; Liu, Bao; Gao, Xiang; Li, Guo; Yu, Jiamiao; Wang, Li; Pang, Jinsong

    2017-01-01

    The potential impacts of environmentally accumulated zinc oxide nanoparticles (nZnOs) on plant growth have not been well studied. A transcriptome profile analysis of maize exposed to nZnOs showed that the genes in the shoots and roots responded differently. Although the number of differentially expressed genes (DEGs) in the roots was greater than that in the shoots, the number of up- or down-regulated genes in both the shoots and roots was similar. The enrichment of gene ontology (GO) terms was also significantly different in the shoots and roots. The “nitrogen compound metabolism” and “cellular component” terms were specifically and highly up-regulated in the nZnO-exposed roots, whereas the categories “cellular metabolic process”, “primary metabolic process” and “secondary metabolic process” were down-regulated in the exposed roots only. Our results revealed the DEG response patterns in maize shoots and roots after nZnO exposure. - Highlights: • The gene expression patterns of maize exposed to ZnO nanoparticles (nZnO) varied in the shoots and roots. • A majority of the differentially expressed genes induced by nZnO exposure were exclusive to either the shoots or roots. • A similar number of up- and down-regulated genes was observed in the exposed shoots. • More up-regulated than down-regulated genes were found in the exposed roots. • A greater number of GO processes were observed in the nZnO exposed maize roots than in the exposed shoots. • GO terms in the “nitrogen compound metabolic process” category were exclusively and highly expressed in the exposed roots. • GO terms in the “nutrient reservoir” category were exclusively and highly expressed in the exposed roots. • Term “small molecule metabolic process” was also exclusively up-regulated in the exposed roots. • Processes in “cellular metabolic”, “primary metabolic” and “secondary metabolic” were down-regulated in the exposed roots.

  12. Transgenic cotton coexpressing Vip3A and Cry1Ac has a broad insecticidal spectrum against lepidopteran pests.

    Science.gov (United States)

    Chen, Wen-Bo; Lu, Guo-Qing; Cheng, Hong-Mei; Liu, Chen-Xi; Xiao, Yu-Tao; Xu, Chao; Shen, Zhi-Cheng; Wu, Kong-Ming

    2017-10-01

    Although farmers in China have grown transgenic Bt-Cry1Ac cotton to resist the major pest Helicoverpa armigera since 1997 with great success, many secondary lepidopteran pests that are tolerant to Cry1Ac are now reported to cause considerable economic damage. Vip3AcAa, a chimeric protein with the N-terminal part of Vip3Ac and the C-terminal part of Vip3Aa, has a broad insecticidal spectrum against lepidopteran pests and has no cross resistance to Cry1Ac. In the present study, we tested insecticidal activities of Vip3AcAa against Spodoptera litura, Spodoptera exigua, and Agrotis ipsilon, which are relatively tolerant to Cry1Ac proteins. The bioassay results showed that insecticidal activities of Vip3AcAa against these three pests are superior to Cry1Ac, and after an activation pretreatment, Vip3AcAa retained insecticidal activity against S. litura, S. exigua and A. ipsilon that was similar to the unprocessed protein. The putative receptor for this chimeric protein in the brush border membrane vesicle (BBMV) in the three pests was also identified using biotinylated Vip3AcAa toxin. To broaden Bt cotton activity against a wider spectrum of pests, we introduced the vip3AcAa and cry1Ac genes into cotton. Larval mortality rates for S. litura, A. ipsilon and S. exigua that had fed on this new cotton increased significantly compared with larvae fed on non-Bt cotton and Bt-Cry1Ac cotton in a laboratory experiment. These results suggested that the Vip3AcAa protein is an excellent option for a "pyramid" strategy for integrated pest management in China. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Over-expression of zmarg encoding an arginase improves grain production in maize

    International Nuclear Information System (INIS)

    Hong, D.; Tian, Y.; Meng, X.; Zhang, P.

    2016-01-01

    Arginase, as one of the three key enzymes in nitrogen catabolism, the physiological role of Arg catabolism in cereal crops has not been fully clarified. Studies have shown that arginase-encoding genes play a key role in providing nitrogen to developing seedlings in many plant species.Yield is a primary trait in many crop breeding programs, which can be increased by modification of genes related to photosynthesis, nitrogen assimilation, carbon distribution, plant architecture, and transcriptional networks controlling plant development. In the present study, a maize arginase gene ZmARG was cloned and introduced into maize inbred lines by Agrobacterium tumefaciens- mediated transformation. Putative transgenic plants were confirmed by PCR, Southern blotting RT-PCR analysis. The expression of the ZmARG gene increased arginase activity in several tissues in transgenic lines. Transgenic maize plants had significantly higher ear weight and 100-seed weight as compared with wild-type control. Our results suggested that ZmARG was a potential target gene for crop yield improvement. (author)

  14. Constitutive expression of fluorescent protein by Aspergillus var. niger and Aspergillus carbonarius to monitor fungal colonization in maize plants.

    Science.gov (United States)

    Palencia, Edwin Rene; Glenn, Anthony Elbie; Hinton, Dorothy Mae; Bacon, Charles Wilson

    2013-09-01

    Aspergillus niger and Aspergillus carbonarius are two species in the Aspergillus section Nigri (black-spored aspergilli) frequently associated with peanut (Arachis hypogea), maize (Zea mays), and other plants as pathogens. These infections are symptomless and as such are major concerns since some black aspergilli produce important mycotoxins, ochratoxins A, and the fumonisins. To facilitate the study of the black aspergilli-maize interactions with maize during the early stages of infections, we developed a method that used the enhanced yellow fluorescent protein (eYFP) and the monomeric red fluorescent protein (mRFP1) to transform A. niger and A. carbonarius, respectively. The results were constitutive expressions of the fluorescent genes that were stable in the cytoplasms of hyphae and conidia under natural environmental conditions. The hyphal in planta distribution in 21-day-old seedlings of maize were similar wild type and transformants of A. niger and A. carbonarius. The in planta studies indicated that both wild type and transformants internally colonized leaf, stem and root tissues of maize seedlings, without any visible disease symptoms. Yellow and red fluorescent strains were capable of invading epidermal cells of maize roots intercellularly within the first 3 days after inoculation, but intracellular hyphal growth was more evident after 7 days of inoculation. We also tested the capacity of fluorescent transformants to produce ochratoxin A and the results with A. carbonarius showed that this transgenic strain produced similar concentrations of this secondary metabolite. This is the first report on the in planta expression of fluorescent proteins that should be useful to study the internal plant colonization patterns of two ochratoxigenic species in the Aspergillus section Nigri. © 2013.

  15. Genome-wide identification of VQ motif-containing proteins and their expression profiles under abiotic stresses in maize

    Directory of Open Access Journals (Sweden)

    Weibin eSong

    2016-01-01

    Full Text Available VQ motif-containing proteins play crucial roles in abiotic stress responses in plants. Recent studies have shown that some VQ proteins physically interact with WRKY transcription factors to activate downstream genes. In the present study, we identified and characterized genes encoding VQ motif-containing proteins using the most recent version of the maize genome sequence. In total, 61VQ genes were identified. In a cluster analysis, these genes clustered into nine groups together with their homologous genes in rice and Arabidopsis. Most of the VQ genes (57 out of 61 numbers identified in maize were found to be single-copy genes. Analyses of RNA-seq data obtained using seedlings under long-term drought treatment showed that the expression levels of most ZmVQ genes (41 out of 61 members changed during the drought stress response. Quantitative real-time PCR analyses showed that most of the ZmVQ genes were responsive to NaCl treatment. Also, approximately half of the ZmVQ genes were co-expressed with ZmWRKY genes. The identification of these VQ genes in the maize genome and knowledge of their expression profiles under drought and osmotic stresses will provide a solid foundation for exploring their specific functions in the abiotic stress responses of maize.

  16. Reduced levels of membrane-bound alkaline phosphatase are common to lepidopteran strains resistant to Cry toxins from Bacillus thuringiensis.

    Directory of Open Access Journals (Sweden)

    Juan Luis Jurat-Fuentes

    Full Text Available Development of insect resistance is one of the main concerns with the use of transgenic crops expressing Cry toxins from the bacterium Bacillus thuringiensis. Identification of biomarkers would assist in the development of sensitive DNA-based methods to monitor evolution of resistance to Bt toxins in natural populations. We report on the proteomic and genomic detection of reduced levels of midgut membrane-bound alkaline phosphatase (mALP as a common feature in strains of Cry-resistant Heliothis virescens, Helicoverpa armigera and Spodoptera frugiperda when compared to susceptible larvae. Reduced levels of H. virescens mALP protein (HvmALP were detected by two dimensional differential in-gel electrophoresis (2D-DIGE analysis in Cry-resistant compared to susceptible larvae, further supported by alkaline phosphatase activity assays and Western blotting. Through quantitative real-time polymerase chain reaction (qRT-PCR we demonstrate that the reduction in HvmALP protein levels in resistant larvae are the result of reduced transcript amounts. Similar reductions in ALP activity and mALP transcript levels were also detected for a Cry1Ac-resistant strain of H. armigera and field-derived strains of S. frugiperda resistant to Cry1Fa. Considering the unique resistance and cross-resistance phenotypes of the insect strains used in this work, our data suggest that reduced mALP expression should be targeted for development of effective biomarkers for resistance to Cry toxins in lepidopteran pests.

  17. Assessment of potential adjuvanticity of Cry proteins

    DEFF Research Database (Denmark)

    Joshi, Saurabh S; Barnett, Brian; Doerrer, Nancy G

    2016-01-01

    protection, herbicide tolerance, or both. Plant expression of Bacillus thuringiensis (Bt) crystal (Cry) insecticidal proteins have been the primary way to impart insect resistance in GM crops. Although deemed safe by regulatory agencies globally, previous studies have been the basis for discussions around...

  18. The maize INDETERMINATE1 flowering time regulator defines a highly conserved zinc finger protein family in higher plants

    Directory of Open Access Journals (Sweden)

    Colasanti Joseph

    2006-06-01

    Full Text Available Abstract Background The maize INDETERMINATE1 gene, ID1, is a key regulator of the transition to flowering and the founding member of a transcription factor gene family that encodes a protein with a distinct arrangement of zinc finger motifs. The zinc fingers and surrounding sequence make up the signature ID domain (IDD, which appears to be found in all higher plant genomes. The presence of zinc finger domains and previous biochemical studies showing that ID1 binds to DNA suggests that members of this gene family are involved in transcriptional regulation. Results Comparison of IDD genes identified in Arabidopsis and rice genomes, and all IDD genes discovered in maize EST and genomic databases, suggest that ID1 is a unique member of this gene family. High levels of sequence similarity amongst all IDD genes from maize, rice and Arabidopsis suggest that they are derived from a common ancestor. Several unique features of ID1 suggest that it is a divergent member of the maize IDD family. Although no clear ID1 ortholog was identified in the Arabidopsis genome, highly similar genes that encode proteins with identity extending beyond the ID domain were isolated from rice and sorghum. Phylogenetic comparisons show that these putative orthologs, along with maize ID1, form a group separate from other IDD genes. In contrast to ID1 mRNA, which is detected exclusively in immature leaves, several maize IDD genes showed a broad range of expression in various tissues. Further, Western analysis with an antibody that cross-reacts with ID1 protein and potential orthologs from rice and sorghum shows that all three proteins are detected in immature leaves only. Conclusion Comparative genomic analysis shows that the IDD zinc finger family is highly conserved among both monocots and dicots. The leaf-specific ID1 expression pattern distinguishes it from other maize IDD genes examined. A similar leaf-specific localization pattern was observed for the putative ID1 protein

  19. Association of PER2 and CRY1 Polymorphisms with the Morningness-Eveningness in Korean Adults

    Directory of Open Access Journals (Sweden)

    Jung Hie Lee

    2015-12-01

    Full Text Available Background and Objective Individuals have a unique circadian preference, which is based on differences in endogenous rhythm and environmental factors. There has been no study on the relationship between the morningness-eveningness (ME preference and the polymorphisms of PER2 and CRY1 genes, which may play an essential role in the modulation of circadian rhythm. Our present study aims to examine the difference in the polymorphisms of PER2-2221A/G and CRY1-2790T/G, which are related to a greater cancer risk, according to the ME preference. Methods The Korean version of the Morningness-Eveningness Questionnaire was administered and buccal DNA samples were obtained from 425 Korean adults aged 18 years or older. We excluded subjects who were being treated for sleep disorders or those with shift work. 47 morning type (MT (age: 44.57 ± 12.33, M:F = 14:33 subjects, 59 neither type (NT (age: 35.20 ± 9.53, M:F = 20:39 subjects and 51 evening type (ET (age: 28.80 ± 8.03, M:F = 14:37 subjects were finally included in the present study. The above candidate single nucleotide polymorphisms were analyzed by DNA sequencing or a SNaPshot assay. Results For the PER2-2221A/G and CRY1-2790T/G, there were no significant differences in the genotype distribution, allele frequency, or proportion of G allele positive subjects between the MT and ET groups. There was no significant difference in the mean scores of the MEQ-K, KESS, or PSQI between G allele positive and negative subjects for either PER2-A2221A/G or CRY1-2790T/G. Conclusions Our study did not support the association of the ME preference with the PER2-2221 A/G and CRY1-2790T/G in Korean adults.

  20. Effects of water management practices on residue decomposition and degradation of Cry1Ac protein from crop-wild Bt rice hybrids and parental lines during winter fallow season.

    Science.gov (United States)

    Xiao, Manqiu; Dong, Shanshan; Li, Zhaolei; Tang, Xu; Chen, Yi; Yang, Shengmao; Wu, Chunyan; Ouyang, Dongxin; Fang, Changming; Song, Zhiping

    2015-12-01

    Rice is the staple diet of over half of the world's population and Bacillus thuringiensis (Bt) rice expressing insecticidal Cry proteins is ready for deployment. An assessment of the potential impact of Bt rice on the soil ecosystem under varied field management practices is urgently required. We used litter bags to assess the residue (leaves, stems and roots) decomposition dynamics of two transgenic rice lines (Kefeng6 and Kefeng8) containing stacked genes from Bt and sck (a modified CpTI gene encoding a cowpea trypsin inhibitor) (Bt/CpTI), a non-transgenic rice near-isoline (Minghui86), wild rice (Oryza rufipogon) and crop-wild Bt rice hybrid under contrasting conditions (drainage or continuous flooding) in the field. No significant difference was detected in the remaining mass, total C and total N among cultivars under aerobic conditions, whereas significant differences in the remaining mass and total C were detected between Kefeng6 and Kefeng8 and Minghui86 under the flooded condition. A higher decomposition rate constant (km) was measured under the flooded condition compared with the aerobic condition for leaf residues, whereas the reverse was observed for root residues. The enzyme-linked immunosorbent assay (ELISA), which was used to monitor the changes in the Cry1Ac protein in Bt rice residues, indicated that (1) the degradation of the Cry1Ac protein under both conditions best fit first-order kinetics, and the predicted DT50 (50% degradation time) of the Cry1Ac protein ranged from 3.6 to 32.5 days; (2) the Cry1Ac protein in the residue degraded relatively faster under aerobic conditions; and (3) by the end of the study (~154 days), the protein was present at a low concentration in the remaining residues under both conditions. The degradation rate constant was negatively correlated with the initial carbon content and positively correlated with the initial Cry1Ac protein concentration, but it was only correlated with the mass decomposition rate constants under

  1. Heterosis expression in crosses between maize populations: ear yield

    Directory of Open Access Journals (Sweden)

    Silva Ricardo Machado da

    2003-01-01

    Full Text Available The phenomenon of heterosis has been exploited extensively in maize (Zea mays L. breeding. The objective of this study was to evaluate the genetic potential of ten maize populations for ear yield following the diallel mating scheme. Six parental populations were obtained through phenotypic selection of open-pollinated ears in Rio Verde, GO, Brazil, (GO populations and four parental populations were synthesized in Piracicaba, SP, Brazil (GN populations: GO-D (DENTADO, GO- F (FLINT, GO-A (AMARELO, GO-B (BRANCO, GO-L (LONGO, GO-G (GROSSO, GN-01, GN-02, GN-03 and GN-04. Experiments were carried out in three environments: Anhembi (SP and Rio Verde (GO in 1998/99 (normal season crop and Piracicaba (SP in 1999 (off-season crop. All experiments were in completely randomized blocks with six replications. Analysis of variance grouped over environments showed high significance for heterosis and its components, although mid-parent heterosis and average heterosis were of low expression. The interaction treatments x environments was not significant. Total mid-parent heterosis effects ranged from de -4.3% to 17.3% with an average heterosis of 3.37%. Population with the highest yield (7.4 t ha-1 and with the highest effect of population (v i = 0.746 was GN-03, while the highest yielding cross was GO-B x GN-03 with 7,567 t ha-1. The highest specific heterosis effect (s ii' = 0.547 was observed in the cross GO-B x GN-03.

  2. Incipient resistance of Helicoverpa punctigera to the Cry2Ab Bt toxin in Bollgard II cotton.

    Directory of Open Access Journals (Sweden)

    Sharon Downes

    Full Text Available Combinations of dissimilar insecticidal proteins ("pyramids" within transgenic plants are predicted to delay the evolution of pest resistance for significantly longer than crops expressing a single transgene. Field-evolved resistance to Bacillus thuringiensis (Bt transgenic crops has been reported for first generation, single-toxin varieties and the Cry1 class of proteins. Our five year data set shows a significant exponential increase in the frequency of alleles conferring Cry2Ab resistance in Australian field populations of Helicoverpa punctigera since the adoption of a second generation, two-toxin Bt cotton expressing this insecticidal protein. Furthermore, the frequency of cry2Ab resistance alleles in populations from cropping areas is 8-fold higher than that found for populations from non-cropping regions. This report of field evolved resistance to a protein in a dual-toxin Bt-crop has precisely fulfilled the intended function of monitoring for resistance; namely, to provide an early warning of increases in frequencies that may lead to potential failures of the transgenic technology. Furthermore, it demonstrates that pyramids are not 'bullet proof' and that rapid evolution to Bt toxins in the Cry2 class is possible.

  3. Genome-Wide Identification, Phylogenetic and Expression Analyses of the Ubiquitin-Conjugating Enzyme Gene Family in Maize

    Science.gov (United States)

    Jue, Dengwei; Sang, Xuelian; Lu, Shengqiao; Dong, Chen; Zhao, Qiufang; Chen, Hongliang; Jia, Liqiang

    2015-01-01

    Background Ubiquitination is a post-translation modification where ubiquitin is attached to a substrate. Ubiquitin-conjugating enzymes (E2s) play a major role in the ubiquitin transfer pathway, as well as a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). Methodology/Principal Findings In the present study, a total of 75 putative ZmUBC genes have been identified and located in the maize genome. Phylogenetic analysis revealed that ZmUBC proteins could be divided into 15 subfamilies, which include 13 ubiquitin-conjugating enzymes (ZmE2s) and two independent ubiquitin-conjugating enzyme variant (UEV) groups. The predicted ZmUBC genes were distributed across 10 chromosomes at different densities. In addition, analysis of exon-intron junctions and sequence motifs in each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Tissue expression analysis indicated that most ZmUBC genes were expressed in at least one of the tissues, indicating that these are involved in various physiological and developmental processes in maize. Moreover, expression profile analyses of ZmUBC genes under different stress treatments (4°C, 20% PEG6000, and 200 mM NaCl) and various expression patterns indicated that these may play crucial roles in the response of plants to stress. Conclusions Genome-wide identification, chromosome organization, gene structure, evolutionary and expression analyses of ZmUBC genes have facilitated in the characterization of this gene family, as well as determined its potential involvement in growth, development, and stress responses. This study provides valuable information for better understanding the classification and putative functions of the UBC-encoding genes of maize. PMID:26606743

  4. Analysis of Cry8Ka5-binding proteins from Anthonomus grandis (Coleoptera: Curculionidae) midgut.

    Science.gov (United States)

    Nakasu, Erich Y T; Firmino, Alexandre A P; Dias, Simoni C; Rocha, Thales L; Ramos, Hudson B; Oliveira, Gustavo R; Lucena, Wagner; Carlini, Célia R; Grossi-de-Sá, Maria Fátima

    2010-07-01

    Biotech crops expressing Bacillus thuringiensis Cry toxins present a valuable approach for insect control. Cry8Ka5, which is highly toxic to the cotton boll weevil (Anthonomus grandis), was used as a model to study toxin-ligand interactions. Three Cry-binding proteins were detected after toxin overlay assays. Following de novo sequencing, a heat-shock cognate protein and a V-ATPase were identified, whilst a approximately 120 kDa protein remained unknown. Additional Cry8Ka5-binding proteins were visualized by two-dimensional gel electrophoresis ligand blots. (c) 2010 Elsevier Inc. All rights reserved.

  5. Expressed proteins of Herbaspirillum seropedicae in maize (DKB240) roots-bacteria interaction revealed using proteomics.

    Science.gov (United States)

    Ferrari, Cibele Santos; Amaral, Fernanda Plucani; Bueno, Jessica Cavalheiro Ferreira; Scariot, Mirella Christine; Valentim-Neto, Pedro Alexandre; Arisi, Ana Carolina Maisonnave

    2014-11-01

    Several molecular tools have been used to clarify the basis of plant-bacteria interaction; however, the mechanism behind the association is still unclear. In this study, we used a proteomic approach to investigate the root proteome of Zea mays (cv. DKB240) inoculated with Herbaspirillum seropedicae strain SmR1 grown in vitro and harvested 7 days after inoculation. Eighteen differentially accumulated proteins were observed in root samples, ten of which were identified by MALDI-TOF mass spectrometry peptide mass fingerprint. Among the identified proteins, we observed three proteins present exclusively in inoculated root samples and six upregulated proteins and one downregulated protein relative to control. Differentially expressed maize proteins were identified as hypothetical protein ZEAMMB73_483204, hypothetical protein ZEAMMB73_269466, and tubulin beta-7 chain. The following were identified as H. seropedicae proteins: peroxiredoxin protein, EF-Tu elongation factor protein, cation transport ATPase, NADPH:quinone oxidoreductase, dinitrogenase reductase, and type III secretion ATP synthase. Our results presented the first evidence of type III secretion ATP synthase expression during H. seropedicae-maize root interaction.

  6. Fundamental Frequency Variation of Neonatal Spontaneous Crying Predicts Language Acquisition in Preterm and Term Infants.

    Science.gov (United States)

    Shinya, Yuta; Kawai, Masahiko; Niwa, Fusako; Imafuku, Masahiro; Myowa, Masako

    2017-01-01

    Spontaneous cries of infants exhibit rich melodic features (i.e., time variation of fundamental frequency [ F 0 ]) even during the neonatal period, and the development of these characteristics might provide an essential base for later expressive prosody in language. However, little is known about the melodic features of spontaneous cries in preterm infants, who have a higher risk of later language-related problems. Thus, the present study investigated how preterm birth influenced melodic features of spontaneous crying at term-equivalent age as well as how these melodic features related to language outcomes at 18 months of corrected age in preterm and term infants. At term, moderate-to-late preterm (MLP) infants showed spontaneous cries with significantly higher F 0 variation and melody complexity than term infants, while there were no significant differences between very preterm (VP) and term infants. Furthermore, larger F 0 variation within cry series at term was significantly related to better language and cognitive outcomes, particularly expressive language skills, at 18 months. On the other hand, no other melodic features at term predicted any developmental outcomes at 18 months. The present results suggest that the additional postnatal vocal experience of MLP preterm infants increased F 0 variation and the complexity of spontaneous cries at term. Additionally, the increases in F 0 variation may partly reflect the development of voluntary vocal control, which, in turn, contributes to expressive language in infancy.

  7. Identification of Bacillus thuringiensis Cry3Aa toxin domain II loop 1 as the binding site of Tenebrio molitor cadherin repeat CR12.

    Science.gov (United States)

    Zúñiga-Navarrete, Fernando; Gómez, Isabel; Peña, Guadalupe; Amaro, Itzel; Ortíz, Ernesto; Becerril, Baltazar; Ibarra, Jorge E; Bravo, Alejandra; Soberón, Mario

    2015-04-01

    Bacillus thuringiensis Cry toxins exert their toxic effect by specific recognition of larval midgut proteins leading to oligomerization of the toxin, membrane insertion and pore formation. The exposed domain II loop regions of Cry toxins have been shown to be involved in receptor binding. Insect cadherins have shown to be functionally involved in toxin binding facilitating toxin oligomerization. Here, we isolated a VHH (VHHA5) antibody by phage display that binds Cry3Aa loop 1 and competed with the binding of Cry3Aa to Tenebrio molitor brush border membranes. VHHA5 also competed with the binding of Cry3Aa to a cadherin fragment (CR12) that was previously shown to be involved in binding and toxicity of Cry3Aa, indicating that Cry3Aa binds CR12 through domain II loop 1. Moreover, we show that a loop 1 mutant, previously characterized to have increased toxicity to T. molitor, displayed a correlative enhanced binding affinity to T. molitor CR12 and to VHHA5. These results show that Cry3Aa domain II loop 1 is a binding site of CR12 T. molitor cadherin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. ZmES genes encode peptides with structural homology to defensins and are specifically expressed in the female gametophyte of maize.

    NARCIS (Netherlands)

    Cordts, S.; Bantin, J.; Wittich, P.; Kranz, E.; Lorz, H.; Dresselhaus, T.

    2001-01-01

    All four members of a gene family, which are highly expressed in the cells of the female gametophyte (ZmES1--4: Zea mays embryo sac), were isolated from a cDNA library of maize egg cells. High expression of ZmES genes in the synergids around the micropylar region was detected in thin sections of

  9. Expression Analysis of Stress-Related Genes in Kernels of Different Maize (Zea mays L.) Inbred Lines with Different Resistance to Aflatoxin Contamination

    Science.gov (United States)

    Jiang, Tingbo; Zhou, Boru; Luo, Meng; Abbas, Hamed K.; Kemerait, Robert; Lee, Robert Dewey; Scully, Brian T.; Guo, Baozhu

    2011-01-01

    This research examined the expression patterns of 94 stress-related genes in seven maize inbred lines with differential expressions of resistance to aflatoxin contamination. The objective was to develop a set of genes/probes associated with resistance to A. flavus and/or aflatoxin contamination. Ninety four genes were selected from previous gene expression studies with abiotic stress to test the differential expression in maize lines, A638, B73, Lo964, Lo1016, Mo17, Mp313E, and Tex6, using real-time RT-PCR. Based on the relative-expression levels, the seven maize inbred lines clustered into two different groups. One group included B73, Lo1016 and Mo17, which had higher levels of aflatoxin contamination and lower levels of overall gene expression. The second group which included Tex6, Mp313E, Lo964 and A638 had lower levels of aflatoxin contamination and higher overall levels of gene expressions. A total of six “cross-talking” genes were identified between the two groups, which are highly expressed in the resistant Group 2 but down-regulated in susceptible Group 1. When further subjected to drought stress, Tex6 expressed more genes up-regulated and B73 has fewer genes up-regulated. The transcript patterns and interactions measured in these experiments indicate that the resistant mechanism is an interconnected process involving many gene products and transcriptional regulators, as well as various host interactions with environmental factors, particularly, drought and high temperature. PMID:22069724

  10. Is crying a self-soothing behavior?

    Directory of Open Access Journals (Sweden)

    Asmir eGračanin

    2014-05-01

    Full Text Available This contribution describes the current state-of-the-art of the scientific literature regarding the self-soothing effects of crying. Starting from the general hypothesis that crying is a self-soothing behavior, we consider different mechanisms through which these effects may appear. In the first section we briefly explain the main functions of human crying. Then we define self-soothing in terms of homeostatic processes of mood regulation and stress reduction and we underline the importance of distinguishing self-soothing effects of crying from social-soothing that it may elicit. We then provide a comprehensive review of the putative mood enhancing and relieving effects of crying and their variations stemming from characteristics of crying person, antecedents, manifestations, and social consequences of crying. We also discuss the possible methodological explanations for the seemingly discrepant findings regarding mood improvement and relief that may follow crying. We then provide theoretical and empirical support for our general hypothesis that crying is a self-soothing behavior by presenting and evaluating the possible physiological, cognitive, and behavioral mechanisms that may play a mediating role in the relationship between crying and homeostatic regulation that includes mood improvement and relief. Starting from the idea that social-soothing and self-soothing mechanisms share the same physiological systems, we propose that biological processes act in parallel with learning and reappraisal processes that accompany crying, which results in homeostatic regulation. Given the parallels between self-soothing behaviors in humans and animals, we also propose that crying might self-soothe through a mechanism that shares key properties with rhythmical, stereotypic behaviors. We conclude that, in addition to the importance of socially mediated mechanisms for the mood enhancing effects of crying, there is converging evidence for the direct, self

  11. FUM gene expression profile and fumonisin production by Fusarium verticillioides inoculated in Bt and non-Bt maize

    Directory of Open Access Journals (Sweden)

    Liliana Oliveira Rocha

    2016-01-01

    Full Text Available This study aimed to determine the levels of fumonisins produced by F. verticillioides and FUM gene expression on Bt (Bacillus thuringiensis and non-Bt maize, post harvest, during different periods of incubation. Transgenic hybrids 30F35 YG, 2B710 Hx and their isogenic (30F35 and 2B710 were collected from the field and a subset of 30 samples selected for the experiments. Maize samples were sterilized by gamma radiation at a dose of 20 kGy. Samples were then inoculated with Fusarium verticillioides and analysed under controlled conditions of temperature and relative humidity for fumonisin B1 and B2 (FB¬1 and FB2 production and FUM1, FUM3, FUM6, FUM7, FUM8, FUM13, FUM14, FUM15 and FUM19 expression. 2B710 Hx and 30F35 YG kernel samples were virtually intact when compared to the non-Bt hybrids that came from the field. Statistical analysis showed that FB¬1 production was significantly lower in 30F35 YG and 2B710 Hx than in the 30F35 and 2B710 hybrids (P 0.05. The kernel injuries observed in the non-Bt samples have possibly facilitated F. verticillioides penetration and promoted FB1 production under controlled conditions. FUM genes were expressed by F. verticillioides in all of the samples. However, there was indication of lower expression of a few FUM genes in the Bt hybrids; and a weak association between FB1 production and the relative expression of some of the FUM genes were observed in the 30F35 YG hybrid.

