WorldWideScience

Sample records for maintains cartilage formation

  1. Cartilage formation measured by a novel PIINP assay suggests that IGF-I does not stimulate but maintains cartilage formation ex vivo

    DEFF Research Database (Denmark)

    Madsen, S H; Sondergaard, B C; Jensen, Anne-Christine Bay

    2009-01-01

    explants were cultured in Dulbecco's modified Eagle's medium (DMEM):F12 in the presence of 0, 0.01, 0.1, 1, 10, or 100 ng/mL of IGF-I. The viability of the chondrocytes was measured by the colorimetric Alamar blue assay. Collagen formation was assessed from the conditioned medium by the PIINP assay...

  2. Human sclera maintains common characteristics with cartilage throughout evolution.

    Directory of Open Access Journals (Sweden)

    Yuko Seko

    Full Text Available BACKGROUND: The sclera maintains and protects the eye ball, which receives visual inputs. Although the sclera does not contribute significantly to visual perception, scleral diseases such as refractory scleritis, scleral perforation and pathological myopia are considered incurable or difficult to cure. The aim of this study is to identify characteristics of the human sclera as one of the connective tissues derived from the neural crest and mesoderm. METHODOLOGY/PRINCIPAL FINDINGS: We have demonstrated microarray data of cultured human infant scleral cells. Hierarchical clustering was performed to group scleral cells and other mesenchymal cells into subcategories. Hierarchical clustering analysis showed similarity between scleral cells and auricular cartilage-derived cells. Cultured micromasses of scleral cells exposed to TGF-betas and BMP2 produced an abundant matrix. The expression of cartilage-associated genes, such as Indian hedge hog, type X collagen, and MMP13, was up-regulated within 3 weeks in vitro. These results suggest that human 'sclera'-derived cells can be considered chondrocytes when cultured ex vivo. CONCLUSIONS/SIGNIFICANCE: Our present study shows a chondrogenic potential of human sclera. Interestingly, the sclera of certain vertebrates, such as birds and fish, is composed of hyaline cartilage. Although the human sclera is not a cartilaginous tissue, the human sclera maintains chondrogenic potential throughout evolution. In addition, our findings directly explain an enigma that the sclera and the joint cartilage are common targets of inflammatory cells in rheumatic arthritis. The present global gene expression database will contribute to the clarification of the pathogenesis of developmental diseases such as high myopia.

  3. Articular cartilage: from formation to tissue engineering.

    Science.gov (United States)

    Camarero-Espinosa, Sandra; Rothen-Rutishauser, Barbara; Foster, E Johan; Weder, Christoph

    2016-05-26

    Hyaline cartilage is the nonlinear, inhomogeneous, anisotropic, poro-viscoelastic connective tissue that serves as friction-reducing and load-bearing cushion in synovial joints and is vital for mammalian skeletal movements. Due to its avascular nature, low cell density, low proliferative activity and the tendency of chondrocytes to de-differentiate, cartilage cannot regenerate after injury, wear and tear, or degeneration through common diseases such as osteoarthritis. Therefore severe damage usually requires surgical intervention. Current clinical strategies to generate new tissue include debridement, microfracture, autologous chondrocyte transplantation, and mosaicplasty. While articular cartilage was predicted to be one of the first tissues to be successfully engineered, it proved to be challenging to reproduce the complex architecture and biomechanical properties of the native tissue. Despite significant research efforts, only a limited number of studies have evolved up to the clinical trial stage. This review article summarizes the current state of cartilage tissue engineering in the context of relevant biological aspects, such as the formation and growth of hyaline cartilage, its composition, structure and biomechanical properties. Special attention is given to materials development, scaffold designs, fabrication methods, and template-cell interactions, which are of great importance to the structure and functionality of the engineered tissue.

  4. Mechanical confinement regulates cartilage matrix formation by chondrocytes

    Science.gov (United States)

    Lee, Hong-Pyo; Gu, Luo; Mooney, David J.; Levenston, Marc E.; Chaudhuri, Ovijit

    2017-12-01

    Cartilage tissue equivalents formed from hydrogels containing chondrocytes could provide a solution for replacing damaged cartilage. Previous approaches have often utilized elastic hydrogels. However, elastic stresses may restrict cartilage matrix formation and alter the chondrocyte phenotype. Here we investigated the use of viscoelastic hydrogels, in which stresses are relaxed over time and which exhibit creep, for three-dimensional (3D) culture of chondrocytes. We found that faster relaxation promoted a striking increase in the volume of interconnected cartilage matrix formed by chondrocytes. In slower relaxing gels, restriction of cell volume expansion by elastic stresses led to increased secretion of IL-1β, which in turn drove strong up-regulation of genes associated with cartilage degradation and cell death. As no cell-adhesion ligands are presented by the hydrogels, these results reveal cell sensing of cell volume confinement as an adhesion-independent mechanism of mechanotransduction in 3D culture, and highlight stress relaxation as a key design parameter for cartilage tissue engineering.

  5. Enhance and Maintain Chondrogenesis of Synovial Fibroblasts by Cartilage Extracellular Matrix Protein Matrilins

    Science.gov (United States)

    Pei, Ming; Luo, Junming; Chen, Qian

    2008-01-01

    Summary Objective Cartilage-specific extracellular matrix (ECM) proteins have been proposed to play key roles in modulating cellular phenotypes during chondrogenesis of mesenchymal stem cells. Matrilin (MATN) 1 and 3 are among the most up-regulated ECM proteins during chondrogenesis. The aim of this study was to analyze their roles in chondrogenesis of mesenchymal fibroblasts from synovium. Methods Primary synovial fibroblasts (SFBs) were purified from porcine synovium and incubated in pellet culture for 18 days. Chondrogenesis of SFB was analyzed by histological staining with safranin-O/fast green, and by quantifying glycosaminoglycans with dimethylmethylene blue assay. The mRNA levels of chondrogenic markers including collagen II, aggrecan, and Sox 9 were quantified by real-time RT-PCR, while the protein levels of Col II and matrilins were determined by western blot analysis. Results SFBs underwent chondrogenesis after incubation with TGF-β1 for three days; however, this process was attenuated during the subsequent incubation period. Expression of a MATN1 or 3 cDNA maintained and further enhanced chondrogenesis of SFBs as shown by increased cartilaginous matrix areas, elevated amount of glycosaminoglycans, and stimulated expression of chondrogenic markers. Conclusion Our findings suggest a novel function for MATN1 and 3 to maintain and enhance chondrogenesis of mesenchymal fibroblasts initiated by TGF-β. Our results also support a critical role of cartilage-specific ECM proteins to modulate cellular phenotypes in the microenvironment during chondrogenic differentiation. PMID:18282772

  6. Enhancing and maintaining chondrogenesis of synovial fibroblasts by cartilage extracellular matrix protein matrilins.

    Science.gov (United States)

    Pei, M; Luo, J; Chen, Q

    2008-09-01

    Cartilage-specific extracellular matrix (ECM) proteins have been proposed to play key roles in modulating cellular phenotypes during chondrogenesis of mesenchymal stem cells. Matrilin (MATN)1 and MATN3 are among the most up-regulated ECM proteins during chondrogenesis. The aim of this study was to analyze their roles in chondrogenesis of mesenchymal fibroblasts from synovium. Primary synovial fibroblasts (SFBs) were purified from porcine synovium and incubated in pellet culture for 18 days. Chondrogenesis of SFB was analyzed by histological staining with safranin-O/fast green, and by quantifying glycosaminoglycans (GAG) with dimethylmethylene blue assay. The mRNA levels of chondrogenic markers including collagen II, aggrecan, and Sox 9 were quantified by real-time reverse transcription polymerase chain reaction, while the protein levels of Col II and MATNs were determined by western blot analysis. SFBs underwent chondrogenesis after incubation with transforming growth factor-beta1 (TGF-beta1) for 3 days; however, this process was attenuated during the subsequent incubation period. Expression of a Matn1 or Matn3 cDNA maintained and further enhanced chondrogenesis of SFBs as shown by increased cartilaginous matrix areas, elevated amount of GAG, and stimulated expression of chondrogenic markers. Our findings suggest a novel function for MATN1 and MATN3 to maintain and enhance chondrogenesis of mesenchymal fibroblasts initiated by TGF-beta. Our results also support a critical role of cartilage-specific ECM proteins to modulate cellular phenotypes in the microenvironment during chondrogenic differentiation.

  7. Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation

    Directory of Open Access Journals (Sweden)

    Carolina M. Medeiros Da Cunha

    2017-11-01

    Full Text Available Autologous chondrocyte transplantation for cartilage repair still has unsatisfactory clinical outcomes because of inter-donor variability and poor cartilage quality formation. Re-differentiation of monolayer-expanded human chondrocytes is not easy in the absence of potent morphogens. The Vascular Endothelial Growth Factor (VEGF plays a master role in angiogenesis and in negatively regulating cartilage growth by stimulating vascular invasion and ossification. Therefore, we hypothesized that its sole microenvironmental blockade by either VEGF sequestration by soluble VEGF receptor-2 (Flk-1 or by antiangiogenic hyperbranched peptides could improve chondrogenesis of expanded human nasal chondrocytes (NC freshly seeded on collagen scaffolds. Chondrogenesis of several NC donors was assessed either in vitro or ectopically in nude mice. VEGF blockade appeared not to affect NC in vitro differentiation, whereas it efficiently inhibited blood vessel ingrowth in vivo. After 8 weeks, in vivo glycosaminoglycan deposition was approximately two-fold higher when antiangiogenic approaches were used, as compared to the control group. Our data indicates that the inhibition of VEGF signaling, independently of the specific implementation mode, has profound effects on in vivo NC chondrogenesis, even in the absence of chondroinductive signals during prior culture or at the implantation site.

  8. Formation of Hyaline Cartilage Tissue by Passaged Human Osteoarthritic Chondrocytes.

    Science.gov (United States)

    Bianchi, Vanessa J; Weber, Joanna F; Waldman, Stephen D; Backstein, David; Kandel, Rita A

    2017-02-01

    When serially passaged in standard monolayer culture to expand cell number, articular chondrocytes lose their phenotype. This results in the formation of fibrocartilage when they are used clinically, thus limiting their use for cartilage repair therapies. Identifying a way to redifferentiate these cells in vitro is critical if they are to be used successfully. Transforming growth factor beta (TGFβ) family members are known to be crucial for regulating differentiation of fetal limb mesenchymal cells and mesenchymal stromal cells to chondrocytes. As passaged chondrocytes acquire a progenitor-like phenotype, the hypothesis of this study was that TGFβ supplementation will stimulate chondrocyte redifferentiation in vitro in serum-free three-dimensional (3D) culture. Human articular chondrocytes were serially passaged twice (P2) in monolayer culture. P2 cells were then placed in high-density (3D) culture on top of membranes (Millipore) and cultured for up to 6 weeks in chemically defined serum-free redifferentiation media (SFRM) in the presence or absence of TGFβ. The tissues were evaluated histologically, biochemically, by immunohistochemical staining, and biomechanically. Passaged human chondrocytes cultured in SFRM supplemented with 10 ng/mL TGFβ3 consistently formed a continuous layer of articular-like cartilage tissue rich in collagen type 2 and aggrecan and lacking collagen type 1 and X in the absence of a scaffold. The tissue developed a superficial zone characterized by expression of lubricin and clusterin with horizontally aligned collagen fibers. This study suggests that passaged human chondrocytes can be used to bioengineer a continuous layer of articular cartilage-like tissue in vitro scaffold free. Further study is required to evaluate their ability to repair cartilage defects in vivo.

  9. Cartilage.

    Science.gov (United States)

    Caplan, Arnold I.

    1984-01-01

    Cartilage is a fundamental biological material that helps to shape the body and then helps to support it. Its fundamental properties of strength and resilience are explained in terms of the tissue's molecular structure. (JN)

  10. The Role of Inorganic Polyphosphates in the Formation of Bioengineered Cartilage Incorporating a Zone of Calcified Cartilage In Vitro

    Science.gov (United States)

    St-Pierre, Jean-Philippe

    The development of bioengineered cartilage for replacement of damaged articular cartilage has gained momentum in recent years. One such approach has been developed in the Kandel lab, whereby cartilage is formed by seeding primary articular chondrocytes on the top surface of a porous biodegradable calcium polyphosphate (CPP) bone substitute, permitting anchorage of the tissue within the pores of the substrate; however, the interfacial shear properties of the tissue-substrate interface of these biphasic constructs are 1 to 2 orders of magnitude lower than the native cartilage-subchondral bone interface. To overcome this limitation, a strategy was devised to generate a zone of calcified cartilage (ZCC), thereby mimicking the native architecture of the osteochondral junction; however, the ZCC was located slightly above the cartilage-CPP interface. Thus, it was hypothesized that polyphosphate released from the CPP substrate and accumulating in the tissue inhibits the formation of the ZCC at the tissue-substrate interface. Based on this information, a strategy was devised to generate biphasic constructs incorporating a properly located ZCC. This approach involved the application of a thin calcium phosphate film to the surfaces of porous CPP via a sol-gel procedure, thereby limiting the accumulation of polyphosphate in the cartilaginous tissue. This modification to the substrate surface did not negatively impact the quality of the in vitro-formed cartilage tissue or the ZCC. Interfacial shear testing of biphasic constructs demonstrated significantly improved interfacial shear properties in the presence of a properly located ZCC. These studies also led to the observation that chondrocytes produce endogenous polyphosphate and that its levels in deep zone cartilage appear inversely related to mineral deposition within the tissue. Using an in vitro model of cartilage calcification, it was demonstrated that polyphosphate levels are modulated in part by the inhibitory effects

  11. Laser-induced micropore formation and modification of cartilage structure in osteoarthritis healing

    Energy Technology Data Exchange (ETDEWEB)

    Sobol, Emil [Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, RussiabFederal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, Institute of Photonic Technologies, Moscow, Russia; Baum, Olga [Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, Institute of Photonic Technologies, Moscow, Russia; Shekhter, Anatoly [Sechenov First Medical University of Moscow, Institute of Regenerative Medicine, Moscow, Russia; Wachsmann-Hogiu, Sebastian [University of California, Center for Biophotonics, Department of Pathology and Laboratory Medicine, Sacramento, California, United StateseMcGill University, Department of Bioengineering, Montreal, Canada; Shnirelman, Alexander [Concordia University, Department of Mathematics and Statistics, Montreal, Canada; Alexandrovskaya, Yulia [Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, RussiabFederal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, Institute of Photonic Technologies, Moscow, Russia; Sadovskyy, Ivan [Argonne National Laboratory, Materials Science Division, Argonne, Illinois, United States; Vinokur, Valerii [Argonne National Laboratory, Materials Science Division, Argonne, Illinois, United States

    2017-05-31

    Pores are vital for functioning of avascular tissues. Laser-induced pores play an important role in the process of cartilage regeneration. The aim of any treatment for osteoarthritis is to repair hyaline-type cartilage. The aims of this study are to answer two questions: (1) How do laser-assisted pores affect the cartilaginous cells to synthesize hyaline cartilage (HC)? and (2) How can the size distribution of pores arising in the course of laser radiation be controlled? We have shown that in cartilage, the pores arise predominately near chondrocytes, which promote nutrition of cells and signal molecular transfer that activates regeneration of cartilage. In vivo laser treatment of damaged cartilage of miniature pig joints provides cellular transformation and formation of HC. We propose a simple model of pore formation in biopolymers that paves the way for going beyond the trial-anderror approach when choosing an optimal laser treatment regime. Our findings support the approach toward laser healing of osteoarthritis.

  12. Stem cells catalyze cartilage formation by neonatal articular chondrocytes in 3D biomimetic hydrogels.

    Science.gov (United States)

    Lai, Janice H; Kajiyama, Glen; Smith, Robert Lane; Maloney, William; Yang, Fan

    2013-12-19

    Cartilage loss is a leading cause of disability among adults and effective therapy remains elusive. Neonatal chondrocytes (NChons) are an attractive allogeneic cell source for cartilage repair, but their clinical translation has been hindered by scarce donor availability. Here we examine the potential for catalyzing cartilage tissue formation using a minimal number of NChons by co-culturing them with adipose-derived stem cells (ADSCs) in 3D hydrogels. Using three different co-culture models, we demonstrated that the effects of co-culture on cartilage tissue formation are dependent on the intercellular distance and cell distribution in 3D. Unexpectedly, increasing ADSC ratio in mixed co-culture led to increased synergy between NChons and ADSCs, and resulted in the formation of large neocartilage nodules. This work raises the potential of utilizing stem cells to catalyze tissue formation by neonatal chondrocytes via paracrine signaling, and highlights the importance of controlling cell distribution in 3D matrices to achieve optimal synergy.

  13. Mechanical stimulation to stimulate formation of a physiological collagen architecture in tissue-engineered cartilage; a numerical study

    NARCIS (Netherlands)

    Khoshgoftar, M.; Donkelaar, van C.C.; Ito, K.

    2011-01-01

    The load-bearing capacity of today's tissue-engineered (TE) cartilage is insufficient. The arcade-like collagen network in native cartilage plays an important role in its load-bearing properties. Inducing the formation of such collagen architecture in engineered cartilage can, therefore, enhance

  14. Role of Insulin-Transferrin-Selenium in Auricular Chondrocyte Proliferation and Engineered Cartilage Formation in Vitro

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2014-01-01

    Full Text Available The goal of this study is to determine the effects of Insulin-Transferrin-Selenium (ITS on proliferation of auricular chondrocytes and formation of engineered cartilage in vitro. Pig auricular monolayer chondrocytes and chondrocyte pellets were cultured in media containing 1% ITS at different concentrations of fetal bovine serum (FBS, 10%, 6%, 2%, 0%, or 10% FBS alone as a control for four weeks. Parameters including cell proliferation in monolayer, wet weight, collagen type I/II/X (Col I, II, X and glycosaminoglycan (GAG expression, GAG content of pellets and gene expression associated with cartilage formation/dedifferentiation (lost cartilage phenotype/hypertrophy within the chondrocyte pellets were assessed. The results showed that chondrocytes proliferation rates increased when FBS concentrations increased (2%, 6%, 10% FBS in ITS supplemented groups. In addition, 1% ITS plus 10% FBS significantly promoted cell proliferation than 10% FBS alone. No chondrocytes grew in ITS alone medium. 1% ITS plus 10% FBS enhanced cartilage formation in terms of size, wet weight, cartilage specific matrices, and homogeneity, compared to 10% FBS alone group. Furthermore, ITS prevented engineered cartilage from dedifferentiation (i.e., higher index of Col II/Col I mRNA expression and expression of aggrecan and hypertrophy (i.e., lower mRNA expression of Col X and MMP13. In conclusion, our results indicated that ITS efficiently enhanced auricular chondrocytes proliferation, retained chondrogenic phenotypes, and promoted engineered cartilage formation when combined with FBS, which is potentially used as key supplementation in auricular chondrocytes and engineered cartilage culture.

  15. Laser-induced micropore formation and modification of cartilage structure in osteoarthritis healing.

    Science.gov (United States)

    Sobol, Emil; Baum, Olga; Shekhter, Anatoly; Wachsmann-Hogiu, Sebastian; Shnirelman, Alexander; Alexandrovskaya, Yulia; Sadovskyy, Ivan; Vinokur, Valerii

    2017-09-01

    Pores are vital for functioning of avascular tissues. Laser-induced pores play an important role in the process of cartilage regeneration. The aim of any treatment for osteoarthritis is to repair hyaline-type cartilage. The aims of this study are to answer two questions: (1) How do laser-assisted pores affect the cartilaginous cells to synthesize hyaline cartilage (HC)? and (2) How can the size distribution of pores arising in the course of laser radiation be controlled? We have shown that in cartilage, the pores arise predominately near chondrocytes, which promote nutrition of cells and signal molecular transfer that activates regeneration of cartilage. In vivo laser treatment of damaged cartilage of miniature pig joints provides cellular transformation and formation of HC. We propose a simple model of pore formation in biopolymers that paves the way for going beyond the trial-and-error approach when choosing an optimal laser treatment regime. Our findings support the approach toward laser healing of osteoarthritis.

  16. Laser-induced micropore formation and modification of cartilage structure in osteoarthritis healing

    Science.gov (United States)

    Sobol, Emil; Baum, Olga; Shekhter, Anatoly; Wachsmann-Hogiu, Sebastian; Shnirelman, Alexander; Alexandrovskaya, Yulia; Sadovskyy, Ivan; Vinokur, Valerii

    2017-09-01

    Pores are vital for functioning of avascular tissues. Laser-induced pores play an important role in the process of cartilage regeneration. The aim of any treatment for osteoarthritis is to repair hyaline-type cartilage. The aims of this study are to answer two questions: (1) How do laser-assisted pores affect the cartilaginous cells to synthesize hyaline cartilage (HC)? and (2) How can the size distribution of pores arising in the course of laser radiation be controlled? We have shown that in cartilage, the pores arise predominately near chondrocytes, which promote nutrition of cells and signal molecular transfer that activates regeneration of cartilage. In vivo laser treatment of damaged cartilage of miniature pig joints provides cellular transformation and formation of HC. We propose a simple model of pore formation in biopolymers that paves the way for going beyond the trial-and-error approach when choosing an optimal laser treatment regime. Our findings support the approach toward laser healing of osteoarthritis.

  17. Deletion of IFT80 Impairs Epiphyseal and Articular Cartilage Formation Due to Disruption of Chondrocyte Differentiation

    Science.gov (United States)

    Yuan, Xue; Yang, Shuying

    2015-01-01

    Intraflagellar transport proteins (IFT) play important roles in cilia formation and organ development. Partial loss of IFT80 function leads Jeune asphyxiating thoracic dystrophy (JATD) or short-rib polydactyly (SRP) syndrome type III, displaying narrow thoracic cavity and multiple cartilage anomalies. However, it is unknown how IFT80 regulates cartilage formation. To define the role and mechanism of IFT80 in chondrocyte function and cartilage formation, we generated a Col2α1; IFT80f/f mouse model by crossing IFT80f/f mice with inducible Col2α1-CreER mice, and deleted IFT80 in chondrocyte lineage by injection of tamoxifen into the mice in embryonic or postnatal stage. Loss of IFT80 in the embryonic stage resulted in short limbs at birth. Histological studies showed that IFT80-deficient mice have shortened cartilage with marked changes in cellular morphology and organization in the resting, proliferative, pre-hypertrophic, and hypertrophic zones. Moreover, deletion of IFT80 in the postnatal stage led to mouse stunted growth with shortened growth plate but thickened articular cartilage. Defects of ciliogenesis were found in the cartilage of IFT80-deficient mice and primary IFT80-deficient chondrocytes. Further study showed that chondrogenic differentiation was significantly inhibited in IFT80-deficient mice due to reduced hedgehog (Hh) signaling and increased Wnt signaling activities. These findings demonstrate that loss of IFT80 blocks chondrocyte differentiation by disruption of ciliogenesis and alteration of Hh and Wnt signaling transduction, which in turn alters epiphyseal and articular cartilage formation. PMID:26098911

  18. Mesenchymal stem cell-derived extracellular matrix enhances chondrogenic phenotype of and cartilage formation by encapsulated chondrocytes in vitro and in vivo.

    Science.gov (United States)

    Yang, Yuanheng; Lin, Hang; Shen, He; Wang, Bing; Lei, Guanghua; Tuan, Rocky S

    2018-03-15

    Mesenchymal stem cell derived extracellular matrix (MSC-ECM) is a natural biomaterial with robust bioactivity and good biocompatibility, and has been studied as a scaffold for tissue engineering. In this investigation, we tested the applicability of using decellularized human bone marrow derived MSC-ECM (hBMSC-ECM) as a culture substrate for chondrocyte expansion in vitro, as well as a scaffold for chondrocyte-based cartilage repair. hBMSC-ECM deposited by hBMSCs cultured on tissue culture plastic (TCP) was harvested, and then subjected to a decellularization process to remove hBMSCs. Compared with chondrocytes grown on TCP, chondrocytes seeded onto hBMSC-ECM exhibited significantly increased proliferation rate, and maintained better chondrocytic phenotype than TCP group. After being expanded to the same cell number and placed in high-density micromass cultures, chondrocytes from the ECM group showed better chondrogenic differentiation profile than those from the TCP group. To test cartilage formation ability, composites of hBMSC-ECM impregnated with chondrocytes were subjected to brief trypsin treatment to allow cell-mediated contraction, and folded to form 3-dimensional chondrocyte-impregnated hBMSC-ECM (Cell/ECM constructs). Upon culture in vitro in chondrogenic medium for 21 days, robust cartilage formation was observed in the Cell/ECM constructs. Similarly prepared Cell/ECM constructs were tested in vivo by subcutaneous implantation into SCID mice. Prominent cartilage formation was observed in the implanted Cell/ECM constructs 14 days post-implantation, with higher sGAG deposition compared to controls consisting of chondrocyte cell sheets. Taken together, these findings demonstrate that hBMSC-ECM is a superior culture substrate for chondrocyte expansion and a bioactive matrix potentially applicable for cartilage regeneration in vivo. Current cell-based treatments for focal cartilage defects face challenges, including chondrocyte dedifferentiation, need for

  19. Malignant fibrous histiocytoma of soft tissue with metaplastic bone and cartilage formation

    International Nuclear Information System (INIS)

    Dorfman, H.D.; Bhagavan, B.S.

    1982-01-01

    The presence of bone and cartilage in some cases of malignant fibrous histiocytoma of the soft tissue as a microscopic finding has been reported previously but little note has been taken of the radiologic manifestations of these tumor elements. A series of five such cases with sufficient metaplastic osseous and cartilaginous elements to produce roentgenographic evidence of their presence is reported here. An additional two cases showed only histologic evidence of bone or cartilage formation. The reactive ossification tends to be peripheral in location, involving the pseudocapsule of the sarcoma or its fibrous septa. In three there was a zoning pattern with peripheral or polar orientation, strongly suggesting the diagnosis of myositis ossificans. The latter was the diagnosis considered radiologically in four of the five cases. Malignant fibrous histiocytoma with reactive bone and cartilage must be considered in the differential diagnosis of soft tissue masses with calcific densities, particularly when these occur in tumors of the extremities. (orig.)

  20. Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles.

    Science.gov (United States)

    Yin, Heyong; Wang, Yu; Sun, Zhen; Sun, Xun; Xu, Yichi; Li, Pan; Meng, Haoye; Yu, Xiaoming; Xiao, Bo; Fan, Tian; Wang, Yiguo; Xu, Wenjing; Wang, Aiyuan; Guo, Quanyi; Peng, Jiang; Lu, Shibi

    2016-03-01

    We propose a method of preparing a novel cell carrier derived from natural cartilage extracellular matrix (ECM), designated cartilage ECM-derived particles (CEDPs). Through a series of processes involving pulverization, sieving, and decellularization, fresh cartilage was made into CEDPs with a median diameter of 263 ± 48 μm. Under microgravity culture conditions in a rotary cell culture system (RCCS), bone marrow stromal cells (BMSCs) can proliferate rapidly on the surface of CEDPs with high viability. Histological evaluation and gene expression analysis indicated that BMSCs were differentiated into mature chondrocytes after 21 days of culture without the use of exogenous growth factors. Functional cartilage microtissue aggregates of BMSC-laden CEDPs formed as time in culture increased. Further, the microtissue aggregates were directly implanted into trochlear cartilage defects in a rat model (CEDP+MSC group). Gait analysis and histological results indicated that the CEDP+MSC group obtained better and more rapid joint function recovery and superior cartilage repair compared to the control groups, in which defects were treated with CEDPs alone or only fibrin glue, at both 6 and 12 weeks after surgery. In conclusion, the innovative cell carrier derived from cartilage ECM could promote chondrogenic differentiation of BMSCs, and the direct use of functional cartilage microtissue facilitated cartilage regeneration. This strategy for cell culture, stem cell differentiation and one-step surgery using cartilage microtissue for cartilage repair provides novel prospects for cartilage tissue engineering and may have further broad clinical applications. We proposed a method to prepare a novel cell carrier derived from natural cartilage ECM, termed cartilage ECM-derived particles (CEDPs), which can support proliferation of MSCs and facilitate their chondrogenic differentiation. Further, the direct use of functional cartilage microtissue of MSC-laden CEDP aggregates for

  1. Transglutaminase-2 differently regulates cartilage destruction and osteophyte formation in a surgical model of osteoarthritis.

    Science.gov (United States)

    Orlandi, A; Oliva, F; Taurisano, G; Candi, E; Di Lascio, A; Melino, G; Spagnoli, L G; Tarantino, U

    2009-04-01

    Osteoarthritis is a progressive joint disease characterized by cartilage degradation and bone remodeling. Transglutaminases catalyze a calcium-dependent transamidation reaction that produces covalent cross-linking of available substrate glutamine residues and modifies the extracellular matrix. Increased transglutaminases-mediated activity is reported in osteoarthritis, but the relative contribution of transglutaminases-2 (TG2) is uncertain. We describe TG2 expression in human femoral osteoarthritis and in wild-type and homozygous TG2 knockout mice after surgically-induced knee joint instability. Increased TG2 levels were observed in human and wild-type murine osteoarthritic cartilage compared to the respective controls. Histomorphometrical but not X-ray investigation documented in osteoarthritic TG2 knockout mice reduced cartilage destruction and an increased osteophyte formation compared to wild-type mice. These differences were associated with increased TGFbeta-1 expression. In addition to confirming its important role in osteoarthritis development, our results demonstrated that TG2 expression differently influences cartilage destruction and bone remodeling, suggesting new targeted TG2-related therapeutic strategies.

  2. High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    LS Moreira Teixeira

    2012-06-01

    Full Text Available Cell-based cartilage repair strategies such as matrix-induced autologous chondrocyte implantation (MACI could be improved by enhancing cell performance. We hypothesised that micro-aggregates of chondrocytes generated in high-throughput prior to implantation in a defect could stimulate cartilaginous matrix deposition and remodelling. To address this issue, we designed a micro-mould to enable controlled high-throughput formation of micro-aggregates. Morphology, stability, gene expression profiles and chondrogenic potential of micro-aggregates of human and bovine chondrocytes were evaluated and compared to single-cells cultured in micro-wells and in 3D after encapsulation in Dextran-Tyramine (Dex-TA hydrogels in vitro and in vivo. We successfully formed micro-aggregates of human and bovine chondrocytes with highly controlled size, stability and viability within 24 hours. Micro-aggregates of 100 cells presented a superior balance in Collagen type I and Collagen type II gene expression over single cells and micro-aggregates of 50 and 200 cells. Matrix metalloproteinases 1, 9 and 13 mRNA levels were decreased in micro-aggregates compared to single-cells. Histological and biochemical analysis demonstrated enhanced matrix deposition in constructs seeded with micro-aggregates cultured in vitro and in vivo, compared to single-cell seeded constructs. Whole genome microarray analysis and single gene expression profiles using human chondrocytes confirmed increased expression of cartilage-related genes when chondrocytes were cultured in micro-aggregates. In conclusion, we succeeded in controlled high-throughput formation of micro-aggregates of chondrocytes. Compared to single cell-seeded constructs, seeding of constructs with micro-aggregates greatly improved neo-cartilage formation. Therefore, micro-aggregation prior to chondrocyte implantation in current MACI procedures, may effectively accelerate hyaline cartilage formation.

  3. High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo.

    Science.gov (United States)

    Moreira Teixeira, L S; Leijten, J C H; Sobral, J; Jin, R; van Apeldoorn, A A; Feijen, J; van Blitterswijk, C; Dijkstra, P J; Karperien, M

    2012-06-05

    Cell-based cartilage repair strategies such as matrix-induced autologous chondrocyte implantation (MACI) could be improved by enhancing cell performance. We hypothesised that micro-aggregates of chondrocytes generated in high-throughput prior to implantation in a defect could stimulate cartilaginous matrix deposition and remodelling. To address this issue, we designed a micro-mould to enable controlled high-throughput formation of micro-aggregates. Morphology, stability, gene expression profiles and chondrogenic potential of micro-aggregates of human and bovine chondrocytes were evaluated and compared to single-cells cultured in micro-wells and in 3D after encapsulation in Dextran-Tyramine (Dex-TA) hydrogels in vitro and in vivo. We successfully formed micro-aggregates of human and bovine chondrocytes with highly controlled size, stability and viability within 24 hours. Micro-aggregates of 100 cells presented a superior balance in Collagen type I and Collagen type II gene expression over single cells and micro-aggregates of 50 and 200 cells. Matrix metalloproteinases 1, 9 and 13 mRNA levels were decreased in micro-aggregates compared to single-cells. Histological and biochemical analysis demonstrated enhanced matrix deposition in constructs seeded with micro-aggregates cultured in vitro and in vivo, compared to single-cell seeded constructs. Whole genome microarray analysis and single gene expression profiles using human chondrocytes confirmed increased expression of cartilage-related genes when chondrocytes were cultured in micro-aggregates. In conclusion, we succeeded in controlled high-throughput formation of micro-aggregates of chondrocytes. Compared to single cell-seeded constructs, seeding of constructs with micro-aggregates greatly improved neo-cartilage formation. Therefore, micro-aggregation prior to chondrocyte implantation in current MACI procedures, may effectively accelerate hyaline cartilage formation.

  4. The effect of platelet lysate supplementation of a dextran-based hydrogel on cartilage formation.

    Science.gov (United States)

    Moreira Teixeira, Liliana S; Leijten, Jeroen C H; Wennink, Jos W H; Chatterjea, Anindita G; Feijen, Jan; van Blitterswijk, Clemens A; Dijkstra, Pieter J; Karperien, Marcel

    2012-05-01

    In situ gelating dextran-tyramine (Dex-TA) injectable hydrogels have previously shown promising features for cartilage repair. Yet, despite suitable mechanical properties, this system lacks intrinsic biological signals. In contrast, platelet lysate-derived hydrogels are rich in growth factors and anti-inflammatory cytokines, but mechanically unstable. We hypothesized that the advantages of these systems may be combined in one hydrogel, which can be easily translated into clinical settings. Platelet lysate was successfully incorporated into Dex-TA polymer solution prior to gelation. After enzymatic crosslinking, rheological and morphological evaluations were performed. Subsequently, the effect of platelet lysate on cell migration, adhesion, proliferation and multi-lineage differentiation was determined. Finally, we evaluated the integration potential of this gel onto osteoarthritis-affected cartilage. The mechanical properties and covalent attachment of Dex-TA to cartilage tissue during in situ gel formation were successfully combined with the advantages of platelet lysate, revealing the potential of this enhanced hydrogel as a cell-free approach. The addition of platelet lysate did not affect the mechanical properties and porosity of Dex-TA hydrogels. Furthermore, platelet lysate derived anabolic growth factors promoted proliferation and triggered chondrogenic differentiation of mesenchymal stromal cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Creating and maintaining a gas cap in tar sands formations

    Science.gov (United States)

    Vinegar, Harold J.; Karanikas, John Michael; Dinkoruk, Deniz Sumnu; Wellington, Scott Lee

    2010-03-16

    Methods for treating a tar sands formation are disclosed herein. Methods for treating a tar sands formation may include providing heat to at least part of a hydrocarbon layer in the formation from one or more heaters located in the formation. Pressure may be allowed to increase in an upper portion of the formation to provide a gas cap in the upper portion. At least some hydrocarbons are produced from a lower portion of the formation.

  6. Mechanics and crack formation in the extracellular matrix with articular cartilage as a model system

    Science.gov (United States)

    Kearns, Sarah; Silverberg, Jesse; Bonassar, Lawrence; Cohen, Itai; Das, Moumita

    We investigate the mechanical structure-function relations in the extracellular matrix (ECM) with focus on crack formation and failure. As a model system, our study focuses on the ECM in articular cartilage (AC), the tissue that covers the ends of bones, and distributes load in joints including in the knees, shoulders, and hips. The strength, toughness, and crack resistance of native articular cartilage is unparalleled in materials made by humankind. This mechanical response is mainly due to its ECM. The ECM in AC has two major mechanobiological components: a network of the biopolymer collagen and a flexible aggrecan gel. We model this system as a biopolymer network embedded in a swelling gel, and investigate the conditions for the formation and propagation of cracks using a combination of rigidity percolation theory and energy minimization approaches. Our results may provide useful insights into the design principles of the ECM as well as of biomimetic hydrogels that are mechanically robust and can, at the same time, easily adapt to cues in their surroundings. This work was partially supported by a Cottrell College Science Award.

  7. Recapitulation of physiological spatiotemporal signals promotes in vitro formation of phenotypically stable human articular cartilage

    Science.gov (United States)

    Wei, Yiyong; Zhou, Bin; Bernhard, Jonathan; Robinson, Samuel; Burapachaisri, Aonnicha; Guo, X. Edward

    2017-01-01

    Standard isotropic culture fails to recapitulate the spatiotemporal gradients present during native development. Cartilage grown from human mesenchymal stem cells (hMSCs) is poorly organized and unstable in vivo. We report that human cartilage with physiologic organization and in vivo stability can be grown in vitro from self-assembling hMSCs by implementing spatiotemporal regulation during induction. Self-assembling hMSCs formed cartilage discs in Transwell inserts following isotropic chondrogenic induction with transforming growth factor β to set up a dual-compartment culture. Following a switch in the basal compartment to a hypertrophic regimen with thyroxine, the cartilage discs underwent progressive deep-zone hypertrophy and mineralization. Concurrent chondrogenic induction in the apical compartment enabled the maintenance of functional and hyaline cartilage. Cartilage homeostasis, chondrocyte maturation, and terminal differentiation markers were all up-regulated versus isotropic control groups. We assessed the in vivo stability of the cartilage formed under different induction regimens. Cartilage formed under spatiotemporal regulation in vitro resisted endochondral ossification, retained the expression of cartilage markers, and remained organized following s.c. implantation in immunocompromised mice. In contrast, the isotropic control groups underwent endochondral ossification. Cartilage formed from hMSCs remained stable and organized in vivo. Spatiotemporal regulation during induction in vitro recapitulated some aspects of native cartilage development, and potentiated the maturation of self-assembling hMSCs into stable and organized cartilage resembling the native articular cartilage. PMID:28228529

  8. The Development of Dorsal Nasal Cyst Formation after Rhinoplasty and Its Reconstruction with Conchal Cartilage

    Directory of Open Access Journals (Sweden)

    Tolgar Lütfi Kumral

    2014-01-01

    Full Text Available The dorsal nasal cyst formation is a rare and late complication of rhinoplasty. It has been rarely reported in the literature and it is usually mucous cysts. Migration and planting to the subcutaneous space during the surgical procedure has been recognized as the formation mechanism. This case report has presented 42-year-old male patient with a destructing dorsal nasal mucous cyst that developed 10 years after the rhinoplasty operation. There was no complication in the primary rhinoplasty and the patient was satisfied with his appearance. There was a swelling of the nasal dorsum over the past year and surgical excision of the cyst was performed. During the surgery, the defect was reconstructed with conchal cartilage. There was no recurrence during follow-up.

  9. Exogenous fibroblast growth factor 9 attenuates cartilage degradation and aggravates osteophyte formation in post-traumatic osteoarthritis.

    Science.gov (United States)

    Zhou, S; Wang, Z; Tang, J; Li, W; Huang, J; Xu, W; Luo, F; Xu, M; Wang, J; Wen, X; Chen, L; Chen, H; Su, N; Shen, Y; Du, X; Xie, Y; Chen, L

    2016-12-01

    The aim of the present study is to investigate the effects of exogenous fibroblast growth factor (FGF)9 on the progression of post-traumatic osteoarthritis (OA). The expression of FGF9 in articular cartilage with OA is detected by immunohistochemistry (IHC). The effects of intra-articular exogenous FGF9 injection on post-traumatic OA induced by the destabilization of the medial meniscus (DMM) surgery are evaluated. Cartilage changes and osteophyte formation in knee joints are investigated by histological analysis. Changes in subchondral bone are evaluated by microcomputed tomography (micro-CT). The effect of exogenous FGF9 on an interleukin-1β (IL-1β)-induced ex vivo OA model of human articular cartilage tissues is also evaluated. FGF9 expression was down-regulated in articular chondrocytes of OA but ectopically induced at sites of osteophyte formation. Intra-articular injection of exogenous FGF9 attenuated articular cartilage degradation in mice after DMM surgery. Exogenous FGF9 suppressed collagen X and MMP13 expressions in OA cartilage, while promoted collagen II expression. Similar results were observed in IL-1β-induced ex vivo OA model. Intra-articular injection of FGF9 had no significant effect on the subchondral bone of knee joints after DMM surgery, but aggravated osteophyte formation. The expressions of SOX9 and collagen II, and cell proliferation were up-regulated at sites of initial osteophyte formation in mice with exogenous FGF9 treatment. Intra-articular injection of exogenous FGF9 delays articular cartilage degradation in post-traumatic OA, while aggravates osteophyte formation. Copyright © 2016. Published by Elsevier Ltd.

  10. Dual Function of Glucosamine in Gelatin/Hyaluronic Acid Cryogel to Modulate Scaffold Mechanical Properties and to Maintain Chondrogenic Phenotype for Cartilage Tissue Engineering.

    Science.gov (United States)

    Chen, Chih-Hao; Kuo, Chang-Yi; Wang, Yan-Jie; Chen, Jyh-Ping

    2016-11-23

    Glucosamine (GlcN) fulfills many of the requirements as an ideal component in scaffolds used in cartilage tissue engineering. The incorporation of GlcN in a gelatin/hyaluronic acid (GH) cryogel scaffold could provide biological cues in maintaining the phenotype of chondrocytes. Nonetheless, substituting gelatin with GlcN may also decrease the crosslinking density and modulate the mechanical properties of the cryogel scaffold, which may be beneficial as physical cues for chondrocytes in the scaffold. Thus, we prepared cryogel scaffolds containing 9% GlcN (GH-GlcN9) and 16% GlcN (GH-GlcN16) by carbodiimide-mediated crosslinking reactions at -16 °C. The crosslinking density and the mechanical properties of the cryogel matrix could be tuned by adjusting the content of GlcN used during cryogel preparation. In general, incorporation of GlcN did not influence scaffold pore size and ultimate compressive strain but increased porosity. The GH-GlcN16 cryogel showed the highest swelling ratio and degradation rate in hyaluronidase and collagenase solutions. On the contrary, the Young's modulus, storage modulus, ultimate compressive stress, energy dissipation level, and rate of stress relaxation decreased by increasing the GlcN content in the cryogel. The release of GlcN from the scaffolds in the culture medium of chondrocytes could be sustained for 21 days for GH-GlcN16 in contrast to only 7 days for GH-GlcN9. In vitro cell culture experiments using rabbit articular chondrocytes revealed that GlcN incorporation affected cell proliferation, morphology, and maintenance of chondrogenic phenotype. Overall, GH-GlcN16 showed the best performance in maintaining chondrogenic phenotype with reduced cell proliferation rate but enhanced glycosaminoglycans (GAGs) and type II collagen (COL II) secretion. Quantitative real-time polymerase chain reaction also showed time-dependent up-regulation of cartilage-specific marker genes (COL II, aggrecan and Sox9) for GH-GlcN16. Implantation of

  11. Ectopic bone formation during tissue-engineered cartilage repair using autologous chondrocytes and novel plasma-derived albumin scaffolds.

    Science.gov (United States)

    Robla Costales, David; Junquera, Luis; García Pérez, Eva; Gómez Llames, Sara; Álvarez-Viejo, María; Meana-Infiesta, Álvaro

    2016-10-01

    The aims of this study were twofold: first, to evaluate the production of cartilaginous tissue in vitro and in vivo using a novel plasma-derived scaffold, and second, to test the repair of experimental defects made on ears of New Zealand rabbits (NZr) using this approach. Scaffolds were seeded with chondrocytes and cultured in vitro for 3 months to check in vitro cartilage production. To evaluate in vivo cartilage production, a chondrocyte-seeded scaffold was transplanted subcutaneously to a nude mouse. To check in vivo repair, experimental defects made in the ears of five New Zealand rabbits (NZr) were filled with chondrocyte-seeded scaffolds. In vitro culture produced mature chondrocytes with no extracellular matrix (ECM). Histological examination of redifferentiated in vitro cultures showed differentiated chondrocytes adhered to scaffold pores. Subcutaneous transplantation of these constructs to a nude mouse produced cartilage, confirmed by histological study. Experimental cartilage repair in five NZr showed cartilaginous tissue repairing the defects, mixed with calcified areas of bone formation. It is possible to produce cartilaginous tissue in vivo and to repair experimental auricular defects by means of chondrocyte cultures and the novel plasma-derived scaffold. Further studies are needed to determine the significance of bone formation in the samples. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  12. ATX-LPA1 axis contributes to proliferation of chondrocytes by regulating fibronectin assembly leading to proper cartilage formation.

    Science.gov (United States)

    Nishioka, Tatsuji; Arima, Naoaki; Kano, Kuniyuki; Hama, Kotaro; Itai, Eriko; Yukiura, Hiroshi; Kise, Ryoji; Inoue, Asuka; Kim, Seok-Hyung; Solnica-Krezel, Lilianna; Moolenaar, Wouter H; Chun, Jerold; Aoki, Junken

    2016-03-23

    The lipid mediator lysophosphatidic acid (LPA) signals via six distinct G protein-coupled receptors to mediate both unique and overlapping biological effects, including cell migration, proliferation and survival. LPA is produced extracellularly by autotaxin (ATX), a secreted lysophospholipase D, from lysophosphatidylcholine. ATX-LPA receptor signaling is essential for normal development and implicated in various (patho)physiological processes, but underlying mechanisms remain incompletely understood. Through gene targeting approaches in zebrafish and mice, we show here that loss of ATX-LPA1 signaling leads to disorganization of chondrocytes, causing severe defects in cartilage formation. Mechanistically, ATX-LPA1 signaling acts by promoting S-phase entry and cell proliferation of chondrocytes both in vitro and in vivo, at least in part through β1-integrin translocation leading to fibronectin assembly and further extracellular matrix deposition; this in turn promotes chondrocyte-matrix adhesion and cell proliferation. Thus, the ATX-LPA1 axis is a key regulator of cartilage formation.

  13. Transcription factor ERG and joint and articular cartilage formation during mouse limb and spine skeletogenesis.

    Science.gov (United States)

    Iwamoto, Masahiro; Tamamura, Yoshihiro; Koyama, Eiki; Komori, Toshihisa; Takeshita, Nobuo; Williams, Julie A; Nakamura, Takashi; Enomoto-Iwamoto, Motomi; Pacifici, Maurizio

    2007-05-01

    Articular cartilage and synovial joints are critical for skeletal function, but the mechanisms regulating their development are largely unknown. In previous studies we found that the ets transcription factor ERG and its alternatively-spliced variant C-1-1 have roles in joint formation in chick. Here, we extended our studies to mouse. We found that ERG is also expressed in developing mouse limb joints. To test regulation of ERG expression, beads coated with the joint master regulator protein GDF-5 were implanted close to incipient joints in mouse limb explants; this led to rapid and strong ectopic ERG expression. We cloned and characterized several mammalian ERG variants and expressed a human C-1-1 counterpart (hERG3Delta81) throughout the cartilaginous skeleton of transgenic mice, using Col2a1 gene promoter/enhancer sequences. The skeletal phenotype was severe and neonatal lethal, and the transgenic mice were smaller than wild type littermates and their skeletons were largely cartilaginous. Limb long bone anlagen were entirely composed of chondrocytes actively expressing collagen IX and aggrecan as well as articular markers such as tenascin-C. Typical growth plates were absent and there was very low expression of maturation and hypertrophy markers, including Indian hedgehog, collagen X and MMP-13. The results suggest that ERG is part of molecular mechanisms leading chondrocytes into a permanent developmental path and become joint forming cells, and may do so by acting downstream of GDF-5.

  14. Hyaline cartilage formation and tumorigenesis of implanted tissues derived from human induced pluripotent stem cells.

    Science.gov (United States)

    Saito, Taku; Yano, Fumiko; Mori, Daisuke; Kawata, Manabu; Hoshi, Kazuto; Takato, Tsuyoshi; Masaki, Hideki; Otsu, Makoto; Eto, Koji; Nakauchi, Hiromitsu; Chung, Ung-il; Tanaka, Sakae

    2015-01-01

    Induced pluripotent stem cells (iPSCs) are a promising cell source for cartilage regenerative medicine. Meanwhile, the risk of tumorigenesis should be considered in the clinical application of human iPSCs (hiPSCs). Here, we report in vitro chondrogenic differentiation of hiPSCs and maturation of the differentiated hiPSCs through transplantation into mouse knee joints. Three hiPSC clones showed efficient chondrogenic differentiation using an established protocol for human embryonic stem cells. The differentiated hiPSCs formed hyaline cartilage tissues at 8 weeks after transplantation into the articular cartilage of NOD/SCID mouse knee joints. Although tumors were not observed during the 8 weeks after transplantation, an immature teratoma had developed in one mouse at 16 weeks. In conclusion, hiPSCs are a potent cell source for regeneration of hyaline articular cartilage. However, the risk of tumorigenesis should be managed for clinical application in the future.

  15. The formation of human auricular cartilage from microtic tissue: An in vivo study.

    Science.gov (United States)

    Ishak, Mohamad Fikeri bin; See, Goh Bee; Hui, Chua Kien; Abdullah, Asma bt; Saim, Lokman bin; Saim, Aminuddin bin; Idrus, Ruszymah bt Haji

    2015-10-01

    This study aimed to isolate, culture-expand and characterize the chondrocytes isolated from microtic cartilage and evaluate its potential as a cell source for ear cartilage reconstruction. Specific attention was to construct the auricular cartilage tissue by using fibrin as scaffold. Cell culture experiment with the use of microtic chondrocytes. Cell culture experiment with the use of microtic chondrocytes. After ear reconstructive surgery at the Universiti Kebangsaan Malaysia Medical Center, chondrocytes were isolated from microtic cartilage. Chondrocytes isolated from the tissue were cultured expanded until passage 4 (P4). Upon confluency at P4, chondrocytes were harvested and tissue engineered constructs were made with human plasma polymerized to fibrin. Constructs formed later is implanted at the dorsal part of nude mice for 8 weeks, followed by post-implantation evaluation with histology staining (Hematoxylin and Eosin (H&E) and Safranin O), immunohistochemistry and RT-PCR for chondrogenic associated genes expression level. Under gross assessment, the construct after 8 weeks of implantation showed similar physical characteristics that of cartilage. Histological staining showed abundant lacunae cells embedded in extracellular matrix similar to that of native cartilage. Safranin O staining showed positive staining which indicates the presence of proteoglycan-rich matrix. Immunohistochemistry analysis showed the strong positive staining for collagen type II, the specific collagen type in the cartilage. Gene expression quantification showed no significant differences in the expression of chondrogenic gene used which is collagen type I, collagen type II, aggrecan core protein (ACP), elastin and sox9 genes when compared to construct formed from normal auricular tissue. Chondrocytes isolated from microtia cartilage has the potential to be used as an alternative cell source for external ear reconstruction in future clinical application. Copyright © 2015 Elsevier

  16. Extracellular matrix components and culture regimen selectively regulate cartilage formation by self-assembling human mesenchymal stem cells in vitro and in vivo.

    Science.gov (United States)

    Ng, Johnathan; Wei, Yiyong; Zhou, Bin; Burapachaisri, Aonnicha; Guo, Edward; Vunjak-Novakovic, Gordana

    2016-12-09

    Cartilage formation from self-assembling mesenchymal stem cells (MSCs) in vitro recapitulate important cellular events during mesenchymal condensation that precedes native cartilage development. The goal of this study was to investigate the effects of cartilaginous extracellular matrix (ECM) components and culture regimen on cartilage formation by self-assembling human MSCs in vitro and in vivo. Human bone marrow-derived MSCs (hMSCs) were seeded and compacted in 6.5-mm-diameter transwell inserts with coated (type I, type II collagen) or uncoated (vehicle) membranes, at different densities (0.5 × 10 6 , 1.0 × 10 6 , 1.5 × 10 6 per insert). Pellets were formed by aggregating hMSCs (0.25 × 10 6 ) in round-bottomed wells. All tissues were cultured for up to 6 weeks for in vitro analyses. Discs (cultured for 6, 8 or 10 weeks) and pellets (cultured for 10 weeks) were implanted subcutaneously in immunocompromised mice to evaluate the cartilage stability in vivo. Type I and type II collagen coatings enabled cartilage disc formation from self-assembling hMSCs. Without ECM coating, hMSCs formed dome-shaped tissues resembling the pellets. Type I collagen, expressed in the prechondrogenic mesenchyme, improved early chondrogenesis versus type II collagen. High seeding density improved cartilage tissue properties but resulted in a lower yield of disc formation. Discs and pellets exhibited compositional and organizational differences in vitro and in vivo. Prolonged chondrogenic induction of the discs in vitro expedited endochondral ossification in vivo. The outcomes of cartilage tissues formed from self-assembling MSCs in vitro and in vivo can be modulated by the control of culture parameters. These insights could motivate new directions for engineering cartilage and bone via a cartilage template from self-assembling MSCs.

  17. Three-dimensional assembly of tissue-engineered cartilage constructs results in cartilaginous tissue formation without retainment of zonal characteristics

    NARCIS (Netherlands)

    Schuurman, W; Harimulyo, E B; Gawlitta, D; Woodfield, T B F; Dhert, Wouter J A; van Weeren, P. René; Malda, J

    Articular cartilage has limited regenerative capabilities. Chondrocytes from different layers of cartilage have specific properties, and regenerative approaches using zonal chondrocytes may yield better replication of the architecture of native cartilage than when using a single cell population. To

  18. The effect of platelet lysate supplementation of a dextran-based hydrogel on cartilage formation

    NARCIS (Netherlands)

    Moreira Teixeira, Liliana; Leijten, Jeroen Christianus Hermanus; Wennink, J.W.H.; Ganguly, Anindita; Feijen, Jan; van Blitterswijk, Clemens; Dijkstra, Pieter J.; Karperien, Hermanus Bernardus Johannes

    2012-01-01

    In situ gelating dextran-tyramine (Dex-TA) injectable hydrogels have previously shown promising features for cartilage repair. Yet, despite suitable mechanical properties, this system lacks intrinsic biological signals. In contrast, platelet lysate-derived hydrogels are rich in growth factors and

  19. High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo

    NARCIS (Netherlands)

    Moreira Teixeira, Liliana; Leijten, Jeroen Christianus Hermanus; Sobral, J.; Jin, R.; van Apeldoorn, Aart A.; Feijen, Jan; van Blitterswijk, Clemens; Dijkstra, Pieter J.; Karperien, Hermanus Bernardus Johannes

    2012-01-01

    Cell-based cartilage repair strategies such as matrix-induced autologous chondrocyte implantation (MACI) could be improved by enhancing cell performance. We hypothesised that micro-aggregates of chondrocytes generated in high-throughput prior to implantation in a defect could stimulate cartilaginous

  20. Three-dimensional assembly of tissue-engineered cartilage constructs results in cartilaginous tissue formation without retainment of zonal characteristics.

    Science.gov (United States)

    Schuurman, W; Harimulyo, E B; Gawlitta, D; Woodfield, T B F; Dhert, W J A; van Weeren, P R; Malda, J

    2016-04-01

    Articular cartilage has limited regenerative capabilities. Chondrocytes from different layers of cartilage have specific properties, and regenerative approaches using zonal chondrocytes may yield better replication of the architecture of native cartilage than when using a single cell population. To obtain high seeding efficiency while still mimicking zonal architecture, cell pellets of expanded deep zone and superficial zone equine chondrocytes were seeded and cultured in two layers on poly(ethylene glycol)-terephthalate-poly(butylene terephthalate) (PEGT-PBT) scaffolds. Scaffolds seeded with cell pellets consisting of a 1:1 mixture of both cell sources served as controls. Parallel to this, pellets of superficial or deep zone chondrocytes, and combinations of the two cell populations, were cultured without the scaffold. Pellet cultures of zonal chondrocytes in scaffolds resulted in a high seeding efficiency and abundant cartilaginous tissue formation, containing collagen type II and glycosaminoglycans (GAGs) in all groups, irrespective of the donor (n = 3), zonal population or stratified scaffold-seeding approach used. However, whereas total GAG production was similar, the constructs retained significantly more GAG compared to pellet cultures, in which a high percentage of the produced GAGs were secreted into the culture medium. Immunohistochemistry for zonal markers did not show any differences between the conditions. We conclude that spatially defined pellet culture in 3D scaffolds is associated with high seeding efficiency and supports cartilaginous tissue formation, but did not result in the maintenance or restoration of the original zonal phenotype. The use of pellet-assembled constructs leads to a better retainment of newly produced GAGs than the use of pellet cultures alone. Copyright © 2013 John Wiley & Sons, Ltd.

  1. The signs of differentiation of chondrocytes in the formation of early cartilage lesions in the elderly

    Directory of Open Access Journals (Sweden)

    Elena Vasil'evna Chetina

    2011-01-01

    Results. The activity of collagen type II cleavage was shown to be increased in the area of age-related OA-like cartilage lesions. This was accompanied by the high expression of collagenases of metalloproteinases (MMP 1, 14 (MT1-MMP, aggrecanases - desintegrin and MMP with thrombospondin type 1 motif (ADAMTS 5, the cytokines of interleukins (IL 1α/β and tumor necrosis factor-α (TNF-α, as well as the genes associated with chondrocyte hypertrophy of type X collagen (C0L10A1, MMP 13 and 9, Indian hedgehog (Ihh and cas-pase 3 in the immediate vicinity of a lesion area. At the same time, there was a high expression of growth factors associated with the proliferation phase of chondrocytes, namely: parathyroid hormone-related peptide (PTHrP, fibroblast growth factor-2 (FGF-2, transforming growth factor β1/2 (TGF-β1/2, as well as macromolecules of matrix of type II collagen (C0L2A1 and aggrecan in both the areas adjacent to the lesions and at a considerable distance from their center. However, these areas showed no higher collagen cleavage activity. Nether higher collagen cleavage, nor excess expression of the genes examined were observed in the absolutely intact cartilage areas. Conclusion. Our studies have indicated that the area of very early age-related OA-like focal cartilage lesions exhibits enhanced type II collagen cleavage that is attended by the expression of the genes associated with chondrocyte differentiation in the embryonic growth plate.

  2. Primary chondrocytes enhance cartilage tissue formation upon co-culture with expanded chondrocytes, dermal fibroblasts, 3T3 feeder cells and embryonic stem cells

    NARCIS (Netherlands)

    Hendriks, J.A.A.; Miclea, Razvan L.; Schotel, Roka; de Bruijn, Ewart; Moroni, Lorenzo; Karperien, Hermanus Bernardus Johannes; Riesle, J.U.; van Blitterswijk, Clemens

    2010-01-01

    Co-culture models have been increasingly used in tissue engineering applications to understand cell–cell interactions and consequently improve regenerative medicine strategies. Aiming at further elucidating cartilage tissue formation, we co-cultured bovine primary chondrocytes (BPCs) with human

  3. First shark from the Late Devonian (Frasnian) Gogo Formation, Western Australia sheds new light on the development of tessellated calcified cartilage.

    Science.gov (United States)

    Long, John A; Burrow, Carole J; Ginter, Michal; Maisey, John G; Trinajstic, Kate M; Coates, Michael I; Young, Gavin C; Senden, Tim J

    2015-01-01

    Living gnathostomes (jawed vertebrates) comprise two divisions, Chondrichthyes (cartilaginous fishes, including euchondrichthyans with prismatic calcified cartilage, and extinct stem chondrichthyans) and Osteichthyes (bony fishes including tetrapods). Most of the early chondrichthyan ('shark') record is based upon isolated teeth, spines, and scales, with the oldest articulated sharks that exhibit major diagnostic characters of the group--prismatic calcified cartilage and pelvic claspers in males--being from the latest Devonian, c. 360 Mya. This paucity of information about early chondrichthyan anatomy is mainly due to their lack of endoskeletal bone and consequent low preservation potential. Here we present new data from the first well-preserved chondrichthyan fossil from the early Late Devonian (ca. 380-384 Mya) Gogo Formation Lägerstatte of Western Australia. The specimen is the first Devonian shark body fossil to be acid-prepared, revealing the endoskeletal elements as three-dimensional undistorted units: Meckel's cartilages, nasal, ceratohyal, basibranchial and possible epibranchial cartilages, plus left and right scapulocoracoids, as well as teeth and scales. This unique specimen is assigned to Gogoselachus lynnbeazleyae n. gen. n. sp. The Meckel's cartilages show a jaw articulation surface dominated by an expansive cotylus, and a small mandibular knob, an unusual condition for chondrichthyans. The scapulocoracoid of the new specimen shows evidence of two pectoral fin basal articulation facets, differing from the standard condition for early gnathostomes which have either one or three articulations. The tooth structure is intermediate between the 'primitive' ctenacanthiform and symmoriiform condition, and more derived forms with a euselachian-type base. Of special interest is the highly distinctive type of calcified cartilage forming the endoskeleton, comprising multiple layers of nonprismatic subpolygonal tesserae separated by a cellular matrix, interpreted

  4. First shark from the Late Devonian (Frasnian Gogo Formation, Western Australia sheds new light on the development of tessellated calcified cartilage.

    Directory of Open Access Journals (Sweden)

    John A Long

    Full Text Available Living gnathostomes (jawed vertebrates comprise two divisions, Chondrichthyes (cartilaginous fishes, including euchondrichthyans with prismatic calcified cartilage, and extinct stem chondrichthyans and Osteichthyes (bony fishes including tetrapods. Most of the early chondrichthyan ('shark' record is based upon isolated teeth, spines, and scales, with the oldest articulated sharks that exhibit major diagnostic characters of the group--prismatic calcified cartilage and pelvic claspers in males--being from the latest Devonian, c. 360 Mya. This paucity of information about early chondrichthyan anatomy is mainly due to their lack of endoskeletal bone and consequent low preservation potential.Here we present new data from the first well-preserved chondrichthyan fossil from the early Late Devonian (ca. 380-384 Mya Gogo Formation Lägerstatte of Western Australia. The specimen is the first Devonian shark body fossil to be acid-prepared, revealing the endoskeletal elements as three-dimensional undistorted units: Meckel's cartilages, nasal, ceratohyal, basibranchial and possible epibranchial cartilages, plus left and right scapulocoracoids, as well as teeth and scales. This unique specimen is assigned to Gogoselachus lynnbeazleyae n. gen. n. sp.The Meckel's cartilages show a jaw articulation surface dominated by an expansive cotylus, and a small mandibular knob, an unusual condition for chondrichthyans. The scapulocoracoid of the new specimen shows evidence of two pectoral fin basal articulation facets, differing from the standard condition for early gnathostomes which have either one or three articulations. The tooth structure is intermediate between the 'primitive' ctenacanthiform and symmoriiform condition, and more derived forms with a euselachian-type base. Of special interest is the highly distinctive type of calcified cartilage forming the endoskeleton, comprising multiple layers of nonprismatic subpolygonal tesserae separated by a cellular matrix

  5. Morphometric Study of the Irradiation Effect on the Cartilage Formation in the Rat Mandibular Condyle

    International Nuclear Information System (INIS)

    Kim, Jeong Hwa; Heo, Min Suk; Lee, Sam Sun; Choi, Soon Chul

    1999-01-01

    This study was undertaken to quantitatively estimate the degree of the damage and recovery of the irradiated rat condylar cartilage using the Image Analyzer. Experimental animals were 16 male rats of the Sprague-Dawley strain at the age of 20 day irradiated with the dose of 10 Gy in their head and neck region. Four rats were sacrificed at the each of the following time intervals - 1, 4, 7 and 14 days, respectively. The same number of control group animals were sacrificed at the each age of 21, 24, 27 and 34 days, respectively. The specimens were stained with 0.5% toluidine blue and examined with light microscope. The condylar cartilage was divided into 4 zones; fibrous zone, proliferating zone, upper hypertrophic zone, and lower hypertrophic zone. And then, the proliferating zone was subdivided into 2 layers - upper and lower layer, and upper and lower hypertrophic zone were subdivided into three layers, respectively - upper, middle and lower layer. With the aid of Image Analyzer, morphometric analysis was performed. The thickness, the numerical density of cells, the cell area density, the extracellular matrix area density, the mean area of single cell, the mean area of extracellular matrix per single cell were measured and analysed. In the experimental group, the thickness of the fibrous zone was slightly increased and that of the proliferating zone and the upper and the lower hypertrophic zone was markedly decreased. With time, the thickness of the fibrous zone was gradually increased and that of the proliferating zone and the upper and the lower hypertrophic zone was steadily in the decreased state. The numerical density of cells of the proliferating zone was increased on post-irradiated 1 day, but decreased after post-irradiated 4 day, and that of the upper hypertrophic zone was decreased. The numerical density of cells of the lower hypertrophic zone was decreased in the early stage and then was decreased or not significantly different from that of the control

  6. Cooperation of Rho family proteins Rac1 and Cdc42 in cartilage development and calcified tissue formation.

    Science.gov (United States)

    Ikehata, Mikiko; Yamada, Atsushi; Fujita, Koji; Yoshida, Yuko; Kato, Tadashi; Sakashita, Akiko; Ogata, Hiroaki; Iijima, Takehiko; Kuroda, Masahiko; Chikazu, Daichi; Kamijo, Ryutaro

    2018-04-20

    Rac1 and Cdc42, Rho family low molecular weight G proteins, are intracellular signaling factors that transmit various information from outside to inside cells. Primarily, they are known to control various biological activities mediated by actin cytoskeleton reorganization, such as cell proliferation, differentiation, and apoptosis. In order to investigate the functions of Rac1 and Cdc42 in bone formation, we prepared cartilage-specific double conditional knockout mice, Rac1 fl/fl ; Cdc42 fl/fl ; Col2-Cre (Rac1: Cdc42 dcKO mice), which died just after birth, similar to Cdc42 fl/fl ; Col2-Cre mice (Cdc42 cKO mice). Our findings showed that the long tubule bone in Rac1: Cdc42 dcKO mice was shorter than that in Rac1 fl/fl ; Col2-Cre mice (Rac1 cKO mice) and Cdc42 cKO mice. Abnormal skeleton formation was also observed and disordered columnar formation in the growth plate of the Rac1: Cdc42 dcKO mice was more severe as compared to the Rac1 cKO and Cdc42 cKO mice. Together, these results suggest that Rac1 and Cdc42 have cooperating roles in regulation of bone development. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. [Research progress of mechanism of hypoxia-inducible factor-1α signaling pathway in condylar cartilage growth and remodeling].

    Science.gov (United States)

    Gaoli, Xu; Lili, Wu; Zhiwu, Wu; Zhiyuan, Gu

    2016-12-01

    The condylar cartilage was adapted to hypoxic conditions in vivo. However, condylar cartilage cells exposed in normoxia in vitro affect the chondrocyte phenotype and cartilage matrix formation. This condition also resulted in great difficulty in chondrocyte research. Culturing chondrocyte should be simulated in in vivo hypoxia environment as much as possible. The hypoxia-inducible factor-1α (HIF-1α) demonstrates an important transcription factor of adaptive response to hypoxic conditions. HIF-1α also plays an active role in maintaining homeostasis and function of chondrocytes. This review summarized current knowledge of the HIF-1α structure, signaling pathway, and mechanism of HIF-1α in the condylar cartilage repair.

  8. Protein Data Bank Japan (PDBj): maintaining a structural data archive and resource description framework format.

    Science.gov (United States)

    Kinjo, Akira R; Suzuki, Hirofumi; Yamashita, Reiko; Ikegawa, Yasuyo; Kudou, Takahiro; Igarashi, Reiko; Kengaku, Yumiko; Cho, Hasumi; Standley, Daron M; Nakagawa, Atsushi; Nakamura, Haruki

    2012-01-01

    The Protein Data Bank Japan (PDBj, http://pdbj.org) is a member of the worldwide Protein Data Bank (wwPDB) and accepts and processes the deposited data of experimentally determined macromolecular structures. While maintaining the archive in collaboration with other wwPDB partners, PDBj also provides a wide range of services and tools for analyzing structures and functions of proteins, which are summarized in this article. To enhance the interoperability of the PDB data, we have recently developed PDB/RDF, PDB data in the Resource Description Framework (RDF) format, along with its ontology in the Web Ontology Language (OWL) based on the PDB mmCIF Exchange Dictionary. Being in the standard format for the Semantic Web, the PDB/RDF data provide a means to integrate the PDB with other biological information resources.

  9. Engineering Cartilage

    Science.gov (United States)

    ... Research Matters NIH Research Matters March 3, 2014 Engineering Cartilage Artistic rendering of human stem cells on ... situations has been a major goal in tissue engineering. Cartilage contains water, collagen, proteoglycans, and chondrocytes. Collagens ...

  10. Shark Cartilage

    Science.gov (United States)

    Shark cartilage (tough elastic tissue that provides support, much as bone does) used for medicine comes primarily from sharks ... Several types of extracts are made from shark cartilage including squalamine lactate, AE-941, and U-995. ...

  11. Rabbit articular cartilage defects treated by allogenic chondrocyte transplantation

    OpenAIRE

    Boopalan, P. R. J. V. C.; Sathishkumar, Solomon; Kumar, Senthil; Chittaranjan, Samuel

    2006-01-01

    Articular cartilage defects have a poor capacity for repair. Most of the current treatment options result in the formation of fibro-cartilage, which is functionally inferior to normal hyaline articular cartilage. We studied the effectiveness of allogenic chondrocyte transplantation for focal articular cartilage defects in rabbits. Chondrocytes were cultured in vitro from cartilage harvested from the knee joints of a New Zealand White rabbit. A 3 mm defect was created in the articular cartilag...

  12. A novel in vitro bovine cartilage punch model for assessing the regeneration of focal cartilage defects with biocompatible bacterial nanocellulose

    Science.gov (United States)

    2013-01-01

    Introduction Current therapies for articular cartilage defects fail to achieve qualitatively sufficient tissue regeneration, possibly because of a mismatch between the speed of cartilage rebuilding and the resorption of degradable implant polymers. The present study focused on the self-healing capacity of resident cartilage cells in conjunction with cell-free and biocompatible (but non-resorbable) bacterial nanocellulose (BNC). This was tested in a novel in vitro bovine cartilage punch model. Methods Standardized bovine cartilage discs with a central defect filled with BNC were cultured for up to eight weeks with/without stimulation with transforming growth factor-β1 (TGF-β1. Cartilage formation and integrity were analyzed by histology, immunohistochemistry and electron microscopy. Content, release and neosynthesis of the matrix molecules proteoglycan/aggrecan, collagen II and collagen I were also quantified. Finally, gene expression of these molecules was profiled in resident chondrocytes and chondrocytes migrated onto the cartilage surface or the implant material. Results Non-stimulated and especially TGF-β1-stimulated cartilage discs displayed a preserved structural and functional integrity of the chondrocytes and surrounding matrix, remained vital in long-term culture (eight weeks) without signs of degeneration and showed substantial synthesis of cartilage-specific molecules at the protein and mRNA level. Whereas mobilization of chondrocytes from the matrix onto the surface of cartilage and implant was pivotal for successful seeding of cell-free BNC, chondrocytes did not immigrate into the central BNC area, possibly due to the relatively small diameter of its pores (2 to 5 μm). Chondrocytes on the BNC surface showed signs of successful redifferentiation over time, including increase of aggrecan/collagen type II mRNA, decrease of collagen type I mRNA and initial deposition of proteoglycan and collagen type II in long-term high-density pellet cultures

  13. Towards Regeneration of Articular Cartilage

    Science.gov (United States)

    Iwamoto, Masahiro; Ohta, Yoichi; Larmour, Colleen; Enomoto-Iwamoto, Motomi

    2014-01-01

    Articular cartilage is classified into permanent hyaline cartilage and has significant differences in structure, extracelluar matrix components, gene expression profile, and mechanical property from transient hyaline cartilage found in growth plate. In the process of synovial joint development, articular cartilage is originated from the interzone, developing at the edge of the cartilaginous anlagen, it establishes zonal structure over time and supports smooth movement of the synovial joint through life. The cascade actions of key regulators such as Wnts, GDF5, Erg, and PTHLH coordinate sequential steps of articular cartilage formation. Articular chondrocytes are restrictedly controlled not to differentiate into a hypertrophic stage by autocrine and paracrine factors and extracerllular matrix microenvironment, but retain potential to undergo hypertrophy. The basal calcified zone of articular cartilage is connected with subchondral bone, but not invaded by blood vessels nor replaced by bone, which is highly contrasted with the growth plate. Articular cartilage has limited regenerative capacity, but likely possesses and potentially uses intrinsic stem cell source in the superficial layer, Ranvier’s groove, the intra-articular tissues such as synovium and fat pad, and marrow below the subchondral bone. Considering the biological views on articular cartilage, several important points are raised for regeneration of articular cartilage. We should evaluate the nature of regenerated cartilage as permanent hyaline cartilage and not just hyaline cartilage. We should study how a hypertrophic phenotype of transplanted cells can be lastingly suppressed in regenerating tissue. Further, we should develop the methods and reagents to activate recruitment of intrinsic stem/progenitor cells into the damaged site. PMID:24078496

  14. Progenitor cells in auricular cartilage demonstrate cartilage-forming capacity in 3D hydrogel culture

    Directory of Open Access Journals (Sweden)

    IA Otto

    2018-02-01

    Full Text Available Paramount for the generation of auricular structures of clinically-relevant size is the acquisition of a large number of cells maintaining an elastic cartilage phenotype, which is the key in producing a tissue capable of withstanding forces subjected to the auricle. Current regenerative medicine strategies utilize chondrocytes from various locations or mesenchymal stromal cells (MSCs. However, the quality of neo-tissues resulting from these cell types is inadequate due to inefficient chondrogenic differentiation and endochondral ossification, respectively. Recently, a subpopulation of stem/progenitor cells has been identified within the auricular cartilage tissue, with similarities to MSCs in terms of proliferative capacity and cell surface biomarkers, but their potential for tissue engineering has not yet been explored. This study compared the in vitro cartilage-forming ability of equine auricular cartilage progenitor cells (AuCPCs, bone marrow-derived MSCs and auricular chondrocytes in gelatin methacryloyl (gelMA-based hydrogels over a period of 56 d, by assessing their ability to undergo chondrogenic differentiation. Neocartilage formation was assessed through gene expression profiling, compression testing, biochemical composition and histology. Similar to MSCs and chondrocytes, AuCPCs displayed a marked ability to generate cartilaginous matrix, although, under the applied culture conditions, MSCs outperformed both cartilage-derived cell types in terms of matrix production and mechanical properties. AuCPCs demonstrated upregulated mRNA expression of elastin, low expression of collagen type X and similar levels of proteoglycan production and mechanical properties as compared to chondrocytes. These results underscored the AuCPCs’ tissue-specific differentiation potential, making them an interesting cell source for the next generation of elastic cartilage tissue-engineered constructs.

