WorldWideScience

Sample records for main immunogenic region

  1. The main immunogenic region of acetylcholine receptors does not provoke the formation of antibodies of a predominant idiotype.

    Science.gov (United States)

    Killen, J A; Hochschwender, S M; Lindstrom, J M

    1985-08-01

    Anti-idiotype antibodies were induced in rats by immunization with rat monoclonal antibodies to the main immunogenic region of acetylcholine receptors. These anti-idiotype antibodies showed very little crossreaction with other rat monoclonal antibodies which bind to the same region of the receptor. When the rats producing these anti-idiotype antibodies were immunized with receptor, they showed no net decrease in anti-receptor antibody production. These data indicate that, although more than half of the antibodies produced by rats immunized with receptor are directed at a small region, many anti-receptor idiotypes are involved in this response and anti-idiotype therapy is not beneficial.

  2. Modulating immunogenic properties of HIV-1 gp41 membrane-proximal external region by destabilizing six-helix bundle structure

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Saikat; Shi, Heliang; Habte, Habtom H.; Qin, Yali; Cho, Michael W., E-mail: mcho@iastate.edu

    2016-03-15

    The C-terminal alpha-helix of gp41 membrane-proximal external region (MPER; {sup 671}NWFDITNWLWYIK{sup 683}) encompassing 4E10/10E8 epitopes is an attractive target for HIV-1 vaccine development. We previously reported that gp41-HR1-54Q, a trimeric protein comprised of the MPER in the context of a stable six-helix bundle (6HB), induced strong immune responses against the helix, but antibodies were directed primarily against the non-neutralizing face of the helix. To better target 4E10/10E8 epitopes, we generated four putative fusion intermediates by introducing double point mutations or deletions in the heptad repeat region 1 (HR1) that destabilize 6HB in varying degrees. One variant, HR1-∆10-54K, elicited antibodies in rabbits that targeted W672, I675 and L679, which are critical for 4E10/10E8 recognition. Overall, the results demonstrated that altering structural parameters of 6HB can influence immunogenic properties of the MPER and antibody targeting. Further exploration of this strategy could allow development of immunogens that could lead to induction of 4E10/10E8-like antibodies. - Highlights: • Four gp41 MPER-based immunogens that resemble fusion intermediates were generated. • C-terminal region of MPER that contains 4E10/10E8 epitopes was highly immunogenic. • Altering 6HB structure can influence immunogenic properties of the MPER. • Induced antibodies targeted multiple residues critical for 4E10/10E8 binding. • Development of immunogens based on fusion intermediates is a promising strategy.

  3. Design, synthesis, and characterization of a 39 amino acid peptide mimic of the main immunogenic region of the Torpedo acetylcholine receptor.

    Science.gov (United States)

    Trinh, Vu B; Foster, Alex J; Fairclough, Robert H

    2014-05-01

    We have designed a 39 amino acid peptide mimic of the conformation-dependent main immunogenic region (MIR) of the Torpedo acetylcholine receptor (TAChR) that joins three discontinuous segments of the Torpedo α-subunit, α(1-12), α(65-79), and α(110 - 115) with two GS linkers: This 39MIR-mimic was expressed in E. coli as a fusion protein with an intein-chitin-binding domain (IChBD) to permit affinity collection on chitin beads. Six MIR-directed monoclonal antibodies (mAbs) bind to this complex and five agonist/antagonist site directed mAbs do not. The complex of MIR-directed mAb-132A with 39MIR has a Kd of (2.11±0.11)×10(-10)M, which is smaller than (7.13±1.20)×10(-10)M for the complex of mAb-132A with α(1-161) and about the same as 3.4×10(-10)M for that of mAb-132A with TAChR. Additionally, the 39MIR-IChBD adsorbs all MIR-directed antibodies (Abs) from an experimental autoimmune myasthenia gravis (EAMG) rat serum. Hence, the 39MIR-mimic has the potential to inactivate or remove pathogenic Torpedo MIR-directed Abs from EAMG sera and to direct a magic bullet to the memory B-cells that produce those pathogenic Abs. The hope is to use this as a guide to produce a mimic of the human MIR on the way to an antigen specific therapeutic agent to treat MG. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Coupling of aggregation and immunogenicity in biotherapeutics: T- and B-cell immune epitopes may contain aggregation-prone regions.

    Science.gov (United States)

    Kumar, Sandeep; Singh, Satish K; Wang, Xiaoling; Rup, Bonita; Gill, Davinder

    2011-05-01

    Biotherapeutics, including recombinant or plasma-derived human proteins and antibody-based molecules, have emerged as an important class of pharmaceuticals. Aggregation and immunogenicity are among the major bottlenecks during discovery and development of biotherapeutics. Computational tools that can predict aggregation prone regions as well as T- and B-cell immune epitopes from protein sequence and structure have become available recently. Here, we describe a potential coupling between aggregation and immunogenicity: T-cell and B-cell immune epitopes in therapeutic proteins may contain aggregation-prone regions. The details of biological mechanisms behind this observation remain to be understood. However, our observation opens up an exciting potential for rational design of de-immunized novel, as well as follow on biotherapeutics with reduced aggregation propensity.

  5. Idiotypes as immunogens: facing the challenge of inducing strong therapeutic immune responses against the variable region of immunoglobulins

    International Nuclear Information System (INIS)

    López-Requena, Alejandro; Burrone, Oscar R.; Cesco-Gaspere, Michela

    2012-01-01

    Idiotype (Id)-based immunotherapy has been exploited as cancer treatment option. Conceived as therapy for malignancies bearing idiotypic antigens, it has been also extended to solid tumors because of the capacity of anti-idiotypic antibodies to mimic Id-unrelated antigens. In both these two settings, efforts are being made to overcome the poor immune responsiveness often experienced when using self immunoglobulins as immunogens. Despite bearing a unique gene combination, and thus particular epitopes, it is normally difficult to stimulate the immune response against antibody variable regions. Different strategies are currently used to strengthen Id immunogenicity, such as concomitant use of immune-stimulating molecules, design of Id-containing immunogenic recombinant proteins, specific targeting of relevant immune cells, and genetic immunization. This review focuses on the role of anti-Id vaccination in cancer management and on the current developments used to foster anti-idiotypic B and T cell responses.

  6. Idiotypes as immunogens: facing the challenge of inducing strong therapeutic immune responses against the variable region of immunoglobulins

    Energy Technology Data Exchange (ETDEWEB)

    López-Requena, Alejandro [Molecular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Trieste (Italy); Immunobiology Division, Center of Molecular Immunology, Havana (Cuba); Bioengineering Research Institute, Biotech Pharmaceutical Co., Ltd, Beijing (China); Burrone, Oscar R.; Cesco-Gaspere, Michela, E-mail: cescogaspere@gmail.com [Molecular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Trieste (Italy)

    2012-11-09

    Idiotype (Id)-based immunotherapy has been exploited as cancer treatment option. Conceived as therapy for malignancies bearing idiotypic antigens, it has been also extended to solid tumors because of the capacity of anti-idiotypic antibodies to mimic Id-unrelated antigens. In both these two settings, efforts are being made to overcome the poor immune responsiveness often experienced when using self immunoglobulins as immunogens. Despite bearing a unique gene combination, and thus particular epitopes, it is normally difficult to stimulate the immune response against antibody variable regions. Different strategies are currently used to strengthen Id immunogenicity, such as concomitant use of immune-stimulating molecules, design of Id-containing immunogenic recombinant proteins, specific targeting of relevant immune cells, and genetic immunization. This review focuses on the role of anti-Id vaccination in cancer management and on the current developments used to foster anti-idiotypic B and T cell responses.

  7. Sequence variability is correlated with weak immunogenicity in Streptococcus pyogenes M protein

    Science.gov (United States)

    Lannergård, Jonas; Kristensen, Bodil M; Gustafsson, Mattias C U; Persson, Jenny J; Norrby-Teglund, Anna; Stålhammar-Carlemalm, Margaretha; Lindahl, Gunnar

    2015-01-01

    The M protein of Streptococcus pyogenes, a major bacterial virulence factor, has an amino-terminal hypervariable region (HVR) that is a target for type-specific protective antibodies. Intriguingly, the HVR elicits a weak antibody response, indicating that it escapes host immunity by two mechanisms, sequence variability and weak immunogenicity. However, the properties influencing the immunogenicity of regions in an M protein remain poorly understood. Here, we studied the antibody response to different regions of the classical M1 and M5 proteins, in which not only the HVR but also the adjacent fibrinogen-binding B repeat region exhibits extensive sequence divergence. Analysis of antisera from S. pyogenes-infected patients, infected mice, and immunized mice showed that both the HVR and the B repeat region elicited weak antibody responses, while the conserved carboxy-terminal part was immunodominant. Thus, we identified a correlation between sequence variability and weak immunogenicity for M protein regions. A potential explanation for the weak immunogenicity was provided by the demonstration that protease digestion selectively eliminated the HVR-B part from whole M protein-expressing bacteria. These data support a coherent model, in which the entire variable HVR-B part evades antibody attack, not only by sequence variability but also by weak immunogenicity resulting from protease attack. PMID:26175306

  8. Identification of immunogenic hot spots within plum pox potyvirus capsid protein for efficient antigen presentation.

    Science.gov (United States)

    Fernández-Fernández, M Rosario; Martínez-Torrecuadrada, Jorge L; Roncal, Fernando; Domínguez, Elvira; García, Juan Antonio

    2002-12-01

    PEPSCAN analysis has been used to characterize the immunogenic regions of the capsid protein (CP) in virions of plum pox potyvirus (PPV). In addition to the well-known highly immunogenic N- and C-terminal domains of CP, regions within the core domain of the protein have also shown high immunogenicity. Moreover, the N terminus of CP is not homogeneously immunogenic, alternatively showing regions frequently recognized by antibodies and others that are not recognized at all. These results have helped us to design efficient antigen presentation vectors based on PPV. As predicted by PEPSCAN analysis, a small displacement of the insertion site in a previously constructed vector, PPV-gamma, turned the derived chimeras into efficient immunogens. Vectors expressing foreign peptides at different positions within a highly immunogenic region (amino acids 43 to 52) in the N-terminal domain of CP were the most effective at inducing specific antibody responses against the foreign sequence.

  9. Sequence variability is correlated with weak immunogenicity in Streptococcus pyogenes M protein.

    Science.gov (United States)

    Lannergård, Jonas; Kristensen, Bodil M; Gustafsson, Mattias C U; Persson, Jenny J; Norrby-Teglund, Anna; Stålhammar-Carlemalm, Margaretha; Lindahl, Gunnar

    2015-10-01

    The M protein of Streptococcus pyogenes, a major bacterial virulence factor, has an amino-terminal hypervariable region (HVR) that is a target for type-specific protective antibodies. Intriguingly, the HVR elicits a weak antibody response, indicating that it escapes host immunity by two mechanisms, sequence variability and weak immunogenicity. However, the properties influencing the immunogenicity of regions in an M protein remain poorly understood. Here, we studied the antibody response to different regions of the classical M1 and M5 proteins, in which not only the HVR but also the adjacent fibrinogen-binding B repeat region exhibits extensive sequence divergence. Analysis of antisera from S. pyogenes-infected patients, infected mice, and immunized mice showed that both the HVR and the B repeat region elicited weak antibody responses, while the conserved carboxy-terminal part was immunodominant. Thus, we identified a correlation between sequence variability and weak immunogenicity for M protein regions. A potential explanation for the weak immunogenicity was provided by the demonstration that protease digestion selectively eliminated the HVR-B part from whole M protein-expressing bacteria. These data support a coherent model, in which the entire variable HVR-B part evades antibody attack, not only by sequence variability but also by weak immunogenicity resulting from protease attack. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  10. Relapse rate following antithyroid drug therapy of immunogenic and non-immunogenic hyperthyroidism

    International Nuclear Information System (INIS)

    Voth, E.; Dickmann, N.; Schicha, H.; Emrich, D.

    1990-01-01

    Data of 196 patients treated for hyperthyroidism exclusively with anthyroid drugs were analyzed retrospectively concerning the relapse rate within a follow-up period of four years. Patients were subdivided for primary or recurrent disease, and for immunogenic or non-immunogenic hyperthyroidism, respectively. In immunogenic as well as in non-immunogenic hyperthyroidism, the relapse rate was significantly lower for patients with primary disease (35% and 52%, respectively) compared to those with recurrent hyperthyroidism (82%, p [de

  11. [Immunogenicity of attenuated Salmonella choleraesuis vaccine strain expressing immunogenic genes of Mycoplasma hyopneumoniae in mice].

    Science.gov (United States)

    Ma, Fengying; Zou, Haoyong; He, Qigai

    2011-09-01

    The study was carried out to construct and characterize Salmonella choleraesuis vaccine strain expressing immunogenic genes of Mycoplasma hyopneumoniae and to test its immunogenicity in mice. We made p36, p46, p65 and p97R1-Nrdf, the main immunogenic genes of Mycoplasma hyopneumoniae, to insert into the prokaryotic expression plasmid pYA3493. Then these recombinant plasmids and pYA3493 were electroporated into C500 asd-mutant, resulting in the recombinant Salmonella choleraesuis vaccine strains C36 (pYA-36), C46 (pYA-46), C65 (pYA-65), C97R1-Nrdf(pYA-97R1-Nrdf) and CpYA(pYA3493). We characterized these recombinant Salmonella choleraesuis vaccine strains and tested the immunogenicity in mice by intramuscular injection or orally immunized. The results of the immunogenicity in mice indicated that the group orally immunized with C36, C46, C65, C97R1-Nrdf showed significantly higher Mycoplasma pneumoniae antibody than both the group orally immunized with C36, C46, C65 and the group intramuscular injected with the Mycoplasma hyopneumoniae bacterin (M + PAC) (P Mycoplasma hyopneumoniae bacterin (M + PAC) (P 0.05). The highest level of IL-4 was found in the group orally immunized with C36, C46, C65; higher levels of IL-4 was observed in the group orally immunized with C36, C46, C65, C97R1-Nrdf than the group injected with the Mycoplasma hyopneumoniae bacterin (M + PAC); and the lowest IL-4 level was found in the group injected with C36, C46, C65. There were no significant differences among them (P > 0.05). The Mycoplasma pneumoniae antibody, IFN-gamma or IL-4 production of the each group was obviously higher than the control group (P Mycoplasma hyopneumoniae which has immunogenicity in mice especially by intramuscular injection could probably serve as a vaccine against mycoplasmal pneumonia of swine.

  12. Glycan bioengineering in immunogen design for tumor T antigen immunotargeting

    DEFF Research Database (Denmark)

    Sendra, Victor G; Zlocowski, Natacha; Ditamo, Yanina

    2009-01-01

    MM2 energy function showed that pentalysine (Lys5) linker and benzyl (Bzl) residue enhance TFD rigidity of the glycosidic bond. Antibodies raised against BzlalphaTFD-Lys5 immunogen recognize tumor T antigen. Competitive assays confirm that TFD-related structures are the main glycan epitope...... to the bioengineered glycoconjugate inhibited CT26 tumor cell proliferation and reduced tumor growth in an in vivo mouse model. These results show that TFD bioengineering is a useful immunogenic strategy with potential application in cancer therapy. The same approach can be extended to other glycan immunogens......Bioengineering of Galbeta3GalNAcalpha, known as Thomsen-Friedenreich disaccharide (TFD), is studied to promote glycan immunogenicity and immunotargeting to tumor T antigen (Galbeta3GalNAcalpha-O-Ser/Thr). Theoretical studies on disaccharide conformations by energy minimization of structures using...

  13. Applying biotin-streptavidin binding for iscom (immunostimulating complex) association of recombinant immunogens.

    Science.gov (United States)

    Wikman, Maria; Friedman, Mikaela; Pinitkiatisakul, Sunan; Hemphill, Andrew; Lövgren-Bengtsson, Karin; Lundén, Anna; Ståhl, Stefan

    2005-04-01

    We have previously reported strategies for Escherichia coli production of recombinant immunogens fused to hydrophobic peptide or lipid tags to improve their capacity to be incorporated into an adjuvant formulation. In the present study, we have explored the strong interaction between biotin and SA (streptavidin) (K(D) approximately 10(-15) M) to couple recombinant immunogens to iscoms (immunostimulating complexes). Two different concepts were evaluated. In the first concept, a His(6)-tagged SA fusion protein (His(6)-SA) was bound to Ni(2+)-loaded iscom matrix (iscom without associated protein), and biotinylated immunogens were thereafter associated with the SA-coated iscoms. The immunogens were either biotinylated in vivo on E. coli expression or double biotinylated in vivo and in vitro. In the second concept, the recombinant immunogens were expressed as SA fusion proteins, which were directly bound to a biotinylated iscom matrix. A 53-amino-acid malaria peptide (M5), derived from the central repeat region of the Plasmodium falciparum blood-stage antigen Pf155/RESA, and a 232-amino-acid segment (SRS2') from the central region (from Pro-97 to Lys-328) of the major surface antigen NcSRS2 of the protozoan parasite Neospora caninum, served as model immunogens in the present study. All fusion proteins generated were found to be efficiently expressed and could be recovered to high purity using affinity chromatography. The association between the different immunogen-containing fusion proteins and the corresponding iscom matrix was demonstrated by analytical ultracentrifugation in a sucrose density gradient. However, some fusion proteins were, to a certain extent, also found to associate unspecifically with a regular iscom matrix. Furthermore, selected iscom fractions were demonstrated to induce high-titre antigen-specific antibody responses on immunization of mice. For the particular target immunogen SRS2', the induced antibodies demonstrated reactivity to the native

  14. Factors contributing to the immunogenicity of meningococcal conjugate vaccines

    Science.gov (United States)

    Bröker, Michael; Berti, Francesco; Costantino, Paolo

    2016-01-01

    ABSTRACT Various glycoprotein conjugate vaccines have been developed for the prevention of invasive meningococcal disease, having significant advantages over pure polysaccharide vaccines. One of the most important features of the conjugate vaccines is the induction of a T-cell dependent immune response, which enables both the induction of immune memory and a booster response after repeated immunization. The nature of the carrier protein to which the polysaccharides are chemically linked, is often regarded as the main component of the vaccine in determining its immunogenicity. However, other factors can have a significant impact on the vaccine's profile. In this review, we explore the physico-chemical properties of meningococcal conjugate vaccines, which can significantly contribute to the vaccine's immunogenicity. We demonstrate that the carrier is not the sole determining factor of the vaccine's profile, but, moreover, that the conjugate vaccine's immunogenicity is the result of multiple physico-chemical structures and characteristics. PMID:26934310

  15. Mutual enhancement of IL-2 and IL-7 on DNA vaccine immunogenicity mainly involves regulations on their receptor expression and receptor-expressing lymphocyte generation.

    Science.gov (United States)

    Zhang, Yonghong; Liang, Shuang; Li, Xiujin; Wang, Liyue; Zhang, Jianlou; Xu, Jian; Huo, Shanshan; Cao, Xuebin; Zhong, Zhenyu; Zhong, Fei

    2015-07-09

    Our previous study showed that IL-2 and IL-7 could mutually enhance the immunogenicity of canine parvovirus VP2 DNA vaccine, although the underlying mechanism remained unknown. Here, we used the OVA gene as a DNA vaccine in a mouse model to test their enhancement on DNA vaccine immunogenicity and to explore the molecular mechanism. Results showed that both IL-2 and IL-7 genes significantly increased the immunogenicity of OVA DNA vaccine in mice. Co-administration of IL-2 and IL-7 genes with OVA DNA significantly increased OVA-specific antibody titers, T cell proliferation and IFN-γ production compared with IL-2 or IL-7 alone, confirming that IL-2 and IL-7 mutually enhanced DNA vaccine immunogenicity. Mechanistically, we have shown that IL-2 significantly stimulated generation of IL-7 receptor-expressing lymphocytes, and that IL-7 significantly induced IL-2 receptor expression. These results contribute to an explanation of the mechanism of the mutual effects of IL-2 and IL-7 on enhancing DNA vaccine immunogenicity and provided a basis for further investigation on their mutual effects on adjuvant activity and immune regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Antigenic cross-reactivity and immunogenicity of Bothrops venoms from snakes of the Amazon region.

    Science.gov (United States)

    Furtado, Maria de Fátima D; Cardoso, Silvia Travaglia; Soares, Oscar Espellet; Pereira, Aparecida Pietro; Fernandes, Daniel Silva; Tambourgi, Denise Vilarinho; Sant'Anna, Osvaldo Augusto

    2010-04-01

    Snakebites are still a critical public health problem in developing countries or isolated areas. In Brazil, the North Region has a high distribution coefficient worsened by the significant number of eventually unreported cases, due to difficulties in access to health services, to the natural geographic barriers and the vast territory. In the Rio Negro area, the species Bothrops atrox, Bothrops brazili, Lachesis muta muta and Bothriopsis taeniata are thought to be the major species responsible for snakebites. The aim of this study was to qualitatively and quantitatively determine the antigenic cross-reactivity and expression of toxins and the immunogenicity of Bothrops venom species of the Amazon and to evaluate the general efficacy of the therapeutic sera. The in vivo assays demonstrated that the defibrinating activity of B. taeniata venom was absent but that the lethal and hemorrhagic properties were more intense than in the B. atrox venom. The results evidence venom variability among the two B. atrox populations from two distinct Amazonian regions, which may reveal a subjacent speciation process. The results point to new aspects that may guide the improvement of anti-Bothropic therapeutic serum. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. 2012 AAPS National Biotech Conference Open Forum: a perspective on the current state of immunogenicity prediction and risk management.

    Science.gov (United States)

    Rajadhyaksha, Manoj; Subramanyam, Meena; Rup, Bonnie

    2013-10-01

    The immunogenicity profile of a biotherapeutic is determined by multiple product-, process- or manufacturing-, patient- and treatment-related factors and the bioanalytical methodology used to monitor for immunogenicity. This creates a complex situation that limits direct correlation of individual factors to observed immunogenicity rates. Therefore, mechanistic understanding of how these factors individually or in concert could influence the overall incidence and clinical risk of immunogenicity is crucial to provide the best benefit/risk profile for a given biotherapeutic in a given indication and to inform risk mitigation strategies. Advances in the field of immunogenicity have included development of best practices for monitoring anti-drug antibody development, categorization of risk factors contributing to immunogenicity, development of predictive tools, and development of effective strategies for risk management and mitigation. Thus, the opportunity to ask "where we are now and where we would like to go from here?" was the main driver for organizing an Open Forum on Improving Immunogenicity Risk Prediction and Management, conducted at the 2012 American Association of Pharmaceutical Scientists' (AAPS) National Biotechnology Conference in San Diego. The main objectives of the Forum include the following: to understand the nature of immunogenicity risk factors, to identify analytical tools used and animal models and management strategies needed to improve their predictive value, and finally to identify collaboration opportunities to improve the reliability of risk prediction, mitigation, and management. This meeting report provides the Forum participant's and author's perspectives on the barriers to advancing this field and recommendations for overcoming these barriers through collaborative efforts.

  18. Structure-Based Design of Head-Only Fusion Glycoprotein Immunogens for Respiratory Syncytial Virus.

    Directory of Open Access Journals (Sweden)

    Jeffrey C Boyington

    Full Text Available Respiratory syncytial virus (RSV is a significant cause of severe respiratory illness worldwide, particularly in infants, young children, and the elderly. Although no licensed vaccine is currently available, an engineered version of the metastable RSV fusion (F surface glycoprotein-stabilized in the pre-fusion (pre-F conformation by "DS-Cav1" mutations-elicits high titer RSV-neutralizing responses. Moreover, pre-F-specific antibodies, often against the neutralization-sensitive antigenic site Ø in the membrane-distal head region of trimeric F glycoprotein, comprise a substantial portion of the human response to natural RSV infection. To focus the vaccine-elicited response to antigenic site Ø, we designed a series of RSV F immunogens that comprised the membrane-distal head of the F glycoprotein in its pre-F conformation. These "head-only" immunogens formed monomers, dimers, and trimers. Antigenic analysis revealed that a majority of the 70 engineered head-only immunogens displayed reactivity to site Ø-targeting antibodies, which was similar to that of the parent RSV F DS-Cav1 trimers, often with increased thermostability. We evaluated four of these head-only immunogens in detail, probing their recognition by antibodies, their physical stability, structure, and immunogenicity. When tested in naïve mice, a head-only trimer, half the size of the parent RSV F trimer, induced RSV titers, which were statistically comparable to those induced by DS-Cav1. When used to boost DS-Cav1-primed mice, two head-only RSV F immunogens, a dimer and a trimer, boosted RSV-neutralizing titers to levels that were comparable to those boosted by DS-Cav1, although with higher site Ø-directed responses. Our results provide proof-of-concept for the ability of the smaller head-only RSV F immunogens to focus the vaccine-elicited response to antigenic site Ø. Decent primary immunogenicity, enhanced physical stability, potential ease of manufacture, and potent

  19. Antigenicity and Immunogenicity of RV144 Vaccine AIDSVAX Clade E Envelope Immunogen Is Enhanced by a gp120 N-Terminal Deletion

    Science.gov (United States)

    Liao, Hua-Xin; Tomaras, Georgia D.; Bonsignori, Mattia; Tsao, Chun-Yen; Hwang, Kwan-Ki; Chen, Haiyan; Lloyd, Krissey E.; Bowman, Cindy; Sutherland, Laura; Jeffries, Thomas L.; Kozink, Daniel M.; Stewart, Shelley; Anasti, Kara; Jaeger, Frederick H.; Parks, Robert; Yates, Nicole L.; Overman, R. Glenn; Sinangil, Faruk; Berman, Phillip W.; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Karasavva, Nicos; Rerks-Ngarm, Supachai; Kim, Jerome H.; Michael, Nelson L.; Zolla-Pazner, Susan; Santra, Sampa; Letvin, Norman L.; Harrison, Stephen C.

    2013-01-01

    An immune correlates analysis of the RV144 HIV-1 vaccine trial revealed that antibody responses to the gp120 V1/V2 region correlated inversely with infection risk. The RV144 protein immunogens (A244-rp120 and MN-rgp120) were modified by an N-terminal 11-amino-acid deletion (Δ11) and addition of a herpes simplex virus (HSV) gD protein-derived tag (gD). We investigated the effects of these modifications on gp120 expression, antigenicity, and immunogenicity by comparing unmodified A244 gp120 with both Δ11 deletion and gD tag and with Δ11 only. Analysis of A244 gp120, with or without Δ11 or gD, demonstrated that the Δ11 deletion, without the addition of gD, was sufficient for enhanced antigenicity to gp120 C1 region, conformational V2, and V1/V2 gp120 conformational epitopes. RV144 vaccinee serum IgGs bound more avidly to A244 gp120 Δ11 than to the unmodified gp120, and their binding was blocked by C1, V2, and V1/V2 antibodies. Rhesus macaques immunized with the three different forms of A244 gp120 proteins gave similar levels of gp120 antibody titers, although higher antibody titers developed earlier in A244 Δ11 gp120-immunized animals. Conformational V1/V2 monoclonal antibodies (MAbs) gave significantly higher levels of blocking of plasma IgG from A244 Δ11 gp120-immunized animals than IgG from animals immunized with unmodified A244 gp120, thus indicating a qualitative difference in the V1/V2 antibodies induced by A244 Δ11 gp120. These results demonstrate that deletion of N-terminal residues in the RV144 A244 gp120 immunogen improves both envelope antigenicity and immunogenicity. PMID:23175357

  20. Immunogenic and non-immunogenic hyperthyroidism - a comparison

    International Nuclear Information System (INIS)

    Pohl, M.; Emrich, D.

    1993-01-01

    In a retrospective study 161 hyperthyroid patients without treatment were divided into 74 with immunogenic hyperthyroidism (IMH) and 87 with non-immunogenic hypethyroidism (NIMH). The frequency of complaints and the mean hormone concentrations were significantly higher in IMH and the median thyroid volume was significantly smaller. Diffusely reduced sonographic echos were observed in only 50% of patients with IMH compared to 5% of those with NIMH. Homogenous distribution of 99m Tc in the thyroid was observed scintigraphically in 95% of patients with IMH and in only 3% of those with NIMH. Although the median of global thyroid uptake of 99m Tc was significantly higher in IMH there was a broad overlap between the two groups. The mean hormone production is higher in IMH than in NIMH. In order to separate IMH and NIMH, several criteria have to be employed which differ concerning their diagnostic significance. (orig.) [de

  1. Immunogenic and non-immunogenic hyperthyroidism - a comparison. Immunogene und nichtimmunogene Hyperthyreose - ein Vergleich

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, M. (Abt. Nuklearmedizin in Zentrum Radiologie, Georg-August-Univ., Goettingen (Germany)); Emrich, D. (Abt. Nuklearmedizin in Zentrum Radiologie, Georg-August-Univ., Goettingen (Germany))

    1993-08-01

    In a retrospective study 161 hyperthyroid patients without treatment were divided into 74 with immunogenic hyperthyroidism (IMH) and 87 with non-immunogenic hypethyroidism (NIMH). The frequency of complaints and the mean hormone concentrations were significantly higher in IMH and the median thyroid volume was significantly smaller. Diffusely reduced sonographic echos were observed in only 50% of patients with IMH compared to 5% of those with NIMH. Homogenous distribution of [sup 99m]Tc in the thyroid was observed scintigraphically in 95% of patients with IMH and in only 3% of those with NIMH. Although the median of global thyroid uptake of [sup 99m]Tc was significantly higher in IMH there was a broad overlap between the two groups. The mean hormone production is higher in IMH than in NIMH. In order to separate IMH and NIMH, several criteria have to be employed which differ concerning their diagnostic significance. (orig.)

  2. Immunogenicity of therapeutic proteins: the use of animal models.

    Science.gov (United States)

    Brinks, Vera; Jiskoot, Wim; Schellekens, Huub

    2011-10-01

    Immunogenicity of therapeutic proteins lowers patient well-being and drastically increases therapeutic costs. Preventing immunogenicity is an important issue to consider when developing novel therapeutic proteins and applying them in the clinic. Animal models are increasingly used to study immunogenicity of therapeutic proteins. They are employed as predictive tools to assess different aspects of immunogenicity during drug development and have become vital in studying the mechanisms underlying immunogenicity of therapeutic proteins. However, the use of animal models needs critical evaluation. Because of species differences, predictive value of such models is limited, and mechanistic studies can be restricted. This review addresses the suitability of animal models for immunogenicity prediction and summarizes the insights in immunogenicity that they have given so far.

  3. Preclinical models used for immunogenicity prediction of therapeutic proteins.

    Science.gov (United States)

    Brinks, Vera; Weinbuch, Daniel; Baker, Matthew; Dean, Yann; Stas, Philippe; Kostense, Stefan; Rup, Bonita; Jiskoot, Wim

    2013-07-01

    All therapeutic proteins are potentially immunogenic. Antibodies formed against these drugs can decrease efficacy, leading to drastically increased therapeutic costs and in rare cases to serious and sometimes life threatening side-effects. Many efforts are therefore undertaken to develop therapeutic proteins with minimal immunogenicity. For this, immunogenicity prediction of candidate drugs during early drug development is essential. Several in silico, in vitro and in vivo models are used to predict immunogenicity of drug leads, to modify potentially immunogenic properties and to continue development of drug candidates with expected low immunogenicity. Despite the extensive use of these predictive models, their actual predictive value varies. Important reasons for this uncertainty are the limited/insufficient knowledge on the immune mechanisms underlying immunogenicity of therapeutic proteins, the fact that different predictive models explore different components of the immune system and the lack of an integrated clinical validation. In this review, we discuss the predictive models in use, summarize aspects of immunogenicity that these models predict and explore the merits and the limitations of each of the models.

  4. Can dendritic cells improve whole cancer cell vaccines based on immunogenically killed cancer cells?

    Science.gov (United States)

    Cicchelero, Laetitia; Denies, Sofie; Devriendt, Bert; de Rooster, Hilde; Sanders, Niek N

    2015-01-01

    Immunogenic cell death (ICD) offers interesting opportunities in cancer cell (CC) vaccine manufacture, as it increases the immunogenicity of the dead CC. Furthermore, fusion of CCs with dendritic cells (DCs) is considered a superior method for generating whole CC vaccines. Therefore, in this work, we determined in naive mice whether immunogenically killed CCs per se (CC vaccine) elicit an antitumoral immune response different from the response observed when immunogenically killed CCs are associated with DCs through fusion (fusion vaccine) or through co-incubation (co-incubation vaccine). After tumor inoculation, the type of immune response in the prophylactically vaccinated mice differed between the groups. In more detail, fusion vaccines elicited a humoral anticancer response, whereas the co-incubation and CC vaccine mainly induced a cellular response. Despite these differences, all three approaches offered a prophylactic protection against tumor development in the murine mammary carcinoma model. In summary, it can be concluded that whole CC vaccines based on immunogenically killed CCs may not necessarily require association with DCs to elicit a protective anticancer immune response. If this finding can be endorsed in other cancer models, the manufacture of CC vaccines would greatly benefit from this new insight, as production of DC-based vaccines is laborious, time-consuming and expensive. PMID:26587315

  5. Regional Ocean Modeling System (ROMS): Main Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Regional Ocean Modeling System (ROMS) 7-day, 3-hourly forecast for the region surrounding the main Hawaiian islands at approximately 4-km resolution. While...

  6. Immunogenic hyperthyroidism following radioiodine ablation of focal autonomy

    International Nuclear Information System (INIS)

    Boddenberg, B.; Voth, E.; Schicha, H.

    1993-01-01

    Immunogenic hyperthyroidism rarely develops after radioiodine elimination of focal autonomous thyroid tissue. We observed this phenomenon in 8 patients between 1989 and 1992. The occurrence of immunogenic hyperthyroidism shortly after elimination of autonomous nodules has not been studied nor is it properly understood. Most studies known today describe the development of autonomous nodules in the course of immunogenic hyperthyroidism or ignore the chronologic order of occurrence. The possibility that immunogenic hyperthyroidism may occur after radioiodine therapy of autonomous nodules, makes a consequent follow-up within the first year following radioiodine therapy mandatory. (orig.) [de

  7. Immunogenicity of autoantigens

    Directory of Open Access Journals (Sweden)

    Keller Andreas

    2011-07-01

    Full Text Available Abstract Background Autoantibodies against self-antigens have been associated not only with autoimmune diseases, but also with cancer and are even found in healthy individuals. The mechanism causing the autoantibody response remains elusive for the majority of the immunogenic antigens. To deepen the understanding of autoantibody responses, we ask whether natural-occurring, autoimmunity-associated and tumor-associated antigens have structural or biological features related to the immune response. To this end, we have carried out the most comprehensive in-silicio study of different groups of autoantigens including large antigen sets identified by our groups combined with publicly available antigen sets. Results We found evidence for an enrichment of genes with a larger exon length increasing the probability of the occurrence of potential immunogenic features such as mutations, SNPs, immunogenic sequence patterns and structural epitopes, or alternative splicing events. While SNPs seem to play a more central role in autoimmunity, somatic mutations seem to be stronger enriched in tumor-associated antigens. In addition, antigens of autoimmune diseases are different from other antigen sets in that they appear preferentially secreted, have frequently an extracellular location, and they are enriched in pathways associated with the immune system. Furthermore, for autoantibodies in general, we found enrichment of sequence-based properties including coiled-coils motifs, ELR motifs, and Zinc finger DNA-binding motifs. Moreover, we found enrichment of proteins binding to proteins or nucleic acids including RNA and enrichment of proteins that are part of ribosome or spliceosome. Both, homologies to proteins of other species and an enrichment of ancient protein domains indicate that immunogenic proteins are evolutionary conserved and that mimicry might play a central role. Conclusions Our results provide evidence that proteins which i are evolutionary conserved

  8. Effective immunotherapy of weakly immunogenic solid tumours using a combined immunogene therapy and regulatory T-cell inactivation.

    LENUS (Irish Health Repository)

    Whelan, M C

    2012-01-31

    Obstacles to effective immunotherapeutic anti-cancer approaches include poor immunogenicity of the tumour cells and the presence of tolerogenic mechanisms in the tumour microenvironment. We report an effective immune-based treatment of weakly immunogenic, growing solid tumours using a locally delivered immunogene therapy to promote development of immune effector responses in the tumour microenvironment and a systemic based T regulatory cell (Treg) inactivation strategy to potentiate these responses by elimination of tolerogenic or immune suppressor influences. As the JBS fibrosarcoma is weakly immunogenic and accumulates Treg in its microenvironment with progressive growth, we used this tumour model to test our combined immunotherapies. Plasmids encoding GM-CSF and B7-1 were electrically delivered into 100 mm(3) tumours; Treg inactivation was accomplished by systemic administration of anti-CD25 antibody (Ab). Using this approach, we found that complete elimination of tumours was achieved at a level of 60% by immunogene therapy, 25% for Treg inactivation and 90% for combined therapies. Moreover, we found that these responses were immune transferable, systemic, tumour specific and durable. Combined gene-based immune effector therapy and Treg inactivation represents an effective treatment for weakly antigenic solid growing tumours and that could be considered for clinical development.

  9. Dietary Immunogen® modulated digestive enzyme activity and immune gene expression in Litopenaeus vannamei post larvae.

    Science.gov (United States)

    Miandare, Hamed Kolangi; Mirghaed, Ali Taheri; Hosseini, Marjan; Mazloumi, Nastaran; Zargar, Ashkan; Nazari, Sajad

    2017-11-01

    Pacific white shrimp Litopenaeus vannamei (Boone, 1931) is an important economical shrimp species worldwide, especially in the Middle East region, and farming activities of this species have been largely affected by diseases, mostly viral and bacterial diseases. Scientists have started to use prebiotics for bolstering the immune status of the animal. This study aimed to investigate the influence of Immunogen ® on growth, digestive enzyme activity and immune related gene expression of Litopenaeus vannamei post-larvae. All post-larvae were acclimated to the laboratory condition for 14 days. Upon acclimation, shrimps were fed on different levels of Immunogen ® (0, 0.5, 1 and 1.5 g kg -1 ) for 60 days. No significant differences were detected in weight gain, specific growth rate (SGR) and food conversion ratio (FCR) in shrimp post-larvae in which fed with different levels of Immunogen ® and control diet. The results showed that digestive enzymes activity including protease and lipase increased with different amounts of Immunogen ® in the shrimp diet. Protease activity increased with 1.5 g kg -1 Immunogen ® after 60 days and lipase activity increased with 1 and 1.5 g kg -1 Immunogen ® after 30 and 60 days of the trial respectively (P  0.05). The expression of immune related genes including, prophenoloxidase, crustin and g-type lysozyme increased with diet 1.5 g kg -1 Immunogen ® (P < 0.05) while expression of penaeidin gene increased only with experimental diet 1 g kg -1 of Immunogen ® . These results indicated that increase in digestive enzymes activity and expression of immune related genes could modulate the Immunogen ® in the innate immune system in L. vannamei in this study. Copyright © 2017. Published by Elsevier Ltd.

  10. Toxicity attenuation optimization of crotalic venom by gamma radiation and studies of its immunogenic properties

    International Nuclear Information System (INIS)

    Clissa, Patricia Bianca

    1997-01-01

    Literature data show that 2.0 kGy dose of gamma radiation, generated by 60 source, reduces the toxic activity of Crotalus durissus terrificus venom, without altering its immunogenic capacity. When crotoxin, main toxin from crotalic venom, was irradiated with the same dose, toxicity was also reduced and the immunogenicity was maintained. This fact was attributed to aggregates (compounds with high molecular weight generated during irradiation), that showed no toxicity but were able to induce the antibodies formation against native venom. Crotalus durissus terrificus venom was irradiated with 2.0, 3.0, 5.0 and 10.0 kGy doses and submitted to molecular exclusion chromatography, in order to find an efficient dose that produces large amounts of non toxic but still immunogenic aggregates. After being isolated, the products of irradiation were evaluated for the amount produced, molecular alteration, and toxic and immunogenic activities. These parameters were also analyzed for the whole venom irradiated. The results from different doses irradiated venom were compared with native one, and 2.0 kGy dose was confirmed to be the most efficient in the association of toxicity attenuation with maintenance of immunogenicity of the crotalic venom, while other doses, in spite of being efficient in the toxicity attenuation, they were not able to keep the immunogenicity property. So, the dose of 2.0 kGy could be used to immunize animals in order to improve anticrotalic sera production. (author)

  11. Mosaic HIV envelope immunogenic polypeptides

    Science.gov (United States)

    Korber, Bette T. M.; Gnanakaran, S.; Perkins, Simon; Sodroski, Joseph; Haynes, Barton

    2018-01-02

    Disclosed herein are mosaic HIV envelope (Env) polypeptides that can elicit an immune response to HIV (such as cytotoxic T cell (CTL), helper T cell, and/or humoral responses). Also disclosed are sets of the disclosed mosaic Env polypeptides, which include two or more (for example, three) of the polypeptides. Also disclosed herein are methods for treating or inhibiting HIV in a subject including administering one or more of the disclosed immunogenic polypeptides or compositions to a subject infected with HIV or at risk of HIV infection. In some embodiments, the methods include inducing an immune response to HIV in a subject comprising administering to the subject at least one (such as two, three, or more) of the immunogenic polypeptides or at least one (such as two, three, or more) nucleic acids encoding at least one of the immunogenic polypeptides disclosed herein.

  12. 75 FR 21979 - NRC Region II Address and Main Telephone Number Changes

    Science.gov (United States)

    2010-04-27

    ... Region II Address and Main Telephone Number Changes AGENCY: Nuclear Regulatory Commission. ACTION: Final... address for its Region II office and to update the main telephone number. The Region II office move and... update the NRC Region II office street address and office main telephone number. The physical location of...

  13. Determinants of immunogenic response to protein therapeutics.

    Science.gov (United States)

    Singh, Satish K; Cousens, Leslie P; Alvarez, David; Mahajan, Pramod B

    2012-09-01

    Protein therapeutics occupy a very significant position in the biopharmaceutical market. In addition to the preclinical, clinical and post marketing challenges common to other drugs, unwanted immunogenicity is known to affect efficacy and/or safety of most biotherapeutics. A standard set of immunogenicity risk factors are routinely used to inform monitoring strategies in clinical studies. A number of in-silico, in vivo and in vitro approaches have also been employed to predict immunogenicity of biotherapeutics, but with limited success. Emerging data also indicates the role of immune tolerance mechanisms and impact of several product-related factors on modulating host immune responses. Thus, a comprehensive discussion of the impact of innate and adaptive mechanisms and molecules involved in induction of host immune responses on immunogenicity of protein therapeutics is needed. A detailed understanding of these issues is essential in order to fully exploit the therapeutic potential of this class of drugs. This Roundtable Session was designed to provide a common platform for discussing basic immunobiological and pharmacological issues related to the role of biotherapeutic-associated risk factors, as well as host immune system in immunogenicity against protein therapeutics. The session included overview presentations from three speakers, followed by a panel discussion with audience participation. Copyright © 2012. Published by Elsevier Ltd.. All rights reserved.

  14. Impact of product-related factors on immunogenicity of biotherapeutics.

    Science.gov (United States)

    Singh, Satish Kumar

    2011-02-01

    All protein therapeutics have the potential to be immunogenic. Several factors, including patient characteristics, disease state, and the therapy itself, influence the generation of an immune response. Product-related factors such as the molecule design, the expression system, post-translational modifications, impurities, contaminants, formulation and excipients, container, closure, as well as degradation products are all implicated. However, a critical examination of the available data shows that clear unequivocal evidence for the impact of these latter factors on clinical immunogenicity is lacking. No report could be found that clearly deconvolutes the clinical impact of the product attributes on patient susceptibility. Aggregation carries the greatest concern as a risk factor for immunogenicity, but the impact of aggregates is likely to depend on their structure as well as on the functionality (e.g., immunostimulatory or immunomodulatory) of the therapeutic. Preclinical studies are not yet capable of assessing the clinically relevant immunogenicity potential of these product-related factors. Simply addressing these risk factors as part of product development will not eliminate immunogenicity. Minimization of immunogenicity has to begin at the molecule design stage by reducing or eliminating antigenic epitopes and building in favorable physical and chemical properties. Copyright © 2010 Wiley-Liss, Inc.

  15. Identification of Novel Immunogenic Proteins of Neisseria gonorrhoeae by Phage Display.

    Directory of Open Access Journals (Sweden)

    Daniel O Connor

    Full Text Available Neisseria gonorrhoeae is one of the most prevalent sexually transmitted diseases worldwide with more than 100 million new infections per year. A lack of intense research over the last decades and increasing resistances to the recommended antibiotics call for a better understanding of gonococcal infection, fast diagnostics and therapeutic measures against N. gonorrhoeae. Therefore, the aim of this work was to identify novel immunogenic proteins as a first step to advance those unresolved problems. For the identification of immunogenic proteins, pHORF oligopeptide phage display libraries of the entire N. gonorrhoeae genome were constructed. Several immunogenic oligopeptides were identified using polyclonal rabbit antibodies against N. gonorrhoeae. Corresponding full-length proteins of the identified oligopeptides were expressed and their immunogenic character was verified by ELISA. The immunogenic character of six proteins was identified for the first time. Additional 13 proteins were verified as immunogenic proteins in N. gonorrhoeae.

  16. Regional Ocean Modeling System (ROMS): Main Hawaiian Islands: Data Assimilating

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Regional Ocean Modeling System (ROMS) 3-day, 3-hourly data assimilating hindcast for the region surrounding the main Hawaiian islands at approximately 4-km...

  17. The Comparative Immunogenicity Of Three Lentogenic Brands Of ...

    African Journals Online (AJOL)

    The comparative immunogenicity of a new lentogenic viscerotropic Newcastle disease vaccine, NDvac-1 (VG/GA strain) and two other existing proprietary pneumotropic lentogenic Newcastle disease vaccines in Nigeria, NDvac-2 (R2B) and NDvac-3 (LaSota) were studied. Immunogenicity was assessed on the basis of ...

  18. Immunogenicity of therapeutic proteins. Part 2: impact of container closures.

    Science.gov (United States)

    Sharma, Basant

    2007-01-01

    Immunogenicity as a potential consequence of therapeutic protein administration is increasingly being scrutinized in the biopharmaceuticals industry, particularly with the imminent introduction of biosimilar products. Immunogenicity is an important safety aspect requiring rigorous investigation to fully appreciate its impact. Factors involved in product handling, such as storage temperature, light exposure, and shaking, have been implicated in immunogenicity, while container closure systems are no less important. Intended to provide a stable environment for the dosage form, container closures may also interact with a product, affecting performance and potentially enhancing immunogenicity. Glass surfaces, air-liquid interfaces, and lubricants can mediate protein denaturation, while phthalates in plastics and latex rubber are sources of extractables and leachates that may contaminate a product, causing allergic reactions and increasing immunogenicity. The manufacture of therapeutic proteins therefore requires rigorous safety evaluations not just in the context of the product, but also product containment.

  19. Differences in Allelic Frequency and CDRH3 Region Limit the Engagement of HIV Env Immunogens by Putative VRC01 Neutralizing Antibody Precursors

    Directory of Open Access Journals (Sweden)

    Christina Yacoob

    2016-11-01

    Full Text Available Elicitation of broadly neutralizing antibodies remains a long-standing goal of HIV vaccine research. Although such antibodies can arise during HIV-1 infection, gaps in our knowledge of their germline, pre-immune precursor forms, as well as on their interaction with viral Env, limit our ability to elicit them through vaccination. Studies of broadly neutralizing antibodies from the VRC01-class provide insight into progenitor B cell receptors (BCRs that could develop into this class of antibodies. Here, we employed high-throughput heavy chain variable region (VH/light chain variable region (VL deep sequencing, combined with biophysical, structural, and modeling antibody analyses, to interrogate circulating potential VRC01-progenitor BCRs in healthy individuals. Our study reveals that not all humans are equally predisposed to generate VRC01-class antibodies, not all predicted progenitor VRC01-expressing B cells can bind to Env, and the CDRH3 region of germline VRC01 antibodies influence their ability to recognize HIV-1. These findings will be critical to the design of optimized immunogens that should consider CDRH3 interactions.

  20. A pseudotype baculovirus expressing the capsid protein of foot-and-mouth disease virus and a T-Cell immunogen shows enhanced immunogenicity in mice

    Directory of Open Access Journals (Sweden)

    Liu Xiangtao

    2011-02-01

    Full Text Available Abstract Background Foot-and-mouth disease (FMD is a highly contagious disease of livestock which causes severe economic loss in cloven-hoofed animals. Vaccination is still a major strategy in developing countries to control FMD. Currently, inactivated vaccine of FMDV has been used in many countries with limited success and safety concerns. Development of a novel effective vaccine is must. Methods In the present study, two recombinant pseudotype baculoviruses, one expressing the capsid of foot-and-mouth disease virus (FMDV under the control of a cytomegalovirus immediate early enhancer/promoter (CMV-IE, and the other the caspid plus a T-cell immunogen coding region under a CAG promoter were constructed, and their expression was characterized in mammalian cells. In addition, their immunogenicity in a mouse model was investigated. The humoral and cell-mediated immune responses induced by pseudotype baculovirus were compared with those of inactivated vaccine. Results Indirect immunofluorescence assay (IFA and indirect sandwich-ELISA (IS-ELISA showed both recombinant baculoviruses (with or without T-cell epitopes were transduced efficiently and expressed target proteins in BHK-21 cells. In mice, intramuscular inoculation of recombinants with 1 × 109 or 1 × 1010 PFU/mouse induced the production of FMDV-specific neutralizing antibodies and gamma interferon (IFN-γ. Furthermore, recombinant baculovirus with T-cell epitopes had better immunogenicity than the recombinant without T-cell epitopes as demonstrated by significantly enhanced IFN-γ production (P P Conclusions These results indicate that pseudotype baculovirus-mediated gene delivery could be a alternative strategy to develop a new generation of vaccines against FMDV infection.

  1. The Influences of Glycosylation on the Antigenicity, Immunogenicity, and Protective Efficacy of Ebola Virus GP DNA Vaccines

    National Research Council Canada - National Science Library

    Dowling, William; Thompson, Elizabeth; Badger, Catherine; Mellquist, Jenny L; Garrison, Aura R; Smith, Jeffrey M; Paragas, Jason; Hogan, Robert J; Schmaljohn, Connie

    2006-01-01

    ... or with deletions in the central hypervariable mucin region. We showed that mutation of one of the two N-linked GP2 glycosylation sites was highly detrimental to the antigenicity and immunogenicity of GP...

  2. THE 'MAIN SEQUENCE' OF EXPLOSIVE SOLAR ACTIVE REGIONS: DISCOVERY AND INTERPRETATION

    Energy Technology Data Exchange (ETDEWEB)

    Falconer, David A; Moore, Ronald L; Adams, Mitzi [Space Science Office, VP62, Marshall Space Flight Center, Huntsville, AL 35812 (United States); Gary, G. Allen [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)], E-mail: David.falconer@msfc.nasa.gov

    2009-08-01

    We examine the location and distribution of the production of coronal mass ejections (CMEs) and major flares by sunspot active regions in the phase space of two whole-active-region magnetic quantities measured from 1897 SOHO/MDI magnetograms. These magnetograms track the evolution of 44 active regions across the central disk of radius 0.5 R {sub Sun}. The two quantities are {sup L}WL{sub SG}, a gauge of the total free energy in an active region's magnetic field, and {sup L}{phi}, a measure of the active region's total magnetic flux. From these data and each active region's history of production of CMEs, X flares, and M flares, we find (1) that CME/flare-productive active regions are concentrated in a straight-line 'main sequence' in (log {sup L}WL{sub SG}, log {sup L}{phi}) space, (2) that main-sequence active regions have nearly their maximum attainable free magnetic energy, and (3) evidence that this arrangement plausibly results from equilibrium between input of free energy to an explosive active region's magnetic field in the chromosphere and corona by contortion of the field via convection in and below the photosphere and loss of free energy via CMEs, flares, and coronal heating, an equilibrium between energy gain and loss that is analogous to that of the main sequence of hydrogen-burning stars in (mass, luminosity) space.

  3. THE 'MAIN SEQUENCE' OF EXPLOSIVE SOLAR ACTIVE REGIONS: DISCOVERY AND INTERPRETATION

    International Nuclear Information System (INIS)

    Falconer, David A.; Moore, Ronald L.; Adams, Mitzi; Gary, G. Allen

    2009-01-01

    We examine the location and distribution of the production of coronal mass ejections (CMEs) and major flares by sunspot active regions in the phase space of two whole-active-region magnetic quantities measured from 1897 SOHO/MDI magnetograms. These magnetograms track the evolution of 44 active regions across the central disk of radius 0.5 R Sun . The two quantities are L WL SG , a gauge of the total free energy in an active region's magnetic field, and L Φ, a measure of the active region's total magnetic flux. From these data and each active region's history of production of CMEs, X flares, and M flares, we find (1) that CME/flare-productive active regions are concentrated in a straight-line 'main sequence' in (log L WL SG , log L Φ) space, (2) that main-sequence active regions have nearly their maximum attainable free magnetic energy, and (3) evidence that this arrangement plausibly results from equilibrium between input of free energy to an explosive active region's magnetic field in the chromosphere and corona by contortion of the field via convection in and below the photosphere and loss of free energy via CMEs, flares, and coronal heating, an equilibrium between energy gain and loss that is analogous to that of the main sequence of hydrogen-burning stars in (mass, luminosity) space.

  4. Real-Life Efficacy, Immunogenicity and Safety of Biosimilar Infliximab.

    Science.gov (United States)

    Vegh, Zsuzsanna; Kurti, Zsuzsanna; Lakatos, Peter L

    2017-01-01

    Recently, the use of biosimilar infliximab (IFX) in the treatment of inflammatory bowel diseases has become widespread in some European and non-European countries. Data on the efficacy, safety and immunogenicity from real-life cohorts are accumulating. The first reports showed similar outcomes in the induction and maintenance of remission, mucosal healing, safety and immunogenicity profile to the originator IFX. In the present review, we aimed to summarize the existing knowledge on the efficacy, safety and immunogenicity profile of biosimilar IFX reported from real-life cohorts. © 2017 S. Karger AG, Basel.

  5. Immunogenicity and safety of human papillomavirus (HPV) vaccination in Asian populations from six countries : a meta-analysis

    NARCIS (Netherlands)

    Setiawan, Didik; Luttjeboer, Jos; Pouwels, Koen B.; Wilschut, Jan C.; Postma, Maarten J.

    Cervical cancer is a serious public-health problem in Asian countries. Since human papillomavirus (HPV) infection is the main risk factor for cervical cancer, HPV vaccination is considered a promising strategy to prevent cervical cancer. However, comprehensive immunogenicity and safety information

  6. Homology analysis and cross-immunogenicity of OmpA from pathogenic Yersinia enterocolitica, Yersinia pseudotuberculosis and Yersinia pestis.

    Science.gov (United States)

    Chen, Yuhuang; Duan, Ran; Li, Xu; Li, Kewei; Liang, Junrong; Liu, Chang; Qiu, Haiyan; Xiao, Yuchun; Jing, Huaiqi; Wang, Xin

    2015-12-01

    The outer membrane protein A (OmpA) is one of the intra-species conserved proteins with immunogenicity widely found in the family of Enterobacteriaceae. Here we first confirmed OmpA is conserved in the three pathogenic Yersinia: Yersinia pestis, Yersinia pseudotuberculosis and pathogenic Yersinia enterocolitica, with high homology at the nucleotide level and at the amino acid sequence level. The identity of ompA sequences for 262 Y. pestis strains, 134 Y. pseudotuberculosis strains and 219 pathogenic Y. enterocolitica strains are 100%, 98.8% and 97.7% similar. The main pattern of OmpA of pathogenic Yersinia are 86.2% and 88.8% identical at the nucleotide and amino acid sequence levels, respectively. Immunological analysis showed the immunogenicity of each OmpA and cross-immunogenicity of OmpA for pathogenic Yersinia where OmpA may be a vaccine candidate for Y. pestis and other pathogenic Yersinia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Immunogenicity of Mycobacterium avium subsp. paratuberculosis specific peptides for inclusion in a subunit vaccine against paratuberculosis

    DEFF Research Database (Denmark)

    Mikkelsen, Heidi; Tollefsen, S.; Olsen, I.

    Paratuberculosis in ruminants is caused by an infection with Mycobacterium avium subspecies paratuberculosis (MAP) and is a chronic disease characterized by granulomatous enteritis. Available vaccines against paratuberculosis consist of variations of whole bacteria with adjuvant showing various...... efficacies. The main problem with available vaccines is their interference with surveillance and diagnosis of bovine tuberculosis and paratuberculosis. Our ultimate aim is to develop a subunit vaccine consisting of selected MAP peptides, which allow differentiation of infected from vaccinated animals. Here......, 118 peptides were identified by in silico analysis and synthesized chemically. Peptides were tested for reactivity and immunogenicity with T-cell lines generated from PBMCs isolated from MAP infected goats and with blood samples from MAP infected calves. Immunogenicity of peptides was evaluated using...

  8. Impact of baseline covariates on the immunogenicity of the 9-valent HPV vaccine - A combined analysis of five phase III clinical trials

    DEFF Research Database (Denmark)

    Petersen, Lone K; Restrepo, Jaime; Moreira, Edson D

    2017-01-01

    were seronegative for that type at day 1. CONCLUSIONS: 9vHPV vaccine immunogenicity was robust among subjects with differing baseline characteristics. It was generally comparable across subjects of different races and from different regions. Greater immunogenicity in girls and boys versus young women...... as geometric mean titers (GMTs). Covariates examined were age, gender, race, region of residence, and HPV serostatus and PCR status at day 1. RESULTS: GMTs to all 9 vaccine HPV types decreased with age at vaccination initiation, and were otherwise generally similar among the demographic subgroups defined...... by gender, race and region of residence. For all subgroups defined by race or region of residence, GMTs were higher in girls and boys than in young women. Vaccination of subjects who were seropositive at day 1 to a vaccine HPV type resulted in higher GMTs to that type, compared with those in subjects who...

  9. Salk's HIV immunogen: an immune-based therapy in human trials since 1988.

    Science.gov (United States)

    Jonas Salk, the developer of the first polio vaccine, has created a therapeutic vaccine for HIV which helps the immune system fight disease progression. Salk uses inactivated HIV-1 virus combined with Incomplete Freund's Adjuvant (IFA) in the vaccine preparation. The resulting HIV-1 immunogen was first studied in 1987, and since then, 235 seropositive individuals have received inoculations without serious adverse effects. Data from the first 25 subjects indicate that immunization with the HIV-1 immunogen results in improvement of cell-mediated response against the virus, a slower increase in the amount of virus present, and a reduced rate of clinical progression. Subsequent studies also show that higher doses of immunogen may produce stronger cell-mediated responses and high HIV-DTH (delayed-type hypersensitivity responsiveness immunogen) is associated with better outcome. Additional trials of HIV-1 immunogen are awaiting Food and Drug Administration approval.

  10. Results of radioiodine therapy using different radiation doses in patients suffering from immunogenic and non-immunogenic hyperthyroidism

    International Nuclear Information System (INIS)

    Moser, E.

    1992-01-01

    During the past few years high rates of recidivation have increasingly been reported following drug treatment for hyperthyroidism. In view of these unsatisfactory results it is only natural that the use of surgery and ratioiodine treatment is now more often considered in order to achieve complete elimination of the metabolic disorders caused by hyperactivity of the thyroid gland. The aim of this study was to investigate into the effectiveness of radioiodine therapy in a large cohort of patients (n = 925). Particular attention was given to the influence of the dose applied to the thyroid tissue on the rates of success achieved in immunogenic hyperthyroidism (IH) and autonomous disorders (non-immunogenic hyperthyroidism = NIH). (orig./GDG) [de

  11. Battlefield-Acquired Immunogenicity to Metals Affects Orthopaedic Implant Outcome

    Science.gov (United States)

    2015-10-01

    Award Number: W81XWH-10-2-0138 TITLE: Battlefield-Acquired Immunogenicity to Metals Affects Orthopaedic Implant Outcome PRINCIPAL INVESTIGATOR...Immunogenicity to Metals Affects Orthopaedic pla t Outcome 5b. GRANT NUMBER W91ZSQ0135N646 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Nadim James...DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEM ENTARY NOTES 14. ABSTRACT The effects of battlefield

  12. Understanding the immunogenicity and antigenicity of nanomaterials: Past, present and future

    International Nuclear Information System (INIS)

    Ilinskaya, Anna N.; Dobrovolskaia, Marina A.

    2016-01-01

    Nanoparticle immunogenicity and antigenicity have been under investigation for many years. During the past decade, significant progress has been made in understanding what makes a nanoparticle immunogenic, how immune cells respond to nanoparticles, what consequences of nanoparticle-specific antibody formation exist and how they challenge the application of nanoparticles for drug delivery. Moreover, it has been recognized that accidental contamination of therapeutic protein formulations with nanosized particulate materials may contribute to the immunogenicity of this type of biotechnology products. While the immunological properties of engineered nanomaterials and their application as vaccine carriers and adjuvants have been given substantial consideration in the current literature, little attention has been paid to nanoparticle immuno- and antigenicity. To fill in this gap, we herein provide an overview of this subject to highlight the current state of the field, review past and present research, and discuss future research directions. - Highlights: • Most engineered nanomaterials are not immunogenic per se. • Generation of nanoparticle-specific antibody can be T-cell dependent or independent. • Antibodies can be generated to particle core, terminal groups or surface coatings. • Engineered and accidental nanomaterials have distinct contribution to immunogenicity. • Tunable physicochemical properties make each nanoparticle unique.

  13. Understanding the immunogenicity and antigenicity of nanomaterials: Past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    Ilinskaya, Anna N.; Dobrovolskaia, Marina A., E-mail: marina@mail.nih.gov

    2016-05-15

    Nanoparticle immunogenicity and antigenicity have been under investigation for many years. During the past decade, significant progress has been made in understanding what makes a nanoparticle immunogenic, how immune cells respond to nanoparticles, what consequences of nanoparticle-specific antibody formation exist and how they challenge the application of nanoparticles for drug delivery. Moreover, it has been recognized that accidental contamination of therapeutic protein formulations with nanosized particulate materials may contribute to the immunogenicity of this type of biotechnology products. While the immunological properties of engineered nanomaterials and their application as vaccine carriers and adjuvants have been given substantial consideration in the current literature, little attention has been paid to nanoparticle immuno- and antigenicity. To fill in this gap, we herein provide an overview of this subject to highlight the current state of the field, review past and present research, and discuss future research directions. - Highlights: • Most engineered nanomaterials are not immunogenic per se. • Generation of nanoparticle-specific antibody can be T-cell dependent or independent. • Antibodies can be generated to particle core, terminal groups or surface coatings. • Engineered and accidental nanomaterials have distinct contribution to immunogenicity. • Tunable physicochemical properties make each nanoparticle unique.

  14. Immunogenicity of Yellow Fever Vaccine Coadministered With MenAfriVac in Healthy Infants in Ghana and Mali.

    Science.gov (United States)

    Roy Chowdhury, Panchali; Meier, Christian; Laraway, Hewad; Tang, Yuxiao; Hodgson, Abraham; Sow, Samba O; Enwere, Godwin C; Plikaytis, Brian D; Kulkarni, Prasad S; Preziosi, Marie-Pierre; Niedrig, Matthias

    2015-11-15

    Yellow fever (YF) is still a major public health problem in endemic regions of Africa and South America. In Africa, one of the main control strategies is routine vaccination within the Expanded Programme on Immunization (EPI). A new meningococcal A conjugate vaccine (PsA-TT) is about to be introduced in the EPI of countries in the African meningitis belt, and this study reports on the immunogenicity of the YF-17D vaccines in infants when administered concomitantly with measles vaccine and PsA-TT. Two clinical studies were conducted in Ghana and in Mali among infants who received PsA-TT concomitantly with measles and YF vaccines at 9 months of age. YF neutralizing antibody titers were measured using a microneutralization assay. In both studies, the PsA-TT did not adversely affect the immune response to the concomitantly administered YF vaccine at the age of 9 months. The magnitude of the immune response was different between the 2 studies, with higher seroconversion and seroprotection rates found in Mali vs Ghana. Immunogenicity to YF vaccine is unaffected when coadministered with PsA-TT at 9 months of age. Further studies are warranted to better understand the determinants of the immune response to YF vaccine in infancy. ISRCTN82484612 (PsA-TT-004); PACTR201110000328305 (PsA-TT-007). © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  15. Immunogenicity moderation effect of interleukin-24 on myelogenous leukemia cells.

    Science.gov (United States)

    Yu, Xin; Miao, Jingcheng; Xia, Wei; Gu, Zong-Jiang

    2018-04-01

    Previous studies have shown that interleukin-24 (IL-24) has tumor-suppressing activity by multiple pathways. However, the immunogenicity moderation effect of IL-24 on malignant cells has not been explored extensively. In this study, we investigated the role of IL-24 in immunogenicity modulation of the myelogenous leukemia cells. Data show that myelogenous leukemia cells express low levels of immunogenicity molecules. Treatment with IL-24 could enhance leukemia cell immunogenicity, predominantly regulate leukemia cells to produce immune-associated cytokines, and improve the cytotoxic sensitivity of these cells to immune effector cells. IL-24 expression could retard transplanted leukemia cell tumor growth in vivo in athymic nude mice. Moreover, IL-24 had marked effects on downregulating the expression of angiogenesis-related proteins vascular endothelial growth factor, cluster of differentiation (CD) 31, CD34, collagen IV and metastasis-related factors CD147, membrane type-1 matrix metalloproteinase (MMP), and MMP-2 and MMP-9 in transplanted tumors. These findings indicated novel functions of this antitumor gene and characterized IL-24 as a promising agent for further clinical trial for hematologic malignancy immunotherapy.

  16. Developing novel immunogens for a safe and effective Alzheimer's disease vaccine.

    Science.gov (United States)

    Lemere, Cynthia A

    2009-01-01

    , a safe and effective active Abeta vaccine would be more cost-effective and more readily available to a larger AD population. We have developed several novel short Abeta immunogens that target the Abeta N-terminus containing a strong B cell epitope while avoiding the Abeta mid-region and C-terminus containing T cell epitopes. These immunogens include dendrimeric Abeta1-15 (16 copies of Abeta1-15 on a lysine antigen tree), 2xAbeta1-15 (a tandem repeat of two lysine-linked Abeta1-15 peptides), and 2xAbeta1-15 with the addition of a three amino acid RGD motif (R-2xAbeta1-15). Intranasal immunization with our short Abeta fragment immunogens and a mucosal adjuvant, mutant Escherichia coli heat-labile enterotoxin LT(R192G), resulted in reduced cerebral Abeta levels, plaque deposition, and gliosis, as well as increased plasma Abeta levels and improved cognition in a transgenic mouse model of AD. Preclinical trials in nonhuman primates, and human clinical trials using similar Abeta immunogens, are now underway. Abeta immunotherapy looks promising but must be made safer and more effective at generating antibody titers in the elderly. It is hoped that these novel immunogens will enhance Abeta antibody generation across a broad population and avoid the adverse events seen in the earlier clinical trial.

  17. Immunogenicity of biotherapy used in psoriasis: the science behind the scenes.

    Science.gov (United States)

    Jullien, Denis; Prinz, Jörg C; Nestle, Frank O

    2015-01-01

    A potential limitation in the use of biologic drugs used to treat psoriasis is the development of anti-drug antibodies (ADAs). Many factors contribute to this unwanted immune response, from the product itself, to its mode of administration, the underlying disease, and patient characteristics. ADAs may decrease the efficacy of biologic drugs by neutralizing them or modifying their clearance and may account for hypersensitivity reactions. This article reviews the scientific basis of immunogenicity and the mechanisms by which it affects clinical outcomes. It also considers testing for immunogenicity and how biologic therapy of psoriasis may be tailored on the basis of immunogenicity.

  18. Therapeutic outcomes, assessments, risk factors and mitigation efforts of immunogenicity of therapeutic protein products.

    Science.gov (United States)

    Yin, Liusong; Chen, Xiaoying; Vicini, Paolo; Rup, Bonita; Hickling, Timothy P

    2015-06-01

    Therapeutic protein products (TPPs) are of considerable value in the treatment of a variety of diseases, including cancer, hemophilia, and autoimmune diseases. The success of TPP mainly results from prolonged half-life, increased target specificity and decreased intrinsic toxicity compared with small molecule drugs. However, unwanted immune responses against TPP, such as generation of anti-drug antibody, can impact both drug efficacy and patient safety, which has led to requirements for increased monitoring in regulatory studies and clinical practice, termination of drug development, or even withdrawal of marketed products. We present an overview of current knowledge on immunogenicity of TPP and its impact on efficacy and safety. We also discuss methods for measurement and prediction of immunogenicity and review both product-related and patient-related risk factors that affect its development, and efforts that may be taken to mitigate it. Lastly, we discuss gaps in knowledge and technology and what is needed to fill these. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. The convergence of radiation and immunogenic cell death signaling pathways

    International Nuclear Information System (INIS)

    Golden, Encouse B.; Pellicciotta, Ilenia; Demaria, Sandra; Barcellos-Hoff, Mary H.; Formenti, Silvia C.

    2012-01-01

    Ionizing radiation (IR) triggers programmed cell death in tumor cells through a variety of highly regulated processes. Radiation-induced tumor cell death has been studied extensively in vitro and is widely attributed to multiple distinct mechanisms, including apoptosis, necrosis, mitotic catastrophe (MC), autophagy, and senescence, which may occur concurrently. When considering tumor cell death in the context of an organism, an emerging body of evidence suggests there is a reciprocal relationship in which radiation stimulates the immune system, which in turn contributes to tumor cell kill. As a result, traditional measurements of radiation-induced tumor cell death, in vitro, fail to represent the extent of clinically observed responses, including reductions in loco-regional failure rates and improvements in metastases free and overall survival. Hence, understanding the immunological responses to the type of radiation-induced cell death is critical. In this review, the mechanisms of radiation-induced tumor cell death are described, with particular focus on immunogenic cell death (ICD). Strategies combining radiotherapy with specific chemotherapies or immunotherapies capable of inducing a repertoire of cancer specific immunogens might potentiate tumor control not only by enhancing cell kill but also through the induction of a successful anti-tumor vaccination that improves patient survival.

  20. Protein instability and immunogenicity: roadblocks to clinical application of injectable protein delivery systems for sustained release.

    Science.gov (United States)

    Jiskoot, Wim; Randolph, Theodore W; Volkin, David B; Middaugh, C Russell; Schöneich, Christian; Winter, Gerhard; Friess, Wolfgang; Crommelin, Daan J A; Carpenter, John F

    2012-03-01

    Protein instability and immunogenicity are two main roadblocks to the clinical success of novel protein drug delivery systems. In this commentary, we discuss the need for more extensive analytical characterization in relation to concerns about protein instability in injectable drug delivery systems for sustained release. We then will briefly address immunogenicity concerns and outline current best practices for using state-of-the-art analytical assays to monitor protein stability for both conventional and novel therapeutic protein dosage forms. Next, we provide a summary of the stresses on proteins arising during preparation of drug delivery systems and subsequent in vivo release. We note the challenges and difficulties in achieving the absolute requirement of quantitatively assessing the degradation of protein molecules in a drug delivery system. We describe the potential roles for academic research in further improving protein stability and developing new analytical technologies to detect protein degradation byproducts in novel drug delivery systems. Finally, we provide recommendations for the appropriate approaches to formulation design and assay development to ensure that stable, minimally immunogenic formulations of therapeutic proteins are created. These approaches should help to increase the probability that novel drug delivery systems for sustained protein release will become more readily available as effective therapeutic agents to treat and benefit patients. Copyright © 2011 Wiley Periodicals, Inc.

  1. Factors influencing preclinical in vivo evaluation of mumps vaccine strain immunogenicity.

    Science.gov (United States)

    Halassy, B; Kurtović, T; Brgles, M; Lang Balija, M; Forčić, D

    2015-01-01

    Immunogenicity testing in animals is a necessary preclinical assay for demonstration of vaccine efficacy the results of which are often the basis for the decision whether to proceed or withdraw the further development of the novel vaccine candidate. However, in vivo assays are rarely, if at all, optimized and validated. Here we clearly demonstrate the importance of in vivo assay (mumps virus immunogenicity testing in guinea pigs) optimization for gaining reliable results and the suitability of Fractional factorial design of experiments (DoE) for such a purpose. By the use of DoE with resolution IV (2IV((4-1))) we clearly revealed that the parameters significantly increasing assay sensitivity were interval between animal immunizations followed by the body weight of experimental animals. The quantity (0 versus 2%) of the stabilizer (fetal bovine serum, FBS) in the sample was shown as non-influencing parameter in DoE setup. However, the separate experiment investigating only the FBS influence, and performed under other parameters optimally set, showed that FBS also influences the results of immunogenicity assay. Such finding indicated that (a) factors with strong influence on the measured outcome can hide the effects of parameters with modest/low influence and (b) the matrix of mumps virus samples to be compared for immunogenicity must be identical for reliable virus immunogenicity comparison. Finally the 3 mumps vaccine strains widely used for decades in the licensed vaccines were for the first time compared in an animal model, and results obtained were in line with their reported immunogenicity in human population supporting the predictive power of the optimized in vivo assay.

  2. Immunogenicity of Anti-TNF-α Biotherapies

    DEFF Research Database (Denmark)

    Bendtzen, Klaus

    2015-01-01

    Immunogenicity of biopharmaceuticals is complex and influenced by both structural and pharmacological factors, and by patient-related conditions such as disease being treated, previous and concomitant therapies, and individual immune responsiveness. Essential for tailored therapeutic strategies b...

  3. Characterization of two conformational epitopes of the Chlamydia trachomatis serovar L2 DnaK immunogen

    DEFF Research Database (Denmark)

    Birkelund, Svend; Mygind, P; Holm, A

    1996-01-01

    this protein. By use of recombinant DNA techniques, we located the epitopes for two MAbs in the C-terminal variable part. Although the antibodies reacted in an immunoblot assay, it was not possible to map the epitopes completely by use of 16-mer synthetic peptides displaced by one amino acid corresponding......Chlamydia trachomatis DnaK is an important immunogen in chlamydial infections. DnaK is composed of a conserved N-terminal ATP-binding domain and a variable C-terminal peptide-binding domain. To locate the immunogenic part of C. trachomatis Dnak, we generated monoclonal antibodies (MAbs) against...... with the two antibodies. The epitopes were found not to overlap. To obtain DnaK fragments recognized by the antibodies with the same affinity as native C. trachomatis DnaK, it was necessary to express, respectively, regions of 127 and 77 amino acids. The MAbs described in this study thus recognized...

  4. Results of radioiodine therapy of patients with immunogenic and non-immunogenic hyperthyroidism using different radiation doses

    International Nuclear Information System (INIS)

    Moser, E.; Pickardt, C.R.; Mann, K.; Engelhardt, D.; Kirsch, C.M.; Knesewitsch, P.; Tatsch, K.; Kreisig, T.; Kurz, C.; Saller, B.; Klinikum Grosshadern, Muenchen; Muenchen Univ.

    1988-01-01

    The aim of this study was to check the efficacy of radioiodine ( 131 I) therapy (RIT) in a large number of patients (n = 506) suffering from immunogenic or non-immunogenic hyperthyroidism (Graves' disease, Plummer's disease). Since there is no causal cure for immunogenic hyperthyroidism RIT provides, like all other modalities, only a moderate rate of success which is clearly dose-related. Applying 60 Gy, normal thyroid function can be achieved is only 54% of the cases. A dose of 150 Gy succeeds in 86% of the cases. The solitary decompensated autonomous adenoma (DAA) can be eliminated surgically as well as by RIT with a high degree of success (95%). Contrary to surgery, RIT does not have any noticeable early or late morbidity. The high rate of success of RIT in patients with DAA could be confirmed in two groups with different follow-up periods (16 and 65 months). As expected, the rate of hypothyroidism increased from 11% in the early group to 23% in the late group. Multinodular autonomous adenomas can be eliminated successfully using RIT as well. The concept to apply a dose of 400 Gy to the total functional autonomous tissue as determined by ultrasound yields better results (95%) than 150 Gy to the whole thyroid gland as measured by ultrasound (88%). The rate of hypothyroidism as shown by these results (up to a maximum of 62% after RIT of Graves' disease using 150 Gy) is the lesser evil compared to remaining or recurrent hyperthyroidism since these patients can be treated with thyroid hormones without problems. (orig.) [de

  5. Soluble HIV-1 envelope immunogens derived from an elite neutralizer elicit cross-reactive V1V2 antibodies and low potency neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Sara Carbonetti

    Full Text Available We evaluated four gp140 Envelope protein vaccine immunogens that were derived from an elite neutralizer, subject VC10042, whose plasma was able to potently neutralize a wide array of genetically distinct HIV-1 isolates. We sought to determine whether soluble Envelope proteins derived from the viruses circulating in VC10042 could be used as immunogens to elicit similar neutralizing antibody responses by vaccination. Each gp140 was tested in its trimeric and monomeric forms, and we evaluated two gp140 trimer vaccine regimens in which adjuvant was supplied at all four immunizations or at only the first two immunizations. Interestingly, all four Envelope immunogens elicited high titers of cross-reactive antibodies that recognize the variable regions V1V2 and are potentially similar to antibodies linked with a reduced risk of HIV-1 acquisition in the RV144 vaccine trial. Two of the four immunogens elicited neutralizing antibody responses that neutralized a wide array of HIV-1 isolates from across genetic clades, but those responses were of very low potency. There were no significant differences in the responses elicited by trimers or monomers, nor was there a significant difference between the two adjuvant regimens. Our study identified two promising Envelope immunogens that elicited anti-V1V2 antibodies and broad, but low potency, neutralizing antibody responses.

  6. Standardizing terms, definitions and concepts for describing and interpreting unwanted immunogenicity of biopharmaceuticals

    DEFF Research Database (Denmark)

    Rup, B; Pallardy, M; Sikkema, D

    2015-01-01

    scientists are involved in: interpretation and management of clinical and biological outcomes of BP immunogenicity, improvement of methods for describing, predicting and mitigating immunogenicity risk and elucidation of underlying causes. Collaboration and alignment of efforts across these communities...... the Risk; www.abirisk.eu] was formed by leading clinicians, academic scientists and EFPIA (European Federation of Pharmaceutical Industries and Associations) members to elucidate underlying causes, improve methods for immunogenicity prediction and mitigation and establish common definitions around terms...

  7. Integrated immunogenicity analysis of a tetravalent dengue vaccine up to 4 y after vaccination.

    Science.gov (United States)

    Vigne, Claire; Dupuy, Martin; Richetin, Aline; Guy, Bruno; Jackson, Nicholas; Bonaparte, Matthew; Hu, Branda; Saville, Melanie; Chansinghakul, Danaya; Noriega, Fernando; Plennevaux, Eric

    2017-09-02

    Two large pivotal phase III studies demonstrated the efficacy of the tetravalent dengue vaccine (CYD-TDV; Dengvaxia®, Sanofi Pasteur) against all dengue serotypes. Here we present an unprecedented integrated summary of the immunogenicity of CYD-TDV to identify the parameters driving the neutralizing humoral immune response and evolution over time. We summarized the immunogenicity profiles of a 3-dose schedule of CYD-TDV administered 6 months apart across 10 phase II and 6 phase III trials undertaken in dengue endemic and non-endemic countries. Dengue neutralizing antibody titers in sera were determined at centralized laboratories using the 50% plaque reduction neutralization test (PRNT 50 ) at baseline, 28 d after the third dose, and annually thereafter for up to 4 y after the third dose in some studies. CYD-TDV elicits neutralizing antibody responses against all 4 dengue serotypes; geometric mean titers (GMTs) increased from baseline to post-dose 3. GMTs were influenced by several parameters including age, baseline dengue seropositivity and region. In the 2 pivotal studies, GMTs decreased initially during the first 2 y post-dose 3 but appear to stabilize or slightly increase again in the third year. GMTs persisted 1.2-3.2-fold higher than baseline levels for up to 4 y post-dose 3 in other studies undertaken in dengue endemic countries. Our integrated analysis captures the fullness of the CYD-TDV immunogenicity profile across studies, age groups and regions; by presenting the available data in this way general trends and substantial outliers within each grouping can be easily identified. CYD-TDV elicits neutralizing antibody responses against all dengue serotypes, with differences by age and endemicity, which persist above baseline levels in endemic countries.

  8. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Main Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the Main Hawaiian Islands (MHI)...