  12. Characterization of the imprinting and expression patterns of ZAG2 in maize endosperm and embryo

    Directory of Open Access Journals (Sweden)

    Chaoxian Liu

    2015-02-01

    Full Text Available ZAG2 has been identified as a maternally expressed imprinted gene in maize endosperm. Our study revealed that paternally inherited ZAG2 alleles were imprinted in maize endosperm and embryo at 14 days after pollination (DAP, and consistently imprinted in endosperm at 10, 12, 16, 18, 20, 22, 24, 26, and 28 DAP in reciprocal crosses between B73 and Mo17. ZAG2 alleles were also imprinted in reciprocal crosses between Zheng 58 and Chang 7-2 and between Huang C and 178. ZAG2 alleles exhibited differential imprinting in hybrids of 178 × Huang C and B73 × Mo17, while in other hybrids ZAG2 alleles exhibited binary imprinting. The tissue-specific expression pattern of ZAG2 showed that ZAG2 was expressed at a high level in immature ears, suggesting that ZAG2 plays important roles in not only kernel but ear development.

  13. New tool for spreading proteins to the environment: Cry1Ab toxin immobilized to bioplastics.

    Science.gov (United States)

    Moldes, Cristina; Farinós, Gema P; de Eugenio, Laura I; García, Pedro; García, José L; Ortego, Félix; Hernández-Crespo, Pedro; Castañera, Pedro; Prieto, María A

    2006-08-01

    A new tool to provide an environmentally friendly way to deliver active proteins to the environment has been developed, based on the use of polyhydroxyalkanoate (PHA, bioplastic) granules. To illustrate this novel approach, a derived Cry1Ab insect-specific toxin protein was in vivo immobilized into PHA granules through the polypeptide tag BioF. The new toxin, named Fk-Bt1, was shown to be active against Sesamia nonagrioides (Lepidoptera: Noctuidae). The dose-mortality responses of the new toxin granule formulation (PFk-Bt1) and purified Cry1Ab have been compared, demonstrating the effectiveness of PFk-Bt1 and suggesting a common mode of action.

  14. Toxicological Evaluation of a Potential Immunosensitizer for Use as a Mucosal Adjuvant—Bacillus thuringiensis Cry1Ac Spore-Crystals: A Possible Inverse Agonist that Deserves Further Investigation

    Directory of Open Access Journals (Sweden)

    Bélin Poletto Mezzomo

    2015-12-01

    Full Text Available In addition to their applicability as biopesticides, Bacillus thuringiensis (Bt Cry1Ac spore-crystals are being researched in the immunology field for their potential as adjuvants in mucosal and parenteral immunizations. We aimed to investigate the hematotoxicity and genotoxicity of Bt spore-crystals genetically modified to express Cry1Ac individually, administered orally (p.o. or with a single intraperitoneal (i.p. injection 24 h before euthanasia, to simulate the routes of mucosal and parenteral immunizations in Swiss mice. Blood samples were used to perform hemogram, and bone marrow was used for the micronucleus test. Cry1Ac presented cytotoxic effects on erythroid lineage in both routes, being more severe in the i.p. route, which also showed genotoxic effects. The greater severity noted in this route, mainly at 6.75 mg/kg, as well as the intermediate effects at 13.5 mg/kg, and the very low hematotoxicity at 27 mg/kg, suggested a possible inverse agonism. The higher immunogenicity for the p.o. route, particularly at 27 mg/kg, suggested that at this dose, Cry 1Ac could potentially be used as a mucosal adjuvant (but not in parenteral immunizations, due to the genotoxic effects observed. This potential should be investigated further, including making an evaluation of the proposed inverse agonism and carrying out cytokine profiling.

  15. Enhanced virus resistance in transgenic maize expressing a dsRNA-specific endoribonuclease gene from E. coli.

    Directory of Open Access Journals (Sweden)

    Xiuling Cao

    Full Text Available Maize rough dwarf disease (MRDD, caused by several Fijiviruses in the family Reoviridae, is a global disease that is responsible for substantial yield losses in maize. Although some maize germplasm have low levels of polygenic resistance to MRDD, highly resistant cultivated varieties are not available for agronomic field production in China. In this work, we have generated transgenic maize lines that constitutively express rnc70, a mutant E. coli dsRNA-specific endoribonuclease gene. Transgenic lines were propagated and screened under field conditions for 12 generations. During three years of evaluations, two transgenic lines and their progeny were challenged with Rice black-streaked dwarf virus (RBSDV, the causal agent of MRDD in China, and these plants exhibited reduced levels of disease severity. In two normal years of MRDD abundance, both lines were more resistant than non-transgenic plants. Even in the most serious MRDD year, six out of seven progeny from one line were resistant, whereas non-transgenic plants were highly susceptible. Molecular approaches in the T12 generation revealed that the rnc70 transgene was integrated and expressed stably in transgenic lines. Under artificial conditions permitting heavy virus inoculation, the T12 progeny of two highly resistant lines had a reduced incidence of MRDD and accumulation of RBSDV in infected plants. In addition, we confirmed that the RNC70 protein could bind directly to RBSDV dsRNA in vitro. Overall, our data show that RNC70-mediated resistance in transgenic maize can provide efficient protection against dsRNA virus infection.

  16. Interação de proteínas Cry1 e Vip3A de Bacillus thuringiensis para controle de lepidópteros-praga

    Directory of Open Access Journals (Sweden)

    Paula Cristina Brunini Crialesi-Legori

    2014-02-01

    Full Text Available O objetivo deste trabalho foi avaliar a suscetibilidade das lagartas Anticarsia gemmatalis (Lepidoptera: Erebidae e Chrysodeixis includens (Lepidoptera: Noctuidae às proteínas Cry1 e Vip3A, bem como determinar se há a interação entre essas proteínas no controle das duas espécies. Bioensaios com as proteínas isoladas e em combinações foram realizados, e as concentrações letais CL50 e CL90 foram estimadas para cada condição. As proteínas Cry1Aa, Cry1Ac e Vip3Af foram as mais efetivas no controle de A. gemmatalis, enquanto Cry1Ac, Vip3Aa e Vip3Af foram mais efetivas no de C. includens. As proteínas Cry1Ac e Cry1Ca causaram maior inibição do desenvolvimento das larvas sobreviventes à CL50, em ambas as espécies. Combinações entre Vip3A e Cry1 apresentam efeito sinérgico no controle das espécies e a combinação Vip3Aa+Cry1Ea destaca-se no controle de A. gemmatalis e C. includens. Essas proteínas combinadas são promissoras na construção de plantas piramidadas, para o controle simultâneo das pragas.

  17. Insect communities on maize expressing a Bt-toxin

    Czech Academy of Sciences Publication Activity Database

    Habuštová, Oxana; Sehnal, František; Hussein, Hany

    2005-01-01

    Roč. 1, - (2005), s. 9-11 ISSN 1335-258X R&D Projects: GA AV ČR(CZ) KJB6007304 Institutional research plan: CEZ:AV0Z50070508 Keywords : GMO * arthropod communities * Bt maize Subject RIV: EH - Ecology, Behaviour

  18. Proteomic Comparison of Basal Endosperm in Maize miniature1 Mutant and its Wild-type Mn1

    Directory of Open Access Journals (Sweden)

    Cecilia eSilva-Sanchez

    2013-06-01

    Full Text Available Developing endosperm in maize seed is a major site for biosynthesis and storage of starch and proteins, and of immense economic importance for its role in food, feed and biofuel production. The basal part of endosperm performs a major role in solute, water and nutrition acquisition from mother plant to sustain these functions. The miniature1 (mn1 mutation is a loss-of-function mutation of the Mn1-encoded cell wall invertase that is entirely expressed in the basal endosperm and is essential for many of the metabolic and signaling functions associated with metabolically released hexose sugars in developing endosperm. Here we report a comparative proteomic study between Mn1 and mn1 basal endosperm to better understand basis of pleiotropic effects on many diverse traits in the mutant. Specifically, we used iTRAQ based quantitative proteomics combined with Gene Ontology and bioinformatics to understand functional basis of the proteomic information. A total of 2518 proteins were identified from soluble and cell wall associated protein fractions; of these 131 proteins were observed to be differentially expressed in the two genotypes. The main functional groups of proteins that were significantly different were those involved in the carbohydrate metabolic and catabolic process, and cell homeostasis. The study constitutes the first proteomic analysis of basal endosperm cell layers in relation to endosperm growth and development in maize.

  19. PxAPN5 serves as a functional receptor of Cry2Ab in Plutella xylostella (L.) and its binding domain analysis.

    Science.gov (United States)

    Pan, Zhi-Zhen; Xu, Lian; Liu, Bo; Zhang, Jing; Chen, Zheng; Chen, Qing-Xi; Zhu, Yu-Jing

    2017-12-01

    Lepidopteran midgut aminopeptidases N (APNs) are widely studied for their potential roles as one of the receptors for Bacillus thuringiensis (Bt) crystal toxins. In the present study, a loss of function analyses by RNAi (RNA interference) silencing of the Plutella xylostella APN5 (PxAPN5), a binding protein of Bt crystal toxin Cry2Ab, were performed. The knocking down of PxAPN5 in P. xylostella larvae greatly reduced their susceptibility to Cry2Ab and led to a decrease of Cry2Ab binding to P. xylostella midgut. Four truncated fragments of PxAPN5 were further constructed and expressed in Escherichia coli (E.coli) to find the binding region of PxAPN5 to Cry2Ab. The ligand blot result indicated that D1 domain (residues 1-262) and D3 domain (residues 510-620) of PxAPN5 could specially bind to Cry2Ab. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Multiple Pesticides Detoxification Function of Maize (Zea mays) GST34.

    Science.gov (United States)

    Li, Dongzhi; Xu, Li; Pang, Sen; Liu, Zhiqian; Zhao, Weisong; Wang, Chengju

    2017-03-08

    ZmGST34 is a maize Tau class GST gene and was found to be differently expressed between two maize cultivars differing in tolerance to herbicide metolachlor. To explore the possible role of ZmGST34 in maize development, the expression pattern and substrate specificity of ZmGST34 were characterized by quantitative RT-PCR and heterologous expression system, respectively. The results indicated that the expression level of ZmGST34 was increased ∼2-5-fold per day during the second-leaf stage of maize seedling. Chloroacetanilide herbicides or phytohormone treatments had no influence on the expression level of ZmGST34, suggesting that ZmGST34 is a constitutively expressed gene in maize seedling. Heterologous expression in Escherichia coli and in Arabidopsis thaliana proved that ZmGST34 can metabolize most chloroacetanilide herbicides and increase tolerance to these herbicides in transgenic Arabidopsis thaliana. The constitutive expression pattern and broad substrate activity of ZmGST34 suggested that this gene may play an important role in maize development in addition to the detoxification of pesticides.

  1. Lack of Detection of Bt Sugarcane Cry1Ab and NptII DNA and Proteins in Sugarcane Processing Products Including Raw Sugar

    Directory of Open Access Journals (Sweden)

    Adriana Cheavegatti-Gianotto

    2018-03-01

    Full Text Available Brazil is the largest sugarcane producer and the main sugar exporter in the world. The industrial processes applied by Brazilian mills are very efficient in producing highly purified sugar and ethanol. Literature presents evidence of lack of DNA/protein in these products, regardless of the nature of sugarcane used as raw material. Recently CTNBio, the Brazilian biosafety authority, has approved the first biotechnology-derived sugarcane variety for cultivation, event CTC175-A, which expresses the Cry1Ab protein to control the sugarcane borer (Diatraea saccharalis. The event also expresses neomycin-phosphotransferase type II (NptII protein used as selectable marker during the transformation process. Because of the high purity of sugar and ethanol produced from genetically modified sugarcane, these end-products should potentially be classified as “pure substances, chemically defined,” by Brazilian Biosafety Law No. 11.105. If this classification is to be adopted, these substances are not considered as “GMO derivatives” and fall out of the scope of Law No. 11.105. In order to assess sugar composition and quality, we evaluate Cry1Ab and NptII expression in several sugarcane tissues and in several fractions from laboratory-scale processing of event CTC175-A for the presence of these heterologous proteins as well as for the presence of traces of recombinant DNA. The results of these studies show that CTC175-A presents high expression of Cry1Ab in leaves and barely detectable expression of heterologous proteins in stalks. We also evaluated the presence of ribulose-1,5-bisphosphate carboxylase/oxygenase protein and DNA in the fractions of the industrial processing of conventional Brazilian sugarcane cultivars. Results from both laboratory and industrial processing were concordant, demonstrating that DNA and protein are not detected in the clarified juice and downstream processed fractions, including ethanol and raw sugar, indicating that protein

  2. Brain stem hypoplasia associated with Cri-du-Chat syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jin Ho; Lee, Ha Young; Lim, Myung Kwan; Kim, Mi Young; Kang, Young Hye; Lee, Kyung Hee; Cho, Soon Gu [Dept. of Radiology, Inha University Hospital, Inha University School of Medicine, Incheon (Korea, Republic of)

    2013-12-15

    Cri-du-Chat syndrome, also called the 5p-syndrome, is a rare genetic abnormality, and only few cases have been reported on its brain MRI findings. We describe the magnetic resonance imaging findings of a 1-year-old girl with Cri-du-Chat syndrome who showed brain stem hypoplasia, particularly in the pons, with normal cerebellum and diffuse hypoplasia of the cerebral hemispheres. We suggest that Cri-du-Chat syndrome chould be suspected in children with brain stem hypoplasia, particularly for those with high-pitched cries.

  3. Uniform Orientation of Biotinylated Nanobody as an Affinity Binder for Detection of Bacillus thuringiensis (Bt) Cry1Ac Toxin

    Science.gov (United States)

    Li, Min; Zhu, Min; Zhang, Cunzheng; Liu, Xianjin; Wan, Yakun

    2014-01-01

    Nanobodies are the smallest natural fragments with useful properties such as high affinity, distinct paratope and high stability, which make them an ideal tool for detecting target antigens. In this study, we generated and characterized nanobodies against the Cry1Ac toxin and applied them in a biotin-streptavidin based double antibodies (nanobodies) sandwich-ELISA (DAS-ELISA) assay. After immunizing a camel with soluble Cry1Ac toxin, a phage displayed library was constructed to generate Nbs against the Cry1Ac toxin. Through successive rounds of affinity bio-panning, four nanobodies with greatest diversity in CDR3 sequences were obtained. After affinity determination and conjugating to HRP, two nanobodies with high affinity which can recognize different epitopes of the same antigen (Cry1Ac) were selected as capture antibody (Nb61) and detection antibody (Nb44). The capture antibody (Nb61) was biotinylated in vivo for directional immobilization on wells coated with streptavidin matrix. Both results of specificity analysis and thermal stability determination add support for reliability of the following DAS-ELISA with a minimum detection limit of 0.005 μg·mL−1 and a working range 0.010–1.0 μg·mL−1. The linear curve displayed an acceptable correlation coefficient of 0.9976. These results indicated promising applications of nanobodies for detection of Cry1Ac toxin with biotin-streptavidin based DAS-ELISA system. PMID:25474492

  4. Uniform Orientation of Biotinylated Nanobody as an Affinity Binder for Detection of Bacillus thuringiensis (Bt Cry1Ac Toxin

    Directory of Open Access Journals (Sweden)

    Min Li

    2014-12-01

    Full Text Available Nanobodies are the smallest natural fragments with useful properties such as high affinity, distinct paratope and high stability, which make them an ideal tool for detecting target antigens. In this study, we generated and characterized nanobodies against the Cry1Ac toxin and applied them in a biotin-streptavidin based double antibodies (nanobodies sandwich-ELISA (DAS-ELISA assay. After immunizing a camel with soluble Cry1Ac toxin, a phage displayed library was constructed to generate Nbs against the Cry1Ac toxin. Through successive rounds of affinity bio-panning, four nanobodies with greatest diversity in CDR3 sequences were obtained. After affinity determination and conjugating to HRP, two nanobodies with high affinity which can recognize different epitopes of the same antigen (Cry1Ac were selected as capture antibody (Nb61 and detection antibody (Nb44. The capture antibody (Nb61 was biotinylated in vivo for directional immobilization on wells coated with streptavidin matrix. Both results of specificity analysis and thermal stability determination add support for reliability of the following DAS-ELISA with a minimum detection limit of 0.005 μg·mL−1 and a working range 0.010–1.0 μg·mL−1. The linear curve displayed an acceptable correlation coefficient of 0.9976. These results indicated promising applications of nanobodies for detection of Cry1Ac toxin with biotin-streptavidin based DAS-ELISA system.

  5. PNL1 and PNL2 : Arabidopsis homologs of maize PAN1

    OpenAIRE

    Clark, Lauren Gail

    2010-01-01

    PNL1 and PNL2 are the closest Arabidopsis relatives of maize pan1. pan1 and the PNL family of 11 genes encode leucine-rich repeat, receptor-like kinases, however none of these putative kinases is predicted to have actual kinase function, due to one or more amino acid substitutions in residues necessary for kinase function. Because PAN1 plays a role in subsidiary cell formation in maize, it is hypothesized that PNL1 and PNL2 are involved in stomatal formation in Arabidopsis. YFP fusions of the...

  6. Quantification of toxins in a Cry1Ac + CpTI cotton cultivar and its potential effects on the honey bee Apis mellifera L.

    Science.gov (United States)

    Han, Peng; Niu, Chang-Ying; Lei, Chao-Liang; Cui, Jin-Jie; Desneux, Nicolas

    2010-11-01

    Transgenic Cry1Ac + CpTI cotton (CCRI41) is increasingly planted throughout China. However, negative effects of this cultivar on the honey bee Apis mellifera L., the most important pollinator for cultivated ecosystem, remained poorly investigated. The objective of our study was to evaluate the potential side effects of transgenic Cry1Ac + CpTI pollen from cotton on young adult honey bees A. mellifera L. Two points emphasized the significance of our study: (1) A higher expression level of insecticidal protein Cry1Ac in pollen tissues was detected (when compared with previous reports). In particular, Cry1Ac protein was detected at 300 ± 4.52 ng g(-1) [part per billion (ppb)] in pollen collected in July, (2) Effects on chronic mortality and feeding behaviour in honey bees were evaluated using a no-choice dietary feeding protocol with treated pollen, which guarantee the highest exposure level to bees potentially occurring in natural conditions (worst case scenario). Tests were also conducted using imidacloprid-treated pollen at a concentration of 48 ppb as positive control for sublethal effect on feeding behaviour. Our results suggested that Cry1Ac + CpTI pollen carried no lethal risk for honey bees. However, during a 7-day oral exposure to the various treatments (transgenic, imidacloprid-treated and control), honey bee feeding behaviour was disturbed and bees consumed significantly less CCRI41 cotton pollen than in the control group in which bees were exposed to conventional cotton pollen. It may indicate an antifeedant effect of CCRI41 pollen on honey bees and thus bees may be at risk because of large areas are planted with transgenic Bt cotton in China. This is the first report suggesting a potential sublethal effect of CCRI41 cotton pollen on honey bees. The implications of the results are discussed in terms of risk assessment for bees as well as for directions of future work involving risk assessment of CCRI41 cotton.

  7. Immunotoxicological Evaluation of Genetically Modified Rice Expressing Cry1Ab/Ac Protein (TT51-1) by a 6-Month Feeding Study on Cynomolgus Monkeys

    Science.gov (United States)

    Tan, Xiaoyan; Zhou, Xiaobing; Tang, Yao; Lv, Jianjun; Zhang, Lin; Sun, Li; Yang, Yanwei; Miao, Yufa; Jiang, Hua; Chen, Gaofeng; Huang, Zhiying; Wang, Xue

    2016-01-01

    The present study was performed to evaluate the food safety of TT51-1, a new type of genetically modified rice that expresses the Cry1Ab/Ac protein (Bt toxin) and is highly resistant to most lepidopteran pests. Sixteen male and 16 female cynomolgus monkeys were randomly divided into four groups: conventional rice (non-genetically modified rice, non-GM rice), positive control, 17.5% genetically modified rice (GM rice) and 70% GM rice. Monkeys in the non-GM rice, positive control, and GM rice groups were fed on diets containing 70% non-GM rice, 17.5% GM rice or 70% GM rice, respectively, for 182 days, whereas animals in the positive group were intravenously injected with cyclophosphamide every other day for a total of four injections before the last treatment. Six months of treatment did not yield abnormal observations. Specifically, the following parameters did not significantly differ between the non-GM rice group and GM rice groups: body weight, food consumption, electrocardiogram, hematology, immuno-phenotyping of lymphocytes in the peripheral blood, mitogen-induced peripheral blood lymphocyte proliferation, splenocyte proliferation, KLH-T cell-dependent antibody response, organ weights and ratios, and histological appearance (p>0.05). Animals from the GM rice group differed from animals in the non-GM rice group (pGM rice. In conclusion, a 6-month feeding study of TT51-1 did not show adverse immunotoxicological effects on cynomolgus monkeys. PMID:27684490

  8. Pretreatment with Cry1Ac Protoxin Modulates the Immune Response, and Increases the Survival of Plasmodium-Infected CBA/Ca Mice

    Directory of Open Access Journals (Sweden)

    Martha Legorreta-Herrera

    2010-01-01

    Full Text Available Malaria is a major global health problem that kills 1-2 million people each year. Despite exhaustive research, naturally acquired immunity is poorly understood. Cry1A proteins are potent immunogens with adjuvant properties and are able to induce strong cellular and humoral responses. In fact, it has been shown that administration of Cry1Ac protoxin alone or with amoebic lysates induces protection against the lethal infection caused by the protozoa Naegleria fowleri. In this work, we studied whether Cry1Ac is able to activate the innate immune response to induce protection against Plasmodium berghei ANKA (lethal and P. chabaudi AS (nonlethal parasites in CBA/Ca mice. Treatment with Cry1Ac induced protection against both Plasmodium species in terms of reduced parasitaemia, longer survival time, modulation of pro- and anti-inflammatory cytokines, and increased levels of specific antibodies against Plasmodium. Understanding how to boost innate immunity to Plasmodium infection should lead to immunologically based intervention strategies.

  9. Expression of flavonoid 3'-hydroxylase is controlled by P1, the regulator of 3-deoxyflavonoid biosynthesis in maize.

    Science.gov (United States)

    Sharma, Mandeep; Chai, Chenglin; Morohashi, Kengo; Grotewold, Erich; Snook, Maurice E; Chopra, Surinder

    2012-11-01

    The maize (Zea mays) red aleurone1 (pr1) encodes a CYP450-dependent flavonoid 3'-hydroxylase (ZmF3'H1) required for the biosynthesis of purple and red anthocyanin pigments. We previously showed that Zmf3'h1 is regulated by C1 (Colorless1) and R1 (Red1) transcription factors. The current study demonstrates that, in addition to its role in anthocyanin biosynthesis, the Zmf3'h1 gene also participates in the biosynthesis of 3-deoxyflavonoids and phlobaphenes that accumulate in maize pericarps, cob glumes, and silks. Biosynthesis of 3-deoxyflavonoids is regulated by P1 (Pericarp color1) and is independent from the action of C1 and R1 transcription factors. In maize, apiforol and luteoforol are the precursors of condensed phlobaphenes. Maize lines with functional alleles of pr1 and p1 (Pr1;P1) accumulate luteoforol, while null pr1 lines with a functional or non-functional p1 allele (pr1;P1 or pr1;p1) accumulate apiforol. Apiforol lacks a hydroxyl group at the 3'-position of the flavylium B-ring, while luteoforol has this hydroxyl group. Our biochemical analysis of accumulated compounds in different pr1 genotypes showed that the pr1 encoded ZmF3'H1 has a role in the conversion of mono-hydroxylated to bi-hydroxylated compounds in the B-ring. Steady state RNA analyses demonstrated that Zmf3'h1 mRNA accumulation requires a functional p1 allele. Using a combination of EMSA and ChIP experiments, we established that the Zmf3'h1 gene is a direct target of P1. Highlighting the significance of the Zmf3'h1 gene for resistance against biotic stress, we also show here that the p1 controlled 3-deoxyanthocyanidin and C-glycosyl flavone (maysin) defence compounds accumulate at significantly higher levels in Pr1 silks as compared to pr1 silks. By virtue of increased maysin synthesis in Pr1 plants, corn ear worm larvae fed on Pr1; P1 silks showed slower growth as compared to pr1; P1 silks. Our results show that the Zmf3'h1 gene participates in the biosynthesis of phlobaphenes and

  10. Insect Resistance to Bacillus thuringiensis Toxin Cry2Ab Is Conferred by Mutations in an ABC Transporter Subfamily A Protein.

    Directory of Open Access Journals (Sweden)

    Wee Tek Tay

    2015-11-01

    Full Text Available The use of conventional chemical insecticides and bacterial toxins to control lepidopteran pests of global agriculture has imposed significant selection pressure leading to the rapid evolution of insecticide resistance. Transgenic crops (e.g., cotton expressing the Bt Cry toxins are now used world wide to control these pests, including the highly polyphagous and invasive cotton bollworm Helicoverpa armigera. Since 2004, the Cry2Ab toxin has become widely used for controlling H. armigera, often used in combination with Cry1Ac to delay resistance evolution. Isolation of H. armigera and H. punctigera individuals heterozygous for Cry2Ab resistance in 2002 and 2004, respectively, allowed aspects of Cry2Ab resistance (level, fitness costs, genetic dominance, complementation tests to be characterised in both species. However, the gene identity and genetic changes conferring this resistance were unknown, as was the detailed Cry2Ab mode of action. No cross-resistance to Cry1Ac was observed in mutant lines. Biphasic linkage analysis of a Cry2Ab-resistant H. armigera family followed by exon-primed intron-crossing (EPIC marker mapping and candidate gene sequencing identified three independent resistance-associated INDEL mutations in an ATP-Binding Cassette (ABC transporter gene we named HaABCA2. A deletion mutation was also identified in the H. punctigera homolog from the resistant line. All mutations truncate the ABCA2 protein. Isolation of further Cry2Ab resistance alleles in the same gene from field H. armigera populations indicates unequal resistance allele frequencies and the potential for Bt resistance evolution. Identification of the gene involved in resistance as an ABC transporter of the A subfamily adds to the body of evidence on the crucial role this gene family plays in the mode of action of the Bt Cry toxins. The structural differences between the ABCA2, and that of the C subfamily required for Cry1Ac toxicity, indicate differences in the

  11. PRKCDBP (CAVIN3) and CRY2 associate with major depressive disorder.

    Science.gov (United States)

    Kovanen, Leena; Donner, Kati; Kaunisto, Mari; Partonen, Timo

    2017-01-01

    Dysfunctions in the intrinsic clocks are suggested in patients with depressive disorders. The cryptochrome circadian clocks 1 and 2 (CRY1 and CRY2) proteins modulate circadian rhythms in a cell and influence emotional reactions and mood in an individual. The protein kinase C delta binding protein (PRKCDBP, or CAVIN3), similar to the serum deprivation response protein (SDPR, or CAVIN2), reduces metabolic stability of the PER2-CRY2 transcription factor complex that plays a role in the circadian rhythm synchronization. Our aim was to study SDPR, PRKCDBP, CRY1 and CRY2 genetic variants in depressive disorders. The sample included 5910 Finnish individuals assessed with the Munich-Composite International Diagnostic Interview (M-CIDI) in year 2000. In year 2011, 3424 individuals were assessed again. After genotype quality control, there were 383 subjects with major depressive disorder, 166 with dysthymia, and 479 with depressive disorders (major depressive disorder, dysthymia or both), and 4154 healthy controls. A total of 48 single-nucleotide polymorphisms from SDPR, PRKCDBP, CRY1 and CRY2 genes were analyzed using logistic regression models controlling for age and gender. The earlier reported association of CRY2 variants with dysthymia was confirmed and extended to major depressive disorder (qdepressive disorders (q=0.02) and with major depressive disorder in specific (q=0.007) were found. The number of cases was moderate and coverage of PRKCDB was limited. CRY2 and PRKCDBP variants may be risk factors of major depressive disorder and provide information for diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Bombyx mori ABC transporter C2 structures responsible for the receptor function of Bacillus thuringiensis Cry1Aa toxin.

    Science.gov (United States)

    Tanaka, Shiho; Endo, Haruka; Adegawa, Satomi; Iizuka, Ami; Imamura, Kazuhiro; Kikuta, Shingo; Sato, Ryoichi

    2017-12-01

    Because Bombyx mori ABC transporter C2 (BmABCC2) has 1000-fold higher potential than B. mori cadherin-like protein as a receptor for Bacillus thuringiensis Cry1Aa toxin (Tanaka et al., 2013), the gate-opening ability of the latent pore under six extracellular loops (ECLs) of BmABCC2 was expected to be the reason for its higher potential (Heckel, 2012). In this study, cell swelling assays in Sf9 cells showed that BmABCC2 mutants lacking substrate-excreting activity retained receptor activity, indicating that the gate-opening activity of BmABCC2 is not responsible for Cry1Aa toxicity. The analysis of 29 BmABCC2 mutants demonstrated that 770 DYWL 773 of ECL 4 comprise a putative binding site to Cry1Aa. This suggests that specific toxicity of Cry1Aa toxin to a restricted range of lepidopteran insects is dependent on conservation and variation in the amino acid residues around 770 DYWL 773 of ECL 4 in the ABCC2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Baby-Crying Acceptance

    Science.gov (United States)

    Martins, Tiago; de Magalhães, Sérgio Tenreiro

    The baby's crying is his most important mean of communication. The crying monitoring performed by devices that have been developed doesn't ensure the complete safety of the child. It is necessary to join, to these technological resources, means of communicating the results to the responsible, which would involve the digital processing of information available from crying. The survey carried out, enabled to understand the level of adoption, in the continental territory of Portugal, of a technology that will be able to do such a digital processing. It was used the TAM as the theoretical referential. The statistical analysis showed that there is a good probability of acceptance of such a system.