  15. The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model.

    Science.gov (United States)

    Hayami, Tadashi; Pickarski, Maureen; Wesolowski, Gregg A; McLane, Julia; Bone, Ashleigh; Destefano, James; Rodan, Gideon A; Duong, Le T

    2004-04-01

    It has been suggested that subchondral bone remodeling plays a role in the progression of osteoarthritis (OA). To test this hypothesis, we characterized the changes in the rat anterior cruciate ligament transection (ACLT) model of OA and evaluated the effects of alendronate (ALN), a potent inhibitor of bone resorption, on cartilage degradation and on osteophyte formation. Male Sprague-Dawley rats underwent ACLT or sham operation of the right knee. Animals were then treated with ALN (0.03 and 0.24 microg/kg/week subcutaneously) and necropsied at 2 or 10 weeks postsurgery. OA changes were evaluated. Subchondral bone volume and osteophyte area were measured by histomorphometric analysis. Coimmunostaining for transforming growth factor beta (TGF beta), matrix metalloproteinase 9 (MMP-9), and MMP-13 was performed to investigate the effect of ALN on local activation of TGF beta. ALN was chondroprotective at both dosages, as determined by histologic criteria and collagen degradation markers. ALN suppressed subchondral bone resorption, which was markedly increased 2 weeks postsurgery, and prevented the subsequent increase in bone formation 10 weeks postsurgery, in the untreated tibial plateau of ACLT joints. Furthermore, ALN reduced the incidence and area of osteophytes in a dose-dependent manner. ALN also inhibited vascular invasion into the calcified cartilage in rats with OA and blocked osteoclast recruitment to subchondral bone and osteophytes. ALN treatment reduced the local release of active TGF beta, possibly via inhibition of MMP-13 expression in articular cartilage and MMP-9 expression in subchondral bone. Subchondral bone remodeling plays an important role in the pathogenesis of OA. ALN or other inhibitors of bone resorption could potentially be used as disease-modifying agents in the treatment of OA.

  16. Diode laser (980nm) cartilage reshaping

    Science.gov (United States)

    El Kharbotly, A.; El Tayeb, T.; Mostafa, Y.; Hesham, I.

    2011-03-01

    Loss of facial or ear cartilage due to trauma or surgery is a major challenge to the otolaryngologists and plastic surgeons as the complicated geometric contours are difficult to be animated. Diode laser (980 nm) has been proven effective in reshaping and maintaining the new geometric shape achieved by laser. This study focused on determining the optimum laser parameters needed for cartilage reshaping with a controlled water cooling system. Harvested animal cartilages were angulated with different degrees and irradiated with different diode laser powers (980nm, 4x8mm spot size). The cartilage specimens were maintained in a deformation angle for two hours after irradiation then released for another two hours. They were serially measured and photographed. High-power Diode laser irradiation with water cooling is a cheep and effective method for reshaping the cartilage needed for reconstruction of difficult situations in otorhinolaryngologic surgery. Key words: cartilage,diode laser (980nm), reshaping.

  17. SIRT3/SOD2 maintains osteoblast differentiation and bone formation by regulating mitochondrial stress

    OpenAIRE

    Gao, Jing; Feng, Zhihui; Wang, Xueqiang; Zeng, Mengqi; Liu, Jing; Han, Shujun; Xu, Jie; Chen, Lei; Cao, Ke; Long, Jiangang; Li, Zongfang; Shen, Weili; Liu, Jiankang

    2017-01-01

    Recent studies have revealed robust metabolic changes during cell differentiation. Mitochondria, the organelles where many vital metabolic reactions occur, may play an important role. Here, we report the involvement of SIRT3-regulated mitochondrial stress in osteoblast differentiation and bone formation. In both the osteoblast cell line MC3T3-E1 and primary calvarial osteoblasts, robust mitochondrial biogenesis and supercomplex formation were observed during differentiation, accompanied by in...

  18. Membrane culture and reduced oxygen tension enhances cartilage matrix formation from equine cord blood mesenchymal stromal cells in vitro.

    Science.gov (United States)

    Co, C; Vickaryous, M K; Koch, T G

    2014-03-01

    Ongoing research is aimed at increasing cartilage tissue yield and quality from multipotent mesenchymal stromal cells (MSC) for the purpose of treating cartilage damage in horses. Low oxygen culture has been shown to enhance chondrogenesis, and novel membrane culture has been proposed to increase tissue yield and homogeneity. The objective of this study was to evaluate and compare the effect of reduced oxygen and membrane culture during in vitro chondrogenesis of equine cord blood (CB) MSC. CB-MSC (n = 5 foals) were expanded at 21% oxygen prior to 3-week differentiation in membrane or pellet culture at 5% and 21% oxygen. Assessment included histological examination (H&E, toluidine Blue, immunohistochemistry (IHC) for collagen type I and II), protein quantification by hydroxyproline assay and dimethylmethylene assay, and mRNA analysis for collagen IA1, collagen IIA1, collagen XA1, HIF1α and Sox9. Among treatment groups, 5% membrane culture produced neocartilage most closely resembling hyaline cartilage. Membrane culture resulted in increased wet mass, homogenous matrix morphology and an increase in total collagen content, while 5% oxygen culture resulted in higher GAG and type II collagen content. No significant differences were observed for mRNA analysis. Membrane culture at 5% oxygen produces a comparatively larger amount of higher quality neocartilage. Matrix homogeneity is attributed to a uniform diffusion gradient and reduced surface tension. Membrane culture holds promise for scale-up for therapeutic purposes, for cellular preconditioning prior to cytotherapeutic applications, and for modeling system for gas-dependent chondrogenic differentiation studies. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  19. Polymer Formulations for Cartilage Repair

    Energy Technology Data Exchange (ETDEWEB)

    Gutowska, Anna; Jasionowski, Marek; Morris, J. E.; Chrisler, William B.; An, Yuehuei H.; Mironov, V.

    2001-05-15

    Regeneration of destroyed articular cartilage can be induced by transplantation of cartilage cells into a defect. The best results are obtained with the use of autologus cells. However, obtaining large amounts of autologus cartilage cells causes a problem of creating a large cartilage defect in a donor site. Techniques are currently being developed to harvest a small number of cells and propagate them in vitro. It is a challenging task, however, due to the fact that ordinarily, in a cell culture on flat surfaces, chondrocytes do not maintain their in vivo phenotype and irreversibly diminish or cease the synthesis of aggregating proteoglycans. Therefore, the research is continuing to develop culture conditions for chondrocytes with the preserved phenotype.

  20. Nongenomic effects of 1α,25-dihydroxyvitamin D3 on cartilage formation deduced from comparisons between Cyp27b1 and Vdr knockout mice

    International Nuclear Information System (INIS)

    Hirota, Yoshihisa; Nakagawa, Kimie; Mimatsu, Shino; Sawada, Natsumi; Sakaki, Toshiyuki; Kubodera, Noboru; Kamao, Maya; Tsugawa, Naoko; Suhara, Yoshitomo; Okano, Toshio

    2017-01-01

    The active form of vitamin D, 1α,25-dihydroxyvitamin D 3 (1α,25D 3 ), plays an important role in the maintenance of calcium (Ca) homeostasis, bone formation, and cell proliferation and differentiation via nuclear vitamin D receptor (VDR). It is formed by the hydroxylation of vitamin D at the 1α position by 25-hydroxyvitamin D 1α-hydroxylase (CYP27B1) in the kidney. However, Cyp27b1 −/− mice, deficient in CYP27B1, and VDR-deficient mice (Vdr −/− ) have not been extensively examined, particularly in a comparative framework. To clarify the physiological significance of 1α,25D 3 and VDR, we produced Cyp27b1 −/− mice and compared their phenotypes with those of Vdr −/− mice. Cyp27b1 −/− mice exhibited hypocalcemia, growth defects, and skeletogenesis dysfunction, similar to Vdr −/− mice. However, unlike Cyp27b1 −/− mice, Vdr −/− mice developed alopecia. Cyp27b1 −/− mice exhibited cartilage mass formation and had difficulty walking on hindlimbs. Furthermore, a phenotypic analysis was performed on Cyp27b1 −/− mice provided a high Ca diet to correct for the Ca metabolic abnormality. In addition, the effects of 1α,25D 3 that are not mediated by Ca metabolic regulatory activity were investigated. Even when the blood Ca concentration was corrected, abnormalities in growth and cartilage tissue formation did not improve in Cyp27b1 −/− mice. These results suggested that 1α,25D 3 directly controls chondrocyte proliferation and differentiation. Using Cyp27b1 −/− mice produced in this study, we can analyze the physiological effects of novel vitamin D derivatives in the absence of endogenous 1α,25D 3 . Accordingly, this study provides a useful animal model for the development of novel vitamin D formulations that are effective for the treatment and prevention of osteoporosis. - Highlights: • We produced Cyp27b1 −/− mice and analyzed their phenotypes. • Vdr −/− mice exhibited alopecia and Cyp27b1 −/− mice exhibited

  1. Cellular and Acellular Approaches for Cartilage Repair

    Science.gov (United States)

    2015-01-01

    There are several choices of cells to use for cartilage repair. Cells are used as internal or external sources and sometimes in combination. In this article, an analysis of the different cell choices and their use and potential is provided. Embryonic cartilage formation is of importance when finding more about how to be able to perfect cartilage repair. Some suggestions for near future research based on up-to-date knowledge on chondrogenic cells are given to hopefully stimulate more studies on the final goal of cartilage regeneration. PMID:27340516

  2. Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair.

    Science.gov (United States)

    Zhou, Feifei; Zhang, Xianzhu; Cai, Dandan; Li, Jun; Mu, Qin; Zhang, Wei; Zhu, Shouan; Jiang, Yangzi; Shen, Weiliang; Zhang, Shufang; Ouyang, Hong Wei

    2017-11-01

    The demand of favorable scaffolds has increased for the emerging cartilage tissue engineering. Chondroitin sulfate (CS) and silk fibroin have been investigated and reported with safety and excellent biocompatibility as tissue engineering scaffolds. However, the rapid degradation rate of pure CS scaffolds presents a challenge to effectively recreate neo-tissue similar to natural articular cartilage. Meanwhile the silk fibroin is well used as a structural constituent material because its remarkable mechanical properties, long-lasting in vivo stability and hypoimmunity. The application of composite silk fibroin and CS scaffolds for joint cartilage repair has not been well studied. Here we report that the combination of silk fibroin and CS could synergistically promote articular cartilage defect repair. The silk fibroin (silk) and silk fibroin/CS (silk-CS) scaffolds were fabricated with salt-leaching, freeze-drying and crosslinking methodologies. The biocompatibility of the scaffolds was investigated in vitro by cell adhesion, proliferation and migration with human articular chondrocytes. We found that silk-CS scaffold maintained better chondrocyte phenotype than silk scaffold; moreover, the silk-CS scaffolds reduced chondrocyte inflammatory response that was induced by interleukin (IL)-1β, which is in consistent with the well-documented anti-inflammatory activities of CS. The in vivo cartilage repair was evaluated with a rabbit osteochondral defect model. Silk-CS scaffold induced more neo-tissue formation and better structural restoration than silk scaffold after 6 and 12weeks of implantation in ICRS histological evaluations. In conclusion, we have developed a silk fibroin/ chondroitin sulfate scaffold for cartilage tissue engineering that exhibits immuno-inhibition property and can improve the self-repair capacity of cartilage. Severe cartilage defect such as osteoarthritis (OA) is difficult to self-repair because of its avascular, aneural and alymphatic nature

  3. Effect of homologous synovial membrane on adult human articular cartilage in organ culture, and failure to influence it with D-penicillamine.

    OpenAIRE

    Jacoby, R K

    1980-01-01

    Adult human articular cartilage has been maintained in organ culture for 8 days, and the culture medium, which was changed on alternate days, was pooled. Normal and rheumatoid cartilage was obtained from patients and 4 types of culture were prepared: (1) cartilage alone; (2) cartilage + D-penicillamine; (3) cartilage + homologous synovium; (4) cartilage, synovium, and D-penicillamine. The hexosamines and hexuronic acid were measured in the cartilage explants and in the medium. The quantity re...

  4. Hyaline cartilage cells outperform mandibular condylar cartilage cells in a TMJ fibrocartilage tissue engineering application.

    Science.gov (United States)

    Wang, L; Lazebnik, M; Detamore, M S

    2009-03-01

    To compare temporomandibular joint (TMJ) condylar cartilage cells in vitro to hyaline cartilage cells cultured in a three-dimensional (3D) environment for tissue engineering of mandibular condylar cartilage. Mandibular condylar cartilage and hyaline cartilage cells were harvested from pigs and cultured for 6 weeks in polyglycolic acid (PGA) scaffolds. Both types of cells were treated with glucosamine sulfate (0.4 mM), insulin-like growth factor-I (IGF-I) (100 ng/ml) and their combination. At weeks 0 and 6, cell number, glycosaminoglycan (GAG) and collagen content were determined, types I and II collagen were visualized by immunohistochemistry and GAGs were visualized by histology. Hyaline cartilage cells produced from half an order to a full order of magnitude more GAGs and collagen than mandibular condylar cartilage cells in 3D culture. IGF-I was a highly effective signal for biosynthesis with hyaline cartilage cells, while glucosamine sulfate decreased cell proliferation and biosynthesis with both types of cells. In vitro culture of TMJ condylar cartilage cells produced a fibrous tissue with predominantly type I collagen, while hyaline cartilage cells formed a fibrocartilage-like tissue with types I and II collagen. The combination of IGF and glucosamine had a synergistic effect on maintaining the phenotype of TMJ condylar cells to generate both types I and II collagen. Given the superior biosynthetic activity by hyaline cartilage cells and the practical surgical limitations of harvesting cells from the TMJ of a patient requiring TMJ reconstruction, cartilage cells from elsewhere in the body may be a potentially better alternative to cells harvested from the TMJ for TMJ tissue engineering. This finding may also apply to other fibrocartilages such as the intervertebral disc and knee meniscus in applications where a mature cartilage cell source is desired.

  5. Scaffold-assisted cartilage tissue engineering using infant chondrocytes from human hip cartilage.

    Science.gov (United States)

    Kreuz, P C; Gentili, C; Samans, B; Martinelli, D; Krüger, J P; Mittelmeier, W; Endres, M; Cancedda, R; Kaps, C

    2013-12-01

    Studies about cartilage repair in the hip and infant chondrocytes are rare. The aim of our study was to evaluate the use of infant articular hip chondrocytes for tissue engineering of scaffold-assisted cartilage grafts. Hip cartilage was obtained from five human donors (age 1-10 years). Expanded chondrocytes were cultured in polyglycolic acid (PGA)-fibrin scaffolds. De- and re-differentiation of chondrocytes were assessed by histological staining and gene expression analysis of typical chondrocytic marker genes. In vivo, cartilage matrix formation was assessed by histology after subcutaneous transplantation of chondrocyte-seeded PGA-fibrin scaffolds in immunocompromised mice. The donor tissue was heterogenous showing differentiated articular cartilage and non-differentiated tissue and considerable expression of type I and II collagens. Gene expression analysis showed repression of typical chondrocyte and/or mesenchymal marker genes during cell expansion, while markers were re-induced when expanded cells were cultured in PGA-fibrin scaffolds. Cartilage formation after subcutaneous transplantation of chondrocyte loaded PGA-fibrin scaffolds in nude mice was variable, with grafts showing resorption and host cell infiltration or formation of hyaline cartilage rich in type II collagen. Addition of human platelet rich plasma (PRP) to cartilage grafts resulted robustly in formation of hyaline-like cartilage that showed type II collagen and regions with type X collagen. These results suggest that culture of expanded and/or de-differentiated infant hip cartilage cells in PGA-fibrin scaffolds initiates chondrocyte re-differentiation. The heterogenous donor tissue containing immature chondrocytes bears the risk of cartilage repair failure in vivo, which may be possibly overcome by the addition of PRP. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  6. Imaging of articular cartilage

    Directory of Open Access Journals (Sweden)

    Bhawan K Paunipagar

    2014-01-01

    Full Text Available We tried to review the role of magnetic resonance imaging (MRI in understanding microscopic and morphologic structure of the articular cartilage. The optimal protocols and available spin-echo sequences in present day practice are reviewed in context of common pathologies of articular cartilage. The future trends of articular cartilage imaging have been discussed with their appropriateness. In diarthrodial joints of the body, articular cartilage is functionally very important. It is frequently exposed to trauma, degeneration, and repetitive wear and tear. MRI has played a vital role in evaluation of articular cartilage. With the availability of advanced repair surgeries for cartilage lesions, there has been an increased demand for improved cartilage imaging techniques. Recent advances in imaging strategies for native and postoperative articular cartilage open up an entirely new approach in management of cartilage-related pathologies.

  7. High-throughput bone and cartilage micropellet manufacture, followed by assembly of micropellets into biphasic osteochondral tissue.

    Science.gov (United States)

    Babur, Betul Kul; Futrega, Kathryn; Lott, William B; Klein, Travis Jacob; Cooper-White, Justin; Doran, Michael Robert

    2015-09-01

    Engineered biphasic osteochondral tissues may have utility in cartilage defect repair. As bone-marrow-derived mesenchymal stem/stromal cells (MSC) have the capacity to make both bone-like and cartilage-like tissues, they are an ideal cell population for use in the manufacture of osteochondral tissues. Effective differentiation of MSC to bone-like and cartilage-like tissues requires two unique medium formulations and this presents a challenge both in achieving initial MSC differentiation and in maintaining tissue stability when the unified osteochondral tissue is subsequently cultured in a single medium formulation. In this proof-of-principle study, we used an in-house fabricated microwell platform to manufacture thousands of micropellets formed from 166 MSC each. We then characterized the development of bone-like and cartilage-like tissue formation in the micropellets maintained for 8-14 days in sequential combinations of osteogenic or chondrogenic induction medium. When bone-like or cartilage-like micropellets were induced for only 8 days, they displayed significant phenotypic changes when the osteogenic or chondrogenic induction medium, respectively, was swapped. Based on these data, we developed an extended 14-day protocol for the pre-culture of bone-like and cartilage-like micropellets in their respective induction medium. Unified osteochondral tissues were formed by layering 12,000 osteogenic micropellets and 12,000 chondrogenic micropellets into a biphasic structure and then further culture in chondrogenic induction medium. The assembled tissue was cultured for a further 8 days and characterized via histology. The micropellets had amalgamated into a continuous structure with distinctive bone-like and cartilage-like regions. This proof-of-concept study demonstrates the feasibility of micropellet assembly for the formation of osteochondral-like tissues for possible use in osteochondral defect repair.

  8. Deginerative changes of femoral articular cartilage in the knee : comparative study of specimen sonography and pathology

    International Nuclear Information System (INIS)

    Park, Ju Youn; Hong, Sung Hwan; Sohn, Jin Hee; Wee, Young Hoon; Chang, Jun Dong; Park, Hong Seok; Lee, Eil Seoung; Kang Ik Won

    2001-01-01

    To determine the sonographic findings of degenerative change in femoral articular cartilage of the knee by comparative study of specimen sonography and pathology. We obtained 40 specimens of cartilage of the femur (20 medial and 20 lateral condylar) from 20 patients with osteoarthritis of the knee who had undergone total knee replacement. The specimens were placed in a saline-filled container and sonography was performed using a 10-MHz linear transducer. Sonographic abnormalities were evaluated at the cartilage surface, within the cartilage, and at the bone-cartilage interface, and were compared with the corresponding pathologic findings. In addition, cartilage thickness was measured at a representative portion of each femoral cartilage specimen and was compared with the thickness determined by sonography. 'Dot' lesions, irregularity or loss of the hyperechoic line, were demonstrated by sonography at the saline-cartilage interface of 14 cartilages. Pathologic examination showed that these findings corresponded to cleft, detachment, erosion, and degeneration. Irregularities in the hyperechoic line at the bone-cartilage interface were revealed by sonography in eight cartilages and were related to irregularity or loss of tidemark, downward displacement of the cartilage, and subchondral callus formation. Dot lesions, corresponding to cleft and degeneration, were noted within one cartilage. Cartilage thickness measured on specimen and by sonography showed no significant difference (p=0.446). Specimen sonography suggested that articular cartilage underwent degenerative histopathological change. Cartilage thickness measured by sonography exactly reflected real thickness

  9. Review on patents for mechanical stimulation of articular cartilage tissue engineering

    NARCIS (Netherlands)

    Donkelaar, van C.C.; Schulz, R.M.

    2008-01-01

    To repair articular cartilage defects in osteoarthritic patients with three-dimensional tissue engineered chondrocyte grafts, requires the formation of new cartilage with sufficient mechanical properties. The premise is that mechanical stimulation during the culturing process is necessary to reach

  10. Biomimetically Reinforced Polyvinyl Alcohol-Based Hybrid Scaffolds for Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Hwan D. Kim

    2017-11-01

    Full Text Available Articular cartilage has a very limited regeneration capacity. Therefore, injury or degeneration of articular cartilage results in an inferior mechanical stability, load-bearing capacity, and lubrication capability. Here, we developed a biomimetic scaffold consisting of macroporous polyvinyl alcohol (PVA sponges as a platform material for the incorporation of cell-embedded photocrosslinkable poly(ethylene glycol diacrylate (PEGDA, PEGDA-methacrylated chondroitin sulfate (PEGDA-MeCS; PCS, or PEGDA-methacrylated hyaluronic acid (PEGDA-MeHA; PHA within its pores to improve in vitro chondrocyte functions and subsequent in vivo ectopic cartilage tissue formation. Our findings demonstrated that chondrocytes encapsulated in PCS or PHA and loaded into macroporous PVA hybrid scaffolds maintained their physiological phenotypes during in vitro culture, as shown by the upregulation of various chondrogenic genes. Further, the cell-secreted extracellular matrix (ECM improved the mechanical properties of the PVA-PCS and PVA-PHA hybrid scaffolds by 83.30% and 73.76%, respectively, compared to their acellular counterparts. After subcutaneous transplantation in vivo, chondrocytes on both PVA-PCS and PVA-PHA hybrid scaffolds significantly promoted ectopic cartilage tissue formation, which was confirmed by detecting cells positively stained with Safranin-O and for type II collagen. Consequently, the mechanical properties of the hybrid scaffolds were biomimetically reinforced by 80.53% and 210.74%, respectively, compared to their acellular counterparts. By enabling the recapitulation of biomimetically relevant structural and functional properties of articular cartilage and the regulation of in vivo mechanical reinforcement mediated by cell–matrix interactions, this biomimetic material offers an opportunity to control the desired mechanical properties of cell-laden scaffolds for cartilage tissue regeneration.

  11. Bone morphogenetic protein-2 functions as a negative regulator in the differentiation of myoblasts, but not as an inducer for the formations of cartilage and bone in mouse embryonic tongue

    Directory of Open Access Journals (Sweden)

    Suzuki Erika

    2011-07-01

    Full Text Available Abstract Background In vitro studies using the myogenic cell line C2C12 demonstrate that bone morphogenetic protein-2 (BMP-2 converts the developmental pathway of C2C12 from a myogenic cell lineage to an osteoblastic cell lineage. Further, in vivo studies using null mutation mice demonstrate that BMPs inhibit the specification of the developmental fate of myogenic progenitor cells. However, the roles of BMPs in the phases of differentiation and maturation in skeletal muscles have yet to be determined. The present study attempts to define the function of BMP-2 in the final stage of differentiation of mouse tongue myoblast. Results Recombinant BMP-2 inhibited the expressions of markers for the differentiation of skeletal muscle cells, such as myogenin, muscle creatine kinase (MCK, and fast myosin heavy chain (fMyHC, whereas BMP-2 siRNA stimulated such markers. Neither the recombinant BMP-2 nor BMP-2 siRNA altered the expressions of markers for the formation of cartilage and bone, such as osteocalcin, alkaline phosphatase (ALP, collagen II, and collagen X. Further, no formation of cartilage and bone was observed in the recombinant BMP-2-treated tongues based on Alizarin red and Alcian blue stainings. Neither recombinant BMP-2 nor BMP-2 siRNA affected the expression of inhibitor of DNA binding/differentiation 1 (Id1. The ratios of chondrogenic and osteogenic markers relative to glyceraldehyde-3-phosphate dehydrogenase (GAPDH, a house keeping gene were approximately 1000-fold lower than those of myogenic markers in the cultured tongue. Conclusions BMP-2 functions as a negative regulator for the final differentiation of tongue myoblasts, but not as an inducer for the formation of cartilage and bone in cultured tongue, probably because the genes related to myogenesis are in an activation mode, while the genes related to chondrogenesis and osteogenesis are in a silencing mode.

  12. Body Weight Independently Affects Articular Cartilage Catabolism

    Directory of Open Access Journals (Sweden)

    W. Matt Denning, Jason G. Winward, Michael Becker Pardo, J. Ty Hopkins, Matthew K. Seeley

    2015-06-01

    Full Text Available Although obesity is associated with osteoarthritis, it is unclear whether body weight (BW independently affects articular cartilage catabolism (i.e., independent from physiological factors that also accompany obesity. The primary purpose of this study was to evaluate the independent effect of BW on articular cartilage catabolism associated with walking. A secondary purpose was to determine how decreased BW influenced cardiovascular response due to walking. Twelve able-bodied subjects walked for 30 minutes on a lower-body positive pressure treadmill during three sessions: control (unadjusted BW, +40%BW, and -40%BW. Serum cartilage oligomeric matrix protein (COMP was measured immediately before (baseline and after, and 15 and 30 minutes after the walk. Heart rate (HR and rate of perceived exertion (RPE were measured every three minutes during the walk. Relative to baseline, average serum COMP concentration was 13% and 5% greater immediately after and 15 minutes after the walk. Immediately after the walk, serum COMP concentration was 14% greater for the +40%BW session than for the -40%BW session. HR and RPE were greater for the +40%BW session than for the other two sessions, but did not differ between the control and -40%BW sessions. BW independently influences acute articular cartilage catabolism and cardiovascular response due to walking: as BW increases, so does acute articular cartilage catabolism and cardiovascular response. These results indicate that lower-body positive pressure walking may benefit certain individuals by reducing acute articular cartilage catabolism, due to walking, while maintaining cardiovascular response.

  13. Degeneration of osteoarthritis cartilage

    DEFF Research Database (Denmark)

    Jørgensen, Dan Richter

    of sensitive biomarkers for monitoring disease progression. This thesis investigates how subregional measures of cartilage thickness can be used to improve upon current imaging biomarkers. The first part of this investigation aims to discover discriminative areas in the cartilage using machine......-learning techniques specifically developed to take advantage of the spatial nature of the problem. The methods were evaluated on data from a longitudinal study where detailed cartilage thickness maps were quantified from magnetic resonance images. The results showed that focal differences in cartilage thickness may...... be relevant for both OA diagnosis and for prediction of future cartilage loss. The second part of the thesis investigates spatial patterns of longitudinal cartilage thickness changes in healthy and OA knees. Based on our findings, we propose a new, conceptually simple biomarker that embraces the heterogeneous...

  14. Mechanical properties of hyaline and repair cartilage studied by nanoindentation.

    Science.gov (United States)

    Franke, O; Durst, K; Maier, V; Göken, M; Birkholz, T; Schneider, H; Hennig, F; Gelse, K

    2007-11-01

    Articular cartilage is a highly organized tissue that is well adapted to the functional demands in joints but difficult to replicate via tissue engineering or regeneration. Its viscoelastic properties allow cartilage to adapt to both slow and rapid mechanical loading. Several cartilage repair strategies that aim to restore tissue and protect it from further degeneration have been introduced. The key to their success is the quality of the newly formed tissue. In this study, periosteal cells loaded on a scaffold were used to repair large partial-thickness cartilage defects in the knee joint of miniature pigs. The repair cartilage was analyzed 26 weeks after surgery and compared both morphologically and mechanically with healthy hyaline cartilage. Contact stiffness, reduced modulus and hardness as key mechanical properties were examined in vitro by nanoindentation in phosphate-buffered saline at room temperature. In addition, the influence of tissue fixation with paraformaldehyde on the biomechanical properties was investigated. Although the repair process resulted in the formation of a stable fibrocartilaginous tissue, its contact stiffness was lower than that of hyaline cartilage by a factor of 10. Fixation with paraformaldehyde significantly increased the stiffness of cartilaginous tissue by one order of magnitude, and therefore, should not be used when studying biomechanical properties of cartilage. Our study suggests a sensitive method for measuring the contact stiffness of articular cartilage and demonstrates the importance of mechanical analysis for proper evaluation of the success of cartilage repair strategies.

  15. Cartilage proteoglycans inhibit fibronectin-mediated adhesion

    Science.gov (United States)

    Rich, A. M.; Pearlstein, E.; Weissmann, G.; Hoffstein, S. T.

    1981-09-01

    Normal tissues and organs show, on histological examination, a pattern of cellular and acellular zones that is characteristic and unique for each organ or tissue. This pattern is maintained in health but is sometimes destroyed by disease. For example, in mobile joints, the articular surfaces consist of relatively acellular hyaline cartilage, and the joint space is enclosed by a capsule of loose connective tissue with a lining of fibroblasts and macrophages. In the normal joint these cells are confined to the synovial lining and the articular surface remains acellular. In in vitro culture, macrophages and their precursor monocytes are very adhesive, and fibroblasts can migrate and overgrow surfaces such as collagen or plastic used for tissue culture. The fibroblasts adhere to collagen by means of fibronectin, which they synthesize and secrete1. Because the collagen of cartilage is capable of binding serum fibronectin2 and fibronectin is present in cartilage during its development3, these cells should, in theory, slowly migrate from the synovial lining to the articular surface. It is their absence from the articular cartilage in normal circumstances, and then presence in such pathological states as rheumatoid arthritis, that is striking. We therefore set out to determine whether a component of cartilage could prevent fibroblast adherence in a defined adhesion assay. As normal cartilage is composed of 50% proteoglycans and 50% collagen by dry weight4, we tested the possibility that the proteoglycans in cartilage inhibit fibroblast adhesion to collagen. We present here evidence that fibroblast spreading and adhesion to collagenous substrates is inhibited by cartilage proteoglycans.

  16. Processed bovine cartilage: an improved biosynthetic implant for contour defects

    International Nuclear Information System (INIS)

    Ersek, R.A.; Hart, W.G. Jr.; Greer, D.; Beisang, A.A.; Flynn, P.J.; Denton, D.R.

    1984-01-01

    Irradiated human cartilage has been found to be a superior implant material for correction of contour defects; however, availability problems have prevented this material from gaining wide acceptance. Implantation of processed irradiated bovine cartilage in primates and rabbits, as described here, provides strong evidence that this material performs like irradiated allograft cartilage antigenically and has certain cosmetic advantages over allograft cartilage. Our studies in primates have shown that there is no systemically measurable antibody-antigen reaction, either cellular or noncellular, to irradiated processed bovine cartilage. Neither primary nor second-set provocative implantations produced any measurable rejection. In rabbits, composite grafts of two pieces of irradiated bovine cartilage adjacent to each other were also well tolerated, with no measurable absorption and with capsule formation typical of a foreign body reaction to an inert object

  17. Microscopic and histochemical manifestations of hyaline cartilage dynamics.

    Science.gov (United States)

    Malinin, G I; Malinin, T I

    1999-01-01

    Structure and function of hyaline cartilages has been the focus of many correlative studies for over a hundred years. Much of what is known regarding dynamics and function of cartilage constituents has been derived or inferred from biochemical and electron microscopic investigations. Here we show that in conjunction with ultrastructural, and high-magnification transmission light and polarization microscopy, the well-developed histochemical methods are indispensable for the analysis of cartilage dynamics. Microscopically demonstrable aspects of cartilage dynamics include, but are not limited to, formation of the intracellular liquid crystals, phase transitions of the extracellular matrix and tubular connections between chondrocytes. The role of the interchondrocytic liquid crystals is considered in terms of the tensegrity hypothesis and non-apoptotic cell death. Phase transitions of the extracellular matrix are discussed in terms of self-alignment of chondrons, matrix guidance pathways and cartilage growth in the absence of mitosis. The possible role of nonenzymatic glycation reactions in cartilage dynamics is also reviewed.

  18. Secondary cartilage revealed in a non-avian dinosaur embryo.

    Directory of Open Access Journals (Sweden)

    Alida M Bailleul

    Full Text Available The skull and jaws of extant birds possess secondary cartilage, a tissue that arises after bone formation during embryonic development at articulations, ligamentous and muscular insertions. Using histological analysis, we discovered secondary cartilage in a non-avian dinosaur embryo, Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae. This finding extends our previous report of secondary cartilage in post-hatching specimens of the same dinosaur species. It provides the first information on the ontogeny of avian and dinosaurian secondary cartilages, and further stresses their developmental similarities. Secondary cartilage was found in an embryonic dentary within a tooth socket where it is hypothesized to have arisen due to mechanical stresses generated during tooth formation. Two patterns were discerned: secondary cartilage is more restricted in location in this Hypacrosaurus embryo, than it is in Hypacrosaurus post-hatchlings; secondary cartilage occurs at far more sites in bird embryos and nestlings than in Hypacrosaurus. This suggests an increase in the number of sites of secondary cartilage during the evolution of birds. We hypothesize that secondary cartilage provided advantages in the fine manipulation of food and was selected over other types of tissues/articulations during the evolution of the highly specialized avian beak from the jaws of their dinosaurian ancestors.

  19. Cartilage repair by mesenchymal stem cells: Clinical trial update and perspectives

    Directory of Open Access Journals (Sweden)

    Wayne Yuk-wai Lee

    2017-04-01

    The translational potential of this article: This review summarises recent MSC-related clinical research that focuses on cartilage repair. We also propose a novel possible translational direction for hyaline cartilage formation and a new paradigm making use of extra-cellular signalling and epigenetic regulation in the application of MSCs for cartilage repair.

  20. Molecular modulation of articular cartilage degradation

    NARCIS (Netherlands)

    Landman, Ellie

    2013-01-01

    Cartilage homeostasis is maintained due to a balance between anabolic and catabolic processes, that are regulated by a complex network of signaling pathways. Disturbance of one or more of these pathways disrupts this balance, resulting in excessive breakdown of the extracellular matrix and

  1. Sonographic evaluation of femoral articular cartilage in the knee

    International Nuclear Information System (INIS)

    Hong, Sung Hwan; Kong Keun Young; Chung, Hye Won; Choi, Young Ho; Song, Yeong Wook; Kang, Heung Sik

    2000-01-01

    To investigate the usefulness of sonography for the evaluation of osteoarthritic articular cartilage. Ten asymptomatic volunteers and 20 patients with osteoarthritis of the knee underwent sonographic evaluation. For this, the knee was maintained of full flexion in order to expose the deep portion of femoral condylar cartilage. Both transverse and longitudinal scans were obtained in standardized planes. Sonographic images of the articular cartilages were analyzed in terms of surface sharpness, echogenicity and thickness, along with associated bone changes. Normal cartilages showed a clearly-defined surface, homogeneously low echogenicity and regular thickness. Among 20 patients, the findings for medial and lateral condyles, respectively, were as follows: poorly defined cartilage surface, 16 (80%) and ten (50%); increased echogenicity of cartilage, 17 (85%) and 16 (80%); cartilage thinning, 16 (80%) and 14 (70%) (two medial condyles demonstrated obvious cartilage thickening); the presence of thick subchondral hyperechoic bands, five (25%) and four (20%); the presence of osteophytes, 13 (65%) and 12 (60%). Sonography is a convenient and accurate modality for the evaluation of femoral articular cartilage. In particular, it can be useful for detecting early degenerative cartilaginous change and for studying such change during clinical follow-up. (author)

  2. Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo

    OpenAIRE

    Apelgren, Peter; Amoroso, Matteo; Lindahl, Anders; Brantsing, Camilla; Rotter, Nicole; Gatenholm, Paul; Kölby, Lars

    2017-01-01

    Cartilage repair and replacement is a major challenge in plastic reconstructive surgery. The development of a process capable of creating a patient-specific cartilage framework would be a major breakthrough. Here, we described methods for creating human cartilage in vivo and quantitatively assessing the proliferative capacity and cartilage-formation ability in mono- and co-cultures of human chondrocytes and human mesenchymal stem cells in a three-dimensional (3D)-bioprinted hydrogel scaffold....

  3. Cartilage Integration: Evaluation of the reasons for failure of integration during cartilage repair. A review

    Directory of Open Access Journals (Sweden)

    IM Khan

    2008-09-01

    Full Text Available Articular cartilage is a challenging tissue to reconstruct or replace principally because of its avascular nature; large chondral lesions in the tissue do not spontaneously heal. Where lesions do penetrate the bony subchondral plate, formation of hematomas and the migration of mesenchymal stem cells provide an inferior and transient fibrocartilagenous replacement for hyaline cartilage. To circumvent the poor intrinsic reparative response of articular cartilage several surgical techniques based on tissue transplantation have emerged. One characteristic shared by intrinsic reparative processes and the new surgical therapies is an apparent lack of lateral integration of repair or graft tissue with the host cartilage that can lead to poor prognosis. Many factors have been cited as impeding cartilage:cartilage integration including; chondrocyte cell death, chondrocyte dedifferentiation, the nature of the collagenous and proteoglycan networks that constitute the extracellular matrix, the type of biomaterial scaffold employed in repair and the origin of the cells used to repopulate the defect or lesion. This review addresses the principal intrinsic and extrinsic factors that impede integration and describe how manipulation of these factors using a host of strategies can positively influence cartilage integration.

  4. Capsaicin Synthesis Requires in Situ Phenylalanine and Valine Formation in in Vitro Maintained Placentas from Capsicum chinense

    Directory of Open Access Journals (Sweden)

    Fray M. Baas-Espinola

    2016-06-01

    Full Text Available Capsaicinoids (CAP are nitrogenous metabolites formed from valine (Val and phenylalanine (Phe in the placentas of hot Capsicum genotypes. Placentas of Habanero peppers can incorporate inorganic nitrogen into amino acids and have the ability to secure the availability of the required amino acids for CAP biosynthesis. In order to determine the participation of the placental tissue as a supplier of these amino acids, the effects of blocking the synthesis of Val and Phe by using specific enzyme inhibitors were analyzed. Isolated placentas maintained in vitro were used to rule out external sources′ participation. Blocking Phe synthesis, through the inhibition of arogenate dehydratase, significantly decreased CAP accumulation suggesting that at least part of Phe required in this process has to be produced in situ. Chlorsulfuron inhibition of acetolactate synthase, involved in Val synthesis, decreased not only Val accumulation but also that of CAP, pointing out that the requirement for this amino acid can also be fulfilled by this tissue. The presented data demonstrates that CAP accumulation in in vitro maintained placentas can be accomplished through the in situ availability of Val and Phe and suggests that the synthesis of the fatty acid chain moiety may be a limiting factor in the biosynthesis of these alkaloids.

  5. Chondrogenic potential of canine articular cartilage derived cells (cACCs

    Directory of Open Access Journals (Sweden)

    Nowak Urszula

    2016-01-01

    Full Text Available In the present paper, the potential of canine articular cartilage-derived cells (cACCs for chondrogenic differentiation was evaluated. The effectiveness of cACCs’ lineage commitment was analyzed after 14 days of culture in chondorgenic and non-chondrogenic conditions. Formation of proteoglycan-rich extracellular matrix was assessed using histochemical staining – Alcian Blue and Safranin-O, while elemental composition was determined by means of SEM-EDX. Additionally, ultrastructure of cACCs was evaluated using TEM. The expression of genes involved in chondrogenesis was monitored with quantitative Real Time PCR. Results obtained indicate that the potential of cACCs for cartilagous extracellular matrix formation may be maintained only in chondrogenic cultures. The formation of specific chondro-nodules was not observed in a non-chondrogenic culture environment. The analysis of cACCs’ ultrastructure, both in non-chondrogenic and chondrogenic cultures, revealed well-developed rough endoplasmatic reticulum and presence of mitochondria. The cACCs in chondrogenic medium shed an increased number of microvesicles. Furthermore, it was shown that the extracellular matrix of cACCs in chondrogenic cultures is rich in potassium and molybdenum. Additionally, it was determined that gene expression of collagen type II, aggrecan and SOX-9 was significantly increased during chondrogenic differentiation of cACCs. Results obtained indicate that the culture environment may significantly influence the cartilage phenotype of cACCs during long term culture.

  6. BMP-2, hypoxia, and COL1A1/HtrA1 siRNAs favor neo-cartilage hyaline matrix formation in chondrocytes.

    Science.gov (United States)

    Ollitrault, David; Legendre, Florence; Drougard, Carole; Briand, Mélanie; Benateau, Hervé; Goux, Didier; Chajra, Hanane; Poulain, Laurent; Hartmann, Daniel; Vivien, Denis; Shridhar, Vijayalakshmi; Baldi, Alfonso; Mallein-Gerin, Frédéric; Boumediene, Karim; Demoor, Magali; Galera, Philippe

    2015-02-01

    Osteoarthritis (OA) is an irreversible pathology that causes a decrease in articular cartilage thickness, leading finally to the complete degradation of the affected joint. The low spontaneous repair capacity of cartilage prevents any restoration of the joint surface, making OA a major public health issue. Here, we developed an innovative combination of treatment conditions to improve the human chondrocyte phenotype before autologous chondrocyte implantation. First, we seeded human dedifferentiated chondrocytes into a collagen sponge as a scaffold, cultured them in hypoxia in the presence of a bone morphogenetic protein (BMP), BMP-2, and transfected them with small interfering RNAs targeting two markers overexpressed in OA dedifferentiated chondrocytes, that is, type I collagen and/or HtrA1 serine protease. This strategy significantly decreased mRNA and protein expression of type I collagen and HtrA1, and led to an improvement in the chondrocyte phenotype index of differentiation. The effectiveness of our in vitro culture process was also demonstrated in the nude mouse model in vivo after subcutaneous implantation. We, thus, provide here a new protocol able to favor human hyaline chondrocyte phenotype in primarily dedifferentiated cells, both in vitro and in vivo. Our study also offers an innovative strategy for chondrocyte redifferentiation and opens new opportunities for developing therapeutic targets.

  7. Mice deficient in 11beta-hydroxysteroid dehydrogenase type 1 lack bone marrow adipocytes, but maintain normal bone formation

    DEFF Research Database (Denmark)

    Justesen, Jeannette; Mosekilde, Lis; Holmes, Megan

    2004-01-01

    Glucocorticoids (GCs) exert potent, but poorly characterized, effects on the skeleton. The cellular activity of GCs is regulated at a prereceptor level by 11beta-hydroxysteroid dehydrogenases (11betaHSDs). The type 1 isoform, which predominates in bone, functions as a reductase in intact cells...... and regenerates active cortisol (corticosterone) from circulating inert 11-keto forms. The aim of the present study was to investigate the role of this intracrine activation of GCs on normal bone physiology in vivo using mice deficient in 11betaHSD1 (HSD1(-/-)). The HSD1(-/-) mice exhibited no significant changes...... in cortical or trabecular bone mass compared with wild-type (Wt) mice. Aged HSD1(-/-) mice showed age-related bone loss similar to that observed in Wt mice. Histomorphometric analysis showed similar bone formation and bone resorption parameters in HSD1(-/-) and Wt mice. However, examination of bone marrow...

  8. MRI of the cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, H.; Noebauer-Huhmann, I.-M.; Krestan, C.; Gahleitner, A.; Marlovits, S.; Trattnig, S. [Department of Osteology, Universitaetklinik fuer Radiodiagnostik, AKH-Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Sulzbacher, I. [Universitaetsklinik fuer Pathologie Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria)

    2002-11-01

    With the introduction of fat-suppressed gradient-echo and fast spin-echo (FSE) sequences in clinical routine MR visualization of the hyaline articular cartilage is routinely possible in the larger joints. While 3D gradient-echo with fat suppression allows exact depiction of the thickness and surface of cartilage, FSE outlines the normal and abnormal internal structures of the hyaline cartilage; therefore, both sequences seem to be necessary in a standard MRI protocol for cartilage visualization. In diagnostically ambiguous cases, in which important therapeutic decisions are required, direct MR arthrography is the established imaging standard as an add-on procedure. Despite the social impact and prevalence, until recent years there was a paucity of knowledge about the pathogenesis of cartilage damage. With the introduction of high-resolution MRI with powerful surface coils and fat-suppression techniques, visualization of the articular cartilage is now routinely possible in many joints. After a short summary of the anatomy and physiology of the hyaline cartilage, the different MR imaging methods are discussed and recommended standards are suggested. (orig.)

  9. Dynamic formation of asexual diploid and polyploid lineages: multilocus analysis of Cobitis reveals the mechanisms maintaining the diversity of clones.

    Directory of Open Access Journals (Sweden)

    Karel Janko

    Full Text Available Given the hybrid genomic constitutions and increased ploidy of many asexual animals, the identification of processes governing the origin and maintenance of clonal diversity provides useful information about the evolutionary consequences of interspecific hybridization, asexuality and polyploidy. In order to understand the processes driving observed diversity of biotypes and clones in the Cobitis taenia hybrid complex, we performed fine-scale genetic analysis of Central European hybrid zone between two sexual species using microsatellite genotyping and mtDNA sequencing. We found that the hybrid zone is populated by an assemblage of clonally (gynogenetically reproducing di-, tri- and tetraploid hybrid lineages and that successful clones, which are able of spatial expansion, recruit from two ploidy levels, i.e. diploid and triploid. We further compared the distribution of observed estimates of clonal ages to theoretical distributions simulated under various assumptions and showed that new clones are most likely continuously recruited from ancestral populations. This suggests that the clonal diversity is maintained by dynamic equilibrium between origination and extinction of clonal lineages. On the other hand, an interclonal selection is implied by nonrandom spatial distribution of individual clones with respect to the coexisting sexual species. Importantly, there was no evidence for sexually reproducing hybrids or clonally reproducing non-hybrid forms. Together with previous successful laboratory synthesis of clonal Cobitis hybrids, our data thus provide the most compelling evidence that 1 the origin of asexuality is causally linked to interspecific hybridization; 2 successful establishment of clones is not restricted to one specific ploidy level and 3 the initiation of clonality and polyploidy may be dynamic and continuous in asexual complexes.

  10. Tissue engineering in the treatment of cartilage lesions

    Directory of Open Access Journals (Sweden)

    Jakob Naranđa

    2013-11-01

    Full Text Available Background: Articular cartilage lesions with the inherent limited healing potential are difficult to treat and thus remain a challenging problem for orthopaedic surgeons. Regenerative treatment techniques, such as autologous chondrocyte implantation (ACI, are promising as a treatment option to restore hyaline-like cartilage tissue in damaged articular surfaces, as opposed to the traditional reparative procedures (e.g. bone marrow stimulation – microfracture, which promote a fibrocartilage formation with lower tissue biomechanical properties and poorer clinical results. ACI technique has undergone several advances and is constantly improving. The new concept of cartilage tissue preservation uses tissue-engineering technologies, combining new biomaterials as a scaffold, application of growth factors, use of stem cells, and mechanical stimulation. The recent development of new generations of ACI uses a cartilage-like tissue in a 3-dimensional culture system that is based on the use of biodegradable material which serves as a temporary scaffold for the in vitro growth and subsequent implantation into the cartilage defect. For clinical practice, single stage procedures appear attractive to reduce cost and patient morbidity. Finally, modern concept of tissue engineering facilitates hyaline-like cartilage formation and a permanent treatment of cartilage lesions.Conclusion: The review focuses on innovations in the treatment of cartilage lesions and covers modern concepts of tissue engineering with the use of biomaterials, growth factors, stem cells and bioreactors, and presents options for clinical use.

  11. An ex vivo human cartilage repair model to evaluate the potency of a cartilage cell transplant.

    Science.gov (United States)

    Bartz, Christoph; Meixner, Miriam; Giesemann, Petra; Roël, Giulietta; Bulwin, Grit-Carsta; Smink, Jeske J

    2016-11-15

    Cell-based therapies such as autologous chondrocyte implantation are promising therapeutic approaches to treat cartilage defects to prevent further cartilage degeneration. To assure consistent quality of cell-based therapeutics, it is important to be able to predict the biological activity of such products. This requires the development of a potency assay, which assesses a characteristic of the cell transplant before implantation that can predict its cartilage regeneration capacity after implantation. In this study, an ex vivo human cartilage repair model was developed as quality assessment tool for potency and applied to co.don's chondrosphere product, a matrix-associated autologous chondrocyte implant (chondrocyte spheroids) that is in clinical use in Germany. Chondrocyte spheroids were generated from 14 donors, and implanted into a subchondral cartilage defect that was manually generated in human articular cartilage tissue. Implanted spheroids and cartilage tissue were co-cultured ex vivo for 12 weeks to allow regeneration processes to form new tissue within the cartilage defect. Before implantation, spheroid characteristics like glycosaminoglycan production and gene and protein expression of chondrogenic markers were assessed for each donor sample and compared to determine donor-dependent variation. After the co-cultivation, histological analyses showed the formation of repair tissue within the cartilage defect, which varied in amount for the different donors. In the repair tissue, aggrecan protein was expressed and extra-cellular matrix cartilage fibers were present, both indicative for a cartilage hyaline-like character of the repair tissue. The amount of formed repair tissue was used as a read-out for regeneration capacity and was correlated with the spheroid characteristics determined before implantation. A positive correlation was found between high level of aggrecan protein expression in spheroids before implantation and a higher regeneration potential

  12. An ex vivo human cartilage repair model to evaluate the potency of a cartilage cell transplant

    Directory of Open Access Journals (Sweden)

    Christoph Bartz

    2016-11-01

    Full Text Available Abstract Background Cell-based therapies such as autologous chondrocyte implantation are promising therapeutic approaches to treat cartilage defects to prevent further cartilage degeneration. To assure consistent quality of cell-based therapeutics, it is important to be able to predict the biological activity of such products. This requires the development of a potency assay, which assesses a characteristic of the cell transplant before implantation that can predict its cartilage regeneration capacity after implantation. In this study, an ex vivo human cartilage repair model was developed as quality assessment tool for potency and applied to co.don’s chondrosphere product, a matrix-associated autologous chondrocyte implant (chondrocyte spheroids that is in clinical use in Germany. Methods Chondrocyte spheroids were generated from 14 donors, and implanted into a subchondral cartilage defect that was manually generated in human articular cartilage tissue. Implanted spheroids and cartilage tissue were co-cultured ex vivo for 12 weeks to allow regeneration processes to form new tissue within the cartilage defect. Before implantation, spheroid characteristics like glycosaminoglycan production and gene and protein expression of chondrogenic markers were assessed for each donor sample and compared to determine donor-dependent variation. Results After the co-cultivation, histological analyses showed the formation of repair tissue within the cartilage defect, which varied in amount for the different donors. In the repair tissue, aggrecan protein was expressed and extra-cellular matrix cartilage fibers were present, both indicative for a cartilage hyaline-like character of the repair tissue. The amount of formed repair tissue was used as a read-out for regeneration capacity and was correlated with the spheroid characteristics determined before implantation. A positive correlation was found between high level of aggrecan protein expression in spheroids

  13. Magnetic resonance imaging of cartilage and cartilage repair

    International Nuclear Information System (INIS)

    Verstraete, K.L.; Almqvist, F.; Verdonk, P.; Vanderschueren, G.; Huysse, W.; Verdonk, R.; Verbrugge, G.

    2004-01-01

    Magnetic resonance (MR) imaging of articular cartilage has assumed increased importance because of the prevalence of cartilage injury and degeneration, as well as the development of new surgical and pharmacological techniques to treat damaged cartilage. This article will review relevant aspects of the structure and biochemistry of cartilage that are important for understanding MR imaging of cartilage, describe optimal MR pulse sequences for its evaluation, and review the role of experimental quantitative MR techniques. These MR aspects are applied to clinical scenarios, including traumatic chondral injury, osteoarthritis, inflammatory arthritis, and cartilage repair procedures

  14. Magnetic resonance imaging of cartilage and cartilage repair

    Energy Technology Data Exchange (ETDEWEB)

    Verstraete, K.L. E-mail: koenraad.verstraete@ugent.be; Almqvist, F.; Verdonk, P.; Vanderschueren, G.; Huysse, W.; Verdonk, R.; Verbrugge, G

    2004-08-01

    Magnetic resonance (MR) imaging of articular cartilage has assumed increased importance because of the prevalence of cartilage injury and degeneration, as well as the development of new surgical and pharmacological techniques to treat damaged cartilage. This article will review relevant aspects of the structure and biochemistry of cartilage that are important for understanding MR imaging of cartilage, describe optimal MR pulse sequences for its evaluation, and review the role of experimental quantitative MR techniques. These MR aspects are applied to clinical scenarios, including traumatic chondral injury, osteoarthritis, inflammatory arthritis, and cartilage repair procedures.

  15. The anti-catabolic role of bovine lactoferricin in cartilage.

    Science.gov (United States)

    Ahmadinia, Kasra; Yan, Dongyao; Ellman, Michael; Im, Hee-Jeong

    2013-10-01

    Bovine lactoferricin (LfcinB) is a multifunctional peptide derived from bovine lactoferrin that demonstrates antibacterial, antifungal, antiviral, antitumor, and immunomodulatory activities. Recently, studies have focused on the anti-catabolic and anti-inflammatory potential of LfcinB. LfcinB is able to modulate the effects cytokines such as IL-1 and fibroblast growth factor 2 as well as promote specific cartilage anabolic factors. These properties are particularly important in maintaining cartilage homeostasis and preventing a catabolic state, which leads to clinical pathology. This review focuses on the recent literature elucidating the role of LfcinB in preventing cartilage degradation.

  16. Recent advances in hydrogels for cartilage tissue engineering.

    Science.gov (United States)

    Vega, S L; Kwon, M Y; Burdick, J A

    2017-01-30

    Articular cartilage is a load-bearing tissue that lines the surface of bones in diarthrodial joints. Unfortunately, this avascular tissue has a limited capacity for intrinsic repair. Treatment options for articular cartilage defects include microfracture and arthroplasty; however, these strategies fail to generate tissue that adequately restores damaged cartilage. Limitations of current treatments for cartilage defects have prompted the field of cartilage tissue engineering, which seeks to integrate engineering and biological principles to promote the growth of new cartilage to replace damaged tissue. To date, a wide range of scaffolds and cell sources have emerged with a focus on recapitulating the microenvironments present during development or in adult tissue, in order to induce the formation of cartilaginous constructs with biochemical and mechanical properties of native tissue. Hydrogels have emerged as a promising scaffold due to the wide range of possible properties and the ability to entrap cells within the material. Towards improving cartilage repair, hydrogel design has advanced in recent years to improve their utility. Some of these advances include the development of improved network crosslinking (e.g. double-networks), new techniques to process hydrogels (e.g. 3D printing) and better incorporation of biological signals (e.g. controlled release). This review summarises these innovative approaches to engineer hydrogels towards cartilage repair, with an eye towards eventual clinical translation.

  17. Recent advances in hydrogels for cartilage tissue engineering

    Directory of Open Access Journals (Sweden)

    SL Vega

    2017-01-01

    Full Text Available Articular cartilage is a load-bearing tissue that lines the surface of bones in diarthrodial joints. Unfortunately, this avascular tissue has a limited capacity for intrinsic repair. Treatment options for articular cartilage defects include microfracture and arthroplasty; however, these strategies fail to generate tissue that adequately restores damaged cartilage. Limitations of current treatments for cartilage defects have prompted the field of cartilage tissue engineering, which seeks to integrate engineering and biological principles to promote the growth of new cartilage to replace damaged tissue. To date, a wide range of scaffolds and cell sources have emerged with a focus on recapitulating the microenvironments present during development or in adult tissue, in order to induce the formation of cartilaginous constructs with biochemical and mechanical properties of native tissue. Hydrogels have emerged as a promising scaffold due to the wide range of possible properties and the ability to entrap cells within the material. Towards improving cartilage repair, hydrogel design has advanced in recent years to improve their utility. Some of these advances include the development of improved network crosslinking (e.g. double-networks, new techniques to process hydrogels (e.g. 3D printing and better incorporation of biological signals (e.g. controlled release. This review summarises these innovative approaches to engineer hydrogels towards cartilage repair, with an eye towards eventual clinical translation.

  18. Maintainability allocation

    International Nuclear Information System (INIS)

    Guyot, Christian.

    1980-06-01

    The author gives the general lines of a method for the allocation and for the evaluation of maintainability of complex systems which is to be developed during the conference. The maintainability objective is supposed to be formulated under the form of a mean time to repair (M.T.T.R.) [fr

  19. The composition of engineered cartilage at the time of implantation determines the likelihood of regenerating tissue with a normal collagen architecture.

    Science.gov (United States)

    Nagel, Thomas; Kelly, Daniel J

    2013-04-01

    The biomechanical functionality of articular cartilage is derived from both its biochemical composition and the architecture of the collagen network. Failure to replicate this normal Benninghoff architecture in regenerating articular cartilage may in turn predispose the tissue to failure. In this article, the influence of the maturity (or functionality) of a tissue-engineered construct at the time of implantation into a tibial chondral defect on the likelihood of recapitulating a normal Benninghoff architecture was investigated using a computational model featuring a collagen remodeling algorithm. Such a normal tissue architecture was predicted to form in the intact tibial plateau due to the interplay between the depth-dependent extracellular matrix properties, foremost swelling pressures, and external mechanical loading. In the presence of even small empty defects in the articular surface, the collagen architecture in the surrounding cartilage was predicted to deviate significantly from the native state, indicating a possible predisposition for osteoarthritic changes. These negative alterations were alleviated by the implantation of tissue-engineered cartilage, where a mature implant was predicted to result in the formation of a more native-like collagen architecture than immature implants. The results of this study highlight the importance of cartilage graft functionality to maintain and/or re-establish joint function and suggest that engineering a tissue with a native depth-dependent composition may facilitate the establishment of a normal Benninghoff collagen architecture after implantation into load-bearing defects.

  20. Extracellular Matrix (ECM) Multilayer Membrane as a Sustained Releasing Growth Factor Delivery System for rhTGF-β3 in Articular Cartilage Repair

    Science.gov (United States)

    Park, Sang-Hyug; Kim, Moon Suk; Kim, Young Jick; Choi, Byung Hyune; Lee, Chun Tek; Park, So Ra; Min, Byoung-Hyun

    2016-01-01

    Recombinant human transforming growth factor beta-3 (rhTGF-β3) is a key regulator of chondrogenesis in stem cells and cartilage formation. We have developed a novel drug delivery system that continuously releases rhTGF-β3 using a multilayered extracellular matrix (ECM) membrane. We hypothesize that the sustained release of rhTGF-β3 could activate stem cells and result in enhanced repair of cartilage defects. The properties and efficacy of the ECM multilayer-based delivery system (EMLDS) are investigated using rhTGF-β3 as a candidate drug. The bioactivity of the released rhTGF-ß3 was evaluated through chondrogenic differentiation of mesenchymal stem cells (MSCs) using western blot and circular dichroism (CD) analyses in vitro. The cartilage reparability was evaluated through implanting EMLDS with endogenous and exogenous MSC in both in vivo and ex vivo models, respectively. In the results, the sustained release of rhTGF-ß3 was clearly observed over a prolonged period of time in vitro and the released rhTGF-β3 maintained its structural stability and biological activity. Successful cartilage repair was also demonstrated when rabbit MSCs were treated with rhTGF-β3-loaded EMLDS ((+) rhTGF-β3 EMLDS) in an in vivo model and when rabbit chondrocytes and MSCs were treated in ex vivo models. Therefore, the multilayer ECM membrane could be a useful drug delivery system for cartilage repair. PMID:27258120

  1. Extracellular Matrix (ECM Multilayer Membrane as a Sustained Releasing Growth Factor Delivery System for rhTGF-β3 in Articular Cartilage Repair.

    Directory of Open Access Journals (Sweden)

    Soon Sim Yang

    Full Text Available Recombinant human transforming growth factor beta-3 (rhTGF-β3 is a key regulator of chondrogenesis in stem cells and cartilage formation. We have developed a novel drug delivery system that continuously releases rhTGF-β3 using a multilayered extracellular matrix (ECM membrane. We hypothesize that the sustained release of rhTGF-β3 could activate stem cells and result in enhanced repair of cartilage defects. The properties and efficacy of the ECM multilayer-based delivery system (EMLDS are investigated using rhTGF-β3 as a candidate drug. The bioactivity of the released rhTGF-ß3 was evaluated through chondrogenic differentiation of mesenchymal stem cells (MSCs using western blot and circular dichroism (CD analyses in vitro. The cartilage reparability was evaluated through implanting EMLDS with endogenous and exogenous MSC in both in vivo and ex vivo models, respectively. In the results, the sustained release of rhTGF-ß3 was clearly observed over a prolonged period of time in vitro and the released rhTGF-β3 maintained its structural stability and biological activity. Successful cartilage repair was also demonstrated when rabbit MSCs were treated with rhTGF-β3-loaded EMLDS ((+ rhTGF-β3 EMLDS in an in vivo model and when rabbit chondrocytes and MSCs were treated in ex vivo models. Therefore, the multilayer ECM membrane could be a useful drug delivery system for cartilage repair.

  2. Core binding factor beta (Cbfβ) controls the balance of chondrocyte proliferation and differentiation by upregulating Indian hedgehog (Ihh) expression and inhibiting parathyroid hormone-related protein receptor (PPR) expression in postnatal cartilage and bone formation.

    Science.gov (United States)

    Tian, Fei; Wu, Mengrui; Deng, Lianfu; Zhu, Guochun; Ma, Junqing; Gao, Bo; Wang, Lin; Li, Yi-Ping; Chen, Wei

    2014-07-01

    Core binding factor beta (Cbfβ) is essential for embryonic bone morphogenesis. Yet the mechanisms by which Cbfβ regulates chondrocyte proliferation and differentiation as well as postnatal cartilage and bone formation remain unclear. Hence, using paired-related homeobox transcription factor 1-Cre (Prx1-Cre) mice, mesenchymal stem cell-specific Cbfβ-deficient (Cbfβ(f/f) Prx1-Cre) mice were generated to study the role of Cbfβ in postnatal cartilage and bone development. These mutant mice survived to adulthood but exhibited severe sternum and limb malformations. Sternum ossification was largely delayed in the Cbfβ(f/f) Prx1-Cre mice and the xiphoid process was noncalcified and enlarged. In newborn and 7-day-old Cbfβ(f/f) Prx1-Cre mice, the resting zone was dramatically elongated, the proliferation zone and hypertrophic zone of the growth plates were drastically shortened and disorganized, and trabecular bone formation was reduced. Moreover, in 1-month-old Cbfβ(f/f) Prx1-Cre mice, the growth plates were severely deformed and trabecular bone was almost absent. In addition, Cbfβ deficiency impaired intramembranous bone formation both in vivo and in vitro. Interestingly, although the expression of Indian hedgehog (Ihh) was largely reduced, the expression of parathyroid hormone-related protein (PTHrP) receptor (PPR) was dramatically increased in the Cbfβ(f/f) Prx1-Cre growth plate, indicating that that Cbfβ deficiency disrupted the Ihh-PTHrP negative regulatory loop. Chromatin immunoprecipitation (ChIP) analysis and promoter luciferase assay demonstrated that the Runx/Cbfβ complex binds putative Runx-binding sites of the Ihh promoter regions, and also the Runx/Cbfβ complex directly upregulates Ihh expression at the transcriptional level. Consistently, the expressions of Ihh target genes, including CyclinD1, Ptc, and Pthlh, were downregulated in Cbfβ-deficient chondrocytes. Taken together, our study reveals not only that Cbfβ is essential for chondrocyte

  3. Development of hybrid scaffolds using ceramic and hydrogel for articular cartilage tissue regeneration.

    Science.gov (United States)

    Seol, Young-Joon; Park, Ju Young; Jeong, Wonju; Kim, Tae-Ho; Kim, Shin-Yoon; Cho, Dong-Woo

    2015-04-01

    The regeneration of articular cartilage consisting of hyaline cartilage and hydrogel scaffolds has been generally used in tissue engineering. However, success in in vivo studies has been rarely reported. The hydrogel scaffolds implanted into articular cartilage defects are mechanically unstable and it is difficult for them to integrate with the surrounding native cartilage tissue. Therefore, it is needed to regenerate cartilage and bone tissue simultaneously. We developed hybrid scaffolds with hydrogel scaffolds for cartilage tissue and with ceramic scaffolds for bone tissue. For in vivo study, hybrid scaffolds were press-fitted into osteochondral tissue defects in a rabbit knee joints and the cartilage tissue regeneration in blank, hydrogel scaffolds, and hybrid scaffolds was compared. In 12th week after implantation, the histological and immunohistochemical analyses were conducted to evaluate the cartilage tissue regeneration. In the blank and hydrogel scaffold groups, the defects were filled with fibrous tissues and the implanted hydrogel scaffolds could not maintain their initial position; in the hybrid scaffold group, newly generated cartilage tissues were morphologically similar to native cartilage tissues and were smoothly connected to the surrounding native tissues. This study demonstrates hybrid scaffolds containing hydrogel and ceramic scaffolds can provide mechanical stability to hydrogel scaffolds and enhance cartilage tissue regeneration at the defect site. © 2014 Wiley Periodicals, Inc.

  4. Use of magnetic forces to promote stem cell aggregation during differentiation, and cartilage tissue modeling.

    Science.gov (United States)

    Fayol, D; Frasca, G; Le Visage, C; Gazeau, F; Luciani, N; Wilhelm, C

    2013-05-14

    Magnetic forces induce cell condensation necessary for stem cell differentiation into cartilage and elicit the formation of a tissue-like structure: Magnetically driven fusion of aggregates assembled by micromagnets results in the formation of a continuous tissue layer containing abundant cartilage matrix. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The mechanobiology of articular cartilage development and degeneration.

    Science.gov (United States)

    Carter, Dennis R; Beaupré, Gary S; Wong, Marcy; Smith, R Lane; Andriacchi, Tom P; Schurman, David J

    2004-10-01

    The development, maintenance, and destruction of cartilage are regulated by mechanical factors throughout life. Mechanical cues in the cartilage fetal endoskeleton influence the expression of genes that guide the processes of growth, vascular invasion, and ossification. Intermittent fluid pressure maintains the cartilage phenotype whereas mild tension (or shear) promotes growth and ossification. The articular cartilage thickness is determined by the position at which the subchondral growth front stabilizes. In mature joints, cartilage is thickest and healthiest where the contact pressure and cartilage fluid pressure are greatest. The depth-dependent histomorphology reflects the local fluid pressure, tensile strain, and fluid exudation. Osteoarthritis represents the final demise and loss of cartilage in the skeletal elements. The initiation and progression of osteoarthritis can follow many pathways and can be promoted by mechanical factors including: (1) reduced loading, which activates the subchondral growth front by reducing fluid pressure; (2) blunt impact, causing microdamage and activation of the subchondral growth front by local shear stress; (3) mechanical abnormalities that increase wear at the articulating surface; and (4) other mechanically related factors. Research should be directed at integrating our mechanical understanding of osteoarthritis pathogenesis and progression within the framework of cellular and molecular events throughout ontogeny.

  6. Degenerated human articular cartilage at autopsy represents preclinical osteoarthritic cartilage: comparison with clinically defined osteoarthritic cartilage

    NARCIS (Netherlands)

    van Valburg, A. A.; Wenting, M. J.; Beekman, B.; te Koppele, J. M.; Lafeber, F. P.; Bijlsma, J. W.

    1997-01-01

    To investigate whether macroscopically fibrillated human articular knee cartilage observed at autopsy can be considered an early, preclinical phase of osteoarthritis (OA). Histological and biochemical characteristics of 3 types of articular knee cartilage were compared: macroscopically degenerated

  7. Principles of cartilage repair

    CERN Document Server

    Erggelet, Christoph; Mandelbaum, Bert R

    2008-01-01

    Cartilage defects affect patients of all age groups. Surgeons, teamdoctors, general practitioners and physiotherapists alike are expected to provide adequate care. Only individual treatment plans combining a well balanced choice of various options will be successful. Background knowledge, operative and non-operative therapies are described in concise chapters: Articular cartilage biology - Diagnostics - Surgical techniques - Symptomatic and alternative medications - Physiotherapy. Diagnostic findings and surgical procedures are generously illustrated by aquarelles and colour photographs. Recommendations for additional reading, description of important clinical scoring systems and a listing of analytic tools are added for further information.

  8. The junction between hyaline cartilage and engineered cartilage in rabbits.

    Science.gov (United States)

    Komura, Makoto; Komura, Hiroko; Otani, Yushi; Kanamori, Yutaka; Iwanaka, Tadashi; Hoshi, Kazuto; Tsuyoshi, Takato; Tabata, Yasuhiko

    2013-06-01

    Tracheoplasty using costal cartilage grafts to enlarge the tracheal lumen was performed to treat congenital tracheal stenosis. Fibrotic granulomatous tissue was observed at the edge of grafted costal cartilage. We investigated the junction between the native hyaline cartilage and the engineered cartilage plates that were generated by auricular chondrocytes for fabricating the airway. Controlled, prospecive study. In group 1, costal cartilage from New Zealand white rabbits was collected and implanted into a space created in the cervical trachea. In group 2, chondrocytes from auricular cartilages were seeded on absorbable scaffolds. These constructs were implanted in the subcutaneous space. Engineered cartilage plates were then implanted into the trachea after 3 weeks of implantation of the constructs. The grafts in group 1 and 2 were retrieved after 4 weeks. In group 1, histological studies of the junction between the native hyaline cartilage and the implanted costal cartilage demonstrated chondrogenic tissue in four anastomoses sides out of the 10 examined. In group 2, the junction between the native trachea and the engineered cartilage showed neocartilage tissue in nine anastomoses sides out of 10. Engineered cartilage may be beneficial for engineered airways, based on the findings of the junction between the native and engineered grafts. Copyright © 2012 The American Laryngological, Rhinological and Otological Society, Inc.

  9. Augmented cartilage regeneration by implantation of cellular versus acellular implants after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    NARCIS (Netherlands)

    Pot, M.W.; Kuppevelt, T.H. van; Gonzales, V.K.; Buma, P.; Hout, J. in't; Vries, R.B.M. de; Daamen, W.F.

    2017-01-01

    Bone marrow stimulation may be applied to regenerate focal cartilage defects, but generally results in transient clinical improvement and formation of fibrocartilage rather than hyaline cartilage. Tissue engineering and regenerative medicine strive to develop new solutions to regenerate hyaline

  10. Hyaluronan hydrogels with a low degree of modification as scaffolds for cartilage engineering.

    Science.gov (United States)

    La Gatta, Annalisa; Ricci, Giulia; Stellavato, Antonietta; Cammarota, Marcella; Filosa, Rosanna; Papa, Agata; D'Agostino, Antonella; Portaccio, Marianna; Delfino, Ines; De Rosa, Mario; Schiraldi, Chiara

    2017-10-01

    In the field of cartilage engineering, continuing efforts have focused on fabricating scaffolds that favor maintenance of the chondrocytic phenotype and matrix formation, in addition to providing a permeable, hydrated, microporous structure and mechanical support. The potential of hyaluronan-based hydrogels has been well established, but the ideal matrix remains to be developed. This study describes the development of hyaluronan sponges-based scaffolds obtained by lysine methyl-ester crosslinking. The reaction conditions are optimized with minimal chemical modifications to obtain materials that closely resemble elements in physiological cellular environments. Three hydrogels with different amounts of crosslinkers were produced that show morphological, water-uptake, mechanical, and stability properties comparable or superior to those of currently available hyaluronan-scaffolds, but with significantly fewer hyaluronan modifications. Primary human chondrocytes cultured with the most promising hydrogel were viable and maintained lineage identity for 3 weeks. They also secreted cartilage-specific matrix proteins. These scaffolds represent promising candidates for cartilage engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Tissue engineering applications: cartilage lesions repair by the use of autologous chondrocytes

    Directory of Open Access Journals (Sweden)

    L. De Franceschi

    2011-09-01

    Full Text Available Promising new therapies based on tissue engineering have been recently developed for cartilage repair. The association of biomaterials with autologous chondrocytes expanded in vitro can represent a useful tool to regenerate this tissue. The scaffolds utilised in such therapeutical applications should provide a pre-formed three-dimensional shape, prevent cells from floating out of the defect, have sufficient mechanical strength, facilitate uniform spread of cells and stimulate the phenotype of transplanted cells. Hyaff®-11 is a hyaluronic-acid based biodegradable polymer, that has been shown to provide successful cell carrier for tissue-engineered repair. From our findings we can state that human chondrocytes seeded on Hyaff®-11 are able to maintain in vitro the characteristic of differentiated cells, expressing and producing collagen type II and aggrecan which are the main markers of cartilage phenotype, down-regulating collagen type I. Moreover, it seems to be a useful scaffold for cartilage repair both in animal models and clinical trials in humans, favouring the formation of a hyaline-like tissue. In the light of these data, we can hypothesise, for the future, the use of autologous chondrocyte transplantation together with gene therapy as a treatment for rheumatic diseases such as osteoarthritis.

  12. The immunomodulatory effects of shark cartilage on the mouse and human immune system

    Directory of Open Access Journals (Sweden)

    ali Sheikhian

    2007-01-01

    Materials and methods: In an experimental study, the effects of different doses of shark cartilage on humoral (antibody titer immune response against sheep red blood cells (SRBC, were measured in mouse. In addition, we evaluated the modulatory effects of the shark cartilage on the natural killer (NK activity of the peritoneal cells of mouse against a tumor cell line called K562, according to the standard methods. The proliferative response of the human peripheral blood mononuclear cells was measured under the influence of shark cartilage. Results: Pure shark cartilage enhanced antibody response against SRBC in vivo. The hemagglutination titer which was 1/147 in the control group (injected with hen cartilage, increased to 1/1355 in the test group. The optimal dose was 100 mg/ml. both type of cartilage had blastogenic effect on peripheral blood mononuclear cells (the blastogenic index was 6.7 and 4.9 for impure shark cartilage and hen cartilage, respectively. NK activity was inhibited completely by pure shark cartilage (the amount of the killing activity of the effector peritoneal cells for the control and test groups against target cells was 25.9% and 5.5% respectively. Conclusion: Shark cartilage has a potent immunomodulatory effect on the specific immune mechanisms and some inhibitory effects on the innate immune mechanisms such as NC activity. Since the specific immunity has a more pivotal role against tumor formation, shark cartilage can be used as a cancer immunotherapeutic.