  9. Randomized phase I trial HIV-CORE 003: Depletion of serum amyloid P component and immunogenicity of DNA vaccination against HIV-1.

    Science.gov (United States)

    Borthwick, Nicola J; Lane, Thirusha; Moyo, Nathifa; Crook, Alison; Shim, Jung Min; Baines, Ian; Wee, Edmund G; Hawkins, Philip N; Gillmore, Julian D; Hanke, Tomáš; Pepys, Mark B

    2018-01-01

    The failure of DNA vaccination in humans, in contrast to its efficacy in some species, is unexplained. Observational and interventional experimental evidence suggests that DNA immunogenicity may be prevented by binding of human serum amyloid P component (SAP). SAP is the single normal DNA binding protein in human plasma. The drug (R)-1-[6-[(R)-2-carboxypyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC, miridesap), developed for treatment of systemic amyloidosis and Alzheimer's disease, depletes circulating SAP by 95-99%. The proof-of-concept HIV-CORE 003 clinical trial tested whether SAP depletion by CPHPC would enhance the immune response in human volunteers to DNA vaccination delivering the HIVconsv immunogen derived from conserved sub-protein regions of HIV-1. Human volunteers received 3 intramuscular immunizations with an experimental DNA vaccine (DDD) expressing HIV-1-derived immunogen HIVconsv, with or without prior depletion of SAP by CPHPC. All subjects were subsequently boosted by simian (chimpanzee) adenovirus (C)- and poxvirus MVA (M)-vectored vaccines delivering the same immunogen. After administration of each vaccine modality, the peak total magnitudes, kinetics, functionality and memory subsets of the T-cell responses to HIVconsv were thoroughly characterized. No differences were observed between the CPHPC treated and control groups in any of the multiple quantitative and qualitative parameters of the T-cell responses to HIVconsv, except that after SAP depletion, there was a statistically significantly greater breadth of T-cell specificities, that is the number of recognized epitopes, following the DDDC vaccination. The protocol used here for SAP depletion by CPHPC prior to DNA vaccination produced only a very modest suggestion of enhanced immunogenicity. Further studies will be required to determine whether SAP depletion might have a practical value in DNA vaccination for other plasmid backbones and/or immunogens. Clinicaltrials

  10. The Immunogenicity and Safety of CYD-Tetravalent Dengue Vaccine (CYD-TDV) in Children and Adolescents: A Systematic Review.

    Science.gov (United States)

    Agarwal, Raksheeth; Wahid, Mardiastuti H; Yausep, Oliver E; Angel, Sharon H; Lokeswara, Angga W

    2017-01-01

    to assess the immunogenicity and safety of CYD-tetravalent dengue vaccine (CYD-TDV) in children. comprehensive literature searches were conducted on various databases. Randomized-controlled trials on children with CYD-TDV as intervention were selected based on inclusion and exclusion criteria. Data extracted from selected trials included safety of vaccine and immunogenicity in terms of Geometric Mean Titres (GMT) of antibodies.   six clinical trials were selected based on preset criteria. GMT values were obtained using 50% Plaque Reduction Neutralization Test (PRNT) and safety was semi-quantitatively assessed based on adverse effects. Additional data processing was done to obtain a better understanding on the trends among the studies. The results showed that the groups vaccinated with CYD-TDV showed higher immunogenicity against dengue virus antigens than the control groups. Safety results were satisfactory in all trials, and most severe side effects were unrelated to the vaccine. CYD-TDV is both effective and safe for patients in endemic regions. This gives promise for further development and large-scale research on this vaccine to assess its efficacy in decreasing dengue prevalence, and its pervasive implementation in endemic countries, such as Indonesia.

  11. Mapping of immunogenic and protein-interacting regions at the surface of the seven-bladed β-propeller domain of the HIV-1 cellular interactor EED

    Directory of Open Access Journals (Sweden)

    Gouet Patrice

    2008-02-01

    Full Text Available Abstract Background The human EED protein, a member of the superfamily of Polycomb group proteins, is involved in multiple cellular protein complexes. Its C-terminal domain, which is common to the four EED isoforms, contains seven repeats of a canonical WD-40 motif. EED is an interactor of three HIV-1 proteins, matrix (MA, integrase (IN and Nef. An antiviral activity has been found to be associated with isoforms EED3 and EED4 at the late stage of HIV-1 replication, due to a negative effect on virus assembly and genomic RNA packaging. The aim of the present study was to determine the regions of the EED C-terminal core domain which were accessible and available to protein interactions, using three-dimensional (3D protein homology modelling with a WD-40 protein of known structure, and epitope mapping of anti-EED antibodies. Results Our data suggested that the C-terminal domain of EED was folded as a seven-bladed β-propeller protein. During the completion of our work, crystallographic data of EED became available from co-crystals of the EED C-terminal core with the N-terminal domain of its cellular partner EZH2. Our 3D-model was in good congruence with the refined structural model determined from crystallographic data, except for a unique α-helix in the fourth β-blade. More importantly, the position of flexible loops and accessible β-strands on the β-propeller was consistent with our mapping of immunogenic epitopes and sites of interaction with HIV-1 MA and IN. Certain immunoreactive regions were found to overlap with the EZH2, MA and IN binding sites, confirming their accessibility and reactivity at the surface of EED. Crystal structure of EED showed that the two discrete regions of interaction with MA and IN did not overlap with each other, nor with the EZH2 binding pocket, but were contiguous, and formed a continuous binding groove running along the lateral face of the β-propeller. Conclusion Identification of antibody-, MA-, IN- and EZH2

  12. Novel autoantigens immunogenic in COPD patients

    Directory of Open Access Journals (Sweden)

    Stephan Bernhard

    2009-03-01

    Full Text Available Abstract Background Chronic obstructive pulmonary disease (COPD is a respiratory inflammatory condition with autoimmune features including IgG autoantibodies. In this study we analyze the complexity of the autoantibody response and reveal the nature of the antigens that are recognized by autoantibodies in COPD patients. Methods An array of 1827 gridded immunogenic peptide clones was established and screened with 17 sera of COPD patients and 60 healthy controls. Protein arrays were evaluated both by visual inspection and a recently developed computer aided image analysis technique. By this computer aided image analysis technique we computed the intensity values for each peptide clone and each serum and calculated the area under the receiver operator characteristics curve (AUC for each clone and the separation COPD sera versus control sera. Results By visual evaluation we detected 381 peptide clones that reacted with autoantibodies of COPD patients including 17 clones that reacted with more than 60% of the COPD sera and seven clones that reacted with more than 90% of the COPD sera. The comparison of COPD sera and controls by the automated image analysis system identified 212 peptide clones with informative AUC values. By in silico sequence analysis we found an enrichment of sequence motives previously associated with immunogenicity. Conclusion The identification of a rather complex humoral immune response in COPD patients supports the idea of COPD as a disease with strong autoimmune features. The identification of novel immunogenic antigens is a first step towards a better understanding of the autoimmune component of COPD.

  13. Diverse manifestations of tumorigenicity and immunogenicity displayed by the poorly immunogenic B16-BL6 melanoma transduced with cytokine genes.

    Science.gov (United States)

    Arca, M J; Krauss, J C; Strome, S E; Cameron, M J; Chang, A E

    1996-05-01

    We evaluated the in vivo response to the poorly immunogenic B16-BL6 (BL6) murine melanoma genetically altered to secrete interleukin-2 (IL-2), IL-4, interferon gamma (IFN gamma) and granulocyte/macrophage-colony-stimulating factor (GM-CSF). Three parameters were evaluated: (1) tumorigenicity, (2) vaccination of naive animals, and (3) assessment of antitumor reactivity of T cells derived from tumor-draining lymph nodes (TDLN). Secretion of IL-2 abrogated the tumorigenicity of BL6, while IFN gamma and IL-4 partially reduced tumorigenicity, and GM-CSF had no effect. Protective immunity to wild-type tumor challenge could not be achieved by vaccination with irradiated cytokine-secreting tumors, although IL-2 and IL-4 secretion appeared to retard the growth of the challenge inoculum significantly. An alternative method to evaluate the immunogenicity of the cytokine-secreting tumors was to measure the ability of T cells obtained from TDLN to mediate regression of wild-type tumor in adoptive immunotherapy. Neither IL-2 nor IFN gamma secretion resulted in the induction of immune T cells. By contrast, GM-CSF and IL-4 secretion were found to induce immune T cells in the TDLN with GM-CSF being superior to IL-4. The combined secretion of GM-CSF and IL-4 did not lead to enhanced induction of immune T cells. GM-CSF secretion was found to upregulate B7-1 expression in TDLN, consistent with an increase in the population of antigen-presenting cells. These studies demonstrated that reduced tumorigenicity by cytokine secretion did not correlate with increased immunogenicity. With the cytokines examined, there was limited capability of developing protective immunity against the BL6 tumor. Nevertheless, GM-CSF and IL-4 secretion significantly enhanced T cell immune reactivity to the poorly immunogenic BL6 tumor.

  14. Immunogenicity and Clinical Efficacy of Influenza Vaccination In Pregnancy

    Directory of Open Access Journals (Sweden)

    Alexander W Kay

    2015-06-01

    Full Text Available Pregnant women are at high risk from influenza due to disproportionate morbidity, mortality, and adverse pregnancy outcomes following infection. As such, they are classified as a high priority group for vaccination. However, changes in the maternal immune system required to accommodate the allogeneic fetus may alter the immunogenicity of influenza vaccines. A large number of studies have evaluated the safety of the influenza vaccine. Here, we will review available studies on the immunogenicity and efficacy of the influenza vaccine during pregnancy, focusing on both humoral and cellular immunity.

  15. Enhanced structural stability of Concholepas hemocyanin increases its immunogenicity and maintains its non-specific immunostimulatory effects.

    Science.gov (United States)

    Arancibia, Sergio; Del Campo, Miguel; Nova, Esteban; Salazar, Fabián; Becker, María Inés

    2012-03-01

    Hemocyanins, which boost the immune system of mammals, have been used as carrier-adjuvants to promote Ab production against haptens and peptides, as immunostimulants during therapy for bladder carcinoma and as a component in therapeutic vaccines for cancer. These biomedical applications have led to growing interest in obtaining hemocyanins with high immunogenicity. Here, we study the immunological properties of a modified oxidized Concholepas concholepas hemocyanin (Ox-CCH) obtained by the oxidation of its carbohydrates using sodium periodate. We assessed the internalization of Ox-CCH into DCs and its immunogenicity and antitumor effects. Transmission electron microscopy showed no changes in Ox-CCH quaternary structure with respect to native CCH, although proteolytic treatment followed by SDS-PAGE analysis demonstrated that Schiff bases were formed. Interestingly, DCs internalized Ox-CCH faster than CCH, mainly through macropinocytosis. During this process, Ox-CCH remained inside endosome-like structures for a longer period. Mouse immunization experiments demonstrated that Ox-CCH is more immunogenic and a better carrier than CCH. Moreover, Ox-CCH showed a significant antitumor effect in the B16F10 melanoma model similar to that produced by CCH, inducing IFN-γ secretion. Together, these data demonstrate that the aldehydes formed by the periodate oxidation of sugar moieties stabilizes the CCH structure, increasing its adjuvant/immunostimulatory carrier effects. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Intrinsic immunogenicity of rapidly-degradable polymers evolves during degradation.

    Science.gov (United States)

    Andorko, James I; Hess, Krystina L; Pineault, Kevin G; Jewell, Christopher M

    2016-03-01

    Recent studies reveal many biomaterial vaccine carriers are able to activate immunostimulatory pathways, even in the absence of other immune signals. How the changing properties of polymers during biodegradation impact this intrinsic immunogenicity is not well studied, yet this information could contribute to rational design of degradable vaccine carriers that help direct immune response. We use degradable poly(beta-amino esters) (PBAEs) to explore intrinsic immunogenicity as a function of the degree of polymer degradation and polymer form (e.g., soluble, particles). PBAE particles condensed by electrostatic interaction to mimic a common vaccine approach strongly activate dendritic cells, drive antigen presentation, and enhance T cell proliferation in the presence of antigen. Polymer molecular weight strongly influences these effects, with maximum stimulation at short degradation times--corresponding to high molecular weight--and waning levels as degradation continues. In contrast, free polymer is immunologically inert. In mice, PBAE particles increase the numbers and activation state of cells in lymph nodes. Mechanistic studies reveal that this evolving immunogenicity occurs as the physicochemical properties and concentration of particles change during polymer degradation. This work confirms the immunological profile of degradable, synthetic polymers can evolve over time and creates an opportunity to leverage this feature in new vaccines. Degradable polymers are increasingly important in vaccination, but how the inherent immunogenicity of polymers changes during degradation is poorly understood. Using common rapidly-degradable vaccine carriers, we show that the activation of immune cells--even in the absence of other adjuvants--depends on polymer form (e.g., free, particulate) and the extent of degradation. These changing characteristics alter the physicochemical properties (e.g., charge, size, molecular weight) of polymer particles, driving changes in

  17. Synthetic peptide vaccines: palmitoylation of peptide antigens by a thioester bond increases immunogenicity

    DEFF Research Database (Denmark)

    Beekman, N.J.C.M.; Schaaper, W.M.M.; Tesser, G.I.

    1997-01-01

    Synthetic peptides have frequently been used to immunize animals. However, peptides less than about 20 to 30 amino acids long are poor immunogens. In general, to increase its immunogenicity, the presentation of the peptide should be improved, and molecular weight needs to be increased. Many...... or an amide bond. It was found that these S-palmitoylated peptides were much more immunogenic than N-palmitoylated peptides and at least similar to KLH-conjugated peptides with respect to appearance and magnitude of induced antibodies (canine parvovirus) or immunocastration effect (gonadotropin...

  18. Enhancing poxvirus vectors vaccine immunogenicity.

    Science.gov (United States)

    García-Arriaza, Juan; Esteban, Mariano

    2014-01-01

    Attenuated recombinant poxvirus vectors expressing heterologous antigens from pathogens are currently at various stages in clinical trials with the aim to establish their efficacy. This is because these vectors have shown excellent safety profiles, significant immunogenicity against foreign expressed antigens and are able to induce protective immune responses. In view of the limited efficacy triggered by some poxvirus strains used in clinical trials (i.e, ALVAC in the RV144 phase III clinical trial for HIV), and of the restrictive replication capacity of the highly attenuated vectors like MVA and NYVAC, there is a consensus that further improvements of these vectors should be pursuit. In this review we considered several strategies that are currently being implemented, as well as new approaches, to improve the immunogenicity of the poxvirus vectors. This includes heterologous prime/boost protocols, use of co-stimulatory molecules, deletion of viral immunomodulatory genes still present in the poxvirus genome, enhancing virus promoter strength, enhancing vector replication capacity, optimizing expression of foreign heterologous sequences, and the combined use of adjuvants. An optimized poxvirus vector triggering long-lasting immunity with a high protective efficacy against a selective disease should be sought.

  19. EVALUATION OF REACTOGENICITY, SAFETY AND IMMUNOGENICITY OF INACTIVATED MONOVALENT VACCINE IN CHILDREN

    Directory of Open Access Journals (Sweden)

    A.N. Mironov

    2010-01-01

    Full Text Available NPO «Microgen» developed vaccine «PANDEFLU» — influenza inactivated subunit adsorbed monovalent vaccine, strain A/California/7/2009 (H1N1, for specific prophylaxis of pandemic influenza in different age groups of citizens. Reactogenicity, safety and immunogenicity were analyzed in a study of volunteers 18–60 years old. The article presents results of administration of vaccine «PANDEFLU» in children. The study performed in two clinical centers proves good tolerability, reactogenicity, safety and high immunogenicity of this vaccine.Key words: children, influenza, influenza virus А/H1N1, inactivated influenza vaccine, reactogenicity, safety, immunogenicity.(Voprosy sovremennoi pediatrii — Current Pediatrics. – 2010;9(4:106-109

  20. Gamma-irradiated scrub typhus immunogens: broad-spectrum immunity with combinations of rickettsial strains

    International Nuclear Information System (INIS)

    Eisenberg, G.H. Jr.; Osterman, J.V.

    1979-01-01

    Scrub typhus immunogens were prepared from Rickettsia tsutsugamushi strains Karp, Kato, Gilliam, Kostival, and Buie by exposing frozen infected yolk sac suspensions to 300 krad of gamma radiation. Mouse protection tests showed that each of the irradiated immunogens protected C3H/HeDub mice against high challenge levels of Karp and Gilliam, but that none of these single-strain immunogens were capable of protecting against all five of the challenge strains. Broad-spectrum protection was achieved by using combinations of three strains of irradiated rickettsiae in a vaccination regimen of three injections at 5-day intervals

  1. Immunogenicity of ascites tumor cells following in vitro hyperthermia

    International Nuclear Information System (INIS)

    Dickson, J.A.; Jasiewicz, M.L.; Simpson, A.C.

    1982-01-01

    The concept that host immunization may be achieved by heat-induced antigenic modifications of cancer cells and/or the release of immunogenic products by dead or dying tumor cells following in vitro heating was examined. Ehrlich ascites cells were used, inasmuch as it was claimed that in vitro hyperthermia increased the immunogenicity of these cells. Tumor cell populations of different viability were obtained by heating Ehrlich cells at 42.5 degrees, 45 degrees, or 60 degrees C. Viable and nonviable cells were separated by Ficoll-Hypaque density centrifugation; viable nonreplicating cells were obtained by treatment with mitomycin C. Cell populations of different viability after heating were left to die slowly over 3 days at 37 degrees C. Swiss TO mice were then given injections of the treated cells and/or medium. No survival benefit occurred in mice inoculated with any of these different components and then challenged with viable tumor cells. Injection of irradiated cells, however, did produce host immunity. Similarly, D23 rat hepatoma ascites cells produced host immunity after 15,000 rad but not after heating. The claim that in vitro hyperthermia increases the immunogenicity of tumor cells was not confirmed

  2. Evaluation of an in silico predicted specific and immunogenic antigen from the OmcB protein for the serodiagnosis of Chlamydia trachomatis infections

    Directory of Open Access Journals (Sweden)

    Gargouri Jalel

    2008-12-01

    Full Text Available Abstract Background The OmcB protein is one of the most immunogenic proteins in C. trachomatis and C. pneumoniae infections. This protein is highly conserved leading to serum cross reactivity between the various chlamydial species. Since previous studies based on recombinant proteins failed to identify a species specific immune response against the OmcB protein, this study evaluated an in silico predicted specific and immunogenic antigen from the OmcB protein for the serodiagnosis of C. trachomatis infections. Results Using the ClustalW and Antigenic programs, we have selected two predicted specific and immunogenic regions in the OmcB protein: the N-terminal (Nt region containing three epitopes and the C-terminal (Ct region containing two epitopes with high scores. These regions were cloned into the PinPoint Xa-1 and pGEX-6P-1 expression vectors, incorporating a biotin purification tag and a glutathione-S-transferase tag, respectively. These regions were then expressed in E. coli. Only the pGEX-6P-1 has been found suitable for serological studies as its tag showed less cross reactivity with human sera and was retained for the evaluation of the selected antigens. Only the Ct region of the protein has been found to be well expressed in E. coli and was evaluated for its ability to be recognized by human sera. 384 sera were tested for the presence of IgG antibodies to C. trachomatis by our in house microimmunofluorescence (MIF and the developed ELISA test. Using the MIF as the reference method, the developed OmcB Ct ELISA has a high specificity (94.3% but a low sensitivity (23.9. Our results indicate that the use of the sequence alignment tool might be useful for identifying specific regions in an immunodominant antigen. However, the two epitopes, located in the selected Ct region, of the 24 predicted in the full length OmcB protein account for approximately 25% of the serological response detected by MIF, which limits the use of the developed ELISA

  3. Immunogenicity of novel sulfadimethoxide conjugates | Chen ...

    African Journals Online (AJOL)

    Immunogenicity of novel sulfadimethoxide conjugates. L Chen, J Su, X Zhang, L Li, X He. Abstract. Sulfadimethoxine (SDM) is an antibiotic commonly added to animal feeds. Anti-SDM antibodies are useful for the detection of residual SDM in foods, feeds and biological fluids by ELISA. In this study, we show that SDM is ...

  4. Expression and immunogenicity of novel subunit enterovirus 71 VP1 antigens

    International Nuclear Information System (INIS)

    Xu, Juan; Wang, Shixia; Gan, Weihua; Zhang, Wenhong; Ju, Liwen; Huang, Zuhu; Lu, Shan

    2012-01-01

    Highlights: ► EV71 is a major emerging infectious disease in many Asian countries. ► Inactivated EV71 vaccines are in clinical studies but their safety and efficacy are unknown. ► Developing subunit based EV71 vaccines is significant and novel antigen design is needed. ► DNA immunization is an efficient tool to test the immunogenicity of VP1 based EV71 vaccines. ► Multiple VP1 antigens are developed showing immunogenic potential. -- Abstract: Hand, foot, and mouth disease (HFMD) is a common viral illness in young children. HFMD is caused by viruses belonging to the enterovirus genus of the picornavirus family. Recently, enterovirus 71 (EV71) has emerged as a virulent agent for HFMD with severe clinical outcomes. In the current report, we conducted a pilot antigen engineering study to optimize the expression and immunogenicity of subunit VP1 antigen for the design of EV71 vaccines. DNA immunization was adopted as a simple technical approach to test different designs of VP1 antigens without the need to express VP1 protein in vitro first. Our studies indicated that the expression and immunogenicity of VP1 protein can be improved with alternated VP1 antigen designs. Data presented in the current report revealed novel pathways to optimize the design of VP1 antigen-based EV71 vaccines.

  5. Immunogenicity of biologically-derived therapeutics: assessment and interpretation of nonclinical safety studies.

    Science.gov (United States)

    Ponce, Rafael; Abad, Leslie; Amaravadi, Lakshmi; Gelzleichter, Thomas; Gore, Elizabeth; Green, James; Gupta, Shalini; Herzyk, Danuta; Hurst, Christopher; Ivens, Inge A; Kawabata, Thomas; Maier, Curtis; Mounho, Barbara; Rup, Bonita; Shankar, Gopi; Smith, Holly; Thomas, Peter; Wierda, Dan

    2009-07-01

    An evaluation of potential antibody formation to biologic therapeutics during the course of nonclinical safety studies and its impact on the toxicity profile is expected under current regulatory guidance and is accepted standard practice. However, approaches for incorporating this information in the interpretation of nonclinical safety studies are not clearly established. Described here are the immunological basis of anti-drug antibody formation to biopharmaceuticals (immunogenicity) in laboratory animals, and approaches for generating and interpreting immunogenicity data from nonclinical safety studies of biotechnology-derived therapeutics to support their progression to clinical evaluation. We subscribe that immunogenicity testing strategies should be adapted to the specific needs of each therapeutic development program, and data generated from such analyses should be integrated with available clinical and anatomic pathology, pharmacokinetic, and pharmacodynamic data to properly interpret nonclinical studies.

  6. Immunogenicity of HPV prophylactic vaccines: Serology assays and their use in HPV vaccine evaluation and development.

    Science.gov (United States)

    Pinto, Ligia A; Dillner, Joakim; Beddows, Simon; Unger, Elizabeth R

    2018-01-17

    When administered as standard three-dose schedules, the licensed HPV prophylactic vaccines have demonstrated extraordinary immunogenicity and efficacy. We summarize the immunogenicity of these licensed vaccines and the most commonly used serology assays, with a focus on key considerations for one-dose vaccine schedules. Although immune correlates of protection against infection are not entirely clear, both preclinical and clinical evidence point to neutralizing antibodies as the principal mechanism of protection. Thus, immunogenicity assessments in vaccine trials have focused on measurements of antibody responses to the vaccine. Non-inferiority of antibody responses after two doses of HPV vaccines separated by 6 months has been demonstrated and this evidence supported the recent WHO recommendations for two-dose vaccination schedules in both boys and girls 9-14 years of age. There is also some evidence suggesting that one dose of HPV vaccines may provide protection similar to the currently recommended two-dose regimens but robust data on efficacy and immunogenicity of one-dose vaccine schedules are lacking. In addition, immunogenicity has been assessed and reported using different methods, precluding direct comparison of results between different studies and vaccines. New head-to-head vaccine trials evaluating one-dose immunogenicity and efficacy have been initiated and an increase in the number of trials relying on immunobridging is anticipated. Therefore, standardized measurement and reporting of immunogenicity for the up to nine HPV types targeted by the current vaccines is now critical. Building on previous HPV serology assay standardization and harmonization efforts initiated by the WHO HPV LabNet in 2006, new secondary standards, critical reference reagents and testing guidelines will be generated as part of a new partnership to facilitate harmonization of the immunogenicity testing in new HPV vaccine trials. Copyright © 2018 Elsevier Ltd. All rights

  7. Development of a transgenic mouse model to study the immunogenicity of recombinant human insulin

    NARCIS (Netherlands)

    Torosantucci, Riccardo; Brinks, Vera; Kijanka, Grzegorz; Halim, Liem Andhyk; Sauerborn, Melody; Schellekens, Huub; Jiskoot, Wim

    2014-01-01

    Mouse models are commonly used to assess the immunogenicity of therapeutic proteins and to investigate the immunological processes leading to antidrug antibodies. The aim of this work was to develop a transgenic (TG) Balb/c mouse model for evaluating the immunogenicity of recombinant human insulin

  8. Immunogenicity and safety of the 9-valent HPV vaccine in men

    DEFF Research Database (Denmark)

    Castellsagué, X; Giuliano, A R; Goldstone, S

    2015-01-01

    OBJECTIVES: This study was designed to evaluate the immunogenicity and tolerability of a prophylactic 9-valent HPV (types 6/11/16/18/31/33/45/52/58) VLP (9vHPV) vaccine in young men 16-26 years of age in comparison to young women 16-26 years of age (the population that was used to establish 9v......HPV vaccine efficacy). Safety and immunogenicity data from this study will be used to bridge 9vHPV vaccine efficacy findings in 16-26 year old women to 16-26 year old men. METHODS: This study enrolled 1106 heterosexual men (HM) and 1101 women who had not yet received HPV vaccination. In addition, 313 men...... having sex with men (MSM) were enrolled and were evaluated separately for immunogenicity because previous results showed that antibody responses to quadrivalent HPV (types 6/11/16/18) VLP (qHPV) vaccine were lower in MSM than in HM. All subjects were administered a 3-dose regimen (Day 1, Month 2, Month 6...

  9. A dermatologist guide to immunogenicity

    Directory of Open Access Journals (Sweden)

    Collin M. Blattner, DO

    2016-09-01

    Full Text Available Dermatologists should be aware that autoantibody formation may occur after the initiation of biologic therapy. This phenomenon has been referred to as immunogenicity and biologic fatigue. Because of this, patients may experience loss of clinical efficacy to a particular drug. To combat this phenomenon, low-dose immunomodulators may be used in hopes of preventing autoantibodies. We review the current literature and provide a basic treatment algorithm for patients with moderate to severe psoriasis.

  10. Mucosal immunogenicity of plant lectins in mice

    Science.gov (United States)

    Lavelle, E C; Grant, G; Pusztai, A; Pfüller, U; O’Hagan, D T

    2000-01-01

    The mucosal immunogenicity of a number of plant lectins with different sugar specificities was investigated in mice. Following intranasal (i.n.) or oral administration, the systemic and mucosal antibody responses elicited were compared with those induced by a potent mucosal immunogen (cholera toxin; CT) and a poorly immunogenic protein (ovalbumin; OVA). After three oral or i.n. doses of CT, high levels of specific serum antibodies were measured and specific IgA was detected in the serum, saliva, vaginal wash, nasal wash and gut wash of mice. Immunization with OVA elicited low titres of serum IgG but specific IgA was not detected in mucosal secretions. Both oral and i.n. delivery of all five plant lectins investigated [Viscum album (mistletoe lectin 1; ML‐1), Lycospersicum esculentum (tomato lectin; LEA), Phaseolus vulgaris (PHA), Triticum vulgaris (wheat germ agglutinin (WGA), Ulex europaeus I (UEA‐1)] stimulated the production of specific serum IgG and IgA antibody after three i.n. or oral doses. Immunization with ML‐1 induced high titres of serum IgG and IgA in addition to specific IgA in mucosal secretions. The response to orally delivered ML‐1 was comparable to that induced by CT, although a 10‐fold higher dose was administered. Immunization with LEA also induced high titres of serum IgG, particularly after i.n. delivery. Low specific IgA titres were also detected to LEA in mucosal secretions. Responses to PHA, WGA and UEA‐1 were measured at a relatively low level in the serum, and little or no specific mucosal IgA was detected. PMID:10651938

  11. Contribution of enhanced engagement of antigen presentation machinery to the clinical immunogenicity of a human interleukin (IL)-21 receptor-blocking therapeutic antibody.

    Science.gov (United States)

    Xue, L; Hickling, T; Song, R; Nowak, J; Rup, B

    2016-01-01

    Reliable risk assessment for biotherapeutics requires accurate evaluation of risk factors associated with immunogenicity. Immunogenicity risk assessment tools were developed and applied to investigate the immunogenicity of a fully human therapeutic monoclonal antibody, ATR-107 [anti-interleukin (IL)-21 receptor] that elicited anti-drug antibodies (ADA) in 76% of healthy subjects in a Phase 1 study. Because the ATR-107 target is expressed on dendritic cells (DCs), the immunogenicity risk related to engagement with DC and antigen presentation pathways was studied. Despite the presence of IL-21R on DCs, ATR-107 did not bind to the DCs more extensively than the control therapeutic antibody (PF-1) that had elicited low clinical ADA incidence. However, ATR-107, but not the control therapeutic antibody, was translocated to the DC late endosomes, co-localized with intracellular antigen-D related (HLA-DR) molecules and presented a dominant T cell epitope overlapping the complementarity determining region 2 (CDR2) of the light chain. ATR-107 induced increased DC activation exemplified by up-regulation of DC surface expression of CD86, CD274 (PD-L1) and CD40, increased expansion of activated DC populations expressing CD86(hi), CD40(hi), CD83(hi), programmed death ligand 1 (PD-L1)(hi), HLA-DR(hi) or CCR7(hi), as well as elevated secretion of tumour necrosis factor (TNF)-α by DCs. DCs exposed to ATR-107 stimulated an autologous T cell proliferative response in human donor cells, in concert with the detection of immunoglobulin (Ig)G-type anti-ATR-107 antibody response in clinical samples. Collectively, the enhanced engagement of antigen presentation machinery by ATR-107 was suggested. The approaches and findings described in this study may be relevant to identifying lower immunogenicity risk targets and therapeutic molecules. © 2015 British Society for Immunology.

  12. Allergenicity, immunogenicity and dose-relationship of three intact allergen vaccines and four allergoid vaccines for subcutaneous grass pollen immunotherapy.

    Science.gov (United States)

    Henmar, H; Lund, G; Lund, L; Petersen, A; Würtzen, P A

    2008-09-01

    Different vaccines containing intact allergens or chemically modified allergoids as active ingredients are commercially available for specific immunotherapy. Allergoids are claimed to have decreased allergenicity without loss of immunogenicity and this is stated to allow administration of high allergoid doses. We compared the allergenicity and immunogenicity of four commercially available chemically modified grass pollen allergoid products with three commercially available intact grass pollen allergen vaccines. The allergenicity was investigated with immunoglobulin (Ig)E-inhibition and basophil activation assays. Human T cell proliferation and specific IgG-titres following mouse immunizations were used to address immunogenicity. Furthermore, intact allergen vaccines with different contents of active ingredients were selected to study the influence of the allergen dose. In general, a lower allergenicity for allergen vaccines was clearly linked to a reduced immunogenicity. Compared with the vaccine with the highest amount of intact allergen, the allergoids caused reduced basophil activation as well as diminished immunogenicity demonstrated by reduced T cell activation and/or reduced induction of murine grass-specific IgG antibodies. Interestingly, intact allergen vaccines with lower content of active ingredient exhibited similarly reduced allergenicity, while immunogenicity was still higher or equal to that of allergoids. The low allergenicity observed for some allergoids was inherently linked to a significantly lower immunogenic response questioning the rationale behind the chemical modification into allergoids. In addition, the linkage between allergenicity, immunogenicity and dose found for intact allergen vaccines and the immunogen as well as allergenic immune responses observed for allergoids suggest that the modified allergen vaccines do not contain high doses of immunologically active ingredients.

  13. Identification of the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R.

    Directory of Open Access Journals (Sweden)

    Xiankai Liu

    Full Text Available Immunoproteomics was used to screen the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R. The spore and vegetative proteins were separated by 2D gel electrophoresis and transferred to polyvinylidene difluoride membranes, and then western blotting was performed with rabbit immune serum against B.anthracis live spores. Immunogenic spots were cut and digested by trypsin. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry was performed to identify the proteins. As a result, 11 and 45 immunogenic proteins were identified in the spores and vegetative cells, respectively; 26 of which have not been reported previously. To verify their immunogenicity, 12 of the identified proteins were selected to be expressed, and the immune sera from the mice vaccinated by the 12 expressed proteins, except BA0887, had a specific western blot band with the A16R whole cellular lytic proteins. Some of these immunogenic proteins might be used as novel vaccine candidates themselves or for enhancing the protective efficacy of a protective-antigen-based vaccine.

  14. Expression and immunogenicity of novel subunit enterovirus 71 VP1 antigens

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Juan [China-US Vaccine Research Center, The First Affiliated Hospital, Nanjing Medical University (China); Department of Microbiology and Immunology, Nanjing Medical University (China); Wang, Shixia [China-US Vaccine Research Center, The First Affiliated Hospital, Nanjing Medical University (China); Department of Medicine, University of Massachusetts Medical School (United States); Gan, Weihua [Department of Pediatrics, The Second Affiliated Hospital, Nanjing Medical University (China); Zhang, Wenhong [Department of Infectious Diseases, Huashan Hospital, Fudan University (China); Ju, Liwen [School of Public Health, Fudan University (China); Huang, Zuhu [Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University (China); China-US Vaccine Research Center, The First Affiliated Hospital, Nanjing Medical University (China); Lu, Shan, E-mail: shan.lu@umassmed.edu [Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University (China); China-US Vaccine Research Center, The First Affiliated Hospital, Nanjing Medical University (China); Department of Medicine, University of Massachusetts Medical School (United States)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer EV71 is a major emerging infectious disease in many Asian countries. Black-Right-Pointing-Pointer Inactivated EV71 vaccines are in clinical studies but their safety and efficacy are unknown. Black-Right-Pointing-Pointer Developing subunit based EV71 vaccines is significant and novel antigen design is needed. Black-Right-Pointing-Pointer DNA immunization is an efficient tool to test the immunogenicity of VP1 based EV71 vaccines. Black-Right-Pointing-Pointer Multiple VP1 antigens are developed showing immunogenic potential. -- Abstract: Hand, foot, and mouth disease (HFMD) is a common viral illness in young children. HFMD is caused by viruses belonging to the enterovirus genus of the picornavirus family. Recently, enterovirus 71 (EV71) has emerged as a virulent agent for HFMD with severe clinical outcomes. In the current report, we conducted a pilot antigen engineering study to optimize the expression and immunogenicity of subunit VP1 antigen for the design of EV71 vaccines. DNA immunization was adopted as a simple technical approach to test different designs of VP1 antigens without the need to express VP1 protein in vitro first. Our studies indicated that the expression and immunogenicity of VP1 protein can be improved with alternated VP1 antigen designs. Data presented in the current report revealed novel pathways to optimize the design of VP1 antigen-based EV71 vaccines.

  15. Toxicity and Immunogenicity in Murine Melanoma following Exposure to Physical Plasma-Derived Oxidants

    Directory of Open Access Journals (Sweden)

    Sander Bekeschus

    2017-01-01

    Full Text Available Metastatic melanoma is an aggressive and deadly disease. Therapeutic advance has been achieved by antitumor chemo- and radiotherapy. These modalities involve the generation of reactive oxygen and nitrogen species, affecting cellular viability, migration, and immunogenicity. Such species are also created by cold physical plasma, an ionized gas capable of redox modulating cells and tissues without thermal damage. Cold plasma has been suggested for anticancer therapy. Here, melanoma cell toxicity, motility, and immunogenicity of murine metastatic melanoma cells were investigated following plasma exposure in vitro. Cells were oxidized by plasma, leading to decreased metabolic activity and cell death. Moreover, plasma decelerated melanoma cell growth, viability, and cell cycling. This was accompanied by increased cellular stiffness and upregulation of zonula occludens 1 protein in the cell membrane. Importantly, expression levels of immunogenic cell surface molecules such as major histocompatibility complex I, calreticulin, and melanocortin receptor 1 were significantly increased in response to plasma. Finally, plasma treatment significantly decreased the release of vascular endothelial growth factor, a molecule with importance in angiogenesis. Altogether, these results suggest beneficial toxicity of cold plasma in murine melanomas with a concomitant immunogenicity of potential interest in oncology.

  16. Immunogenic Cell Death Induced by Ginsenoside Rg3: Significance in Dendritic Cell-based Anti-tumor Immunotherapy.

    Science.gov (United States)

    Son, Keum-Joo; Choi, Ki Ryung; Lee, Seog Jae; Lee, Hyunah

    2016-02-01

    Cancer is one of the leading causes of morbidity and mortality worldwide; therefore there is a need to discover new therapeutic modules with improved efficacy and safety. Immune-(cell) therapy is a promising therapeutic strategy for the treatment of intractable cancers. The effectiveness of certain chemotherapeutics in inducing immunogenic tumor cell death thus promoting cancer eradication has been reported. Ginsenoside Rg3 is a ginseng saponin that has antitumor and immunomodulatory activity. In this study, we treated tumor cells with Rg3 to verify the significance of inducing immunogenic tumor cell death in antitumor therapy, especially in DC-based immunotherapy. Rg3 killed the both immunogenic (B16F10 melanoma cells) and non-immunogenic (LLC: Lewis Lung Carcinoma cells) tumor cells by inducing apoptosis. Surface expression of immunogenic death markers including calreticulin and heat shock proteins and the transcription of relevant genes were increased in the Rg3-dying tumor. Increased calreticulin expression was directly related to the uptake of dying tumor cells by dendritic cells (DCs): the proportion of CRT(+) CD11c(+) cells was increased in the Rg3-treated group. Interestingly, tumor cells dying by immunogenic cell death secreted IFN-γ, an effector molecule for antitumor activity in T cells. Along with the Rg3-induced suppression of pro-angiogenic (TNF-α) and immunosuppressive cytokine (TGF-β) secretion, IFN-γ production from the Rg3-treated tumor cells may also indicate Rg3 as an effective anticancer immunotherapeutic strategy. The data clearly suggests that Rg3-induced immunogenic tumor cell death due its cytotoxic effect and its ability to induce DC function. This indicates that Rg3 may be an effective immunotherapeutic strategy.

  17. Identification of immunogenic and virulence-associated Campylobacter jejuni proteins

    DEFF Research Database (Denmark)

    Nielsen, Lene Nørby; Luijkx, Thomas A.; Vegge, Christina Skovgaard

    2012-01-01

    With the aim of identifying proteins important for host interaction and virulence, we have screened an expression library of NCTC 11168 Campylobacter jejuni genes for highly immunogenic proteins. A commercial C. jejuni open reading frame (ORF) library consisting of more than 1,600 genes was trans......With the aim of identifying proteins important for host interaction and virulence, we have screened an expression library of NCTC 11168 Campylobacter jejuni genes for highly immunogenic proteins. A commercial C. jejuni open reading frame (ORF) library consisting of more than 1,600 genes...

  18. Immunogenicity induced by biologicals in the treatment of psoriasis and psoriatic arthritis: View of the problem

    Directory of Open Access Journals (Sweden)

    T. V. Korotaeva

    2015-01-01

    Full Text Available The present-day views of the immunogenicity of biological agents (BAs used to in the treatment of psoriasis and psoriatic arthritis are analyzed. The immunogenicity of these medicaments is noted to depend on their molecular structure, individual patient characteristics, and used treatment regimens. As this takes place, the primary structure of the drug and its posttranslation modifications during manufacture are key factors. It is pointed out that a number of antigenic structures may give rise to the body's BA antibodies – murine epitopes, idiotopes, and allotropes, neoantigens forming in the coupling area of hybrid proteins, nonlinear epitopes present in the aggregated preparations. BAs that tend to form large immune complexes with these antibodies are most immunogenic. The antibodies to most BAs, except drugs based on soluble tumor necrosis factor-α receptors (etanercept, are neutralizing, i.e. they affect the efficiency of therapy, particularly when used over a long period of time.The results of trials evaluating the impact of antibodies to BAs on their clinical value are considered. It is believed that immunogenicity is itself of great importance in respect to the occurrence of the escape phenomenon of a response to BA therapy and to its safety. Attention is drawn to immunogenicity diagnostic problems; at the same it is noted that none of the used laboratory diagnostic techniques can reveal individual BA antibody forms and isotypes. It is concluded that there is a need for further investigations to standardize optimal methods for diagnosing neutralizing antibodies, to elaborate criteria for predicting a response to therapy in terms of an immunogenicity factor, and to reveal pathogenetic mechanisms responsible for the production of antibodies to BAs. The design of novel medicaments with minimal immunogenicity will depend on whether these mechanisms are common to all drugs or specific.

  19. Efficacy, immunogenicity, and safety of a 9-valent human papillomavirus vaccine in Latin American girls, boys, and young women.

    Science.gov (United States)

    Ruiz-Sternberg, Ángela María; Moreira, Edson D; Restrepo, Jaime A; Lazcano-Ponce, Eduardo; Cabello, Robinson; Silva, Arnaldo; Andrade, Rosires; Revollo, Francisco; Uscanga, Santos; Victoria, Alejandro; Guevara, Ana María; Luna, Joaquín; Plata, Manuel; Dominguez, Claudia Nossa; Fedrizzi, Edison; Suarez, Eugenio; Reina, Julio C; Ellison, Misoo C; Moeller, Erin; Ritter, Michael; Shields, Christine; Cashat, Miguel; Perez, Gonzalo; Luxembourg, Alain

    2018-06-01

    A 9-valent human papillomavirus (HPV6/11/16/18/31/33/45/52/58; 9vHPV) vaccine was developed to expand coverage of the previously developed quadrivalent (HPV6/11/16/18; qHPV) vaccine. Efficacy, immunogenicity, and safety outcomes were assessed in Latin American participants enrolled in 2 international studies of the 9vHPV vaccine, including a randomized, double-blinded, controlled with qHPV vaccine, efficacy, immunogenicity, and safety study in young women aged 16-26 years, and an immunogenicity and safety study in girls and boys aged 9-15 years. Participants (N=5312) received vaccination at Day 1, Month 2, and Month 6. Gynecological swabs were collected regularly in young women for cytological and HPV DNA testing. Serum was analyzed for HPV antibodies in all participants. Adverse events (AEs) were also monitored in all participants. The 9vHPV vaccine prevented HPV 31-, 33-, 45-, 52-, and 58-related high-grade cervical, vulvar, and vaginal dysplasia with 92.3% efficacy (95% confidence interval 54.4, 99.6). Anti-HPV6, 11, 16, and 18 geometric mean titers at Month 7 were similar in the 9vHPV and qHPV vaccination groups. Anti-HPV antibody responses following vaccination were higher among girls and boys than in young women. Most (>99%) 9vHPV vaccine recipients seroconverted for all 9 HPV types at Month 7. Antibody responses to the 9 HPV types persisted over 5 years. The most common AEs were injection-site related, mostly of mild to moderate intensity. The 9vHPV vaccine is efficacious, immunogenic, and well tolerated in Latin American young women, girls, and boys. These data support 9vHPV vaccination programs in Latin America, a region with substantial cervical cancer burden. Copyright © 2018 Merck Sharp & Dohme Corp., and The Authors. Published by Elsevier B.V. All rights reserved.

  20. Immunogenicity and safety of an acellular pertussis, diphtheria ...

    African Journals Online (AJOL)

    Objective. To assess the immunogenicity and safety data for a pentavalent combination vaccine containing acellular pertussis, inactivated poliovirus, and Haemophilus influenzae (Hib) polysaccharide-conjugate antigens. Methods. A DTaP-IPV//PRP~T vaccine (Pentaxim™) was given at 6, 10 and 14 weeks of age to 212 ...

  1. Immunogenic Apoptosis as a Novel Tool for Anticancer Vaccine Development

    Directory of Open Access Journals (Sweden)

    Barbara Montico

    2018-02-01

    Full Text Available Immunogenic apoptosis, or more appropriately called immunogenic cell death (ICD, is a recently described form of apoptosis induced by a specific set of chemotherapeutic drugs or by physical therapeutic modalities, such as ionizing irradiation and photodynamic therapy. The peculiar characteristic of ICD is the ability to favor recognition and elimination of dying tumor cells by phagocytes in association with the release of pro-inflammatory molecules (such as cytokines and high-mobility group box-1. While in vitro and animal models pointed to ICD as one of the molecular mechanisms mediating the clinical efficacy of some anticancer agents, it is hard to clearly demonstrate its contribution in cancer patients. Clinical evidence suggests that the induction of ICD alone is possibly not sufficient to fully subvert the immunosuppressive tumor microenvironment. However, interesting results from recent studies contemplate the exploitation of ICD for improving the immunogenicity of cancer cells to use them as an antigen cargo in the development of dendritic cell (DC vaccines. Herein, we discuss the effects of danger signals expressed or released by cancer cells undergoing ICD on the maturation and activation of immature and mature DC, highlighting the potential added value of ICD in adoptive immunotherapy protocols.

  2. Identification of MHC class I H-2 Kb/Db-restricted immunogenic peptides derived from retinal proteins

    DEFF Research Database (Denmark)

    Wang, Mingjun; Bai, Fang; Pries, Mette

    2006-01-01

    PURPOSE: To identify H-2 Kb/Db-binding immunogenic peptides derived from retinal proteins. METHODS: Computer-based prediction was used to identify potentially H-2 Kb/Db-binding peptides derived from the interphotoreceptor retinol-binding protein (IRBP), soluble retinal antigen (S...... on day 21 after immunization with IRBP or IRBP and the immunogenic peptides. RESULTS: All the 21 predicted peptides were found to upregulate expression of H-2 Kb/Db on RMA-S cells. Five peptides, the two IRBP-derived peptides IRBP89-96 and IRBP(101-108), and the three PEDF-derived peptides, PEDF389....... The immunogenic peptides alone did not induce inflammation in the eyes, but they could enhance severity of uveitis induced by IRBP. CONCLUSIONS: Five of 21 H-2 Kb/Db-binding retinal protein-derived peptides were found to be immunogenic, suggesting that these peptides could function as autoantigenic epitopes...

  3. Utility of immunodeficient mouse models for characterizing the preclinical pharmacokinetics of immunogenic antibody therapeutics.

    Science.gov (United States)

    Myzithras, Maria; Bigwarfe, Tammy; Li, Hua; Waltz, Erica; Ahlberg, Jennifer; Giragossian, Craig; Roberts, Simon

    Prior to clinical studies, the pharmacokinetics (PK) of antibody-based therapeutics are characterized in preclinical species; however, those species can elicit immunogenic responses that can lead to an inaccurate estimation of PK parameters. Immunodeficient (SCID) transgenic hFcRn and C57BL/6 mice were used to characterize the PK of three antibodies that were previously shown to be immunogenic in mice and cynomolgus monkeys. Four mouse strains, Tg32 hFcRn SCID, Tg32 hFcRn, SCID and C57BL/6, were administered adalimumab (Humira®), mAbX and mAbX-YTE at 1 mg/kg, and in SCID strains there was no incidence of immunogenicity. In non-SCID strains, drug-clearing ADAs appeared after 4-7 days, which affected the ability to accurately calculate PK parameters. Single species allometric scaling of PK data for Humira® in SCID and hFcRn SCID mice resulted in improved human PK predictions compared to C57BL/6 mice. Thus, the SCID mouse model was demonstrated to be a useful tool for assessing the preclinical PK of immunogenic therapeutics.

  4. The safety and immunogenicity of influenza vaccine in children with asthma in Mexico.

    Science.gov (United States)

    Pedroza, Alvaro; Huerta, José G; Garcia, Maria de la Luz; Rojas, Arsheli; López-Martínez, Irma; Penagos, Martín; Franco-Paredes, Carlos; Deroche, Christele; Mascareñas, Cesar

    2009-07-01

    The morbidity and mortality associated with influenza is substantial in children with asthma. There are no available data on the safety and immunogenicity of influenza vaccine in children with asthma in Latin America. Furthermore, it is unclear if influenza vaccination may cause asthma exacerbations. We conducted a placebo-controlled trial to investigate the safety and immunogenicity of an inactivated trivalent split virus influenza vaccine in children with asthma in Mexico. We also measured the impact of influenza vaccination on pulmonary function tests in this population. The inactivated influenza vaccine was immunogenic and safe in terms of local and systemic side effects compared to placebo. We observed no significant impact on pulmonary function tests among vaccine recipients. Given the significant morbidity associated with influenza in children, strategies to promote increased influenza vaccination coverage in this high-risk group in Latin America and elsewhere are urgently needed.

  5. Safety and immunogenicity of GMZ2 - a MSP3-GLURP fusion protein malaria vaccine candidate

    DEFF Research Database (Denmark)

    Esen, Meral; Kremsner, Peter G; Schleucher, Regina

    2009-01-01

    Malaria is a major public health problem in Sub-Saharan Africa. In highly endemic regions infants, children and pregnant women are mostly affected. An effective malaria vaccine would complement existing malaria control strategies because it can be integrated in existing immunization programs easily....... Here we present the results of the first phase Ia clinical trial of GMZ2 adjuvanted in aluminium hydroxide. GMZ2 is a malaria vaccine candidate, designed upon the rationale to induce immune responses against asexual blood stages of Plasmodium falciparum similar to those encountered in semi...... is a safe and immunogenic malaria vaccine candidate suitable for further clinical development....

  6. CYD-TDV dengue vaccine: systematic review and meta-analysis of efficacy, immunogenicity and safety.

    Science.gov (United States)

    Godói, Isabella Piassi; Lemos, Livia Lovato Pires; de Araújo, Vânia Eloisa; Bonoto, Braúlio Cesar; Godman, Brian; Guerra Júnior, Augusto Afonso

    2017-03-01

    Dengue virus (DENV) is a serious global health problem. CYD-TDC (Dengvaxia ® ) was the first vaccine to gain regulatory approval to try and address this problem. Summarize all available evidence on the immunogenicity, efficacy and safety of the CYD-TDV dengue vaccine. Meta-analysis and systematic review. The best and worst immunogenicity results were for DENV4 and DENV1, respectively. Vaccine efficacy of 60% was derived from studies with participants aged 2-16 years old, with DENV4 and DENV2 presenting the best and worst results, respectively. Erythema and swelling were more frequent with CYD-TDV. No differences were detected for systemic adverse events. CYD-TDV showed moderate efficacy in children and adolescents. From the immunogenicity results in adults, we can expect satisfactory efficacy from vaccination in this population.

  7. FDA advisory committees meet January 26 on Salk HIV-1 immunogen.

    Science.gov (United States)

    1995-01-06

    Two advisory committees of the Food and Drug Administration (FDA) will meet to consider future trials of the HIV-1 immunogen developed by Dr. Jonas Salk. The Immune Response Corporation has already conducted several studies of the immunogen, and has found improvement in various immunological and other blood tests, and no adverse effects. However, the studies have not been large enough to show conclusively that the treatment has clinical benefit in delaying disease progression. The new, larger trials are intended to demonstrate a delay in disease progression and validate the use of blood-test markers of disease progression for studying an immune-based treatment.

  8. [Immunogenicity of biosimilars].

    Science.gov (United States)

    van Aerts, L A G J M; Franken, A A M; Leufkens, H G M

    2016-01-01

    Biosimilars of more complex recombinant protein drugs, such as monoclonal antibodies and fusion proteins, are entering the market. The manufacturer should demonstrate that its product does not show any relevant differences in terms of quality characteristics, biological activity, safety and efficacy compared to the reference product, as outlined in EMA guidelines. This should be established with an extensive comparability exercise. One aspect that is subject to particular scrutiny is the immunogenicity of the biosimilar and the reference medicinal product. For three cases, one etanercept and two infliximab biosimilars, we describe how data are assessed and an opinion is reached by authorities. Not in all cases unanimity exists whether all remaining uncertainties on biosimilarity have been resolved satisfactorily before marketing authorisation. The Dutch Medicines Evaluation Board therefore emphasises that even after marketing authorisation, biosimilars and other biologicals should be properly monitored.

  9. Posttranslational Modifications and the Immunogenicity of Biotherapeutics

    Directory of Open Access Journals (Sweden)

    Roy Jefferis

    2016-01-01

    Full Text Available Whilst the amino acid sequence of a protein is determined by its gene sequence, the final structure and function are determined by posttranslational modifications (PTMs, including quality control (QC in the endoplasmic reticulum (ER and during passage through the Golgi apparatus. These processes are species and cell specific and challenge the biopharmaceutical industry when developing a production platform for the generation of recombinant biologic therapeutics. Proteins and glycoproteins are also subject to chemical modifications (CMs both in vivo and in vitro. The individual is naturally tolerant to molecular forms of self-molecules but nonself variants can provoke an immune response with the generation of anti-drug antibodies (ADA; aggregated forms can exhibit enhanced immunogenicity and QC procedures are developed to avoid or remove them. Monoclonal antibody therapeutics (mAbs are a special case because their purpose is to bind the target, with the formation of immune complexes (ICs, a particular form of aggregate. Such ICs may be removed by phagocytic cells that have antigen presenting capacity. These considerations may frustrate the possibility of ameliorating the immunogenicity of mAbs by rigorous exclusion of aggregates from drug product. Alternate strategies for inducing immunosuppression or tolerance are discussed.

  10. Chicken IgY Fc expressed by Eimeria mitis enhances the immunogenicity of E. mitis.

    Science.gov (United States)

    Qin, Mei; Tang, Xinming; Yin, Guangwen; Liu, Xianyong; Suo, Jingxia; Tao, Geru; Ei-Ashram, Saeed; Li, Yuan; Suo, Xun

    2016-03-21

    Eimeria species are obligate intracellular apicomplexan parasites, causing great economic losses in the poultry industry. Currently wild-and attenuated- type anticoccidial vaccines are used to control coccidiosis. However, their use in fast growing broilers is limited by vaccination side effects caused by medium and/or low immunogenic Eimeria spp. There is, therefore, a need for a vaccine with high immunogenicity for broilers. The avian yolk sac IgY Fc is the avian counterpart of the mammalian IgG Fc, which enhances immunogenicity of Fc-fusion proteins. Here, we developed a stable transgenic Eimeria mitis expressing IgY Fc (Emi.chFc) and investigated whether the avian IgY Fc fragment enhances the immunogenicity of E. mitis. Two-week-old broilers were immunized with either Emi.chFc or wild type Eimeria and challenged with wild type E. mitis to analyze the protective properties of transgenic Emi.chFc. Chickens immunized with Emi.chFc had significantly lower oocyst output, in comparison with PBS, mock control (transgenic E. mitis expressing HA1 from H9N2 avian influenza virus) and wildtype E. mitis immunized groups after challenge, indicating that IgY Fc enhanced the immunogenicity of E. mitis. Our findings suggest that IgY Fc-expressing Eimeria may be a better coccidiosis vaccine, and transgenic Eimeria expressing Fc-fused exogenous antigens may be used as a novel vaccine-delivery vehicle against a wide variety of pathogens.

  11. Immunogenicity of Anti-HLA Antibodies in Pancreas and Islet Transplantation.

    Science.gov (United States)

    Chaigne, Benjamin; Geneugelijk, Kirsten; Bédat, Benoît; Ahmed, Mohamed Alibashe; Hönger, Gideon; De Seigneux, Sophie; Demuylder-Mischler, Sandrine; Berney, Thierry; Spierings, Eric; Ferrari-Lacraz, Sylvie; Villard, Jean

    2016-11-01

    The aim of the current study was to characterize the anti-HLA antibodies before and after pancreatic islet or pancreas transplantation. We assessed the risk of anti-donor-specific antibody (DSA) sensitization in a single-center, retrospective clinical study at Geneva University Hospital. Data regarding clinical characteristics, graft outcome, HLA mismatch, donor HLA immunogenicity, and anti-HLA antibody characteristics were collected. Between January 2008 and July 2014, 18 patients received islet transplants, and 26 patients received a pancreas transplant. Eleven out of 18 patients (61.1%) in the islet group and 12 out of 26 patients (46.2%) in the pancreas group had anti-HLA antibodies. Six patients (33.3%) developed DSAs against HLA of the islets, and 10 patients (38.4%) developed DSAs against HLA of the pancreas. Most of the DSAs were at a low level. Several parameters such as gender, number of times cells were transplanted, HLA mismatch, eplet mismatch and PIRCHE-II numbers, rejection, and infection were analyzed. Only the number of PIRCHE-II was associated with the development of anti-HLA class II de novo DSAs. Overall, the development of de novo DSAs did not influence graft survival as estimated by insulin independence. Our results indicated that pretransplant DSAs at low levels do not restrict islet or pancreas transplantation [especially islet transplantation (27.8% vs. 15.4.%)]. De novo DSAs do occur at a similar rate in both pancreas and islet transplant recipients (mainly of class II), and the immunogenicity of donor HLA is a parameter that should be taken into consideration. When combined with an immunosuppressive regimen and close follow-up, development of low levels of DSAs was not found to result in reduced graft survival or graft function in the current study.

  12. Field Evaluation of Immunogenicity of Five Commercial Vaccines ...

    African Journals Online (AJOL)

    Field Evaluation of Immunogenicity of Five Commercial Vaccines Against Newcastle Disease in Poultry Farms in Ibadan, Nigeria. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more information ...

  13. Meningococcal B vaccine. An immunogenic vaccine possibly useful during outbreaks.

    Science.gov (United States)

    2014-09-01

    Invasive meningococcal infections can be life-threatening and cause severe sequelae. Antibiotic therapy is only partially effective. Bexsero is the first meningococcal B vaccine to be approved in the European Union. It contains four capsular antigens from various strains of group B meningococci. Clinical trials of this meningococcal B vaccine did not assess clinical protection. Two immunogenicity studies in adults, one in adolescents and six in infants, are available. They established the immunogenicity of the meningococcal B vaccine, determined age-appropriate vaccination schedules, and verified that concomitant administration of other vaccines did not undermine its immunogenicity. In the absence of relevant clinical trials, an in vitro study showed that sera from vaccinated individuals were likely to have bactericidal activity against 85% of 200 invasive meningococcal B strains isolated in France in 2007-2008. The meningococcal B vaccine provoked local adverse effects in most vaccinees, including local erythema, induration and pain. Fever occurred in about half of vaccinated children. Six cases of Kawasaki syndrome have been reported in children who received the vaccine, compared to only one case in control groups. In practice, the harm-benefit balance of this meningococcal B vaccine justify using it during outbreaks, provided the outbreak strain is covered by the vaccine antigens. Vaccinees should be enrolled in studies designed to evaluate clinical efficacy and to better determine the risk of Kawasaki syndrome.

  14. Comparison of immune responses against foot-and-mouth disease virus induced by fusion proteins using the swine IgG heavy chain constant region or β-galactosidase as a carrier of immunogenic epitopes

    International Nuclear Information System (INIS)

    Li Guangjin; Chen Weizao; Yan Weiyao; Zhao Kai; Liu Mingqiu; Zhang Jun; Fei Liang; Xu Quanxing; Sheng Zutian; Lu Yonggan; Zheng Zhaoxin

    2004-01-01

    Previously, we demonstrated that a fusion protein (Gal-FMDV) consisting of β-galactosidase and an immunogenic peptide, amino acids (141-160)-(21-40)-(141-160), of foot-and-mouth disease virus (FMDV) VP1 protein induced protective immune responses in guinea pigs and swine. We now designed a new potential recombinant protein vaccine against FMDV in swine. The immunogenic peptide, amino acids (141-160)-(21-40)-(141-160) from the VP1 protein of serotype O FMDV, was fused to the carboxy terminus of a swine immunoglobulin G single heavy chain constant region and expressed in Escherichia coli. The expressed fusion protein (IgG-FMDV) was purified and emulsified with oil adjuvant. Vaccination twice at an interval of 3 weeks with the emulsified IgG-FMDV fusion protein induced an FMDV-specific spleen proliferative T-cell response in guinea pigs and elicited high levels of neutralizing antibody in guinea pigs and swine. All of the immunized animals were efficiently protected against FMDV challenge. There was no significant difference between IgG-FMDV and Gal-FMDV in eliciting immunity after vaccination twice in swine. However, when evaluating the efficacy of a single inoculation of the fusion proteins, we found that IgG-FMDV could elicit a protective immune response in swine, while Gal-FMDV only elicited a weak neutralizing activity and could not protect the swine against FMDV challenge. Our results suggest that the IgG-FMDV fusion protein is a promising vaccine candidate for FMD in swine

  15. Dealing with immunogenicity of biologicals: assessment and clinical relevance

    NARCIS (Netherlands)

    Wolbink, Gerrit J.; Aarden, Lucien A.; Dijkmans, B. A. C.

    2009-01-01

    PURPOSE OF REVIEW: In the last decade, biologicals revolutionized rheumatology. An increasing number of patients benefit from biotherapeuticals. However, some patients do not respond to treatment and others lose their response after a certain time. Immunogenicity is one of the factors linked to

  16. Trial Watch: Immunogenic cell death inducers for anticancer chemotherapy.

    Science.gov (United States)

    Pol, Jonathan; Vacchelli, Erika; Aranda, Fernando; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-04-01

    The term "immunogenic cell death" (ICD) is now employed to indicate a functionally peculiar form of apoptosis that is sufficient for immunocompetent hosts to mount an adaptive immune response against dead cell-associated antigens. Several drugs have been ascribed with the ability to provoke ICD when employed as standalone therapeutic interventions. These include various chemotherapeutics routinely employed in the clinic (e.g., doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin) as well as some anticancer agents that are still under preclinical or clinical development (e.g., some microtubular inhibitors of the epothilone family). In addition, a few drugs are able to convert otherwise non-immunogenic instances of cell death into bona fide ICD, and may therefore be employed as chemotherapeutic adjuvants within combinatorial regimens. This is the case of cardiac glycosides, like digoxin and digitoxin, and zoledronic acid. Here, we discuss recent developments on anticancer chemotherapy based on ICD inducers.

  17. Microbial Proteases in Baked Goods: Modification of Gluten and Effects on Immunogenicity and Product Quality

    Directory of Open Access Journals (Sweden)

    Nina G. Heredia-Sandoval

    2016-08-01

    Full Text Available Gluten-related diseases are a range of inflammatory disorders of the small intestine, characterized by an adverse response to gluten ingestion; therefore, the treatment is a gluten withdrawal. In spite of the increased market of gluten-free products, widely available breads with high acceptability are still missing due to the technological challenge of substituting the special gluten properties. Instead of using alternative ingredients for baking, some attempts have been done to decrease gluten immunogenicity by its enzymatic degradation with microbial proteases. Although the gluten immunogenicity reduction has been reached to an acceptable level, some quality parameters of the products are affected. This review focus on the use of microbial peptidases to prepare less immunogenic baked goods and their effect on product quality.

  18. Microbial Proteases in Baked Goods: Modification of Gluten and Effects on Immunogenicity and Product Quality.

    Science.gov (United States)

    Heredia-Sandoval, Nina G; Valencia-Tapia, Maribel Y; Calderón de la Barca, Ana M; Islas-Rubio, Alma R

    2016-08-30

    Gluten-related diseases are a range of inflammatory disorders of the small intestine, characterized by an adverse response to gluten ingestion; therefore, the treatment is a gluten withdrawal. In spite of the increased market of gluten-free products, widely available breads with high acceptability are still missing due to the technological challenge of substituting the special gluten properties. Instead of using alternative ingredients for baking, some attempts have been done to decrease gluten immunogenicity by its enzymatic degradation with microbial proteases. Although the gluten immunogenicity reduction has been reached to an acceptable level, some quality parameters of the products are affected. This review focus on the use of microbial peptidases to prepare less immunogenic baked goods and their effect on product quality.

  19. Immunotherapeutic Potential of Oncolytic H-1 Parvovirus: Hints of Glioblastoma Microenvironment Conversion towards Immunogenicity.

    Science.gov (United States)

    Angelova, Assia L; Barf, Milena; Geletneky, Karsten; Unterberg, Andreas; Rommelaere, Jean

    2017-12-15

    Glioblastoma, one of the most aggressive primary brain tumors, is characterized by highly immunosuppressive microenvironment. This contributes to glioblastoma resistance to standard treatment modalities and allows tumor growth and recurrence. Several immune-targeted approaches have been recently developed and are currently under preclinical and clinical investigation. Oncolytic viruses, including the autonomous protoparvovirus H-1 (H-1PV), show great promise as novel immunotherapeutic tools. In a first phase I/IIa clinical trial (ParvOryx01), H-1PV was safe and well tolerated when locally or systemically administered to recurrent glioblastoma patients. The virus was able to cross the blood-brain (tumor) barrier after intravenous infusion. Importantly, H-1PV treatment of glioblastoma patients was associated with immunogenic changes in the tumor microenvironment. Tumor infiltration with activated cytotoxic T cells, induction of cathepsin B and inducible nitric oxide (NO) synthase (iNOS) expression in tumor-associated microglia/macrophages (TAM), and accumulation of activated TAM in cluster of differentiation (CD) 40 ligand (CD40L)-positive glioblastoma regions was detected. These are the first-in-human observations of H-1PV capacity to switch the immunosuppressed tumor microenvironment towards immunogenicity. Based on this pilot study, we present a tentative model of H-1PV-mediated modulation of glioblastoma microenvironment and propose a combinatorial therapeutic approach taking advantage of H-1PV-induced microglia/macrophage activation for further (pre)clinical testing.

  20. Comparative immunogenicity of local and imported infectious bursal ...

    African Journals Online (AJOL)

    A comparative immunogenicity and efficacy study of local and imported infectious bursal disease (IBD) vaccines administered to chicks (cockerels) at varying regimes (10 and 18, 10 and 28, 14 and 35 days of age) was carried out. The test birds were challenged seven days after the booster dose of the IBD vaccine by ...

  1. Evaluation of the immunogenicity and protective effects of a trivalent chimeric norovirus P particle immunogen displaying influenza HA2 from subtypes H1, H3 and B.

    Science.gov (United States)

    Gong, Xin; Yin, He; Shi, Yuhua; He, Xiaoqiu; Yu, Yongjiao; Guan, Shanshan; Kuai, Ziyu; Haji, Nasteha M; Haji, Nafisa M; Kong, Wei; Shan, Yaming

    2016-05-25

    The ectodomain of the influenza A virus (IAV) hemagglutinin (HA) stem is highly conserved across strains and has shown promise as a universal influenza vaccine in a mouse model. In this study, potential B-cell epitopes were found through sequence alignment and epitope prediction in a stem fragment, HA2:90-105, which is highly conserved among virus subtypes H1, H3 and B. A norovirus (NoV) P particle platform was used to express the HA2:90-105 sequences from subtypes H1, H3 and B in loops 1, 2 and 3 of the protrusion (P) domain, respectively. Through mouse immunization and microneutralization assays, the immunogenicity and protective efficacy of the chimeric NoV P particle (trivalent HA2-PP) were tested against infection with three subtypes (H1N1, H3N2 and B) of IAV in Madin-Darby canine kidney cells. The protective efficacy of the trivalent HA2-PP was also evaluated preliminarily in vivo by virus challenge in the mouse model. The trivalent HA2-PP immunogen induced significant IgG antibody responses, which could be enhanced by a virus booster vaccination. Moreover, the trivalent HA2-PP immunogen also demonstrated in vitro neutralization of the H3 and B viruses, and in vivo protection against the H3 virus. Our results support the notion that a broadly protective vaccine approach using an HA2-based NoV P particle platform can provide cross-protection against challenge viruses of different IAV subtypes. The efficacy of the immunogen should be further enhanced for practicality, and a better understanding of the protective immune mechanism will be critical for the development of HA2-based multivalent vaccines.

  2. Impact of baseline covariates on the immunogenicity of the 9-valent HPV vaccine - A combined analysis of five phase III clinical trials

    DEFF Research Database (Denmark)

    Petersen, Lone K; Restrepo, Jaime; Moreira, Edson D

    2017-01-01

    BACKGROUND: The immunogenicity profile of the 9-valent HPV (9vHPV) vaccine was evaluated across five phase III clinical studies conducted in girls and boys 9-15 years of age and young women 16-26 years of age. The effect of baseline characteristics of subjects on vaccine-induced HPV antibody...... responses was assessed. METHODS: Immunogenicity data from 11,304 subjects who received ≥1 dose of 9vHPV vaccine in five Phase III studies were analyzed. Vaccine was administered as a 3-dose regimen. HPV antibody titers were assessed 1 month after dose 3 using a competitive Luminex immunoassay and summarized...... as geometric mean titers (GMTs). Covariates examined were age, gender, race, region of residence, and HPV serostatus and PCR status at day 1. RESULTS: GMTs to all 9 vaccine HPV types decreased with age at vaccination initiation, and were otherwise generally similar among the demographic subgroups defined...

  3. Immunogenicity Studies of Bivalent Inactivated Virions of EV71/CVA16 Formulated with Submicron Emulsion Systems

    Directory of Open Access Journals (Sweden)

    Chih-Wei Lin

    2014-01-01

    Full Text Available We assessed two strategies for preparing candidate vaccines against hand, foot, and mouth disease (HFMD caused mainly by infections of enterovirus (EV 71 and coxsackievirus (CV A16. We firstly design and optimize the potency of adjuvant combinations of emulsion-based delivery systems, using EV71 candidate vaccine as a model. We then perform immunogenicity studies in mice of EV71/CVA16 antigen combinations formulated with PELC/CpG. A single dose of inactivated EV71 virion (0.2 μg emulsified in submicron particles was found (i to induce potent antigen-specific neutralizing antibody responses and (ii consistently to elicit broad antibody responses against EV71 neutralization epitopes. A single dose immunogenicity study of bivalent activated EV71/CVA16 virion formulated with either Alum or PELC/CpG adjuvant showed that CVA16 antigen failed to elicit CVA16 neutralizing antibody responses and did not affect EV71-specific neutralizing antibody responses. A boosting dose of emulsified EV71/CVA16 bivalent vaccine candidate was found to be necessary to achieve high seroconversion of CVA16-specific neutralizing antibody responses. The current results are important for the design and development of prophylactic vaccines against HFMD and other emerging infectious diseases.

  4. Efficacy, immunogenicity, and safety of a 9-valent human papillomavirus vaccine in Latin American girls, boys, and young women

    Directory of Open Access Journals (Sweden)

    Ángela María Ruiz-Sternberg

    2018-06-01

    Full Text Available Background: A 9-valent human papillomavirus (HPV6/11/16/18/31/33/45/52/58; 9vHPV vaccine was developed to expand coverage of the previously developed quadrivalent (HPV6/11/16/18; qHPV vaccine. Methods: Efficacy, immunogenicity, and safety outcomes were assessed in Latin American participants enrolled in 2 international studies of the 9vHPV vaccine, including a randomized, double-blinded, controlled with qHPV vaccine, efficacy, immunogenicity, and safety study in young women aged 16–26 years, and an immunogenicity and safety study in girls and boys aged 9–15 years. Participants (N=5312 received vaccination at Day 1, Month 2, and Month 6. Gynecological swabs were collected regularly in young women for cytological and HPV DNA testing. Serum was analyzed for HPV antibodies in all participants. Adverse events (AEs were also monitored in all participants. Results: The 9vHPV vaccine prevented HPV 31-, 33-, 45-, 52-, and 58-related high-grade cervical, vulvar, and vaginal dysplasia with 92.3% efficacy (95% confidence interval 54.4, 99.6. Anti-HPV6, 11, 16, and 18 geometric mean titers at Month 7 were similar in the 9vHPV and qHPV vaccination groups. Anti-HPV antibody responses following vaccination were higher among girls and boys than in young women. Most (>99% 9vHPV vaccine recipients seroconverted for all 9 HPV types at Month 7. Antibody responses to the 9 HPV types persisted over 5 years. The most common AEs were injection-site related, mostly of mild to moderate intensity. Conclusions: The 9vHPV vaccine is efficacious, immunogenic, and well tolerated in Latin American young women, girls, and boys. These data support 9vHPV vaccination programs in Latin America, a region with substantial cervical cancer burden. Keywords: Human papillomavirus, Vaccine, Cervical cancer, Persistent infection, 9vHPV

  5. Safety and immunogenicity of two Haemophilus influenzae type b ...

    African Journals Online (AJOL)

    Objectives. Haemophilus influenzae type b (Hib) infection remains a major public health problem inthe developing world. We evaluated the safety and immunogenicity of a new PRP-CRM197 conjugate Hib vaccine (Vaxem Hib, Chiron Vacdnes), compared with theHibTITER vaccine (WyethLederle Vaccines), following the ...

  6. Safety and immunogenicity of a CRM or TT conjugated meningococcal vaccine in healthy toddlers.

    Science.gov (United States)

    Bona, Gianni; Castiglia, Paolo; Zoppi, Giorgio; de Martino, Maurizio; Tasciotti, Annaelisa; D'Agostino, Diego; Han, Linda; Smolenov, Igor

    2016-06-17

    MenACWY-CRM (Menveo(®); GlaxoSmithKline) and MenACWY-TT (Nimenrix(®); Pfizer) are two meningococcal vaccines licensed in the European Union for use in both children and adults. While both vaccines target meningococcal serogroups A, C, W and Y, immunogenicity and reactogenicity of these quadrivalent meningococcal conjugate vaccines may differ due to differences in formulation processes and chemical structure. Yet data on the comparability of these two vaccines are limited. The reactogenicity and immunogenicity of one dose of either MenACWY-CRM or MenACWY-TT were evaluated in healthy toddlers aged 12-15 months. Immunogenicity was assessed using serum bactericidal antibody assays (SBA) with human (hSBA) and rabbit (rSBA) complement. A total of 202 children aged 12-15 months were enrolled to receive one dose of MenACWY-CRM or MenACWY-TT. Similar numbers of subjects reported solicited reactions within 7 days following either vaccination. Tenderness at the injection site was the most common local reaction. Systemic reactions reported were similar for both vaccines and mostly mild to moderate in severity: irritability, sleepiness and change in eating habits were most commonly reported. Immunogenicity at 1 month post-vaccination was generally comparable for both vaccines across serogroups. At 6 months post-vaccination antibody persistence against serogroups C, W, and Y was substantial for both vaccines, as measured by both assay methodologies. For serogroup A, hSBA titers declined in both groups, while rSBA titers remained high. Despite differences in composition, the MenACWY-CRM and MenACWY-TT vaccines have comparable reactogenicity and immunogenicity profiles. Immediate immune responses and short-term antibody persistence were largely similar between groups. Both vaccines were well-tolerated and no safety concerns were identified. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Gene transfer preferentially selects MHC class I positive tumour cells and enhances tumour immunogenicity.

    Science.gov (United States)

    Hacker, Ulrich T; Schildhauer, Ines; Barroso, Margarita Céspedes; Kofler, David M; Gerner, Franz M; Mysliwietz, Josef; Buening, Hildegard; Hallek, Michael; King, Susan B S

    2006-05-01

    The modulated expression of MHC class I on tumour tissue is well documented. Although the effect of MHC class I expression on the tumorigenicity and immunogenicity of MHC class I negative tumour cell lines has been rigorously studied, less is known about the validity of gene transfer and selection in cell lines with a mixed MHC class I phenotype. To address this issue we identified a C26 cell subline that consists of distinct populations of MHC class I (H-2D/K) positive and negative cells. Transient transfection experiments using liposome-based transfer showed a lower transgene expression in MHC class I negative cells. In addition, MHC class I negative cells were more sensitive to antibiotic selection. This led to the generation of fully MHC class I positive cell lines. In contrast to C26 cells, all transfectants were rejected in vivo and induced protection against the parental tumour cells in rechallenge experiments. Tumour cell specificity of the immune response was demonstrated in in vitro cytokine secretion and cytotoxicity assays. Transfectants expressing CD40 ligand and hygromycin phosphotransferase were not more immunogenic than cells expressing hygromycin resistance alone. We suggest that the MHC class I positive phenotype of the C26 transfectants had a bearing on their immunogenicity, because selected MHC class I positive cells were more immunogenic than parental C26 cells and could induce specific anti-tumour immune responses. These data demonstrate that the generation of tumour cell transfectants can lead to the selection of subpopulations that show an altered phenotype compared to the parental cell line and display altered immunogenicity independent of selection marker genes or other immune modulatory genes. Our results show the importance of monitoring gene transfer in the whole tumour cell population, especially for the evaluation of in vivo therapies targeted to heterogeneous tumour cell populations.

  8. Allotransplanted neurons used to repair peripheral nerve injury do not elicit overt immunogenicity.

    Directory of Open Access Journals (Sweden)

    Weimin Liu

    Full Text Available A major problem hindering the development of autograft alternatives for repairing peripheral nerve injuries is immunogenicity. We have previously shown successful regeneration in transected rat sciatic nerves using conduits filled with allogeneic dorsal root ganglion (DRG cells without any immunosuppression. In this study, we re-examined the immunogenicity of our DRG neuron implanted conduits as a potential strategy to overcome transplant rejection. A biodegradable NeuraGen® tube was infused with pure DRG neurons or Schwann cells cultured from a rat strain differing from the host rats and used to repair 8 mm gaps in the sciatic nerve. We observed enhanced regeneration with allogeneic cells compared to empty conduits 16 weeks post-surgery, but morphological analyses suggest recovery comparable to the healthy nerves was not achieved. The degree of regeneration was indistinguishable between DRG and Schwann cell allografts although immunogenicity assessments revealed substantially increased presence of Interferon gamma (IFN-γ in Schwann cell allografts compared to the DRG allografts by two weeks post-surgery. Macrophage infiltration of the regenerated nerve graft in the DRG group 16 weeks post-surgery was below the level of the empty conduit (0.56 fold change from NG; p<0.05 while the Schwann cell group revealed significantly higher counts (1.29 fold change from NG; p<0.001. Major histocompatibility complex I (MHC I molecules were present in significantly increased levels in the DRG and Schwann cell allograft groups compared to the hollow NG conduit and the Sham healthy nerve. Our results confirmed previous studies that have reported Schwann cells as being immunogenic, likely due to MHC I expression. Nerve gap injuries are difficult to repair; our data suggest that DRG neurons are superior medium to implant inside conduit tubes due to reduced immunogenicity and represent a potential treatment strategy that could be preferable to the current gold

  9. An evaluation of the cold chain technology in South-East, Nigeria using Immunogenicity study on the measles vaccines.

    Science.gov (United States)

    Oli, Angus Nnamdi; Agu, Remigius Uchenna; Ihekwereme, Chibueze Peter; Esimone, Charles Okechukwu

    2017-01-01

    Vaccines are biological products and their efficacy is affected by storage conditions. They are vital in promoting public health. Failures in immunization programmes often times are blamed on disruption in vaccine cold-chain. This study assessed the immunogenicity/potency of the measles vaccines utilized in childhood immunization in South-East, Nigeria and indirectly assessed the effectiveness of the cold-chain technology in the region. This was an experimental study carried out between December 2011 and June 2013. Antibody induction method was used to evaluate the immunogenicity/potency of the measles vaccines sourced from the central cold chain facilities in South-east, Nigeria and indirectly, the effectiveness of the cold chain technology in the zone in maintaining vaccine potency. The neutralizing antibodies in a control group (administered with measles vaccines stored at 37°C for 12 months) and in immunized group were determined after 30 days of immunization using ELISA. The mean storage temperature of the vaccines at the states vaccines central cold chain facilities was -2.4°C and before storage at study site, it was 5.8°C but at the study site it was -4.54°C. Mean ±Standard Error in the Mean (SEM) IgG titers for the measles vaccines sourced from "Open Market", Ebonyi, Enugu, Imo, Anambra and Abia States were 0.793±0.051, 1.621±0.015, 1.621±0.015, 1.715±0.081, 1.793±0.051 and 1.683±0.078 respectively while the mean ±Standard Error in the Mean (SEM) IgM titres were 0.857±0.037, 1.400±0.030, 1.391±0.032, 1.339±0.037, 1.405±0.066 and 1.279±0.025 respectively. One way analysis of variance shows that there is statistical difference in the IgG and IgM antibodies titers produced by the control compared to the vaccines (P value cold-chain technology in the region was judged to be optimal as at the time of vaccine sampling since all the measles vaccines had good immunogenicity profile. However, efforts are still needed to maintain these facilities in

  10. Facilitation of nodal metastasis from a non-immunogenic murine carcinoma by previous whole-body irradiation of tumour recipients

    International Nuclear Information System (INIS)

    Hewitt, H.B.; Blake, E.R.