  14. The Aux/IAA gene rum1 involved in seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary roots.

    Science.gov (United States)

    Zhang, Yanxiang; Paschold, Anja; Marcon, Caroline; Liu, Sanzhen; Tai, Huanhuan; Nestler, Josefine; Yeh, Cheng-Ting; Opitz, Nina; Lanz, Christa; Schnable, Patrick S; Hochholdinger, Frank

    2014-09-01

    The maize (Zea mays L.) Aux/IAA protein RUM1 (ROOTLESS WITH UNDETECTABLE MERISTEMS 1) controls seminal and lateral root initiation. To identify RUM1-dependent gene expression patterns, RNA-Seq of the differentiation zone of primary roots of rum1 mutants and the wild type was performed in four biological replicates. In total, 2 801 high-confidence maize genes displayed differential gene expression with Fc ≥2 and FDR ≤1%. The auxin signalling-related genes rum1, like-auxin1 (lax1), lax2, (nam ataf cuc 1 nac1), the plethora genes plt1 (plethora 1), bbm1 (baby boom 1), and hscf1 (heat shock complementing factor 1) and the auxin response factors arf8 and arf37 were down-regulated in the mutant rum1. All of these genes except nac1 were auxin-inducible. The maize arf8 and arf37 genes are orthologues of Arabidopsis MP/ARF5 (MONOPTEROS/ARF5), which controls the differentiation of vascular cells. Histological analyses of mutant rum1 roots revealed defects in xylem organization and the differentiation of pith cells around the xylem. Moreover, histochemical staining of enlarged pith cells surrounding late metaxylem elements demonstrated that their thickened cell walls displayed excessive lignin deposition. In line with this phenotype, rum1-dependent mis-expression of several lignin biosynthesis genes was observed. In summary, RNA-Seq of RUM1-dependent gene expression in maize primary roots, in combination with histological and histochemical analyses, revealed the specific regulation of auxin signal transduction components by RUM1 and novel functions of RUM1 in vascular development. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. LSSP-PCR para la identificación de polimorfismos en el gen cry1B en cepas nativas de Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Martha Ilce Orozco Mera

    2012-01-01

    Full Text Available Título en ingles: LSSP-PCR to identify polymorphisms in the gene cry1B of Bacillus thuringiensis native strain Resumen: Se estandarizó la técnica LSSP-PCR (reacción en cadena de la polimerasa con un único oligonucleótido en condiciones de baja astringencia, para identificar polimorfismos del gen cry1B en aislamientos nativos de Bacillus thuringiensis (Bt. Se evaluaron 164 aislamientos nativos colombianos identificándose el gen cry1Ba en 11 de estos aislamientos. Los 11 fragmentos amplificados, junto con el de la cepa de referencia Bt subsp. aizawai HD137, se analizaron por LSSP-PCR y los patrones electroforéticos obtenidos se compararon cualitativamente. Con los productos amplificados mediante el oligonucleótido directo se construyó un dendrograma utilizando UPGMA que  mostró tres agrupamientos con similitud de 83, 79 y 68%. La agrupación con 68% de similaridad correspondió al aislamiento nativo BtGC120 que presentó el patrón de bandas más variable. Con el oligonucleótido reverso el aislamiento BtGC120 mostró una menor variabilidad (43%. La secuencia nucleotidica obtenida de este fragmento de 806 pares de bases mostró una identidad de 93% con la secuencia de los genes cry1Bc1 de Bt morrisoni y cry1Bb1 de la cepa BT-EG5847. Se predijo del marco de lectura +3 una proteína de 268 residuos aminoácidicos, con 88% de identidad con la proteína Cry1Bc. Esta  secuencia reveló dos dominios, una endotoxina N implicada en la formación del poro y otra endotoxina M relacionada en el reconocimiento del receptor. La evaluación biológica del aislamiento BtGC120 sobre larvas de primer instar del insecto plaga Spodoptera frugiperda, mostró una CL50 de 1,896 ng de proteína total por cm2. Este estudio muestra que la LSSP-PCR es una técnica que permite identificar de una manera específica variaciones en las secuencias de los genes cry de Bt, con potencialidad de encontrar nuevos genes con novedosas actividades biológicas. Abstract

  16. Existence of a photoinducible phase for ovarian development and photoperiod-related alteration of clock gene expression in a damselfish.

    Science.gov (United States)

    Takeuchi, Yuki; Hada, Noriko; Imamura, Satoshi; Hur, Sung-Pyo; Bouchekioua, Selma; Takemura, Akihiro

    2015-10-01

    The sapphire devil, Chrysiptera cyanea, is a reef-associated damselfish and their ovarian development can be induced by a long photoperiod. In this study, we demonstrated the existence of a photoinducible phase for the photoperiodic ovarian development in the sapphire devil. Induction of ovarian development under night-interruption light schedules and Nanda-Hamner cycles revealed that the photoinducible phase appeared in a circadian manner between ZT12 and ZT13. To characterize the effect of photoperiod on clock gene expression in the brain of this species, we determined the expression levels of the sdPer1, sdPer2, sdCry1, and sdCry2 clock genes under constant light and dark conditions (LL and DD) and photoperiodic (short and long photoperiods). The expression of sdPer1 exhibited clear circadian oscillation under both LL and DD conditions, while sdPer2 and sdCry1 expression levels were lower under DD than under LL conditions and sdCry2 expression was lower under LL than under DD conditions. These results suggest a key role for sdPer1 in circadian clock cycling and that sdPer2, sdCry1, and sdCry2 are light-responsive clock genes in the sapphire devil. After 1 week under a long photoperiod, we observed photoperiod-related changes in sdPer1, sdPer2, and sdCry2 expression, but not in sdCry1 expression. These results suggest that the expression patterns of some clock genes exhibit seasonal variation according to seasonal changes in day length and that such seasonal alteration of clock gene expression may contribute to seasonal recognition by the sapphire devil. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Culture and crying : Prevalences and gender differences

    NARCIS (Netherlands)

    Hemert, D.A. van; Vijver, F.J.R. van de; Vingerhoets, A.J.J.M.

    2011-01-01

    Results of a cross-cultural study of adult crying across 37 countries are presented. Analyses focused on country differences in recency of last crying episode and crying proneness and relationships with country characteristics. Three hypotheses on the nature of country differences in crying were

  18. Whole transcriptome profiling of maize during early somatic embryogenesis reveals altered expression of stress factors and embryogenesis-related genes.

    Directory of Open Access Journals (Sweden)

    Stella A G D Salvo

    Full Text Available Embryogenic tissue culture systems are utilized in propagation and genetic engineering of crop plants, but applications are limited by genotype-dependent culture response. To date, few genes necessary for embryogenic callus formation have been identified or characterized. The goal of this research was to enhance our understanding of gene expression during maize embryogenic tissue culture initiation. In this study, we highlight the expression of candidate genes that have been previously regarded in the literature as having important roles in somatic embryogenesis. We utilized RNA based sequencing (RNA-seq to characterize the transcriptome of immature embryo explants of the highly embryogenic and regenerable maize genotype A188 at 0, 24, 36, 48, and 72 hours after placement of explants on tissue culture initiation medium. Genes annotated as functioning in stress response, such as glutathione-S-transferases and germin-like proteins, and genes involved with hormone transport, such as PINFORMED, increased in expression over 8-fold in the study. Maize genes with high sequence similarity to genes previously described in the initiation of embryogenic cultures, such as transcription factors BABY BOOM, LEAFY COTYLEDON, and AGAMOUS, and important receptor-like kinases such as SOMATIC EMBRYOGENESIS RECEPTOR LIKE KINASES and CLAVATA, were also expressed in this time course study. By combining results from whole genome transcriptome analysis with an in depth review of key genes that play a role in the onset of embryogenesis, we propose a model of coordinated expression of somatic embryogenesis-related genes, providing an improved understanding of genomic factors involved in the early steps of embryogenic culture initiation in maize and other plant species.

  19. Synthetic Polymer Affinity Ligand for Bacillus thuringiensis ( Bt) Cry1Ab/Ac Protein: The Use of Biomimicry Based on the Bt Protein-Insect Receptor Binding Mechanism.

    Science.gov (United States)

    Liu, Mingming; Huang, Rong; Weisman, Adam; Yu, Xiaoyang; Lee, Shih-Hui; Chen, Yalu; Huang, Chao; Hu, Senhua; Chen, Xiuhua; Tan, Wenfeng; Liu, Fan; Chen, Hao; Shea, Kenneth J

    2018-05-24

    We report a novel strategy for creating abiotic Bacillus thuringiensis ( Bt) protein affinity ligands by biomimicry of the recognition process that takes place between Bt Cry1Ab/Ac proteins and insect receptor cadherin-like Bt-R 1 proteins. Guided by this strategy, a library of synthetic polymer nanoparticles (NPs) was prepared and screened for binding to three epitopes 280 FRGSAQGIEGS 290 , 368 RRPFNIGINNQQ 379 and 436 FRSGFSNSSVSIIR 449 located in loop α8, loop 2 and loop 3 of domain II of Bt Cry1Ab/Ac proteins. A negatively charged and hydrophilic nanoparticle (NP12) was found to have high affinity to one of the epitopes, 368 RRPFNIGINNQQ 379 . This same NP also had specific binding ability to both Bt Cry1Ab and Bt Cry1Ac, proteins that share the same epitope, but very low affinity to Bt Cry2A, Bt Cry1C and Bt Cry1F closely related proteins that lack epitope homology. To locate possible NP- Bt Cry1Ab/Ac interaction sites, NP12 was used as a competitive inhibitor to block the binding of 865 NITIHITDTNNK 876 , a specific recognition site in insect receptor Bt-R 1 , to 368 RRPFNIGINNQQ 379 . The inhibition by NP12 reached as high as 84%, indicating that NP12 binds to Bt Cry1Ab/Ac proteins mainly via 368 RRPFNIGINNQQ 379 . This epitope region was then utilized as a "target" or "bait" for the separation and concentration of Bt Cry1Ac protein from the extract of transgenic Bt cotton leaves by NP12. This strategy, based on the antigen-receptor recognition mechanism, can be extended to other biotoxins and pathogen proteins when designing biomimic alternatives to natural protein affinity ligands.

  20. ChLae1 and ChVel1 regulate T-toxin production, virulence, oxidative stress response, and development of the maize pathogen Cochliobolus heterostrophus.

    Directory of Open Access Journals (Sweden)

    Dongliang Wu

    2012-02-01

    Full Text Available LaeA and VeA coordinate secondary metabolism and differentiation in response to light signals in Aspergillus spp. Their orthologs, ChLae1 and ChVel1, were identified in the maize pathogen Cochliobolus heterostrophus, known to produce a wealth of secondary metabolites, including the host selective toxin, T-toxin. Produced by race T, T-toxin promotes high virulence to maize carrying Texas male sterile cytoplasm (T-cms. T-toxin production is significantly increased in the dark in wild type (WT, whereas Chvel1 and Chlae1 mutant toxin levels are much reduced in the dark compared to WT. Correspondingly, expression of T-toxin biosynthetic genes (Tox1 is up-regulated in the dark in WT, while dark-induced expression is much reduced/minimal in Chvel1 and Chlae1 mutants. Toxin production and Tox1 gene expression are increased in ChVEL1 overexpression (OE strains grown in the dark and in ChLAE1 strains grown in either light or dark, compared to WT. These observations establish ChLae1 and ChVel1 as the first factors known to regulate host selective toxin production. Virulence of Chlae1 and Chvel1 mutants and OE strains is altered on both T-cms and normal cytoplasm maize, indicating that both T-toxin mediated super virulence and basic pathogenic ability are affected. Deletion of ChLAE1 or ChVEL1 reduces tolerance to H(2O(2. Expression of CAT3, one of the three catalase genes, is reduced in the Chvel1 mutant. Chlae1 and Chvel1 mutants also show decreased aerial hyphal growth, increased asexual sporulation and female sterility. ChLAE1 OE strains are female sterile, while ChVEL1 OE strains are more fertile than WT. ChLae1 and ChVel1 repress expression of 1,8-dihydroxynaphthalene (DHN melanin biosynthesis genes, and, accordingly, melanization is enhanced in Chlae1 and Chvel1 mutants, and reduced in OE strains. Thus, ChLae1 and ChVel1 positively regulate T-toxin biosynthesis, pathogenicity and super virulence, oxidative stress responses, sexual development, and

  1. Cry features reflect pain intensity in term newborns: an alarm threshold.

    Science.gov (United States)

    Bellieni, Carlo V; Sisto, Renata; Cordelli, Duccio M; Buonocore, Giuseppe

    2004-01-01

    The purpose of this study was to assess differences in sound spectra of crying of term newborns in relation to different pain levels. Fifty-seven consecutively born neonates were evaluated during heel-prick performed with different analgesic techniques. Crying was recorded and frequency spectrograms analyzed. A pain score on the DAN (Douleur Aiguë du Nouveau-né) scale was assigned to each baby after the sampling. Three features were considered and correlated with the corresponding DAN scores: 1) whole spectral form; 2) the fundamental frequency of the first cry emitted (F0); and 3) root mean square sound pressure normalized to its maximum. After emission of the first cry, babies with DAN scores >8, but not with DAN scores cry") characterized by a sequence of almost identical cries with a period on the order of 1 s. A statistically significant correlation was found between root mean square (r2 = 89%, p cry (r2 = 68.2%, p = 0.02), and DAN score. F0 did not show significant correlation with DAN score in the subset of neonates with DAN scores babies with a DAN score >8 had a significantly higher F0 than those with lower DAN scores (p = 0.016). An alarm threshold exists between high (>8) and low (cry at a high pitch is emitted, followed by the siren cry, with a sound level maintained near its maximum.

  2. [Exposure degree of important non-target arthropods to Cry2Aa in Bt rice fields].

    Science.gov (United States)

    Zhang, Qing-Ling; Li, Yun-He; Hua, Hong-Xia; Yang, Chang-Ju; Wu, Hong-Jin; Peng, Yu-Fa

    2013-06-01

    Based on the principle of "risk = hazard x exposure", the selected representative nontarget organisms in the assessment of the potential effects of insect-resistant genetically modified (GM) crops on non-target arthropods in laboratory are generally the arthropod species highly exposed to the insecticidal proteins expressed by the GM crops in farmland ecosystem. In order to understand the exposure degree of the important arthropod species to Cry proteins in Bt rice fields, and to select the appropriate non-target arthropods in the risk assessment of insect-resistant GM crops, the enzyme-linked immunosorbent assay (ELISA) was conducted to measure the Cry2Aa protein concentration in the arthropods collected from the cry2Aa rice fields at different rice growth stages. The results showed that there was a significant difference in the Cry2Aa content protein concentration in different arthropod species. Some species did not contain Cry2Aa protein, while some species contained larger amounts of Cry2Aa protein. Relative to the arthropods colleted after rice anthesis, the arthropods colleted in rice anthesis contained relative higher concentrations of Cry2Aa protein, especially for the predacious arthropods. No Cry proteins were detected in parasitic arthropods. This study provided references for the laboratory assessment of the effects of GM rice on nontarget arthropods.

  3. Le silence, ce cri qui résonne dans l’écriture de Viviane Forrester

    Directory of Open Access Journals (Sweden)

    Amelia Peral Crespo

    2015-11-01

    Full Text Available The Holocaust Literature is tied to Silence from its beginning as the writing to silence. Write about the Holocaust and relate the experiences lived in first person or transmit them to the coming generations means leaving the silence which, for years, was the ideal refuge. This research focuses on the literary production of Viviane Forrester. The different expressions of silence that characterize her writings are analyzed. Silence is the cry that underlies in the most profound of the human being that return from the concentration camps, as Lazarus from the dead. It is a silence that grows to a cry because Forrester’s writing, almost in parallel to the fragmentary writing of Blanchot, an-nounces livre à venir, expressing the cry in silence without the ending of the word

  4. Expression, purification and kinase activity analysis of maize ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-06

    Jul 6, 2009 ... Kinase activity is essential for a protein kinase to perform its biological function. In previous study we have cloned a novel plant SnRK2 subfamily gene from maize and named it as ZmSPK1. In this study the. cDNA of ZmSPK1 with dHA-His6 tag was amplified by PCR and was subcloned into the yeast.

  5. Structure and expression of the maize (Zea mays L. SUN-domain protein gene family: evidence for the existence of two divergent classes of SUN proteins in plants

    Directory of Open Access Journals (Sweden)

    Simmons Carl R

    2010-12-01

    Full Text Available Abstract Background The nuclear envelope that separates the contents of the nucleus from the cytoplasm provides a surface for chromatin attachment and organization of the cortical nucleoplasm. Proteins associated with it have been well characterized in many eukaryotes but not in plants. SUN (Sad1p/Unc-84 domain proteins reside in the inner nuclear membrane and function with other proteins to form a physical link between the nucleoskeleton and the cytoskeleton. These bridges transfer forces across the nuclear envelope and are increasingly recognized to play roles in nuclear positioning, nuclear migration, cell cycle-dependent breakdown and reformation of the nuclear envelope, telomere-led nuclear reorganization during meiosis, and karyogamy. Results We found and characterized a family of maize SUN-domain proteins, starting with a screen of maize genomic sequence data. We characterized five different maize ZmSUN genes (ZmSUN1-5, which fell into two classes (probably of ancient origin, as they are also found in other monocots, eudicots, and even mosses. The first (ZmSUN1, 2, here designated canonical C-terminal SUN-domain (CCSD, includes structural homologs of the animal and fungal SUN-domain protein genes. The second (ZmSUN3, 4, 5, here designated plant-prevalent mid-SUN 3 transmembrane (PM3, includes a novel but conserved structural variant SUN-domain protein gene class. Mircroarray-based expression analyses revealed an intriguing pollen-preferred expression for ZmSUN5 mRNA but low-level expression (50-200 parts per ten million in multiple tissues for all the others. Cloning and characterization of a full-length cDNA for a PM3-type maize gene, ZmSUN4, is described. Peptide antibodies to ZmSUN3, 4 were used in western-blot and cell-staining assays to show that they are expressed and show concentrated staining at the nuclear periphery. Conclusions The maize genome encodes and expresses at least five different SUN-domain proteins, of which the PM3

  6. Development and validation of an integrated DNA walking strategy to detect GMO expressing cry genes.

    Science.gov (United States)

    Fraiture, Marie-Alice; Vandamme, Julie; Herman, Philippe; Roosens, Nancy H C

    2018-06-27

    Recently, an integrated DNA walking strategy has been proposed to prove the presence of GMO via the characterisation of sequences of interest, including their transgene flanking regions and the unnatural associations of elements in their transgenic cassettes. To this end, the p35S, tNOS and t35S pCAMBIA elements have been selected as key targets, allowing the coverage of most of GMO, EU authorized or not. In the present study, a bidirectional DNA walking method anchored on the CryAb/c genes is proposed with the aim to cover additional GMO and additional sequences of interest. The performance of the proposed bidirectional DNA walking method anchored on the CryAb/c genes has been evaluated in a first time for its feasibility using several GM events possessing these CryAb/c genes. Afterwards, its sensitivity has been investigated through low concentrations of targets (as low as 20 HGE). In addition, to illustrate its applicability, the entire workflow has been tested on a sample mimicking food/feed matrices analysed in GMO routine analysis. Given the successful assessment of its performance, the present bidirectional DNA walking method anchored on the CryAb/c genes can easily be implemented in GMO routine analysis by the enforcement laboratories and allows completing the entire DNA walking strategy in targeting an additional transgenic element frequently found in GMO.

  7. Phonotrauma associated with crying.

    Science.gov (United States)

    Murry, T; Rosen, C A

    2000-12-01

    Vocal fold hemorrhage often results in a sudden change in voice quality. Traumatic use of the voice (phonation or singing) is generally thought to be the cause of the vocal fold hemorrhage. The current report reviews three cases in which the traumatic event was crying. In one case, the patient's voice was only used for crying. All three patients were female and all were professional singers. The treatment of these individuals consisted of voice rest and subsequent phonomicrosurgery for lesions associated with the vocal fold hemorrhage. These case studies suggest that crying as a traumatic vocal behavior may result in vocal fold hemorrhage.

  8. in silico identification of cross affinity towards Cry1Ac pesticidal protein with receptor enzyme in Bos taurus and sequence, structure analysis of crystal proteins for stability.

    Science.gov (United States)

    Ebenezer, King Solomon; Nachimuthu, Ramesh; Thiagarajan, Prabha; Velu, Rajesh Kannan

    2013-01-01

    Any novel protein introduced into the GM crops need to be evaluated for cross affinity on living organisms. Many researchers are currently focusing on the impact of Bacillus thuringiensis cotton on soil and microbial diversity by field experiments. In spite of this, in silico approach might be helpful to elucidate the impact of cry genes. The crystal a protein which was produced by Bt at the time of sporulation has been used as a biological pesticide to target the insectivorous pests like Cry1Ac for Helicoverpa armigera and Cry2Ab for Spodoptera sp. and Heliothis sp. Here, we present the comprehensive in silico analysis of Cry1Ac and Cry2Ab proteins with available in silico tools, databases and docking servers. Molecular docking of Cry1Ac with procarboxypeptidase from Helicoverpa armigera and Cry1Ac with Leucine aminopeptidase from Bos taurus has showed the 125(th) amino acid position to be the preference site of Cry1Ac protein. The structures were compared with each other and it showed 5% of similarity. The cross affinity of this toxin that have confirmed the earlier reports of ill effects of Bt cotton consumed by cattle.

  9. Evaluation of cytotoxic and antimicrobial effects of two Bt Cry proteins on a GMO safety perspective.

    Science.gov (United States)

    Farias, Davi Felipe; Viana, Martônio Ponte; de Oliveira, Gustavo Ramos; Beneventi, Magda Aparecida; Soares, Bruno Marques; Pessoa, Claudia; Pessoa, Igor Parra; Silva, Luciano Paulino; Vasconcelos, Ilka Maria; de Sá, Maria Fátima Grossi; Carvalho, Ana Fontenele Urano

    2014-01-01

    Studies have contested the innocuousness of Bacillus thuringiensis (Bt) Cry proteins to mammalian cells as well as to mammals microbiota. Thus, this study aimed to evaluate the cytotoxic and antimicrobial effects of two Cry proteins, Cry8Ka5 (a novel mutant protein) and Cry1Ac (a widely distributed protein in GM crops). Evaluation of cyto- and genotoxicity in human lymphocytes was performed as well as hemolytic activity coupled with cellular membrane topography analysis in mammal erythrocytes. Effects of Cry8Ka5 and Cry1Ac upon Artemia sp. nauplii and upon bacteria and yeast growth were assessed. The toxins caused no significant effects on the viability (IC50 > 1,000 µg/mL) or to the cellular DNA integrity of lymphocytes (no effects at 1,000 µg/mL). The Cry8Ka5 and Cry1Ac proteins did not cause severe damage to erythrocytes, neither with hemolysis (IC50 > 1,000 µg/mL) nor with alterations in the membrane. Likewise, the Cry8Ka5 and Cry1Ac proteins presented high LC50 (755.11 and >1,000 µg/mL, resp.) on the brine shrimp lethality assay and showed no growth inhibition of the microorganisms tested (MIC > 1,000 µg/mL). This study contributed with valuable information on the effects of Cry8Ka5 and Cry1Ac proteins on nontarget organisms, which reinforce their potential for safe biotechnological applications.

  10. Effect of Iranian Bt cotton on life table of Bemisia tabaci (Hemiptera: Alyrodidae and Cry 1Ab detection in the whitefly honeydew

    Directory of Open Access Journals (Sweden)

    Solmaz Azimi

    2016-09-01

    Full Text Available Transgenic cotton expressing the Cry 1Ab protein of Bacillus thuringiensis developing against Helocoverpa armigera may be affect on secondary pest such as Bemisia tabaci. In this study effects of Bt cotton on demographic parameters of B. tabaci were assessed and the data analyzed using the age specific, two-sex life table parameters. Results showed that getting to the adulthood stage, was faster on non-Bt cotton in comparison with Bt cotton. Also the fecundity was higher on non-Bt cotton than that on Bt cotton. Some of the population parameters (r, R0 and T of B. tabaci were affected by the Bt cotton significantly. The intrinsic rate of increase (r on Bt and non-Bt cotton was 0.07 day-1 and 0.1 day-1 , respectively. The net reproductive rate (R0 was 20.68 and 15.04 offspring/individual on Bt and non-Bt cotton, respectively. Mean generation time (T in non-Bt cotton was 27.22 and 34.62 days in Bt cotton. The results indicated that the life history of B. tabaci in the laboratory condition was influenced by host plant quality and Bt cotton was not a suitable host for B. tabaci. The western immunoblot method showed that the Cry protein detection in honeydew was positive which indicated that the Cry protein was ingested. Results revealed that the transgenic cotton could adversely affect the secondary pest and the natural enemies which feed on such pests as a host or their honeydew as a food source should be considered.

  11. Familial factors responsible for persistent crying-induced asthma: a case report.

    Science.gov (United States)

    Weinstein, A G

    1987-10-01

    Crying behavior of the asthmatic child may induce wheezing symptoms. This may be a clinical problem for families with asthmatic children who exhibit frequent and persistent crying behavior. This case report identifies behaviors by the child and parents that may be responsible for continual crying. Child factors include (1) "spoiled" personality, (2) poor self-image, (3) biologic sensitivity to foods, medication, and environmental allergens producing irritability. Parental factors include poor disciplinary practices secondary to (1) disrupted home life, (2) guilt, and (3) overprotective behavior. Identification of these factors may be helpful in establishing clinical management strategies to reduce crying-induced asthma.

  12. Expression of flavonoid 3’-hydroxylase is controlled by P1, the regulator of 3-deoxyflavonoid biosynthesis in maize

    Science.gov (United States)

    2012-01-01

    Background The maize (Zea mays) red aleurone1 (pr1) encodes a CYP450-dependent flavonoid 3’-hydroxylase (ZmF3’H1) required for the biosynthesis of purple and red anthocyanin pigments. We previously showed that Zmf3’h1 is regulated by C1 (Colorless1) and R1 (Red1) transcription factors. The current study demonstrates that, in addition to its role in anthocyanin biosynthesis, the Zmf3’h1 gene also participates in the biosynthesis of 3-deoxyflavonoids and phlobaphenes that accumulate in maize pericarps, cob glumes, and silks. Biosynthesis of 3-deoxyflavonoids is regulated by P1 (Pericarp color1) and is independent from the action of C1 and R1 transcription factors. Results In maize, apiforol and luteoforol are the precursors of condensed phlobaphenes. Maize lines with functional alleles of pr1 and p1 (Pr1;P1) accumulate luteoforol, while null pr1 lines with a functional or non-functional p1 allele (pr1;P1 or pr1;p1) accumulate apiforol. Apiforol lacks a hydroxyl group at the 3’-position of the flavylium B-ring, while luteoforol has this hydroxyl group. Our biochemical analysis of accumulated compounds in different pr1 genotypes showed that the pr1 encoded ZmF3’H1 has a role in the conversion of mono-hydroxylated to bi-hydroxylated compounds in the B-ring. Steady state RNA analyses demonstrated that Zmf3’h1 mRNA accumulation requires a functional p1 allele. Using a combination of EMSA and ChIP experiments, we established that the Zmf3’h1 gene is a direct target of P1. Highlighting the significance of the Zmf3’h1 gene for resistance against biotic stress, we also show here that the p1 controlled 3-deoxyanthocyanidin and C-glycosyl flavone (maysin) defence compounds accumulate at significantly higher levels in Pr1 silks as compared to pr1 silks. By virtue of increased maysin synthesis in Pr1 plants, corn ear worm larvae fed on Pr1; P1 silks showed slower growth as compared to pr1; P1 silks. Conclusions Our results show that the Zmf3’h1 gene

  13. Expression of flavonoid 3’-hydroxylase is controlled by P1, the regulator of 3-deoxyflavonoid biosynthesis in maize

    Directory of Open Access Journals (Sweden)

    Sharma Mandeep

    2012-11-01

    Full Text Available Abstract Background The maize (Zea mays red aleurone1 (pr1 encodes a CYP450-dependent flavonoid 3’-hydroxylase (ZmF3’H1 required for the biosynthesis of purple and red anthocyanin pigments. We previously showed that Zmf3’h1 is regulated by C1 (Colorless1 and R1 (Red1 transcription factors. The current study demonstrates that, in addition to its role in anthocyanin biosynthesis, the Zmf3’h1 gene also participates in the biosynthesis of 3-deoxyflavonoids and phlobaphenes that accumulate in maize pericarps, cob glumes, and silks. Biosynthesis of 3-deoxyflavonoids is regulated by P1 (Pericarp color1 and is independent from the action of C1 and R1 transcription factors. Results In maize, apiforol and luteoforol are the precursors of condensed phlobaphenes. Maize lines with functional alleles of pr1 and p1 (Pr1;P1 accumulate luteoforol, while null pr1 lines with a functional or non-functional p1 allele (pr1;P1 or pr1;p1 accumulate apiforol. Apiforol lacks a hydroxyl group at the 3’-position of the flavylium B-ring, while luteoforol has this hydroxyl group. Our biochemical analysis of accumulated compounds in different pr1 genotypes showed that the pr1 encoded ZmF3’H1 has a role in the conversion of mono-hydroxylated to bi-hydroxylated compounds in the B-ring. Steady state RNA analyses demonstrated that Zmf3’h1 mRNA accumulation requires a functional p1 allele. Using a combination of EMSA and ChIP experiments, we established that the Zmf3’h1 gene is a direct target of P1. Highlighting the significance of the Zmf3’h1 gene for resistance against biotic stress, we also show here that the p1 controlled 3-deoxyanthocyanidin and C-glycosyl flavone (maysin defence compounds accumulate at significantly higher levels in Pr1 silks as compared to pr1 silks. By virtue of increased maysin synthesis in Pr1 plants, corn ear worm larvae fed on Pr1; P1 silks showed slower growth as compared to pr1; P1 silks. Conclusions Our results show that the Zmf3

  14. A 90-day subchronic feeding study of genetically modified rice expressing Cry1Ab protein in Sprague-Dawley rats.

    Science.gov (United States)

    Song, Huan; He, Xiaoyun; Zou, Shiying; Zhang, Teng; Luo, Yunbo; Huang, Kunlun; Zhu, Zhen; Xu, Wentao

    2015-04-01

    Bacillus thuringiensis (Bt) transgenic rice line (mfb-MH86) expressing a synthetic cry1Ab gene can be protected against feeding damage from Lepidopteran insects, including Sesamia inferens, Chilo suppressalis, Tryporyza incertulas and Cnaphalocrocis medinalis. Rice flour from mfb-MH86 and its near-isogenic control MH86 was separately formulated into rodent diets at concentrations of 17.5, 35 and 70 % (w/w) for a 90-day feeding test with rats, and all of the diets were nutritionally balanced. In this study, the responses of rats fed diets containing mfb-MH86 were compared to those of rats fed flour from MH86. Overall health, body weight and food consumption were comparable between groups fed diets containing mfb-MH86 and MH86. Blood samples were collected prior to sacrifice and a few significant differences (p < 0.05) were observed in haematological and biochemical parameters between rats fed genetically modified (GM) and non-GM diets. However, the values of these parameters were within the normal ranges of values for rats of this age and sex, thus not considered treatment related. In addition, upon sacrifice a large number of organs were weighed, macroscopic and histopathological examinations were performed with only minor changes to report. In conclusion, these results demonstrated that no toxic effect was observed in the conditions of the experiment, based on the different parameters assessed. GM rice mfb-MH86 is as safe and nutritious as non-GM rice.