  13. Laser surface modification of decellularized extracellular cartilage matrix for cartilage tissue engineering.

    Science.gov (United States)

    Goldberg-Bockhorn, Eva; Schwarz, Silke; Subedi, Rachana; Elsässer, Alexander; Riepl, Ricarda; Walther, Paul; Körber, Ludwig; Breiter, Roman; Stock, Karl; Rotter, Nicole

    2018-02-01

    The implantation of autologous cartilage as the gold standard operative procedure for the reconstruction of cartilage defects in the head and neck region unfortunately implicates a variety of negative effects at the donor site. Tissue-engineered cartilage appears to be a promising alternative. However, due to the complex requirements, the optimal material is yet to be determined. As demonstrated previously, decellularized porcine cartilage (DECM) might be a good option to engineer vital cartilage. As the dense structure of DECM limits cellular infiltration, we investigated surface modifications of the scaffolds by carbon dioxide (CO 2 ) and Er:YAG laser application to facilitate the migration of chondrocytes inside the scaffold. After laser treatment, the scaffolds were seeded with human nasal septal chondrocytes and analyzed with respect to cell migration and formation of new extracellular matrix proteins. Histology, immunohistochemistry, SEM, and TEM examination revealed an increase of the scaffolds' surface area with proliferation of cell numbers on the scaffolds for both laser types. The lack of cytotoxic effects was demonstrated by standard cytotoxicity testing. However, a thermal denaturation area seemed to hinder the migration of the chondrocytes inside the scaffolds, even more so after CO 2 laser treatment. Therefore, the Er:YAG laser seemed to be better suitable. Further modifications of the laser adjustments or the use of alternative laser systems might be advantageous for surface enlargement and to facilitate migration of chondrocytes into the scaffold in one step.

  14. Cartilage repair: Generations of autologous chondrocyte transplantation

    International Nuclear Information System (INIS)

    Marlovits, Stefan; Zeller, Philip; Singer, Philipp; Resinger, Christoph; Vecsei, Vilmos

    2006-01-01

    Articular cartilage in adults has a limited capacity for self-repair after a substantial injury. Surgical therapeutic efforts to treat cartilage defects have focused on delivering new cells capable of chondrogenesis into the lesions. Autologous chondrocyte transplantation (ACT) is an advanced cell-based orthobiologic technology used for the treatment of chondral defects of the knee that has been in clinical use since 1987 and has been performed on 12,000 patients internationally. With ACT, good to excellent clinical results are seen in isolated post-traumatic lesions of the knee joint in the younger patient, with the formation of hyaline or hyaline-like repair tissue. In the classic ACT technique, chondrocytes are isolated from small slices of cartilage harvested arthroscopically from a minor weight-bearing area of the injured knee. The extracellular matrix is removed by enzymatic digestion, and the cells are then expanded in monolayer culture. Once a sufficient number of cells has been obtained, the chondrocytes are implanted into the cartilage defect, using a periosteal patch over the defect as a method of cell containment. The major complications are periosteal hypertrophy, delamination of the transplant, arthrofibrosis and transplant failure. Further improvements in tissue engineering have contributed to the next generation of ACT techniques, where cells are combined with resorbable biomaterials, as in matrix-associated autologous chondrocyte transplantation (MACT). These biomaterials secure the cells in the defect area and enhance their proliferation and differentiation

  15. Cartilage repair: Generations of autologous chondrocyte transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Marlovits, Stefan [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)]. E-mail: stefan.marlovits@meduniwien.ac.at; Zeller, Philip [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Singer, Philipp [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Resinger, Christoph [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Vecsei, Vilmos [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2006-01-15

    Articular cartilage in adults has a limited capacity for self-repair after a substantial injury. Surgical therapeutic efforts to treat cartilage defects have focused on delivering new cells capable of chondrogenesis into the lesions. Autologous chondrocyte transplantation (ACT) is an advanced cell-based orthobiologic technology used for the treatment of chondral defects of the knee that has been in clinical use since 1987 and has been performed on 12,000 patients internationally. With ACT, good to excellent clinical results are seen in isolated post-traumatic lesions of the knee joint in the younger patient, with the formation of hyaline or hyaline-like repair tissue. In the classic ACT technique, chondrocytes are isolated from small slices of cartilage harvested arthroscopically from a minor weight-bearing area of the injured knee. The extracellular matrix is removed by enzymatic digestion, and the cells are then expanded in monolayer culture. Once a sufficient number of cells has been obtained, the chondrocytes are implanted into the cartilage defect, using a periosteal patch over the defect as a method of cell containment. The major complications are periosteal hypertrophy, delamination of the transplant, arthrofibrosis and transplant failure. Further improvements in tissue engineering have contributed to the next generation of ACT techniques, where cells are combined with resorbable biomaterials, as in matrix-associated autologous chondrocyte transplantation (MACT). These biomaterials secure the cells in the defect area and enhance their proliferation and differentiation.

  16. Biomechanical signals guiding stem cell cartilage engineering: from molecular adaption to tissue functionality

    Directory of Open Access Journals (Sweden)

    Y Zhang

    2016-01-01

    Full Text Available In vivo cartilage is in a state of constant mechanical stimulation. It is therefore reasonable to deduce that mechanical forces play an important role in cartilage formation. Mechanical forces, such as compression, tension, and shear force, have been widely applied for cartilage engineering; however, relatively few review papers have summarized the influence of biomechanical signals on stem cell-based neo-cartilage formation and cartilage engineering in both molecular adaption and tissue functionality. In this review, we will discuss recent progress related to the influences of substrate elasticity on stem cell chondrogenic differentiation and elucidate the potential underlying mechanisms. Aside from active sensing and responding to the extracellular environment, stem cells also could respond to various external mechanical forces, which also influence their chondrogenic capacity; this topic will be updated along with associated signaling pathways. We expect that these different regimens of biomechanical signals can be utilized to boost stem cell-based cartilage engineering and regeneration.

  17. When is cartilage repair successful?

    International Nuclear Information System (INIS)

    Raudner, M.; Roehrich, S.; Zalaudek, M.; Trattnig, S.; Schreiner, M.M.

    2017-01-01

    Focal cartilage lesions are a cause of long-term disability and morbidity. After cartilage repair, it is crucial to evaluate long-term progression or failure in a reproducible, standardized manner. This article provides an overview of the different cartilage repair procedures and important characteristics to look for in cartilage repair imaging. Specifics and pitfalls are pointed out alongside general aspects. After successful cartilage repair, a complete, but not hypertrophic filling of the defect is the primary criterion of treatment success. The repair tissue should also be completely integrated to the surrounding native cartilage. After some months, the transplants signal should be isointense compared to native cartilage. Complications like osteophytes, subchondral defects, cysts, adhesion and chronic bone marrow edema or joint effusion are common and have to be observed via follow-up. Radiological evaluation and interpretation of postoperative changes should always take the repair method into account. (orig.) [de

  18. MR imaging of articular cartilage

    International Nuclear Information System (INIS)

    Schaefer, F.K.W.; Muhle, C.; Heller, M.; Brossmann, J.

    2001-01-01

    MR imaging has evolved to the best non-invasive method for the evaluation of articular cartilage. MR imaging helps to understand the structure and physiology of cartilage, and to diagnose cartilage lesions. Numerous studies have shown high accuracy and reliability concerning detection of cartilage lesions and early changes in both structure and biochemistry. High contrast-to-noise ratio and high spatial resolution are essential for analysis of articular cartilage. Fat-suppressed 3D-T 1 weighted gradient echo and T 2 -weighted fast spin echo sequences with or without fat suppression are recommended for clinical routine. In this article the anatomy and pathology of hyaline articular cartilage and the complex imaging characteristics of hyaline cartilage will be discussed. (orig.) [de

  19. Lubrication and cartilage.

    Science.gov (United States)

    Wright, V; Dowson, D

    1976-02-01

    Mechanisms of lubrication of human synovial joints have been analysed in terms of the operating conditions of the joint, the synovial fluid and articular cartilage. In the hip and knee during a walking cycle the load may rise up to four times body weight. In the knee on dropping one metre the load may go up to 25 time body weight. The elastic modulus of cartilage is similar to that of the synthetic rubber of a car tyre. The cartilage surface is rough and in elderly specimens the centre line average is 2-75 mum. The friction force generated in reciprocating tests shows that both cartilage and synovial fluid are important in lubrication. The viscosity-shear rate relationships of normal synovial fluid show that it is non-Newtonian. Osteoarthrosic fluid is less so and rheumatoid fluid is more nearly Newtonian. Experiments with hip joints in a pendulum machine show that fluid film lubrication obtains at some phases of joint action. Boundary lubrication prevails under certain conditions and has been examined with a reciprocating friction machine. Digestion of hyaluronate does not alter the boundary lubrication, but trypsin digestion does. Surface active substances (lauryl sulphate and cetyl 3-ammonium bromide) give a lubricating ability similar to that of synovial fluid. The effectiveness of the two substances varies with pH.

  20. Chondroptosis in Alkaptonuric Cartilage

    Science.gov (United States)

    Millucci, Lia; Giorgetti, Giovanna; Viti, Cecilia; Ghezzi, Lorenzo; Gambassi, Silvia; Braconi, Daniela; Marzocchi, Barbara; Paffetti, Alessandro; Lupetti, Pietro; Bernardini, Giulia; Orlandini, Maurizio

    2015-01-01

    Alkaptonuria (AKU) is a rare genetic disease that affects the entire joint. Current standard of treatment is palliative and little is known about AKU physiopathology. Chondroptosis, a peculiar type of cell death in cartilage, has been so far reported to occur in osteoarthritis, a rheumatic disease that shares some features with AKU. In the present work, we wanted to assess if chondroptosis might also occur in AKU. Electron microscopy was used to detect the morphological changes of chondrocytes in damaged cartilage distinguishing apoptosis from its variant termed chondroptosis. We adopted histological observation together with Scanning Electron Microscopy and Transmission Electron Microscopy to evaluate morphological cell changes in AKU chondrocytes. Lipid peroxidation in AKU cartilage was detected by fluorescence microscopy. Using the above‐mentioned techniques, we performed a morphological analysis and assessed that AKU chondrocytes undergo phenotypic changes and lipid oxidation, resulting in a progressive loss of articular cartilage structure and function, showing typical features of chondroptosis. To the best of our knowledge, AKU is the second chronic pathology, following osteoarthritis, where chondroptosis has been documented. Our results indicate that Golgi complex plays an important role in the apoptotic process of AKU chondrocytes and suggest a contribution of chondroptosis in AKU pathogenesis. These findings also confirm a similarity between osteoarthritis and AKU. J. Cell. Physiol. 230: 1148–1157, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:25336110

  1. INJURED ARTICULAR CARTILAGE REPAIR

    Directory of Open Access Journals (Sweden)

    Ariana Barlič

    2008-02-01

    Surveys show that the most frequently used surgical methods are mosaicplasty and bonemarrow stimulation with microfracturing. The efficacy of the autologous chondrocyte implantationmethod should be superior to microfracturing on a long run. Especially when(regeneration of the hyaline cartilage instead of fibrous tissue (fibrocartilage is concerned.However, it has not been scientifically proved yet

  2. Platelet lysate 3D scaffold supports mesenchymal stem cell chondrogenesis: an improved approach in cartilage tissue engineering.

    Science.gov (United States)

    Moroz, Andrei; Bittencourt, Renata Aparecida Camargo; Almeida, Renan Padron; Felisbino, Sérgio Luis; Deffune, Elenice

    2013-01-01

    Articular lesions are still a major challenge in orthopedics because of cartilage's poor healing properties. A major improvement in therapeutics was the development of autologous chondrocytes implantation (ACI), a biotechnology-derived technique that delivers healthy autologous chondrocytes after in vitro expansion. To obtain cartilage-like tissue, 3D scaffolds are essential to maintain chondrocyte differentiated status. Currently, bioactive 3D scaffolds are promising as they can deliver growth factors, cytokines, and hormones to the cells, giving them a boost to attach, proliferate, induce protein synthesis, and differentiate. Using mesenchymal stem cells (MSCs) differentiated into chondrocytes, one can avoid cartilage harvesting. Thus, we investigated the potential use of a platelet-lysate-based 3D bioactive scaffold to support chondrogenic differentiation and maintenance of MSCs. The MSCs from adult rabbit bone marrow (n = 5) were cultivated and characterized using three antibodies by flow cytometry. MSCs (1 × 10(5)) were than encapsulated inside 60 µl of a rabbit platelet-lysate clot scaffold and maintained in Dulbecco's Modified Eagle Medium Nutrient Mixture F-12 supplemented with chondrogenic inductors. After 21 days, the MSCs-seeded scaffolds were processed for histological analysis and stained with toluidine blue. This scaffold was able to maintain round-shaped cells, typical chondrocyte metachromatic extracellular matrix deposition, and isogenous group formation. Cells accumulated inside lacunae and cytoplasm lipid droplets were other observed typical chondrocyte features. In conclusion, the usage of a platelet-lysate bioactive scaffold, associated with a suitable chondrogenic culture medium, supports MSCs chondrogenesis. As such, it offers an alternative tool for cartilage engineering research and ACI.

  3. Cartilage extracellular matrix as a biomaterial for cartilage regeneration.

    Science.gov (United States)

    Kiyotake, Emi A; Beck, Emily C; Detamore, Michael S

    2016-11-01

    The extracellular matrix (ECM) of various tissues possesses the model characteristics that biomaterials for tissue engineering strive to mimic; however, owing to the intricate hierarchical nature of the ECM, it has yet to be fully characterized and synthetically fabricated. Cartilage repair remains a challenge because the intrinsic properties that enable its durability and long-lasting function also impede regeneration. In the last decade, cartilage ECM has emerged as a promising biomaterial for regenerating cartilage, partly because of its potentially chondroinductive nature. As this research area of cartilage matrix-based biomaterials emerged, investigators facing similar challenges consequently developed convergent solutions in constructing robust and bioactive scaffolds. This review discusses the challenges, emerging trends, and future directions of cartilage ECM scaffolds, including a comparison between two different forms of cartilage matrix: decellularized cartilage (DCC) and devitalized cartilage (DVC). To overcome the low permeability of cartilage matrix, physical fragmentation greatly enhances decellularization, although the process itself may reduce the chondroinductivity of fabricated scaffolds. The less complex processing of a scaffold composed of DVC, which has not been decellularized, appears to have translational advantages and potential chondroinductive and mechanical advantages over DCC, without detrimental immunogenicity, to ultimately enhance cartilage repair in a clinically relevant way. © 2016 New York Academy of Sciences.

  4. Maintaining positive

    OpenAIRE

    Gheorghe Gh. IONESCU; Adina Letitia NEGRUSA

    2004-01-01

    Maintaining positive work-force relationships includes in effective labor-management relations and making appropriate responses to current employee issues. Among the major current employee issues are protection from arbitrary dismissal, drug and alcohol abuse, privacy rights and family maters and they impact work. In our paper we discus two problems: first, the meanings of industrial democracy; second, the three principal operational concepts of industrial democracy (1) industrial democracy t...

  5. Advances in cartilage tissue engineering : in vitro

    NARCIS (Netherlands)

    E.W. Mandl (Erik)

    2004-01-01

    textabstractWithin the body three subtypes of cartilage can be distinguished: hyaline cartilage, elastic cartilage and fibrocartilage. Hyaline cartilage is the predominant subtype and is mainly located in articular joints and in less extent in the nasal septum and cricoid. Elastic cartilage can be

  6. Bioinspired seeding of biomaterials using three dimensional microtissues induces chondrogenic stem cell differentiation and cartilage formation under growth factor free conditions

    NARCIS (Netherlands)

    Leijten, Jeroen Christianus Hermanus; Moreira Teixeira, Liliana; Bolander, J.; Ji, W.; Vanspauwen, B.; Lammertyn, J.; Schrooten, J.; Luyten, F.P.

    2016-01-01

    Cell laden biomaterials are archetypically seeded with individual cells and steered into the desired behavior using exogenous stimuli to control growth and differentiation. In contrast, direct cell-cell contact is instructive and even essential for natural tissue formation. Namely, microaggregation

  7. Elastin-like protein-hyaluronic acid (ELP-HA) hydrogels with decoupled mechanical and biochemical cues for cartilage regeneration.

    Science.gov (United States)

    Zhu, Danqing; Wang, Huiyuan; Trinh, Pavin; Heilshorn, Sarah C; Yang, Fan

    2017-05-01

    Hyaluronic acid (HA) is a major component of cartilage extracellular matrix and is an attractive material for use as 3D injectable matrices for cartilage regeneration. While previous studies have shown the promise of HA-based hydrogels to support cell-based cartilage formation, varying HA concentration generally led to simultaneous changes in both biochemical cues and stiffness. How cells respond to the change of biochemical content of HA remains largely unknown. Here we report an adaptable elastin-like protein-hyaluronic acid (ELP-HA) hydrogel platform using dynamic covalent chemistry, which allows variation of HA concentration without affecting matrix stiffness. ELP-HA hydrogels were created through dynamic hydrazone bonds via the reaction between hydrazine-modified ELP (ELP-HYD) and aldehyde-modified HA (HA-ALD). By tuning the stoichiometric ratio of aldehyde groups to hydrazine groups while maintaining ELP-HYD concentration constant, hydrogels with variable HA concentration (1.5%, 3%, or 5%) (w/v) were fabricated with comparable stiffness. To evaluate the effects of HA concentration on cell-based cartilage regeneration, chondrocytes were encapsulated within ELP-HA hydrogels with varying HA concentration. Increasing HA concentration led to a dose-dependent increase in cartilage-marker gene expression and enhanced sGAG deposition while minimizing undesirable fibrocartilage phenotype. The use of adaptable protein hydrogels formed via dynamic covalent chemistry may be broadly applicable as 3D scaffolds with decoupled niche properties to guide other desirable cell fates and tissue repair. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Cartilage turnover reflected by metabolic processing of type II collagen

    DEFF Research Database (Denmark)

    Gudmann, Karoline Natasja Stæhr; Wang, Jianxia; Hoielt, Sabine

    2014-01-01

    The aim of this study was to enable measurement of cartilage formation by a novel biomarker of type II collagen formation. The competitive enzyme-linked immunosorbent assay (ELISA) Pro-C2 was developed and characterized for assessment of the beta splice variant of type II procollagen (PIIBNP). Th...

  9. The Role of Interstitial Fluid Pressurization in Articular Cartilage Lubrication

    Science.gov (United States)

    Ateshian, Gerard A.

    2009-01-01

    Over the last two decades, considerable progress has been reported in the field of cartilage mechanics that impacts our understanding of the role of interstitial fluid pressurization on cartilage lubrication. Theoretical and experimental studies have demonstrated that the interstitial fluid of cartilage pressurizes considerably under loading, potentially supporting most of the applied load under various transient or steady-state conditions. The fraction of the total load supported by fluid pressurization has been called the fluid load support. Experimental studies have demonstrated that the friction coefficient of cartilage correlates negatively with this variable, achieving remarkably low values when the fluid load support is greatest. A theoretical framework that embodies this relationship has been validated against experiments, predicting and explaining various outcomes, and demonstrating that a low friction coefficient can be maintained for prolonged loading durations under normal physiological function. This paper reviews salient aspects of this topic, as well as its implications for improving our understanding of boundary lubrication by molecular species in synovial fluid and the cartilage superficial zone. Effects of cartilage degeneration on its frictional response are also reviewed. PMID:19464689

  10. Peculiarities in Ankle Cartilage.

    Science.gov (United States)

    Kraeutler, Matthew J; Kaenkumchorn, Tanyaporn; Pascual-Garrido, Cecilia; Wimmer, Markus A; Chubinskaya, Susanna

    2017-01-01

    Posttraumatic osteoarthritis (PTOA) is the most common form of osteoarthritis (OA) of the ankle joint. PTOA occurs as a result of several factors, including the poor regenerative capacity of hyaline articular cartilage as well as increased contact stresses following trauma. The purpose of this article is to review the epidemiology, pathogenesis, and potential targets for treatment of PTOA in the ankle joint. Previous reviews primarily addressed clinical approaches to ankle PTOA, while the focus of the current article will be specifically on the newly acquired knowledge of the cellular mechanisms that drive PTOA in the ankle joint and means for potential targeted therapeutics that might halt the progression of cartilage degeneration and/or improve the outcome of surgical interventions. Three experimental treatment strategies are discussed in this review: (1) increasing the anabolic potential of chondrocytes through treatment with growth factors such as bone morphogenetic protein-7; (2) limiting chondrocyte cell death either through the protection of cell membrane with poloxamer 188 or inhibiting activity of intracellular proteases, caspases, which are responsible for cell death by apoptosis; and (3) inhibiting catabolic/inflammatory responses of chondrocytes by treating them with anti-inflammatory agents such as tumor necrosis factor-α antagonists. Future studies should focus on identifying the appropriate timing for treatment and an appropriate combination of anti-inflammatory, chondro- and matrix-protective biologics to limit the progression of trauma-induced cartilage degeneration and prevent the development of PTOA in the ankle joint.

  11. Cartilage grafting in nasal reconstruction.

    Science.gov (United States)

    Immerman, Sara; White, W Matthew; Constantinides, Minas

    2011-02-01

    Nasal reconstruction after resection for cutaneous malignancies poses a unique challenge to facial plastic surgeons. The nose, a unique 3-D structure, not only must remain functional but also be aesthetically pleasing to patients. A complete understanding of all the layers of the nose and knowledge of available cartilage grafting material is necessary. Autogenous material, namely septal, auricular, and costal cartilage, is the most favored material in a free cartilage graft or a composite cartilage graft. All types of material have advantages and disadvantages that should guide the most appropriate selection to maximize the functional and cosmetic outcomes for patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Radiological, computertomographic, pathoanatomical and histological examination of the rib cartilage of the dog

    International Nuclear Information System (INIS)

    Lorber, B.

    2000-06-01

    This study was concerned with the representation and description of the rib cartilage of the dog and the abnormalities of such by means of radiological, computer tomographic, pathoanatomical and histological examinations and the comparison of the results of the various examination methods. The study material consisted of 100 ventral thorax walls of dogs of different ages and breeds. In 39 of the subjects, no abnormalities of rib cartilage other than unremarkable calcification were observed. Among the subjects, there were 11 puppies (0-3 months), whose rib cartilage appeared soft tissue dense due to the absence of calcification, 14 juvenile animals (4-18 months), the rib cartilage of which showed a typical finely granulated structure, and 14 adult dogs (over 18 months), whose rib cartilage exhibited a homogeneous to net-like calcified appearance. In the calcified rib cartilage, the histological section showed a centrally located spongiosa rod surrounded by a hyaline cartilage shell. The calcification tendency of the first pair of rib cartilage was remarkable: in 70 dogs, the first pair of rib cartilage remained uncalcified despite calcification of the other rib cartilage. Sixty-one dogs exhibited rib cartilage abnormalities. According to the radiological appearance of the abnormalities, they were divided into groups and their incidence was calculated. Abnormalities seen included interruption in the continuity of the calcified rib cartilage with and without callus formation, enlargement of rib cartilage, cuff formation, and abnormalities on the Articulationes sternocostales (projections in or around articulations, calcified and fractured joint surfaces). In addition, remarkable calcification patterns were observed. By means of CT examination the densities of the tissue forming the various abnormalities was determined. In the course of the pathoanatomical examination, it was shown that the interruptions in continuity with callus and the various enlarged areas of the

  13. The effects of different doses of IGF-1 on cartilage and subchondral bone during the repair of full-thickness articular cartilage defects in rabbits.

    Science.gov (United States)

    Zhang, Z; Li, L; Yang, W; Cao, Y; Shi, Y; Li, X; Zhang, Q

    2017-02-01

    To investigate the effects of different doses of insulin-like growth factor 1 (IGF-1) on the cartilage layer and subchondral bone (SB) during repair of full-thickness articular cartilage (AC) defects. IGF-1-loaded collagen membrane was implanted into full-thickness AC defects in rabbits. The effects of two different doses of IGF-1 on cartilage layer and SB adjacent to the defect, the cartilage structure, formation and integration, and the new SB formation were evaluated at the 1st, 4th and 8th week postoperation. Meanwhile, after 1 week treatment, the relative mRNA expressions in tissues adjacent to the defect, including cartilage and SB were determined by quantitative real-time RT-PCR (qRT-PCR), respectively. Different doses of IGF-1 induced different gene expression profiles in tissues adjacent to the defect and resulted in different repair outcomes. Particularly, at high dose IGF-1 aided cell survival, regulated the gene expressions in cartilage layer adjacent defect and altered ECM composition more effectively, improved the formation and integrity of neo-cartilage. While, at low dose IGF-1 regulated the gene expressions in SB more efficaciously and subsequently promoted the SB remodeling and reconstruction. Different doses of IGF-1 induced different responses of cartilage or SB during the repair of full-thickness AC defects. Particularly, high dose of IGF-1 was more beneficial to the neo-cartilage formation and integration, while low dose of it was more effective for the SB formation. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  14. Maintaining evolvability.

    Science.gov (United States)

    Crow, James F

    2008-12-01

    Although molecular methods, such as QTL mapping, have revealed a number of loci with large effects, it is still likely that the bulk of quantitative variability is due to multiple factors, each with small effect. Typically, these have a large additive component. Conventional wisdom argues that selection, natural or artificial, uses up additive variance and thus depletes its supply. Over time, the variance should be reduced, and at equilibrium be near zero. This is especially expected for fitness and traits highly correlated with it. Yet, populations typically have a great deal of additive variance, and do not seem to run out of genetic variability even after many generations of directional selection. Long-term selection experiments show that populations continue to retain seemingly undiminished additive variance despite large changes in the mean value. I propose that there are several reasons for this. (i) The environment is continually changing so that what was formerly most fit no longer is. (ii) There is an input of genetic variance from mutation, and sometimes from migration. (iii) As intermediate-frequency alleles increase in frequency towards one, producing less variance (as p --> 1, p(1 - p) --> 0), others that were originally near zero become more common and increase the variance. Thus, a roughly constant variance is maintained. (iv) There is always selection for fitness and for characters closely related to it. To the extent that the trait is heritable, later generations inherit a disproportionate number of genes acting additively on the trait, thus increasing genetic variance. For these reasons a selected population retains its ability to evolve. Of course, genes with large effect are also important. Conspicuous examples are the small number of loci that changed teosinte to maize, and major phylogenetic changes in the animal kingdom. The relative importance of these along with duplications, chromosome rearrangements, horizontal transmission and polyploidy

  15. Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage.

    Directory of Open Access Journals (Sweden)

    Rebecca Williams

    -based cartilage repair therapies due to its ability to maintain chondrogenicity upon extensive expansion unlike full-depth chondrocytes that lose this ability at only seven population doublings.

  16. Regulators of articular cartilage homeostasis

    NARCIS (Netherlands)

    Leijten, Jeroen Christianus Hermanus

    2012-01-01

    Prevention of hypertrophic differentiation is essential for successful cartilage repair strategies. Although this process is essential for longitudinal growth, it also is part of degenerative cartilage diseases such as osteoarthiritis. Moreover, it limits the use of cell types prone to this process

  17. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering.

    Science.gov (United States)

    Kundu, Joydip; Shim, Jin-Hyung; Jang, Jinah; Kim, Sung-Won; Cho, Dong-Woo

    2015-11-01

    Regenerative medicine is targeted to improve, restore or replace damaged tissues or organs using a combination of cells, materials and growth factors. Both tissue engineering and developmental biology currently deal with the process of tissue self-assembly and extracellular matrix (ECM) deposition. In this investigation, additive manufacturing (AM) with a multihead deposition system (MHDS) was used to fabricate three-dimensional (3D) cell-printed scaffolds using layer-by-layer (LBL) deposition of polycaprolactone (PCL) and chondrocyte cell-encapsulated alginate hydrogel. Appropriate cell dispensing conditions and optimum alginate concentrations for maintaining cell viability were determined. In vitro cell-based biochemical assays were performed to determine glycosaminoglycans (GAGs), DNA and total collagen contents from different PCL-alginate gel constructs. PCL-alginate gels containing transforming growth factor-β (TGFβ) showed higher ECM formation. The 3D cell-printed scaffolds of PCL-alginate gel were implanted in the dorsal subcutaneous spaces of female nude mice. Histochemical [Alcian blue and haematoxylin and eosin (H&E) staining] and immunohistochemical (type II collagen) analyses of the retrieved implants after 4 weeks revealed enhanced cartilage tissue and type II collagen fibril formation in the PCL-alginate gel (+TGFβ) hybrid scaffold. In conclusion, we present an innovative cell-printed scaffold for cartilage regeneration fabricated by an advanced bioprinting technology. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Magnetically targeted delivery through cartilage

    Science.gov (United States)

    Jafari, Sahar; Mair, Lamar O.; Chowdhury, Sagar; Nacev, Alek; Hilaman, Ryan; Stepanov, Pavel; Baker-McKee, James; Ijanaten, Said; Koudelka, Christian; English, Bradley; Malik, Pulkit; Weinberg, Irving N.

    2018-05-01

    In this study, we have invented a method of delivering drugs deep into articular cartilage with shaped dynamic magnetic fields acting on small metallic magnetic nanoparticles with polyethylene glycol coating and average diameter of 30 nm. It was shown that transport of magnetic nanoparticles through the entire thickness of bovine articular cartilage can be controlled by a combined alternating magnetic field at 100 Hz frequency and static magnetic field of 0.8 tesla (T) generated by 1" dia. x 2" thick permanent magnet. Magnetic nanoparticles transport through bovine articular cartilage samples was investigated at various settings of magnetic field and time durations. Combined application of an alternating magnetic field and the static field gradient resulted in a nearly 50 times increase in magnetic nanoparticles transport in bovine articular cartilage tissue as compared with static field conditions. This method can be applied to locally deliver therapeutic-loaded magnetic nanoparticles deep into articular cartilage to prevent cartilage degeneration and promote cartilage repair in osteoarthritis.

  19. Magnetically targeted delivery through cartilage

    Directory of Open Access Journals (Sweden)

    Sahar Jafari

    2018-05-01

    Full Text Available In this study, we have invented a method of delivering drugs deep into articular cartilage with shaped dynamic magnetic fields acting on small metallic magnetic nanoparticles with polyethylene glycol coating and average diameter of 30 nm. It was shown that transport of magnetic nanoparticles through the entire thickness of bovine articular cartilage can be controlled by a combined alternating magnetic field at 100 Hz frequency and static magnetic field of 0.8 tesla (T generated by 1" dia. x 2" thick permanent magnet. Magnetic nanoparticles transport through bovine articular cartilage samples was investigated at various settings of magnetic field and time durations. Combined application of an alternating magnetic field and the static field gradient resulted in a nearly 50 times increase in magnetic nanoparticles transport in bovine articular cartilage tissue as compared with static field conditions. This method can be applied to locally deliver therapeutic-loaded magnetic nanoparticles deep into articular cartilage to prevent cartilage degeneration and promote cartilage repair in osteoarthritis.

  20. Pronounced biomaterial dependency in cartilage regeneration using nonexpanded compared with expanded chondrocytes

    NARCIS (Netherlands)

    Tsuchida, A.I.; Bekkers, J.E.J.; Beekhuizen, M.; Vonk, L.A.; Dhert, W.J.A.; Saris, Daniël B.F.; Creemers, L.B.

    2013-01-01

    We aimed to investigate freshly isolated compared with culture-expanded chondrocytes with respect to early regenerative response, cytokine production and cartilage formation in response to four commonly used biomaterials. Materials & methods: Chondrocytes were both directly and after expansion to

  1. Brief report: reconstruction of joint hyaline cartilage by autologous progenitor cells derived from ear elastic cartilage.

    Science.gov (United States)

    Mizuno, Mitsuru; Kobayashi, Shinji; Takebe, Takanori; Kan, Hiroomi; Yabuki, Yuichiro; Matsuzaki, Takahisa; Yoshikawa, Hiroshi Y; Nakabayashi, Seiichiro; Ik, Lee Jeong; Maegawa, Jiro; Taniguchi, Hideki

    2014-03-01

    In healthy joints, hyaline cartilage covering the joint surfaces of bones provides cushioning due to its unique mechanical properties. However, because of its limited regenerative capacity, age- and sports-related injuries to this tissue may lead to degenerative arthropathies, prompting researchers to investigate a variety of cell sources. We recently succeeded in isolating human cartilage progenitor cells from ear elastic cartilage. Human cartilage progenitor cells have high chondrogenic and proliferative potential to form elastic cartilage with long-term tissue maintenance. However, it is unknown whether ear-derived cartilage progenitor cells can be used to reconstruct hyaline cartilage, which has different mechanical and histological properties from elastic cartilage. In our efforts to develop foundational technologies for joint hyaline cartilage repair and reconstruction, we conducted this study to obtain an answer to this question. We created an experimental canine model of knee joint cartilage damage, transplanted ear-derived autologous cartilage progenitor cells. The reconstructed cartilage was rich in proteoglycans and showed unique histological characteristics similar to joint hyaline cartilage. In addition, mechanical properties of the reconstructed tissues were higher than those of ear cartilage and equal to those of joint hyaline cartilage. This study suggested that joint hyaline cartilage was reconstructed from ear-derived cartilage progenitor cells. It also demonstrated that ear-derived cartilage progenitor cells, which can be harvested by a minimally invasive method, would be useful for reconstructing joint hyaline cartilage in patients with degenerative arthropathies. © AlphaMed Press.

  2. New developments in osteoarthritis and cartilage biology.

    Science.gov (United States)

    Poulet, Blandine; Staines, Katherine A

    2016-06-01

    Osteoarthritis (OA) is a degenerative joint disease and the most common form of arthritis. Characterised by articular cartilage loss, subchondral bone thickening and osteophyte formation, the OA joint afflicts much pain and disability. Whilst OA has been associated with many contributing factors, its underpinning molecular mechanisms are, nevertheless, not fully understood. Clinical management of OA is largely palliative and there is an ever growing need for an effective disease modifying treatment. This review discusses some of the recent progress in OA therapies in the different joint tissues affected by OA pathology. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Matrix development in self-assembly of articular cartilage.

    Directory of Open Access Journals (Sweden)

    Gidon Ofek

    2008-07-01

    Full Text Available Articular cartilage is a highly functional tissue which covers the ends of long bones and serves to ensure proper joint movement. A tissue engineering approach that recapitulates the developmental characteristics of articular cartilage can be used to examine the maturation and degeneration of cartilage and produce fully functional neotissue replacements for diseased tissue.This study examined the development of articular cartilage neotissue within a self-assembling process in two phases. In the first phase, articular cartilage constructs were examined at 1, 4, 7, 10, 14, 28, 42, and 56 days immunohistochemically, histologically, and through biochemical analysis for total collagen and glycosaminoglycan (GAG content. Based on statistical changes in GAG and collagen levels, four time points from the first phase (7, 14, 28, and 56 days were chosen to carry into the second phase, where the constructs were studied in terms of their mechanical characteristics, relative amounts of collagen types II and VI, and specific GAG types (chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate, and hyaluronan. Collagen type VI was present in initial abundance and then localized to a pericellular distribution at 4 wks. N-cadherin activity also spiked at early stages of neotissue development, suggesting that self-assembly is mediated through a minimization of free energy. The percentage of collagen type II to total collagen significantly increased over time, while the proportion of collagen type VI to total collagen decreased between 1 and 2 wks. The chondroitin 6- to 4- sulfate ratio decreased steadily during construct maturation. In addition, the compressive properties reached a plateau and tensile characteristics peaked at 4 wks.The indices of cartilage formation examined in this study suggest that tissue maturation in self-assembled articular cartilage mirrors known developmental processes for native tissue. In terms of tissue engineering, it is

  4. Holmium:YAG laser effects on articular cartilage metabolism: in vitro

    Science.gov (United States)

    Smith, R. Lane; Montgomery, L.; Fanton, G.; Dillingham, M.; Schurman, D. J.

    1994-09-01

    We report effects of applying variable doses of Holmium:YAG laser energy to bovine articular cartilage in vitro. The response of the cartilage to the Holmium:YAG laser energy was determined by quantification of cell proliferation and extracellular matrix glycosaminoglycan synthesis. This study demonstrates that articular cartilage cell metabolism was maintained at a normal level following treatment of cartilage at a dose of 0.6 joules/pulse. The laser energy was applied at 10 Hz for 10 seconds at 1 mm distance from the cartilage. Under these conditions and at a dose of 0.6 joules/pulse, the total energy density was calculated to be 240 joules/cm2, assuming minimal loss of energy due to water absorption. Energy levels grater than 0.8 joules/pulse corresponding to calculated energy densities greater than 320 joules/cm2 proved harmful to cartilage. Our data demonstrate that low levels of Holmium:YAG laser energy can be applied to articular cartilage under conditions that maintain and/or stimulate cell metabolism.

  5. Cartilage constructs from human cord blood stem cells seeded in structurally-graded polycaprolactone scaffolds

    DEFF Research Database (Denmark)

    Munir, Samir; Koch, Thomas Gadegaard; Foldager, Casper Bindzus

    Cartilage is an avascular tissue incapable of regeneration. Current treatment modalities for joint cartilage injuries are inefficient in regenerating hyaline cartilage and often leads to the formation of fibrocartilage with undesirable mechanical properties. There is an increasing interest...... in investigating alternative treatments such as tissue engineering, which combines stem cells with scaffolds to produce cartilage in vitro for subsequent transplant. Previous studies have shown that chondrogenesis of induced stem cells is influenced by various growth factors, oxygen tensions and mechanical...... this novel SGS-PCL scaffold supports the chondrogenic differentiation of MLPCs will be interesting to evaluate since this scaffold possesses mechanical properties absent from other “soft” scaffolds currently being investigated for cartilage regeneration and implantation....

  6. Gelatin Scaffolds with Controlled Pore Structure and Mechanical Property for Cartilage Tissue Engineering.

    Science.gov (United States)

    Chen, Shangwu; Zhang, Qin; Nakamoto, Tomoko; Kawazoe, Naoki; Chen, Guoping

    2016-03-01

    Engineering of cartilage tissue in vitro using porous scaffolds and chondrocytes provides a promising approach for cartilage repair. However, nonuniform cell distribution and heterogeneous tissue formation together with weak mechanical property of in vitro engineered cartilage limit their clinical application. In this study, gelatin porous scaffolds with homogeneous and open pores were prepared using ice particulates and freeze-drying. The scaffolds were used to culture bovine articular chondrocytes to engineer cartilage tissue in vitro. The pore structure and mechanical property of gelatin scaffolds could be well controlled by using different ratios of ice particulates to gelatin solution and different concentrations of gelatin. Gelatin scaffolds prepared from ≥70% ice particulates enabled homogeneous seeding of bovine articular chondrocytes throughout the scaffolds and formation of homogeneous cartilage extracellular matrix. While soft scaffolds underwent cellular contraction, stiff scaffolds resisted cellular contraction and had significantly higher cell proliferation and synthesis of sulfated glycosaminoglycan. Compared with the gelatin scaffolds prepared without ice particulates, the gelatin scaffolds prepared with ice particulates facilitated formation of homogeneous cartilage tissue with significantly higher compressive modulus. The gelatin scaffolds with highly open pore structure and good mechanical property can be used to improve in vitro tissue-engineered cartilage.

  7. Cartilage oligomeric matrix protein enhances matrix assembly during chondrogenesis of human mesenchymal stem cells.

    Science.gov (United States)

    Haleem-Smith, Hana; Calderon, Raul; Song, Yingjie; Tuan, Rocky S; Chen, Faye H

    2012-04-01

    Cartilage oligomeric matrix protein/thrombospondin-5 (COMP/TSP5) is an abundant cartilage extracellular matrix (ECM) protein that interacts with major cartilage ECM components, including aggrecan and collagens. To test our hypothesis that COMP/TSP5 functions in the assembly of the ECM during cartilage morphogenesis, we have employed mesenchymal stem cell (MSC) chondrogenesis in vitro as a model to examine the effects of COMP over-expression on neo-cartilage formation. Human bone marrow-derived MSCs were transfected with either full-length COMP cDNA or control plasmid, followed by chondrogenic induction in three-dimensional pellet or alginate hydrogel culture. MSC chondrogenesis and ECM production was estimated based on quantitation of sulfated glycosaminoglycan (sGAG) accumulation, immunohistochemistry of the presence and distribution of cartilage ECM proteins, and real-time RT-PCR analyis of mRNA expression of cartilage markers. Our results showed that COMP over-expression resulted in increased total sGAG content during the early phase of MSC chondrogenesis, and increased immuno-detectable levels of aggrecan and collagen type II in the ECM of COMP-transfected pellet and alginate cultures, indicating more abundant cartilaginous matrix. COMP transfection did not significantly increase the transcript levels of the early chondrogenic marker, Sox9, or aggrecan, suggesting that enhancement of MSC cartilage ECM was effected at post-transcriptional levels. These findings strongly suggest that COMP functions in mesenchymal chondrogenesis by enhancing cartilage ECM organization and assembly. The action of COMP is most likely mediated not via direct changes in cartilage matrix gene expression but via interactions of COMP with other cartilage ECM proteins, such as aggrecan and collagens, that result in enhanced assembly and retention.

  8. CARTILAGE OLIGOMERIC MATRIX PROTEIN ENHANCES MATRIX ASSEMBLY DURING CHONDROGENESIS OF HUMAN MESENCHYMAL STEM CELLS

    Science.gov (United States)

    Haleem-Smith, Hana; Calderon, Raul; Song, Yingjie; Tuan, Rocky S.; Chen, Faye H.

    2011-01-01

    Cartilage oligomeric matrix protein/thrombospondin-5 (COMP/TSP5) is an abundant cartilage extracellular matrix (ECM) protein that interacts with major cartilage ECM components, including aggrecan and collagens. To test our hypothesis that COMP/TSP5 functions in the assembly of the ECM during cartilage morphogenesis, we have employed mesenchymal stem cell (MSC) chondrogenesis in vitro as a model to examine the effects of COMP over-expression on neo-cartilage formation. Human bone marrow-derived MSCs were transfected with either full-length COMP cDNA or control plasmid, followed by chondrogenic induction in three-dimensional pellet or alginate-hydrogel culture. MSC chondrogenesis and ECM production was estimated based on quantitation of sulfated glycosaminoglycan (sGAG) accumulation, immunohistochemistry of the presence and distribution of cartilage ECM proteins, and real-time RT-PCR analyis of mRNA expression of cartilage markers. Our results showed that COMP over-expression resulted in increased total sGAG content during the early phase of MSC chondrogenesis, and increased immuno-detectable levels of aggrecan and collagen type II in the ECM of COMP-transfected pellet and alginate cultures, indicating more abundant cartilaginous matrix. COMP transfection did not significantly increase the transcript levels of the early chondrogenic marker, Sox9, or aggrecan, suggesting that enhancement of MSC cartilage ECM was effected at post-transcriptional levels. These findings strongly suggest that COMP functions in mesenchymal chondrogenesis by enhancing cartilage ECM organization and assembly. The action of COMP is most likely mediated not via direct changes in cartilage matrix gene expression but via interactions of COMP with other cartilage ECM proteins, such as aggrecan and collagens, that result in enhanced assembly and retention. PMID:22095699

  9. Raman microspectrometry of laser-reshaped rabbit auricular cartilage: preliminary study on laser-induced cartilage mineralization

    Science.gov (United States)

    Heger, Michal; Mordon, Serge R.; Leroy, Gérard; Fleurisse, Laurence; Creusy, Collette

    2006-03-01

    Laser-assisted cartilage reshaping (LACR) is a relatively novel technique designed to noninvasively and permanently restructure cartilaginous tissue. It is believed that heat-induced stress relaxation, in which a temperature-mediated disruption of H2O binding is associated with conformational alterations in the proteoglycan and collagen-rich matrix, constitutes the underlying mechanism of LACR. Several reports have suggested that laser-mediated cartilage mineralization may contribute to the permanent shape change of laser-reshaped cartilage. In an effort to validate these results in the context of Er:glass LACR, we performed a preliminary Raman microspectrometric study to characterize the crystal deposits in laser-irradiated chondrocytes and extracellular matrix. For the first time, we identified intracellular calcium sulfate deposits and extracellular calcium phosphate (apatite) crystals in laser-reshaped rabbit auricular cartilage. Calcium carbonate deposits are localized in both irradiated and nonirradiated samples, suggesting that this mineral plays no role in conformational retention. In our discussion, we elaborate on the possible molecular and cellular mechanisms responsible for intra- and extracellular crystallization, and propose a novel hypothesis on the formation of apatite, inasmuch as the biological function of this mineral (providing structure and rigidity in bones and dental enamel) may be extrapolated to the permanent shape change of laser-irradiated cartilage.

  10. Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-14-1-0591 TITLE: Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage PRINCIPAL...response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing...2016 – 29 Sep 2017 4. TITLE AND SUBTITLE Cartilage 5a. CONTRACT NUMBER Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic

  11. Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage

    Science.gov (United States)

    2015-10-01

    within canine cartilage explants. FY16 Goal – Testing the recovery of mechanical properties, biochemistry, and histology of .canine knee joints which...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...Prescribed by ANSI Std. Z39.18 Post-traumatic osteoarthritis (PTOA) often follows joint fractures and dislocations, cartilage injuries, chronic ligament

  12. Tissue engineering of cartilages using biomatrices

    DEFF Research Database (Denmark)

    Melrose, J.; Chuang, C.; Whitelock, J.

    2008-01-01

    and age-related degenerative diseases can all lead to cartilage loss; however, the low cell density and very limited self-renewal capacity of cartilage necessitate the development of effective therapeutic repair strategies for this tissue. The ontogeny of the chondrocyte, which is the cell that provides...... the biosynthetic machinery for all the component parts of cartilage, is discussed, since an understanding of cartilage development is central to the maintenance of a chondrocytic phenotype in any strategy aiming to produce a replacement cartilage. A plethora of matrices have been developed for cartilage...

  13. Increased physical activity severely induces osteoarthritic changes in knee joints with papain induced sulfate-glycosaminoglycan depleted cartilage.

    Science.gov (United States)

    Siebelt, Michiel; Groen, Harald C; Koelewijn, Stuart J; de Blois, Erik; Sandker, Marjan; Waarsing, Jan H; Müller, Cristina; van Osch, Gerjo J V M; de Jong, Marion; Weinans, Harrie

    2014-01-29

    Articular cartilage needs sulfated-glycosaminoglycans (sGAGs) to withstand high pressures while mechanically loaded. Chondrocyte sGAG synthesis is regulated by exposure to compressive forces. Moderate physical exercise is known to improve cartilage sGAG content and might protect against osteoarthritis (OA). This study investigated whether rat knee joints with sGAG depleted articular cartilage through papain injections might benefit from moderate exercise, or whether this increases the susceptibility for cartilage degeneration. sGAGs were depleted from cartilage through intraarticular papain injections in the left knee joints of 40 Wistar rats; their contralateral joints served as healthy controls. Of the 40 rats included in the study, 20 rats remained sedentary, and the other 20 were subjected to a moderately intense running protocol. Animals were longitudinally monitored for 12 weeks with in vivo micro-computed tomography (μCT) to measure subchondral bone changes and single-photon emission computed tomography (SPECT)/CT to determine synovial macrophage activation. Articular cartilage was analyzed at 6 and 12 weeks with ex vivo contrast-enhanced μCT and histology to measure sGAG content and cartilage thickness. All outcome measures were unaffected by moderate exercise in healthy control joints of running animals compared with healthy control joints of sedentary animals. Papain injections in sedentary animals resulted in severe sGAG-depleted cartilage, slight loss of subchondral cortical bone, increased macrophage activation, and osteophyte formation. In running animals, papain-induced sGAG-depleted cartilage showed increased cartilage matrix degradation, sclerotic bone formation, increased macrophage activation, and more osteophyte formation. Moderate exercise enhanced OA progression in papain-injected joints and did not protect against development of the disease. This was not restricted to more-extensive cartilage damage, but also resulted in pronounced

  14. Increased physical activity severely induces osteoarthritic changes in knee joints with papain induced sulfate-glycosaminoglycan depleted cartilage

    Science.gov (United States)

    2014-01-01

    Introduction Articular cartilage needs sulfated-glycosaminoglycans (sGAGs) to withstand high pressures while mechanically loaded. Chondrocyte sGAG synthesis is regulated by exposure to compressive forces. Moderate physical exercise is known to improve cartilage sGAG content and might protect against osteoarthritis (OA). This study investigated whether rat knee joints with sGAG depleted articular cartilage through papain injections might benefit from moderate exercise, or whether this increases the susceptibility for cartilage degeneration. Methods sGAGs were depleted from cartilage through intraarticular papain injections in the left knee joints of 40 Wistar rats; their contralateral joints served as healthy controls. Of the 40 rats included in the study, 20 rats remained sedentary, and the other 20 were subjected to a moderately intense running protocol. Animals were longitudinally monitored for 12 weeks with in vivo micro-computed tomography (μCT) to measure subchondral bone changes and single-photon emission computed tomography (SPECT)/CT to determine synovial macrophage activation. Articular cartilage was analyzed at 6 and 12 weeks with ex vivo contrast-enhanced μCT and histology to measure sGAG content and cartilage thickness. Results All outcome measures were unaffected by moderate exercise in healthy control joints of running animals compared with healthy control joints of sedentary animals. Papain injections in sedentary animals resulted in severe sGAG-depleted cartilage, slight loss of subchondral cortical bone, increased macrophage activation, and osteophyte formation. In running animals, papain-induced sGAG-depleted cartilage showed increased cartilage matrix degradation, sclerotic bone formation, increased macrophage activation, and more osteophyte formation. Conclusions Moderate exercise enhanced OA progression in papain-injected joints and did not protect against development of the disease. This was not restricted to more-extensive cartilage

  15. First evidence of dinosaurian secondary cartilage in the post-hatching skull of Hypacrosaurus stebingeri (Dinosauria, Ornithischia.

    Directory of Open Access Journals (Sweden)

    Alida M Bailleul

    Full Text Available Bone and calcified cartilage can be fossilized and preserved for hundreds of millions of years. While primary cartilage is fairly well studied in extant and fossilized organisms, nothing is known about secondary cartilage in fossils. In extant birds, secondary cartilage arises after bone formation during embryonic life at articulations, sutures and muscular attachments in order to accommodate mechanical stress. Considering the phylogenetic inclusion of birds within the Dinosauria, we hypothesized a dinosaurian origin for this "avian" tissue. Therefore, histological thin sectioning was used to investigate secondary chondrogenesis in disarticulated craniofacial elements of several post-hatching specimens of the non-avian dinosaur Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae. Secondary cartilage was found on three membrane bones directly involved with masticatory function: (1 as nodules on the dorso-caudal face of a surangular; and (2 on the bucco-caudal face of a maxilla; and (3 between teeth as islets in the alveolar processes of a dentary. Secondary chondrogenesis at these sites is consistent with the locations of secondary cartilage in extant birds and with the induction of the cartilage by different mechanical factors - stress generated by the articulation of the quadrate, stress of a ligamentous or muscular insertion, and stress of tooth formation. Thus, our study reveals the first evidence of "avian" secondary cartilage in a non-avian dinosaur. It pushes the origin of this "avian" tissue deep into dinosaurian ancestry, suggesting the creation of the more appropriate term "dinosaurian" secondary cartilage.

  16. Maintainability design guide

    International Nuclear Information System (INIS)

    Pack, R.W.

    1985-01-01

    The Human Factors Design Guide for Maintainability provides guidance for systematically incorporating good human factors techniques into the design of power plants. The guide describes a means of developing a comprehensive program plan to ensure compliance with the human factors approaches specified by the utility. The guide also provides specific recommendations for design practices, with examples, bases, and references. The recommendations are formatted for easy use by nuclear power plant design teams and by utility personnel involved in specification and design review. The guide was developed under EPRI research project RP2166-4 and is currently being published

  17. Surgical correction of joint deformities and hyaline cartilage regeneration

    Directory of Open Access Journals (Sweden)

    Vyacheslav Alexandrovich Vinokurov

    2015-12-01

    Full Text Available Aim. To determine a method of extra-articular osteochondral fragment formation for the improvement of surgical correction results of joint deformities and optimization of regenerative conditions for hyaline cartilage. Materials and Methods. The method of formation of an articular osteochondral fragment without penetration into the joint cavity was devised experimentally. More than 30 patients with joint deformities underwent the surgery. Results. During the experiments, we postulated that there may potentially be a complete recovery of joint defects because of hyaline cartilage regeneration. By destructing the osteochondral fragment and reforming it extra-articularally, joint defects were recovered in all patients. The results were evaluated as excellent and good in majority of the patients. Conclusion. These findings indicate a novel method in which the complete recovery of joint defects due to dysplastic genesis or osteochondral defects as a result of injuries can be obtained. The devised method can be used in future experiments for objectification and regenerative potential of hyaline cartilage (e.g., rate and volume of the reformed joints that regenerate, detection of cartilage elements, and the regeneration process.

  18. Osteoarthritic cartilage is more homogeneous than healthy cartilage

    DEFF Research Database (Denmark)

    Qazi, Arish A; Dam, Erik B; Nielsen, Mads

    2007-01-01

    it evolves as a consequence to disease and thereby can be used as a progression biomarker. MATERIALS AND METHODS: A total of 283 right and left knees from 159 subjects aged 21 to 81 years were scanned using a Turbo 3D T1 sequence on a 0.18-T MRI Esaote scanner. The medial compartment of the tibial cartilage...... sheet was segmented using a fully automatic voxel classification scheme based on supervised learning. From the segmented cartilage sheet, homogeneity was quantified by measuring entropy from the distribution of signal intensities inside the compartment. Each knee was examined by radiography...... of the region was evaluated by testing for overfitting. Three different regularization techniques were evaluated for reducing overfitting errors. RESULTS: The P values for separating the different groups based on cartilage homogeneity were 2 x 10(-5) (KL 0 versus KL 1) and 1 x 10(-7) (KL 0 versus KL >0). Using...

  19. Transcriptomic signatures in cartilage ageing

    Science.gov (United States)

    2013-01-01

    Introduction Age is an important factor in the development of osteoarthritis. Microarray studies provide insight into cartilage aging but do not reveal the full transcriptomic phenotype of chondrocytes such as small noncoding RNAs, pseudogenes, and microRNAs. RNA-Seq is a powerful technique for the interrogation of large numbers of transcripts including nonprotein coding RNAs. The aim of the study was to characterise molecular mechanisms associated with age-related changes in gene signatures. Methods RNA for gene expression analysis using RNA-Seq and real-time PCR analysis was isolated from macroscopically normal cartilage of the metacarpophalangeal joints of eight horses; four young donors (4 years old) and four old donors (>15 years old). RNA sequence libraries were prepared following ribosomal RNA depletion and sequencing was undertaken using the Illumina HiSeq 2000 platform. Differentially expressed genes were defined using Benjamini-Hochberg false discovery rate correction with a generalised linear model likelihood ratio test (P ageing cartilage. Conclusion There was an age-related dysregulation of matrix, anabolic and catabolic cartilage factors. This study has increased our knowledge of transcriptional networks in cartilage ageing by providing a global view of the transcriptome. PMID:23971731

  20. Imaging of cartilage repair procedures

    International Nuclear Information System (INIS)

    Sanghvi, Darshana; Munshi, Mihir; Pardiwala, Dinshaw

    2014-01-01

    The rationale for cartilage repair is to prevent precocious osteoarthritis in untreated focal cartilage injuries in the young and middle-aged population. The gamut of surgical techniques, normal postoperative radiological appearances, and possible complications have been described. An objective method of recording the quality of repair tissue is with the magnetic resonance observation of cartilage repair tissue (MOCART) score. This scoring system evaluates nine parameters that include the extent of defect filling, border zone integration, signal intensity, quality of structure and surface, subchondral bone, subchondral lamina, and records presence or absence of synovitis and adhesions. The five common techniques of cartilage repair currently offered include bone marrow stimulation (microfracture or drilling), mosaicplasty, synthetic resorbable scaffold grafts, osteochondral allograft transplants, and autologous chondrocyte implantation (ACI). Complications of cartilage repair procedures that may be demonstrated on magnetic resonance imaging (MRI) include plug loosening, graft protuberance, graft depression, and collapse in mosaicplasty, graft hypertrophy in ACI, and immune response leading to graft rejection, which is more common with synthetic grafts and cadaveric allografts

  1. Repeated oral administration of a cathepsin K inhibitor significantly suppresses bone resorption in exercising horses with evidence of increased bone formation and maintained bone turnover.

    Science.gov (United States)

    Hussein, H; Dulin, J; Smanik, L; Drost, W T; Russell, D; Wellman, M; Bertone, A

    2017-08-01

    Our investigations evaluated the effect of VEL-0230, a highly specific irreversible inhibitor of cathepsin K (CatK). The objectives of our study were to determine whether repeated dosing of a CatK inhibitor (CatKI) produced a desired inhibition of the bone resorption biomarker (CTX-1), and document the effect of repeated dosing on bone homeostasis, structure, and dynamics of bone resorption and formation in horses. Twelve young exercising horses were randomized in a prospective, controlled clinical trial and received 4 weekly doses of a CatKI or vehicle. Baseline and poststudy nuclear scintigraphy, blood sampling and analysis of plasma bone biomarkers (CTX-1 and osteocalcin), poststudy bone fluorescent labeling, and bone biopsy were performed. Bone specimens were further processed for microcomputed tomography and bone histomorphometry. Each dose of this CatKI transiently inhibited plasma CTX-1 (reflecting inhibition of bone collagen resorption) and increased bone plasma osteocalcin concentrations, with no detectable adverse effect on normal bone turnover in the face of exercise. Bone morphology, density, and formation rate were not different between control and treated group. Further investigation of CatK inhibition in abnormal bone turnover is required in animals with bone diseases. © 2016 John Wiley & Sons Ltd.

  2. Preserved irradiated homologous cartilage for orbital reconstruction

    International Nuclear Information System (INIS)

    Linberg, J.V.; Anderson, R.L.; Edwards, J.J.; Panje, W.R.; Bardach, J.

    1980-01-01

    Human costal cartilage is an excellent implant material for orbital and periorbital reconstruction because of its light weight, strength, homogeneous consistency and the ease with which it can be carved. Its use has been limited by the necessity of a separate surgical procedure to obtain the material. Preserved irradiated homologous cartilage has been shown to have almost all the autogenous cartilage and is convenient to use. Preserved irradiated homologous cartilage transplants do not elicit rejection reactions, resist infection and rarely undergo absorption

  3. MR Imaging of Articular Hyaline Cartilage

    OpenAIRE

    Uetani, Masataka

    2005-01-01

    MR imaging is still an evolving technique for the diagnosis of joint cartilage lesions. Early morphologic changes in the degenerative cartilage are not reliably diagnosed even with use of tailored MR imaging techniques. The detection of the biochemical changes of cartilage or high-resolution MRI will serve as an important tool for the early diagnosis of cartilage degeneration in near future. Further prospective studies are needed to establish the role of MR imaging in clinical use.

  4. HIF-2α-induced chemokines stimulate motility of fibroblast-like synoviocytes and chondrocytes into the cartilage-pannus interface in experimental rheumatoid arthritis mouse models.

    Science.gov (United States)

    Huh, Yun Hyun; Lee, Gyuseok; Lee, Keun-Bae; Koh, Jeong-Tae; Chun, Jang-Soo; Ryu, Je-Hwang

    2015-10-29

    Pannus formation and resulting cartilage destruction during rheumatoid arthritis (RA) depends on the migration of synoviocytes to cartilage tissue. Here, we focused on the role of hypoxia-inducible factor (HIF)-2α-induced chemokines by chondrocytes in the regulation of fibroblast-like synoviocyte (FLS) migration into the cartilage-pannus interface and cartilage erosion. Collagen-induced arthritis (CIA), K/BxN serum transfer, and tumor necrosis factor-α transgenic mice were used as experimental RA models. Expression patterns of HIF-2α and chemokines were determined via immunostaining, Western blotting and RT-PCR. FLS motility was evaluated using transwell migration and invasion assays. The specific role of HIF-2α was determined via local deletion of HIF-2α in joint tissues or using conditional knockout (KO) mice. Cartilage destruction, synovitis and pannus formation were assessed via histological analysis. HIF-2α and various chemokines were markedly upregulated in degenerating cartilage and pannus of RA joints. HIF-2α induced chemokine expression by chondrocytes in both primary culture and cartilage tissue. HIF-2α -induced chemokines by chondrocytes regulated the migration and invasion of FLS. Local deletion of HIF-2α in joint tissues inhibited pannus formation adjacent to cartilage tissue and cartilage destruction caused by K/BxN serum transfer. Furthermore, conditional knockout of HIF-2α in cartilage blocked pannus formation in adjacent cartilage but not bone tissue, along with inhibition of cartilage erosion caused by K/BxN serum transfer. Our findings suggest that chemokines induced by IL-1β or HIF-2α in chondrocytes regulate pannus expansion by stimulating FLS migration and invasion, leading to cartilage erosion during RA pathogenesis.

  5. Biomaterial and Cell Based Cartilage Repair

    NARCIS (Netherlands)

    Zhao, X

    2015-01-01

    Injuries to human native cartilage tissue are particularly troublesome because cartilage has little ability to heal or regenerate itself. The reconstruction, repair, and regeneration of cartilage tissue continue to be one of the greatest clinical challenges, especially in orthopaedic and plastic

  6. Modeling the development of tissue engineered cartilage

    NARCIS (Netherlands)

    Sengers, B.G.

    2005-01-01

    The limited healing capacity of articular cartilage forms a major clinical problem. In general, current treatments of cartilage damage temporarily reliefs symptoms, but fail in the long term. Tissue engineering (TE) has been proposed as a more permanent repair strategy. Cartilage TE aims at

  7. Transcriptomic profiling of cartilage ageing

    Directory of Open Access Journals (Sweden)

    Mandy Jayne Peffers

    2014-12-01

    Full Text Available The musculoskeletal system is severely affected by the ageing process, with many tissues undergoing changes that lead to loss of function and frailty. Articular cartilage is susceptible to age related diseases, such as osteoarthritis. Applying RNA-Seq to young and old equine cartilage, we identified an over-representation of genes with reduced expression relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage from older donors. Here we describe the contents and quality controls in detail for the gene expression and related results published by Peffers and colleagues in Arthritis Research and Therapy 2013 associated with the data uploaded to ArrayExpress (E-MTAB-1386.

  8. Hyaline Articular Matrix Formed by Dynamic Self-Regenerating Cartilage and Hydrogels.

    Science.gov (United States)

    Meppelink, Amanda M; Zhao, Xing; Griffin, Darvin J; Erali, Richard; Gill, Thomas J; Bonassar, Lawrence J; Redmond, Robert W; Randolph, Mark A

    2016-07-01

    Injuries to the articular cartilage surface are challenging to repair because cartilage possesses a limited capacity for self-repair. The outcomes of current clinical procedures aimed to address these injuries are inconsistent and unsatisfactory. We have developed a novel method for generating hyaline articular cartilage to improve the outcome of joint surface repair. A suspension of 10(7) swine chondrocytes was cultured under reciprocating motion for 14 days. The resulting dynamic self-regenerating cartilage (dSRC) was placed in a cartilage ring and capped with fibrin and collagen gel. A control group consisted of chondrocytes encapsulated in fibrin gel. Constructs were implanted subcutaneously in nude mice and harvested after 6 weeks. Gross, histological, immunohistochemical, biochemical, and biomechanical analyses were performed. In swine patellar groove, dSRC was implanted into osteochondral defects capped with collagen gel and compared to defects filled with osteochondral plugs, collagen gel, or left empty after 6 weeks. In mice, the fibrin- and collagen-capped dSRC constructs showed enhanced contiguous cartilage matrix formation over the control of cells encapsulated in fibrin gel. Biochemically, the fibrin and collagen gel dSRC groups were statistically improved in glycosaminoglycan and hydroxyproline content compared to the control. There was no statistical difference in the biomechanical data between the dSRC groups and the control. The swine model also showed contiguous cartilage matrix in the dSRC group but not in the collagen gel and empty defects. These data demonstrate the survivability and successful matrix formation of dSRC under the mechanical forces experienced by normal hyaline cartilage in the knee joint. The results from this study demonstrate that dSRC capped with hydrogels successfully engineers contiguous articular cartilage matrix in both nonload-bearing and load-bearing environments.

  9. Feasibility of autologous bone marrow mesenchymal stem cell-derived extracellular matrix scaffold for cartilage tissue engineering.

    Science.gov (United States)

    Tang, Cheng; Xu, Yan; Jin, Chengzhe; Min, Byoung-Hyun; Li, Zhiyong; Pei, Xuan; Wang, Liming

    2013-12-01

    Extracellular matrix (ECM) materials are widely used in cartilage tissue engineering. However, the current ECM materials are unsatisfactory for clinical practice as most of them are derived from allogenous or xenogenous tissue. This study was designed to develop a novel autologous ECM scaffold for cartilage tissue engineering. The autologous bone marrow mesenchymal stem cell-derived ECM (aBMSC-dECM) membrane was collected and fabricated into a three-dimensional porous scaffold via cross-linking and freeze-drying techniques. Articular chondrocytes were seeded into the aBMSC-dECM scaffold and atelocollagen scaffold, respectively. An in vitro culture and an in vivo implantation in nude mice model were performed to evaluate the influence on engineered cartilage. The current results showed that the aBMSC-dECM scaffold had a good microstructure and biocompatibility. After 4 weeks in vitro culture, the engineered cartilage in the aBMSC-dECM scaffold group formed thicker cartilage tissue with more homogeneous structure and higher expressions of cartilaginous gene and protein compared with the atelocollagen scaffold group. Furthermore, the engineered cartilage based on the aBMSC-dECM scaffold showed better cartilage formation in terms of volume and homogeneity, cartilage matrix content, and compressive modulus after 3 weeks in vivo implantation. These results indicated that the aBMSC-dECM scaffold could be a successful novel candidate scaffold for cartilage tissue engineering. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  10. Current status of imaging of articular cartilage

    International Nuclear Information System (INIS)

    Hodler, J.; Resnick, D.

    1996-01-01

    Various imaging methods have been applied to assessment of articular cartilage. These include standard radiography, arthrography, CT, CT arthrography, ultrasonography, and MR imaging. Radiography remains the initial musculoskeletal imaging method. However, it is insensitive to early stages of cartilage abnormalities. MR imaging has great potential in the assessment of articular cartilage, although high-quality scans are required because imaging signs of cartilage abnormalities may be subtle. The potential and limitations of various sequences and techniques are discussed, including MR arthrography. The role of the other imaging methods in assessment of articular cartilage appears to be limited. (orig.). With 8 figs., 6 tabs

  11. Chondrogenic Differentiation of Human Adipose-Derived Stem Cells: A New Path in Articular Cartilage Defect Management?

    Directory of Open Access Journals (Sweden)

    Jan-Philipp Stromps

    2014-01-01

    Full Text Available According to data published by the Centers for Disease Control and Prevention, over 6 million people undergo a variety of medical procedures for the repair of articular cartilage defects in the U.S. each year. Trauma, tumor, and age-related degeneration can cause major defects in articular cartilage, which has a poor intrinsic capacity for healing. Therefore, there is substantial interest in the development of novel cartilage tissue engineering strategies to restore articular cartilage defects to a normal or prediseased state. Special attention has been paid to the expansion of chondrocytes, which produce and maintain the cartilaginous matrix in healthy cartilage. This review summarizes the current efforts to generate chondrocytes from adipose-derived stem cells (ASCs and provides an outlook on promising future strategies.

  12. Expression of cartilage developmental genes in Hoxc8- and Hoxd4-transgenic mice.

    Directory of Open Access Journals (Sweden)

    Claudia Kruger

    2010-02-01

    Full Text Available Hox genes encode transcription factors, which regulate skeletal patterning and chondrocyte differentiation during the development of cartilage, the precursor to mature bone. Overexpression of the homeobox transcription factors Hoxc8 and Hoxd4 causes severe cartilage defects due to delay in cartilage maturation. Matrix metalloproteinases (MMPs, bone morphogenetic proteins (BMPs and fibroblastic growth factors (FGFs are known to play important roles in skeletal development and endochondral bone formation and remodeling. In order to investigate whether these molecules are aberrantly expressed in Hoxc8- and/or Hoxd4-transgenic cartilage, we performed quantitative RT-PCR on chondrocytes from Hox-transgenic mice. Gene expression levels of Bmp4, Fgf8, Fgf10, Mmp9, Mmp13, Nos3, Timp3, Wnt3a and Wnt5a were altered in Hoxc8-transgenic chondrocytes, and Fgfr3, Ihh, Mmp8, and Wnt3a expression levels were altered in Hoxd4-transgenic chondrocytes, respectively. Notably, Wnt3a expression was elevated in Hoxc8- and reduced in Hoxd4-transgenic cartilage. These results suggest that both transcription factors affect cartilage maturation through different molecular mechanisms, and provide the basis for future studies into the role of these genes and possible interactions in pathogenesis of cartilage defects in Hoxc8- and Hoxd4-transgenic mice.

  13. [Current overview of cartilage regeneration procedures].

    Science.gov (United States)

    Schenker, H; Wild, M; Rath, B; Tingart, M; Driessen, A; Quack, V; Betsch, M

    2017-11-01

    Cartilage is an avascular, alymphatic and non-innervated tissue with limited intrinsic repair potential. The high prevalence of cartilage defects and their tremendous clinical importance are a challenge for all treating physicians. This article provides the reader with an overview about current cartilage treatment options and their clinical outcome. Microfracture is still considered the gold standard in the treatment of small cartilage lesions. Small osteochondral defects can be effectively treated with the autologous osteochondral transplantation system. Larger cartilage defects are successfully treated by autologous membrane-induced chondrogenesis (AMIC) or by membrane-assisted autologous chondrocyte implantation (MACI). Despite limitations of current cartilage repair strategies, such procedures can result in short- and mid-term clinical improvement of the patients. Further developments and clinical studies are necessary to improve the long-term outcome following cartilage repair.

  14. Development of artificial articular cartilage

    Indian Academy of Sciences (India)

    Mechanical strength of Poly(vinyl alcohol), PVA is improved up to 35 MPa. Manufacturing method is adopted considering colloidal stability of nano silica particle in PVA sol at specific pH = 1. An adhesive is also prepared from PVA/Si nanocomposite containing 40% TEOS for firm attachment of artificial articular cartilage on ...

  15. Postnatal development of articular cartilage

    NARCIS (Netherlands)

    Turnhout, van M.C.

    2010-01-01

    Articular cartilage (AC) is the thin layer of tissue that covers the ends of the bones in the synovial joints in mammals. Functional adult AC has depth-dependent mechanical properties that are not yet present at birth. These depth-dependent mechanical properties in adult life are the result of a

  16. Strategies for Stratified Cartilage Bioprinting

    NARCIS (Netherlands)

    Schuurman, W.|info:eu-repo/dai/nl/313939322

    2012-01-01

    Multiple materials, cells and growth factors can be combined into one construct by the use of a state–of-the-art bioprinter. This technique may in the future make the fabrication of complete tissues or organs possible. In this thesis the feasibility of the bioprinting of cartilage and the

  17. Chondroma of the cricoid cartilage

    Directory of Open Access Journals (Sweden)

    Melo, Giulianno Molina de

    2008-12-01

    Full Text Available Introduction: The larynx cartilaginous tumors are uncommon and comprise 1% of all cartilaginous tumors. The chondroma is the most common benign tumor affecting the larynx cricoid cartilage (75%, and manifests normally in the male gender with dysphonia, progressive dyspnea and dysphagy in some cases. Objective: The objective of this study is to report a case of cricoid cartilage chondroma, in a patient with the symptom of a nodular lesion in the frontal cervical region of slow and progressive growth. Case Report: The treatment was the modified partial laryngectomy with resection of the lower hemisegment of the thyroid cartilage, cricoid hemicartilage and the first tracheal ring with free margins and reconstruction with a pericondrium and muscular prethyroidean piece. The anatomopathological exam showed a chondroma of 1.1 cm, of atypical low cellularity and low figures of mitosis in the frontal region of the cricoid cartilage. Conclusion: In this report we agreed with the literature for the primarily extensive surgical treatment depending on the location and the size of the cricoid chondroma; however, other modalities of treatment may be adopted in cases where the tumor extension appoints a total laryngectomy or when this is not possible to carry out, aiming at the preservation of the larynx. For the suitable treatment of cricoid chondromas, the understanding of the disease natural evolution and more case reports are still necessary.

  18. Adipose-derived mesenchymal stem cells for cartilage tissue engineering: state-of-the-art in in vivo studies.

    Science.gov (United States)

    Veronesi, Francesca; Maglio, Melania; Tschon, Matilde; Aldini, Nicolò Nicoli; Fini, Milena

    2014-07-01

    Several therapeutic approaches have been developed to address hyaline cartilage regeneration, but to date, there is no universal procedure to promote the restoration of mechanical and functional properties of native cartilage, which is one of the most important challenges in orthopedic surgery. For cartilage tissue engineering, adult mesenchymal stem cells (MSCs) are considered as an alternative cell source to chondrocytes. Since little is known about adipose-derived mesenchymal stem cell (ADSC) cartilage regeneration potential, the aim of this review was to give an overview of in vivo studies about the chondrogenic potential and regeneration ability of culture-expanded ADSCs when implanted in heterotopic sites or in osteoarthritic and osteochondral defects. The review compares the different studies in terms of number of implanted cells and animals, cell harvesting sites, in vitro expansion and chondrogenic induction conditions, length of experimental time, defect dimensions, used scaffolds and post-explant analyses of the cartilage regeneration. Despite variability of the in vivo protocols, it seems that good cartilage formation and regeneration were obtained with chondrogenically predifferentiated ADSCs (1 × 10(7) cells for heterotopic cartilage formation and 1 × 10(6) cells/scaffold for cartilage defect regeneration) and polymeric scaffolds, even if many other aspects need to be clarified in future studies. © 2013 Wiley Periodicals, Inc.

  19. Cartilage Derived from Bone Marrow Mesenchymal Stem Cells Expresses Lubricin In Vitro and In Vivo

    Science.gov (United States)

    Nakagawa, Yusuke; Muneta, Takeshi; Otabe, Koji; Ozeki, Nobutake; Mizuno, Mitsuru; Udo, Mio; Saito, Ryusuke; Yanagisawa, Katsuaki; Ichinose, Shizuko; Koga, Hideyuki; Tsuji, Kunikazu; Sekiya, Ichiro

    2016-01-01

    Objective Lubricin expression in the superficial cartilage will be a crucial factor in the success of cartilage regeneration. Mesenchymal stem cells (MSCs) are an attractive cell source and the use of aggregates of MSCs has some advantages in terms of chondrogenic potential and efficiency of cell adhesion. Lubricin expression in transplanted MSCs has not been fully elucidated so far. Our goals were to determine (1) whether cartilage pellets of human MSCs expressed lubricin in vitro chondrogenesis, (2) whether aggregates of human MSCs promoted lubricin expression, and (3) whether aggregates of MSCs expressed lubricin in the superficial cartilage after transplantation into osteochondral defects in rats. Methods For in vitro analysis, human bone marrow (BM) MSCs were differentiated into cartilage by pellet culture, and also aggregated using the hanging drop technique. For an animal study, aggregates of BM MSCs derived from GFP transgenic rats were transplanted to the osteochondral defect in the trochlear groove of wild type rat knee joints. Lubricin expression was mainly evaluated in differentiated and regenerated cartilages. Results In in vitro analysis, lubricin was detected in the superficial zone of the pellets and conditioned medium. mRNA expression of Proteoglycan4 (Prg4), which encodes lubricin, in pellets was significantly higher than that of undifferentiated MSCs. Aggregates showed different morphological features between the superficial and deep zone, and the Prg4 mRNA expression increased after aggregate formation. Lubricin was also found in the aggregate. In a rat study, articular cartilage regeneration was significantly better in the MSC group than in the control group as shown by macroscopical and histological analysis. The transmission electron microscope showed that morphology of the superficial cartilage in the MSC group was closer to that of the intact cartilage than in the control group. GFP positive cells remained in the repaired tissue and

  20. Fetal mesenchymal stromal cells differentiating towards chondrocytes acquire a gene expression profile resembling human growth plate cartilage.