    1977-01-01

    Of 193 CBA mice kept under prolonged observation after excision of small intradermal transplants of a non-immunogenic tumour (CBA Carcinoma NT), 27 (14%) presented with local recurrence, 19 (10%) with regional lymphnodal metastasis (RNM) and 72 (37%), with pulmonary metastasis +- other systemic metastases. When mice were exposed to sublethal whole-body irradiation (WBI) before tumour transplantation, the incidence of RNM rose to approximately 80% and the latent period was reduced from approximately 60 days to approximately 40 days after tumour transplantation. This enhancement of RNM by WBI was undiminished when the interval between WBI and tumour transplantation was increased from 1 to 90 days. An explanation for this effect in terms of immunosuppression by the WBI is unlikely for the following reasons: the tumour was non-immunogenic by standard quantitative tests; the effect persisted long after the expected time for recovery of immune reactivity; and i.v. injection of normal marrow and lymphoid cells after WBI failed to reduce the effect. That the effect was systemic was proved by failure of local pre-irradiation of the tumour bed or regional node to enhance RNM. The effect was not observed when WBI was given 4 days after excision of tumours. These and other experiments failed to indicate the mechanism of the effect of WBI, but its long persistence suggests that it may relate to stored lethal radiation damage in migrating cells of slow turnover tissues. (author)

  11. How real is the long-lasting effect of tumor necrosis factor α inhibitors? Focus on immunogenicity

    Directory of Open Access Journals (Sweden)

    D.E. Karateev

    2014-01-01

    (development of ADAbs, blood concentration of drug, as well as to switch to using another biological drug. Currently, the main method for preventing ADAb formation is to strictly follow the recommenda- tions for using biological drugs in combination of disease-modifying anti-rheumatic drugs (first of all, with methotrexate. TNFα inhibitors hav- ing the lowest immunogenicity (ETN, etc. are advisable to be used in this case. 

  12. How real is the long-lasting effect of tumor necrosis factor α inhibitors? Focus on immunogenicity

    Directory of Open Access Journals (Sweden)

    D.E. Karateev

    2014-05-01

    (development of ADAbs, blood concentration of drug, as well as to switch to using another biological drug. Currently, the main method for preventing ADAb formation is to strictly follow the recommenda- tions for using biological drugs in combination of disease-modifying anti-rheumatic drugs (first of all, with methotrexate. TNFα inhibitors hav- ing the lowest immunogenicity (ETN, etc. are advisable to be used in this case. 

  13. Safety and immunogenicity of a live attenuated mumps vaccine

    Science.gov (United States)

    Liang, Yan; Ma, Jingchen; Li, Changgui; Chen, Yuguo; Liu, Longding; Liao, Yun; Zhang, Ying; Jiang, Li; Wang, Xuan-Yi; Che, Yanchun; Deng, Wei; Li, Hong; Cui, Xiaoyu; Ma, Na; Ding, Dong; Xie, Zhongping; Cui, Pingfang; Ji, Qiuyan; Wang, Jingjing; Zhao, Yuliang; Wang, Junzhi; Li, Qihan

    2014-01-01

    Background: Mumps, a communicable, acute and previously well-controlled disease, has had recent and occasional resurgences in some areas. Methods: A randomized, double-blind, controlled and multistep phase I study of an F-genotype attenuated mumps vaccine produced in human diploid cells was conducted. A total of 300 subjects were enrolled and divided into 4 age groups: 16–60 years, 5–16 years, 2–5 years and 8–24 months. The groups were immunized with one injection per subject. Three different doses of the F-genotype attenuated mumps vaccine, A (3.5 ± 0.25 logCCID50), B (4.25 ± 0.25 logCCID50) and C (5.0 ± 0.25 logCCID50), as well as a placebo control and a positive control of a licensed A-genotype vaccine (S79 strain) were used. The safety and immunogenicity of this vaccine were compared with those of the controls. Results: The safety evaluation suggested that mild adverse reactions were observed in all groups. No serious adverse event (SAE) was reported throughout the trial. The immunogenicity test showed a similar seroconversion rate of the neutralizing and ELISA antibody in the 2- to 5-year-old and 8- to 24-month-old groups compared with the seroconversion rate in the positive control. The GMT of the neutralizing anti-F-genotype virus antibodies in the vaccine groups was slightly higher than that in the positive control group. Conclusions: The F-genotype attenuated mumps vaccine evaluated in this clinical trial was demonstrated to be safe and have effective immunogenicity vs. control. PMID:24614759

  14. Standardizing terms, definitions and concepts for describing and interpreting unwanted immunogenicity of biopharmaceuticals: recommendations of the Innovative Medicines Initiative ABIRISK consortium.

    Science.gov (United States)

    Rup, B; Pallardy, M; Sikkema, D; Albert, T; Allez, M; Broet, P; Carini, C; Creeke, P; Davidson, J; De Vries, N; Finco, D; Fogdell-Hahn, A; Havrdova, E; Hincelin-Mery, A; C Holland, M; H Jensen, P E; Jury, E C; Kirby, H; Kramer, D; Lacroix-Desmazes, S; Legrand, J; Maggi, E; Maillère, B; Mariette, X; Mauri, C; Mikol, V; Mulleman, D; Oldenburg, J; Paintaud, G; R Pedersen, C; Ruperto, N; Seitz, R; Spindeldreher, S; Deisenhammer, F

    2015-09-01

    Biopharmaceuticals (BPs) represent a rapidly growing class of approved and investigational drug therapies that is contributing significantly to advancing treatment in multiple disease areas, including inflammatory and autoimmune diseases, genetic deficiencies and cancer. Unfortunately, unwanted immunogenic responses to BPs, in particular those affecting clinical safety or efficacy, remain among the most common negative effects associated with this important class of drugs. To manage and reduce risk of unwanted immunogenicity, diverse communities of clinicians, pharmaceutical industry and academic scientists are involved in: interpretation and management of clinical and biological outcomes of BP immunogenicity, improvement of methods for describing, predicting and mitigating immunogenicity risk and elucidation of underlying causes. Collaboration and alignment of efforts across these communities is made difficult due to lack of agreement on concepts, practices and standardized terms and definitions related to immunogenicity. The Innovative Medicines Initiative (IMI; www.imi-europe.org), ABIRISK consortium [Anti-Biopharmaceutical (BP) Immunization Prediction and Clinical Relevance to Reduce the Risk; www.abirisk.eu] was formed by leading clinicians, academic scientists and EFPIA (European Federation of Pharmaceutical Industries and Associations) members to elucidate underlying causes, improve methods for immunogenicity prediction and mitigation and establish common definitions around terms and concepts related to immunogenicity. These efforts are expected to facilitate broader collaborations and lead to new guidelines for managing immunogenicity. To support alignment, an overview of concepts behind the set of key terms and definitions adopted to date by ABIRISK is provided herein along with a link to access and download the ABIRISK terms and definitions and provide comments (http://www.abirisk.eu/index_t_and_d.asp). © 2015 British Society for Immunology.

  15. [Immunogenicity and protective efficacy of pertactin recombinants against Bordetella bronchiseptica challenge].

    Science.gov (United States)

    Zhao, Zhanqin; Wang, Chen; Xue, Yun; Ding, Ke; Zhang, Chunjie; Cheng, Xiangchao; Li, Yinju; Liu, Yichen; Wu, Tingcai

    2010-09-01

    In this study we showed the immunogenicity and protective efficacy of five pertactin recombinants against Bordetella bronchiseptica (Bb) challenge. The complete coding sequence (2040 bp) of the prn gene (PRN) and its fragments,5'-terminal 1173 bp fragment (PN),3'-terminal 867 bp fragment (PC), two copies of region I (654 bp; PR I) in PN, and 2 copies of region II (678 bp; PR II) in PC, were separately cloned into the prokaryotic expression vector pGEX-KG, and expressed in the Eschierichia coli BL21 (DE3) using induction by isopropyl-beta-D-thiogalactopyranoside. The recombinant proteins were named GST-PRN, GST-PN, GST-PC, GST-2PR I and GST-2PR II. All five recombinant proteins showed immunological reactivity in the Western-blot analysis. Mice, immunized subcutaneously with two doses of the purified proteins mixed with an equal volume of Freund's adjuvant,produced robust PRN-specific IgG antibody levels. When challenged, 6 of 9 mice in GST-2PR I group and all 9 mice in the other groups survived intranasal challenge with three times the 50% lethal dose (LD50) of virulent Bb HH0809. After challenge with 10 LD50 7/9,3/9,6/9,1/10 and 6/10 of the mice survived. Furthermore, complete protection against intraperitoneal (i.p.) challenge with 10 LD50 of HH0809 was observed in mice that were injected i.p. with 0.5 ml rabbit anti-GST-PRN, GST-PN,GST-PC or GST-2PR II serum. Only 1 of 10 mice survived in the group of mice that received anti-GST-2PR I, and no survivors were noted in the group of mice that received PRN-absorbed rabbit antiserum (0/5). In this study,we showed that all of five pertactin recombinants had differential immunogenicity and protective efficacy against Bb challenge. Mice immunized with GST-PC had better survival against fatal Bb challenge than did those immunized with GST-PN. In addition, GST-2PR II and GST-2PR I provided the similar results These data may have implications for the development of safe and efficacious subunit vaccines for the prevention of

  16. Immunogenicity of Anti-TNF-α Biotherapies

    DEFF Research Database (Denmark)

    Bendtzen, Klaus

    2015-01-01

    % of patients do not respond and about 50% of those who do loose response with time. Furthermore, safety may be compromised by immunogenicity with the induction of anti-drug-antibodies (ADA). Assessment of drug pharmacokinetics and ADA is increasingly recognized as a requirement for safe and rational use...... article - and the accompanying article - is to discuss the reasons for recommending assessments of circulating drug and ADA levels in patients treated with anti-TNF biopharmaceuticals and to detail some of the methodological issues that obscure cost-effective and safer therapies....

  17. Reducing or Eliminating Polysorbate Induced Anaphylaxis and Unwanted Immunogenicity in Biotherapeutics

    Directory of Open Access Journals (Sweden)

    Edward Maggio

    2017-09-01

    Full Text Available The increasing use of biotherapeutics across a growing spectrum of neoplastic, autoimmune, and inflammatory diseases has resulted in a corresponding increase in hypersensitivity reactions. The origins of anaphylaxis are often attributed to undefined intrinsic properties of the biotherapeutic protein itself, ignoring the broader potential negative contributions of functional excipients, in particular polyoxyethylene containing surfactants such as polysorbate 80 and polysorbate 20 (Tween 80 and Tween 20. These surfactants allow biotherapeutics to meet the stringent challenges of extended shelf-life, increased solubility, protein aggregation prevention, reduced administration volume, and satisfactory reconstitution properties in the case of lyophilized biotherapeutics. The potential negative impact of certain functional excipients on product performance characteristics such as anaphylaxis and immunogenicity is often overlooked. While regulatory authorities understandably focus heavily on comparable efficacy in evaluating biosimilars, similar efficacy does not necessarily imply a similar safety profile between the originator and biosimilar products. Both unwanted immunogenicity and anaphylaxis do comprise major components of safety assessment, however, few if any attempts are made to differentiate drug-related from excipient-related anaphylaxis. Replacement of anaphylactogenic and immunogenic functional excipients with equally effective but safer alternatives will allow biotherapeutic developers to differentiate their biotherapeutic, biosimilar, or biobetter from the large number of nearly identical competitor products, simultaneously providing a substantial commercial benefit as well as critical clinical benefits for all concerned – patients, physicians, and third party payers.

  18. Effects of gamma radiation and heat on immunogenicity and morphology of Salmonella typhimurium

    International Nuclear Information System (INIS)

    Santos Araujo, E. dos; Silva, D.M.

    1979-01-01

    Results are presented about immunogenicity of vaccines prepared from Salmonella typhimurium suspensions submitted to 0,55 MR and 1,10 MR of gamma radiation and heating at 60 0 C, (60 min) and at 100 0 C, (3 min) correlated with the cell morphology alterations observed at electron microscopy. The results of mouse-protection tests showed that prepared vaccines with 0,55 MR and with heating at 60 0 C, 60 min were identical and more efficient than the two other treatments. The electronmicrografies also showed one positive correlation between morphological alterations caused by the treatments and the immunogenicities. (Author) [pt

  19. Ineffective Degradation of Immunogenic Gluten Epitopes by Currently Available Digestive Enzyme Supplements

    Science.gov (United States)

    Janssen, George; Christis, Chantal; Kooy-Winkelaar, Yvonne; Edens, Luppo; Smith, Drew

    2015-01-01

    Background Due to the high proline content of gluten molecules, gastrointestinal proteases are unable to fully degrade them leaving large proline-rich gluten fragments intact, including an immunogenic 33-mer from α-gliadin and a 26-mer from γ-gliadin. These latter peptides can trigger pro-inflammatory T cell responses resulting in tissue remodeling, malnutrition and a variety of other complications. A strict lifelong gluten-free diet is currently the only available treatment to cope with gluten intolerance. Post-proline cutting enzymes have been shown to effectively degrade the immunogenic gluten peptides and have been proposed as oral supplements. Several existing digestive enzyme supplements also claim to aid in gluten degradation. Here we investigate the effectiveness of such existing enzyme supplements in comparison with a well characterized post-proline cutting enzyme, Prolyl EndoPeptidase from Aspergillus niger (AN-PEP). Methods Five commercially available digestive enzyme supplements along with purified digestive enzymes were subjected to 1) enzyme assays and 2) mass spectrometric identification. Gluten epitope degradation was monitored by 1) R5 ELISA, 2) mass spectrometric analysis of the degradation products and 3) T cell proliferation assays. Findings The digestive enzyme supplements showed comparable proteolytic activities with near neutral pH optima and modest gluten detoxification properties as determined by ELISA. Mass spectrometric analysis revealed the presence of many different enzymes including amylases and a variety of different proteases with aminopeptidase and carboxypeptidase activity. The enzyme supplements leave the nine immunogenic epitopes of the 26-mer and 33-mer gliadin fragments largely intact. In contrast, the pure enzyme AN-PEP effectively degraded all nine epitopes in the pH range of the stomach at much lower dose. T cell proliferation assays confirmed the mass spectrometric data. Conclusion Currently available digestive enzyme

  20. Ineffective degradation of immunogenic gluten epitopes by currently available digestive enzyme supplements.

    Directory of Open Access Journals (Sweden)

    George Janssen

    Full Text Available Due to the high proline content of gluten molecules, gastrointestinal proteases are unable to fully degrade them leaving large proline-rich gluten fragments intact, including an immunogenic 33-mer from α-gliadin and a 26-mer from γ-gliadin. These latter peptides can trigger pro-inflammatory T cell responses resulting in tissue remodeling, malnutrition and a variety of other complications. A strict lifelong gluten-free diet is currently the only available treatment to cope with gluten intolerance. Post-proline cutting enzymes have been shown to effectively degrade the immunogenic gluten peptides and have been proposed as oral supplements. Several existing digestive enzyme supplements also claim to aid in gluten degradation. Here we investigate the effectiveness of such existing enzyme supplements in comparison with a well characterized post-proline cutting enzyme, Prolyl EndoPeptidase from Aspergillus niger (AN-PEP.Five commercially available digestive enzyme supplements along with purified digestive enzymes were subjected to 1 enzyme assays and 2 mass spectrometric identification. Gluten epitope degradation was monitored by 1 R5 ELISA, 2 mass spectrometric analysis of the degradation products and 3 T cell proliferation assays.The digestive enzyme supplements showed comparable proteolytic activities with near neutral pH optima and modest gluten detoxification properties as determined by ELISA. Mass spectrometric analysis revealed the presence of many different enzymes including amylases and a variety of different proteases with aminopeptidase and carboxypeptidase activity. The enzyme supplements leave the nine immunogenic epitopes of the 26-mer and 33-mer gliadin fragments largely intact. In contrast, the pure enzyme AN-PEP effectively degraded all nine epitopes in the pH range of the stomach at much lower dose. T cell proliferation assays confirmed the mass spectrometric data.Currently available digestive enzyme supplements are ineffective in

  1. SagE induces highly effective protective immunity against Streptococcus iniae mainly through an immunogenic domain in the extracellular region.

    Science.gov (United States)

    Sun, Yun; Sun, Li; Xing, Ming-qing; Liu, Chun-sheng; Hu, Yong-hua

    2013-11-12

    Streptococcus iniae is a Gram-positive bacterium and a severe pathogen of a wide range of farmed fish. S. iniae possesses a virulence-associated streptolysin S cluster composed of several components, one of which is SagE. SagE a transmembrane protein with one major extracellular region named ECR. This study aimed to develop a SagE-based DNA candidate vaccine against streptococcosis and examine the immunoprotective mechanism of the vaccine. We constructed a DNA vaccine, pSagE, based on the sagE gene and examined its immunological property in a Japanese flounder (Paralichthys olivaceus) model. The results showed that at 7 days post-vaccination, expression of SagE at transcription and translation levels was detected in the tissues of the vaccinated fish. After challenge with S. iniae at one and two months post-vaccination, pSagE-vaccinated fish exhibited relative percent survival (RPS) of 95% and 88% respectively. Immunological analysis showed that (i) pSagE significantly upregulated the expression of a wide range of immune genes, (ii) pSagE induced the production of specific serum antibodies that bound whole-cell S. iniae, and (iii) treatment of S. iniae with pSagE-induced antibodies blocked bacterial invasion of host cells. To localize the immunoprotective domain of SagE, the ECR-expressing DNA vaccine pSagEECR was constructed. Immunization analysis showed that flounder vaccinated with pSagEECR exhibited a RPS of 68%, and that pSagEECR induced serum antibody production and immune gene expression in a manner similar to, though to lower magnitudes than, those induced by pSagE. We in this study developed a DNA vaccine, pSagE, which induces highly protective immunity against S. iniae. The protective effect of pSagE is probably due to its ability to elicit systemic immune response, in particular that of the humoral branch, which leads to production of specific serum antibodies that impair bacterial infection. These results add insights to the immunoprotective mechanism

  2. Radioactive sources of main radiological concern in the Kola-Barents region

    International Nuclear Information System (INIS)

    Bergman, R.; Baklanov, A.

    1998-07-01

    This overview focuses on some major issues for risk analysis appearing in our recent study surveying radioactive sources on the Kola Peninsula, along with adjacent parts of the Arctic seas. The main issues of the parts are as follows: An introduction to the presence of radioactive sources and environmental contamination in the Barents Euro-Arctic Region and the current status as regards various significant studies. Radioactive contamination in man and the environment on the Kola Peninsula, as well as radioactive transfer during the last three decades from external sources to the Kola-Barents region. The main conclusion from the findings is that the contamination is generally relatively low and that neither the activity levels in samples of soil, vegetation, and the important food-chains, nor the content in man indicate any changes since 1986 that could not be explained by the combined effect of the cumulative deposition from the nuclear weapons testing and the accident in Chernobyl. The radioactive sources of main concern in the region belong to the following categories: nuclear power submarine and cruiser naval bases; civil nuclear power ice-breaker fleet; building and repairing shipyards; nuclear power plants; radioactive waste and spent nuclear fuel storage facilities; sunken reactors/ships; liquid radioactive waste dumping; solid radioactive waste dumping; nuclear weapon bases; nuclear weapon tests; civil nuclear explosions; nuclear accidents; mining radioactive ore deposits and plants; new projects and others. Several case studies concerning releases in the Kola-Barents region are reviewed, and followed by consequence analyses for the categories of primary interest covering: a) airborne releases from the Kola NPP, and from submarines or spent nuclear fuel; b) releases from objects in the marine environment including submarines, dumped reactors, and various other radioactive objects and waste; c) releases from liquid and solid wastes stored on land or during

  3. Radioactive sources of main radiological concern in the Kola-Barents region

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, R.; Baklanov, A

    1998-07-01

    This overview focuses on some major issues for risk analysis appearing in our recent study surveying radioactive sources on the Kola Peninsula, along with adjacent parts of the Arctic seas. The main issues of the parts are as follows: An introduction to the presence of radioactive sources and environmental contamination in the Barents Euro-Arctic Region and the current status as regards various significant studies. Radioactive contamination in man and the environment on the Kola Peninsula, as well as radioactive transfer during the last three decades from external sources to the Kola-Barents region. The main conclusion from the findings is that the contamination is generally relatively low and that neither the activity levels in samples of soil, vegetation, and the important food-chains, nor the content in man indicate any changes since 1986 that could not be explained by the combined effect of the cumulative deposition from the nuclear weapons testing and the accident in Chernobyl. The radioactive sources of main concern in the region belong to the following categories: nuclear power submarine and cruiser naval bases; civil nuclear power ice-breaker fleet; building and repairing shipyards; nuclear power plants; radioactive waste and spent nuclear fuel storage facilities; sunken reactors/ships; liquid radioactive waste dumping; solid radioactive waste dumping; nuclear weapon bases; nuclear weapon tests; civil nuclear explosions; nuclear accidents; mining radioactive ore deposits and plants; new projects and others. Several case studies concerning releases in the Kola-Barents region are reviewed, and followed by consequence analyses for the categories of primary interest covering: a) airborne releases from the Kola NPP, and from submarines or spent nuclear fuel; b) releases from objects in the marine environment including submarines, dumped reactors, and various other radioactive objects and waste; c) releases from liquid and solid wastes stored on land or during

  4. 77 FR 24385 - Approval and Promulgation of Air Quality Implementation Plans; Maine; Regional Haze

    Science.gov (United States)

    2012-04-24

    ... Wisconsin), Maine lacks a State cost effectiveness threshold in its Best Available Retrofit Technology (BART... by these States. Response: While States have the option to develop a cost effectiveness threshold, the Regional Haze Rule does not require States to set a bright line threshold for cost effectiveness...

  5. Listeriolysin o is strongly immunogenic independently of its cytotoxic activity.

    Directory of Open Access Journals (Sweden)

    Javier A Carrero

    Full Text Available The presentation of microbial protein antigens by Major Histocompatibility Complex (MHC molecules is essential for the development of acquired immunity to infections. However, most biochemical studies of antigen processing and presentation deal with a few relatively inert non-microbial model antigens. The bacterial pore-forming toxin listeriolysin O (LLO is paradoxical in that it is cytotoxic at nanomolar concentrations as well as being the source of dominant CD4 and CD8 T cell epitopes following infection with Listeria monocytogenes. Here, we examined the relationship of LLO toxicity to its antigenicity and immunogenicity. LLO offered to antigen presenting cells (APC as a soluble protein, was presented to CD4 T cells at picomolar to femtomolar concentrations- doses 3000-7000-fold lower than free peptide. This presentation required a dose of LLO below the cytotoxic level. Mutations of two key tryptophan residues reduced LLO toxicity by 10-100-fold but had no effect on its presentation to CD4 T cells. Thus there was a clear dissociation between the cytotoxic properties of LLO and its very high antigenicity. Presentation of LLO to CD8 T cells was not as robust as that seen in CD4 T cells, but still occurred in the nanomolar range. APC rapidly bound and internalized LLO, then disrupted endosomal compartments within 4 hours of treatment, allowing endosomal contents to access the cytosol. LLO was also immunogenic after in vivo administration into mice. Our results demonstrate the strength of LLO as an immunogen to both CD4 and CD8 T cells.

  6. Immunogenicity of virus-like particles containing modified goose parvovirus VP2 protein.

    Science.gov (United States)

    Chen, Zongyan; Li, Chuanfeng; Zhu, Yingqi; Wang, Binbin; Meng, Chunchun; Liu, Guangqing

    2012-10-01

    The major capsid protein VP2 of goose parvovirus (GPV) expressed using a baculovirus expression system (BES) assembles into virus-like particles (VLPs). To optimize VP2 gene expression in Sf9 cells, we converted wild-type VP2 (VP2) codons into codons that are more common in insect genes. This change greatly increased VP2 protein production in Sf9 cells. The protein generated from the codon-optimized VP2 (optVP2) was detected by immunoblotting and an indirect immunofluorescence assay (IFA). Transmission electron microscopy analysis revealed the formation of VLPs. These findings indicate that optVP2 yielded stable and high-quality VLPs. Immunogenicity assays revealed that the VLPs are highly immunogenic, elicit a high level of neutralizing antibodies and provide protection against lethal challenge. The antibody levels appeared to be directly related to the number of GP-Ag-positive hepatocytes. The variation trends for GP-Ag-positive hepatocytes were similar in the vaccine groups. In comparison with the control group, the optVP2 VLPs groups exhibited obviously better responses. These data indicate that the VLPs retained immunoreactivity and had strong immunogenicity in susceptible geese. Thus, GPV optVP2 appears to be a good candidate for the vaccination of goslings. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. High conservation level of CD8(+) T cell immunogenic regions within an unusual H1N2 human influenza variant.

    Science.gov (United States)

    Komadina, Naomi; Quiñones-Parra, Sergio M; Kedzierska, Katherine; McCaw, James M; Kelso, Anne; Leder, Karin; McVernon, Jodie

    2016-10-01

    Current seasonal influenza vaccines require regular updates due to antigenic drift causing loss of effectiveness and therefore providing little or no protection against novel influenza A subtypes. Next generation vaccines capable of eliciting CD8(+) T cell (CTL) mediated cross-protective immunity may offer a long-term alternative strategy. However, measuring pre- and existing levels of CTL cross-protection in humans is confounded by differences in infection histories across individuals. During 2000-2003, H1N2 viruses circulated persistently in the human population for the first time and we hypothesized that the viral nucleoprotein (NP) contained novel CTL epitopes that may have contributed to the survival of the viruses. This study describes the immunogenic NP peptides of H1N1, H2N2, and H3N2 influenza viruses isolated from humans over the past century, 1918-2003, by comparing this historical dataset to reference NP peptides from H1N2 that circulated in humans during 2000-2003. Observed peptides sequences ranged from highly conserved (15%) to highly variable (12%), with variation unrelated to reported immunodominance. No unique NP peptides which were exclusive to the H1N2 viruses were noted. However, the virus had inherited the NP from a recently emerged H3N2 variant containing novel peptides, which may have assisted its persistence. Any advantage due to this novelty was subsequently lost with emergence of a newer H3N2 variant in 2003. Our approach has potential to provide insight into the population context in which influenza viruses emerge, and may help to inform immunogenic peptide selection for CTL-inducing influenza vaccines. J. Med. Virol. 88:1725-1732, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Identification of immunogenic proteins and evaluation of four recombinant proteins as potential vaccine antigens from Vibrio anguillarum in flounder (Paralichthys olivaceus).

    Science.gov (United States)

    Xing, Jing; Xu, Hongsen; Wang, Yang; Tang, Xiaoqian; Sheng, Xiuzhen; Zhan, Wenbin

    2017-05-31

    Vibrio anguillarum is a severe bacterial pathogen that can infect a wide range of fish species. Identification of immunogenic proteins and development of vaccine are essential for disease prevention. In this study, immunogenic proteins were screened and identified from V. anguillarum, and then protective efficacy of the immunogenic proteins was evaluated. Immunogenic proteins in V. anguillarum whole cell were detected by Western blotting (WB) using immunized flounder (Paralichthys olivaceus) serum, and then identified by Mass spectrometry (MS). The recombinant proteins of four identified immunogenic proteins were produced and immunized to fish, and then percentages of surface membrane immunoglobulin-positive (sIg+) cells in peripheral blood lymphocytes (PBL), total antibodies, antibodies against V. anguillarum, antibodies against recombinant proteins and relative percent survival (RPS) were measured, respectively. The results showed that five immunogenic proteins, VAA, Groel, OmpU, PteF and SpK, were identified; their recombinant proteins, rOmpU, rGroel, rSpK and rVAA, could induce the proliferation of sIg+ cells in PBL and production of total antibodies, antibodies against V. anguillarum and antibodies against the recombinant proteins; their protection against V. anguillarum showed 64.86%, 72.97%, 21.62% and 78.38% RPS, respectively. The results revealed that the immunoproteomic technique using fish anti-V. anguillarum serum provided an efficient way to screen the immunogenic protein for vaccine antigen. Moreover, the rVAA, rGroel and rOmpU had potential to be vaccine candidates against V. anguillarum infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Main bronchial diverticula in the subcarinal region: Their relation to airflow limitations

    International Nuclear Information System (INIS)

    Higuchi, Takeshi; Takahashi, Naoya; Shiotani, Motoi; Sato, Suguru; Ohta, Atsushi; Maeda, Haruo; Nakajima, Haruhiko; Itoh, Kazuhiko; Tsukada, Hiroki

    2012-01-01

    Background. To date, bronchial diverticula have generally been treated as a pathological condition associated with chronic obstructive pulmonary disease (COPD), although only a limited amount of published information is available on the relationship between bronchial diverticula as depicted by multidetector computed tomography (MDCT) and airflow limitations. Purpose. To evaluate the relationship between airflow limitations and main bronchial diverticula in the subcarinal region using spirometry and thin-section MDCT. Material and Methods. A total of 189 consecutive adult patients were retrospectively evaluated based on spirometry and thin-section MDCT of the chest. All examinations were performed at our institution between June and October 2008. The study group included 70 women and 119 men with a mean age of 65 years (range 19-86 years). The relationship between the FEV1% and bronchial diverticula in the subcarinal region was analyzed (Student's t-test). Results. The indications for conducting the examinations were pulmonary diseases (82 patients), cardiovascular diseases (22), extrapulmonary malignancies (74), and other conditions (11). A total of 84/189 (44.4%) patients showed bronchial diverticula, and the FEV 1 % of 70/84 (83.3%) patients was above 70. The FEV 1 % of patients with lesions ranged from 26.0 to 97.8 (mean 76.8), whereas the range was 28.1-94.4 (mean 73.7) in those without lesions. There was no significant association between the FEV 1 % and the presence of subcarinal bronchial diverticula (P > 0.05). Conclusion. Our data demonstrate that thin-section chest CT commonly demonstrates main bronchial diverticula in the subcarinal region in patients without airflow limitations. We propose that the presence of a small number of tiny bronchial diverticula under the carina may not be a criterion for the diagnosis of COPD

  10. Main bronchial diverticula in the subcarinal region: Their relation to airflow limitations

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Takeshi; Takahashi, Naoya; Shiotani, Motoi; Sato, Suguru; Ohta, Atsushi; Maeda, Haruo; Nakajima, Haruhiko; Itoh, Kazuhiko; Tsukada, Hiroki (Department of Radiology, Respiratory Medicine, Niigata City General Hospital, Niigata-city, Niigata-ken (Japan)), Email: higuchi@hosp.niigata.niigata.jp

    2012-02-15

    Background. To date, bronchial diverticula have generally been treated as a pathological condition associated with chronic obstructive pulmonary disease (COPD), although only a limited amount of published information is available on the relationship between bronchial diverticula as depicted by multidetector computed tomography (MDCT) and airflow limitations. Purpose. To evaluate the relationship between airflow limitations and main bronchial diverticula in the subcarinal region using spirometry and thin-section MDCT. Material and Methods. A total of 189 consecutive adult patients were retrospectively evaluated based on spirometry and thin-section MDCT of the chest. All examinations were performed at our institution between June and October 2008. The study group included 70 women and 119 men with a mean age of 65 years (range 19-86 years). The relationship between the FEV1% and bronchial diverticula in the subcarinal region was analyzed (Student's t-test). Results. The indications for conducting the examinations were pulmonary diseases (82 patients), cardiovascular diseases (22), extrapulmonary malignancies (74), and other conditions (11). A total of 84/189 (44.4%) patients showed bronchial diverticula, and the FEV{sub 1}% of 70/84 (83.3%) patients was above 70. The FEV{sub 1}% of patients with lesions ranged from 26.0 to 97.8 (mean 76.8), whereas the range was 28.1-94.4 (mean 73.7) in those without lesions. There was no significant association between the FEV{sub 1}% and the presence of subcarinal bronchial diverticula (P > 0.05). Conclusion. Our data demonstrate that thin-section chest CT commonly demonstrates main bronchial diverticula in the subcarinal region in patients without airflow limitations. We propose that the presence of a small number of tiny bronchial diverticula under the carina may not be a criterion for the diagnosis of COPD

  11. The action of ionizing radiation on the morphology, physiology and growth of Leishmania Amazonensis, with evaluation of their immunogenic power in experimental models

    International Nuclear Information System (INIS)

    Bonetti, Franco Claudio

    2002-01-01

    Leishmaniasis is a disease which affects thousands of people in the Tropical regions around the world, is caused by a protozoan of the genus Leishmania spp., with urban and wild mammals acting as reservoirs. In the mammal host, the amastigote form of the parasite infects and multiplies into macrophages. Treatments for leishmaniasis have a high cost and are long lasting, frequently resulting in therapy interruption. This procedure culminates with a selection of resistant parasite strains, inducing tolerance to the therapy. Either the control of vectors or the mammal host are difficult due the social and economic implications. Thus, the search for alternatives treatments against these protozoans have been stimulated. The gamma radiation ( 60 CO) shown to be an efficient toll to kill these parasites maintaining their immunogenicity. Cellular viability, Electronically microscopy and Multiplex-PCR techniques showed that, after irradiation, the parasites had their growth inhibited by cytoplasmatic and nucleic material disorganisation, appointing the gamma radiation as important in terms of immunogens improvement. (author)

  12. Results of 3-dimensional structural FE-modeling of the coil end-regions of the LHC main dipoles

    CERN Document Server

    Hoeck, U; Schillo, M; Perini, D; Siegel, N

    2000-01-01

    The transition region between the straight part and the ends of the coils of the LHC model and prototype dipole magnets are often identified as the origin of training quenches. In order to study how the discontinuities in the material properties of these regions affect coil pre-stress and possibly gain more insight in the quench behavior, a program was set up at CERN to analyze by 3D-FEM these particular regions. The ACCEL team, who performed a similar analysis for the main quadrupoles of the Superconducting Supercollider SSC, is entrusted with this program. In this paper we report on the results of 3D-modeling and analysis of the coil return end region, including the complete coil mass, of a 1-m single bore model magnet. This magnet represents all relevant features of the "two-in-one" LHC main dipole design concerning the winding configuration, the collar pack, the yoke, and the outer shell representing the He-vessel. The transition region between coil ends and straight section is modeled by slicing the magn...

  13. Immunogenicity of Phleum pratense depigmented allergoid vaccines: experimental study in rabbits.

    Science.gov (United States)

    Iraola, V; Gallego, M T; López-Matas, M A; Morales, M; Bel, I; García, N; Carnés, J

    2012-01-01

    Immunogenicity studies are based on accurate preclinical and clinical assessment of pharmaceutical products. The immunogenicity of modified allergen vaccines has not been fully elucidated, and the mechanisms involved are not well understood. Animal and human models have recently shown that depigmented allergoids induce specific immunoglobulin (Ig) G against individual allergens, thus supporting the clinical efficacy of these vaccines. The aim of this study was to investigate the production of specific IgG against individual antigens and their isoforms in rabbits injected with depigmented allergoid extracts of Phleum pratense pollen. Two New Zealand rabbits were immunized with depigmented-polymerized extracts adsorbed onto aluminum hydroxide (Depigoid) of P pratense. Rabbits were injected 3 times (35 microg Phl p 5). Specific IgG titers against native, depigmented, and depigmented-polymerized extracts and individual allergens (rPhl p 1 and rPhl p 5a) were analyzed by direct enzyme-linked immunosorbent assay. The capacity of these synthesized antibodies to recognize individual native and depigmented allergens and different isoforms was evaluated by immunoblot and 2-D analysis. All rabbits produced high titers of specific IgG against the 3 extracts. Rabbits injected with depigmented allergoids produced similar specific antibody titers against native, depigmented, and depigmented-polymerized extracts. Serum samples recognized individual allergens and their isoforms in the nonmodified extracts. Vaccines containing depigmented allergoid extracts of P pratense induce immunogenicity in vivo. The antibodies produced after injection of these extracts clearly recognized allergens and different isoforms in their native configuration.

  14. Main Causes Of Mortality Of Companies In Central Region Of Ecuador

    Directory of Open Access Journals (Sweden)

    Jorge Vladimir Núñez Grijalva

    2015-12-01

    Full Text Available Most of the studies concerning trading companies, addressing aspects of the initial stage in the life of these, such as its formation stage. However, few studies have examined the final stage of a company and especially the causes of mortality and closing. This article analyzes the main causes of mortality trading companies from three different and complementary disciplines at once: legal, administrative and financial accounting in commercial companies of the Central Region of Ecuador. This research provides a summary of the major causes of mortality, which should be considered by the current and future employers, in order to strengthen their decisions regarding the survival of companies.

  15. Induction of Immunogenic Cell Death with Non-Thermal Plasma for Cancer Immunotherapy

    Science.gov (United States)

    Lin, Abraham G.

    Even with the recent advancements in cancer immunotherapy, treatments are still associated with debilitating side effects and unacceptable fail rates. Induction of immunogenic cell death (ICD) in tumors is a promising approach to cancer treatment that may overcome these deficiencies. Cells undergoing ICD pathways enhance the interactions between cancerous cells and immune cells of the patient, resulting in the generation of anti-cancer immunity. The goal of this therapy relies on the engagement and reestablishment of the patient's natural immune processes to target and eliminate cancerous cells systemically. The main objective of this research was to determine if non-thermal plasma could be used to elicit immunogenic cancer cell death for cancer immunotherapy. My hypothesis was that plasma induces immunogenic cancer cell death through oxidative stress pathways, followed by development of a specific anti-tumor immune response. This was tested by investigating the interactions between plasma and multiple cancerous cells in vitro and validating anti-tumor immune responses in vivo. Following plasma treatment, two surrogate ICD markers, secreted adenosine triphosphate (ATP) and surface exposed calreticulin (ecto-CRT), were emitted from all three cancerous cell lines tested: A549 lung carcinoma cell line, CNE-1 radiation-resistant nasopharyngeal cell line and CT26 colorectal cancer cell line. When these cells were co-cultured with macrophages, cells of the innate immune system, the tumoricidal activity of macrophages was enhanced, thus demonstrating the immunostimulatory activity of cells undergoing ICD. The underlying mechanisms of plasma-induced ICD were also evaluated. When plasma is generated, four major components are produced: electromagnetic fields, ultraviolet radiation, and charged and neutral reactive species. Of these, we determined that plasma-generated charged and short-lived reactive oxygen species (ROS) were the major effectors of ICD. Following plasma

  16. Product related factors influencing the immunogenicity of interferon beta-1b

    NARCIS (Netherlands)

    Haji Abdolvahab, M.

    2016-01-01

    Therapeutic interferon beta is the first line treatment of relapsing remitting Multiple Sclerosis. However, despite their success in improving patient wellbeing, all IFNβ products encounter a significant problem: immunogenicity. In some patients, IFNβ products induce the formation of antidrug

  17. Safety and immunogenicity of TetractHib (a vaccine combining DTP ...

    African Journals Online (AJOL)

    The safety and immunogenicity of TETRActHIB (a vaccine combining diphtheria and tetanus toxoids-pertussis vaccine (DTP) with Haemophilus influenzae type b (Hib) conjugate vaccine (polyribosyl ribitol phosphate conjugated to tetanus protein) (PRP-T)) was assessed in 131 Cape Town infants immunised at 6, 10 and 14 ...

  18. Identification and characterization of serovar-independent immunogens in Actinobacillus pleuropneumoniae

    DEFF Research Database (Denmark)

    Antenucci, Fabio; Fougeroux, Cyrielle; Bosse, Janine T.

    2017-01-01

    and further characterized, both in silico and in vitro. Additionally, we analysed outer membrane vesicles (OMVs) of A. pleuropneumoniae MIDG2331 as potential immunogens, and compared deletions in degS and nlpI for increasing yields of OMVs compared to the parental strain. Our results indicated that Apf...

  19. Development of new versions of anti-human CD34 monoclonal antibodies with potentially reduced immunogenicity

    International Nuclear Information System (INIS)

    Qian Weizhu; Wang Ling; Li Bohua; Wang Hao; Hou Sheng; Hong Xueyu; Zhang Dapeng; Guo Yajun

    2008-01-01

    Despite the widespread clinical use of CD34 antibodies for the purification of human hematopoietic stem/progenitor cells, all the current anti-human CD34 monoclonal antibodies (mAbs) are murine, which have the potential to elicit human antimouse antibody (HAMA) immune response. In the present study, we developed three new mouse anti-human CD34 mAbs which, respectively, belonged to class I, class II and class III CD34 epitope antibodies. In an attempt to reduce the immunogenicity of these three murine mAbs, their chimeric antibodies, which consisted of mouse antibody variable regions fused genetically to human antibody constant regions, were constructed and characterized. The anti-CD34 chimeric antibodies were shown to possess affinity and specificity similar to that of their respective parental murine antibodies. Due to the potentially better safety profiles, these chimeric antibodies might become alternatives to mouse anti-CD34 antibodies routinely used for clinical application

  20. Influence of γ-radiation on the immunobiological and immunochemical properties of cholera exotoxin. Com. 2. Immunogenic properties of crudi irradiated toxin filtrate

    International Nuclear Information System (INIS)

    Rubtsov, I.V.; Nedugova, G.I.; Samojlenko, I.I.

    1984-01-01

    The effect of ionizing radiation on immunogenic activity of crude cholera exotoxin (filtrate-toxin), which presents initial raw material to prepare native preventive treatment preparation cholergene-anatoxin has been studied. It is stated, that the use of gamma-radiation for the detoxification and sterilization of cholera exotoxin (crude), preserves its immunogenic properties. The observed increase in immunogenic activity, manifested in the reliable increase of antitoxic antibodies titre to the irradiation preparation over the whole period of observation, as compared with control, in the authors' assumption can be caused by the processes of polymerization and aggregation, taking place in protein molecule during irradiation, which results in the growth of molecule dimensions and in immunogenicity increase

  1. Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo

    International Nuclear Information System (INIS)

    Lee, Miyoung; Jeong, Sang Young; Ha, Jueun; Kim, Miyeon; Jin, Hye Jin; Kwon, Soon-Jae; Chang, Jong Wook; Choi, Soo Jin; Oh, Wonil; Yang, Yoon Sun; Kim, Jae-Sung; Jeon, Hong Bae

    2014-01-01

    Highlights: • hUCB-MSCs maintained low immunogenicity even after immune challenge in vitro. • Humanized NSG mice were established using human UCB CD34+ cells. • Repeated intravenous hUCB-MSC injection into mice did not lead to immune responses and adverse events. • Allogeneic hUCB-MSCs maintained low immunogenicity in vitro and in vivo. - Abstract: Evaluation of the immunogenicity of human mesenchymal stem cells (MSCs) in an allogeneic setting during therapy has been hampered by lack of suitable models due to technical and ethical limitations. Here, we show that allogeneic human umbilical cord blood derived-MSCs (hUCB-MSCs) maintained low immunogenicity even after immune challenge in vitro. To confirm these properties in vivo, a humanized mouse model was established by injecting isolated hUCB-derived CD34+ cells intravenously into immunocompromised NOD/SCID IL2γnull (NSG) mice. After repeated intravenous injection of human peripheral blood mononuclear cells (hPBMCs) or MRC5 cells into these mice, immunological alterations including T cell proliferation and increased IFN-γ, TNF-α, and human IgG levels, were observed. In contrast, hUCB-MSC injection did not elicit these responses. While lymphocyte infiltration in the lung and small intestine and reduced survival rates were observed after hPBMC or MRC5 transplantation, no adverse events were observed following hUCB-MSC introduction. In conclusion, our data suggest that allogeneic hUCB-MSCs have low immunogenicity in vitro and in vivo, and are therefore “immunologically safe” for use in allogeneic clinical applications

  2. Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Miyoung; Jeong, Sang Young; Ha, Jueun; Kim, Miyeon; Jin, Hye Jin; Kwon, Soon-Jae [Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874 (Korea, Republic of); Chang, Jong Wook [Research Institute for Future Medicine Stem Cell and Regenerative Medicine Center, Samsung Medical Center, Seoul 137-710 (Korea, Republic of); Choi, Soo Jin; Oh, Wonil; Yang, Yoon Sun [Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874 (Korea, Republic of); Kim, Jae-Sung [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-709 (Korea, Republic of); Jeon, Hong Bae, E-mail: jhb@medi-post.co.kr [Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874 (Korea, Republic of)

    2014-04-18

    Highlights: • hUCB-MSCs maintained low immunogenicity even after immune challenge in vitro. • Humanized NSG mice were established using human UCB CD34+ cells. • Repeated intravenous hUCB-MSC injection into mice did not lead to immune responses and adverse events. • Allogeneic hUCB-MSCs maintained low immunogenicity in vitro and in vivo. - Abstract: Evaluation of the immunogenicity of human mesenchymal stem cells (MSCs) in an allogeneic setting during therapy has been hampered by lack of suitable models due to technical and ethical limitations. Here, we show that allogeneic human umbilical cord blood derived-MSCs (hUCB-MSCs) maintained low immunogenicity even after immune challenge in vitro. To confirm these properties in vivo, a humanized mouse model was established by injecting isolated hUCB-derived CD34+ cells intravenously into immunocompromised NOD/SCID IL2γnull (NSG) mice. After repeated intravenous injection of human peripheral blood mononuclear cells (hPBMCs) or MRC5 cells into these mice, immunological alterations including T cell proliferation and increased IFN-γ, TNF-α, and human IgG levels, were observed. In contrast, hUCB-MSC injection did not elicit these responses. While lymphocyte infiltration in the lung and small intestine and reduced survival rates were observed after hPBMC or MRC5 transplantation, no adverse events were observed following hUCB-MSC introduction. In conclusion, our data suggest that allogeneic hUCB-MSCs have low immunogenicity in vitro and in vivo, and are therefore “immunologically safe” for use in allogeneic clinical applications.

  3. Demonstration of immunogenic keratan sulphate in commercial chondroitin 6-sulphate from shark cartilage. Implications for ELISA assays

    DEFF Research Database (Denmark)

    Møller, H J; Møller-Pedersen, T; Damsgaard, T E

    1995-01-01

    The prototype monoclonal keratan sulphate (KS) antibody 5D4 that is widely used for detection of KS in tissues and biological fluids reacts strongly with commercial low grade shark cartilage chondroitin 6-sulphate. Characterization of the immunogenic material by chondroitinase ABC digestion, ELISA...... cartilage chondroitin 6-sulphate is an easy accessible source of immunogenic KS that can be used as a reference standard and as coating antigen in KS-ELISAs. The concentration of immunogenic KS in synovial fluid measured with an ELISA based solely on reagents of shark cartilage chondroitin 6-sulphate...... correlated well (r = 0.90) with the concentrations obtained with a traditional KS-ELISA that uses purified aggrecan as standard and coating antigen, and KS in both serum and synovial fluid could be measured with sufficient linearity....

  4. Safety, immunogenicity, and early evidence of antitumor response with the use of the vaccine formulation NeuGcGM3 / VSSPs in patients with advanced melanoma

    International Nuclear Information System (INIS)

    Osorio Rodríguez, Marta de la Caridad

    2014-01-01

    Introduction. Melanoma is now considered an epidemic around the world. Its high lethality, constitutes a serious problem despite the continuous pharmacological and technological advances. NeuGcGM3/VSSP is a vaccine formulation containing ganglioside NeuGcGM3 incorporated in the acting of Neisseria meningitidis. It may be a choice therapeutic given this ganglioside in primary melanoma expression and immunogenicity and safety demonstrated by this vaccine in advanced breast cancer. This study evaluated the safety, immunogenicity and the anti-tumor response in patients with advanced melanoma to manage it via IM or SC. Material and methods: The expression of ganglioside in primary melanomas and its metastases was identified by immunohistochemical methods with the AcM 14F7 (anti-NGCGM3). 2 clinical trials Phase Ib/IIa escalation of doses with NeuGcGM3 /VSSP were conducted in patients with melanoma Advanced IM and SC routes. Safety and anti-tumour response were evaluated with the CTC and RECIST criteria. The statistical analysis was performed with the SPSS statistical package. Results: NeuGcGM3 is expressed in primary tumors and the studied lymph nodes metastases. NeuGcGM3/VSSP was safely managed by the SC and IM, roads without limiting toxicity. Immunogenic with IgM and IgG isotype antibody response resulted in 75% patients. There was anti-tumoral response in 38.5% with increase in median SV mainly associated with anti-tumor response. The appearance of vitiligo and the response of antibodies against other not present in the vaccine formulation gangliosides may be considered a manifestation of immune restoration. Conclusions. NeuGcGM3/VSSP managed IM and SC in patients with advanced melanoma was safe, immunogenic and antitumor activity associated with overall survival advantage. (author)

  5. Evaluation of the immunogenicity of liposome encapsulated HVR1 and NS3 regions of genotype 3 HCV, either singly or in combination

    Directory of Open Access Journals (Sweden)

    Gupte Gouri M

    2012-03-01

    Full Text Available Abstract Background Hepatitis C virus displays a high rate of mutation and exists as a quasispecies in infected patients. In the absence of an effective universal vaccine, genotype-specific vaccine development represents an alternative. We have attempted to develop a genotype 3 based, liposome encapsulated HCV vaccine with hypervariable region-1 (HVR1 and non-structural region-3 (NS3 components. Results HCV RNA extracted from serum samples of 49 chronically infected patients was PCR amplified to obtain HVR1 region. These amplified products were cloned to obtain 20 clones per sample in order to identify the quasispecies pattern. The HVR1 consensus sequence, along with three variants was reverse transcribed to obtain peptides. The peptides were checked for immunoreactivity individually, as a pool or as a single peptide tetramer interspersed with four glycine residues. Anti-HCV positivity varied from 42.6% (tetramer to 92.2% (variant-4 when 115 anti-HCV positive sera representing genotypes 1, 3, 4 and 6 were screened. All the 95 anti-HCV negatives were scored negative by all antigens. Mice were immunized with different liposome encapsulated or Al(OH3 adjuvanted formulations of HVR1 variants and recombinant NS3 protein, and monitored for anti-HVR1 and anti-NS3 antibody titres, IgG isotypes and antigen specific cytokine levels. A balanced Th1/Th2 isotyping response with high antibody titres was observed in most of the liposome encapsulated antigen groups. The effect of liposomes and aluminium hydroxide on the expression of immune response genes was studied using Taqman Low Density Array. Both Th1 (IFN-gamma, Il18 and Th2 (Il4 genes were up regulated in the liposome encapsulated HVR1 variant pool-NS3 combination group. In-vitro binding of the virus to anti-HVR1 antibodies was demonstrated. Conclusion The optimum immunogen was identified to be combination of peptides of HVR1 consensus sequence and its variants along with pNS3 encapsulated in liposomes

  6. Immunogenicity and safety of investigational vaccine formulations against meningococcal serogroups A, B, C, W, and Y in healthy adolescents.

    Science.gov (United States)

    Saez-Llorens, Xavier; Aguilera Vaca, Diana Catalina; Abarca, Katia; Maho, Emmanuelle; Graña, Maria Gabriela; Heijnen, Esther; Smolenov, Igor; Dull, Peter M

    2015-01-01

    This phase 2 study assessed the immunogenicity, safety, and reactogenicity of investigational formulations of meningococcal ABCWY vaccines, consisting of recombinant proteins (rMenB) and outer membrane vesicle (OMV) components of a licensed serogroup B vaccine, combined with components of a licensed quadrivalent meningococcal glycoconjugate vaccine (MenACWY-CRM). A total of 495 healthy adolescents were randomized to 6 groups to receive 2 doses (Months 0, 2) of one of 4 formulations of rMenB antigens, with or without OMV, combined with MenACWY-CRM, or 2 doses of rMenB alone or one dose of MenACWY-CRM then a placebo. Immunogenicity was assessed by serum bactericidal assay with human complement (hSBA) against serogroups ACWY and serogroup B test strains; solicited reactions and any adverse events (AEs) were assessed. Two MenABCWY vaccinations elicited robust ACWY immune responses, with higher seroresponse rates than one dose of MenACWY-CRM. Bactericidal antibody responses against the rMenB antigens and OMV components were highest in subjects who received 2 doses of OMV-containing MenABCWY formulations, with ≥68% of subjects achieving hSBA titers ≥5 against each of the serogroup B test strains. After the first dose, solicited local reaction rates were higher in the MenABCWY or rMenB groups than the MenACWY-CRM group, but similar across groups after the second dose, consisting mainly of transient injection site pain. Fever (≥38.0°C) was rare and there were no vaccine-related serious AEs. In conclusion, investigational MenABCWY formulations containing OMV components elicited highly immunogenic responses against meningococcal serogroups ACWY, as well as serogroup B test strains, with an acceptable safety profile. [NCT01210885].

  7. Immunogenicity of DNA vaccines encoding simian immunodeficiency virus antigen targeted to dendritic cells in rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Matthias Tenbusch

    Full Text Available BACKGROUND: Targeting antigens encoded by DNA vaccines to dendritic cells (DCs in the presence of adjuvants enhances their immunogenicity and efficacy in mice. METHODOLOGY/PRINCIPAL FINDINGS: To explore the immunogenicity of this approach in non-human primates, we generated a single chain antibody to the antigen uptake receptor DEC-205 expressed on rhesus macaque DCs. DNA vaccines encoding this single chain antibody fused to the SIV capsid protein were delivered to six monkeys each by either intramuscular electroporation or conventional intramuscular injection co-injected or not with poly ICLC, a stabilized poly I: C analogue, as adjuvant. Antibodies to capsid were induced by the DC-targeting and non-targeting control DNA delivered by electroporation while conventional DNA immunization at a 10-fold higher dose of DNA failed to induce detectable humoral immune responses. Substantial cellular immune responses were also observed after DNA electroporation of both DNAs, but stronger responses were induced by the non-targeting vaccine. Conventional immunization with the DC-targeting DNA at a 10-fold higher dose did not give rise to substantial cellular immune responses, neither when co-injected with poly ICLC. CONCLUSIONS/SIGNIFICANCE: The study confirms the potent immunogenicity of DNA vaccines delivered by electroporation. Targeting the DNA via a single chain antibody to DEC-205 expressed by DCs, however, does not improve the immunogenicity of the antigens in non-human primates.

  8. A study of 19-0-carboxymethyl ether and 19-hemisuccinate derivatives of testosterone: their immunogenicity and use as iodinated radioligands for radioimmunoassay of testosterone

    International Nuclear Information System (INIS)

    White, A.; Crosby, S.R.; Ratcliffe, W.A.; Smith, G.N.

    1985-01-01

    Testosterone 19-0-carboxymethyl ether (T19C) and 19-hemisuccinate (T19H) derivatives were synthesised and coupled to bovine serum albumin (BSA) or porcine thyroglobulin (PT) for immunogens or to iodohistamine for radioligands. The immunogenicity of these conjugates in mice was compared with those of testosterone 3-0-carboxymethyloxime and 15β-thioethyl conjugates. Of 10 immunogens studied, those linked to PT gave the highest antiserum titres and more sensitive standard curves. Cross-reactivity with 5α-dihydrotestosterone (DHT) was in the range 22-100%, for the 19-linked immunogens. Antisera to T19C and T19H conjugated to PT were then raised in rabbits and characterised with 4 radioligands. Homologous assay systems in which the chemical bridge was identical in immunogen and 125 I-radioligand gave the highest antiserum titres but the poorest assay sensitivity while those heterologous with respect to bridge or site gave the most sensitive standard curves. Rabbit antisera to both T19C and T19H immunogens showed good specificities with respect to DHT androstenedione (AN) and progesterone (PO) with all radioligands. The best assay system employed an antiserum to the T19H-PT immunogen with heterologous radioligand [ 125 I]T19C. It had a detection limit of 15pg/tube and low cross-reactivity with DHT and AN. (author)

  9. Development of novel immunogens on the hypersensitivity induced proteins by the combination of radiation technology and biotechnology

    International Nuclear Information System (INIS)

    Lee, Ju Woon; Byun, Myung Woo; Kim, Jae Hun; Seo, Ji Hyun

    2006-01-01

    The irradiated house dust mite allergen showed the conformational change with disappearance of major allergen and aggregation to higher molecular weights. The irradiated house dust mite allergens showed the change of epitope from results of the reduction of binding ability of house dust mite-allergic patients' serum (IgE) and polyclonal rabbit IgG against the irradiated allergens. In assessment of immunogenicity and allergenicity, irradiated house dust mite allergen showed the reduction of allergenicity with decrease of concentration for IL-4 and IL-5, the cytokine inducing allergy. For the assessment of the possibility as therapeutic immunogen of irradiated house dust mite allergen, allergic induced-mouse model were established. Irradiated allergen showed the maintainment of immunogenicity and the reduction of allergenicity from the result of maintain of IgG and reduction of IgE. Blue spots against irradiated allergen decreased raising with radiation dose in passive cutaneous anaphylaxis. The therapeutic effect was measured by reduction of house dust mite-specific IgE, IL-4 and IL-5. Induction of allergy after immunization of irradiated house dust mite allergen decreased by the reduction of house dust mite-specific IgE and IL-4 release. Therefore, house dust mite allergen modified by irradiation could be used as an effective immunogens for the prevention and treatment of allergy

  10. Stable transfection of Eimeria intestinalis and investigation of its life cycle, reproduction and immunogenicity

    Directory of Open Access Journals (Sweden)

    Tuanyuan eShi

    2016-05-01

    Full Text Available Rabbit coccidiosis, caused by infection of Eimeria spp. is one of the most severe parasitic diseases in rabbits. E. intestinalis is one of the most immunogenic species in rabbit coccidia. Due to the lack of genomic information and unsuccessful in vitro cultivation, genetic manipulation of rabbit coccidia lagged behind other apicomplexan parasites. Using regulatory sequences from E. tenella, we obtained a transgenic line of E. intestinalis expressing yellow fluorescent protein (YFP. YFP was continuously expressed throughout the whole life cycle. Morphological features of E. intestinalis in the different developmental stages were dynamically observed with the transgenic line. Some important features in the endogenous development stages were observed. Trophozoites were found as early as 4 h post inoculation. Two-types of schizonts and merozoites were observed in first three of the four schizogonies. Beside jejunum and ileum, gametogony stage and oocysts were also found in the duodenum and vermiform appendix. In addition, the transgenic strain was highly immunogenic but less pathogenic than the wild type. Considering the high immunogenicity of E. intestinalis and amenability to transfection with foreign genes, transgenic E. intestinalis could be a promising oral eukaryotic vaccine vector.

  11. Virosome and ISCOM vaccines against Newcastle disease: preparation, characterization and immunogenicity

    NARCIS (Netherlands)

    Homhuan, A.; Prakongpan, S.; Poomvises, P.; Maas, H.A.; Krommelin, D.; Kersten, G.; Jiskoot, W.

    2004-01-01

    The purpose of this study was to prepare and characterize virosomes and ISCOMs containing envelope proteins of Newcastle disease virus (NDV) and to evaluate their immunogenicity in target animals (chickens). Virosomes were prepared by solubilization of virus with either Triton X-100 or octyl

  12. Demonstration of immunogenic keratan sulphate in commercial chondroitin 6-sulphate from shark cartilage. Implications for ELISA assays

    DEFF Research Database (Denmark)

    Møller, H J; Møller-Pedersen, T; Damsgaard, T E

    1995-01-01

    The prototype monoclonal keratan sulphate (KS) antibody 5D4 that is widely used for detection of KS in tissues and biological fluids reacts strongly with commercial low grade shark cartilage chondroitin 6-sulphate. Characterization of the immunogenic material by chondroitinase ABC digestion, ELISA...... inhibition studies, immunoblotting and HPLC analyses confirmed the presence of substantial amounts of KS, probably as a large proteoglycan (> 120 kDa). Commercial and heterogenic glycosaminoglycan preparations therefore must be used with great caution in immunological analyses. On the other hand the shark...... cartilage chondroitin 6-sulphate is an easy accessible source of immunogenic KS that can be used as a reference standard and as coating antigen in KS-ELISAs. The concentration of immunogenic KS in synovial fluid measured with an ELISA based solely on reagents of shark cartilage chondroitin 6-sulphate...

  13. The Effect of Irradiation on the Immunogenity of Brucella Abortus

    International Nuclear Information System (INIS)

    Arifin, M.; Tuasikal, Boky J.; Endhang Pudjiastuti; Ernawati Yulia

    2004-01-01

    An experiment was carried out to study the effect of irradiation on the immunogenity of B. abortus. The B. abortus were irradiated by Gamma Cells ( 60 Co). An experiment were divided into four groups. The first group (V1) was inoculated by irradiated B. abortus with the dose of 0.25 kGy. The second group (V2) was inoculated by irradiated B. abortus with the dose of 0.50 kGy. The third group (V3) was inoculated by irradiated B. abortus with the dose of 0.75 kGy. The fourth group (V4) was inoculated by Brucella vaccine 8.19. The observation respectively were included purely test, safety test, RBT serological test, diffusion test, development the colony of B. abortus in lien, and pathology anatomic inspection. The results obtained showed that 0.25 kGy was the expectantly dose of irradiation which could not only decreasing the infectivity of B. abortus but also has the ability to become a good immunogen for stimulating the immune response in the experiment animals. (author)

  14. Immunogenicity to therapeutic proteins: impact on PK/PD and efficacy.

    Science.gov (United States)

    Chirmule, Narendra; Jawa, Vibha; Meibohm, Bernd

    2012-06-01

    The development of therapeutic proteins requires the understanding of the relationship between the dose, exposure, efficacy, and toxicity of these molecules. Several intrinsic and extrinsic factors contribute to the challenges for measuring therapeutic proteins in a precise and accurate manner. In addition, induction of an immune response to therapeutic protein results in additional complexities in the analysis of the pharmacokinetic profile, toxicity, safety, and efficacy of this class of molecules. Assessment of immunogenicity of therapeutic proteins is a required aspect of regulatory filings for a licensing application and for the safe and efficacious use of these compounds. A systematic strategy and well-defined criteria for measuring anti-drug antibodies (ADA) have been established, to a large extent, through coordinated efforts. These recommendations are based on risk assessment and include the determination of ADA content (concentration/titer), affinity, immunoglobulin isotype/subtype, and neutralization capacity. This manuscript reviews the requirements necessary for understanding the nature of an ADA response in order to discern the impact of immunogenicity on pharmacokinetics/pharmacodynamics and efficacy.

  15. Influences of obesity on the immunogenicity of Hepatitis B vaccine.

    Science.gov (United States)

    Liu, Fang; Guo, Zhirong; Dong, Chen

    2017-05-04

    Hepatitis B vaccine is regarded as the most effective method for the prevention of hepatitis B virus (HBV) infection. However, several factors such as age, body mass index and immunocompetent state have been reported to be associated with reduced immunization responses. The present commentary was aimed to discuss the influences of obesity on the immunogenicity of hepatitis B vaccines. Available peer-reviewed literatures, practice guidelines, and statistics published on hepatitis B vaccine in obesity between 1973 and 2015. Obesity was significantly associated with non-response to hepatitis B vaccine immunization. The risk of nonresponsiveness of hepatitis B vaccine among obese people increased with BMI. Moreover, the obesity might lead to an increased risk of HBV vaccine-escape mutations. The mechanism responsible for decreased immunization responses in obesity included leptin-induced systemic and B cell intrinsic inflammation, impaired T cell responses and lymphocyte division and proliferation. Therefore, more studies should be performed to analyze the influences of obesity on the immunogenicity of hepatitis B vaccines to improve the immunoprotecive effect of hepatitis B vaccines in future.

  16. Creating regional consensus for starting school later: a physician-driven approach in southern Maine.

    Science.gov (United States)

    Collins, Tracey Ann; Indorf, Christopher; Klak, Thomas

    2017-12-01

    In April 2016, several contiguous school districts and an independent high school academy in southern Maine voted simultaneously to start school later, beginning with the 2016-17 academic year. They became Maine's first school districts to implement the American Academy of Pediatrics' 1 and the American Medical Association's 2 health policy recommendations that middle and high schools should not start before 8:30 AM. Local physicians' presentations to school staff and parents on the medical evidence of the health benefits of a later start solidified early consensus. The action required special permission from the Maine Municipal Association to hold a joint school board vote, impacted approximately 6500 students across the region, resulted in no increase in busing costs, and took 8 months to implement after the first formal school board discussions. Copyright © 2017 National Sleep Foundation. Published by Elsevier Inc. All rights reserved.

  17. Potentiation of electrochemotherapy by intramuscular IL-12 gene electrotransfer in murine sarcoma and carcinoma with different immunogenicity

    International Nuclear Information System (INIS)

    Sedlar, Ales; Dolinsek, Tanja; Markelc, Bostjan; Prosen, Lara; Kranjc, Simona; Bosnjak, Masa; Blagus, Tanja; Cemazar, Maja; Sersa, Gregor

    2012-01-01

    Electrochemotherapy provides good local tumor control but requires adjuvant treatment for increased local response and action on distant metastasis. In relation to this, intramuscular interleukin-12 (IL-12) gene electro-transfer, which provides systemic shedding of IL-12, was combined with local electrochemotherapy with cisplatin. Furthermore, the dependence on tumor immunogenicity and immunocompetence of the host on combined treatment response was evaluated. Sensitivity of SA-1 sarcoma and TS/A carcinoma cells to electrochemotherapy with cisplatin was tested in vitro. In vivo, intratumoral electrochemotherapy with cisplatin (day 1) was combined with a single (day 0) or multiple (days 0, 2, 4) intramuscular murine IL-12 (mIL-12) gene electrotransfer. The antitumor effectiveness of combined treatment was evaluated on immunogenic murine SA-1 sarcoma in A/J mice and moderately immunogenic murine TS/A carcinoma, in immunocompetent BALB/c and immunodeficient SCID mice. Electrochemotherapy in vitro resulted in a similar IC 50 values for both sarcoma and carcinoma cell lines. However, in vivo electrochemotherapy was more effective in the treatment of sarcoma, the more immunogenic of the tumors, resulting in a higher log cell kill, longer specific tumor growth delay, and also 17% tumor cures compared to carcinoma where no tumor cures were observed. Adjuvant intramuscular mIL-12 gene electrotransfer increased the log cell kill in both tumor models, potentiating the specific tumor growth delay by a factor of 1.8-2 and increasing tumor cure rate by approximately 20%. In sarcoma tumors, the potentiation of the response by intramuscular mIL-12 gene electrotransfer was dose-dependent and also resulted in a faster onset of tumor cures. Comparison of the carcinoma response to the combined treatment modality in immunocompetent and immunodeficient mice demonstrated that the immune system is needed both for increased cell kill and for attaining tumor cures. Based on the comparison of

  18. An Investigation of Immunogenicity of Chitosan-Based Botulinum Neurotoxin E Binding Domain Recombinant Candidate Vaccine via Mucosal Route

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Bagheripour

    2017-01-01

    Full Text Available Background and Objectives: Botulism syndrome is caused by serotypes A-G of neurotoxins of Clostridium genus. Neurotoxin binding domain is an appropriate vaccine candidate due to its immunogenic activity. In this study, the immunogenicity of chitosan-based botulinum neurotoxin E binding domain recombinant candidate vaccine was investigated via mucosal route of administration. Methods: In this experimental study, chitosan nanoparticles containing rBoNT/E protein were synthesized by ionic gelation method and were administered orally and intranasally to mice. After each administration, IgG antibody titer was measured by ELISA method. Finally, all groups were challenged with active botulinum neurotoxin type E. Data were analyzed using Duncan and repeated ANOVA tests. The significance level was considered as p0.05, even intranasal route reduced the immunogenicity.

  19. Gamma-irradiated scrub typhus immunogens: analysis for residual replicating rickettsiae

    International Nuclear Information System (INIS)

    Eisenberg, G.H. Jr.; Osterman, J.V.; Stephenson, E.H.

    1980-01-01

    Scrub thyphus immunogens that received inadequate gamma radiation contained residual, viable rickettsiae. The presence of these organisms in the host was masked by the rapid immune response elicited by the large number of inactivated rickettsiae. Transfer of homogenized spleen cells from immunized mice to normal syngeneic recipients provided a sensitive technique for the detection of these viable, replicating organisms

  20. An update on safety and immunogenicity of vaccines containing emulsion-based adjuvants.

    Science.gov (United States)

    Fox, Christopher B; Haensler, Jean

    2013-07-01

    With the exception of alum, emulsion-based vaccine adjuvants have been administered to far more people than any other adjuvant, especially since the 2009 H1N1 influenza pandemic. The number of clinical safety and immunogenicity evaluations of vaccines containing emulsion adjuvants has correspondingly mushroomed. In this review, the authors introduce emulsion adjuvant composition and history before detailing the most recent findings from clinical and postmarketing data regarding the effects of emulsion adjuvants on vaccine immunogenicity and safety, with emphasis on the most widely distributed emulsion adjuvants, MF59® and AS03. The authors also present a summary of other emulsion adjuvants in clinical development and indicate promising avenues for future emulsion-based adjuvant development. Overall, emulsion adjuvants have demonstrated potent adjuvant activity across a number of disease indications along with acceptable safety profiles.

  1. Oxygen-boosted immunogenic photodynamic therapy with gold nanocages@manganese dioxide to inhibit tumor growth and metastases.

    Science.gov (United States)

    Liang, Ruijing; Liu, Lanlan; He, Huamei; Chen, Zhikuan; Han, Zhiqun; Luo, Zhenyu; Wu, Zhihao; Zheng, Mingbin; Ma, Yifan; Cai, Lintao

    2018-09-01

    Metastatic triple-negative breast cancer (mTNBC) is an aggressive disease among women worldwide, characterized by high mortality and poor prognosis despite systemic therapy with radiation and chemotherapies. Photodynamic therapy (PDT) is an important strategy to eliminate the primary tumor, however its therapeutic efficacy against metastases and recurrence is still limited. Here, we employed a template method to develop the core-shell gold nanocage@manganese dioxide (AuNC@MnO 2 , AM) nanoparticles as tumor microenvironment responsive oxygen producers and near-infrared (NIR)-triggered reactive oxygen species (ROS) generators for oxygen-boosted immunogenic PDT against mTNBC. In this platform, MnO 2 shell degrades in acidic tumor microenvironment pH/H 2 O 2 conditions and generates massive oxygen to boost PDT effect of AM nanoparticles under laser irradiation. Fluorescence (FL)/photoacoustic (PA)/magnetic resonance (MR) multimodal imaging confirms the effective accumulation of AM nanoparticles with sufficient oxygenation in tumor site to ameliorate local hypoxia. Moreover, the oxygen-boosted PDT effect of AM not only destroys primary tumor effectively but also elicits immunogenic cell death (ICD) with damage-associated molecular patterns (DAMPs) release, which subsequently induces DC maturation and effector cells activation, thereby robustly evoking systematic antitumor immune responses against mTNBC. Hence, this oxygen-boosted immunogenic PDT nanosystem offers a promising approach to ablate primary tumor and simultaneously prevent tumor metastases via immunogenic abscopal effects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Immunogenicity of UV-inactivated measles virus

    International Nuclear Information System (INIS)

    Zahorska, R.; Mazur, N.; Korbecki, M.

    1978-01-01

    By means of the antigen extinction limit test it was shown that a triple dose vaccination of guinea pigs with UV-inactivated measles virus gave better results, than a single dose vaccination which was proved by the very low immunogenicity index. For both vaccination schemes (single and triple) the immune response was only sligthly influenced by a change of dose from 10 5 to 10 6 HadU 50 /ml or by the addition of aluminum adjuvant. In the antigen extinction limit test the antibody levels were determined by two methods (HIT and NT) the results of which were statistically equivalent. The UV-inactivated measles virus was also found to induce hemolysis-inhibiting antibodies. (orig.) [de

  3. Neutralization escape mutants define a dominant immunogenic neutralization site on hepatitis A virus

    International Nuclear Information System (INIS)

    Stapleton, J.T.; Lemon, S.M.

    1987-01-01

    Hepatitis A virus is an hepatotrophic human picornavirus which demonstrates little antigenic variability. To topologically map immunogenic sites on hepatitis A virus which elicit neutralizing antibodies, eight neutralizing monoclonal antibodies were evaluated in competition immunoassays employing radiolabeled monoclonal antibodies and HM-175 virus. Whereas two antibodies (K3-4C8 and K3-2F2) bound to intimately overlapping epitopes, the epitope bound by a third antibody (B5-B3) was distinctly different as evidenced by a lack of competition between antibodies for binding to the virus. The other five antibodies variably blocked the binding of both K3-4C8-K3-2F2 and B5-B3, suggesting that these epitopes are closely spaced and perhaps part of a single neutralization immunogenic site. Several combinations of monoclonal antibodies blocked the binding of polyclonal human convalescent antibody by greater than 96%, indicating that the neutralization epitopes bound by these antibodies are immunodominant in humans. Spontaneously arising HM-175 mutants were selected for resistance to monoclonal antibody-mediated neutralization. Neutralization resistance was associated with reduced antibody binding. These results suggest that hepatitis A virus may differ from poliovirus in possessing a single, dominant neutralization immunogenic site and therefore may be a better candidate for synthetic peptide or antiidiotype vaccine development

  4. Enhancement of Mucosal Immunogenicity of Viral Vectored Vaccines by the NKT Cell Agonist Alpha-Galactosylceramide as Adjuvant

    Directory of Open Access Journals (Sweden)

    Shailbala Singh

    2014-10-01

    Full Text Available Gene-based vaccination strategies, specifically viral vectors encoding vaccine immunogens are effective at priming strong immune responses. Mucosal routes offer practical advantages for vaccination by ease of needle-free administration, and immunogen delivery at readily accessible oral/nasal sites to efficiently induce immunity at distant gut and genital tissues. However, since mucosal tissues are inherently tolerant for induction of immune responses, incorporation of adjuvants for optimal mucosal vaccination strategies is important. We report here the effectiveness of alpha-galactosylceramide (α-GalCer, a synthetic glycolipid agonist of natural killer T (NKT cells, as an adjuvant for enhancing immunogenicity of vaccine antigens delivered using viral vectors by mucosal routes in murine and nonhuman primate models. Significant improvement in adaptive immune responses in systemic and mucosal tissues was observed by including α-GalCer adjuvant for intranasal immunization of mice with vesicular stomatitis virus vector encoding the model antigen ovalbumin and adenoviral vectors expressing HIV env and Gag antigens. Activation of NKT cells in systemic and mucosal tissues along with significant increases in adaptive immune responses were observed in rhesus macaques immunized by intranasal and sublingual routes with protein or adenovirus vectored antigens when combined with α-GalCer adjuvant. These results support the utility of α-GalCer adjuvant for enhancing immunogenicity of mucosal vaccines delivered using viral vectors.

  5. Development of novel immunogens on the hypersensitivity induced proteins by the combination of radiation technology and biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Woon; Byun, Myung Woo; Kim, Jae Hun; Seo, Ji Hyun

    2006-01-15

    The irradiated house dust mite allergen showed the conformational change with disappearance of major allergen and aggregation to higher molecular weights. The irradiated house dust mite allergens showed the change of epitope from results of the reduction of binding ability of house dust mite-allergic patients' serum (IgE) and polyclonal rabbit IgG against the irradiated allergens. In assessment of immunogenicity and allergenicity, irradiated house dust mite allergen showed the reduction of allergenicity with decrease of concentration for IL-4 and IL-5, the cytokine inducing allergy. For the assessment of the possibility as therapeutic immunogen of irradiated house dust mite allergen, allergic induced-mouse model were established. Irradiated allergen showed the maintainment of immunogenicity and the reduction of allergenicity from the result of maintain of IgG and reduction of IgE. Blue spots against irradiated allergen decreased raising with radiation dose in passive cutaneous anaphylaxis. The therapeutic effect was measured by reduction of house dust mite-specific IgE, IL-4 and IL-5. Induction of allergy after immunization of irradiated house dust mite allergen decreased by the reduction of house dust mite-specific IgE and IL-4 release. Therefore, house dust mite allergen modified by irradiation could be used as an effective immunogens for the prevention and treatment of allergy.

  6. Size, Shape, and Sequence-Dependent Immunogenicity of RNA Nanoparticles

    Directory of Open Access Journals (Sweden)

    Sijin Guo

    2017-12-01

    Full Text Available RNA molecules have emerged as promising therapeutics. Like all other drugs, the safety profile and immune response are important criteria for drug evaluation. However, the literature on RNA immunogenicity has been controversial. Here, we used the approach of RNA nanotechnology to demonstrate that the immune response of RNA nanoparticles is size, shape, and sequence dependent. RNA triangle, square, pentagon, and tetrahedron with same shape but different sizes, or same size but different shapes were used as models to investigate the immune response. The levels of pro-inflammatory cytokines induced by these RNA nanoarchitectures were assessed in macrophage-like cells and animals. It was found that RNA polygons without extension at the vertexes were immune inert. However, when single-stranded RNA with a specific sequence was extended from the vertexes of RNA polygons, strong immune responses were detected. These immunostimulations are sequence specific, because some other extended sequences induced little or no immune response. Additionally, larger-size RNA square induced stronger cytokine secretion. 3D RNA tetrahedron showed stronger immunostimulation than planar RNA triangle. These results suggest that the immunogenicity of RNA nanoparticles is tunable to produce either a minimal immune response that can serve as safe therapeutic vectors, or a strong immune response for cancer immunotherapy or vaccine adjuvants.

  7. Reporting, Visualization, and Modeling of Immunogenicity Data to Assess Its Impact on Pharmacokinetics, Efficacy, and Safety of Monoclonal Antibodies.

    Science.gov (United States)

    Passey, Chaitali; Suryawanshi, Satyendra; Sanghavi, Kinjal; Gupta, Manish

    2018-02-26

    The rapidly increasing number of therapeutic biologics in development has led to a growing recognition of the need for improvements in immunogenicity assessment. Published data are often inadequate to assess the impact of an antidrug antibody (ADA) on pharmacokinetics, safety, and efficacy, and enable a fully informed decision about patient management in the event of ADA development. The recent introduction of detailed regulatory guidance for industry should help address many past inadequacies in immunogenicity assessment. Nonetheless, careful analysis of gathered data and clear reporting of results are critical to a full understanding of the clinical relevance of ADAs, but have not been widely considered in published literature to date. Here, we review visualization and modeling of immunogenicity data. We present several relatively simple visualization techniques that can provide preliminary information about the kinetics and magnitude of ADA responses, and their impact on pharmacokinetics and clinical endpoints for a given therapeutic protein. We focus on individual sample- and patient-level data, which can be used to build a picture of any trends, thereby guiding analysis of the overall study population. We also discuss methods for modeling ADA data to investigate the impact of immunogenicity on pharmacokinetics, efficacy, and safety.

  8. Safety and immunogenicity of a recombinant Plasmodium falciparum AMA1 malaria vaccine adjuvanted with Alhydrogel, Montanide ISA 720 or AS02.

    Directory of Open Access Journals (Sweden)

    Meta Roestenberg

    Full Text Available Plasmodium falciparum Apical Membrane Antigen 1 (PfAMA1 is a candidate vaccine antigen expressed by merozoites and sporozoites. It plays a key role in red blood cell and hepatocyte invasion that can be blocked by antibodies.We assessed the safety and immunogenicity of recombinant PfAMA1 in a dose-escalating, phase Ia trial. PfAMA1 FVO strain, produced in Pichia pastoris, was reconstituted at 10 microg and 50 microg doses with three different adjuvants, Alhydrogel, Montanide ISA720 and AS02 Adjuvant System. Six randomised groups of healthy male volunteers, 8-10 volunteers each, were scheduled to receive three immunisations at 4-week intervals. Safety and immunogenicity data were collected over one year. Transient pain was the predominant injection site reaction (80-100%. Induration occurred in the Montanide 50 microg group, resulting in a sterile abscess in two volunteers. Systemic adverse events occurred mainly in the AS02 groups lasting for 1-2 days. Erythema was observed in 22% of Montanide and 59% of AS02 group volunteers. After the second dose, six volunteers in the AS02 group and one in the Montanide group who reported grade 3 erythema (>50 mm were withdrawn as they met the stopping criteria. All adverse events resolved. There were no vaccine-related serious adverse events. Humoral responses were highest in the AS02 groups. Antibodies showed activity in an in vitro growth inhibition assay up to 80%. Upon stimulation with the vaccine, peripheral mononuclear cells from all groups proliferated and secreted IFNgamma and IL-5 cytokines.All formulations showed distinct reactogenicity profiles. All formulations with PfAMA1 were immunogenic and induced functional antibodies.(Clinicaltrials.gov NCT00730782.