  15. A Foxtail mosaic virus Vector for Virus-Induced Gene Silencing in Maize1[OPEN

    Science.gov (United States)

    Mei, Yu; Kernodle, Bliss M.; Hill, John H.

    2016-01-01

    Plant viruses have been widely used as vectors for foreign gene expression and virus-induced gene silencing (VIGS). A limited number of viruses have been developed into viral vectors for the purposes of gene expression or VIGS in monocotyledonous plants, and among these, the tripartite viruses Brome mosaic virus and Cucumber mosaic virus have been shown to induce VIGS in maize (Zea mays). We describe here a new DNA-based VIGS system derived from Foxtail mosaic virus (FoMV), a monopartite virus that is able to establish systemic infection and silencing of endogenous maize genes homologous to gene fragments inserted into the FoMV genome. To demonstrate VIGS applications of this FoMV vector system, four genes, phytoene desaturase (functions in carotenoid biosynthesis), lesion mimic22 (encodes a key enzyme of the porphyrin pathway), iojap (functions in plastid development), and brown midrib3 (caffeic acid O-methyltransferase), were silenced and characterized in the sweet corn line Golden × Bantam. Furthermore, we demonstrate that the FoMV infectious clone establishes systemic infection in maize inbred lines, sorghum (Sorghum bicolor), and green foxtail (Setaria viridis), indicating the potential wide applications of this viral vector system for functional genomics studies in maize and other monocots. PMID:27208311

  16. The New Transgenic cry1Ab/vip3H Rice Poses No Unexpected Ecological Risks to Arthropod Communities in Rice Agroecosystems.

    Science.gov (United States)

    Lu, Zengbin; Dang, Cong; Han, Naishun; Shen, Zhicheng; Peng, Yufa; Stanley, David; Ye, Gongyin

    2016-04-01

    The ecological risks to nontarget organisms should be rigorously assessed before Bt crops are released. Here, the impacts of a new Cry1Ab/Vip3H rice line on arthropod communities in rice agroecosystems were evaluated across 3 yr. Arthropods collected via vacuum were sorted into five guilds. The abundance and proportion of each guild as well as community-level parameters were determined in Cry1Ab/Vip3H and control rice fields. Changes in arthropod species assemblage over sampling dates were investigated by principal response curves (PRCs). Cry1Ab/Vip3H rice did not exert significant impacts on the seasonal density and proportion of each guild, except parasitoids. Detritivore seasonal density, but not its relative abundance, was significantly affected by Cry1Ab/Vip3H rice. Four community indices (species richness S, Shannon-Wiener index H', Simpson index D, and evenness index J') were similar between rice types. PRCs revealed a slight community difference between rice types in the past two tested years, with rice types accounting for 1.0-3.5% of the variance among arthropod communities. However, sampling dates explain 32.1-67.6% for these community differences. Of the 46 taxa with higher species weights, 26.1% of the taxa were significantly different, including seven taxa with higher abundance and five with lower density in Cry1Ab/Vip3H rice fields. These differences may be attributed to change in abundance of prey or hosts but not to direct effects of Bt proteins. We infer that this new Cry1Ab/Vip3H rice line poses no unintended ecological risks to the arthropod community. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Binding Site Concentration Explains the Differential Susceptibility of Chilo suppressalis and Sesamia inferens to Cry1A-Producing Rice

    OpenAIRE

    Han, Lanzhi; Han, Chao; Liu, Zewen; Chen, Fajun; Jurat-Fuentes, Juan Luis; Hou, Maolin; Peng, Yufa

    2014-01-01

    Chilo suppressalis and Sesamia inferens are two important lepidopteran rice pests that occur concurrently during outbreaks in paddy fields in the main rice-growing areas of China. Previous and current field tests demonstrate that the transgenic rice line Huahui 1 (HH1) producing a Cry1Ab-Cry1Ac hybrid toxin from the bacterium Bacillus thuringiensis reduces egg and larval densities of C. suppressalis but not of S. inferens. This differential susceptibility to HH1 rice correlates with the reduc...

  18. Food safety knowledge on the Bt mutant protein Cry8Ka5 employed in the development of coleopteran-resistant transgenic cotton plants.

    Science.gov (United States)

    Farias, Davi F; Peijnenburg, Ad A C M; Grossi-de-Sá, Maria F; Carvalho, Ana F U

    2015-01-01

    Insecticidal Cry proteins from Bacillus thuringiensis (Bt) have been exploited in the development of genetically modified (GM) crops for pest control. However, several pests are still difficult to control such as the coleopteran boll weevil Anthonomus grandis. By applying in vitro molecular evolution to the cry8Ka1 gene sequence, variants were generated with improved activity against A. grandis. Among them, Cry8Ka5 mutant protein showed coleoptericidal activity 3-fold higher (LC50 2.83 μg/mL) than that of the original protein (Cry8Ka1). Cry8Ka5 has been used in breeding programs in order to obtain coleopteran-resistant cotton plants. Nevertheless, there is some concern in relation to the food safety of transgenic crops, especially to the heterologously expressed proteins. In this context, our research group has performed risk assessment studies on Cry8Ka5, using the tests recommended by Codex as well as tests that we proposed as alternative and/or complementary approaches. Our results on the risk analysis of Cry8Ka5 taken together with those of other Cry proteins, point out that there is a high degree of certainty on their food safety. It is reasonable to emphasize that most safety studies on Cry proteins have essentially used the Codex approach. However, other methodologies would potentially provide additional information such as studies on the effects of Cry proteins and derived peptides on the indigenous gastrointestinal microbiota and on intestinal epithelial cells of humans. Additionally, emerging technologies such as toxicogenomics potentially will offer sensitive alternatives for some current approaches or methods.

  19. Evaluation of Cytotoxic and Antimicrobial Effects of Two Bt Cry Proteins on a GMO Safety Perspective

    Directory of Open Access Journals (Sweden)

    Davi Felipe Farias

    2014-01-01

    Full Text Available Studies have contested the innocuousness of Bacillus thuringiensis (Bt Cry proteins to mammalian cells as well as to mammals microbiota. Thus, this study aimed to evaluate the cytotoxic and antimicrobial effects of two Cry proteins, Cry8Ka5 (a novel mutant protein and Cry1Ac (a widely distributed protein in GM crops. Evaluation of cyto- and genotoxicity in human lymphocytes was performed as well as hemolytic activity coupled with cellular membrane topography analysis in mammal erythrocytes. Effects of Cry8Ka5 and Cry1Ac upon Artemia sp. nauplii and upon bacteria and yeast growth were assessed. The toxins caused no significant effects on the viability (IC50>1,000 µg/mL or to the cellular DNA integrity of lymphocytes (no effects at 1,000 µg/mL. The Cry8Ka5 and Cry1Ac proteins did not cause severe damage to erythrocytes, neither with hemolysis (IC50>1,000 µg/mL nor with alterations in the membrane. Likewise, the Cry8Ka5 and Cry1Ac proteins presented high LC50 (755.11 and >1,000 µg/mL, resp. on the brine shrimp lethality assay and showed no growth inhibition of the microorganisms tested (MIC>1,000 µg/mL. This study contributed with valuable information on the effects of Cry8Ka5 and Cry1Ac proteins on nontarget organisms, which reinforce their potential for safe biotechnological applications.

  20. Crying and Depression Among Older Adults.

    Science.gov (United States)

    Hastrup, Janice L.; And Others

    1986-01-01

    Self-reports of frequency of crying episodes are described for two nonclinical samples of younger and older adult men and women. Comparison of samples revealed no evidence for either a decreased or increased frequency of crying among the older sample. Crying episodes function as an adaptive coping response to and should not be automatically…

  1. The WOPR Protein Ros1 Is a Master Regulator of Sporogenesis and Late Effector Gene Expression in the Maize Pathogen Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Marie Tollot

    2016-06-01

    Full Text Available The biotrophic basidiomycete fungus Ustilago maydis causes smut disease in maize. Hallmarks of the disease are large tumors that develop on all aerial parts of the host in which dark pigmented teliospores are formed. We have identified a member of the WOPR family of transcription factors, Ros1, as major regulator of spore formation in U. maydis. ros1 expression is induced only late during infection and hence Ros1 is neither involved in plant colonization of dikaryotic fungal hyphae nor in plant tumor formation. However, during late stages of infection Ros1 is essential for fungal karyogamy, massive proliferation of diploid fungal cells and spore formation. Premature expression of ros1 revealed that Ros1 counteracts the b-dependent filamentation program and induces morphological alterations resembling the early steps of sporogenesis. Transcriptional profiling and ChIP-seq analyses uncovered that Ros1 remodels expression of about 30% of all U. maydis genes with 40% of these being direct targets. In total the expression of 80 transcription factor genes is controlled by Ros1. Four of the upregulated transcription factor genes were deleted and two of the mutants were affected in spore development. A large number of b-dependent genes were differentially regulated by Ros1, suggesting substantial changes in this regulatory cascade that controls filamentation and pathogenic development. Interestingly, 128 genes encoding secreted effectors involved in the establishment of biotrophic development were downregulated by Ros1 while a set of 70 "late effectors" was upregulated. These results indicate that Ros1 is a master regulator of late development in U. maydis and show that the biotrophic interaction during sporogenesis involves a drastic shift in expression of the fungal effectome including the downregulation of effectors that are essential during early stages of infection.

  2. Impact of Cry1Ab toxin expression on the non-target insects dwelling on maize plants

    Czech Academy of Sciences Publication Activity Database

    Habuštová, Oxana; Doležal, Petr; Spitzer, Lukáš; Svobodová, Zdeňka; Hussein, Hany; Sehnal, František

    2014-01-01

    Roč. 138, č. 3 (2014), s. 164-172 ISSN 0931-2048 R&D Projects: GA MZe QH91093; GA MZe QI91A229 Grant - others:MOBITAG project(CZ) 7FP-REGPOT-2008-1, GA 229518 Institutional support: RVO:60077344 Keywords : aphids * environmental risk assessment * European corn borer Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 1.650, year: 2014 http://onlinelibrary.wiley.com/doi/10.1111/jen.12004/pdf

  3. Maternal anxiety disorders predict excessive infant crying: a prospective longitudinal study.

    Science.gov (United States)

    Petzoldt, Johanna; Wittchen, Hans-Ulrich; Wittich, Julia; Einsle, Franziska; Höfler, Michael; Martini, Julia

    2014-09-01

    To prospectively examine relations between maternal DSM-IV-TR anxiety and depressive disorders and excessive infant crying. Based on the prospective longitudinal Maternal Anxiety in Relation to Infant Development Study, n=306 expectant mothers were enrolled during early pregnancy and repeatedly interviewed until 16 months post partum. Lifetime and prospective information on maternal anxiety and depressive disorders was assessed via standardised diagnostic interviews (Composite International Diagnostic Interview for Women). Excessive crying (crying for ≥3 h per day on ≥3 days per week for ≥3 weeks) was assessed via Baby-DIPS. During the first 16 months after delivery, n=286 mother-infant dyads were available and included in the analyses. Excessive crying was reported by n=29 mothers (10.1%). Infants of mothers with anxiety disorders prior to pregnancy were at higher risk for excessive crying than infants of mothers without any anxiety disorder prior to pregnancy (OR=2.54, 95% CI 1.11 to 5.78, p=0.027). Risk was even increased when considering additionally incident anxiety disorders until delivery (OR=3.02, 95% CI 1.25 to 7.32, p=0.014) and until 16 months post partum (OR=2.87, 95% CI 1.13 to 7.28, p=0.027). Associations remained stable when adjusting for sociodemographic and perinatal covariates. Maternal depressive disorders prior to pregnancy were not significantly associated with excessive crying in this sample. Maternal lifetime and incident anxiety disorders revealed to be a robust predictor for excessive crying. Thus, early identification and monitoring of women with anxiety disorders is important to identify mother-infant dyads at risk for excessive crying. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Cry-Bt identifier: a biological database for PCR detection of Cry genes present in transgenic plants.

    Science.gov (United States)

    Singh, Vinay Kumar; Ambwani, Sonu; Marla, Soma; Kumar, Anil

    2009-10-23

    We describe the development of a user friendly tool that would assist in the retrieval of information relating to Cry genes in transgenic crops. The tool also helps in detection of transformed Cry genes from Bacillus thuringiensis present in transgenic plants by providing suitable designed primers for PCR identification of these genes. The tool designed based on relational database model enables easy retrieval of information from the database with simple user queries. The tool also enables users to access related information about Cry genes present in various databases by interacting with different sources (nucleotide sequences, protein sequence, sequence comparison tools, published literature, conserved domains, evolutionary and structural data). http://insilicogenomics.in/Cry-btIdentifier/welcome.html.

  5. A Novel Tenebrio molitor Cadherin Is a Functional Receptor for Bacillus thuringiensis Cry3Aa Toxin*

    Science.gov (United States)

    Fabrick, Jeff; Oppert, Cris; Lorenzen, Marcé D.; Morris, Kaley; Oppert, Brenda; Jurat-Fuentes, Juan Luis

    2009-01-01

    Cry toxins produced by the bacterium Bacillus thuringiensis are effective biological insecticides. Cadherin-like proteins have been reported as functional Cry1A toxin receptors in Lepidoptera. Here we present data that demonstrate that a coleopteran cadherin is a functional Cry3Aa toxin receptor. The Cry3Aa receptor cadherin was cloned from Tenebrio molitor larval midgut mRNA, and the predicted protein, TmCad1, has domain structure and a putative toxin binding region similar to those in lepidopteran cadherin B. thuringiensis receptors. A peptide containing the putative toxin binding region from TmCad1 bound specifically to Cry3Aa and promoted the formation of Cry3Aa toxin oligomers, proposed to be mediators of toxicity in lepidopterans. Injection of TmCad1-specific double-stranded RNA into T. molitor larvae resulted in knockdown of the TmCad1 transcript and conferred resistance to Cry3Aa toxicity. These data demonstrate the functional role of TmCad1 as a Cry3Aa receptor in T. molitor and reveal similarities between the mode of action of Cry toxins in Lepidoptera and Coleoptera. PMID:19416969

  6. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity.

    Science.gov (United States)

    Bravo, Alejandra; Gómez, Isabel; Porta, Helena; García-Gómez, Blanca Ines; Rodriguez-Almazan, Claudia; Pardo, Liliana; Soberón, Mario

    2013-01-01

    Insecticidal Cry proteins produced by Bacillus thuringiensis are use worldwide in transgenic crops for efficient pest control. Among the family of Cry toxins, the three domain Cry family is the better characterized regarding their natural evolution leading to a large number of Cry proteins with similar structure, mode of action but different insect specificity. Also, this group is the better characterized regarding the study of their mode of action and the molecular basis of insect specificity. In this review we discuss how Cry toxins have evolved insect specificity in nature and analyse several cases of improvement of Cry toxin action by genetic engineering, some of these examples are currently used in transgenic crops. We believe that the success in the improvement of insecticidal activity by genetic evolution of Cry toxins will depend on the knowledge of the rate-limiting steps of Cry toxicity in different insect pests, the mapping of the specificity binding regions in the Cry toxins, as well as the improvement of mutagenesis strategies and selection procedures. © 2012 The Authors. Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  7. The Cry Toxin Operon of Clostridium bifermentans subsp. malaysia Is Highly Toxic to Aedes Larval Mosquitoes

    Science.gov (United States)

    Qureshi, Nadia; Chawla, Swati; Likitvivatanavong, Supaporn; Lee, Han Lim

    2014-01-01

    The management and control of mosquito vectors of human disease currently rely primarily on chemical insecticides. However, larvicidal treatments can be effective, and if based on biological insecticides, they can also ameliorate the risk posed to human health by chemical insecticides. The aerobic bacteria Bacillus thuringiensis and Lysinibacillus sphaericus have been used for vector control for a number of decades. But a more cost-effective use would be an anaerobic bacterium because of the ease with which these can be cultured. More recently, the anaerobic bacterium Clostridium bifermentans subsp. malaysia has been reported to have high mosquitocidal activity, and a number of proteins were identified as potentially mosquitocidal. However, the cloned proteins showed no mosquitocidal activity. We show here that four toxins encoded by the Cry operon, Cry16A, Cry17A, Cbm17.1, and Cbm17.2, are all required for toxicity, and these toxins collectively show remarkable selectivity for Aedes rather than Anopheles mosquitoes, even though C. bifermentans subsp. malaysia is more toxic to Anopheles. Hence, toxins that target Anopheles are different from those expressed by the Cry operon. PMID:25002432

  8. Crying, oral contraceptive use and the menstrual cycle.

    Science.gov (United States)

    Romans, Sarah E; Clarkson, Rose F; Einstein, Gillian; Kreindler, David; Laredo, Sheila; Petrovic, Michele J; Stanley, James

    2017-01-15

    Crying, a complex neurobiological behavior with psychosocial and communication features, has been little studied in relationship to the menstrual cycle. In the Mood and Daily Life study (MiDL), a community sample of Canadian women aged 18-43 years, n=76, recorded crying proneness and crying frequency daily for six months along with menstrual cycle phase information. Crying proneness was most likely during the premenstruum, a little less likely during menses and least likely during the mid-cycle phase, with statistically significant differences although the magnitude of these differences were small. By contrast, actual crying did not differ between the three menstrual cycle phases. Oral contraceptive use did not alter the relationship between menstrual cycle phase and either crying variable. A wide range of menstrual cycle phase - crying proneness patterns were seen with visual inspection of the individual women's line graphs. timing of ovulation was not ascertained. Using a three phase menstrual cycle division precluded separate late follicular and early luteal data analysis. The sample size was inadequate for a robust statistical test of actual crying. reproductive aged women as a group report feeling more like crying premenstrually but may not actually cry more during this menstrual cycle phase. Individual patterns vary substantially. Oral contraceptive use did not affect these relationships. Suggestions for future research are included. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Decomposition and fertilizing effects of maize stover and chromolaena odorata on maize yield

    International Nuclear Information System (INIS)

    Tetteh, F.M.; Safo, E.Y.; Quansah, C.

    2008-01-01

    The quality, rates of decomposition and the fertilizing effect of chromolaena odorata, and maize stover were determined in field experiments as surface application or buried in litter bags. Studies on the effect of plant materials of contrasting qualities (maize stover and C. odorata) applied sole (10 Mg ha -1 ) and mixed, on maize grain and biomass yield were also conducted on the Asuansi (Ferric Acrisol) soil series. Total nitrogen content of the residues ranged from 0.85% in maize stover to 3.50% in C. odorata. Organic carbon ranged from 34.90% in C. odorata to 48.50% in maize stover. Phosphorus ranged from 0.10% in maize stover to 0.76% in C. odorata. In the wet season, the decomposition rate constants (k) were 0.0319 day -1 for C. odorata, and 0.0081 for maize stover. In the dry season, the k values were 0.0083 for C. odorata, and 0.0072 day -1 for maize stover. Burying of the plant materials reduced the half-life (t 50 ) periods from 18 to 10 days for C. odorata, and 45 to 20 days for maize stover. Maize grain yield of 2556 kg ha -1 was obtained in sole C. odorata (10 Mg ha -1 ) compared with 2167 kg ha -1 for maize stover. Mixing of maize stover and C. odorata residues improved the nutrient content as well as nutrient release by the mixtures resulting in greater maize grain yields in the mixtures than the sole maize stover treatment. It is recommended that C. odorata be used as green manure, mulching or composting material to improve fertility. (au)

  10. Competitive Expression of Endogenous Wheat CENH3 May Lead to Suppression of Alien ZmCENH3 in Transgenic Wheat × Maize Hybrids.

    Science.gov (United States)

    Chen, Wei; Zhu, Qilin; Wang, Haiyan; Xiao, Jin; Xing, Liping; Chen, Peidu; Jin, Weiwei; Wang, Xiu-E

    2015-11-20

    Uniparental chromosome elimination in wheat × maize hybrid embryos is widely used in double haploid production of wheat. Several explanations have been proposed for this phenomenon, one of which is that the lack of cross-species CENH3 incorporation may act as a barrier to interspecies hybridization. However, it is unknown if this mechanism applies universally. To study the role of CENH3 in maize chromosome elimination of wheat × maize hybrid embryos, maize ZmCENH3 and wheat αTaCENH3-B driven by the constitutive CaMV35S promoter were transformed into wheat variety Yangmai 158. Five transgenic lines for ZmCENH3 and six transgenic lines for αTaCENH3-B were identified. RT-PCR analysis showed that the transgene could be transcribed at a low level in all ZmCENH3 transgenic lines, whereas transcription of endogenous wheat CENH3 was significantly up-regulated. Interestingly, the expression levels of both wheat CENH3 and ZmCENH3 in the ZmCENH3 transgenic wheat × maize hybrid embryos were higher than those in the non-transformed Yangmai 158 × maize hybrid embryos. This indicates that the alien ZmCENH3 in wheat may induce competitive expression of endogenous wheat CENH3, leading to suppression of ZmCENH3 over-expression. Eliminations of maize chromosomes in hybrid embryos of ZmCENH3 transgenic wheat × maize and Yangmai 158 × maize were compared by observations on micronuclei presence, by marker analysis using maize SSRs (simple sequence repeats), and by FISH (fluorescence in situ hybridization) using 45S rDNA as a probe. The results indicate that maize chromosome elimination events in the two crosses are not significantly different. Fusion protein ZmCENH3-YFP could not be detected in ZmCENH3 transgenic wheat by either Western blotting or immnunostaining, whereas accumulation and loading of the αTaCENH3-B-GFP fusion protein was normal in αTaCENH3-B transgenic lines. As ZmCENH3-YFP did not accumulate after AM114 treatment, we speculate that low levels of Zm

  11. Susceptibility of field populations of the fall armyworm (Lepidoptera: Noctuidae) from Florida and Puerto Rico to purified Cry1F protein and corn leaf tissue containing single and pyramided Bt genes

    Science.gov (United States)

    Larval survival of Cry1F-susceptible (FL), -resistant (PR and Cry1F-RR), and -heterozygous (FL x PR and Cry1F-RS) populations of the fall armyworm, Spodoptera frugiperda (J.E. Smith) to purified Cry1F protein and corn leaf tissue of seven Bacillus thuringiensis (Bt) corn hybrids and five non-Bt corn...

  12. Child Abuse: The Crying Baby at Risk.

    Science.gov (United States)

    Kirkland, John

    The author considers the relationship between uncontrollable infant crying and child abuse. An integrative scheme is offered from evidence of child abuse literature, experimentally induced infant crying effects, attribution theory, and learned helplessness. It is suggested that infant crying often has causes beyond caregiver control, such as birth…

  13. Overcoming hybridization barriers by the secretion of the maize pollen tube attractant ZmEA1 from Arabidopsis ovules.

    Science.gov (United States)

    Márton, Mihaela L; Fastner, Astrid; Uebler, Susanne; Dresselhaus, Thomas

    2012-07-10

    A major goal of plant reproduction research is to understand and overcome hybridization barriers so that the gene pool of crop plants can be increased and improved upon. After successful pollen germination on a receptive stigma, the nonmotile sperm cells of flowering plants are transported via the pollen tube (PT) to the egg apparatus for the achievement of double fertilization. The PT path is controlled by various hybridization mechanisms probably involving a larger number of species-specific molecular interactions. The egg-apparatus-secreted polymorphic peptides ZmEA1 in maize and LURE1 and LURE2 in Torenia fournieri as well as TcCRP1 in T. concolor were shown to be required for micropylar PT guidance, the last step of the PT journey. We report here that ZmEA1 attracts maize PTs in vitro and arrests their growth at higher concentrations. Furthermore, it binds to the subapical region of maize PT tips in a species-preferential manner. To overcome hybridization barriers at the level of gametophytic PT guidance, we expressed ZmEA1 in Arabidopsis synergid cells. Secreted ZmEA1 enabled Arabidopsis ovules to guide maize PT in vitro in a species-preferential manner to the micropylar opening of the ovule. These results demonstrate that the egg-apparatus-controlled reproductive-isolation barrier of PT guidance can be overcome even between unrelated plant families. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. In Silico Modeling and Functional Interpretations of Cry1Ab15 Toxin from Bacillus thuringiensis BtB-Hm-16

    Directory of Open Access Journals (Sweden)

    Sudhanshu Kashyap

    2013-01-01

    Full Text Available The theoretical homology based structural model of Cry1Ab15 δ-endotoxin produced by Bacillus thuringiensis BtB-Hm-16 was predicted using the Cry1Aa template (resolution 2.25 Å. The Cry1Ab15 resembles the template structure by sharing a common three-domain extending conformation structure responsible for pore-forming and specificity determination. The novel structural differences found are the presence of β0 and α3, and the absence of α7b, β1a, α10a, α10b, β12, and α11a while α9 is located spatially downstream. Validation by SUPERPOSE and with the use of PROCHECK program showed folding of 98% of modeled residues in a favourable and stable orientation with a total energy Z-score of −6.56; the constructed model has an RMSD of only 1.15 Å. These increments of 3D structure information will be helpful in the design of domain swapping experiments aimed at improving toxicity and will help in elucidating the common mechanism of toxin action.

  15. Analyses of expressed sequence tags from the maize foliar pathogen Cercospora zeae-maydis identify novel genes expressed during vegetative, infectious, and reproductive growth.

    Science.gov (United States)

    Bluhm, Burton H; Dhillon, Braham; Lindquist, Erika A; Kema, Gert Hj; Goodwin, Stephen B; Dunkle, Larry D

    2008-11-04

    The ascomycete fungus Cercospora zeae-maydis is an aggressive foliar pathogen of maize that causes substantial losses annually throughout the Western Hemisphere. Despite its impact on maize production, little is known about the regulation of pathogenesis in C. zeae-maydis at the molecular level. The objectives of this study were to generate a collection of expressed sequence tags (ESTs) from C. zeae-maydis and evaluate their expression during vegetative, infectious, and reproductive growth. A total of 27,551 ESTs was obtained from five cDNA libraries constructed from vegetative and sporulating cultures of C. zeae-maydis. The ESTs, grouped into 4088 clusters and 531 singlets, represented 4619 putative unique genes. Of these, 36% encoded proteins similar (E value zeae-maydis, providing specific targets for characterization by molecular genetics and functional genomics. The EST data establish a foundation for future studies in evolutionary and comparative genomics among species of Cercospora and other groups of plant pathogenic fungi.

  16. ZmGns, a maize class I b-1,3-glucanase, is induced by biotic stresses and possesses strong antimicrobial activity

    Institute of Scientific and Technical Information of China (English)

    Yu-Rong Xie; Yenjit Raruang; Zhi-Yuan Chen; Robert L Brown; Thomas E Cleveland

    2015-01-01

    Plant b‐1,3‐glucanases are members of the patho-genesis‐related protein 2 (PR‐2) family, which is one of the 17 PR protein families and plays important roles in biotic and abiotic stress responses. One of the differential y expressed proteins (spot 842) identified in a recent proteomic comparison between five pairs of closely related maize (Zea mays L.) lines differing in aflatoxin resistance was further investigated in the present study. Here, the corresponding cDNA was cloned from maize and designated as ZmGns. ZmGns encodes a protein of 338 amino acids containing a potential signal peptide. The expression of ZmGns was detectible in al tissues studied with the highest level in silks. ZmGns was significantly induced by biotic stresses including three bacteria and the fungus Aspergillus flavus. ZmGns was also induced by most abiotic stresses tested and growth hormones including salicylic acid. In vivo, ZmGns showed a significant inhibitory activity against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and fungal pathogen Botrytis cinerea when it overexpressed in Arabidopsis. Its high level of expression in the silk tissue and its induced expression by phytohormone treatment, as wel as by bacterial and fungal infections, suggest it plays a complex role in maize growth, development, and defense.

  17. Unique Aspects of Cryptochrome in Chronobiology and Metabolism, Pancreatic β-Cell Dysfunction, and Regeneration: Research into Cysteine414-Alanine Mutant CRY1

    Directory of Open Access Journals (Sweden)

    Satoshi Okano

    2016-01-01

    Full Text Available Cryptochrome proteins (CRYs, which can bind noncovalently to cofactor (chromophore flavin adenine dinucleotide (FAD, occur widely among organisms. CRYs play indispensable roles in the generation of circadian rhythm in mammals. Transgenic mice (Tg mice, ubiquitously expressing mouse CRY1 having a mutation in which cysteine414 (the zinc-binding site of CRY1 being replaced with alanine, display unique phenotypes in their circadian rhythms. Moreover, male Tg mice exhibit symptoms of diabetes characterized by beta-cell dysfunction, resembling human maturity onset diabetes of the young (MODY. The lowered proliferation of β-cells is a primary cause of age-dependent β-cell loss. Furthermore, unusually enlarged duct-like structures developed prominently in the Tg mice pancreases. The duct-like structures contained insulin-positive cells, suggesting neogenesis of β-cells in the Tg mice. This review, based mainly on the author’s investigation of the unique features of Tg mice, presents reported results and recent findings related to molecular processes associated with mammalian cryptochromes, especially their involvement in the regulation of metabolism. New information is described with emphasis on the aspects of islet architecture, pancreatic β-cell dysfunction, and regeneration.