    Directory of Open Access Journals (Sweden)

    Sandy A van Gool

    Full Text Available We used human fetal bone marrow-derived mesenchymal stromal cells (hfMSCs differentiating towards chondrocytes as an alternative model for the human growth plate (GP. Our aims were to study gene expression patterns associated with chondrogenic differentiation to assess whether chondrocytes derived from hfMSCs are a suitable model for studying the development and maturation of the GP. hfMSCs efficiently formed hyaline cartilage in a pellet culture in the presence of TGFβ3 and BMP6. Microarray and principal component analysis were applied to study gene expression profiles during chondrogenic differentiation. A set of 232 genes was found to correlate with in vitro cartilage formation. Several identified genes are known to be involved in cartilage formation and validate the robustness of the differentiating hfMSC model. KEGG pathway analysis using the 232 genes revealed 9 significant signaling pathways correlated with cartilage formation. To determine the progression of growth plate cartilage formation, we compared the gene expression profile of differentiating hfMSCs with previously established expression profiles of epiphyseal GP cartilage. As differentiation towards chondrocytes proceeds, hfMSCs gradually obtain a gene expression profile resembling epiphyseal GP cartilage. We visualized the differences in gene expression profiles as protein interaction clusters and identified many protein clusters that are activated during the early chondrogenic differentiation of hfMSCs showing the potential of this system to study GP development.

  1. Cartilage-selective genes identified in genome-scale analysis of non-cartilage and cartilage gene expression

    Directory of Open Access Journals (Sweden)

    Cohn Zachary A

    2007-06-01

    Full Text Available Abstract Background Cartilage plays a fundamental role in the development of the human skeleton. Early in embryogenesis, mesenchymal cells condense and differentiate into chondrocytes to shape the early skeleton. Subsequently, the cartilage anlagen differentiate to form the growth plates, which are responsible for linear bone growth, and the articular chondrocytes, which facilitate joint function. However, despite the multiplicity of roles of cartilage during human fetal life, surprisingly little is known about its transcriptome. To address this, a whole genome microarray expression profile was generated using RNA isolated from 18–22 week human distal femur fetal cartilage and compared with a database of control normal human tissues aggregated at UCLA, termed Celsius. Results 161 cartilage-selective genes were identified, defined as genes significantly expressed in cartilage with low expression and little variation across a panel of 34 non-cartilage tissues. Among these 161 genes were cartilage-specific genes such as cartilage collagen genes and 25 genes which have been associated with skeletal phenotypes in humans and/or mice. Many of the other cartilage-selective genes do not have established roles in cartilage or are novel, unannotated genes. Quantitative RT-PCR confirmed the unique pattern of gene expression observed by microarray analysis. Conclusion Defining the gene expression pattern for cartilage has identified new genes that may contribute to human skeletogenesis as well as provided further candidate genes for skeletal dysplasias. The data suggest that fetal cartilage is a complex and transcriptionally active tissue and demonstrate that the set of genes selectively expressed in the tissue has been greatly underestimated.

  2. Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Chen, Chih-Hao; Lee, Ming-Yih; Shyu, Victor Bong-Hang; Chen, Yi-Chieh; Chen, Chien-Tzung; Chen, Jyh-Ping

    2014-01-01

    Surface modified porous polycaprolactone scaffolds fabricated via rapid prototyping techniques were evaluated for cartilage tissue engineering purposes. Polycaprolactone scaffolds manufactured by selective laser sintering (SLS) were surface modified through immersion coating with either gelatin or collagen. Three groups of scaffolds were created and compared for both mechanical and biological properties. Surface modification with collagen or gelatin improved the hydrophilicity, water uptake and mechanical strength of the pristine scaffold. From microscopic observations and biochemical analysis, collagen-modified scaffold was the best for cartilage tissue engineering in terms of cell proliferation and extracellular matrix production. Chondrocytes/collagen-modified scaffold constructs were implanted subdermally in the dorsal spaces of female nude mice. Histological and immunohistochemical staining of the retrieved implants after 8 weeks revealed enhanced cartilage tissue formation. We conclude that collagen surface modification through immersion coating on SLS-manufactured scaffolds is a feasible scaffold for cartilage tissue engineering in craniofacial reconstruction. - Highlights: • Selective laser sintered polycaprolactone scaffolds are prepared. • Scaffolds are surface modified through immersion coating with gelatin or collagen. • Collagen-scaffold is the best for cartilage tissue engineering in vitro. • Chondrocytes/collagen-scaffold reveals enhanced cartilage tissue formation in vivo

  3. Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chih-Hao [Department of Chemical and Materials Engineering, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, ROC (China); Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Craniofacial Research Center, Chang Gung University, Kweishann, Taoyuan 333, Taiwan, ROC (China); Lee, Ming-Yih [Graduate Institute of Medical Mechatronics, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, ROC (China); Shyu, Victor Bong-Hang; Chen, Yi-Chieh; Chen, Chien-Tzung [Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Craniofacial Research Center, Chang Gung University, Kweishann, Taoyuan 333, Taiwan, ROC (China); Chen, Jyh-Ping, E-mail: jpchen@mail.cgu.edu.tw [Department of Chemical and Materials Engineering, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, ROC (China); Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan, ROC (China)

    2014-07-01

    Surface modified porous polycaprolactone scaffolds fabricated via rapid prototyping techniques were evaluated for cartilage tissue engineering purposes. Polycaprolactone scaffolds manufactured by selective laser sintering (SLS) were surface modified through immersion coating with either gelatin or collagen. Three groups of scaffolds were created and compared for both mechanical and biological properties. Surface modification with collagen or gelatin improved the hydrophilicity, water uptake and mechanical strength of the pristine scaffold. From microscopic observations and biochemical analysis, collagen-modified scaffold was the best for cartilage tissue engineering in terms of cell proliferation and extracellular matrix production. Chondrocytes/collagen-modified scaffold constructs were implanted subdermally in the dorsal spaces of female nude mice. Histological and immunohistochemical staining of the retrieved implants after 8 weeks revealed enhanced cartilage tissue formation. We conclude that collagen surface modification through immersion coating on SLS-manufactured scaffolds is a feasible scaffold for cartilage tissue engineering in craniofacial reconstruction. - Highlights: • Selective laser sintered polycaprolactone scaffolds are prepared. • Scaffolds are surface modified through immersion coating with gelatin or collagen. • Collagen-scaffold is the best for cartilage tissue engineering in vitro. • Chondrocytes/collagen-scaffold reveals enhanced cartilage tissue formation in vivo.

  4. In Vivo Tibial Cartilage Strains in Regions of Cartilage-to-Cartilage Contact and Cartilage-to-Meniscus Contact in Response to Walking.

    Science.gov (United States)

    Liu, Betty; Lad, Nimit K; Collins, Amber T; Ganapathy, Pramodh K; Utturkar, Gangadhar M; McNulty, Amy L; Spritzer, Charles E; Moorman, Claude T; Sutter, E Grant; Garrett, William E; DeFrate, Louis E

    2017-10-01

    There are currently limited human in vivo data characterizing the role of the meniscus in load distribution within the tibiofemoral joint. Purpose/Hypothesis: The purpose was to compare the strains experienced in regions of articular cartilage covered by the meniscus to regions of cartilage not covered by the meniscus. It was hypothesized that in response to walking, tibial cartilage covered by the meniscus would experience lower strains than uncovered tibial cartilage. Descriptive laboratory study. Magnetic resonance imaging (MRI) of the knees of 8 healthy volunteers was performed before and after walking on a treadmill. Using MRI-generated 3-dimensional models of the tibia, cartilage, and menisci, cartilage thickness was measured in 4 different regions based on meniscal coverage and compartment: covered medial, uncovered medial, covered lateral, and uncovered lateral. Strain was defined as the normalized change in cartilage thickness before and after activity. Within each compartment, covered cartilage before activity was significantly thinner than uncovered cartilage before activity ( P meniscus experiences lower strains than uncovered cartilage in the medial compartment. These findings provide important baseline information on the relationship between in vivo tibial compressive strain responses and meniscal coverage, which is critical to understanding normal meniscal function.

  5. Up-regulated expression of cartilage intermediate-layer protein and ANK in articular hyaline cartilage from patients with calcium pyrophosphate dihydrate crystal deposition disease.

    Science.gov (United States)

    Hirose, Jun; Ryan, Lawrence M; Masuda, Ikuko

    2002-12-01

    Excess accumulation of extracellular inorganic pyrophosphate (ePPi) in aged human cartilage is crucial in calcium pyrophosphate dihydrate (CPPD) crystal formation in cartilage matrix. Two sources of ePPi are ePPi-generating ectoenzymes (NTPPPH) and extracellular transport of intracellular PPi by ANK. This study was undertaken to evaluate the role of NTPPPH and ANK in ePPi elaboration, by investigating expression of NTPPPH enzymes (cartilage intermediate-layer protein [CILP] and plasma cell membrane glycoprotein 1 [PC-1]) and ANK in human chondrocytes from osteoarthritic (OA) articular cartilage containing CPPD crystals and without crystals. Chondrocytes were harvested from knee cartilage at the time of arthroplasty (OA with CPPD crystals [CPPD], n = 8; OA without crystals [OA], n = 10). Normal adult human chondrocytes (n = 1) were used as a control. Chondrocytes were cultured with transforming growth factor beta1 (TGFbeta1), which stimulates ePPi elaboration, and/or insulin-like growth factor 1 (IGF-1), which inhibits ePPi elaboration. NTPPPH and ePPi were measured in the media at 48 hours. Media CILP, PC-1, and ANK were determined by dot-immunoblot analysis. Chondrocyte messenger RNA (mRNA) was extracted for reverse transcriptase-polymerase chain reaction to study expression of mRNA for CILP, PC-1, and ANK. NTPPPH and ANK mRNA and protein were also studied in fresh frozen cartilage. Basal ePPi elaboration and NTPPPH activity in conditioned media from CPPD chondrocytes were elevated compared with normal chondrocytes, and tended to be higher compared with OA chondrocytes. Basal expression of mRNA for CILP (chondrocytes) and ANK (cartilage) was higher in both CPPD chondrocytes and CPPD cartilage extract than in OA or normal samples. PC-1 mRNA was less abundant in CPPD chondrocytes and cartilage extract than in OA chondrocytes and extract, although the difference was not significant. CILP, PC-1, and ANK protein levels were similar in CPPD, OA, and normal chondrocytes

  6. A high throughput mechanical screening device for cartilage tissue engineering.

    Science.gov (United States)

    Mohanraj, Bhavana; Hou, Chieh; Meloni, Gregory R; Cosgrove, Brian D; Dodge, George R; Mauck, Robert L

    2014-06-27

    Articular cartilage enables efficient and near-frictionless load transmission, but suffers from poor inherent healing capacity. As such, cartilage tissue engineering strategies have focused on mimicking both compositional and mechanical properties of native tissue in order to provide effective repair materials for the treatment of damaged or degenerated joint surfaces. However, given the large number design parameters available (e.g. cell sources, scaffold designs, and growth factors), it is difficult to conduct combinatorial experiments of engineered cartilage. This is particularly exacerbated when mechanical properties are a primary outcome, given the long time required for testing of individual samples. High throughput screening is utilized widely in the pharmaceutical industry to rapidly and cost-effectively assess the effects of thousands of compounds for therapeutic discovery. Here we adapted this approach to develop a high throughput mechanical screening (HTMS) system capable of measuring the mechanical properties of up to 48 materials simultaneously. The HTMS device was validated by testing various biomaterials and engineered cartilage constructs and by comparing the HTMS results to those derived from conventional single sample compression tests. Further evaluation showed that the HTMS system was capable of distinguishing and identifying 'hits', or factors that influence the degree of tissue maturation. Future iterations of this device will focus on reducing data variability, increasing force sensitivity and range, as well as scaling-up to even larger (96-well) formats. This HTMS device provides a novel tool for cartilage tissue engineering, freeing experimental design from the limitations of mechanical testing throughput. © 2013 Published by Elsevier Ltd.

  7. Cartilage and bone malformations in the head of zebrafish (Danio rerio) embryos following exposure to disulfiram and acetic acid hydrazide

    Energy Technology Data Exchange (ETDEWEB)

    Strecker, Ruben, E-mail: Ruben.Strecker@cos.uni-heidelberg.de [Aquatic Ecology and Toxicology Section, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg (Germany); Weigt, Stefan, E-mail: stefan.weigt@merckgroup.com [Institute of Toxicology, Merck KGaA, 64293 Darmstadt (Germany); Braunbeck, Thomas, E-mail: braunbeck@uni-hd.de [Aquatic Ecology and Toxicology Section, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg (Germany)

    2013-04-15

    In order to investigate teratogenic effects, especially on cartilage and bone formation, zebrafish embryos were exposed for 144 h to the dithiocarbamate pesticide disulfiram (20–320 μg/L) and acetic acid hydrazide (0.375–12 g/L), a degradation product of isoniazid. After fixation and full-mount staining, disulfiram could be shown to induce strong cartilage malformations after exposure to ≥ 80 μg/L, whereas acetic acid hydrazide caused cartilage alterations only from 1.5 g/L. Undulating notochords occurred after exposure to disulfiram even at the lowest test concentration of 20 μg/L, whereas at the two lowest concentrations of acetic acid hydrazide (0.375 and 0.75 g/L) mainly fractures of the notochord were observed. Concentrations of acetic acid hydrazide ≥ 1.5 g/L resulted in undulated notochords similar to disulfiram. Cartilages and ossifications of the cranium, including the cleithrum, were individually analyzed assessing the severity of malformation and the degree of ossification in a semi-quantitative approach. Cartilages of the neurocranium such as the ethmoid plate proved to be more stable than cartilages of the pharyngeal skeleton such as Meckel's cartilage. Hence, ossification proved significantly more susceptible than cartilage. The alterations induced in the notochord as well as in the cranium might well be of ecological relevance, since notochord malformation is likely to result in impaired swimming and cranial malformation might compromise regular food uptake. - Highlights: ► Disulfiram and acetic acid hydrazide as notochord, cartilage and bone teratogens ► Zebrafish embryos to model effects on single cartilages and bones in the head ► LC50 calculation and head length measurements after six days post-fertilization ► Lethality, head length and teratogenic effects are dose-dependent. ► Cartilages of the neurocranium are the most stable elements in the head.

  8. Cartilage and bone malformations in the head of zebrafish (Danio rerio) embryos following exposure to disulfiram and acetic acid hydrazide

    International Nuclear Information System (INIS)

    Strecker, Ruben; Weigt, Stefan; Braunbeck, Thomas

    2013-01-01

    In order to investigate teratogenic effects, especially on cartilage and bone formation, zebrafish embryos were exposed for 144 h to the dithiocarbamate pesticide disulfiram (20–320 μg/L) and acetic acid hydrazide (0.375–12 g/L), a degradation product of isoniazid. After fixation and full-mount staining, disulfiram could be shown to induce strong cartilage malformations after exposure to ≥ 80 μg/L, whereas acetic acid hydrazide caused cartilage alterations only from 1.5 g/L. Undulating notochords occurred after exposure to disulfiram even at the lowest test concentration of 20 μg/L, whereas at the two lowest concentrations of acetic acid hydrazide (0.375 and 0.75 g/L) mainly fractures of the notochord were observed. Concentrations of acetic acid hydrazide ≥ 1.5 g/L resulted in undulated notochords similar to disulfiram. Cartilages and ossifications of the cranium, including the cleithrum, were individually analyzed assessing the severity of malformation and the degree of ossification in a semi-quantitative approach. Cartilages of the neurocranium such as the ethmoid plate proved to be more stable than cartilages of the pharyngeal skeleton such as Meckel's cartilage. Hence, ossification proved significantly more susceptible than cartilage. The alterations induced in the notochord as well as in the cranium might well be of ecological relevance, since notochord malformation is likely to result in impaired swimming and cranial malformation might compromise regular food uptake. - Highlights: ► Disulfiram and acetic acid hydrazide as notochord, cartilage and bone teratogens ► Zebrafish embryos to model effects on single cartilages and bones in the head ► LC50 calculation and head length measurements after six days post-fertilization ► Lethality, head length and teratogenic effects are dose-dependent. ► Cartilages of the neurocranium are the most stable elements in the head

  9. Supporting Biomaterials for Articular Cartilage Repair

    Science.gov (United States)

    Duarte Campos, Daniela Filipa; Drescher, Wolf; Rath, Björn; Tingart, Markus

    2012-01-01

    Orthopedic surgeons and researchers worldwide are continuously faced with the challenge of regenerating articular cartilage defects. However, until now, it has not been possible to completely mimic the biological and biochemical properties of articular cartilage using current research and development approaches. In this review, biomaterials previously used for articular cartilage repair research are addressed. Furthermore, a brief discussion of the state of the art of current cell printing procedures mimicking native cartilage is offered in light of their use as future alternatives for cartilage tissue engineering. Inkjet cell printing, controlled deposition cell printing tools, and laser cell printing are cutting-edge techniques in this context. The development of mimetic hydrogels with specific biological properties relevant to articular cartilage native tissue will support the development of improved, functional, and novel engineered tissue for clinical application. PMID:26069634

  10. Preclinical Studies for Cartilage Repair

    Science.gov (United States)

    Hurtig, Mark B.; Buschmann, Michael D.; Fortier, Lisa A.; Hoemann, Caroline D.; Hunziker, Ernst B.; Jurvelin, Jukka S.; Mainil-Varlet, Pierre; McIlwraith, C. Wayne; Sah, Robert L.; Whiteside, Robert A.

    2011-01-01

    Investigational devices for articular cartilage repair or replacement are considered to be significant risk devices by regulatory bodies. Therefore animal models are needed to provide proof of efficacy and safety prior to clinical testing. The financial commitment and regulatory steps needed to bring a new technology to clinical use can be major obstacles, so the implementation of highly predictive animal models is a pressing issue. Until recently, a reductionist approach using acute chondral defects in immature laboratory species, particularly the rabbit, was considered adequate; however, if successful and timely translation from animal models to regulatory approval and clinical use is the goal, a step-wise development using laboratory animals for screening and early development work followed by larger species such as the goat, sheep and horse for late development and pivotal studies is recommended. Such animals must have fully organized and mature cartilage. Both acute and chronic chondral defects can be used but the later are more like the lesions found in patients and may be more predictive. Quantitative and qualitative outcome measures such as macroscopic appearance, histology, biochemistry, functional imaging, and biomechanical testing of cartilage, provide reliable data to support investment decisions and subsequent applications to regulatory bodies for clinical trials. No one model or species can be considered ideal for pivotal studies, but the larger animal species are recommended for pivotal studies. Larger species such as the horse, goat and pig also allow arthroscopic delivery, and press-fit or sutured implant fixation in thick cartilage as well as second look arthroscopies and biopsy procedures. PMID:26069576

  11. * Human Amniotic Mesenchymal Stromal Cells as Favorable Source for Cartilage Repair.

    Science.gov (United States)

    Muiños-López, Emma; Hermida-Gómez, Tamara; Fuentes-Boquete, Isaac; de Toro-Santos, Javier; Blanco, Francisco Javier; Díaz-Prado, Silvia María

    2017-09-01

    Localized trauma-derived breakdown of the hyaline articular cartilage may progress toward osteoarthritis, a degenerative condition characterized by total loss of articular cartilage and joint function. Tissue engineering technologies encompass several promising approaches with high therapeutic potential for the treatment of these focal defects. However, most of the research in tissue engineering is focused on potential materials and structural cues, while little attention is directed to the most appropriate source of cells endowing these materials. In this study, using human amniotic membrane (HAM) as scaffold, we defined a novel static in vitro model for cartilage repair. In combination with HAM, four different cell types, human chondrocytes, human bone marrow-derived mesenchymal stromal cells (hBMSCs), human amniotic epithelial cells, and human amniotic mesenchymal stromal cells (hAMSCs) were assessed determining their therapeutic potential. A chondral lesion was drilled in human cartilage biopsies simulating a focal defect. A pellet of different cell types was implanted inside the lesion and covered with HAM. The biopsies were maintained for 8 weeks in culture. Chondrogenic differentiation in the defect was analyzed by histology and immunohistochemistry. HAM scaffold showed good integration and adhesion to the native cartilage in all groups. Although all cell types showed the capacity of filling the focal defect, hBMSCs and hAMSCs demonstrated higher levels of new matrix synthesis. However, only the hAMSCs-containing group presented a significant cytoplasmic content of type II collagen when compared with chondrocytes. More collagen type I was identified in the new synthesized tissue of hBMSCs. In accordance, hBMSCs and hAMSCs showed better International Cartilage Research Society scoring although without statistical significance. HAM is a useful material for articular cartilage repair in vitro when used as scaffold. In combination with hAMSCs, HAM showed better

  12. Dynamic Culturing of Cartilage Tissue: The Significance of Hydrostatic Pressure

    Science.gov (United States)

    Pereira, Ana L.; Duarte, Ana R.C.; Frias, Ana M.; Pedro, Adriano J.; Oliveira, João T.; Sousa, Rui A.; Reis, Rui L.

    2012-01-01

    Human articular cartilage functions under a wide range of mechanical loads in synovial joints, where hydrostatic pressure (HP) is the prevalent actuating force. We hypothesized that the formation of engineered cartilage can be augmented by applying such physiologic stimuli to chondrogenic cells or stem cells, cultured in hydrogels, using custom-designed HP bioreactors. To test this hypothesis, we investigated the effects of distinct HP regimens on cartilage formation in vitro by either human nasal chondrocytes (HNCs) or human adipose stem cells (hASCs) encapsulated in gellan gum (GG) hydrogels. To this end, we varied the frequency of low HP, by applying pulsatile hydrostatic pressure or a steady hydrostatic pressure load to HNC-GG constructs over a period of 3 weeks, and evaluated their effects on cartilage tissue-engineering outcomes. HNCs (10×106 cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 3 weeks: (1) 0.4 MPa Pulsatile HP; (2) 0.4 MPa Steady HP; and (3) Static. Subsequently, we applied the pulsatile regimen to hASC-GG constructs and varied the amplitude of loading, by generating both low (0.4 MPa) and physiologic (5 MPa) HP levels. hASCs (10×106 cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 4 weeks: (1) 0.4 MPa Pulsatile HP; (2) 5 MPa Pulsatile HP; and (3) Static. In the HNC study, the best tissue development was achieved by the pulsatile HP regimen, whereas in the hASC study, greater chondrogenic differentiation and matrix deposition were obtained for physiologic loading, as evidenced by gene expression of aggrecan, collagen type II, and sox-9; metachromatic staining of cartilage extracellular matrix; and immunolocalization of collagens. We thus propose that both HNCs and hASCs detect and respond to physical forces, thus resembling joint loading, by enhancing cartilage tissue development in a frequency- and

  13. Human osteoarthritic cartilage is synthetically more active but in culture less vital than normal cartilage

    NARCIS (Netherlands)

    Lafeber, F. P.; van Roy, H.; Wilbrink, B.; Huber-Bruning, O.; Bijlsma, J. W.

    1992-01-01

    The proteoglycan turnover of human osteoarthritic (OA) cartilage was compared to that of normal (N) cartilage. The cartilage was obtained postmortem from human femoral knee condyles. Short term cultures were compared to longterm cultures, and proteoglycan synthesis rate, content and release

  14. Optical properties of nasal septum cartilage

    Science.gov (United States)

    Bagratashvili, Nodar V.; Sviridov, Alexander P.; Sobol, Emil N.; Kitai, Moishe S.

    1998-05-01

    Optical parameters (scattering coefficient s, absorption coefficient k and scattering anisotropy coefficient g) of hyaline cartilage were studied for the first time. Optical properties of human and pig nasal septum cartilage, and of bovine ear cartilage were examined using a spectrophotometer with an integrating sphere, and an Optical Multi-Channel Analyser. We measured total transmission Tt, total reflection Rt, and on-axis transmission Ta for light propagating through cartilage sample, over the visible spectral range (14000 - 28000 cm-1). It is shown that transmission and reflection spectra of human, pig and bovine cartilage are rather similar. It allows us to conclude that the pig cartilage can be used for in-vivo studies instead of human cartilage. The data obtained were treated by means of the one-dimensional diffusion approximation solution of the optical transport equation. We have found scattering coefficient s, absorption coefficient k and scattering anisotropy coefficient g by the iterative comparison of measured and calculated Tt, Rt and Ta values for human and pig cartilage. We found, in particular, that for 500 nm irradiation s equals 37,6 plus or minus 3.5 cm-1, g equals 0,56 plus or minus 0.05, k approximately equals 0,5 plus or minus 0.3 cm-1. The above data were used in Monte Carlo simulation for spatial intensity profile of light scattered by a cartilage sample. The computed profile was very similar to the profile measured using an Optical Multi-Channel Analyzer (OMA).

  15. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    NARCIS (Netherlands)

    Pot, M.W.; Gonzales, V.K.; Buma, P.; Hout, J. in't; Kuppevelt, T.H. van; Vries, R.B. de; Daamen, W.F.

    2016-01-01

    Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of

  16. Cloning, Expression and Characterization of NAD Kinase from Staphylococcus aureus Involved in the Formation of NADP (H: A Key Molecule in the Maintaining of Redox Status and Biofilm Formation

    Directory of Open Access Journals (Sweden)

    U Venkateswara Prasad

    2017-01-01

    Full Text Available Background:Staphylococcus aureus has the ability to form biofilms on any niches, a key pathogenic factor of this organism and this phenomenon is directly related to the concentration of NADPH. The formation of NADP is catalyzed by NAD kinase (NADK and this gene of S. aureus ATCC 12600 was cloned, sequenced, expressed and characterized. Materials and Methods: The NADK gene was polymerase chain reaction amplified from the chromosomal DNA of S. aureus ATCC 12600 and cloned in pQE 30 vector, sequenced and expressed in Escherichia coli DH5α. The pure protein was obtained by passing through nickel metal chelate agarose column. The enzyme kinetics of the enzyme and biofilm assay of the S. aureus was carried out in both aerobic and anaerobic conditions. The kinetics was further confirmed by the ability of the substrates to dock to the NADK structure. Results: The recombinant NADK exhibited single band with a molecular weight of 31kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the gene sequence (GenBank: JN645814 revealed presence of only one kind of NADK in all S. aureus strains. The enzyme exhibited very high affinity for NAD compared to adenosine triphosphate concurring with the docking results. A root-mean-square deviation value 14.039Š observed when NADK structure was superimposed with its human counterpart suggesting very low homology. In anaerobic conditions, higher biofilm units were found with decreased NADK activity. Conclusion: The results of this study suggest increased NADPH concentration in S. aureus plays a vital role in the biofilm formation and survival of this pathogen in any environmental conditions.

  17. RHEB: a potential regulator of chondrocyte phenotype for cartilage tissue regeneration.

    Science.gov (United States)

    Ashraf, S; Ahn, J; Cha, B-H; Kim, J-S; Han, I; Park, H; Lee, S-H

    2017-09-01

    As articular cartilage has a limited ability to self-repair, successful cartilage regeneration requires clinical-grade chondrocytes with innate characteristics. However, cartilage regeneration via chondrocyte transplantation is challenging, because chondrocytes lose their innate characteristics during in vitro expansion. Here, we investigated the mechanistic underpinning of the gene Ras homologue enriched in brain (RHEB) in the control of senescence and dedifferentiation through the modulation of oxidative stress in chondrocytes, a hallmark of osteoarthritis. Serial expansion of human chondrocytes led to senescence, dedifferentiation and oxidative stress. RHEB maintained the innate characteristics of chondrocytes by regulating senescence, dedifferentiation and oxidative stress, leading to the upregulation of COL2 expression via SOX9 and the downregulation of p27 expression via MCL1. RHEB also decreased the expression of COL10. RHEB knockdown mimics decreased the expression of SOX9, COL2 and MCL1, while abrogating the suppressive function of RHEB on p27 and COL10 in chondrocytes. RHEB-overexpressing chondrocytes successfully formed cartilage tissue in vitro as well as in vivo, with increased expression of GAG matrix and chondrogenic markers. RHEB induces a distinct gene expression signature that maintained the innate chondrogenic properties over a long period. Therefore, RHEB expression represents a potentially useful mechanism in terms of cartilage tissue regeneration from chondrocytes, by which chondrocyte phenotypic and molecular characteristics can be retained through the modulation of senescence, dedifferentiation and oxidative stress. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Characterization of an Ex vivo Femoral Head Model Assessed by Markers of Bone and Cartilage Turnover

    Science.gov (United States)

    Madsen, Suzi Hoegh; Goettrup, Anne Sofie; Thomsen, Gedske; Christensen, Søren Tvorup; Schultz, Nikolaj; Henriksen, Kim; Bay-Jensen, Anne-Christine; Karsdal, Morten Asser

    2011-01-01

    Objective: The pathophysiology of osteoarthritis involves the whole joint and is characterized by cartilage degradation and altered subchondral bone turnover. At present, there is a need for biological models that allow investigation of the interactions between the key cellular players in bone/cartilage: osteoblasts, osteoclasts, and chondrocytes. Methods: Femoral heads from 3-, 6-, 9-, and 12-week-old female mice were isolated and cultured for 10 days in serum-free media in the absence or presence of IGF-I (100 nM) (anabolic stimulation) or OSM (10 ng/mL) + TNF-α (20 ng/mL) (catabolic stimulation). Histology on femoral heads before and after culture was performed, and the growth plate size was examined to evaluate the effects on cell metabolism. The conditioned medium was examined for biochemical markers of bone and cartilage degradation/formation. Results: Each age group represented a unique system regarding the interest of bone or cartilage metabolism. Stimulation over 10 days with OSM + TNF-α resulted in depletion of proteoglycans from the cartilage surface in all ages. Furthermore, OSM + TNF-α decreased growth plate size, whereas IGF-I increased the size. Measurements from the conditioned media showed that OSM + TNF-α increased the number of osteoclasts by approximately 80% and induced bone and cartilage degradation by approximately 1200% and approximately 2600%, respectively. Stimulation with IGF-I decreased the osteoclast number and increased cartilage formation by approximately 30%. Conclusion: Biochemical markers and histology together showed that the catabolic stimulation induced degradation and the anabolic stimulation induced formation in the femoral heads. We propose that we have established an explant whole-tissue model for investigating cell-cell interactions, reflecting parts of the processes in the pathogenesis of joint degenerative diseases. PMID:26069585

  19. Applications of Chondrocyte-Based Cartilage Engineering: An Overview

    Directory of Open Access Journals (Sweden)

    Abdul-Rehman Phull

    2016-01-01

    Full Text Available Chondrocytes are the exclusive cells residing in cartilage and maintain the functionality of cartilage tissue. Series of biocomponents such as different growth factors, cytokines, and transcriptional factors regulate the mesenchymal stem cells (MSCs differentiation to chondrocytes. The number of chondrocytes and dedifferentiation are the key limitations in subsequent clinical application of the chondrocytes. Different culture methods are being developed to overcome such issues. Using tissue engineering and cell based approaches, chondrocytes offer prominent therapeutic option specifically in orthopedics for cartilage repair and to treat ailments such as tracheal defects, facial reconstruction, and urinary incontinence. Matrix-assisted autologous chondrocyte transplantation/implantation is an improved version of traditional autologous chondrocyte transplantation (ACT method. An increasing number of studies show the clinical significance of this technique for the chondral lesions treatment. Literature survey was carried out to address clinical and functional findings by using various ACT procedures. The current study was conducted to study the pharmacological significance and biomedical application of chondrocytes. Furthermore, it is inferred from the present study that long term follow-up studies are required to evaluate the potential of these methods and specific positive outcomes.

  20. Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis.

    Science.gov (United States)

    Hayami, Tadashi; Pickarski, Maureen; Zhuo, Ya; Wesolowski, Gregg A; Rodan, Gideon A; Duong, Le T

    2006-02-01

    Osteoarthritis (OA) is a chronic joint disease characterized by cartilage destruction, subchondral bone sclerosis, and osteophyte formation. Subchondral bone stiffness has been proposed to initiate and/or contribute to cartilage deterioration in OA. The purpose of this study was to characterize subchondral bone remodeling, cartilage damage, and osteophytosis during the disease progression in two models of surgically induced OA. Rat knee joints were subjected either to anterior cruciate ligament transection (ACLT) alone or in combination with resection of medial menisci (ACLT + MMx). Histopathological changes in the surgical joints were compared with sham at 1, 2, 4, 6, and 10 weeks post-surgery. Using a modified Mankin scoring system, we demonstrate that articular cartilage damage occurs within 2 weeks post-surgery in both surgical models. Detectable cartilage surface damage and proteoglycan loss were observed as early as 1 week post-surgery. These were followed by the increases in vascular invasion into cartilage, in loss of chondrocyte number and in cell clustering. Histomorphometric analysis revealed subchondral bone loss in both models within 2 weeks post-surgery followed by significant increases in subchondral bone volume relative to sham up to 10 weeks post-surgery. Incidence of osteophyte formation was optimally observed in ACLT joints at 10 weeks and in ACLT + MMx joints at 6 weeks post-surgery. In summary, the two surgically induced rat OA models share many characteristics seen in human and other animal models of OA, including progressive articular cartilage degradation, subchondral bone sclerosis, and osteophyte formation. Moreover, increased subchondral bone resorption is associated with early development of cartilage lesions, which precedes significant cartilage thinning and subchondral bone sclerosis. Together, these findings support a role for bone remodeling in OA pathogenesis and suggest that these rat models are suitable for evaluating bone

  1. Assessment of fixed charge density in regenerated cartilage by Gd-DTPA-enhanced MRI

    International Nuclear Information System (INIS)

    Miyata, Shogo; Homma, Kazuhiro; Numano, Tomokazu; Furukawa, Katsuko; Tateishi, Tetsuya; Ushida, Takashi

    2006-01-01

    Applying regenerated cartilage in a clinical setting requires noninvasive evaluation to detect the maturity of cartilage tissue. Magnetic resonance (MR) imaging of articular cartilage is well accepted and has been applied clinically in recent years. We attempt to establish a noninvasive method to evaluate the maturity of regenerated cartilage tissue using gadolinium-enhanced MR imaging. To reconstruct cartilaginous tissue, we embedded articular chondrocytes harvested from bovine humeral head in agarose gel and cultured the cells in vitro up to 4 weeks. The fixed charge density (FCD) of the cartilage was determined using MRI gadolinium exclusion method. The sulfated glycosaminoglycan (sGAG) content was determined by dimethylmethylene blue dye-binding assay. The sGAG content and FCD of the regenerated cartilage increased with duration of culture. In the T 1 Gd maps, the [Gd-DTPA 2- ] in the specimen decreased, and the boundary between the sample disk and the bath solution of phosphate buffered saline (PBS) became clearer as time in culture increased. In the linear regression analysis, FCD and sGAG content correlated significantly. Gadolinium-enhanced MR imaging measurements can be useful predictors of the degree of cartilaginous tissue formation. (author)

  2. PLGA-based microcarriers induce mesenchymal stem cell chondrogenesis and stimulate cartilage repair in osteoarthritis.

    Science.gov (United States)

    Morille, Marie; Toupet, Karine; Montero-Menei, Claudia N; Jorgensen, Christian; Noël, Danièle

    2016-05-01

    In the present study, we aimed at evaluating the ability of novel PLGA-P188-PLGA-based microspheres to induce the differentiation of mesenchymal stem/stromal cells (MSC) into chondrocytes. To this aim, we tested microspheres releasing TGFβ3 (PAM-T) in vitro and in situ, in a pathological osteoarthritic (OA) environment. We first evaluated the chondrogenic differentiation of human MSCs seeded onto PAM-T in vitro and confirmed the up-regulation of chondrogenic markers while the secretome of the cells was not changed by the 3D environment. We then injected human MSC seeded onto PAM-T in the knee joints of mice with collagenase-induced OA. After 6 weeks, histological analysis revealed that formation of a cartilage-like tissue occurred at the vicinity of PAM-T that was not observed when MSCs were seeded onto PAM. We also noticed that the endogenous articular cartilage was less degraded. The extent of cartilage protection was further analysed by confocal laser microscopy. When MSCs seeded onto PAM-T were injected early after OA induction, protection of cartilage against degradation was evidenced and this effect was associated to a higher survival of MSCs in presence of TGFβ3. This study points to the interest of using MSCs seeded onto PAM for cartilage repair and stimulation of endogenous cartilage regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Role of platelet-rich plasma in articular cartilage injury and disease.

    Science.gov (United States)

    Mascarenhas, Randy; Saltzman, Bryan M; Fortier, Lisa A; Cole, Brian J

    2015-02-01

    Clinical and laboratory research aimed at biological approaches to cartilage repair are currently in high demand due to the poor regenerative capacity of articular cartilage in the setting of a diseased articular environment. Platelet-rich plasma (PRP) takes advantage of supraphysiological concentrations of platelets and their growth factors harbored in α-granules, which together attempt to return the diseased articular cartilage to a preinjury state. The local use of PRP directly at the site of cartilage injury is thought to stimulate a natural healing cascade and accelerate the formation of cartilage repair tissue. This article provides an overview of the basic science behind the use of PRP in the treatment of cartilage injury and disease. Both initial and current examples of the use of intra-articular PRP in clinical human studies are provided. These include the use of PRP either alone or as an augmentation device with various other procedures, including arthroscopic microfracture and cell-free resorbable polyglycolic acid-hyaluronan implantation. Finally, the authors describe some of the potential future roles of PRP in clinical settings based on recent literature. These include Achilles tendon rupture, chronic tendinosis, chronic rotator cuff tendinopathy or tearing, muscle injury, and meniscal repair. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  4. Predicting knee cartilage loss using adaptive partitioning of cartilage thickness maps

    DEFF Research Database (Denmark)

    Jørgensen, Dan Richter; Dam, Erik Bjørnager; Lillholm, Martin

    2013-01-01

    This study investigates whether measures of knee cartilage thickness can predict future loss of knee cartilage. A slow and a rapid progressor group was determined using longitudinal data, and anatomically aligned cartilage thickness maps were extracted from MRI at baseline. A novel machine learning...... framework was then trained using these maps. Compared to measures of mean cartilage plate thickness, group separation was increased by focusing on local cartilage differences. This result is central for clinical trials where inclusion of rapid progressors may help reduce the period needed to study effects...

  5. Which cartilage is regenerated, hyaline cartilage or fibrocartilage? Non-invasive ultrasonic evaluation of tissue-engineered cartilage.

    Science.gov (United States)

    Hattori, K; Takakura, Y; Ohgushi, H; Habata, T; Uematsu, K; Takenaka, M; Ikeuchi, K

    2004-09-01

    To investigate ultrasonic evaluation methods for detecting whether the repair tissue is hyaline cartilage or fibrocartilage in new cartilage regeneration therapy. We examined four experimental rabbit models: a spontaneous repair model (group S), a large cartilage defect model (group L), a periosteal graft model (group P) and a tissue-engineered cartilage regeneration model (group T). From the resulting ultrasonic evaluation, we used %MM (the maximum magnitude of the measurement area divided by that of the intact cartilage) as a quantitative index of cartilage regeneration. The results of the ultrasonic evaluation were compared with the histological findings and histological score. The %MM values were 61.1 +/- 16.5% in group S, 29.8 +/- 15.1% in group L, 36.3 +/- 18.3% in group P and 76.5 +/- 18.7% in group T. The results showed a strong similarity to the histological scoring. The ultrasonic examination showed that all the hyaline-like cartilage in groups S and T had a high %MM (more than 60%). Therefore, we could define the borderline between the two types of regenerated cartilage by the %MM.

  6. Can one generate stable hyaline cartilage from adult mesenchymal stem cells? A developmental approach.

    Science.gov (United States)

    Hellingman, Catharine A; Koevoet, Wendy; van Osch, Gerjo J V M

    2012-11-01

    Chondrogenically differentiating bone marrow-derived mesenchymal stem cells (BMSCs) display signs of chondrocyte hypertrophy, such as production of collagen type X, MMP13 and alkaline phosphatase (ALPL). For cartilage reconstructions this is undesirable, as terminally differentiated cartilage produced by BMSCs mineralizes when implanted in vivo. Terminal differentiation is not restricted to BMSCs but is also encountered in chondrogenic differentiation of adipose-derived mesenchymal stem cells (MSCs) as well as embryonic stem cells, which by definition should be able to generate all types of tissues, including stable cartilage. Therefore, we propose that the currently used culture conditions may drive the cells towards terminal differentiation. In this manuscript we aim to review the literature, supplemented by our own data to answer the question, is it possible to generate stable hyaline cartilage from adult MSCs? We demonstrate that recently published methods for inhibiting terminal differentiation (through PTHrP, MMP13 or blocking phosphorylation of Smad1/5/8) result in cartilage formation with reduction of hypertrophic markers, although this does not reach the low level of stable chondrocytes. A set of hypertrophy markers should be included in future studies to characterize the phenotype more precisely. Finally, we used what is currently known in developmental biology about the differential development of hyaline and terminally differentiated cartilage to provide thought and insights to change current culture models for creating hyaline cartilage. Inhibiting terminal differentiation may not result in stable hyaline cartilage if the right balance of signals has not been created from the start of culture onwards. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Middle Ear Mechanics of Cartilage Tympanoplasty Evaluated by Laser Holography and Vibrometry

    Science.gov (United States)

    Aarnisalo, Antti A.; Cheng, Jeffrey T.; Ravicz, Michael E.; Hulli, Nesim; Harrington, Ellery J.; Hernandez-Montes, Maria S.; Furlong, Cosme; Merchant, Saumil N.; Rosowski, John J.

    2010-01-01

    Goals To assess the effects of thickness and position of cartilage used to reconstruct the tympanic membrane (TM) using a novel technique, time-averaged laser holography. Background Cartilage is commonly used in TM reconstruction to prevent formation of retraction pockets. The thickness, position, and shape of the cartilage graft may adversely affect TM motion and hearing. We sought to systematically investigate these parameters in an experimental setting. Methods Computer-assisted optoelectronic laser holography was used in 4 human cadaveric temporal bones to study sound-induced TM motion for 500 Hz to 8 kHz. Stapes velocity was measured with a laser Doppler vibrometer. Baseline (control) measurements were made with the TM intact. Measurements were repeated after a 0.5- or 1.0-mm-thick oval piece of conchal cartilage was placed on the medial TM surface in the posterior-superior quadrant. The cartilage was rotated so that it was either in contact with the bony tympanic rim and manubrium or not. Results At frequencies less than 4 kHz, the cartilage graft had only minor effects on the overall TM fringe patterns. The different conditions had no effects on stapes velocity. Greater than 4 kHz, TM motion was reduced over the grafted TM, both with 0.5- and 1.0-mm-thick grafts. No significant differences in stapes velocity were seen with the 2 different thicknesses of cartilage compared with control. Conclusion Computer-assisted optoelectronic laser holography is a promising technique to investigate middle ear mechanics after tympanoplasty. Such positioning may prevent postoperative TM retraction. These findings and conclusions apply to cartilage placed in the posterior-superior TM quadrant. PMID:19779389

  8. Magnetic Resonance Imaging of Cartilage Repair

    Science.gov (United States)

    Trattnig, Siegfried; Winalski, Carl S.; Marlovits, Stephan; Jurvelin, Jukka S.; Welsch, Goetz H.; Potter, Hollis G.

    2011-01-01

    Articular cartilage lesions are a common pathology of the knee joint, and many patients may benefit from cartilage repair surgeries that offer the chance to avoid the development of osteoarthritis or delay its progression. Cartilage repair surgery, no matter the technique, requires a noninvasive, standardized, and high-quality longitudinal method to assess the structure of the repair tissue. This goal is best fulfilled by magnetic resonance imaging (MRI). The present article provides an overview of the current state of the art of MRI of cartilage repair. In the first 2 sections, preclinical and clinical MRI of cartilage repair tissue are described with a focus on morphological depiction of cartilage and the use of functional (biochemical) MR methodologies for the visualization of the ultrastructure of cartilage repair. In the third section, a short overview is provided on the regulatory issues of the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMEA) regarding MR follow-up studies of patients after cartilage repair surgeries. PMID:26069565

  9. Hyaline cartilage degenerates after autologous osteochondral transplantation.

    Science.gov (United States)

    Tibesku, C O; Szuwart, T; Kleffner, T O; Schlegel, P M; Jahn, U R; Van Aken, H; Fuchs, S

    2004-11-01

    Autologous osteochondral grafting is a well-established clinical procedure to treat focal cartilage defects in patients, although basic research on this topic remains sparse. The aim of the current study was to evaluate (1) histological changes of transplanted hyaline cartilage of osteochondral grafts and (2) the tissue that connects the transplanted cartilage with the adjacent cartilage in a sheep model. Both knee joints of four sheep were opened surgically and osteochondral grafts were harvested and simultaneously transplanted to the contralateral femoral condyle. The animals were sacrificed after three months and the received knee joints were evaluated histologically. Histological evaluation showed a complete ingrowth of the osseous part of the osteochondral grafts. A healing or ingrowth at the level of the cartilage could not be observed. Histological evaluation of the transplanted grafts according to Mankin revealed significantly more and more severe signs of degeneration than the adjacent cartilage, such as cloning of chondrocytes and irregularities of the articular surface. We found no connecting tissue between the transplanted and the adjacent cartilage and histological signs of degeneration of the transplanted hyaline cartilage. In the light of these findings, long-term results of autologous osteochondral grafts in human beings have to be followed critically.

  10. Repair of Cartilage injuries using in vitro engineered 3D cartilage tissue- Preliminary Results of Our Animal Studies.

    Science.gov (United States)

    Arumugam, S; Manjunath, S; Senthilkumar, R; Rajendiran, S; Yoshioka, H; Mori, Y; Abraham, S

    2011-01-01

    The cartilage injuries demand novel therapeutic approaches as the success rates of the current conventional strategies for the repair of injured articular cartilages are not that encouraging. Earlier we have reported that the Thermoreversible Gelation Polymer (TGP) is an ideal scaffold for human chondrocyte expansion in vitro. In this study, we report the preliminary results of the in vitro expansion, characterization and experimental in vivo transplantation of chondrocytes in a rabbit model of cartilage injury. Nine rabbits were included in this study scheduled for two years, after approval by the ethics committee. In the first animal, Chondrocytes were isolated from the weight bearing area of patellar groove in the left hindlimb and cultured in TGP Scaffold and maintained at 37°C in 5% carbon dioxide incubator for 64 days without growth factors. Then the TGP-Chondrocyte construct was transplanted into an experimental defect created in the knee of the right forelimb of the same rabbit. After a period of 10 weeks, a biopsy was taken from the transplanted region and subjected to morphological analysis, characterization by histopathology (H&E stain) and Immunohistochemistry (S-100 staining). The chondrocytes in the 3D TGP culture had round to oval shaped morphology without any de-differentiation which is otherwise observed in Conventional 2D cultures. A macroscopic structure which resembled cartilage was appreciated in the TGP construct in vitro after 64 days which was then transplanted to the rabbit. The H&E and Immunohistochemistry studies confirmed the presence of chondrocytes in the biopsy tissue. Based on the results, we conclude that the TGP significantly supports the in vitro expansion of chondrocytes for a longer period and the 3D culture using TGP preserves the phenotype of the articular chondrocytes. The tissue thus grown when implanted with the TGP has engrafted well without any adverse reactions and upon confirmation of safety following completion of the

  11. Sprifermin (rhFGF18) modulates extracellular matrix turnover in cartilage explants ex vivo

    DEFF Research Database (Denmark)

    Reker, Ditte; Kjelgaard-Petersen, Cecilie Freja; Siebuhr, Anne Sofie

    2017-01-01

    (ECM) production. To gain further insight into the process of sprifermin in the cartilage tissue, this study aimed at investigating the ECM turnover of articular cartilage explants in a longitudinal manner. Methods: Bovine full-depth articular cartilage explants were stimulated with sprifermin...... by immuno-histochemical detection of proliferating cell nuclear antigen. ECM turnover was quantified by biomarker ELISAs; ProC2 reflecting type II collagen formation, CS846 reflecting aggrecan formation, active MMP9, C2M and AGNx2 reflecting matrix metalloproteinase activity, and AGNx1 reflecting......, active MMP9 was slightly decreased, and AGNx1 was slightly increased. Over the course of treatment, the temporal order of ECM turnover responses was AGNx1, then ProC2, followed by CS846 and MMP9. Pro-inflammatory activation of the explants diminished the ECM turnover responses otherwise observed under...

  12. Silicone stent placement for primary tracheal amyloidosis accompanied by cartilage destruction.

    Science.gov (United States)

    Ryu, Duck Hyun; Eom, Jung Seop; Jeong, Ho Jung; Kim, Jung Hoon; Lee, Ji Eun; Jun, Ji Eun; Song, Dae Hyun; Han, Joungho; Kim, Hojoong

    2014-06-01

    Primary tracheal amyloidosis (PTA) can lead to airway obstructions, and patients with severe PTA should undergo bronchoscopic interventions in order to maintain airway patency. Focal airway involvements with amyloidosis can only be treated with mechanical dilatation. However, the PTA with diffused airway involvements and concomitant cartilage destructions requires stent placement. Limited information regarding the usefulness of silicone stents in patients with PTA has been released. Therefore, we report a case of diffused PTA with tracheomalacia causing severe cartilage destruction, which is being successfully managed with bronchoscopic interventions and silicone stent placements.

  13. Photoactivated methods for enabling cartilage-to-cartilage tissue fixation

    Science.gov (United States)

    Sitterle, Valerie B.; Roberts, David W.

    2003-06-01

    The present study investigates whether photoactivated attachment of cartilage can provide a viable method for more effective repair of damaged articular surfaces by providing an alternative to sutures, barbs, or fibrin glues for initial fixation. Unlike artificial materials, biological constructs do not possess the initial strength for press-fitting and are instead sutured or pinned in place, typically inducing even more tissue trauma. A possible alternative involves the application of a photosensitive material, which is then photoactivated with a laser source to attach the implant and host tissues together in either a photothermal or photochemical process. The photothermal version of this method shows potential, but has been almost entirely applied to vascularized tissues. Cartilage, however, exhibits several characteristics that produce appreciable differences between applying and refining these techniques when compared to previous efforts involving vascularized tissues. Preliminary investigations involving photochemical photosensitizers based on singlet oxygen and electron transfer mechanisms are discussed, and characterization of the photodynamic effects on bulk collagen gels as a simplified model system using FTIR is performed. Previous efforts using photothermal welding applied to cartilaginous tissues are reviewed.

  14. Biological aspects of tissue-engineered cartilage.

    Science.gov (United States)

    Hoshi, Kazuto; Fujihara, Yuko; Yamawaki, Takanori; Harai, Motohiro; Asawa, Yukiyo; Hikita, Atsuhiko

    2018-04-01

    Cartilage regenerative medicine has been progressed well, and it reaches the stage of clinical application. Among various techniques, tissue engineering, which incorporates elements of materials science, is investigated earnestly, driven by high clinical needs. The cartilage tissue engineering using a poly lactide scaffold has been exploratorily used in the treatment of cleft lip-nose patients, disclosing good clinical results during 3-year observation. However, to increase the reliability of this treatment, not only accumulation of clinical evidence on safety and usefulness of the tissue-engineered products, but also establishment of scientific background on biological mechanisms, are regarded essential. In this paper, we reviewed recent trends of cartilage tissue engineering in clinical practice, summarized experimental findings on cellular and matrix changes during the cartilage regeneration, and discussed the importance of further studies on biological aspects of tissue-engineered cartilage, especially by the histological and the morphological methods.

  15. Hydrogels for Cartilage Regeneration, from Polysaccharides to Hybrids

    Directory of Open Access Journals (Sweden)

    Daniela Anahí Sánchez-Téllez

    2017-12-01

    Full Text Available The aims of this paper are: (1 to review the current state of the art in the field of cartilage substitution and regeneration; (2 to examine the patented biomaterials being used in preclinical and clinical stages; (3 to explore the potential of polymeric hydrogels for these applications and the reasons that hinder their clinical success. The studies about hydrogels used as potential biomaterials selected for this review are divided into the two major trends in tissue engineering: (1 the use of cell-free biomaterials; and (2 the use of cell seeded biomaterials. Preparation techniques and resulting hydrogel properties are also reviewed. More recent proposals, based on the combination of different polymers and the hybridization process to improve the properties of these materials, are also reviewed. The combination of elements such as scaffolds (cellular solids, matrices (hydrogel-based, growth factors and mechanical stimuli is needed to optimize properties of the required materials in order to facilitate tissue formation, cartilage regeneration and final clinical application. Polymer combinations and hybrids are the most promising materials for this application. Hybrid scaffolds may maximize cell growth and local tissue integration by forming cartilage-like tissue with biomimetic features.

  16. Cartilage repair in the degenerative ageing knee

    Science.gov (United States)

    Brittberg, Mats; Gomoll, Andreas H; Canseco, José A; Far, Jack; Lind, Martin; Hui, James

    2016-01-01

    Background and purpose Cartilage damage can develop due to trauma, resulting in focal chondral or osteochondral defects, or as more diffuse loss of cartilage in a generalized organ disease such as osteoarthritis. A loss of cartilage function and quality is also seen with increasing age. There is a spectrum of diseases ranging from focal cartilage defects with healthy surrounding cartilage to focal lesions in degenerative cartilage, to multiple and diffuse lesions in osteoarthritic cartilage. At the recent Aarhus Regenerative Orthopaedics Symposium (AROS) 2015, regenerative challenges in an ageing population were discussed by clinicians and basic scientists. A group of clinicians was given the task of discussing the role of tissue engineering in the treatment of degenerative cartilage lesions in ageing patients. We present the outcomes of our discussions on current treatment options for such lesions, with particular emphasis on different biological repair techniques and their supporting level of evidence. Results and interpretation Based on the studies on treatment of degenerative lesions and early OA, there is low-level evidence to suggest that cartilage repair is a possible treatment for such lesions, but there are conflicting results regarding the effect of advanced age on the outcome. We concluded that further improvements are needed for direct repair of focal, purely traumatic defects before we can routinely use such repair techniques for the more challenging degenerative lesions. Furthermore, we need to identify trigger mechanisms that start generalized loss of cartilage matrix, and induce subchondral bone changes and concomitant synovial pathology, to maximize our treatment methods for biological repair in degenerative ageing joints. PMID:27910738

  17. An integrin-dependent role of pouch endoderm in hyoid cartilage development.

    Directory of Open Access Journals (Sweden)

    Justin Gage Crump

    2004-09-01

    Full Text Available Pharyngeal endoderm is essential for and can reprogram development of the head skeleton. Here we investigate the roles of specific endodermal structures in regulating craniofacial development. We have isolated an integrinalpha5 mutant in zebrafish that has region-specific losses of facial cartilages derived from hyoid neural crest cells. In addition, the cranial muscles that normally attach to the affected cartilage region and their associated nerve are secondarily reduced in integrinalpha5- animals. Earlier in development, integrinalpha5 mutants also have specific defects in the formation of the first pouch, an outpocketing of the pharyngeal endoderm. By fate mapping, we show that the cartilage regions that are lost in integrinalpha5 mutants develop from neural crest cells directly adjacent to the first pouch in wild-type animals. Furthermore, we demonstrate that Integrinalpha5 functions in the endoderm to control pouch formation and cartilage development. Time-lapse recordings suggest that the first pouch promotes region-specific cartilage development by regulating the local compaction and survival of skeletogenic neural crest cells. Thus, our results reveal a hierarchy of tissue interactions, at the top of which is the first endodermal pouch, which locally coordinates the development of multiple tissues in a specific region of the vertebrate face. Lastly, we discuss the implications of a mosaic assembly of the facial skeleton for the evolution of ray-finned fish.

  18. Aging histological changes in the cartilages of the cricoarytenoid joint

    Directory of Open Access Journals (Sweden)

    Dedivitis Rogério Aparecido

    2004-01-01

    Full Text Available PURPOSE: Analysis of ossification, bone marrow formation, perichondrium thickness, muscle fibers, collagen fibers and elastic fibers quantities of cricoid and arytenoid cartilages. Design: Correlation morphologic study. METHODS: Twenty-four cricoarytenoid joints were obtained from Caucasian male fresh cadavers divided into three groups with eight specimens in each: group I - adolescents, from 15 to 20; group II - adults, from 25 to 35; and group III - elderly, from 60 to 75. The specimens were stained with H-E; trichrome; Picrosirius; and elastic stain. Histometry was performed for quantitative analysis. Bonferroni Test, Fisher Test and the Variance Analysis were used. RESULTS: At the microscopic analysis, the group I specimens presented typical hyaline cartilage, thin perichondrium, bulky muscle fibers and were surrounded by collagen fibers. In group II, there were ossification in small well defined central areas of four specimens, with lamellar bone tissue. In two of these cases there were central bone cavity full of fat tissue. The other parameters were similar to group I. In group III, most part of hyaline cartilage was replaced by typical lamellar bone tissue with poorly outlined haversian systems. Hematopoietic tissue was noted in six cases and fat tissue in the other two. Perichondrium was thicker. Small muscle fibers were smaller and surrounded by collagen in great quantity. Elastic fibers were present in small quantity in the outer portion of perichondrium in all the groups. CONCLUSIONS: In spite of its lack in adolescence, ossification occurs in cricoid and arytenoid cartilages during adulthood and intensifies with age; bone marrow is formed in ossification tissue with hematopoietic tissue in group III; perichondrium becomes thicker in group III; muscle tissue atrophies in group III and is replaced by collagen fibers; these fibers thicken with age; and elastic fibers is always present in the perichondrium in low quantity.

  19. A new solution in cartilage repair surgery of joint lesions

    Directory of Open Access Journals (Sweden)

    Patrascu JM¹,

    2016-12-01

    Full Text Available OBJECTIVES AND BACKGROUND The purpose of this study is to provide a simple, cost-effective, reproducible technology that is able to regenerate durable hyaline cartilage. Traumas and sports along with different diseases such as obesity or gradual degeneration over time of the joint surface determine cartilage defects resulting in pain and dysfunctionality. MATERIALS AND METHODS Since 2011 a number of 183 pacients were treated using Agili-C, out of which 40 pacients were operated in the IInd Clinic of Orthopaedics of the Timișoara Emergency County Hospital. The implant is a biphasic, porous, resorbable tissue regeneration scaffold used in the treatment of osteochondral defects. The surgical procedure is performed through minimal arthrotomy, with a good exposure of the cartilage defect. The implant is inserted so that the articular surface of the implant is parallel with the surrounding healthy cartilage. When in place, it facilitates vascularization thus allowing tissue formation to commence from the periphery towards the center of the defect. RESULTS Until now, results are promising, showing obvious improvements in pain and function in both degenerative and post-traumatic joint lesions in the knee, ankle and first MP joint. CONCLUSIONS Agili-C is a cell free, single stage, off the shelf implant that will hopefully meet market demands and become a reliable procedure in joint repair surgery in the future. Figure 1: Intra-operative aspect after the implant is in place. REFERENCES 1. Mehdi Kazemzadeh-Narbat et al. Biomaterials.2010. p.31. 2. Scaglione et al. Tissue engineering: Part A. 2009;15:1. FOOTNOTE Agili-C is a product of CartiHeal Company

  20. Elastic cartilage reconstruction by transplantation of cultured hyaline cartilage-derived chondrocytes.

    Science.gov (United States)

    Mizuno, M; Takebe, T; Kobayashi, S; Kimura, S; Masutani, M; Lee, S; Jo, Y H; Lee, J I; Taniguchi, H

    2014-05-01

    Current surgical intervention of craniofacial defects caused by injuries or abnormalities uses reconstructive materials, such as autologous cartilage grafts. Transplantation of autologous tissues, however, places a significant invasiveness on patients, and many efforts have been made for establishing an alternative graft. Recently, we and others have shown the potential use of reconstructed elastic cartilage from ear-derived chondrocytes or progenitors with the unique elastic properties. Here, we examined the differentiation potential of canine joint cartilage-derived chondrocytes into elastic cartilage for expanding the cell sources, such as hyaline cartilage. Articular chondrocytes are isolated from canine joint, cultivated, and compared regarding characteristic differences with auricular chondrocytes, including proliferation rates, gene expression, extracellular matrix production, and cartilage reconstruction capability after transplantation. Canine articular chondrocytes proliferated less robustly than auricular chondrocytes, but there was no significant difference in the amount of sulfated glycosaminoglycan produced from redifferentiated chondrocytes. Furthermore, in vitro expanded and redifferentiated articular chondrocytes have been shown to reconstruct elastic cartilage on transplantation that has histologic characteristics distinct from hyaline cartilage. Taken together, cultured hyaline cartilage-derived chondrocytes are a possible cell source for elastic cartilage reconstruction. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  1. Tenascin-C Prevents Articular Cartilage Degeneration in Murine Osteoarthritis Models.

    Science.gov (United States)

    Matsui, Yuriyo; Hasegawa, Masahiro; Iino, Takahiro; Imanaka-Yoshida, Kyoko; Yoshida, Toshimichi; Sudo, Akihiro

    2018-01-01

    Objective The objective of this study was to determine whether intra-articular injections of tenascin-C (TNC) could prevent cartilage damage in murine models of osteoarthritis (OA). Design Fluorescently labeled TNC was injected into knee joints and its distribution was examined at 1 day, 4 days, 1 week, 2 weeks, and 4 weeks postinjection. To investigate the effects of TNC on cartilage degeneration after surgery to knee joints, articular spaces were filled with 100 μg/mL (group I), 10 μg/mL (group II) of TNC solution, or control (group III). TNC solution of 10 μg/mL was additionally injected twice after 3 weeks (group IV) or weekly after 1 week, 2 weeks, and 3 weeks (group V). Joint tissues were histologically assessed using the Mankin score and the modified Chambers system at 2 to 8 weeks after surgery. Results Exogenous TNC was maintained in the cartilage and synovium for 1 week after administration. Histological scores in groups I and II were better than scores in group III at 4 and 6 weeks, but progressive cartilage damage was seen in all groups 8 weeks postoperatively. Sequential TNC injections (groups IV and V) showed significantly better Mankin score than single injection (group II) at 8 weeks. Conclusion TNC administered exogenously remained in the cartilage of knee joints for 1 week, and could decelerate articular cartilage degeneration in murine models of OA. We also showed that sequential administration of TNC was more effective than a single injection. TNC could be an important molecule for prevention of articular cartilage damage.

  2. Cysts of the semilunar cartilage

    International Nuclear Information System (INIS)

    Bruessermann, M.

    1981-01-01

    On the basis of the studies listed in the bibliography, this dissertation reports on the pathology, clinical symptoms and radiology of cysts of the semilunar cartilage. The author analyses 118 cases of his own, with special regard to the results of pneumo-arthrographic investigations carried through according to a special technique by Schaefer. In the course of this work, measurements of the meniscal base are for the first time used as radiological criteria indicating the presence of a cyst of the semilunar cartilage. Furthermore the well-known radiological signs of cysts, such as bone defects according to Albert and Keller, light central spot in the meniscal body, as well as Rauber's sign and horizontal rupture, are investigated as to the frequency of their incidence. For that purpose all the X-ray pictures were subjected to a further dose scrutiny. A list of all the 118 cases with their clinical and radiological data is found in the annex, together with the results of the operations and patho-anatomical investigations. (orig.) [de

  3. Imaging diagnosis of the articular cartilage disorders

    International Nuclear Information System (INIS)

    Liu Sirun; Zhu Tianyuan; Huang Li; Leng Xiaoming

    2003-01-01

    Objective: To evaluate the diagnosis and differential diagnosis among the chronic osteoarthritis, rheumatoid arthritis and other chronic cartilage lesions on the plain films and MR images. Methods: Eighty-nine cases, including 115 joints, underwent plain film and MRI examination, and enhanced MRI scan was performed on 32 of them, including 44 joints. MRI scan sequences consisted of T 1 WI, T 2 WI + PDWI, STIR, and 3D FS SPGR. There were 90 knee joints in this group and each of the articular cartilage was divided into four parts: patella, femoral medial condyle, femoral lateral condyle, and tibia facet on MR images. The cartilage disorders were classified according to the outerbridge method. In addition, 61 cases including 75 joints were observed as a control group on the plain films and MR images. Results: 115 cartilage lesions were found on MR images, in which thinness of the cartilage (58 cases, 50.4%), bone changes under the cartilage (22 cases, 19.7%), medullar edema (22 cases, 19.7%), and synovial hyperplasia (52 cases, 45.2%) were seen. The patella cartilage was the most likely affected part (81/90, 90%). So the patellar cartilage lesions were divided as group 1 (grade I-II) and group 2 (grade III-IV) on MR images, which were compared with the plain film signs. The narrowing of the joint space and saccules under the articular surface were statistically significant with each other, and χ 2 values were 9.349 and 9.885, respectively (P=0.002). Conclusion: No constant signs could be seen on the plain films with grade I-II cartilage disorders. While the narrowing joint space and saccules under the joint surface could be seen on them with grade III-IV cartilage disorders, which were mainly correlated with the cartilage disorders and bone changes under the articular cartilages. A combination of the plain films and MR images is the best imaging method for examining the joints and joint cartilages. Enhanced MRI scan is very helpful on the diagnosis and differential

  4. Chondrogenic potential of physically treated bovine cartilage matrix derived porous scaffolds on human dermal fibroblast cells.

    Science.gov (United States)

    Moradi, Ali; Ataollahi, Forough; Sayar, Katayoun; Pramanik, Sumit; Chong, Pan-Pan; Khalil, Alizan Abdul; Kamarul, Tunku; Pingguan-Murphy, Belinda

    2016-01-01

    Extracellular matrices have drawn attention in tissue engineering as potential biomaterials for scaffold fabrication because of their bioactive components. Noninvasive techniques of scaffold fabrication and cross-linking treatments are believed to maintain the integrity of bioactive molecules while providing proper architectural and mechanical properties. Cartilage matrix derived scaffolds are designed to support the maintenance of chondrocytes and provide proper signals for differentiation of chondroinducible cells. Chondroinductive potential of bovine articular cartilage matrix derived porous scaffolds on human dermal fibroblasts and the effect of scaffold shrinkage on chondrogenesis were investigated. An increase in sulfated glycosaminoglycans production along with upregulation of chondrogenic genes confirmed that physically treated cartilage matrix derived scaffolds have chondrogenic potential on human dermal fibroblasts. © 2015 Wiley Periodicals, Inc.

  5. A new pressure chamber to study the biosynthetic response of articular cartilage to mechanical loading.

    Science.gov (United States)

    Steinmeyer, J; Torzilli, P A; Burton-Wurster, N; Lust, G

    1993-01-01

    A prototype chamber was used to apply a precise cyclic or static load on articular cartilage explants under sterile conditions. A variable pressure, pneumatic controller was constructed to power the chamber's air cylinder, capable of applying, with a porous load platen, loads of up to 10 MPa at cycles ranging from 0 to 10 Hz. Pig articular cartilage explants were maintained successfully in this chamber for 2 days under cyclic mechanical loading of 0.5 Hz, 0.5 MPa. Explants remained sterile, viable and metabolically active. Cartilage responded to this load with a decreased synthesis of fibronectin and a small but statistically significant elevation in proteoglycan content. Similar but less extensive effects on fibronectin synthesis were observed with the small static load (0.016 MPa) inherent in the design of the chamber.

  6. Multiphasic modeling of charged solute transport across articular cartilage: Application of multi-zone finite-bath model.

    Science.gov (United States)

    Arbabi, Vahid; Pouran, Behdad; Weinans, Harrie; Zadpoor, Amir A

    2016-06-14

    Charged and uncharged solutes penetrate through cartilage to maintain the metabolic function of chondrocytes and to possibly restore or further breakdown the cartilage tissue in different stages of osteoarthritis. In this study the transport of charged solutes across the various zones of cartilage was quantified, taken into account the physicochemical interactions between the solute and the cartilage constituents. A multiphasic finite-bath finite element (FE) model was developed to simulate equine cartilage diffusion experiments that used a negatively charged contrast agent (ioxaglate) in combination with serial micro-computed tomography (micro-CT) to measure the diffusion. By comparing the FE model with the experimental data both the diffusion coefficient of ioxaglate and the fixed charge density (FCD) were obtained. In the multiphasic model, cartilage was divided into multiple (three) zones to help understand how diffusion coefficient and FCD vary across cartilage thickness. The direct effects of charged solute-FCD interaction on diffusion were investigated by comparing the diffusion coefficients derived from the multiphasic and biphasic-solute models. We found a relationship between the FCD obtained by the multiphasic model and ioxaglate partitioning obtained from micro-CT experiments. Using our multi-zone multiphasic model, diffusion coefficient of the superficial zone was up to ten-fold higher than that of the middle zone, while the FCD of the middle zone was up to almost two-fold higher than that of the superficial zone. In conclusion, the developed finite-bath multiphasic model provides us with a non-destructive method by which we could obtain both diffusion coefficient and FCD of different cartilage zones. The outcomes of the current work will also help understand how charge of the bath affects the diffusion of a charged molecule and also predict the diffusion behavior of a charged solute across articular cartilage. Copyright © 2016 Elsevier Ltd. All

  7. Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects.

    Science.gov (United States)

    White, Lawrence M; Sussman, Marshall S; Hurtig, Mark; Probyn, Linda; Tomlinson, George; Kandel, Rita

    2006-11-01

    To prospectively assess T2 mapping characteristics of normal articular cartilage and of cartilage at sites of arthroscopic repair, including comparison with histologic results and collagen organization assessed at polarized light microscopy (PLM). Study protocol was compliant with the Canadian Council on Animal Care Guidelines and approved by the institutional animal care committee. Arthroscopic osteochondral autograft transplantation (OAT) and microfracture arthroplasty (MFx) were performed in knees of 10 equine subjects (seven female, three male; age range, 3-5 years). A site of arthroscopically normal cartilage was documented in each joint as a control site. Joints were harvested at 12 (n = 5) and 24 (n = 5) weeks postoperatively and were imaged at 1.5-T magnetic resonance (MR) with a 10-echo sagittal fast spin-echo acquisition. T2 maps of each site (21 OAT harvest, 10 MFx, 12 OAT plug, and 10 control sites) were calculated with linear least-squares curve fitting. Cartilage T2 maps were qualitatively graded as "organized" (normal transition of low-to-high T2 signal from deep to superficial cartilage zones) or "disorganized." Quantitative mean T2 values were calculated for deep, middle, and superficial cartilage at each location. Results were compared with histologic and PLM assessments by using kappa analysis. T2 maps were qualitatively graded as organized at 20 of 53 sites and as disorganized at 33 sites. Perfect agreement was seen between organized T2 and histologic findings of hyaline cartilage and between disorganized T2 and histologic findings of fibrous reparative tissue (kappa = 1.0). Strong agreement was seen between organized T2 and normal PLM findings and between disorganized T2 and abnormal PLM findings (kappa = .92). Quantitative assessment of the deep, middle, and superficial cartilage, respectively, showed mean T2 values of 53.3, 58.6, and 54.9 msec at reparative fibrous tissue sites and 40.7, 53.6, and 61.6 msec at hyaline cartilage sites. A

  8. Photodynamic damage to cartilage and synovial tissue grafted on a chick's chorioallantoic membrane

    Science.gov (United States)

    Fisher, M.; Nahir, A. M.; Kimel, Sol

    1997-09-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease of the synovial joints causing pain deformities and disability. The highly vascular inflamed synovium has aggressive and destructive characteristics, it invades, erodes and gradually destroys cartilage and underlying bone. Photodynamic therapy (PDT) was performed using the chick chorioallantoic membrane (CAM) model to investigate the vitality of synovium and cartilage implanted on the CAM. Synovium, obtained from human patients, was grafted onto the CAM; gross microscopy and histology proved its vitality 7 days post grafting. Cartilage obtained from rabbit knee joint was also maintained on the CAM for 7 days. Its vitality was demonstrated by histology and by measuring metabolic and enzymatic activity of cartilage cells (chondrocytes) as well as the collagen and proteoglycans content. Selective PDT was performed using aluminum phthalocyanine tetrasulfonate (AlPcS4), a hydrophilic compound, soluble in biological solutions, as a photosensitizer. After irradiation with a diode laser (lambda equals 670 nm, 10 mW) damage was observed in vascularized synovium grafts, whereas avascular cartilage remained intact.

  9. Mesenchymal stem cells in cartilage regeneration.

    Science.gov (United States)

    Savkovic, Vuk; Li, Hanluo; Seon, Jong-Keun; Hacker, Michael; Franz, Sandra; Simon, Jan-Christoph

    2014-01-01

    Articular cartilage provides life-long weight-bearing and mechanical lubrication with extraordinary biomechanical performance and simple structure. However, articular cartilage is apparently vulnerable to multifactorial damage and insufficient to self-repair, isolated in articular capsule without nerves or blood vessels. Osteoarthritis (OA) is known as a degenerative articular cartilage deficiency progressively affecting large proportion of the world population, and restoration of hyaline cartilage is clinical challenge to repair articular cartilage lesion and recreate normal functionality over long period. Mesenchymal stem cells (MSC) are highly proliferative and multipotent somatic cells that are able to differentiate mesoderm-derived cells including chondrocytes and osteoblasts. Continuous endeavors in basic research and preclinical trial have achieved promising outcomes in cartilage regeneration using MSCs. This review focuses on rationale and technologies of MSC-based hyaline cartilage repair involving tissue engineering, 3D biomaterials and growth factors. By comparing conventional treatment and current research progress, we describe insights of advantage and challenge in translation and application of MSC-based chondrogenesis for OA treatment.