  9. THE MAIN TRENDS OF INTERACTION BETWEEN THE ADMINISTRATION OF ROSPOTREBNADZOR IN THE LENINGRAD REGION AND THE GOVERNMENT OF LENINGRAD REGION IN THE FIELD OF POPULATION RADIATION PROTECTION

    Directory of Open Access Journals (Sweden)

    S. A. Gorbanev

    2008-01-01

    Full Text Available The article gives the main interaction trends of the Administration of Rospotrebnadzor in the Leningrad Region and the Government of Leningrad Region regarding issues of regional radiation protection. It reports on comprehensive measures devoted to the limitation of the population exposure from natural irradiation sources, monitoring of territories which suffered from Chernobyl NPP accident and monitoring of the environmental impact of unauthorized dumps and solid municipal waste sites in the Leningrad Region. It presents the basic issues of medical exposure limitation in the Leningrad Region and measures for their solving.

  10. Immunogenicity and Safety of the New Inactivated Quadrivalent Influenza Vaccine Vaxigrip Tetra: Preliminary Results in Children ≥6 Months and Older Adults

    Directory of Open Access Journals (Sweden)

    Emanuele Montomoli

    2018-03-01

    Full Text Available Since the mid-1980s, two lineages of influenza B viruses have been distinguished. These can co-circulate, limiting the protection provided by inactivated trivalent influenza vaccines (TIVs. This has prompted efforts to formulate quadrivalent influenza vaccines (QIVs, to enhance protection against circulating influenza B viruses. This review describes the results obtained from seven phase III clinical trials evaluating the immunogenicity, safety, and lot-to-lot consistency of a new quadrivalent split-virion influenza vaccine (Vaxigrip Tetra® formulated by adding a second B strain to the already licensed TIV. Since Vaxigrip Tetra was developed by means of a manufacturing process strictly related to that used for TIV, the data on the safety profile of TIV are considered supportive of that of Vaxigrip Tetra. The safety and immunogenicity of Vaxigrip Tetra were similar to those of the corresponding licensed TIV. Moreover, the new vaccine elicits a superior immune response towards the additional strain, without affecting immunogenicity towards the other three strains. Vaxigrip Tetra is well tolerated, has aroused no safety concerns, and is recommended for the active immunization of individuals aged ≥6 months. In addition, preliminary data confirm its immunogenicity and safety even in children aged 6–35 months and its immunogenicity in older subjects (aged 66–80 years.

  11. [Eukaryotic Expression and Immunogenic Research of Recombination Ebola Virus Membrane Protein Gp-Fc].

    Science.gov (United States)

    Zhang, Xiaoguang; Yang, Ren; Wang, Jiao; Wang, Xuan; Hou, Mieling; An, Lina; Zhu, Ying; Cao, Yuxi; Zeng, Yi

    2016-01-01

    We used 293 cells to express the recombinant membrane protein of the Ebola virus. Then, the immunogenicity of the recombinant protein was studied by immunized BALB/c mice. According to the codon use frequency of humans, the gene encoding the extracellular domain of the Ebola virus membrane protein was optimized, synthesized, and inserted into the eukaryotic expression plasmid pXG-Fc to construct the human IgG Fc and Ebola GP fusion protein expression plasmid pXG-modGP-Fc. To achieve expression, the fusion protein expression vector was transfected into high-density 293 cells using transient transfection technology. The recombinant protein was purified by protein A affinity chromatography. BALB/c mice were immunized with the purified fusion protein, and serum antibody titers evaluated by an indirect enzyme-linked immunosorbent assay (ELISA). Purification and analyses of the protein revealed that the eukaryotic expression vector could express the recombinant protein GP-Fc effectively, and that the recombinant protein in the supernatant of the cell culture was present as a dimer. After immunization with the purified recombinant protein, a high titer of antigen-specific IgG could be detected in the serum of immunized mice by indirect ELISA, showing that the recombinant protein had good immunogenicity. These data suggest that we obtained a recombinant protein with good immunogenicity. Our study is the basis for development of a vaccine against the Ebola virus and for screening of monoclonal antibodies.

  12. Molecular Imaging of Stem Cells: Tracking Survival, Biodistribution, Tumorigenicity, and Immunogenicity

    Directory of Open Access Journals (Sweden)

    Eugene Gu, Wen-Yi Chen, Jay Gu, Paul Burridge, Joseph C. Wu

    2012-01-01

    Full Text Available Being able to self-renew and differentiate into virtually all cell types, both human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs have exciting therapeutic implications for myocardial infarction, neurodegenerative disease, diabetes, and other disorders involving irreversible cell loss. However, stem cell biology remains incompletely understood despite significant advances in the field. Inefficient stem cell differentiation, difficulty in verifying successful delivery to the target organ, and problems with engraftment all hamper the transition from laboratory animal studies to human clinical trials. Although traditional histopathological techniques have been the primary approach for ex vivo analysis of stem cell behavior, these postmortem examinations are unable to further elucidate the underlying mechanisms in real time and in vivo. Fortunately, the advent of molecular imaging has led to unprecedented progress in understanding the fundamental behavior of stem cells, including their survival, biodistribution, immunogenicity, and tumorigenicity in the targeted tissues of interest. This review summarizes various molecular imaging technologies and how they have advanced the current understanding of stem cell survival, biodistribution, immunogenicity, and tumorigenicity.

  13. Presenting native-like HIV-1 envelope trimers on ferritin nanoparticles improves their immunogenicity

    NARCIS (Netherlands)

    Sliepen, Kwinten; Ozorowski, Gabriel; Burger, Judith A.; van Montfort, Thijs; Stunnenberg, Melissa; Labranche, Celia; Montefiori, David C.; Moore, John P.; Ward, Andrew B.; Sanders, Rogier W.

    2015-01-01

    Background: Presenting vaccine antigens in particulate form can improve their immunogenicity by enhancing B cell activation. Findings: We describe ferritin-based protein nanoparticles that display multiple copies of native-like HIV-1 envelope glycoprotein trimers (BG505 SOSIP.664). Trimer-bearing

  14. Size, Shape, and Sequence-Dependent Immunogenicity of RNA Nanoparticles.

    Science.gov (United States)

    Guo, Sijin; Li, Hui; Ma, Mengshi; Fu, Jian; Dong, Yizhou; Guo, Peixuan

    2017-12-15

    RNA molecules have emerged as promising therapeutics. Like all other drugs, the safety profile and immune response are important criteria for drug evaluation. However, the literature on RNA immunogenicity has been controversial. Here, we used the approach of RNA nanotechnology to demonstrate that the immune response of RNA nanoparticles is size, shape, and sequence dependent. RNA triangle, square, pentagon, and tetrahedron with same shape but different sizes, or same size but different shapes were used as models to investigate the immune response. The levels of pro-inflammatory cytokines induced by these RNA nanoarchitectures were assessed in macrophage-like cells and animals. It was found that RNA polygons without extension at the vertexes were immune inert. However, when single-stranded RNA with a specific sequence was extended from the vertexes of RNA polygons, strong immune responses were detected. These immunostimulations are sequence specific, because some other extended sequences induced little or no immune response. Additionally, larger-size RNA square induced stronger cytokine secretion. 3D RNA tetrahedron showed stronger immunostimulation than planar RNA triangle. These results suggest that the immunogenicity of RNA nanoparticles is tunable to produce either a minimal immune response that can serve as safe therapeutic vectors, or a strong immune response for cancer immunotherapy or vaccine adjuvants. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Increased immunogenicity of the MF59-adjuvanted influenza vaccine compared to a conventional subunit vaccine in elderly subjects

    International Nuclear Information System (INIS)

    Gasparini, R.; Pozzi, T.; Montomoli, E.; Fragapane, E.; Senatore, F.; Minutello, M.; Podda, A.

    2001-01-01

    Three-hundred and eight outpatient elderly subjects (≥ 65 years) were randomly assigned to receive the MF59-adjuvanted influenza vaccine (FLUAD; n = 204) or a conventional subunit influenza vaccine (AGRIPPAL S1; n = 104) in order to compare the safety and immunogenicity of the two vaccines. Although mild pain at the injection site was reported more frequently by subjects immunised with the adjuvanted vaccine, both vaccines were shown to be safe and well tolerated. The adjuvanted vaccine was more immunogenic as indicated by higher post-immunisation geometric mean titres (GMTs) and by higher proportions of subjects with post-immunisation ≥ four fold increases of antibody titres or subjects with ≥ 1/160 post-immunisation HI titres. These differences, statistically significant for all three strains after immunisation, indicated that, by addition of the MF59 adjuvant emulsion, conventional subunit influenza antigens acquire an enhanced immunogenicity without any clinically significant increase of their reactogenicity

  16. Effects of industrial processing on the immunogenicity of commonly ingested fish species.

    Science.gov (United States)

    Sletten, Gaynour; Van Do, Thien; Lindvik, Helene; Egaas, Eliann; Florvaag, Erik

    2010-01-01

    Food-processing techniques may induce changes in fish protein immunogenicity. Allergens from >100 fish species have been identified, but little is known on the effects of processing on fish protein immunogenicity. IgE binding of sera of patients allergic to fresh and processed (smoked, salted/sugar-cured, canned, lye-treated and fermented) cod, haddock, salmon, trout, tuna, mackerel and herring and of hydrolysates based on salmon and whiting was investigated using immunoblot and inhibition ELISA. Parvalbumin oligomers were identified using monoclonal and polyclonal antibodies. IgE binding was seen in most sera at 12-14 kDa (parvalbumin), and at 17-60 kDa for all fish except tuna. Changes in IgE binding appeared to reflect altered parvalbumin monomers and oligomers. Smoked haddock, salmon and mackerel had increased IgE binding and novel bands at 30 kDa. Chemically processed cod, salmon, trout and pickled herring had reduced or abolished IgE binding. The serum of 1 subject, however, had increased IgE binding to these products and also inhibition of binding by both fish hydrolysates to their constituent fish species. Process-induced changes in fish protein immunogenicity were more dependent on process rather than species, although individual responses varied. Changes in the allergenicity of a product may depend on the net effect of processing on parvalbumin oligomerization patterns, which may also vary in different species. Chemical processes generally caused loss in IgE-binding activity, though sensitization may occur to modified or degraded rather than intact peptides as shown by increased binding by chemically processed fish and hydrolysates in 1 subject. The clinical significance of these findings remains to be established.

  17. Immunogenicity of biopharmaceuticals and biosimilars in relation to storage, handling and stability

    International Nuclear Information System (INIS)

    Hincal, F.

    2009-01-01

    Therapeutic proteins or biopharmaceuticals provide effective treatment for many diseases and medical conditions, and vaccines, immunoglobulins and monoclonal antibodies are critical biodefense biopharmaceuticals which constitute an indispensable part of biodefense stockpiles. The manufacturing process for biopharmaceuticals and their generic forms which are called biosimilars is far more complex than for low molecular weight drugs and generics. Any minor change made at any stage may have a critical effect on the clinical efficacy and safety. Potential immunogenicity is the key issue for biopharmaceuticals and biosimilars and may have serious clinical consequences ranging from allergy and anaphylaxis, as well as loss of efficacy of the product. Immunogenicity may be influenced by factors related to manufacturing process, formulation, aggregate formation, contaminants and impurities, and also by the factors related to the storage and handling. Stability is particularly important with larger protein molecules, because their in vivo effects often depend on their three-dimensional structure. Proteins usually aggregate from partially unfolded molecules and aggregates can enhance immunogenicity. Although product formulations are developed to maximize and maintain the fraction of the protein molecules present in the native state, significant amounts of aggregates can form, especially over pharmaceutically relevant time scales and under stress conditions. Exposure to air-liquid and solid-liquid interfaces, light, temperature fluctuations or minor impurities can induce aggregation. Such exposure can occur during processing steps, as well as in the final product container during storage, shipment and handling. Biopharmaceuticals are particularly sensitive to temperature changes and/or shaking. Strict storage and handling conditions and timely and effective stability/shelf-life testing are therefore essential for maintaining product integrity and stability, and hence efficacy

  18. Critical review: assessment of interferon-β immunogenicity in multiple sclerosis

    DEFF Research Database (Denmark)

    Bendtzen, Klaus

    2010-01-01

    This review discusses type I interferon (IFN) immunogenicity with focus on methods of detection of anti-IFN antibodies in patients treated with human recombinant IFN-β. Pitfalls involved in the clinical use of various types of assays for binding antibodies and neutralizing antibodies against IFN-...... for individualized or personalized medicine, ie, optimizing therapies according to individual needs rather than using standardized trial-and-error regimens to all patients, is highlighted....

  19. Critical review: assessment of interferon-ß immunogenicity in multiple sclerosis

    DEFF Research Database (Denmark)

    Bendtzen, Klaus

    2010-01-01

    This review discusses type I interferon (IFN) immunogenicity with focus on methods of detection of anti-IFN antibodies in patients treated with human recombinant IFN-ß. Pitfalls involved in the clinical use of various types of assays for binding antibodies and neutralizing antibodies against IFN-...... for individualized or personalized medicine, ie, optimizing therapies according to individual needs rather than using standardized trial-and-error regimens to all patients, is highlighted....

  20. Immunogenicity, immunological cross reactivity and non-specific irritant properties of the exudate gums, arabic, karaya and tragacanth.

    Science.gov (United States)

    Strobel, S; Ferguson, A; Anderson, D M

    1986-01-01

    An animal model has been used to investigate the immunogenicity and non-specific irritant properties of exudate gums. The materials studied were four preparations of gum arabic (Acacia spp.), two of gum karaya (Sterculia spp.), two of gum tragacanth (Astralagus spp.) and a residue obtained after ethanol extraction of gum arabic. Groups of animals were intradermally immunized with the gum in complete Freund's adjuvant. Serum antibody levels were measured by an ELISA technique and delayed hypersensitivity responses by a footpad swelling test. Antigenic cross-reactivity within each gum species was tested in a crossover fashion. All gum preparations elicited systemic immune responses after immunization. Further processing reduced immunogenicity, although there was no evidence that systemic immunity to these complex polysaccharide antigens responses could be completely abolished by processing or purification. The ethanolic extract, and some of the gum preparations, particularly tragacanth and karaya, caused considerable footpad swelling when injected intradermally. It is concluded that processing and awareness of subspecies differences can reduce the inherent immunogenicity and potential irritant effects of exudate gums.

  1. Human monoclonal antibodies: the residual challenge of antibody immunogenicity.

    Science.gov (United States)

    Waldmann, Herman

    2014-01-01

    One of the major reasons for seeking human monoclonal antibodies has been to eliminate immunogenicity seen with rodent antibodies. Thus far, there has yet been no approach which absolutely abolishes that risk for cell-binding antibodies. In this short article, I draw attention to classical work which shows that monomeric immunoglobulins are intrinsically tolerogenic if they can be prevented from creating aggregates or immune complexes. Based on these classical studies two approaches for active tolerization to therapeutic antibodies are described.

  2. An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles.

    Science.gov (United States)

    Santi, Luca; Batchelor, Lance; Huang, Zhong; Hjelm, Brooke; Kilbourne, Jacquelyn; Arntzen, Charles J; Chen, Qiang; Mason, Hugh S

    2008-03-28

    Virus-like particles (VLPs) derived from enteric pathogens like Norwalk virus (NV) are well suited to study oral immunization. We previously described stable transgenic plants that accumulate recombinant NV-like particles (rNVs) that were orally immunogenic in mice and humans. The transgenic approach suffers from long generation time and modest level of antigen accumulation. We now overcome these constraints with an efficient tobacco mosaic virus (TMV)-derived transient expression system using leaves of Nicotiana benthamiana. We produced properly assembled rNV at 0.8 mg/g leaf 12 days post-infection (dpi). Oral immunization of CD1 mice with 100 or 250 microg/dose of partially purified rNV elicited systemic and mucosal immune responses. We conclude that the plant viral transient expression system provides a robust research tool to generate abundant quantities of rNV as enriched, concentrated VLP preparations that are orally immunogenic.

  3. Highly immunogenic and fully synthetic peptide-carrier constructs targetting GnRH

    DEFF Research Database (Denmark)

    Beekman, N.J.C.M.; Schaaper, W.M.M.; Turkstra, J.A.

    1999-01-01

    To use peptides as synthetic vaccines, they have to be coupled to a carrier protein to make them more immunogenic. Coupling efficiency between a carrier protein and a peptide, however, is difficult to control with respect to loading density of the peptide, This makes these carrier proteins poorly...... for the induction of antibodies against GnRH and immunocastration of pigs....

  4. Immunogenicity of 60 novel latency-related antigens of Mycobacterium tuberculosis.

    Science.gov (United States)

    Serra-Vidal, Mᵃdel Mar; Latorre, Irene; Franken, Kees L C M; Díaz, Jéssica; de Souza-Galvão, Maria Luiza; Casas, Irma; Maldonado, José; Milà, Cèlia; Solsona, Jordi; Jimenez-Fuentes, M Ángeles; Altet, Neus; Lacoma, Alícia; Ruiz-Manzano, Juan; Ausina, Vicente; Prat, Cristina; Ottenhoff, Tom H M; Domínguez, José

    2014-01-01

    The aim of our work here was to evaluate the immunogenicity of 60 mycobacterial antigens, some of which have not been previously assessed, notably a novel series of in vivo-expressed Mycobacterium tuberculosis (IVE-TB) antigens. We enrolled 505 subjects and separated them in individuals with and without latent tuberculosis infection (LTBI) vs. patients with active tuberculosis (TB). Following an overnight and 7 days stimulation of whole blood with purified recombinant M. tuberculosis antigens, interferon-γ (IFN-γ) levels were determined by ELISA. Several antigens could statistically significantly differentiate the groups of individuals. We obtained promising antigens from all studied antigen groups [dormancy survival regulon (DosR regulon) encoded antigens; resuscitation-promoting factors (Rpf) antigens; IVE-TB antigens; reactivation associated antigens]. Rv1733, which is a probable conserved transmembrane protein encoded in DosR regulon, turned out to be very immunogenic and able to discriminate between the three defined TB status, thus considered a candidate biomarker. Rv2389 and Rv2435n, belonging to Rpf family and IVE-TB group of antigens, respectively, also stood out as LTBI biomarkers. Although more studies are needed to support our findings, the combined use of these antigens would be an interesting approach to TB immunodiagnosis candidates.

  5. Immunogenicity of 60 novel latency-related antigens of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Mªdel Mar eSerra Vidal

    2014-10-01

    Full Text Available The aim of our work here was to evaluate the immunogenicity of 60 mycobacterial antigens, some of which have not been previously assessed, notably a novel series of in vivo-expressed M.tuberculosis (IVE-TB antigens. We enrolled 505 subjects and separated them in individuals with and without latent tuberculosis infection (LTBI versus patients with active tuberculosis. Following an overnight and 7 day stimulation of whole blood with purified recombinant M.tb antigens, interferon-γ (IFN-γ levels were determined by ELISA. Several antigens could statistically significantly differentiate the groups of individuals. We obtained promising antigens from all studied antigen groups (DosR regulon encoded antigens; resuscitation-promoting factors (Rpf antigens; IVE-TB antigens; reactivation asociated antigens. Rv1733, which is a probable conserved transmembrane protein encoded in DosR regulon, turned out to be very immunogenic and able to discriminate between the three defined TB status, thus considered a candidate biomarker. Rv2389 and Rv2435n, belonging to Rpf family and IVE-TB group of antigens, respectively, also stood out as LTBI biomarkers. Although more studies are needed to support our findings, the combined use of these antigens would be an interesting approach to tuberculosis immunodiagnosis candidates.

  6. Recombinant Brucella abortus gene expressing immunogenic protein

    Energy Technology Data Exchange (ETDEWEB)

    Mayfield, J.E.; Tabatabai, L.B.

    1991-06-11

    This patent describes a synthetic recombinant DNA molecule containing a DNA sequence. It comprises a gene of Brucella abortus encoding an immunogenic protein having a molecular weight of approximately 31,000 daltons as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis under denaturing conditions, the protein having an isoelectric point around 4.9, and containing a twenty-five amino acid sequence from its amino terminal end consisting of Gln-Ala-Pro-Thr-Phe-Phe-Arg-Ile-Gly-Thr-Gly-Gly-Thr-Ala-Gly-Thr-Tyr-Tyr-Pro-Ile-Gly-Gly-Leu-Ile-Ala, wherein Gln, Ala, Pro, Thr, Phe, Arg, Ile, Gly, Tyr, and Leu, respectively, represent glutamine, alanine, proline, threonine, phenylalanine, arginine, isolecuine, glycine, tyrosine, and leucine.

  7. Improved immunogenicity of individual influenza vaccine components delivered with a novel dissolving microneedle patch stable at room temperature

    Science.gov (United States)

    Vassilieva, Elena V.; Kalluri, Haripriya; McAllister, Devin; Taherbhai, Misha T.; Esser, E. Stein; Pewin, Winston P.; Pulit-Penaloza, Joanna A.; Prausnitz, Mark R.; Compans, Richard W.; Skountzou, Ioanna

    2015-01-01

    Prevention of seasonal influenza epidemics and pandemics relies on widespread vaccination coverage to induce protective immunity. In addition to a good antigenic match with the circulating viruses, the effectiveness of individual strains represented in the trivalent vaccines depends on their immunogenicity. In this study we evaluated the immunogenicity of H1N1, H3N2 and B seasonal influenza virus vaccine strains delivered individually with a novel dissolving microneedle patch and the stability of this formulation during storage at 25°C. Our data demonstrate that all strains retained their antigenic activity after incorporation in the dissolving patches as measured by SRID assay and immune responses to vaccination in BALB/c mice. After a single immunization all three antigens delivered with microneedle patches induced superior neutralizing antibody titers compared to intramuscular immunization. Cutaneous antigen delivery was especially beneficial for the less immunogenic B strain. Mice immunized with dissolving microneedle patches encapsulating influenza A/Brisbane/59/07 (H1N1) vaccine were fully protected against lethal challenge by homologous mouse-adapted influenza virus. All vaccine components retained activity during storage at room temperature for at least three months as measured in vitro by SRID assay and in vivo by mouse immunization studies. Our data demonstrate that dissolving microneedle patches are a promising advance for influenza cutaneous vaccination due to improved immune responses using less immunogenic influenza antigens and enhanced stability. PMID:25895053

  8. Structure-guided Design and Immunological Characterization of Immunogens Presenting the HIV-1 gp120 V3 Loop on a CTB Scaffold

    Energy Technology Data Exchange (ETDEWEB)

    M Totrov; X Jiang; X Kong; S Cohen; C Krachmarov; A Salomon; C Williams; M Seaman; R Abagyan; et al.

    2011-12-31

    V3 loop is a major neutralizing determinant of the HIV-1 gp120. Using 3D structures of cholera toxin B subunit (CTB), complete V3 in the gp120 context, and V3 bound to a monoclonal antibody (mAb), we designed two V3-scaffold immunogen constructs (V3-CTB). The full-length V3-CTB presenting the complete V3 in a structural context mimicking gp120 was recognized by the large majority of our panel of 24 mAbs. The short V3-CTB presenting a V3 fragment in the conformation observed in the complex with the 447-52D Fab, exhibited high-affinity binding to this mAb. The immunogens were evaluated in rabbits using DNA-prime/protein-boost protocol. Boosting with the full-length V3-CTB induced high anti-V3 titers in sera that potently neutralize multiple HIV virus strains. The short V3-CTB was ineffective. The results suggest that very narrow antigenic profile of an immunogen is associated with poor Ab response. An immunogen with broader antigenic activity elicits robust Ab response.

  9. Non-immunogenic, hydrophilic/cationic block copolymers and uses thereof

    Science.gov (United States)

    Scales, Charles W.; Huang, Faqing; McCormick, Charles L.

    2010-05-18

    The present invention provides novel non-immunogenic, hydrophilic/cationic block copolymers comprising a neutral-hydrophilic polymer and a cationic polymer, wherein both polymers have well-defined chain-end functionality. A representative example of such a block copolymer comprises poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) and poly(N-[3-(dimethylamino)propyl]methacrylamide) (PDMAPMA). Also provided is a synthesis method thereof in aqueous media via reversible addition fragmentation chain transfer (RAFT) polymerization. Further provided are uses of these block copolymers as drug delivery vehicles and protection agents.

  10. Immunogenicity of peptides of measles virus origin and influence of adjuvants.

    Science.gov (United States)

    Halassy, Beata; Mateljak, Sanja; Bouche, Fabienne B; Pütz, Mike M; Muller, Claude P; Frkanec, Ruza; Habjanec, Lidija; Tomasić, Jelka

    2006-01-12

    Epitope-based peptide antigens have been under development for protection against measles virus. The immunogenicity of five peptides composed of the same B cell epitope (BCE) (H236-250 of the measles virus hemagglutinin), and different T cell epitopes of measles virus fusion protein (F421-435, F256-270, F288-302) and nucleoprotein (NP335-345) was studied in mice (subcutaneous immunisation). The adjuvant effects of peptidoglycan monomer (PGM), Montanide ISA 720 and 206 were also investigated. Results showed basic differences in peptide immunogenicity that were consistent with already described structural differences. PGM elevated peptide-specific IgG when applied together with four of five tested peptides. A strong synergistic effect was observed after co-immunisation of mice with a mixture containing all five chimeric peptides in small and equal amounts. Results revealed for the first time that immunisation with several peptides having the common BCE generated significantly higher levels of both anti-peptide and anti-BCE IgG in comparison to those obtained after immunisation with a single peptide in much higher quantity. Further improvement of immune response was obtained after incorporation of such a peptide mixture into oil-based adjuvants.

  11. Safety and immunogenicity of HIV-1 Tat toxoid in immunocompromised HIV-1-infected patients.

    Science.gov (United States)

    Gringeri, A; Santagostino, E; Muça-Perja, M; Mannucci, P M; Zagury, J F; Bizzini, B; Lachgar, A; Carcagno, M; Rappaport, J; Criscuolo, M; Blattner, W; Burny, A; Gallo, R C; Zagury, D

    1998-01-01

    To antagonize the deleterious effects of the HIV-1 toxin extracellular Tat on uninfected immune cells, we developed a new strategy of anti-HIV-1 vaccine using an inactivated but immunogenic Tat (Tat toxoid). Tat toxoid has been assayed for safety and immunogenicity in seropositive patients. The phase I vaccine clinical trial testing Tat toxoid preparation in Seppic Isa 51 oil adjuvant was performed on 14 HIV-1-infected asymptomatic although biologically immunocompromised individuals (500-200 CD4+ cells/mm3). Following as many as 8 injections, no clinical defects were observed. All patients exhibited an antibody (Ab) response to Tat, and some had cell-mediated immunity (CMI) as evaluated by skin test in vivo and T-cell proliferation in vitro. These results provide initial evidence of safety and potency of Tat toxoid vaccination in HIV-1-infected individuals.

  12. Average Amount and Stability of Available Agro-Climate Resources in the Main Maize Cropping Regions in China during 1981-2010

    Science.gov (United States)

    Zhao, Jin; Yang, Xiaoguang

    2018-02-01

    The available agro-climate resources that can be absorbed and converted into dry matter could directly affect crop growth and yield under climate change. Knowledge of the average amount and stability of available agro-climate resources for maize in the main cropping regions of China under climate change is essential for farmers and advisors to optimize cropping choices and develop adaptation strategies under limited resources. In this study, the three main maize cropping regions in China—the North China spring maize region (NCS), the Huanghuaihai summer maize region (HS), and the Southwest China mountain maize region (SCM)—were selected as study regions. Based on observed solar radiation, temperature, and precipitation data, we analyzed the spatial distributions and temporal trends in the available agro-climate resources for maize during 1981-2010. During this period, significantly prolonged climatological growing seasons for maize [3.3, 2.0, and 4.7 day (10 yr)-1 in NCS, HS, and SCM] were found in all three regions. However, the spatiotemporal patterns of the available agro-climate resources differed among the three regions. The available heating resources for maize increased significantly in the three regions, and the rates of increase were higher in NCS [95.5°C day (10 yr)-1] and SCM [93.5°C day (10 yr)-1] than that in HS [57.7°C day (10 yr)-1]. Meanwhile, decreasing trends in the available water resources were found in NCS [-5.3 mm (10 yr)-1] and SCM [-5.8 mm (10 yr)-1], whereas an increasing trend was observed in HS [3.0 mm (10 yr)-1]. Increasing trends in the available radiation resources were found in NCS [20.9 MJ m-2 (10 yr)-1] and SCM [25.2 MJ m-2 (10 yr)-1], whereas a decreasing trend was found in HS [11.6 MJ m-2 (10 yr)-1]. Compared with 1981-90, the stability of all three resource types decreased during 1991-2000 and 2001-10 in the three regions. More consideration should be placed on the extreme events caused by more intense climate fluctuations

  13. A microneedle patch containing measles vaccine is immunogenic in non-human primates.

    Science.gov (United States)

    Edens, Chris; Collins, Marcus L; Goodson, James L; Rota, Paul A; Prausnitz, Mark R

    2015-09-08

    Very high vaccination coverage is required to eliminate measles, but achieving high coverage can be constrained by the logistical challenges associated with subcutaneous injection. To simplify the logistics of vaccine delivery, a patch containing micron-scale polymeric needles was formulated to encapsulate the standard dose of measles vaccine (1000 TCID₅₀) and the immunogenicity of the microneedle patch was compared with subcutaneous injection in rhesus macaques. The microneedle patch was administered without reconstitution with diluent, dissolved in skin within 10 min, and caused only mild, transient skin erythema. Both groups of rhesus macaques generated neutralizing antibody responses to measles that were consistent with protection and the neutralizing antibody titers were equivalent. In addition, the microneedle patches maintained an acceptable level of potency after storage at elevated temperature suggesting improved thermostability compared to standard lyophilized vaccine. In conclusion, a measles microneedle patch vaccine was immunogenic in non-human primates, and this approach offers a promising delivery method that could help increase vaccination coverage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Cytokines in immunogenic cell death: Applications for cancer immunotherapy.

    Science.gov (United States)

    Showalter, Anne; Limaye, Arati; Oyer, Jeremiah L; Igarashi, Robert; Kittipatarin, Christina; Copik, Alicja J; Khaled, Annette R

    2017-09-01

    Despite advances in treatments like chemotherapy and radiotherapy, metastatic cancer remains a leading cause of death for cancer patients. While many chemotherapeutic agents can efficiently eliminate cancer cells, long-term protection against cancer is not achieved and many patients experience cancer recurrence. Mobilizing and stimulating the immune system against tumor cells is one of the most effective ways to protect against cancers that recur and/or metastasize. Activated tumor specific cytotoxic T lymphocytes (CTLs) can seek out and destroy metastatic tumor cells and reduce tumor lesions. Natural Killer (NK) cells are a front-line defense against drug-resistant tumors and can provide tumoricidal activity to enhance tumor immune surveillance. Cytokines like IFN-γ or TNF play a crucial role in creating an immunogenic microenvironment and therefore are key players in the fight against metastatic cancer. To this end, a group of anthracyclines or treatments like photodynamic therapy (PDT) exert their effects on cancer cells in a manner that activates the immune system. This process, known as immunogenic cell death (ICD), is characterized by the release of membrane-bound and soluble factors that boost the function of immune cells. This review will explore different types of ICD inducers, some in clinical trials, to demonstrate that optimizing the cytokine response brought about by treatments with ICD-inducing agents is central to promoting anti-cancer immunity that provides long-lasting protection against disease recurrence and metastasis. Copyright © 2017. Published by Elsevier Ltd.

  15. Heterologous prime-boost vaccination with DNA and MVA vaccines, expressing HIV-1 subtype C mosaic Gag virus-like particles, is highly immunogenic in mice.

    Directory of Open Access Journals (Sweden)

    Ros Chapman

    Full Text Available In an effort to make affordable vaccines suitable for the regions most affected by HIV-1, we have constructed stable vaccines that express an HIV-1 subtype C mosaic Gag immunogen (BCG-GagM, MVA-GagM and DNA-GagM. Mosaic immunogens have been designed to address the tremendous diversity of this virus. Here we have shown that GagM buds from cells infected and transfected with MVA-GagM and DNA-GagM respectively and forms virus-like particles. Previously we showed that a BCG-GagM prime MVA-GagM boost generated strong cellular immune responses in mice. In this study immune responses to the DNA-GagM and MVA-GagM vaccines were evaluated in homologous and heterologous prime-boost vaccinations. The DNA homologous prime boost vaccination elicited predominantly CD8+ T cells while the homologous MVA vaccination induced predominantly CD4+ T cells. A heterologous DNA-GagM prime MVA-GagM boost induced strong, more balanced Gag CD8+ and CD4+ T cell responses and that were predominantly of an effector memory phenotype. The immunogenicity of the mosaic Gag (GagM was compared to a naturally occurring subtype C Gag (GagN using a DNA homologous vaccination regimen. DNA-GagN expresses a natural Gag with a sequence that was closest to the consensus sequence of subtype C viruses sampled in South Africa. DNA-GagM homologous vaccination induced cumulative HIV-1 Gag-specific IFN-γ ELISPOT responses that were 6.5-fold higher than those induced by the DNA-GagN vaccination. Similarly, DNA-GagM vaccination generated 7-fold higher levels of cytokine-positive CD8+ T cells than DNA-GagN, indicating that this subtype C mosaic Gag elicits far more potent immune responses than a consensus-type Gag. Cells transfected and infected with DNA-GagM and MVA-GagM respectively, expressed high levels of GagM and produced budding virus-like particles. Our data indicates that a heterologous prime boost regimen using DNA and MVA vaccines expressing HIV-1 subtype C mosaic Gag is highly

  16. [Safety and immunogenicity of a 7-valent pneumococcal conjugate vaccine (Prevenar) booster dose in healthy Chinese toddlers].

    Science.gov (United States)

    Li, Rong-cheng; Li, Feng-xiang; Li, Yan-ping

    2009-06-01

    To evaluate the safety and immunogenicity of the booster dose of 7 valent pneumococcal conjugate vaccine (PCV7) to the healthy Chinese toddlers who had received 3 primary doses. Four hundred and eighty-eight Chinese toddlers received a booster dose of PCV7 at age of 12-15 months following a primary series of the vaccine given at ages 3, 4, 5 months separately with Diphtheria Tetanus Acellular Pertussis Combined Vaccine (DTaP) in Group 1 or concurrently with DTaP in Group 2. Following the booster dose immunization, each subject was followed up for 30 days to observe the safety of the vaccine. Blood samples were taken from a subset of subjects prior and post 30 days the booster dose immunization to evaluate immunogenicity. A high proportion of subjects in Group 1 (89%) and Group 2 (91%) remained afebrile after the booster dose. Local reactions to the PCV7 booster dose were generally mild. For each serotype, the rise in GMC (post-/pre-vaccination) showed a statistically significant difference (P<0.0001) between both groups. PCV7 administered as a booster dose is generally safe, well tolerate, and immunogenic in healthy Chinese toddlers.

  17. Identification and characterization of immunogenic proteins of Mycoplasma genitalium

    DEFF Research Database (Denmark)

    Svenstrup, Helle Friis; Jensen, J.S.; Gevaert, K.

    2006-01-01

    serum against M. genitalium G37, determine their identity by mass spectrometry, and develop an M. genitalium-specific enzyme-linked immunosorbent assay (ELISA) free from cross-reactivity with M. pneumoniae antibodies. Using recombinant fragments of the C-terminal part of MgPa (rMgPa), we developed....... genitalium strains were isolated (J. S. Jensen, H. T. Hansen, and K. Lind, J. Clin. Microbiol. 34:286-291, 1996). The objective of this study was to characterize immunogenic proteins of M. genitalium by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting by using a hyperimmune rabbit...

  18. Efficacy, immunogenicity, and safety of a 9-valent human papillomavirus vaccine in Latin American girls, boys, and young women

    OpenAIRE

    Ángela María Ruiz-Sternberg; Edson D. Moreira, Jr; Jaime A. Restrepo; Eduardo Lazcano-Ponce; Robinson Cabello; Arnaldo Silva; Rosires Andrade; Francisco Revollo; Santos Uscanga; Alejandro Victoria; Ana María Guevara; Joaquín Luna; Manuel Plata; Claudia Nossa Dominguez; Edison Fedrizzi

    2018-01-01

    Background: A 9-valent human papillomavirus (HPV6/11/16/18/31/33/45/52/58; 9vHPV) vaccine was developed to expand coverage of the previously developed quadrivalent (HPV6/11/16/18; qHPV) vaccine. Methods: Efficacy, immunogenicity, and safety outcomes were assessed in Latin American participants enrolled in 2 international studies of the 9vHPV vaccine, including a randomized, double-blinded, controlled with qHPV vaccine, efficacy, immunogenicity, and safety study in young women aged 16–26 years...

  19. Determination of the frequency of the most immunogenic Rhesus antigens among Saudi donors in King Abdulaziz Medical City ? Riyadh

    OpenAIRE

    Elsayid, Mohieldin; Al Qahtani, Faris Saeed; Al Qarni, Abdulaziz Mohammed; Almajed, Faisal; Al Saqri, Faisal; Qureshi, Shoeb

    2017-01-01

    Background: The Rhesus (Rh) blood group system is one of the most polymorphic and immunogenic systems known in humans, because of its immunogenicity along with ABO grouping, RhD antigen testing was made mandatory before issuing a compatible blood. At present, there are five major antigens, i.e., D, C, E, c, and e in Rh blood group system. Aims: The aim of this study is to provide essential data about the distribution of the major Rh antigens and the most common phenotype among the Saudi popul...

  20. Non-immunogenicity of overlapping gag peptides pulsed on autologous cells after vaccination of HIV infected individuals.

    Directory of Open Access Journals (Sweden)

    Henrik N Kløverpris

    Full Text Available HIV Gag-specific CD4+ and CD8+ T-cell responses are important for HIV immune control. Pulsing overlapping Gag peptides on autologous lymphocytes (OPAL has proven immunogenic and effective in reducing viral loads in multiple pigtail macaque studies, warranting clinical evaluation.We performed a phase I, single centre, placebo-controlled, double-blinded and dose-escalating study to evaluate the safety and preliminary immunogenicity of a novel therapeutic vaccine approach 'OPAL-HIV-Gag(c'. This vaccine is comprised of 120 15mer peptides, overlapping by 11 amino acids, spanning the HIV Gag C clade sequence proteome, pulsed on white blood cells enriched from whole blood using a closed system, followed by intravenous reinfusion. Patients with undetectable HIV viral loads (<50 copies/ml plasma on HAART received four administrations at week 0, 4, 8 and 12, and were followed up for 12 weeks post-treatment. Twenty-three people were enrolled in four groups: 12 mg (n = 6, 24 mg (n = 7, 48 mg (n = 2 or matching placebo (n = 8 with 18 immunologically evaluable. T-cell immunogenicity was assessed by IFNγ ELIspot and intracellular cytokine staining (ICS.The OPAL-HIV-Gag(c peptides were antigenic in vitro in 17/17 subjects. After vaccination with OPAL-HIV-Gag(c, 1/6 subjects at 12 mg and 1/6 subjects at 24 mg dose groups had a 2- and 3-fold increase in ELIspot magnitudes from baseline, respectively, of Gag-specific CD8+ T-cells at week 14, compared to 0/6 subjects in the placebo group. No Gag-specific CD4+ T-cell responses or overall change in Rev, Nef, Tat and CMV specific responses were detected. Marked, transient and self-limiting lymphopenia was observed immediately post-vaccination (4 hours in OPAL-HIV-Gag(c but not in placebo recipients, with median fall from 1.72 to 0.67 million lymphocytes/mL for active groups (P<0.001, compared to post-placebo from 1.70 to 1.56 lymphocytes/ml (P = 0.16.Despite strong immunogenicity observed in

  1. Ionizing radiation enhances immunogenicity of cells expressing a tumor-specific T-cell epitope

    International Nuclear Information System (INIS)

    Ciernik, Ilja F.; Romero, Pedro; Berzofsky, Jay A.; Carbone, David P.

    1999-01-01

    Background: p53 point mutations represent potential tumor-specific cytolytic T lymphocyte (CTL) epitopes. Whether ionizing radiation (IR) alters the immunological properties of cells expressing mutant p53 in respect of the CTL epitope generated by a defined point mutation has not been evaluated. Methods: Mutant p53-expressing syngeneic, nontumor forming BALB/c 3T3 fibroblasts, tumor forming ras-transfected BALB/c 3T3 sarcomas, and DBA/2-derived P815 mastocytoma cells, which differ at the level of minor histocompatibility antigens, were used as cellular vaccines. Cells were either injected with or without prior IR into naive BALB/c mice. Cellular cytotoxicity was assessed after secondary restimulation of effector spleen cells in vitro. Results: Injection of P815 mastocytoma cells expressing the mutant p53 induced mutation-specific CTL in BALB/c mice irrespective of prior irradiation. However, syngeneic fibroblasts or fibrosarcomas endogenously expressing mutant p53 were able to induce significant mutation-specific CTL only when irradiated prior to injection into BALB/c mice. IR of fibroblasts did not detectably alter the expression of cell surface molecules involved in immune response induction, nor did it alter the short-term in vitro viability of the fibroblasts. Interestingly, radioactively-labeled fibroblasts injected into mice after irradiation showed altered organ distribution, suggesting that the in vivo fate of these cells may play a crucial role in their immunogenicity. Conclusions: These findings indicate that IR can alter the immunogenicity of syngeneic normal as well as tumor forming fibroblasts in vivo, and support the view that ionizing radiation enhances immunogenicity of cellular tumor vaccines

  2. Food Processing: The Influence of the Maillard Reaction on Immunogenicity and Allergenicity of Food Proteins

    Science.gov (United States)

    Teodorowicz, Malgorzata; van Neerven, Joost

    2017-01-01

    The majority of foods that are consumed in our developed society have been processed. Processing promotes a non-enzymatic reaction between proteins and sugars, the Maillard reaction (MR). Maillard reaction products (MRPs) contribute to the taste, smell and color of many food products, and thus influence consumers’ choices. However, in recent years, MRPs have been linked to the increasing prevalence of diet- and inflammation-related non-communicable diseases including food allergy. Although during the last years a better understanding of immunogenicity of MRPs has been achieved, still only little is known about the structural/chemical characteristics predisposing MRPs to interact with antigen presenting cells (APCs). This report provides a comprehensive review of recent studies on the influence of the Maillard reaction on the immunogenicity and allergenicity of food proteins. PMID:28777346

  3. Food Processing: The Influence of the Maillard Reaction on Immunogenicity and Allergenicity of Food Proteins.

    Science.gov (United States)

    Teodorowicz, Malgorzata; van Neerven, Joost; Savelkoul, Huub

    2017-08-04

    The majority of foods that are consumed in our developed society have been processed. Processing promotes a non-enzymatic reaction between proteins and sugars, the Maillard reaction (MR). Maillard reaction products (MRPs) contribute to the taste, smell and color of many food products, and thus influence consumers' choices. However, in recent years, MRPs have been linked to the increasing prevalence of diet- and inflammation-related non-communicable diseases including food allergy. Although during the last years a better understanding of immunogenicity of MRPs has been achieved, still only little is known about the structural/chemical characteristics predisposing MRPs to interact with antigen presenting cells (APCs). This report provides a comprehensive review of recent studies on the influence of the Maillard reaction on the immunogenicity and allergenicity of food proteins.

  4. Clinical Efficacy, Safety, and Immunogenicity of a Live Attenuated Tetravalent Dengue Vaccine (CYD-TDV in Children: A Systematic Review with Meta-analysis

    Directory of Open Access Journals (Sweden)

    Moffat Malisheni

    2017-08-01

    Full Text Available BackgroundDengue hemorrhagic fever is the leading cause of hospitalization and death in children living in Asia and Latin America. There is an urgent need for an effective and safe dengue vaccine to reduce morbidity and mortality in this high-risk population given the lack of dengue specific treatment at present. This review aims to determine the efficacy, safety, and immunogenicity of CYD-TDV vaccine in children.MethodsThis is a systematic review including meta-analysis of randomized controlled clinical trial data from Embase, Medline, the Cochrane Library, Web of Science, and ClinicalTrials.gov. Studies that assessed CYD-TDV vaccine efficacy [(1 − RR*100], safety (RR, and immunogenicity (weighted mean difference in children were included in this study. Random effects model was employed to analyze patient-level data extracted from primary studies.ResultsThe overall efficacy of CYD-TDV vaccine was 54% (40–64, while serotype-specific efficacy was 77% (66–85 for DENV4, 75% (65–82 for DENV3, 50% (36–61 for DENV1, and 34% (14–49 for DENV2. 15% (−174–74 vaccine efficacy was obtained for the unknown serotype. Meta-analysis of included studies with longer follow-up time (25 months revealed that CYD-TDV vaccine significantly increased the risk of injection site reactions (RR = 1.1: 1.04–1.17; p-value = 0.001. Immunogenicity (expressed as geometric mean titers in descending order was 439.7 (331.7–547.7, 323 (247 – 398.7, 144.1 (117.9–170.2, and 105 (88.7–122.8 for DENV3, DENV2, DENV1, and DENV4, respectively.ConclusionCYD-TDV vaccine is effective and immunogenic in children overall. Reduced efficacy of CYD-TDV vaccine against DENV2 notoriously known for causing severe dengue infection and dengue outbreaks cause for serious concern. Post hoc meta-analysis of long-term follow-up data (≥25 months from children previously vaccinated with CYD-TDV vaccine is needed to make a conclusion regarding CYD-TDV vaccine

  5. Immunogenic Targets for Specific Immunotherapy in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2012-01-01

    Full Text Available Multiple myeloma remains an incurable disease although the prognosis has been improved by novel therapeutics and agents recently. Relapse occurs in the majority of patients and becomes fatal finally. Immunotherapy might be a powerful intervention to maintain a long-lasting control of minimal residual disease or to even eradicate disseminated tumor cells. Several tumor-associated antigens have been identified in patients with multiple myeloma. These antigens are expressed in a tumor-specific or tumor-restricted pattern, are able to elicit immune response, and thus could serve as targets for immunotherapy. This review discusses immunogenic antigens with therapeutic potential for multiple myeloma.

  6. APC targeting enhances immunogenicity of a novel multistage Fc-fusion tuberculosis vaccine in mice.

    Science.gov (United States)

    Soleimanpour, Saman; Farsiani, Hadi; Mosavat, Arman; Ghazvini, Kiarash; Eydgahi, Mohammad Reza Akbari; Sankian, Mojtaba; Sadeghian, Hamid; Meshkat, Zahra; Rezaee, Seyed Abdolrahim

    2015-12-01

    Numerous studies have demonstrated that targeting immunogens to FcγR on antigen-presenting cells (APCs) can selectively uptake and increase cellular immunity in vitro and in vivo. Therefore, the present study was conducted to evaluate immunogenicity of a novel multistage tuberculosis vaccine, a combination of an early and a dormant immunogenic protein, ESAT6 and HspX, fused to Fcγ2a fragment of mouse IgG2a to target all forms of tuberculosis. Codon-optimized genes consisting of ESAT6, a linker, and HspX fused either to mouse Fcγ2a (ESAT6:HspX:mFcγ2a) or 6× His-tag (ESAT6:HspX:His) were synthesized. The resulting proteins were then produced in Pichia pastoris. The fusion proteins were separately emulsified in dimethyldioctadecylammonium bromide(DDA)-trehalose-6,6-dibehenate(TDB) adjuvant, and their immunogenicity with and without bacille Calmette-Guérin (BCG) was assessed in C57BL/6 mice. Th1, Th2, Th17, and T-reg cytokine patterns were evaluated using the ELISA method. Both multistage vaccines induced very strong IL-12 and IFN-γ secretion from splenic cells; the Fc-tagged subunit vaccine induced a more effective Th1 immune response (IFN-γ, 910 pg/mL, and IL-12, 854 pg/mL) with a very low increase in IL-17 (∼0.1 pg/mL) and IL-4 (37 pg/mL) and a mild increase in TGF-β (543 pg/mL) compared to the BCG or ESAT6:HspX:His primed and boosted groups. The production of IFN-γ to ESAT6:HspX:Fcγ2a was very consistent and showed an increasing trend for IL-12 compared to the BCG or ESAT6:HspX:His primed and boosted groups. Fcγ2a used as a delivery vehicle supported the idea of selective uptake, inducing cross-presentation and forming a proper anti-tuberculosis response in context of Th1/Th2 and Th17/T-reg balances, which is important for protection and prevention of damage.

  7. Immunogenicity of anti-tumor necrosis factor antibodies-toward improved methods of anti-antibody measurement.

    Science.gov (United States)

    Aarden, Lucien; Ruuls, Sigrid R; Wolbink, Gertjan

    2008-08-01

    To date, millions of people have been treated with therapeutic monoclonal antibodies (TmAbs) for various indications. It is becoming increasingly clear that TmAbs can be immunogenic, which may reduce efficacy or induce adverse effects. Over the years, the importance of antibody formation has been questioned and sometimes minimized, as few antibody responses to TmAbs (HACA or HAHA) were reported. However, the methods to detect and quantify such antibodies used in the past have been problematic. Only recently, methods have been developed that have adequate sensitivity and are not seriously disturbed by false-positive reactions caused by rheumatoid factors, natural antibodies to Fab or F(ab')2 fragments, or Fc interactions of IgG4. The large number of treated patients, in combination with these new assays, presents a unique opportunity to study the anti-antibody immune response in man, possibly allowing us to manipulate immunogenicity in the future.

  8. Safety and Immunogenicity of a Tetravalent Dengue Vaccine Candidate in Healthy Children and Adults in Dengue-Endemic Regions: A Randomized, Placebo-Controlled Phase 2 Study.

    Science.gov (United States)

    Sirivichayakul, Chukiat; Barranco-Santana, Elizabeth A; Esquilin-Rivera, Inés; Oh, Helen M L; Raanan, Marsha; Sariol, Carlos A; Shek, Lynette P; Simasathien, Sriluck; Smith, Mary Kathryn; Velez, Ivan Dario; Wallace, Derek; Gordon, Gilad S; Stinchcomb, Dan T

    2016-05-15

    A safe, effective tetravalent dengue vaccine is a global health priority. The safety and immunogenicity of a live attenuated, recombinant tetravalent dengue vaccine candidate (TDV) were evaluated in healthy volunteers from dengue-endemic countries. This multicenter, double-blind, phase 2 study was conducted in Puerto Rico, Colombia, Singapore, and Thailand. During stage I, 148 volunteers aged 1.5-45 years were sequentially enrolled into 4 age-descending groups and randomized at a ratio of 2:1 to receive TDV or placebo. In stage II (group 5), 212 children aged 1.5-11 years were randomized at a ratio of 3:1 to receive TDV or placebo. Participants received a subcutaneous injection of TDV or placebo on days 0 and 90 and were followed for analysis of safety, seropositivity, and neutralizing antibodies to DENV-1-4. Injection site pain, itching, and erythema (mostly mild) were the only solicited adverse events more frequently reported with TDV than with placebo in all age groups. After 2 TDV doses, seropositivity was >95% in all 5 groups for DENV-1-3 and 72.7%-100% for DENV-4; geometric mean titers ranged from 582 to 1187 for DENV-1, from 582 to 1187 for DENV-2, from 196 to 630 for DENV-3, and from 41 to 210 for DENV-4 among the 5 groups. TDV was well tolerated and immunogenic in volunteers aged 1.5-45 years, irrespective of prevaccination dengue exposure. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mailjournals.permissions@oup.com.

  9. Safety and immunogenicity of a live attenuated mumps vaccine: a phase I clinical trial.

    Science.gov (United States)

    Liang, Yan; Ma, Jingchen; Li, Changgui; Chen, Yuguo; Liu, Longding; Liao, Yun; Zhang, Ying; Jiang, Li; Wang, Xuan-Yi; Che, Yanchun; Deng, Wei; Li, Hong; Cui, Xiaoyu; Ma, Na; Ding, Dong; Xie, Zhongping; Cui, Pingfang; Ji, Qiuyan; Wang, JingJing; Zhao, Yuliang; Wang, Junzhi; Li, Qihan

    2014-01-01

    Mumps, a communicable, acute and previously well-controlled disease, has had recent and occasional resurgences in some areas. A randomized, double-blind, controlled and multistep phase I study of an F-genotype attenuated mumps vaccine produced in human diploid cells was conducted. A total of 300 subjects were enrolled and divided into 4 age groups: 16-60 years, 5-16 years, 2-5 years and 8-24 months. The groups were immunized with one injection per subject. Three different doses of the F-genotype attenuated mumps vaccine, A (3.5 ± 0.25 logCCID50), B (4.25 ± 0.25 logCCID50) and C (5.0 ± 0.25 logCCID50), as well as a placebo control and a positive control of a licensed A-genotype vaccine (S79 strain) were used. The safety and immunogenicity of this vaccine were compared with those of the controls. The safety evaluation suggested that mild adverse reactions were observed in all groups. No serious adverse event (SAE) was reported throughout the trial. The immunogenicity test showed a similar seroconversion rate of the neutralizing and ELISA antibody in the 2- to 5-year-old and 8- to 24-month-old groups compared with the seroconversion rate in the positive control. The GMT of the neutralizing anti-F-genotype virus antibodies in the vaccine groups was slightly higher than that in the positive control group. The F-genotype attenuated mumps vaccine evaluated in this clinical trial was demonstrated to be safe and have effective immunogenicity vs. control.

  10. Analysis of Immunogenicity of Intracellular CTAR Fragments of Epstein-Barr Virus Latent Phase Protein LMP1.

    Science.gov (United States)

    Lomakin, Ya A; Shmidt, A A; Bobik, T V; Chernov, A S; Pyrkov, A Yu; Aleksandrova, N M; Okunola, D O; Vaskina, M I; Ponomarenko, N A; Telegin, G B; Dubina, M V; Belogurov, A A

    2017-10-01

    Intracellular fragments of latent phase protein LMP1 of Epstein-Barr virus, denoted as CTAR1/2/3, can trigger a variety of cell cascades and contribute to the transforming potential of the virus. Generation of recombinant proteins CTAR1/2/3 is expected to yield more ample data on functional and immunogenic characteristics of LMP1. We created genetic constructs for prokaryotic expression of LMP1 CTAR fragments and selected optimal conditions for their production and purification. Using a new library of LMP1 CTAR fragments, we carried out epitope mapping of a diagnostic anti-LMP1 antibody S12. Analysis of polyclonal serum antibodies from mice immunized with full-length LMP1 confirmed immunogenicity of CTAR elements comparable with that of full-length protein.

  11. Safety and Immunogenicity of a Candidate Parvovirus B19 Vaccine

    OpenAIRE

    Bernstein, David I; El Sahly, Hana M; Keitel, Wendy A; Wolff, Mark; Simone, Gina; Segawa, Claire; Wong, Susan; Shelly, Daniel; Young, Neal S; Dempsey, Walla

    2011-01-01

    Parvovirus B19 is an important human pathogen causing erythema infectiosum, transient aplastic crisis in individuals with underlying hemolytic disorders and hydrops fetalis. We therefore evaluated a parvovirus B19 virus like particle (VLP) vaccine. The safety and immunogenicity of a 25 μg dose of parvovirus B19 recombinant capsid; 2.5 and 25 μg doses of the recombinant capsid given with MF59; and saline placebo were assessed in healthy adults. Because of 3 unexplained cutaneous events the stu...

  12. Clinical Trials of Immunogene Therapy for Spontaneous Tumors in Companion Animals

    Directory of Open Access Journals (Sweden)

    Gerardo Claudio Glikin

    2014-01-01

    Full Text Available Despite the important progress obtained in the treatment of some pets’ malignancies, new treatments need to be developed. Being critical in cancer control and progression, the immune system’s appropriate modulation may provide effective therapeutic options. In this review we summarize the outcomes of published immunogene therapy veterinary clinical trials reported by many research centers. A variety of tumors such as canine melanoma, soft tissue sarcomas, osteosarcoma and lymphoma, feline fibrosarcoma, and equine melanoma were subjected to different treatment approaches. Both viral and mainly nonviral vectors were used to deliver gene products as cytokines, xenogeneic tumor associated antigens, specific ligands, and proapoptotic regulatory factors. In some cases autologous, allogenic, or xenogeneic transgenic cytokine producing cells were assayed. In general terms, minor or no adverse collateral effects appeared during this kind of therapies and treated patients usually displayed a better course of the disease (longer survival, delayed or suppressed recurrence or metastatic spread, and improvement of the quality of life. This suggests the utility of these methodologies as standard adjuvant treatments. The encouraging outcomes obtained in companion animals support their ready application in veterinary clinical oncology and serve as preclinical proof of concept and safety assay for future human gene therapy trials.

  13. A Comprehensive Study of Agricultural Drought Resistance and Background Drought Levels in Five Main Grain-Producing Regions of China

    OpenAIRE

    Lei Kang; Hongqi Zhang

    2016-01-01

    Drought control and resistance affect national food security. With this in mind, we studied five main grain-producing regions of China: Sanjiang Plain, Songnen Plain, Huang-Huai-Hai Plain, the middle Yangtze River and Jianghuai region and Sichuan Basin. Using GIS technology, we evaluated the comprehensive agricultural drought situation based on major crops, the basic drought resistance by integrating multiple indicators and the comprehensive drought resistance against background agricultural ...

  14. The effect of immunomodulators on the immunogenicity of TNF-blocking therapeutic monoclonal antibodies: a review

    NARCIS (Netherlands)

    Krieckaert, C.L.; Bartelds, G.M.; Lems, W.F.; Wolbink, G.J.

    2010-01-01

    Therapeutic monoclonal antibodies have revolutionized the treatment of various inflammatory diseases. Immunogenicity against these antibodies has been shown to be clinically important: it is associated with shorter response duration because of diminishing concentrations in the blood and with

  15. Synthesis of an oxytetracyline-tolidin-BSA immunogen and antibodies production of anti-oxytetracyline developed for oxytetracyline residue detection with enzyme-linked immunosorbent assays technique

    Directory of Open Access Journals (Sweden)

    Widiastuti R

    2013-06-01

    Full Text Available An oxytetracycline-tolidin-bovine serum albumin (OTC-tolidin-BSA-conjugate was synthezed as immunogen for producing specific antibodies in immunized rabbits that would be used as reagent for development of OTC residue detection with enzym-linked immunoassays technique. The immunogen was prepared through diazotization tolidin and subsequently reacted with OTC. The red purple immunogen of OTC-tolidin-BSA absorbed at wave lengths of 277 nm and 488 nm under UV screening absorbances and confirmation with the high performance liquid chromatography (HPLC showed the absence of peak at retention time of 3.46 minutes. Characaterized result with SDS-PAGE showed the molecular weight of the OTC-tolidin-BSA at 69.79 kDA. Subsequently, the immunogen was immunized into New Zealand rabbits in order to produce the polyclonal antibodies. The antibodies were purified using a protein A sepharose column. The OD optimum responses of 0.92 to 1.20 were obtained from the second fractionation at dilution of 1/1000 by titrating the antibodies and OTC-tolidin-BSA coating antigen at concentration of 10 µg/mL on several bleeding times.

  16. Enhancement of anti-murine colon cancer immunity by fusion of a SARS fragment to a low-immunogenic carcinoembryonic antigen

    Directory of Open Access Journals (Sweden)

    Lin Chen-Si

    2012-02-01

    Full Text Available Abstract Background It is widely understood that tumor cells express tumor-associated antigens (TAAs, of which many are usually in low immunogenicity; for example, carcinoembryonic antigen (CEA is specifically expressed on human colon cancer cells and is viewed as a low-immunogenic TAA. How to activate host immunity against specific TAAs and to suppress tumor growth therefore becomes important in cancer therapy development. Results To enhance the immune efficiency of CEA in mice that received, we fused a partial CEA gene with exogenous SARS-CoV fragments. Oral vaccination of an attenuated Salmonella typhimurium strain transformed with plasmids encoding CEA-SARS-CoV fusion gene into BALB/c mice elicited significant increases in TNF-α and IL-10 in the serum. In addition, a smaller tumor volume was observed in CT26/CEA-bearing mice who received CEA-SARS-CoV gene therapy in comparison with those administered CEA alone. Conclusion The administration of fusing CEA-SARS-CoV fragments may provide a promising strategy for strengthening the anti-tumor efficacy against low-immunogenic endogenous tumor antigens.

  17. Conjugating recombinant proteins to Pseudomonas aeruginosa ExoProtein A: a strategy for enhancing immunogenicity of malaria vaccine candidates.

    Science.gov (United States)

    Qian, Feng; Wu, Yimin; Muratova, Olga; Zhou, Hong; Dobrescu, Gelu; Duggan, Peter; Lynn, Lambert; Song, Guanhong; Zhang, Yanling; Reiter, Karine; MacDonald, Nicholas; Narum, David L; Long, Carole A; Miller, Louis H; Saul, Allan; Mullen, Gregory E D

    2007-05-16

    Conjugation of polysaccharides to carrier proteins has been a successful approach for producing safe and effective vaccines. In an attempt to increase the immunogenicity of two malarial vaccine candidate proteins of Plasmodium falciparum, apical membrane antigen 1 (AMA1) to a blood stage vaccine candidate and surface protein 25 (Pfs25) a mosquito stage vaccine candidate, were each independently chemically conjugated to the mutant, nontoxic Pseudomonas aeruginosa ExoProtein A (rEPA). AMA1 is a large (66kD) relatively good immunogen in mice; Pfs25 is a poorly immunogenic protein when presented on alum to mice. Mice were immunized on days 0 and 28 with AMA1- or Pfs25-rEPA conjugates or unconjugated AMA1 or Pfs25, all formulated on Alhydrogel. Remarkably, sera from mice 14 days after the second immunization with Pfs25-rEPA conjugates displayed over a 1000-fold higher antibody titers as compared to unconjugated Pfs25. In contrast, AMA1 conjugated under the same conditions induced only a three-fold increase in antibody titers. When tested for functional activity, antibodies elicited by the AMA1-rEPA inhibited invasion of erythrocytes by blood-stage parasites and antibodies elicited by the Pfs25-rEPA conjugates blocked the development of the sexual stage parasites in the mosquito midgut. These results demonstrate that conjugation to rEPA induces a marked improvement in the antibody titer in mice for the poor immunogen (Pfs25) and for the larger protein (AMA1). These conjugates now need to be tested in humans to determine if mice are predictive of the response in humans.

  18. Immunogenicity of anti-tumor necrosis factor antibodies - toward improved methods of anti-antibody measurement

    NARCIS (Netherlands)

    Aarden, Lucien; Ruuls, Sigrid R.; Wolbink, Gertjan

    2008-01-01

    To date, millions of people have been treated with therapeutic monoclonal antibodies (TmAbs) for various indications. It is becoming increasingly clear that TmAbs can be immunogenic, which may reduce efficacy or induce adverse effects. Over the years, the importance of antibody formation has been

  19. Safety and Immunogenicity of a Mycoplasma ovipneumoniae bacterin for domestic sheep (Ovis aries).

    Science.gov (United States)

    Ziegler, Jessie C; Lahmers, Kevin K; Barrington, George M; Parish, Steven M; Kilzer, Katherine; Baker, Katherine; Besser, Thomas E

    2014-01-01

    Mortality from epizootic pneumonia is hindering re-establishment of bighorn sheep populations in western North America. Mycoplasma ovipneumoniae, a primary agent of this disease, is frequently carried asymptomatically by the domestic sheep and goats that constitute the reservoir of this agent for transmission to bighorn sheep. Our long-term objective is to reduce the risk of M. ovipneumoniae infection of bighorn sheep; one approach to this objective is to control the pathogen in its reservoir hosts. The safety and immunogenicity of M. ovipneumoniae for domestic sheep was evaluated in three experimental immunization protocols: 1) live M. ovipneumoniae (50 ug protein); 2) killed M. ovipneumoniae (50 ug whole cell protein) in oil adjuvant; and 3) killed M. ovipneumoniae (250 ug whole cell protein) in oil adjuvant. Immunogenicity was assessed by two serum antibody measures: competitive enzyme-linked immunosorbent assay (cELISA) (experiments 1-3) and serum growth inhibition (Experiment 3). Passive immunogenicity was also assessed in the third experiment using the same assays applied to blood samples obtained from the lambs of immunized ewes. Adverse reactions to immunization were generally minor, but local reactions were regularly observed at immunization sites with bacterins in oil adjuvants. No evidence of M. ovipneumoniae specific antibody responses were observed in the first or second experiments and no resistance to colonization was observed in the first experiment. However, the ewes in the third experiment developed strong cELISA serum antibody responses and significant serum M. ovipneumoniae inhibition activity, and these responses were passively transferred to their lambs. The results of these trials indicate that immunization with relatively large antigenic mass combined with an adjuvant is capable of inducing strong active antibody responses in ewes and passively immunizing lambs.

  20. Safety and Immunogenicity of a Mycoplasma ovipneumoniae bacterin for domestic sheep (Ovis aries.

    Directory of Open Access Journals (Sweden)

    Jessie C Ziegler

    Full Text Available BACKGROUND: Mortality from epizootic pneumonia is hindering re-establishment of bighorn sheep populations in western North America. Mycoplasma ovipneumoniae, a primary agent of this disease, is frequently carried asymptomatically by the domestic sheep and goats that constitute the reservoir of this agent for transmission to bighorn sheep. Our long-term objective is to reduce the risk of M. ovipneumoniae infection of bighorn sheep; one approach to this objective is to control the pathogen in its reservoir hosts. METHODS: The safety and immunogenicity of M. ovipneumoniae for domestic sheep was evaluated in three experimental immunization protocols: 1 live M. ovipneumoniae (50 ug protein; 2 killed M. ovipneumoniae (50 ug whole cell protein in oil adjuvant; and 3 killed M. ovipneumoniae (250 ug whole cell protein in oil adjuvant. Immunogenicity was assessed by two serum antibody measures: competitive enzyme-linked immunosorbent assay (cELISA (experiments 1-3 and serum growth inhibition (Experiment 3. Passive immunogenicity was also assessed in the third experiment using the same assays applied to blood samples obtained from the lambs of immunized ewes. RESULTS AND CONCLUSIONS: Adverse reactions to immunization were generally minor, but local reactions were regularly observed at immunization sites with bacterins in oil adjuvants. No evidence of M. ovipneumoniae specific antibody responses were observed in the first or second experiments and no resistance to colonization was observed in the first experiment. However, the ewes in the third experiment developed strong cELISA serum antibody responses and significant serum M. ovipneumoniae inhibition activity, and these responses were passively transferred to their lambs. The results of these trials indicate that immunization with relatively large antigenic mass combined with an adjuvant is capable of inducing strong active antibody responses in ewes and passively immunizing lambs.

  1. HIV-1 Immunogen: an overview of almost 30 years of clinical testing of a candidate therapeutic vaccine.

    Science.gov (United States)

    Graziani, Gina M; Angel, Jonathan B

    2016-07-01

    Although current antiretroviral therapy (ART) has transformed HIV infection into a chronic, manageable disease, ART does not cure HIV infection. Furthermore, the majority of the world's infected individuals live in resource-limited countries in which access to ART is limited. Thus, the development of an effective therapeutic HIV vaccine would be an invaluable treatment alternative. Developed by the late Dr. Jonas Salk, HIV-1 Immunogen (Remune®) is a candidate therapeutic vaccine that has been studied in thousands of HIV-infected individuals in more than a dozen clinical trials during almost three decades. This Drug Evaluation, which summarizes the results of these trials that have shown the vaccine to be safe and immunogenic, also discusses the contradictory and controversial conclusions drawn from the phases 2, 2/3 and 3 trials that assessed the clinical efficacy of this vaccine. Given the lack of unequivocal clinical benefits of HIV-1 Immunogen despite almost 30 years of extensive testing, it does not appear, in our view, that this vaccine is a clinically effective immunotherapy. However, inclusion of this vaccine in the newly proposed 'Kick/Shock and Kill' strategy for HIV eradication, or use as a prophylactic vaccine, could be considered for future trials.

  2. Inherent Immunogenicity or Lack Thereof of Pluripotent Stem Cells: Implications for Cell Replacement Therapy

    Directory of Open Access Journals (Sweden)

    Arvind Chhabra

    2017-08-01

    Full Text Available Donor-specific induced pluripotent stem cells (iPSCs offer opportunities for personalized cell replacement therapeutic approaches due to their unlimited self-renewal potential and ability to differentiate into different somatic cells. A significant progress has been made toward generating iPSC lines that are free of integrating viral vectors, development of xeno-free culture conditions, and differentiation of pluripotent stem cells (PSCs into functional somatic cell lineages. Since donor-specific iPSC lines are genetically identical to the individual, they are expected to be immunologically matched and these iPSC lines and their cellular derivatives are not expected to be immunologically rejected. However, studies in mouse models, utilizing rejection of teratomas as a model, have claimed that syngenic iPSC lines, especially the iPSC lines derived with integrating viral vectors, could be inherently immunogenic. This manuscript reviews current understanding of inherent immunogenicity of PSC lines, especially that of the human iPSC lines and their cellular derivatives, and strategies to overcome it.

  3. Universal immunogenicity validation and assessment during early biotherapeutic development to support a green laboratory.

    Science.gov (United States)

    Bautista, Ami C; Zhou, Lei; Jawa, Vibha

    2013-10-01

    Immunogenicity support during nonclinical biotherapeutic development can be resource intensive if supported by conventional methodologies. A universal indirect species-specific immunoassay can eliminate the need for biotherapeutic-specific anti-drug antibody immunoassays without compromising quality. By implementing the R's of sustainability (reduce, reuse, rethink), conservation of resources and greener laboratory practices were achieved in this study. Statistical analysis across four biotherapeutics supported identification of consistent product performance standards (cut points, sensitivity and reference limits) and a streamlined universal anti-drug antibody immunoassay method implementation strategy. We propose an efficient, fit-for-purpose, scientifically and statistically supported nonclinical immunogenicity assessment strategy. Utilization of a universal method and streamlined validation, while retaining comparability to conventional immunoassays and meeting the industry recommended standards, provides environmental credits in the scientific laboratory. Collectively, individual reductions in critical material consumption, energy usage, waste and non-environment friendly consumables, such as plastic and paper, support a greener laboratory environment.

  4. A Directed Molecular Evolution Approach to Improved Immunogenicity of the HIV-1 Envelope Glycoprotein

    Science.gov (United States)

    Du, Sean X.; Xu, Li; Zhang, Wenge; Tang, Susan; Boenig, Rebecca I.; Chen, Helen; Mariano, Ellaine B.; Zwick, Michael B.; Parren, Paul W. H. I.; Burton, Dennis R.; Wrin, Terri; Petropoulos, Christos J.; Ballantyne, John A.; Chambers, Michael; Whalen, Robert G.

    2011-01-01

    A prophylactic vaccine is needed to slow the spread of HIV-1 infection. Optimization of the wild-type envelope glycoproteins to create immunogens that can elicit effective neutralizing antibodies is a high priority. Starting with ten genes encoding subtype B HIV-1 gp120 envelope glycoproteins and using in vitro homologous DNA recombination, we created chimeric gp120 variants that were screened for their ability to bind neutralizing monoclonal antibodies. Hundreds of variants were identified with novel antigenic phenotypes that exhibit considerable sequence diversity. Immunization of rabbits with these gp120 variants demonstrated that the majority can induce neutralizing antibodies to HIV-1. One novel variant, called ST-008, induced significantly improved neutralizing antibody responses when assayed against a large panel of primary HIV-1 isolates. Further study of various deletion constructs of ST-008 showed that the enhanced immunogenicity results from a combination of effective DNA priming, an enhanced V3-based response, and an improved response to the constant backbone sequences. PMID:21738594

  5. On the rail-based freight corridor between CE and SEE regions and the main obstacles on Romanian territory

    Directory of Open Access Journals (Sweden)

    Mihaela POPA

    2013-01-01

    Full Text Available The project “Freight and Logistics Advancement in Central/South-EastEurope - Validation of trade and transport processes, Implementation of improvementactions, Application of co-coordinated structures” (in short - FLAVIA is carried outunder the Central Europe – Cooperation for Success Programme, cofunded by theEuropean Regional Development Fund. One of the main objectives of FLAVIA project isto consolidate a logistic corridor from Central Europe (CE to the South-East Europe(SEE and the Black Sea Region, based on rail and inland waterways intermodaltransport. In this paper we discuss the partial outputs of FLAVIA project, mainly relatedto the identified actual status of rail-based intermodal transport and trade obstacles of thefreight flows on the Romanian territory and the used methodology. Several operationaland long-term measures to improve the trade and intermodal transport are listed,considering the advantages of the geo-strategic potential of Romania location, connectedwith the several improvement directions already considered into the new releasedintermodal strategy.

  6. Proteomic profiling of antibody-inducing immunogens in tumor tissue identifies PSMA1, LAP3, ANXA3, and maspin as colon cancer markers

    Science.gov (United States)

    Yang, Qian; Roehrl, Michael H.; Wang, Julia Y.

    2018-01-01

    We hypothesized that cancer tissue immunogens – antigens capable of inducing specific antibody production in patients – are promising targets for development of precision diagnostics and humoral immunotherapies. We developed an innovative immuno-proteomic strategy and identified new immunogenic markers of colon cancer. Proteins from cancers and matched normal tissues were separated by 2D gel electrophoresis and blotted with serum antibodies from the same patients. Antibody-reactive proteins were sequenced by mass spectrometry and validated by Western blotting and immunohistochemistry. 170 serum antibody-reactive proteins were identified only in cancerous but not matched normal. Among these, proteasome subunit alpha type 1 (PSA1), leucine aminopeptidase 3 (LAP3), annexin A3 (ANXA3), and maspin (serpin B5) were reproducibly found in tissues from three patients. Differential expression patterns were confirmed in samples from eight patients with various stages of colon adenocarcinoma and liver metastases. These tumor-resident proteins and/or their associated serum antibodies may be promising markers for colon cancer screening and early diagnosis. Furthermore, tumor tissue-specific antibodies could potentially be exploited as immunotherapeutic targets against cancer. More generally, proteomic profiling of antibody-inducing cancer-associated immunogens represents a powerful generic method for uncovering the tumor antigen-ome, i.e., the totality of immunogenic tumor-associated proteins. PMID:29423100

  7. Efficacy, Immunogenicity and Safety of a Human Rotavirus Vaccine RIX4414 in Singaporean Infants.

    Science.gov (United States)

    Phua, Kong Boo; Lim, Fong Seng; Quak, Seng Hock; Lee, Bee Wah; Teoh, Yee Leong; Suryakiran, Pemmaraju V; Han, Htay Htay; Bock, Hans L

    2016-02-01

    This was the first study conducted to evaluate the efficacy of 2 oral doses of the human rotavirus vaccine, RIX4414 in Singaporean infants during the first 3 years of life. Healthy infants, 11 to 17 weeks of age were enrolled in this randomised (1:1), double-blinded, placebo-controlled study to receive 2 oral doses of RIX4414 vaccine/placebo following a 0-, 1-month schedule. Vaccine efficacy against severe rotavirus (RV) gastroenteritis (Vesikari score ≥11) caused by wild-type RV strains from a period starting from 2 weeks post-Dose 2 until 2 and 3 years of age was calculated with 95% confidence interval (CI). Immunogenicity and safety of the vaccine were also assessed. Of 6542 infants enrolled, 6466 were included in the efficacy analysis and a subset of 100 infants was included in the immunogenicity analysis. Fewer severe RV gastroenteritis episodes were reported in the RIX4414 group when compared to placebo at both 2 and 3 year follow-up periods. Vaccine efficacy against severe RV gastroenteritis at the respective time points were 93.8% (95% CI, 59.9 to 99.9) and 95.2% (95% CI, 70.5 to 99.9). One to 2 months post-Dose 2 of RIX4414, 97.5% (95% CI, 86.8 to 99.9) of infants seroconverted for anti-RV IgA antibodies. The number of serious adverse events recorded from Dose 1 until 3 years of age was similar in both groups. Two oral doses of RIX4414 vaccine was immunogenic and provided high level of protection against severe RV gastroenteritis in Singaporean children, during the first 3 years of life when the disease burden is highest.

  8. Immunogenicity to Biotherapeutics – the role of Anti-drug Immune complexes

    Directory of Open Access Journals (Sweden)

    Murli eKrishna

    2016-02-01

    Full Text Available AbstractBiologic molecules are increasingly becoming a part of the therapeutics portfolio that has been either recently approved for marketing or those that are in the pipeline of several biotech and pharmaceutical companies. This is largely based on their ability to be highly specific relative to small molecules. However by virtue of being a large protein, and having a complex structure with structural variability arising from production using recombinant gene technology in cell lines, such therapeutics run the risk of being recognized as foreign by a host immune system. Given the range of immune mediated adverse effects that have been documented to biologic drugs thus far, including infusion reactions, and the evolving therapeutic platforms in the pipeline that engineer different functional modules in a biotherapeutic, it is critical to understand the interplay of the adaptive and innate immune responses, the pathophysiology of immunogenicity to biologic drugs in instances where there have been immune mediated adverse clinical sequelae and address technical approaches for their laboratory evaluation. The current paradigm in immunogenicity evaluation has a tiered approach to the detection and characterization of anti-drug antibodies (ADAs elicited in vivo to a biotherapeutic; alongside with the structural, biophysical and molecular information of the therapeutic, these analytical assessments form the core of the immunogenicity risk assessment. However many of the immune mediated adverse effects attributed to ADAs require the formation of a drug/ADA immune complex intermediate (ICs that can have a variety of downstream effects. This review will focus on the activation of potential immunopathological pathways arising as a consequence of circulating as well as cell surface bound drug bearing-ICs, risk factors that are either intrinsic to the therapeutic molecule or to the host which might predispose to IC mediated effects, and review the recent

  9. Immunogenicity, protective efficacy and mechanism of novel CCS adjuvanted influenza vaccine.

    Science.gov (United States)

    Even-Or, Orli; Samira, Sarit; Rochlin, Eli; Balasingam, Shobana; Mann, Alex J; Lambkin-Williams, Rob; Spira, Jack; Goldwaser, Itzhak; Ellis, Ronald; Barenholz, Yechezkel

    2010-09-07

    We optimized the immunogenicity of adjuvanted seasonal influenza vaccine based on commercial split influenza virus as an antigen (hemagglutinin = HA) and on a novel polycationic liposome as a potent adjuvant and efficient antigen carrier (CCS/C-HA vaccine). The vaccine was characterized physicochemically, and the mechanism of action of CCS/C as antigen carrier and adjuvant was studied. The optimized CCS/C-HA split virus vaccine, when administered intramuscularly (i.m.), is significantly more immunogenic in mice, rats and ferrets than split virus HA vaccine alone, and it provides for protective immunity in ferrets and mice against live virus challenge that exceeds the degree of efficacy of the split virus vaccine. Similar adjuvant effects of optimized CCS/C are also observed in mice for H1N1 swine influenza antigen. The CCS/C-HA vaccine enhances immune responses via the Th1 and Th2 pathways, and it increases both the humoral responses and the production of IL-2 and IFN-γ but not of the pro-inflammatory factor TNFα. In mice, levels of CD4(+) and CD8(+) T-cells and of MHC II and CD40 co-stimulatory molecules are also elevated. Structure-function relationship studies of the CCS molecule as an adjuvant/carrier show that replacing the saturated palmitoyl acyl chain with the mono-unsaturated oleoyl (C18:1) chain affects neither size distribution and zeta potential nor immune responses in mice. However, replacing the polyalkylamine head group spermine (having two secondary amines) with spermidine (having only one secondary amine) reduces the enhancement of the immune response by ∼ 50%, while polyalkylamines by themselves are ineffective in improving the immunogenicity over the commercial HA vaccine. This highlights the importance of the particulate nature of the carrier and the polyalkylamine secondary amines in the enhancement of the immune responses against seasonal influenza. Altogether, our results suggest that the CCS/C polycationic liposomes combine the

  10. MODEL OF REGIONAL KNOWLEDGE TRANSFER: MAIN ACTORS, FRAMEWORK AND THEORY.

    Directory of Open Access Journals (Sweden)

    Alla LEVITSKAIA

    2016-02-01

    Full Text Available This paper analyses potential mechanism of regional knowledge transfer in region with poorly developed innovation infrastructure (the Autonomous Territorial Unit Gagauzia, Republic of Moldova through interactions between regional major players of the Regional Innovation System - the educational and research institutions, small and medium enterprises (SMEs and local authorities. Solution of this problem can be found in modern studies of territories innovation development through the clustering processes. Through the empirical study - innovation potential analysis of local SMEs - we proposed advantage mechanism which focused on the one type of knowledge cluster – Innovation and Educational Cluster. The symbiosis of entrepreneurs, government agencies, educational institutions and business service providers with the regional core - University, allows to increasing exchange flows of innovative knowledge between all members of the cluster and distributing them to the entire region and beyond. The results and proposals of this study formed the basis of the “Program of increasing the innovation potential of Gagauz SMEs”.