  18. Identificación de los Genes cry en Cepas Mexicanas de Bacillus thuringiensis con Potencial Insecticida Identificación de los Genes cry en Cepas Mexicanas de Bacillus thuringiensis con Potencial Insecticida

    Directory of Open Access Journals (Sweden)

    J. E. Ibarra

    2012-02-01

    Full Text Available En el presente estudio se determinó la morfología y la composición proteica de los cristales de las cepas LBIT-499 y LBIT-504 de B. thuringiensis, ambas nativas de Guanajuato, México. La primera mostró sólo cristales bipiramidales mientras que la segunda presentó cristales tanto bipiramidales como cúbicos. Estos cristales estuvieron compuestos de proteínas de aproximadamente 130 y 60 kDa, respectivamente. En ambas cepas, además de la LBIT-500 y LBIT-544, se detectó una gran variedad de genes cry1. En éstas últimas se encontraron los genes cry2A y cry2B, en la LBIT- 504 sólo el cry2B y en la LBIT-499 no se detectó ningún cry2. This report revealed the crystal morphology and protein composition of strains LBIT-499 and LBIT-504 of B. thuringiensis, native to Guanajuato, Mexico. LBIT-499 showed only bipyramidal crystals, while LBIT-504 showed both bipyramidal and cubical crystals. These crystals were composed by proteins of ca. 130 and 60 kDa, respectively. Both strains as well as LBIT-500 and LBIT-544, showed a great variety of cry1 genes, while cry2A and cry2B were identified in LBT-500 and LBIT-544, LBIT-504 showed only the cry2B gene, and no cry2 was detected in LBIT-499.

  19. Characterization of Baculovirus Insecticides Expressing Tailored Bacillus thuringiensis CryIA(b) Crystal Proteins

    NARCIS (Netherlands)

    Martens, John W M; Knoester, Marga; Weijts, Franci; Groffen, Sander J A; Hu, Zhihong; Bosch, Dirk; Vlak, Just M.

    1995-01-01

    Full-length, truncated, and mature forms of the CryIA(b) insecticidal crystal protein gene of Bacillus thuringiensis were engineered into the p10 locus of Autographa californica nuclear polyhedrosis virus (AcNPV). A signal sequence of Heliothis virescens juvenile hormone esterase was introduced at

  20. Drought and exogenous abscisic acid alter hydrogen peroxide accumulation and differentially regulate the expression of two maize RD22-like genes.

    Science.gov (United States)

    Phillips, Kyle; Ludidi, Ndiko

    2017-08-18

    Increased biosynthesis of abscisic acid (ABA) occurs in plants in response to water deficit, which is mediated by changes in the levels of reactive oxygen species such as H 2 O 2 . Water deficit and ABA induce expression of some RD22-like proteins. This study aimed to evaluate the effect of water deficit and exogenous ABA (50 µM ABA applied every 24 hours for a total of 72 hours) on H 2 O 2 content in Zea mays (maize) and to characterise genes encoding two putative maize RD22-like proteins (designated ZmRD22A and ZmRD22B). The expression profiles of the two putative maize RD22-like genes in response to water deficit and treatment with ABA were examined in leaves. In silico analyses showed that the maize RD22-like proteins share domain organisation with previously characterized RD22-like proteins. Both water deficit and exogenous ABA resulted in increased H 2 O 2 content in leaves but the increase was more pronounced in response to water deficit than to exogenous ABA. Lignin content was not affected by exogenous ABA, whereas it was decreased by water deficit. Expression of both RD22-like genes was up-regulated by drought but the ZmRD22A gene was not influenced by exogenous ABA, whereas ZmRD22B was highly responsive to exogenous ABA.

  1. Control of Busseola fusca and Chilo partellus stem borers by ...

    African Journals Online (AJOL)

    GREGORY

    2011-06-01

    Jun 1, 2011 ... 1International Maize and Wheat Improvement Center, P.O. Box 1041 ... Key words: Bacillus thuringiensis (Bt) maize, cry1A (b) proteins, stem borers, transgenic. ... including conservation agriculture on insect pests, can only be ...

  2. Density Stress has Minimal Impacts on the Barley or Maize Seedling Transcriptome

    Directory of Open Access Journals (Sweden)

    Summer St. Pierre

    2011-03-01

    Full Text Available High planting density affects the morphology and productivity of many crop species. Our objectives were to examine the phenotypic and transcriptomic changes that occur during plant density stress in barley ( L. and maize ( L. seedlings. In maize and barley seedlings, density stress impacted several morphological traits. Gene expression profiles were examined in four barley and five maize genotypes grown at low and high plant densities. Only 221 barley and 35 maize genes exhibited differential expression in response to plant density stress. The majority of the gene expression changes were observed in a subset of the genotypes and reflected minor changes in the level of expression, indicating that the plant density stress imposed in this study did not result in major changes in gene expression. Also, little overlap was observed within barley or maize genotypes in gene expression during density stress, indicating that genotypic differences play a major role in the response to density stress. While it is clear that gene expression differences are involved in morphological changes induced by high plant densities, it is likely that many of these gene expression differences are subtle and restricted to particular tissues and developmental time.

  3. Differential expression of α-L-arabinofuranosidases during maize (Zea mays L.) root elongation.

    Science.gov (United States)

    Kozlova, Liudmila V; Gorshkov, Oleg V; Mokshina, Natalia E; Gorshkova, Tatyana A

    2015-05-01

    Specific α- l -arabinofuranosidases are involved in the realisation of elongation growth process in cells with type II cell walls. Elongation growth in a plant cell is largely based on modification of the cell wall. In type II cell walls, the Ara/Xyl ratio is known to decrease during elongation due to the partial removal of Ara residues from glucuronoarabinoxylan. We searched within the maize genome for the genes of all predicted α-L-arabinofuranosidases that may be responsible for such a process and related their expression to the activity of the enzyme and the amount of free arabinose measured in six zones of a growing maize root. Eight genes of the GH51 family (ZmaABFs) and one gene of the GH3 family (ZmaARA-I) were identified. The abundance of ZmaABF1 and 3-6 transcripts was highly correlated with the measured enzymatic activity and free arabinose content that significantly increased during elongation. The transcript abundances also coincided with the pattern of changes in the Ara/Xyl ratio of the xylanase-extractable glucuronoarabinoxylan described in previous studies. The expression of ZmaABF3, 5 and 6 was especially up-regulated during elongation although corresponding proteins are devoid of the catalytic glutamate at the proper position. ZmaABF2 transcripts were specifically enriched in the root cap and meristem. A single ZmaARA-I gene was not expressed as a whole gene but instead as splice variants that encode the C-terminal end of the protein. Changes in the ZmaARA-I transcript level were rather moderate and had no significant correlation with free arabinose content. Thus, elongation growth of cells with type II cell walls is accompanied by the up-regulation of specific and predicted α-L-arabinofuranosidase genes, and the corresponding activity is indeed pronounced and is important for the modification of glucuronoarabinoxylan, which plays a key role in the modification of the cell wall supramolecular organisation.

  4. Fine Mapping and Candidate Gene Analysis of the Leaf-Color Gene ygl-1 in Maize.

    Directory of Open Access Journals (Sweden)

    Haiying Guan

    Full Text Available A novel yellow-green leaf mutant yellow-green leaf-1 (ygl-1 was isolated in self-pollinated progenies from the cross of maize inbred lines Ye478 and Yuanwu02. The mutant spontaneously showed yellow-green character throughout the lifespan. Meanwhile, the mutant reduced contents of chlorophyll and Car, arrested chloroplast development and lowered the capacity of photosynthesis compared with the wild-type Lx7226. Genetic analysis revealed that the mutant phenotype was controlled by a recessive nuclear gene. The ygl-1 locus was initially mapped to an interval of about 0.86 Mb in bin 1.01 on the short arm of chromosome 1 using 231 yellow-green leaf individuals of an F2 segregating population from ygl-1/Lx7226. Utilizing four new polymorphic SSR markers, the ygl-1 locus was narrowed down to a region of about 48 kb using 2930 and 2247 individuals of F2 and F3 mapping populations, respectively. Among the three predicted genes annotated within this 48 kb region, GRMZM2G007441, which was predicted to encode a cpSRP43 protein, had a 1-bp nucleotide deletion in the coding region of ygl-1 resulting in a frame shift mutation. Semi-quantitative RT-PCR analysis revealed that YGL-1 was constitutively expressed in all tested tissues and its expression level was not significantly affected in the ygl-1 mutant from early to mature stages, while light intensity regulated its expression both in the ygl-1 mutant and wild type seedlings. Furthermore, the mRNA levels of some genes involved in chloroplast development were affected in the six-week old ygl-1 plants. These findings suggested that YGL-1 plays an important role in chloroplast development of maize.

  5. Display of a Maize cDNA library on baculovirus infected insect cells

    Directory of Open Access Journals (Sweden)

    Jones Ian M

    2008-08-01

    Full Text Available Abstract Background Maize is a good model system for cereal crop genetics and development because of its rich genetic heritage and well-characterized morphology. The sequencing of its genome is well advanced, and new technologies for efficient proteomic analysis are needed. Baculovirus expression systems have been used for the last twenty years to express in insect cells a wide variety of eukaryotic proteins that require complex folding or extensive posttranslational modification. More recently, baculovirus display technologies based on the expression of foreign sequences on the surface of Autographa californica (AcMNPV have been developed. We investigated the potential of a display methodology for a cDNA library of maize young seedlings. Results We constructed a full-length cDNA library of young maize etiolated seedlings in the transfer vector pAcTMVSVG. The library contained a total of 2.5 × 105 independent clones. Expression of two known maize proteins, calreticulin and auxin binding protein (ABP1, was shown by western blot analysis of protein extracts from insect cells infected with the cDNA library. Display of the two proteins in infected insect cells was shown by selective biopanning using magnetic cell sorting and demonstrated proof of concept that the baculovirus maize cDNA display library could be used to identify and isolate proteins. Conclusion The maize cDNA library constructed in this study relies on the novel technology of baculovirus display and is unique in currently published cDNA libraries. Produced to demonstrate proof of principle, it opens the way for the development of a eukaryotic in vivo display tool which would be ideally suited for rapid screening of the maize proteome for binding partners, such as proteins involved in hormone regulation or defence.

  6. Coping with Crying in Babies and Toddlers

    Science.gov (United States)

    High, Pamela

    2012-01-01

    Pamela High, MS, MD, co-director of the Infant Behavior, Cry and Sleep Clinic at the Brown Center for the Study of Children at Risk, discusses the phenomena of infant crying and the impact it has on families. In most cases, infant crying will peak and resolve in the early months, but infant irritability can increase the risk of maternal…

  7. Baby please stop crying: an experimental approach to infant crying, affect, and expected parenting self-efficacy

    NARCIS (Netherlands)

    de Cock, E.S.A.; Henrichs, J.; Rijk, C.H.A.M.; van Bakel, H.J.A.

    2015-01-01

    Objective: The present study examines the effect of infant crying on parental affect, state anxiety and parenting self-efficacy in an experimental setting. Background: Infant crying causes distress and feelings of incompetence in many parents. These frustrating parental feelings can lead to

  8. Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis).

    Science.gov (United States)

    Oliveira, Gustavo R; Silva, Maria C M; Lucena, Wagner A; Nakasu, Erich Y T; Firmino, Alexandre A P; Beneventi, Magda A; Souza, Djair S L; Gomes, José E; de Souza, José D A; Rigden, Daniel J; Ramos, Hudson B; Soccol, Carlos R; Grossi-de-Sa, Maria F

    2011-09-09

    The cotton boll weevil (Anthonomus grandis) is a serious insect-pest in the Americas, particularly in Brazil. The use of chemical or biological insect control is not effective against the cotton boll weevil because of its endophytic life style. Therefore, the use of biotechnological tools to produce insect-resistant transgenic plants represents an important strategy to reduce the damage to cotton plants caused by the boll weevil. The present study focuses on the identification of novel molecules that show improved toxicity against the cotton boll weevil. In vitro directed molecular evolution through DNA shuffling and phage display screening was applied to enhance the insecticidal activity of variants of the Cry8Ka1 protein of Bacillus thuringiensis. Bioassays carried out with A. grandis larvae revealed that the LC50 of the screened mutant Cry8Ka5 toxin was 3.15-fold higher than the wild-type Cry8Ka1 toxin. Homology modelling of Cry8Ka1 and the Cry8Ka5 mutant suggested that both proteins retained the typical three-domain Cry family structure. The mutated residues were located mostly in loops and appeared unlikely to interfere with molecular stability. The improved toxicity of the Cry8Ka5 mutant obtained in this study will allow the generation of a transgenic cotton event with improved potential to control A. grandis.

  9. Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis

    Directory of Open Access Journals (Sweden)

    Gomes José E

    2011-09-01

    Full Text Available Abstract Background The cotton boll weevil (Anthonomus grandis is a serious insect-pest in the Americas, particularly in Brazil. The use of chemical or biological insect control is not effective against the cotton boll weevil because of its endophytic life style. Therefore, the use of biotechnological tools to produce insect-resistant transgenic plants represents an important strategy to reduce the damage to cotton plants caused by the boll weevil. The present study focuses on the identification of novel molecules that show improved toxicity against the cotton boll weevil. In vitro directed molecular evolution through DNA shuffling and phage display screening was applied to enhance the insecticidal activity of variants of the Cry8Ka1 protein of Bacillus thuringiensis. Results Bioassays carried out with A. grandis larvae revealed that the LC50 of the screened mutant Cry8Ka5 toxin was 3.15-fold higher than the wild-type Cry8Ka1 toxin. Homology modelling of Cry8Ka1 and the Cry8Ka5 mutant suggested that both proteins retained the typical three-domain Cry family structure. The mutated residues were located mostly in loops and appeared unlikely to interfere with molecular stability. Conclusions The improved toxicity of the Cry8Ka5 mutant obtained in this study will allow the generation of a transgenic cotton event with improved potential to control A. grandis.

  10. The maize milkweed pod1 mutant reveals a mechanism to modify organ morphology.

    Science.gov (United States)

    Johnston, Robyn; Candela, Héctor; Hake, Sarah; Foster, Toshi

    2010-07-01

    Plant lateral organs, such as leaves, have three primary axes of growth-proximal-distal, medial--lateral and adaxial-abaxial (dorsal-ventral). Although most leaves are planar, modified leaf forms, such as the bikeeled grass prophyll, can be found in nature. A detailed examination of normal prophyll development indicates that polarity is established differently in the keels than in other parts of the prophyll. Analysis of the maize HD-ZIPIII gene rolled leaf1 (rld1) suggests that altered expression patterns are responsible for keel outgrowth. Recessive mutations in the maize (Zea mays) KANADI (KAN) gene milkweed pod1 (mwp1), which promotes abaxial cell identity, strongly affect development of the prophyll and silks (fused carpels). The prophyll is reduced to two unfused midribs and the silks are narrow and misshapen. Our data indicate that the prophyll and other fused organs are particularly sensitive to disruptions in adaxial-abaxial polarity. In addition, lateral and proximal-distal growth of most lateral organs is reduced in the mwp1-R mutant, supporting a role for the adaxial-abaxial boundary in promoting growth along both axes. We propose that the adaxial-abaxial patterning mechanism has been co-opted during evolution to generate diverse organ morphologies. (c) 2010 Wiley-Liss, Inc.

  11. Crying and Mood Change : a Cross-Cultural Study

    NARCIS (Netherlands)

    Becht, M.C.; Vingerhoets, A.J.J.M.

    2002-01-01

    This study was designed to determine the influence of crying-related variables and country characteristics on mood change after crying. It was hypothesized that mood improvement would be positively associated to crying frequency, Individualism-Collectivism, and the extent of gender empowerment in a

  12. Effects of Soil Salinity on the Expression of Bt Toxin (Cry1Ac and the Control Efficiency of Helicoverpa armigera in Field-Grown Transgenic Bt Cotton.

    Directory of Open Access Journals (Sweden)

    Jun-Yu Luo

    Full Text Available An increasing area of transgenic Bacillus thuringiensis (Bt cotton is being planted in saline-alkaline soil in China. The Bt protein level in transgenic cotton plants and its control efficiency can be affected by abiotic stress, including high temperature, water deficiency and other factors. However, how soil salinity affects the expression of Bt protein, thus influencing the control efficiency of Bt cotton against the cotton bollworm (CBW Helicoverpa armigera (Hübner in the field, is poorly understood. Our objective in the present study was to investigate the effects of soil salinity on the expression of Bt toxin (Cry1Ac and the control efficiency of Helicoverpa armigera in field-grown transgenic Bt cotton using three natural saline levels (1.15 dS m-1 [low soil-salinity], 6.00 dS m-1 [medium soil-salinity] and 11.46 dS m-1 [high soil-salinity]. We found that the Bt protein content in the transgenic Bt cotton leaves and the insecticidal activity of Bt cotton against CBW decreased with the increasing soil salinity in laboratory experiments during the growing season. The Bt protein content of Bt cotton leaves in the laboratory were negatively correlated with the salinity level. The CBW populations were highest on the Bt cotton grown in medium-salinity soil instead of the high-salinity soil in field conditions. A possible mechanism may be that the relatively high-salinity soil changed the plant nutritional quality or other plant defensive traits. The results from this study may help to identify more appropriate practices to control CBW in Bt cotton fields with different soil salinity levels.

  13. Toxin distribution and sphingoid base imbalances in Fusarium verticillioides-infected and fumonisin B1-watered maize seedlings.

    Science.gov (United States)

    Arias, Silvina L; Mary, Verónica S; Otaiza, Santiago N; Wunderlin, Daniel A; Rubinstein, Héctor R; Theumer, Martín G

    2016-05-01

    Fusarium verticillioides is a major maize pathogen and there are susceptible and resistant cultivars to this fungal infection. Recent studies suggest that its main mycotoxin fumonisin B1 (FB1) may be involved in phytopathogenicity, but the underlying mechanisms are mostly still unknown. This work was aimed at assessing whether FB1 disseminates inside the plants, as well as identifying possible correlations between the maize resistant/susceptible phenotype and the unbalances of the FB1-structurally-related sphingoid base sphinganine (Sa) and phytosphingosine (Pso) due to toxin accumulation. Resistant (RH) and susceptible hybrid (SH) maize seedlings grown from seeds inoculated with a FB1-producer F. verticillioides and from uninoculated ones irrigated with FB1 (20 ppm), were harvested at 7, 14 and 21 days after planting (dap), and the FB1, Sa and Pso levels were quantified in roots and aerial parts. The toxin was detected in roots and aerial parts for inoculated and FB1-irrigated plants of both hybrids. However, FB1 levels were overall higher in SH seedlings regardless of the treatment (infection or watering). Sa levels increased substantially in RH lines, peaking at 54-fold in infected roots at 14 dap. In contrast, the main change observed in SH seedlings was an increase of Pso in infected roots at 7 dap. Here, it was found that FB1 disseminates inside seedlings in the absence of FB1-producer fungal infections, perhaps indicating this might condition the fungus-plant interaction before the first contact. Furthermore, the results strongly suggest the existence of at least two ceramide synthase isoforms in maize with different substrate specificities, whose differential expression after FB1 exposure could be closely related to the susceptibility/resistance to F. verticillioides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Overexpression of a maize plasma membrane intrinsic protein ZmPIP1;1 confers drought and salt tolerance in Arabidopsis.

    Science.gov (United States)

    Zhou, Lian; Zhou, Jing; Xiong, Yuhan; Liu, Chaoxian; Wang, Jiuguang; Wang, Guoqiang; Cai, Yilin

    2018-01-01

    Drought and salt stress are major abiotic stress that inhibit plants growth and development, here we report a plasma membrane intrinsic protein ZmPIP1;1 from maize and identified its function in drought and salt tolerance in Arabidopsis. ZmPIP1;1 was localized to the plasma membrane and endoplasmic reticulum in maize protoplasts. Treatment with PEG or NaCl resulted in induced expression of ZmPIP1;1 in root and leaves. Constitutive overexpression of ZmPIP1;1 in transgenic Arabidopsis plants resulted in enhanced drought and salt stress tolerance compared to wild type. A number of stress responsive genes involved in cellular osmoprotection in ZmPIP1;1 overexpression plants were up-regulated under drought or salt condition. ZmPIP1;1 overexpression plants showed higher activities of reactive oxygen species (ROS) scavenging enzymes such as catalase and superoxide dismutase, lower contents of stress-induced ROS such as superoxide, hydrogen peroxide and malondialdehyde, and higher levels of proline under drought and salt stress than did wild type. ZmPIP1;1 may play a role in drought and salt stress tolerance by inducing of stress responsive genes and increasing of ROS scavenging enzymes activities, and could provide a valuable gene for further plant breeding.

  15. Safety evaluation of genetically modified DAS-40278-9 maize in a subchronic rodent feeding study.

    Science.gov (United States)

    Zou, Shiying; Lang, Tianqi; Liu, Xu; Huang, Kunlun; He, Xiaoyun

    2018-07-01

    Genetically modified (GM) maize, DAS-40278-9, expresses the aryloxyalkanoate dioxygenase-1 (AAD-1) protein, which confers tolerance to 2,4-dichlorophenoxyacetic acid (2,4-D) and aryloxyphenoxypropionate (AOPP) herbicides. The aad-1 gene, which expresses the AAD-1 protein, was derived from Gram-negative soil bacterium, Sphingobium herbicidovorans. A 90-day sub-chronic toxicity study was conducted on rats as a component of the safety evaluation of DAS-40278-9 maize. Rats were given formulated diets containing maize grain from DAS-40278-9 or a non-GM near isogenic control comparator at an incorporation rate of 12.5%, 25%, or 50% (w/w), respectively for 90 days. In addition, another group of rats was fed a basic rodent diet. Animals were evaluated by cage-side and hand-held detailed clinical observations, ophthalmic examinations, body weights/body weight gains, feed consumption, hematology, serum chemistry, selected organ weights, and gross and histopathological examinations. Under the condition of this study, DAS-40278-9 maize did not cause any treatment-related effects in rats compared with rats fed diets containing non-GM maize. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Possible Insecticidal Mechanisms Mediated by Immune-Response-Related Cry-Binding Proteins in the Midgut Juice of Plutella xylostella and Spodoptera exigua.

    Science.gov (United States)

    Lu, Keyu; Gu, Yuqing; Liu, Xiaoping; Lin, Yi; Yu, Xiao-Qiang

    2017-03-15

    Cry toxins are insecticidal toxin proteins produced by a spore-forming Gram-positive bacterium Bacillus thuringiensis. Interactions between the Cry toxins and the receptors from midgut brush border membrane vesicles (BBMVs), such as cadherin, alkaline phosphatase, and aminopeptidase, are key steps for the specificity and insecticidal activity of Cry proteins. However, little is known about the midgut juice proteins that may interfere with Cry binding to the receptors. To validate the hypothesis that there exist Cry-binding proteins that can interfere with the insecticidal process of Cry toxins, we applied Cry1Ab1-coupled Sepharose beads to isolate Cry-binding proteins form midgut juice of Plutella xylostella and Spodoptera exigua. Trypsin-like serine proteases and Dorsal were found to be Cry1Ab1-binding proteins in the midgut juice of P. xylostella. Peroxidase-C (POX-C) was found to be the Cry1Ab1-binding protein in the midgut juice of S. exigua. We proposed possible insecticidal mechanisms of Cry1Ab1 mediated by the two immune-related proteins: Dorsal and POX-C. Our results suggested that there exist, in the midgut juice, Cry-binding proteins, which are different from BBMV-specific receptors.

  17. Laughter, crying and sadness in ALS.

    Science.gov (United States)

    Thakore, Nimish J; Pioro, Erik P

    2017-10-01

    Pseudobulbar affect (PBA) is prevalent in amyotrophic lateral sclerosis (ALS), but there is limited information on its associations and course. Explore prevalence, associations, course and manifestations of PBA in outpatient cohort of patients with ALS and examine its relationship to depression. Self-reported measures of PBA and depression (Center for Neurologic Study-Lability Scale (CNS-LS) and Patient Health Questionnaire (PHQ-9), respectively) were obtained from consecutive patients with ALS using tablet devices in waiting rooms (Knowledge Program). PBA (CNS-LS ≥13) was seen in 209/735 patients (28.4%). PBA was associated with bulbar onset and dysfunction, upper motor neuron dysfunction, cognitive impairment, depression and lower quality of life. A multivariable model that included lower bulbar and gross motor subscores, female gender, younger age and shorter duration of disease predicted PBA with 74% accuracy. CNS-LS scores increased only slowly with time. Women with PBA reported more crying than men. Crying (but not laughter) correlated with depression, and crying was associated with poorer quality of life. Exploratory factor analysis of pooled questions of CNS-LS and PHQ-9 identified three underlying factors (laughter, crying and depression) loaded on appropriate questions of the respective instruments. This study identifies associations of PBA and additionally finds PBA (especially crying-predominant PBA) more prevalent in women with ALS. Although the two self-report instruments (CNS-LS and PHQ-9) discriminate well between PBA and depression, there is significant overlap between depression and crying in PBA. Studies of PBA should stratify for gender, examine crying and laughter as separate outcomes and adjust for depression. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Fusarium verticillioides and fumonisin contamination in Bt and non-Bt maize cultivated in Brazil.

    Science.gov (United States)

    Barroso, Vinícius M; Rocha, Liliana O; Reis, Tatiana A; Reis, Gabriela M; Duarte, Aildson P; Michelotto, Marcos D; Correa, Benedito

    2017-05-01

    Fusarium verticillioides is one of the main pathogens of maize, causing ear and stalk rots. This fungus is also able to produce high levels of fumonisins, which have been linked to various illnesses in humans and animals. Previous studies have shown that maize hybrids genetically modified with the cry genes from the bacterium Bacillus thuringiensis (Bt) presented lower incidence of F. verticillioides and fumonisin levels, presumably through the reduction of insects, which could act as vectors of fungi. The aim of this study was to assess the incidence of F. verticillioides and the concentration of fumonisins in Bt and isogenic non-Bt hybrids (2B710Hx, 30F35YG, 2B710, and 30F35, respectively). The samples of 2B710Hx and 30F35YG presented lower F. verticillioides frequency than 2B710 and 30F35 samples. However, there was no statistical difference between fumonisin contamination when Bt and non-Bt samples were compared (P > 0.05). The results suggest that other environmental parameters could possibly trigger fumonisin production during plant development in the field; consequently, other management strategies should be applied to aid controlling fumonisin contamination in maize.

  19. Specificity and combinatorial effects of Bacillus thuringiensis Cry toxins in the context of GMO environmental risk assessment

    Directory of Open Access Journals (Sweden)

    Angelika eHilbeck

    2015-11-01

    Full Text Available Stacked GM crops expressing up to six Cry toxins from Bacillus thuringiensis are today replacing the formerly grown single- transgene GM crop varieties. Stacking of multiple Cry toxins not only increase the environmental load of toxins but also raise the question on how possible interactions of the toxins can be assessed for risk assessment, which is mandatory for GM crops. However, no operational guidelines for a testing strategy or testing procedures exist. From the developers point of view, little data testing for combinatorial effects of Cry toxins is necessary as the range of affected organisms is focused on pest species and no evidence is claimed to exists pointing to combinatorial effects on nontarget organisms. We have examined this rationale critically using information reported in the scientific literature. To do so we address the hypothesis of narrow specificity of Cry toxins subdivided into three underlying different conceptual conditions i 'efficacy' in target pests as indicator for 'narrow specificity', ii lack of reported adverse effects of Cry toxins on nontarget organisms, and iii proposed modes of action of Cry toxins (or the lack thereof as mechanisms underlying the reported activity/efficacy/specificity of Cry toxins. Complementary to this information we evaluate reports about outcomes of combinatorial effect testing of Cry toxins in the scientific literature and relate those findings to the practice of the environmental risk assessment of Bt-corps in general and of stacked Bt-events in particular.

  20. Caregiving and early infant crying in a danish community.

    Science.gov (United States)

    Alvarez, Marissa

    2004-04-01

    Maternal caregiving and fussing/crying in Danish infants at 3, 6, and 12 weeks were examined using self-report scales and 24-hour behavior diaries. Mothers reported practices commonly associated with responsive caregiving: frequent feeding, prompt response to infant cries, and considerable time holding the infant. Fuss/cry durations peaked in the first 2 months, were highest in evenings, and decreased approximately 50% by 12 weeks. Fussing was the majority behavior, and 9.2% of the infants fussed and cried more than 3 hours per day. In contrast with other Western studies, 24-hour fuss/cry durations were lower, and fussing accounted for up to 80% of total distress. Danish caregiving practices may partially explain the lower durations of infant distress and the lower ratio of cry to fuss. However, some infants fuss/cry a great deal despite sensitive care, which may reflect individual differences in infant maturation of behavior regulation.

  1. Functional Analysis of Maize Silk-Specific ZmbZIP25 Promoter

    Directory of Open Access Journals (Sweden)

    Wanying Li

    2018-03-01

    Full Text Available ZmbZIP25 (Zea mays bZIP (basic leucine zipper transcription factor 25 is a function-unknown protein that belongs to the D group of the bZIP transcription factor family. RNA-seq data showed that the expression of ZmbZIP25 was tissue-specific in maize silks, and this specificity was confirmed by RT-PCR (reverse transcription-polymerase chain reaction. In situ RNA hybridization showed that ZmbZIP25 was expressed exclusively in the xylem of maize silks. A 5′ RACE (rapid amplification of cDNA ends assay identified an adenine residue as the transcription start site of the ZmbZIP25 gene. To characterize this silk-specific promoter, we isolated and analyzed a 2450 bp (from −2083 to +367 and a 2600 bp sequence of ZmbZIP25 (from −2083 to +517, the transcription start site was denoted +1. Stable expression assays in Arabidopsis showed that the expression of the reporter gene GUS driven by the 2450 bp ZmbZIP25 5′-flanking fragment occurred exclusively in the papillae of Arabidopsis stigmas. Furthermore, transient expression assays in maize indicated that GUS and GFP expression driven by the 2450 bp ZmbZIP25 5′-flanking sequences occurred only in maize silks and not in other tissues. However, no GUS or GFP expression was driven by the 2600 bp ZmbZIP25 5′-flanking sequences in either stable or transient expression assays. A series of deletion analyses of the 2450 bp ZmbZIP25 5′-flanking sequence was performed in transgenic Arabidopsis plants, and probable elements prediction analysis revealed the possible presence of negative regulatory elements within the 161 bp region from −1117 to −957 that were responsible for the specificity of the ZmbZIP25 5′-flanking sequence.