  10. Allogenic lyophilized cartilage grafts for craniomaxillofacial reconstruction

    International Nuclear Information System (INIS)

    Pill Hoon Choung

    1999-01-01

    Allogenic lyophilized cartilages were made in our clinic after Sailer methods and some modification. In our clinic, we have used allogenic cartilage grafts on 102 defects of craniomaxillofacial area; 1) for defects from cyst or ameloblastoma, 2) for lack of continuity of the mandible, 3) for rhinoplasty, 4) for paranasal augmentation, 5) for augmentation genioplasty, 6) for reconstruction of orbital floor, 7) for oroantral fistula, 8) for temporal augmentation, 9) for TMJ surgery 10) for condyle defect as a costochondral graft, 11) for filling of tooth socket and alveolus augmentation,12) for correction or orbital height and 13) for guided bone regeneration in peripheral implant. The types of lyophilized cartilage used were chip, sheet and block types developed by freeze-dried methods. Some grafts showed change of ossification, in which case we could perform implant on it. We have good results on reconstruction of craniomaxillofacial defects. Allogenic cartilage have advantages such as 1) it has no immune reaction clinically, 2) it is more tolerable to infection than that of autogenous cartilage, 3) it has character of less resorption which require no over correction, 4) it is easy to manipulate contouring, and 5) it has possibility of undergoing ossification. Allogenic cartilage has been considered as good substitutes for bone. The author would like to report the results on 102 allogenic cartilage have

  11. Regulatory Challenges for Cartilage Repair Technologies.

    Science.gov (United States)

    McGowan, Kevin B; Stiegman, Glenn

    2013-01-01

    In the United States, few Food and Drug Administration (FDA)-approved options exist for the treatment of focal cartilage and osteochondral lesions. Developers of products for cartilage repair face many challenges to obtain marketing approval from the FDA. The objective of this review is to discuss the necessary steps for FDA application and approval for a new cartilage repair product. FDA Guidance Documents, FDA Panel Meetings, scientific organization recommendations, and clinicaltrials.gov were reviewed to demonstrate the current thinking of FDA and the scientific community on the regulatory process for cartilage repair therapies. Cartilage repair therapies can receive market approval from FDA as medical devices, drugs, or biologics, and the specific classification of product can affect the nonclinical, clinical, and regulatory strategy to bring the product to market. Recent FDA guidance gives an outline of the required elements to bring a cartilage repair product to market, although these standards are often very general. As a result, companies have to carefully craft their study patient population, comparator group, and clinical endpoint to best showcase their product's attributes. In addition, regulatory strategy and manufacturing process validation need to be considered early in the clinical study process to allow for timely product approval following the completion of clinical study. Although the path to regulatory approval for a cartilage repair therapy is challenging and time-consuming, proper clinical trial planning and attention to the details can eventually save companies time and money by bringing a product to the market in the most expeditious process possible.

  12. Satisfactory surgical option for cartilage graft absorption in microtia reconstruction.

    Science.gov (United States)

    Han, So-Eun; Oh, Kap Sung

    2016-04-01

    We routinely perform auricular elevation at least 6 months after implantation of framework in microtia reconstruction using costal cartilage. However, in a few cases, cartilage graft absorption has occurred, which has led to contour irregularity with unfavorable long-term results. In the present study, we recount the details of using additional rib cartilage augmentation to achieve an accentuated contour in cartilage graft absorption cases. The cartilage graft absorption was defined as contour irregularity or cartilage graft deformation as evaluated by the surgeon and patient. Depending on the extent of cartilage graft absorption, another rib cartilage framework was added to the previously implanted framework, targeting the absorption area. We used banked cartilage or harvested new cartilage based on three-dimensional rib computed tomography. Additional recontouring of framework was conducted in eight patients who were examined for cartilage graft absorption from 1.5 to 5 years after implantation of the framework. Four patients received additional rib cartilage augmentation and tissue expander insertion simultaneously prior to auricular elevation. Two patients underwent auricular elevation simultaneously. In another two patients, additional rib cartilage augmentation was performed before auricular elevation. The mean follow-up period was 18 months, and in all cases reconstructive results were acceptable. Although further follow-up evaluation is required, additional rib cartilage augmentation is an attractive surgical option for cartilage graft absorption cases. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  13. On the roles and regulation of chondroitin sulfate and heparan sulfate in zebrafish pharyngeal cartilage morphogenesis

    DEFF Research Database (Denmark)

    Holmborn, Katarina; Habicher, Judith; Kasza, Zsolt

    2012-01-01

    The present study addresses the roles of heparan sulfate (HS) proteoglycans and chondroitin sulfate (CS) proteoglycans in the development of zebrafish pharyngeal cartilage structures. uxs1 and b3gat3 mutants, predicted to have impaired biosynthesis of both HS and CS because of defective formation...... levels of CS than control larvae, whereas morpholino-mediated suppression of csgalnact1/csgalnact2 resulted in increased HS biosynthesis. Thus, the balance of the Extl3 and Csgalnact1/Csgalnact2 proteins influences the HS/CS ratio. A characterization of the pharyngeal cartilage element morphologies...

  14. First and second order stereology of hyaline cartilage: Application on mice femoral cartilage.

    Science.gov (United States)

    Noorafshan, Ali; Niazi, Behnam; Mohamadpour, Masoomeh; Hoseini, Leila; Hoseini, Najmeh; Owji, Ali Akbar; Rafati, Ali; Sadeghi, Yasaman; Karbalay-Doust, Saied

    2016-11-01

    Stereological techniques could be considered in research on cartilage to obtain quantitative data. The present study aimed to explain application of the first- and second-order stereological methods on articular cartilage of mice and the methods applied on the mice exposed to cadmium (Cd). The distal femoral articular cartilage of BALB/c mice (control and Cd-treated) was removed. Then, volume and surface area of the cartilage and number of chondrocytes were estimated using Cavalieri and optical dissector techniques on isotropic uniform random sections. Pair-correlation function [g(r)] and cross-correlation function were calculated to express the spatial arrangement of chondrocytes-chondrocytes and chondrocytes-matrix (chondrocyte clustering/dispersing), respectively. The mean±standard deviation of the cartilage volume, surface area, and thickness were 1.4±0.1mm 3 , 26.2±5.4mm 2 , and 52.8±6.7μm, respectively. Besides, the mean number of chondrocytes was 680±200 (×10 3 ). The cartilage volume, cartilage surface area, and number of chondrocytes were respectively reduced by 25%, 27%, and 27% in the Cd-treated mice in comparison to the control animals (pcartilage components carried potential advantages for investigating the cartilage in different joint conditions. Chondrocyte clustering/dispersing and cellularity can be evaluated in cartilage assessment in normal or abnormal situations. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Ergonomics Contribution in Maintainability

    Science.gov (United States)

    Teymourian, Kiumars; Seneviratne, Dammika; Galar, Diego

    2017-09-01

    The objective of this paper is to describe an ergonomics contribution in maintainability. The economical designs, inputs and training helps to increase the maintainability indicators for industrial devices. This analysis can be helpful, among other cases, to compare systems, to achieve a better design regarding maintainability requirements, to improve this maintainability under specific industrial environment and to foresee maintainability problems due to eventual changes in a device operation conditions. With this purpose, this work first introduces the notion of ergonomics and human factors, maintainability and the implementation of assessment of human postures, including some important postures to perform maintenance activities. A simulation approach is used to identify the critical posture of the maintenance personnel and implements the defined postures with minimal loads on the personnel who use the equipment in a practical scenario. The simulation inputs are given to the designers to improve the workplace/equipment in order to high level of maintainability. Finally, the work concludes summarizing the more significant aspects and suggesting future research.

  16. Platelet lysate activates quiescent cell proliferation and reprogramming in human articular cartilage: Involvement of hypoxia inducible factor 1.

    Science.gov (United States)

    Nguyen, Van Thi; Cancedda, Ranieri; Descalzi, Fiorella

    2018-03-01

    The idea of rescuing the body self-repair capability lost during evolution is progressively gaining ground in regenerative medicine. In particular, growth factors and bioactive molecules derived from activated platelets emerged as promising therapeutic agents acting as trigger for repair of tissue lesions and restoration of tissue functions. Aim of this study was to assess the potential of a platelet lysate (PL) for human articular cartilage repair considering its activity on progenitor cells and differentiated chondrocytes. PL induced the re-entry in the cell cycle of confluent, growth-arrested dedifferentiated/progenitor cartilage cells. In a cartilage permissive culture environment, differentiated cells also resumed proliferation after exposure to PL. These findings correlated with an up-regulation of the proliferation/survival pathways ERKs and Akt and with an induction of cyclin D1. In short- and long-term cultures of articular cartilage explants, we observed a release of proliferating chondroprogenitors able to differentiate and form an "in vitro" tissue with properties of healthy articular cartilage. Moreover, in cultured cartilage cells, PL induced a hypoxia-inducible factor (HIF-1) alpha increase, its nuclear relocation and the binding to HIF-1 responsive elements. These events were possibly related to the cell proliferation because the HIF-1 inhibitor acriflavine inhibited HIF-1 binding to HIF-1 responsive elements and cell proliferation. Our study demonstrates that PL induces quiescent cartilage cell activation and proliferation leading to new cartilage formation, identifies PL activated pathways playing a role in these processes, and provides a rationale to the application of PL for therapeutic treatment of damaged articular cartilage. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Articular cartilage changes in chondromalacia patellae.

    Science.gov (United States)

    Bentley, G

    1985-11-01

    Full thickness samples of articular cartilage were removed from areas of chondromalacia on the medial and "odd" facets of the patellae of 21 adults and examined by histology, autoradiography and electron microscopy. Surface fibrillation, loss of superficial matrix staining and reduced 35SO4 labelling was seen, with little change in the deep zone. Ten cases showed "fibrous metaplasia" of the superficial cartilage with definite evidence of cell division and apparent smoothing of the surface. Scattered chondrocyte replication appeared to occur in the surrounding intact cartilage. The findings suggest that early lesions in chondromalacia patellae may heal either by cartilage or fibrous metaplasia and that this may account for the resolution of clinical symptoms.

  18. PAPAIN-INDUCED CHANGES IN RABBIT CARTILAGE

    Science.gov (United States)

    Tsaltas, Theodore T.

    1958-01-01

    Some biochemical aspects of the collapse of the rabbit ears produced by the intravenous injection of papain have been studied. A marked depletion of chondromucoprotein (M.C.S.) and a reduction of the S35 content of cartilage matrix were found to coincide with the gross and histologic changes in the cartilage. At the same time there was a marked increase in the amount of S35 in the serum and an increase of S35 and glucuronic acid excreted in the urine. Alteration in the composition of the M.C.S. remaining in the cartilage of the papain-injected animals was detected. The findings indicate that the collapse of the rabbit ears is due to loss of chondromucoprotein from cartilage and reduction of chondroitin sulfate in the chondromucoprotein that remains. All these changes were reversed in recovery. PMID:13575681

  19. The minor collagens in articular cartilage

    DEFF Research Database (Denmark)

    Luo, Yunyun; Sinkeviciute, Dovile; He, Yi

    2017-01-01

    Articular cartilage is a connective tissue consisting of a specialized extracellular matrix (ECM) that dominates the bulk of its wet and dry weight. Type II collagen and aggrecan are the main ECM proteins in cartilage. However, little attention has been paid to less abundant molecular components......, especially minor collagens, including type IV, VI, IX, X, XI, XII, XIII, and XIV, etc. Although accounting for only a small fraction of the mature matrix, these minor collagens not only play essential structural roles in the mechanical properties, organization, and shape of articular cartilage, but also...... fulfil specific biological functions. Genetic studies of these minor collagens have revealed that they are associated with multiple connective tissue diseases, especially degenerative joint disease. The progressive destruction of cartilage involves the degradation of matrix constituents including...

  20. Cartilage Repair in Football (Soccer) Athletes

    Science.gov (United States)

    Bekkers, J.E.J.; de Windt, Th.S.; Brittberg, M.

    2012-01-01

    The prevalence of focal articular cartilage lesions among athletes is higher than in the general population. Treatment goals differ considerably between the professional and recreational athlete. High financial stakes and the short duration of a professional career influence the treatment selection for the professional athlete, while such parameters weigh differently in recreational sports. This article describes our investigation of the relation between sports and a high prevalence of focal cartilage lesions. In addition, we provide a critical review of the best available evidence for cartilage surgery and treatment selection, evaluate specific patient profiles for professional and recreational athletes, and propose a treatment algorithm for the treatment of focal cartilage lesions in football (soccer) players. PMID:26069606

  1. ACS labelled with sup(99m)Tc and cartilage scintigraphy

    International Nuclear Information System (INIS)

    Dupuy, J.C.; Harmand, M.F.; Blanquet, P.

    1976-01-01

    ACS, chondroitine-sulphate acid, is the principal mucopolysaccharide of cartilagineous substance. We therefore thought it of interest to label this molecule with sup(99m)Tc so as to obtain a scintigraphic image of cartilagineous formations. sup(99m)Tc-pyrophosphate and the sup(99m)Tc-polyphosphates permit simultaneous imaging of hyperactive zones in bone and cartilage. The ACS-labelling technique is based on the reduction of sup(99m)Tc-pertechnetate by the tin-II-ion. Sephadex-gel chromatography at different pH-levels was used to study labelling gain, under optimum conditions it can attain 85%. The labelled product was administered intravenously and studied in rat and rabbit. An identical biological half-life of 15 minutes was found for both species. Scintigraphes from rabbits permitted clear visualization of the epiphyses of tubular bones, intervertebral cartilage, and auricular cartilage. These encouraging results point to interesting clinical applications

  2. Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo.

    Science.gov (United States)

    Apelgren, Peter; Amoroso, Matteo; Lindahl, Anders; Brantsing, Camilla; Rotter, Nicole; Gatenholm, Paul; Kölby, Lars

    2017-01-01

    Cartilage repair and replacement is a major challenge in plastic reconstructive surgery. The development of a process capable of creating a patient-specific cartilage framework would be a major breakthrough. Here, we described methods for creating human cartilage in vivo and quantitatively assessing the proliferative capacity and cartilage-formation ability in mono- and co-cultures of human chondrocytes and human mesenchymal stem cells in a three-dimensional (3D)-bioprinted hydrogel scaffold. The 3D-bioprinted constructs (5 × 5 × 1.2 mm) were produced using nanofibrillated cellulose and alginate in combination with human chondrocytes and human mesenchymal stem cells using a 3D-extrusion bioprinter. Immediately following bioprinting, the constructs were implanted subcutaneously on the back of 48 nude mice and explanted after 30 and 60 days, respectively, for morphological and immunohistochemical examination. During explantation, the constructs were easy to handle, and the majority had retained their macroscopic grid appearance. Constructs consisting of human nasal chondrocytes showed good proliferation ability, with 17.2% of the surface areas covered with proliferating chondrocytes after 60 days. In constructs comprising a mixture of chondrocytes and stem cells, an additional proliferative effect was observed involving chondrocyte production of glycosaminoglycans and type 2 collagen. This clinically highly relevant study revealed 3D bioprinting as a promising technology for the creation of human cartilage.

  3. Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo.

    Directory of Open Access Journals (Sweden)

    Peter Apelgren

    Full Text Available Cartilage repair and replacement is a major challenge in plastic reconstructive surgery. The development of a process capable of creating a patient-specific cartilage framework would be a major breakthrough. Here, we described methods for creating human cartilage in vivo and quantitatively assessing the proliferative capacity and cartilage-formation ability in mono- and co-cultures of human chondrocytes and human mesenchymal stem cells in a three-dimensional (3D-bioprinted hydrogel scaffold. The 3D-bioprinted constructs (5 × 5 × 1.2 mm were produced using nanofibrillated cellulose and alginate in combination with human chondrocytes and human mesenchymal stem cells using a 3D-extrusion bioprinter. Immediately following bioprinting, the constructs were implanted subcutaneously on the back of 48 nude mice and explanted after 30 and 60 days, respectively, for morphological and immunohistochemical examination. During explantation, the constructs were easy to handle, and the majority had retained their macroscopic grid appearance. Constructs consisting of human nasal chondrocytes showed good proliferation ability, with 17.2% of the surface areas covered with proliferating chondrocytes after 60 days. In constructs comprising a mixture of chondrocytes and stem cells, an additional proliferative effect was observed involving chondrocyte production of glycosaminoglycans and type 2 collagen. This clinically highly relevant study revealed 3D bioprinting as a promising technology for the creation of human cartilage.

  4. Microstructural changes in cartilage and bone related to repetitive overloading in an equine athlete model.

    Science.gov (United States)

    Turley, Sean M; Thambyah, Ashvin; Riggs, Christopher M; Firth, Elwyn C; Broom, Neil D

    2014-06-01

    The palmar aspect of the third metacarpal (MC3) condyle of equine athletes is known to be subjected to repetitive overloading that can lead to the accumulation of joint tissue damage, degeneration, and stress fractures, some of which result in catastrophic failure. However, there is still a need to understand at a detailed microstructural level how this damage progresses in the context of the wider joint tissue complex, i.e. the articular surface, the hyaline and calcified cartilage, and the subchondral bone. MC3 bones from non-fractured joints were obtained from the right forelimbs of 16 Thoroughbred racehorses varying in age between 3 and 8 years, with documented histories of active race training. Detailed microstructural analysis of two clinically important sites, the parasagittal grooves and the mid-condylar regions, identified extensive levels of microdamage in the calcified cartilage and subchondral bone concealed beneath outwardly intact hyaline cartilage. The study shows a progression in microdamage severity, commencing with mild hard-tissue microcracking in younger animals and escalating to severe subchondral bone collapse and lesion formation in the hyaline cartilage with increasing age and thus athletic activity. The presence of a clearly distinguishable fibrous tissue layer at the articular surface immediately above sites of severe subchondral collapse suggested a limited reparative response in the hyaline cartilage. © 2014 Anatomical Society.

  5. Spatio-temporal expression patterns of Wnt signaling pathway during the development of temporomandibular condylar cartilage.

    Science.gov (United States)

    Chen, Kan; Quan, Huixin; Chen, Gang; Xiao, Di

    2017-11-01

    There is a growing body of evidence supporting the involvement of the Wnt signaling pathway in various aspects of skeletal and joint development; however, it is unclear whether it is involved in the process of temporomandibular joint development. In order to clarify this issue, we examined the spatio-temporal distribution of mRNAs and proteins of the Wnt family during the formation of the mandibular condylar cartilage at the prenatal and postnatal stages. An in situ hybridization test revealed no mRNAs of β-catenin and Axin2 during early mesenchymal condensation; the ligands surveyed in this study (including Wnt-4, 5a, and 9a) were clearly detected at various ranges of expression, mainly in the condylar blastema and later distinct cartilaginous layers. Apart from β-catenin and Axin2, the Wnt family members surveyed in this study, including Lef-1, were found to be immunopositive during early chondrogenesis in the condylar cartilage at E14.5. After distinct chondrocyte layers were identified within the cartilage at E16.5, the expression of the Wnt signaling members was different and mainly restricted to proliferating cells and mineralized hypertrophic chondrocytes. In the adult mandibular condylar cartilage, the Wnt-4 mRNA, as well as the Wnt-4 and Wnt-9a proteins, was not observed. Our findings demonstrated that the Wnt signaling pathway was associated with the development of mandibular condylar cartilage. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Microstructural changes in cartilage and bone related to repetitive overloading in an equine athlete model

    Science.gov (United States)

    Turley, Sean M; Thambyah, Ashvin; Riggs, Christopher M; Firth, Elwyn C; Broom, Neil D

    2014-01-01

    The palmar aspect of the third metacarpal (MC3) condyle of equine athletes is known to be subjected to repetitive overloading that can lead to the accumulation of joint tissue damage, degeneration, and stress fractures, some of which result in catastrophic failure. However, there is still a need to understand at a detailed microstructural level how this damage progresses in the context of the wider joint tissue complex, i.e. the articular surface, the hyaline and calcified cartilage, and the subchondral bone. MC3 bones from non-fractured joints were obtained from the right forelimbs of 16 Thoroughbred racehorses varying in age between 3 and 8 years, with documented histories of active race training. Detailed microstructural analysis of two clinically important sites, the parasagittal grooves and the mid-condylar regions, identified extensive levels of microdamage in the calcified cartilage and subchondral bone concealed beneath outwardly intact hyaline cartilage. The study shows a progression in microdamage severity, commencing with mild hard-tissue microcracking in younger animals and escalating to severe subchondral bone collapse and lesion formation in the hyaline cartilage with increasing age and thus athletic activity. The presence of a clearly distinguishable fibrous tissue layer at the articular surface immediately above sites of severe subchondral collapse suggested a limited reparative response in the hyaline cartilage. PMID:24689513

  7. Changes of rabbit meniscus influenced by hyaline cartilage injury of osteoarthritis.

    Science.gov (United States)

    Zhao, Jiajun; Huang, Suizhu; Zheng, Jia; Zhong, Chunan; Tang, Chao; Zheng, Lei; Zhang, Zhen; Xu, Jianzhong

    2014-01-01

    Osteoarthritis (OA) is a common disease in the elderly population. Most of the previous OA-related researches focused on articular cartilage degeneration, osteophyte formation and synovitis etc. However, the role of the meniscus in these pathological changes has not been given enough attention. The goal of our study was to find the pathological changes of the meniscus in OA knee and determine their relationship. 20 months old female Chinese rabbits received either knee damaging operations with articular cartilage scratch method or sham operation randomly on one of their knees. They were sacrificed after 1-6 weeks post-operation. Medial Displacement Index (MDI) for meniscus dislocation, hematoxylin and eosin (HE) for routine histological evaluation, Toluidine blue (TB) stains for evaluating proteoglycans were carried out. Immunohistochemical (IHC) staining was performed with a two-step detection kit. Histological analysis showed chondrocyte clusters around cartilage lesions and moderate loss of proteoglycans in the operation model, as well as MDI increase and all characteristics of OA. High expression of MMP-3 and TIMP-1 also were found in both hyaline cartilage and meniscus. Biomechanical and biochemistry environment around the meniscus is altered when OA occur. If meniscus showed degeneration, subluxation and dysfunction, OA would be more severe. Prompt repair or reconstruction of hyaline cartilage in weight bearing area when it injured could prevent meniscus degeneration and subluxation, then prevent the development of OA.

  8. Harnessing biomechanics to develop cartilage regeneration strategies.

    Science.gov (United States)

    Athanasiou, Kyriacos A; Responte, Donald J; Brown, Wendy E; Hu, Jerry C

    2015-02-01

    As this review was prepared specifically for the American Society of Mechanical Engineers H.R. Lissner Medal, it primarily discusses work toward cartilage regeneration performed in Dr. Kyriacos A. Athanasiou's laboratory over the past 25 years. The prevalence and severity of degeneration of articular cartilage, a tissue whose main function is largely biomechanical, have motivated the development of cartilage tissue engineering approaches informed by biomechanics. This article provides a review of important steps toward regeneration of articular cartilage with suitable biomechanical properties. As a first step, biomechanical and biochemical characterization studies at the tissue level were used to provide design criteria for engineering neotissues. Extending this work to the single cell and subcellular levels has helped to develop biochemical and mechanical stimuli for tissue engineering studies. This strong mechanobiological foundation guided studies on regenerating hyaline articular cartilage, the knee meniscus, and temporomandibular joint (TMJ) fibrocartilage. Initial tissue engineering efforts centered on developing biodegradable scaffolds for cartilage regeneration. After many years of studying scaffold-based cartilage engineering, scaffoldless approaches were developed to address deficiencies of scaffold-based systems, resulting in the self-assembling process. This process was further improved by employing exogenous stimuli, such as hydrostatic pressure, growth factors, and matrix-modifying and catabolic agents, both singly and in synergistic combination to enhance neocartilage functional properties. Due to the high cell needs for tissue engineering and the limited supply of native articular chondrocytes, costochondral cells are emerging as a suitable cell source. Looking forward, additional cell sources are investigated to render these technologies more translatable. For example, dermis isolated adult stem (DIAS) cells show potential as a source of

  9. Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering.

    Science.gov (United States)

    Neumann, Alexander J; Quinn, Timothy; Bryant, Stephanie J

    2016-07-15

    Photopolymerizable and hydrolytically labile poly(ethylene glycol) (PEG) hydrogels formed from photo-clickable reactions were investigated as cell delivery platforms for cartilage tissue engineering (TE). PEG hydrogels were formed from thiol-norbornene PEG macromers whereby the crosslinks contained caprolactone segments with hydrolytically labile ester linkages. Juvenile bovine chondrocytes encapsulated in the hydrogels were cultured for up to four weeks and assessed biochemically and histologically, using standard destructive assays, and for mechanical and ultrasound properties, as nondestructive assays. Bulk degradation of acellular hydrogels was confirmed by a decrease in compressive modulus and an increase in mass swelling ratio over time. Chondrocytes deposited increasing amounts of sulfated glycosaminoglycans and collagens in the hydrogels with time. Spatially, collagen type II and aggrecan were present in the neotissue with formation of a territorial matrix beginning at day 21. Nondestructive measurements revealed an 8-fold increase in compressive modulus from days 7 to 28, which correlated with total collagen content. Ultrasound measurements revealed changes in the constructs over time, which differed from the mechanical properties, and appeared to correlate with ECM structure and organization shown by immunohistochemical analysis. Overall, non-destructive and destructive measurements show that this new hydrolytically degradable PEG hydrogel is promising for cartilage TE. Designing synthetic hydrogels whose degradation matches tissue growth is critical to maintaining mechanical integrity as the hydrogel degrades and new tissue forms, but is challenging due to the nature of the hydrogel crosslinks that inhibit diffusion of tissue matrix molecules. This study details a promising, new, photo-clickable and synthetic hydrogel whose degradation supports cartilaginous tissue matrix growth leading to the formation of a territorial matrix, concomitant with an

  10. Materials science: Like cartilage, but simpler

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard

    2015-01-01

    The properties of articular cartilage, which lines bones in joints, depend partlyon repulsion between components of the material. A new synthetic gel that mimics this feature has rare, direction-dependent properties.......The properties of articular cartilage, which lines bones in joints, depend partlyon repulsion between components of the material. A new synthetic gel that mimics this feature has rare, direction-dependent properties....

  11. Modern cartilage imaging of the ankle

    International Nuclear Information System (INIS)

    Weber, Marc-Andre; Wuennemann, Felix; Rehnitz, Christoph; Jungmann, Pia M.; Kuni, Benita

    2017-01-01

    Talar osteochondral lesions are an important risk factor for the development of talar osteoarthritis. Furthermore, osteochondral lesions might explain persistent ankle pain. Early diagnosis of accompanying chondral defects is important to establish the optimal therapy strategy and thereby delaying or preventing the onset of osteoarthritis. The purpose of this review is to explain modern cartilage imaging with emphasis of MR imaging as well as the discussion of more sophisticated imaging studies like CT-arthrography or functional MR imaging. Pubmed literature search concerning: osteochondral lesions, cartilage damage, ankle joint, talus, 2 D MR imaging, 3 D MR imaging, cartilage MR imaging, CT-arthrography, cartilage repair, microfracture, OATS, MACT. Dedicated MR imaging protocols to delineate talar cartilage and the appearance of acute and chronic osteochondral lesions were discussed. Recent developments of MR imaging, such as isotropic 3 D imaging that has a higher signal-to noise ratio when compared to 2 D imaging, and specialized imaging methods such as CT-arthrography as well as functional MR imaging were introduced. Several classifications schemes and imaging findings of osteochondral lesions that influence the conservative or surgical therapy strategy were discussed. MRI enables after surgery the non-invasive assessment of the repair tissue and the success of implantation. Key points: Modern MRI allows for highly resolved visualization of the articular cartilage of the ankle joint and of subchondral pathologies. Recent advances in MRI include 3 D isotropic ankle joint imaging, which deliver higher signal-to-noise ratios of the cartilage and less partial volume artifacts when compared with standard 2 D sequences. In case of osteochondral lesions MRI is beneficial for assessing the stability of the osteochondral fragment and for this discontinuity of the cartilage layer is an important factor. CT-arthrography can be used in case of contraindications of MRI and

  12. New Frontiers for Cartilage Repair and Protection

    OpenAIRE

    Zaslav, Kenneth; McAdams, Timothy; Scopp, Jason; Theosadakis, Jason; Mahajan, Vivek; Gobbi, Alberto

    2012-01-01

    Objective: Articular cartilage injury is common after athletic injury and remains a difficult treatment conundrum both for the surgeon and athlete. Although recent treatments for damage to articular cartilage have been successful in alleviating symptoms, more durable and complete, long-term articular surface restoration remains the unattained goal. In this article, we look at both new ways to prevent damage to articular surfaces as well as new techniques to recreate biomechanically sound and ...

  13. Precision of hyaline cartilage thickness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, K.; Buckwalter, K.; Helvie, M.; Niklason, L.; Martel, W. (Univ. of Michigan Hospitals, Ann Arbor, MI (United States). Dept. of Radiology)

    1992-05-01

    Measurement of cartilage thickness in vivo is an important indicator of the status of a joint as the various degenerative and inflammatory arthritides directly affect the condition of the cartilage. In order to assess the precision of thickness measurements of hyaline articular cartilage, we undertook a pilot study using MR imaging, plain radiography, and ultrasonography (US). We measured the cartilage of the hip and knee joints in 10 persons (4 healthy volunteers and 6 patients). The joints in each patient were examined on two separate occasions using each modality. In the hips a swell as the knee joints, the most precise measuring method was plain film radiography. For radiographs of the knees obtained in the standing position, the coefficient of variation was 6.5%; in the hips this figure was 6.34%. US of the knees and MR imaging of the hips were the second best modalities in the measurement of cartilage thickness. In addition, MR imaging enabled the most complete visualization of the joint cartilage. (orig.).

  14. Regeneration of spine disc and joint cartilages under temporal and space modulated laser radiation

    Science.gov (United States)

    Sobol, E.; Shekhter, A.; Baskov, A.; Baskov, V.; Baum, O.; Borchshenko, I.; Golubev, V.; Guller, A.; Kolyshev, I.; Omeltchenko, A.; Sviridov, A.; Zakharkina, O.

    2009-02-01

    The effect of laser radiation on the generation of hyaline cartilage in spine disc and joints has been demonstrated. The paper considers physical processes and mechanisms of laser regeneration, presents results of investigations aimed to optimize laser settings and to develop feedback control system for laser reconstruction of spine discs. Possible mechanisms of laser-induced regeneration include: (1) Space and temporary modulated laser beam induces nonhomogeneous and pulse repetitive thermal expansion and stress in the irradiated zone of cartilage. Mechanical effect due to controllable thermal expansion of the tissue and micro and nano gas bubbles formation in the course of the moderate (up to 45-50 oC) heating of the NP activate biological cells (chondrocytes) and promote cartilage regeneration. (2) Nondestructive laser radiation leads to the formation of nano and micro-pores in cartilage matrix. That promotes water permeability and increases the feeding of biological cells. Results provide the scientific and engineering basis for the novel low-invasive laser procedures to be used in orthopedics for the treatment cartilages of spine and joints. The technology and equipment for laser reconstruction of spine discs have been tested first on animals, and then in a clinical trial. Since 2001 the laser reconstruction of intervertebral discs have been performed for 340 patients with chronic symptoms of low back or neck pain who failed to improve with non-operative care. Substantial relief of back pain was obtained in 90% of patients treated who returned to their daily activities. The experiments on reparation of the defects in articular cartilage of the porcine joints under temporal and spase modulated laser radiation have shown promising results.

  15. Streamlined bioreactor-based production of human cartilage tissues.

    Science.gov (United States)

    Tonnarelli, B; Santoro, R; Adelaide Asnaghi, M; Wendt, D

    2016-05-27

    Engineered tissue grafts have been manufactured using methods based predominantly on traditional labour-intensive manual benchtop techniques. These methods impart significant regulatory and economic challenges, hindering the successful translation of engineered tissue products to the clinic. Alternatively, bioreactor-based production systems have the potential to overcome such limitations. In this work, we present an innovative manufacturing approach to engineer cartilage tissue within a single bioreactor system, starting from freshly isolated human primary chondrocytes, through the generation of cartilaginous tissue grafts. The limited number of primary chondrocytes that can be isolated from a small clinically-sized cartilage biopsy could be seeded and extensively expanded directly within a 3D scaffold in our perfusion bioreactor (5.4 ± 0.9 doublings in 2 weeks), bypassing conventional 2D expansion in flasks. Chondrocytes expanded in 3D scaffolds better maintained a chondrogenic phenotype than chondrocytes expanded on plastic flasks (collagen type II mRNA, 18-fold; Sox-9, 11-fold). After this "3D expansion" phase, bioreactor culture conditions were changed to subsequently support chondrogenic differentiation for two weeks. Engineered tissues based on 3D-expanded chondrocytes were more cartilaginous than tissues generated from chondrocytes previously expanded in flasks. We then demonstrated that this streamlined bioreactor-based process could be adapted to effectively generate up-scaled cartilage grafts in a size with clinical relevance (50 mm diameter). Streamlined and robust tissue engineering processes, as the one described here, may be key for the future manufacturing of grafts for clinical applications, as they facilitate the establishment of compact and closed bioreactor-based production systems, with minimal automation requirements, lower operating costs, and increased compliance to regulatory guidelines.

  16. Diverse roles of integrin receptors in articular cartilage.

    Science.gov (United States)

    Shakibaei, M; Csaki, C; Mobasheri, A

    2008-01-01

    Integrins are heterodimeric integral membrane proteins made up of alpha and beta subunits. At least eighteen alpha and eight beta subunit genes have been described in mammals. Integrin family members are plasma membrane receptors involved in cell adhesion and active as intra- and extracellular signalling molecules in a variety of processes including embryogenesis, hemostasis, tissue repair, immune response and metastatic spread of tumour cells. Integrin beta 1 (beta1-integrin), the protein encoded by the ITGB1 gene (also known as CD29 and VLAB), is a multi-functional protein involved in cell-matrix adhesion, cell signalling, cellular defense, cell adhesion, protein binding, protein heterodimerisation and receptor-mediated activity. It is highly expressed in the human body (17.4 times higher than the average gene in the last updated revision of the human genome). The extracellular matrix (ECM) of articular cartilage is a unique environment. Interactions between chondrocytes and the ECM regulate many biological processes important to homeostasis and repair of articular cartilage, including cell attachment, growth, differentiation and survival. The beta1-integrin family of cell surface receptors appears to play a major role in mediating cell-matrix interactions that are important in regulating these fundamental processes. Chondrocyte mechanoreceptors have been proposed to incorporate beta1-integrins and mechanosensitive ion channels which link with key ECM, cytoskeletal and signalling proteins to maintain the chondrocyte phenotype, prevent chondrocyte apoptosis and regulate chondrocyte-specific gene expression. This review focuses on the expression and function of beta1-integrins in articular chondrocytes, its role in the unique biology of these cells and its distribution in cartilage.

  17. Augmented cartilage regeneration by implantation of cellular versus acellular implants after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    Directory of Open Access Journals (Sweden)

    Michiel W. Pot

    2017-10-01

    Full Text Available Bone marrow stimulation may be applied to regenerate focal cartilage defects, but generally results in transient clinical improvement and formation of fibrocartilage rather than hyaline cartilage. Tissue engineering and regenerative medicine strive to develop new solutions to regenerate hyaline cartilage tissue. This systematic review and meta-analysis provides a comprehensive overview of current literature and assesses the efficacy of articular cartilage regeneration by implantation of cell-laden versus cell-free biomaterials in the knee and ankle joint in animals after bone marrow stimulation. PubMed and EMBASE (via OvidSP were systematically searched using tissue engineering, cartilage and animals search strategies. Included were primary studies in which cellular and acellular biomaterials were implanted after applying bone marrow stimulation in the knee or ankle joint in healthy animals. Study characteristics were tabulated and outcome data were collected for meta-analysis for studies applying semi-quantitative histology as outcome measure (117 studies. Cartilage regeneration was expressed on an absolute 0–100% scale and random effects meta-analyses were performed. Implantation of cellular biomaterials significantly improved cartilage regeneration by 18.6% compared to acellular biomaterials. No significant differences were found between biomaterials loaded with stem cells and those loaded with somatic cells. Culture conditions of cells did not affect cartilage regeneration. Cartilage formation was reduced with adipose-derived stem cells compared to other cell types, but still improved compared to acellular scaffolds. Assessment of the risk of bias was impaired due to incomplete reporting for most studies. Implantation of cellular biomaterials improves cartilage regeneration compared to acellular biomaterials.

  18. Augmented cartilage regeneration by implantation of cellular versus acellular implants after bone marrow stimulation: a systematic review and meta-analysis of animal studies.

    Science.gov (United States)

    Pot, Michiel W; van Kuppevelt, Toin H; Gonzales, Veronica K; Buma, Pieter; IntHout, Joanna; de Vries, Rob B M; Daamen, Willeke F

    2017-01-01

    Bone marrow stimulation may be applied to regenerate focal cartilage defects, but generally results in transient clinical improvement and formation of fibrocartilage rather than hyaline cartilage. Tissue engineering and regenerative medicine strive to develop new solutions to regenerate hyaline cartilage tissue. This systematic review and meta-analysis provides a comprehensive overview of current literature and assesses the efficacy of articular cartilage regeneration by implantation of cell-laden versus cell-free biomaterials in the knee and ankle joint in animals after bone marrow stimulation. PubMed and EMBASE (via OvidSP) were systematically searched using tissue engineering, cartilage and animals search strategies. Included were primary studies in which cellular and acellular biomaterials were implanted after applying bone marrow stimulation in the knee or ankle joint in healthy animals. Study characteristics were tabulated and outcome data were collected for meta-analysis for studies applying semi-quantitative histology as outcome measure (117 studies). Cartilage regeneration was expressed on an absolute 0-100% scale and random effects meta-analyses were performed. Implantation of cellular biomaterials significantly improved cartilage regeneration by 18.6% compared to acellular biomaterials. No significant differences were found between biomaterials loaded with stem cells and those loaded with somatic cells. Culture conditions of cells did not affect cartilage regeneration. Cartilage formation was reduced with adipose-derived stem cells compared to other cell types, but still improved compared to acellular scaffolds. Assessment of the risk of bias was impaired due to incomplete reporting for most studies. Implantation of cellular biomaterials improves cartilage regeneration compared to acellular biomaterials.

  19. Science and animal models of marrow stimulation for cartilage repair.

    Science.gov (United States)

    Fortier, Lisa A; Cole, Brian J; McIlwraith, C Wayne

    2012-03-01

    Microfracture of subchondral bone to enhance cartilage repair is a popular surgical technique used in human and animal patients. Clinical results with resolution or improvement in pain are promising and last on average for 2 to 3 years. Animal studies aimed at understanding microfracture indicate that the repair tissue continues to remodel toward chondrogenesis for at least a year, but longer term results are not available to gain insight into the mechanism of microfracture function or failure over time. Subchondral bone sclerosis and central lesional osteophyte formation following subchondral bone microfracture have been observed in animal models of microfracture, but studies do not provide any insight into the etiology of these pathologies. The continued maturation of microfracture repair tissue over time supports further investigation of microfracture or microfracture-augmented cartilage repair procedures with caution for the investigator and clinician to be observant for conditions that lead to subchondral bone sclerosis or central osteophyte formation, and what affect these boney reactions have on clinical outcome.

  20. Pathways of load-induced cartilage damage causing cartilage degeneration in the knee after meniscectomy

    NARCIS (Netherlands)

    Wilson, W.; Rietbergen, van B.; Donkelaar, van C.C.; Huiskes, R.

    2003-01-01

    Results of both clinical and animal studies show that meniscectomy often leads to osteoarthritic degenerative changes in articular cartilage. It is generally assumed that this process of cartilage degeneration is due to changes in mechanical loading after meniscectomy. It is, however, not known why

  1. Articular cartilage explant culture; an appropriate in vitro system to compare osteoarthritic and normal human cartilage

    NARCIS (Netherlands)

    Lafeber, F. P.; Vander Kraan, P. M.; van Roy, J. L.; Huber-Bruning, O.; Bijlsma, J. W.

    1993-01-01

    Proteoglycan metabolism of normal and histologically mild to moderate osteoarthritic cartilage explants were studied. Explants were obtained from the human knee of donors aged over 40 years. Proteoglycan content, synthesis and release were very similar in normal cartilage obtained from donors with

  2. Cartilage Repair Surgery: Outcome Evaluation by Using Noninvasive Cartilage Biomarkers Based on Quantitative MRI Techniques?

    Science.gov (United States)

    Jungmann, Pia M.; Baum, Thomas; Bauer, Jan S.; Karampinos, Dimitrios C.; Link, Thomas M.; Li, Xiaojuan; Trattnig, Siegfried; Rummeny, Ernst J.; Woertler, Klaus; Welsch, Goetz H.

    2014-01-01

    Background. New quantitative magnetic resonance imaging (MRI) techniques are increasingly applied as outcome measures after cartilage repair. Objective. To review the current literature on the use of quantitative MRI biomarkers for evaluation of cartilage repair at the knee and ankle. Methods. Using PubMed literature research, studies on biochemical, quantitative MR imaging of cartilage repair were identified and reviewed. Results. Quantitative MR biomarkers detect early degeneration of articular cartilage, mainly represented by an increasing water content, collagen disruption, and proteoglycan loss. Recently, feasibility of biochemical MR imaging of cartilage repair tissue and surrounding cartilage was demonstrated. Ultrastructural properties of the tissue after different repair procedures resulted in differences in imaging characteristics. T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), and diffusion weighted imaging (DWI) are applicable on most clinical 1.5 T and 3 T MR scanners. Currently, a standard of reference is difficult to define and knowledge is limited concerning correlation of clinical and MR findings. The lack of histological correlations complicates the identification of the exact tissue composition. Conclusions. A multimodal approach combining several quantitative MRI techniques in addition to morphological and clinical evaluation might be promising. Further investigations are required to demonstrate the potential for outcome evaluation after cartilage repair. PMID:24877139

  3. Free Diced Cartilage: A New Application of Diced Cartilage Grafts in Primary and Secondary Rhinoplasty.

    Science.gov (United States)

    Kreutzer, Christian; Hoehne, Julius; Gubisch, Wolfgang; Rezaeian, Farid; Haack, Sebastian

    2017-09-01

    Irregularities or deformities of the nasal dorsum after hump reduction account for a significant number of revision rhinoplasties. The authors therefore developed a technique of meticulously dicing and exactly placing free diced cartilage grafts, harvested from septum, rib, or ear cartilage. The cartilage paste is used for smoothening, augmentation, or camouflaging of the nasal dorsum in primary or revision rhinoplasties. A retrospective analysis of multisurgeon consecutive open approach rhinoplasties from January to December of 2014 was conducted at a single center. The authors compared the outcome of three different techniques to augment or cover the nasal dorsum after an observation period of 7 months. In group I, 325 patients with free diced cartilage grafts as the only onlay were included. In group II, consisting of 73 patients, the dorsal onlay was either fascia alone or in combination with free diced cartilage grafts. Forty-eight patients in group III received a dorsal augmentation with the classic diced cartilage in fascia technique. Four hundred forty-six patients undergoing primary and secondary rhinoplasties in which one of the above-mentioned diced cartilage techniques was used were included in the study. The authors found revision rates for dorsal irregularities within the 7-month postoperative observation period of 5.2, 8.2, and 25 percent for groups I, II, and III, respectively. The authors' findings strongly support their clinical experience that the free diced cartilage graft technique presents an effective and easily reproducible method for camouflage and augmentation in aesthetic and reconstructive rhinoplasty.

  4. In end stage osteoarthritis, cartilage tissue pentosidine levels are inversely related to parameters of cartilage damage

    NARCIS (Netherlands)

    Vos, P.A.J.M.; Mastbergen, S.C.; Huisman, A.M.; Boer, T.N.de; Groot, J.de; Polak, A.A.; Lafeber, F.P.J.G.

    2012-01-01

    Objectives: Age is the most prominent predisposition for development of osteoarthritis (OA). Age-related changes of articular cartilage are likely to play a role. Advanced glycation endproducts (AGEs) accumulate in cartilage matrix with increasing age and adversely affect the biomechanical

  5. Osteoarthritic human cartilage is more sensitive to transforming growth factor beta than is normal cartilage

    NARCIS (Netherlands)

    Lafeber, F. P.; Vander Kraan, P. M.; Huber-Bruning, O.; Vanden Berg, W. B.; Bijlsma, J. W.

    1993-01-01

    Osteoarthritis is a degenerative joint disease, characterized by the destruction of the articular cartilage. One of the first changes in the osteoarthritic articular cartilage is a reduction in proteoglycan content. In this study we demonstrate that transforming growth factor beta (TGF beta), a

  6. Cartilage Repair Surgery: Outcome Evaluation by Using Noninvasive Cartilage Biomarkers Based on Quantitative MRI Techniques?

    Directory of Open Access Journals (Sweden)

    Pia M. Jungmann

    2014-01-01

    Full Text Available Background. New quantitative magnetic resonance imaging (MRI techniques are increasingly applied as outcome measures after cartilage repair. Objective. To review the current literature on the use of quantitative MRI biomarkers for evaluation of cartilage repair at the knee and ankle. Methods. Using PubMed literature research, studies on biochemical, quantitative MR imaging of cartilage repair were identified and reviewed. Results. Quantitative MR biomarkers detect early degeneration of articular cartilage, mainly represented by an increasing water content, collagen disruption, and proteoglycan loss. Recently, feasibility of biochemical MR imaging of cartilage repair tissue and surrounding cartilage was demonstrated. Ultrastructural properties of the tissue after different repair procedures resulted in differences in imaging characteristics. T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC, and diffusion weighted imaging (DWI are applicable on most clinical 1.5 T and 3 T MR scanners. Currently, a standard of reference is difficult to define and knowledge is limited concerning correlation of clinical and MR findings. The lack of histological correlations complicates the identification of the exact tissue composition. Conclusions. A multimodal approach combining several quantitative MRI techniques in addition to morphological and clinical evaluation might be promising. Further investigations are required to demonstrate the potential for outcome evaluation after cartilage repair.

  7. The cranial cartilages of teleosts and their classification.

    OpenAIRE

    Benjamin, M

    1990-01-01

    The structure and distribution of cartilages has been studied in 45 species from 24 families. The resulting data have been used as a basis for establishing a new classification. A cartilage is regarded as 'cell-rich' if its cells or their lacunae occupy more than half of the tissue volume. Five classes of cell-rich cartilage are recognised (a) hyaline-cell cartilage (common in the lips of bottom-dwelling cyprinids) and its subtypes fibro/hyaline-cell cartilage, elastic/hyaline-cell cartilage ...

  8. Stable subcutaneous cartilage regeneration of bone marrow stromal cells directed by chondrocyte sheet.

    Science.gov (United States)

    Li, Dan; Zhu, Lian; Liu, Yu; Yin, Zongqi; Liu, Yi; Liu, Fangjun; He, Aijuan; Feng, Shaoqing; Zhang, Yixin; Zhang, Zhiyong; Zhang, Wenjie; Liu, Wei; Cao, Yilin; Zhou, Guangdong

    2017-05-01

    In vivo niche plays an important role in regulating differentiation fate of stem cells. Due to lack of proper chondrogenic niche, stable cartilage regeneration of bone marrow stromal cells (BMSCs) in subcutaneous environments is always a great challenge. This study explored the feasibility that chondrocyte sheet created chondrogenic niche retained chondrogenic phenotype of BMSC engineered cartilage (BEC) in subcutaneous environments. Porcine BMSCs were seeded into biodegradable scaffolds followed by 4weeks of chondrogenic induction in vitro to form BEC, which were wrapped with chondrocyte sheets (Sheet group), acellular small intestinal submucosa (SIS, SIS group), or nothing (Blank group) respectively and then implanted subcutaneously into nude mice to trace the maintenance of chondrogenic phenotype. The results showed that all the constructs in Sheet group displayed typical cartilaginous features with abundant lacunae and cartilage specific matrices deposition. These samples became more mature with prolonged in vivo implantation, and few signs of ossification were observed at all time points except for one sample that had not been wrapped completely. Cell labeling results in Sheet group further revealed that the implanted BEC directly participated in cartilage formation. Samples in both SIS and Blank groups mainly showed ossified tissue at all time points with partial fibrogenesis in a few samples. These results suggested that chondrocyte sheet could create a chondrogenic niche for retaining chondrogenic phenotype of BEC in subcutaneous environment and thus provide a novel research model for stable ectopic cartilage regeneration based on stem cells. In vivo niche plays an important role in directing differentiation fate of stem cells. Due to lack of proper chondrogenic niche, stable cartilage regeneration of bone marrow stromal cells (BMSCs) in subcutaneous environments is always a great challenge. The current study demonstrated that chondrocyte sheet generated by

  9. Maintaining dignity in vulnerability

    DEFF Research Database (Denmark)

    Høy, Bente

    2016-01-01

    to understand the meaning of the narrated text. Results. The meaning of maintaining dignity was constituted in a sense of vulnerability to the self, and elucidated in three major interrelated themes: Being involved as a human being, being involved as the person one is and strives to become, and being involved...

  10. Biomechanical Influence of Cartilage Homeostasis in Health and Disease

    Directory of Open Access Journals (Sweden)

    D. L. Bader

    2011-01-01

    Full Text Available There is an urgent demand for long term solutions to improve osteoarthritis treatments in the ageing population. There are drugs that control the pain but none that stop the progression of the disease in a safe and efficient way. Increased intervention efforts, augmented by early diagnosis and integrated biophysical therapies are therefore needed. Unfortunately, progress has been hampered due to the wide variety of experimental models which examine the effect of mechanical stimuli and inflammatory mediators on signal transduction pathways. Our understanding of the early mechanopathophysiology is poor, particularly the way in which mechanical stimuli influences cell function and regulates matrix synthesis. This makes it difficult to identify reliable targets and design new therapies. In addition, the effect of mechanical loading on matrix turnover is dependent on the nature of the mechanical stimulus. Accumulating evidence suggests that moderate mechanical loading helps to maintain cartilage integrity with a low turnover of matrix constituents. In contrast, nonphysiological mechanical signals are associated with increased cartilage damage and degenerative changes. This review will discuss the pathways regulated by compressive loading regimes and inflammatory signals in animal and in vitro 3D models. Identification of the chondroprotective pathways will reveal novel targets for osteoarthritis treatments.

  11. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.

    NARCIS (Netherlands)

    Korhonen, R.K.; Julkunen, P.; Wilson, W.; Herzog, W.

    2008-01-01

    The collagen network and proteoglycan matrix of articular cartilage are thought to play an important role in controlling the stresses and strains in and around chondrocytes, in regulating the biosynthesis of the solid matrix, and consequently in maintaining the health of diarthrodial joints.

  12. Aggrecan structure in amphibian cartilage

    Directory of Open Access Journals (Sweden)

    Covizi D.Z.

    2000-01-01

    Full Text Available The structure of the large proteoglycan present in the bullfrog epiphyseal cartilage was studied by immunochemical and biochemical methods. The isolated monomer showed a polydisperse behavior on Sepharose CL2B, with a peak at Kav = 0.14. Chondroitin sulfate chains were identified by HPLC analysis of the products formed by chondroitinase digestion and mercuric acetate treatment. These chains have approximately 38 disaccharides, a Di45:Di68 ratio of 1.6 and GalNAc4S + GalNAc4,6S are the main non-reducing terminals. Keratan sulfate was identified by the use of two monoclonal antibodies in Western blots after chondroitinase ABC treatment. A keratan sulfate-rich region (~110 kDa was isolated by sequential treatment with chondroitinase ABC and proteases. We also employed antibodies in Western blotting experiments and showed that the full length deglycosylated core protein is about 300 kDa after SDS-PAGE. Domain-specific antibodies revealed the presence of immunoreactive sites corresponding to G1/G2 and G3 globular domains and the characterization of this large proteoglycan as aggrecan. The results indicate the high conservation of the aggrecan domain structure in this lower vertebrate.

  13. Effects of collagen matrix and bioreactor cultivation on cartilage regeneration of a full-thickness critical-size knee joint cartilage defects with subchondral bone damage in a rabbit model.

    Directory of Open Access Journals (Sweden)

    Kuo-Hwa Wang

    Full Text Available Cartilage has limited self-repair ability. The purpose of this study was to investigate the effects of different species of collagen-engineered neocartilage for the treatment of critical-size defects in the articular joint in a rabbit model. Type II and I collagen obtained from rabbits and rats was mixed to form a scaffold. The type II/I collagen scaffold was then mixed with rabbit chondrocytes to biofabricate neocartilage constructs using a rotating cell culture system [three-dimensional (3D-bioreactor]. The rabbit chondrocytes were mixed with rabbit collagen scaffold and rat collagen scaffold to form neoRBT (neo-rabbit cartilage and neoRAT (neo-rat cartilage constructs, respectively. The neocartilage matrix constructs were implanted into surgically created defects in rabbit knee chondyles, and histological examinations were performed after 2 and 3 months. Cartilage-like lacunae formation surrounding the chondrocytes was noted in the cell cultures. After 3 months, both the neoRBT and neoRAT groups showed cartilage-like repair tissue covering the 5-mm circular, 4-mm-deep defects that were created in the rabbit condyle and filled with neocartilage plugs. Reparative chondrocytes were aligned as apparent clusters in both the neoRAT and neoRBT groups. Both neoRBT and neoRAT cartilage repair demonstrated integration with healthy adjacent tissue; however, more integration was obtained using the neoRAT cartilage. Our data indicate that different species of type II/I collagen matrix and 3D bioreactor cultivation can facilitate cartilage engineering in vitro for the repair of critical-size defect.

  14. Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: perspectives from stem cell biology and molecular medicine.

    Science.gov (United States)

    Wu, Ling; Cai, Xiaoxiao; Zhang, Shu; Karperien, Marcel; Lin, Yunfeng

    2013-05-01

    Adipose-derived stem cells (ASCs) have been discovered for more than a decade. Due to the large numbers of cells that can be harvested with relatively little donor morbidity, they are considered to be an attractive alternative to bone marrow derived mesenchymal stem cells. Consequently, isolation and differentiation of ASCs draw great attention in the research of tissue engineering and regenerative medicine. Cartilage defects cause big therapeutic problems because of their low self-repair capacity. Application of ASCs in cartilage regeneration gives hope to treat cartilage defects with autologous stem cells. In recent years, a lot of studies have been performed to test the possibility of using ASCs to re-construct damaged cartilage tissue. In this article, we have reviewed the most up-to-date articles utilizing ASCs for cartilage regeneration in basic and translational research. Our topic covers differentiation of adipose tissue derived mesenchymal stem cells into chondrocytes, increased cartilage formation by co-culture of ASCs with chondrocytes and enhancing chondrogenic differentiation of ASCs by gene manipulation. Copyright © 2012 Wiley Periodicals, Inc.

  15. In vitro precultivation alleviates post-implantation inflammation and enhances development of tissue-engineered tubular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Luo Xusong; Zhou Guangdong; Liu Wei; Zhang Wenjie; Cui Lei; Cao Yilin [Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Cen Lian, E-mail: guangdongzhou@126.co, E-mail: yilincao@yahoo.co [National Tissue Engineering Center of China, Shanghai 200011 (China)

    2009-04-15

    Tissue-engineered tubular cartilage is a promising graft for tracheal reconstruction. But polylactic acid/polyglycolic acid (PLA/PGA) fibers, the frequently used scaffolds for cartilage engineering, often elicit an obvious inflammation response following implantation into immunocompetent animals. We propose that the inflammation could be alleviated by in vitro precultivation. In this study, after in vitro culture for either 2 days (direct implantation group (DI)) or for 2 weeks (precultivation implantation group (PI)), autologous tubular chondrocyte-PLA/PGA constructs were subcutaneously implanted into rabbits. In the PI group, after 2 weeks of precultivation, most of the fibers were found to be completely embedded in an extracellular matrix (ECM) produced by the chondrocytes. Importantly, no obvious inflammatory reaction was observed after in vivo implantation and homogeneous cartilage-like tissue was formed with biomechanical properties close to native tracheal cartilage at 4 weeks post-implantation. In the DI group, however, an obvious inflammatory reaction was observed within and around the cell-scaffold constructs at 1 week implantation and only sporadic cartilage islands separated by fibrous tissue were observed at 4 weeks. These results demonstrated that the post-implantation inflammatory reaction could be alleviated by in vitro precultivation, which contributes to the formation of satisfactory tubular cartilage for tracheal reconstruction.

  16. Articular Cartilage Increases Transition Zone Regeneration in Bone-tendon Junction Healing

    Science.gov (United States)

    Qin, Ling; Lee, Kwong Man; Leung, Kwok Sui

    2008-01-01

    The fibrocartilage transition zone in the direct bone-tendon junction reduces stress concentration and protects the junction from failure. Unfortunately, bone-tendon junctions often heal without fibrocartilage transition zone regeneration. We hypothesized articular cartilage grafts could increase fibrocartilage transition zone regeneration. Using a goat partial patellectomy repair model, autologous articular cartilage was harvested from the excised distal third patella and interposed between the residual proximal two-thirds bone fragment and tendon during repair in 36 knees. We evaluated fibrocartilage transition zone regeneration, bone formation, and mechanical strength after repair at 6, 12, and 24 weeks and compared them with direct repair. Autologous articular cartilage interposition resulted in more fibrocartilage transition zone regeneration (69.10% ± 14.11% [mean ± standard deviation] versus 8.67% ± 7.01% at 24 weeks) than direct repair at all times. There was no difference in the amount of bone formation and mechanical strength achieved. Autologous articular cartilage interposition increases fibrocartilage transition zone regeneration in bone-tendon junction healing, but additional research is required to ascertain the mechanism of stimulation and to establish the clinical applicability. PMID:18987921

  17. Silicone Stent Placement for Primary Tracheal Amyloidosis Accompanied by Cartilage Destruction

    OpenAIRE

    Ryu, Duck Hyun; Eom, Jung Seop; Jeong, Ho Jung; Kim, Jung Hoon; Lee, Ji Eun; Jun, Ji Eun; Song, Dae Hyun; Han, Joungho; Kim, Hojoong

    2014-01-01

    Primary tracheal amyloidosis (PTA) can lead to airway obstructions, and patients with severe PTA should undergo bronchoscopic interventions in order to maintain airway patency. Focal airway involvements with amyloidosis can only be treated with mechanical dilatation. However, the PTA with diffused airway involvements and concomitant cartilage destructions requires stent placement. Limited information regarding the usefulness of silicone stents in patients with PTA has been released. Therefore...

  18. Prefabrication of 3D cartilage contructs: towards a tissue engineered auricle--a model tested in rabbits.

    Directory of Open Access Journals (Sweden)

    Achim von Bomhard

    Full Text Available The reconstruction of an auricle for congenital deformity or following trauma remains one of the greatest challenges in reconstructive surgery. Tissue-engineered (TE three-dimensional (3D cartilage constructs have proven to be a promising option, but problems remain with regard to cell vitality in large cell constructs. The supply of nutrients and oxygen is limited because cultured cartilage is not vascular integrated due to missing perichondrium. The consequence is necrosis and thus a loss of form stability. The micro-surgical implantation of an arteriovenous loop represents a reliable technology for neovascularization, and thus vascular integration, of three-dimensional (3D cultivated cell constructs. Auricular cartilage biopsies were obtained from 15 rabbits and seeded in 3D scaffolds made from polycaprolactone-based polyurethane in the shape and size of a human auricle. These cartilage cell constructs were implanted subcutaneously into a skin flap (15 × 8 cm and neovascularized by means of vascular loops implanted micro-surgically. They were then totally enhanced as 3D tissue and freely re-implanted in-situ through microsurgery. Neovascularization in the prefabricated flap and cultured cartilage construct was analyzed by microangiography. After explantation, the specimens were examined by histological and immunohistochemical methods. Cultivated 3D cartilage cell constructs with implanted vascular pedicle promoted the formation of engineered cartilaginous tissue within the scaffold in vivo. The auricles contained cartilage-specific extracellular matrix (ECM components, such as GAGs and collagen even in the center oft the constructs. In contrast, in cultivated 3D cartilage cell constructs without vascular pedicle, ECM distribution was only detectable on the surface compared to constructs with vascular pedicle. We demonstrated, that the 3D flaps could be freely transplanted. On a microangiographic level it was evident that all the skin flaps

  19. Mycobacterial antigens stimulate rheumatoid mononuclear cells to cartilage proteoglycan depletion

    NARCIS (Netherlands)

    Wilbrink, B.; Bijlsma, J. W.; Huber-Bruning, O.; van Roy, J. L.; den Otter, W.; van Eden, W.

    1990-01-01

    In a coculture with porcine articular cartilage explants unstimulated blood mononuclear cells (BMC) from patients with rheumatoid arthritis (RA), but not from healthy controls, induced proteoglycan depletion of dead cartilage. Specific stimulation of the RA BMC with Mycobacterium tuberculosis (MT),

  20. Can Glucosamine Supplements Protect My Knee Cartilage from Osteoarthritis?

    Science.gov (United States)

    ... cartilage in osteoarthritis? Can glucosamine supplements protect my knee cartilage from osteoarthritis? Answers from Brent A. Bauer, M.D. Study results on this question have been mixed, with some suggesting possible ...

  1. Repair of osteochondral defects in rabbits with ectopically produced cartilage

    NARCIS (Netherlands)

    Emans, PJ; Hulsbosch, M; Wetzels, GMR; Bulstra, SK; Kuijer, R

    2005-01-01

    Cartilage has poor regenerative capacity. Donor site morbidity and interference with joint homeostasis should be considered when applying the autologous chondrocyte transplantation technique. The use of ectopically produced cartilage, derived from periosteum, might be a novel method to heal

  2. Properties of Cartilage on Micro- and Nanolevel

    Directory of Open Access Journals (Sweden)

    Sergei A. Chizhik

    2010-01-01

    Full Text Available Results of investigation of the elastic modulus for cartilage tissue using a technique of micro- and nanoindentation performed with help of an atomic force microscope are presented. SEM and AFM methods were applied to visualize a topography of surface layers of the entire cartilage and as well as its slices and thus to reveal features of the collagen fibers orientation. The technique used for a quantitative evaluation of the elastic modulus under compression against a ball microindenter (curvature radius - 350 micron and a nanoindenter (30 nm is described. It was shown that the cartilage behavior is highly stabile under the load if the entire composite structure of cartilage tissue is engaged into the deformation process. Tribological characteristics were investigated using the ball indenter oscillated by a tuning fork. Dependence of the friction coefficient from applied loads was obtained that revealed strong influence of an interstitial fluid on friction properties. Friction coefficient of a rat cartilage tissue as 0.08 was obtained using a developed plant prototype for tribological measurements based on the AFM construction.

  3. New Frontiers for Cartilage Repair and Protection.

    Science.gov (United States)

    Zaslav, Kenneth; McAdams, Timothy; Scopp, Jason; Theosadakis, Jason; Mahajan, Vivek; Gobbi, Alberto

    2012-01-01

    Articular cartilage injury is common after athletic injury and remains a difficult treatment conundrum both for the surgeon and athlete. Although recent treatments for damage to articular cartilage have been successful in alleviating symptoms, more durable and complete, long-term articular surface restoration remains the unattained goal. In this article, we look at both new ways to prevent damage to articular surfaces as well as new techniques to recreate biomechanically sound and biochemically true articular surfaces once an athlete injures this surface. This goal should include reproducing hyaline cartilage with a well-integrated and flexible subchondral base and the normal zonal variability in the articular matrix. A number of nonoperative interventions have shown early promise in mitigating cartilage symptoms and in preclinical studies have shown evidence of chondroprotection. These include the use of glucosamine, chondroitin, and other neutraceuticals, viscosupplementation with hyaluronic acid, platelet-rich plasma, and pulsed electromagnetic fields. Newer surgical techniques, some already in clinical study, and others on the horizon offer opportunities to improve the surgical restoration of the hyaline matrix often disrupted in athletic injury. These include new scaffolds, single-stage cell techniques, the use of mesenchymal stem cells, and gene therapy. Although many of these treatments are in the preclinical and early clinical study phase, they offer the promise of better options to mitigate the sequelae of athletically induced cartilage.

  4. Magneto-therapy of human joint cartilage.

    Science.gov (United States)

    Wierzcholski, Krzysztof; Miszczak, Andrzej

    2017-01-01

    The topic of the present paper concerns the human joint cartilage therapy performed by the magnetic induction field. There is proved the thesis that the applied magnetic field for concrete cartilage illness should depend on the proper relative and concrete values of applied magnetic induction, intensity as well the time of treatment duration. Additionally, very important are frequencies and amplitudes of magnetic field as well as magnetic permeability of the synovial fluid. The research methods used in this paper include: magnetic induction field produced by a new Polish and German magneto electronic devices for the therapy of human joint cartilage diseases, stationary and movable magnetic applicators, magnetic bandage, ferrofluid injections, author's experience gained in Germany research institutes and practical results after measurements and information from patients. The results of this paper concern concrete parameters of time dependent electro-magnetic field administration during the joint cartilage therapy duration and additionally concern the corollaries which are implied from reading values gained on the magnetic induction devices. The main conclusions obtained in this paper are as follows: Time dependent magnetic induction field increases the dynamic viscosity of movable synovial fluid and decreases symptoms of cartilage illness for concrete intensity of magnetic field and concrete field line architecture. The ferrofluid therapy and phospholipids bilayer simultaneously with the administrated external electromagnetic field, increases the dynamic viscosity of movable synovial fluid.

  5. Rho GTPase protein Cdc42 is critical for postnatal cartilage development

    International Nuclear Information System (INIS)

    Nagahama, Ryo; Yamada, Atsushi; Tanaka, Junichi; Aizawa, Ryo; Suzuki, Dai; Kassai, Hidetoshi; Yamamoto, Matsuo; Mishima, Kenji; Aiba, Atsu; Maki, Koutaro; Kamijo, Ryutaro

    2016-01-01

    Cdc42, a small Rho GTPase family member, has been shown to regulate multiple cellular functions in vitro, including actin cytoskeletal reorganization, cell migration, proliferation, and gene expression. However, its tissue-specific roles in vivo remain largely unknown, especially in postnatal cartilage development, as cartilage-specific Cdc42 inactivated mice die within a few days after birth. In this study, we investigated the physiological functions of Cdc42 during cartilage development after birth using tamoxifen-induced cartilage-specific inactivated Cdc42 conditional knockout (Cdc42 "f"l"/"f"l; Col2-CreERT) mice, which were generated by crossing Cdc42 flox mice (Cdc42 "f"l"/"f"l) with tamoxifen-induced type II collagen (Col2) Cre transgenic mice using a Cre/loxP system. The gross morphology of the Cdc42 cKO mice was shorter limbs and body, as well as reduced body weight as compared with the controls. In addition, severe defects were found in growth plate chondrocytes of the long bones, characterized by a shorter proliferating zone (PZ), wider hypertrophic zone (HZ), and loss of columnar organization of proliferating chondrocytes, resulting in delayed endochondral bone formation associated with abnormal bone growth. Our findings demonstrate the importance of Cdc42 for cartilage development during both embryonic and postnatal stages. - Highlights: • Tamoxifen-induced cartilage specific inactivated Cdc42 mutant mice were generated. • Cdc42 mutant mice were shorter limbs and body. • Severe defects were found in growth plate chondrocytes.

  6. Priority of surgical treatment techniques of full cartilage defects of knee joint

    Directory of Open Access Journals (Sweden)

    Андрій Вікторович Літовченко

    2015-10-01

    Full Text Available Aim. Surgical treatment of chondromalacia of knee joint cartilage is an actual problem of the modern orthopedics because the means of conservative therapy can be realized at an initial stage only and almost exhausted at the further ones. Imperfections of palliative surgical techniques are the short-term clinical effect and pathogenetic baselessness because surgical procedure is not directed on reparation of cartilaginous tissue. For today there are a lot of transplantation techniques that are used for biological renewal of articular surface with formation of hyaline or at least hyaline-like cartilage. The deep forage of cartilage defect bottom to the medullary canal is a perspective and priority technique.Methods. The results of treatment of 61 patients with chondromalacia of knee joint of 3-4 degree according to R. Outerbridge are the base of the work. 20 patients of every group underwent microfracturization of cartilage defect bottom and subchondral forage of defect zone. 21 patients underwent the deep forage of defect zone of knee joint according to an offered technique.Result. The results of treatment with microfracturization, subchondral forage and deep forage of defect zone indicate the more strong clinical effect especially in the last clinical group where good and satisfactory results ratios in the term of observation 18 and 24 month remain stable.Conclusions. Deep forage of cartilage defects zone is the most adequate reparative technique of the surgical treatment of local knee joint cartilage defects. Owing to this procedure the number of cells of reparative chondrogenesis predecessors is realized

  7. In vivo cyclic compression causes cartilage degeneration and subchondral bone changes in mouse tibiae.

    Science.gov (United States)

    Ko, Frank C; Dragomir, Cecilia; Plumb, Darren A; Goldring, Steven R; Wright, Timothy M; Goldring, Mary B; van der Meulen, Marjolein C H

    2013-06-01

    Alterations in the mechanical loading environment in joints may have both beneficial and detrimental effects on articular cartilage and subchondral bone, and may subsequently influence the development of osteoarthritis (OA). Using an in vivo tibial loading model, the aim of this study was to investigate the adaptive responses of cartilage and bone to mechanical loading and to assess the influence of load level and duration. Cyclic compression at peak loads of 4.5N and 9.0N was applied to the left tibial knee joint of adult (26-week-old) C57BL/6 male mice for 1, 2, and 6 weeks. Only 9.0N loading was utilized in young (10-week-old) mice. Changes in articular cartilage and subchondral bone were analyzed by histology and micro-computed tomography. Mechanical loading promoted cartilage damage in both age groups of mice, and the severity of joint damage increased with longer duration of loading. Metaphyseal bone mass increased with loading in young mice, but not in adult mice, whereas epiphyseal cancellous bone mass decreased with loading in both young and adult mice. In both age groups, articular cartilage thickness decreased, and subchondral cortical bone thickness increased in the posterior tibial plateau. Mice in both age groups developed periarticular osteophytes at the tibial plateau in response to the 9.0N load, but no osteophyte formation occurred in adult mice subjected to 4.5N peak loading. This noninvasive loading model permits dissection of temporal and topographic changes in cartilage and bone and will enable investigation of the efficacy of treatment interventions targeting joint biomechanics or biologic events that promote OA onset and progression. Copyright © 2013 by the American College of Rheumatology.

  8. Coordinate and synergistic effects of extensive treadmill exercise and ovariectomy on articular cartilage degeneration.

    Science.gov (United States)

    Miyatake, Kazumasa; Muneta, Takeshi; Ojima, Miyoko; Yamada, Jun; Matsukura, Yu; Abula, Kahaer; Sekiya, Ichiro; Tsuji, Kunikazu

    2016-05-31

    Although osteoarthritis (OA) is a multifactorial disease, little has been reported regarding the cooperative interaction among these factors on cartilage metabolism. Here we examined the synergistic effect of ovariectomy (OVX) and excessive mechanical stress (forced running) on articular cartilage homeostasis in a mouse model resembling a human postmenopausal condition. Mice were randomly divided into four groups, I: Sham, II: OVX, III: Sham and forced running (60 km in 6 weeks), and IV: OVX and forced running. Histological and immunohistochemical analyses were performed to evaluate the degeneration of articular cartilage and synovitis in the knee joint. Morphological changes of subchondral bone were analyzed by micro-CT. Micro-CT analyses showed significant loss of metaphyseal trabecular bone volume/tissue volume (BV/TV) after OVX as described previously. Forced running increased the trabecular BV/TV in all mice. In the epiphyseal region, no visible alteration in bone morphology or osteophyte formation was observed in any of the four groups. Histological analysis revealed that OVX or forced running respectively had subtle effects on cartilage degeneration. However, the combination of OVX and forced running synergistically enhanced synovitis and articular cartilage degeneration. Although morphological changes in chondrocytes were observed during OA initiation, no signs of bone marrow edema were observed in any of the four experimental groups. We report the coordinate and synergistic effects of extensive treadmill exercise and ovariectomy on articular cartilage degeneration. Since no surgical procedure was performed on the knee joint directly in this model, this model is useful in addressing the molecular pathogenesis of naturally occurring OA.

  9. In vivo cyclic compression causes cartilage degeneration and subchondral bone changes in mouse tibiae

    Science.gov (United States)

    Ko, Frank C.; Dragomir, Cecilia; Plumb, Darren A.; Goldring, Steven R.; Wright, Timothy M.; Goldring, Mary B.; van der Meulen, Marjolein C.H.

    2013-01-01

    Objectives Alterations in the mechanical loading environment in joints may have both beneficial and detrimental effects on articular cartilage and subchondral bone and subsequently influence the development of osteoarthritis (OA). We used an in vivo tibial loading model to investigate the adaptive responses of cartilage and bone to mechanical loading and to assess the influence of load level and duration. Methods We applied cyclic compression of 4.5 and 9.0N peak loads to the left tibia via the knee joint of adult (26-week-old) C57Bl/6 male mice for 1, 2, and 6 weeks. Only 9.0N loading was utilized in young (10-week-old) mice. The changes in articular cartilage and subchondral bone were analyzed by histology and microcomputed tomography. Results Loading promoted cartilage damage in both age groups, with increased damage severity dependent upon the duration of loading. Metaphyseal bone mass increased in the young mice, but not in the adult mice, whereas epiphyseal cancellous bone mass decreased with loading in both young and adult mice. Articular cartilage thickness decreased, and subchondral cortical bone thickness increased in the posterior tibial plateau in both age groups. Both age groups developed periarticular osteophytes at the tibial plateau in response to the 9.0N load, but no osteophyte formation occurred in adult mice subjected to 4.5N peak loading. Conclusion This non-invasive loading model permits dissection of temporal and topographical changes in cartilage and bone and will enable investigation of the efficacy of treatment interventions targeting joint biomechanics or biological events that promote OA onset and progression. PMID:23436303

  10. Rho GTPase protein Cdc42 is critical for postnatal cartilage development

    Energy Technology Data Exchange (ETDEWEB)

    Nagahama, Ryo [Department of Biochemistry, School of Dentistry, Showa University, Tokyo (Japan); Department of Orthodontics, School of Dentistry, Showa University, Tokyo (Japan); Yamada, Atsushi, E-mail: yamadaa@dent.showa-u.ac.jp [Department of Biochemistry, School of Dentistry, Showa University, Tokyo (Japan); Tanaka, Junichi [Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo (Japan); Aizawa, Ryo [Department of Periodontology, School of Dentistry, Showa University, Tokyo (Japan); Suzuki, Dai [Department of Biochemistry, School of Dentistry, Showa University, Tokyo (Japan); Kassai, Hidetoshi [Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo (Japan); Yamamoto, Matsuo [Department of Periodontology, School of Dentistry, Showa University, Tokyo (Japan); Mishima, Kenji [Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo (Japan); Aiba, Atsu [Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo (Japan); Maki, Koutaro [Department of Orthodontics, School of Dentistry, Showa University, Tokyo (Japan); Kamijo, Ryutaro [Department of Biochemistry, School of Dentistry, Showa University, Tokyo (Japan)

    2016-02-19

    Cdc42, a small Rho GTPase family member, has been shown to regulate multiple cellular functions in vitro, including actin cytoskeletal reorganization, cell migration, proliferation, and gene expression. However, its tissue-specific roles in vivo remain largely unknown, especially in postnatal cartilage development, as cartilage-specific Cdc42 inactivated mice die within a few days after birth. In this study, we investigated the physiological functions of Cdc42 during cartilage development after birth using tamoxifen-induced cartilage-specific inactivated Cdc42 conditional knockout (Cdc42 {sup fl/fl}; Col2-CreERT) mice, which were generated by crossing Cdc42 flox mice (Cdc42 {sup fl/fl}) with tamoxifen-induced type II collagen (Col2) Cre transgenic mice using a Cre/loxP system. The gross morphology of the Cdc42 cKO mice was shorter limbs and body, as well as reduced body weight as compared with the controls. In addition, severe defects were found in growth plate chondrocytes of the long bones, characterized by a shorter proliferating zone (PZ), wider hypertrophic zone (HZ), and loss of columnar organization of proliferating chondrocytes, resulting in delayed endochondral bone formation associated with abnormal bone growth. Our findings demonstrate the importance of Cdc42 for cartilage development during both embryonic and postnatal stages. - Highlights: • Tamoxifen-induced cartilage specific inactivated Cdc42 mutant mice were generated. • Cdc42 mutant mice were shorter limbs and body. • Severe defects were found in growth plate chondrocytes.