  11. Contribution of the attachment G glycoprotein to pathogenicity and immunogenicity of avian metapneumovirus subgroup C.

    Science.gov (United States)

    Govindarajan, Dhanasekaran; Kim, Shin-Hee; Samal, Siba K

    2010-03-01

    Avian metapneumovirus (AMPV) causes an upper respiratory tract infection in turkeys leading to serious economic losses to the turkey industry. The G glycoprotein of AMPV is known to be associated with viral attachment and pathogenesis. In this study, we determined the role of the G glycoprotein in the pathogenicity and immunogenicity of AMPV strain Colorado (AMPV/CO). Recombinant AMPV/CO lacking the G protein (rAMPV/CO-deltaG) was generated using a reverse-genetics system. The recovered rAMPV/CO-deltaG replicated slightly better than did wild-type AMPV in Vero cells. However, deletion of the G gene in AMPV resulted in attenuation of the virus in turkeys. The mutant virus induced less-severe clinical signs and a weaker immune response in turkeys than did the wild-type AMPV. Our results suggest that the G glycoprotein is an important determinant for the pathogenicity and immunogenicity of AMPV.

  12. Virulence, immunogenicity and vaccine properties of a novel chimeric pestivirus

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Uttenthal, Åse; Reimann, Ilona

    2007-01-01

    A chimeric pestivirus of border disease virus Gifhorn and bovine viral diarrhea virus CP7 (Meyers et al., 1996) was constructed. Virulence, immunogenicity and vaccine properties of the chimeric virus were studied in a vaccination–challenge experiment in pigs. The chimeric virus proved...... to be avirulent and neither chimeric virus nor viral RNA was detected in serum after vaccination. The safety of the vaccine was tested by horizontal transmission to sentinel pigs, which remained uninfected. The vaccine efficacy was examined by challenge infection with classical swine fever virus (CSFV) Eystrup...

  13. Disabled infectious single cycle-herpes simplex virus (DISC-HSV) as a vector for immunogene therapy of cancer.

    Science.gov (United States)

    Rees, Robert C; McArdle, Stephanie; Mian, Shahid; Li, Geng; Ahmad, Murrium; Parkinson, Richard; Ali, Selman A

    2002-02-01

    Disabled infectious single cycle-herpes simplex viruses (DISC-HSV) have been shown to be safe for use in humans and may be considered efficacious as vectors for immunogene therapy in cancer. Preclinical studies show that DISC-HSV is an efficient delivery system for cytokine genes and antigens. DISC-HSV infects a high proportion of cells, resulting in rapid gene expression for at least 72 h. The DISC-HSV-mGM-CSF vector, when inoculated into tumors, induces tumor regression in a high percentage of animals, concomitant with establishing a cytotoxic T-cell response, which is MHC class I restricted and directed against peptides of known tumor antigens. The inherent properties of DISC-HSV makes it a suitable vector for consideration in human immunogene therapy trials.

  14. 78 FR 9702 - Draft Guidance for Industry on Immunogenicity Assessment for Therapeutic Protein Products...

    Science.gov (United States)

    2013-02-11

    ... approach in both the preclinical and clinical phases of the development of therapeutic protein products to... you can comment on any guidance at any time (see 21 CFR 10.115(g)(5)), to ensure that the Agency... entitled ``Immunogenicity Assessment for Therapeutic Protein Products.'' The purpose of this document is to...

  15. Identification of an Immunogenic Subset of Metastatic Uveal Melanoma.

    Science.gov (United States)

    Rothermel, Luke D; Sabesan, Arvind C; Stephens, Daniel J; Chandran, Smita S; Paria, Biman C; Srivastava, Abhishek K; Somerville, Robert; Wunderlich, John R; Lee, Chyi-Chia R; Xi, Liqiang; Pham, Trinh H; Raffeld, Mark; Jailwala, Parthav; Kasoji, Manjula; Kammula, Udai S

    2016-05-01

    Uveal melanoma is a rare melanoma variant with no effective therapies once metastases develop. Although durable cancer regression can be achieved in metastatic cutaneous melanoma with immunotherapies that augment naturally existing antitumor T-cell responses, the role of these treatments for metastatic uveal melanoma remains unclear. We sought to define the relative immunogenicity of these two melanoma variants and determine whether endogenous antitumor immune responses exist against uveal melanoma. We surgically procured liver metastases from uveal melanoma (n = 16) and cutaneous melanoma (n = 35) patients and compared the attributes of their respective tumor cell populations and their infiltrating T cells (TIL) using clinical radiology, histopathology, immune assays, and whole-exomic sequencing. Despite having common melanocytic lineage, uveal melanoma and cutaneous melanoma metastases differed in their melanin content, tumor differentiation antigen expression, and somatic mutational profile. Immunologic analysis of TIL cultures expanded from these divergent forms of melanoma revealed cutaneous melanoma TIL were predominantly composed of CD8(+) T cells, whereas uveal melanoma TIL were CD4(+) dominant. Reactivity against autologous tumor was significantly greater in cutaneous melanoma TIL compared with uveal melanoma TIL. However, we identified TIL from a subset of uveal melanoma patients which had robust antitumor reactivity comparable in magnitude with cutaneous melanoma TIL. Interestingly, the absence of melanin pigmentation in the parental tumor strongly correlated with the generation of highly reactive uveal melanoma TIL. The discovery of this immunogenic group of uveal melanoma metastases should prompt clinical efforts to determine whether patients who harbor these unique tumors can benefit from immunotherapies that exploit endogenous antitumor T-cell populations. Clin Cancer Res; 22(9); 2237-49. ©2015 AACR. ©2015 American Association for Cancer Research.

  16. Immunogenic properties of the human gut-associated archaeon Methanomassiliicoccus luminyensis and its susceptibility to antimicrobial peptides.

    Directory of Open Access Journals (Sweden)

    Corinna Bang

    Full Text Available The methanogenic archaeon Methanomassiliicoccus luminyensis strain B10T was isolated from human feces just a few years ago. Due to its remarkable metabolic properties, particularly the degradation of trimethylamines, this strain was supposed to be used as "Archaebiotic" during metabolic disorders of the human intestine. However, there is still no data published regarding adaptations to the natural habitat of M. luminyensis as it has been shown for the other two reported mucosa-associated methanoarchaea. This study aimed at unraveling susceptibility of M. luminyensis to antimicrobial peptides as well as its immunogenicity. By using the established microtiter plate assay adapted to the anaerobic growth requirements of methanogenic archaea, we demonstrated that M. luminyensis is highly sensitive against LL32, a derivative of human cathelicidin (MIC = 2 μM. However, the strain was highly resistant against the porcine lysin NK-2 (MIC = 10 μM and the synthetic antilipopolysaccharide peptide (Lpep (MIC>10 μM and overall differed from the two other methanoarchaea, Methanobrevibacter smithii and Methanosphaera stadtmanae in respect to AMP sensitivity. Moreover, only weak immunogenic potential of M. luminyensis was demonstrated using peripheral blood mononuclear cells (PBMCs and monocyte-derived dendritic cells (moDCs by determining release of pro-inflammatory cytokines. Overall, our findings clearly demonstrate that the archaeal gut inhabitant M. luminyensis is susceptible to the release of human-derived antimicrobial peptides and exhibits low immunogenicity towards human immune cells in vitro-revealing characteristics of a typical commensal gut microbe.

  17. Immunogenicity of an HPV-16 L2 DNA vaccine

    Science.gov (United States)

    Hitzeroth, Inga I.; Passmore, Jo-Ann S.; Shephard, Enid; Stewart, Debbie; Müller, Martin; Williamson, Anna-Lise; Rybicki, Edward P.; Kast, W. Martin

    2009-01-01

    The ability to elicit cross-neutralizing antibodies makes human papillomavirus (HPV) L2 capsid protein a possible HPV vaccine. We examined and compared the humoral response of mice immunised with a HPV-16 L2 DNA vaccine or with HPV-16 L2 protein. The L2 DNA vaccine elicited a non-neutralising antibody response unlike the L2 protein. L2 DNA vaccination suppressed the growth of L2-expressing C3 tumor cells, which is a T cell mediated effect, demonstrating that the lack of non-neutralizing antibody induction by L2 DNA was not caused by lack of T cell immunogenicity of the construct. PMID:19559114

  18. Evaluation of the use of various rat strains for immunogenic potency tests of Sabin-derived inactivated polio vaccines.

    Science.gov (United States)

    Someya, Yuichi; Ami, Yasushi; Takai-Todaka, Reiko; Fujimoto, Akira; Haga, Kei; Murakami, Kosuke; Fujii, Yoshiki; Shirato, Haruko; Oka, Tomoichiro; Shimoike, Takashi; Katayama, Kazuhiko; Wakita, Takaji

    2018-03-01

    Slc:Wistar rats have been the only strain used in Japan for purpose of evaluating a national reference vaccine for the Sabin-derived inactivated polio vaccine (sIPV) and the immunogenicity of sIPV-containing products. However, following the discovery that the Slc:Wistar strain was genetically related to the Fischer 344 strain, other "real" Wistar strains, such as Crlj:WI, that are available worldwide were tested in terms of their usefulness in evaluating the immunogenicity of the past and current lots of a national reference vaccine. The response of the Crlj:WI rats against the serotype 1 of sIPV was comparable to that of the Slc:Wistar rats, while the Crlj:WI rats exhibited a higher level of response against the serotypes 2 and 3. The immunogenic potency units of a national reference vaccine determined using the Slc:Wistar rats were reproduced on tests using the Crlj:WI rats. These results indicate that a titer of the neutralizing antibody obtained in response to a given dose of sIPV cannot be directly compared between these two rat strains, but that, more importantly, the potency units are almost equivalent for the two rat strains. Copyright © 2018 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  19. Immunogenicity and protective efficacy of rotavirus VP8* fused to cholera toxin B subunit in a mouse model.

    Science.gov (United States)

    Xue, Miaoge; Yu, Linqi; Jia, Lianzhi; Li, Yijian; Zeng, Yuanjun; Li, Tingdong; Ge, Shengxiang; Xia, Ningshao

    2016-11-01

    In attempts to develop recombinant subunit vaccines against rotavirus disease, it was previously shown that the N-terminal truncated VP8* protein, VP8-1 (aa26-231), is a good vaccine candidate when used for immunization in combination with Freund's adjuvant. However, this protein stimulated only weak immune response when aluminum hydroxide was used as an adjuvant. In this study, the nontoxic B subunit of cholera toxin (CTB) was employed as intra-molecular adjuvant to improve the immunogenicity of VP8-1. Both, the N-terminal and C-terminal fusion proteins, were purified to homogeneity, at which stage they formed pentamers, and showed significantly higher immunogenicity and protective efficacy than a VP8-1/aluminum hydroxide mixture in a mouse model. Compared to VP8-1-CTB, CTB-VP8-1 showed higher binding activity to both, GM1 and the conformation sensitive neutralizing monoclonal antibodies specific to VP8. More importantly, CTB-VP8-1 elicited higher titers of neutralizing antibodies and conferred higher protective efficacy than VP8-1-CTB. Therefore, the protein CTB-VP8-1, with enhanced immunogenicity and immunoprotectivity, could be considered as a viable candidate for further development of an alternative, replication-incompetent, parenterally administered vaccine against rotavirus disease.

  20. Golimumab in the treatment of inflammatory diseases: A role of immunogenicity

    Directory of Open Access Journals (Sweden)

    D. E. Karateev

    2015-01-01

    Full Text Available The review considers the specific features of golimumab (GLM, a representative of a group of tumor necrosis factor-α inhibitors primarily by comparing its immunogenicity parameters with other drugs in this group (infliximab, adalimumab, certolizumab pegol, etanercept. Despite its fundamental similarity with other biologicals from a category of monoclonal antibodies, GLM is shown to be characterized by a significantly lower detection rate for antibodies to the drug and by its high serum concentration stabilities and a sustained clinical response.

  1. Immunogenicity of immunostimulating complexes of Japanese encephalitis virus in experimental animals

    International Nuclear Information System (INIS)

    Yeolekar, L.R.; Banerjee, K.

    1996-01-01

    Immunogenicity of immunostimulating complexes (ISCOMs) of Japanese encephalitis (JE) virus were studied in mice, rabbits and monkeys. Two doses of JE ISCOMs elicited a strong immune response in mice with an uniform distribution in IgG subclasses. Different time intervals between the two doses of ISCOMs led to similar titers of antibodies. Rabbits and monkeys immunized with ISCOMs developed strong neutralizing immune, response. Mice immunized with ISCOMs demonstrated cell-mediated immunity as evident by T cell proliferation and macrophage migration inhibition assays. (author)

  2. HAHA--nothing to laugh about. Measuring the immunogenicity (human anti-human antibody response) induced by humanized monoclonal antibodies applying ELISA and SPR technology.

    Science.gov (United States)

    Nechansky, Andreas

    2010-01-05

    Immunogenicity induced by passively applied proteins is a serious issue because it is directly related to the patient's safety. The out-come of an immune reaction to a therapeutic protein can range from transient appearance of antibodies without any clinical significance to severe life threatening conditions. Within this article, enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) methodology to measure immunogenicity are compared and the pros and cons are discussed.

  3. Increased immunogenicity of recombinant Ad35-based malaria vaccine through formulation with aluminium phosphate adjuvant

    NARCIS (Netherlands)

    Ophorst, Olga J. A. E.; Radosevic, Katarina; Klap, Jaco M.; Sijtsma, Jeroen; Gillissen, Gert; Mintardjo, Ratna; van Ooij, Mark J. M.; Holterman, Lennart; Companjen, Arjen; Goudsmit, Jaap; Havenga, Menzo J. E.

    2007-01-01

    Previously, we have shown the potency of recombinant Adenovirus serotype 35 viral vaccines (rAd35) to induce strong immune response against the circumsporozoite protein (CS) of the plasmodium parasite. To further optimize immunogenicity of Ad35-based malaria vaccines we formulated rAd35.CS vaccine

  4. [The effect of aluminum adjuvant and immunization schedule on immunogenicity of Sabin inactivated poliovirus vaccine].

    Science.gov (United States)

    Wang, Fang; Zhang, Ming; Xie, Bing-Feng; Cao, Han; Tong, Shao-Yong; Wang, Jun-Rong; Yu, Xiao-Ping; Tang, Yang; Yang, Jing-Ran; Sun, Ming-Bo

    2013-04-01

    To study the effect of aluminume adjuvant and immunization schedule on immunogenicity of Sabin inactivated poliovirus vaccine. Four batches of Sabin IPV were produced by different concentrations of type 1, 2, and 3 poliovirus and administrated on three-dose schedule at 0, 1, 2 months and 0, 2, 4 months on rats. Serum samples were collected one month after each dose and neutralizing antibody titers against three types poliovirus were determined by micro-neutralization assay. The GMTs of neutralizing antibodies against three types poliovirus increased significantly and the seropositivity rates were 100% in all groups after 3 doses. There was no significant difference between two immunization schedules, and the 0, 2, 4 month schedule could induce higher level neutralizing antibody compared to the 0, 1, 2 month schedule. The groups with aluminum adjuvant could induce higher level neutralizing antibody compared to the groups without adjuvant. Aluminum djuvant and immunization schedule could improve the immunogenicity of Sabin IPV.

  5. A recombinant chimeric La Crosse virus expressing the surface glycoproteins of Jamestown Canyon virus is immunogenic and protective against challenge with either parental virus in mice or monkeys.

    Science.gov (United States)

    Bennett, R S; Gresko, A K; Nelson, J T; Murphy, B R; Whitehead, S S

    2012-01-01

    La Crosse virus (LACV) and Jamestown Canyon virus (JCV), family Bunyaviridae, are mosquito-borne viruses that are endemic in North America and recognized as etiologic agents of encephalitis in humans. Both viruses belong to the California encephalitis virus serogroup, which causes 70 to 100 cases of encephalitis a year. As a first step in creating live attenuated viral vaccine candidates for this serogroup, we have generated a recombinant LACV expressing the attachment/fusion glycoproteins of JCV. The JCV/LACV chimeric virus contains full-length S and L segments derived from LACV. For the M segment, the open reading frame (ORF) of LACV is replaced with that derived from JCV and is flanked by the untranslated regions of LACV. The resulting chimeric virus retained the same robust growth kinetics in tissue culture as observed for either parent virus, and the virus remains highly infectious and immunogenic in mice. Although both LACV and JCV are highly neurovirulent in 21 day-old mice, with 50% lethal dose (LD₅₀) values of 0.1 and 0.5 log₁₀ PFU, respectively, chimeric JCV/LACV is highly attenuated and does not cause disease even after intracerebral inoculation of 10³ PFU. Parenteral vaccination of mice with 10¹ or 10³ PFU of JCV/LACV protected against lethal challenge with LACV, JCV, and Tahyna virus (TAHV). The chimeric virus was infectious and immunogenic in rhesus monkeys and induced neutralizing antibodies to JCV, LACV, and TAHV. When vaccinated monkeys were challenged with JCV, they were protected against the development of viremia. Generation of highly attenuated yet immunogenic chimeric bunyaviruses could be an efficient general method for development of vaccines effective against these pathogenic viruses.

  6. Addressing the Immunogenicity of the Cargo and of the Targeting Antibodies with a Focus on Deimmunized Bacterial Toxins and on Antibody-Targeted Human Effector Proteins

    Science.gov (United States)

    Grinberg, Yehudit; Benhar, Itai

    2017-01-01

    Third-generation immunotoxins are composed of a human, or humanized, targeting moiety, usually a monoclonal antibody or an antibody fragment, and a non-human effector molecule. Due to the non-human origin of the cytotoxic domain, these molecules stimulate potent anti-drug immune responses, which limit treatment options. Efforts are made to deimmunize such immunotoxins or to combine treatment with immunosuppression. An alternative approach is using the so-called “human cytotoxic fusion proteins”, in which antibodies are used to target human effector proteins. Here, we present three relevant approaches for reducing the immunogenicity of antibody-targeted protein therapeutics: (1) reducing the immunogenicity of the bacterial toxin, (2) fusing human cytokines to antibodies to generate immunocytokines and (3) addressing the immunogenicity of the targeting antibodies. PMID:28574434

  7. Immunogenicity of ORFV-based vectors expressing the rabies virus glycoprotein in livestock species.

    Science.gov (United States)

    Martins, Mathias; Joshi, Lok R; Rodrigues, Fernando S; Anziliero, Deniz; Frandoloso, Rafael; Kutish, Gerald F; Rock, Daniel L; Weiblen, Rudi; Flores, Eduardo F; Diel, Diego G

    2017-11-01

    The parapoxvirus Orf virus (ORFV) encodes several immunomodulatory proteins (IMPs) that modulate host-innate and pro-inflammatory responses and has been proposed as a vaccine delivery vector for use in animal species. Here we describe the construction and characterization of two recombinant ORFV vectors expressing the rabies virus (RABV) glycoprotein (G). The RABV-G gene was inserted in the ORFV024 or ORFV121 gene loci, which encode for IMPs that are unique to parapoxviruses and inhibit activation of the NF-κB signaling pathway. The immunogenicity of the resultant recombinant viruses (ORFV ∆024 RABV-G or ORFV ∆121 RABV-G, respectively) was evaluated in pigs and cattle. Immunization of the target species with ORFV ∆024 RABV-G and ORFV ∆121 RABV-G elicited robust neutralizing antibody responses against RABV. Notably, neutralizing antibody titers induced in ORFV ∆121 RABV-G-immunized pigs and cattle were significantly higher than those detected in ORFV ∆024 RABV-G-immunized animals, indicating a higher immunogenicity of ORFV Δ121 -based vectors in these animal species. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Immunogenicity test of tetanus component in adsorbed vaccines by toxin binding inhibition test

    Directory of Open Access Journals (Sweden)

    Denise Cristina Souza Matos

    2002-09-01

    Full Text Available Samples from 20 lots of diphtheria-tetanus (adult use dT vaccine and from 20 lots of diphtheria-tetanus-pertussis (DTP vaccine were used to standardize and validate the in vitro toxin binding inhibition (ToBI test for the immunogenicity test of the tetanus component. The levels of tetanus antitoxin obtained by ToBI test were compared to those obtained using the toxin neutralization (TN test in mice routinely employed to perform the quality control of the tetanus component in adsorbed vaccines. The results ranged from 1.8 to 3.5 IU/ml for dT and 2 to 4 IU/ml for DTP by ToBI test and 1.4 to 3 IU/ml for dT and 1.8 to 3.5 IU/ml for DTP by TN in mice. These results were significantly correlated. From this study, it is concluded that the ToBI test is an alternative to the in vivo neutralization procedure in the immunogenicity test of the tetanus component in adsorbed vaccines. A substantial refinement and a reduction in use of animals can be achieved.

  9. Immunogenicity of nuclear-encoded LTB:ST fusion protein from Escherichia coli expressed in tobacco plants.

    Science.gov (United States)

    Rosales-Mendoza, Sergio; Soria-Guerra, Ruth E; Moreno-Fierros, Leticia; Govea-Alonso, Dania O; Herrera-Díaz, Areli; Korban, Schuyler S; Alpuche-Solís, Ángel G

    2011-06-01

    Enterotoxigenic Escherichia coli (ETEC) is one of the main causative agents of diarrhea in infants and for travelers. Inclusion of a heat-stable (ST) toxin into vaccine formulations is mandatory as most ETEC strains can produce both heat-labile (LT) and ST enterotoxins. In this study, a genetic fusion gene encoding for an LTB:ST protein has been constructed and transferred into tobacco via Agrobacterium tumefaciens-mediated transformation. Transgenic tobacco plants carrying the LTB:ST gene are then subjected to GM1-ELISA revealing that the LTB:ST has assembled into pentamers and displays antigenic determinants from both LTB and ST. Protein accumulation of up to 0.05% total soluble protein is detected. Subsequently, mucosal and systemic humoral responses are elicited in mice orally dosed with transgenic tobacco leaves. This has suggested that the plant-derived LTB:ST is immunogenic via the oral route. These findings are critical for the development of a plant-based vaccine capable of eliciting broader protection against ETEC and targeting both LTB and ST. Features of this platform in comparison to transplastomic approaches are discussed.

  10. A Mathematical Model of the Effect of Immunogenicity on Therapeutic Protein Pharmacokinetics

    OpenAIRE

    Chen, Xiaoying; Hickling, Timothy; Kraynov, Eugenia; Kuang, Bing; Parng, Chuenlei; Vicini, Paolo

    2013-01-01

    A mathematical pharmacokinetic/anti-drug-antibody (PK/ADA) model was constructed for quantitatively assessing immunogenicity for therapeutic proteins. The model is inspired by traditional pharmacokinetic/pharmacodynamic (PK/PD) models, and is based on the observed impact of ADA on protein drug clearance. The hypothesis for this work is that altered drug PK contains information about the extent and timing of ADA generation. By fitting drug PK profiles while accounting for ADA-mediated drug cle...

  11. The effect of in silico targeting Pseudomonas aeruginosa patatin-like protein D, for immunogenic administration.

    Science.gov (United States)

    Chirani, Alireza Salimi; Majidzadeh, Robabeh; Pouriran, Ramin; Heidary, Mohsen; Nasiri, Mohammad Javad; Gholami, Mehrdad; Goudarzi, Mehdi; Omrani, Vahid Fallah

    2018-02-05

    The vaccine candidates that have been introduced for immunization against Pseudomonas aeruginosa (P. aeruginosa) strains are quite diverse. In fact, there has been no proper antigen to act as an effective immunogenic substance against this ubiquitous pathogen in the market as yet. The complications caused by this bacterium due to the rapid development of multiple drug resistant strains have led to clinical problems worldwide. P. aeruginosa encodes many specific virulence elements that could be used as appropriate vaccine candidates. Type Vd secretion system, also known as patatin-like protein D, is a novel P. aeruginosa auto-transporter system. It is known that cellular or humoral immune responses could be elevated by chimeric proteins carrying epitopes. It has been recognized that in silico tools are essential for the evaluation of new chimeric antigens. In this study, we have considered the patatin-like protein D (PlpD) molecule from P. aeruginosa and predicted some immunogenic properties of this strong cytotoxic phospholipase A2 with the use of in-depth computational and immunoinformatics assessment methods The novelty of our in silico study is the modeling and assessment of both humoral and cellular immune potential against the PlpD molecule. The molecule was considered by multiple sequence alignment and homology valuation. The extremely conserved regions in the PlpD were predicted. The allergenic and physicochemical property predictions on the PlpD state that the molecule is a non-allergic and stable molecule. High-resolution secondary and tertiary conformations were created. Indeed, the B-cell and T-cell epitope mapping on the chimeric target protein confirmed that the engineered protein contained a tremendous number of both B-cell and T-cell corresponding epitopes. This investigation magnificently attained the chimeric molecule as being a potent lipolytic enzyme composed of numerous B-cell and T-cell restricted epitopes and could induce both humoral and

  12. Conformational preferences of a chimeric peptide HIV-1 immunogen from the C4-V3 domains of gp120 envelope protein of HIV-1 CAN0A based on solution NMR: comparison to a related immunogenic peptide from HIV-1 RF.

    Science.gov (United States)

    Vu, H M; de Lorimier, R; Moody, M A; Haynes, B F; Spicer, L D

    1996-04-23

    A critical problem to overcome on HIV vaccine design is the variability among HIV strains. One strategy to solve this problem is the construction of multicomponent immunogens reflective of common HIV motifs. Currently, it is not known if these motifs should be based primarily on amino acid sequence or higher-order structure of the viral proteins of a combination of the two. In this paper, we report NMR-derived solution conformations for a sympathetic peptide taken from the C4 and V3 domains of HIV-1 CAN0A gp120 envelope protein. This peptide, designated T1-SP10CAN0(A), is compared to a recently reported C4-V3 peptide. T1-SP10RF(A) from the HIV-1 RF strain [de Lorimier et al. (1994) Biochemistry 33, 2055-2062], in terms of conformational features and immune responses in mice [Haynes et al. (1995) AIDS Res. Hum. Retroviruses 11, 211-221]. The T1 segment of 16 amino acids from the gp120 C4 domain is identical in both peptides and exhibits nascent helical character. The SP10 region, taken from the gp120 V3 loop, differs from that of T1-SP10RF(A) in both sequence and conformations. A reverse turn is observed at the conserved GPGX sequence. The rest of the Sp10 domain is extended with the exception of the last three residues which show evidence for a helical arrangement. Modeling of the turn region of the T1-SP10CAN0(A) peptide shows exposure of a continuous apolar stretch of side chains similar to that reported in the crystal structure of a V3 peptide from HIV-1 MN complexed with a monoclonal antibody [Rini et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 6325-6329]. this hydrophobic patch is interrupted by a charged Lys residue in the T1-SP10RF(A) peptide. This observation suggests that the HIV-1 CAN0A and HIV-1 RF C4-V3 peptides can induce widely different anti-HIV antibodies. consistent with immunogenic results.

  13. Safety and immunogenicity of yellow fever 17D vaccine in adults receiving systemic corticosteroid therapy: an observational cohort study.

    Science.gov (United States)

    Kernéis, Solen; Launay, Odile; Ancelle, Thierry; Iordache, Laura; Naneix-Laroche, Véronique; Méchaï, Frédéric; Fehr, Thierry; Leroy, Jean-Philippe; Issartel, Bertrand; Dunand, Jean; van der Vliet, Diane; Wyplosz, Benjamin; Consigny, Paul-Henri; Hanslik, Thomas

    2013-09-01

    To assess the safety and immunogenicity of live attenuated yellow fever (YF) 17D vaccine in adults receiving systemic corticosteroid therapy. All adult travelers on systemic corticosteroid therapy who had received the YF17D vaccine in 24 French vaccination centers were prospectively enrolled and matched with healthy controls (1:2) on age and history of YF17D immunization. Safety was assessed in a self-administered standardized questionnaire within 10 days after immunization. YF-specific neutralizing antibody titers were measured 6 months after vaccination in patients receiving corticosteroids. Between July 2008 and February 2011, 102 vaccine recipients completed the safety study (34 receiving corticosteroids and 68 controls). The median age was 54.9 years (interquartile range [IQR] 45.1-60.3 years) and 45 participants had a history of previous YF17D immunization. The median time receiving corticosteroid therapy was 10 months (IQR 1-67 months) and the prednisone or equivalent dosage was 7 mg/day (IQR 5-20). Main indications were autoimmune diseases (n = 14), rheumatoid arthritis (n = 9), and upper respiratory tract infections (n = 8). No serious adverse event was reported; however, patients receiving corticosteroids reported more frequent moderate/severe local reactions than controls (12% and 2%, respectively; relative risk 8.0, 95% confidence interval 1.4-45.9). All subjects receiving corticosteroids who were tested (n = 20) had neutralizing antibody titers >10 after vaccination. After YF17D immunization, moderate/severe local reactions may be more frequent in patients receiving systemic corticosteroid therapy. Immunogenicity seems satisfactory. Large-scale studies are needed to confirm these results. Copyright © 2013 by the American College of Rheumatology.

  14. Development of an Aotus nancymaae Model for Shigella Vaccine Immunogenicity and Efficacy Studies

    OpenAIRE

    Gregory, Michael; Kaminski, Robert W.; Lugo-Roman, Luis A.; Galvez Carrillo, Hugo; Tilley, Drake Hamilton; Baldeviano, Christian; Simons, Mark P.; Reynolds, Nathanael D.; Ranallo, Ryan T.; Suvarnapunya, Akamol E.; Venkatesan, Malabi M.; Oaks, Edwin V.

    2014-01-01

    Several animal models exist to evaluate the immunogenicity and protective efficacy of candidate Shigella vaccines. The two most widely used nonprimate models for vaccine development include a murine pulmonary challenge model and a guinea pig keratoconjunctivitis model. Nonhuman primate models exhibit clinical features and gross and microscopic colonic lesions that mimic those induced in human shigellosis. Challenge models for enterotoxigenic Escherichia coli (ETEC) and Campylobacter spp. have...

  15. [Expression, purification and immunogenicity of human papillomavirus type 11 virus-like particles from Escherichia coli].

    Science.gov (United States)

    Yan, Chunyan; Li, Shaowei; Wang, Jin; Wei, Minxi; Huang, Bo; Zhuang, Yudi; Li, Zhongyi; Pan, Huirong; Zhang, Jun; Xia, Ningshao

    2009-11-01

    To produce human papillomavirus type 11 virus-like particles (HPV11 VLPs) from Escherichia coli and to investigate its immunogenicity and type cross neutralization nature. We expressed the major capsid protein of HPV11 (HPV11-L1) in Escherichia coli ER2566 in non fusion fashion and purified by amino sulfate precipitation, ion-exchange chromatography and hydrophobic interaction chromatography, sequentially. Then we removed the reductant DTT to have the purified HPV11-L1 self-assemble into VLPs in vitro. We investigated the morphology of these VLPs with dynamic light scattering and transmission electron microscopy. We assayed the immunogenicity of the resultant HPV11 VLPs by vaccinations on mice and evaluated by HPV6/11/16/18 pseudovirion neutralization cell models. We expressed HPV11 L1 in Escherichia coli with two forms, soluble and inclusion body. The soluble HPV11 L1 with over 95% purity can self assemble to VLPs in high efficiency. Morphologically, these VLPs were globular, homogeneous and with a diameter of - 50 nm, which is quite similar with native HPV11 virions. The half effective dosage (ED50) of HPV11 VLPs is 0.031 microg, and the maximum titer of neutralizing antibody elicited is averaged to 10(6). The cross neutralization activity (against HPV6/16/18) of the anti-HPV11 serum was found to have exact correlation to the inter-type homology in amino acid alignment. We can provide HPV11 VLPs with highly immunogenicity from prokaryote expression system, which may pave a new way for research and development of prophylactic vaccine for HPV11.

  16. Development of wheat varieties with reduced contents of celiac-immunogenic epitopes through conventional and GM strategies

    NARCIS (Netherlands)

    Smulders, M.J.M.; Jouanin, A.A.; Schaart, J.G.; Visser, R.G.F.; Cockram, J.; Leigh, F.; Wallington, E.; Boyd, L.A.; Broeck, van den H.C.; Meer, van der I.M.; Gilissen, L.J.W.J.

    2014-01-01

    Cereals, especially wheat, may cause several food-related diseases, of which gluten intolerance (coeliac disease, CD) is the best defined: specific immunogenic epitopes, nine amino acid-long peptide sequences, have been identified from various gluten proteins. These may activate T cells, causing

  17. Comparison of allergenicity and immunogenicity of an intact allergen vaccine and commercially available allergoid products for birch pollen immunotherapy.

    Science.gov (United States)

    Lund, L; Henmar, H; Würtzen, P A; Lund, G; Hjortskov, N; Larsen, J N

    2007-04-01

    Specific immunotherapy with intact allergen vaccine is a well-documented treatment for allergic diseases. Different vaccine formulations are currently commercially available, the active ingredient either being intact allergens or chemically modified allergoids. The rationale behind allergoids is to decrease allergenicity while maintaining immunogenicity. However, data from the German health authorities based on reporting of adverse events over a 10-year period did not indicate increased safety of allergoids over intact allergens. The objective of this study was to investigate the effect of chemical modification on allergenicity and immunogenicity comparing four commercial allergoid products for birch pollen immunotherapy with an intact allergen vaccine. Solid-phase IgE inhibition and histamine release assays were selected as model systems for allergenicity, and a combination of human T cell proliferation and IgG titres following mouse immunizations were used to address the immunogenicity of the intact allergen vaccine and the four allergoids. In all assays, the products were normalized with respect to the manufacturer's recommended maintenance dose. IgE inhibition experiments showed a change in epitope composition comparing intact allergen vaccine with allergoid. One allergoid product induced enhanced histamine release compared to the intact allergens, while the other three allergoids showed reduced release. Standard T cell stimulation assays using lines from allergic patients showed a reduced response for all allergoids compared with the intact allergen vaccine regardless of the cell type used for antigen presentation. All allergoids showed reduced capacity to induce allergen-specific IgG responses in mice. While some allergoids were associated with reduced allergenicity, a clear reduction in immunogenicity was observed for all allergoid products compared with the intact allergen vaccine, and the commercial allergoids tested therefore do not fulfil the allergoid

  18. Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose

    International Nuclear Information System (INIS)

    Ju, Huanyu; Wei, Na; Wang, Qian; Wang, Chunyuan; Jing, Zhiqiang; Guo, Lu; Liu, Dapeng; Gao, Mingchun; Ma, Bo; Wang, Junwei

    2011-01-01

    Highlights: → All three capsid proteins can be expressed in insect cells in baculovirus expression system. → All three recombinant proteins were spontaneously self-assemble into virus-like particles whose size and appearance were similar to those of native purified GPV virions. → The immunogenicity of GPV-VLPs was better than commercial inactivated vaccine and attenuated vaccine. -- Abstract: Goose parvovirus (GPV), a small non-enveloped ssDNA virus, can cause Derzsy's disease, and three capsid proteins of VP1, VP2, and VP3 are encoded by an overlapping nucleotide sequence. However, little is known on whether recombinant viral proteins (VPs) could spontaneously assemble into virus-like particles (VLPs) in insect cells and whether these VLPs could retain their immunoreactivity and immunogenicity in susceptible geese. To address these issues, genes for these GPV VPs were amplified by PCR, and the recombinant VPs proteins were expressed in insect cells using a baculovirus expression system for the characterization of their structures, immunoreactivity, and immunogenicity. The rVP1, rVP2, and rVP3 expressed in Sf9 cells were detected by anti-GPV sera, anti-VP3 sera, and anti-His antibodies, respectively. Electron microscopy revealed that these rVPs spontaneously assembled into VLPs in insect cells, similar to that of the purified wild-type GPV virions. In addition, vaccination with individual types of VLPs, particularly with the rVP2-VLPs, induced higher titers of antibodies and neutralized different strains of GPVs in primary goose and duck embryo fibroblast cells in vitro. These data indicated that these VLPs retained immunoreactivity and had strong immunogenicity in susceptible geese. Therefore, our findings may provide a framework for development of new vaccines for the prevention of Derzsy's disease and vehicles for the delivery of drugs.

  19. Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Huanyu; Wei, Na; Wang, Qian; Wang, Chunyuan; Jing, Zhiqiang; Guo, Lu; Liu, Dapeng; Gao, Mingchun; Ma, Bo [College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030 (China); Wang, Junwei, E-mail: jwwang@neau.edu.cn [College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030 (China)

    2011-05-27

    Highlights: {yields} All three capsid proteins can be expressed in insect cells in baculovirus expression system. {yields} All three recombinant proteins were spontaneously self-assemble into virus-like particles whose size and appearance were similar to those of native purified GPV virions. {yields} The immunogenicity of GPV-VLPs was better than commercial inactivated vaccine and attenuated vaccine. -- Abstract: Goose parvovirus (GPV), a small non-enveloped ssDNA virus, can cause Derzsy's disease, and three capsid proteins of VP1, VP2, and VP3 are encoded by an overlapping nucleotide sequence. However, little is known on whether recombinant viral proteins (VPs) could spontaneously assemble into virus-like particles (VLPs) in insect cells and whether these VLPs could retain their immunoreactivity and immunogenicity in susceptible geese. To address these issues, genes for these GPV VPs were amplified by PCR, and the recombinant VPs proteins were expressed in insect cells using a baculovirus expression system for the characterization of their structures, immunoreactivity, and immunogenicity. The rVP1, rVP2, and rVP3 expressed in Sf9 cells were detected by anti-GPV sera, anti-VP3 sera, and anti-His antibodies, respectively. Electron microscopy revealed that these rVPs spontaneously assembled into VLPs in insect cells, similar to that of the purified wild-type GPV virions. In addition, vaccination with individual types of VLPs, particularly with the rVP2-VLPs, induced higher titers of antibodies and neutralized different strains of GPVs in primary goose and duck embryo fibroblast cells in vitro. These data indicated that these VLPs retained immunoreactivity and had strong immunogenicity in susceptible geese. Therefore, our findings may provide a framework for development of new vaccines for the prevention of Derzsy's disease and vehicles for the delivery of drugs.

  20. Comparison of safety and immunogenicity of purified chick embryo cell vaccine using Zagreb and Essen regimens in patients with category II exposure in China.

    Science.gov (United States)

    Hu, Quan; Liu, Man-Qing; Zhu, Zheng-Gang; Zhu, Ze-Rong; Lu, Sha

    2014-01-01

    The aim was to compare the safety and immunogenicity of purified chick embryo cell vaccine (PCECV) with Zagreb 2-1-1 and Essen 1-1-1-1-1 regimens in patients with WHO category II exposure in China. Side effects including systemic and local symptoms were recorded for all patients during vaccination with purified chick embryo cell vaccine (PCECV) under Zagreb 2-1-1 or Essen 1-1-1-1-1 regimens, and the rabies neutralization antibody titers in patients' serum at days 0, 7, 14, 45, 365 post-immunization were measured to determine the immunogenicity. Fever and pain were the most common events for systemic and local symptoms respectively, and most side effects (86.78%, 105/121) occurred after the first dose of vaccination. Safety analysis showed differences in side effects inZagreb and Essen regimens, especially after the first dose of vaccination (P = 0.043). Immunogenicity analysis indicated that Zagreb can achieve higher neutralization antibody titers and a greater seroconversion rate in a shorter time but had less persistence than Essen. When compared with the Essen regimen, the Zagreb regimen had a different immunogenicity in all study subjects, and different safety profile in young children, and a further study with a larger population and longer surveillance is warranted.

  1. THE MAIN DIRECTIONS OF INNOVATION AND INVESTMENT IN THE DEVELOPMENT OF THE ZAKARPAT REGION

    Directory of Open Access Journals (Sweden)

    V. Stegura

    2016-02-01

    Full Text Available The paper consider of the long-term innovation strategy, on the groung of which a small business can be devolopped. Also the paper deals with main ways of activization of investment and innovation activity in Zakarpat region. The advantages is purely an innovative model of growth and source of inexhaustible resource which performs human creativity, initiative, entrepreneurship, knowledge and intelligence. At present in Ukraine is dominated by elements of the model of absolute advantage and commodity -export, while the foundations of an innovative model of economic development at the stage of formation. Insufficiently involved is the potential of science , business, intellectual, and low wages. Addressing these issues is the foundation of small business through the implementation of innovative strategies.

  2. Intradermal influenza vaccination of healthy adults using a new microinjection system: a 3-year randomised controlled safety and immunogenicity trial

    Directory of Open Access Journals (Sweden)

    Beran Jiri

    2009-04-01

    Full Text Available Abstract Background Intradermal vaccination provides direct and potentially more efficient access to the immune system via specialised dendritic cells and draining lymphatic vessels. We investigated the immunogenicity and safety during 3 successive years of different dosages of a trivalent, inactivated, split-virion vaccine against seasonal influenza given intradermally using a microinjection system compared with an intramuscular control vaccine. Methods In a randomised, partially blinded, controlled study, healthy volunteers (1150 aged 18 to 57 years at enrolment received three annual vaccinations of intradermal or intramuscular vaccine. In Year 1, subjects were randomised to one of three groups: 3 μg or 6 μg haemagglutinin/strain/dose of inactivated influenza vaccine intradermally, or a licensed inactivated influenza vaccine intramuscularly containing 15 μg/strain/dose. In Year 2 subjects were randomised again to one of two groups: 9 μg/strain/dose intradermally or 15 μg intramuscularly. In Year 3 subjects were randomised a third time to one of two groups: 9 μg intradermally or 15 μg intramuscularly. Randomisation lists in Year 1 were stratified for site. Randomisation lists in Years 2 and 3 were stratified for site and by vaccine received in previous years to ensure the inclusion of a comparable number of subjects in a vaccine group at each centre each year. Immunogenicity was assessed 21 days after each vaccination. Safety was assessed throughout the study. Results In Years 2 and 3, 9 μg intradermal was comparably immunogenic to 15 μg intramuscular for all strains, and both vaccines met European requirements for annual licensing of influenza vaccines. The 3 μg and 6 μg intradermal formulations were less immunogenic than intramuscular 15 μg. Safety of the intradermal and intramuscular vaccinations was comparable in each year of the study. Injection site erythema and swelling was more common with the intradermal route. Conclusion

  3. Sero-Surveillance to assess immunity to rubella and assessment of immunogenicity and safety of a single dose of rubella vaccine in school girls

    Directory of Open Access Journals (Sweden)

    Sharma Hitt

    2010-01-01

    Full Text Available Background: Rubella vaccination is not yet included in National Immunization Schedule in India. Serosurvey is frequently used to assess epidemiologic pattern of Rubella in a community. Serosurveys in different parts of India have found that 6-47% of women are susceptible for Rubella infection. The present serosurveillance was conducted in Jammu, India, in two public schools. Objective: To determine serological status of Rubella antibodies of school girls and assessment of immunogenicity and reactogenicity of Rubella immunization in seronegative girls. Materials and Methods: The current study was conducted to determine Rubella serostatus in peripubertal schoolgirls aged 11-18 years and also to assess immunogenicity and safety of Rubella vaccine (R-Vac of Serum Institute of India Ltd., Pune, in seronegative girls. For screening, pre-vaccination serum Rubella IgG antibodies were determined and to assess immunogenicity of the vaccine, post-vaccination IgG antibodies were compared with pre-vaccination levels. Safety assessment was done for a period of 8 weeks, post-vaccination. Results: A total of 90 (32.7% seronegative girls were vaccinated. All girls (100% became seropositive, post-vaccination. Clinically relevant and statistically significant increase in anti-Rubella IgG titres was observed. The adverse events were mild and self-limiting. Conclusions: R-Vac vaccine used in the study demonstrated an excellent safety and immunogenicity profile.

  4. Trial watch: Immunogenic cell death induction by anticancer chemotherapeutics.

    Science.gov (United States)

    Garg, Abhishek D; More, Sanket; Rufo, Nicole; Mece, Odeta; Sassano, Maria Livia; Agostinis, Patrizia; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2017-01-01

    The expression "immunogenic cell death" (ICD) refers to a functionally unique form of cell death that facilitates (instead of suppressing) a T cell-dependent immune response specific for dead cell-derived antigens. ICD critically relies on the activation of adaptive responses in dying cells, culminating with the exposure or secretion of immunostimulatory molecules commonly referred to as "damage-associated molecular patterns". Only a few agents can elicit bona fide ICD, including some clinically established chemotherapeutics such as doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin. In this Trial Watch, we discuss recent progress on the development of ICD-inducing chemotherapeutic regimens, focusing on studies that evaluate clinical efficacy in conjunction with immunological biomarkers.

  5. Beyond CDR-grafting: Structure-guided humanization of framework and CDR regions of an anti-myostatin antibody.

    Science.gov (United States)

    Apgar, James R; Mader, Michelle; Agostinelli, Rita; Benard, Susan; Bialek, Peter; Johnson, Mark; Gao, Yijie; Krebs, Mark; Owens, Jane; Parris, Kevin; St Andre, Michael; Svenson, Kris; Morris, Carl; Tchistiakova, Lioudmila

    2016-10-01

    Antibodies are an important class of biotherapeutics that offer specificity to their antigen, long half-life, effector function interaction and good manufacturability. The immunogenicity of non-human-derived antibodies, which can be a major limitation to development, has been partially overcome by humanization through complementarity-determining region (CDR) grafting onto human acceptor frameworks. The retention of foreign content in the CDR regions, however, is still a potential immunogenic liability. Here, we describe the humanization of an anti-myostatin antibody utilizing a 2-step process of traditional CDR-grafting onto a human acceptor framework, followed by a structure-guided approach to further reduce the murine content of CDR-grafted antibodies. To accomplish this, we solved the co-crystal structures of myostatin with the chimeric (Protein Databank (PDB) id 5F3B) and CDR-grafted anti-myostatin antibody (PDB id 5F3H), allowing us to computationally predict the structurally important CDR residues as well as those making significant contacts with the antigen. Structure-based rational design enabled further germlining of the CDR-grafted antibody, reducing the murine content of the antibody without affecting antigen binding. The overall "humanness" was increased for both the light and heavy chain variable regions.

  6. Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells.

    Science.gov (United States)

    Deuse, Tobias; Stubbendorff, Mandy; Tang-Quan, Karis; Phillips, Neil; Kay, Mark A; Eiermann, Thomas; Phan, Thang T; Volk, Hans-Dieter; Reichenspurner, Hermann; Robbins, Robert C; Schrepfer, Sonja

    2011-01-01

    We here present an immunologic head-to-head comparison between human umbilical cord lining mesenchymal stem cells (clMSCs) and adult bone marrow MSCs (bmMSCs) from patients >65 years of age. clMSCs had significantly lower HLA class I expression, higher production of tolerogenic TGF-β and IL-10, and showed significantly faster proliferation. In vitro activation of allogeneic lymphocytes and xenogeneic in vivo immune activation was significantly stronger with bmMSCs, whereas immune recognition of clMSCs was significantly weaker. Thus, bmMSCs were more quickly rejected in immunocompetent mice. IFN-γ at 25 ng/ml increased both immunogenicity by upregulation of HLA class I/ HLA-DR expression and tolerogenicity by increasing intracellular HLA-G and surface HLA-E expression, augmenting TGF-β and IL-10 release, and inducing indoleamine 2,3-dioxygenase (IDO) expression. Higher concentrations of IFN-γ (>50 ng/ml) further enhanced the immunosuppressive phenotype of clMSCs, more strongly downregulating HLA-DR expression and further increasing IDO production (at 500 ng/ml). The net functional immunosuppressive efficacy of MSCs was tested in mixed lymphocyte cultures. Although both clMSCs and bmMSCs significantly reduced in vitro immune activation, clMSCs were significantly more effective than bmMSCs. The veto function of both MSC lines was enhanced in escalating IFN-γ environments. In conclusion, clMSCs show a more beneficial immunogeneic profile and stronger overall immunosuppressive potential than aged bmMSCs.

  7. EVALUATION OF REACTOGENICITY, SAFETY AND IMMUNOGENICITY OF INACTIVATED MONOVALENT VACCINE IN CHILDREN

    OpenAIRE

    A.N. Mironov; A.A. Romanova; R.Ya. Meshkova; I.V. Fel’dblyum; N.V. Kupina; D.S. Bushmenkov; A.A. Tsaan

    2010-01-01

    NPO «Microgen» developed vaccine «PANDEFLU» — influenza inactivated subunit adsorbed monovalent vaccine, strain A/California/7/2009 (H1N1), for specific prophylaxis of pandemic influenza in different age groups of citizens. Reactogenicity, safety and immunogenicity were analyzed in a study of volunteers 18–60 years old. The article presents results of administration of vaccine «PANDEFLU» in children. The study performed in two clinical centers proves good tolerability, reactogenicity, safety ...

  8. Vector choice determines immunogenicity and potency of genetic vaccines against Angola Marburg virus in nonhuman primates

    NARCIS (Netherlands)

    Geisbert, Thomas W.; Bailey, Michael; Geisbert, Joan B.; Asiedu, Clement; Roederer, Mario; Grazia-Pau, Maria; Custers, Jerome; Jahrling, Peter; Goudsmit, Jaap; Koup, Richard; Sullivan, Nancy J.

    2010-01-01

    The immunogenicity and durability of genetic vaccines are influenced by the composition of gene inserts and choice of delivery vector. DNA vectors are a promising vaccine approach showing efficacy when combined in prime-boost regimens with recombinant protein or viral vectors, but they have shown

  9. Aspects regarding the main Obstacles on the Development of SMEs’ Management in West Region of Romania

    Directory of Open Access Journals (Sweden)

    D.C.Dudă-Dăianu

    2013-06-01

    Full Text Available The success of achieving organizational objectives depends on the skills and capacities of entrepreneurs-managers to form optimal combinations of functions and to identify their intensity in processing at different stages of the business life cycle. Inside small and medium size enterprises not all functions have the same intensity of achievement. In what follows, we will present the description of the functions in small and medium enterprises in the West Region of Romania and the main problems faced by the entrepreneurs-managers in their implementation.

  10. Characterization of the expression and immunogenicity of the ns4b protein of human coronavirus 229E

    DEFF Research Database (Denmark)

    Chagnon, F; Lamarre, A; Lachance, C

    1998-01-01

    to demonstrate the expression of ns4b in HCV-229E-infected cells using flow cytometry. Given a previously reported contiguous five amino acid shared region between ns4b and myelin basic protein, a purified recombinant histidine-tagged ns4b protein and (or) human myelin basic protein were injected into mice......Sequencing of complementary DNAs prepared from various coronaviruses has revealed open reading frames encoding putative proteins that are yet to be characterized and are so far only described as nonstructural (ns). As a first step in the elucidation of its function, we characterized the expression...... and immunogenicity of the ns4b gene product from strain 229E of human coronavirus (HCV-229E), a respiratory virus with a neurotropic potential. The gene was cloned and expressed in bacteria. A fusion protein of ns4b with maltose-binding protein was injected into rabbits to generate specific antibodies that were used...

  11. Effects of gamma rays on the immunogenicity (IgG types) of ovalbumin

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, J.A. E-mail: jbalves@ipen.br; Spencer, P.J.; Aroeira, L.G.S.; Casare, M.S.; Nascimento, N

    2004-10-01

    Ionizing radiation has been successfully employed to modify the immunological properties of biomolecules. Very promising results were obtained when crude animal venoms, as well as isolated toxins, were treated with gamma rays, yielding toxoids with good immunogenicity. However, little is known about the modifications that irradiated molecules undergo and even less about the immunological response that such antigens elicit. In the present work, we used ovalbumin as a model to investigate possible immunogenic differences between native and irradiated proteins. Native ovalbumin (2 mg/ml in 150 mM NaCl) was irradiated with 2 kGy of {sup 60}Co gamma rays with a 570 Gy/h dose rate. B10.PL mice (n=5) were then immunized with either the native or the irradiated protein. After three immunizations, serum samples were collected and the antibody titers and isotypes were determined by enzyme-linked immunoadsorbant assay. Our data indicate that no difference could be noticed when the antibody titers of the two groups were compared. However, the isotyping assays indicates that the native protein induced high levels of IgG1, while its irradiated counterpart displayed mostly IgG2b antibodies. These data suggest that after irradiation, an antigen known to induce a Th2 response, is able to switch the immune system towards a Th1 pattern.

  12. Evidence of Two Lyssavirus Phylogroups with Distinct Pathogenicity and Immunogenicity

    Science.gov (United States)

    Badrane, Hassan; Bahloul, Chokri; Perrin, Pierre; Tordo, Noël

    2001-01-01

    The genetic diversity of representative members of the Lyssavirus genus (rabies and rabies-related viruses) was evaluated using the gene encoding the transmembrane glycoprotein involved in the virus-host interaction, immunogenicity, and pathogenicity. Phylogenetic analysis distinguished seven genotypes, which could be divided into two major phylogroups having the highest bootstrap values. Phylogroup I comprises the worldwide genotype 1 (classic Rabies virus), the European bat lyssavirus (EBL) genotypes 5 (EBL1) and 6 (EBL2), the African genotype 4 (Duvenhage virus), and the Australian bat lyssavirus genotype 7. Phylogroup II comprises the divergent African genotypes 2 (Lagos bat virus) and 3 (Mokola virus). We studied immunogenic and pathogenic properties to investigate the biological significance of this phylogenetic grouping. Viruses from phylogroup I (Rabies virus and EBL1) were found to be pathogenic for mice when injected by the intracerebral or the intramuscular route, whereas viruses from phylogroup II (Mokola and Lagos bat viruses) were only pathogenic by the intracerebral route. We showed that the glycoprotein R333 residue essential for virulence was naturally replaced by a D333 in the phylogroup II viruses, likely resulting in their attenuated pathogenicity. Moreover, cross-neutralization distinguished the same phylogroups. Within each phylogroup, the amino acid sequence of the glycoprotein ectodomain was at least 74% identical, and antiglycoprotein virus-neutralizing antibodies displayed cross-neutralization. Between phylogroups, the identity was less than 64.5% and the cross-neutralization was absent, explaining why the classical rabies vaccines (phylogroup I) cannot protect against lyssaviruses from phylogroup II. Our tree-axial analysis divided lyssaviruses into two phylogroups that more closely reflect their biological characteristics than previous serotypes and genotypes. PMID:11238853

  13. Purification of the Immunogenic Fractions and Determination of Toxicity in Mesobuthus eupeus (Scorpionida: Buthidae Venom.

    Directory of Open Access Journals (Sweden)

    Mehdi Khoobdel

    2013-12-01

    Full Text Available Scorpions stings are a health problem in many parts of the world. Mesobuthus eupeus (Buthidae is the most prevalent species in the Middle East and Central Asia. Definition of toxicogenic and immunogenic characteristics of the venom is necessary to produce antidote. In this study, the noted properties of M. eupeus venom were evaluated.Venom was obtained by milking M. eupeus scorpions for lyophilization. Toxicity was determined after injecting the venom to albino mice and calculating LD50. Polyclonal antibodies against M. eupeus venom were obtained from immunized rabbits. The CH-Sepharose 4B column was used for isolating the specific antibodies. 10 mg of the affinity-purified antibodies were conjugated with a CH-Sepharose 4B column and M. eupeus venom was applied to the column. The bound fragments were eluted using hydrogen chloride (pH: 2.5. Crude venom and affinity-purified fractions of the venom were analyzed by SDS-PAGE technique.Lethal dose (LD was 8.75, 11.5 and 4.5 mg/kg for IP, SC and IV respectively. The LD50 of M. eupeus venom was 6.95 mg/kg. The crude venom had 12 detectable bands with molecular weights of 140, 70, 50, 33, 30, 27, 22, 18, 14, 10 kDa and two bands less than 5 kDa. The affinity-purified venom presented eight bands. The 27 kDa band was clearly sharper than other bands but 70, 18, 10 and one of the less than 5 kDa bands were not observed.Contrary to popular belief, which know scorpion venom as non-immunogenic composition, the current study was shown that the most fractions of the M. eupeus are immunogenic.

  14. Measles Virus Hemagglutinin epitopes immunogenic in natural infection and vaccination are targeted by broad or genotype-specific neutralizing monoclonal antibodies.

    Science.gov (United States)

    Muñoz-Alía, Miguel Angel; Casasnovas, José M; Celma, María Luisa; Carabaña, Juan; Liton, Paloma B; Fernandez-Muñoz, Rafael

    2017-05-15

    Measles virus (MV) remains a leading cause of vaccine-preventable deaths in children. Protection against MV is associated with neutralizing antibodies that preferentially recognize the viral hemagglutinin (MV-H), and to a lesser extent, the fusion protein (MV-F). Although MV is serologically monotypic, 24 genotypes have been identified. Here we report three neutralization epitopes conserved in the more prevalent circulating MV genotypes, two located in the MV-H receptor binding site (RBS) (antigenic site III) and a third in MV-H/MV-F interphase (antigenic site Ia) which are essential for MV multiplication. In contrast, two MV-H neutralization epitopes, showed a genotype-specific neutralization escape due to a single amino acid change, that we mapped in the "noose" antigenic site, or an enhanced neutralization epitope (antigenic site IIa). The monoclonal antibody (mAb) neutralization potency correlated with its binding affinity and was mainly driven by kinetic dissociation rate (k off ). We developed an immunoassay for mAb binding to MV-H in its native hetero-oligomeric structure with MV-F on the surface of a MV productive steady-state persistently infected (p.i.) human cell lines, and a competitive-binding assay with serum from individuals with past infection by different MV genotypes. Binding assays revealed that a broad neutralization epitope, in RBS antigenic site, a genotype specific neutralization epitopes, in noose and IIa sites, were immunogenic in natural infection and vaccination and may elicit long-lasting humoral immunity that might contribute to explain MV immunogenic stability. These results support the design of improved measles vaccines, broad-spectrum prophylactic or therapeutic antibodies and MV-used in oncolytic therapies. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Comparison of the venom immunogenicity of various species of yellow jackets (genus Vespula).

    Science.gov (United States)

    Wicher, K; Reisman, R E; Wypych, J; Elliott, W; Steger, R; Mathews, R S; Arbesman, C E

    1980-09-01

    Venoms from various yellow jacket species were examined by two-dimensional thin-layer chromatography (TDTLC), double-diffusion gel precipitation (DDGP) using rabbit antisera, and the radioallergosorbent test (RAST). Comparison of representative venoms by the TDTLC showed that the venoms of V. vulgaris and V. maculifrons have a larger number of Ninhydrin (triketohydrindene hydrate)-positive substances than the venom of V. squamosa. The results of the DDGP confirmed the differences; venoms of V. vulgaris, V. maculifrons, V. flavopilosa, and V. germanica have one or more major components with immunogenic identity. The venom of V. squamosa has a species-specific major component and some minor components immunologically identical to the other venoms examined. Sera from 21 patients with a history of anaphylaxis following yellow jacket stings were examined by the RAST. Using the venoms of V. maculifrons, V. vulgaris, V. flavopilosa, and V. germanica as coupling antigens, most sera reacted similarly. The sera did not react with V. squamosa. These results suggest that the major component in venom obtained from the four yellow jacket species has immunogenic identity. Venom of V. squamosa differs from the remaining venoms. As a practical corollary, with the exception of venom from V. squamosa, common sensitivity appears to exist among the yellow jacket venoms examined.

  16. Dying to Be Noticed: Epigenetic Regulation of Immunogenic Cell Death for Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Brianne Cruickshank

    2018-04-01

    Full Text Available Immunogenic cell death (ICD activates both innate and adaptive arms of the immune system during apoptotic cancer cell death. With respect to cancer immunotherapy, the process of ICD elicits enhanced adjuvanticity and antigenicity from dying cancer cells and consequently, promotes the development of clinically desired antitumor immunity. Cancer ICD requires the presentation of various “hallmarks” of immunomodulation, which include the cell-surface translocation of calreticulin, production of type I interferons, and release of high-mobility group box-1 and ATP, which through their compatible actions induce an immune response against cancer cells. Interestingly, recent reports investigating the use of epigenetic modifying drugs as anticancer therapeutics have identified several connections to ICD hallmarks. Epigenetic modifiers have a direct effect on cell viability and appear to fundamentally change the immunogenic properties of cancer cells, by actively subverting tumor microenvironment-associated immunoevasion and aiding in the development of an antitumor immune response. In this review, we critically discuss the current evidence that identifies direct links between epigenetic modifications and ICD hallmarks, and put forward an otherwise poorly understood role for epigenetic drugs as ICD inducers. We further discuss potential therapeutic innovations that aim to induce ICD during epigenetic drug therapy, generating highly efficacious cancer immunotherapies.

  17. Long-term immunogenicity studies of formalin-inactivated enterovirus 71 whole-virion vaccine in macaques.

    Directory of Open Access Journals (Sweden)

    Chia-Chyi Liu

    Full Text Available Enterovirus 71 (EV71 has caused epidemics of hand, foot and mouth diseases in Asia during the past decades and no vaccine is available. A formalin-inactivated EV71 candidate vaccine (EV71vac based on B4 subgenotype has previously been developed and found to elicit strong neutralizing antibody responses in mice and humans. In this study, we evaluated the long-term immunogenicity and safety of this EV71vac in a non-human primate model. Juvenile macaques were immunized at 0, 3 and 6 weeks either with 10 or 5 µg doses of EV71vac formulated with AlPO4 adjuvant, or PBS as control. During the 56 weeks of studies, no fever nor local redness and swelling at sites of injections was observed in the immunized macaques. After single immunization, 100% seroconversion based on 4-fold increased in neutralization titer (Nt was detected in EV71vac immunized monkeys but not PBS controls. A dose-dependent IgG antibody response was observed in monkeys receiving EV71vac immunization. The Nt of EV71vac immunized macaques had reached the peak after 3 vaccinations, then decreased gradually; however, the GMT of neutralizing antibody in the EV71vac immunized macaques were still above 100 at the end of the study. Correspondingly, both dose- and time-dependent interferon-γ and CD4+ T cell responses were detected in monkeys receiving EV71vac. Interestingly, similar to human responses, the dominant T cell epitopes of macaques were identified mainly in VP2 and VP3 regions. In addition, strong cross-neutralizing antibodies against most EV71 subgenotypes except some C2 and C4b strains, and Coxsackievirus A16 were observed. In summary, our results indicate that EV71vac elicits dose-dependent T-cell and antibody responses in macaques that could be a good animal model for evaluating the long-term immune responses elicited by EV71 vaccines.

  18. High pathogenicity and strong immunogenicity of a Chinese isolate of Eimeria magna Pérard, 1925.

    Science.gov (United States)

    Tao, Geru; Wang, Yunzhou; Li, Chao; Gu, Xiaolong; Cui, Ping; Fang, Sufang; Suo, Xun; Liu, Xianyong

    2017-06-01

    Coccidia infection of rabbits with one or several species of parasites of the genus Eimeria causes coccidiosis, a disease leading to huge economic losses in the rabbit industry. Eimeria magna, one of the causal agents of rabbit coccidiosis, was characterized as mildly pathogenic and moderately immunogenic in previous studies. In this study, we identified a Chinese isolate of E. magna by testing its biological features (oocyst morphology and size, prepatent time) and sequencing its internal transcribed spacer 1 (ITS-1) DNA fragment. This isolate is highly pathogenic; infection of rabbits with only 1×10 2 oocysts caused a 55% reduction in weight gain in 14days. In addition, immunization with 1×10 2 oocysts prevented body weight loss against re-infection with 5×10 4 oocysts, indicating the high immunogenicity of this isolate. Our study described the distinctive phenotype of the Chinese isolate of E. magna and contributed to the research of geographic variation of rabbit coccidia. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Unraveling the Effect of Immunogenicity on the PK/PD, Efficacy, and Safety of Therapeutic Proteins

    Directory of Open Access Journals (Sweden)

    Alison Smith

    2016-01-01

    Full Text Available Biologics have emerged as a powerful and diverse class of molecular and cell-based therapies that are capable of replacing enzymes, editing genomes, targeting tumors, and more. As this complex array of tools arises a distinct set of challenges is rarely encountered in the development of small molecule therapies. Biotherapeutics tend to be big, bulky, polar molecules comprised of protein and/or nucleic acids. Compared to their small molecule counterparts, they are fragile, labile, and heterogeneous. Their biodistribution is often limited by hydrophobic barriers which often restrict their administration to either intravenous or subcutaneous entry routes. Additionally, their potential for immunogenicity has proven to be a challenge to developing safe and reliably efficacious drugs. Our discussion will emphasize immunogenicity in the context of therapeutic proteins, a well-known class of biologics. We set out to describe what is known and unknown about the mechanisms underlying the interplay between antigenicity and immune response and their effect on the safety, efficacy, pharmacokinetics, and pharmacodynamics of these therapeutic agents.

  20. Immunogenicity of glycans on biotherapeutic drugs produced in plant expression systems—The taliglucerase alfa story

    Science.gov (United States)

    Rup, Bonita; Alon, Sari; Amit-Cohen, Bat-Chen; Brill Almon, Einat; Chertkoff, Raul; Rudd, Pauline M.

    2017-01-01

    Plants are a promising alternative for the production of biotherapeutics. Manufacturing in-planta adds plant specific glycans. To understand immunogenic potential of these glycans, we developed a validated method to detect plant specific glycan antibodies in human serum. Using this assay, low prevalence of pre-existing anti-plant glycan antibodies was found in healthy humans (13.5%) and in glucocerebrosidase-deficient Gaucher disease (GD) patients (5%). A low incidence (9% in naïve patient and none in treatment experienced patients) of induced anti-plant glycan antibodies was observed in GD patients after up to 30 months replacement therapy treatment with taliglucerase alfa, a version of human glucocerebrosidase produced in plant cells. Detailed evaluation of clinical safety and efficacy endpoints indicated that anti-plant glycan antibodies did not affect the safety or efficacy of taliglucerase alfa in patients. This study shows the benefit of using large scale human trials to evaluate the immunogenicity risk of plant derived glycans, and indicates no apparent risk related to anti-plant glycan antibodies. PMID:29088235

  1. [Effect of immune modulation on immunogenic and protective activity of a live plague vaccine].

    Science.gov (United States)

    Karal'nik, B V; Ponomareva, T S; Deriabin, P N; Denisova, T G; Mel'nikova, N N; Tugambaev, T I; Atshabar, B B; Zakarian, S B

    2014-01-01

    Comparative evaluation of the effect of polyoxidonium and betaleukin on immunogenic and protective activity of a live plague vaccine in model animal experiments. Plague vaccine EV, polyoxidonium, betaleukin, erythrocytic antigenic diagnosticum for determination of F1 antibodies and immune reagents for detection of lymphocytes with F1 receptors (LFR) in adhesive test developed by the authors were used. The experiments were carried out in 12 rabbits and 169 guinea pigs. Immune modulation accelerated the appearance and disappearance of LFR (early phase) and ensured a more rapid and intensive antibody formation (effector phase). Activation by betaleukin is more pronounced than by polyoxidonium. The more rapid and intensive was the development of early phase, the more effective was antibody response to the vaccine. Immune modulation in the experiment with guinea pigs significantly increased protective activity of the vaccine. The use of immune modulators increased immunogenic (in both early and effector phases of antigen-specific response) and protective activity of the EV vaccine. A connection between the acceleration of the first phase of antigen-specific response and general intensity of effector phase of immune response to the EV vaccine was detected. ,

  2. Comparative Glycoprofiling of HIV gp120 Immunogens by Capillary Electrophoresis and MALDI Mass Spectrometry

    Science.gov (United States)

    Guttman, Miklós; Váradi, Csaba; Lee, Kelly K.; Guttman, András

    2015-01-01

    The Human Immunodeficiency Virus (HIV) envelope glycoprotein (Env) is the primary antigenic feature on the surface of the virus and is of key importance in HIV vaccinology. Vaccine trials with the gp120 subunit of Env are ongoing with the recent RV144 trial showing moderate efficacy. gp120 is densely covered with N-linked glycans that are thought to help evade the host's humoral immune response. To assess how the global glycosylation patterns vary between gp120 constructs, the glycan profiles of several gp120s were examined by capillary electrophoresis with laser induced fluorescence detection and MALDI-MS. The glycosylation profiles were found to be similar for chronic vs. transmitter/founder isolates and only varied moderately between gp120s from different clades. This study revealed that the addition of specific tags, such as the gD tag used in the RV144 trial, had significant effects on the overall glycosylation patterns. Such effects are likely to influence the immunogenicity of various Env immunogens and should be considered for future vaccine strategies, emphasizing the importance of the glycosylation analysis approach described in this paper. PMID:25809283

  3. Main factors controlling the sedimentation of high-quality shale in the Wufeng–Longmaxi Fm, Upper Yangtze region

    Directory of Open Access Journals (Sweden)

    Yuman Wang

    2017-09-01

    Full Text Available In this paper, the shale of Upper Ordovician Wufeng Fm–Lower Silurian Longmaxi Fm was taken as an example to reveal the distribution patterns and the main sedimentation controlling factors of high-quality shale in the Upper Yangtze region. This study was made from the aspects of plate movement, fluctuation of sea level, palaeo-productivity, deposition rate and paleogeographic environment, based on the field outcrop sections and drilling data of the southern Sichuan Basin, together with geochemical element testing and biostratigraphical analysis results. The following findings were obtained. First, the collision and joint of Yangtze Plate and its periphery plates and the intra-plate deformation were gentle in the early stage, strong in the late stage, gentle in northwest and strong in southeast, so the sedimentation center in the Upper Yangtze region migrated to the northwest and the closure of sea area in the southern Sichuan Basin changed from weak in early stages to strong in late stages. Second, at the turning period from Ordovician to Silurian, sea levels presented the cycle change of deep–shallow–deep–shallow. Due to the combination of high sea levels and a stable ocean basin in early stages, an extensive anoxic tectonic sedimentary space favorable for organic matters preservation was formed in the sea floor. Third, due to the effect of tectonic movements and sea closure, palaeo-productivity of sea areas in the southern Sichuan Basin presented a trend of being high in the early stage and low in the late stage, and the deposition rate was also low in the early stage and high in the late stage. And fourth, extensive deposition and distribution of shale rich in organic matters and silica was mainly controlled by a stable sea basin with a low subsidence rate, a relatively high sea level, semi-closed waters and low deposition rates. To sum up, the high-quality shale in the Upper Yangtze region is characterized by multiphase

  4. Genetic Diversity of Foxtail Millet (Setaria italica L.) From Main Asian Habitats Based on the NRDNA ITS Region

    International Nuclear Information System (INIS)

    Sun, Y. L.; Zheng, S. L.; Lee, J. K.

    2016-01-01

    Foxtail millet (Setaria italica (L.) P. Beauv.) is a crop of historical importance in some Asian and European countries. In this study, we selected the internal transcribed spacer (ITS) region of nuclear ribosomal DNA (nrDNA) as the DNA marker to analyze genetic diversity and relationships of 20 foxtail millet strains collected from three representative Asian countries, including China, Korea, and Pakistan. Due to the length limitation of the nrDNA ITS region, 17 typical variable nucleotide sites were only found, of which 4 sites belonged to insertion, 3 sites deletion, and 10 sites substitution. According to the result of sequence alignment, strains were grouped clearly with the relevant of collected geographical region. Based on the sequence similarity and nucleotide variation, one Main China Group (MCG) and one Main Korea Group (MKG) occurred, and the strains from Pakistan were found to be close to MKG, considered to be originally transmitted from Korea and spread to Pakistan. Certain genetic diversity between strains from Pakistan and Korea were recognized as long-time environment evolution and adaptation. Among strains from Korea, K2, K3, K4, and K5 showed nearer phylogenetic relationship to MCG, considered as Chinese populations. All strains from China showed relatively near phylogenetic relationship with each other, supporting the statement that China is one of origin areas. The result also suggested that there was no introduced strain found in the Chinese strains investigated in this study. This work would provide more sequence sources and help clearer strain distinguishing, genetic diversity and phylogenetic relationship of foxtail millet. (author)

  5. Immunogenicity of oncolytic vaccinia viruses JX-GFP and TG6002 in a human melanoma in vitro model: studying immunogenic cell death, dendritic cell maturation and interaction with cytotoxic T lymphocytes

    Directory of Open Access Journals (Sweden)

    Heinrich B

    2017-05-01

    Full Text Available B Heinrich,1 J Klein,1 M Delic,1 K Goepfert,1 V Engel,1 L Geberzahn,1 M Lusky,2 P Erbs,2 X Preville,3 M Moehler1 1First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany; 2Transgene SA, Illkirch-Graffenstaden, 3Amoneta Diagnostics, Huningue, France Abstract: Oncolytic virotherapy is an emerging immunotherapeutic modality for cancer treatment. Oncolytic viruses with genetic modifications can further enhance the oncolytic effects on tumor cells and stimulate antitumor immunity. The oncolytic vaccinia viruses JX-594-GFP+/hGM-CSF (JX-GFP and TG6002 are genetically modified by secreting granulocyte-macrophage colony-stimulating factor (GM-CSF or transforming 5-fluorocytosine (5-FC into 5-fluorouracil (5-FU. We compared their properties to kill tumor cells and induce an immunogenic type of cell death in a human melanoma cell model using SK29-MEL melanoma cells. Their influence on human immune cells, specifically regarding the activation of dendritic cells (DCs and the interaction with the autologous cytotoxic T lymphocyte (CTL clone, was investigated. Melanoma cells were infected with either JX-GFP or TG6002 alone or in combination with 5-FC and 5-FU. The influence of viral infection on cell viability followed a time- and multiplicity of infection dependent manner. Combination of virus treatment with 5-FU resulted in stronger reduction of cell viability. TG6002 in combination with 5-FC did not significantly strengthen the reduction of cell viability in this setting. Expression of calreticulin and high mobility group 1 protein (HMGB1, markers of immunogenic cell death (ICD, could be detected after viral infection. Accordingly, DC maturation was noted after viral oncolysis. DCs presented stronger expression of activation and maturation markers. The autologous CTL clone IVSB expressed the activation marker CD69, but viral treatment failed to enhance cytotoxicity marker. In summary, vaccinia viruses JX-GFP and TG6002 lyse

  6. The effect of gamma-irradiation conditions on the immunogenicity of whole-inactivated Influenza A virus vaccine.

    Science.gov (United States)

    David, Shannon C; Lau, Josyane; Singleton, Eve V; Babb, Rachelle; Davies, Justin; Hirst, Timothy R; McColl, Shaun R; Paton, James C; Alsharifi, Mohammed

    2017-02-15

    Gamma-irradiation, particularly an irradiation dose of 50kGy, has been utilised widely to sterilise highly pathogenic agents such as Ebola, Marburg Virus, and Avian Influenza H5N1. We have reported previously that intranasal vaccination with a gamma-irradiated Influenza A virus vaccine (γ-Flu) results in cross-protective immunity. Considering the possible inclusion of highly pathogenic Influenza strains in future clinical development of γ-Flu, an irradiation dose of 50kGy may be used to enhance vaccine safety beyond the internationally accepted Sterility Assurance Level (SAL). Thus, we investigated the effect of irradiation conditions, including high irradiation doses, on the immunogenicity of γ-Flu. Our data confirm that irradiation at low temperatures (using dry-ice) is associated with reduced damage to viral structure compared with irradiation at room temperature. In addition, a single intranasal vaccination with γ-Flu irradiated on dry-ice with either 25 or 50kGy induced seroconversion and provided complete protection against lethal Influenza A challenge. Considering that low temperature is expected to reduce the protein damage associated with exposure to high irradiation doses, we titrated the vaccine dose to verify the efficacy of 50kGy γ-Flu. Our data demonstrate that exposure to 50kGy on dry-ice is associated with limited effect on vaccine immunogenicity, apparent only when using very low vaccine doses. Overall, our data highlight the immunogenicity of influenza virus irradiated at 50kGy for induction of high titre antibody and cytotoxic T-cell responses. This suggests these conditions are suitable for development of γ-Flu vaccines based on highly pathogenic Influenza A viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Long-term follow-up observation of the safety, immunogenicity, and effectiveness of Gardasil™ in adult women.

    Directory of Open Access Journals (Sweden)

    Joaquin Luna

    Full Text Available Previous analyses from a randomized trial in women aged 24-45 have shown the quadrivalent HPV vaccine to be efficacious in the prevention of infection, cervical intraepithelial neoplasia (CIN and external genital lesions (EGL related to HPV 6/11/16/18 through 4 years. In this report we present long term follow-up data on the efficacy, safety and immunogenicity of the quadrivalent HPV vaccine in adult women.Follow-up data are from a study being conducted in 5 sites in Colombia designed to evaluate the long-term immunogenicity, effectiveness, and safety of the qHPV vaccine in women who were vaccinated at 24 to 45 years of age (in the original vaccine group during the base study [n = 684] or 29 to 50 years of age (in the original placebo group during the base study [n = 651]. This analysis summarizes data collected as of the year 6 post-vaccination visit relative to day 1 of the base study (median follow-up of 6.26 years from both the original base study and the Colombian follow-up.There were no cases of HPV 6/11/16/18-related CIN or EGL during the extended follow-up phase in the per-protocol population. Immunogenicity persists against vaccine-related HPV types, and no evidence of HPV type replacement has been observed. No new serious adverse experiences have been reported.Vaccination with qHPV vaccine provides generally safe and effective protection from HPV 6-, 11-, 16-, and 18-related genital warts and cervical dysplasia through 6 years following administration to 24-45 year-old women.Clinicaltrials.govNCT00090220.

  8. Main Strategies of Plant Expression System Glycoengineering for Producing Humanized Recombinant Pharmaceutical Proteins.

    Science.gov (United States)

    Rozov, S M; Permyakova, N V; Deineko, E V

    2018-03-01

    Most the pharmaceutical proteins are derived not from their natural sources, rather their recombinant analogs are synthesized in various expression systems. Plant expression systems, unlike mammalian cell cultures, combine simplicity and low cost of procaryotic systems and the ability for posttranslational modifications inherent in eucaryotes. More than 50% of all human proteins and more than 40% of the currently used pharmaceutical proteins are glycosylated, that is, they are glycoproteins, and their biological activity, pharmacodynamics, and immunogenicity depend on the correct glycosylation pattern. This review examines in detail the similarities and differences between N- and O-glycosylation in plant and mammalian cells, as well as the effect of plant glycans on the activity, pharmacokinetics, immunity, and intensity of biosynthesis of pharmaceutical proteins. The main current strategies of glycoengineering of plant expression systems aimed at obtaining fully humanized proteins for pharmaceutical application are summarized.

  9. Peptide-MHC class I stability is a stronger predictor of CTL immunogenicity than peptide affinity

    DEFF Research Database (Denmark)

    Harndahl, Mikkel Nors; Rasmussen, Michael; Nielsen, Morten

    2012-01-01

    Peptide-MHC class I stability is a stronger predictor of CTL immunogenicity than peptide affinity Mikkel Harndahla, Michael Rasmussena, Morten Nielsenb, Soren Buusa,∗ a Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Denmark b Center for Biological Seq...... al., 2007. J. Immunol. 178, 7890–7901. doi:10.1016/j.molimm.2012.02.025...

  10. Impact of adipose tissue or umbilical cord derived mesenchymal stem cells on the immunogenicity of human cord blood derived endothelial progenitor cells.

    Directory of Open Access Journals (Sweden)

    Kefang Tan

    Full Text Available The application of autologous endothelial progenitor cell (EPC transplantation is a promising approach in therapeutic cardiovascular diseases and ischemic diseases. In this study, we compared the immunogenicity of EPCs, adipose tissue (AD-derived mesenchymal stem cells (MSCs and umbilical cord (UC-derived MSCs by flow cytometry and the mixed lymphocyte reaction. The impact of AD-MSCs and UC-MSCs on the immunogenicity of EPCs was analyzed by the mixed lymphocyte reaction and cytokine secretion in vitro and was further tested by allogenic peripheral blood mononuclear cell (PBMC induced immuno-rejection on a cell/matrigel graft in an SCID mouse model. EPCs and AD-MSCs express higher levels of MHC class I than UC-MSCs. All three kinds of cells are negative for MHC class II. UC-MSCs also express lower levels of IFN-γ receptor mRNA when compared with EPCs and AD-MSCs. EPCs can stimulate higher rates of proliferation of lymphocytes than AD-MSCs and UC-MSCs. Furthermore, AD-MSCs and UC-MSCs can modulate immune response and inhibit lymphocyte proliferation induced by EPCs, mainly through inhibition of the proliferation of CD8+ T cells. Compared with UC-MSCs, AD-MSCs can significantly improve vessel formation and maintain the integrity of neovascular structure in an EPC+MSC/matrigel graft in SCID mice, especially under allo-PBMC induced immuno-rejection. In conclusion, our study shows that AD-MSC is a powerful candidate to minimize immunological rejection and improve vessel formation in EPC transplantation treatment.