  2. Preferential protection of domains ii and iii of bacillus thuringiensis cry1aa toxin by brush border membrane vesicles

    OpenAIRE

    Hussain, Syed-Rehan A.; Flórez, Álvaro M.; Dean, Donald H.; Alzate, Óscar

    2011-01-01

    Título español: Protección preferencial de los dominios II y III de la toxina Cry1Aa de Bacillus thuringiensis en Vesículas de Membrana de Borde de Cepillo Abstract The surface exposed Leucine 371 on loop 2 of domain II, in Cry1Aa toxin, was mutated to Lysine to generate the trypsin-sensitive mutant, L371K. Upon trypsin digestion L371K is cleaved into approximately 37 and 26 kDa fragments. These are separable on SDS-PAGE, but remain as a single molecule of 65 kDa upon purification by ...

  3. Preferential Protection of Domains II and III of Bacillus thuringiensis Cry1Aa Toxin by Brush Border Membrane Vesicles

    OpenAIRE

    Syed-Rehan A. Hussain; Álvaro M. Flórez; Donald H. Dean; Óscar Alzate

    2011-01-01

    Título español: Protección preferencial de los dominios II y III de la toxina Cry1Aa de Bacillus thuringiensis en Vesículas de Membrana de Borde de Cepillo Abstract The surface exposed Leucine 371 on loop 2 of domain II, in Cry1Aa toxin, was mutated to Lysine to generate the trypsin-sensitive mutant, L371K. Upon trypsin digestion L371K is cleaved into approximately 37 and 26 kDa fragments. These are separable on SDS-PAGE, but remain as a single molecule of 65 kDa upon purification by ...

  4. Differential expression of superoxide dismutase genes in aphid-stressed maize (Zea mays L.) seedlings.

    Science.gov (United States)

    Sytykiewicz, Hubert

    2014-01-01

    The aim of this study was to compare the expression patterns of superoxide dismutase genes (sod2, sod3.4, sod9 and sodB) in seedling leaves of the Zea mays L. Tasty Sweet (susceptible) and Ambrozja (relatively resistant) cultivars infested with one of two hemipteran species, namely monophagous Sitobion avenae F. (grain aphid) or oligophagous Rhopalosiphum padi L. (bird cherry-oat aphid). Secondarily, aphid-elicited alternations in the antioxidative capacity towards DPPH (1,1-diphenyl-2-picrylhydrazyl) radical in insect-stressed plants were evaluated. Comprehensive comparison of expression profiles of the four sod genes showed that both insect species evoked significant upregulation of three genes sod2, sod3.4 and sod9). However, aphid infestation affected non-significant fluctuations in expression of sodB gene in seedlings of both maize genotypes. The highest levels of transcript accumulation occurred at 8 h (sod2 and sod3.4) or 24 h (sod9) post-infestation, and aphid-induced changes in the expression of sod genes were more dramatic in the Ambrozja cultivar than in the Tasty Sweet variety. Furthermore, bird cherry-oat aphid colonization had a more substantial impact on levels of DPPH radical scavenging activity in infested host seedlings than grain aphid colonization. Additionally, Ambrozja plants infested by either hemipteran species showed markedly lower antioxidative capacity compared with attacked Tasty Sweet plants.

  5. Differential Expression of Superoxide Dismutase Genes in Aphid-Stressed Maize (Zea mays L.) Seedlings

    Science.gov (United States)

    Sytykiewicz, Hubert

    2014-01-01

    The aim of this study was to compare the expression patterns of superoxide dismutase genes (sod2, sod3.4, sod9 and sodB) in seedling leaves of the Zea mays L. Tasty Sweet (susceptible) and Ambrozja (relatively resistant) cultivars infested with one of two hemipteran species, namely monophagous Sitobion avenae F. (grain aphid) or oligophagous Rhopalosiphum padi L. (bird cherry-oat aphid). Secondarily, aphid-elicited alternations in the antioxidative capacity towards DPPH (1,1-diphenyl-2-picrylhydrazyl) radical in insect-stressed plants were evaluated. Comprehensive comparison of expression profiles of the four sod genes showed that both insect species evoked significant upregulation of three genes sod2, sod3.4 and sod9). However, aphid infestation affected non-significant fluctuations in expression of sodB gene in seedlings of both maize genotypes. The highest levels of transcript accumulation occurred at 8 h (sod2 and sod3.4) or 24 h (sod9) post-infestation, and aphid-induced changes in the expression of sod genes were more dramatic in the Ambrozja cultivar than in the Tasty Sweet variety. Furthermore, bird cherry-oat aphid colonization had a more substantial impact on levels of DPPH radical scavenging activity in infested host seedlings than grain aphid colonization. Additionally, Ambrozja plants infested by either hemipteran species showed markedly lower antioxidative capacity compared with attacked Tasty Sweet plants. PMID:24722734

  6. Utility of RNA Sequencing for Analysis of Maize Reproductive Transcriptomes

    Directory of Open Access Journals (Sweden)

    Rebecca M. Davidson

    2011-11-01

    Full Text Available Transcriptome sequencing is a powerful method for studying global expression patterns in large, complex genomes. Evaluation of sequence-based expression profiles during reproductive development would provide functional annotation to genes underlying agronomic traits. We generated transcriptome profiles for 12 diverse maize ( L. reproductive tissues representing male, female, developing seed, and leaf tissues using high throughput transcriptome sequencing. Overall, ∼80% of annotated genes were expressed. Comparative analysis between sequence and hybridization-based methods demonstrated the utility of ribonucleic acid sequencing (RNA-seq for expression determination and differentiation of paralagous genes (∼85% of maize genes. Analysis of 4975 gene families across reproductive tissues revealed expression divergence is proportional to family size. In all pairwise comparisons between tissues, 7 (pre- vs. postemergence cobs to 48% (pollen vs. ovule of genes were differentially expressed. Genes with expression restricted to a single tissue within this study were identified with the highest numbers observed in leaves, endosperm, and pollen. Coexpression network analysis identified 17 gene modules with complex and shared expression patterns containing many previously described maize genes. The data and analyses in this study provide valuable tools through improved gene annotation, gene family characterization, and a core set of candidate genes to further characterize maize reproductive development and improve grain yield potential.

  7. The Effect of Crying on Long-Term Memory in Infancy.

    Science.gov (United States)

    Fagen, Jeffrey W.; And Others

    1985-01-01

    Infants who cried in response to a reward shift evidenced no retention of the contingency 1 week later but did have excellent retention at one day. Reactivation treatment alleviated forgetting at three weeks. Results indicate that crying in response to violation of a reward-expectation habit functions as an amnesic agent to produce accelerated…

  8. Response Cries.

    Science.gov (United States)

    Goffman, Erving

    1978-01-01

    Considers utterances that appear to violate the interdependence assumed by the interactionist view, entering the stream of behavior at peculiar and unnatural places, producing communicative effects but no dialogue. Self-talk, imprecations, and response cries are discussed. (EJS)

  9. Lack of fitness costs and inheritance of resistance to Bacillus thuringiensis Cry1Ac toxin in a near-isogenic strain of Plutella xylostella (Lepidoptera: Plutellidae).

    Science.gov (United States)

    Zhu, Xun; Yang, Yanjv; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Guo, Zhaojiang; Kang, Shi; Xia, Jixing; Zhang, Youjun

    2016-02-01

    Resistance to Bacillus thuringiensis (Bt) formulations in insects may be associated with fitness costs. A lack of costs enables resistance alleles to persist, which may contribute to the rapid development and spread of resistance in populations. To assess the fitness costs associated with Bt Cry1Ac resistance in Plutella xylostella, life tables were constructed for a near-isogenic resistant strain (NIL-R) and a susceptible strain in this study. No fitness costs associated with Cry1Ac resistance in NIL-R were detected, based on the duration of egg and larval stages, the survival of eggs and larvae, adult longevity, fecundity, net reproductive rate, gross reproduction rate, finite rate of increase and mean generation time. Based on log dose-probit lines, resistance in NIL-R is incompletely recessive and results from a single, autosomal, recessive locus; the degree of dominance was estimated to be -0.74 and -0.71 for F1 (resistant ♀ × susceptible ♂) and F1 ' (susceptible ♀ × resistant ♂) progeny respectively. Assessment of near-isogenic Cry1Ac-resistant and Cry1Ac-susceptible strains of P. xylostella indicated that resistance is not accompanied with fitness costs, and that resistance is incompletely recessive. These findings should be useful in managing the development of Bt Cry1Ac resistance. © 2015 Society of Chemical Industry.

  10. Persistence of Bt Bacillus thuringiensis Cry1Aa toxin in various soils determined by physicochemical reactions

    Science.gov (United States)

    Helassa, N.; Noinville, S.; Déjardin, P.; Janot, J. M.; Quiquampoix, H.; Staunton, S.

    2009-04-01

    Insecticidal Cry proteins from the soil bacterium, Bacillus thuringiensis (Bt) are produced by a class of genetically modified (GM) crops, and released into soils through root exudates and upon decomposition of residues. In contrast to the protoxin produced by the Bacillus, the protein produced in GM crops does not require activation in insect midguts and thereby potentially looses some of its species specificity. Although gene transfer and resistance emergence phenomena are well documented, the fate of these toxins in soil has not yet been clearly elucidated. Cry proteins, in common with other proteins, are adsorbed on soils and soil components. Adsorption on soil, and the reversibility of this adsorption is an important aspect of the environmental behaviour of these toxins. The orientation of the molecule and conformational changes on surfaces may modify the toxicity and confer some protection against microbial degradation. Adsorption will have important consequences for both the risk of exposition of non target species and the acquisition of resistance by target species. We have adopted different approaches to investigate the fate of Cry1Aa in soils and model minerals. In each series of experiments we endeavoured to maintain the protein in a monomeric form (pH above 6.5 and a high ionic strength imposed with 150 mM NaCl). The adsorption and the desorbability of the Cry1Aa Bt insecticidal protein were measured on two different homoionic clays: montmorillonite and kaolinite. Adsorption isotherms obtained followed a low affinity interaction for both clays and could be fitted using the Langmuir equation. Binding of the toxin decreased as the pH increased from 6.5 (close to the isoelectric point) to 9. Maximum adsorption was about 40 times greater on montmorillonite (1.71 g g-1) than on kaolinite (0.04 g g-1) in line with the contrasting respective specific surface areas of the minerals. Finally, some of the adsorbed toxin was desorbed by water and more, about 36

  11. Persistence of detectable insecticidal proteins from Bacillus thuringiensis (Cry) and toxicity after adsorption on contrasting soils

    International Nuclear Information System (INIS)

    Hung, T.P.; Truong, L.V.; Binh, N.D.; Frutos, R.; Quiquampoix, H.; Staunton, S.

    2016-01-01

    Insecticidal Cry, or Bt, proteins are produced by the soil-endemic bacterium, Bacillus thuringiensis and some genetically modified crops. Their environmental fate depends on interactions with soil. Little is known about the toxicity of adsorbed proteins and the change in toxicity over time. We incubated Cry1Ac and Cry2A in contrasting soils subjected to different treatments to inhibit microbial activity. The toxin was chemically extracted and immunoassayed. Manduca sexta was the target insect for biotests. Extractable toxin decreased during incubation for up to four weeks. Toxicity of Cry1Ac was maintained in the adsorbed state, but lost after 2 weeks incubation at 25 °C. The decline in extractable protein and toxicity were much slower at 4 °C with no significant effect of soil sterilization. The major driving force for decline may be time-dependent fixation of adsorbed protein, leading to a decrease in the extraction yield in vitro, paralleled by decreasing solubilisation in the larval gut. - Graphical abstract: Biotest, presenting Cry-contaminated feed to Manduca sexta larvae in individual Perspex boxes. Display Omitted - Highlights: • Toxicity of Cry protein is initially conserved after adsorption on soil. • Toxicity and extractability decline with time, more rapidly at 25 °C than 4 °C. • Similar dynamics of Cry1AC and Cry2A on soil with varying texture and organic C. • Sterilization of soil does not change Cry dynamics or temperature effect in soil. • Cry decline is determined by progressive fixation on soil not microbial breakdown. - Toxicity was initially maintained after adsorption on soil and both extractable Cry and toxicity declined rapidly, more slowly at low temperature, due to different fixation dynamics. Toxicity of Cry protein is initially conserved after adsorption on soil.

  12. Zinc oxide nanoparticle exposure triggers different gene expression patterns in maize shoots and roots.

    Science.gov (United States)

    Xun, Hongwei; Ma, Xintong; Chen, Jing; Yang, Zhongzhou; Liu, Bao; Gao, Xiang; Li, Guo; Yu, Jiamiao; Wang, Li; Pang, Jinsong

    2017-10-01

    The potential impacts of environmentally accumulated zinc oxide nanoparticles (nZnOs) on plant growth have not been well studied. A transcriptome profile analysis of maize exposed to nZnOs showed that the genes in the shoots and roots responded differently. Although the number of differentially expressed genes (DEGs) in the roots was greater than that in the shoots, the number of up- or down-regulated genes in both the shoots and roots was similar. The enrichment of gene ontology (GO) terms was also significantly different in the shoots and roots. The "nitrogen compound metabolism" and "cellular component" terms were specifically and highly up-regulated in the nZnO-exposed roots, whereas the categories "cellular metabolic process", "primary metabolic process" and "secondary metabolic process" were down-regulated in the exposed roots only. Our results revealed the DEG response patterns in maize shoots and roots after nZnO exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Edible Safety Assessment of Genetically Modified Rice T1C-1 for Sprague Dawley Rats through Horizontal Gene Transfer, Allergenicity and Intestinal Microbiota.

    Science.gov (United States)

    Zhao, Kai; Ren, Fangfang; Han, Fangting; Liu, Qiwen; Wu, Guogan; Xu, Yan; Zhang, Jian; Wu, Xiao; Wang, Jinbin; Li, Peng; Shi, Wei; Zhu, Hong; Lv, Jianjun; Zhao, Xiao; Tang, Xueming

    2016-01-01

    In this study, assessment of the safety of transgenic rice T1C-1 expressing Cry1C was carried out by: (1) studying horizontal gene transfer (HGT) in Sprague Dawley rats fed transgenic rice for 90 d; (2) examining the effect of Cry1C protein in vitro on digestibility and allergenicity; and (3) studying the changes of intestinal microbiota in rats fed with transgenic rice T1C-1 in acute and subchronic toxicity tests. Sprague Dawley rats were fed a diet containing either 60% GM Bacillus thuringiensis (Bt) rice T1C-1 expressing Cry1C protein, the parental rice Minghui 63, or a basic diet for 90 d. The GM Bt rice T1C-1 showed no evidence of HGT between rats and transgenic rice. Sequence searching of the Cry1C protein showed no homology with known allergens or toxins. Cry1C protein was rapidly degraded in vitro with simulated gastric and intestinal fluids. The expressed Cry1C protein did not induce high levels of specific IgG and IgE antibodies in rats. The intestinal microbiota of rats fed T1C-1 was also analyzed in acute and subchronic toxicity tests by DGGE. Cluster analysis of DGGE profiles revealed significant individual differences in the rats' intestinal microbiota.

  14. Edible Safety Assessment of Genetically Modified Rice T1C-1 for Sprague Dawley Rats through Horizontal Gene Transfer, Allergenicity and Intestinal Microbiota.

    Directory of Open Access Journals (Sweden)

    Kai Zhao

    Full Text Available In this study, assessment of the safety of transgenic rice T1C-1 expressing Cry1C was carried out by: (1 studying horizontal gene transfer (HGT in Sprague Dawley rats fed transgenic rice for 90 d; (2 examining the effect of Cry1C protein in vitro on digestibility and allergenicity; and (3 studying the changes of intestinal microbiota in rats fed with transgenic rice T1C-1 in acute and subchronic toxicity tests. Sprague Dawley rats were fed a diet containing either 60% GM Bacillus thuringiensis (Bt rice T1C-1 expressing Cry1C protein, the parental rice Minghui 63, or a basic diet for 90 d. The GM Bt rice T1C-1 showed no evidence of HGT between rats and transgenic rice. Sequence searching of the Cry1C protein showed no homology with known allergens or toxins. Cry1C protein was rapidly degraded in vitro with simulated gastric and intestinal fluids. The expressed Cry1C protein did not induce high levels of specific IgG and IgE antibodies in rats. The intestinal microbiota of rats fed T1C-1 was also analyzed in acute and subchronic toxicity tests by DGGE. Cluster analysis of DGGE profiles revealed significant individual differences in the rats' intestinal microbiota.

  15. Doctors do cry.

    Science.gov (United States)

    Pruthi, Sonal; Goel, Ashish

    2014-01-01

    Physicians have tried to understand whether crying for a patient is a raw emotion that demonstrates their lack of control over themselves and the situation, or whether it is a sign of humanity and concern for one's fellow beings. Studies on medical students and doctors'narrations of times when they have shed tears over a patient's suffering or death have established beyond doubt that medical students and physicians are not immune to their patients'suffering and may cry when overwhelmed by stress and emotions. Even though humanity is the cornerstone of medicine, depersonalisation has somehow crept into the physician-patient relationship and crying is considered incompatible with the image of a good physician, who is supposed to be strong, confident and fully in charge. Thus, crying has been equated to weakness and at times, incompetence. This could be attributed to the fact that our medical curriculum has ingrained in us the belief that emotion clouds rationality and prevents us from being objective while making decisions regarding a patient's clinical progress. Our curriculum fails to teach us how to handle emotional situations, witness the dying process, communicate bad news, interact with the bereaved during the period of grief immediately following death, and reduce the professional stress involved in working with newly bereaved persons. Our training focuses on cure, amelioration of disease and the restoration of good health, with little emphasis on death, which is an absolute reality. It is crucial that medical educators take note of these lacunae in the curriculum. Physicians and teachers must recognise and accept the emotions that medical students experience in these situations, and teach them to offer their patients a sound blend of rationality and compassion with an attitude of humility.

  16. Strong oviposition preference for Bt over non-Bt maize in Spodoptera frugiperda and its implications for the evolution of resistance

    Science.gov (United States)

    2014-01-01

    Background Transgenic crops expressing Bt toxins have substantial benefits for growers in terms of reduced synthetic insecticide inputs, area-wide pest management and yield. This valuable technology depends upon delaying the evolution of resistance. The ‘high dose/refuge strategy’, in which a refuge of non-Bt plants is planted in close proximity to the Bt crop, is the foundation of most existing resistance management. Most theoretical analyses of the high dose/refuge strategy assume random oviposition across refugia and Bt crops. Results In this study we examined oviposition and survival of Spodoptera frugiperda across conventional and Bt maize and explored the impact of oviposition behavior on the evolution of resistance in simulation models. Over six growing seasons oviposition rates per plant were higher in Bt crops than in refugia. The Cry1F Bt maize variety retained largely undamaged leaves, and oviposition preference was correlated with the level of feeding damage in the refuge. In simulation models, damage-avoiding oviposition accelerated the evolution of resistance and either led to requirements for larger refugia or undermined resistance management altogether. Since larval densities affected oviposition preferences, pest population dynamics affected resistance evolution: larger refugia were weakly beneficial for resistance management if they increased pest population sizes and the concomitant degree of leaf damage. Conclusions Damaged host plants have reduced attractiveness to many insect pests, and crops expressing Bt toxins are generally less damaged than conventional counterparts. Resistance management strategies should take account of this behavior, as it has the potential to undermine the effectiveness of existing practice, especially in the tropics where many pests are polyvoltinous. Efforts to bring down total pest population sizes and/or increase the attractiveness of damaged conventional plants will have substantial benefits for slowing the

  17. The bZip transscription factor HY5 mediates CRY1a-induced anthocyanin biosynthesis in tomato.

    Science.gov (United States)

    Liu, Chao-Chao; Chi, Cheng; Jin, Li-Juan; Zhu, Jianhua; Yu, Jing-Quan; Zhou, Yan-Hong

    2018-03-22

    The production of anthocyanin is regulated by light and corresponding photoreceptors. In this study, we found that exposure to blue light and overexpression of CRY1a are associated with increased accumulation of anthocyanin in tomato (Solanum lycopersicum L.). These responses are the result of changes in mRNA and the protein levels of SlHY5, a transcription factor. In vitro and in vivo experiments using EMSA and ChIP-qPCR assays revealed that SlHY5 could directly recognize and bind to the G-box and ACE motifs in the promoters of anthocyanin biosynthesis genes, such as CHS1, CHS2 and DFR. Silencing of SlHY5 in OE-CRY1a lines decreased the accumulation of anthocyanin. The findings presented here not only deepened our understanding of how light controls anthocyanin biosynthesis and associated photoprotection in tomato leaves, but also allowed us to explore potential targets for improving pigment production. This article is protected by copyright. All rights reserved.

  18. Occurrence of toxigenic fungi in maize and maize-gluten meal from Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif SALEEMI

    2012-05-01

    Full Text Available The present study was designed to isolate and identify toxigenic mycoflora of maize and maize-gluten meal. A total of 82 samples of maize and 8 samples of maize-gluten meal were collected from Faisalabad district of Pakistan over a period of two years. These samples were inoculated on different culture media. Fungal contamination of maize and maize-gluten was 56% and 75% of samples, respectively. Isolation frequencies of different genera isolated from maize were Aspergillus 33%; Penicillium 28%; Fusarium 10%; and Alternaria 1%. Isolation frequency among species was maximum for P. verrucosum, followed by A. niger aggregates, A. ochraceous, A. flavus, P. chrysogenum, A. parasiticus, A. carbonarius, Fusarium spp. and Alternaria spp. Relative density of Aspergillus isolates was maximum for A. niger aggregates and A. ochraceous (30% each followed by A. flavus (26%, A. parasiticus (11% and A. carbonarius (3%. Percentage of toxigenic fungi among Aspergillus isolates was 52%. Aflatoxigenic isolates of A. flavus and A. parasiticus were 43 and 67% and ochratoxigenic isolates of A. carbonarius, A. ochraceous and A. niger aggregates were 100, 63 and 38%, respectively. Aspergillus parasiticus produced higher concentrations of AFB1 (maximum 1374.23 ng g-1 than A. flavus (maximum 635.50 ng g-1. Ochratoxin A production potential of A. ochraceous ranged from 1.81 to 9523.1 ng g-1, while in A. niger aggregates it was 1.30 to 1758.6 ng g-1. Isolation frequencies of fungal genera from maize-gluten meal were Aspergillus (63% and Penicillium (50%. A. flavus was the most frequently isolated species. Percentage of toxigenic fungi among Aspergillus isolates was 40%. Aflatoxigenic isolates of A. flavus were 33% and ochratoxigenic isolates of A. ochraceous were 100%.

  19. The PTI1-like kinase ZmPti1a from maize (Zea mays L.) co-localizes with callose at the plasma membrane of pollen and facilitates a competitive advantage to the male gametophyte.

    Science.gov (United States)

    Herrmann, Markus M; Pinto, Sheena; Kluth, Jantjeline; Wienand, Udo; Lorbiecke, René

    2006-10-06

    The tomato kinase Pto confers resistance to bacterial speck disease caused by Pseudomonas syringae pv. tomato in a gene for gene manner. Upon recognition of specific avirulence factors the Pto kinase activates multiple signal transduction pathways culminating in induction of pathogen defense. The soluble cytoplasmic serine/threonine kinase Pti1 is one target of Pto phosphorylation and is involved in the hypersensitive response (HR) reaction. However, a clear role of Pti1 in plant pathogen resistance is uncertain. So far, no Pti1 homologues from monocotyledonous species have been studied. Here we report the identification and molecular analysis of four Pti1-like kinases from maize (ZmPti1a, -b, -c, -d). These kinase genes showed tissue-specific expression and their corresponding proteins were targeted to different cellular compartments. Sequence similarity, expression pattern and cellular localization of ZmPti1b suggested that this gene is a putative orthologue of Pti1 from tomato. In contrast, ZmPti1a was specifically expressed in pollen and sequestered to the plasma membrane, evidently owing to N-terminal modification by myristoylation and/or S-acylation. The ZmPti1a:GFP fusion protein was not evenly distributed at the pollen plasma membrane but accumulated as an annulus-like structure which co-localized with callose (1,3-beta-glucan) deposition. In addition, co-localization of ZmPti1a and callose was observed during stages of pollen mitosis I and pollen tube germination. Maize plants in which ZmPti1a expression was silenced by RNA interference (RNAi) produced pollen with decreased competitive ability. Hence, our data provide evidence that ZmPti1a plays an important part in a signalling pathway that accelerates pollen performance and male fitness. ZmPti1a from maize is involved in pollen-specific processes during the progamic phase of reproduction, probably in crucial signalling processes associated with regions of callose deposition. Pollen

  20. Arabidopsis cryptochrome 1 is a soluble protein mediating blue light-dependent regulation of plant growth and development

    International Nuclear Information System (INIS)

    Lin ChenTao; Ahmad, M.; Cashmore, A.R.

    1996-01-01

    Cryptochrome 1 (CRY1) is a flavin-type blue type receptor of Arabidopsis thaliana which mediates inhibition of hypocotyl elongation. In the work described in this report it is demonstrated that CRY1 is a soluble protein expressed in both young seedlings grown either in the dark or under light, and in different organs of adult plants. The functional role of CRY1 was further investigated using transgenic Arabidopsis plants overexpressing CRY1. It is demonstrated that overexpression of CRY1 resulted in hypersensitivity to blue, UV-A, and green light for the inhibition of hypocotyl elongation response. Transgenic plants overexpressing CRY1 also exhibited a dwarf phenotype with reduced size in almost every organ. This was in keeping with the previous observation of reciprocal alterations found in hy4 mutant plants and is consistent with a hypothesis that CRY1 mediates a light-dependent process resulting in a general inhibitory effect on plant growth. In addition, transgenic plants overexpressing CRY1 showed increased anthocyanin accumulation in response to blue, UV-A, and green light in a fluence rate-dependent manner. This increase in anthocyanin accumulation in transgenic plants was shown to be concomitant with increased blue light-induction of CHS gene expression. It is concluded that CRY1 is a photoreceptor mediating blue light-dependent regulation of gene expression in addition to its affect on plant growth. (author)

  1. A Novel Tenebrio molitor Cadherin Is a Functional Receptor for Bacillus thuringiensis Cry3Aa Toxin*

    OpenAIRE

    Fabrick, Jeff; Oppert, Cris; Lorenzen, Marcé D.; Morris, Kaley; Oppert, Brenda; Jurat-Fuentes, Juan Luis

    2009-01-01

    Cry toxins produced by the bacterium Bacillus thuringiensis are effective biological insecticides. Cadherin-like proteins have been reported as functional Cry1A toxin receptors in Lepidoptera. Here we present data that demonstrate that a coleopteran cadherin is a functional Cry3Aa toxin receptor. The Cry3Aa receptor cadherin was cloned from Tenebrio molitor larval midgut mRNA, and the predicted protein, TmCad1, has domain structure and a putative toxin binding region similar to those in lepid...

  2. Coordination of the maize transcriptome by a conserved circadian clock

    Directory of Open Access Journals (Sweden)

    Harmon Frank G

    2010-06-01

    Full Text Available Abstract Background The plant circadian clock orchestrates 24-hour rhythms in internal physiological processes to coordinate these activities with daily and seasonal changes in the environment. The circadian clock has a profound impact on many aspects of plant growth and development, including biomass accumulation and flowering time. Despite recent advances in understanding the circadian system of the model plant Arabidopsis thaliana, the contribution of the circadian oscillator to important agronomic traits in Zea mays and other cereals remains poorly defined. To address this deficit, this study investigated the transcriptional landscape of the maize circadian system. Results Since transcriptional regulation is a fundamental aspect of circadian systems, genes exhibiting circadian expression were identified in the sequenced maize inbred B73. Of the over 13,000 transcripts examined, approximately 10 percent displayed circadian expression patterns. The majority of cycling genes had peak expression at subjective dawn and dusk, similar to other plant circadian systems. The maize circadian clock organized co-regulation of genes participating in fundamental physiological processes, including photosynthesis, carbohydrate metabolism, cell wall biogenesis, and phytohormone biosynthesis pathways. Conclusions Circadian regulation of the maize genome was widespread and key genes in several major metabolic pathways had circadian expression waveforms. The maize circadian clock coordinated transcription to be coincident with oncoming day or night, which was consistent with the circadian oscillator acting to prepare the plant for these major recurring environmental changes. These findings highlighted the multiple processes in maize plants under circadian regulation and, as a result, provided insight into the important contribution this regulatory system makes to agronomic traits in maize and potentially other C4 plant species.

  3. Maize kernel evolution:From teosinte to maize

    Science.gov (United States)

    Maize is the most productive and highest value commodity in the US and around the world: over 1 billion tons were produced each year in 2013 and 2014. Together, maize, rice and wheat comprise over 60% of the world’s caloric intake, with wide regional variability in the importance of each crop. The i...

  4. A Comprehensive Analysis of Alternative Splicing in Paleopolyploid Maize

    Directory of Open Access Journals (Sweden)

    Wenbin Mei

    2017-05-01

    Full Text Available Identifying and characterizing alternative splicing (AS enables our understanding of the biological role of transcript isoform diversity. This study describes the use of publicly available RNA-Seq data to identify and characterize the global diversity of AS isoforms in maize using the inbred lines B73 and Mo17, and a related species, sorghum. Identification and characterization of AS within maize tissues revealed that genes expressed in seed exhibit the largest differential AS relative to other tissues examined. Additionally, differences in AS between the two genotypes B73 and Mo17 are greatest within genes expressed in seed. We demonstrate that changes in the level of alternatively spliced transcripts (intron retention and exon skipping do not solely reflect differences in total transcript abundance, and we present evidence that intron retention may act to fine-tune gene expression across seed development stages. Furthermore, we have identified temperature sensitive AS in maize and demonstrate that drought-induced changes in AS involve distinct sets of genes in reproductive and vegetative tissues. Examining our identified AS isoforms within B73 × Mo17 recombinant inbred lines (RILs identified splicing QTL (sQTL. The 43.3% of cis-sQTL regulated junctions are actually identified as alternatively spliced junctions in our analysis, while 10 Mb windows on each side of 48.2% of trans-sQTLs overlap with splicing related genes. Using sorghum as an out-group enabled direct examination of loss or conservation of AS between homeologous genes representing the two subgenomes of maize. We identify several instances where AS isoforms that are conserved between one maize homeolog and its sorghum ortholog are absent from the second maize homeolog, suggesting that these AS isoforms may have been lost after the maize whole genome duplication event. This comprehensive analysis provides new insights into the complexity of AS in maize.