  11. "Changes in cartilage of rats after treatment with Quinolone and in Magnesium-deficient diet "

    Directory of Open Access Journals (Sweden)

    Shakibaei M

    2002-07-01

    Full Text Available Ultrastructural changes in immature articular carilage were studied after treatment of 5-weeks-old rats with ofloxacin, a fluoroquinolone, and in magnesium deficiency.We concluded that quinolone-induced arthropathy is probably due to chelation of functionally available magnesium in joint cartilage as magnesium deficiency in joint cartilage could impair chondrocyte-matrix- interaction which is mediated by cation-dependent integrin-receptors of the β1-subfamily. With immuno-histochemical methods using monoclonal and polyclonal antibodies we showed that B1 integrins were expressed in rat joint cartilage. Joint cartilage lesions were detected in ofloxacin-treated and magnesium-deficient rats. Lesions were more pronounced in the quinolone-treated group. Expression of several integrins was reduced in the vicinity of lesions after oral treatment with 2×600 mg ofloxacin/kg body wt for one day. Gross-structural lesions (e.g. cleft formation, unmasked collagen fibres in magnesium deficient rats were very similar but changes in intergrin expression were less pronounced. Alterations observed on the ultrastructural level showed striking similarities in magnesium-deficient rats and in rats treated with single doses of 600 mg ofloxacin per kg body wt.Typical observation were: bundle shaped, electron-dense aggregates on the surface and in the cytoplasm of chondrocytes, detachement of the cell membrance from the matrix and necrotic chondrocytes, reduced synthesis and/or reduced of extracellular matrix and swelling of cell organelles such as mitochondria.The results of this study confirm our previously reported finding that quinolone-induced arthropathy probably is caued by a reduction of functionally available magnesium (ionized Mg2+ in cartilage. Furthermore, they provide a basis for aimed studies with human cartilage samples from quinolone-treated patients which might be available postmortal or after hip replacement surgery

  12. Repair of Cartilage injuries using in vitro engineered 3D cartilage tissue- Preliminary Results of Our Animal Studies

    Directory of Open Access Journals (Sweden)

    Arumugam S

    2011-01-01

    Full Text Available Introduction: The cartilage injuries demand novel therapeutic approaches as the success rates of the current conventional strategies for the repair of injured articular cartilages are not that encouraging. Earlier we have reported that the Thermoreversible Gelation Polymer (TGP is an ideal scaffold for human chondrocyte expansion in vitro. In this study, we report the preliminary results of the in vitro expansion, characterization and experimental in vivo transplantation of chondrocytes in a rabbit model of cartilage injury Materials & Methods: Nine rabbits were included in this study scheduled for two years, after approval by the ethics committee. In the first animal, Chondrocytes were isolated from the weight bearing area of patellar groove in the left hindlimb and cultured in TGP Scaffold and maintained at 37°C in 5% carbon dioxide incubator for 64 days without growth factors. Then the TGP-Chondrocyte construct was transplanted into an experimental defect created in the knee of the right forelimb of the same rabbit. After a period of 10 weeks, a biopsy was taken from the transplanted region and subjected to morphological analysis, characterization by histopathology (H&E stain and Immunohistochemistry (S-100 staining.Results: The chondrocytes in the 3D TGP culture had round to oval shaped morphology without any de-differentiation which is otherwise observed in Conventional 2D cultures. A macroscopic structure which resembled cartilage was appreciated in the TGP construct in vitro after 64 days which was then transplanted to the rabbit. The H&E and Immunohistochemistry studies confirmed the presence of chondrocytes in the biopsy tissue. Conclusion: Based on the results, we conclude that the TGP significantly supports the in vitro expansion of chondrocytes for a longer period and the 3D culture using TGP preserves the phenotype of the articular chondrocytes. The tissue thus grown when implanted with the TGP has engrafted well without any

  13. Constructability and maintainability

    International Nuclear Information System (INIS)

    Hart, R.S.

    1985-01-01

    A set of principles for minimizing the construction schedule was established at the outset of the CANDU 300 programme. Consideration of these principles and other factors led to the development of the unique CANDU 300 station layout. The paper discusses the CANDU 300 station layout and construction methods. In summary, the station layout provides 360 deg. construction access to all buildings, separation of nuclear and non-nuclear systems, precise and minimal physical interfaces between buildings, accommodation of many contractors and construction activities without interference, and maximum flexibility in terms of constructional, financial and supply arrangements. The CANDU 300 further employs modularization, shop fabrication and advanced instrumentation (multiplexers, remote processors, data highways) to minimize construction time. Many of the CANDU 300 features that enhance constructability also contribute to maintainability. These include the 360 deg. access to all principal buildings, the uncluttered and spacious building layouts, the simplification of systems and the high level of modularization. The CANDU 300 has also been designed to facilitate the replacement of all key components, thereby offering an essentially unlimited station life. A prime example is a reduction in the fuel channel inlet end-fitting diameter such that the fuel channels can be shop assembled and easily replaced after the initial 40 years of operation, without an extended unit outage. Maintainability within the reactor building has been given particular attention in the CANDU 300 design; key features of other CANDU reactors (the ability to replace a heat transport system pump motor at power, for example) have been incorporated, while accessibility and maintainability of all systems and components have been enhanced. These and other aspects of maintainability are discussed. (author)

  14. Reliability and maintainability

    International Nuclear Information System (INIS)

    1994-01-01

    Several communications in this conference are concerned with nuclear plant reliability and maintainability; their titles are: maintenance optimization of stand-by Diesels of 900 MW nuclear power plants; CLAIRE: an event-based simulation tool for software testing; reliability as one important issue within the periodic safety review of nuclear power plants; design of nuclear building ventilation by the means of functional analysis; operation characteristic analysis for a power industry plant park, as a function of influence parameters

  15. Preparation and characterization of a decellularized cartilage scaffold for ear cartilage reconstruction

    International Nuclear Information System (INIS)

    Utomo, Lizette; Pleumeekers, Mieke M; Van Osch, Gerjo J V M; Nimeskern, Luc; Stok, Kathryn S; Nürnberger, Sylvia; Hildner, Florian

    2015-01-01

    Scaffolds are widely used to reconstruct cartilage. Yet, the fabrication of a scaffold with a highly organized microenvironment that closely resembles native cartilage remains a major challenge. Scaffolds derived from acellular extracellular matrices are able to provide such a microenvironment. Currently, no report specifically on decellularization of full thickness ear cartilage has been published. In this study, decellularized ear cartilage scaffolds were prepared and extensively characterized. Cartilage decellularization was optimized to remove cells and cell remnants from elastic cartilage. Following removal of nuclear material, the obtained scaffolds retained their native collagen and elastin contents as well as their architecture and shape. High magnification scanning electron microscopy showed no obvious difference in matrix density after decellularization. However, glycosaminoglycan content was significantly reduced, resulting in a loss of viscoelastic properties. Additionally, in contact with the scaffolds, human bone-marrow-derived mesenchymal stem cells remained viable and are able to differentiate toward the chondrogenic lineage when cultured in vitro. These results, including the ability to decellularize whole human ears, highlight the clinical potential of decellularization as an improved cartilage reconstruction strategy. (paper)

  16. Tissue-Derived Extracellular Matrix Bioscaffolds: Emerging Applications in Cartilage and Meniscus Repair.

    Science.gov (United States)

    Monibi, Farrah A; Cook, James L

    2017-08-01

    Musculoskeletal injuries are a common problem in orthopedic practice. Given the long-term consequences of unaddressed cartilage and meniscal pathology, a number of treatments have been attempted to stimulate repair or to replace the injured tissue. Despite advances in orthopedic surgery, effective treatments for cartilage and meniscus injuries remain a significant clinical challenge. Tissue engineering is a developing field that aims to regenerate injured tissues with a combination of cells, scaffolds, and signals. Many natural and synthetic scaffold materials have been developed and tested for the repair and restoration of a number of musculoskeletal tissues. Among these, biological scaffolds derived from cell and tissue-derived extracellular matrix (ECM) have shown great promise in tissue engineering given the critical role of the ECM for maintaining the biological and biomechanical properties, structure, and function of native tissues. This review article presents emerging applications for tissue-derived ECM scaffolds in cartilage and meniscus repair. We examine normal ECM composition and the current and future methods for potential treatment of articular cartilage and meniscal defects with decellularized scaffolds.

  17. MRI evaluation of acute articular cartilage injury of knee

    International Nuclear Information System (INIS)

    Zhang Jun; Wu Zhenhua; Fan Guoguang; Pan Shinong; Guo Qiyong

    2003-01-01

    Objective: To study the MRI manifestation of acute articular cartilage injury of knee for evaluating the extension and degree of the injury and guiding treatment. Methods: MRI of 34 patients with acute articular cartilage injury of knee within one day to fifteen days confirmed by arthroscopy and arthrotomy was reviewed and analyzed, with emphasis on articular cartilage and subchondral lesion. And every manifestation on MRI and that of arthroscopy and operation was compared. Results: The articular cartilage injury was diagnosed on MRI in 29 of 34 cases. Cartilage signal changes were found only in 4. The changes of cartilage shape were variable. Thinning of focal cartilage was showed in 3, osteochondral impaction in 3, creases of cartilage in 3, disrupted cartilage with fissuring in 13, cracks cartilage in 2, and cracks cartilage with displaced fragment in 1. Bone bruise and occult fracture were found only on MRI. Conclusion: The assessment of MRI and arthroscopy in acute articular cartilage injury are consistent. Combined with arthroscopy, MRI can succeed in assessing the extension and degree of acute articular injury and allowing treatment planning

  18. Spectrocolorimetric evaluation of repaired articular cartilage after a microfracture

    Directory of Open Access Journals (Sweden)

    Dohi Yoshihiro

    2008-09-01

    Full Text Available Abstract Background In clinical practice, surgeons differentiate color changes in repaired cartilage compared with surrounding intact cartilage, but cannot quantify these color changes. Objective assessments are required. A spectrocolorimeter was used to evaluate whether intact and repaired cartilage can be quantified. Findings We investigated the use of a spectrocolorimeter and the application of two color models (L* a* b* colorimetric system and spectral reflectance distribution to describe and quantify articular cartilage. In this study, we measured the colors of intact and repaired cartilage after a microfracture. Histologically, the repaired cartilage was a mixture of fibrocartilage and hyaline cartilage. In the L* a* b* colorimetric system, the L* and a* values recovered to close to the values of intact cartilage, whereas the b* value decreased over time after the operation. Regarding the spectral reflectance distribution at 12 weeks after the operation, the repaired cartilage had a higher spectral reflectance ratio than intact cartilage between wavelengths of 400 to 470 nm. Conclusion This study reports the first results regarding the relationship between spectrocolorimetric evaluation and the histological findings of repair cartilage after a microfracture. Our findings demonstrate the ability of spectrocolorimetric measurement to judge the repair cartilage after treatment on the basis of objective data such as the L*, a* and b* values and the SRP as a coincidence index of the spectral reflectance curve.

  19. Stem Cells and Gene Therapy for Cartilage Repair

    OpenAIRE

    Longo, Umile Giuseppe; Petrillo, Stefano; Franceschetti, Edoardo; Berton, Alessandra; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    Cartilage defects represent a common problem in orthopaedic practice. Predisposing factors include traumas, inflammatory conditions, and biomechanics alterations. Conservative management of cartilage defects often fails, and patients with this lesions may need surgical intervention. Several treatment strategies have been proposed, although only surgery has been proved to be predictably effective. Usually, in focal cartilage defects without a stable fibrocartilaginous repair tissue formed, sur...

  20. Joint homeostasis in tissue engineering for cartilage repair

    NARCIS (Netherlands)

    Saris, D.B.F.

    2002-01-01

    Traumatic joint damage, articular cartilage and the research into methods of restoring the articulation are not new topics of interest. For centuries, clinicians have recognized the importance of cartilage damage and sought ways of learning about the normal form and function of hyaline cartilage as

  1. Multi-axial mechanical stimulation of tissue engineered cartilage: Review

    Directory of Open Access Journals (Sweden)

    S D Waldman

    2007-04-01

    Full Text Available The development of tissue engineered cartilage is a promising new approach for the repair of damaged or diseased tissue. Since it has proven difficult to generate cartilaginous tissue with properties similar to that of native articular cartilage, several studies have used mechanical stimuli as a means to improve the quantity and quality of the developed tissue. In this study, we have investigated the effect of multi-axial loading applied during in vitro tissue formation to better reflect the physiological forces that chondrocytes are subjected to in vivo. Dynamic combined compression-shear stimulation (5% compression and 5% shear strain amplitudes increased both collagen and proteoglycan synthesis (76 ± 8% and 73 ± 5%, respectively over the static (unstimulated controls. When this multi-axial loading condition was applied to the chondrocyte cultures over a four week period, there were significant improvements in both extracellular matrix (ECM accumulation and the mechanical properties of the in vitro-formed tissue (3-fold increase in compressive modulus and 1.75-fold increase in shear modulus. Stimulated tissues were also significantly thinner than the static controls (19% reduction suggesting that there was a degree of ECM consolidation as a result of long-term multi-axial loading. This study demonstrated that stimulation by multi-axial forces can improve the quality of the in vitro-formed tissue, but additional studies are required to further optimize the conditions to favour improved biochemical and mechanical properties of the developed tissue.

  2. Seamless service: maintaining momentum.

    Science.gov (United States)

    Grinstead, N; Timoney, R

    1994-01-01

    Describes the process used by the Mater Infirmorum Hospital in Belfast in 1992-1994 to achieve high quality care (Seamless Service), motivate staff to deliver and measure performance. Aims of the project include focusing the organization on the customer, improving teamwork and motivation at all levels. After comprehensive data collection from GPs, patients and staff management forums developed a full TQM strategy to gain support and maintain momentum including innovative staff events (every staff member was given the opportunity to attend) where multilevel, multidisciplinary workshops enabled staff to design customer care standards, develop teams and lead customer-driven change.

  3. Gestures maintain spatial imagery.

    Science.gov (United States)

    Wesp, R; Hesse, J; Keutmann, D; Wheaton, K

    2001-01-01

    Recent theories suggest alternatives to the commonly held belief that the sole role of gestures is to communicate meaning directly to listeners. Evidence suggests that gestures may serve a cognitive function for speakers, possibly acting as lexical primes. We observed that participants gestured more often when describing a picture from memory than when the picture was present and that gestures were not influenced by manipulating eye contact of a listener. We argue that spatial imagery serves a short-term memory function during lexical search and that gestures may help maintain spatial images. When spatial imagery is not necessary, as in conditions of direct visual stimulation, reliance on gestures is reduced or eliminated.

  4. In vitro and in vivo evaluation of chitosan–gelatin scaffolds for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Whu, Shu Wen [Department of Orthopaedic Surgery, Chang Gung Memorial Hospital at Keelung, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Hung, Kun-Che; Hsieh, Kuo-Huang [Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan (China); Chen, Chih-Hwa [Department of Orthopaedic Surgery, Chang Gung Memorial Hospital at Keelung, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Tsai, Ching-Lin, E-mail: tsaicl@ntuh.gov.tw [Department of Orthopaedics, National Taiwan University Hospital, Taipei, Taiwan (China); Hsu, Shan-hui, E-mail: shhsu@ntu.edu.tw [Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan (China)

    2013-07-01

    Chitosan–gelatin polyelectrolyte complexes were fabricated and evaluated as tissue engineering scaffolds for cartilage regeneration in vitro and in vivo. The crosslinker for the gelatin component was selected among glutaraldehyde, bisepoxy, and a water-soluble carbodiimide (WSC) based upon the proliferation of chondrocytes on the crosslinked gelatin. WSC was found to be the most suitable crosslinker. Complex scaffolds made from chitosan and gelatin with a component ratio equal to one possessed the proper degradation rate and mechanical stability in vitro. Chondrocytes were able to proliferate well and secrete abundant extracellular matrix in the chitosan–gelatin (1:1) complex scaffolds crosslinked by WSC (C1G1{sub WSC}) compared to the non-crosslinked scaffolds. Implantation of chondrocytes-seeded scaffolds in the defects of rabbit articular cartilage confirmed that C1G1{sub WSC} promoted the cartilage regeneration. The neotissue formed the histological feature of tide line and lacunae in 6.5 months. The amount of glycosaminoglycans in C1G1{sub WSC} constructs (0.187 ± 0.095 μg/mg tissue) harvested from the animals after 6.5 months was 14 wt.% of that in normal cartilage (1.329 ± 0.660 μg/mg tissue). The average compressive modulus of regenerated tissue at 6.5 months was about 0.539 MPa, which approached to that of normal cartilage (0.735 MPa), while that in the blank control (3.881 MPa) was much higher and typical for fibrous tissue. Type II collagen expression in C1G1{sub WSC} constructs was similarly intense as that in the normal hyaline cartilage. According to the above results, the use of C1G1{sub WSC} scaffolds may enhance the cartilage regeneration in vitro and in vivo. - Highlights: • We developed a chitosan–gelatin scaffold crosslinked with carbodiimide. • Neocartilage formation was more evident in crosslinked vs. non-crosslinked scaffolds. • Histological features of tide line and lacunae were observed in vivo at 6.5 months. • Compressive

  5. Overexpression of hsa-miR-148a promotes cartilage production and inhibits cartilage degradation by osteoarthritic chondrocytes

    NARCIS (Netherlands)

    Vonk, L A; Kragten, A H M; Dhert, W J A; Saris, D B F; Creemers, L B

    OBJECTIVE: Hsa-miR-148a expression is decreased in Osteoarthritis (OA) cartilage, but its functional role in cartilage has never been studied. Therefore, our aim was to investigate the effects of overexpressing hsa-miR-148a on cartilage metabolism of OA chondrocytes. DESIGN: OA chondrocytes were

  6. Overexpression of hsa-miR-148a promotes cartilage production and inhibits cartilage degradation by osteoarthritic chondrocytes

    NARCIS (Netherlands)

    Vonk, Lucienne A.; Kragten, Angela H.M.; Dhert, Wouter J.; Saris, Daniël B.F.; Creemers, Laura B.

    2014-01-01

    Objective Hsa-miR-148a expression is decreased in OA cartilage, but its functional role in cartilage has never been studied. Therefore, our aim was to investigate the effects of overexpressing hsa-miR-148a on cartilage metabolism of OA chondrocytes. Design OA chondrocytes were transfected with a

  7. Improved healing of transected rabbit Achilles tendon after a single injection of cartilage-derived morphogenetic protein-2.

    Science.gov (United States)

    Forslund, Carina; Aspenberg, Per

    2003-01-01

    Achilles tendon ruptures in humans might be treated more efficiently with the help of a growth factor. Cartilage-derived morphogenetic protein-2 has been shown to induce formation of tendon-like tissue. Cartilage-derived morphogenetic protein-2 has a positive effect on mechanical parameters for tendon healing in a rabbit model with Achilles tendon transection. Controlled laboratory study. The right Achilles tendon of 40 rabbits was transected without tendon suture. Cartilage-derived morphogenetic protein-2 (10 micro g) or vehicle control (acetate buffer) was injected locally 2 hours postoperatively. All tendons were tested biomechanically at 8 and 14 days, and treated tendons were histologically and radiographically evaluated at 56 days. At 14 days, both failure load and stiffness of treated tendons were increased by 35%. The treated tendons had significantly larger callus size at 8 and 14 days. Histologic and radiographic examination showed no signs of ossification in the treated tendons after 56 days. A single injection of cartilage-derived morphogenetic protein-2 led to a stronger and stiffer tendon callus than that in the controls without inducing bone formation. Similar results from a larger animal model would suggest a possible future use of cartilage-derived morphogenetic protein-2 in the treatment of human Achilles tendon ruptures.

  8. Proteinase-activated receptor 2 modulates OA-related pain, cartilage and bone pathology.

    Science.gov (United States)

    Huesa, Carmen; Ortiz, Ana C; Dunning, Lynette; McGavin, Laura; Bennett, Louise; McIntosh, Kathryn; Crilly, Anne; Kurowska-Stolarska, Mariola; Plevin, Robin; van 't Hof, Rob J; Rowan, Andrew D; McInnes, Iain B; Goodyear, Carl S; Lockhart, John C; Ferrell, William R

    2016-11-01

    Proteinase-activated receptor 2 (PAR2) deficiency protects against cartilage degradation in experimental osteoarthritis (OA). The wider impact of this pathway upon OA-associated pathologies such as osteophyte formation and pain is unknown. Herein, we investigated early temporal bone and cartilage changes in experimental OA in order to further elucidate the role of PAR2 in OA pathogenesis. OA was induced in wild-type (WT) and PAR2-deficient (PAR2 -/- ) mice by destabilisation of the medial meniscus (DMM). Inflammation, cartilage degradation and bone changes were monitored using histology and microCT. In gene rescue experiments, PAR2 -/- mice were intra-articularly injected with human PAR2 (hPAR2)-expressing adenovirus. Dynamic weight bearing was used as a surrogate of OA-related pain. Osteophytes formed within 7 days post-DMM in WT mice but osteosclerosis was only evident from 14 days post induction. Importantly, PAR2 was expressed in the proliferative/hypertrophic chondrocytes present within osteophytes. In PAR2 -/- mice, osteophytes developed significantly less frequently but, when present, were smaller and of greater density; no osteosclerosis was observed in these mice up to day 28. The pattern of weight bearing was altered in PAR2 -/- mice, suggesting reduced pain perception. The expression of hPAR2 in PAR2 -/- mice recapitulated osteophyte formation and cartilage damage similar to that observed in WT mice. However, osteosclerosis was absent, consistent with lack of hPAR2 expression in subchondral bone. This study clearly demonstrates PAR2 plays a critical role, via chondrocytes, in osteophyte development and subchondral bone changes, which occur prior to PAR2-mediated cartilage damage. The latter likely occurs independently of OA-related bone changes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  9. Proteinase-activated receptor 2 modulates OA-related pain, cartilage and bone pathology

    Science.gov (United States)

    Huesa, Carmen; Ortiz, Ana C; Dunning, Lynette; McGavin, Laura; Bennett, Louise; McIntosh, Kathryn; Crilly, Anne; Kurowska-Stolarska, Mariola; Plevin, Robin; van ‘t Hof, Rob J; Rowan, Andrew D; McInnes, Iain B; Goodyear, Carl S; Lockhart, John C; Ferrell, William R

    2016-01-01

    Objective Proteinase-activated receptor 2 (PAR2) deficiency protects against cartilage degradation in experimental osteoarthritis (OA). The wider impact of this pathway upon OA-associated pathologies such as osteophyte formation and pain is unknown. Herein, we investigated early temporal bone and cartilage changes in experimental OA in order to further elucidate the role of PAR2 in OA pathogenesis. Methods OA was induced in wild-type (WT) and PAR2-deficient (PAR2−/−) mice by destabilisation of the medial meniscus (DMM). Inflammation, cartilage degradation and bone changes were monitored using histology and microCT. In gene rescue experiments, PAR2−/− mice were intra-articularly injected with human PAR2 (hPAR2)-expressing adenovirus. Dynamic weight bearing was used as a surrogate of OA-related pain. Results Osteophytes formed within 7 days post-DMM in WT mice but osteosclerosis was only evident from 14 days post induction. Importantly, PAR2 was expressed in the proliferative/hypertrophic chondrocytes present within osteophytes. In PAR2−/− mice, osteophytes developed significantly less frequently but, when present, were smaller and of greater density; no osteosclerosis was observed in these mice up to day 28. The pattern of weight bearing was altered in PAR2−/− mice, suggesting reduced pain perception. The expression of hPAR2 in PAR2−/− mice recapitulated osteophyte formation and cartilage damage similar to that observed in WT mice. However, osteosclerosis was absent, consistent with lack of hPAR2 expression in subchondral bone. Conclusions This study clearly demonstrates PAR2 plays a critical role, via chondrocytes, in osteophyte development and subchondral bone changes, which occur prior to PAR2-mediated cartilage damage. The latter likely occurs independently of OA-related bone changes. PMID:26698846

  10. Remodelling of human osteoarthritic cartilage by FGF-2, alone or combined with Sox9 via rAAV gene transfer.

    Science.gov (United States)

    Cucchiarini, Magali; Terwilliger, Ernest F; Kohn, Dieter; Madry, Henning

    2009-08-01

    Compensating for the loss of extracellular cartilage matrix, as well as counteracting the alterations of the chondrocyte phenotype in osteoarthritis are of key importance to develop effective therapeutic strategies against this disorder. In the present study, we analysed the benefits of applying a potent gene combination to remodel human osteoarthritic (OA) cartilage. We employed the promising recombinant adeno-associated virus (rAAV) vector to deliver the mitogenic fibroblast growth factor 2 (FGF-2) factor, alone or simultaneously with the transcription factor Sox9 as a key activator of matrix synthesis, to human normal and OA articular chondrocytes. We evaluated the effects of single (FGF-2) or combined (FGF-2/SOX9) transgene expression upon the regenerative activities of chondrocytes in three dimensional cultures in vitro and in cartilage explants in situ. Single overexpression of FGF-2 enhanced the survival and proliferation of both normal and OA chondrocytes, without stimulating the matrix synthetic processes in the increased pools of cells. The mitogenic properties of FGF-2 were maintained when SOX9 was co-overexpressed and concomitant with an increase in the production of proteoglycans and type-II collagen, suggesting that the transcription factor was capable of counterbalancing the effects of FGF-2 on matrix accumulation. Also important, expression of type-X collagen, a marker of hypertrophy strongly decreased following treatment by the candidate vectors. Most remarkably, the levels of activities achieved in co-treated human OA cartilage were similar to or higher than those observed in normal cartilage. The present findings show that combined expression of candidate factors in OA cartilage can re-establish key features of normal cartilage and prevent the pathological shift of metabolic homeostasis. These data provide further motivation to develop coupled gene transfer approaches via rAAV for the treatment of human OA.

  11. Peptide-Based Materials for Cartilage Tissue Regeneration.

    Science.gov (United States)

    Hastar, Nurcan; Arslan, Elif; Guler, Mustafa O; Tekinay, Ayse B

    2017-01-01

    Cartilaginous tissue requires structural and metabolic support after traumatic or chronic injuries because of its limited capacity for regeneration. However, current techniques for cartilage regeneration are either invasive or ineffective for long-term repair. Developing alternative approaches to regenerate cartilage tissue is needed. Therefore, versatile scaffolds formed by biomaterials are promising tools for cartilage regeneration. Bioactive scaffolds further enhance the utility in a broad range of applications including the treatment of major cartilage defects. This chapter provides an overview of cartilage tissue, tissue defects, and the methods used for regeneration, with emphasis on peptide scaffold materials that can be used to supplement or replace current medical treatment options.

  12. Quantitative magnetic resonance imaging of articular cartilage in osteoarthritis

    Directory of Open Access Journals (Sweden)

    G Blumenkrantz

    2007-05-01

    Full Text Available Magnetic resonance imaging of articular cartilage has recently been recognized as a tool for the characterization of cartilage morphology, biochemistry and function. In this paper advancements in cartilage imaging, computation of cartilage volume and thickness, and measurement of relaxation times (T2 and T1Ρ are presented. In addition, the delayed uptake of Gadolinium DTPA as a marker of proteoglycan depletion is also reviewed. The cross-sectional and longitudinal studies using these imaging techniques show promise for cartilage assessment and for the study of osteoarthritis.

  13. Osteoarthritis: Control of human cartilage hypertrophic differentiation. Research highlight van: Gremlin1, frizzled-related protein, and Dkk-1 are key regulators of human articular cartilage homeostasis

    NARCIS (Netherlands)

    Buckland, J.; Leijten, Jeroen Christianus Hermanus; van Blitterswijk, Clemens; Karperien, Hermanus Bernardus Johannes

    2012-01-01

    Disruption of articular cartilage homeostasis is important in osteoarthritis (OA) pathogenesis, key to which is activation of articular chondrocyte hypertrophic differentiation. Healthy articular cartilage is resistant to hypertrophic differentiation, whereas growth-plate cartilage is destined to

  14. Papain-induced changes in rabbit cartilage; alterations in the chemical structure of the cartilage matrix.

    Science.gov (United States)

    TSALTAS, T T

    1958-10-01

    Some biochemical aspects of the collapse of the rabbit ears produced by the intravenous injection of papain have been studied. A marked depletion of chondromucoprotein (M.C.S.) and a reduction of the S(35) content of cartilage matrix were found to coincide with the gross and histologic changes in the cartilage. At the same time there was a marked increase in the amount of S(35) in the serum and an increase of S(35) and glucuronic acid excreted in the urine. Alteration in the composition of the M.C.S. remaining in the cartilage of the papain-injected animals was detected. The findings indicate that the collapse of the rabbit ears is due to loss of chondromucoprotein from cartilage and reduction of chondroitin sulfate in the chondromucoprotein that remains. All these changes were reversed in recovery.

  15. Role of Cartilage Forming Cells in Regenerative Medicine for Cartilage Repair

    OpenAIRE

    Sun, Lin; Reagan, Michaela R.; Kaplan, David L.

    2010-01-01

    Lin Sun1, Michaela R Reagan2, David L Kaplan1,21Department of Chemical and Biological Engineering, 2Department of Biomedical Engineering, Tufts University, Medford, MA, USAAbstract: Currently, cartilage repair remains a major challenge for researchers and physicians due to its limited healing capacity. Cartilage regeneration requires suitable cells; these must be easily obtained and expanded, able to produce hyaline matrix with proper mechanical properties, and demonstrate sustained integrati...

  16. Recognizing different tissues in human fetal femur cartilage by label-free Raman microspectroscopy

    Science.gov (United States)

    Kunstar, Aliz; Leijten, Jeroen; van Leuveren, Stefan; Hilderink, Janneke; Otto, Cees; van Blitterswijk, Clemens A.; Karperien, Marcel; van Apeldoorn, Aart A.

    2012-11-01

    Traditionally, the composition of bone and cartilage is determined by standard histological methods. We used Raman microscopy, which provides a molecular "fingerprint" of the investigated sample, to detect differences between the zones in human fetal femur cartilage without the need for additional staining or labeling. Raman area scans were made from the (pre)articular cartilage, resting, proliferative, and hypertrophic zones of growth plate and endochondral bone within human fetal femora. Multivariate data analysis was performed on Raman spectral datasets to construct cluster images with corresponding cluster averages. Cluster analysis resulted in detection of individual chondrocyte spectra that could be separated from cartilage extracellular matrix (ECM) spectra and was verified by comparing cluster images with intensity-based Raman images for the deoxyribonucleic acid/ribonucleic acid (DNA/RNA) band. Specific dendrograms were created using Ward's clustering method, and principal component analysis (PCA) was performed with the separated and averaged Raman spectra of cells and ECM of all measured zones. Overall (dis)similarities between measured zones were effectively visualized on the dendrograms and main spectral differences were revealed by PCA allowing for label-free detection of individual cartilaginous zones and for label-free evaluation of proper cartilaginous matrix formation for future tissue engineering and clinical purposes.

  17. Osteogenic Treatment Initiating a Tissue-Engineered Cartilage Template Hypertrophic Transition.

    Science.gov (United States)

    Fu, J Y; Lim, S Y; He, P F; Fan, C J; Wang, D A

    2016-10-01

    Hypertrophic chondrocytes play a critical role in endochondral bone formation as well as the progress of osteoarthritis (OA). An in vitro cartilage hypertrophy model can be used as a platform to study complex molecular mechanisms involved in these processes and screen new drugs for OA. To develop an in vitro cartilage hypertrophy model, we treated a tissue-engineered cartilage template, living hyaline cartilaginous graft (LhCG), with osteogenic medium for hypertrophic induction. In addition, endothelial progenitor cells (EPCs) were seeded onto LhCG constructs to mimic vascular invasion. The results showed that osteogenic treatment significantly inhibited the synthesis of endostatin in LhCG constructs and enhanced expression of hypertrophic marker-collagen type X (Col X) and osteogenic markers, as well as calcium deposition in vitro. Upon subcutaneous implantation, osteogenic medium-treated LhCG constructs all stained positive for Col X and showed significant calcium deposition and blood vessel invasion. Col X staining and calcium deposition were most obvious in osteogenic medium-treated only group, while there was no difference between EPC-seeded and non-seeded group. These results demonstrated that osteogenic treatment was of the primary factor to induce hypertrophic transition of LhCG constructs and this model may contribute to the establishment of an in vitro cartilage hypertrophy model.

  18. Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering

    Science.gov (United States)

    You, Fu; Eames, B. Frank; Chen, Xiongbiao

    2017-01-01

    Extrusion-based bioprinting (EBB) is a rapidly developing technique that has made substantial progress in the fabrication of constructs for cartilage tissue engineering (CTE) over the past decade. With this technique, cell-laden hydrogels or bio-inks have been extruded onto printing stages, layer-by-layer, to form three-dimensional (3D) constructs with varying sizes, shapes, and resolutions. This paper reviews the cell sources and hydrogels that can be used for bio-ink formulations in CTE application. Additionally, this paper discusses the important properties of bio-inks to be applied in the EBB technique, including biocompatibility, printability, as well as mechanical properties. The printability of a bio-ink is associated with the formation of first layer, ink rheological properties, and crosslinking mechanisms. Further, this paper discusses two bioprinting approaches to build up cartilage constructs, i.e., self-supporting hydrogel bioprinting and hybrid bioprinting, along with their applications in fabricating chondral, osteochondral, and zonally organized cartilage regenerative constructs. Lastly, current limitations and future opportunities of EBB in printing cartilage regenerative constructs are reviewed. PMID:28737701

  19. Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Fu You

    2017-07-01

    Full Text Available Extrusion-based bioprinting (EBB is a rapidly developing technique that has made substantial progress in the fabrication of constructs for cartilage tissue engineering (CTE over the past decade. With this technique, cell-laden hydrogels or bio-inks have been extruded onto printing stages, layer-by-layer, to form three-dimensional (3D constructs with varying sizes, shapes, and resolutions. This paper reviews the cell sources and hydrogels that can be used for bio-ink formulations in CTE application. Additionally, this paper discusses the important properties of bio-inks to be applied in the EBB technique, including biocompatibility, printability, as well as mechanical properties. The printability of a bio-ink is associated with the formation of first layer, ink rheological properties, and crosslinking mechanisms. Further, this paper discusses two bioprinting approaches to build up cartilage constructs, i.e., self-supporting hydrogel bioprinting and hybrid bioprinting, along with their applications in fabricating chondral, osteochondral, and zonally organized cartilage regenerative constructs. Lastly, current limitations and future opportunities of EBB in printing cartilage regenerative constructs are reviewed.

  20. Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering.

    Science.gov (United States)

    You, Fu; Eames, B Frank; Chen, Xiongbiao

    2017-07-23

    Extrusion-based bioprinting (EBB) is a rapidly developing technique that has made substantial progress in the fabrication of constructs for cartilage tissue engineering (CTE) over the past decade. With this technique, cell-laden hydrogels or bio-inks have been extruded onto printing stages, layer-by-layer, to form three-dimensional (3D) constructs with varying sizes, shapes, and resolutions. This paper reviews the cell sources and hydrogels that can be used for bio-ink formulations in CTE application. Additionally, this paper discusses the important properties of bio-inks to be applied in the EBB technique, including biocompatibility, printability, as well as mechanical properties. The printability of a bio-ink is associated with the formation of first layer, ink rheological properties, and crosslinking mechanisms. Further, this paper discusses two bioprinting approaches to build up cartilage constructs, i.e., self-supporting hydrogel bioprinting and hybrid bioprinting, along with their applications in fabricating chondral, osteochondral, and zonally organized cartilage regenerative constructs. Lastly, current limitations and future opportunities of EBB in printing cartilage regenerative constructs are reviewed.

  1. Chondrocyte differentiation for auricular cartilage reconstruction using a chitosan based hydrogel.

    Science.gov (United States)

    García-López, J; Garciadiego-Cázares, D; Melgarejo-Ramírez, Y; Sánchez-Sánchez, R; Solís-Arrieta, L; García-Carvajal, Z; Sánchez-Betancourt, J I; Ibarra, C; Luna-Bárcenas, G; Velasquillo, C

    2015-12-01

    Tissue engineering with the use of biodegradable and biocompatible scaffolds is an interesting option for ear repair. Chitosan-Polyvinyl alcohol-Epichlorohydrine hydrogel (CS-PVA-ECH) is biocompatible and displays appropriate mechanical properties to be used as a scaffold. The present work, studies the potential of CS-PVA-ECH scaffolds seeded with chondrocytes to develop elastic cartilage engineered-neotissues. Chondrocytes isolated from rabbit and swine elastic cartilage were independently cultured onto CS-PVA-ECH scaffolds for 20 days to form the appropriate constructs. Then, in vitro cell viability and morphology were evaluated by calcein AM and EthD-1 assays and Scanning Electron Microscopy (SEM) respectively, and the constructs were implanted in nu/nu mice for four months, in order to evaluate the neotissue formation. Histological analysis of the formed neotissues was performed by Safranin O, Toluidine blue (GAG's), Verhoeff-Van Gieson (elastic fibers), Masson's trichrome (collagen) and Von Kossa (Calcium salts) stains and SEM. Results indicate appropriate cell viability, seeded with rabbit or swine chondrocyte constructs; nevertheless, upon implantation the constructs developed neotissues with different characteristics depending on the animal species from which the seeded chondrocytes came from. Neotissues developed from swine chondrocytes were similar to auricular cartilage, while neotissues from rabbit chondrocytes were similar to hyaline cartilage and eventually they differentiate to bone. This result suggests that neotissue characteristics may be influenced by the animal species source of the chondrocytes isolated.

  2. Cartilage and bone cells do not participate in skeletal regeneration in Ambystoma mexicanum limbs.

    Science.gov (United States)

    McCusker, Catherine D; Diaz-Castillo, Carlos; Sosnik, Julian; Q Phan, Anne; Gardiner, David M

    2016-08-01

    The Mexican Axolotl is one of the few tetrapod species that is capable of regenerating complete skeletal elements in injured adult limbs. Whether the skeleton (bone and cartilage) plays a role in the patterning and contribution to the skeletal regenerate is currently unresolved. We tested the induction of pattern formation, the effect on cell proliferation, and contributions of skeletal tissues (cartilage, bone, and periosteum) to the regenerating axolotl limb. We found that bone tissue grafts from transgenic donors expressing GFP fail to induce pattern formation and do not contribute to the newly regenerated skeleton. Periosteum tissue grafts, on the other hand, have both of these activities. These observations reveal that skeletal tissue does not contribute to the regeneration of skeletal elements; rather, these structures are patterned by and derived from cells of non-skeletal connective tissue origin. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Natural Type II Collagen Hydrogel, Fibrin Sealant, and Adipose-Derived Stem Cells as a Promising Combination for Articular Cartilage Repair.

    Science.gov (United States)

    Lazarini, Mariana; Bordeaux-Rego, Pedro; Giardini-Rosa, Renata; Duarte, Adriana S S; Baratti, Mariana Ozello; Zorzi, Alessandro Rozim; de Miranda, João Batista; Lenz Cesar, Carlos; Luzo, Ângela; Olalla Saad, Sara Teresinha

    2017-10-01

    Objective Articular cartilage is an avascular tissue with limited ability of self-regeneration and the current clinical treatments have restricted capacity to restore damages induced by trauma or diseases. Therefore, new techniques are being tested for cartilage repair, using scaffolds and/or stem cells. Although type II collagen hydrogel, fibrin sealant, and adipose-derived stem cells (ASCs) represent suitable alternatives for cartilage formation, their combination has not yet been investigated in vivo for focal articular cartilage defects. We performed a simple experimental procedure using the combination of these 3 compounds on cartilage lesions of rabbit knees. Design The hydrogel was developed in house and was first tested in vitro for chondrogenic differentiation. Next, implants were performed in chondral defects with or without ASCs and the degree of regeneration was macroscopically and microscopically evaluated. Results Production of proteoglycans and the increased expression of collagen type II (COL2α1), aggrecan (ACAN), and sex-determining region Y-box 9 (SOX9) confirmed the chondrogenic character of ASCs in the hydrogel in vitro. Importantly, the addition of ASC induced a higher overall repair of the chondral lesions and a better cellular organization and collagen fiber alignment compared with the same treatment without ASCs. This regenerating tissue also presented the expression of cartilage glycosaminoglycan and type II collagen. Conclusions Our results indicate that the combination of the 3 compounds is effective for articular cartilage repair and may be of future clinical interest.

  4. Microfluidic-based screening of resveratrol and drug-loading PLA/Gelatine nano-scaffold for the repair of cartilage defect.

    Science.gov (United States)

    Ming, Li; Zhipeng, Yuan; Fei, Yu; Feng, Rao; Jian, Weng; Baoguo, Jiang; Yongqiang, Wen; Peixun, Zhang

    2018-03-26

    Cartilage defect is common in clinical but notoriously difficult to treat for low regenerative and migratory capacity of chondrocytes. Biodegradable tissue engineering nano-scaffold with a lot of advantages has been the direction of material to repair cartilage defect in recent years. The objective of our study is to establish a biodegradable drug-loading synthetic polymer (PLA) and biopolymer (Gelatine) composite 3D nano-scaffold to support the treatment of cartilage defect. We designed a microfluidic chip-based drug-screening device to select the optimum concentration of resveratrol, which has strong protective capability for chondrocyte. Then biodegradable resveratrol-loading PLA/Gelatine 3D nano-scaffolds were fabricated and used to repair the cartilage defects. As a result, we successfully cultured primary chondrocytes and screened the appropriate concentrations of resveratrol by the microfluidic device. We also smoothly obtained superior biodegradable resveratrol-loading PLA/Gelatine 3D nano-scaffolds and compared the properties and therapeutic effects of cartilage defect in rats. In summary, our microfluidic device is a simple but efficient platform for drug screening and resveratrol-loading PLA/Gelatine 3D nano-scaffolds could greatly promote the cartilage formation. It would be possible for materials and medical researchers to explore individualized pharmacotherapy and drug-loading synthetic polymer and biopolymer composite tissue engineering scaffolds for the repair of cartilage defect in future.

  5. Maintaining Relationship Based Procurement

    Directory of Open Access Journals (Sweden)

    Peter Davis

    2012-11-01

    Full Text Available Alliance and relationship projects are increasingin number and represent a large pool of work. Tobe successful relationship style contracts dependon soft-dollar factors, particularly the participants'ability to work together within an agreedframework, generally they are not based on lowbid tendering. Participants should be prepared todo business in an open environment based ontrust and mutually agreed governance. Theresearch evaluates relationship maintenance inthe implementation phase of constructionalliances - a particular derivative of relationshipstyle contracts. To determine the factors thatcontribute to relationship maintenance forty-nineexperienced Australian alliance projectmanagers were interviewed. The main findingswere; the development of relationships early inthe project form building blocks of success fromwhich relationships are maintained and projectvalue added; quality facilitation plays animportant part in relationship maintenance and ahybrid organisation created as a result of alliancedevelopment overcomes destructiveorganisational boundaries. Relationshipmaintenance is integral to alliance project controland failure to formalise it and pay attention toprocess and past outcomes will undermine analliance project's potential for success.

  6. Zn deposition at the bone-cartilage interface in equine articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.A. [Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom)], E-mail: D.A.Bradley@surrey.ac.uk; Moger, C.J.; Winlove, C.P. [School of Physics, University of Exeter, Exeter, EX4 4QL (United Kingdom)

    2007-09-21

    In articular cartilage metalloproteinases, a family of enzymes whose function relies on the presence of divalent cations such as Zn and Ca plays a central role in the normal processes of growth and remodelling and in the degenerative and inflammatory processes of arthritis. Another important enzyme, alkaline phosphatase, involved in cartilage mineralisation also relies on metallic cofactors. The local concentration of divalent cations is therefore of considerable interest in cartilage pathophysiology and several authors have used synchrotron X-ray fluorescence (XRF) to map metal ion distributions in bone and cartilage. We report use of a bench-top XRF analytical microscope, providing spatial resolution of 10 {mu}m and applicable to histological sections, facilitating correlation of the distribution with structural features. The study seeks to establish the elemental distribution in normal tissue as a precursor to investigation of changes in disease. For six samples prepared from equine metacarpophalangeal joint, we observed increased concentration of Zn and Sr ions around the tidemark between normal and mineralised cartilage. This is believed to be an active site of remodelling but its composition has hitherto lacked detailed characterization. We also report preliminary results on two of the samples using Proton-Induced X-ray Emission (PIXE). This confirms our previous observations using synchrotron-based XRF of enhanced deposition of Sr and Zn at the surface of the subchondral bone and in articular cartilage.

  7. Directing chondrogenic differentiation of mesenchymal stem cells with a solid-supported chitosan thermogel for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Huang, Hongjie; Zhang, Xin; Hu, Xiaoqing; Dai, Linghui; Zhu, Jingxian; Man, Zhentao; Ao, Yingfang; Chen, Haifeng; Zhou, Chunyan

    2014-01-01

    Hydrogels are attractive for cartilage tissue engineering because of their high plasticity and similarity with the native cartilage matrix. However, one critical drawback of hydrogels for osteochondral repair is their inadequate mechanical strength. To address this limitation, we constructed a solid-supported thermogel comprising a chitosan hydrogel system and demineralized bone matrix. Scanning electron microscopy, the equilibrium scanning ratio, the biodegradation rate, biomechanical tests, biochemical assays, metabolic activity tests, immunostaining and cartilage-specific gene expression analysis were used to evaluate the solid-supported thermogel. Compared with pure hydrogel or demineralized matrix, the hybrid biomaterial showed superior porosity, equilibrium swelling and degradation rate. The hybrid scaffolds exhibited an increased mechanical strength: 75% and 30% higher compared with pure hydrogels and demineralized matrix, respectively. After three days culture, bone-derived mesenchymal stem cells (BMSCs) maintained viability above 90% in all three materials; however, the cell retention of the hybrid scaffolds was more efficient and uniform than the other materials. Matrix production and chondrogenic differentiation of BMSCs in the hybrid scaffolds were superior to its precursors, based on glycosaminoglycan quantification and hyaline cartilage marker expression after three weeks in culture. Its easy preparation, favourable biophysical properties and chondrogenic capacity indicated that this solid-supported thermogel could be an attractive biomaterial framework for cartilage tissue engineering. (paper)

  8. PRP and Articular Cartilage: A Clinical Update

    Science.gov (United States)

    Rossi, Roberto; Castoldi, Filippo; Michielon, Gianni

    2015-01-01

    The convincing background of the recent studies, investigating the different potentials of platelet-rich plasma, offers the clinician an appealing alternative for the treatment of cartilage lesions and osteoarthritis. Recent evidences in literature have shown that PRP may be helpful both as an adjuvant for surgical treatment of cartilage defects and as a therapeutic tool by intra-articular injection in patients affected by osteoarthritis. In this review, the authors introduce the trophic and anti-inflammatory properties of PRP and the different products of the available platelet concentrates. Then, in a complex scenario made of a great number of clinical variables, they resume the current literature on the PRP applications in cartilage surgery as well as the use of intra-articular PRP injections for the conservative treatment of cartilage degenerative lesions and osteoarthritis in humans, available as both case series and comparative studies. The result of this review confirms the fascinating biological role of PRP, although many aspects yet remain to be clarified and the use of PRP in a clinical setting has to be considered still exploratory. PMID:26075244

  9. PRP and Articular Cartilage: A Clinical Update

    Directory of Open Access Journals (Sweden)

    Antonio Marmotti

    2015-01-01

    Full Text Available The convincing background of the recent studies, investigating the different potentials of platelet-rich plasma, offers the clinician an appealing alternative for the treatment of cartilage lesions and osteoarthritis. Recent evidences in literature have shown that PRP may be helpful both as an adjuvant for surgical treatment of cartilage defects and as a therapeutic tool by intra-articular injection in patients affected by osteoarthritis. In this review, the authors introduce the trophic and anti-inflammatory properties of PRP and the different products of the available platelet concentrates. Then, in a complex scenario made of a great number of clinical variables, they resume the current literature on the PRP applications in cartilage surgery as well as the use of intra-articular PRP injections for the conservative treatment of cartilage degenerative lesions and osteoarthritis in humans, available as both case series and comparative studies. The result of this review confirms the fascinating biological role of PRP, although many aspects yet remain to be clarified and the use of PRP in a clinical setting has to be considered still exploratory.

  10. Birth injuries to the epiphyseal cartilage

    International Nuclear Information System (INIS)

    Ekengren, K.; Bergdahl, S.; Ekstroem, G.

    1978-01-01

    A birth injury in the vicinity of a joint might lead to a fracture through the epiphyseal cartilage. The criteria for diagnosing such a fracture at radiography are considered and the continued remodelling of the bone demonstrated. The history of 2 cases with late diagnosis and serious long-term sequelae are described, in order to emphasize the necessity of early radiography. (Auth.)

  11. Oxygen, nitric oxide and articular cartilage

    Directory of Open Access Journals (Sweden)

    B Fermor

    2007-04-01

    Full Text Available Molecular oxygen is required for the production of nitric oxide (NO, a pro-inflammatory mediator that is associated with osteoarthritis and rheumatoid arthritis. To date there has been little consideration of the role of oxygen tension in the regulation of nitric oxide production associated with arthritis. Oxygen tension may be particularly relevant to articular cartilage since it is avascular and therefore exists at a reduced oxygen tension. The superficial zone exists at approximately 6% O2, while the deep zone exists at less than 1% O2. Furthermore, oxygen tension can alter matrix synthesis, and the material properties of articular cartilage in vitro.The increase in nitric oxide associated with arthritis can be caused by pro-inflammatory cytokines and mechanical stress. Oxygen tension significantly alters endogenous NO production in articular cartilage, as well as the stimulation of NO in response to both mechanical loading and pro-inflammatory cytokines. Mechanical loading and pro-inflammatory cytokines also increase the production of prostaglandin E2 (PGE2. There is a complex interaction between NO and PGE2, and oxygen tension can alter this interaction. These findings suggest that the relatively low levels of oxygen within the joint may have significant influences on the metabolic activity, and inflammatory response of cartilage as compared to ambient levels. A better understanding of the role of oxygen in the production of inflammatory mediators in response to mechanical loading, or pro-inflammatory cytokines, may aid in the development of strategies for therapeutic intervention in arthritis.

  12. Advanced Strategies for Articular Cartilage Defect Repair

    Directory of Open Access Journals (Sweden)

    Fergal J. O'Brien

    2013-02-01

    Full Text Available Articular cartilage is a unique tissue owing to its ability to withstand repetitive compressive stress throughout an individual’s lifetime. However, its major limitation is the inability to heal even the most minor injuries. There still remains an inherent lack of strategies that stimulate hyaline-like articular cartilage growth with appropriate functional properties. Recent scientific advances in tissue engineering have made significant steps towards development of constructs for articular cartilage repair. In particular, research has shown the potential of biomaterial physico-chemical properties significantly influencing the proliferation, differentiation and matrix deposition by progenitor cells. Accordingly, this highlights the potential of using such properties to direct the lineage towards which such cells follow. Moreover, the use of soluble growth factors to enhance the bioactivity and regenerative capacity of biomaterials has recently been adopted by researchers in the field of tissue engineering. In addition, gene therapy is a growing area that has found noteworthy use in tissue engineering partly due to the potential to overcome some drawbacks associated with current growth factor delivery systems. In this context, such advanced strategies in biomaterial science, cell-based and growth factor-based therapies that have been employed in the restoration and repair of damaged articular cartilage will be the focus of this review article.

  13. Effect of glutaraldehyde fixation on the frictional response of immature bovine articular cartilage explants.

    Science.gov (United States)

    Oungoulian, Sevan R; Hehir, Kristin E; Zhu, Kaicen; Willis, Callen E; Marinescu, Anca G; Merali, Natasha; Ahmad, Christopher S; Hung, Clark T; Ateshian, Gerard A

    2014-02-07

    This study examined functional properties and biocompatibility of glutaraldehyde-fixed bovine articular cartilage over several weeks of incubation at body temperature to investigate its potential use as a resurfacing material in joint arthroplasty. In the first experiment, treated cartilage disks were fixed using 0.02, 0.20 and 0.60% glutaraldehyde for 24h then incubated, along with an untreated control group, in saline for up to 28d at 37°C. Both the equilibrium compressive and tensile moduli increased nearly twofold in treated samples compared to day 0 control, and remained at that level from day 1 to 28; the equilibrium friction coefficient against glass rose nearly twofold immediately after fixation (day 1) but returned to control values after day 7. Live explants co-cultured with fixed explants showed no quantitative difference in cell viability over 28d. In general, no significant differences were observed between 0.20 and 0.60% groups, so 0.20% was deemed sufficient for complete fixation. In the second experiment, cartilage-on-cartilage frictional measurements were performed under a migrating contact configuration. In the treated group, one explant was fixed using 0.20% glutaraldehyde while the apposing explant was left untreated; in the control group both explants were left untreated. From day 1 to 28, the treated group exhibited either no significant difference or slightly lower friction coefficient than the untreated group. These results suggest that a properly titrated glutaraldehyde treatment can reproduce the desired functional properties of native articular cartilage and maintain these properties for at least 28d at body temperature. © 2013 Published by Elsevier Ltd.

  14. Bone Marrow Aspirate Concentrate for Cartilage Defects of the Knee: From Bench to Bedside Evidence.

    Science.gov (United States)

    Cotter, Eric J; Wang, Kevin C; Yanke, Adam B; Chubinskaya, Susan

    2018-04-01

    Objective To critically evaluate the current basic science, translational, and clinical data regarding bone marrow aspirate concentrate (BMAC) in the setting of focal cartilage defects of the knee and describe clinical indications and future research questions surrounding the clinical utility of BMAC for treatment of these lesions. Design A literature search was performed using the PubMed and Ovid MEDLINE databases for studies in English (1980-2017) using keywords, including ["bone marrow aspirate" and "cartilage"], ["mesenchymal stem cells" and "cartilage"], and ["bone marrow aspirate" and "mesenchymal stem cells" and "orthopedics"]. A total of 1832 articles were reviewed by 2 independent authors and additional literature found through scanning references of cited articles. Results BMAC has demonstrated promising results in the clinical application for repair of chondral defects as an adjuvant procedure or as an independent management technique. A subcomponent of BMAC, bone marrow derived-mesenchymal stem cells (MSCs) possess the ability to differentiate into cells important for osteogenesis and chondrogenesis. Modulation of paracrine signaling is perhaps the most important function of BM-MSCs in this setting. In an effort to increase the cellular yield, authors have shown the ability to expand BM-MSCs in culture while maintaining phenotype. Conclusions Translational studies have demonstrated good clinical efficacy of BMAC both concomitant with cartilage restoration procedures, at defined time points after surgery, and as isolated injections. Early clinical data suggests BMAC may help stimulate a more robust hyaline cartilage repair tissue response. Numerous questions remain regarding BMAC usage, including cell source, cell expansion, optimal pathology, and injection timing and quantity.

  15. Magnetization transfer analysis of cartilage repair tissue: a preliminary study

    International Nuclear Information System (INIS)

    Palmieri, F.; Keyzer, F. de; Maes, F.; Breuseghem, I. van

    2006-01-01

    To evaluate the magnetization transfer ratio (MTR) after two different cartilage repair procedures, and to compare these data with the MTR of normal cartilage. Twenty-seven patients with a proven cartilage defect were recruited: 13 were treated with autologous chondrocyte implantation (ACI) and 14 were treated with the microfracture technique (MFR). All patients underwent MRI examinations with MT-sequences before the surgical treatment, after 12 months (26 patients) and after 24 months (11 patients). Eleven patients received a complete follow-up study at all three time points (five of the ACI group and six of the MFR group). All images were transferred to a workstation to calculate MTR images. For every MT image set, different ROIs were delineated by two radiologists. Means were calculated per ROI type in the different time frames and in both groups of cartilage repair. The data were analyzed with unpaired t- and ANOVA tests, and by calculating Pearson's correlation coefficient. No significant differences were found in the MTR of fatty bone marrow, muscle and normal cartilage in the different time frames. There was a significant but small difference between the MTR of normal cartilage and the cartilage repair area after 12 months for both procedures. After 24 months, the MTR of ACI repaired cartilage (0.31±0.07) was not significantly different from normal cartilage MTR (0.34±0.05). The MTR of MFR repaired cartilage (0.28±0.02), still showed a significant difference from normal cartilage. The differences between damaged and repaired cartilage MTR are too small to enable MT-imaging to be a useful tool for postoperative follow-up of cartilage repair procedures. There is, however, an evolution towards normal MTR-values in the cartilage repair tissue (especially after ACI repair). (orig.)

  16. Pannus tissue at the cartilage-synovium junction in rheumatoid arthritis.

    OpenAIRE

    Takasugi, Shigeki; Inoue, Hajime

    1988-01-01

    The cartilage-synovium junction of knees afflicted with rheumatoid arthritis was observed light microscopically using formalin-fixed, decalcified and immunohistochemically stained tissues. Decalcification had little or no influence on immunoreactivity for lysozyme and S-100 protein. All the specimens had pannus formation, which was classified into four types: A) cellular pannus with homogeneous cell pattern, B) cellular pannus of inflammatory cells, C) fibrous pannus with many fibrous bundles...

  17. Platelet-rich plasma enhances the integration of bioengineered cartilage with native tissue in an in vitro model.

    Science.gov (United States)

    Sermer, Corey; Kandel, Rita; Anderson, Jesse; Hurtig, Mark; Theodoropoulos, John

    2018-02-01

    Current therapies for cartilage repair can be limited by an inability of the repair tissue to integrate with host tissue. Thus, there is interest in developing approaches to enhance integration. We have previously shown that platelet-rich plasma (PRP) improves cartilage tissue formation. This raised the question as to whether PRP could promote cartilage integration. Chondrocytes were isolated from cartilage harvested from bovine joints, seeded on a porous bone substitute and grown in vitro to form an osteochondral-like implant. After 7 days, the biphasic construct was soaked in PRP for 30 min before implantation into the core of a donut-shaped biphasic explant of native cartilage and bone. Controls were not soaked in PRP. The implant-explant construct was cultured for 2-4 weeks. PRP-soaked bioengineered implants integrated with host tissue in 73% of samples, whereas controls only integrated in 19% of samples. The integration strength, as determined by a push-out test, was significantly increased in the PRP-soaked implant group (219 ± 35.4 kPa) compared with controls (72.0 ± 28.5 kPa). This correlated with an increase in glycosaminoglycan and collagen accumulation in the region of integration in the PRP-treated implant group, compared with untreated controls. Immunohistochemical studies revealed that the integration zone contained collagen type II and aggrecan. The cells at the zone of integration in the PRP-soaked group had a 3.5-fold increase in matrix metalloproteinase-13 gene expression compared with controls. These results suggest that PRP-soaked bioengineered cartilage implants may be a better approach for cartilage repair due to enhanced integration. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Cell factory-derived bioactive molecules with polymeric cryogel scaffold enhance the repair of subchondral cartilage defect in rabbits.

    Science.gov (United States)

    Gupta, Ankur; Bhat, Sumrita; Chaudhari, Bhushan P; Gupta, Kailash C; Tägil, Magnus; Zheng, Ming Hao; Kumar, Ashok; Lidgren, Lars

    2017-06-01

    We have explored the potential of cell factory-derived bioactive molecules, isolated from conditioned media of primary goat chondrocytes, for the repair of subchondral cartilage defects. Enzyme-linked immunosorbent assay (ELISA) confirms the presence of transforming growth factor-β1 in an isolated protein fraction (12.56 ± 1.15 ng/mg protein fraction). These bioactive molecules were used alone or with chitosan-agarose-gelatin cryogel scaffolds, with and without chondrocytes, to check whether combined approaches further enhance cartilage repair. To evaluate this, an in vivo study was conducted on New Zealand rabbits in which a subchondral defect (4.5 mm wide × 4.5 mm deep) was surgically created. Starting after the operation, bioactive molecules were injected at the defect site at regular intervals of 14 days. Histopathological analysis showed that rabbits treated with bioactive molecules alone had cartilage regeneration after 4 weeks. However, rabbits treated with bioactive molecules along with scaffolds, with or without cells, showed cartilage formation after 3 weeks; 6 weeks after surgery, the cartilage regenerated in rabbits treated with either bioactive molecules alone or in combinations showed morphological similarities to native cartilage. No systemic cytotoxicity or inflammatory response was induced by any of the treatments. Further, ELISA was done to determine systemic toxicity, which showed no difference in concentration of tumour necrosis factor-α in blood serum, before or after surgery. In conclusion, intra-articular injection with bioactive molecules alone may be used for the repair of subchondral cartilage defects, and bioactive molecules along with chondrocyte-seeded scaffolds further enhance the repair. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Advances of human bone marrow-derived mesenchymal stem cells in the treatment of cartilage defects: a systematic review.

    Science.gov (United States)

    Gopal, Kaliappan; Amirhamed, Haji Alizadeh; Kamarul, Tunku

    2014-06-01

    Mesenchymal stem cell (MSC)-based therapies represent a new option for treating damaged cartilage. However, the outcomes following its clinical application have seldom been previously compared. The present paper presents the systematic review of current literatures on MSC-based therapy for cartilage repair in clinical applications. Ovid, Scopus, PubMed, ISI Web of Knowledge and Google Scholar online databases were searched using several keywords, which include "cartilage" and "stem cells". Only studies using bone marrow-derived MSC (BM-MSC) to treat cartilage defects clinically were included in this review. The clinical outcomes were compared, and the quality of the tissue repair was analysed where possible. Of the 996 articles, only six (n = 6) clinical studies have described the use of BM-MSC in clinical applications. Two studies were cohort observational trials, three were case series, and one was a case report. In the two comparative trials, BM-MSCs produced superior repair to cartilage treatment without cells and have comparable outcomes to autologous chondrocyte implantation. The case series and case-control studies have demonstrated that use of BM-MSCs resulted in better short- to long-term clinical outcomes with minimal complications. In addition, histological analyses in two studies have resulted in good repair tissue formation at the damaged site, composed mainly of hyaline-like cartilage. Although results of the respective studies are highly indicative that BM-MSC-based therapy is superior, due to the differences in methods and selection criteria used, it was not possible to make direct comparison between the studies. In conclusion, published studies do suggest that BM-MSCs could provide superior cartilage repair. However, due to limited number of reports, more robust studies might be required before a definitive conclusion can be drawn.

  20. Glycosylation of DMP1 Is Essential for Chondrogenesis of Condylar Cartilage.

    Science.gov (United States)

    Weng, Y; Liu, Y; Du, H; Li, L; Jing, B; Zhang, Q; Wang, X; Wang, Z; Sun, Y

    2017-12-01

    The mandibular condylar cartilage (MCC) shoulders force for the subchondral bone during mastication. The cartilage matrix contains various large molecules, such as type I, II, and X collagens and proteoglycans (PGs), which jointly play essential roles in maintaining cartilage characteristics. PGs play key roles in maintaining the elasticity of cartilage and providing a cushion against mastication forces. In addition to the well-known PGs, DMP1-PG, which is the PG form of dentin matrix protein 1 (DMP1), is a newly identified PG. DMP1 is proteolytically processed in vivo, and the N-terminus is glycosylated into its PG form-that is, DMP1-PG, which is highly expressed not only in tooth and bone but also in the matrix of the MCC. However, the specific functions of DMP1-PG in the MCC remain unclear. In human temporomandibular joint osteoarthritis and hyperocclusion model rat specimens, PGs are significantly downregulated, and DMP1-PG is the most prominently affected PG. To further investigate the role of DMP1-PG in condylar chondrogenesis, a glycosylation site mutant (S 89 -G 89 ) mouse model was established with knock-in methods. In the MCC of the S89G-DMP1 mice, the glycosylation level of DMP1 was significantly downregulated, and a series of abnormal developmental and pathologic changes could be observed. The morphologic changes included thinner cartilage layers, deformations of the MCC, and disordered arrangements of the chondrocytes, and an earlier onset of temporomandibular joint osteoarthritis-like changes was observed. In addition, markers of chondrogenesis were downregulated, and the matrix of the MCC displayed OA phenotypes in the S89G-DMP1 mice. Further investigations showed that the transforming growth factor β signaling molecules were affected in the MCC after the loss of DMP1-PG. In addition, the loss of DMP1-PG significantly accelerated the progression of cartilage injuries in the hyperocclusion models. Given these findings, we investigated the significant

  1. Comparison of multiple quantitative MRI parameters for characterization of the goat cartilage in an ongoing osteoarthritis: dGEMRIC, T1ρ and sodium

    International Nuclear Information System (INIS)

    Schrauth, Joachim H.X.; Lykowsky, Gunthard; Hemberger, Kathrin; Kreutner, Jakob; Jakob, Peter M.; Weber, Daniel; Haddad, Daniel; Rackwitz, Lars; Noeth, Ulrich

    2016-01-01

    Osteoarthritis (OA) is a degenerative joint disease leading to cartilage deterioration by loss of matrix, fibrillation, formation of fissures, and ultimately complete loss of the cartilage surface. Here, three magnetic resonance imaging (MRI) techniques, dGEMRIC (delayed Gadolinium enhanced MRI of cartilage; dG 1 = T 1,post ; dG 2 = 1/T 1,post -1/T 1,pre ), T 1ρ , and sodium MRI, are compared in a preclinical in vivo study to evaluate the differences in their potential for cartilage characterization and to establish an examination protocol for a following clinical study. OA was induced in 12 caprine knees (6 control, 6 therapy). Adipose derived stem cells were injected afterwards as a treatment. The animals were examined healthy, 3 and 16 weeks postoperatively with all three MRI methods. Using statistical analysis, the OA development and the degree of correlation between the different MRI methods were determined. A strong correlation was observed between the dGEMRIC indices dG 1 and dG 2 (r=-0.87) which differ only in considering or not considering the T 1 baseline. Moderate correlations were found between T 1ρ and dG 1 (r=0.55), T 1ρ and dG 2 (r=0.47) and at last, sodium and dG 1 (r=0.45). The correlations found in this study match to the biomarkers which the methods are sensitive to. Even though the goat cartilage is significantly thinner than the human cartilage and even more in a degenerated cartilage, all three methods were able to characterize the cartilage over the whole period of time during an ongoing OA.Due to measurement and post processing optimizations, as well as the correlations detected in this work, the overall measurement time in future goat studies can be minimized. Moreover, an examination protocol for characterizing the cartilage in a clinical study was established.

  2. Local changes in proteoglycan synthesis during culture are different for normal and osteoarthritic cartilage

    NARCIS (Netherlands)

    Lafeber, F. P.; van der Kraan, P. M.; van Roy, H. L.; Vitters, E. L.; Huber-Bruning, O.; van den Berg, W. B.; Bijlsma, J. W.

    1992-01-01

    Proteoglycan synthesis of mild-to-moderate osteoarthritic human knee cartilage was compared with that of normal cartilage of the same donor. Immediately after cartilage was obtained, the synthesis rate of proteoglycans was higher for osteoarthritic cartilage than for normal cartilage. Proteoglycan

  3. Equivalence and precision of knee cartilage morphometry between different segmentation teams, cartilage regions, and MR acquisitions

    Science.gov (United States)

    Schneider, E; Nevitt, M; McCulloch, C; Cicuttini, FM; Duryea, J; Eckstein, F; Tamez-Pena, J

    2012-01-01

    Objective To compare precision and evaluate equivalence of femorotibial cartilage volume (VC) and mean cartilage thickness (ThCtAB.Me) from independent segmentation teams using identical MR images from three series: sagittal 3D Dual Echo in the Steady State (DESS), coronal multi-planar reformat (DESS-MPR) of DESS and coronal 3D Fast Low Angle SHot (FLASH). Design 19 subjects underwent test-retest MR imaging at 3 Tesla. Four teams segmented the cartilage using prospectively defined plate regions and rules. Mixed models analysis of the pooled data were used to evaluate the effect of acquisition, team and plate on precision and Pearson correlations and mixed models to evaluate equivalence. Results Segmentation team differences dominated measurement variability in most cartilage regions for all image series. Precision of VC and ThCtAB.Me differed significantly by team and cartilage plate, but not between FLASH and DESS. Mean values of VC and ThCtAB.Me differed by team (P<0.05) for DESS, FLASH and DESS-MPR, FLASH VC was 4–6% larger than DESS in the medial tibia and lateral central femur, and FLASH ThCtAB.Me was 5–6% larger in the medial tibia, but 4–8% smaller in the medial central femur. Correlations betweenDESS and FLASH for VC and ThCtAB.Me were high (r=0.90–0.97), except for DESS versus FLASH medial central femur ThCtAB.Me (r=0.81–0.83). Conclusions Cartilage morphology metrics from different image contrasts had similar precision, were generally equivalent, and may be combined for cross-sectional analyses if potential systematic offsets are accounted for. Data from different teams should not be pooled unless equivalence is demonstrated for cartilage metrics of interest. PMID:22521758

  4. Maintaining Web Cache Coherency

    Directory of Open Access Journals (Sweden)

    2000-01-01

    Full Text Available Document coherency is a challenging problem for Web caching. Once the documents are cached throughout the Internet, it is often difficult to keep them coherent with the origin document without generating a new traffic that could increase the traffic on the international backbone and overload the popular servers. Several solutions have been proposed to solve this problem, among them two categories have been widely discussed: the strong document coherency and the weak document coherency. The cost and the efficiency of the two categories are still a controversial issue, while in some studies the strong coherency is far too expensive to be used in the Web context, in other studies it could be maintained at a low cost. The accuracy of these analysis is depending very much on how the document updating process is approximated. In this study, we compare some of the coherence methods proposed for Web caching. Among other points, we study the side effects of these methods on the Internet traffic. The ultimate goal is to study the cache behavior under several conditions, which will cover some of the factors that play an important role in the Web cache performance evaluation and quantify their impact on the simulation accuracy. The results presented in this study show indeed some differences in the outcome of the simulation of a Web cache depending on the workload being used, and the probability distribution used to approximate updates on the cached documents. Each experiment shows two case studies that outline the impact of the considered parameter on the performance of the cache.

  5. ADAS Update and Maintainability

    Science.gov (United States)

    Watson, Leela R.

    2010-01-01

    Since 2000, both the National Weather Service Melbourne (NWS MLB) and the Spaceflight Meteorology Group (SMG) have used a local data integration system (LOIS) as part of their forecast and warning operations. The original LOIS was developed by the Applied Meteorology Unit (AMU) in 1998 (Manobianco and Case 1998) and has undergone subsequent improvements. Each has benefited from three-dimensional (3-D) analyses that are delivered to forecasters every 15 minutes across the peninsula of Florida. The intent is to generate products that enhance short-range weather forecasts issued in support of NWS MLB and SMG operational requirements within East Central Florida. The current LDIS uses the Advanced Regional Prediction System (ARPS) Data Analysis System (AD AS) package as its core, which integrates a wide variety of national, regional, and local observational data sets. It assimilates all available real-time data within its domain and is run at a finer spatial and temporal resolution than current national or regional-scale analysis packages. As such, it provides local forecasters with a more comprehensive understanding of evolving fine-scale weather features. Over the years, the LDIS has become problematic to maintain since it depends on AMU-developed shell scripts that were written for an earlier version of the ADAS software. The goals of this task were to update the NWS MLB/SMG LDIS with the latest version of ADAS, incorporate new sources of observational data, and upgrade and modify the AMU-developed shell scripts written to govern the system. In addition, the previously developed ADAS graphical user interface (GUI) was updated. Operationally, these upgrades will result in more accurate depictions of the current local environment to help with short-range weather forecasting applications, while also offering an improved initialization for local versions of the Weather Research and Forecasting (WRF) model used by both groups.

  6. Development of a computational technique to measure cartilage contact area.

    Science.gov (United States)

    Willing, Ryan; Lapner, Michael; Lalone, Emily A; King, Graham J W; Johnson, James A

    2014-03-21

    Computational measurement of joint contact distributions offers the benefit of non-invasive measurements of joint contact without the use of interpositional sensors or casting materials. This paper describes a technique for indirectly measuring joint contact based on overlapping of articular cartilage computer models derived from CT images and positioned using in vitro motion capture data. The accuracy of this technique when using the physiological nonuniform cartilage thickness distribution, or simplified uniform cartilage thickness distributions, is quantified through comparison with direct measurements of contact area made using a casting technique. The efficacy of using indirect contact measurement techniques for measuring the changes in contact area resulting from hemiarthroplasty at the elbow is also quantified. Using the physiological nonuniform cartilage thickness distribution reliably measured contact area (ICC=0.727), but not better than the assumed bone specific uniform cartilage thicknesses (ICC=0.673). When a contact pattern agreement score (s(agree)) was used to assess the accuracy of cartilage contact measurements made using physiological nonuniform or simplified uniform cartilage thickness distributions in terms of size, shape and location, their accuracies were not significantly different (p>0.05). The results of this study demonstrate that cartilage contact can be measured indirectly based on the overlapping of cartilage contact models. However, the results also suggest that in some situations, inter-bone distance measurement and an assumed cartilage thickness may suffice for predicting joint contact patterns. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. NONLINEAR SPECTRAL IMAGING OF ELASTIC CARTILAGE IN RABBIT EARS

    Directory of Open Access Journals (Sweden)

    JING CHEN

    2013-07-01

    Full Text Available Elastic cartilage in the rabbit external ear is an important animal model with attractive potential value for researching the physiological and pathological states of cartilages especially during wound healing. In this work, nonlinear optical microscopy based on two-photon excited fluorescence and second harmonic generation were employed for imaging and quantifying the intact elastic cartilage. The morphology and distribution of main components in elastic cartilage including cartilage cells, collagen and elastic fibers were clearly observed from the high-resolution two-dimensional nonlinear optical images. The areas of cell nuclei, a parameter related to the pathological changes of normal or abnormal elastic cartilage, can be easily quantified. Moreover, the three-dimensional structure of chondrocytes and matrix were displayed by constructing three-dimensional image of cartilage tissue. At last, the emission spectra from cartilage were obtained and analyzed. We found that the different ratio of collagen over elastic fibers can be used to locate the observed position in the elastic cartilage. The redox ratio based on the ratio of nicotinamide adenine dinucleotide (NADH over flavin adenine dinucleotide (FAD fluorescence can also be calculated to analyze the metabolic state of chondrocytes in different regions. Our results demonstrated that this technique has the potential to provide more accurate and comprehensive information for the physiological states of elastic cartilage.