  11. A single dose of live-attenuated 638 Vibrio cholerae oral vaccine is safe and immunogenic in adult volunteers in Mozambique

    Directory of Open Access Journals (Sweden)

    Hilda María García

    2011-12-01

    Full Text Available A placebo-controlled randomized, double-blind, clinical trial was carried out to assess the safety, reactogenicity, and immunogenicity of the lyophilized vaccine candidate against cholera derived from the live attenuated 638 Vibrio cholerae O1 El Tor Ogawa strain. One hundred and twenty presumably healthy female and male adult volunteers aged between 18 and 50 years were included. They were from Maputo, Mozambique a cholera endemic area, where, in addition, human immunodeficiency virus (HIV seroprevalence is from 20 to 30%. A dose of 2 x 10 9 colony forming units (CFU was given to 80 subjects and other 40 received only vaccine lyoprotectors as a placebo control. Out-patient follow-up of adverse events was carried out during the following 30 days after vaccination. The immune response was evaluated by the estimation of seroconversion rate and the geometric mean titer (GMT of vibriocidal antibodies in the sera from volunteers that was collected previously, and at days 14 and 21 after immunization. No serious adverse events were reported. The adverse events found in the vaccine group were similar to those of the placebo groups. They were independent from the detection of antibodies against HIV-1, HIV-2, hepatitis (H A; HC and hepatitis B surface antigen. The presence of helminthes did not modify the incidence of adverse events. The 638 vaccine strain was isolated in 37 (46.25% vaccinated volunteer's feces. The peak of the GMT of vibriocidal antibodies in the vaccine group was 9056 versus 39 in the placebo group at 14 days with a total seroconversion of 97.4% at 21 days. The 638 vaccine candidate is safe and immunogenic in a cholera endemic region.

  12. Immunogenicity to poliovirus type 2 following two doses of fractional intradermal inactivated poliovirus vaccine: A novel dose sparing immunization schedule.

    Science.gov (United States)

    Anand, Abhijeet; Molodecky, Natalie A; Pallansch, Mark A; Sutter, Roland W

    2017-05-19

    The polio eradication endgame strategic plan calls for the sequential removal of Sabin poliovirus serotypes from the trivalent oral poliovirus vaccine (tOPV), starting with type 2, and the introduction of ≥1 dose of inactivated poliovirus vaccine (IPV), to maintain an immunity base against poliovirus type 2. The global removal of oral poliovirus type 2 was successfully implemented in May 2016. However, IPV supply constraints has prevented introduction in 21 countries and led to complete stock-out in >20 countries. We conducted a literature review and contacted corresponding authors of recent studies with fractional-dose IPV (fIPV), one-fifth of intramuscular dose administered intradermally, to conduct additional type 2 immunogenicity analyses of two fIPV doses compared with one full-dose IPV. Four studies were identified that assessed immunogenicity of two fIPV doses compared to one full-dose IPV. Two fractional doses are more immunogenic than 1 full-dose, with type 2 seroconversion rates improving between absolute 19-42% (median: 37%, pvaccine compared to one full-dose IPV. In response to the current IPV shortage, a schedule of two fIPV doses at ages 6 and 14weekshas been endorsed by technical oversight committees and has been introduced in some affected countries. Copyright © 2017. Published by Elsevier Ltd.

  13. Regenerative and immunogenic characteristics of cultured nucleus pulposus cells from human cervical intervertebral discs.

    Directory of Open Access Journals (Sweden)

    Stefan Stich

    Full Text Available Cell-based regenerative approaches have been suggested as primary or adjuvant procedures for the treatment of degenerated intervertebral disc (IVD diseases. Our aim was to evaluate the regenerative and immunogenic properties of mildly and severely degenerated cervical nucleus pulposus (NP cells with regard to cell isolation, proliferation and differentiation, as well as to cell surface markers and co-cultures with autologous or allogeneic peripheral blood mononuclear cells (PBMC including changes in their immunogenic properties after 3-dimensional (3D-culture. Tissue from the NP compartment of 10 patients with mild or severe grades of IVD degeneration was collected. Cells were isolated, expanded with and without basic fibroblast growth factor and cultured in 3D fibrin/poly (lactic-co-glycolic acid transplants for 21 days. Real-time reverse-transcription polymerase chain reaction (RT-PCR showed the expression of characteristic NP markers ACAN, COL1A1 and COL2A1 in 2D- and 3D-culture with degeneration- and culture-dependent differences. In a 5,6-carboxyfluorescein diacetate N-succinimidyl ester-based proliferation assay, NP cells in monolayer, regardless of their grade of degeneration, did not provoke a significant proliferation response in T cells, natural killer (NK cells or B cells, not only with donor PBMC, but also with allogeneic PBMC. In conjunction with low inflammatory cytokine expression, analyzed by Cytometric Bead Array and fluorescence-activated cell sorting (FACS, a low immunogenicity can be assumed, facilitating possible therapeutic approaches. In 3D-culture, however, we found elevated immune cell proliferation levels, and there was a general trend to higher responses for NP cells from severely degenerated IVD tissue. This emphasizes the importance of considering the specific immunological alterations when including biomaterials in a therapeutic concept. The overall expression of Fas receptor, found on cultured NP cells, could have

  14. OptMAVEn--a new framework for the de novo design of antibody variable region models targeting specific antigen epitopes.

    Directory of Open Access Journals (Sweden)

    Tong Li

    Full Text Available Antibody-based therapeutics provides novel and efficacious treatments for a number of diseases. Traditional experimental approaches for designing therapeutic antibodies rely on raising antibodies against a target antigen in an immunized animal or directed evolution of antibodies with low affinity for the desired antigen. However, these methods remain time consuming, cannot target a specific epitope and do not lead to broad design principles informing other studies. Computational design methods can overcome some of these limitations by using biophysics models to rationally select antibody parts that maximize affinity for a target antigen epitope. This has been addressed to some extend by OptCDR for the design of complementary determining regions. Here, we extend this earlier contribution by addressing the de novo design of a model of the entire antibody variable region against a given antigen epitope while safeguarding for immunogenicity (Optimal Method for Antibody Variable region Engineering, OptMAVEn. OptMAVEn simulates in silico the in vivo steps of antibody generation and evolution, and is capable of capturing the critical structural features responsible for affinity maturation of antibodies. In addition, a humanization procedure was developed and incorporated into OptMAVEn to minimize the potential immunogenicity of the designed antibody models. As case studies, OptMAVEn was applied to design models of neutralizing antibodies targeting influenza hemagglutinin and HIV gp120. For both HA and gp120, novel computational antibody models with numerous interactions with their target epitopes were generated. The observed rates of mutations and types of amino acid changes during in silico affinity maturation are consistent with what has been observed during in vivo affinity maturation. The results demonstrate that OptMAVEn can efficiently generate diverse computational antibody models with both optimized binding affinity to antigens and reduced

  15. Hepatitis C Virus E1 and E2 Proteins Used as Separate Immunogens Induce Neutralizing Antibodies with Additive Properties.

    Directory of Open Access Journals (Sweden)

    Elodie Beaumont

    Full Text Available Various strategies involving the use of hepatitis C virus (HCV E1 and E2 envelope glycoproteins as immunogens have been developed for prophylactic vaccination against HCV. However, the ideal mode of processing and presenting these immunogens for effective vaccination has yet to be determined. We used our recently described vaccine candidate based on full-length HCV E1 or E2 glycoproteins fused to the heterologous hepatitis B virus S envelope protein to compare the use of the E1 and E2 proteins as separate immunogens with their use as the E1E2 heterodimer, in terms of immunogenetic potential and the capacity to induce neutralizing antibodies. The specific anti-E1 and anti-E2 antibody responses induced in animals immunized with vaccine particles harboring the heterodimer were profoundly impaired with respect to those in animals immunized with particles harboring E1 and E2 separately. Moreover, the anti-E1 and anti-E2 antibodies had additive neutralizing properties that increase the cross-neutralization of heterologous strains of various HCV genotypes, highlighting the importance of including both E1 and E2 in the vaccine for an effective vaccination strategy. Our study has important implications for the optimization of HCV vaccination strategies based on HCV envelope proteins, regardless of the platform used to present these proteins to the immune system.

  16. Phase I safety and immunogenicity evaluation of MVA-CMDR, a multigenic, recombinant modified vaccinia Ankara-HIV-1 vaccine candidate.

    Science.gov (United States)

    Currier, Jeffrey R; Ngauy, Viseth; de Souza, Mark S; Ratto-Kim, Silvia; Cox, Josephine H; Polonis, Victoria R; Earl, Patricia; Moss, Bernard; Peel, Sheila; Slike, Bonnie; Sriplienchan, Somchai; Thongcharoen, Prasert; Paris, Robert M; Robb, Merlin L; Kim, Jerome; Michael, Nelson L; Marovich, Mary A

    2010-11-15

    We conducted a Phase I randomized, dose-escalation, route-comparison trial of MVA-CMDR, a candidate HIV-1 vaccine based on a recombinant modified vaccinia Ankara viral vector expressing HIV-1 genes env/gag/pol. The HIV sequences were derived from circulating recombinant form CRF01_AE, which predominates in Thailand. The objective was to evaluate safety and immunogenicity of MVA-CMDR in human volunteers in the US and Thailand. MVA-CMDR or placebo was administered intra-muscularly (IM; 10(7) or 10(8) pfu) or intradermally (ID; 10(6) or 10(7) pfu) at months 0, 1 and 3, to 48 healthy volunteers at low risk for HIV-1 infection. Twelve volunteers in each dosage group were randomized to receive MVA-CMDR or placebo (10∶2). Volunteers were actively monitored for local and systemic reactogenicity and adverse events post vaccination. Cellular immunogenicity was assessed by a validated IFNγ Elispot assay, an intracellular cytokine staining assay, lymphocyte proliferation and a (51)Cr-release assay. Humoral immunogenicity was assessed by ADCC for gp120 and binding antibody ELISAs for gp120 and p24. MVA-CMDR was safe and well tolerated with no vaccine related serious adverse events. Cell-mediated immune responses were: (i) moderate in magnitude (median IFNγ Elispot of 78 SFC/10(6) PBMC at 10(8) pfu IM), but high in response rate (70% (51)Cr-release positive; 90% Elispot positive; 100% ICS positive, at 10(8) pfu IM); (ii) predominantly HIV Env-specific CD4(+) T cells, with a high proliferative capacity and durable for at least 6 months (100% LPA response rate by the IM route); (iv) dose- and route-dependent with 10(8) pfu IM being the most immunogenic treatment. Binding antibodies against gp120 and p24 were detectable in all vaccination groups with ADCC capacity detectable at the highest dose (40% positive at 10(8) pfu IM). MVA-CMDR delivered both intramuscularly and intradermally was safe, well-tolerated and elicited durable cell-mediated and humoral immune responses

  17. Phase I safety and immunogenicity evaluation of MVA-CMDR, a multigenic, recombinant modified vaccinia Ankara-HIV-1 vaccine candidate.

    Directory of Open Access Journals (Sweden)

    Jeffrey R Currier

    2010-11-01

    Full Text Available We conducted a Phase I randomized, dose-escalation, route-comparison trial of MVA-CMDR, a candidate HIV-1 vaccine based on a recombinant modified vaccinia Ankara viral vector expressing HIV-1 genes env/gag/pol. The HIV sequences were derived from circulating recombinant form CRF01_AE, which predominates in Thailand. The objective was to evaluate safety and immunogenicity of MVA-CMDR in human volunteers in the US and Thailand.MVA-CMDR or placebo was administered intra-muscularly (IM; 10(7 or 10(8 pfu or intradermally (ID; 10(6 or 10(7 pfu at months 0, 1 and 3, to 48 healthy volunteers at low risk for HIV-1 infection. Twelve volunteers in each dosage group were randomized to receive MVA-CMDR or placebo (10∶2. Volunteers were actively monitored for local and systemic reactogenicity and adverse events post vaccination. Cellular immunogenicity was assessed by a validated IFNγ Elispot assay, an intracellular cytokine staining assay, lymphocyte proliferation and a (51Cr-release assay. Humoral immunogenicity was assessed by ADCC for gp120 and binding antibody ELISAs for gp120 and p24. MVA-CMDR was safe and well tolerated with no vaccine related serious adverse events. Cell-mediated immune responses were: (i moderate in magnitude (median IFNγ Elispot of 78 SFC/10(6 PBMC at 10(8 pfu IM, but high in response rate (70% (51Cr-release positive; 90% Elispot positive; 100% ICS positive, at 10(8 pfu IM; (ii predominantly HIV Env-specific CD4(+ T cells, with a high proliferative capacity and durable for at least 6 months (100% LPA response rate by the IM route; (iv dose- and route-dependent with 10(8 pfu IM being the most immunogenic treatment. Binding antibodies against gp120 and p24 were detectable in all vaccination groups with ADCC capacity detectable at the highest dose (40% positive at 10(8 pfu IM.MVA-CMDR delivered both intramuscularly and intradermally was safe, well-tolerated and elicited durable cell-mediated and humoral immune responses

  18. Safety and immunogenicity of therapeutic DNA vaccination in individuals treated with antiretroviral therapy during acute/early HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Eric S Rosenberg

    2010-05-01

    Full Text Available An effective therapeutic vaccine that could augment immune control of HIV-1 replication may abrogate or delay the need for antiretroviral therapy. AIDS Clinical Trials Group (ACTG A5187 was a phase I/II, randomized, placebo-controlled, double-blinded trial to evaluate the safety and immunogenicity of an HIV-1 DNA vaccine (VRC-HVDNA 009-00-VP in subjects treated with antiretroviral therapy during acute/early HIV-1 infection. (clinicaltrials.gov NCT00125099Twenty healthy HIV-1 infected subjects who were treated with antiretroviral therapy during acute/early HIV-1 infection and had HIV-1 RNA<50 copies/mL were randomized to receive either vaccine or placebo. The objectives of this study were to evaluate the safety and immunogenicity of the vaccine. Following vaccination, subjects interrupted antiretroviral treatment, and set-point HIV-1 viral loads and CD4 T cell counts were determined 17-23 weeks after treatment discontinuation.Twenty subjects received all scheduled vaccinations and discontinued antiretroviral therapy at week 30. No subject met a primary safety endpoint. No evidence of differences in immunogenicity were detected in subjects receiving vaccine versus placebo. There were also no significant differences in set-point HIV-1 viral loads or CD4 T cell counts following treatment discontinuation. Median set-point HIV-1 viral loads after treatment discontinuation in vaccine and placebo recipients were 3.5 and 3.7 log(10 HIV-1 RNA copies/mL, respectively.The HIV-1 DNA vaccine (VRC-HIVDNA 009-00-VP was safe but poorly immunogenic in subjects treated with antiretroviral therapy during acute/early HIV-1 infection. Viral set-points were similar between vaccine and placebo recipients following treatment interruption. However, median viral load set-points in both groups were lower than in historical controls, suggesting a possible role for antiretroviral therapy in persons with acute or early HIV-1 infection and supporting the safety of

  19. Immunogenicity and safety of low dose virosomal adjuvanted influenza vaccine administered intradermally compared to intramuscular full dose administration

    NARCIS (Netherlands)

    Künzi, Valérie; Klap, Jaco M.; Seiberling, Michael K.; Herzog, Christian; Hartmann, Katharina; Kürsteiner, Oliver; Kompier, Ronald; Grimaldi, Roberto; Goudsmit, Jaap

    2009-01-01

    BACKGROUND: Despite the established benefit of intramuscular (i.m.) influenza vaccination, new adjuvants and delivery methods for comparable or improved immunogenicity are being explored. Intradermal (i.d.) antigen administration is hypothesized to initiate an efficient immune response at reduced

  20. Efficacy and immunogenicity of live-attenuated human rotavirus vaccine in breast-fed and formula-fed European infants.

    Science.gov (United States)

    Vesikari, Timo; Prymula, Roman; Schuster, Volker; Tejedor, Juan-C; Cohen, Robert; Bouckenooghe, Alain; Damaso, Silvia; Han, Htay Htay

    2012-05-01

    Rotavirus is the main cause of severe gastroenteritis and diarrhea in infants and young children less than 5 years of age. Potential impact of breast-feeding on the efficacy and immunogenicity of human rotavirus G1P[8] vaccine was examined in this exploratory analysis. Healthy infants (N = 3994) aged 6-14 weeks who received 2 doses of human rotavirus vaccine/placebo according to a 0-1 or 0-2 month schedule were followed for rotavirus gastroenteritis during 2 epidemic seasons. Rotavirus IgA seroconversion rate (anti-IgA antibody concentration ≥ 20 mIU/mL) and geometric mean concentrations were measured prevaccination and 1-2 months post-dose 2. Vaccine efficacy against any and severe rotavirus gastroenteritis was analyzed according to the infants being breast-fed or exclusively formula-fed at the time of vaccination. Antirotavirus IgA seroconversion rate was 85.5% (95% confidence interval [CI]: 82.4-88.3) in breast-fed and 89.2% (95% CI: 84.2-93) in exclusively formula-fed infants; geometric mean concentrations in the respective groups were 185.8 U/mL (95% CI: 161.4-213.9) and 231.5 U/mL (95% CI: 185.9-288.2). Vaccine efficacy was equally high in breast-fed and exclusively formula-fed children in the first season but fell in breast-fed infants in the second rotavirus season. During the combined 2-year efficacy follow-up period, vaccine efficacy against any rotavirus gastroenteritis was 76.2% (95% CI: 68.7-82.1) and 89.8% (95% CI: 77.6-95.9) and against severe rotavirus gastroenteritis 88.4% (95% CI: 81.6-93) and 98.1% (95% CI: 88.2-100) in the breast-fed and exclusively formula-fed infants, respectively. The difference in immunogenicity of human rotavirus vaccine in breast-fed and exclusively formula-fed infants was small. Vaccine efficacy was equally high in breast-fed and exclusively formula-fed children in the first season. Breast-feeding seemed to reduce slightly the efficacy in the second season.

  1. Alpha particles induce expression of immunogenic markers on tumour cells

    International Nuclear Information System (INIS)

    Gorin, J.B.; Gouard, S.; Cherel, M.; Davodeau, F.; Gaschet, J.; Morgenstern, A.; Bruchertseifer, F.

    2013-01-01

    The full text of the publication follows. Radioimmunotherapy (RIT) is an approach aiming at targeting the radioelements to tumours, usually through the use of antibodies specific for tumour antigens. The radiations emitted by the radioelements then induce direct killing of the targeted cells as well as indirect killing through bystander effect. Interestingly, it has been shown that ionizing radiations, in some settings of external radiotherapy, can foster an immune response directed against tumour cells. Our research team is dedicated to the development of alpha RIT, i.e RIT using alpha particle emitters, we therefore decided to study the effects of such particles on tumour cells in regards to their immunogenicity. First, we studied the effects of bismuth 213, an alpha emitter, on cellular death and autophagy in six different tumour cell lines. Then, we measured the expression of 'danger' signals and MHC molecules at the cell surface to determine whether irradiation with 213 Bi could cause the tumour cells to be recognized by the immune system. Finally a co-culture of dendritic cells with irradiated tumour cells was performed to test whether it would induce dendritic cells to mature. No apoptosis was detected within 48 hours after irradiation in any cell line, however half of them exhibited signs of autophagy. No increase in membrane expression of 'danger' signals was observed after treatment with 213 Bi, but we showed an increase in expression of MHC class I and II for some cell lines. Moreover, the co-culture experiment indicated that the immunogenicity of a human adenocarcinoma cell line (LS 174T) was enhanced in vitro after irradiation with alpha rays. These preliminary data suggest that alpha particles could be of interest in raising an immune response associated to RIT. (authors)

  2. Evaluation of Immunogenicity of Novel Isoform of EG95 (EG95-5G1 From Echinococcus granulosus in BALB/C Mice.

    Directory of Open Access Journals (Sweden)

    Majid Pirestani

    2014-12-01

    Full Text Available Echinococcosis is a zoonotic parasitic disease of humans and various herbivorous domestic animals transmitted by the contact with domestic and wild carnivores, mainly dogs and foxes. The aim of this study is the production, purification and evaluation immunogenicity of new construction of EG95 protein.The recombinant plasmid pET32-a+ used for Eg95 expression was constructed with the EG95 gene of Echinococcus granulosus fused with the thioredoxin tag. This recombinant clone was over expressed in Escherichia coli BL-21 (DE-3. The expressed fusion protein was found almost entirely in the insoluble form (inclusion bodies in cell lysate. The purification was performed under denaturing conditions in the presence of 8M urea by Ni-NTA column and dialysis. The purified recombinant proteins were confirmed with western blot analysis using polyclonal antiserum. To find out the immunogenicity of the purified protein, the BALB/c mice (10 mice/group were immunized by injecting 20 μg rEG95 protein formulated in Freund's and alum adjuvant.Immunization of mice with rEG95 using CFA/IFA and alum adjuvant generated high level of total antibody. In proliferation assay, the lymphocytes were able to mount a strong proliferative response with related production of IFN-γ, IL-12 and TNF-α but with low secretion of either IL-4 or IL-10. The humoral and cellular immune responses against rEG95 suggested a mixed Th1/Th2 response with high intensity toward Th1.Our findings suggest that new construct of rEG95 formulated with CFA/IFA and alum adjuvant elicited strong cellular and humoral responses supporting further development of this vaccine candidate.

  3. Safety and Immunogenicity of EBA-175 RII-NG Malaria Vaccine Administered Intramuscularly in Semi-Immune Adults: A Phase 1, Double-Blinded Placebo Controlled Dosage Escalation Study.

    Science.gov (United States)

    Koram, Kwadwo A; Adu, Bright; Ocran, Josephine; Karikari, Yaa S; Adu-Amankwah, Susan; Ntiri, Michael; Abuaku, Benjamin; Dodoo, Daniel; Gyan, Ben; Kronmann, Karl C; Nkrumah, Francis

    2016-01-01

    The erythrocyte binding antigen region II (EBA-175 RII) is a Plasmodium falciparum ligand that mediates erythrocyte invasion and is considered an important malaria vaccine candidate. A phase Ia trial in malaria naïve adults living in the United States found the recombinant non-glycosylated vaccine antigen, EBA-175 RII-NG adjuvanted with aluminium phosphate to be safe, immunogenic and capable of inducing biologically active antibodies that can inhibit parasite growth in vitro. The aim of the current study was to assess the safety and immunogenicity of this vaccine in malaria exposed semi-immune healthy adults living in a malaria endemic country, Ghana. In this double-blinded, placebo controlled, dose escalation phase I trial, eighteen subjects per group received ascending dose concentrations (5 μg, 20 μg or 80 μg) of the vaccine intramuscularly at 0, 1 and 6 months, while 6 subjects received placebo (normal saline). The primary end point was the number of subjects experiencing Grade 3 systemic or local adverse events within 14 days post-vaccination. Serious adverse events were assessed throughout the study period. Blood samples for immunological analyses were collected at days 0, 14, 28, 42, 180 and 194. A total of 52 subjects received three doses of the vaccine in the respective groups. No serious adverse events were reported. The majority of all adverse events reported were mild to moderate in severity, with local pain and tenderness being the most common. All adverse events, irrespective of severity, resolved without any sequelae. Subjects who received any of the EBA-175 RII-NG doses had high immunoglobulin G levels which moderately inhibited P. falciparum growth in vitro, compared to those in the placebo group. In conclusion, the EBA-175 RII-NG vaccine was safe, well tolerated and immunogenic in malaria semi-immune Ghanaian adults. Its further development is recommended. ClinicalTrials.gov. Identifier: NCT01026246.

  4. Safety and Immunogenicity of EBA-175 RII-NG Malaria Vaccine Administered Intramuscularly in Semi-Immune Adults: A Phase 1, Double-Blinded Placebo Controlled Dosage Escalation Study.

    Directory of Open Access Journals (Sweden)

    Kwadwo A Koram

    Full Text Available The erythrocyte binding antigen region II (EBA-175 RII is a Plasmodium falciparum ligand that mediates erythrocyte invasion and is considered an important malaria vaccine candidate. A phase Ia trial in malaria naïve adults living in the United States found the recombinant non-glycosylated vaccine antigen, EBA-175 RII-NG adjuvanted with aluminium phosphate to be safe, immunogenic and capable of inducing biologically active antibodies that can inhibit parasite growth in vitro. The aim of the current study was to assess the safety and immunogenicity of this vaccine in malaria exposed semi-immune healthy adults living in a malaria endemic country, Ghana. In this double-blinded, placebo controlled, dose escalation phase I trial, eighteen subjects per group received ascending dose concentrations (5 μg, 20 μg or 80 μg of the vaccine intramuscularly at 0, 1 and 6 months, while 6 subjects received placebo (normal saline. The primary end point was the number of subjects experiencing Grade 3 systemic or local adverse events within 14 days post-vaccination. Serious adverse events were assessed throughout the study period. Blood samples for immunological analyses were collected at days 0, 14, 28, 42, 180 and 194. A total of 52 subjects received three doses of the vaccine in the respective groups. No serious adverse events were reported. The majority of all adverse events reported were mild to moderate in severity, with local pain and tenderness being the most common. All adverse events, irrespective of severity, resolved without any sequelae. Subjects who received any of the EBA-175 RII-NG doses had high immunoglobulin G levels which moderately inhibited P. falciparum growth in vitro, compared to those in the placebo group. In conclusion, the EBA-175 RII-NG vaccine was safe, well tolerated and immunogenic in malaria semi-immune Ghanaian adults. Its further development is recommended.ClinicalTrials.gov. Identifier: NCT01026246.

  5. Identification of immunogenic outer membrane proteins of Haemophilus influenzae type b in the infant rat model system

    International Nuclear Information System (INIS)

    Hansen, E.J.; Frisch, C.F.; McDade, R.L. Jr.; Johnston, K.H.

    1981-01-01

    Outer membrane proteins of Haemophilus influenzae type b which are immunogenic in infant rats were identified by a radioimmunoprecipitation method. Intact cells of H. influenzae type b were radioiodinated by a lactoperoxidase-catalyzed procedure, and an outer membrane-containing fraction was prepared from these cells. These radioiodinated outer membranes were mixed with sera obtained from rats convalescing from systemic H. influenzae type b disease induced at 6 days of age, and the resultant (antibody-outer membrane protein antigen) complexes were extracted from these membranes by treatment with nonionic detergent and ethylenediaminetetraacetic acid. These soluble antibody-antigen complexes were isolated by means of adsorption to protein A-bearing staphylococci, and the radioiodinated protein antigens were identified by gel electrophoresis followed by autoradiography. Infant rats were shown to mount a readily detectable antibody response to several different proteins present in the outer membrane of H. influenzae type b. Individual infant rats were found to vary both qualitatively and quantitatively in their immune response to these immunogenic outer membrane proteins

  6. Generation and Characterization of a Defective HIV-1 Virus as an Immunogen for a Therapeutic Vaccine

    Science.gov (United States)

    García-Pérez, Javier; García, Felipe; Blanco, Julia; Escribà-García, Laura; Gatell, Jose Maria; Alcamí, Jose; Plana, Montserrat; Sánchez-Palomino, Sonsoles

    2012-01-01

    Background The generation of new immunogens able to elicit strong specific immune responses remains a major challenge in the attempts to obtain a prophylactic or therapeutic vaccine against HIV/AIDS. We designed and constructed a defective recombinant virus based on the HIV-1 genome generating infective but non-replicative virions able to elicit broad and strong cellular immune responses in HIV-1 seropositive individuals. Results Viral particles were generated through transient transfection in producer cells (293-T) of a full length HIV-1 DNA carrying a deletion of 892 base pairs (bp) in the pol gene encompassing the sequence that codes for the reverse transcriptase (NL4-3/ΔRT clone). The viral particles generated were able to enter target cells, but due to the absence of reverse transcriptase no replication was detected. The immunogenic capacity of these particles was assessed by ELISPOT to determine γ-interferon production in a cohort of 69 chronic asymptomatic HIV-1 seropositive individuals. Surprisingly, defective particles produced from NL4-3/ΔRT triggered stronger cellular responses than wild-type HIV-1 viruses inactivated with Aldrithiol-2 (AT-2) and in a larger proportion of individuals (55% versus 23% seropositive individuals tested). Electron microscopy showed that NL4-3/ΔRT virions display immature morphology. Interestingly, wild-type viruses treated with Amprenavir (APV) to induce defective core maturation also induced stronger responses than the same viral particles generated in the absence of protease inhibitors. Conclusions We propose that immature HIV-1 virions generated from NL4-3/ΔRT viral clones may represent new prototypes of immunogens with a safer profile and stronger capacity to induce cellular immune responses than wild-type inactivated viral particles. PMID:23144996

  7. Preexisting Antibodies to an F(ab′2 Antibody Therapeutic and Novel Method for Immunogenicity Assessment

    Directory of Open Access Journals (Sweden)

    Jane Ruppel

    2016-01-01

    Full Text Available Anti-therapeutic antibodies (ATAs may impact drug exposure and activity and induce immune complex mediated toxicity; therefore the accurate measurement of ATA is important for the analysis of drug safety and efficacy. Preexisting ATAs to the hinge region of anti-Delta like ligand 4 (anti-DLL4 F(ab′2, a potential antitumor therapeutic, were detected in cynomolgus monkey serum, which presented a challenge in developing assays for detecting treatment induced ATA. A total ATA assay was developed using a bridging ELISA that detected both anti-CDR and anti-framework ATA including anti-hinge reactivity. A competition assay that could detect 500 ng/mL of anti-CDR ATA in the presence of preexisting ATA was also developed to determine ATA specific to the anti-DLL4 F(ab′2 CDR using anti-DLL4 F(ab′2 and a control F(ab′2. We used these assay methods in a cynomolgus monkey in vivo study to successfully evaluate total and anti-CDR ATA. The preexisting anti-hinge reactivity was also observed to a lesser extent in human serum, and a similar approach could be applied for specific immunogenicity assessment in clinical trials.

  8. Main causes of mortality in Holstein calves on rural properties in the Bragantina region

    Directory of Open Access Journals (Sweden)

    Daniela Moraes de Olivera

    2012-06-01

    Full Text Available This study was conducted on two dairy farms that breed Holstein cattle in the municipality of Bragança Paulista, São Paulo. The study included 11 female calves that were one to three months old. The animals were autopsied. Tissue samples of affected organs were collected for histopathological and microbiological examination and blood was collected for serological tests. The aim of this study was to identify the main causes of death in calves of dairy cattle from the Bragantina region. Among the causes, the frequency of dysentery and respiratory diseases was similar. The samples evalulated identified a higher frequency of macroscopic and microscopic lung lesions when compared to intestinal lesions. The etiological agents associated with the diseases found were Salmonella sp., Escherichia coli, Clostridium perfringens, Pasteurella spp., syncytial virus and coronavirus, which affect the respiratory and gastrointestinal systems and can lead to septicemia and death.

  9. Hygiene evaluation of the air conditions in the Lower Main region by means of higher and lower plants

    Energy Technology Data Exchange (ETDEWEB)

    Steubing, L; Klee, R; Kirschbaum, U

    1974-06-01

    By using the distribution patterns of natural growths of epiphytic lichens, three lichen zones can be distinguished in the Lower Main region of FRG. Each zone corresponds to different degrees of injury to lichens, and each zone is characterized by a particular pollutant load. Damage to plants is functionally correlated with the destruction of chlorophyll. Primary production, dust covering, sulfur content and conductivity of higher plants in two of the lichen zones confirm the data from test stations.

  10. [Prokaryotic expression and immunogenicity analysis of the chimeric HBcAg containing APP beta cleavage site peptide and Aβ(1-15);].

    Science.gov (United States)

    Feng, Gai-feng; Wang, Jun-yang; Jin, Hui; Wang, Wei-xi; Qian, Yi-hua; Yang, Wei-na; Wang, Quan-ying; Yang, Guang-xiao

    2011-11-01

    To construct the recombinant prokaryotic expression plasmid pET/c-ABCSP-Aβ(15-c);, and evaluate the immunogenicity of the fusion protein expressed in E.coli. The gene fragment HBc88-144 was amplified by PCR and subcloned to pUC19. The APP beta cleavage site peptide(ABCSP) and Aβ(1-15); gene(ABCSP-Aβ(15);) was amplified by PCR and inserted downstream of HBc1-71 in pGEMEX/c1-71. After restriction enzyme digestion, c1-17-ABCSP-Aβ(15); were connected with HBc88-144, yielding the recombinant gene c-ABCSP-Aβ(15-c);. c-ABCSP-Aβ(15-c); gene was subcloned into pET-28a(+).The fusion protein expressed in transformed E.coli BL21 was induced with IPTG and analyzed by SDS-PAGE. The virus-like particles (VLP) formed by fusion protein was observed with Transmission Electron Microscope (TEM). 4 Kunming (KM) mice received intraperitoneal injection (i.p) of fusion protein VLP. The antibody was detected by indirect ELISA. The recombinant gene was confirmed by restriction enzyme digestion and DNA sequencing. After IPTG induction, fusion protein was expressed and mainly existed in the sediment of the bacterial lysate. The expression level was 40% of all the proteins in the sediment. The fusion protein could form VLP. After 5 times of immunization, the titer of anti-ABCSP and anti-Aβantibody in sera of KM mice reached up to 1:5 000 and 1:10 000 respectively, while the anti-HBc antibody was undetectable. Recombinant c-ABCSP-Aβ(15-c); gene can be expressed in E.coli. The expressed protein could form VLP and has a strong immunogenicity. This study lays the foundation for the study of AD genetic engineering vaccine.

  11. Conjugation of the CRM197-inulin conjugate significantly increases the immunogenicity of Mycobacterium tuberculosis CFP10-TB10.4 fusion protein.

    Science.gov (United States)

    Hu, Shun; Yu, Weili; Hu, Chunyang; Wei, Dong; Shen, Lijuan; Hu, Tao; Yi, Youjin

    2017-11-01

    Mycobacterium tuberculosis (Mtb) is a serious fatal pathogen that causes tuberculosis (TB). Effective vaccination is urgently needed to deal with the serious threat from TB. Mtb-secreted protein antigens are important virulence determinants of Mtb with poor immunogenicity. Adjuvants and antigen delivery systems are thus highly desired to improve the immunogenicity of protein antigens. Inulin is a biocompatible polysaccharide (PS) adjuvant that can stimulate a strong cellular and humoral immunity. Bacterial capsular PS and haptens have been conjugated with cross-reacting material 197 (CRM 197 ) to improve their immunogenicity. CFP10 and TB10.4 were two Mtb-secreted immunodominant protein antigens. A CFP10-TB10.4 fusion protein (CT) was used as the antigen for covalent conjugation with the CRM 197 -inulin conjugate (CRM-inu). The resultant conjugate (CT-CRM-inu) elicited high CT-specific IgG titers, stimulated splenocyte proliferation and provoked the secretion of Th1-type and Th2-type cytokines. Conjugation with CRM-inu significantly prolonged the systemic circulation of CT and exposure to the immune system. Moreover, CT-CRM-inu showed no apparent toxicity to cardiac, hepatic and renal functions. Thus, conjugation of CT with CRM-inu provided an effective strategy for development of protein-based vaccines against Mtb infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Variable epitope libraries: new vaccine immunogens capable of inducing broad human immunodeficiency virus type 1-neutralizing antibody response.

    Science.gov (United States)

    Charles-Niño, Claudia; Pedroza-Roldan, Cesar; Viveros, Monica; Gevorkian, Goar; Manoutcharian, Karen

    2011-07-18

    The extreme antigenic variability of human immunodeficiency virus (HIV) leads to immune escape of the virus, representing a major challenge in the design of effective vaccine. We have developed a novel concept for immunogen construction based on introduction of massive mutations within the epitopes targeting antigenically variable pathogens and diseases. Previously, we showed that these immunogens carrying large combinatorial libraries of mutated epitope variants, termed as variable epitope libraries (VELs), induce potent, broad and long lasting CD8+IFN-γ+ T-cell response. Moreover, we demonstrated that these T cells recognize more than 50% of heavily mutated variants (5 out of 10 amino acid positions were mutated in each epitope variant) of HIV-1 gp120 V3 loop-derived cytotoxic T lymphocyte epitope (RGPGRAFVTI) in mice. The constructed VELs had complexities of 10000 and 12500 individual members, generated as plasmid DNA or as M13 phage display combinatorial libraries, respectively, and with structural composition RGPGXAXXXX or XGXGXAXVXI, where X is any of 20 natural amino acids. Here, we demonstrated that sera from mice immunized with these VELs are capable of neutralizing 5 out of 10 viral isolates from Tier 2 reference panel of subtype B envelope clones, including HIV-1 isolates which are known to be resistant to neutralization by several potent monoclonal antibodies, described previously. These data indicate the feasibility of the application of immunogens based on VEL concept as an alternative approach for the development of molecular vaccines against antigenically variable pathogens. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Immunogenicity of a killed bivalent (O1 and O139 whole cell oral cholera vaccine, Shanchol, in Haiti.

    Directory of Open Access Journals (Sweden)

    Richelle C Charles

    2014-05-01

    Full Text Available Studies of the immunogenicity of the killed bivalent whole cell oral cholera vaccine, Shanchol, have been performed in historically cholera-endemic areas of Asia. There is a need to assess the immunogenicity of the vaccine in Haiti and other populations without historical exposure to Vibrio cholerae.We measured immune responses after administration of Shanchol, in 25 adults, 51 older children (6-17 years, and 47 younger children (1-5 years in Haiti, where cholera was introduced in 2010. A≥4-fold increase in vibriocidal antibody titer against V. cholerae O1 Ogawa was observed in 91% of adults, 74% of older children, and 73% of younger children after two doses of Shanchol; similar responses were observed against the Inaba serotype. A≥2-fold increase in serum O-antigen specific polysaccharide IgA antibody levels against V. cholerae O1 Ogawa was observed in 59% of adults, 45% of older children, and 61% of younger children; similar responses were observed against the Inaba serotype. We compared immune responses in Haitian individuals with age- and blood group-matched individuals from Bangladesh, a historically cholera-endemic area. The geometric mean vibriocidal titers after the first dose of vaccine were lower in Haitian than in Bangladeshi vaccinees. However, the mean vibriocidal titers did not differ between the two groups after the second dose of the vaccine.A killed bivalent whole cell oral cholera vaccine, Shanchol, is highly immunogenic in Haitian adults and children. A two-dose regimen may be important in Haiti, and other populations lacking previous repeated exposures to V. cholerae.

  14. Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose.

    Science.gov (United States)

    Ju, Huanyu; Wei, Na; Wang, Qian; Wang, Chunyuan; Jing, Zhiqiang; Guo, Lu; Liu, Dapeng; Gao, Mingchun; Ma, Bo; Wang, Junwei

    2011-05-27

    Goose parvovirus (GPV), a small non-enveloped ssDNA virus, can cause Derzsy's disease, and three capsid proteins of VP1, VP2, and VP3 are encoded by an overlapping nucleotide sequence. However, little is known on whether recombinant viral proteins (VPs) could spontaneously assemble into virus-like particles (VLPs) in insect cells and whether these VLPs could retain their immunoreactivity and immunogenicity in susceptible geese. To address these issues, genes for these GPV VPs were amplified by PCR, and the recombinant VPs proteins were expressed in insect cells using a baculovirus expression system for the characterization of their structures, immunoreactivity, and immunogenicity. The rVP1, rVP2, and rVP3 expressed in Sf9 cells were detected by anti-GPV sera, anti-VP3 sera, and anti-His antibodies, respectively. Electron microscopy revealed that these rVPs spontaneously assembled into VLPs in insect cells, similar to that of the purified wild-type GPV virions. In addition, vaccination with individual types of VLPs, particularly with the rVP2-VLPs, induced higher titers of antibodies and neutralized different strains of GPVs in primary goose and duck embryo fibroblast cells in vitro. These data indicated that these VLPs retained immunoreactivity and had strong immunogenicity in susceptible geese. Therefore, our findings may provide a framework for development of new vaccines for the prevention of Derzsy's disease and vehicles for the delivery of drugs. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. PD-L1 peptide co-stimulation increases immunogenicity of a dendritic cell-based cancer vaccine

    DEFF Research Database (Denmark)

    Munir Ahmad, Shamaila; Martinenaite, Evelina; Hansen, Morten

    2016-01-01

    elicited by the DC vaccine even further. Consequently, we observed a significant increase in the number of vaccine-reacting T cells in vitro. In conclusion, activation of PD-L1-specific T cells may directly modulate immunogenicity of DC vaccines. Addition of PD-L1 epitopes may thus be an easily applicable...... and attractive option to augment the effectiveness of cancer vaccines and other immunotherapeutic agents....

  16. Characterization of the Immunogenicity and Allergenicity of Two Cow's Milk Hydrolysates – A Study in Brown Norway Rats

    DEFF Research Database (Denmark)

    Bøgh, Katrine Lindholm; Barkholt, Vibeke; Madsen, Charlotte Bernhard

    2015-01-01

    Hypoallergenic infant formulas based on hydrolysed milk proteins are used in the diet for cow's milk allergic infants. For a preclinical evaluation of the immunogenicity and allergenicity of new protein ingredients for such hypoallergenic infant formulas as well as for the investigation of which...

  17. De novo design of peptide immunogens that mimic the coiled coil region of human T-cell leukemia virus type-1 glycoprotein 21 transmembrane subunit for induction of native protein reactive neutralizing antibodies.

    Science.gov (United States)

    Sundaram, Roshni; Lynch, Marcus P; Rawale, Sharad V; Sun, Yiping; Kazanji, Mirdad; Kaumaya, Pravin T P

    2004-06-04

    Peptide vaccines able to induce high affinity and protective neutralizing antibodies must rely in part on the design of antigenic epitopes that mimic the three-dimensional structure of the corresponding region in the native protein. We describe the design, structural characterization, immunogenicity, and neutralizing potential of antibodies elicited by conformational peptides derived from the human T-cell leukemia virus type 1 (HTLV-1) gp21 envelope glycoprotein spanning residues 347-374. We used a novel template design and a unique synthetic approach to construct two peptides (WCCR2T and CCR2T) that would each assemble into a triple helical coiled coil conformation mimicking the gp21 crystal structure. The peptide B-cell epitopes were grafted onto the epsilon side chains of three lysyl residues on a template backbone construct consisting of the sequence acetyl-XGKGKGKGCONH2 (where X represents the tetanus toxoid promiscuous T cell epitope (TT) sequence 580-599). Leucine substitutions were introduced at the a and d positions of the CCR2T sequence to maximize helical character and stability as shown by circular dichroism and guanidinium hydrochloride studies. Serum from an HTLV-1-infected patient was able to recognize the selected epitopes by enzyme-linked immunosorbent assay (ELISA). Mice immunized with the wild-type sequence (WCCR2T) and the mutant sequence (CCR2T) elicited high antibody titers that were capable of recognizing the native protein as shown by flow cytometry and whole virus ELISA. Sera and purified antibodies from immunized mice were able to reduce the formation of syncytia induced by the envelope glycoprotein of HTLV-1, suggesting that antibodies directed against the coiled coil region of gp21 are capable of disrupting cell-cell fusion. Our results indicate that these peptides represent potential candidates for use in a peptide vaccine against HTLV-1.

  18. Exploring virulence and immunogenicity in the emerging pathogen Sporothrix brasiliensis.

    Science.gov (United States)

    Della Terra, Paula Portella; Rodrigues, Anderson Messias; Fernandes, Geisa Ferreira; Nishikaku, Angela Satie; Burger, Eva; de Camargo, Zoilo Pires

    2017-08-01

    between S. brasiliensis and S. schenckii proteomes. Despite great diversity in the immunoblot profiles, antibodies were mainly derived against 3-carboxymuconate cyclase, a glycoprotein oscillating between 60 and 70 kDa (gp60-gp70) and a 100-kDa molecule in nearly 100% of the assays. Thus, our data broaden the current view of virulence and immunogenicity in the Sporothrix-sporotrichosis system, substantially expanding the possibilities for comparative genomic with isolates bearing divergent virulence traits and helping uncover the molecular mechanisms and evolutionary pressures underpinning the emergence of Sporothrix virulence.

  19. Safety and immunogenicity of an intramuscular quadrivalent influenza vaccine in children 3 to 8 y of age: A phase III randomized controlled study.

    Science.gov (United States)

    Pepin, Stephanie; Szymanski, Henryk; Rochín Kobashi, Ilya Angélica; Villagomez Martinez, Sandra; González Zamora, José Francisco; Brzostek, Jerzy; Huang, Li-Min; Chiu, Cheng-Hsun; Chen, Po-Yen; Ahonen, Anitta; Forstén, Aino; Seppä, Ilkka; Quiroz, René Farfán; Korhonen, Tiina; Rivas, Enrique; Monfredo, Celine; Hutagalung, Yanee; Menezes, Josemund; Vesikari, Timo

    2016-12-01

    A quadrivalent, inactivated, split-virion influenza vaccine containing a strain from both B lineages (IIV4) has been developed, but its safety and immunogenicity in young children has not been described. This was a phase III, randomized, double-blind, active-controlled, multi-center study to examine the immunogenicity and safety of IIV4 in children 3-8 y of age (EudraCT no. 2011-005374-33). Participants were randomized 5:1:1 to receive the 2013/2014 Northern Hemisphere formulation of IIV4, an investigational trivalent comparator (IIV3) containing the B/Victoria lineage strain, or the licensed Northern Hemisphere IIV3 containing the B/Yamagata lineage strain. Participants who had not previously received a full influenza vaccination schedule received 2 doses of vaccine 28 d apart; all others received a single dose. 1242 children were included. For all 4 strains, IIV4 induced geometric mean haemagglutination inhibition titres non-inferior to those induced by the IIV3 comparators. For both B strains, geometric mean antibody titres induced by IIV4 were superior to those induced by the IIV3 with the alternative lineage strain. Similar proportions of participants vaccinated with IIV4 and IIV3 reported solicited injection-site reactions, solicited systemic reactions, and vaccine-related adverse events. A single vaccine-related serious adverse event, thrombocytopenia, was reported 9 d after vaccination with IIV4 and resolved without sequelae. In conclusion, in children aged 3-8 y who received one dose or 2 doses 28 d apart, IIV4 had an acceptable safety profile, was as immunogenic as IIV3 for the shared strains, and had superior immunogenicity for the additional B strain.

  20. A T cell-inducing influenza vaccine for the elderly: safety and immunogenicity of MVA-NP+M1 in adults aged over 50 years.

    Directory of Open Access Journals (Sweden)

    Richard D Antrobus

    Full Text Available Current influenza vaccines have reduced immunogenicity and are of uncertain efficacy in older adults. We assessed the safety and immunogenicity of MVA-NP+M1, a viral-vectored influenza vaccine designed to boost memory T cell responses, in a group of older adults.Thirty volunteers (aged 50-85 received a single intramuscular injection of MVA-NP+M1 at a dose of 1·5×10(8 plaque forming units (pfu. Safety and immunogenicity were assessed over a period of one year. The frequency of T cells specific for nucleoprotein (NP and matrix protein 1 (M1 was determined by interferon-gamma (IFN-γ ELISpot, and their phenotypic and functional properties were characterized by polychromatic flow cytometry. In a subset of M1-specific CD8(+ T cells, T cell receptor (TCR gene expression was evaluated using an unbiased molecular approach.Vaccination with MVA-NP+M1 was well tolerated. ELISpot responses were boosted significantly above baseline following vaccination. Increases were detected in both CD4(+ and CD8(+ T cell subsets. Clonality studies indicated that MVA-NP+M1 expanded pre-existing memory CD8(+ T cells, which displayed a predominant CD27(+CD45RO(+CD57(-CCR7(- phenotype both before and after vaccination.MVA-NP+M1 is safe and immunogenic in older adults. Unlike seasonal influenza vaccination, the immune responses generated by MVA-NP+M1 are similar between younger and older individuals. A T cell-inducing vaccine such as MVA-NP+M1 may therefore provide a way to circumvent the immunosenescence that impairs routine influenza vaccination.ClinicalTrials.gov NCT00942071.

  1. Effects of the deletion of early region 4 (E4 open reading frame 1 (orf1, orf1-2, orf1-3 and orf1-4 on virus-host cell interaction, transgene expression, and immunogenicity of replicating adenovirus HIV vaccine vectors.

    Directory of Open Access Journals (Sweden)

    Michael A Thomas

    Full Text Available The global health burden engendered by human immunodeficiency virus (HIV-induced acquired immunodeficiency syndrome (AIDS is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1 through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and

  2. Effects of the deletion of early region 4 (E4) open reading frame 1 (orf1), orf1-2, orf1-3 and orf1-4 on virus-host cell interaction, transgene expression, and immunogenicity of replicating adenovirus HIV vaccine vectors.

    Science.gov (United States)

    Thomas, Michael A; Song, Rui; Demberg, Thorsten; Vargas-Inchaustegui, Diego A; Venzon, David; Robert-Guroff, Marjorie

    2013-01-01

    The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a

  3. Molecular basis of immunogenicity to botulinum neurotoxins and uses of the defined antigenic regions.

    Science.gov (United States)

    Atassi, M Z

    2015-12-01

    Intensive research in this laboratory over the last 19 years has aimed at understanding the molecular bases for immune recognition of botulinum neurotoxin, types A and B and the role of anti-toxin immune responses in defense against the toxin. Using 92 synthetic 19-residue peptides that overlapped by 5 residues and comprised an entire toxin (A or B) we determined the peptides' ability to bind anti-toxin Abs of human, mouse, horse and chicken. We also localized the epitopes recognized by Abs of cervical dystonia patients who developed immunoresistance to correlate toxin during treatment with BoNT/A or BoNT/B. For BoNT/A, patients' blocking Abs bound to 13 regions (5 on L and 8 on H subunit) on the surface and the response to each region was under separate MHC control. The responses were defined by the structure of the antigen and by the MHC of the host. The antigenic regions coincided or overlapped with synaptosomes (SNPS) binding regions. Antibody binding blocked the toxin's ability to bind to neuronal cells. In fact selected synthetic peptides were able to inhibit the toxin's action in vivo. A combination of three synthetic strong antigenic peptides detected blocking Abs in 88% of immunoresistant patients' sera. Administration of selected epitopes, pre-linked at their N(α) group to monomethoxyployethylene glycol, into mice with ongoing blocking anti-toxin Abs, reduced blocking Ab levels in the recipients. This may be suitable for clinical applications. Defined epitopes should also be valuable in synthetic vaccines design. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Investigations into the choice of immunogen, ligand, antiserum and assay conditions for the radioimmunoassay of conjugated cholic acid

    Energy Technology Data Exchange (ETDEWEB)

    Beckett, G J; Percy-Robb, I W [Royal Infirmary, Edinburgh (UK); Hunter, W M [Medical Research Council, Edinburgh (UK)

    1978-09-01

    Investigations into the choice of immunogen, ligand, antiserum and assay conditions for the radioimmunoassay of conjugated cholic acid have been performed with a view to producing optimal assay conditions. Cholic acid-BSA was found to be the best immunogen to produce antibodies to conjugated cholic acid and the response was of an IgG type. Incorporating a spacer (hexanoic acid) between hapten and carrier protein resulted in a decrease in antiserum titre. Optimal conditions for the assay were found using (/sup 125/I)histamine-glycocholic acid as ligand with a dilution of antiserum to produce 60% binding of ligand and a pH of 7.4. Using these assay conditions no serum effects were found; extraction of serum prior to assay was therefore unnecessary. The assay was sensitive enough to detect post-prandial increases in serum bile acid concentrations following a liquid test meal; no increase was observed throughout the same time period in a fasting control.

  5. The Immunogenicity of the Tumor-Associated Antigen α-Fetoprotein Is Enhanced by a Fusion with a Transmembrane Domain

    Directory of Open Access Journals (Sweden)

    Lucile Tran

    2012-01-01

    Full Text Available Aim. To investigate the ability of recombinant modified vaccinia virus Ankara (rMVA vector to induce an immune response against a well-tolerated self-antigen. Methods. rMVA vectors expressing different form of α-fetoprotein (AFP were produced and characterized. Naïve mice were vaccinated with MVA vectors expressing the AFP antigen in either a secreted, or a membrane-bound, or an intracellular form. The immune response was monitored by an IFNΓ ELISpot assay and antibody detection. Results. Vaccination with the membrane-associated form of AFP induced a stronger CD8+ T-cell response compared to the ones obtained with the MVA encoding the secreted or the intracellular forms of AFP. Moreover, the vaccination with the membrane-bound AFP elicited the production of AFP-specific antibodies. Conclusions. The AFP transmembrane form is more immunogenic. Expressing a membrane-bound form in the context of an MVA vaccination could enhance the immunogenicity of a self-antigen.

  6. Generation of T-cells reactive to the poorly immunogenic B16-BL6 melanoma with efficacy in the treatment of spontaneous metastases.

    Science.gov (United States)

    Geiger, J D; Wagner, P D; Cameron, M J; Shu, S; Chang, A E

    1993-04-01

    The B16-BL6 (BL6) melanoma is a poorly immunogenic murine tumor that is highly invasive and spontaneously metastasizes from the primary site. Utilizing an established anti-CD3/interleukin-2 (IL-2) culture procedure, we have previously reported that lymph nodes (LNs) draining immunogenic murine sarcomas contained preeffector cells that could be activated to differentiate into therapeutic effector cells for adoptive immunotherapy. By contrast, LNs draining the poorly immunogenic BL6 melanoma were found not to be a reliable source of preeffector cells. Instead, sensitization of preeffector cells reactive to BL6 required the subcutaneous inoculation of tumor admixed with Corynebacterium parvum. LN cells draining these vaccination sites demonstrated therapeutic efficacy only after subsequent anti-CD3/IL-2 activation. The sensitization of preeffector cells was dependent on the presence of tumor antigen and an optimal dose of C. parvum ( 140 days. All mice except one that received no treatment or was treated with IL-2 alone succumbed to visceral metastases with an MST of approximately 23 days. This study characterizes a model whereby the weak immune response to the BL6 melanoma can be positively or negatively modulated for the generation of antitumor reactive T-cells useful in adoptive immunotherapy.

  7. Dicarbonyl Induced Structural Perturbations Make Histone H1 Highly Immunogenic and Generate an Auto-Immune Response in Cancer.

    Directory of Open Access Journals (Sweden)

    Abdul Rouf Mir

    Full Text Available Increased oxidative stress under hyperglycemic conditions, through the interaction of AGEs with RAGE receptors and via activation of interleukin mediated transcription signalling, has been reported in cancer. Proteins modifications are being explored for their roles in the development and progression of cancer and autoantibody response against them is gaining interest as a probe for early detection of the disease. This study has analysed the changes in histone H1 upon modification by methylglyoxal (MG and its implications in auto-immunopathogenesis of cancer. Modified histone showed modifications in the aromatic residues, changed tyrosine microenvironment, intermolecular cross linking and generation of AGEs. It showed masking of hydrophobic patches and a hypsochromic shift in the in ANS specific fluorescence. MG aggressively oxidized histone H1 leading to the accumulation of reactive carbonyls. Far UV CD measurements showed di-carbonyl induced enhancement of the alpha structure and the induction of beta sheet conformation; and thermal denaturation (Tm studies confirmed the thermal stability of the modified histone. FTIR analysis showed amide I band shift, generation of a carboxyethyl group and N-Cα vibrations in the modified histone. LCMS analysis confirmed the formation of Nε-(carboxyethyllysine and electron microscopic studies revealed the amorphous aggregate formation. The modified histone showed altered cooperative binding with DNA. Modified H1 induced high titre antibodies in rabbits and the IgG isolated form sera of rabbits immunized with modified H1 exhibited specific binding with its immunogen in Western Blot analysis. IgG isolated from the sera of patients with lung cancer, prostate cancer, breast cancer and cancer of head and neck region showed better recognition for neo-epitopes on the modified histone, reflecting the presence of circulating autoantibodies in cancer. Since reports suggest a link between AGE-RAGE axis and

  8. Satellite and ground measurements of latitude distribution of upper ionosphere parameters in the region of the main trough of ionization

    International Nuclear Information System (INIS)

    Filippov, V.M.; Alekseev, V.N.; Afonin, V.V.

    1988-01-01

    Results of simultaneous complex measurements of subauroral ionosphere structure at observations of charged-particle precipitation at Interkosmos-19 satellite, electron concentration and temperature at Kosmos-900 satellite, ionosphere parameters and plasma convection at Zhigansk (L∼4) and Jakutsk (L∼3) stations and 630.0 mm line luminescence by scanning photometer at Zhigansk station, carried out on the 26 - 27.03.1979, are presented. It is found, that the through polar edge is formed by low-energy electron precipitations in diffuse auroral zone. It is confirmed by spatial coincidence of diffuse precipitations equatorial boundary, determined by satellite and ground optical measurements, with the ionization main through polar edge, determined by ground ionospherical observation and satellite measurements Ne at Kosmos-900 satellite. Results of these complex experiments show as well, that one of the main mechanisms of main ionospherical through formation may be plasma convection peculiarities within F region at subauroral zone widthes

  9. Main internal dose-forming factors for inhabitants of contaminated regions at current phase of the Chernobyl nuclear power plant accident (Kyiv region as an example)

    International Nuclear Information System (INIS)

    Vasilenko, V.V.; Nechajev, S.Yu.; Tsigankov, M.Ya.; And others

    2015-01-01

    Objective of this work is revealing of main dose"forming factors of internal doses for inhabitants of contaminated regions of Kyiv region relying on the results of integral dosimetric monitoring. Three villages have been chosen for the investigation. They are: Raghivka, Zelena Poliana (Poliske district), Karpylivka (Ivankiv district). Twice a year, in May and in October those villages' residents were inspected for content of incorporated "1"3"7Cs. They were measured by direct method at the place of residence with the help of whole body counters (WBC). The principal food samples were collected for detection of "9"0Sr and "1"3"7Cs content. Those villages' inhabitants were interviewed about food consumption levels. Mathematical, dosimetric and radio-chemical methods were used in this work. The estimation of internal doses due to intake of "1"3"7Cs by ingestion of milk and potatoes are in the range 0.3-34% of doses estimated on the base of WBC data. The contribution to the dose of internal exposure from intake of "1"3"7Cs with the milk consumption is no more than two times higher than the contribution of potatoes consumption in the case of equal consumption levels of these products. Contributions to the dose of internal exposure from intake of "9"0Sr with milk and potatoes consumptions are approximately similar. Consumption of mushrooms and other wild nature products by inhabitants from the inspected settlements is the main forming factor of internal dose due to "1"3"7Cs intake

  10. An Albumin-Free Formulation for Escherichia coli-Derived Interferon Beta-1b with Decreased Immunogenicity in Immune Tolerant Mice

    NARCIS (Netherlands)

    Haji Abdolvahab, Mohadeseh; Fazeli, Ahmad; Radmalekshahi, Mazda; Nejadnik, M Reza; Fazeli, Mohammad Reza; Schellekens, Huub

    2016-01-01

    Human serum albumin (HSA)-free formulation of Escherichia coli-derived human interferon beta (IFNβ-1b) with a high percentage of monomeric protein and low immunogenicity is developed and characterized in the current study. UV spectroscopy, fluorescence spectroscopy, dynamic light scattering, sodium

  11. Systemic and oral immunogenicity of hemagglutinin protein of rinderpest virus expressed by transgenic peanut plants in a mouse model

    International Nuclear Information System (INIS)

    Khandelwal, Abha; Renukaradhya, G.J.; Rajasekhar, M.; Sita, G. Lakshmi; Shaila, M.S.

    2004-01-01

    Rinderpest causes a devastating disease, often fatal, in wild and domestic ruminants. It has been eradicated successfully using a live, attenuated vaccine from most part of the world leaving a few foci of disease in parts of Africa, the Middle East, and South Asia. We have developed transgenic peanut (Arachis hypogaea L.) plants expressing hemagglutinin (H) protein of rinderpest virus (RPV), which is antigenically authentic. In this work, we have evaluated the immunogenicity of peanut-expressed H protein using mouse model, administered parenterally as well as orally. Intraperitoneal immunization of mice with the transgenic peanut extract elicited antibody response specific to H. These antibodies neutralized virus infectivity in vitro. Oral immunization of mice with transgenic peanut induced H-specific serum IgG and IgA antibodies. The systemic and oral immunogenicity of plant-derived H in absence of any adjuvant indicates the potential of edible vaccine for rinderpest

  12. Preserved immunogenicity of an inactivated vaccine based on foot-and-mouth disease virus particles with improved stability.

    Science.gov (United States)

    Caridi, Flavia; Vázquez-Calvo, Ángela; Borrego, Belén; McCullough, Kenneth; Summerfield, Artur; Sobrino, Francisco; Martín-Acebes, Miguel A

    2017-05-01

    Foot-and-mouth disease virus (FMDV) is the etiological agent of a highly contagious disease that affects important livestock species. Vaccines based on inactivated FMDV virions provide a useful tool for the control of this pathogen. However, long term storage at 4°C (the temperature for vaccine storage) or ruptures of the cold chain, provoke the dissociation of virions, reducing the immunogenicity of the vaccine. An FMDV mutant carrying amino acid replacements VP1 N17D and VP2 H145Y isolated previously rendered virions with increased resistance to dissociation at 4°C. We have evaluated the immunogenicity in swine (a natural FMDV host) of a chemically inactivated vaccine based on this mutant. The presence of these amino acid substitutions did not compromise the immunological potential, including its ability to elicit neutralizing antibodies. These results support the feasibility of this kind of mutants with increased capsid stability as suitable viruses for producing improved FMDV vaccines. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Main designations and attributions

    International Nuclear Information System (INIS)

    2010-01-01

    The chapter presents the main designations and attributions of the LNMRI - Brazilian National Laboratory of Metrology of Ionizing Radiation, the Cooperative Center in Radiation Protection and Medical Preparations for Accidents with Radiation; the Treaty for fully banning of nuclear tests and the Regional Center for Training of IAEA

  14. Interaction between the tidal and seasonal variability of the Gulf of Maine and Scotian Shelf region

    Science.gov (United States)

    Katavouta, Anna; Thompson, Keith; Lu, Youyu; Loder, John

    2017-04-01

    In the Gulf of Maine and Scotian Shelf (off the northeastern coast of North America) tides are large and can alter the local hydrographic properties, circulation, and sea surface height through processes such as tidal rectification, mixing, and horizontal advection. Furthermore, the stratification of the water column can influence tidal elevation and currents over the shelves (e.g., baroclinic tides). To investigate this interaction, a newly developed high resolution (1/36 degree) regional circulation model is used (GoMSS model). First, numerical experiments with and without density stratification are used to demonstrate the influence of stratification on the tides. GoMSS model is then used to interpret the physical mechanisms responsible for the largest seasonal variations in the M2 surface current which occur over, and to the north of, Georges Bank. An alternating pattern of highs and lows in the summer maximum M2 surface speed in the Gulf of Maine is identified, for the first time, in both the model output and observations by a high frequency coastal radar system. This pattern consists of extended striations in tidal speed aligned with the northern flank of Georges Bank that separates the Gulf of Maine from the North Atlantic. The striations are explained in terms of a linear superposition of the barotropic tide flowing across the northern flank of Georges Bank and the reflected, phase-locked baroclinic tide. The striations have amplitudes of about 0.1 m/s and longitudinal length scales of order 100 km, and are thus of practical significance.

  15. In silico analysis to identify vaccine candidates common to multiple serotypes of Shigella and evaluation of their immunogenicity

    KAUST Repository

    Pahil, Sapna

    2017-08-02

    Shigellosis or bacillary dysentery is an important cause of diarrhea, with the majority of the cases occurring in developing countries. Considering the high disease burden, increasing antibiotic resistance, serotype-specific immunity and the post-infectious sequelae associated with shigellosis, there is a pressing need of an effective vaccine against multiple serotypes of the pathogen. In the present study, we used bio-informatics approach to identify antigens shared among multiple serotypes of Shigella spp. This approach led to the identification of many immunogenic peptides. The five most promising peptides based on MHC binding efficiency were a putative lipoprotein (EL PGI I), a putative heat shock protein (EL PGI II), Spa32 (EL PGI III), IcsB (EL PGI IV) and a hypothetical protein (EL PGI V). These peptides were synthesized and the immunogenicity was evaluated in BALB/c mice by ELISA and cytokine assays. The putative heat shock protein (HSP) and the hypothetical protein elicited good humoral response, whereas putative lipoprotein, Spa32 and IcsB elicited good T-cell response as revealed by increased IFN-γ and TNF-α cytokine levels. The patient sera from confirmed cases of shigellosis were also evaluated for the presence of peptide specific antibodies with significant IgG and IgA antibodies against the HSP and the hypothetical protein, bestowing them as potential future vaccine candidates. The antigens reported in this study are novel and have not been tested as vaccine candidates against Shigella. This study offers time and cost-effective way of identifying unprecedented immunogenic antigens to be used as potential vaccine candidates. Moreover, this approach should easily be extendable to find new potential vaccine candidates for other pathogenic bacteria.

  16. In silico analysis to identify vaccine candidates common to multiple serotypes of Shigella and evaluation of their immunogenicity.

    Science.gov (United States)

    Pahil, Sapna; Taneja, Neelam; Ansari, Hifzur Rahman; Raghava, G P S

    2017-01-01

    Shigellosis or bacillary dysentery is an important cause of diarrhea, with the majority of the cases occurring in developing countries. Considering the high disease burden, increasing antibiotic resistance, serotype-specific immunity and the post-infectious sequelae associated with shigellosis, there is a pressing need of an effective vaccine against multiple serotypes of the pathogen. In the present study, we used bio-informatics approach to identify antigens shared among multiple serotypes of Shigella spp. This approach led to the identification of many immunogenic peptides. The five most promising peptides based on MHC binding efficiency were a putative lipoprotein (EL PGI I), a putative heat shock protein (EL PGI II), Spa32 (EL PGI III), IcsB (EL PGI IV) and a hypothetical protein (EL PGI V). These peptides were synthesized and the immunogenicity was evaluated in BALB/c mice by ELISA and cytokine assays. The putative heat shock protein (HSP) and the hypothetical protein elicited good humoral response, whereas putative lipoprotein, Spa32 and IcsB elicited good T-cell response as revealed by increased IFN-γ and TNF-α cytokine levels. The patient sera from confirmed cases of shigellosis were also evaluated for the presence of peptide specific antibodies with significant IgG and IgA antibodies against the HSP and the hypothetical protein, bestowing them as potential future vaccine candidates. The antigens reported in this study are novel and have not been tested as vaccine candidates against Shigella. This study offers time and cost-effective way of identifying unprecedented immunogenic antigens to be used as potential vaccine candidates. Moreover, this approach should easily be extendable to find new potential vaccine candidates for other pathogenic bacteria.

  17. In silico analysis to identify vaccine candidates common to multiple serotypes of Shigella and evaluation of their immunogenicity

    KAUST Repository

    Pahil, Sapna; Taneja, Neelam; Ansari, Hifzur Rahman; Raghava, G. P. S.

    2017-01-01

    Shigellosis or bacillary dysentery is an important cause of diarrhea, with the majority of the cases occurring in developing countries. Considering the high disease burden, increasing antibiotic resistance, serotype-specific immunity and the post-infectious sequelae associated with shigellosis, there is a pressing need of an effective vaccine against multiple serotypes of the pathogen. In the present study, we used bio-informatics approach to identify antigens shared among multiple serotypes of Shigella spp. This approach led to the identification of many immunogenic peptides. The five most promising peptides based on MHC binding efficiency were a putative lipoprotein (EL PGI I), a putative heat shock protein (EL PGI II), Spa32 (EL PGI III), IcsB (EL PGI IV) and a hypothetical protein (EL PGI V). These peptides were synthesized and the immunogenicity was evaluated in BALB/c mice by ELISA and cytokine assays. The putative heat shock protein (HSP) and the hypothetical protein elicited good humoral response, whereas putative lipoprotein, Spa32 and IcsB elicited good T-cell response as revealed by increased IFN-γ and TNF-α cytokine levels. The patient sera from confirmed cases of shigellosis were also evaluated for the presence of peptide specific antibodies with significant IgG and IgA antibodies against the HSP and the hypothetical protein, bestowing them as potential future vaccine candidates. The antigens reported in this study are novel and have not been tested as vaccine candidates against Shigella. This study offers time and cost-effective way of identifying unprecedented immunogenic antigens to be used as potential vaccine candidates. Moreover, this approach should easily be extendable to find new potential vaccine candidates for other pathogenic bacteria.

  18. In silico analysis to identify vaccine candidates common to multiple serotypes of Shigella and evaluation of their immunogenicity.

    Directory of Open Access Journals (Sweden)

    Sapna Pahil

    Full Text Available Shigellosis or bacillary dysentery is an important cause of diarrhea, with the majority of the cases occurring in developing countries. Considering the high disease burden, increasing antibiotic resistance, serotype-specific immunity and the post-infectious sequelae associated with shigellosis, there is a pressing need of an effective vaccine against multiple serotypes of the pathogen. In the present study, we used bio-informatics approach to identify antigens shared among multiple serotypes of Shigella spp. This approach led to the identification of many immunogenic peptides. The five most promising peptides based on MHC binding efficiency were a putative lipoprotein (EL PGI I, a putative heat shock protein (EL PGI II, Spa32 (EL PGI III, IcsB (EL PGI IV and a hypothetical protein (EL PGI V. These peptides were synthesized and the immunogenicity was evaluated in BALB/c mice by ELISA and cytokine assays. The putative heat shock protein (HSP and the hypothetical protein elicited good humoral response, whereas putative lipoprotein, Spa32 and IcsB elicited good T-cell response as revealed by increased IFN-γ and TNF-α cytokine levels. The patient sera from confirmed cases of shigellosis were also evaluated for the presence of peptide specific antibodies with significant IgG and IgA antibodies against the HSP and the hypothetical protein, bestowing them as potential future vaccine candidates. The antigens reported in this study are novel and have not been tested as vaccine candidates against Shigella. This study offers time and cost-effective way of identifying unprecedented immunogenic antigens to be used as potential vaccine candidates. Moreover, this approach should easily be extendable to find new potential vaccine candidates for other pathogenic bacteria.

  19. Ten tandem repeats of β-hCG 109-118 enhance immunogenicity and anti-tumor effects of β-hCG C-terminal peptide carried by mycobacterial heat-shock protein HSP65

    International Nuclear Information System (INIS)

    Zhang Yankai; Yan Rong; He Yi; Liu Wentao; Cao Rongyue; Yan Ming; Li Taiming; Liu Jingjing; Wu Jie

    2006-01-01

    The β-subunit of human chorionic gonadotropin (β-hCG) is secreted by many kinds of tumors and it has been used as an ideal target antigen to develop vaccines against tumors. In view of the low immunogenicity of this self-peptide,we designed a method based on isocaudamer technique to repeat tandemly the 10-residue sequence X of β-hCG (109-118), then 10 tandemly repeated copies of the 10-residue sequence combined with β-hCG C-terminal 37 peptides were fused to mycobacterial heat-shock protein 65 to construct a fusion protein HSP65-X10-βhCGCTP37 as an immunogen. In this study, we examined the effect of the tandem repeats of this 10-residue sequence in eliciting an immune by comparing the immunogenicity and anti-tumor effects of the two immunogens, HSP65-X10-βhCGCTP37 and HSP65-βhCGCTP37 (without the 10 tandem repeats). Immunization of mice with the fusion protein HSP65-X10-βhCGCTP37 elicited much higher levels of specific anti-β-hCG antibodies and more effectively inhibited the growth of Lewis lung carcinoma (LLC) in vivo than with HSP65-βhCGCTP37, which should suggest that HSP65-X10-βhCGCTP37 may be an effective protein vaccine for the treatment of β-hCG-dependent tumors and multiple tandem repeats of a certain epitope are an efficient method to overcome the low immunogenicity of self-peptide antigens

  20. Studies on Nanoparticle Based Avian Influenza Vaccines to Present Immunogenic Epitopes of the Virus with Concentration on Ectodomain of Matrix 2 (M2e) Protein

    Science.gov (United States)

    Babapoor Dighaleh, Sankhiros

    2011-12-01

    Avian influenza is an infectious disease of avian species caused by type A influenza viruses with a significant economic impact on the poultry industry. Vaccination is the main prevention strategy in many countries worldwide. However, available vaccines elicit antibodies against two major surface protein of the virus hemagglutinin (HA) and neuraminidase (NA), where they constantly change by point mutations. Influenza viruses can also easily undergo gene reassortment. Therefore, to protect chickens against new strain of avian influenza virus, as well as control and prevent virus spread among farms, new vaccines needed to be designed which is a tedious, time consuming and expensive. Recently, conserved regions of the influenza genome have been evaluated as possible universal vaccines to eliminate constant vaccine updates based on circulating virus. In this study, peptide nanotechnology was used to generate vaccine nanoparticles that carry the highly conserved external domain of matrix 2 protein (M2e). These nanoparticles presented M2e in monomeric or tetrameric forms, designated as PSC-M2e-CH and BNSC-M2eN-CH. respectively. First, to demonstrate immunogenicity of these nanoparticles, we measured anti-M2e antibody in chickens, particularly when a high dose was applied. Prior to vaccination-challenge study, the challenge dose were determined by oculonasal inoculation of 10 6 EID50 or 107.7 EID50 of low pathogenicity AI virus HSN2 followed by measuring cloacal and tracheal virus shedding. A biphasic virus shedding pattern was observed with two peaks of virus shedding at days 4 and 8 for both tracheal and cloacal swabs. The chickens infected with 107.7 EID50 had significant virus shedding as compared with 106 EID50. Based on results of mentioned studies, a vaccination-challenge study was conducted by using 75mug of each vaccine construct per inoculation (with and without adjuvant) and higher dose of virus for challenge. BN5C-M2e-CH with adjuvant significantly reduced the

  1. Stratification of antibody-positive subjects by antibody level reveals an impact of immunogenicity on pharmacokinetics.

    Science.gov (United States)

    Zhou, Lei; Hoofring, Sarah A; Wu, Yu; Vu, Thuy; Ma, Peiming; Swanson, Steven J; Chirmule, Narendra; Starcevic, Marta

    2013-01-01

    The availability of highly sensitive immunoassays enables the detection of antidrug antibody (ADA) responses of various concentrations and affinities. The analysis of the impact of antibody status on drug pharmacokinetics (PK) is confounded by the presence of low-affinity or low-concentration antibody responses within the dataset. In a phase 2 clinical trial, a large proportion of subjects (45%) developed ADA following weekly dosing with AMG 317, a fully human monoclonal antibody therapeutic. The antibody responses displayed a wide range of relative concentrations (30 ng/mL to >13 μg/mL) and peaked at various times during the study. To evaluate the impact of immunogenicity on PK, AMG 317 concentration data were analyzed following stratification by dose group, time point, antibody status (positive or negative), and antibody level (relative concentration). With dose group as a stratifying variable, a moderate reduction in AMG 317 levels (AMG 317 levels was revealed when antibody data was stratified by both time point and antibody level. In general, high ADA concentrations (>500 ng/mL) and later time points (week 12) were associated with significantly (up to 97%) lower trough AMG 317 concentrations. The use of quasi-quantitative antibody data and appropriate statistical methods was critical for the most comprehensive evaluation of the impact of immunogenicity on PK.

  2. Increased immunogenicity of avian influenza DNA vaccine delivered to the skin using a microneedle patch

    Science.gov (United States)

    Kim, Yeu-Chun; Song, Jae-Min; Lipatov, Aleksandr S.; Choi, Seong-O; Lee, Jeong Woo; Donis, Ruben O.; Compans, Richard W.; Kang, Sang-Moo; Prausnitz, Mark R.

    2012-01-01

    Effective public health responses to an influenza pandemic require an effective vaccine that can be manufactured and administered to large populations in the shortest possible time. In this study, we evaluated a method for vaccination against avian influenza virus that uses a DNA vaccine for rapid manufacturing and delivered by a microneedle skin patch for simplified administration and increased immunogenicity. We prepared patches containing 700 µm-long microneedles coated with an avian H5 influenza hemagglutinin DNA vaccine from A/Viet Nam/1203/04 influenza virus. The coating DNA dose increased with DNA concentration in the coating solution and the number of dip coating cycles. Coated DNA was released into the skin tissue by dissolution within minutes. Vaccination of mice using microneedles induced higher levels of antibody responses and hemagglutination inhibition titers, and improved protection against lethal infection with avian influenza as compared to conventional intramuscular delivery of the same dose of the DNA vaccine. Additional analysis showed that the microneedle coating solution containing carboxymethylcellulose and a surfactant may have negatively affected the immunogenicity of the DNA vaccine. Overall, this study shows that DNA vaccine delivery by microneedles can be a promising approach for improved vaccination to mitigate an influenza pandemic. PMID:22504442

  3. The Role of Aggregates of Therapeutic Protein Products in Immunogenicity: An Evaluation by Mathematical Modeling

    Directory of Open Access Journals (Sweden)

    Liusong Yin

    2015-01-01

    Full Text Available Therapeutic protein products (TPP have been widely used to treat a variety of human diseases, including cancer, hemophilia, and autoimmune diseases. However, TPP can induce unwanted immune responses that can impact both drug efficacy and patient safety. The presence of aggregates is of particular concern as they have been implicated in inducing both T cell-independent and T cell-dependent immune responses. We used mathematical modeling to evaluate several mechanisms through which aggregates of TPP could contribute to the development of immunogenicity. Modeling interactions between aggregates and B cell receptors demonstrated that aggregates are unlikely to induce T cell-independent immune responses by cross-linking B cell receptors because the amount of signal transducing complex that can form under physiologically relevant conditions is limited. We systematically evaluate the role of aggregates in inducing T cell-dependent immune responses using a recently developed multiscale mechanistic mathematical model. Our analysis indicates that aggregates could contribute to T cell-dependent immune response by inducing high affinity epitopes which may not be present in the nonaggregated TPP and/or by enhancing danger signals to break tolerance. In summary, our computational analysis is suggestive of novel insights into the mechanisms underlying aggregate-induced immunogenicity, which could be used to develop mitigation strategies.

  4. Corporate Regional Responsibility - Warum engagieren sich Unternehmen gemeinsam für ihre Region?. Motive der kollektiven regionalen Verantwortungsübernahme von Unternehmen an den Beispielen des Initiativkreises Ruhr und der Wirtschaftsinitiative FrankfurtRheinMain

    Science.gov (United States)

    Schiek, Meike

    2016-03-01

    Companies can voluntarily participate in matters of regional developments, thereby accepting responsibility on a regional level. Referring to the concept of Corporate Social Responsibility (CSR), the term Corporate Regional Responsibility (CRR) is used to describe this behavior. Moreover, companies can form a CRR-corporation with other companies in order to take over a collective CRR. So far, the motives of companies for exercising collective CRR are unknown, thus, corporate resources can not be mobilized and utilized efficiently for regional developments. This article explores the subject of collective CRR and illustrates CRR motives using the example of the two CRR-cooperations Initiativkreis Ruhr and Wirtschaftsinitiative FrankfurtRheinMain.