  5. In-silico determination of insecticidal potential of Vip3Aa-Cry1Ac fusion protein against Lepidopteran targets using molecular docking

    Directory of Open Access Journals (Sweden)

    Aftab eAhmad

    2015-12-01

    Full Text Available Study and research of Bt (Bacillus thuringiensis transgenic plants have opened new ways to combat insect pests. Over the decades, however, insect pests, especially the Lepidopteran, have developed tolerance against Bt delta-endotoxins. Such issues can be addressed through the development of novel toxins with greater toxicity and affinity against a broad range of insect receptors. In this computational study, functional domains of Bacillus thuringiensis crystal delta-endotoxin (Cry1Ac insecticidal protein and vegetative insecticidal protein (Vip3Aa have been fused to develop a broad-range Vip3Aa-Cry1Ac fusion protein. Cry1Ac and Vip3Aa are non-homologous insecticidal proteins possessing receptors against different targets within the midgut of insects. The insecticidal proteins were fused to broaden the insecticidal activity. Molecular docking analysis of the fusion protein against aminopeptidase-N (APN and cadherin receptors of five Lepidopteran insects (Agrotis ipsilon, Helicoverpa armigera, Pectinophora gossypiella, Spodoptera exigua and Spodoptera litura revealed that the Ser290, Ser293, Leu337, Thr340 and Arg437 residues of the fusion protein are involved in the interaction with insect receptors. The Helicoverpa armigera cadherin receptor, however, showed no interaction, which might be due to either loss or burial of interactive residues inside the fusion protein. These findings revealed that the Vip3Aa-Cry1Ac fusion protein has a strong affinity against Lepidopteran insect receptors and hence has a potential to be an efficient broad-range insecticidal protein.

  6. Safety assessment of lepidopteran insect-protected transgenic rice with cry2A* gene.

    Science.gov (United States)

    Zou, Shiying; Huang, Kunlun; Xu, Wentao; Luo, Yunbo; He, Xiaoyun

    2016-04-01

    Numerous genetically modified (GM) crops expressing proteins for insect resistance have been commercialized following extensive testing demonstrating that the foods obtained from them are as safe as that obtained from their corresponding non-GM varieties. In this paper, we report the outcome of safety studies conducted on a newly developed insect-resistant GM rice expressing the cry2A* gene by a subchronic oral toxicity study on rats. GM rice and non-GM rice were incorporated into the diet at levels of 30, 50, and 70% (w/w), No treatment-related adverse or toxic effects were observed based on an examination of the daily clinical signs, body weight, food consumption, hematology, serum biochemistry, and organ weight or based on gross and histopathological examination. These results demonstrate that the GM rice with cry2A* gene is as safe for food as conventional non-GM rice.

  7. A cry in the dark: depressed mothers show reduced neural activation to their own infant’s cry

    Science.gov (United States)

    Ablow, Jennifer C.

    2012-01-01

    This study investigated depression-related differences in primiparous mothers’ neural response to their own infant’s distress cues. Mothers diagnosed with major depressive disorder (n = 11) and comparison mothers with no diagnosable psychopathology (n = 11) were exposed to their own 18-months-old infant’s cry sound, as well as unfamiliar infant’s cry and control sound, during functional neuroimaging. Depressed mothers’ response to own infant cry greater than other sounds was compared to non-depressed mothers’ response in the whole brain [false discovery rate (FDR) corrected]. A continuous measure of self-reported depressive symptoms (CESD) was also tested as a predictor of maternal response. Non-depressed mothers activated to their own infant’s cry greater than control sound in a distributed network of para/limbic and prefrontal regions, whereas depressed mothers as a group failed to show activation. Non-depressed compared to depressed mothers showed significantly greater striatal (caudate, nucleus accumbens) and medial thalamic activation. Additionally, mothers with lower depressive symptoms activated more strongly in left orbitofrontal, dorsal anterior cingulate and medial superior frontal regions. Non-depressed compared to depressed mothers activated uniquely to own infant greater than other infant cry in occipital fusiform areas. Disturbance of these neural networks involved in emotional response and regulation may help to explain parenting deficits in depressed mothers. PMID:21208990

  8. In vitro effect of Bacillus thuringiensis strains and Cry proteins in phytopathogenic fungi of paddy rice-field Efeito in vitro de cepas e proteínas Cry de Bacillus thuringiensis em fungos fitopatogênicos da cultura do arroz irrigado

    Directory of Open Access Journals (Sweden)

    Neiva Knaak

    2007-09-01

    Full Text Available Cry1Ab and Cry1Ac strains and proteins synthesized by Bacillus thuringiensis thuringiensis and B. thuringiensis kurstaki were assessed in the following phytopathogens: Rhizoctonia solani,Pyricularia grisea,Fusarium oxysporum and F. solani, which had their micelial growth decreased after incubation in the presence of the bacterial strains. As to Cry proteins, there were no inhibition halo development in the assessed concentrations.As cepas e proteínas Cry1Ab e Cry1Ac sintetizadas por Bacillus thuringiensis thuringiensis e B. thuringiensis kurstaki, foram avaliadas nos fitopatógenos: Rhizoctonia solani,Pyricularia grisea,Fusarium oxysporum e F. solani, os quais tiveram seu crescimento micelial reduzido após a incubação na presença das cepas bacterianas. Em relação às proteínas Cry, não houve formação de halo de inibição nas concentrações avaliadas.

  9. Biological activity of Bt proteins expressed in different structures of transgenic corn against Spodoptera frugiperda

    Directory of Open Access Journals (Sweden)

    Daniel Bernardi

    2016-06-01

    Full Text Available ABSTRACT: Spodoptera frugiperda (J. E. Smith is the main target pest of Bt corn technologies, such as YieldGard VT PRO(tm (Cry1A.105/Cry2Ab2 and PowerCore(tm (Cry1A.105/Cry2Ab2/Cry1F. In this study, it was evaluated the biological activity of Bt proteins expressed in different plant structures of YieldGard VT PRO(tm and PowerCore(tm corn against S. frugiperda . Complete mortality of S. frugiperda neonates was observed on leaf-disc of both Bt corn technologies. However, the mortality in silks and grains was lower than 50 and 6%, respectively. In addition, more than 49% of the surviving larvae in silks and grains completed the biological cycle. However, all life table parameters were negatively affected in insects that developed in silks and grains of both Bt corn events. In summary, the low biological activity of Bt proteins expressed on silks and grains of YieldGard VT PRO(tm and PowerCore(tm corn can contribute to the resistance evolution in S. frugiperda populations.

  10. Binding of Substrate Locks the Electrochemistry of CRY-DASH into DNA Repair.

    Science.gov (United States)

    Gindt, Yvonne M; Messyasz, Adriana; Jumbo, Pamela I

    2015-05-12

    VcCry1, a member of the CRY-DASH family, may serve two diverse roles in vivo, including blue-light signaling and repair of UV-damaged DNA. We have discovered that the electrochemistry of the flavin adenine dinucleotide cofactor of VcCry1 is locked to cycle only between the hydroquinone and neutral semiquinone states when UV-damaged DNA is present. Other potential substrates, including undamaged DNA and ATP, have no discernible effect on the electrochemistry, and the kinetics of the reduction is unaffected by damaged DNA. Binding of the damaged DNA substrate determines the role of the protein and prevents the presumed photochemistry required for blue-light signaling.

  11. Comparative proteomics of leaves found at different stem positions of maize seedlings.

    Science.gov (United States)

    Chen, Yi-Bo; Wang, Dan; Ge, Xuan-Liang; Zhao, Biligen-Gaowa; Wang, Xu-Chu; Wang, Bai-Chen

    2016-07-01

    To better understand the roles of leaves at different stem positions during plant development, we measured the physiological properties of leaves 1-4 on maize seedling stems, and performed a proteomics study to investigate the differences in protein expression in the four leaves using two-dimensional difference gel electrophoresis and tandem mass spectrometry in conjunction with database searching. A total of 167 significantly differentially expressed protein spots were found and identified. Of these, 35% are involved in photosynthesis. By further analysis of the data, we speculated that in leaf 1 the seedling has started to transition from a heterotroph to an autotroph, development of leaf 2 is the time at which the seedling fully transitions from a heterotroph to an autotroph, and leaf maturity was reached only with fully expanded leaves 3 and 4, although there were still some protein expression differences in the two leaves. These results suggest that the different leaves make different contributions to maize seedling growth via modulation of the expression of the photosynthetic proteins. Together, these results provide insight into the roles of the different maize leaves as the plant develops from a heterotroph to an autotroph. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Validation of potential reference genes for qPCR in maize across abiotic stresses, hormone treatments, and tissue types.

    Directory of Open Access Journals (Sweden)

    Yueai Lin

    Full Text Available The reverse transcription quantitative polymerase chain reaction (RT-qPCR is a powerful and widely used technique for the measurement of gene expression. Reference genes, which serve as endogenous controls ensure that the results are accurate and reproducible, are vital for data normalization. To bolster the literature on reference gene selection in maize, ten candidate reference genes, including eight traditionally used internal control genes and two potential candidate genes from our microarray datasets, were evaluated for expression level in maize across abiotic stresses (cold, heat, salinity, and PEG, phytohormone treatments (abscisic acid, salicylic acid, jasmonic acid, ethylene, and gibberellins, and different tissue types. Three analytical software packages, geNorm, NormFinder, and Bestkeeper, were used to assess the stability of reference gene expression. The results revealed that elongation factor 1 alpha (EF1α, tubulin beta (β-TUB, cyclophilin (CYP, and eukaryotic initiation factor 4A (EIF4A were the most reliable reference genes for overall gene expression normalization in maize, while GRP (Glycine-rich RNA-binding protein, GLU1(beta-glucosidase, and UBQ9 (ubiquitin 9 were the least stable and most unsuitable genes. In addition, the suitability of EF1α, β-TUB, and their combination as reference genes was confirmed by validating the expression of WRKY50 in various samples. The current study indicates the appropriate reference genes for the urgent requirement of gene expression normalization in maize across certain abiotic stresses, hormones, and tissue types.

  13. Aberrant rhythmic expression of cryptochrome2 regulates the radiosensitivity of rat gliomas.

    Science.gov (United States)

    Fan, Wang; Caiyan, Li; Ling, Zhu; Jiayun, Zhao

    2017-09-29

    In this study, we investigated the role of the clock regulatory protein cryptochrome 2 (Cry2) in determining the radiosensitivity of C6 glioma cells in a rat model. We observed that Cry2 mRNA and protein levels showed aberrant rhythmic periodicity of 8 h in glioma tissues, compared to 24 h in normal brain tissue. Cry2 mRNA and protein levels did not respond to irradiation in normal tissues, but both were increased at the ZT4 (low Cry2) and ZT8 (high Cry2) time points in gliomas. Immunohistochemical staining of PCNA and TUNEL assays demonstrated that high Cry2 expression in glioma tissues was associated with increased cell proliferation and decreased apoptosis. Western blot analysis showed that glioma cell fate was independent of p53, but was probably dependent on p73, which was more highly expressed at ZT4 (low Cry2) than at ZT8 (high Cry2). Levels of both p53 and p73 were unaffected by irradiation in normal brain tissues. These findings suggest aberrant rhythmic expression of Cry2 influence on radiosensitivity in rat gliomas.

  14. A Circadian Clock Gene, Cry, Affects Heart Morphogenesis and Function in Drosophila as Revealed by Optical Coherence Microscopy.

    Directory of Open Access Journals (Sweden)

    Aneesh Alex

    Full Text Available Circadian rhythms are endogenous, entrainable oscillations of physical, mental and behavioural processes in response to local environmental cues such as daylight, which are present in the living beings, including humans. Circadian rhythms have been related to cardiovascular function and pathology. However, the role that circadian clock genes play in heart development and function in a whole animal in vivo are poorly understood. The Drosophila cryptochrome (dCry is a circadian clock gene that encodes a major component of the circadian clock negative feedback loop. Compared to the embryonic stage, the relative expression levels of dCry showed a significant increase (>100-fold in Drosophila during the pupa and adult stages. In this study, we utilized an ultrahigh resolution optical coherence microscopy (OCM system to perform non-invasive and longitudinal analysis of functional and morphological changes in the Drosophila heart throughout its post-embryonic lifecycle for the first time. The Drosophila heart exhibited major morphological and functional alterations during its development. Notably, heart rate (HR and cardiac activity period (CAP of Drosophila showed significant variations during the pupa stage, when heart remodeling took place. From the M-mode (2D + time OCM images, cardiac structural and functional parameters of Drosophila at different developmental stages were quantitatively determined. In order to study the functional role of dCry on Drosophila heart development, we silenced dCry by RNAi in the Drosophila heart and mesoderm, and quantitatively measured heart morphology and function in those flies throughout its development. Silencing of dCry resulted in slower HR, reduced CAP, smaller heart chamber size, pupal lethality and disrupted posterior segmentation that was related to increased expression of a posterior compartment protein, wingless. Collectively, our studies provided novel evidence that the circadian clock gene, dCry, plays

  15. A Circadian Clock Gene, Cry, Affects Heart Morphogenesis and Function in Drosophila as Revealed by Optical Coherence Microscopy

    Science.gov (United States)

    Zeng, Xianxu; Tate, Rebecca E.; McKee, Mary L.; Capen, Diane E.; Zhang, Zhan; Tanzi, Rudolph E.; Zhou, Chao

    2015-01-01

    Circadian rhythms are endogenous, entrainable oscillations of physical, mental and behavioural processes in response to local environmental cues such as daylight, which are present in the living beings, including humans. Circadian rhythms have been related to cardiovascular function and pathology. However, the role that circadian clock genes play in heart development and function in a whole animal in vivo are poorly understood. The Drosophila cryptochrome (dCry) is a circadian clock gene that encodes a major component of the circadian clock negative feedback loop. Compared to the embryonic stage, the relative expression levels of dCry showed a significant increase (>100-fold) in Drosophila during the pupa and adult stages. In this study, we utilized an ultrahigh resolution optical coherence microscopy (OCM) system to perform non-invasive and longitudinal analysis of functional and morphological changes in the Drosophila heart throughout its post-embryonic lifecycle for the first time. The Drosophila heart exhibited major morphological and functional alterations during its development. Notably, heart rate (HR) and cardiac activity period (CAP) of Drosophila showed significant variations during the pupa stage, when heart remodeling took place. From the M-mode (2D + time) OCM images, cardiac structural and functional parameters of Drosophila at different developmental stages were quantitatively determined. In order to study the functional role of dCry on Drosophila heart development, we silenced dCry by RNAi in the Drosophila heart and mesoderm, and quantitatively measured heart morphology and function in those flies throughout its development. Silencing of dCry resulted in slower HR, reduced CAP, smaller heart chamber size, pupal lethality and disrupted posterior segmentation that was related to increased expression of a posterior compartment protein, wingless. Collectively, our studies provided novel evidence that the circadian clock gene, dCry, plays an essential

  16. Incidence of Fusarium spp. and Levels of Fumonisin B1 in Maize in Western Kenya

    Science.gov (United States)

    Kedera, C. J.; Plattner, R. D.; Desjardins, A. E.

    1999-01-01

    Maize kernel samples were collected in 1996 from smallholder farm storages in the districts of Bomet, Bungoma, Kakamega, Kericho, Kisii, Nandi, Siaya, Trans Nzoia, and Vihiga in the tropical highlands of western Kenya. Two-thirds of the samples were good-quality maize, and one-third were poor-quality maize with a high incidence of visibly diseased kernels. One hundred fifty-three maize samples were assessed for Fusarium infection by culturing kernels on a selective medium. The isolates obtained were identified to the species level based on morphology and on formation of the sexual stage in Gibberella fujikuroi mating population tests. Fusarium moniliforme (G. fujikuroi mating population A) was isolated most frequently, but F. subglutinans (G. fujikuroi mating population E), F. graminearum, F. oxysporum, F. solani, and other Fusarium species were also isolated. The high incidence of kernel infection with the fumonisin-producing species F. moniliforme indicated a potential for fumonisin contamination of Kenyan maize. However, analysis of 197 maize kernel samples by high-performance liquid chromatography found little fumonisin B1 in most of the samples. Forty-seven percent of the samples contained fumonisin B1 at levels above the detection limit (100 ng/g), but only 5% were above 1,000 ng/g, a proposed level of concern for human consumption. The four most-contaminated samples, with fumonisin B1 levels ranging from 3,600 to 11,600 ng/g, were from poor-quality maize collected in the Kisii district. Many samples with a high incidence of visibly diseased kernels contained little or no fumonisin B1, despite the presence of F. moniliforme. This result may be attributable to the inability of F. moniliforme isolates present in Kenyan maize to produce fumonisins, to the presence of other ear rot fungi, and/or to environmental conditions unfavorable for fumonisin production. PMID:9872757

  17. Acoustic Features and Auditory Perceptions of the Cries of Newborns with Prenatal and Perinatal Complications.

    Science.gov (United States)

    Zeskind, Philip Sanford; Lester, Barry M.

    1978-01-01

    Describes two experiments which examined the relation between neonatal cry features and obstetric histories. Experiment 1 showed differences in pitch and durational features between the cries of high- and low-complication newborns. Experiment 2 showed differences in the cry ratings of the two groups on dimensions such as aversive, sick, urgent,…

  18. Sex stereotypes influence adults' perception of babies' cries

    OpenAIRE

    Reby, David; Levréro, Florence; Gustafsson, Erik; Mathevon, Nicolas

    2016-01-01

    Background Despite widespread evidence that gender stereotypes influence human parental behavior, their potential effects on adults? perception of babies? cries have been overlooked. In particular, whether adult listeners overgeneralize the sex dimorphism that characterizes the voice of adult speakers (men are lower-pitched than women) to their perception of babies? cries has not been investigated. Methods We used playback experiments combining natural and re-synthesised cries of 3?month-old ...

  19. Crying Baby: What to Do When Your Newborn Cries

    Science.gov (United States)

    ... a crying baby — and renewing your ability to handle the tears. By Mayo Clinic Staff The dream: Your baby sleeps through the night after just a few weeks, gurgles happily while you run errands and fusses only when hunger strikes. The reality: Your baby's favorite playtime is after ...

  20. Serotonin 5HT1A receptor availability and pathological crying after stroke

    DEFF Research Database (Denmark)

    Møller, Mette; Andersen, G; Gjedde, A

    2007-01-01

    OBJECTIVES: Post-stroke depression and pathological crying (PC) implicate an imbalance of serotonergic neurotransmission. We claim that PC follows serotonin depletion that raises the binding potential (p(B)) of the 5-HT(1A) receptor antagonist [carbonyl-(11)C]WAY-100635, which is reversible...... by selective serotonin re-uptake inhibitor (SSRI) treatment. MATERIALS AND METHODS: We PET scanned patients with acute stroke and PC and age-matched control subjects. Maps of receptor availability were generated from the images of eight cortical regions and raphe nuclei. RESULTS: The maps showed highest...

  1. The excessively crying infant : etiology and treatment

    NARCIS (Netherlands)

    Akhnikh, S.; Engelberts, A.C.; Sleuwen, B.E. van; Hoir, M.P. L’; Benninga, M.A.

    2014-01-01

    Excessive crying, often described as infantile colic, is the cause of 10% to 20% of all early pediatrician visits of infants aged 2 weeks to 3 months. Although usually benign and selflimiting, excessive crying is associated with parental exhaustion and stress. However, and underlying organic cause

  2. A Tenebrio molitor GPI-anchored alkaline phosphatase is involved in binding of Bacillus thuringiensis Cry3Aa to brush border membrane vesicles.

    Science.gov (United States)

    Zúñiga-Navarrete, Fernando; Gómez, Isabel; Peña, Guadalupe; Bravo, Alejandra; Soberón, Mario

    2013-03-01

    Bacillus thuringiensis Cry toxins recognizes their target cells in part by the binding to glycosyl-phosphatidyl-inositol (GPI) anchored proteins such as aminopeptidase-N (APN) or alkaline phosphatases (ALP). Treatment of Tenebrio molitor brush border membrane vesicles (BBMV) with phospholipase C that cleaves out GPI-anchored proteins from the membranes, showed that GPI-anchored proteins are involved in binding of Cry3Aa toxin to BBMV. A 68 kDa GPI-anchored ALP was shown to bind Cry3Aa by toxin overlay assays. The 68 kDa GPI-anchored ALP was preferentially expressed in early instar larvae in comparison to late instar larvae. Our work shows for the first time that GPI-anchored ALP is important for Cry3Aa binding to T. molitor BBMV suggesting that the mode of action of Cry toxins is conserved in different insect orders. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Keefektivan Padi Transgenik terhadap Hama Penggerek Batang Padi Kuning Scirpophaga Incertulas (Walker) (Lepidoptera: Crambidae)

    OpenAIRE

    Usyati, N; Buchori, Damayanti; Manuwoto, Syafrida; Hidayat, Purnama; -Loedin, Inez H. Slamet

    2009-01-01

    Transformation two cry genes (cryIB-cryIAa) and transformation with a single the cry1B gene under the control of a wound-inducible maize proteinase inhibitor gene (mpi) promoter were two approaches that were used to get resistant rice to the rice stemborer which may be had a durable resistance. To obtain information on the effectiveness of seven transgenic rice lines to the rice yellow stemborer S. incertulas, a test was conducted in greenhouse. The seven lines were 1). line 4.2.3 and 2) line...

  4. Keefektivan padi transgenik terhadap hama penggerek batang padi kuning Scirpophaga incertulas (Walker) (Lepidoptera: Crambidae)

    OpenAIRE

    N. Usyati; Damayanti Buchori; Syafrida Manuwoto; Purnama Hidayat; Inez H. Slamet -Loedin

    2016-01-01

    Transformation two cry genes (cryIB-cryIAa) and transformation with a single the cry1B gene under the control of a wound-inducible maize proteinase inhibitor gene (mpi) promoter were two approaches that were used to get resistant rice to the rice stemborer which may be had a durable resistance. To obtain information on the effectiveness of seven transgenic rice lines to the rice yellow stemborer S. incertulas, a test was conducted in greenhouse. The seven lines were 1). line 4.2.3 and 2) line...

  5. The PTI1-like kinase ZmPti1a from maize (Zea mays L. co-localizes with callose at the plasma membrane of pollen and facilitates a competitive advantage to the male gametophyte

    Directory of Open Access Journals (Sweden)

    Wienand Udo

    2006-10-01

    Full Text Available Abstract Background The tomato kinase Pto confers resistance to bacterial speck disease caused by Pseudomonas syringae pv. tomato in a gene for gene manner. Upon recognition of specific avirulence factors the Pto kinase activates multiple signal transduction pathways culminating in induction of pathogen defense. The soluble cytoplasmic serine/threonine kinase Pti1 is one target of Pto phosphorylation and is involved in the hypersensitive response (HR reaction. However, a clear role of Pti1 in plant pathogen resistance is uncertain. So far, no Pti1 homologues from monocotyledonous species have been studied. Results Here we report the identification and molecular analysis of four Pti1-like kinases from maize (ZmPti1a, -b, -c, -d. These kinase genes showed tissue-specific expression and their corresponding proteins were targeted to different cellular compartments. Sequence similarity, expression pattern and cellular localization of ZmPti1b suggested that this gene is a putative orthologue of Pti1 from tomato. In contrast, ZmPti1a was specifically expressed in pollen and sequestered to the plasma membrane, evidently owing to N-terminal modification by myristoylation and/or S-acylation. The ZmPti1a:GFP fusion protein was not evenly distributed at the pollen plasma membrane but accumulated as an annulus-like structure which co-localized with callose (1,3-β-glucan deposition. In addition, co-localization of ZmPti1a and callose was observed during stages of pollen mitosis I and pollen tube germination. Maize plants in which ZmPti1a expression was silenced by RNA interference (RNAi produced pollen with decreased competitive ability. Hence, our data provide evidence that ZmPti1a plays an important part in a signalling pathway that accelerates pollen performance and male fitness. Conclusion ZmPti1a from maize is involved in pollen-specific processes during the progamic phase of reproduction, probably in crucial signalling processes associated with regions

  6. Behaviour, Physiology and Experience of Pathological Laughing and Crying in Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Olney, Nicholas T.; Goodkind, Madeleine S.; Lomen-Hoerth, Catherine; Whalen, Patrick K.; Williamson, Craig A.; Holley, Deborah E.; Verstaen, Alice; Brown, Laurel M.; Miller, Bruce L.; Kornak, John; Levenson, Robert W.; Rosen, Howard J.

    2011-01-01

    Pathological laughing and crying is a disorder of emotional expression seen in a number of neurological diseases. The aetiology is poorly understood, but clinical descriptions suggest a disorder of emotion regulation. The goals of this study were: (i) to characterize the subjective, behavioural and physiological emotional reactions that occur…

  7. The cultivation of Bt corn producing Cry1Ac toxins does not adversely affect non-target arthropods.

    Directory of Open Access Journals (Sweden)

    Yanyan Guo

    Full Text Available Transgenic corn producing Cry1Ac toxins from Bacillus thuringiensis (Bt provides effective control of Asian corn borer, Ostrinia furnacalis (Guenée, and thus reduces insecticide applications. However, whether Bt corn exerts undesirable effects on non-target arthropods (NTAs is still controversial. We conducted a 2-yr study in Shangzhuang Agricultural Experiment Station to assess the potential impact of Bt corn on field population density, biodiversity, community composition and structure of NTAs. On each sampling date, the total abundance, Shannon's diversity index, Pielou's evenness index and Simpson's diversity index were not significantly affected by Bt corn as compared to non-Bt corn. The "sampling dates" had a significant effect on these indices, but no clear tendencies related to "Bt corn" or "sampling dates X corn variety" interaction were recorded. Principal response curve analysis of variance indicated that Bt corn did not alter the distribution of NTAs communities. Bray-Curtis dissimilarity and distance analysis showed that Cry1Ac toxin exposure did not increase community dissimilarities between Bt and non-Bt corn plots and that the evolution of non-target arthropod community was similar on the two corn varieties. The cultivation of Bt corn failed to show any detrimental evidence on the density of non-target herbivores, predators and parasitoids. The composition of herbivores, predators and parasitoids was identical in Bt and non-Bt corn plots. Taken together, results from the present work support that Bt corn producing Cry1Ac toxins does not adversely affect NTAs.

  8. Preliminary evaluation of a primary care intervention for cry-fuss behaviours in the first 3-4 months of life ('The Possums Approach'): effects on cry-fuss behaviours and maternal mood.

    Science.gov (United States)

    Douglas, Pamela S; Miller, Yvette; Bucetti, Anne; Hill, Peter S; Creedy, Debra K

    2015-01-01

    Problem crying in the first few months of life is both common and complex, arising out of multiple interacting and co-evolving factors. Parents whose babies cry and fuss a lot receive conflicting advice as they seek help from multiple health providers and emergency departments, and may be admitted into tertiary residential services. Conflicting advice is costly, and arises out of discipline-specific interpretations of evidence. An integrated, interdisciplinary primary care intervention ('The Possums Approach') for cry-fuss problems in the first months of life was developed from available peer-reviewed evidence. This study reports on preliminary evaluation of delivery of the intervention. A total of 20 mothers who had crying babies under 16 weeks of age (average age 6.15 weeks) completed questionnaires, including the Crying Patterns Questionnaire and the Edinburgh Postnatal Depression Scale, before and 3-4 weeks after their first consultation with trained primary care practitioners. Preliminary evaluation is promising. The Crying Patterns Questionnaire showed a significant decrease in crying and fussing duration, by 1h in the evening (P=0.001) and 30 min at night (P=0.009). The median total amount of crying and fussing in a 24-h period was reduced from 6.12 to 3h. The Edinburgh Postnatal Depression Scale showed a significant improvement in depressive symptoms, with the median score decreasing from 11 to 6 (P=0.005). These findings are corroborated by an analysis of results for the subset of 16 participants whose babies were under 12 weeks of age (average age 4.71 weeks). These preliminary results demonstrate significantly decreased infant crying in the evening and during the night and improved maternal mood, validating an innovative interdisciplinary clinical intervention for cry-fuss problems in the first few months of life. This intervention, delivered by trained health professionals, has the potential to mitigate the costly problem of health professionals giving

  9. Exposure to tobacco smoke and infant crying

    NARCIS (Netherlands)

    Reijneveld, S.A.; Lanting, C.I.; Crone, M.R.; Wouwe, J.P. van

    2005-01-01

    Aim: To examine the association of excessive infant crying with maternal smoking during and after pregnancy, paternal smoking, and smoking by other people in the living environment of the infant. Methods: We collected data on infant crying and smoking in a Dutch national sample of 5845 infants aged

  10. Exposure to tobacco smoke and infant crying

    NARCIS (Netherlands)

    Reijneveld, SA; Lanting, Caren; Crone, MR; Van Wouwe, JP

    Aim: To examine the association of excessive infant crying with maternal smoking during and after pregnancy, paternal smoking, and smoking by other people in the living environment of the infant. Methods: We collected data on infant crying and smoking in a Dutch national sample of 5845 infants aged

  11. Crying in infancy

    Science.gov (United States)

    ... your child. As long as caregivers are taking safety precautions and comforting the baby when necessary, you may be sure that your child is well cared for during your break. Call your provider immediately if your baby's crying ...