  8. Development of scaffold-free elastic cartilaginous constructs with structural similarities to auricular cartilage.

    Science.gov (United States)

    Giardini-Rosa, Renata; Joazeiro, Paulo P; Thomas, Kathryn; Collavino, Kristina; Weber, Joanna; Waldman, Stephen D

    2014-03-01

    External ear reconstruction with autologous cartilage still remains one of the most difficult problems in the fields of plastic and reconstructive surgery. As the absence of tissue vascularization limits the ability to stimulate new tissue growth, relatively few surgical approaches are currently available (alloplastic implants or sculpted autologous cartilage grafts) to repair or reconstruct the auricle (or pinna) as a result of traumatic loss or congenital absence (e.g., microtia). Alternatively, tissue engineering can offer the potential to grow autogenous cartilage suitable for implantation. While tissue-engineered auricle cartilage constructs can be created, a substantial number of cells are required to generate sufficient quantities of tissue for reconstruction. Similarly, as routine cell expansion can elicit negative effects on chondrocyte function, we have developed an approach to generate large-sized engineered auricle constructs (≥3 cm(2)) directly from a small population of donor cells (20,000-40,000 cells/construct). Using rabbit donor cells, the developed bioreactor-cultivated constructs adopted structural-like characteristics similar to native auricular cartilage, including the development of distinct cartilaginous and perichondrium-like regions. Both alterations in media composition and seeding density had profound effects on the formation of engineered elastic tissue constructs in terms of cellularity, extracellular matrix accumulation, and tissue structure. Higher seeding densities and media containing sodium bicarbonate produced tissue constructs that were closer to the native tissue in terms of structure and composition. Future studies will be aimed at improving the accumulation of specific tissue constituents and determining the clinical effectiveness of this approach using a reconstructive animal model.

  9. Effect of antibiotics on in vitro and in vivo avian cartilage degradation.

    Science.gov (United States)

    Peters, T L; Fulton, R M; Roberson, K D; Orth, M W

    2002-01-01

    Antibiotics are used in the livestock industry not only to treat disease but also to promote growth and increase feed efficiency in less than ideal sanitary conditions. However, certain antibiotic families utilized in the poultry industry have recently been found to adversely affect bone formation and cartilage metabolism in dogs, rats, and humans. Therefore, the first objective of this study was to determine if certain antibiotics used in the poultry industry would inhibit in vitro cartilage degradation. The second objective was to determine if the antibiotics found to inhibit in vitro cartilage degradation also induced tibial dyschondroplasia in growing broilers. Ten antibiotics were studied by an avian explant culture system that is designed to completely degrade tibiae over 16 days. Lincomycin, tylosin tartrate, gentamicin, erythromycin, and neomycin sulfate did not inhibit degradation at any concentration tested. Doxycycline (200 microg/ml), oxytetracycline (200 microg/ml), enrofloxacin (200 and 400 microg/ml), ceftiofur (400 microg/ml), and salinomycin (10 microg/ml) prevented complete cartilage degradation for up to 30 days in culture. Thus, some of the antibiotics did inhibit cartilage degradation in developing bone. Day-old chicks were then administered the five antibiotics at 25%, 100%, or 400% above their recommended dose levels and raised until 21 days of age. Thiram, a fungicide known to induce experimental tibial dyschondroplasia (TD), was given at 20 ppm. Birds were then killed by cervical dislocation, and each proximal tibiotarsus was visually examined for TD lesions. The results showed that none of these antibiotics significantly induced TD in growing boilers at any concentration tested, whereas birds given 20 ppm thiram had a 92% incidence rate.

  10. Growth factor stimulation improves the structure and properties of scaffold-free engineered auricular cartilage constructs.

    Directory of Open Access Journals (Sweden)

    Renata G Rosa

    Full Text Available The reconstruction of the external ear to correct congenital deformities or repair following trauma remains a significant challenge in reconstructive surgery. Previously, we have developed a novel approach to create scaffold-free, tissue engineering elastic cartilage constructs directly from a small population of donor cells. Although the developed constructs appeared to adopt the structural appearance of native auricular cartilage, the constructs displayed limited expression and poor localization of elastin. In the present study, the effect of growth factor supplementation (insulin, IGF-1, or TGF-β1 was investigated to stimulate elastogenesis as well as to improve overall tissue formation. Using rabbit auricular chondrocytes, bioreactor-cultivated constructs supplemented with either insulin or IGF-1 displayed increased deposition of cartilaginous ECM, improved mechanical properties, and thicknesses comparable to native auricular cartilage after 4 weeks of growth. Similarly, growth factor supplementation resulted in increased expression and improved localization of elastin, primarily restricted within the cartilaginous region of the tissue construct. Additional studies were conducted to determine whether scaffold-free engineered auricular cartilage constructs could be developed in the 3D shape of the external ear. Isolated auricular chondrocytes were grown in rapid-prototyped tissue culture molds with additional insulin or IGF-1 supplementation during bioreactor cultivation. Using this approach, the developed tissue constructs were flexible and had a 3D shape in very good agreement to the culture mold (average error <400 µm. While scaffold-free, engineered auricular cartilage constructs can be created with both the appropriate tissue structure and 3D shape of the external ear, future studies will be aimed assessing potential changes in construct shape and properties after subcutaneous implantation.

  11. The potential of induced pluripotent stem cells as a tool to study skeletal dysplasias and cartilage-related pathologic conditions.

    Science.gov (United States)

    Liu, H; Yang, L; Yu, F F; Wang, S; Wu, C; Qu, C; Lammi, M J; Guo, X

    2017-05-01

    The development of induced pluripotent stem cells (iPSCs) technology has opened up new horizons for development of new research tools especially for skeletal dysplasias, which often lack human disease models. Regenerative medicine and tissue engineering could be the next areas to benefit from refinement of iPSC methods to repair focal cartilage defects, while applications for osteoarthritis (OA) and drug screening have evolved rather slowly. Although the advances in iPSC research of skeletal dysplasias and repair of focal cartilage lesions are not directly relevant to OA, they can be considered to pave the way to future prospects and solutions to OA research, too. The same problems which face the present cell-based treatments of cartilage injuries concern also the iPSC-based ones. However, established iPSC lines, which have no genomic aberrations and which efficiently differentiate into extracellular matrix secreting chondrocytes, could be an invaluable cell source for cell transplantations in the future. The safety issues concerning the recipient risks of teratoma formation and immune response still have to be solved before the potential use of iPSCs in cartilage repair of focal cartilage defects and OA. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  12. Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting

    Science.gov (United States)

    Mouser, Vivian H. M.; Melchels, Ferry P.W.; Visser, Jetze; Dhert, Wouter J.A.; Gawlitta, Debby; Malda, Jos

    2016-01-01

    Bioprinting of chondrocyte-laden hydrogels facilitates the fabrication of constructs with controlled organization and shape for e.g. articular cartilage implants. Gelatin-methacryloyl (gelMA) supplemented with gellan gum is a promising bio-ink. However, the rheological properties governing the printing process, and the influence of gellan gum on the mechanical properties and chondrogenesis of the blend, are still unknown. Here, we investigated the suitability of gelMA/gellan for cartilage bioprinting. Multiple concentrations, ranging from 3-25% gelMA with 0-1.5% gellan gum, were evaluated for their printability, defined as the ability to form filaments and to incorporate cells at 15-37°C. To support the printability assessment, yield stress and viscosity of the hydrogels were measured. Stiffness of UV-cured constructs, as well as cartilage-like tissue formation by embedded chondrocytes, were determined in vitro. A large range of gelMA/gellan concentrations were printable with inclusion of cells and formed the bioprinting window. Addition of gellan gum improved filament deposition by inducing yielding behavior, increased construct stiffness, and supported chondrogenesis. High gellan gum concentrations, however, did compromise cartilage matrix production and distribution, and even higher concentrations resulted in too high yield stresses to allow cell encapsulation. This study demonstrates the high potential of gelMA/gellan blends for cartilage bioprinting and identifies yield stress as dominant factor for bioprintability. PMID:27431733

  13. Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting.

    Science.gov (United States)

    Mouser, Vivian H M; Melchels, Ferry P W; Visser, Jetze; Dhert, Wouter J A; Gawlitta, Debby; Malda, Jos

    2016-07-19

    Bioprinting of chondrocyte-laden hydrogels facilitates the fabrication of constructs with controlled organization and shape e.g. for articular cartilage implants. Gelatin-methacryloyl (gelMA) supplemented with gellan gum is a promising bio-ink. However, the rheological properties governing the printing process, and the influence of gellan gum on the mechanical properties and chondrogenesis of the blend, are still unknown. Here, we investigated the suitability of gelMA/gellan for cartilage bioprinting. Multiple concentrations, ranging from 3% to 20% gelMA with 0%-1.5% gellan gum, were evaluated for their printability, defined as the ability to form filaments and to incorporate cells at 15 °C-37 °C. To support the printability assessment, yield stress and viscosity of the hydrogels were measured. Stiffness of UV-cured constructs, as well as cartilage-like tissue formation by embedded chondrocytes, were determined in vitro. A large range of gelMA/gellan concentrations were printable with inclusion of cells and formed the bioprinting window. The addition of gellan gum improved filament deposition by inducing yielding behavior, increased construct stiffness and supported chondrogenesis. High gellan gum concentrations, however, did compromise cartilage matrix production and distribution, and even higher concentrations resulted in too high yield stresses to allow cell encapsulation. This study demonstrates the high potential of gelMA/gellan blends for cartilage bioprinting and identifies yield stress as a dominant factor for bioprintability.

  14. Correlation between radiographic findings of osteoarthritis and arthroscopic findings of articular cartilage degeneration within the patellofemoral joint

    International Nuclear Information System (INIS)

    Kijowski, Richard; Blankenbaker, Donna; Stanton, Paul; De Smet, Arthur; Fine, Jason

    2006-01-01

    To correlate radiographic findings of osteoarthritis on axial knee radiographs with arthroscopic findings of articular cartilage degeneration within the patellofemoral joint in patients with chronic knee pain. The study group consisted of 104 patients with osteoarthritis of the patellofemoral joint and 30 patients of similar age with no osteoarthritis of the patellofemoral joint. All patients in the study group had an axial radiograph of the knee performed prior to arthroscopic knee surgery. At the time of arthroscopy, each articular surface of the patellofemoral joint was graded using the Noyes classification system. Two radiologists retrospectively reviewed the knee radiographs to determine the presence of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts. The sensitivity and specificity of the various radiographic features of osteoarthritis for the detection of articular cartilage degeneration within the patellofemoral joint were determined. The sensitivity of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts for the detection of articular cartilage degeneration within the patellofemoral joint was 73%, 37%, 4%, and 0% respectively. The specificity of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts for the detection of articular cartilage degeneration within the patellofemoral joint was 67%, 90%, 100%, and 100% respectively. Marginal osteophytes were the most sensitive radiographic feature for the detection of articular cartilage degeneration within the patellofemoral joint. Joint-space narrowing, subchondral sclerosis, and subchondral cysts were insensitive radiographic features of osteoarthritis, and rarely occurred in the absence of associated osteophyte formation. (orig.)

  15. Correlation between radiographic findings of osteoarthritis and arthroscopic findings of articular cartilage degeneration within the patellofemoral joint

    Energy Technology Data Exchange (ETDEWEB)

    Kijowski, Richard; Blankenbaker, Donna; Stanton, Paul; De Smet, Arthur [University of Wisconsin Hospital Clinical Science Center-E3/311, Department of Radiology, Madison, WI (United States); Fine, Jason [University of Wisconsin Clinical Science Center-K6/4675, Department of Statistics, Madison, WI (United States)

    2006-12-15

    To correlate radiographic findings of osteoarthritis on axial knee radiographs with arthroscopic findings of articular cartilage degeneration within the patellofemoral joint in patients with chronic knee pain. The study group consisted of 104 patients with osteoarthritis of the patellofemoral joint and 30 patients of similar age with no osteoarthritis of the patellofemoral joint. All patients in the study group had an axial radiograph of the knee performed prior to arthroscopic knee surgery. At the time of arthroscopy, each articular surface of the patellofemoral joint was graded using the Noyes classification system. Two radiologists retrospectively reviewed the knee radiographs to determine the presence of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts. The sensitivity and specificity of the various radiographic features of osteoarthritis for the detection of articular cartilage degeneration within the patellofemoral joint were determined. The sensitivity of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts for the detection of articular cartilage degeneration within the patellofemoral joint was 73%, 37%, 4%, and 0% respectively. The specificity of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts for the detection of articular cartilage degeneration within the patellofemoral joint was 67%, 90%, 100%, and 100% respectively. Marginal osteophytes were the most sensitive radiographic feature for the detection of articular cartilage degeneration within the patellofemoral joint. Joint-space narrowing, subchondral sclerosis, and subchondral cysts were insensitive radiographic features of osteoarthritis, and rarely occurred in the absence of associated osteophyte formation. (orig.)

  16. Correlation between radiographic findings of osteoarthritis and arthroscopic findings of articular cartilage degeneration within the patellofemoral joint.

    Science.gov (United States)

    Kijowski, Richard; Blankenbaker, Donna; Stanton, Paul; Fine, Jason; De Smet, Arthur

    2006-12-01

    To correlate radiographic findings of osteoarthritis on axial knee radiographs with arthroscopic findings of articular cartilage degeneration within the patellofemoral joint in patients with chronic knee pain. The study group consisted of 104 patients with osteoarthritis of the patellofemoral joint and 30 patients of similar age with no osteoarthritis of the patellofemoral joint. All patients in the study group had an axial radiograph of the knee performed prior to arthroscopic knee surgery. At the time of arthroscopy, each articular surface of the patellofemoral joint was graded using the Noyes classification system. Two radiologists retrospectively reviewed the knee radiographs to determine the presence of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts. The sensitivity and specificity of the various radiographic features of osteoarthritis for the detection of articular cartilage degeneration within the patellofemoral joint were determined. The sensitivity of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts for the detection of articular cartilage degeneration within the patellofemoral joint was 73%, 37%, 4%, and 0% respectively. The specificity of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts for the detection of articular cartilage degeneration within the patellofemoral joint was 67%, 90%, 100%, and 100% respectively. Marginal osteophytes were the most sensitive radiographic feature for the detection of articular cartilage degeneration within the patellofemoral joint. Joint-space narrowing, subchondral sclerosis, and subchondral cysts were insensitive radiographic features of osteoarthritis, and rarely occurred in the absence of associated osteophyte formation.

  17. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    Directory of Open Access Journals (Sweden)

    Nevzat Selim Gokay

    2016-01-01

    Full Text Available The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg, inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg, or nitric oxide precursor L-arginine (200 mg/kg. After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P=0.044 positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders.

  18. Ectopic mineralization of cartilage and collagen-rich tendons and ligaments in Enpp1asj-2J mice.

    Science.gov (United States)

    Zhang, Jieyu; Dyment, Nathaniel A; Rowe, David W; Siu, Sarah Y; Sundberg, John P; Uitto, Jouni; Li, Qiaoli

    2016-03-15

    Generalized arterial calcification of infancy (GACI), an autosomal recessive disorder caused by mutations in the ENPP1 gene, manifests with extensive mineralization of the cardiovascular system. A spontaneous asj-2J mutant mouse has been characterized as a model for GACI. Previous studies focused on phenotypic characterization of skin and vascular tissues. This study further examined the ectopic mineralization phenotype of cartilage, collagen-rich tendons and ligaments in this mouse model. The mice were placed on either control diet or the "acceleration diet" for up to 12 weeks of age. Soft connective tissues, such as ear (elastic cartilage) and trachea (hyaline cartilage), were processed for standard histology. Assessment of ectopic mineralization in articular cartilage and fibrocartilage as well as tendons and ligaments which are attached to long bones were performed using a novel cryo-histological method without decalcification. These analyses demonstrated ectopic mineralization in cartilages as well as tendons and ligaments in the homozygous asj-2J mice at 12 weeks of age, with the presence of immature osteophytes displaying alkaline phosphatase and tartrate-resistant acid phosphatase activities as early as at 6 weeks of age. Alkaline phosphatase activity was significantly increased in asj-2J mouse serum as compared to wild type mice, indicating increased bone formation rate in these mice. Together, these data highlight the key role of ENPP1 in regulating calcification of both soft and skeletal tissues.

  19. Biodegradable and injectable cure-on-demand polyurethane scaffolds for regeneration of articular cartilage.

    Science.gov (United States)

    Werkmeister, J A; Adhikari, R; White, J F; Tebb, T A; Le, T P T; Taing, H C; Mayadunne, R; Gunatillake, P A; Danon, S J; Ramshaw, J A M

    2010-09-01

    This paper describes the synthesis and characterization of an injectable methacrylate functionalized urethane-based photopolymerizable prepolymer to form biodegradable hydrogels. The tetramethacrylate prepolymer was based on the reaction between two synthesized compounds, diisocyanato poly(ethylene glycol) and monohydroxy dimethacrylate poly(epsilon-caprolactone) triol. The final prepolymer was hydrated with phosphate-buffered saline (pH 7.4) to yield a biocompatible hydrogel containing up to 86% water. The methacrylate functionalized prepolymer was polymerized using blue light (450 nm) with an initiator, camphorquinone and a photosensitizer, N,N-dimethylaminoethyl methacrylate. The polymer was stable in vitro in culture media over the 28 days tested (1.9% mass loss); in the presence of lipase, around 56% mass loss occurred over the 28 days in vitro. Very little degradation occurred in vivo in rats over the same time period. The polymer was well tolerated with very little capsule formation and a moderate host tissue response. Human chondrocytes, seeded onto Cultispher-S beads, were viable in the tetramethacrylate prepolymer and remained viable during and after polymerization. Chondrocyte-bead-polymer constructs were maintained in static and spinner culture for 8 weeks. During this time, cells remained viable, proliferated and migrated from the beads through the polymer towards the edge of the polymer. New extracellular matrix (ECM) was visualized with Masson's trichrome (collagen) and Alcian blue (glycosaminoglycan) staining. Further, the composition of the ECM was typical for articular cartilage with prominent collagen type II and type VI and moderate keratin sulphate, particularly for tissue constructs cultured under dynamic conditions. 2010. Published by Elsevier Ltd. All rights reserved.

  20. Optimization and translation of MSC-based hyaluronic acid hydrogels for cartilage repair

    Science.gov (United States)

    Erickson, Isaac E.

    2011-12-01

    Traumatic injury and disease disrupt the ability of cartilage to carry joint stresses and, without an innate regenerative response, often lead to degenerative changes towards the premature development of osteoarthritis. Surgical interventions have yet to restore long-term mechanical function. Towards this end, tissue engineering has been explored for the de novo formation of engineered cartilage as a biologic approach to cartilage repair. Research utilizing autologous chondrocytes has been promising, but clinical limitations in their yield have motivated research into the potential of mesenchymal stem cells (MSCs) as an alternative cell source. MSCs are multipotent cells that can differentiate towards a chondrocyte phenotype in a number of biomaterials, but no combination has successfully recapitulated the native mechanical function of healthy articular cartilage. The broad objective of this thesis was to establish an MSC-based tissue engineering approach worthy of clinical translation. Hydrogels are a common class of biomaterial used for cartilage tissue engineering and our initial work demonstrated the potential of a photo-polymerizable hyaluronic acid (HA) hydrogel to promote MSC chondrogenesis and improved construct maturation by optimizing macromer and MSC seeding density. The beneficial effects of dynamic compressive loading, high MSC density, and continuous mixing (orbital shaker) resulted in equilibrium modulus values over 1 MPa, well in range of native tissue. While compressive properties are crucial, clinical translation also demands that constructs stably integrate within a defect. We utilized a push-out testing modality to assess the in vitro integration of HA constructs within artificial cartilage defects. We established the necessity for in vitro pre-maturation of constructs before repair to achieve greater integration strength and compressive properties in situ. Combining high MSC density and gentle mixing resulted in integration strength over 500 k

  1. A cell-free scaffold-based cartilage repair provides improved function hyaline-like repair at one year.

    Science.gov (United States)

    Siclari, Alberto; Mascaro, Gennaro; Gentili, Chiara; Cancedda, Ranieri; Boux, Eugenio

    2012-03-01

    Bone marrow stimulation techniques in cartilage repair such as drilling are limited by the formation of fibrous to hyaline-like repair tissue. It has been suggested such techniques can be enhanced by covering the defect with scaffolds. We present an innovative approach using a polyglycolic acid (PGA)-hyaluronan scaffold with platelet-rich-plasma (PRP) in drilling. We asked whether (1) PRP immersed in a cell-free PGA-hyaluronan scaffold improves patient-reported 1-year outcomes for the Knee injury and Osteoarthritis Score (KOOS), and (2) implantation of the scaffold in combination with bone marrow stimulation leads to the formation of hyaline-like cartilage repair tissue. We reviewed 52 patients who had arthroscopic implantation of the PGA-hyaluronan scaffold immersed with PRP in articular cartilage defects of the knee pretreated with Pridie drilling. Patients were assessed by KOOS. At 9 months followup, histologic staining was performed in specimens obtained from five patients to assess the repair tissue quality. The KOOS subscores improved for pain (55 to 91), symptoms (57 to 88), activities of daily living (69 to 86), sports and recreation (36 to 70), and quality of life (38 to 73). The histologic evaluation showed a homogeneous hyaline-like cartilage repair tissue. The cell-free PGA-hyaluronan scaffold combined with PRP leads to cartilage repair and improved patient-reported outcomes (KOOS) during 12 months of followup. Histologic sections showed morphologic features of hyaline-like repair tissue. Long-term followup is needed to determine if the cartilage repair tissue is durable. Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence.

  2. Analysis of friction between articular cartilage and polyvinyl alcohol hydrogel artificial cartilage.

    Science.gov (United States)

    Li, Feng; Wang, Anmin; Wang, Chengtao

    2016-05-01

    Many biomaterials are being used to repair damaged articular cartilage. In particular, poly vinyl alcohol hydrogel has similar mechanical properties to natural cartilage under compressive and shearing loading. Here, three-factor and two-level friction experiments and long-term tests were conducted to better evaluate its tribological properties. The friction coefficient between articular cartilage and the poly vinyl alcohol hydrogel depended primarily on the three factors of load, speed, and lubrication. When the speed increased from 10 to 20 mm/s under a load of 10 N, the friction coefficient increased from 0.12 to 0.147. When the lubricant was changed from Ringer's solution to a hyaluronic acid solution, the friction coefficient decreased to 0.084 with loads as high as 22 N. The poly vinyl alcohol hydrogel was severely damaged and lost its top surface layers, which were transferred to the articular cartilage surface. Wear was observed in the surface morphologies, which indicated the occurrence of surface adhesion of bovine cartilage. Surface fatigue and adhesive wear was the dominant wear mechanism.

  3. Cartilage damage involving extrusion of mineralisable matrix from the articular calcified cartilage and subchondral bone

    Directory of Open Access Journals (Sweden)

    A Boyde

    2011-05-01

    Full Text Available Arthropathy of the distal articular surfaces of the third metacarpal (Mc3 and metatarsal (Mt3 bones in the Thoroughbred racehorse (Tb is a natural model of repetitive overload arthrosis. We describe a novel pathology that affects the articular calcified cartilage (ACC and subchondral bone (SCB and which is associated with hyaline articular cartilage degeneration. Parasagittal slices cut from the palmar quadrant of the distal condyles of the left Mc3/Mt3 of 39 trained Tbs euthanased for welfare reasons were imaged by point projection microradiography, and backscattered electron (BSE scanning electron microscopy (SEM, light microscopy, and confocal scanning light microscopy. Mechanical properties were studied by nanoindentation. Data on the horses' training and racing career were also collected. Highly mineralised projections were observed extending from cracks in the ACC mineralising front into the hyaline articular cartilage (HAC up to two-thirds the thickness of the HAC, and were associated with focal HAC surface fibrillation directly overlying their site. Nanoindentation identified this extruded matrix to be stiffer than any other mineralised phase in the specimen by a factor of two. The presence of projections was associated with a higher cartilage Mankin histology score (P < 0.02 and increased amounts of gross cartilage loss pathologically on the condyle (P < 0.02. Presence of projections was not significantly associated with: total number of racing seasons, age of horse, amount of earnings, number of days in training, total distance galloped in career, or presence of wear lines.

  4. Cartilage Injuries in the Adult Knee

    Science.gov (United States)

    Moyad, Thomas F.

    2011-01-01

    Cartilage injuries are frequently recognized as a source of significant morbidity and pain in patients with previous knee injuries. The majority of patients who undergo routine knee arthroscopy have evidence of a chondral defect. These injuries represent a continuum of pathology from small, asymptomatic lesions to large, disabling defects affecting a major portion of one or more compartments within the knee joint. In comparison to patients with osteoarthritis, individuals with isolated chondral surface damage are often younger, significantly more active, and usually less willing to accept limitations in activities that require higher impact. At the present time, a variety of surgical procedures exist, each with their unique indications. This heterogeneity of treatment options frequently leads to uncertainty regarding which techniques, if any, are most appropriate for patients. The purpose of this review is to describe the workup and discuss the management techniques for cartilage injuries within the adult knee. PMID:26069581

  5. KNEE CARTILAGE AND SYNOVIAL MEMBRANE STRUCTURAL CHANGES DURING TIBIA DISTRACTION WITH PLATING

    Directory of Open Access Journals (Sweden)

    T. A. Stupina

    2017-01-01

    controls by 18.2%. After 90 days of plate fixation, thinning of the cover layer of synovial membrane was reported. The numerical density of micro vessels decreased to 325.81±36.39. In nerves of subsynovial layer the edema and vacuolization of myelin sheaths of preserved nerve fibers as well as the formation of Büngner bands in place of degenerating ones were detected. Synovitis was not observed. Fibers separation of extracellular substance in upper superficial part of the surface cartilage zone was retained. There was a tendency to increase in cartilage thickness, area and volumetric density of chondrocytes, proportion of isogenic groups; and to decrease of empty lacunae number.Conclusion. The histological changes in the articular cartilage during distraction external fixation of the tibia in combination with plating corresponded to the initial stages of osteoarthritis of grades 1—2 according to histological classification of International Society for Study of Osteoarthritis (2006 and were accompanied by hypovascularization and denervation of synovial membrane.

  6. Evaluation of early changes of cartilage biomarkers following arthroscopic meniscectomy in young Egyptian adults

    Directory of Open Access Journals (Sweden)

    Hamdy Khamis Koryem

    2015-09-01

    Conclusion: Cartilage volume loss by MRI combined with changes in cartilage matrix turnover detected by molecular biomarkers may reflect the initial changes associated with cartilage degeneration that account for early OA.

  7. Overview of existing cartilage repair technology.

    Science.gov (United States)

    McNickle, Allison G; Provencher, Matthew T; Cole, Brian J

    2008-12-01

    Currently, autologous chondrocyte implantation and osteochondral grafting bridge the gap between palliation of cartilage injury and resurfacing via arthroplasty. Emerging technologies seek to advance first generation techniques and accomplish several goals including predictable outcomes, cost-effective technology, single-stage procedures, and creation of durable repair tissue. The biologic pipeline represents a variety of technologies including synthetics, scaffolds, cell therapy, and cell-infused matrices. Synthetic constructs, an alternative to biologic repair, resurface a focal chondral defect rather than the entire joint surface. Scaffolds are cell-free constructs designed as a biologic "net" to augment marrow stimulation techniques. Minced cartilage technology uses stabilized autologous or allogeneic fragments in 1-stage transplantation. Second and third generation cell-based methods include alternative membranes, chondrocyte seeding, and culturing onto scaffolds. Despite the promising early results of these products, significant technical obstacles remain along with unknown long-term durability. The vast array of developing technologies has exceptional promise and the potential to revolutionize the cartilage treatment algorithm within the next decade.

  8. Restoration of limited defects of the cartilage with the use of cell-engineered constructs

    Directory of Open Access Journals (Sweden)

    S. A. Gerasimov

    2017-01-01

    Full Text Available Aim: to develop a three-dimensional composite cell-engineered constructs (CEC for restoration of limited defects of the cartilage in experiment.Materials and methods. To create a cell-engineered constructs (CEC, were used collagenic carriers: «Chondro Gide» impermeable bilayer membrane and «Osteoplast» permeable matrix. A comparative study of their cytotoxic and adhesion properties was made in vitro. Chondroplastic potential of prepared CECs based on collagenous matrices with allogeneic mesenchymal stem cells (MSC of the rabbit bone marrow grown on their surface was assessed in vivo. A cylindrical defect of the cartilage of the medial femoral condyle 3.3 mm in diameter at a depth of 1.5 mm was formed on both rabbit feet. Laboratory animals were divided into 3 groups: control group; Experiment 1 group with Chondro Gide used as the MSC carrier within CEC; Experiment 2 group using Osteoplast matrix. Upon experiment completion, a morphometric and histomorphologic research of tissue specimens was made. For statistical evaluation of the results a defect region recovery factor (RF was offered and used. Results. After a 6-month observation period the control group showed partial recovery of the defect region with the recovery factor (RF of 0.62 ± 0.06. The RF in Experiment 1 group equalled to 0.79 ± 0.07, Experiment 2 group revealed RF at the level of 0.88 ± 0.02. Statistical analysis of the research results shows that the use of CEC used in Experiment 2 group reduces a relative risk of therapeutic failures by 92.9%, and absolute risk – by 43.3% as compared to Experiment 1 group. Histomorphologic research data are indicative of a hyaline cartilage formation in the central defect zone, which is partially close to the intact cartilage to the maximum with zonality marked.Conclusion. Results of the research of the developed three-dimension cell-engineered constructs consisting of mesenchymal stem cells of the bone marrow grown on the Osteoplast

  9. Delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC) can be effectively applied for longitudinal cohort evaluation of articular cartilage regeneration

    NARCIS (Netherlands)

    Bekkers, J.E.J.; Lambertus, W.B.; Benink, R.J.; Tsuchida, A.I.; Vincken, K.L.; Dhert, W.J.A.; Creemers, L.B.; Saris, Daniël B.F.

    2013-01-01

    Objective Delayed gadolinium enhanced MRI of cartilage (dGEMRIC) facilitates non-invasive evaluation of the glycosaminoglycan content in articular cartilage. The primary aim of this study was to show that the dGEMRIC technique is able to monitor cartilage repair following regenerative cartilage

  10. Melanocortin 1 receptor-signaling deficiency results in an articular cartilage phenotype and accelerates pathogenesis of surgically induced murine osteoarthritis.

    Science.gov (United States)

    Lorenz, Julia; Seebach, Elisabeth; Hackmayer, Gerit; Greth, Carina; Bauer, Richard J; Kleinschmidt, Kerstin; Bettenworth, Dominik; Böhm, Markus; Grifka, Joachim; Grässel, Susanne

    2014-01-01

    Proopiomelanocortin-derived peptides exert pleiotropic effects via binding to melanocortin receptors (MCR). MCR-subtypes have been detected in cartilage and bone and mediate an increasing number of effects in diathrodial joints. This study aims to determine the role of MC1-receptors (MC1) in joint physiology and pathogenesis of osteoarthritis (OA) using MC1-signaling deficient mice (Mc1re/e). OA was surgically induced in Mc1re/e and wild-type (WT) mice by transection of the medial meniscotibial ligament. Histomorphometry of Safranin O stained articular cartilage was performed with non-operated controls (11 weeks and 6 months) and 4/8 weeks past surgery. µCT-analysis for assessing epiphyseal bone architecture was performed as a longitudinal study at 4/8 weeks after OA-induction. Collagen II, ICAM-1 and MC1 expression was analysed by immunohistochemistry. Mc1re/e mice display less Safranin O and collagen II stained articular cartilage area compared to WT prior to OA-induction without signs of spontaneous cartilage surface erosion. This MC1-signaling deficiency related cartilage phenotype persisted in 6 month animals. At 4/8 weeks after OA-induction cartilage erosions were increased in Mc1re/e knees paralleled by weaker collagen II staining. Prior to OA-induction, Mc1re/e mice do not differ from WT with respect to bone parameters. During OA, Mc1re/e mice developed more osteophytes and had higher epiphyseal bone density and mass. Trabecular thickness was increased while concomitantly trabecular separation was decreased in Mc1re/e mice. Numbers of ICAM-positive chondrocytes were equal in non-operated 11 weeks Mc1re/e and WT whereas number of positive chondrocytes decreased during OA-progression. Unchallenged Mc1re/e mice display smaller articular cartilage covered area without OA-related surface erosions indicating that MC1-signaling is critical for proper cartilage matrix integrity and formation. When challenged with OA, Mc1re/e mice develop a more severe OA

  11. Cutaneous Squamous Cell Carcinoma with Invasion through Ear Cartilage

    Directory of Open Access Journals (Sweden)

    Julie Boisen

    2016-01-01

    Full Text Available Cutaneous squamous cell carcinoma of the ear represents a high-risk tumor location with an increased risk of metastasis and local tissue invasion. However, it is uncommon for these cancers to invade through nearby cartilage. Cartilage invasion is facilitated by matrix metalloproteases, specifically collagenase 3. We present the unusual case of a 76-year-old man with an auricular squamous cell carcinoma that exhibited full-thickness perforation of the scapha cartilage. Permanent sections through the eroded cartilage confirmed tumor invasion extending to the posterior ear skin.

  12. Automatic segmentation of the glenohumeral cartilages from magnetic resonance images

    International Nuclear Information System (INIS)

    Neubert, A.; Yang, Z.; Engstrom, C.; Xia, Y.; Strudwick, M. W.; Chandra, S. S.; Crozier, S.; Fripp, J.

    2016-01-01

    Purpose: Magnetic resonance (MR) imaging plays a key role in investigating early degenerative disorders and traumatic injuries of the glenohumeral cartilages. Subtle morphometric and biochemical changes of potential relevance to clinical diagnosis, treatment planning, and evaluation can be assessed from measurements derived from in vivo MR segmentation of the cartilages. However, segmentation of the glenohumeral cartilages, using approaches spanning manual to automated methods, is technically challenging, due to their thin, curved structure and overlapping intensities of surrounding tissues. Automatic segmentation of the glenohumeral cartilages from MR imaging is not at the same level compared to the weight-bearing knee and hip joint cartilages despite the potential applications with respect to clinical investigation of shoulder disorders. In this work, the authors present a fully automated segmentation method for the glenohumeral cartilages using MR images of healthy shoulders. Methods: The method involves automated segmentation of the humerus and scapula bones using 3D active shape models, the extraction of the expected bone–cartilage interface, and cartilage segmentation using a graph-based method. The cartilage segmentation uses localization, patient specific tissue estimation, and a model of the cartilage thickness variation. The accuracy of this method was experimentally validated using a leave-one-out scheme on a database of MR images acquired from 44 asymptomatic subjects with a true fast imaging with steady state precession sequence on a 3 T scanner (Siemens Trio) using a dedicated shoulder coil. The automated results were compared to manual segmentations from two experts (an experienced radiographer and an experienced musculoskeletal anatomist) using the Dice similarity coefficient (DSC) and mean absolute surface distance (MASD) metrics. Results: Accurate and precise bone segmentations were achieved with mean DSC of 0.98 and 0.93 for the humeral head

  13. Evaluation of laryngeal cartilage calcification in computed tomography

    International Nuclear Information System (INIS)

    Laskowska, K.; Serafin, Z.; Lasek, W.; Maciejewski, M.; Wieczor, W.; Wisniewski, S.

    2008-01-01

    Computed tomography (CT) is one of the basic methods used for laryngeal carcinoma diagnostics. Osteosclerotic and osteolytic changes of the cartilages are considered as a common radiologic symptom of laryngeal neoplasms. The aim of this paper was to evaluate the prevalence of both osteosclerotic changes and focal calcification defects, which may be suggestive of osteolysis. Calcification was assessed in the thyroid, the cricoid and the arytenoids cartilages on CT images of the neck. We have retrospectively analyzed neck CT examinations of 50 patients without any laryngeal pathology in anamnesis. The grade and symmetry of calcifications was assessed in the thyroid, the cricoid and the arytenoids cartilages. Calcification of the laryngeal cartilages was present in 83% of the patients. Osteosclerotic lesions of the thyroid cartilage were seen in 70% of the patients (asymmetric in 60% of them), of the cricoid catrilage in 50% (asymmetric in 60%), and of the arytenoid cartilages in 24% (asymmetric in 67%). Focal calcification defects were present in the thyroid cartilage in 56% of the patients (asymmetric in 67% of them), in the cricoid catrilage in 8% (asymmetric in all cases), and in the arytenoid cartilages in 20% (asymmetric in 90%). Osteosclerotic changes and focal calcification defects, which may suggest osteolysis, were found in most of the patients. Therefore, they cannot be used as crucial radiological criteria of neoplastic invasion of laryngeal cartilages. (authors)

  14. Automatic segmentation of the glenohumeral cartilages from magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Neubert, A., E-mail: ales.neubert@csiro.au [School of Information Technology and Electrical Engineering, University of Queensland, Brisbane 4072, Australia and The Australian E-Health Research Centre, CSIRO Health and Biosecurity, Brisbane 4029 (Australia); Yang, Z. [School of Information Technology and Electrical Engineering, University of Queensland, Brisbane 4072, Australia and Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190 (China); Engstrom, C. [School of Human Movement Studies, University of Queensland, Brisbane 4072 (Australia); Xia, Y.; Strudwick, M. W.; Chandra, S. S.; Crozier, S. [School of Information Technology and Electrical Engineering, University of Queensland, Brisbane 4072 (Australia); Fripp, J. [The Australian E-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, 4029 (Australia)

    2016-10-15

    Purpose: Magnetic resonance (MR) imaging plays a key role in investigating early degenerative disorders and traumatic injuries of the glenohumeral cartilages. Subtle morphometric and biochemical changes of potential relevance to clinical diagnosis, treatment planning, and evaluation can be assessed from measurements derived from in vivo MR segmentation of the cartilages. However, segmentation of the glenohumeral cartilages, using approaches spanning manual to automated methods, is technically challenging, due to their thin, curved structure and overlapping intensities of surrounding tissues. Automatic segmentation of the glenohumeral cartilages from MR imaging is not at the same level compared to the weight-bearing knee and hip joint cartilages despite the potential applications with respect to clinical investigation of shoulder disorders. In this work, the authors present a fully automated segmentation method for the glenohumeral cartilages using MR images of healthy shoulders. Methods: The method involves automated segmentation of the humerus and scapula bones using 3D active shape models, the extraction of the expected bone–cartilage interface, and cartilage segmentation using a graph-based method. The cartilage segmentation uses localization, patient specific tissue estimation, and a model of the cartilage thickness variation. The accuracy of this method was experimentally validated using a leave-one-out scheme on a database of MR images acquired from 44 asymptomatic subjects with a true fast imaging with steady state precession sequence on a 3 T scanner (Siemens Trio) using a dedicated shoulder coil. The automated results were compared to manual segmentations from two experts (an experienced radiographer and an experienced musculoskeletal anatomist) using the Dice similarity coefficient (DSC) and mean absolute surface distance (MASD) metrics. Results: Accurate and precise bone segmentations were achieved with mean DSC of 0.98 and 0.93 for the humeral head

  15. From gristle to chondrocyte transplantation: treatment of cartilage injuries.

    Science.gov (United States)

    Lindahl, Anders

    2015-10-19

    This review addresses the progress in cartilage repair technology over the decades with an emphasis on cartilage regeneration with cell therapy. The most abundant cartilage is the hyaline cartilage that covers the surface of our joints and, due to avascularity, this tissue is unable to repair itself. The cartilage degeneration seen in osteoarthritis causes patient suffering and is a huge burden to society. The surgical approach to cartilage repair was non-existing until the 1950s when new surgical techniques emerged. The use of cultured cells for cell therapy started as experimental studies in the 1970s that developed over the years to a clinical application in 1994 with the introduction of the autologous chondrocyte transplantation technique (ACT). The technology is now spread worldwide and has been further refined by combining arthroscopic techniques with cells cultured on matrix (MACI technology). The non-regenerating hypothesis of cartilage has been revisited and we are now able to demonstrate cell divisions and presence of stem-cell niches in the joint. Furthermore, cartilage derived from human embryonic stem cells and induced pluripotent stem cells could be the base for new broader cell treatments for cartilage injuries and the future technology base for prevention and cure of osteoarthritis. © 2015 The Author(s).

  16. From gristle to chondrocyte transplantation: treatment of cartilage injuries

    Science.gov (United States)

    Lindahl, Anders

    2015-01-01

    This review addresses the progress in cartilage repair technology over the decades with an emphasis on cartilage regeneration with cell therapy. The most abundant cartilage is the hyaline cartilage that covers the surface of our joints and, due to avascularity, this tissue is unable to repair itself. The cartilage degeneration seen in osteoarthritis causes patient suffering and is a huge burden to society. The surgical approach to cartilage repair was non-existing until the 1950s when new surgical techniques emerged. The use of cultured cells for cell therapy started as experimental studies in the 1970s that developed over the years to a clinical application in 1994 with the introduction of the autologous chondrocyte transplantation technique (ACT). The technology is now spread worldwide and has been further refined by combining arthroscopic techniques with cells cultured on matrix (MACI technology). The non-regenerating hypothesis of cartilage has been revisited and we are now able to demonstrate cell divisions and presence of stem-cell niches in the joint. Furthermore, cartilage derived from human embryonic stem cells and induced pluripotent stem cells could be the base for new broader cell treatments for cartilage injuries and the future technology base for prevention and cure of osteoarthritis. PMID:26416680

  17. Reviewing subchondral cartilage surgery: considerations for standardised and outcome predictable cartilage remodelling: a technical note.

    Science.gov (United States)

    Benthien, Jan P; Behrens, Peter

    2013-11-01

    The potential of subchondral mesenchymal stem cell stimulation (MSS) for cartilage repair has led to the widespread use of microfracture as a first line treatment for full thickness articular cartilage defects. Recent focus on the effects of subchondral bone during cartilage injury and repair has expanded the understanding of the strengths and limitations in MSS and opened new pathways for potential improvement. Comparative studies have shown that bone marrow access has positive implications for pluripotential cell recruitment, repair quality and quantity, i.e. deeper channels elicited better cartilage fill, more hyaline cartilage character with higher type II collagen content and lower type I collagen content compared to shallow marrow access. A subchondral needling procedure using standardised and thin subchondral perforations deep into the subarticular bone marrow making the MSS more consistent with the latest developments in subchondral cartilage remodelling is proposed. As this is a novel method clinical studies have been initiated to evaluate the procedure especially compared to microfracturing. However, the first case studies and follow-ups indicate that specific drills facilitate reaching the subchondral bone marrow while the needle size makes perforation of the subchondral bone easier and more predictable. Clinical results of the first group of patients seem to compare well to microfracturing. The authors suggest a new method for a standardised procedure using a new perforating device. Advances in MSS by subchondral bone marrow perforation are discussed. It remains to be determined by clinical studies how this method compares to microfracturing. The subchondral needling offers the surgeon and the investigator a method that facilitates comparison studies because of its defined depth of subchondral penetration and needle size.

  18. In-vivo study and histological examination of laser reshaping of cartilage

    Science.gov (United States)

    Sviridov, Alexander P.; Sobol, Emil N.; Bagratashvili, Victor N.; Omelchenko, Alexander I.; Ovchinnikov, Yuriy M.; Shekhter, Anatoliy B.; Svistushkin, Valeriy M.; Shinaev, Andrei A.; Nikiforova, G.; Jones, Nicholas

    1999-06-01

    The results of recent study of cartilage reshaping in vivo are reported. The ear cartilage of piglets of 8-12 weeks old have been reshaped in vivo using the radiation of a holmium laser. The stability of the shape and possible side effects have been examined during four months. Histological investigation shown that the healing of irradiated are could accompany by the regeneration of ear cartilage. Finally, elastic type cartilage has been transformed into fibrous cartilage or cartilage of hyaline type.

  19. Fine-tuning Cartilage Tissue Engineering by Applying Principles from Embryonic Development

    OpenAIRE

    Hellingman, Catharine

    2012-01-01

    textabstractCartilage has a very poor capacity for regeneration in vivo. In head and neck surgery cartilage defects are usually reconstructed with autologous cartilage from for instance the external ear or the ribs. Cartilage tissue engineering may be a promising alternative to supply tissue for cartilage reconstructions in otorhinolaryngology as well as in plastic surgery and orthopaedics. The aim of this thesis is to find new tools by which cartilage tissue engineering can be better control...

  20. Characterization of a cartilage-like engineered biomass using a self-aggregating suspension culture model: molecular composition using FT-IRIS.

    Science.gov (United States)

    Kim, Minwook; Kraft, Jeffrey J; Volk, Andrew C; Pugarelli, Joan; Pleshko, Nancy; Dodge, George R

    2011-12-01

    Maintenance of chondrocyte phenotype and robust expression and organization of macromolecular components with suitable cartilaginous properties is an ultimate goal in cartilage tissue engineering. We used a self-aggregating suspension culture (SASC) method to produce an engineered cartilage, "cartilage tissue analog" (CTA). With an objective of understanding the stability of phenotype of the CTA over long periods, we cultured chondrocytes up to 4 years and analyzed the matrix. Both early (eCTAs) (6 months) and aged (aCTAs) (4 years) showed type II collagen throughout with higher concentrations near the edge. Using Fourier transform-infrared imaging spectroscopy (FT-IRIS), proteoglycan/collagen ratio of eCTA was 2.8 times greater than native cartilage at 1 week, but the ratio was balanced to native level (p = 0.017) by 36 weeks. Surprisingly, aCTAs maintained the hyaline characteristics, but there was evidence of calcification within the tissue with a distinct range of intensities. Mineral/matrix ratio of those aCTA with "intensive" calcification was significantly higher (p = 0.017) than the "partial," but when compared to native bone the ratio of "intensive" aCTAs was 2.4 times lower. In this study we utilized the imaging approach of FT-IRIS and have shown that a biomaterial formed is compositionally closely related to natural cartilage for long periods in culture. We show that this culture platform can maintain a CTA for extended periods of time (4 years) and under those conditions signs of mineralization can be found. This method of cartilage tissue engineering is a promising method to generate cartilaginous biomaterial and may have potential to be utilized in both cartilage and boney repairs. Copyright © 2011 Orthopaedic Research Society.

  1. A comparative Study between the Structure of Cartilage Tissue Produced from Murine MSCs Differentiation and Hyaline Costal Cartilage

    OpenAIRE

    M.R. Baghban Eslaminezhad, Ph.D.;  L. Taghiyar, M.Sc; A. Piryaee, M.Sc

    2007-01-01

    Background and purpose: Vitro cartilage differentiation of mesenchymal stem cells (MSCs) has been noticed in several investigations. In this regard, almost always molecular differentiation of the cells has been examined, while structural and morphological differentiation of them has been ignored. Therefore, the present study examines the structure and ultrastructure of the cartilage differentiated from murine MSCs compared with that of costal cartilage.Materials and Methods: 2× 105 MSCs isola...

  2. Repair of articular cartilage defects in the knee with autologous iliac crest cartilage in a rabbit model.

    Science.gov (United States)

    Jing, Lizhong; Zhang, Jiying; Leng, Huijie; Guo, Qinwei; Hu, Yuelin

    2015-04-01

    To demonstrate that iliac crest cartilage may be used to repair articular cartilage defects in the knees of rabbits. Full-thickness cartilage defects were created in the medial femoral condyle on both knees of 36 New Zealand white rabbits. The 72 defects were randomly assigned to be repaired with ipsilateral iliac crest cartilage (Group I), osteochondral tissues removed at defect creation (Group II), or no treatment (negative control, Group III). Animals were killed at 6, 12, and 24 weeks post-operatively. The repaired tissues were harvested for magnetic resonance imaging (MRI), histological studies (haematoxylin and eosin and immunohistochemical staining), and mechanical testing. At 6 weeks, the iliac crest cartilage graft was not yet well integrated with the surrounding articular cartilage, but at 12 weeks, the graft deep zone had partial ossification. By 24 weeks, the hyaline cartilage-like tissue was completely integrated with the surrounding articular cartilage. Osteochondral autografts showed more rapid healing than Group I at 6 weeks and complete healing at 12 weeks. Untreated defects were concave or partly filled with fibrous tissue throughout the study. MRI showed that Group I had slower integration with surrounding normal cartilage compared with Group II. The mechanical properties of Group I were significantly lower than those of Group II at 12 weeks, but this difference was not significant at 24 weeks. Iliac crest cartilage autografts were able to repair knee cartilage defects with hyaline cartilage and showed comparable results with osteochondral autografts in the rabbit model.

  3. The identification of CD163 expressing phagocytic chondrocytes in joint cartilage and its novel scavenger role in cartilage degradation.

    Directory of Open Access Journals (Sweden)

    Kai Jiao

    Full Text Available BACKGROUND: Cartilage degradation is a typical characteristic of arthritis. This study examined whether there was a subset of phagocytic chondrocytes that expressed the specific macrophage marker, CD163, and investigated their role in cartilage degradation. METHODS: Cartilage from the knee and temporomandibular joints of Sprague-Dawley rats was harvested. Cartilage degradation was experimentally-induced in rat temporomandibular joints, using published biomechanical dental methods. The expression levels of CD163 and inflammatory factors within cartilage, and the ability of CD163(+ chondrocytes to conduct phagocytosis were investigated. Cartilage from the knees of patients with osteoarthritis and normal cartilage from knee amputations was also investigated. RESULTS: In the experimentally-induced degrading cartilage from temporomandibular joints, phagocytes were capable of engulfing neighboring apoptotic and necrotic cells, and the levels of CD163, TNF-α and MMPs were all increased (P0.05. CD163(+ chondrocytes were found in the cartilage mid-zone of temporomandibular joints and knee from healthy, three-week old rats. Furthermore, an increased number of CD163(+ chondrocytes with enhanced phagocytic activity were present in Col-II(+ chondrocytes isolated from the degraded cartilage of temporomandibular joints in the eight-week experimental group compared with their age-matched controls. Increased number with enhanced phagocytic activity of CD163(+ chondrocytes were also found in isolated Col-II(+ chondrocytes stimulated with TNF-α (P<0.05. Mid-zone distribution of CD163(+ cells accompanied with increased expression of CD163 and TNF-α were further confirmed in the isolated Col-II(+ chondrocytes from the knee cartilage of human patients with osteoarthritis, in contrast to the controls (both P<0.05. CONCLUSIONS: An increased number of CD163(+ chondrocytes with enhanced phagocytic activity were discovered within degraded joint cartilage, indicating a

  4. Reconstruction of Hyaline Cartilage Deep Layer Properties in 3-Dimensional Cultures of Human Articular Chondrocytes.

    Science.gov (United States)

    Nanduri, Vibudha; Tattikota, Surendra Mohan; T, Avinash Raj; Sriramagiri, Vijaya Rama Rao; Kantipudi, Suma; Pande, Gopal

    2014-06-01

    Articular cartilage (AC) injuries and malformations are commonly noticed because of trauma or age-related degeneration. Many methods have been adopted for replacing or repairing the damaged tissue. Currently available AC repair methods, in several cases, fail to yield good-quality long-lasting results, perhaps because the reconstructed tissue lacks the cellular and matrix properties seen in hyaline cartilage (HC). To reconstruct HC tissue from 2-dimensional (2D) and 3-dimensional (3D) cultures of AC-derived human chondrocytes that would specifically exhibit the cellular and biochemical properties of the deep layer of HC. Descriptive laboratory study. Two-dimensional cultures of human AC-derived chondrocytes were established in classical medium (CM) and newly defined medium (NDM) and maintained for a period of 6 weeks. These cells were suspended in 2 mm-thick collagen I gels, placed in 24-well culture inserts, and further cultured up to 30 days. Properties of chondrocytes, grown in 2D cultures and the reconstructed 3D cartilage tissue, were studied by optical and scanning electron microscopic techniques, immunohistochemistry, and cartilage-specific gene expression profiling by reverse transcription polymerase chain reaction and were compared with those of the deep layer of native human AC. Two-dimensional chondrocyte cultures grown in NDM, in comparison with those grown in CM, showed more chondrocyte-specific gene activity and matrix properties. The NDM-grown chondrocytes in 3D cultures also showed better reproduction of deep layer properties of HC, as confirmed by microscopic and gene expression analysis. The method used in this study can yield cartilage tissue up to approximately 1.6 cm in diameter and 2 mm in thickness that satisfies the very low cell density and matrix composition properties present in the deep layer of normal HC. This study presents a novel and reproducible method for long-term culture of AC-derived chondrocytes and reconstruction of cartilage

  5. Thermogel-Coated Poly(ε-Caprolactone Composite Scaffold for Enhanced Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Shao-Jie Wang

    2016-05-01

    Full Text Available A three-dimensional (3D composite scaffold was prepared for enhanced cartilage tissue engineering, which was composed of a poly(ε-caprolactone (PCL backbone network and a poly(lactide-co-glycolide-block-poly(ethylene glycol-block-poly(lactide-co-glycolide (PLGA–PEG–PLGA thermogel surface. The composite scaffold not only possessed adequate mechanical strength similar to native osteochondral tissue as a benefit of the PCL backbone, but also maintained cell-friendly microenvironment of the hydrogel. The PCL network with homogeneously-controlled pore size and total pore interconnectivity was fabricated by fused deposition modeling (FDM, and was impregnated into the PLGA–PEG–PLGA solution at low temperature (e.g., 4 °C. The PCL/Gel composite scaffold was obtained after gelation induced by incubation at body temperature (i.e., 37 °C. The composite scaffold showed a greater number of cell retention and proliferation in comparison to the PCL platform. In addition, the composite scaffold promoted the encapsulated mesenchymal stromal cells (MSCs to differentiate chondrogenically with a greater amount of cartilage-specific matrix production compared to the PCL scaffold or thermogel. Therefore, the 3D PCL/Gel composite scaffold may exhibit great potential for in vivo cartilage regeneration.

  6. Effects of growth factors and glucosamine on porcine mandibular condylar cartilage cells and hyaline cartilage cells for tissue engineering applications.

    Science.gov (United States)

    Wang, Limin; Detamore, Michael S

    2009-01-01

    Temporomandibular joint (TMJ) condylar cartilage is a distinct cartilage that has both fibrocartilaginous and hyaline-like character, with a thin proliferative zone that separates the fibrocartilaginous fibrous zone at the surface from the hyaline-like mature and hypertrophic zones below. In this study, we compared the effects of insulin-like growth factor-I (IGF-I), basic fibroblast growth factor (bFGF), transforming growth factor beta1 (TGF-beta1), and glucosamine sulphate on porcine TMJ condylar cartilage and ankle cartilage cells in monolayer culture. In general, TMJ condylar cartilage cells proliferated faster than ankle cartilage cells, while ankle cells produced significantly greater amounts of glycosaminoglycans (GAGs) and collagen than TMJ condylar cartilage cells. IGF-I and bFGF were potent stimulators of TMJ cell proliferation, while no signals statistically outperformed controls for ankle cell proliferation. IGF-I was the most effective signal for GAG production with ankle cells, and the most potent upregulator of collagen synthesis for both cell types. Glucosamine sulphate promoted cell proliferation and biosynthesis at specific concentrations and outperformed growth factors in certain instances. In conclusion, hyaline cartilage cells had lower cell numbers and superior biosynthesis compared to TMJ condylar cartilage cells, and we have found IGF-I at 100 ng/mL and glucosamine sulphate at 100 microg/mL to be the most effective signals for these cells under the prescribed conditions.

  7. Oral administration of undenatured native chicken type II collagen (UC-II) diminished deterioration of articular cartilage in a rat model of osteoarthritis (OA).

    Science.gov (United States)

    Bagi, C M; Berryman, E R; Teo, S; Lane, N E

    2017-12-01

    The aim of this study was to determine the ability of undenatured native chicken type II collagen (UC-II) to prevent excessive articular cartilage deterioration in a rat model of osteoarthritis (OA). Twenty male rats were subjected to partial medial meniscectomy tear (PMMT) surgery to induce OA. Immediately after the surgery 10 rats received vehicle and another 10 rats oral daily dose of UC-II at 0.66 mg/kg for a period of 8 weeks. In addition 10 naïve rats were used as an intact control and another 10 rats received sham surgery. Study endpoints included a weight-bearing capacity of front and hind legs, serum biomarkers of bone and cartilage metabolism, analyses of subchondral and cancellous bone at the tibial epiphysis and metaphysis, and cartilage pathology at the medial tibial plateau using histological methods. PMMT surgery produced moderate OA at the medial tibial plateau. Specifically, the deterioration of articular cartilage negatively impacted the weight bearing capacity of the operated limb. Immediate treatment with the UC-II preserved the weight-bearing capacity of the injured leg, preserved integrity of the cancellous bone at tibial metaphysis and limited the excessive osteophyte formation and deterioration of articular cartilage. Study results demonstrate that a clinically relevant daily dose of UC-II when applied immediately after injury can improve the mechanical function of the injured knee and prevent excessive deterioration of articular cartilage. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Decrease in local volumetric bone mineral density (vBMD) in osteoarthritic joints is associated with the increase in cartilage damage: a pQCT study

    Science.gov (United States)

    Tamaddon, Maryam; Chen, Shen Mao; Vanaclocha, Leyre; Hart, Alister; El-Husseiny, Moataz; Henckel, Johann; Liu, Chaozong

    2017-11-01

    Osteoarthritis (OA) is the most common type of arthritis and a major cause of disability in the adult population. It affects both cartilage and subchondral bone in the joints. There has been some progress in understanding the changes in subchondral bone with progression of osteoarthritis. However, local changes in subchondral bone such as microstructure or volumetric bone mineral density in connection with the defect in cartilage are relatively unexplored. To develop an effective treatment for progression of OA, it is important to understand how the physical environment provided by the subchondral bone affects the overlying cartilage. In this study we examined the volumetric bone mineral density (vBMD) distribution in the osteoarthritic joint tissues obtained from total hip replacement surgeries due to osteoarthritis, using peripheral quantitative CT (pQCT). It was found that there is a significant decrease in volumetric bone mineral density, which co-localises with the damage in the overlying cartilage. This was not limited to the subchondral bone immediately adjacent to the cartilage defect but continued in the layers below. Bone resorption and cyst formation in the OA tissues were also detected. We observed that the bone surrounding subchondral bone cysts exhibited much higher volumetric bone mineral density than that of the surrounding bones. PQCT was able to detect significant changes in vBMD between OA and non-OA samples, as well as between areas of different cartilage degeneration, which points to its potential as a technique for detection of early OA.

  9. The effect of cartilage and bone density of mushroom-shaped, photooxidized, osteochondral transplants: an experimental study on graft performance in sheep using transplants originating from different species

    Directory of Open Access Journals (Sweden)

    Hilbe Monika

    2005-12-01

    Full Text Available Abstract Background Differences in overall performance of osteochondral photooxidized grafts were studied in accordance of their species origin and a new, more rigorous cleansing procedure using alcohol during preparation. Methods Photooxidized mushroom-shaped grafts of bovine, ovine, human and equine origin were implanted in the femoral condyles of 32 sheep (condyles: n = 64. No viable chondrocytes were present at the time of implantation. Grafts were evaluated at 6 months using plastic embedded sections of non-decalcified bone and cartilage specimens. Graft incorporation, the formation of cyst-like lesions at the base of the cartilage junction as well as cartilage morphology was studied qualitatively, semi-quantitatively using a score system and quantitatively by performing histomorphometrical measurements of percentage of bone and fibrous tissue of the original defects. For statistical analysis a factorial analysis of variance (ANOVA- test was applied. Results Differences of graft performance were found according to species origin and cleansing process during graft preparation. According to the score system cartilage surface integrity was best for equine grafts, as well as dislocation or mechanical stability. The equine grafts showed the highest percentage for bone and lowest for fibrous tissue, resp. cystic lesions. The new, more rigorous cleansing process decreased cartilage persistence and overall graft performance. Conclusion Performance of grafts from equine origin was better compared to bovine, ovine and human grafts. The exact reason for this difference was not proven in the current study, but could be related to differences in density of cartilage and subchondral bone between species.

  10. FT-IR Microspectroscopy of Rat Ear Cartilage.

    Directory of Open Access Journals (Sweden)

    Benedicto de Campos Vidal

    Full Text Available Rat ear cartilage was studied using Fourier transform-infrared (FT-IR microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1 after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1 overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue

  11. Chitosan-glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects.

    Science.gov (United States)

    Hoemann, C D; Sun, J; McKee, M D; Chevrier, A; Rossomacha, E; Rivard, G-E; Hurtig, M; Buschmann, M D

    2007-01-01

    We have previously shown that microfractured ovine defects are repaired with more hyaline cartilage when the defect is treated with in situ-solidified implants of chitosan-glycerol phosphate (chitosan-GP) mixed with autologous whole blood. The objectives of this study were (1) to characterize chitosan-GP/blood clots in vitro, and (2) to develop a rabbit marrow stimulation model in order to determine the effects of the chitosan-GP/blood implant and of debridement on the formation of incipient cartilage repair tissue. Blood clots were characterized by histology and in vitro clot retraction tests. Bilateral 3.5 x 4 mm trochlear defects debrided into the calcified layer were pierced with four microdrill holes and filled with a chitosan-GP/blood implant or allowed to bleed freely as a control. At 1 day post-surgery, initial defects were characterized by histomorphometry (n=3). After 8 weeks of repair, osteochondral repair tissues between or through the drill holes were evaluated by histology, histomorphometry, collagen type II expression, and stereology (n=16). Chitosan-GP solutions structurally stabilized the blood clots by inhibiting clot retraction. Treatment of drilled defects with chitosan-GP/blood clots led to the formation of a more integrated and hyaline repair tissue above a more porous and vascularized subchondral bone plate compared to drilling alone. Correlation analysis of repair tissue between the drill holes revealed that the absence of calcified cartilage and the presence of a porous subchondral bone plate were predictors of greater repair tissue integration with subchondral bone (Phyaline and integrated repair tissue associated with a porous subchondral bone replete with blood vessels. Concomitant regeneration of a vascularized bone plate during cartilage repair could provide progenitors, anabolic factors and nutrients that aid in the formation of hyaline cartilage.

  12. Decellularized Bovine Articular Cartilage Matrix Reinforced by Carboxylated-SWCNT for Tissue Engineering Application

    Directory of Open Access Journals (Sweden)

    Zari Majidi Mohammadie

    2018-01-01

    Full Text Available ABSTRACT Nanotubes with their unique properties have diversified mechanical and biological applications. Due to similarity of dimensions with extracellular matrix (ECM elements, these materials are used in designing scaffolds. In this research, Carboxylated Single-Wall Carbon Nanotubes in optimization of decellularized scaffold of bovine articular cartilage was used. At first, the articular cartilage was decellularized. Then the scaffolds were analyzed in: (i decellularized scaffolds, and (ii scaffolds plunged into homogenous suspension of nanotubes in distilled water, were smeared with Carboxylated-SWCNT. The tissue rings derived from the rabbit's ear were assembled with reinforced scaffolds and they were placed in a culture media for 15 days. The scaffolds in two groups and the assembled scaffolds underwent histologic and electron microscopy. Scanning electron microscopy showed that the structure of ECM of articular cartilage has been maintained well after decellularization. Fourier transform infrared analysis showed that the contents of ECM have not been changed under treatment process. Atomic force microscopy analysis showed the difference in surface topography and roughness of group (ii scaffolds in comparison with group (i. Transmission electron microscopy studies showed the Carboxylated-SWCNT bond with the surface of decellularized scaffold and no penetration of these compounds into the scaffold. The porosity percentage with median rate of 91.04 in group (i scaffolds did not have significant difference with group (ii scaffolds. The electron microscopy observations confirmed migration and penetration of the blastema cells into the group (ii assembled scaffolds. This research presents a technique for provision of nanocomposite scaffolds for cartilage engineering applications.

  13. Shark Cartilage Attenuates Oxidative Stress in the liver of Guinea Pigs Exposed to Carbon Tetrachloride and/or Gamma Irradiation

    International Nuclear Information System (INIS)

    Ibrahim, N.K.; Abd El Aziz, N.

    2009-01-01

    There is overwhelming evidence to indicate that oxidative stress is involved in the pathogenesis of several diseases. Carbon tetrachloride (CCl 4 ) and ionizing radiations are environmental pollutants well known to induce free radicals formation and oxidative stress. The objective of this work was to evaluate the effect of shark cartilage administration on CCl 4 and/or gamma radiation-induced oxidative damage in the liver. CCl 4 (1 ml/kg body wt) was subcutaneously administered to guinea pigs twice a week for four weeks. Gamma irradiation (RAD) was applied by whole body exposure of guinea pigs to 1.0 Gy/week up to a total dose of 4.0 Gy. Shark cartilage (ShC) was given to animals at a concentration of 1.0 g/kg body wt daily, one week before exposure to CCl 4 and/or gamma irradiation and during the experimental period. Animals sacrificed at the end of the experimental period showed that administration of shark cartilage has significantly attenuated the increase in liver malonaldehyde (MDA) observed in CCl 4 and/or irradiated guinea pigs. Furthermore, shark cartilage treatment has significantly increased the activity of antioxidant enzymes: superoxide dismutase (SOD) and catalase (CAT) and the content of reduced glutathione (GSH). The amelioration of oxidative stress induced in liver tissues of CCL 4 and/or irradiated guinea pigs treated with shark cartilage was associated with significant improvement in the activity of serum alanine amino transferase (ALT), aspartate amino transferase (AST), alkaline phosphatase (ALP), as well as, bilirubin, albumin, and iron contents. It could be concluded that shark cartilage might protect liver tissues from oxidative injury induced by environmental pro-oxidants pollutants via modulating the antioxidant status and decreasing the process of lipid peroxidation

  14. Patient Profiling in Cartilage Regeneration Prognostic Factors Determining Success of Treatment for Cartilage Defects

    NARCIS (Netherlands)

    de Windt, Tommy S.; Bekkers, Joris E. J.; Creemers, Laura B.; Dhert, Wouter J. A.; Saris, Daniel B. F.

    2009-01-01

    Background: Cartilage therapy for focal articular lesions has been implemented for more than a decade, and it is becoming increasingly available. What is still lacking, however, is analysis of patient characteristics to help improve outcome or select patients for specific treatment. Purpose: To

  15. Cartilage Health in Knees Treated with Metal Resurfacing Implants or Untreated Focal Cartilage Lesions: A Preclinical Study in Sheep.

    Science.gov (United States)

    Martinez-Carranza, Nicolas; Hultenby, Kjell; Lagerstedt, Anne Sofie; Schupbach, Peter; Berg, Hans E

    2017-07-01

    Background Full-depth cartilage lesions do not heal and the long-term clinical outcome is uncertain. In the symptomatic middle-aged (35-60 years) patient, treatment with metal implants has been proposed. However, the cartilage health surrounding these implants has not been thoroughly studied. Our objective was to evaluate the health of cartilage opposing and adjacent to metal resurfacing implants. Methods The medial femoral condyle was operated in 9 sheep bilaterally. A metallic resurfacing metallic implant was immediately inserted into an artificially created 7.5 mm defect while on the contralateral knee the defect was left untreated. Euthanasia was performed at 6 months. Six animals, of similar age and study duration, from a previous study were used for comparison in the evaluation of cartilage health adjacent to the implant. Cartilage damage to joint surfaces within the knee, cartilage repair of the defect, and cartilage adjacent to the implant was evaluated macroscopically and microscopically. Results Six animals available for evaluation of cartilage health within the knee showed a varying degree of cartilage damage with no statistical difference between defects treated with implants or left untreated ( P = 0.51; 95% CI -3.7 to 6.5). The cartilage adjacent to the implant (score 0-14; where 14 indicates no damage) remained healthy in these 6 animals showing promising results (averaged 10.5; range 9-11.5, SD 0.95). Cartilage defects did not heal in any case. Conclusion Treatment of a critical size focal lesion with a metal implant is a viable alternative treatment.

  16. Adipose stem cells can secrete angiogenic factors that inhibit hyaline cartilage regeneration.

    Science.gov (United States)

    Lee, Christopher Sd; Burnsed, Olivia A; Raghuram, Vineeth; Kalisvaart, Jonathan; Boyan, Barbara D; Schwartz, Zvi

    2012-08-24

    Adipose stem cells (ASCs) secrete many trophic factors that can stimulate tissue repair, including angiogenic factors, but little is known about how ASCs and their secreted factors influence cartilage regeneration. Therefore, the aim of this study was to determine the effects ASC-secreted factors have in repairing chondral defects. ASCs isolated from male Sprague Dawley rats were cultured in monolayer or alginate microbeads supplemented with growth (GM) or chondrogenic medium (CM). Subsequent co-culture, conditioned media, and in vivo cartilage defect studies were performed. ASC monolayers and microbeads cultured in CM had decreased FGF-2 gene expression and VEGF-A secretion compared to ASCs cultured in GM. Chondrocytes co-cultured with GM-cultured ASCs for 7 days had decreased mRNAs for col2, comp, and runx2. Chondrocytes treated for 12 or 24 hours with conditioned medium from GM-cultured ASCs had reduced sox9, acan, and col2 mRNAs; reduced proliferation and proteoglycan synthesis; and increased apoptosis. ASC-conditioned medium also increased endothelial cell tube lengthening whereas conditioned medium from CM-cultured ASCs had no effect. Treating ASCs with CM reduced or abolished these deleterious effects while adding a neutralizing antibody for VEGF-A eliminated ASC-conditioned medium induced chondrocyte apoptosis and restored proteoglycan synthesis. FGF-2 also mitigated the deleterious effects VEGF-A had on chondrocyte apoptosis and phenotype. When GM-grown ASC pellets were implanted in 1 mm non-critical hyaline cartilage defects in vivo, cartilage regeneration was inhibited as evaluated by radiographic and equilibrium partitioning of an ionic contrast agent via microCT imaging. Histology revealed that defects with GM-cultured ASCs had no tissue ingrowth from the edges of the defect whereas empty defects and defects with CM-grown ASCs had similar amounts of neocartilage formation. ASCs must be treated to reduce the secretion of VEGF-A and other factors that

  17. Endogenous Cartilage Repair by Recruitment of Stem Cells.

    Science.gov (United States)

    Im, Gun-Il

    2016-04-01

    Articular cartilage has a very limited capacity for repair after injury. The adult body has a pool of stem cells that are mobilized during injury or disease. These cells exist inside niches in bone marrow, muscle, adipose tissue, synovium, and other connective tissues. A method that mobilizes this endogenous pool of stem cells will provide a less costly and less invasive alternative if these cells successfully regenerate defective cartilage. Traditional microfracture procedures employ the concept of bone marrow stimulation to regenerate cartilage. However, the regenerated tissue usually is fibrous cartilage, which has very poor mechanical properties compared to those of normal hyaline cartilage. A method that directs the migration of a large number of autologous mesenchymal stem cells toward injury sites, retains these cells around the defects, and induces chondrogenic differentiation that would enhance success of endogenous cartilage repair. This review briefly summarizes chemokines and growth factors that induce recruitment, proliferation, and differentiation of endogenous progenitor cells, endogenous cell sources for regenerating cartilage, scaffolds for delivery of bioactive factors, and bioadhesive materials that are necessary to bring about endogenous cartilage repair.

  18. Combined role of type IX collagen and cartilage oligomeric matrix protein in cartilage matrix assembly: Cartilage oligomeric matrix protein counteracts type IX collagen-induced limitation of cartilage collagen fibril growth in mouse chondrocyte cultures

    NARCIS (Netherlands)

    Blumbach, K.; Bastiaansen-Jenniskens, Y.M.; Groot, J. de; Paulsson, M.; Osch, G.J.V.M. van; Zaucke, F.

    2009-01-01

    Objective. Defects in the assembly and composition of cartilage extracellular matrix are likely to result in impaired matrix integrity and increased susceptibility to cartilage degeneration. The aim of this study was to determine the functional interaction of the collagen fibril-associated proteins

  19. Cationic Contrast Agent Diffusion Differs Between Cartilage and Meniscus.

    Science.gov (United States)

    Honkanen, Juuso T J; Turunen, Mikael J; Freedman, Jonathan D; Saarakkala, Simo; Grinstaff, Mark W; Ylärinne, Janne H; Jurvelin, Jukka S; Töyräs, Juha

    2016-10-01

    Contrast enhanced computed tomography (CECT) is a non-destructive imaging technique used for the assessment of composition and structure of articular cartilage and meniscus. Due to structural and compositional differences between these tissues, diffusion and distribution of contrast agents may differ in cartilage and meniscus. The aim of this study is to determine the diffusion kinematics of a novel iodine based cationic contrast agent (CA(2+)) in cartilage and meniscus. Cylindrical cartilage and meniscus samples (d = 6 mm, h ≈ 2 mm) were harvested from healthy bovine knee joints (n = 10), immersed in isotonic cationic contrast agent (20 mgI/mL), and imaged using a micro-CT scanner at 26 time points up to 48 h. Subsequently, normalized X-ray attenuation and contrast agent diffusion flux, as well as water, collagen and proteoglycan (PG) contents in the tissues were determined. The contrast agent distributions within cartilage and meniscus were different. In addition, the normalized attenuation and diffusion flux were higher (p < 0.05) in cartilage. Based on these results, diffusion kinematics vary between cartilage and meniscus. These tissue specific variations can affect the interpretation of CECT images and should be considered when cartilage and meniscus are assessed simultaneously.

  20. Tissue engineering of functional articular cartilage : the current status

    NARCIS (Netherlands)

    Kock, L.M.; Donkelaar, van C.C.; Ito, K.

    2012-01-01

    Osteoarthritis is a degenerative joint disease characterized by pain and disability. It involves all ages and 70% of people aged >65 have some degree of osteoarthritis. Natural cartilage repair is limited because chondrocyte density and metabolism are low and cartilage has no blood supply. The

  1. A Dual Flow Bioreactor for Cartilage Tissue Engineering

    NARCIS (Netherlands)

    Spitters, Tim

    2014-01-01

    Preventing the onset of a degenerative disease like osteoarthritis by restoring tissue function before cartilage degradation occurs will decrease health costs, reduce socio-economic burdens of patients and preserve quality of life. However, producing ex vivo cartilage implants of clinically relevant

  2. Transcriptional network systems in cartilage development and disease.

    Science.gov (United States)

    Nishimura, Riko; Hata, Kenji; Nakamura, Eriko; Murakami, Tomohiko; Takahata, Yoshifumi

    2018-04-01

    Transcription factors play important roles in the regulation of cartilage development by controlling the expression of chondrogenic genes. Genetic studies have revealed that Sox9/Sox5/Sox6, Runx2/Runx3 and Osterix in particular are essential for the sequential steps of cartilage development. Importantly, these transcription factors form network systems that are also required for appropriate cartilage development. Molecular cloning approaches have largely contributed to the identification of several transcriptional partners for Sox9 and Runx2 during cartilage development. Although the importance of a negative-feedback loop between Indian hedgehog (Ihh) and parathyroid hormone-related protein (PTHrP) in chondrocyte hypertrophy has been well established, recent studies indicate that several transcription factors interact with the Ihh-PTHrP loop and demonstrated that Ihh has multiple functions in the regulation of cartilage development. The most common cartilage disorder, osteoarthritis, has been reported to result from the pathological action of several transcription factors, including Runx2, C/EBPβ and HIF-2α. On the other hand, NFAT family members appear to play roles in the protection of cartilage from osteoarthritis. It is also becoming important to understand the homeostasis and regulation of articular chondrocytes, because they have different cellular and molecular features from chondrocytes of the growth plate. This review summarizes the regulation and roles of transcriptional network systems in cartilage development and their pathological roles in osteoarthritis.