  5. Characterization and immunogenicity of rLipL32/1-LipL21-OmpL1/2 fusion protein as a novel immunogen for a vaccine against Leptospirosis

    Directory of Open Access Journals (Sweden)

    Zhao Xin

    2015-01-01

    Full Text Available Vaccination is an effective strategy to prevent leptospirosis, a global zoonotic disease caused by infection with pathogenic Leptospira species. However, the currently used multiple-valence vaccine, which is prepared with whole cells of several Leptospira serovars, has major side effects, while its cross-immunogenicity among different Leptospira serovars is weak. LipL32, LipL21 and 2 OmpL1 have been confirmed as surface-exposed antigens in all pathogenic Leptospira strains, but their immunoprotective efficiency needs to be improved. In the present study, we generated a fusion gene lipL32/1-lipL21-ompL1/2 using primer-linking PCR and an engineered E. coli strain to express the recombinant fusion protein rLipL32/1-LipL21-OmpL1/2 (rLLO. Subsequently, the expression conditions were optimized using a central composite design that increased the fusion protein yield 2.7-fold. Western blot assays confirmed that rLLO was recognized by anti-rLipL32/1, anti-rLipL21, and anti-rOmpL1/2 sera as well as 98.5% of the sera from leptospirosis patients. The microscopic agglutination test (MAT demonstrated that rLLO antiserum had a stronger ability to agglutinate the strains of different Leptospira serovars than the rLipL32/1, rLipL21, and rOmpL1/2 antisera. More importantly, tests in hamsters showed that rLLO provided higher immunoprotective rates (91.7% than rLipL32/1, rLipL21 and rOmpL1/2 (50.0-75.0%. All the data indicate that rLLO, a recombinant fusion protein incorporating three antigens, has increased antigenicity and immunoprotective effects, and so can be used as a novel immunogen to develop a universal genetically engineered vaccine against leptospirosis.

  6. Diet-induced bacterial immunogens in the gastrointestinal tract of dairy cows: impacts on immunity and metabolism.

    Science.gov (United States)

    Dong, Guozhong; Liu, Shimin; Wu, Yongxia; Lei, Chunlong; Zhou, Jun; Zhang, Sen

    2011-08-09

    Dairy cows are often fed high grain diets to meet the energy demand for high milk production or simply due to a lack of forages at times. As a result, ruminal acidosis, especially subacute ruminal acidosis (SARA), occurs frequently in practical dairy production. When SARA occurs, bacterial endotoxin (or lipopolysaccharide, LPS) is released in the rumen and the large intestine in a large amount. Many other bacterial immunogens may also be released in the digestive tract following feeding dairy cows diets containing high proportions of grain. LPS can be translocated into the bloodstream across the epithelium of the digestive tract, especially the lower tract, due to possible alterations of permeability and injuries of the epithelial tissue. As a result, the concentration of blood LPS increases. Immune responses are subsequently caused by circulating LPS, and the systemic effects include increases in concentrations of neutrophils and the acute phase proteins such as serum amyloid-A (SAA), haptoglobin (Hp), LPS binding protein (LBP), and C-reactive protein (CRP) in blood. Entry of LPS into blood can also result in metabolic alterations. Blood glucose and nonesterified fatty acid concentrations are enhanced accompanying an increase of blood LPS after increasing the amount of grain in the diet, which adversely affects feed intake of dairy cows. As the proportions of grain in the diet increase, patterns of plasma β-hydroxybutyric acid, cholesterol, and minerals (Ca, Fe, and Zn) are also perturbed. The bacterial immunogens can also lead to reduced supply of nutrients for synthesis of milk components and depressed functions of the epithelial cells in the mammary gland. The immune responses and metabolic alterations caused by circulating bacterial immunogens will exert an effect on milk production. It has been demonstrated that increases in concentrations of ruminal LPS and plasma acute phase proteins (CRP, SAA, and LBP) are associated with declines in milk fat content

  7. Diet-induced bacterial immunogens in the gastrointestinal tract of dairy cows: Impacts on immunity and metabolism

    Directory of Open Access Journals (Sweden)

    Zhou Jun

    2011-08-01

    Full Text Available Abstract Dairy cows are often fed high grain diets to meet the energy demand for high milk production or simply due to a lack of forages at times. As a result, ruminal acidosis, especially subacute ruminal acidosis (SARA, occurs frequently in practical dairy production. When SARA occurs, bacterial endotoxin (or lipopolysaccharide, LPS is released in the rumen and the large intestine in a large amount. Many other bacterial immunogens may also be released in the digestive tract following feeding dairy cows diets containing high proportions of grain. LPS can be translocated into the bloodstream across the epithelium of the digestive tract, especially the lower tract, due to possible alterations of permeability and injuries of the epithelial tissue. As a result, the concentration of blood LPS increases. Immune responses are subsequently caused by circulating LPS, and the systemic effects include increases in concentrations of neutrophils and the acute phase proteins such as serum amyloid-A (SAA, haptoglobin (Hp, LPS binding protein (LBP, and C-reactive protein (CRP in blood. Entry of LPS into blood can also result in metabolic alterations. Blood glucose and nonesterified fatty acid concentrations are enhanced accompanying an increase of blood LPS after increasing the amount of grain in the diet, which adversely affects feed intake of dairy cows. As the proportions of grain in the diet increase, patterns of plasma β-hydoxybutyric acid, cholesterol, and minerals (Ca, Fe, and Zn are also perturbed. The bacterial immunogens can also lead to reduced supply of nutrients for synthesis of milk components and depressed functions of the epithelial cells in the mammary gland. The immune responses and metabolic alterations caused by circulating bacterial immunogens will exert an effect on milk production. It has been demonstrated that increases in concentrations of ruminal LPS and plasma acute phase proteins (CRP, SAA, and LBP are associated with declines in

  8. The action of ionizing radiation on the morphology, physiology and growth of Leishmania Amazonensis, with evaluation of their immunogenic power in experimental models; Acao da radiacao ionizante sobre a morfologia, fisiologia e crescimento da Leishmania amazonensis, com avaliacao de seu poder imunogenico em modelos experimentais

    Energy Technology Data Exchange (ETDEWEB)

    Bonetti, Franco Claudio

    2002-07-01

    Leishmaniasis is a disease which affects thousands of people in the Tropical regions around the world, is caused by a protozoan of the genus Leishmania spp., with urban and wild mammals acting as reservoirs. In the mammal host, the amastigote form of the parasite infects and multiplies into macrophages. Treatments for leishmaniasis have a high cost and are long lasting, frequently resulting in therapy interruption. This procedure culminates with a selection of resistant parasite strains, inducing tolerance to the therapy. Either the control of vectors or the mammal host are difficult due the social and economic implications. Thus, the search for alternatives treatments against these protozoans have been stimulated. The gamma radiation ({sup 60}CO) shown to be an efficient toll to kill these parasites maintaining their immunogenicity. Cellular viability, Electronically microscopy and Multiplex-PCR techniques showed that, after irradiation, the parasites had their growth inhibited by cytoplasmatic and nucleic material disorganisation, appointing the gamma radiation as important in terms of immunogens improvement. (author)

  9. Immunogenicity of MenACWY-CRM in Korean Military Recruits: Influence of Tetanus-Diphtheria Toxoid Vaccination on the Vaccine Response to MenACWY-CRM.

    Science.gov (United States)

    Kim, Han Wool; Park, In Ho; You, Sooseong; Yu, Hee Tae; Oh, In Soo; Sung, Pil Soo; Shin, Eui Cheol; Kim, Kyung Hyo

    2016-11-01

    The quadrivalent meningococcal conjugate vaccine (MenACWY-CRM) has been introduced for military recruits in Korea since 2012. This study was performed to evaluate the immunogenicity of MenACWY-CRM in Korean military recruits. In addition, the influence of tetanus-diphtheria toxoids (Td) vaccination on the vaccine response to MenACWY-CRM was analyzed. A total of 75 military recruits were enrolled. Among them, 18 received a dose of MenACWY-CRM only (group 1), and 57 received Td three days before MenACWY-CRM immunization (group 2). The immunogenicity of MenACWY-CRM was compared between the two groups. The serum bactericidal activity with baby rabbit complement was measured before and three weeks after immunization against serogroups A, C, W-135, and Y. The geometric mean titers (GMTs) against four serogroups were significantly increased in both groups after immunization. Compared to group 2, group 1 exhibited significantly higher vaccine responses in several aspects: post-immune GMTs against serogroup A and C, seroresponse rates against serogroup A, and a fold increases of titers against serogroup A, C, and Y. MenACWY-CRM was immunogenic against all vaccine-serogroups in Korean military recruits. Vaccine response to MenACWY-CRM was influenced by Td administered three days earlier.

  10. Generation of the bovine viral diarrhea virus e0 protein in transgenic astragalus and its immunogenicity in sika deer.

    Science.gov (United States)

    Gao, Yugang; Zhao, Xueliang; Zang, Pu; Liu, Qun; Wei, Gongqing; Zhang, Lianxue

    2014-01-01

    The bovine viral diarrhea virus (BVDV), a single-stranded RNA virus, can cause fatal diarrhea syndrome, respiratory problems, and reproductive disorders in herds. Over the past few years, it has become clear that the BVDV infection rates are increasing and it is likely that an effective vaccine for BVDV will be needed. In this study, transgenic Astragalus was used as an alternative productive platform for the expression of glycoprotein E0. The immunogenicity of glycoprotein E0 expressed in transgenic Astragalus was detected in deer. The presence of pBI121-E0 was confirmed by polymerase chain reaction (PCR), transcription was verified by reverse transcription- (RT-) PCR, and recombinant protein expression was confirmed by ELISA and Western blot analyses. Deer that were immunized subcutaneously with the transgenic plant vaccine developed specific humoral and cell-mediated immune responses against BVDV. This study provides a new method for a protein with weak immunogenicity to be used as part of a transgenic plant vaccine.

  11. Generation of the Bovine Viral Diarrhea Virus E0 Protein in Transgenic Astragalus and Its Immunogenicity in Sika Deer

    Directory of Open Access Journals (Sweden)

    Yugang Gao

    2014-01-01

    Full Text Available The bovine viral diarrhea virus (BVDV, a single-stranded RNA virus, can cause fatal diarrhea syndrome, respiratory problems, and reproductive disorders in herds. Over the past few years, it has become clear that the BVDV infection rates are increasing and it is likely that an effective vaccine for BVDV will be needed. In this study, transgenic Astragalus was used as an alternative productive platform for the expression of glycoprotein E0. The immunogenicity of glycoprotein E0 expressed in transgenic Astragalus was detected in deer. The presence of pBI121-E0 was confirmed by polymerase chain reaction (PCR, transcription was verified by reverse transcription- (RT- PCR, and recombinant protein expression was confirmed by ELISA and Western blot analyses. Deer that were immunized subcutaneously with the transgenic plant vaccine developed specific humoral and cell-mediated immune responses against BVDV. This study provides a new method for a protein with weak immunogenicity to be used as part of a transgenic plant vaccine.

  12. High-level immunogenicity is achieved vaccine with adjuvanted pandemic H1N1(2009) and improved with booster dosing in a randomized trial of HIV-infected adults.

    Science.gov (United States)

    Cooper, Curtis; Klein, Marina; Walmsley, Sharon; Haase, David; MacKinnon-Cameron, Donna; Marty, Kimberley; Li, Yan; Smith, Bruce; Halperin, Scott; Law, Barb; Scheifele, David

    2012-01-01

    More severe influenza disease and poor vaccine immunogenicity in HIV-infected patients necessitate improved immunization strategies to maximize vaccine efficacy. A phase III, randomized trial was conducted at 4 Canadian sites. Two dosing strategies (standard dose vs standard dose plus booster on day 21) were assessed in HIV patients aged 20 to 59 years during the H1N1(2009) pandemic. A single antigen, inactivated split adjuvanted (AS03(A)) influenza vaccine (Arepanrix) was utilized. Serum hemagglutination inhibition (HAI) titres were assessed at days 21 and 42 and at month 6. 150 participants received at least one injection. Baseline parameters were similar between groups: 83% male, 85% on HAART, median CD4 = 519 cells/mm(3), 84% with HIV RNA < 50 copies/mL. At day 21, seroprotection (HAI ≥1:40) was achieved in 80% (95% CI, 70-89) of participants. Seroconversion occurred in 74% (63-85). Seroprotection and seroconversion were further improved in those randomized to booster dosing: day 42, 94% (85-98) versus 73% (60-83) (P < .01) and 86% (75-93) versus 66% (5-77) (P = .01). Seroprotec-tion was retained in 40% (28-54) of recipients at month 6 with trends toward greater retention of immunity in booster recipients. High-level immunogenicity was achieved with a single dose of this adjuvanted vaccine. Immunogenicity was further improved with booster dosing. Use of this adjuvanted vaccine and booster represent an important approach to increasing immunogenicity in this vaccine hypo-responsive population.

  13. IMMUNOGENICITY OF HUMAN MESENCHYMAL STEM CELLS IN HLA-CLASS I RESTRICTED T CELL RESPONSES AGAINST VIRAL OR TUMOR-ASSOCIATED ANTIGENS

    OpenAIRE

    Morandi, Fabio; Raffaghello, Lizzia; Bianchi, Giovanna; Meloni, Francesca; Salis, Annalisa; Millo, Enrico; Ferrone, Soldano; Barnaba, Vincenzo; Pistoia, Vito

    2008-01-01

    Human mesenchymal stem cells (MSC) are immunosuppressive and poorly immunogenic, but may act as antigen-presenting cells (APC) for CD4+ T cell responses; here we have investigated their ability to serve as APC for in vitro CD8+ T cell responses.

  14. Comparison of the immunogenic effect of rabies vaccines

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, Zs [Allatgyogyaszati Oltoanyagellenoerzoe Intezet, Budapest (Hungary)

    1981-10-01

    Immunogenic effect of the Lyssa and Lyssavac rabies vaccines were compared in sheep. Blood samples were collected 8 times from the experimental groups of 5 animals each during a 6-month period after vaccination. The dynamics of virus neutralizing antibodies was followed and the in vitro reactions of peripheral lymphocytes were studied. In the 3rd week after vaccination the titre of virus neutralizing antibodies was higher (1:128.4) in the experimental group immunized with the Lyssavac than in that immunized with the Lyssa vaccine (1:118) and it remained also at a higher level in the 6th month after vaccination (1:50) than that of the group immunized with the latter vaccine (1:20.4). As regards the in vitro reactions of lymphocytes, no essential differences were found either in the rates of immune rosette formation or in the degree of blastogenesis measured by the incorporation of /sup 3/HTdR. The mean values of IgG and IgM positive cells were also similar in both experimental groups as it was determined by immunofluorescence.

  15. [Study on immunogenicity of group A and group C meningococcal conjugate vaccine with coupling group B meningococcal outer membrane protein].

    Science.gov (United States)

    Ma, Fu-Bao; Tao, Hong; Wang, Hong-Jun

    2009-10-01

    To evaluate the Immunogenicity of Group A and Group C Meningococcal conjugate Vaccine with coupling Group B Meningococcal Outer Membrane Protein (Men B-OMP). 458 healthy children aged 3-5 months, 6-23 months, 2-6 years and 7-24 years were given the Groups A and C conjugate Vaccine with MenB-OMP or other vaccine as control group to measure the pre-and post-vaccination Men A and C and B by Serum Bactericidal Assay (SBA) in the double-blind randomized controlled trial. 97.65%-100% were 4 times or greater increase in SBA titer for the healthy children given the Groups A and C conjugate Vaccine with MenB-OMP, The geometric mean titer of SBA were 1:194-1:420, which significantly higber than controls. The Group A and C conjugate Vaccine with MenB-OMP was safe and well immunogenic.

  16. IRAS 18153-1651: an H II region with a possible wind bubble blown by a young main-sequence B star

    Science.gov (United States)

    Gvaramadze, V. V.; Mackey, J.; Kniazev, A. Y.; Langer, N.; Chené, A.-N.; Castro, N.; Haworth, T. J.; Grebel, E. K.

    2017-04-01

    We report the results of spectroscopic observations and numerical modelling of the H II region IRAS 18153-1651. Our study was motivated by the discovery of an optical arc and two main-sequence stars of spectral type B1 and B3 near the centre of IRAS 18153-1651. We interpret the arc as the edge of the wind bubble (blown by the B1 star), whose brightness is enhanced by the interaction with a photoevaporation flow from a nearby molecular cloud. This interpretation implies that we deal with a unique case of a young massive star (the most massive member of a recently formed low-mass star cluster) caught just tens of thousands of years after its stellar wind has begun to blow a bubble into the surrounding dense medium. Our 2D, radiation-hydrodynamics simulations of the wind bubble and the H II region around the B1 star provide a reasonable match to observations, both in terms of morphology and absolute brightness of the optical and mid-infrared emission, and verify the young age of IRAS 18153-1651. Taken together our results strongly suggest that we have revealed the first example of a wind bubble blown by a main-sequence B star.

  17. Just-in-time vaccines: Biomineralized calcium phosphate core-immunogen shell nanoparticles induce long-lasting CD8(+) T cell responses in mice.

    Science.gov (United States)

    Zhou, Weibin; Moguche, Albanus O; Chiu, David; Murali-Krishna, Kaja; Baneyx, François

    2014-04-01

    Distributed and on-demand vaccine production could be game-changing for infectious disease treatment in the developing world by providing new therapeutic opportunities and breaking the refrigeration "cold chain". Here, we show that a fusion protein between a calcium phosphate binding domain and the model antigen ovalbumin can mineralize a biocompatible adjuvant in a single step. The resulting 50 nm calcium phosphate core-immunogen shell particles are comparable to soluble protein in inducing ovalbumin-specific antibody response and class switch recombination in mice. However, single dose vaccination with nanoparticles leads to higher expansion of ovalbumin-specific CD8(+) T cells upon challenge with an influenza virus bearing the ovalbumin-derived SIINFEKL peptide, and these cells produce high levels of IFN-γ. Furthermore, mice exhibit a robust antigen-specific CD8(+) T cell recall response when challenged with virus 8 months post-immunization. These results underscore the promise of immunogen-controlled adjuvant mineralization for just-in-time manufacturing of effective T cell vaccines. This paper reports that a fusion protein between a calcium phosphate binding domain and the model antigen ovalbumin can mineralize into a biocompatible adjuvant in a single step, enabling distributed and on-demand vaccine production and eliminating the need for refrigeration of vaccines. The findings highlight the possibility of immunogen-controlled adjuvant mineralization for just-in-time manufacturing of effective T cell vaccines. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Pharmacokinetics and immunogenicity investigation of a human anti-interleukin-17 monoclonal antibody in non-naïve cynomolgus monkeys.

    Science.gov (United States)

    Han, Chao; Gunn, George R; Marini, Joseph C; Shankar, Gopi; Han Hsu, Helen; Davis, Hugh M

    2015-05-01

    The pharmacokinetics (PK) of biologic therapeutics, especially monoclonal antibodies (mAbs), in monkeys generally presents the most relevant predictive PK information for humans. However, human mAbs, xenogeneic proteins to monkeys, are likely to be immunogenic. Monkeys previously treated with a human mAb (non-naïve) may have developed antidrug antibodies (ADAs) that cross-react with another test mAb in subsequent studies. Unlike PK studies for small-molecule therapeutics, in which animals may be reused, naïve monkeys have been used almost exclusively for preclinical PK studies of biologic therapeutics to avoid potential pre-existing immunologic cross-reactivity issues. The propensity and extent of pre-existing ADAs have not been systematically investigated to date. In this study, the PK and immunogenicity of mAb A, a human anti-human interkeukin-17 mAb, were investigated in a colony of 31 cynomolgus monkeys previously exposed to other human mAbs against different targets. We screened the monkeys for pre-existing antibodies to mAb A prior to the PK study and showed that 44% of the monkeys had pre-existing cross-reactive antibodies to mAb A, which could affect the PK characterization of the antibody. In the subcolony of monkeys without measurable pre-existing ADAs, PK and immunogenicity of mAb A were successfully characterized. The impact of ADAs on mAb A PK was also demonstrated in the monkeys with pre-existing ADAs. Here we report the results and propose a pragmatic approach for the use of non-naïve monkeys when conducting PK studies of biologic therapeutics. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  19. A phase 1, open-label, randomized study to compare the immunogenicity and safety of different administration routes and doses of virosomal influenza vaccine in elderly.

    Science.gov (United States)

    Levin, Yotam; Kochba, Efrat; Shukarev, Georgi; Rusch, Sarah; Herrera-Taracena, Guillermo; van Damme, Pierre

    2016-10-17

    Influenza remains a significant problem in elderly despite widespread vaccination coverage. This randomized, phase-I study in elderly compared different strategies of improving vaccine immunogenicity. A total of 370 healthy participants (⩾65years) were randomized equally 1:1:1:1:1:1 to six influenza vaccine treatments (approximately 60-63 participants per treatment arm) at day 1 that consisted of three investigational virosomal vaccine formulations at doses of 7.5, 15, and 45μg HA antigen/strain administered intradermally (ID) by MicronJet600™ microneedle device (NanoPass Technologies) or intramuscularly (IM), and three comparator registered seasonal vaccines; Inflexal V™ (Janssen) and MF59 adjuvanted Fluad™ (Novartis) administered IM and Intanza™ (Sanofi Pasteur) administered ID via Soluvia™ prefilled microinjection system (BD). Serological evaluations were performed at days 22 and 90 and safety followed-up for 6months. Intradermal delivery of virosomal vaccine using MicronJet600™ resulted in significantly higher immunogenicity than the equivalent dose of virosomal Inflexal V™ administered intramuscularly across most of the parameters and strains, as well as in some of the readouts and strains as compared with the 45μg dose of virosomal vaccine formulation. Of 370 participants, 300 (81.1%) reported ⩾1 adverse event (AE); more participants reported solicited local AEs (72.2%) than solicited systemic AEs (12.2%). Intradermal delivery significantly improved influenza vaccine immunogenicity compared with intramuscular delivery. Triple dose (45μg) virosomal vaccine did not demonstrate any benefit on vaccine's immunogenicity over 15μg commercial presentation. All treatments were generally safe and well-tolerated. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. The effect of human factor H on immunogenicity of meningococcal native outer membrane vesicle vaccines with over-expressed factor H binding protein.

    Directory of Open Access Journals (Sweden)

    Peter T Beernink

    Full Text Available The binding of human complement inhibitors to vaccine antigens in vivo could diminish their immunogenicity. A meningococcal ligand for the complement down-regulator, factor H (fH, is fH-binding protein (fHbp, which is specific for human fH. Vaccines containing recombinant fHbp or native outer membrane vesicles (NOMV from mutant strains with over-expressed fHbp are in clinical development. In a previous study in transgenic mice, the presence of human fH impaired the immunogenicity of a recombinant fHbp vaccine. In the present study, we prepared two NOMV vaccines from mutant group B strains with over-expressed wild-type fHbp or an R41S mutant fHbp with no detectable fH binding. In wild-type mice in which mouse fH did not bind to fHbp in either vaccine, the NOMV vaccine with wild-type fHbp elicited 2-fold higher serum IgG anti-fHbp titers (P = 0.001 and 4-fold higher complement-mediated bactericidal titers against a PorA-heterologous strain than the NOMV with the mutant fHbp (P = 0.003. By adsorption, the bactericidal antibodies were shown to be directed at fHbp. In transgenic mice in which human fH bound to the wild-type fHbp but not to the R41S fHbp, the NOMV vaccine with the mutant fHbp elicited 5-fold higher serum IgG anti-fHbp titers (P = 0.002, and 19-fold higher bactericidal titers than the NOMV vaccine with wild-type fHbp (P = 0.001. Thus, in mice that differed only by the presence of human fH, the respective results with the two vaccines were opposite. The enhanced bactericidal activity elicited by the mutant fHbp vaccine in the presence of human fH far outweighed the loss of immunogenicity of the mutant protein in wild-type animals. Engineering fHbp not to bind to its cognate complement inhibitor, therefore, may increase vaccine immunogenicity in humans.

  1. Immunogenicity and safety assessment of a trivalent, inactivated split influenza vaccine in Korean children: Double-blind, randomized, active-controlled multicenter phase III clinical trial.

    Science.gov (United States)

    Han, Seung Beom; Rhim, Jung-Woo; Shin, Hye Jo; Lee, Soo Young; Kim, Hyun-Hee; Kim, Jong-Hyun; Lee, Kyung-Yil; Ma, Sang Hyuk; Park, Joon Soo; Kim, Hwang Min; Kim, Chun Soo; Kim, Dong Ho; Choi, Young Youn; Cha, Sung-Ho; Hong, Young Jin; Kang, Jin Han

    2015-01-01

    A multicenter, double-blind, randomized, active-control phase III clinical trial was performed to assess the immunogenicity and safety of a trivalent, inactivated split influenza vaccine. Korean children between the ages of 6 months and 18 y were enrolled and randomized into a study (study vaccine) or a control vaccine group (commercially available trivalent, inactivated split influenza vaccine) in a 5:1 ratio. Antibody responses were determined using hemagglutination inhibition assay, and post-vaccination immunogenicity was assessed based on seroconversion and seroprotection rates. For safety assessment, solicited local and systemic adverse events up to 28 d after vaccination and unsolicited adverse events up to 6 months after vaccination were evaluated. Immunogenicity was assessed in 337 and 68 children of the study and control groups. In the study vaccine group, seroconversion rates against influenza A/H1N1, A/H3N2, and B strains were 62.0% (95% CI: 56.8-67.2), 53.4% (95% CI: 48.1-58.7), and 54.9% (95% CI: 48.1-60.2), respectively. The corresponding seroprotection rates were 95.0% (95% CI: 92.6-97.3), 93.8% (95% CI: 91.2-96.4), and 95.3% (95% CI: 93.0-97.5). The lower 95% CI limits of the seroconversion and seroprotection rates were over 40% and 70%, respectively, against all strains. Seroconversion and seroprotection rates were not significantly different between the study and control vaccine groups. Furthermore, the frequencies of adverse events were not significantly different between the 2 vaccine groups, and no serious vaccination-related adverse events were noted. In conclusion, the study vaccine exhibited substantial immunogenicity and safety in Korean children and is expected to be clinically effective.

  2. Transcriptomes and pathways associated with infectivity, survival and immunogenicity in Brugia malayi L3

    Directory of Open Access Journals (Sweden)

    Spiro David

    2009-06-01

    Full Text Available Abstract Background Filarial nematode parasites cause serious diseases such as elephantiasis and river blindness in humans, and heartworm infections in dogs. Third stage filarial larvae (L3 are a critical stage in the life cycle of filarial parasites, because this is the stage that is transmitted by arthropod vectors to initiate infections in mammals. Improved understanding of molecular mechanisms associated with this transition may provide important leads for development of new therapies and vaccines to prevent filarial infections. This study explores changes in gene expression associated with the transition of Brugia malayi third stage larvae (BmL3 from mosquitoes into mammalian hosts and how these changes are affected by radiation. Radiation effects are especially interesting because irradiated L3 induce partial immunity to filarial infections. The underlying molecular mechanisms responsible for the efficacy of such vaccines are unkown. Results Expression profiles were obtained using a new filarial microarray with 18, 104 64-mer elements. 771 genes were identified as differentially expressed in two-way comparative analyses of the three L3 types. 353 genes were up-regulated in mosquito L3 (L3i relative to cultured L3 (L3c. These genes are important for establishment of filarial infections in mammalian hosts. Other genes were up-regulated in L3c relative to L3i (234 or irradiated L3 (L3ir (22. These culture-induced transcripts include key molecules required for growth and development. 165 genes were up-regulated in L3ir relative to L3c; these genes encode highly immunogenic proteins and proteins involved in radiation repair. L3ir and L3i have similar transcription profiles for genes that encode highly immunogenic proteins, antioxidants and cuticle components. Conclusion Changes in gene expression that normally occur during culture under conditions that support L3 development and molting are prevented or delayed by radiation. This may explain

  3. Immunogenicity and efficacy of a chimpanzee adenovirus-vectored Rift Valley fever vaccine in mice.

    Science.gov (United States)

    Warimwe, George M; Lorenzo, Gema; Lopez-Gil, Elena; Reyes-Sandoval, Arturo; Cottingham, Matthew G; Spencer, Alexandra J; Collins, Katharine A; Dicks, Matthew D J; Milicic, Anita; Lall, Amar; Furze, Julie; Turner, Alison V; Hill, Adrian V S; Brun, Alejandro; Gilbert, Sarah C

    2013-12-05

    Rift Valley Fever (RVF) is a viral zoonosis that historically affects livestock production and human health in sub-Saharan Africa, though epizootics have also occurred in the Arabian Peninsula. Whilst an effective live-attenuated vaccine is available for livestock, there is currently no licensed human RVF vaccine. Replication-deficient chimpanzee adenovirus (ChAd) vectors are an ideal platform for development of a human RVF vaccine, given the low prevalence of neutralizing antibodies against them in the human population, and their excellent safety and immunogenicity profile in human clinical trials of vaccines against a wide range of pathogens. Here, in BALB/c mice, we evaluated the immunogenicity and efficacy of a replication-deficient chimpanzee adenovirus vector, ChAdOx1, encoding the RVF virus envelope glycoproteins, Gn and Gc, which are targets of virus neutralizing antibodies. The ChAdOx1-GnGc vaccine was assessed in comparison to a replication-deficient human adenovirus type 5 vector encoding Gn and Gc (HAdV5-GnGc), a strategy previously shown to confer protective immunity against RVF in mice. A single immunization with either of the vaccines conferred protection against RVF virus challenge eight weeks post-immunization. Both vaccines elicited RVF virus neutralizing antibody and a robust CD8+ T cell response. Together the results support further development of RVF vaccines based on replication-deficient adenovirus vectors, with ChAdOx1-GnGc being a potential candidate for use in future human clinical trials.

  4. Testicular Sertoli cells influence the proliferation and immunogenicity of co-cultured endothelial cells

    International Nuclear Information System (INIS)

    Fan, Ping; He, Lan; Pu, Dan; Lv, Xiaohong; Zhou, Wenxu; Sun, Yining; Hu, Nan

    2011-01-01

    Research highlights: → The proliferation of dramatic increased by co-cultured with Sertoli cells. → VEGF receptor-2 expression of ECs was up-regulated by co-cultured with Sertoli cells. → The MHC expression of ECs induced by INF-γ and IL-6, IL-8 and sICAM induced by TNF-α decreased respectively after co-cultured with Sertoli cells. → ECs co-cultured with Sertoli cells also didn't increase the stimulation index of spleen lymphocytes. -- Abstract: The major problem of the application of endothelial cells (ECs) in transplantation is the lack of proliferation and their immunogenicity. In this study, we co-cultured ECs with Sertoli cells to monitor whether Sertoli cells can influence the proliferation and immunogenicity of co-cultured ECs. Sertoli cells were isolated from adult testicular tissue. ECs were divided into the control group and the experimental group, which included three sub-groups co-cultured with 1 x 10 3 , 1 x 10 4 or 1 x 10 5 cell/ml of Sertoli cells. The growth and proliferation of ECs were observed microscopically, and the expression of vascular endothelial growth factor (VEGF) receptor-2 (KDR) was examined by Western blotting. In another experiment, ECs were divided into the control group, the single culture group and the co-culture group with the optimal concentration of Sertoli cells. After INF-γ and TNF-α were added to the culture medium, MHC II antigen expression was detected by immunofluorescence staining and western blotting; interleukin (IL)-6, IL-8 and soluble intercellular adhesion molecule (sICAM) were measured in the culture medium by ELISA. We demonstrated that 1 x 10 4 cell/ml Sertoli cells promoted the proliferation of co-cultured ECs more dramatically than that in other groups (P 4 cell/ml of the Sertoli cells was most effective in the up-regulation of KDR expression in the co-cultured ECs (P < 0.05). Sertoli cells can effectively suppress INF-γ-induced MHC II antigen expression in co-cultured ECs compared with single

  5. Safety and immunogenicity of RV3-BB human neonatal rotavirus vaccine administered at birth or in infancy: a randomised, double-blind, placebo-controlled trial.

    Science.gov (United States)

    Bines, Julie E; Danchin, Margaret; Jackson, Pamela; Handley, Amanda; Watts, Emma; Lee, Katherine J; West, Amanda; Cowley, Daniel; Chen, Mee-Yew; Barnes, Graeme L; Justice, Frances; Buttery, Jim P; Carlin, John B; Bishop, Ruth F; Taylor, Barry; Kirkwood, Carl D

    2015-12-01

    Despite the success of rotavirus vaccines, suboptimal vaccine efficacy in regions with a high burden of disease continues to present a challenge to worldwide implementation. A birth dose strategy with a vaccine developed from an asymptomatic neonatal rotavirus strain has the potential to address this challenge and provide protection from severe rotavirus disease from birth. This phase 2a randomised, double-blind, three-arm, placebo-controlled safety and immunogenicity trial was undertaken at a single centre in New Zealand between Jan 13, 2012, and April 17, 2014. Healthy, full-term (≥36 weeks gestation) babies, who weighed at least 2500 g, and were 0-5 days old at the time of randomisation were randomly assigned (1:1:1; computer-generated; telephone central allocation) according to a concealed block randomisation schedule to oral RV3-BB vaccine with the first dose given at 0-5 days after birth (neonatal schedule), to vaccine with the first dose given at about 8 weeks after birth (infant schedule), or to placebo. The primary endpoint was cumulative vaccine take (serum immune response or stool shedding of vaccine virus after any dose) after three doses. The immunogenicity analysis included all randomised participants with available outcome data. This trial is registered with the Australian New Zealand Clinical Trials Registry, ACTRN12611001212943. 95 eligible participants were randomised, of whom 89 were included in the primary analysis. A cumulative vaccine take was detected in 27 (90%) of 30 participants in the neonatal schedule group after three doses of RV3-BB vaccine compared with four (13%) of 32 participants in the placebo group (difference in proportions 0·78, 95% CI 0·55-0·88; pvaccine take after three doses compared with eight (25%) of 32 participants in the placebo group (difference in proportions 0·68, 0·44-0·81; pvaccine was not associated with an increased frequency of fever or gastrointestinal symptoms compared with placebo. RV3-BB vaccine was

  6. Ultraviolet irradiation in transplantation biology. Manipulation of immunity and immunogenicity

    International Nuclear Information System (INIS)

    Deeg, H.J.

    1988-01-01

    Ultraviolet irradiation, particularly in the UVB range, has profound effects on immunological mechanisms. Optimum and tolerable doses of exposure vary from species to species, and from organ to organ. As a result of limited depth penetration and possibly significant energy absorption in nontargeted cells, every model requires diligent determination of an effective nontoxic approach. Nevertheless, it is clear that UVB and UVC irradiation can abolish proliferative and stimulatory ability as well as accessory/antigen-presenting ability of leukocytes in vitro. UV treatment alters cell-surface properties, calcium mobilization, cytokine production and release, and other subcellular processes. Preliminary data suggest that these manipulations also suppress immunity and reduce immunogenicity in vivo. Exposure of solid organs and of large volumes of blood is difficult due to technical problems--in particular poor depth penetration and absorption of UV energy in generally available transfusion bags. 111 references

  7. In vivo electroporation enhances the immunogenicity of an HIV-1 DNA vaccine candidate in healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Sandhya Vasan

    Full Text Available DNA-based vaccines have been safe but weakly immunogenic in humans to date.We sought to determine the safety, tolerability, and immunogenicity of ADVAX, a multigenic HIV-1 DNA vaccine candidate, injected intramuscularly by in vivo electroporation (EP in a Phase-1, double-blind, randomized placebo-controlled trial in healthy volunteers. Eight volunteers each received 0.2 mg, 1 mg, or 4 mg ADVAX or saline placebo via EP, or 4 mg ADVAX via standard intramuscular injection at weeks 0 and 8. A third vaccination was administered to eleven volunteers at week 36. EP was safe, well-tolerated and considered acceptable for a prophylactic vaccine. EP delivery of ADVAX increased the magnitude of HIV-1-specific cell mediated immunity by up to 70-fold over IM injection, as measured by gamma interferon ELISpot. The number of antigens to which the response was detected improved with EP and increasing dosage. Intracellular cytokine staining analysis of ELISpot responders revealed both CD4+ and CD8+ T cell responses, with co-secretion of multiple cytokines.This is the first demonstration in healthy volunteers that EP is safe, tolerable, and effective in improving the magnitude, breadth and durability of cellular immune responses to a DNA vaccine candidate.ClinicalTrials.gov NCT00545987.

  8. Lindane Suppresses the Lipid-bilayer Permeability in Main Transition Region

    DEFF Research Database (Denmark)

    Sabra, Mads Christian; Jørgensen, Kent; Mouritsen, Ole G.

    1996-01-01

    The effects of a small molecule, the insecticide lindane, on unilamellar DMPC bilayers in the phase transition region, have been studied by means of differential scanning calorimetry and fluorescence spectroscopy. The calorimetric data show that increasing concentrations of lindane broaden the tr...

  9. Regional variation in fish predation intensity: a historical perspective in the Gulf of Maine.

    Science.gov (United States)

    Witman, Jon D; Sebens, Kenneth P

    1992-06-01

    Regional variation in the intensity of fish predation on tethered brittle stars and crabs was measured at 30-33 m depths in the rocky subtidal zone at seven sites representing coastal and offshore regions of the Gulf of Maine, USA. Analysis of covariance comparing the slopes of brittle star survivorship curves followed by multiple comparisons tests revealed five groupings of sites, with significantly greater predation rates in the two offshore than in the three coastal groups. Brittle stars tethered at the three offshore sites were consumed primarily by cod, Gadus morhua, with 60-100% prey mortality occuring in 2.5 h. In striking contrast, only 6-28% of brittle star prey was consumed in the same amount of time at the four coastal sites, which were dominated by cunner, Tautogolabrus adspersus. In several coastal trials, a majority of brittle star prey remained after 24 h. The pattern of higher predation offshore held for rock crabs as well with only 2.7% of tethered crabs consumed (n=36) at coastal sites versus 57.8% of crabs (n=64) consumed at offshore sites. Another important predatory fish, the wolffish, Anarhichas lupus, consumed more tethered crabs than brittle stars. Videos and time-lapse movies indicated that cod and wolffish were significantly more abundant at offshore than at coastal sites. Three hundred years of fishing pressure in New England has severely depleted stocks of at least one important benthic predator, the cod, in coastal waters. We speculate that this human-induced predator removal has lowered predation pressure on crabs and other large mobile epibenthos in deep coastal communities. Transect data indicate that coastal sites with few cod support significantly higher densities of crabs than offshore sites with abundant cod.

  10. Direct Comparison of Immunogenicity Induced by 10- or 13-Valent Pneumococcal Conjugate Vaccine around the 11-Month Booster in Dutch Infants.

    Directory of Open Access Journals (Sweden)

    Alienke J Wijmenga-Monsuur

    Full Text Available Since 2009/10, a 10- and a 13-valent pneumococcal conjugate vaccine (PCV are available, but only the 10-valent vaccine is now being used for the children in the Netherlands. As the vaccines differ in number of serotypes, antigen concentration, and carrier proteins this study was designed to directly compare quantity and quality of the antibody responses induced by PCV10 and PCV13 before and after the 11-month booster.Dutch infants (n = 132 were immunized with either PCV10 or PCV13 and DTaP-IPV-Hib-HepB at the age of 2, 3, 4 and 11 months. Blood samples were collected pre-booster and post-booster at one week and one month post-booster for quantitative and qualitative immunogenicity against 13 pneumococcal serotypes, as well as quantitative immunogenicity against diphtheria, tetanus, pertussis and Haemophilus influenzae type b. We compared immunogenicity induced by PCV13 and PCV10 for their ten shared serotypes.One month post-booster, pneumococcal serotype-specific IgG geometric mean concentrations (GMCs for the PCV13 group were higher compared with the PCV10 group for six serotypes, although avidity was lower. Serotype 19F showed the most distinct difference in IgG and, in contrast to other serotypes, its avidity was higher in the PCV13 group. One week post-booster, opsonophagocytosis for serotype 19F did not differ significantly between the PCV10- and the PCV13 group.Both PCV10 and PCV13 were immunogenic and induced a booster response. Compared to the PCV10 group, the PCV13 group showed higher levels for serotype 19F GMCs and avidity, pre- as well as post-booster, although opsonophagocytosis did not differ significantly between groups. In our study, avidity is not correlated to opsonophagocytotic activity (OPA and correlations between IgG and OPA differ per serotype. Therefore, besides assays to determine IgG GMCs, assays to detect opsonophagocytotic activity, i.e., the actual killing of the pneumococcus, are important for PCV evaluation. How

  11. Immunogenicity and persistence of the 13-valent Pneumococcal Conjugate Vaccine (PCV13) in patients with untreated Smoldering Multiple Myeloma (SMM): A pilot study.

    Science.gov (United States)

    Bahuaud, Mathilde; Bodilis, Hélène; Malphettes, Marion; Maugard Landre, Anaïs; Matondo, Caroline; Bouscary, Didier; Batteux, Frédéric; Launay, Odile; Fermand, Jean-Paul

    2017-11-01

    Smoldering multiple myeloma (SMM) is an asymptomatic clonal plasma cell disorder that frequently progress to multiple myeloma (MM), a disease at high risk of pneumococcal infections. Moreover, if the polysaccharide vaccine is poorly immunogenic in MM, the 13-valent conjugated vaccine has never been tested in clonal plasma cell disorders. We evaluated its immunogenicity for 7 serotypes in 20 patients ≥ 50 years of age with smoldering multiple myeloma (SMM) pre and post routine-vaccination with PCV13. Concentrations of IgG specific for 7 serotypes were measured at baseline, 1, 6, and 12 months after vaccination by standardized ELISA and an Opsonophagocytic Assay (OPA). The primary endpoint was the proportion of patients responding to at least 5 of the 7 serotypes by ELISA at one month. At 1 month post vaccination, 12 patients (60%) were responders by ELISA, among whom 8 were also responders by OPA. At 6 months, 6 (30% of total) of the 12 responders had persistent immunity, and only 2 (10% of total) at 12 months. These results suggested a partial response in this population and a rapid decrease in antibody levels in the first months of vaccination. Although one injection of the 13-valent pneumococcal conjugate vaccine is immunogenic in some patients with SMM, the response is transient. Repeated injections are likely to be needed for effective and sustained protection.

  12. Highly-Immunogenic Virally-Vectored T-cell Vaccines Cannot Overcome Subversion of the T-cell Response by HCV during Chronic Infection

    Directory of Open Access Journals (Sweden)

    Leo Swadling

    2016-08-01

    Full Text Available An effective therapeutic vaccine for the treatment of chronic hepatitis C virus (HCV infection, as an adjunct to newly developed directly-acting antivirals (DAA, or for the prevention of reinfection, would significantly reduce the global burden of disease associated with chronic HCV infection. A recombinant chimpanzee adenoviral (ChAd3 vector and a modified vaccinia Ankara (MVA, encoding the non-structural proteins of HCV (NSmut, used in a heterologous prime/boost regimen induced multi-specific, high-magnitude, durable HCV-specific CD4+ and CD8+ T-cell responses in healthy volunteers, and was more immunogenic than a heterologous Ad regimen. We now assess the immunogenicity of this vaccine regimen in HCV infected patients (including patients with a low viral load suppressed with interferon/ribavirin therapy, determine T-cell cross-reactivity to endogenous virus, and compare immunogenicity with that observed previously in both healthy volunteers and in HCV infected patients vaccinated with the heterologous Ad regimen. Vaccination of HCV infected patients with ChAd3-NSmut/MVA-NSmut was well tolerated. Vaccine-induced HCV-specific T-cell responses were detected in 8/12 patients; however, CD4+ T-cell responses were rarely detected, and the overall magnitude of HCV-specific T-cell responses was markedly reduced when compared to vaccinated healthy volunteers. Furthermore, HCV-specific cells had a distinct partially-functional phenotype (lower expression of activation markers, granzyme B, and TNFα production, weaker in vitro proliferation, and higher Tim3 expression, with comparable Tbet and Eomes expression compared to healthy volunteers. Robust anti-vector T-cells and antibodies were induced, showing that there is no global defect in immunity. The level of viremia at the time of vaccination did not correlate with the magnitude of the vaccine-induced T-cell response. Full-length, next-generation sequencing of the circulating virus demonstrated that T

  13. Main sequence mass loss

    International Nuclear Information System (INIS)

    Brunish, W.M.; Guzik, J.A.; Willson, L.A.; Bowen, G.

    1987-01-01

    It has been hypothesized that variable stars may experience mass loss, driven, at least in part, by oscillations. The class of stars we are discussing here are the δ Scuti variables. These are variable stars with masses between about 1.2 and 2.25 M/sub θ/, lying on or very near the main sequence. According to this theory, high rotation rates enhance the rate of mass loss, so main sequence stars born in this mass range would have a range of mass loss rates, depending on their initial rotation velocity and the amplitude of the oscillations. The stars would evolve rapidly down the main sequence until (at about 1.25 M/sub θ/) a surface convection zone began to form. The presence of this convective region would slow the rotation, perhaps allowing magnetic braking to occur, and thus sharply reduce the mass loss rate. 7 refs

  14. Safety, immunogenicity, and protective efficacy of two doses of RIX4414 live attenuated human rotavirus vaccine in healthy infants.

    Science.gov (United States)

    Araujo, Eliete C; Clemens, Sue Ann C; Oliveira, Consuelo S; Justino, Maria Cleonice A; Rubio, Pilar; Gabbay, Yvone B; da Silva, Veronilce B; Mascarenhas, Joana D P; Noronha, Vânia L; Clemens, Ralf; Gusmão, Rosa Helena P; Sanchez, Nervo; Monteiro, Talita Antônia F; Linhares, Alexandre C

    2007-01-01

    To determine the safety, immunogenicity and efficacy of two doses of rotavirus vaccine in healthy Brazilian infants. A randomized, multicenter, double-blind, placebo-controlled trial was conducted in Brazil, Mexico and Venezuela. Infants received two oral doses of vaccine or placebo at 2 and 4 months of age, concurrently with routine immunizations, except for oral poliomyelitis vaccine (OPV). This paper reports results from Belém, Brazil, where the number of subjects per group and the viral vaccine titers were: 194 (10(4.7) focus forming units - FFU), 196 (10(5.2) FFU), 194 (10(5.8) FFU) and 194 (placebo). Anti-rotavirus (anti-RV) antibody response was assessed in 307 subjects. Clinical severity of gastroenteritis episodes was measured using a 20-point scoring system with a score of >or= 11 defined as severe GE. The rates of solicited general symptoms were similar in vaccine and placebo recipients. At 2 months after the second dose, a serum IgA response to RV occurred in 54.7 to 74.4% of vaccinees. No interference was seen in the immunogenicity of routine vaccines. Vaccine efficacy against any rotavirus gastroenteritis (RVGE) was 63.5% (95%CI 20.8-84.4) for the highest concentration (10(5.8) FFU). Efficacy was 81.5% (95%CI 44.5-95.4) against severe RVGE. At its highest concentration (10(5.8) FFU), RIX4414 provided 79.8% (95%CI 26.4-96.3) protection against severe RVGE by G9 strain. RIX4414 was highly immunogenic with a low reactogenicity profile and did not interfere with seroresponse to diphtheria, tetanus, pertussis, hepatitis B and Hib antigens. Two doses of RIX4414 provided significant protection against severe GE caused by RV.

  15. Safety and Immunogenicity of a Recombinant Adenovirus Serotype 35-Vectored HIV-1 Vaccine in Adenovirus Serotype 5 Seronegative and Seropositive Individuals.

    Science.gov (United States)

    Fuchs, Jonathan D; Bart, Pierre-Alexandre; Frahm, Nicole; Morgan, Cecilia; Gilbert, Peter B; Kochar, Nidhi; DeRosa, Stephen C; Tomaras, Georgia D; Wagner, Theresa M; Baden, Lindsey R; Koblin, Beryl A; Rouphael, Nadine G; Kalams, Spyros A; Keefer, Michael C; Goepfert, Paul A; Sobieszczyk, Magdalena E; Mayer, Kenneth H; Swann, Edith; Liao, Hua-Xin; Haynes, Barton F; Graham, Barney S; McElrath, M Juliana

    2015-05-01

    Recombinant adenovirus serotype 5 (rAd5)-vectored HIV-1 vaccines have not prevented HIV-1 infection or disease and pre-existing Ad5 neutralizing antibodies may limit the clinical utility of Ad5 vectors globally. Using a rare Ad serotype vector, such as Ad35, may circumvent these issues, but there are few data on the safety and immunogenicity of rAd35 directly compared to rAd5 following human vaccination. HVTN 077 randomized 192 healthy, HIV-uninfected participants into one of four HIV-1 vaccine/placebo groups: rAd35/rAd5, DNA/rAd5, and DNA/rAd35 in Ad5-seronegative persons; and DNA/rAd35 in Ad5-seropositive persons. All vaccines encoded the HIV-1 EnvA antigen. Antibody and T-cell responses were measured 4 weeks post boost immunization. All vaccines were generally well tolerated and similarly immunogenic. As compared to rAd5, rAd35 was equally potent in boosting HIV-1-specific humoral and cellular immunity and responses were not significantly attenuated in those with baseline Ad5 seropositivity. Like DNA, rAd35 efficiently primed rAd5 boosting. All vaccine regimens tested elicited cross-clade antibody responses, including Env V1/V2-specific IgG responses. Vaccine antigen delivery by rAd35 is well-tolerated and immunogenic as a prime to rAd5 immunization and as a boost to prior DNA immunization with the homologous insert. Further development of rAd35-vectored prime-boost vaccine regimens is warranted.

  16. Immunogenicity, reactogenicity and consistency of production of a Brazilian combined vaccine against diphtheria, tetanus, pertussis and Haemophilus influenzae type b

    Directory of Open Access Journals (Sweden)

    Reinaldo de Menezes Martins

    2008-11-01

    Full Text Available A randomized, double-blinded study evaluating the immunogenicity, safety and consistency of production of a combined diphtheria-tetanus-pertussis-Haemophilus influenzae type b vaccine entirely produced in Brazil by Bio-Manguinhos and Instituto Butantan (DTP/Hib-BM was undertaken. The reference vaccine had the same DTP vaccine but the Hib component was produced using purified materials supplied by GlaxoSmithKline (DTP/Hib-GSK, which is registered and has supplied the Brazilian National Immunization Program for over more than five years. One thousand infants were recruited for the study and received vaccinations at two, four and six months of age. With respect to immunogenicity, the vaccination protocol was followed in 95.6% and 98.4% of infants in the DTP/Hib-BM and DTP/Hib-GSK groups, respectively. For the Hib component of the study, there was 100% seroprotection (>0.15 µg/mL with all three lots of DTP/Hib-BM and DTP/Hib-GSK. The geometric mean titer (GMT was 9.3 µg/mL, 10.3 µg/mL and 10.3 µg/mL for lots 1, 2 and 3 of DTP/Hib-BM, respectively, and the GMT was 11.3 g/mL for DTP/Hib-GSK. For diphtheria, tetanus and pertussis, seroprotection was 99.7%, 100% and 99.9%, respectively, for DTP/Hib-BM, three lots altogether and 99.2%, 100% and 100% for DTP/Hib-GSK. GMTs were similar across all lots and vaccines. Adverse events rates were comparable among the vaccine groups. The Brazilian DTP/Hib vaccine demonstrated an immunogenicity and reactogenicity profile similar to that of the reference vaccine.

  17. Fc-based delivery system enhances immunogenicity of a tuberculosis subunit vaccine candidate consisting of the ESAT-6:CFP-10 complex.

    Science.gov (United States)

    Farsiani, Hadi; Mosavat, Arman; Soleimanpour, Saman; Sadeghian, Hamid; Akbari Eydgahi, Mohammad Reza; Ghazvini, Kiarash; Sankian, Mojtaba; Aryan, Ehsan; Jamehdar, Saeid Amel; Rezaee, Seyed Abdolrahim

    2016-06-21

    Tuberculosis (TB) remains a major global health threat despite chemotherapy and Bacilli Calmette-Guérin (BCG) vaccination. Therefore, a safer and more effective vaccine against TB is urgently needed. This study evaluated the immunogenicity of a recombinant fusion protein consisting of early secreted antigenic target protein 6 kDa (ESAT-6), culture filtrate protein 10 kDa (CFP-10) and the Fc-domain of mouse IgG2a as a novel subunit vaccine. The recombinant expression vectors (pPICZαA-ESAT-6:CFP-10:Fcγ2a and pPICZαA-ESAT-6:CFP-10:His) were transferred into Pichia pastoris. After SDS-PAGE and immunoblotting, the immunogenicity of the recombinant proteins was evaluated in mice. When both recombinant proteins (ESAT-6:CFP-10:Fcγ2a and ESAT-6:CFP-10:His) were used for vaccination, Th1-type cellular responses were induced producing high levels of IFN-γ and IL-12. However, the Fc-tagged recombinant protein induced more effective Th1-type cellular responses with a small increase in IL-4 as compared to the BCG and ESAT-6:CFP-10:His groups. Moreover, mice primed with BCG and then supplemented with ESAT-6:CFP-10:Fcγ2a produced the highest levels of IFN-γ and IL-12 in immunized groups. The findings indicate that when Fcγ2a is fused to the ESAT-6:CFP-10 complex, as a delivery vehicle, there could be an increase in the immunogenicity of this type of subunit vaccine. Therefore, additional investigations are necessary for the development of appropriate Fc-based tuberculosis vaccines.

  18. COMPETITIVENESS IN REGIONAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    ELENA MĂDĂLINA OPRIȚESCU

    2012-12-01

    Full Text Available The development and diversification of the economic activities, the stimulation of investments both in the public sector, but mainly in the private one, the reduction of unemployment, the improvement of living standards are just some of the concepts aimed at by the regional development. The main method which can lead to a balanced development of the regions is financing them differentially so that the underdeveloped regions would obtain proportionally more funds that the developed ones. At a region level, the main objective is represented by the more accelerated growth of the less developed regions, in an effort to diminish the inter-regional and intra-regional development disparities. A key role is played by the sustainable economic growth concept, while also analyzing the competitiveness at a regional level, as well as the main development factors.

  19. [Immunogenicity and safety of the influenza vaccine, in a population older than 55-years in Mexico].

    Science.gov (United States)

    Ayala-Montiel, Octavio; Mascareñas, César; García-Hernández, Delfino; Rendón-Muñiz, Jorge; López, Irma; Felipe Montaño, Luis; Zenteno, I; Franco-Paredes, C

    2005-01-01

    To confirm the immunogenicity and tolerance of the inactivated, fractionated, and purified influenza vaccine, in a Mexican adult population aged 55 and older, medically served at a Petróleos Mexicanos Hospital (Pemex, Mexican Oil Company). The study was conducted between November and December, 2000, among ninety adult subjects aged 55 years and older who were seen at the Hospital Central Sur Pemex. The primary endpoints regarding immunogenicity were the percentage of individuals with protective antibodies targeting hemagglutinins higher than or equal to 1:40, and the percentage of subjects who seroconverted as measured by a four-fold increase in protective antibody production. Secondary endpoints included the frequency of local and systemic reactions to the vaccine. An additional criterion that was evaluated included antigen-antibody affinity assays to measure the polyclonal antibody response to the vaccine and the specific generation of high-affinity antibodies to viral proteins, before and after vaccination. The antibody protection rate was 95.6% against the HINI strain, 98.9% against the H3N2 strain, and a 100% against the B/Yamanashi strain. Seroconversion to the HINI strain was elicited in 74.4% of subjects, to the H3N2 strain in 88.9%, and to the B/Yamanashi strain in 82.2%. Eighteen (20%) subjects developed local reactions; 17 (18.8%) developed a systemic reaction post vaccination at day 5 and nine subjects (10%) at day 28. Local reactions consisted of pain in 10 (11.1%) subjects, redness in 8 (8.8%), and induration in 6 (6.6%). General malaise, headache, and fever were identified in 10, 8.8, and 0% of subjects, respectively, at day 5, and in 4.4, 6.6, and 0%, respectively, at day 28. Influenza vaccine was highly immunogenic in a healthy Mexican adult population aged 55 years and older. The generation of high-affinity antibodies to the virus after vaccination was also demonstrated. Local and systemic adverse reactions to the vaccine identified in our study

  20. Immunogenicity of the hTERT540-548 peptide in cancer

    DEFF Research Database (Denmark)

    Wenandy, L.; Sorensen, R.B.; Sengelov, L.

    2008-01-01

    Human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase, is an attractive target antigen for cancer immunotherapy due to its expression in the vast majority of human tumors. The first immunogenic peptide described from hTERT was the HLA-A2-restricted peptide hTERT540...... in a peptide-specific, HLA-A2-restricted fashion. Furthermore, it was described that vaccination of cancer patients with hTERT540 introduced functional antitumor CD8(+) Tcells in patients. More recently, it was described that most patients with cancer have circulating hTERT540-specific CD8(+) T lymphocytes....... In contrast, several other studies have concluded that hTERT540 is not presented on the surface of tumor cells and that immunization of cancer patients with hTERT540 leads to the introduction of specificTcells that do not recognize tumor cells in vivo. In the present commentary, we summarize these highly...

  1. Emission of soil gas radon concentration around main central thrust in Ukhimath (Rudraprayag) region of Garhwal Himalaya

    International Nuclear Information System (INIS)

    Aswal, Sunita; Kandari, Tushar; Bourai, A.A.; Ramola, R.C.; Sahoo, B.K.

    2016-01-01

    In this paper, the result of systematic measurement of the soil gas radon concentrations is discussed and the background values are defined along and around the Main Central Thrust (MCT) in Ukhimath region of Garhwal Himalaya, India. The Ukhimath region is being subjected to intense neotectonic activities like earthquake and landslide. For the systematic study, the measurement has been done in grid pattern form along and across the MCT. The soil gas radon concentrations were measured using RAD7 with appropriate accessories and followed proper protocol proposed by the manufacturer. The soil gas concentration was measured at different depths 10, 30 and 50 cm with a wide range of different points from the MCT. At 10 cm depth, the soil gas radon concentration was found to vary from 125 to 800 Bq m -3 with an average of 433 Bq m -3 ; at 30 cm, it was found to vary from 203 to 32 500 Bq m -3 with an average of 2387 Bq m -3 ; and at 50 cm, it was found to vary from 1330 to 46 000 Bq m -3 with an average of 15 357 Bq m -3 . The data analysis clearly reveals anomalous values along the fault. (authors)

  2. Toward precision manufacturing of immunogene T-cell therapies.

    Science.gov (United States)

    Xu, Jun; Melenhorst, J Joseph; Fraietta, Joseph A

    2018-05-01

    Cancer can be effectively targeted using a patient's own T cells equipped with synthetic receptors, including chimeric antigen receptors (CARs) that redirect and reprogram these lymphocytes to mediate tumor rejection. Over the past two decades, several strategies to manufacture genetically engineered T cells have been proposed, with the goal of generating optimally functional cellular products for adoptive transfer. Based on this work, protocols for manufacturing clinical-grade CAR T cells have been established, but these complex methods have been used to treat only a few hundred individuals. As CAR T-cell therapy progresses into later-phase clinical trials and becomes an option for more patients, a major consideration for academic institutions and industry is developing robust manufacturing processes that will permit scaling-out production of immunogene T-cell therapies in a reproducible and efficient manner. In this review, we will discuss the steps involved in cell processing, the major obstacles surrounding T-cell manufacturing platforms and the approaches for improving cellular product potency. Finally, we will address the challenges of expanding CAR T-cell therapy to a global patient population. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  3. A Meningococcal Outer Membrane Vesicle Vaccine Incorporating Genetically Attenuated Endotoxin Dissociates Inflammation From Immunogenicity

    Directory of Open Access Journals (Sweden)

    David J. Dowling

    2016-12-01

    Full Text Available Background. Group B Neisseria meningitidis, an endotoxin-producing gram-negative bacterium, causes the highest incidence of group B meningococcus (MenB disease in the first year of life. The Bexsero vaccine is indicated in Europe from 8 weeks of age. Endotoxin components of outer membrane vesicles (OMVs or soluble lipopolysaccharide (LPS represent a potential source of inflammation and residual reactogenicity. The purpose of this study was to compare novel candidate MenB vaccine formulations with licensed vaccines, including Bexsero, using age-specific in vitro culture systems.Methods. OMVs from wild type and inactivated lpxL1 gene mutant N. meningitidis strains were characterized in human neonatal and adult in vitro whole blood assays and dendritic cell arrays. OMVs were benchmarked against licensed vaccines, including Bexsero and whole cell pertussis formulations, with respect to Th-polarizing cytokine and PGE2 production, as well as cell surface activation markers (HLA-DR, CD86, CCR7. OMV immunogenicity was assessed in mice.Results. ΔlpxLI native OMVs demonstrated significantly less cytokine induction in human blood and DCs than Bexsero and most of the other pediatric vaccines (e.g., PedvaxHib, EasyFive, Bacillus Calmette–Guérin (BCG tested. Despite a much lower inflammatory profile in vitro than Bexsero, ΔlpxLI native OMVs still had moderate DC maturing ability and induced robust anti-N. meningitidis antibody responses after murine immunization.Conclusions. A meningococcal vaccine comprised of attenuated LPS-based OMVs with a limited inflammatory profile in vitro induces robust antigen-specific immunogenicity in vivo.

  4. Differentiation of human umbilical cord mesenchymal stromal cells into low immunogenic hepatocyte-like cells.

    Science.gov (United States)

    Zhao, Qinjun; Ren, Hongying; Li, Xiyuan; Chen, Zhong; Zhang, Xiangyu; Gong, Wei; Liu, Yongjun; Pang, Tianxiang; Han, Zhong Chao

    2009-01-01

    Mesenchymal stromal cells (MSC) isolated from several human tissues have been known to differentiate into the hepatic lineage in vitro, but the immunogenicity of the differentiated hepatocyte-like cells (DHC) has not been reported. Umbilical cord (UC) MSC are thought to be an attractive cell source for cell therapy because of their young age and low infection rate compared with adult tissue MSC. Hepatic differentiation of UC-MSC was induced with a 2-step protocol. The expressions of hepatic markers were detected by RT-PCR and immunofluorescence staining. Albumin production and urea secretion were measured by ELISA and colorimetric assay respectively. The immunosuppressive properties of DHC was detected by mixed lymphocyte culture. After incubation with specific growth factors, including hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF), UC MSC exhibited a high hepatic differentiation ability in an adherent culture condition. The differentiated UC MSC showed hepatocyte-like morphology and expressed several liver-specific markers at gene and protein levels. Furthermore, the DHC exhibited hepatocyte-specific functions, including albumin secretion, low-density lipoprotein uptake and urea production. More importantly, DHC did not express major histocompatibility complex (MHC) II antigen and were not able to induce lymphocyte proliferation in mixed lymphocyte culture, as undifferentiated UC MSC did. Our results indicate that UC MSC are able to differentiate into functional hepatocyte-like cells that still retain their low immunogenicity in vitro. More importantly, DHC incorporated into the parenchyma of liver when transplanted into mice with CCl(4)-induced liver injury. Therefore, DHC may be an ideal source for cell therapy of liver diseases.

  5. Gamma-irradiated influenza A virus provides adjuvant activity to a co-administered poorly immunogenic SFV vaccine in mice.

    Directory of Open Access Journals (Sweden)

    Rachelle eBabb

    2014-06-01

    Full Text Available Many currently available inactivated vaccines require 'adjuvants' to maximise the protective immune responses generated against the antigens of interest. Recent studies in mice with gamma-irradiated influenza A virus (γ-FLU have shown its superior efficacy compared to other forms of inactivated FLU vaccines and its ability to induce both potent type-I interferon (IFN-I responses and the IFN-I associated partial lymphocyte activation. Commonly, IFN-I responses induced by adjuvants, combined in vaccine preparations, have been shown to effectively enhance the immunogenicity of the antigens of interest. Therefore, we investigated the potential adjuvant activity of γ-FLU and the possible effect on antibody responses against co-administrated antigens, using gamma-irradiated Semliki Forest Virus (γ-SFV as the experimental vaccine in mice. Our data show that co-vaccination with γ-FLU and γ-SFV resulted in enhanced SFV-specific antibody responses in terms of increased titres by 6 fold and greater neutralisation efficacy, when compared to vaccination with γ-SFV alone. This study provides promising evidence related to the possible use of γ-FLU as an adjuvant to poorly immunogenic vaccines without compromising the vaccine efficacy of γ-FLU.

  6. A replication defective recombinant Ad5 vaccine expressing Ebola virus GP is safe and immunogenic in healthy adults.

    Science.gov (United States)

    Ledgerwood, J E; Costner, P; Desai, N; Holman, L; Enama, M E; Yamshchikov, G; Mulangu, S; Hu, Z; Andrews, C A; Sheets, R A; Koup, R A; Roederer, M; Bailer, R; Mascola, J R; Pau, M G; Sullivan, N J; Goudsmit, J; Nabel, G J; Graham, B S

    2010-12-16

    Ebola virus causes irregular outbreaks of severe hemorrhagic fever in equatorial Africa. Case mortality remains high; there is no effective treatment and outbreaks are sporadic and unpredictable. Studies of Ebola virus vaccine platforms in non-human primates have established that the induction of protective immunity is possible and safety and human immunogenicity has been demonstrated in a previous Phase I clinical trial of a 1st generation Ebola DNA vaccine. We now report the safety and immunogenicity of a recombinant adenovirus serotype 5 (rAd5) vaccine encoding the envelope glycoprotein (GP) from the Zaire and Sudan Ebola virus species, in a randomized, placebo-controlled, double-blinded, dose escalation, Phase I human study. Thirty-one healthy adults received vaccine at 2×10(9) (n=12), or 2×10(10) (n=11) viral particles or placebo (n=8) as an intramuscular injection. Antibody responses were assessed by ELISA and neutralizing assays; and T cell responses were assessed by ELISpot and intracellular cytokine staining assays. This recombinant Ebola virus vaccine was safe and subjects developed antigen specific humoral and cellular immune responses. Published by Elsevier Ltd.

  7. 2014 White Paper on recent issues in bioanalysis: a full immersion in bioanalysis (Part 3 - LBA and immunogenicity).

    Science.gov (United States)

    Stevenson, Lauren; Amaravadi, Lakshmi; Myler, Heather; Salazar-Fontana, Laura; Gorovits, Boris; Kirshner, Susan; Xue, Li; Garofolo, Fabio; Alley, Stephen C; Thway, Theingi; Joyce, Alison; Bansal, Surendra; Beaver, Chris; Bergeron, Annik; Cai, Xiao-Yan; Cojocaru, Laura; DeSilva, Binodh; Dumont, Isabelle; Fluhler, Eric; Fraser, Stephanie; Gouty, Dominique; Gupta, Swati; Haidar, Sam; Hayes, Roger; Ingelse, Benno; Ishii-Watabe, Akiko; Kaur, Surinder; King, Lindsay; Laterza, Omar; Leung, Sheldon; Lévesque, Ann; Ma, Mark; Petit-Frere, Corinne; Pillutla, Renuka; Rose, Mark; Schultz, Gary; Smeraglia, John; Swanson, Steven; Torri, Albert; Vazvaei, Faye; Wakelin-Smith, Jason; Wilson, Amanda; Woolf, Eric; Yang, Tong-Yuan

    2014-01-01

    The 2014 8th Workshop on Recent Issues in Bioanalysis (8th WRIB), a 5-day full immersion in the evolving field of bioanalysis, took place in Universal City, California, USA. Close to 500 professionals from pharmaceutical and biopharmaceutical companies, contract research organizations and regulatory agencies worldwide convened to share, review, discuss and agree on approaches to address current issues of interest in bioanalysis. The topics covered included both small and large molecules, and involved LCMS, hybrid LBA/LCMS, LBA approaches and immunogenicity. From the prolific discussions held during the workshop, specific recommendations are presented in this 2014 White Paper. As with the previous years' editions, this paper acts as a practical tool to help the bioanalytical community continue advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2014 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers the recommendations for Large molecules bioanalysis using LBA and Immunogenicity. Part 1 (Small molecules bioanalysis using LCMS) and Part 2 (Hybrid LBA/LCMS, Electronic Laboratory Notebook and Regulatory Agencies' Input) were published in the Bioanalysis issues 6(22) and 6(23), respectively.

  8. Main effect and interactions of brain regions and gender in the calculation of volumetric asymmetry indices in healthy human brains: ANCOVA analyses of in vivo 3T MRI data.

    Science.gov (United States)

    Roldan-Valadez, Ernesto; Rios, Camilo; Suarez-May, Marcela A; Favila, Rafel; Aguilar-Castañeda, Erika

    2013-12-01

    Macroanatomical right-left hemispheric differences in the brain are termed asymmetries, although there is no clear information on the global influence of gender and brain-regions. The aim of this study was to evaluate the main effects and interactions of these variables on the measurement of volumetric asymmetry indices (VAIs). Forty-seven healthy young-adult volunteers (23 males, 24 females) agreed to undergo brain magnetic resonance imaging in a 3T scanner. Image post processing using voxel-based volumetry allowed the calculation of 54 VAIs from the frontal, temporal, parietal and occipital lobes, limbic system, basal ganglia, and cerebellum for each cerebral hemisphere. Multivariate ANCOVA analysis calculated the main effects and interactions on VAIs of gender and brain regions controlling the effect of age. The only significant finding was the main effect of brain regions (F (6, 9373.605) 44.369, P gender and brain regions (F (6, 50.517) .239, P = .964). Volumetric asymmetries are present across all brain regions, with larger values found in the limbic system and parietal lobe. The absence of a significant influence of gender and age in the evaluation of the numerous measurements generated by multivariate analyses in this study should not discourage researchers to report and interpret similar results, as this topic still deserves further assessment. Copyright © 2013 Wiley Periodicals, Inc.

  9. Immunogenicity in Swine of Orally Administered Recombinant Lactobacillus plantarum Expressing Classical Swine Fever Virus E2 Protein in Conjunction with Thymosin α-1 as an Adjuvant

    Science.gov (United States)

    Xu, Yi-Gang; Guan, Xue-Ting; Liu, Zhong-Mei; Tian, Chang-Yong

    2015-01-01

    Classical swine fever, caused by classical swine fever virus (CSFV), is a highly contagious disease that results in enormous economic losses in pig industries. The E2 protein is one of the main structural proteins of CSFV and is capable of inducing CSFV-neutralizing antibodies and cytotoxic T lymphocyte (CTL) activities in vivo. Thymosin α-1 (Tα1), an immune-modifier peptide, plays a very important role in the cellular immune response. In this study, genetically engineered Lactobacillus plantarum bacteria expressing CSFV E2 protein alone (L. plantarum/pYG-E2) and in combination with Tα1 (L. plantarum/pYG-E2-Tα1) were developed, and the immunogenicity of each as an oral vaccine to induce protective immunity against CSFV in pigs was evaluated. The results showed that recombinant L. plantarum/pYG-E2 and L. plantarum/pYG-E2-Tα1 were both able to effectively induce protective immune responses in pigs against CSFV infection by eliciting immunoglobulin A (IgA)-based mucosal, immunoglobulin G (IgG)-based humoral, and CTL-based cellular immune responses via oral vaccination. Significant differences (P plantarum/pYG-E2-Tα1 and L. plantarum/pYG-E2, suggesting a better immunogenicity of L. plantarum/pYG-E2-Tα1 as a result of the Tα1 molecular adjuvant that can enhance immune responsiveness and augment specific lymphocyte functions. Our data suggest that the recombinant Lactobacillus microecological agent expressing CSFV E2 protein combined with Tα1 as an adjuvant provides a promising strategy for vaccine development against CSFV. PMID:25819954

  10. Safety and immunogenicity of an investigational quadrivalent meningococcal CRM(197) conjugate vaccine, MenACWY-CRM, compared with licensed vaccines in adults in Latin America.

    Science.gov (United States)

    Stamboulian, D; Lopardo, G; Lopez, P; Cortes-Barbosa, C; Valencia, A; Bedell, L; Karsten, A; Dull, P M

    2010-10-01

    This study compared the investigational quadrivalent meningococcal CRM₁₉₇ conjugate vaccine, MenACWY-CRM, with licensed quadrivalent polysaccharide (MPSV4) and conjugate (MenACWY-D) meningococcal vaccines. In this phase III multicenter study, 2505 adults (aged 19-55 years) were randomized to receive either MenACWY-CRM or MenACWY-D, and 326 adults (aged 56-65 years) were randomized to receive either MenACWY-CRM or MPSV4. Sera obtained pre-vaccination and at 1-month post-vaccination were tested for serogroup-specific serum bactericidal activity using human complement (hSBA) for immunogenicity non-inferiority and superiority analyses. The vaccines in all groups were well tolerated. In the 19-55 years age group, post-vaccination geometric mean titers (GMTs) were consistently higher for MenACWY-CRM than for MenACWY-D for all four serogroups. MenACWY-CRM was non-inferior to MenACWY-D for all serogroups, and superior for serogroup Y. In the 56-65 years age group, post-vaccination GMTs were 1.2- to 5.4-fold higher for MenACWY-CRM than for MPSV4 for the four serogroups. MenACWY-CRM is well tolerated and immunogenic in adults aged 19-65 years, with at least non-inferior immunogenicity compared with the currently licensed meningococcal vaccines. Copyright © 2010 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  11. Immunogenicity and safety of a quadrivalent meningococcal polysaccharide CRM conjugate vaccine in infants and toddlers.

    Science.gov (United States)

    Tregnaghi, Miguel; Lopez, Pio; Stamboulian, Daniel; Graña, Gabriela; Odrljin, Tatjana; Bedell, Lisa; Dull, Peter M

    2014-09-01

    This phase III study assessed the safety and immunogenicity of MenACWY-CRM, a quadrivalent meningococcal conjugate vaccine, administered with routine vaccines starting at 2 months of age. Healthy infants received MenACWY-CRM in a two- or three-dose primary infant series plus a single toddler dose. In addition, a two-dose toddler catch-up series was evaluated. Immune responses to MenACWY-CRM were assessed for serum bactericidal activity with human complement (hSBA). Reactogenicity and safety results were collected systematically. After a full infant/toddler series or two-dose toddler catch-up series, MenACWY-CRM elicited immune responses against the four serogroups in 94-100% of subjects. Noninferiority of the two- versus three-dose MenACWY-CRM infant dosing regimen was established for geometric mean titers for all serogroups. Following the three-dose infant primary series, 89-98% of subjects achieved an hSBA ≥ 8 across all serogroups. Immune responses to concomitant routine vaccines given with MenACWY-CRM were noninferior to responses to routine vaccines alone, except for pertactin after the two-dose infant series. Noninferiority criteria were met for all concomitant antigens after the three-dose infant series. MenACWY-CRM vaccination regimens in infants and toddlers were immunogenic and well tolerated. No clinically meaningful effects of concomitant administration with routine infant and toddler vaccines were observed. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Egr2 induced during DC development acts as an intrinsic negative regulator of DC immunogenicity.

    Science.gov (United States)

    Miah, Mohammad Alam; Byeon, Se Eun; Ahmed, Md Selim; Yoon, Cheol-Hee; Ha, Sang-Jun; Bae, Yong-Soo

    2013-09-01

    Early growth response gene 2 (Egr2), which encodes a zinc finger transcription factor, is rapidly and transiently induced in various cell types independently of de novo protein synthesis. Although a role for Egr2 is well established in T-cell development, Egr2 expression and its biological function in dendritic cells (DCs) have not yet been described. Here, we demonstrate Egr2 expression during DC development, and its role in DC-mediated immune responses. Egr2 is expressed in the later stage of DC development from BM precursor cells. Even at steady state, Egr2 is highly expressed in mouse splenic DCs. Egr2-knockdown (Egr2-KD) DCs showed increased levels of major histocompatability complex (MHC) class I and II and co-stimulatory molecules, and enhanced antigen uptake and migratory capacities. Furthermore, Egr2-KD abolished SOCS1 expression and signal transducer and activator of transcription 5 (STAT5) activation during DC development, probably resulting in the enhancement of IL-12 expression and Th1 immunogenicity of a DC vaccine. DC-mediated cytotoxic T lymphocyte (CTL) activation and antitumor immunity were significantly enhanced by Egr2-KD, and impaired by Egr2 overexpression in antigen-pulsed DC vaccines. These data suggest that Egr2 acts as an intrinsic negative regulator of DC immunogenicity and can be an attractive molecular target for DC vaccine development. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Design of Fusion Proteins for Efficient and Soluble Production of Immunogenic Ebola Virus Glycoprotein in Escherichia coli.

    Science.gov (United States)

    Ji, Yang; Lu, Yuan; Yan, Yishu; Liu, Xinxin; Su, Nan; Zhang, Chong; Bi, Shengli; Xing, Xin-Hui

    2018-03-03

    The Ebola hemorrhagic fever caused by Ebola virus is an extremely dangerous disease, and effective therapeutic agents are still lacking. Platforms for the efficient production of vaccines are crucial to ensure quick response against an Ebola virus outbreak. Ebola virus glycoprotein (EbolaGP) on the virion surface is responsible for membrane binding and virus entry, thus becoming the key target for vaccine development. However, heterologous expression of this protein still faces engineering challenges such as low production levels and insoluble aggregation. Here, the authors design and compare various fusion strategies, attaching great importance to the solubility-enhancing effect, and tag removal process. It is found that a C-terminal intein-based tag greatly enhances the solubility of EbolaGP and allows one-step chromatographic purification of the untagged EbolaGP through thiol-catalyzed self-cleavage. The purified untagged EbolaGP alone or with Freund's adjuvant are highly immunogenic, as confirmed in a mouse model. Consequently, the present study puts forward a new strategy for the efficient and soluble expression of untagged immunogenic EbolaGP. The intein-based protein fusion approach may be of importance for the large-scale production of Ebola virus subunit vaccine. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Just-in-time vaccines: Biomineralized calcium phosphate core-immunogen shell nanoparticles induce long-lasting CD8+ T cell responses in mice

    Science.gov (United States)

    Zhou, Weibin; Moguche, Albanus; Chiu, David; Murali-Krishna, Kaja; Baneyx, François

    2014-01-01

    Distributed and on-demand vaccine production could be game-changing for infectious disease treatment in the developing world by providing new therapeutic opportunities and breaking the refrigeration “cold chain”. Here, we show that a fusion protein between a calcium phosphate binding domain and the model antigen ovalbumin can mineralize a biocompatible adjuvant in a single step. The resulting 50 nm calcium phosphate core-immunogen shell particles are comparable to soluble protein in inducing ovalbumin-specific antibody response and class switch recombination in mice. However, single dose vaccination with nanoparticles leads to higher expansion of ovalbumin-specific CD8+ T cells upon challenge with an influenza virus bearing the ovalbumin-derived SIINFEKL peptide, and these cells produce high levels of IFN-γ. Furthermore, mice exhibit a robust antigen-specific CD8+ T cell recall response when challenged with virus 8 months post-immunization. These results underscore the promise of immunogen-controlled adjuvant mineralization for just-in-time manufacturing of effective T cell vaccines. PMID:24275478

  15. Anchoring tick salivary anti-complement proteins IRAC I and IRAC II to membrane increases their immunogenicity.

    Science.gov (United States)

    Gillet, Laurent; Schroeder, Hélène; Mast, Jan; Thirion, Muriel; Renauld, Jean-Christophe; Dewals, Benjamin; Vanderplasschen, Alain

    2009-01-01

    Tick salivary proteins are promising targets for the development of anti-tick vaccines. Recently, we described two paralogous anti-complement proteins, called Ixodes ricinus anti-complement (IRAC) proteins I and II, that are co-expressed in tick I. ricinus salivary glands. However, our previous attempts to immunize rabbits against IRAC via infection with recombinant Bovine herpesvirus 4 (BoHV-4) vectors invariably failed although both recombinants expressed high levels of functional IRAC proteins in vitro. As IRAC are soluble monovalent antigens, one of the possible explanations is that monovalent ligation of the B-cell receptor induces receptor activation but fails to promote antigen presentation, a phenomenon that is thought to induce a state of B-cell tolerance. In the present study, we tried to increase IRAC immunogenicity by expressing them as oligovalent antigens. To this end, IRAC were fused to membrane anchors and BoHV-4 vectors expressing these recombinant forms were produced. The immunization potentials of recombinant viruses expressing either secreted or transmembrane IRAC proteins were then compared. While the former did not induce a detectable immune response against IRAC, the latter led to high titres of anti-IRAC antibodies that only marginally affected tick blood feeding. All together, the data presented in this study demonstrate that the immunogenicity of a soluble antigen can be greatly improved by anchoring it in membrane.

  16. Safety and immunogenicity of an HIV adenoviral vector boost after DNA plasmid vaccine prime by route of administration: a randomized clinical trial.