  12. The Role of the Subgenual Anterior Cingulate Cortex and Amygdala in Environmental Sensitivity to Infant Crying

    Science.gov (United States)

    Mutschler, Isabella; Ball, Tonio; Kirmse, Ursula; Wieckhorst, Birgit; Pluess, Michael; Klarhöfer, Markus; Meyer, Andrea H.; Wilhelm, Frank H.; Seifritz, Erich

    2016-01-01

    Newborns and infants communicate their needs and physiological states through crying and emotional facial expressions. Little is known about individual differences in responding to infant crying. Several theories suggest that people vary in their environmental sensitivity with some responding generally more and some generally less to environmental stimuli. Such differences in environmental sensitivity have been associated with personality traits, including neuroticism. This study investigated whether neuroticism impacts neuronal, physiological, and emotional responses to infant crying by investigating blood-oxygenation-level dependent (BOLD) responses using functional magnetic resonance imaging (fMRI) in a large sample of healthy women (N = 102) with simultaneous skin conductance recordings. Participants were repeatedly exposed to a video clip that showed crying infants and emotional responses (valence, arousal, and irritation) were assessed after every video clip presentation. Increased BOLD signal during the perception of crying infants was found in brain regions that are associated with emotional responding, the amygdala and anterior insula. Significant BOLD signal decrements (i.e., habituation) were found in the fusiform gyrus, middle temporal gyrus, superior temporal gyrus, Broca’s homologue on the right hemisphere, (laterobasal) amygdala, and hippocampus. Individuals with high neuroticism showed stronger activation in the amygdala and subgenual anterior cingulate cortex (sgACC) when exposed to infant crying compared to individuals with low neuroticism. In contrast to our prediction we found no evidence that neuroticism impacts fMRI-based measures of habituation. Individuals with high neuroticism showed elevated skin conductance responses, experienced more irritation, and perceived infant crying as more unpleasant. The results support the hypothesis that individuals high in neuroticism are more emotionally responsive, experience more negative emotions, and

  13. Excessive crying in infants with regulatory disorders.

    Science.gov (United States)

    Maldonado-Duran, M; Sauceda-Garcia, J M

    1996-01-01

    The authors point out a correlation between regulatory disorders in infants and the problem of excessive crying. The literature describes other behavioral problems involving excessive crying in very young children, but with little emphasis on this association. The recognition and diagnosis of regulatory disorders in infants who cry excessively can help practitioners design appropriate treatment interventions. Understanding these conditions can also help parents tailor their caretaking style, so that they provide appropriate soothing and stimulation to their child. In so doing, they will be better able to develop and preserve a satisfactory parent-child relationship, as well as to maintain their own sense of competence and self-esteem as parents.

  14. Strategies of day care center educators in dealing crying babies

    Directory of Open Access Journals (Sweden)

    Lígia Ebner Melchiori

    2004-06-01

    Full Text Available The purpose of this study is to explore the views of day care center educators on how they act when babies cry, if they are able to identify the causes of crying and what are the subjection reasons that make them take action or not. Twenty-one caretakers were interviewed about each of the ninety babies, aged 4 to 24 months, under their care, using a semi-structured guide. The results show that overall the proportion of babies that do not cry significantly increases with age. However, crying for primary needs, in the view of the educators, tends to decrease as the average age increases, whilst crying for secondary needs tends to increase. Most of the time, the educators try to eliminate the needs that provoke crying, giving priority to the baby’s welfare. The article discusses the caretakers’ educative practices with data found in literature. Keywords: day care; educative practices; educators.

  15. Aflatoxin levels in maize and maize products during the 2004 food ...

    African Journals Online (AJOL)

    Aflatoxin levels in maize and maize products during the 2004 food poisoning ... district were received at the National Public Health Laboratory Services (NPHLS). On analysis, they were found to be highly contaminated with aflatoxin B1.

  16. Crying in Context: Understanding Associations With Interpersonal Dependency and Social Support

    Directory of Open Access Journals (Sweden)

    Katherine L. Fiori

    2013-06-01

    Full Text Available This study examines the associations among interpersonal dependency, social support, and crying proneness, since crying is a behavior that is particularly relevant to the affiliative interpersonal goals characterizing maladaptive forms of dependency (Keltner & Kring, 1998. Data were collected from 305 first-year university students (M age = 18 years. A series of hierarchical linear regressions, controlling for gender, commuting status, romantic relationship status, stress, loneliness, and depressive symptoms, partially supported our hypotheses. That is, we found that a measure of maladaptive dependency (destructive overdependence, or DO and crying proneness were positively correlated, and that DO moderated the associations between social support and crying proneness. Specifically, we found that social support and crying were more closely positively associated among individuals high on DO compared to individuals low on DO. Our findings imply that interpersonal dependency may be an important factor in understanding individual differences in crying, and in determining whether crying is a successful elicitor of social support.

  17. Phytotoxic cyanamide affects maize (Zea mays) root growth and root tip function: from structure to gene expression.

    Science.gov (United States)

    Soltys, Dorota; Rudzińska-Langwald, Anna; Kurek, Wojciech; Szajko, Katarzyna; Sliwinska, Elwira; Bogatek, Renata; Gniazdowska, Agnieszka

    2014-05-01

    Cyanamide (CA) is a phytotoxic compound produced by four Fabaceae species: hairy vetch, bird vetch, purple vetch and black locust. Its toxicity is due to complex activity that involves the modification of both cellular structures and physiological processes. To date, CA has been investigated mainly in dicot plants. The goal of this study was to investigate the effects of CA in the restriction of the root growth of maize (Zea mays), representing the monocot species. CA (3mM) reduced the number of border cells in the root tips of maize seedlings and degraded their protoplasts. However, CA did not induce any significant changes in the organelle structure of other root cells, apart from increased vacuolization. CA toxicity was also demonstrated by its effect on cell cycle activity, endoreduplication intensity, and modifications of cyclins CycA2, CycD2, and histone HisH3 gene expression. In contrast, the arrangement of microtubules was not altered by CA. Treatment of maize seedlings with CA did not completely arrest mitotic activity, although the frequency of dividing cells was reduced. Furthermore, prolonged CA treatment increased the proportion of endopolyploid cells in the root tip. Cytological malformations were accompanied by an induction of oxidative stress in root cells, which manifested as enhanced accumulation of H2O2. Exposure of maize seedlings to CA resulted in an increased concentration of auxin and stimulated ethylene emission. Taken together, these findings suggested that the inhibition of root growth by CA may be a consequence of stress-induced morphogenic responses. Copyright © 2014. Published by Elsevier GmbH.

  18. Sympathy Crying: Insights from Infrared Thermal Imaging on a Female Sample

    Science.gov (United States)

    Morris, Paul; Terry, Samantha; Baker, Marc; Gallese, Vittorio; Reddy, Vasudevi

    2016-01-01

    Sympathy crying is an odd and complex mixture of physiological and emotional phenomena. Standard psychophysiological theories of emotion cannot attribute crying to a single subdivision of the autonomic nervous system (ANS) and disagreement exists regarding the emotional origin of sympathy crying. The current experiment examines sympathy crying using functional thermal infrared imaging (FTII), a novel contactless measure of ANS activity. To induce crying female participants were given the choice to decide which film they wanted to cry to. Compared to baseline, temperature started increasing on the forehead, the peri-orbital region, the cheeks and the chin before crying and reached even higher temperatures during crying. The maxillary area showed the opposite pattern and a gradual temperature decrease was observed compared to baseline as a result of emotional sweating. The results suggest that tears of sympathy are part of a complex autonomic interaction between the sympathetic and the parasympathetic nervous systems, with the latter preceding the former. The emotional origin of the phenomenon seems to derive from subjective internal factors that relate to one’s personal experiences and attributes with tears arising in the form of catharses or as part of shared sadness. PMID:27716801

  19. Proteomic analysis of maize grain development using iTRAQ reveals temporal programs of diverse metabolic processes.

    Science.gov (United States)

    Yu, Tao; Li, Geng; Dong, Shuting; Liu, Peng; Zhang, Jiwang; Zhao, Bin

    2016-11-04

    Grain development in maize is an essential process in the plant's life cycle and is vital for use of the plant as a crop for animals and humans. However, little is known regarding the protein regulatory networks that control grain development. Here, isobaric tag for relative and absolute quantification (iTRAQ) technology was used to analyze temporal changes in protein expression during maize grain development. Maize grain proteins and changes in protein expression at eight developmental stages from 3 to 50 d after pollination (DAP) were performed using iTRAQ-based proteomics. Overall, 4751 proteins were identified; 2639 of these were quantified and 1235 showed at least 1.5-fold changes in expression levels at different developmental stages and were identified as differentially expressed proteins (DEPs). The DEPs were involved in different cellular and metabolic processes with a preferential distribution to protein synthesis/destination and metabolism categories. A K-means clustering analysis revealed coordinated protein expression associated with different functional categories/subcategories at different development stages. Our results revealed developing maize grain display different proteomic characteristics at distinct stages, such as numerous DEPs for cell growth/division were highly expressed during early stages, whereas those for starch biosynthesis and defense/stress accumulated in middle and late stages, respectively. We also observed coordinated expression of multiple proteins of the antioxidant system, which are essential for the maintenance of reactive oxygen species (ROS) homeostasis during grain development. Particularly, some DEPs, such as zinc metallothionein class II, pyruvate orthophosphate dikinase (PPDK) and 14-3-3 proteins, undergo major changes in expression at specific developmental stages, suggesting their roles in maize grain development. These results provide a valuable resource for analyzing protein function on a global scale and also

  20. Influence of Kernel Age on Fumonisin B1 Production in Maize by Fusarium moniliforme

    Science.gov (United States)

    Warfield, Colleen Y.; Gilchrist, David G.

    1999-01-01

    Production of fumonisins by Fusarium moniliforme on naturally infected maize ears is an important food safety concern due to the toxic nature of this class of mycotoxins. Assessing the potential risk of fumonisin production in developing maize ears prior to harvest requires an understanding of the regulation of toxin biosynthesis during kernel maturation. We investigated the developmental-stage-dependent relationship between maize kernels and fumonisin B1 production by using kernels collected at the blister (R2), milk (R3), dough (R4), and dent (R5) stages following inoculation in culture at their respective field moisture contents with F. moniliforme. Highly significant differences (P ≤ 0.001) in fumonisin B1 production were found among kernels at the different developmental stages. The highest levels of fumonisin B1 were produced on the dent stage kernels, and the lowest levels were produced on the blister stage kernels. The differences in fumonisin B1 production among kernels at the different developmental stages remained significant (P ≤ 0.001) when the moisture contents of the kernels were adjusted to the same level prior to inoculation. We concluded that toxin production is affected by substrate composition as well as by moisture content. Our study also demonstrated that fumonisin B1 biosynthesis on maize kernels is influenced by factors which vary with the developmental age of the tissue. The risk of fumonisin contamination may begin early in maize ear development and increases as the kernels reach physiological maturity. PMID:10388675

  1. Moonlight controls lunar-phase-dependency and regular oscillation of clock gene expressions in a lunar-synchronized spawner fish, Goldlined spinefoot.

    Science.gov (United States)

    Takeuchi, Yuki; Kabutomori, Ryo; Yamauchi, Chihiro; Miyagi, Hitomi; Takemura, Akihiro; Okano, Keiko; Okano, Toshiyuki

    2018-04-18

    Goldlined spinefoot, Siganus guttatus, inhabits tropical and subtropical waters and synchronizes its spawning around the first quarter moon likely using an hourglass-like lunar timer. In previous studies, we have found that clock genes (Cryptochrome3 and Period1) could play the role of state variable in the diencephalon when determining the lunar phase for spawning. Here, we identified three Cry, two Per, two Clock, and two Bmal genes in S. guttatus and investigated their expression patterns in the diencephalon and pituitary gland. We further evaluated the effect on their expression patterns by daily interruptions of moonlight stimuli for 1 lunar cycle beginning at the new moon. It significantly modified the expression patterns in many of the examined clock(-related) genes including Cry3 in the diencephalon and/or pituitary gland. Acute interruptions of moonlight around the waxing gibbous moon upregulated nocturnal expressions of Cry1b and Cry2 in the diencephalon and pituitary gland, respectively, but did not affect expression levels of the other clock genes. These results highlighted the importance of repetitive moonlight illumination for stable or lunar-phase-specific daily expression of clock genes in the next lunar cycle that may be important for the lunar-phase-synchronized spawning on the next first quarter moon.

  2. Strategies of day care center educators in dealing crying babies

    OpenAIRE

    Lígia Ebner Melchiori; Zélia Maria Mendes Biasoli Alves

    2004-01-01

    The purpose of this study is to explore the views of day care center educators on how they act when babies cry, if they are able to identify the causes of crying and what are the subjection reasons that make them take action or not. Twenty-one caretakers were interviewed about each of the ninety babies, aged 4 to 24 months, under their care, using a semi-structured guide. The results show that overall the proportion of babies that do not cry significantly increases with age. However, crying f...

  3. Excessive infant crying: Definitions determine risk groups

    NARCIS (Netherlands)

    Reijneveld, S.A.; Brugman, E.; Hirasing, R.A.

    2002-01-01

    We assessed risk groups for excessive infant crying using 10 published definitions, in 3179 children aged 1-6 months (response: 96.5%). Risk groups regarding parental employment, living area, lifestyle, and obstetric history varied by definition. This may explain the existence of conflicting

  4. Estimation of resistance allele frequency to maize incorporated Bacillus thuringiensis Cry2Ab2 protein in field populations of the fall army Spodoptera frugiperda (Lepidoptera: Noctuidae) from south region of the United State

    Science.gov (United States)

    The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is a target of transgenic maize and cotton expressing Bacillus thuringiensis (Bt) proteins in both North and South Americas. In the falls of 2013 and 2014, a total of 215 F2 two-parent families of S. frugiperda were es...

  5. Weed Competition and its Effects on Pwani Hybrid 1 Maize Grain Yields in Coastal Kenya

    International Nuclear Information System (INIS)

    Kamau, G.M.; Saha, H.M.

    1999-01-01

    Weed competition is a serious constraint to maize production in coastal Kenya. A trial to asses the effects of weed competition on performance of maize was planted at Regional Research Centre-Mtwapa and Msabaha Research Sub-centre-Malindi in 1992. Pwani hybrid 1 maize was used in the trials. Weeding was done at weekly intervals from germination up to the sixth week in an additive weed removal system and plots maintained weed free afterwards. A weedy and a weed free plot were used as checks. Data on plant counts plant heights, weed biomass, weed identification and maize grain yield at 15 % MC were all recorded. There was a significant difference between weed and weedy free plots for grain yield, plant height and weed biomass for both sites. A 53% maize grain yield reduction due to weed competition was recorded. A 3% grain yield reduction equivalent to 1.03 bags for every week's delay in weeding after the first to weeks was realised for both sites. There was a corresponding grain yield loss as delay in weeding increased

  6. Nanobody-based electrochemical immunoassay for Bacillus thuringiensis Cry1Ab toxin by detecting the enzymatic formation of polyaniline

    International Nuclear Information System (INIS)

    Zhu, Min; Li, Guanghui; Li, Min; Zhou, Zikai; Liu, Hong; Lei, Hongtao; Shen, Yanfei; Wan, Yakun

    2015-01-01

    We describe an electrochemical immunoassay for the Cry1Ab toxin that is produced by Bacillus thuringiensis. It is making use of a nanobody (a heavy-chain only antibody) that was selected from an immune phage displayed library. A biotinylated primary nanobody and a HRP-conjugated secondary nanobody were applied in a sandwich immunoassay where horseradish peroxidase (HRP) is used to produce polyaniline (PANI) from aniline. PANI can be easily detected by differential pulse voltammetry at a working voltage as low as 40 mV (vs. Ag/AgCl) which makes the assay fairly selective. This immunoassay for Cry1Ab has an analytical range from 0.1 to 1000 ng∙mL -1 and a 0.07 ng∙mL -1 lower limit of detection. The average recoveries of the toxin from spiked samples are in the range from 102 to 114 %, with a relative standard deviation of <7.5 %. The results demonstrated that the assay represented an attractive alternative to existing immunoassays in enabling affordable, sensitive, robust and specific determination of this toxin. (author)

  7. Increasing the amylose content of maize through silencing of sbe2a ...

    African Journals Online (AJOL)

    Yomi

    2012-04-12

    Apr 12, 2012 ... 1College of Life Sciences, Jilin Agricultural University, Changchun 130118, China. ... activity via transgenic maize inbred line transformed by a high-efficient RNAi expression ... increase the amylose content of durum wheat.

  8. Correspondence of High Levels of Beta-Exotoxin I and the Presence of cry1B in Bacillus thuringiensis

    Science.gov (United States)

    Espinasse, Sylvain; Gohar, Michel; Chaufaux, Josette; Buisson, Christophe; Perchat, Stéphane; Sanchis, Vincent

    2002-01-01

    Examination of 640 natural isolates of Bacillus thuringiensis showed that the 58 strains (9%) whose supernatants were toxic to Anthonomus grandis (Coleoptera: Curculionidae) produced between 10 and 175 μg of β-exotoxin I per ml. We also found that 55 (46%) of a sample of 118 strains whose culture supernatants were not toxic to A. grandis nevertheless produced between 2 and 5 μg/ml. However, these amounts of β-exotoxin I were below the threshold for detectable toxicity against this insect species. Secretion of large amounts of β-exotoxin I was strongly associated with the presence of cry1B and vip2 genes in the 640 natural B. thuringiensis isolates studied. We concluded that strains carrying cry1B and vip2 genes also possess, on the same plasmid, genetic determinants necessary to promote high levels of production of β-exotoxin I. PMID:12200263

  9. [Neurology of laughter and humour: pathological laughing and crying].

    Science.gov (United States)

    Arias, Manuel

    2011-10-01

    Laughter, which is usually a healthy biological phenomenon, may be also a symptom of several severe brain pathologies. To review the neurobiological bases of laughter and humour, as well as those of pathological laughing and crying syndrome. At the mesencephalic-pontine junction there is a central coordinator of the nuclei that innervate the muscles involved in laughter (facial expression, respiratory and phonatory). This centre receives connections from three systems: inhibitory (pre-motor and motor cortex), excitatory (temporal cortex, amygdala, hypothalamus) and modulator (cerebellum). Humour is a complex phenomenon with a range of components: the perception of the unexpected incongruence (occipitotemporal area, prefrontal cortex), emotional (reward circuit) and volitional (temporal and frontal cortex). Functional magnetic resonance imaging studies do not reveal a markedly prominent role of the right frontal lobe in processing humour, as had been suggested in the classical studies. The causes of pathological laughing and crying syndrome can be classified in two groups: altered behaviour with unmotivated happiness (Angelman syndrome, schizophrenia, manias, dementia) and interference with the inhibitory/excitatory mechanisms (gelastic epilepsy, fou rire prodromique in strokes, multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease and Parkinson-plus, traumatic injuries, tumours). Serotonin and noradrenalin reuptake inhibitors, levodopa, lamotrigine and the association of dextromethorphan/quinidine can be effective in certain cases of pathological laughing and crying. As human neurobiological phenomena, laughter and humour also belong to the field of clinical neurology; their processing is affected in a number of different diseases and, in certain cases, effective treatment can be established.

  10. Analyses of expressed sequence tags from the maize foliar pathogen Cercospora zeae-maydis identify novel genes expressed during vegetative, infectious, and reproductive growth

    Directory of Open Access Journals (Sweden)

    Kema Gert HJ

    2008-11-01

    Full Text Available Abstract Background The ascomycete fungus Cercospora zeae-maydis is an aggressive foliar pathogen of maize that causes substantial losses annually throughout the Western Hemisphere. Despite its impact on maize production, little is known about the regulation of pathogenesis in C. zeae-maydis at the molecular level. The objectives of this study were to generate a collection of expressed sequence tags (ESTs from C. zeae-maydis and evaluate their expression during vegetative, infectious, and reproductive growth. Results A total of 27,551 ESTs was obtained from five cDNA libraries constructed from vegetative and sporulating cultures of C. zeae-maydis. The ESTs, grouped into 4088 clusters and 531 singlets, represented 4619 putative unique genes. Of these, 36% encoded proteins similar (E value ≤ 10-05 to characterized or annotated proteins from the NCBI non-redundant database representing diverse molecular functions and biological processes based on Gene Ontology (GO classification. We identified numerous, previously undescribed genes with potential roles in photoreception, pathogenesis, and the regulation of development as well as Zephyr, a novel, actively transcribed transposable element. Differential expression of selected genes was demonstrated by real-time PCR, supporting their proposed roles in vegetative, infectious, and reproductive growth. Conclusion Novel genes that are potentially involved in regulating growth, development, and pathogenesis were identified in C. zeae-maydis, providing specific targets for characterization by molecular genetics and functional genomics. The EST data establish a foundation for future studies in evolutionary and comparative genomics among species of Cercospora and other groups of plant pathogenic fungi.

  11. Baby Cry Detection in Domestic Environment using Deep Learning

    OpenAIRE

    Ijzerman, Hans

    2017-01-01

    Automatic detection of a baby cry in audio signals is an essential step in applications such as remote baby monitoring. It is also important for researchers, who study the relation between baby cry patterns and various health or developmental parameters. In this paper, we propose two machine-learning algorithms for automatic detection of baby cry in audio recordings. The first algorithm is a low-complexity logistic regression classifier, used as a reference. To train this classifier, we extra...

  12. Emergency Department Triage of the "Incessantly Crying" Baby.

    Science.gov (United States)

    Chua, Caroline; Setlik, Jennifer; Niklas, Victoria

    2016-11-01

    Incessant crying is one of the most common caregiver complaints during emergency department (ED) visits in the first few months of the child's life. Although the majority of cases are attributed to normal infant behavior, the differential diagnosis remains broad. Moreover, the potential for the negative impact of incessant crying on the mental well-being of caregivers as well as the infants necessitates that complaints be taken seriously and that "red flags" for underlying organic causes be ruled out and caregiver anxiety quelled. In addition, the apparent triviality of incessant crying in the face of the life-threatening illnesses or injuries that confront practitioners in the ED necessitates a high level of due diligence in the evaluation of these infants and their families. Ensuring the availability of family support is essential in the discharge planning. Families should also perceive the empathy of the physician and feel reassured about their safe discharge home. Although it is a challenge to examine an incessantly crying infant in all care settings, the failure to recognize the small percentage of infants that present with incessant crying as a manifestation of an underlying organic illness may have grave consequences. [Pediatr Ann. 2016;45(11):e394-e398.]. Copyright 2016, SLACK Incorporated.

  13. Excessive crying: behavioral and emotional regulation disorder in infancy

    Directory of Open Access Journals (Sweden)

    Joon Sik Kim

    2011-06-01

    Full Text Available In the pediatric literature, excessive crying has been reported solely in association with 3-month colic and is described, if at all, as unexplained crying and fussing during the first 3 months of life. The bouts of crying are generally thought to be triggered by abdominal colic (over-inflation of the still immature gastrointestinal tract, and treatment is prescribed accordingly. According to this line of reasoning, excessive crying is harmless and resolves by the end of the third month without long-term consequences. However, there is evidence that it may cause tremendous distress in the mother&#8211;infant relationship, and can lead to disorders of behavioral and emotional regulation at the toddler stage (such as sleep and feeding disorders, chronic fussiness, excessive clinginess, and temper tantrums. Early treatment of excessive crying focuses on parent&#8211;infant communication, and parent-infant interaction in the context of soothing and settling the infant to sleep is a promising approach that may prevent later behavioral and emotional disorders in infancy.

  14. Aflatoxins and fumonisin contamination of marketed maize, maize ...

    African Journals Online (AJOL)

    Aflatoxins and fumonisin contamination of marketed maize, maize bran and maize used as animal feed in northern ... PROMOTING ACCESS TO AFRICAN RESEARCH ... African Journal of Food, Agriculture, Nutrition and Development.

  15. Resistance to Fusarium verticillioides and fumonisin accumulation in maize inbred lines involves an earlier and enhanced expression of lipoxygenase (LOX) genes.

    Science.gov (United States)

    Maschietto, Valentina; Marocco, Adriano; Malachova, Alexandra; Lanubile, Alessandra

    2015-09-01

    Fusarium verticillioides causes ear rot in maize and contaminates the kernels with the fumonisin mycotoxins. It is known that plant lipoxygenase (LOX)-derived oxylipins regulate defence against pathogens and that the host-pathogen lipid cross-talk influences the pathogenesis. The expression profiles of fifteen genes of the LOX pathway were studied in kernels of resistant and susceptible maize lines, grown in field condition, at 3, 7 and 14 days post inoculation (dpi) with F. verticillioides. Plant defence responses were correlated with the pathogen growth, the expression profiles of fungal FUM genes for fumonisin biosynthesis and fumonisin content in the kernels. The resistant genotype limited fungal growth and fumonisin accumulation between 7 and 14 dpi. Pathogen growth became exponential in the susceptible line after 7 dpi, in correspondence with massive transcription of FUM genes and fumonisins augmented exponentially at 14 dpi. LOX pathway genes resulted strongly induced after pathogen inoculation in the resistant line at 3 and 7 dpi, whilst in the susceptible line the induction was reduced or delayed at 14 dpi. In addition, all genes resulted overexpressed before infection in kernels of the resistant genotype already at 3 dpi. The results suggest that resistance in maize may depend on an earlier activation of LOX genes and genes for jasmonic acid biosynthesis. Copyright © 2015 Elsevier GmbH. All rights reserved.

  16. Construction and characterization of the interdomain chimeras using Cry11Aa and Cry11Ba from Bacillus thuringiensis and identification of a possible novel toxic chimera.

    Science.gov (United States)

    Sun, Yunjun; Zhao, Qiang; Zheng, Dasheng; Ding, Xuezhi; Wang, Jingfang; Hu, Quanfang; Yuan, Zhiming; Park, Hyun-Woo; Xia, Liqiu

    2014-01-01

    Three structural domains of mosquitocidal Cry11Aa and Cry11Ba from Bacillus thuringiensis were exchanged to produce interdomain chimeras [BAA (11Ba/11Aa/11Aa), ABA (11Aa/11Ba/11Aa), AAB (11Aa/11Aa/11Ba), ABB (11Aa/11Ba/11Ba), BAB (11Ba/11Aa/11Ba), BBA (11Ba/11Ba/11Aa]. Chimeras BAB, BAA, BBA, and AAB formed inclusion bodies in the crystal-negative B. thuringiensis host and produced expected protein bands on SDS-PAGE gel. However, no inclusion body or target protein could be found for chimeras ABA and ABB. In bioassays using the fourth-instar larvae of Culex quinquefasciatus and Aedes aegypti, AAB had ~50 % lethal concentrations of 4.8 and 2.2 μg ml(-1), respectively; however, the rest of chimeras were not toxic. This study thus helps to understand the domain-function relationships of the Cry11Aa and Cry11Ba toxins. The toxic chimera, AAB, might be a candidate for mosquito control as its amino acid sequence is different from the two parental toxins.

  17. Individual recognition of human infants on the basis of cries alone.

    Science.gov (United States)

    Green, J A; Gustafson, G E

    1983-11-01

    Human parents were asked to identify their infants on the basis of tape-recorded cries that they had not previously heard. The cries of twenty 30-day-old infants were recorded just prior to a feeding, then rerecorded onto a test tape containing cries from three other infants. Eighty percent of mothers were able to recognize their infants' cries, as were 45% of fathers. An additional 140 adults (non-parents) were tested in order to determine if the process of dubbing cries onto test tapes had left extraneous auditory cues to infants' identities and if the foil infants were equally discriminable. The results indicated that parents' recognition was not based on extraneous cues and that, overall, the foils were appropriate distractors in the parents' task. Thus, the majority of parents can recognize their 30-day-old infants on the sole basis of acoustic cues contained in the infants' cries. The acoustic features that underlie this recognition are now being investigated.

  18. Comparative Histological and Transcriptional Analysis of Maize Kernels Infected with Aspergillus flavus and Fusarium verticillioides

    Directory of Open Access Journals (Sweden)

    Xiaomei Shu

    2017-12-01

    Full Text Available Aspergillus flavus and Fusarium verticillioides infect maize kernels and contaminate them with the mycotoxins aflatoxin, and fumonisin, respectively. Genetic resistance in maize to these fungi and to mycotoxin contamination has been difficult to achieve due to lack of identified resistance genes. The objective of this study was to identify new candidate resistance genes by characterizing their temporal expression in response to infection and comparing expression of these genes with genes known to be associated with plant defense. Fungal colonization and transcriptional changes in kernels inoculated with each fungus were monitored at 4, 12, 24, 48, and 72 h post inoculation (hpi. Maize kernels responded by differential gene expression to each fungus within 4 hpi, before the fungi could be observed visually, but more genes were differentially expressed between 48 and 72 hpi, when fungal colonization was more extensive. Two-way hierarchal clustering analysis grouped the temporal expression profiles of the 5,863 differentially expressed maize genes over all time points into 12 clusters. Many clusters were enriched for genes previously associated with defense responses to either A. flavus or F. verticillioides. Also within these expression clusters were genes that lacked either annotation or assignment to functional categories. This study provided a comprehensive analysis of gene expression of each A. flavus and F. verticillioides during infection of maize kernels, it identified genes expressed early and late in the infection process, and it provided a grouping of genes of unknown function with similarly expressed defense related genes that could inform selection of new genes as targets in breeding strategies.

  19. Cri du chat syndrome

    Science.gov (United States)

    ... the ear Slow or incomplete development of motor skills Small head ( microcephaly ) Small jaw ( micrognathia ) Wide-set ... of children with this syndrome learn enough verbal skills to communicate. The cat-like cry becomes less ...

  20. Exploring karyotype diversity of Argentinian Guaraní maize landraces: Relationship among South American maize.

    Directory of Open Access Journals (Sweden)

    María Florencia Realini

    Full Text Available In Argentina there are two different centers of maize diversity, the Northeastern (NEA and the Northwestern (NWA regions of the country. In NEA, morphological studies identified 15 landraces cultivated by the Guaraní communities in Misiones Province. In the present study we analyzed the karyotype diversity of 20 populations of Guaraní maize landraces through classical and molecular cytogenetic analyses. Our results demonstrate significant intra and inter-populational variation in the percentage, number, size, chromosome position and frequencies of the heterochromatic blocks, which are called knobs. Knob sequence analysis (180-bp and TR-1 did not show significant differences among Guaraní populations. B chromosomes were not detected, and abnormal 10 (AB10 chromosomes were found with low frequency (0.1≥f ≤0.40 in six populations. Our results allowed karyotypic characterization of each analyzed population, defining for the first time the chromosomal constitution of maize germplasm from NEA. The multivariate analysis (PCoA and UPGMA of karyotype parameters allowed the distinction between two populations groups: the Popcorn and the Floury maize populations. These results are in agreement with previously published microsatellite and morphological/phenological studies. Finally, we compared our karyotype results with those previously reported for NWA and Central Region of South America maize. Our data suggest that there are important differences between maize from NEA and NWA at the karyotype level, supporting the hypothesis that there are two pathways of input of South America maize. Our results also confirm the existence of two centers of diversification of Argentinian native maize, NWA and NEA. This work contributes new knowledge about maize diversity, which is relevant for future plans to improve commercial maize, and for conservation of agrobiodiversity.