  3. Stem Cells and Gene Therapy for Cartilage Repair

    Directory of Open Access Journals (Sweden)

    Umile Giuseppe Longo

    2012-01-01

    Full Text Available Cartilage defects represent a common problem in orthopaedic practice. Predisposing factors include traumas, inflammatory conditions, and biomechanics alterations. Conservative management of cartilage defects often fails, and patients with this lesions may need surgical intervention. Several treatment strategies have been proposed, although only surgery has been proved to be predictably effective. Usually, in focal cartilage defects without a stable fibrocartilaginous repair tissue formed, surgeons try to promote a natural fibrocartilaginous response by using marrow stimulating techniques, such as microfracture, abrasion arthroplasty, and Pridie drilling, with the aim of reducing swelling and pain and improving joint function of the patients. These procedures have demonstrated to be clinically useful and are usually considered as first-line treatment for focal cartilage defects. However, fibrocartilage presents inferior mechanical and biochemical properties compared to normal hyaline articular cartilage, characterized by poor organization, significant amounts of collagen type I, and an increased susceptibility to injury, which ultimately leads to premature osteoarthritis (OA. Therefore, the aim of future therapeutic strategies for articular cartilage regeneration is to obtain a hyaline-like cartilage repair tissue by transplantation of tissues or cells. Further studies are required to clarify the role of gene therapy and mesenchimal stem cells for management of cartilage lesions.

  4. Integrative studies on cartilage tissue engineering and joint homeostasis

    NARCIS (Netherlands)

    Rutgers, M.

    2014-01-01

    The impact of cartilage injury to the joint is often larger than the initial clinical symptoms suggest. Through an alteration in joint homeostasis and biomechanical loading, cartilage lesions may accelerate osteoarthritis onset. Although good clinical results are achieved in patients treated by the

  5. Effect of scopoletin on fascia-wrapped diced cartilage grafts

    African Journals Online (AJOL)

    Surgically wrapped diced cartilages exhibit various degrees of resorption; thus, it has been recommended that fascia be used to wrap diced cartilages. However, few surgeons suggest the use of AlloDerm for wrapping because the harvesting of fascia may cause hematoma and alopecia [17]. Additionally, block grafts have a.

  6. Autologous chondrocyte implantation: superior biologic properties of hyaline cartilage repairs.

    Science.gov (United States)

    Henderson, Ian; Lavigne, Patrick; Valenzuela, Herminio; Oakes, Barry

    2007-02-01

    Information regarding the quality of autologous chondrocyte implantation repair is needed to determine whether the current autologous chondrocyte implantation surgical technology and the subsequent biologic repair processes are capable of reliably forming durable hyaline or hyaline-like cartilage in vivo. We report and analyze the properties and qualities of autologous chondrocyte implantation repairs. We evaluated 66 autologous chondrocyte implantation repairs in 57 patients, 55 of whom had histology, indentometry, and International Cartilage Repair Society repair scoring at reoperation for mechanical symptoms or pain. International Knee Documentation Committee scores were used to address clinical outcome. Maximum stiffness, normalized stiffness, and International Cartilage Repair Society repair scoring were higher for hyaline articular cartilage repairs compared with fibrocartilage, with no difference in clinical outcome. Reoperations revealed 32 macroscopically abnormal repairs (Group B) and 23 knees with normal-looking repairs in which symptoms leading to arthroscopy were accounted for by other joint disorders (Group A). In Group A, 65% of repairs were either hyaline or hyaline-like cartilage compared with 28% in Group B. Autologous chondrocyte repairs composed of fibrocartilage showed more morphologic abnormalities and became symptomatic earlier than hyaline or hyaline-like cartilage repairs. The hyaline articular cartilage repairs had biomechanical properties comparable to surrounding cartilage and superior to those associated with fibrocartilage repairs.

  7. Assessment of hyaline cartilage matrix composition using near infrared spectroscopy.

    Science.gov (United States)

    Palukuru, Uday P; McGoverin, Cushla M; Pleshko, Nancy

    2014-09-01

    Changes in the composition of the extracellular matrix (ECM) are characteristic of injury or disease in cartilage tissue. Various imaging modalities and biochemical techniques have been used to assess the changes in cartilage tissue but lack adequate sensitivity, or in the case of biochemical techniques, result in destruction of the sample. Fourier transform near infrared (FT-NIR) spectroscopy has shown promise for the study of cartilage composition. In the current study NIR spectroscopy was used to identify the contributions of individual components of cartilage in the NIR spectra by assessment of the major cartilage components, collagen and chondroitin sulfate, in pure component mixtures. The NIR spectra were obtained using homogenous pellets made by dilution with potassium bromide. A partial least squares (PLS) model was calculated to predict composition in bovine cartilage samples. Characteristic absorbance peaks between 4000 and 5000 cm(-1) could be attributed to components of cartilage, i.e. collagen and chondroitin sulfate. Prediction of the amount of collagen and chondroitin sulfate in tissues was possible within 8% (w/dw) of values obtained by gold standard biochemical assessment. These results support the use of NIR spectroscopy for in vitro and in vivo applications to assess matrix composition of cartilage tissues, especially when tissue destruction should be avoided. Copyright © 2014. Published by Elsevier B.V.

  8. High-resolution MR imaging of wrist cartilage

    International Nuclear Information System (INIS)

    Rominger, M.B.; Bernreuter, W.K.; Listinsky, J.J.; Lee, D.H.; Kenney, P.J.; Colgin, S.L.

    1991-01-01

    This paper reports that cartilage is an important prognostic factor in arthritis. MR imaging can demonstrate both articular cartilage and subchondral bone. Our purpose was to compare various sequences, for wrist cartilage imaging and determine how extensive damage must be before it is detectable with MR imaging. Six cadaver wrists were imaged before and after arthroscopic cartilage injury (coronal and axial T1- and T2-weighted SE sequences, 3-mm sections; SPGR 45 degrees flip angle volume images with fat saturation. 1.2-mm sections; plus T1-weighted coronal images with fat saturation after injury; General Electric Signa, 1.5 T, with transmit-receive extremity coil). Twenty-two defects were created arthroscopically. Five normal volunteers were imaged for comparison. The greatest contrast among bone, cartilage, and synovial fluid was achieved with T1-weighted fat-suppressed SE image and SPGR. Gradient-recalled volume sequences generated very thin sections but were susceptible to artifact

  9. Indian hedgehog contributes to human cartilage endplate degeneration.

    Science.gov (United States)

    Wang, Shaowei; Yang, Kun; Chen, Shuai; Wang, Jiying; Du, Guoqing; Fan, Shunwu; Wei, Lei

    2015-08-01

    To determine the role of Indian hedgehog (Ihh) signaling in human cartilage endplate (CEP) degeneration. CEP-degenerated tissues from patients with Modic I or II changes (n = 9 and 45, respectively) and normal tissues from vertebral burst fracture patients (n = 17) were collected. Specimens were either cut into slices for organ culture ex vivo or digested to isolate chondrocytes for cell culture in vitro. Ihh expression and the effect of Ihh on cartilage degeneration were determined by investigating degeneration markers in this study. Ihh expression and cartilage degeneration markers significantly increased in the Modic I and II groups. The expression of cartilage degeneration markers was positively correlated with degeneration severity. Gain-of-function for Ihh promoted expression of cartilage degeneration markers in vitro, while loss-of-function for Ihh inhibited their expression both in vitro and ex vivo. These findings demonstrated that Ihh promotes CEP degeneration. Blocking Ihh pathway has potential clinical usage for attenuating CEP degeneration.

  10. Follistatin Alleviates Synovitis and Articular Cartilage Degeneration Induced by Carrageenan

    Directory of Open Access Journals (Sweden)

    Jun Yamada

    2014-01-01

    Full Text Available Activins are proinflammatory cytokines which belong to the TGFβ superfamily. Follistatin is an extracellular decoy receptor for activins. Since both activins and follistatin are expressed in articular cartilage, we hypothesized that activin-follistatin signaling participates in the process of joint inflammation and cartilage degeneration. To test this hypothesis, we examined the effects of follistatin in a carrageenan-induced mouse arthritis model. Synovitis induced by intra-articular injection of carrageenan was significantly alleviated by preinjection with follistatin. Macrophage infiltration into the synovial membrane was significantly reduced in the presence of follistatin. In addition, follistatin inhibited proteoglycan erosion induced by carrageenan in articular cartilage. These data indicate that activin-follistatin signaling is involved in joint inflammation and cartilage homeostasis. Our data suggest that follistatin can be a new therapeutic target for inflammation-induced articular cartilage degeneration.

  11. Porous decellularized tissue engineered hypertrophic cartilage as a scaffold for large bone defect healing.

    Science.gov (United States)

    Cunniffe, Gráinne M; Vinardell, Tatiana; Murphy, J Mary; Thompson, Emmet M; Matsiko, Amos; O'Brien, Fergal J; Kelly, Daniel J

    2015-09-01

    Clinical translation of tissue engineered therapeutics is hampered by the significant logistical and regulatory challenges associated with such products, prompting increased interest in the use of decellularized extracellular matrix (ECM) to enhance endogenous regeneration. Most bones develop and heal by endochondral ossification, the replacement of a hypertrophic cartilaginous intermediary with bone. The hypothesis of this study is that a porous scaffold derived from decellularized tissue engineered hypertrophic cartilage will retain the necessary signals to instruct host cells to accelerate endogenous bone regeneration. Cartilage tissue (CT) and hypertrophic cartilage tissue (HT) were engineered using human bone marrow derived mesenchymal stem cells, decellularized and the remaining ECM was freeze-dried to generate porous scaffolds. When implanted subcutaneously in nude mice, only the decellularized HT-derived scaffolds were found to induce vascularization and de novo mineral accumulation. Furthermore, when implanted into critically-sized femoral defects, full bridging was observed in half of the defects treated with HT scaffolds, while no evidence of such bridging was found in empty controls. Host cells which had migrated throughout the scaffold were capable of producing new bone tissue, in contrast to fibrous tissue formation within empty controls. These results demonstrate the capacity of decellularized engineered tissues as 'off-the-shelf' implants to promote tissue regeneration. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Cartilage Tissue Engineering with Silk Fibroin Scaffolds Fabricated by Indirect Additive Manufacturing Technology.

    Science.gov (United States)

    Chen, Chih-Hao; Liu, Jolene Mei-Jun; Chua, Chee-Kai; Chou, Siaw-Meng; Shyu, Victor Bong-Hang; Chen, Jyh-Ping

    2014-03-13

    Advanced tissue engineering (TE) technology based on additive manufacturing (AM) can fabricate scaffolds with a three-dimensional (3D) environment suitable for cartilage regeneration. Specifically, AM technology may allow the incorporation of complex architectural features. The present study involves the fabrication of 3D TE scaffolds by an indirect AM approach using silk fibroin (SF). From scanning electron microscopic observations, the presence of micro-pores and interconnected channels within the scaffold could be verified, resulting in a TE scaffold with both micro- and macro-structural features. The intrinsic properties, such as the chemical structure and thermal characteristics of SF, were preserved after the indirect AM manufacturing process. In vitro cell culture within the SF scaffold using porcine articular chondrocytes showed a steady increase in cell numbers up to Day 14. The specific production (per cell basis) of the cartilage-specific extracellular matrix component (collagen Type II) was enhanced with culture time up to 12 weeks, indicating the re-differentiation of chondrocytes within the scaffold. Subcutaneous implantation of the scaffold-chondrocyte constructs in nude mice also confirmed the formation of ectopic cartilage by histological examination and immunostaining.

  13. Cartilage Tissue Engineering with Silk Fibroin Scaffolds Fabricated by Indirect Additive Manufacturing Technology

    Directory of Open Access Journals (Sweden)

    Chih-Hao Chen

    2014-03-01

    Full Text Available Advanced tissue engineering (TE technology based on additive manufacturing (AM can fabricate scaffolds with a three-dimensional (3D environment suitable for cartilage regeneration. Specifically, AM technology may allow the incorporation of complex architectural features. The present study involves the fabrication of 3D TE scaffolds by an indirect AM approach using silk fibroin (SF. From scanning electron microscopic observations, the presence of micro-pores and interconnected channels within the scaffold could be verified, resulting in a TE scaffold with both micro- and macro-structural features. The intrinsic properties, such as the chemical structure and thermal characteristics of SF, were preserved after the indirect AM manufacturing process. In vitro cell culture within the SF scaffold using porcine articular chondrocytes showed a steady increase in cell numbers up to Day 14. The specific production (per cell basis of the cartilage-specific extracellular matrix component (collagen Type II was enhanced with culture time up to 12 weeks, indicating the re-differentiation of chondrocytes within the scaffold. Subcutaneous implantation of the scaffold-chondrocyte constructs in nude mice also confirmed the formation of ectopic cartilage by histological examination and immunostaining.

  14. Sex-Specific Protection of Osteoarthritis by Deleting Cartilage Acid Protein 1.

    Science.gov (United States)

    Ge, Xianpeng; Ritter, Susan Y; Tsang, Kelly; Shi, Ruirui; Takei, Kohtaro; Aliprantis, Antonios O

    2016-01-01

    Cartilage acidic protein 1 (CRTAC1) was recently identified as an elevated protein in the synovial fluid of patients with osteoarthritis (OA) by a proteomic analysis. This gene is also upregulated in both human and mouse OA by transcriptomic analysis. The objective of this study was to characterize the expression and function of CRTAC1 in OA. Here, we first confirm the increase of CRTAC1 in cartilage biopsies from OA patients undergoing joint replacement by real-time PCR and immunohistochemistry. Furthermore, we report that proinflammatory cytokines interleukin-1beta and tumor necrosis factor alpha upregulate CRTAC1 expression in primary human articular chondrocytes and synovial fibroblasts. Genetic deletion of Crtac1 in mice significantly inhibited cartilage degradation, osteophyte formation and gait abnormalities of post-traumatic OA in female, but not male, animals undergoing the destabilization of medial meniscus (DMM) surgery. Taken together, CRTAC1 is upregulated in the osteoarthritic joint and directly induced in chondrocytes and synovial fibroblasts by pro-inflammatory cytokines. This molecule is necessary for the progression of OA in female mice after DMM surgery and thus represents a potential therapy for this prevalent disease, especially for women who demonstrate higher rates and more severe OA.

  15. Sex-Specific Protection of Osteoarthritis by Deleting Cartilage Acid Protein 1.

    Directory of Open Access Journals (Sweden)

    Xianpeng Ge

    Full Text Available Cartilage acidic protein 1 (CRTAC1 was recently identified as an elevated protein in the synovial fluid of patients with osteoarthritis (OA by a proteomic analysis. This gene is also upregulated in both human and mouse OA by transcriptomic analysis. The objective of this study was to characterize the expression and function of CRTAC1 in OA. Here, we first confirm the increase of CRTAC1 in cartilage biopsies from OA patients undergoing joint replacement by real-time PCR and immunohistochemistry. Furthermore, we report that proinflammatory cytokines interleukin-1beta and tumor necrosis factor alpha upregulate CRTAC1 expression in primary human articular chondrocytes and synovial fibroblasts. Genetic deletion of Crtac1 in mice significantly inhibited cartilage degradation, osteophyte formation and gait abnormalities of post-traumatic OA in female, but not male, animals undergoing the destabilization of medial meniscus (DMM surgery. Taken together, CRTAC1 is upregulated in the osteoarthritic joint and directly induced in chondrocytes and synovial fibroblasts by pro-inflammatory cytokines. This molecule is necessary for the progression of OA in female mice after DMM surgery and thus represents a potential therapy for this prevalent disease, especially for women who demonstrate higher rates and more severe OA.

  16. Fate of Meckel's cartilage chondrocytes in ocular culture

    International Nuclear Information System (INIS)

    Richman, J.M.; Diewert, V.M.

    1988-01-01

    Modulation of the chondrocyte phenotype was observed in an organ culture system using Meckel's cartilage. First branchial arch cartilage was dissected from fetal rats of 16- and 17-day gestation. Perichondrium was mechanically removed, cartilage was split at the rostral process, and each half was grafted into the anterior chamber of an adult rat eye. The observed pattern of development in nonirradiated specimens was the following: hypertrophy of the rostral process and endochondral-type ossification, fibrous atrophy in the midsection, and mineralization of the malleus and incus. A change in matrix composition of the implanted cartilage was demonstrated with immunofluorescence staining for cartilage-specific proteoglycan (CSPG). After 15 days of culture, CSPG was found in the auricular process but not in the midsection or rostral process. In order to mark the implanted cells and follow their fate, cartilage was labeled in vitro with [3H]thymidine [3H]TdR). Immediately after labeling 20% of the chondrocytes contained [3H]TdR. After culturing for 5 days, 20% of the chondrocytes were still labeled and 10% of the osteogenic cells also contained radioactive label. The labeling index decreased in both cell types with increased duration of culture. Multinucleated clast-type cells did not contain label. Additional cartilages not labeled with [3H]TdR were exposed to between 20000 and 6000 rad of gamma irradiation before ocular implantation. Irradiated cartilage did not hypertrophy or form bone but a fibrous region developed in the midsection. Cells of the host animal were not induced to form bone around the irradiated cartilage. Our studies suggest that fully differentiated chondrocytes of Meckel's cartilage have the capacity to become osteocytes, osteoblasts, and fibroblasts

  17. Biochemical effects on long-term frozen human costal cartilage

    International Nuclear Information System (INIS)

    Santin, Stefany P.; Martinho Junior, Antonio C.; Yoshito, Daniele; Soares, Fernando A.N.; Mathor, Monica B.

    2011-01-01

    Currently, the progresses on treatment of musculoskeletal diseases with the evolving of artificial implants and the success of tissue transplantation between genetically different individuals have conducted to an increase in radiosterilization. Regarding to tissue transplantation, it is essential to have sterile tissue and many tissue banks use radiosterilization as an effective method to sterilize these tissues. However, high doses of ionizing radiation and the preservation method may induce structural modifications in the tissues, as degradation of structural scaffold, decreasing its mechanical properties. Particularly, cartilage have been preserved in high concentrations of glycerol or deep-frozen at -70 degree C for storage after radiosterilization. Therefore, it is important to study the modifications induced in cartilage by preservation methods and by radiosterilization to determine the appropriated parameters for high quality of human allografts. Costal cartilages were obtained from cadaveric donors and were frozen at -20 degree C for 2 years long in order to compare with previous studies for fresh, deep-frozen and glycerolised cartilages. The mechanical tests were carried out in a universal testing machine until sample failure. According our results, there is no significant statistical difference between stress at break of fresh, long-term - 20 degree C frozen cartilages and deep-frozen cartilage. This early result suggests, regarding to tensile property, that long-term - 20 degree C frozen cartilages corresponds to glycerolised costal cartilages irradiated with 25 kGy or deep-frozen cartilages irradiated with 25 and 50 kGy. Thus, this long-term frozen cartilages may be used for tissue banks, but more studies about effects of ionizing radiation are necessary. (author)

  18. Radiological observation of determination of sex by costal cartilage calcification

    International Nuclear Information System (INIS)

    Kang, Shin Hwa; Won, Jong Jin; Rhee, Song Joo; Moon, Moo Chang; Oh, Jong Hyun; Choi, Ki Chul

    1979-01-01

    The difference of patterns of costal cartilage calcification in male and female had been first described by Fischer in 1955. Thereafter several reports were published, but specific clinical significance was not found. During the period from January, 1978 to December, 1978, we, in the Department of Radiology, Jeonbug National University, studied 2164 cases that showed the entire 12 pairs of ribs. Among these we detected 1494 cases of costal cartilage calcification and frequent sites of calcification. Patterns of costal cartilage calcification were classified into six groups- type l: central, type II: marginal, type III: junctional type, type IV: railroad, type V: diffuse, type VI: mixed. Results are as follows; 1. In a total of 2164 cases, calcification of costal cartilage was present in 1494 cases(69.0%). Of 1181 males 780 cases(66.0%) showed calcification, and of 983 females 714 cases (72.6%) showed calcification. 2. In 439 cases of males, except for 341 cases that showed calcification within the first costal cartilage, patterns of costal cartilage calcification were as follows: marginal type in 265 cases (60.4%), junctional type in 134 cases (30.5%), mixed type in 21 cases (0.5%), central type in 17 cases(3.8%), and railroad type in 2 cases (0.5%). Diffuse type was not present. 3. In 492 cases of females, except of 222 cases that showed calcification within the first costal cartilage, patterns of costal cartilage calcification were as follows; central type in 336 cases (68.3%), junctional type in 94 cases(19.1%), mixed type in 24 cases (4.9%), railroad type in 19 cases (3.9%), and diffuse type in 14 cases (2.8%). 4. When central calcification was observed, predictive value to female was 94.7%. When marginal calcification was observed, predictive value to male was 987.4%. 5. Males frequently showed calcification in upper costal cartilages, and females in lower costal cartilages.

  19. High fat diet accelerates cartilage repair in DBA/1 mice.

    Science.gov (United States)

    Wei, Wu; Bastiaansen-Jenniskens, Yvonne M; Suijkerbuijk, Mathijs; Kops, Nicole; Bos, Pieter K; Verhaar, Jan A N; Zuurmond, Anne-Marie; Dell'Accio, Francesco; van Osch, Gerjo J V M

    2017-06-01

    Obesity is a well-known risk factor for osteoarthritis, but it is unknown what it does on cartilage repair. Here we investigated whether a high fat diet (HFD) influences cartilage repair in a mouse model of cartilage repair. We fed DBA/1 mice control or HFD (60% energy from fat). After 2 weeks, a full thickness cartilage defect was made in the trochlear groove. Mice were sacrificed, 1, 8, and 24 weeks after operation. Cartilage repair was evaluated on histology. Serum glucose, insulin and amyloid A were measured 24 h before operation and at endpoints. Immunohistochemical staining was performed on synovium and adipose tissue to evaluate macrophage infiltration and phenotype. One week after operation, mice on HFD had defect filling with fibroblast-like cells and more cartilage repair as indicated by a lower Pineda score. After 8 weeks, mice on a HFD still had a lower Pineda score. After 24 weeks, no mice had complete cartilage repair and we did not detect a significant difference in cartilage repair between diets. Bodyweight was increased by HFD, whereas serum glucose, amyloid A and insulin were not influenced. Macrophage infiltration and phenotype in adipose tissue and synovium were not influenced by HFD. In contrast to common wisdom, HFD accelerated intrinsic cartilage repair in DBA/1 mice on the short term. Resistance to HFD induced inflammatory and metabolic changes could be associated with accelerated cartilage repair. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1258-1264, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. Biochemical effects on long-term frozen human costal cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Santin, Stefany P.; Martinho Junior, Antonio C.; Yoshito, Daniele; Soares, Fernando A.N.; Mathor, Monica B., E-mail: mathor@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Currently, the progresses on treatment of musculoskeletal diseases with the evolving of artificial implants and the success of tissue transplantation between genetically different individuals have conducted to an increase in radiosterilization. Regarding to tissue transplantation, it is essential to have sterile tissue and many tissue banks use radiosterilization as an effective method to sterilize these tissues. However, high doses of ionizing radiation and the preservation method may induce structural modifications in the tissues, as degradation of structural scaffold, decreasing its mechanical properties. Particularly, cartilage have been preserved in high concentrations of glycerol or deep-frozen at -70 degree C for storage after radiosterilization. Therefore, it is important to study the modifications induced in cartilage by preservation methods and by radiosterilization to determine the appropriated parameters for high quality of human allografts. Costal cartilages were obtained from cadaveric donors and were frozen at -20 degree C for 2 years long in order to compare with previous studies for fresh, deep-frozen and glycerolised cartilages. The mechanical tests were carried out in a universal testing machine until sample failure. According our results, there is no significant statistical difference between stress at break of fresh, long-term - 20 degree C frozen cartilages and deep-frozen cartilage. This early result suggests, regarding to tensile property, that long-term - 20 degree C frozen cartilages corresponds to glycerolised costal cartilages irradiated with 25 kGy or deep-frozen cartilages irradiated with 25 and 50 kGy. Thus, this long-term frozen cartilages may be used for tissue banks, but more studies about effects of ionizing radiation are necessary. (author)

  1. Cartilage immunoprivilege depends on donor source and lesion location.

    Science.gov (United States)

    Arzi, B; DuRaine, G D; Lee, C A; Huey, D J; Borjesson, D L; Murphy, B G; Hu, J C Y; Baumgarth, N; Athanasiou, K A

    2015-09-01

    The ability to repair damaged cartilage is a major goal of musculoskeletal tissue engineering. Allogeneic (same species, different individual) or xenogeneic (different species) sources can provide an attractive source of chondrocytes for cartilage tissue engineering, since autologous (same individual) cells are scarce. Immune rejection of non-autologous hyaline articular cartilage has seldom been considered due to the popular notion of "cartilage immunoprivilege". The objective of this study was to determine the suitability of allogeneic and xenogeneic engineered neocartilage tissue for cartilage repair. To address this, scaffold-free tissue engineered articular cartilage of syngeneic (same genetic background), allogeneic, and xenogeneic origin were implanted into two different locations of the rabbit knee (n=3 per group/location). Xenogeneic engineered cartilage and control xenogeneic chondral explants provoked profound innate inflammatory and adaptive cellular responses, regardless of transplant location. Cytological quantification of immune cells showed that, while allogeneic neocartilage elicited an immune response in the patella, negligible responses were observed when implanted into the trochlea; instead the responses were comparable to microfracture-treated empty defect controls. Allogeneic neocartilage survived within the trochlea implant site and demonstrated graft integration into the underlying bone. In conclusion, the knee joint cartilage does not represent an immune privileged site, strongly rejecting xenogeneic but not allogeneic chondrocytes in a location-dependent fashion. This difference in location-dependent survival of allogeneic tissue may be associated with proximity to the synovium. Through a series of in vivo studies this research demonstrates that articular cartilage is not fully immunoprivileged. In addition, we now show that anatomical location of the defect, even within the same joint compartment, strongly influences the degree of the

  2. The stimulation of mononuclear cells from patients with rheumatoid arthritis to degrade articular cartilage is not modulated by cartilage itself

    NARCIS (Netherlands)

    van Roon, J. A.; van Roy, J. L.; Lafeber, F. P.; Bijlsma, J. W.

    1996-01-01

    To study the modulation of mononuclear cell (MNC) activity in patients with rheumatoid arthritis (RA) by constituents released from human articular cartilage, which may be present in vivo during early events of the disease, when articular cartilage is not only mildly damaged. In an attempt to

  3. A retinaculum-sparing surgical approach preserves porcine stifle joint cartilage in an experimental animal model of cartilage repair.

    Science.gov (United States)

    Bonadio, Marcelo B; Friedman, James M; Sennett, Mackenzie L; Mauck, Robert L; Dodge, George R; Madry, Henning

    2017-12-01

    This study compares a traditional parapatellar retinaculum-sacrificing arthrotomy to a retinaculum-sparing arthrotomy in a porcine stifle joint as a cartilage repair model. Surgical exposure of the femoral trochlea of ten Yucatan pigs stifle joint was performed using either a traditional medial parapatellar approach with retinaculum incision and luxation of the patella (n = 5) or a minimally invasive (MIS) approach which spared the patellar retinaculum (n = 5). Both classical and MIS approaches provided adequate access to the trochlea, enabling the creation of cartilage defects without difficulties. Four full thickness, 4 mm circular full-thickness cartilage defects were created in each trochlea. There were no intraoperative complications observed in either surgical approach. All pigs were allowed full weight-bearing and full range of motion immediately postoperatively and were euthanized between 2 and 3 weeks. The traditional approach was associated with increased cartilage wear compared to the MIS approach. Two blinded raters performed gross evaluation of the trochlea cartilage surrounding the defects according to the modified ICRS cartilage injury classification. The traditional approach cartilage received a significantly worse score than the MIS approach group from both scorers (3.2 vs 0.8, p = 0.01 and 2.8 vs 0, p = 0.005 respectively). The MIS approach results in less damage to the trochlear cartilage and faster return to load bearing activities. As an arthrotomy approach in the porcine model, MIS is superior to the traditional approach.

  4. Maintaining Healthy Skin -- Part 2

    Science.gov (United States)

    ... and SCI • Depression and SCI • Taking Care of Pressure Sores • Maintaining Healthy Skin (Part I) • Maintaining Healthy Skin ( ... For information on establishing skin tolerance, see our “Pressure Sores” pamphlet.) Pressure releases in a wheelchair can be ...

  5. AECL's reliability and maintainability program

    International Nuclear Information System (INIS)

    Wolfe, W.A.; Nieuwhof, G.W.E.

    1976-05-01

    AECL's reliability and maintainability program for nuclear generating stations is described. How the various resources of the company are organized to design and construct stations that operate reliably and safely is shown. Reliability and maintainability includes not only special mathematically oriented techniques, but also the technical skills and organizational abilities of the company. (author)

  6. Growth Factor Stimulation Improves the Structure and Properties of Scaffold-Free Engineered Auricular Cartilage Constructs

    Science.gov (United States)

    Rosa, Renata G.; Joazeiro, Paulo P.; Bianco, Juares; Kunz, Manuela; Weber, Joanna F.; Waldman, Stephen D.

    2014-01-01

    The reconstruction of the external ear to correct congenital deformities or repair following trauma remains a significant challenge in reconstructive surgery. Previously, we have developed a novel approach to create scaffold-free, tissue engineering elastic cartilage constructs directly from a small population of donor cells. Although the developed constructs appeared to adopt the structural appearance of native auricular cartilage, the constructs displayed limited expression and poor localization of elastin. In the present study, the effect of growth factor supplementation (insulin, IGF-1, or TGF-β1) was investigated to stimulate elastogenesis as well as to improve overall tissue formation. Using rabbit auricular chondrocytes, bioreactor-cultivated constructs supplemented with either insulin or IGF-1 displayed increased deposition of cartilaginous ECM, improved mechanical properties, and thicknesses comparable to native auricular cartilage after 4 weeks of growth. Similarly, growth factor supplementation resulted in increased expression and improved localization of elastin, primarily restricted within the cartilaginous region of the tissue construct. Additional studies were conducted to determine whether scaffold-free engineered auricular cartilage constructs could be developed in the 3D shape of the external ear. Isolated auricular chondrocytes were grown in rapid-prototyped tissue culture molds with additional insulin or IGF-1 supplementation during bioreactor cultivation. Using this approach, the developed tissue constructs were flexible and had a 3D shape in very good agreement to the culture mold (average error tissue structure and 3D shape of the external ear, future studies will be aimed assessing potential changes in construct shape and properties after subcutaneous implantation. PMID:25126941

  7. Ablation of Perlecan Domain 1 Heparan Sulfate Reduces Progressive Cartilage Degradation, Synovitis, and Osteophyte Size in a Preclinical Model of Posttraumatic Osteoarthritis.

    Science.gov (United States)

    Shu, Cindy C; Jackson, Miriam T; Smith, Margaret M; Smith, Susan M; Penm, Steven; Lord, Megan S; Whitelock, John M; Little, Christopher B; Melrose, James

    2016-04-01

    To investigate the role of the heparan sulfate (HS) proteoglycan perlecan (HSPG-2) in regulating fibroblast growth factor (FGF) activity, bone and joint growth, and the onset and progression of posttraumatic osteoarthritis (OA) in a mouse gene-knockout model. Maturational changes were evaluated histologically in the knees of 3-, 6-, and 12-week-old wild-type (WT) mice and Hspg2(Δ3-/Δ3-) mice (Hspg2 lacking domain 1 HS, generated by ablation of exon 3 of perlecan). Cartilage damage, subchondral bone sclerosis, osteophytosis, and synovial inflammation were scored at 4 and 8 weeks after surgical induction of OA in WT and Hspg2(Δ3-/Δ3-) mice. Changes in cartilage expression of FGF-2, FGF-18, HSPG-2, FGF receptor 1 (FGFR-1), and FGFR-3 were examined immunohistochemically. Femoral head cartilage from both mouse genotypes was cultured in the presence or absence of interleukin-1α (IL-1α), FGF-2, and FGF-18, and the content and release of glycosaminoglycan (GAG) and expression of messenger RNA (mRNA) for key matrix molecules, enzymes, and inhibitors were quantified. No effect of perlecan HS ablation on growth plate or joint development was detected. After induction of OA, Hspg2(Δ3-/Δ3-) mice had significantly reduced cartilage erosion, osteophytosis, and synovitis. OA-induced loss of chondrocyte expression of FGF-2, FGF-18, and HSPG-2 occurred in both genotypes. Expression of FGFR-1 after OA induction was maintained in WT mice, while FGFR-3 loss after OA induction was significantly reduced in Hspg2(Δ3-/Δ3-) mice. There were no genotypic differences in GAG content or release between unstimulated control cartilage and IL-1α-stimulated cartilage. However, IL-1α-induced cartilage expression of Mmp3 mRNA was significantly reduced in Hspg2(Δ3-/Δ3-) mice. Cartilage GAG release in either the presence or absence of IL-1α was unaltered by FGF-2 in both genotypes. In cartilage cultures with FGF-18, IL-1α-stimulated GAG loss was significantly reduced only in Hspg2(Δ3

  8. Mapping the spatiotemporal evolution of solute transport in articular cartilage explants reveals how cartilage recovers fluid within the contact area during sliding.

    Science.gov (United States)

    Graham, Brian T; Moore, Axel C; Burris, David L; Price, Christopher

    2018-04-11

    The interstitial fluid within articular cartilage shields the matrix from mechanical stresses, reduces friction and wear, enables biochemical processes, and transports solutes into and out of the avascular extracellular matrix. The balanced competition between fluid exudation and recovery under load is thus critical to the mechanical and biological functions of the tissue. We recently discovered that sliding alone can induce rapid solute transport into buried cartilage contact areas via a phenomenon termed tribological rehydration. In this study, we use in situ confocal microscopy measurements to track the spatiotemporal propagation of a small neutral solute into the buried contact area to clarify the fluid mechanics underlying the tribological rehydration phenomenon. Sliding experiments were interrupted by periodic static loading to enable scanning of the entire contact area. Spatiotemporal patterns of solute transport combined with tribological data suggested pressure driven flow through the extracellular matrix from the contact periphery rather than into the surface via a fluid film. Interestingly, these testing interruptions also revealed dynamic, repeatable and history-independent fluid loss and recovery processes consistent with those observed in vivo. Unlike the migrating contact area, which preserves hydration by moving faster than interstitial fluid can flow, our results demonstrate that the stationary contact area can maintain and actively recover hydration through a dynamic competition between load-induced exudation and sliding-induced recovery. The results demonstrate that sliding contributes to the recovery of fluid and solutes by cartilage within the contact area while clarifying the means by which it occurs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Deformation of nasal septal cartilage during mastication.

    Science.gov (United States)

    Al Dayeh, Ayman A; Rafferty, Katherine L; Egbert, Mark; Herring, Susan W

    2009-10-01

    The cartilaginous nasal septum plays a major role in structural integrity and growth of the face, but its internal location has made physiologic study difficult. By surgically implanting transducers in 10 miniature pigs (Sus scrofa), we recorded in vivo strains generated in the nasal septum during mastication and masseter stimulation. The goals were (1) to determine whether the cartilage should be considered as a vertical strut supporting the nasal cavity and preventing its collapse, or as a damper of stresses generated during mastication and (2) to shed light on the overall pattern of snout deformation during mastication. Strains were recorded simultaneously at the septo-ethmoid junction and nasofrontal suture during mastication. A third location in the anterior part of the cartilage was added during masseter stimulation and manipulation. Contraction of jaw closing muscles during mastication was accompanied by anteroposterior compressive strains (around -1,000 muepsilon) in the septo-ethmoid junction. Both the orientation and the magnitude of the strain suggest that the septum does not act as a vertical strut but may act in absorbing loads generated during mastication. The results from masseter stimulation and manipulation further suggest that the masticatory strain pattern arises from a combination of dorsal bending and/or shearing and anteroposterior compression of the snout. 2009 Wiley-Liss, Inc.

  10. Considerations on the use of ear chondrocytes as donor chondrocytes for cartilage tissue engineering

    NARCIS (Netherlands)

    van Osch, Gerjo J. V. M.; Mandl, Erik W.; Jahr, Holger; Koevoet, Wendy; Nolst-Trenité, Gilbert; Verhaar, Jan A. N.

    2004-01-01

    Articular cartilage is often used for research on cartilage tissue engineering. However, ear cartilage is easier to harvest, with less donor-site morbidity. The aim of this study was to evaluate whether adult human ear chondrocytes were capable of producing cartilage after expansion in monolayer

  11. Fine-tuning Cartilage Tissue Engineering by Applying Principles from Embryonic Development

    NARCIS (Netherlands)

    C.A. Hellingman (Catharine)

    2012-01-01

    textabstractCartilage has a very poor capacity for regeneration in vivo. In head and neck surgery cartilage defects are usually reconstructed with autologous cartilage from for instance the external ear or the ribs. Cartilage tissue engineering may be a promising alternative to supply tissue for

  12. Articulation of Native Cartilage Against Different Femoral Component Materials. Oxidized Zirconium Damages Cartilage Less Than Cobalt-Chrome.

    Science.gov (United States)

    Vanlommel, Jan; De Corte, Ronny; Luyckx, Jean Philippe; Anderson, Melissa; Labey, Luc; Bellemans, Johan

    2017-01-01

    Oxidized zirconium (OxZr) is produced by thermally driven oxidization creating an oxidized surface with the properties of a ceramic at the top of the Zr metal substrate. OxZr is much harder and has a lower coefficient of friction than cobalt-chrome (CoCr), both leading to better wear characteristics. We evaluated and compared damage to the cartilage of porcine patella plugs, articulating against OxZr vs CoCr. Our hypothesis was that, owing to its better wear properties, OxZr would damage cartilage less than CoCr. If this is true, OxZr might be a better material for the femoral component during total knee arthroplasty if the patella is not resurfaced. Twenty-one plugs from porcine patellae were prepared and tested in a reciprocating pin-on-disk machine while lubricated with bovine serum and under a constant load. Three different configurations were tested: cartilage-cartilage as the control group, cartilage-OxZr, and cartilage-CoCr. Macroscopic appearance, cartilage thickness, and the modified Mankin score were evaluated after 400,000 wear cycles. The control group showed statistically significant less damage than plugs articulating against both other materials. Cartilage plugs articulating against OxZr were statistically significantly less damaged than those articulating against CoCr. Although replacing cartilage by an implant always leads to deterioration of the cartilage counterface, OxZr results in less damage than CoCr. The use of OxZr might thus be preferable to CoCr in case of total knee arthroplasty without patella resurfacing. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Management of chest deformity caused by microtia reconstruction: Comparison of autogenous diced cartilage versus cadaver cartilage graft partial filling techniques.

    Science.gov (United States)

    Go, Ju Young; Kang, Bo Young; Hwang, Jin Hee; Oh, Kap Sung

    2017-01-01

    Efforts to prevent chest wall deformity after costal cartilage graft are ongoing. In this study, we introduce a new method to prevent donor site deformation using irradiated cadaver cartilage (ICC) and compare this method to the autogenous diced cartilage (ADC) technique. Forty-two pediatric patients comprised the ADC group (n = 24) and the ICC group (n = 18). After harvesting costal cartilage, the empty perichondrial space was filled with autologous diced cartilage in the ADC group and cadaver cartilage in the ICC group. Digital photographs and rib cartilage three-dimensional computed tomography (CT) data were analyzed to compare the preventive effect of donor site deformity. We compared the pre- and postoperative costal cartilage volumes using 3D-CT and graded the volumes (grade I: 0%-25%, grade II: 25%-50%, grade III: 50%-75%, and grade IV: 75%-100%). The average follow-up period was 20 and 24 months in the ADC and ICC groups, respectively. Grade IV maintenance of previous costal cartilage volume was evident postoperatively in 22% of patients in the ADC group and 82% of patients in the ICC group. Intercostal space narrowing and chest wall depression were less in the ICC group. There were no complications or severe resorption of cadaver cartilage. ICC support transected costal ring and prevented stability loss by acting as a spacer. The ICC technique is more effective in preventing intercostal space narrowing and chest wall depression than the ADC technique. Samsung Medical Center Institution Review Board, Unique protocol ID: 2009-10-006-008. This study is also registered on PRS (ClinicalTrials.gov Record 2009-10-006). Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  14. Magnetic resonance imaging of articular cartilage: ex vivo study on normal cartilage correlated with magnetic resonance microscopy

    International Nuclear Information System (INIS)

    Cova, M.; Frezza, F.; Pozzi-Mucelli, R.S.; Dalla-Palma, L.; Toffanin, R.; Pozzi-Mucelli, M.; Mlynarik, V.; Vittur, F.

    1998-01-01

    The aims of this study were (a) to compare the MR appearance of normal articular cartilage in ex vivo MR imaging (MRI) and MR microscopy (MRM) images of disarticulated human femoral heads, (b) to evaluate by MRM the topographic variations in articular cartilage of disarticulated human femoral heads, and subsequently, (c) to compare MRM images with histology. Ten disarticulated femoral heads were examined. Magnetic resonance images were obtained using spin-echo (SE) and gradient-echo (GE) sequences. Microimages were acquired on cartilage-bone cylindrical plugs excised from four regions (superior, inferior, anterior, posterior) of one femoral head, using a modified SE sequence. Both MRI and MRM images were obtained before and after a 90 rotation of the specimen, around the axis perpendicular to the examined cartilage surface. Finally, MRM images were correlated with histology. A trilaminar appearance of articular cartilage was observed with MRI and with a greater detail with MRM. A good correlation between MRI and MRM features was demonstrated. Both MRI and MRM showed a loss of the trilaminar cartilage appearance after specimen rotation, with greater evidence on MRM images. Cartilage excised from the four regions of the femoral head showed a different thickness, being thickest in the samples excised from the superior site. The MRM technique confirms the trilaminar MRI appearance of human articular cartilage, showing good correlation with histology. The loss of the trilaminar appearance of articular cartilage induced by specimen rotation suggests that this feature is partially related to the collagen-fiber orientation within the different layers. The MRM technique also shows topographic variations in thickness of human articular cartilage. (orig.)

  15. Regeneration of hyaline cartilage promoted by xenogeneic mesenchymal stromal cells embedded within elastin-like recombinamer-based bioactive hydrogels.

    Science.gov (United States)

    Pescador, David; Ibáñez-Fonseca, Arturo; Sánchez-Guijo, Fermín; Briñón, Jesús G; Arias, Francisco Javier; Muntión, Sandra; Hernández, Cristina; Girotti, Alessandra; Alonso, Matilde; Del Cañizo, María Consuelo; Rodríguez-Cabello, José Carlos; Blanco, Juan Francisco

    2017-08-01

    Over the last decades, novel therapeutic tools for osteochondral regeneration have arisen from the combination of mesenchymal stromal cells (MSCs) and highly specialized smart biomaterials, such as hydrogel-forming elastin-like recombinamers (ELRs), which could serve as cell-carriers. Herein, we evaluate the delivery of xenogeneic human MSCs (hMSCs) within an injectable ELR-based hydrogel carrier for osteochondral regeneration in rabbits. First, a critical-size osteochondral defect was created in the femora of the animals and subsequently filled with the ELR-based hydrogel alone or with embedded hMSCs. Regeneration outcomes were evaluated after three months by gross assessment, magnetic resonance imaging and computed tomography, showing complete filling of the defect and the de novo formation of hyaline-like cartilage and subchondral bone in the hMSC-treated knees. Furthermore, histological sectioning and staining of every sample confirmed regeneration of the full cartilage thickness and early subchondral bone repair, which was more similar to the native cartilage in the case of the cell-loaded ELR-based hydrogel. Overall histological differences between the two groups were assessed semi-quantitatively using the Wakitani scale and found to be statistically significant (p hyaline cartilage in osteochondral lesions.

  16. MR imaging of cartilage and its repair in the knee - a review

    International Nuclear Information System (INIS)

    Trattnig, S.; Welsch, G.W.; Domayer, S.; Mosher, T.; Eckstein, F.

    2009-01-01

    Chondral injuries are common lesions of the knee joint, and many patients could benefit from cartilage repair. Widespread cartilage repair techniques require sophisticated noninvasive follow-up using MRI. In addition to the precise morphological assessment of this area of cartilage repair, the cartilage's biochemical constitution can be determined using biochemical MRI techniques. The combination of the clinical outcome after cartilage repair together with the morphological and biochemical description of the cartilage repair tissue as well as the surrounding cartilage can lead to an optimal follow-up evaluation. The present article on MR imaging techniques of cartilage repair focuses on morphological description and scoring using techniques from conventional 2D through advanced isotropic 3D MRI sequences. Furthermore the ultrastructure of the repair tissue and the surrounding cartilage is evaluated in-vivo by biochemical T1-delayed gadolinium enhanced MRI of cartilage (dGEMRIC), T2 relaxation, and diffusion-weighted imaging techniques. (orig.)

  17. Critical temperature transitions in laser-mediated cartilage reshaping

    Science.gov (United States)

    Wong, Brian J.; Milner, Thomas E.; Kim, Hong H.; Telenkov, Sergey A.; Chew, Clifford; Kuo, Timothy C.; Smithies, Derek J.; Sobol, Emil N.; Nelson, J. Stuart

    1998-07-01

    In this study, we attempted to determine the critical temperature [Tc] at which accelerated stress relaxation occurred during laser mediated cartilage reshaping. During laser irradiation, mechanically deformed cartilage tissue undergoes a temperature dependent phase transformation which results in accelerated stress relaxation. When a critical temperature is attained, cartilage becomes malleable and may be molded into complex new shapes that harden as the tissue cools. Clinically, reshaped cartilage tissue can be used to recreate the underlying cartilaginous framework of structures such as the ear, larynx, trachea, and nose. The principal advantages of using laser radiation for the generation of thermal energy in tissue are precise control of both the space-time temperature distribution and time- dependent thermal denaturation kinetics. Optimization of the reshaping process requires identification of the temperature dependence of this phase transformation and its relationship to observed changes in cartilage optical, mechanical, and thermodynamic properties. Light scattering, infrared radiometry, and modulated differential scanning calorimetry (MDSC) were used to measure temperature dependent changes in the biophysical properties of cartilage tissue during fast (laser mediated) and slow (conventional calorimetric) heating. Our studies using MDSC and laser probe techniques have identified changes in cartilage thermodynamic and optical properties suggestive of a phase transformation occurring near 60 degrees Celsius.

  18. Cartilage Degeneration and Alignment in Severe Varus Knee Osteoarthritis.

    Science.gov (United States)

    Nakagawa, Yasuaki; Mukai, Shogo; Yabumoto, Hiromitsu; Tarumi, Eri; Nakamura, Takashi

    2015-10-01

    The aim of this study was to examine the relationship between cartilage, ligament, and meniscus degeneration and radiographic alignment in severe varus knee osteoarthritis in order to understand the development of varus knee osteoarthritis. Fifty-three patients (71 knees) with primary varus knee osteoarthritis and who underwent total knee arthroplasty were selected for this study. There were 6 men and 47 women, with 40 right knees and 31 left knees studied; their mean age at operation was 73.5 years. The ligament, meniscus, degeneration of joint cartilage, and radiographic alignments were examined visually. The tibial plateau-tibial shaft angle was larger if the condition of the cartilage in the lateral femoral condyle was worse. The femorotibial angle and tibial plateau-tibial shaft angle were larger if the conditions of the lateral meniscus or the cartilage in the lateral tibial plateau were worse. Based on the results of this study, progression of varus knee osteoarthritis may occur in the following manner: medial knee osteoarthritis starts in the central portion of the medial tibial plateau, and accompanied by medial meniscal extrusion and anterior cruciate ligament rupture, cartilage degeneration expands from the anterior to the posterior in the medial tibial plateau. Bone attrition occurs in the medial tibial plateau, and the femoro-tibial angle and tibial plateau-tibial shaft angle increase. Therefore, the lateral intercondylar eminence injures the cartilage of the lateral femoral condyle in the longitudinal fissure type. Thereafter, the cartilage degeneration expands in the whole of the knee joints.

  19. Bioactive Scaffolds for Regeneration of Cartilage and Subchondral Bone Interface

    Science.gov (United States)

    Deng, Cuijun; Zhu, Huiying; Li, Jiayi; Feng, Chun; Yao, Qingqiang; Wang, Liming; Chang, Jiang; Wu, Chengtie

    2018-01-01

    The cartilage lesion resulting from osteoarthritis (OA) always extends into subchondral bone. It is of great importance for simultaneous regeneration of two tissues of cartilage and subchondral bone. 3D-printed Sr5(PO4)2SiO4 (SPS) bioactive ceramic scaffolds may achieve the aim of regenerating both of cartilage and subchondral bone. We hypothesized that strontium (Sr) and silicon (Si) ions released from SPS scaffolds play a crucial role in osteochondral defect reconstruction. Methods: SPS bioactive ceramic scaffolds were fabricated by a 3D-printing method. The SEM and ICPAES were used to investigate the physicochemical properties of SPS scaffolds. The proliferation and maturation of rabbit chondrocytes stimulated by SPS bioactive ceramics were measured in vitro. The stimulatory effect of SPS scaffolds for cartilage and subchondral bone regeneration was investigated in vivo. Results: SPS scaffolds significantly stimulated chondrocyte proliferation, and SPS extracts distinctly enhanced the maturation of chondrocytes and preserved chondrocytes from OA. SPS scaffolds markedly promoted the regeneration of osteochondral defects. The complex interface microstructure between cartilage and subchondral bone was obviously reconstructed. The underlying mechanism may be related to Sr and Si ions stimulating cartilage regeneration by activating HIF pathway and promoting subchondral bone reconstruction through activating Wnt pathway, as well as preserving chondrocytes from OA via inducing autophagy and inhibiting hedgehog pathway. Conclusion: Our findings suggest that SPS scaffolds can help osteochondral defect reconstruction and well reconstruct the complex interface between cartilage and subchondral bone, which represents a promising strategy for osteochondral defect regeneration. PMID:29556366

  20. Comparison of Different Approaches for Measuring Tibial Cartilage Thickness

    Directory of Open Access Journals (Sweden)

    Maier Jennifer

    2017-07-01

    Full Text Available Osteoarthritis is a degenerative disease affecting bones and cartilage especially in the human knee. In this context, cartilage thickness is an indicator for knee cartilage health. Thickness measurements are performed on medical images acquired in-vivo. Currently, there is no standard method agreed upon that defines a distance measure in articular cartilage. In this work, we present a comparison of different methods commonly used in literature. These methods are based on nearest neighbors, surface normal vectors, local thickness and potential field lines. All approaches were applied to manual segmentations of tibia and lateral and medial tibial cartilage performed by experienced raters. The underlying data were contrast agent-enhanced cone-beam C-arm CT reconstructions of one healthy subject’s knee. The subject was scanned three times, once in supine position and two times in a standing weight-bearing position. A comparison of the resulting thickness maps shows similar distributions and high correlation coefficients between the approaches above 0.90. The nearest neighbor method results on average in the lowest cartilage thickness values, while the local thickness approach assigns the highest values. We showed that the different methods agree in their thickness distribution. The results will be used for a future evaluation of cartilage change under weight-bearing conditions.

  1. Animal models used for testing hydrogels in cartilage regeneration.

    Science.gov (United States)

    Zhu, Chuntie; Wu, Qiong; Zhang, Xu; Chen, Fubo; Liu, Xiyang; Yang, Qixiang; Zhu, Lei

    2018-05-14

    Focal cartilage or osteochondral lesions can be painful and detrimental. Besides pain and limited function of joints, cartilage defect is considered as one of the leading extrinsic risk factors for osteoarthritis (OA). Thus, clinicians and scientists have paid great attention to regenerative therapeutic methods for the early treatment of cartilaginous defects. Regenerative medicine, showing great hope for regenerating cartilage tissue, rely on the combination of biodegradable scaffolds and specific biological cues, such as growth factors, adhesive factors and genetic materials. Among all biomaterials, hydrogels have emerged as promising cartilage tissue engineering scaffolds for simultaneous cell growth and drug delivery. A wide range of animal models have been applied in testing repair with hydrogels in cartilage defects. This review summarized the current animal models used to test hydrogels technologies for the regeneration of cartilage. Advantages and disadvantages in the establishment of the cartilage defect animal models among different species were emphasized, as well as feasibility of replication of diseases in animals. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. The Influence of Articular Cartilage Thickness Reduction on Meniscus Biomechanics.

    Science.gov (United States)

    Łuczkiewicz, Piotr; Daszkiewicz, Karol; Chróścielewski, Jacek; Witkowski, Wojciech; Winklewski, Pawel J

    2016-01-01

    Evaluation of the biomechanical interaction between meniscus and cartilage in medial compartment knee osteoarthritis. The finite element method was used to simulate knee joint contact mechanics. Three knee models were created on the basis of knee geometry from the Open Knee project. We reduced the thickness of medial cartilages in the intact knee model by approximately 50% to obtain a medial knee osteoarthritis (OA) model. Two variants of medial knee OA model with congruent and incongruent contact surfaces were analysed to investigate the influence of congruency. A nonlinear static analysis for one compressive load case was performed. The focus of the study was the influence of cartilage degeneration on meniscal extrusion and the values of the contact forces and contact areas. In the model with incongruent contact surfaces, we observed maximal compressive stress on the tibial plateau. In this model, the value of medial meniscus external shift was 95.3% greater, while the contact area between the tibial cartilage and medial meniscus was 50% lower than in the congruent contact surfaces model. After the non-uniform reduction of cartilage thickness, the medial meniscus carried only 48.4% of load in the medial compartment in comparison to 71.2% in the healthy knee model. We have shown that the change in articular cartilage geometry may significantly reduce the role of meniscus in load transmission and the contact area between the meniscus and cartilage. Additionally, medial knee OA may increase the risk of meniscal extrusion in the medial compartment of the knee joint.

  3. Cartilage regeneration for treatment of osteoarthritis: a paradigm for nonsurgical intervention

    OpenAIRE

    Tiku, Moti L.; Sabaawy, Hatem E.

    2015-01-01

    Osteoarthritis (OA) is associated with articular cartilage abnormalities and affects people of older age: preventative or therapeutic treatment measures for OA and related articular cartilage disorders remain challenging. In this perspective review, we have integrated multiple biological, morphological, developmental, stem cell and homeostasis concepts of articular cartilage to develop a paradigm for cartilage regeneration. OA is conceptually defined as an injury of cartilage that initiates c...

  4. Molecular changes in articular cartilage and subchondral bone in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis

    OpenAIRE

    Zhuo Ya; Hayami Tadashi; Pickarski Maureen; Duong Le T

    2011-01-01

    Abstract Background Osteoarthritis (OA) is a debilitating, progressive joint disease. Methods Similar to the disease progression in humans, sequential events of early cartilage degradation, subchondral osteopenia followed by sclerosis, and late osteophyte formation were demonstrated in the anterior cruciate ligament transection (ACLT) or ACLT with partial medial meniscectomy (ACLT + MMx) rat OA models. We describe a reliable and consistent method to examine the time dependent changes in the g...

  5. Identification and Manipulation of a Novel Signaling Mechanism to Improve Articular Cartilage Restoration After Posttraumatic Joint Injury

    Science.gov (United States)

    2014-10-01

    collagen II (COL II). As a result, the newly-formed fibrocartilage has poor biomechanical properties and often evidences poor integration with the... fibrocartilage generation at the site of injury defines a new potential avenue of intervention in the field of cartilage restoration. We defined the...lysophosphatidic acid (LPA)-autotaxin (ATX; encoded by the ENPP2 gene) signaling axis as an important mediator of fibrocartilage formation both in vitro and in

  6. Changes of articular cartilage and subchondral bone after extracorporeal shockwave therapy in osteoarthritis of the knee.

    Science.gov (United States)

    Wang, Ching-Jen; Cheng, Jai-Hong; Chou, Wen-Yi; Hsu, Shan-Ling; Chen, Jen-Hung; Huang, Chien-Yiu

    2017-01-01

    We assessed the pathological changes of articular cartilage and subchondral bone on different locations of the knee after extracorporeal shockwave therapy (ESWT) in early osteoarthritis (OA). Rat knees under OA model by anterior cruciate ligament transaction (ACLT) and medial meniscectomy (MM) to induce OA changes. Among ESWT groups, ESWT were applied to medial (M) femur (F) and tibia (T) condyles was better than medial tibia condyle, medial femur condyle as well as medial and lateral (L) tibia condyles in gross osteoarthritic areas (posteophyte formation and subchondral sclerotic bone (psubchondral bone repair in all ESWT groups compared to OA group (p T(M+L) > F(M) in OA rat knees.

  7. Reappraisal of mesenchymal chondrosarcoma: novel morphologic observations of the hyaline cartilage and endochondral ossification and beta-catenin, Sox9, and osteocalcin immunostaining of 22 cases.

    Science.gov (United States)

    Fanburg-Smith, Julie C; Auerbach, Aaron; Marwaha, Jayson S; Wang, Zengfeng; Rushing, Elisabeth J

    2010-05-01

    Mesenchymal chondrosarcoma, a rare malignant round cell and hyaline cartilage tumor, is most commonly intraosseous but can occur in extraskeletal sites. We intensively observed the morphology and applied Sox9 (master regulator of chondrogenesis), beta-catenin (involved in bone formation, thought to inhibit chondrogenesis in a Sox9-dependent manner), and osteocalcin (a marker for osteoblastic phenotype) to 22 central nervous system and musculoskeletal mesenchymal chondrosarcoma. Cases of mesenchymal chondrosarcoma were retrieved and reviewed from our files. Immunohistochemistry and follow-up were obtained on mesenchymal chondrosarcoma and tumor controls. Twenty-two mesenchymal chondrosarcomas included 5 central nervous system (all female; mean age, 30.2; mean size, 7.8 cm; in frontal lobe [n = 4] and spinal cord [n = 1]) and 17 musculoskeletal (female-male ratio, 11:6; mean age, 31.1; mean size, 6.2 cm; 3 each of humerus and vertebrae; 2 each of pelvis, rib, tibia, neck soft tissue; one each of femur, unspecified bone, and elbow soft tissue). The hyaline cartilage in most tumors revealed a consistent linear progression of chondrocyte morphology, from resting to proliferating to hypertrophic chondrocytes. Sixty-seven percent of cases demonstrated cell death and acquired osteoblastic phenotype, cells positive for osteocalcin at the site of endochondral ossification. Small round cells of mesenchymal chondrosarcoma were negative for osteocalcin. SOX9 was positive in both components of 21 of 22 cases of mesenchymal chondrosarcoma. beta-Catenin highlighted rare nuclei at the interface between round cells and hyaline cartilage in 35% cases. Control skull and central nervous system cases were compared, including chondrosarcomas and small cell osteosarcoma, the latter positive for osteocalcin in small cells. Mesenchymal chondrosarcoma demonstrates centrally located hyaline cartilage with a linear progression of chondrocytes from resting to proliferative to hypertrophic

  8. Premature Calcifications of Costal Cartilages: A New Perspective Premature Calcifications of Costal Cartilages: A New Perspective

    International Nuclear Information System (INIS)

    Rhomberg, W.; Schuster, A.

    2014-01-01

    Calcifications of the costal cartilages occur, as a rule, not until the age of 30 years. The knowledge of the clinical significance of early and extensive calcifications is still incomplete. Materials and Methods. A search was made to find patients below the age of 30 years who showed distinct calcifications of their lower costal cartilages by viewing 360 random samples of intravenous pyelograms and abdominal plain films. The histories, and clinical and laboratory findings of these patients were analyzed. Results. Nineteen patients fulfilled the criteria of premature calcifications of costal cartilages (CCCs). The patients had in common that they were frequently referred to a hospital and were treated by several medical disciplines. Nevertheless many complaints of the patients remained unsolved. Premature CCCs were often associated with rare endocrine disorders, inborn errors of metabolism, and abnormal hematologic findings. Among the metabolic disorders there were 2 proven porphyrias and 7 patients with a suspected porphyria but with inconclusive laboratory findings. Conclusion. Premature CCCs are unlikely to be a normal variant in skeletal radiology. The findings in this small group of patients call for more intensive studies, especially in regard to the putative role of a porphyria

  9. Metal deposition at the bone-cartilage interface in articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Kaabar, W. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)], E-mail: w.kaabar@surrey.ac.uk; Daar, E.; Gundogdu, O.; Jenneson, P.M. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Farquharson, M.J. [Department of Radiography, School of Allied Health Sciences, City University, London EC1V 0HB (United Kingdom); Webb, M.; Jeynes, C. [Surrey Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Bradley, D.A. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2009-03-15

    There is a growing interest being shown in the changes occurring in elemental distribution at the bone-cartilage interface, the changes either being a result of mechanical damage or disease. In particular, such investigations have tended to concern the elemental alterations associated with the osteoarthritic wear and tear damage occurring to the cartilage and subchondral bone of synovial joints or that associated with disease processes such as rheumatic arthritis. Present studies examine sections of femoral head obtained from total hip replacement surgery, use being made of micro-proton-induced X-ray emission ({mu}-PIXE) and the Rutherford back scattering (RBS) techniques. Enhancements of Zn, Ca and P have been observed at the bone-cartilage interface. Further, the concentration of Zn in spongy bone underlying the subchondral surface of a section of the femoral head has been measured, obtaining 136 {mu}g g{sup -1} bone, the presence of Ca and P at the same position being 0.235 and 0.0451 g g{sup -1} bone, respectively. These values are slightly different to figures recently published by other authors using similar techniques.

  10. Three-dimensional evaluation of cartilage thickness and cartilage volume in the knee joint with MR imaging: reproducibility in volunteers

    International Nuclear Information System (INIS)

    Westhoff, J.; Eckstein, F.; Sittek, H.; Faber, S.; Reiser, M.; Loesch, A.; Englmeier, K.H.; Kolem, H.

    1997-01-01

    Objective: To determine the reproductibility of three-dimensional volume and thickness measurements of the knee joint cartilage with MRI in volunteers. Methods: The knees of 7 healthy individuals (ages 23 to 58 yrs.) were sagitally imaged with a resolution of 2x0.31x0.31 mm 3 , using a fat-suppressed FLASH-3 D sequence. The knee was repositioned in between replicate acquisitions, 6 data sets being obtained in each case. After semiautomatic segmentation and three-dimensional reconstruction of the cartilage, the thickness was determined independent of the original section orientation. The coefficient of variation for repeated volume measurements and the deviations of the maximal cartilage thickness values were calculated subsequently. Results: The mean variation of the cartilage volumes of the replicate measurements was 1.4% (±0.8%) in the patella, 1.7% (±1.5%) in the femur, 3.0% (±1.2%) in the medial tibial plateau and 3.5% (±2.0%) in the lateral tibial plateau. The comparison of the distribution patterns of cartilage thickness yielded a high degree of agreement. Only in rare cases deviations of more than 0.5 mm were observed. Conclusions: The results show that the presented method for determining the quantitative distribution of articular cartilage yields a high degree of precision. It offers new possibilities in screening risk groups, monitoring the course of degenerative joint disease and the investigation of functional adaptation of the cartilage to mechanical loading. (orig.) [de

  11. Integration of Stem Cell to Chondrocyte-Derived Cartilage Matrix in Healthy and Osteoarthritic States in the Presence of Hydroxyapatite Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Rupak Dua

    Full Text Available We investigated the effectiveness of integrating tissue engineered cartilage derived from human bone marrow derived stem cells (HBMSCs to healthy as well as osteoarthritic cartilage mimics using hydroxyapatite (HA nanoparticles immersed within a hydrogel substrate. Healthy and diseased engineered cartilage from human chondrocytes (cultured in agar gels were integrated with human bone marrow stem cell (HBMSC-derived cartilaginous engineered matrix with and without HA, and evaluated after 28 days of growth. HBMSCs were seeded within photopolymerizable poly (ethylene glycol diacrylate (PEGDA hydrogels. In addition, we also conducted a preliminary in vivo evaluation of cartilage repair in rabbit knee chondral defects treated with subchondral bone microfracture and cell-free PEGDA with and without HA. Under in vitro conditions, the interfacial shear strength between tissue engineered cartilage derived from HBMSCs and osteoarthritic chondrocytes was significantly higher (p < 0.05 when HA nanoparticles were incorporated within the HBMSC culture system. Histological evidence confirmed a distinct spatial transition zone, rich in calcium phosphate deposits. Assessment of explanted rabbit knees by histology demonstrated that cellularity within the repair tissues that had filled the defects were of significantly higher number (p < 0.05 when HA was used. HA nanoparticles play an important role in treating chondral defects when osteoarthritis is a co-morbidity. We speculate that the calcified layer formation at the interface in the osteoarthritic environment in the presence of HA is likely to have attributed to higher interfacial strength found in vitro. From an in vivo standpoint, the presence of HA promoted cellularity in the tissues that subsequently filled the chondral defects. This higher presence of cells can be considered important in the context of accelerating long-term cartilage remodeling. We conclude that HA nanoparticles play an important role in

  12. Hand joint space narrowing and osteophytes are associated with magnetic resonance imaging-defined knee cartilage thickness and radiographic knee osteoarthritis: data from the Osteoarthritis Initiative.

    Science.gov (United States)

    Haugen, Ida K; Cotofana, Sebastian; Englund, Martin; Kvien, Tore K; Dreher, Donatus; Nevitt, Michael; Lane, Nancy E; Eckstein, Felix

    2012-01-01

    To evaluate whether features of radiographic hand osteoarthritis (OA) are associated with quantitative magnetic resonance imaging (MRI)-defined knee cartilage thickness, radiographic knee OA, and 1-year structural progression. A total of 765 participants in Osteoarthritis Initiative (OAI; 455 women, mean age 62.5 yrs, SD 9.4) obtained hand radiographs (at baseline), knee radiographs (baseline and Year 1), and knee MRI (baseline and Year 1). Hand radiographs were scored for presence of osteophytes and joint space narrowing (JSN). Knee radiographs were scored according to the Kellgren-Lawrence (KL) scale. Cartilage thickness in the medial and lateral femorotibial compartments was measured quantitatively from coronal FLASHwe images. We examined the cross-sectional and longitudinal associations between features of hand OA (total osteophyte and JSN scores) and knee cartilage thickness, 1-year knee cartilage thinning (above smallest detectable change), presence of knee OA (KL grade ≥ 3), and progression of knee OA (KL change ≥ 1) by linear and logistic regression. Both hand OA features were included in a multivariate model (if p ≤ 0.25) adjusted for age, sex, and body mass index (BMI). Hand JSN was associated with reduced knee cartilage thickness (ß = -0.02, 95% CI -0.03, -0.01) in the medial femorotibial compartment, while hand osteophytes were associated with the presence of radiographic knee OA (OR 1.10, 95% CI 1.03-1.18; multivariate models) with both hand OA features as independent variables adjusted for age, sex, and BMI). Radiographic features of hand OA were not associated with 1-year cartilage thinning or radiographic knee OA progression. Our results support a systemic OA susceptibility and possibly different mechanisms for osteophyte formation and cartilage thinning.

  13. In-situ birth of MSCs multicellular spheroids in poly(L-glutamic acid)/chitosan scaffold for hyaline-like cartilage regeneration.

    Science.gov (United States)

    Zhang, Kunxi; Yan, Shifeng; Li, Guifei; Cui, Lei; Yin, Jingbo

    2015-12-01

    The success of mesenchymal stem cells (MSCs) based articular cartilage tissue engineering is limited by the presence of fibrous tissue in generated cartilage, which is associated with the current scaffold strategy that promotes cellular adhesion and spreading. Here we design a non-fouling scaffold based on amide bonded poly(l-glutamic acid) (PLGA) and chitosan (CS) to drive adipose stem cells (ASCs) to aggregate to form multicellular spheroids with diameter of 80-110 μm in-situ. To illustrate the advantage of the present scaffolds, a cellular adhesive scaffold based on the same amide bonded PLGA and CS was created through a combination of air-drying and freeze-drying to limit the hydration effect while also achieving porous structure. Compared to ASCs spreading along the surface of pores within scaffold, the dense mass of aggregated ASCs in PLGA/CS scaffold exhibited enhanced chondrogenic differentiation capacity, as determined by up-regulated GAGs and COL II expression, and greatly decreased COL I deposition during in vitro chondrogenesis. Furthermore, after 12 weeks of implantation, neo-cartilages generated by ASCs adhered on scaffold significantly presented fibrous matrix which was characterized by high levels of COL I deposition. However, neo-cartilage at 12 weeks post-implantation generated by PLGA/CS scaffold carrying ASC spheroids possessed similar high level of GAGs and COL II and low level of COL I as that in normal cartilage. The in vitro and in vivo results indicated the present strategy could not only promote chondrogenesis of ASCs, but also facilitate hyaline-like cartilage regeneration with reduced fibrous tissue formation which may attenuate cartilage degradation in future long-term follow-up. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The development of the collagen fibre network in tissue-engineered cartilage constructs in vivo. Engineered cartilage reorganises fibre network

    Directory of Open Access Journals (Sweden)

    H Paetzold

    2012-04-01

    Full Text Available For long term durability of tissue-engineered cartilage implanted in vivo, the development of the collagen fibre network orientation is essential as well as the distribution of collagen, since expanded chondrocytes are known to synthesise collagen type I. Typically, these properties differ strongly between native and tissue-engineered cartilage. Nonetheless, the clinical results of a pilot study with implanted tissue-engineered cartilage in pigs were surprisingly good. The purpose of this study was therefore to analyse if the structure and composition of the artificial cartilage tissue changes in the first 52 weeks after implantation. Thus, collagen network orientation and collagen type distribution in tissue-engineered cartilage-carrier-constructs implanted in the knee joints of Göttinger minipigs for 2, 26 or 52 weeks have been further investigated by processing digitised microscopy images of histological sections. The comparison to native cartilage demonstrated that fibre orientation over the cartilage depth has a clear tendency towards native cartilage with increasing time of implantation. After 2 weeks, the collagen fibres of the superficial zone were oriented parallel to the articular surface with little anisotropy present in the middle and deep zones. Overall, fibre orientation and collagen distribution within the implants were less homogenous than in native cartilage tissue. Despite a relatively low number of specimens, the consistent observation of a continuous approximation to native tissue is very promising and suggests that it may not be necessary to engineer the perfect tissue for implantation but rather to provide an intermediate solution to help the body to heal itself.

  15. [Tribological assessment of articular cartilage. A system for the analysis of the friction coefficient of cartilage, regenerates and tissue engineering constructs; initial results].

    Science.gov (United States)

    Schwarz, M L R; Schneider-Wald, B; Krase, A; Richter, W; Reisig, G; Kreinest, M; Heute, S; Pott, P P; Brade, J; Schütte, A

    2012-10-01

    Values for the friction coefficient of articular cartilage are given in ranges of percentage and lower and are calculated as a quotient of the friction force and the perpendicular loading force acting on it. Thus, a sophisticated system has to be provided for analysing the friction coefficient under different conditions in particular when cartilage should be coupled as friction partner. It is possible to deep-freeze articular cartilage before measuring the friction coefficient as the procedure has no influence on the results. The presented tribological system was able to distinguish between altered and native cartilage. Furthermore, tissue engineered constructs for cartilage repair were differentiated from native cartilage probes by their friction coefficient. In conclusion a tribological equipment is presented to analyze the friction coefficient of articular cartilage, in vivo generated cartilage regenerates and in vitro tissue engineered constructs regarding their biomechanical properties for quality assessment.

  16. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    Directory of Open Access Journals (Sweden)

    Michiel W. Pot

    2016-09-01

    Full Text Available Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of mechanically inferior fibrocartilage. As a result, this technique offers only temporary clinical improvement. Tissue engineering and regenerative medicine may improve the outcome of microfracture surgery. Filling the subchondral defect with a biomaterial may provide a template for the formation of new hyaline cartilage tissue. In this study, a systematic review and meta-analysis were performed to assess the current evidence for the efficacy of cartilage regeneration in preclinical models using acellular biomaterials implanted after marrow stimulating techniques (microfracturing and subchondral drilling compared to the natural healing response of defects. The review aims to provide new insights into the most effective biomaterials, to provide an overview of currently existing knowledge, and to identify potential lacunae in current studies to direct future research. A comprehensive search was systematically performed in PubMed and EMBASE (via OvidSP using search terms related to tissue engineering, cartilage and animals. Primary studies in which acellular biomaterials were implanted in osteochondral defects in the knee or ankle joint in healthy animals were included and study characteristics tabulated (283 studies out of 6,688 studies found. For studies comparing non-treated empty defects to defects containing implanted biomaterials and using semi-quantitative histology as outcome measure, the risk of bias (135 studies was assessed and outcome data were collected for meta-analysis (151 studies. Random-effects meta-analyses were performed, using cartilage regeneration as outcome measure on an absolute 0–100% scale. Implantation of acellular

  17. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies.

    Science.gov (United States)

    Pot, Michiel W; Gonzales, Veronica K; Buma, Pieter; IntHout, Joanna; van Kuppevelt, Toin H; de Vries, Rob B M; Daamen, Willeke F

    2016-01-01

    Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of mechanically inferior fibrocartilage. As a result, this technique offers only temporary clinical improvement. Tissue engineering and regenerative medicine may improve the outcome of microfracture surgery. Filling the subchondral defect with a biomaterial may provide a template for the formation of new hyaline cartilage tissue. In this study, a systematic review and meta-analysis were performed to assess the current evidence for the efficacy of cartilage regeneration in preclinical models using acellular biomaterials implanted after marrow stimulating techniques (microfracturing and subchondral drilling) compared to the natural healing response of defects. The review aims to provide new insights into the most effective biomaterials, to provide an overview of currently existing knowledge, and to identify potential lacunae in current studies to direct future research. A comprehensive search was systematically performed in PubMed and EMBASE (via OvidSP) using search terms related to tissue engineering, cartilage and animals. Primary studies in which acellular biomaterials were implanted in osteochondral defects in the knee or ankle joint in healthy animals were included and study characteristics tabulated (283 studies out of 6,688 studies found). For studies comparing non-treated empty defects to defects containing implanted biomaterials and using semi-quantitative histology as outcome measure, the risk of bias (135 studies) was assessed and outcome data were collected for meta-analysis (151 studies). Random-effects meta-analyses were performed, using cartilage regeneration as outcome measure on an absolute 0-100% scale. Implantation of acellular biomaterials significantly

  18. MR imaging and histopathology of cartilage tumors

    Energy Technology Data Exchange (ETDEWEB)

    Mizutani, Hirokazu; Ohba, Satoru; Ohtsuka, Takanobu; Matui, Norio; Nakamura, Takaaki (Nagoya City Univ. (Japan). Faculty of Medicine)

    1994-05-01

    The MR imaging-pathologic correlation of cartilaginous bone tumors and the value of intravenously administered Gd-DTPA enhanced