    Directory of Open Access Journals (Sweden)

    Beryl A Koblin

    Full Text Available In the development of HIV vaccines, improving immunogenicity while maintaining safety is critical. Route of administration can be an important factor.This multicenter, open-label, randomized trial, HVTN 069, compared routes of administration on safety and immunogenicity of a DNA vaccine prime given intramuscularly at 0, 1 and 2 months and a recombinant replication-defective adenovirus type 5 (rAd5 vaccine boost given at 6 months by intramuscular (IM, intradermal (ID, or subcutaneous (SC route. Randomization was computer-generated by a central data management center; participants and staff were not blinded to group assignment. The outcomes were vaccine reactogenicity and humoral and cellular immunogenicity. Ninety healthy, HIV-1 uninfected adults in the US and Peru, aged 18-50 were enrolled and randomized. Due to the results of the Step Study, injections with rAd5 vaccine were halted; thus 61 received the booster dose of rAd5 vaccine (IM: 20; ID:21; SC:20. After the rAd5 boost, significant differences by study arm were found in severity of headache, pain and erythema/induration. Immune responses (binding and neutralizing antibodies, IFN-γ ELISpot HIV-specific responses and CD4+ and CD8+ T-cell responses by ICS at four weeks after the rAd5 booster were not significantly different by administration route of the rAd5 vaccine boost (Binding antibody responses: IM: 66.7%; ID: 70.0%; SC: 77.8%; neutralizing antibody responses: IM: 11.1%; ID: 0.0%; SC 16.7%; ELISpot responses: IM: 46.7%; ID: 35.3%; SC: 44.4%; CD4+ T-cell responses: IM: 29.4%; ID: 20.0%; SC: 35.3%; CD8+ T-cell responses: IM: 29.4%; ID: 16.7%; SC: 50.0%.This study was limited by the reduced sample size. The higher frequency of local reactions after ID and SC administration and the lack of sufficient evidence to show that there were any differences in immunogenicity by route of administration do not support changing route of administration for the rAd5 boost.ClinicalTrials.gov NCT00384787.

  17. Attenuated Human Parainfluenza Virus Type 1 Expressing Ebola Virus Glycoprotein GP Administered Intranasally Is Immunogenic in African Green Monkeys.

    Science.gov (United States)

    Lingemann, Matthias; Liu, Xueqiao; Surman, Sonja; Liang, Bo; Herbert, Richard; Hackenberg, Ashley D; Buchholz, Ursula J; Collins, Peter L; Munir, Shirin

    2017-05-15

    The recent 2014-2016 Ebola virus (EBOV) outbreak prompted increased efforts to develop vaccines against EBOV disease. We describe the development and preclinical evaluation of an attenuated recombinant human parainfluenza virus type 1 (rHPIV1) expressing the membrane-anchored form of EBOV glycoprotein GP, as an intranasal (i.n.) EBOV vaccine. GP was codon optimized and expressed either as a full-length protein or as an engineered chimeric form in which its transmembrane and cytoplasmic tail (TMCT) domains were replaced with those of the HPIV1 F protein in an effort to enhance packaging into the vector particle and immunogenicity. GP was inserted either preceding the N gene (pre-N) or between the N and P genes (N-P) of rHPIV1 bearing a stabilized attenuating mutation in the P/C gene (C Δ170 ). The constructs grew to high titers and efficiently and stably expressed GP. Viruses were attenuated, replicating at low titers over several days, in the respiratory tract of African green monkeys (AGMs). Two doses of candidates expressing GP from the pre-N position elicited higher GP neutralizing serum antibody titers than the N-P viruses, and unmodified GP induced higher levels than its TMCT counterpart. Unmodified EBOV GP was packaged into the HPIV1 particle, and the TMCT modification did not increase packaging or immunogenicity but rather reduced the stability of GP expression during in vivo replication. In conclusion, we identified an attenuated and immunogenic i.n. vaccine candidate expressing GP from the pre-N position. It is expected to be well tolerated in humans and is available for clinical evaluation. IMPORTANCE EBOV hemorrhagic fever is one of the most lethal viral infections and lacks a licensed vaccine. Contact of fluids from infected individuals, including droplets or aerosols, with mucosal surfaces is an important route of EBOV spread during a natural outbreak, and aerosols also might be exploited for intentional virus spread. Therefore, vaccines that protect

  18. Safety and immunogenicity of the RIVM hexavalent meningococcal B vesicle vaccine for Rotterdam children aged 2-3 and 7-8

    NARCIS (Netherlands)

    Labadie J; Kleijn ED de; Lafeber AB; Mees MMM; Booy K; Groot R de; Omme GW van; Dijken H van; Kuipers AJ; Dobbelsteen G van den; Juttmann RE; Wala M; Alphen AJW van; Rumke HC; Sophia Kinderziekenhuis /; LVO

    2000-01-01

    This report documents the results of a randomised controlled phase-II clinical study into the safety and immunogenicity of the RIVM hexavalent MenB vesicle vaccine among 189 children aged 2-3 and 168 children aged 7-8 in the city of Rotterdam, the Netherlands. Two concentrations of the MenB vesicle

  19. Safety and immunogenicity of adenovirus-vectored near-consensus HIV type 1 clade B gag vaccines in healthy adults.

    Science.gov (United States)

    Harro, Clayton D; Robertson, Michael N; Lally, Michelle A; O'Neill, Lori D; Edupuganti, Srilatha; Goepfert, Paul A; Mulligan, Mark J; Priddy, Frances H; Dubey, Sheri A; Kierstead, Lisa S; Sun, Xiao; Casimiro, Danilo R; DiNubile, Mark J; Shiver, John W; Leavitt, Randi Y; Mehrotra, Devan V

    2009-01-01

    Vaccines inducing pathogen-specific cell-mediated immunity are being developed using attenuated adenoviral (Ad) vectors. We report the results of two independent Phase I trials of similar replication-deficient Ad5 vaccines containing a near-consensus HIV-1 clade B gag transgene. Healthy HIV-uninfected adults were enrolled in two separate, multicenter, dose-escalating, blinded, placebo-controlled studies to assess the safety and immunogenicity of a three-dose homologous regimen of Ad5 and MRKAd5 HIV-1 gag vaccines given on day 1, week 4, and week 26. Adverse events were collected for 29 days following each intradeltoid injection. The primary immunogenicity endpoint was the proportion of subjects with a positive unfractionated Gag-specific IFN-gamma ELISPOT response measured 4 weeks after the last dose (week 30). Analyses were performed after combining data for each dose group from both protocols, stratifying by baseline Ad5 titers. Overall, 252 subjects were randomized to receive either vaccine or placebo, including 229 subjects (91%) who completed the study through week 30. Tolerability and immunogenicity did not appear to differ between the Ad5 and MRKAd5 vaccines. The frequency of injection-site reactions was dose dependent. Systemic adverse events were also dose dependent and more frequent in subjects with baseline Ad5 titers or =200, especially after the first dose. The percent of ELISPOT responders and the ELISPOT geometric means overall were significantly higher for all four vaccine doses studied compared to placebo, and were generally higher in vaccine recipients with baseline Ad5 titers or = 200. Ad5 titers increased after vaccination in a dose-dependent fashion. Both Ad5-vectored HIV-1 vaccines were generally well tolerated and induced cell-mediated immune responses against HIV Gag-peptides in the majority of healthy adults with baseline Ad5 titers vaccine-induced immunity to the Ad5 vector may dampen the CMI response to HIV Gag.

  20. Analysis of protective and cytotoxic immune responses in vivo against metabolically inactivated and untreated cells of a mutagenized tumor line (requirements for tumor immunogenicity)

    International Nuclear Information System (INIS)

    Wehrmaker, A.; Lehmann, V.; Droege, W.

    1986-01-01

    The immunogenicity of a mutagenized subline (ESb-D) of the weakly immunogenic T-cell lymphoma L 5178 Y ESb has been characterized. The injection of 10(6) ESb-D cells ip did not establish lethal tumors in untreated DBA/2 mice but established tumors in sublethally irradiated mice. Injection of ESb-D cells into otherwise untreated DBA/2 mice established also a state of protective immunity against the subsequent injection of otherwise lethal doses of ESb tumor cells. Protection was only obtained after injection of intact but not UV-irradiated or mitomycin-C-treated ESb-D cells. A direct T-cell-mediated cytotoxic activity was also demonstrable in the spleen cells of DBA/2 mice after injection of ESb-D cells but not ESb cells. The cytotoxic activity was variant specific for ESb-D target cells, and it was induced only with intact but not UV-irradiated or mitomycin C-treated ESb-D cells. This suggested that the induction of protective and cytotoxic immunity may require the persistence of the antigen or unusually high antigen doses. The in vivo priming for a secondary in vitro cytotoxic response, in contrast, was achieved with intact and also with mitomycin C-treated ESb-D cells but again not with UV-irradiated ESb-D cells. This indicated that the metabolic activity was a minimal requirement for the in vivo immunogenicity of the ESb-D tumor line. The secondary cytotoxic activity was demonstrable on ESb-D and ESb target cells and could be restimulated in vitro about equally well with ESb-D and ESb cells. But the in vivo priming was again only obtained with ESb-D cells and not with ESb cells. These experiments thus demonstrated that the requirements for immunogenicity are more stringent in vivo than in vitro, and more stringent for the induction of direct cytotoxic and protective immunity in vivo than for the in vivo priming for secondary in vitro responses

  1. Anti-enrofloxacin antibody production by using enrofloxacin-screened HSA as an immunogen

    Science.gov (United States)

    Liu, Chune; Lin, Hong; Cao, Limin; Jiang, Jie

    2005-07-01

    A two-step zero-length cross-linking procedure using active esters was successfully adopted for conjugating enrofloxacin (EF) to human serum albumin (HSA). The derived conjugate was characterized by UV spectrum and then used for immunization of BALB/C mice. In enzyme-linked immunosorbent assay (ELISA) and competitive inhibition ELISA experiments, the derived antiserum exhibited high antibody titer (greater than 1:250 000) as well as varied cross-reactivity (from 97.8% to 161.7%) to three analogs of EF belonging to fluoroquinolones family. But over the concentration range studied, no significant cross-reactivity was observed to other group of antibiotics (chloramphenicol, oxytetracycline, sulphamethoxazole and nysfungin). It was confirmed that the synthesized immunogen was highly antigenic and elicited specific antibody responses in BALB/C mice against EF.

  2. Immunogenicity and persistence of the 13-valent Pneumococcal Conjugate Vaccine (PCV13 in patients with untreated Smoldering Multiple Myeloma (SMM: A pilot study

    Directory of Open Access Journals (Sweden)

    Mathilde Bahuaud

    2017-11-01

    Full Text Available Smoldering multiple myeloma (SMM is an asymptomatic clonal plasma cell disorder that frequently progress to multiple myeloma (MM, a disease at high risk of pneumococcal infections. Moreover, if the polysaccharide vaccine is poorly immunogenic in MM, the 13-valent conjugated vaccine has never been tested in clonal plasma cell disorders. We evaluated its immunogenicity for 7 serotypes in 20 patients ≥ 50 years of age with smoldering multiple myeloma (SMM pre and post routine-vaccination with PCV13.Concentrations of IgG specific for 7 serotypes were measured at baseline, 1, 6, and 12 months after vaccination by standardized ELISA and an Opsonophagocytic Assay (OPA. The primary endpoint was the proportion of patients responding to at least 5 of the 7 serotypes by ELISA at one month.At 1 month post vaccination, 12 patients (60% were responders by ELISA, among whom 8 were also responders by OPA. At 6 months, 6 (30% of total of the 12 responders had persistent immunity, and only 2 (10% of total at 12 months. These results suggested a partial response in this population and a rapid decrease in antibody levels in the first months of vaccination.Although one injection of the 13-valent pneumococcal conjugate vaccine is immunogenic in some patients with SMM, the response is transient. Repeated injections are likely to be needed for effective and sustained protection. Keywords: Immunology, Vaccines, Infectious disease

  3. Cancer vaccine development: Designing tumor cells for greater immunogenicity

    Science.gov (United States)

    Bozeman, Erica N.; Shashidharamurthy, Rangaiah; Paulos, Simon A.; Palaniappan, Ravi; D’Souza, Martin; Selvaraj, Periasamy

    2014-01-01

    Cancer vaccine development is one of the most hopeful and exhilarating areas in cancer research. For this reason, there has been a growing interest in the development and application of novel immunotherapies for the treatment of cancer with the focus being on stimulating the immune system to target tumor cells specifically while leaving normal cells unharmed. From such research has emerged a host of promising immunotherapies such as dendritic cell-based vaccines, cytokine therapies and gene transfer technology. These therapies seek to counteract the poor immunogenicity of tumors by augmenting the host’s immune system with a variety of immunostimulatory proteins such as cytokines and costimulatory molecules. While such therapies have proven effective in the induction of anti-tumor immunity in animal models, they are less than optimal and pose a high risk of clinical infeasibility. Herein, we further discuss these immunotherapies as well as a feasible and efficient alternative that, in pre-clinical animal models, allows for the expression of specific immunostimulatory molecules on the surface of tumor cells by a novel protein transfer technology. PMID:20036822

  4. Predictive markers of safety and immunogenicity of adjuvanted vaccines.

    Science.gov (United States)

    Mastelic, Beatris; Garçon, Nathalie; Del Giudice, Giuseppe; Golding, Hana; Gruber, Marion; Neels, Pieter; Fritzell, Bernard

    2013-11-01

    Vaccination represents one of the greatest public health triumphs; in part due to the effect of adjuvants that have been included in vaccine preparations to boost the immune responses through different mechanisms. Although a variety of novel adjuvants have been under development, only a limited number have been approved by regulatory authorities for human vaccines. This report reflects the conclusions of a group of scientists from academia, regulatory agencies and industry who attended a conference on the current state of the art in the adjuvant field. Held at the U.S. Pharmacopeial Convention (USP) in Rockville, Maryland, USA, from 18 to 19 April 2013 and organized by the International Association for Biologicals (IABS), the conference focused particularly on the future development of effective adjuvants and adjuvanted vaccines and on overcoming major hurdles, such as safety and immunogenicity assessment, as well as regulatory scrutiny. More information on the conference output can be found on the IABS website, http://www.iabs.org/. Copyright © 2013. Published by Elsevier Ltd.. All rights reserved.

  5. Peptide-Based Vaccinology: Experimental and Computational Approaches to Target Hypervariable Viruses through the Fine Characterization of Protective Epitopes Recognized by Monoclonal Antibodies and the Identification of T-Cell-Activating Peptides

    Directory of Open Access Journals (Sweden)

    Matteo Castelli

    2013-01-01

    Full Text Available Defining immunogenic domains of viral proteins capable of eliciting a protective immune response is crucial in the development of novel epitope-based prophylactic strategies. This is particularly important for the selective targeting of conserved regions shared among hypervariable viruses. Studying postinfection and postimmunization sera, as well as cloning and characterization of monoclonal antibodies (mAbs, still represents the best approach to identify protective epitopes. In particular, a protective mAb directed against conserved regions can play a key role in immunogen design and in human therapy as well. Experimental approaches aiming to characterize protective mAb epitopes or to identify T-cell-activating peptides are often burdened by technical limitations and can require long time to be correctly addressed. Thus, in the last decade many epitope predictive algorithms have been developed. These algorithms are continually evolving, and their use to address the empirical research is widely increasing. Here, we review several strategies based on experimental techniques alone or addressed by in silico analysis that are frequently used to predict immunogens to be included in novel epitope-based vaccine approaches. We will list the main strategies aiming to design a new vaccine preparation conferring the protection of a neutralizing mAb combined with an effective cell-mediated response.

  6. Evaluation of immunogenicity and protective efficacy of orally delivered Shigella type III secretion system proteins IpaB and IpaD.

    Science.gov (United States)

    Heine, Shannon J; Diaz-McNair, Jovita; Martinez-Becerra, Francisco J; Choudhari, Shyamal P; Clements, John D; Picking, Wendy L; Pasetti, Marcela F

    2013-06-19

    Shigella spp. are food- and water-borne pathogens that cause shigellosis, a severe diarrheal and dysenteric disease that is associated with a high morbidity and mortality in resource-poor countries. No licensed vaccine is available to prevent shigellosis. We have recently demonstrated that Shigella invasion plasmid antigens (Ipas), IpaB and IpaD, which are components of the bacterial type III secretion system (TTSS), can prevent infection in a mouse model of intranasal immunization and lethal pulmonary challenge. Because they are conserved across Shigella spp. and highly immunogenic, these proteins are excellent candidates for a cross-protective vaccine. Ideally, such a vaccine could be administered to humans orally to induce mucosal and systemic immunity. In this study, we investigated the immunogenicity and protective efficacy of Shigella IpaB and IpaD administered orally with a double mutant of the Escherichia coli heat labile toxin (dmLT) as a mucosal adjuvant. We characterized the immune responses induced by oral vs. intranasal immunization and the protective efficacy using a mouse pulmonary infection model. Serum IgG and fecal IgA against IpaB were induced after oral immunization. These responses, however, were lower than those obtained after intranasal immunization despite a 100-fold dosage increase. The level of protection induced by oral immunization with IpaB and IpaD was 40%, while intranasal immunization resulted in 90% protective efficacy. IpaB- and IpaD-specific IgA antibody-secreting cells in the lungs and spleen and T-cell-derived IL-2, IL-5, IL-17 and IL-10 were associated with protection. These results demonstrate the immunogenicity of orally administered IpaB and IpaD and support further studies in humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Immunogenicity and safety of a CRM-conjugated meningococcal ACWY vaccine administered concomitantly with routine vaccines starting at 2 months of age.

    Science.gov (United States)

    Nolan, Terry M; Nissen, Michael D; Naz, Aftab; Shepard, Julie; Bedell, Lisa; Hohenboken, Matthew; Odrljin, Tatjana; Dull, Peter M

    2014-01-01

    Infants are at the highest risk for meningococcal disease and a broadly protective and safe vaccine is an unmet need in this youngest population. We evaluated the immunogenicity and safety of a 4-dose infant/toddler regimen of MenACWY-CRM given at 2, 4, 6, and 12 months of age concomitantly with pentavalent diphtheria-tetanus-acellular pertussis-Hemophilus influenzae type b-inactivated poliovirus-combination vaccine (DTaP-IPV/Hib), hepatitis B vaccine (HBV), 7- or 13-valent conjugate pneumococcal vaccine (PCV), and measles, mumps, and rubella vaccine (MMR). Four doses of MenACWY-CRM induced hSBA titers ≥8 in 89%, 95%, 97%, and 96% of participants against serogroups A, C, W-135, and Y, respectively. hSBA titers ≥8 were present in 76-98% of participants after the first 3 doses. A categorical linear analysis incorporating vaccine group and study center showed responses to routine vaccines administered with MenACWY-CRM were non-inferior to routine vaccines alone, except for seroresponse to the pertussis antigen fimbriae. The reactogenicity profile was not affected when MenACWY-CRM was administered concomitantly with routine vaccines. MenACWY-CRM administered with routine concomitant vaccinations in young infants was well tolerated and induced highly immunogenic responses against each of the serogroups without significant interference with the immune responses to routine infant vaccinations. Healthy 2 month old infants were randomized to receive MenACWY-CRM with routine vaccines (n = 258) or routine vaccines alone (n = 271). Immunogenicity was assessed by serum bactericidal assay using human complement (hSBA). Medically attended adverse events (AEs), serious AEs (SAEs) and AEs leading to study withdrawal were collected throughout the study period.

  8. Safety and immunogenicity of a modified process hepatitis B vaccine in healthy neonates.

    Science.gov (United States)

    Minervini, Gianmaria; McCarson, Barbara J; Reisinger, Keith S; Martin, Jason C; Stek, Jon E; Atkins, Barbara M; Nadig, Karin B; Liska, Vladimir; Schödel, Florian P; Bhuyan, Prakash K

    2012-02-14

    A manufacturing process using a modified adjuvant was developed to optimize the consistency and immunogenicity for recombinant hepatitis B vaccine (control: RECOMBIVAX-HB™). This modified process hepatitis B vaccine (mpHBV), which was previously shown to have an acceptable safety and immunogenicity profile in young adults, has now been studied in newborn infants. Healthy 1-10-day-old neonates (N=566) received 3 intramuscular doses (5μg hepatitis B surface antigen [HBsAg] per dose) of either mpHBV or control at Day 1, and Months 1 and 6. Serum antibody to HBsAg (anti-HBs) was assayed at Month 7 (1 month Postdose 3). Anti-HBs geometric mean titers (GMTs) and seroprotection rates (SPRs) (% of subjects with an anti-HBs titer ≥10mIU/mL) were compared at Month 7. After each dose, injection-site adverse experiences (AEs) and axillary temperatures were recorded for 5 days; systemic AEs were recorded for Days 1-14. Month 7 SPR was 97.9% for the mpHBV group and 98.9% for the control. The GMT was 843.7mIU/mL for the mpHBV group and 670.1mIU/mL for the control. The GMT ratio (mpHBV/control) was 1.26 (95% confidence interval [CI]: 0.94, 1.69), meeting the prespecified non-inferiority criteria. The percentages of subjects reporting any AE, injection-site AEs, or systemic AEs were similar across the 2 vaccination groups. There were no serious AEs. The safety profile of mpHBV was comparable to that of the control vaccine. The geometric mean antibody titer for mpHBV was higher than control vaccine in this infant population, but the difference did not meet the predefined statistical criterion for superiority. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Safety, Pharmacokinetics, Immunogenicity, and Biodistribution of (186)Re-Labeled Humanized Monoclonal Antibody BIWA 4 (Bivatuzumab( in Patients with Early-Stage Breast Cancer.

    NARCIS (Netherlands)

    Koppe, M.; Schaijk, F. van; Roos, J.C.; Leeuwen, P.; Heider, K.H.; Kuthan, H.; Bleichrodt, R.P.

    2004-01-01

    The aim of this prospective study was to evaluate the safety, pharmacokinetics, immunogenicity, and biodistribution of (186)Re-labeled humanized anti-CD44v6 monoclonal antibody (MAb( BIWA 4 (Bivatuzumab( in 9 patients with early-stage breast cancer. Radioimmunoscintigraphy (RIS( was performed within

  10. Isolation, characterization, virulence and immunogenicity testing of field isolates of Pasteurella multocida, Staphylococcus aureus, and Streptococcus agalactiae in laboratory settings.

    Science.gov (United States)

    Qudratullah; Muhammad, G; Saqib, M; Bilal, M Qamar

    2017-08-01

    The present study was designed to investigate isolation, characterization, virulence and immunogenicity testing of field isolates of Pasteurella multocida, Staphylococcus aureus, and Streptococcus agalactiae in rabbits and mice. Isolates of P. multocida, S. aureus and Str. agalactiae recovered from field cases of Hemorragic septicemia and mastitis were scrutinized for virulence/pathogenicity and immunogenicity. Mouse LD 50 of P. multocida showed that P. multocida isolate No.1 was more virulent than isolates No. 2 and 3. Virulence of isolate No.1S. aureus and Str. agalactiae revealed that 100, 80% rabbits died within 18h of inoculation. Seven-digit numerical profiles of these 4 isolates with API ® Staph test strips isolates, No.1 (6736153) showed good identification (S. aureus id=90.3%). Indirect ELISA-based serum antibody titers to P. multocida isolate No.1, S. aureus No.1, Str. agalactiae, isolate No.1 elicited high antibody titers 1.9, 1.23, 1.12 respectively. All the pathogens of Isolate No. 1 (P. multocida, S. aureus Str. agalactiae), were high antibody than others isolates. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A novel role for autologous tumour cell vaccination in the immunotherapy of the poorly immunogenic B16-BL6 melanoma.

    Science.gov (United States)

    Geiger, J D; Wagner, P D; Shu, S; Chang, A E

    1992-06-01

    The growth of immunogenic tumours stimulates the generation of tumour-sensitized, but not functional, pre-effector T cells in the draining lymph nodes. These pre-effector cells can mature into effector cells upon in-vitro stimulation with anti-CD3 and IL-2. In the current study, using a defined, poorly immunogenic tumour, B16-BL6 melanoma, the pre-effector cell response was not evident during progressive tumour growth but was elicited by vaccination with irradiated tumour cells admixed with Corynebacterium parvum. After anti-CD3/IL-2 activation, these cells were capable of mediating the regression of established pulmonary metastases. The efficacy of the vaccine depended on the doses of both tumour cells and the adjuvant. While higher numbers of tumour cells were more effective, an optimal dose (12.5 micrograms) of C. parvum was required. The dose of irradiation was not a critical factor. After vaccination, kinetic studies revealed that the pre-effector cell response was evident 4 days later and declined after 14 days. These observations illustrate the potential role of active immunization in the cellular therapy of cancer.

  12. Immunogenicity and protective efficacy of heparan sulphate binding proteins of Entamoeba histolytica in a guinea pig model of intestinal amoebiasis.

    Science.gov (United States)

    Kaur, Upninder; Khurana, Sumeeta; Saikia, Uma Nahar; Dubey, M L

    2013-11-01

    Entamoeba histolytica infection is associated with considerable morbidity and mortality in the form of intestinal and extraintestinal amoebiasis. No vaccine is yet available for amoebiasis. Heparan Sulphate Binding Proteins (HSBPs) from E. histolytica were evaluated for immunogenicity and protective efficacy in a Guinea pig model. Animals were immunized subcutaneously with 30μg of HSBP by three weekly inoculations. The immunogenicity of HSBP was determined by antibody response (IgG, IgM and IgA), splenocyte proliferation assay and in vitro direct amoebicidal assay with splenic lymphocytes and monocytes from vaccinated and control animals. The efficacy of the vaccine was evaluated by challenge infection to vaccinated and control animals by intra-caecal inoculation of E. histolytica trophozoites and comparing gross and histopathological findings in caeca of these animals. HSBP was found to induce specific anti-amoebic response as seen by specific antibody production and direct amoebicidal activity of splenocytes. The vaccine also showed partial protection against challenge infection in vaccinated animals as shown by mild/absent lesions and histopathological findings. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Implications of greenhouse gas emission mitigation scenarios for the main Asian regions

    International Nuclear Information System (INIS)

    Ruijven, Bas J. van; Vuuren, Detlef P. van; Vliet, Jasper van; Mendoza Beltran, Angelica; Deetman, Sebastiaan; Elzen, Michel G.J. den

    2012-01-01

    In order to limit global mean temperature increase, long-term greenhouse gas emissions need to be reduced. This paper discusses the implications of greenhouse gas emission reductions for major Asian regions (China, India, Indonesia, South-East Asia, Japan and Korea) based on results from the IMAGE modelling framework. Energy use in regions and economic sectors is affected differently by ambitious climate policies. We find that the potential for emission reduction varies widely between regions. With respect to technology choices in the power sector, we find major application of CO 2 storage in Indonesia and India, whereas Korea and India apply more solar and wind. Projections for Japan include a (debatable) large share of nuclear power. China and, India, and South-East Asia, show a diverse technology choice in the power sector. For the industry sector, we find that the recent rapid growth in China limits the potential for emission reduction in the next decades, assuming that recently built coal-based industry facilities are in use for the next decades. For the residential sector, the model results show that fewer households switch from traditional fuels to modern fuels in GHG mitigation scenarios. With respect to co-benefits, we find lower imports of fossil energy in mitigation scenarios and a clear reduction of air pollutant emissions. - Highlights: ► The potential for emission reduction varies widely between regions. ► Some regions have attractive CO 2 storage capacity; others have low-cost solar/wind potential. ► The recent rapid growth of Chinese industry may limit emission reduction potential for decades. ► Fewer households switch from traditional fuels to modern fuels in mitigation scenarios. ► Mitigation scenarios show less fossil energy import and reduction of air pollutant emission.

  14. Associations between damage location and five main body region injuries of MAIS 3-6 injured occupants.

    Science.gov (United States)

    Tang, Youming; Cao, Libo; Kan, Steven

    2014-05-08

    To examine the damage location distribution of five main body region injuries of maximum abbreviated injury score (MAIS) 3-6 injured occupants for nearside struck vehicle in front-to-side impact crashes. MAIS 3-6 injured occupants information was extracted from the US-National Automotive Sampling System/Crashworthiness Data System in the year 2007; it included the head/face/neck, chest, pelvis, upper extremity and lower extremity. Struck vehicle collision damage was classified in a three-dimensional system according to the J224 Collision Deformation Classification of SAE Surface Vehicle Standard. Nearside occupants seated directly adjacent to the struck side of the vehicle with MAIS 3-6 injured, in light truck vehicles-passenger cars (LTV-PC) side impact crashes. Distribution of MAIS 3-6 injured occupants by body regions and specific location of damage (lateral direction, horizontal direction and vertical direction) were examined. Injury risk ratio was also assessed. The lateral crush zone contributed to MAIS 3-6 injured occupants (n=705) and 50th centile injury risks when extended into zone 3. When the crush extended to zone 4, the injury risk ratio of MAIS 3-6 injured occupants approached 81%. The horizontal crush zones contributing to the highest injury risk ratio of MAIS 3-6 occupants were zones 'D' and 'Y', and the injury risk ratios were 25.4% and 36.9%, respectively. In contrast, the lowest injury risk ratio was 5.67% caused by zone 'B'. The vertical crush zone which contributed to the highest injury risk ratio of MAIS 3-6 occupants was zone 'E', whose injury risk ratio was 58%. In contrast, the lowest injury risk ratio was 0.14% caused by zone 'G+M'. The highest injury risk ratio of MAIS 3-6 injured occupants caused by crush intrusion between 40 and 60 cm in LTV-PC nearside impact collisions and the damage region of the struck vehicle was in the zones 'E' and 'Y'.

  15. Immunogenicity of a virosomally-formulated Plasmodium falciparum GLURP-MSP3 chimeric protein-based malaria vaccine candidate in comparison to adjuvanted formulations

    DEFF Research Database (Denmark)

    Tamborrini, Marco; Stoffel, Sabine A; Westerfeld, Nicole

    2011-01-01

    In clinical trials, immunopotentiating reconstituted influenza virosomes (IRIVs) have shown great potential as a versatile antigen delivery platform for synthetic peptides derived from Plasmodium falciparum antigens. This study describes the immunogenicity of a virosomally-formulated recombinant ...... fusion protein comprising domains of the two malaria vaccine candidate antigens MSP3 and GLURP....

  16. EMISSION OF SOIL GAS RADON CONCENTRATION AROUND MAIN CENTRAL THRUST IN UKHIMATH (RUDRAPRAYAG) REGION OF GARHWAL HIMALAYA.

    Science.gov (United States)

    Aswal, Sunita; Kandari, Tushar; Sahoo, B K; Bourai, A A; Ramola, R C

    2016-10-01

    In this paper, the result of systematic measurement of the soil gas radon concentrations is discussed and the background values are defined along and around the Main Central Thrust (MCT) in Ukhimath region of Garhwal Himalaya, India. The Ukhimath region is being subjected to intense neotectonic activities like earthquake and landslide. For the systematic study, the measurement has been done in grid pattern form along and across the MCT. The soil gas radon concentrations were measured using RAD7 with appropriate accessories and followed proper protocol proposed by the manufacturer. The soil gas concentration was measured at different depths 10, 30 and 50 cm with a wide range of different points from the MCT. At 10 cm depth, the soil gas radon concentration was found to vary from 125 to 800 Bq m -3 with an average of 433 Bq m -3 ; at 30 cm, it was found to vary from 203 to 32 500 Bq m -3 with an average of 2387 Bq m -3 ; and at 50 cm, it was found to vary from 1330 to 46 000 Bq m -3 with an average of 15 357 Bq m -3 The data analysis clearly reveals anomalous values along the fault. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. A paramyxovirus-vectored intranasal vaccine against Ebola virus is immunogenic in vector-immune animals.

    Science.gov (United States)

    Yang, Lijuan; Sanchez, Anthony; Ward, Jerrold M; Murphy, Brian R; Collins, Peter L; Bukreyev, Alexander

    2008-08-01

    Ebola virus (EBOV) causes outbreaks of a highly lethal hemorrhagic fever in humans. The virus can be transmitted by direct contact as well as by aerosol and is considered a potential bioweapon. Because direct immunization of the respiratory tract should be particularly effective against infection of mucosal surfaces, we previously developed an intranasal vaccine based on replication-competent human parainfluenza virus type 3 (HPIV3) expressing EBOV glycoprotein GP (HPIV3/EboGP) and showed that it is immunogenic and protective against a high dose parenteral EBOV challenge. However, because the adult human population has considerable immunity to HPIV3, which is a common human pathogen, replication and immunogenicity of the vaccine in this population might be greatly restricted. Indeed, in the present study, replication of the vaccine in the respiratory tract of HPIV3-immune guinea pigs was found to be restricted to undetectable levels. This restriction appeared to be based on both neutralizing antibodies and cellular or other components of the immunity to HPIV3. Surprisingly, even though replication of HPIV3/EboGP was highly restricted in HPIV3-immune animals, it induced a high level of EBOV-specific antibodies that nearly equaled that obtained in HPIV3-naive animals. We also show that the previously demonstrated presence of functional GP in the vector particle was not associated with increased replication in the respiratory tract nor with spread beyond the respiratory tract of HPIV3-naive guinea pigs, indicating that expression and functional incorporation of the attachment/penetration glycoprotein of this systemic virus did not mediate a change in tissue tropism.

  18. Computationally optimized deimmunization libraries yield highly mutated enzymes with low immunogenicity and enhanced activity.

    Science.gov (United States)

    Salvat, Regina S; Verma, Deeptak; Parker, Andrew S; Kirsch, Jack R; Brooks, Seth A; Bailey-Kellogg, Chris; Griswold, Karl E

    2017-06-27

    Therapeutic proteins of wide-ranging function hold great promise for treating disease, but immune surveillance of these macromolecules can drive an antidrug immune response that compromises efficacy and even undermines safety. To eliminate widespread T-cell epitopes in any biotherapeutic and thereby mitigate this key source of detrimental immune recognition, we developed a Pareto optimal deimmunization library design algorithm that optimizes protein libraries to account for the simultaneous effects of combinations of mutations on both molecular function and epitope content. Active variants identified by high-throughput screening are thus inherently likely to be deimmunized. Functional screening of an optimized 10-site library (1,536 variants) of P99 β-lactamase (P99βL), a component of ADEPT cancer therapies, revealed that the population possessed high overall fitness, and comprehensive analysis of peptide-MHC II immunoreactivity showed the population possessed lower average immunogenic potential than the wild-type enzyme. Although similar functional screening of an optimized 30-site library (2.15 × 10 9 variants) revealed reduced population-wide fitness, numerous individual variants were found to have activity and stability better than the wild type despite bearing 13 or more deimmunizing mutations per enzyme. The immunogenic potential of one highly active and stable 14-mutation variant was assessed further using ex vivo cellular immunoassays, and the variant was found to silence T-cell activation in seven of the eight blood donors who responded strongly to wild-type P99βL. In summary, our multiobjective library-design process readily identified large and mutually compatible sets of epitope-deleting mutations and produced highly active but aggressively deimmunized constructs in only one round of library screening.

  19. Safety and immunogenicity of a recombinant parvovirus B19 vaccine formulated with MF59C.1.

    Science.gov (United States)

    Ballou, W Ripley; Reed, Jennifer L; Noble, William; Young, Neal S; Koenig, Scott

    2003-02-15

    A recombinant human parvovirus B19 vaccine (MEDI-491; MedImmune) composed of the VP1 and VP2 capsid proteins and formulated with MF59C.1 adjuvant was evaluated in a randomized, double-blind, phase 1 trial. Parvovirus B19-seronegative adults (n=24) received either 2.5 or 25 microg MEDI-491 at 0, 1, and 6 months. MEDI-491 was safe and immunogenic. All volunteers developed neutralizing antibody titers that peaked after the third immunization and were sustained through study day 364.

  20. Evaluating the safety and immunogenicity of yellow fever vaccines: a systematic review

    Directory of Open Access Journals (Sweden)

    Thomas RE

    2015-04-01

    Full Text Available Roger E Thomas Department of Family Medicine, G012 Health Sciences Center, University of Calgary Medical School, Calgary, AB, Canada Purpose: To review the safety and immunogenicity of yellow fever vaccines. Literature search: The Cochrane Library (including the Cochrane CENTRAL Register of Controlled Trials, the Cochrane Database of Systematic Reviews, and the NHS Database of Abstracts of Reviews of Effects; MEDLINE; EMBASE; BIOSIS Previews; Global Health; CAB Abstracts; and the Lilacs Database of Latin American and Caribbean literature were searched for individual studies and systematic reviews through January 1, 2015. Results: Six yellow fever vaccines are currently produced, and they are effective against all seven yellow fever virus strains. There is a 99.2% homology of the genome sequences of the six current vaccines. Four systematic reviews identified very small numbers of serious adverse events. A systematic review (updated of all published cases identified 133 serious adverse events that met the Brighton Collaboration criteria: 32 anaphylactic, 42 neurologic (one death, 57 viscerotropic (25 deaths, and two of both neurologic and viscerotropic SAEs. The Sanofi Pasteur Global Pharmacovigilance database reported 276 million doses of Stamaril™ distributed worldwide and identified 12 reports of yellow fever vaccine-associated viscerotropic disease (YEL-AVD, 24 of yellow fever vaccine-associated neurologic disease (YEL-AND, and 33 reports of anaphylaxis (many already published. The Biomanguinhos manufacturer's database reported 110 million doses distributed worldwide between 1999 and 2009, and the rate of YEL-AND was estimated at 0.084/100,000 doses distributed and YEL-AVD at 0.02/100,000 doses distributed. Conclusion: Reports of serious adverse events are mostly from travelers from developed countries, and there is likely serious underreporting for developing countries. On the basis of the published reports, the yellow fever vaccines are

  1. The in vitro immunogenic potential of caspase-3 proficient breast cancer cells with basal low immunogenicity is increased by hypofractionated irradiation.

    Science.gov (United States)

    Kötter, Bernhard; Frey, Benjamin; Winderl, Markus; Rubner, Yvonne; Scheithauer, Heike; Sieber, Renate; Fietkau, Rainer; Gaipl, Udo S

    2015-09-17

    Radiotherapy is an integral part of breast cancer treatment. Immune activating properties of especially hypofractionated irradiation are in the spotlight of clinicians, besides the well-known effects of radiotherapy on cell cycle and the reduction of the clonogenic potential of tumor cells. Especially combination of radiotherapy with further immune stimulation induces immune-mediated anti-tumor responses. We therefore examined whether hypofractionated irradiation alone or in combination with hyperthermia as immune stimulants is capable of inducing breast cancer cells with immunogenic potential. Clonogenic assay, AnnexinA5-FITC/Propidium iodide assay and ELISA analyses of heat shock protein 70 and high mobility group box 1 protein were applied to characterize colony forming capability, cell death induction, cell death forms and release of danger signals by breast cancer cells in response to hypofractionated radiation (4x4Gy, 6x3Gy) alone and in combination with hyperthermia (41.5 °C for 1 h). Caspase-3 deficient, hormone receptor positive, p53 wild type MCF-7 and caspase-3 intact, hormone receptor negative, p53 mutated MDA-MB231 breast cancer cells, the latter in absence or presence of the pan-caspase inhibitor zVAD-fmk, were used. Supernatants of the treated tumor cells were analyzed for their potential to alter the surface expression of activation markers on human-monocyte-derived dendritic cells. Irradiation reduced the clonogenicity of caspase deficient MCF-7 cells more than of MDA-B231 cells. In contrast, higher amounts of apoptotic and necrotic cells were induced in MDA-B231 cells after single irradiation with 4Gy, 10Gy, or 20Gy or after hypofractionated irradiation with 4x4Gy or 6x3Gy. MDA-B231 cells consecutively released higher amounts of Hsp70 and HMGB1 after hypofractionated irradiation. However, only the release of Hsp70 was further increased by hyperthermia. Both, apoptosis induction and release of the danger signals, was dependent on caspase-3. Only

  2. Different levels of immunogenicity of two strains of Fowlpox virus as recombinant vaccine vectors eliciting T-cell responses in heterologous prime-boost vaccination strategies.

    Science.gov (United States)

    Cottingham, Matthew G; van Maurik, Andre; Zago, Manola; Newton, Angela T; Anderson, Richard J; Howard, M Keith; Schneider, Jörg; Skinner, Michael A

    2006-07-01

    The FP9 strain of F has been described as a more immunogenic recombinant vaccine vector than the Webster FPV-M (FPW) strain (R. J. Anderson et al., J. Immunol. 172:3094-3100, 2004). This study expands the comparison to include two separate recombinant antigens and multiple, rather than single, independent viral clones derived from the two strains. Dual-poxvirus heterologous prime-boost vaccination regimens using individual clones of recombinant FP9 or FPW in combination with recombinant modified V Ankara expressing the same antigen were evaluated for their ability to elicit T-cell responses against recombinant antigens from Plasmodium berghei (circumsporozoite protein) or human immunodeficiency virus type 1 (a Gag-Pol-Nef fusion protein). Gamma interferon enzyme-linked immunospot assay and fluorescence-activated cell sorting assays of the responses to specific epitopes confirmed the approximately twofold-greater cellular immunogenicity of FP9 compared to FPW, when given as the priming or boosting immunization. Equality of transgene expression in mouse cells infected with the two strains in vitro was verified by Western blotting. Directed partial sequence analysis and PCR analysis of FPW and comparison to available whole-genome sequences revealed that many loci that are mutated in the highly attenuated and culture-adapted FP9 strain are wild type in FPW, including the seven multikilobase deletions. These "passage-specific" alterations are hypothesized to be involved in determining the immunogenicity of fowlpox virus as a recombinant vaccine vector.

  3. Immunogenicity and safety of a tetravalent E. coli O-antigen bioconjugate vaccine in animal models.

    Science.gov (United States)

    van den Dobbelsteen, Germie P J M; Faé, Kellen C; Serroyen, Jan; van den Nieuwenhof, Ingrid M; Braun, Martin; Haeuptle, Micha A; Sirena, Dominique; Schneider, Joerg; Alaimo, Cristina; Lipowsky, Gerd; Gambillara-Fonck, Veronica; Wacker, Michael; Poolman, Jan T

    2016-07-29

    Extra-intestinal pathogenic Escherichia coli (ExPEC) are major human pathogens; however, no protective vaccine is currently available. We assessed in animal models the immunogenicity and safety of a 4-valent E. coli conjugate vaccine (ExPEC-4V, serotypes O1, O2, O6 and O25 conjugated to Exotoxin A from Pseudomonas aeruginosa (EPA)) produced using a novel in vivo bioconjugation method. Three doses of ExPEC-4V (with or without aluminum hydroxide) were administered to rabbits (2μg or 20μg per O-antigen, subcutaneously), mice (0.2μg or 2μg per O-antigen, subcutaneously) and rats (0.4μg or 4μg per O-antigen, intramuscularly). Antibody persistence and boostability were evaluated in rats using O6-EPA monovalent conjugate (0.4μg O-antigen/dose, intramuscularly). Toxicity was assessed in rats (16μg total polysaccharide, intramuscularly). Serum IgG and IgM antibodies were measured by ELISA. Robust antigen-specific IgG responses were observed in all animal models, with increased responses in rabbits when administered with adjuvant. O antigen-specific antibody responses persisted up to 168days post-priming. Booster immunization induced a rapid recall response. Toxicity of ExPEC-4V when administered to rats was considered to be at the no observed adverse effect level. ExPEC-4V conjugate vaccine showed good immunogenicity and tolerability in animal models supporting progression to clinical evaluation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A Future Estimation of the Surface Runoff in the Greek Region: A Case Study of one of the Main Catchments Areas (Aravissos - Central Macedonia)

    Science.gov (United States)

    Anagnostopoulou, C.; Tolika, K.; Vafiadis, M.

    2010-09-01

    According to the IPCC latest report (IPCC, 2007) many semi-arid and arid areas, as the Mediterranean basin, are particularly exposed to the impacts of climate change and may suffer a decrease of water resources in the future. By the middle of the 21st century it is estimated that the annual average river runoff and water availability will decrease over these dry regions at mid-latitudes. So, it is of great importance the study of the future changes in the hydrological cycle, due to the increasing freshwater demands. The main scope of the present study is to estimate the future changes of the surface runoff in the Aravissos area (central Macedonia - Greece) due to the enhanced greenhouse effect until the end of the 21st century. The selection of Aravissos was based to the fact that the water needs of the second largest in population city in Greece (Thessaloniki) are covered mainly by the selected catchments area. Daily precipitation, temperature, relative humidity, wind speed and sunlight duration data derived from updated regional climate models, are used for selected grid points covering the domain of study. The main two climatological parameters (precipitation -temperature) are on a first step evaluated in comparison to re-analysis data (E-Obs -Ensembles project) for the same grid points. On a second step, utilizing several different evapotranspiration methods we calculated the surface runoff for two different time periods: the first in the middle and the second at the end of the 21st century. The first results of the study showed that the surface runoff depends on the methodology used for the calculation of the evapotranspiration but also from the regional model. Acknowledgements: This study has been supported by the CC-WaterS project (Contract number SEE/A/022/2.1/X)

  5. A randomised, double-blind, non-inferiority clinical trial on the safety and immunogenicity of a tetanus, diphtheria and monocomponent acellular pertussis (TdaP) vaccine in comparison to a tetanus and diphtheria (Td) vaccine when given as booster vaccinations to healthy adults

    DEFF Research Database (Denmark)

    Thierry-Carstensen, Birgit; Jordan, Karina; Uhlving, Hilde Hylland

    2012-01-01

    Increasing incidence of pertussis in adolescents and adults has stimulated the development of safe and immunogenic acellular pertussis vaccines for booster vaccination of adolescents and adults.......Increasing incidence of pertussis in adolescents and adults has stimulated the development of safe and immunogenic acellular pertussis vaccines for booster vaccination of adolescents and adults....

  6. Effects of Co60 gamma radiation on the immunogenic and antigenic properties of Bothrops jararacussu venom

    International Nuclear Information System (INIS)

    Spencer, Patrick J.; Nascimento, Nanci do; Rogero, Jose R.

    1997-01-01

    Ionizing radiation has been successfully employed to attenuate animals toxins and venoms for immunizing antisera producing animals. However, the radiation effects on antigenicity and immunogenecity have not yet been elucidated. In the present work, we investigated the effects of gamma rays on the antigenic and immunogenicity have not yet been elucidated. In the present work, we investigated the effects of gamma rays on the antigenic and immunogenic behaviour of Bothrops jararacussu venon. Venom samples (2mg/ml in 150 mM NaCl) were irradiated with 500, 1000 and 2000 Gy of 60 Co gamma rays. These samples were submitted to antigen capture ELISA on plates coated with commercial bothropic antiserum. Results suggest a loss of reactivity of the 1000 and 2000 Gy irradiated samples. Antibodies against native and 2000 Gy irradiated venoms were produced in rabbits. Both sera able to bind native venom with a slightly higher titer for anti-irradiated serum. These data suggest that radiation promoted structural modification on the antigen molecules. However since the antibodies produced against irradiated antivenom were able to recognize native venom, there must have been preservation of some antigenic determinants. It has already been demosntrated that irradiation of proteins leads to structural modifications and unfolding of the molecules. Our data suggest that irradiation led to conformational epitopes destruction with preservation of linear epitopes and that the response against irradiated venom may be attributed to these linear antigenic determinants. (author). 8 refs., 3 figs

  7. Influence of the main reactive species formed during the detoxication process of toxins by ionizing radiation

    International Nuclear Information System (INIS)

    Silva, Murilo Casare da

    2003-01-01

    Ionizing radiation has been satisfactorily employed for venoms detoxification. In this report, the radiation was employed to verify the effects caused by the radiolysis products of water on two toxins (Crotoxin and Crotamine) purified from Crotalus durissus terrificus venom. These effects were analyzed using some substances called 'scavengers', those substances competes for specific reactive species hindering them to act on the toxins molecules. In order to study the possible structural damages caused on the toxins, UV spectra, fluorescence, mass spectrometry, enzymatic activity were employed. In addition, biochemical techniques were employed to evaluate the decrease of toxicity and the immunogenicity of toxins before and after the irradiation. Our results indicate that the irradiation promotes structural damages, even at low doses. These modifications lead to a gradual decrease in toxicity, however, the immunogenic properties of the toxins are preserved. (author)

  8. Increased immunogenicity and protective efficacy of influenza M2e fused to a tetramerizing protein.

    Directory of Open Access Journals (Sweden)

    Anne-Marie Carola Andersson

    Full Text Available The ectodomain of the matrix 2 protein (M2e of influenza A virus represents an attractive target for developing a universal influenza A vaccine, with its sequence being highly conserved amongst human variants of this virus. With the aim of targeting conformational epitopes presumably shared by diverse influenza A viruses, a vaccine (M2e-NSP4 was constructed linking M2e (in its consensus sequence to the rotavirus fragment NSP4(98-135; due to its coiled-coil region this fragment is known to form tetramers in aqueous solution and in this manner we hoped to mimick the natural configuration of M2e as presented in membranes. M2e-NSP4 was then evaluated side-by-side with synthetic M2e peptide for its immunogenicity and protective efficacy in a murine influenza challenge model. Here we demonstrate that M2e fused to the tetramerizing protein induces an accelerated, augmented and more broadly reactive antibody response than does M2e peptide as measured in two different assays. Most importantly, vaccination with M2e-NSP4 caused a significant decrease in lung virus load early after challenge with influenza A virus and maintained its efficacy against a lethal challenge even at very low vaccine doses. Based on the results presented in this study M2e-NSP4 merits further investigation as a candidate for or as a component of a universal influenza A vaccine.

  9. Prevalence of brucellosis in dairy cattle from the main dairy farming regions of Eritrea

    Directory of Open Access Journals (Sweden)

    Massimo Scacchia

    2013-04-01

    Full Text Available In order to get a reliable estimate of brucellosis prevalence in Eritrean dairy cattle, a cross-sectional study was carried out in 2009. The survey considered the sub-population of dairy cattle reared in modern small- and medium-sized farms. Samples were screened with the Rose Bengal test (RBT and positive cases were confirmed with the complement fixation test (CFT. A total of 2.77%(417/15 049; Credibility Interval CI: 2.52% – 3.05% of the animals tested in this study were positive for antibodies to Brucellaspecies, with a variable and generally low distribution of positive animals at regional level. The highest seroprevalence was found in the Maekel region (5.15%; CI: 4.58% – 5.80%, followed by the Debub (1.99%; CI: 1.59% – 2.50% and Gash-Barka (1.71%; CI: 1.34% – 2.20% regions. Seroprevalence at sub-regional levels was also generally low, except for two sub-regions of Debub and the sub-region Haicota from the Gash-Barka region. Seroprevalence was high and more uniformly distributed in the Maekel region, namely in the Asmara, Berik and Serejeka sub-regions. Considering the overall low brucellosis prevalence in the country, as identified by the present study, a brucellosis eradication programme for dairy farms using a test-and-slaughter policy would be possible. However, to encourage the voluntary participation of farmers to the programme and to raise their awareness of the risks related to the disease for animals and humans, an extensive public awareness campaign should be carefully considered, as well as strict and mandatory dairy movement control.

  10. 2-Year Efficacy, Immunogenicity, and Safety of Vigoo Enterovirus 71 Vaccine in Healthy Chinese Children: A Randomized Open-Label Study.

    Science.gov (United States)

    Wei, Mingwei; Meng, Fanyue; Wang, Shiyuan; Li, Jingxin; Zhang, Yuntao; Mao, Qunying; Hu, Yuemei; Liu, Pei; Shi, Nianmin; Tao, Hong; Chu, Kai; Wang, Yuxiao; Liang, Zhenglun; Li, Xiuling; Zhu, Fengcai

    2017-01-01

     This study evaluated the 2-year efficacy, immunogenicity, and safety of the Vigoo enterovirus 71 (EV71) vaccine.  In an initial phase 3 study, we randomly assigned healthy infants and children aged 6-35 months (ratio, 1:1) to receive 2 doses of either EV71 vaccine (5120 participants) or placebo (5125 participants) at days 0 and 28, and followed them for 12 months after vaccination. In this extended follow-up study, we continued to evaluate the efficacy, immunogenicity, and safety of the EV71 vaccine for up to 2 years.  Overall efficacy was 94.84% (95% confidence interval [CI], 83.53%-98.38%) during the 2-year follow-up period (P vaccine efficacy during the second year was 100.00% (95% CI, 84.15%-100.00%) against EV71-associated hand-foot-and-mouth disease (HFMD; P vaccine-related serious adverse events were recorded.  Two doses of Vigoo EV71 vaccine could provide sustained protection against EV71-associated HFMD in healthy Chinese children.  NCT01508247. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  11. Multicenter study on the immunogenicity and safety of two recombinant vaccines against hepatitis B

    Directory of Open Access Journals (Sweden)

    Reinaldo Menezes Martins

    2004-12-01

    Full Text Available The immunogenicity and safety of a new recombinant hepatitis B vaccine from the Instituto Butantan (Butang® were evaluated in a multicenter, double-blind, prospective equivalence study in three centers in Brazil. Engerix B® was the standard vaccine. A total of 3937 subjects were recruited and 2754 (70% met all protocol criteria at the end of the study. All the subjects were considered healthy and denied having received hepatitis B vaccine before the study. Study subjects who adhered to the protocol were newborn infants (566, children 1 to 10 years old (484, adolescents from 11 to 19 years (740, adults from 20 to 30 years (568, and adults from 31 to 40 years (396. Vaccine was administered in three doses on the schedule 0, 1, and 6 months (newborn infants, adolescents, and adults or 0, 1, and 7 months (children. Vaccine dose was intramuscular 10 µg (infants, children, and adolescents or 20 µg (adults. Percent seroprotection (assumed when anti-HBs titers were > 10mIU/ml and geometric mean titer (mIU/ml were: newborn infants, 93.7% and 351.1 (Butang® and 97.5% and 1530.6 (Engerix B®; children, 100% and 3600.0 (Butang® and 97.7% and 2753.1 (Engerix B®; adolescents, 95.1% and 746.3 (Butang® and 96% and 1284.3 (Engerix B®; adults 20-30 years old, 91.8% and 453.5 (Butang® and 95.5% and 1369.0 (Engerix B®; and adults 31-40 years old, 79.8% and 122.7 (Butang® and 92.4% and 686.2 (Engerix B®. There were no severe adverse events following either vaccine. The study concluded that Butang® was equivalent to Engerix B® in children, and less immunogenic but acceptable for use in newborn infants, adolescents, and young adults.

  12. Amino Acid Substitutions Improve the Immunogenicity of H7N7HA Protein and Protect Mice against Lethal H7N7 Viral Challenge.

    Directory of Open Access Journals (Sweden)

    Subaschandrabose Rajesh Kumar

    Full Text Available Avian influenza A H7N7/NL/219/03 virus creates a serious pandemic threat to human health because it can transmit directly from domestic poultry to humans and from human to human. Our previous vaccine study reported that mice when immunized intranasally (i.n with live Bac-HA were protected from lethal H7N7/NL/219/03 challenge, whereas incomplete protection was obtained when administered subcutaneously (s.c due to the fact that H7N7 is a poor inducer of neutralizing antibodies. Interestingly, our recent vaccine studies reported that mice when vaccinated subcutaneously with Bac-HA (H7N9 was protected against both H7N9 (A/Sh2/2013 and H7N7 virus challenge. HA1 region of both H7N7 and H7N9 viruses are differ at 15 amino acid positions. Among those, we selected three amino acid positions (T143, T198 and I211 in HA1 region of H7N7. These amino acids are located within or near the receptor binding site. Following the selection, we substituted the amino acid at these three positions with amino acids found on H7N9HA wild-type. In this study, we evaluate the impact of amino acid substitutions in the H7N7 HA-protein on the immunogenicity. We generated six mutant constructs from wild-type influenza H7N7HA cDNA by site directed mutagenesis, and individually expressed mutant HA protein on the surface of baculovirus (Bac-HAm and compared their protective efficacy of the vaccines with Bac-H7N7HA wild-type (Bac-HA by lethal H7N7 viral challenge in a mouse model. We found that mice immunized subcutaneously with Bac-HAm constructs T143A or T198A-I211V or I211V-T143A serum showed significantly higher hemagglutination inhibition and neutralization titer against H7N7 and H7N9 viruses when compared to Bac-HA vaccinated mice groups. We also observed low level of lung viral titer, negligible weight loss and complete protection against lethal H7N7 viral challenge. Our results indicated that amino acid substitution at position 143 or 211 improve immunogenicity of H7N7HA

  13. Conjugating recombinant proteins to Pseudomonas aeruginosa ExoProtein A: a strategy for enhancing immunogenicity of malaria vaccine candidates

    OpenAIRE

    Qian, Feng; Wu, Yimin; Muratova, Olga; Zhou, Hong; Dobrescu, Gelu; Duggan, Peter; Lynn, Lambert; Song, Guanhong; Zhang, Yanling; Reiter, Karine; MacDonald, Nicholas; Narum, David L.; Long, Carole A.; Miller, Louis H.; Saul, Allan

    2007-01-01

    Conjugation of polysaccharides to carrier proteins has been a successful approach for producing safe and effective vaccines. In an attempt to increase the immunogenicity of two malarial vaccine candidate proteins of Plasmodium falciparum, apical membrane antigen 1 (AMA1) for blood stage vaccines and surface protein 25 (Pfs25) for mosquito stage vaccines, each was chemically conjugated to the mutant, nontoxic Pseudomonas aeruginosa ExoProtein A (rEPA). AMA1 is a large (66 kD) relatively good i...

  14. [Differentiation of human umbilical cord derived mesenchymal stem cells into low immunogenic and functional hepatocyte-like cells in vitro].

    Science.gov (United States)

    Ren, Hong-ying; Zhao, Qin-jun; Xing, Wen; Yang, Shao-guang; Lu, Shi-hong; Ren, Qian; Zhang, Lei; Han, Zhong-chao

    2010-04-01

    To investigate the biological function of hepatocyte-like cells derived from mesenchymal stem cells that isolated from human umbilical cord UC-MSCs in vitro, and to detect the changes in the immunogenicity of the differentiated hepatocyte-like cells (DHC). Transdifferentiation of UC-MSCs into hepatic lineage in vitro was induced in modified two-step induction medium. The expressions of hepatic specific markers were detected by RT-PCR analysis and immunofluorescence staining at different time points after induction. The levels of albumin and urea in the supernatants of cultures were measured by enzyme-linked immunosorbent assay. Furthermore, the immunosuppressive property of DHC was detected by one-way mixed lymphocyte culture. The mRNA and proteins of alpha fetoprotein (AFP), albumin (ALB),and cytokeratin-19 (CK-19) were expressed in naive UC-MSCs at low levels. DHC highly expressed hepatic markers AFP, ALB, CK-19, and tryptophan 2, 3-dioxygenase 14 and 28 days after hepatic differentiation and were accompanied by an increased production of ALB and urea in supernatant in a time-dependent manner. DHC did not express human leukocyte antigen DR antigen and significantly decreased the lymphocyte proliferation. UC-MSCs are able to differentiate into functional hepatocyte-like cells in vitro, while the immunogenicity of DHC remains low.

  15. [Evaluation of immunogenicity and safety of 2 immunizations with allantoic intranasal live influenza vaccine Ultragrivac].

    Science.gov (United States)

    Shishkina, L N; Mazurkova, N A; Ternovoĭ, V A; Bulychev, L E; Tumanov, Iu V; Skarnovich, M O; Kabanov, A S; Ryndiuk, N N; Kuzubov, V I; Mironov, A N; Stavskiĭ, E A; Drozdov, I G

    2011-01-01

    Evaluate reactogenicity, safety and immunogenicity in phase 2 clinical trials of 2 immunization schedules with Ultragrivac--an allantoic intranasal life influenza vaccine based on A/17/ duck/Potsdam/86/92 [17/H5] reassortant strain. 4 groups of volunteers participated in the study: group 1--40 individuals were vaccinated twice with a 10 day interval; group 2--40 individuals were vaccinated twice with a 21 day interval; group 3 (control)--10 individuals received placebo twice with a 10 day interval; group 4 (control)--10 individuals received placebo twice with a 21 day interval. Local (secretory IgA), cellular and humoral immune response were evaluated. Humoral immunity was evaluated by the intensity of increase of geometric mean antibody titers against 2 influenza virus strains A/17/duck/Potsdam/86/92 [17/H5] and A/chicken/Suzdalka/Nov-1 1/2005 (H5N1), and by the level of significant (4 times or more) antibody seroconversions after the vaccination. After the use of Ultragrivac the level of secretory IgA in the nasal cavity of vaccinated volunteers in the groups with revaccination intervals of 10 and 21 days increased significantly. The second immunization with 10 or 21 day intervals significantly increased postvaccinal humoral immune response. Humoral immune response induction after 2 vaccinations with 10 day interval was no less effective than with 21 day interval. Ultragrivac allantoic intranasal live influenza vaccine is areactogenic, harmless for vaccinated individuals, safe for those around, and has immunogenic properties against not only homologous virus A(H5N2), but also against influenza strain A(H5N1).

  16. Immunogenicity of WHO-17D and Brazilian 17DD yellow fever vaccines: a randomized trial

    Directory of Open Access Journals (Sweden)

    Camacho Luiz Antonio Bastos

    2004-01-01

    Full Text Available OBJECTIVE: To compare the immunogenicity of three yellow fever vaccines from WHO-17D and Brazilian 17DD substrains (different seed-lots. METHODS: An equivalence trial was carried out involving 1,087 adults in Rio de Janeiro. Vaccines produced by Bio-Manguinhos, Fiocruz (Rio de Janeiro, Brazil were administered following standardized procedures adapted to allow blocked randomized allocation of participants to coded vaccine types (double-blind. Neutralizing yellow fever antibody titters were compared in pre- and post-immunization serum samples. Equivalence was defined as a difference of no more than five percentage points in seroconversion rates, and ratio between Geometric Mean Titters (GMT higher than 0.67. RESULTS: Seroconversion rates were 98% or higher among subjects previously seronegative, and 90% or more of the total cohort of vaccinees, including those previously seropositive. Differences in seroconversion ranged from -0.05% to -3.02%. The intensity of the immune response was also very similar across vaccines: 14.5 to 18.6 IU/mL. GMT ratios ranged from 0.78 to 0.93. Taking the placebo group into account, the vaccines explained 93% of seroconversion. Viremia was detected in 2.7% of vaccinated subjects from Day 3 to Day 7. CONCLUSIONS: The equivalent immunogenicity of yellow fever vaccines from the 17D and 17DD substrains was demonstrated for the first time in placebo-controlled double-blind randomized trial. The study completed the clinical validation process of a new vaccine seed-lot, provided evidence for use of alternative attenuated virus substrains in vaccine production for a major manufacturer, and for the utilization of the 17DD vaccine in other countries.

  17. Meningococcal factor H-binding protein vaccines with decreased binding to human complement factor H have enhanced immunogenicity in human factor H transgenic mice.

    Science.gov (United States)

    Rossi, Raffaella; Granoff, Dan M; Beernink, Peter T

    2013-11-04

    Factor H-binding protein (fHbp) is a component of a meningococcal vaccine recently licensed in Europe for prevention of serogroup B disease, and a second vaccine in clinical development. The protein specifically binds human factor H (fH), which down-regulates complement activation and enhances resistance to bactericidal activity. There are conflicting data from studies in human fH transgenic mice on whether binding of human fH to fHbp vaccines decreases immunogenicity, and whether mutant fHbp vaccines with decreased fH binding have enhanced immunogenicity. fHbp can be classified into two sub-families based on sequence divergence and immunologic cross-reactivity. Previous studies of mutant fHbp vaccines with low fH binding were from sub-family B, which account for approximately 60% of serogroup B case isolates. In the present study, we evaluated the immunogenicity of two mutant sub-family A fHbp vaccines containing single substitutions, T221A or D211A, which resulted in 15- or 30-fold lower affinity for human fH, respectively, than the corresponding control wild-type fHbp vaccine. In transgenic mice with high serum concentrations of human fH, both mutant vaccines elicited significantly higher IgG titers and higher serum bactericidal antibody responses than the control fHbp vaccine that bound human fH. Thus, mutations introduced into a sub-family A fHbp antigen to decrease fH binding can increase protective antibody responses in human fH transgenic mice. Collectively the data suggest that mutant fHbp antigens with decreased fH binding will result in superior vaccines in humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Expression of the multimeric and highly immunogenic Brucella spp. lumazine synthase fused to bovine rotavirus VP8d as a scaffold for antigen production in tobacco chloroplasts

    Directory of Open Access Journals (Sweden)

    Edgardo Federico Alfano

    2015-12-01

    Full Text Available Lumazine synthase from Brucella spp. (BLS is a highly immunogenic decameric protein which can accommodate foreign polypeptides or protein domains fused to its N-termini, markedly increasing their immunogenicity.The inner core domain (VP8d of VP8 spike protein from bovine rotavirus (BRV is responsible for viral adhesion to sialic acid residues and infection. It also displays neutralizing epitopes, making it a good candidate for vaccination.In this work, the BLS scaffold was assessed for the first time in plants for recombinant vaccine development by N-terminally fusing BLS to VP8d and expressing the resulting fusion (BLSVP8d in tobacco chloroplasts. Transplastomic plants were obtained and characterized by Southern, northern and western blot. BLSVP8d was highly expressed, representing 40% of total soluble protein (TSP (4.85 mg/g fresh tissue. BLSVP8d remained soluble and stable during all stages of plant development and even in lyophilized leaves stored at room temperature. Soluble protein extracts from fresh and lyophilized leaves were able to induce specific neutralizing IgY antibodies in a laying hen model. This work presents BLS as an interesting platform for highly immunogenic injectable, or even oral, subunit vaccines. Lyophilization of transplastomic leaves expressing stable antigenic fusions to BLS would further reduce costs and simplify downstream processing, purification and storage, allowing for more practical vaccines.

  19. Effect of vaccine dose on the safety and immunogenicity of a candidate TB vaccine, MVA85A, in BCG vaccinated UK adults.

    Science.gov (United States)

    Pathan, Ansar A; Minassian, Angela M; Sander, Clare R; Rowland, Rosalind; Porter, David W; Poulton, Ian D; Hill, Adrian V S; Fletcher, Helen A; McShane, Helen

    2012-08-17

    A non-randomised, open-label, Phase I safety and immunogenicity dose-finding study to assess the safety and immunogenicity of the candidate TB vaccine Modified Vaccinia virus Ankara expressing Antigen 85A (MVA85A) from Mycobacterium tuberculosis (MTB) in healthy adult volunteers previously vaccinated with BCG. Healthy BCG-vaccinated volunteers were vaccinated with either 1×10(7) or 1×10(8)PFU of MVA85A. All adverse events were documented and antigen specific T cell responses were measured using an ex vivo IFN-γ ELISPOT assay. Safety and immunogenicity were compared between the 2 dose groups and with a previous trial in which a dose of 5×10(7)PFU MVA85A had been administered. There were no serious adverse events recorded following administration of either 1×10(7) or 1×10(8)PFU of MVA85A. Systemic adverse events were more frequently reported following administration of 1×10(8)PFU of MVA85A when compared to either 5×10(7) or 1×10(7)PFU of MVA85A but were mild or moderate in severity and resolved completely within 7 days of immunisation. Antigen specific T cell responses as measured by the IFN-γ ELISPOT were significantly higher following immunisation in adults receiving 1×10(8)PFU compared to the 5×10(7) and 1×10(7) doses. Additionally, a broader range of Ag85A epitopes are detected following 1×10(8)PFU of MVA85A. A higher dose of 1×10(8)PFU of MVA85A is well-tolerated, increases the frequency of IFN-γ secreting T cells detected following immunisation and broadens the range of Ag85A epitopes detected. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Infectivity of attenuated poxvirus vaccine vectors and immunogenicity of a raccoonpox vectored rabies vaccine in the Brazilian Free-tailed bat (Tadarida brasiliensis)

    Science.gov (United States)

    Stading, Benjamin; Osorio, Jorge E.; Velasco-Villa, Andres; Smotherman, Michael; Kingstad-Bakke, Brock; Rocke, Tonie E.

    2016-01-01

    Bats (Order Chiroptera) are an abundant group of mammals with tremendous ecological value as insectivores and plant dispersers, but their role as reservoirs of zoonotic diseases has received more attention in the last decade. With the goal of managing disease in free-ranging bats, we tested modified vaccinia Ankara (MVA) and raccoon poxvirus (RCN) as potential vaccine vectors in the Brazilian Free-tailed bat (Tadarida brasiliensis), using biophotonic in vivo imaging and immunogenicity studies. Animals were administered recombinant poxviral vectors expressing the luciferase gene (MVA-luc, RCN-luc) through oronasal (ON) or intramuscular (IM) routes and subsequently monitored for bioluminescent signal indicative of viral infection. No clinical illness was noted after exposure to any of the vectors, and limited luciferase expression was observed. Higher and longer levels of expression were observed with the RCN-luc construct. When given IM, luciferase expression was limited to the site of injection, while ON exposure led to initial expression in the oral cavity, often followed by secondary replication at another location, likely the gastric mucosa or gastric associated lymphatic tissue. Viral DNA was detected in oral swabs up to 7 and 9 days post infection (dpi) for MVA and RCN, respectively. While no live virus was detected in oral swabs from MVA-infected bats, titers up to 3.88 x 104 PFU/ml were recovered from oral swabs of RCN-infected bats. Viral DNA was also detected in fecal samples from two bats inoculated IM with RCN, but no live virus was recovered. Finally, we examined the immunogenicity of a RCN based rabies vaccine (RCN-G) following ON administration. Significant rabies neutralizing antibody titers were detected in the serum of immunized bats using the rapid fluorescence focus inhibition test (RFFIT). These studies highlight the safety and immunogenicity of attenuated poxviruses and their potential use as vaccine vectors in bats.

  1. Investigations of immunogenic, allergenic and adjuvant properties of Cry1Ab protein after intragastric exposure in a food allergy model in mice.

    Science.gov (United States)

    Andreassen, Monica; Bøhn, Thomas; Wikmark, Odd-Gunnar; Bodin, Johanna; Traavik, Terje; Løvik, Martinus; Nygaard, Unni Cecilie

    2016-05-04

    In genetically modified (GM) crops there is a risk that the inserted genes may introduce new allergens and/or adjuvants into the food and feed chain. The MON810 maize, expressing the insecticidal Cry1Ab toxin, is grown in many countries worldwide. In animal models, intranasal and intraperitoneal immunisations with the purified Cry1Ab proteins have induced immune responses, and feeding trials with Cry1Ab-containing feed have revealed some altered immune responses. Previous investigations have primarily measured antibody responses to the protein, while investigations of clinical food allergy symptoms, or allergy promotion (adjuvant effect) associated with the Cry1Ab protein are largely missing. We aimed to investigate immunogenic, allergenic and adjuvant properties of purified Cry1Ab toxin (trypCry1Ab, i.e., trypsin activated Cry1Ab) in a mouse model of food allergy. Female C3H/HeJ mice were immunized by intragastric gavage of 10 μg purified, trypsin activated Cry1Ab toxin (trypCry1Ab) alone or together with the food allergen lupin. Cholera toxin was added as a positive control for adjuvant effect to break oral tolerance. Clinical symptoms (anaphylaxis) as well as humoral and cellular responses were assessed. In contrast to results from previous airway investigations, we observed no indication of immunogenic properties of trypCry1Ab protein after repeated intragastric exposures to one dose, with or without CT as adjuvant. Moreover, the results indicated that trypCry1Ab given by the intragastric route was not able to promote allergic responses or anaphylactic reactions against the co-administered allergen lupin at the given dose. The study suggests no immunogenic, allergenic or adjuvant capacity of the given dose of trypCry1Ab protein after intragastric exposure of prime aged mice.

  2. Immunogenicity of the pentavalent rotavirus vaccine among infants in two developing countries in Asia, Bangladesh and Vietnam.

    Science.gov (United States)

    Shin, Sunheang; Anh, Dang Duc; Zaman, K; Yunus, M; Mai, Le Thi Phuong; Thiem, Vu Dinh; Azim, Tasnim; Victor, John C; Dallas, Michael J; Steele, A Duncan; Neuzil, Kathleen M; Ciarlet, Max

    2012-04-27

    We evaluated the immunogenicity of the pentavalent rotavirus vaccine (PRV) in two GAVI-eligible Asian countries, Bangladesh and Vietnam, nested in a larger randomized, double-blind, placebo-controlled efficacy trial conducted over a two-year period from 2007 through 2009. 2036 infants were randomly assigned, in a 1:1 ratio, to receive three oral doses of PRV or placebo approximately at 6, 10, and 14 weeks of age. Concomitant use of EPI vaccines, including oral poliovirus vaccine (OPV) and diphtheria-tetanus-whole cell pertussis (DTwP) vaccine, was encouraged in accordance to the local EPI schedule. A total of 303 infants were evaluated for immunogenicity and blood samples were collected before the first dose (pD1) and approximately 14 days following the third dose (PD3). The seroresponse rates (≥3-fold rise from pD1 to PD3) and geometric mean titers (GMTs) were measured for anti-rotavirus immunoglobulin A (IgA) and serum neutralizing antibody (SNA) to human rotavirus serotypes G1, G2, G3, G4, and P1A[8], respectively. Nearly 88% of the subjects showed a ≥3-fold increase in serum anti-rotavirus IgA response in the analysis of the two countries combined. When analyzed separately, the IgA response was lower in Bangladeshi children (78.1% [95% CI: 66.0, 87.5]) than in Vietnamese children (97.0% [95% CI: 89.6, 99.6]), with a PD3 GMT of 29.1 (units/mL) and 158.5 (units/mL), respectively. In the combined population, the SNA responses to the individual serotypes tested ranged from 10 (G3) to 50 (G1) percentage points lower than the responses shown in the developed countries. However, the SNA response to G3 in Vietnamese subjects was 37.3% (95% CI: 25.8, 50.0), which was similar to the G3 response rate in developed countries. Three oral doses of PRV were immunogenic in two GAVI-eligible Asian countries: Bangladesh and Vietnam. The GMTs of both the serum anti-rotavirus IgA and SNA responses were generally higher in Vietnamese than in Bangladeshi children. The SNA

  3. A Large Size Chimeric Highly Immunogenic Peptide Presents Multistage Plasmodium Antigens as a Vaccine Candidate System against Malaria.

    Science.gov (United States)

    Lozano, José Manuel; Varela, Yahson; Silva, Yolanda; Ardila, Karen; Forero, Martha; Guasca, Laura; Guerrero, Yuly; Bermudez, Adriana; Alba, Patricia; Vanegas, Magnolia; Patarroyo, Manuel Elkin

    2017-11-01

    Rational strategies for obtaining malaria vaccine candidates should include not only a proper selection of target antigens for antibody stimulation, but also a versatile molecular design based on ordering the right pieces from the complex pathogen molecular puzzle towards more active and functional immunogens. Classical Plasmodium falciparum antigens regarded as vaccine candidates have been selected as model targets in this study. Among all possibilities we have chosen epitopes of Pf CSP, STARP; MSA1 and Pf 155/RESA from pre- and erythrocyte stages respectively for designing a large 82-residue chimeric immunogen. A number of options aimed at diminishing steric hindrance for synthetic procedures were assessed based on standard Fmoc chemistry such as building block orthogonal ligation; pseudo-proline and microwave-assisted procedures, therefore the large-chimeric target was produced, characterized and immunologically tested. Antigenicity and functional in vivo efficacy tests of the large-chimera formulations administered alone or as antigen mixtures have proven the stimulation of high antibody titers, showing strong correlation with protection and parasite clearance of vaccinated BALB/c mice after being lethally challenged with both P. berghei -ANKA and P. yoelii 17XL malaria strains. Besides, 3D structure features shown by the large-chimera encouraged as to propose using these rational designed large synthetic molecules as reliable vaccine candidate-presenting systems.

  4. A Large Size Chimeric Highly Immunogenic Peptide Presents Multistage Plasmodium Antigens as a Vaccine Candidate System against Malaria

    Directory of Open Access Journals (Sweden)

    José Manuel Lozano

    2017-11-01

    Full Text Available Rational strategies for obtaining malaria vaccine candidates should include not only a proper selection of target antigens for antibody stimulation, but also a versatile molecular design based on ordering the right pieces from the complex pathogen molecular puzzle towards more active and functional immunogens. Classical Plasmodium falciparum antigens regarded as vaccine candidates have been selected as model targets in this study. Among all possibilities we have chosen epitopes of PfCSP, STARP; MSA1 and Pf155/RESA from pre- and erythrocyte stages respectively for designing a large 82-residue chimeric immunogen. A number of options aimed at diminishing steric hindrance for synthetic procedures were assessed based on standard Fmoc chemistry such as building block orthogonal ligation; pseudo-proline and microwave-assisted procedures, therefore the large-chimeric target was produced, characterized and immunologically tested. Antigenicity and functional in vivo efficacy tests of the large-chimera formulations administered alone or as antigen mixtures have proven the stimulation of high antibody titers, showing strong correlation with protection and parasite clearance of vaccinated BALB/c mice after being lethally challenged with both P. berghei-ANKA and P. yoelii 17XL malaria strains. Besides, 3D structure features shown by the large-chimera encouraged as to propose using these rational designed large synthetic molecules as reliable vaccine candidate-presenting systems.

  5. Expression and Immunogenicity of the Mycobacterial Ag85B/ESAT-6 Antigens Produced in Transgenic Plants by Elastin-Like Peptide Fusion Strategy

    Directory of Open Access Journals (Sweden)

    Doreen Manuela Floss

    2010-01-01

    Full Text Available This study explored a novel system combining plant-based production and the elastin-like peptide (ELP fusion strategy to produce vaccinal antigens against tuberculosis. Transgenic tobacco plants expressing the mycobacterial antigens Ag85B and ESAT-6 fused to ELP (TBAg-ELP were generated. Purified TBAg-ELP was obtained by the highly efficient, cost-effective, inverse transition cycling (ICT method and tested in mice. Furthermore, safety and immunogenicity of the crude tobacco leaf extracts were assessed in piglets. Antibodies recognizing mycobacterial antigens were produced in mice and piglets. A T-cell immune response able to recognize the native mycobacterial antigens was detected in mice. These findings showed that the native Ag85B and ESAT-6 mycobacterial B- and T-cell epitopes were conserved in the plant-expressed TBAg-ELP. This study presents the first results of an efficient plant-expression system, relying on the elastin-like peptide fusion strategy, to produce a safe and immunogenic mycobacterial Ag85B-ESAT-6 fusion protein as a potential vaccine candidate against tuberculosis.

  6. Immunogenicity and efficacy of immunodeficiency virus-like particles pseudotyped with the G protein of vesicular stomatitis virus

    International Nuclear Information System (INIS)

    Kuate, Seraphin; Stahl-Hennig, Christiane; Stoiber, Heribert; Nchinda, Godwin; Floto, Anja; Franz, Monika; Sauermann, Ulrike; Bredl, Simon; Deml, Ludwig; Ignatius, Ralf; Norley, Steve; Racz, Paul; Tenner-Racz, Klara; Steinman, Ralph M.; Wagner, Ralf; Uberla, Klaus

    2006-01-01

    Vaccination with exogenous antigens such as recombinant viral proteins, immunodeficiency virus-derived whole inactivated virus particles, or virus-like particles (VLP) has generally failed to provide sufficient protection in animal models for AIDS. Pseudotyping VLPs with the vesicular stomatitis virus G protein (VSV-G), which is known to mediate entry into dendritic cells, might allow more efficient stimulation of immune responses. Therefore, we pseudotyped noninfectious immunodeficiency virus-like particles with VSV-G and carried out a preliminary screen of their immunogenicity and vaccination efficacy. Incorporation of VSV-G into HIV-1 VLPs led to hundred-fold higher antibody titers to HIV-1 Gag and enhancement of T cell responses in mice. Repeated vaccination of rhesus monkeys for 65 weeks with VSV-G pseudotyped simian immunodeficiency virus (SIV)-like particles (VLP[G]) provided initial evidence for efficient suppression of viral load after mucosal challenge with the SIVmac239 virus. Challenge of monkeys after a 28 week vaccination regimen with VLP[G] led to a reduction in peak viremia, but persistent suppression of viral load was not achieved. Due to limitations in the number of animals available for this study, improved efficacy of VSV-G pseudotyped VLPs in nonhuman primates could not be demonstrated. However, mouse experiments revealed that pseudotyping of VLPs with fusion-competent VSV-G clearly improves their immunogenicity. Additional strategies, particularly adjuvants, should be considered to provide greater protection against a challenge with pathogenic immunodeficiency virus

  7. High throughput sequencing and proteomics to identify immunogenic proteins of a new pathogen: the dirty genome approach.

    Science.gov (United States)

    Greub, Gilbert; Kebbi-Beghdadi, Carole; Bertelli, Claire; Collyn, François; Riederer, Beat M; Yersin, Camille; Croxatto, Antony; Raoult, Didier

    2009-12-23

    With the availability of new generation sequencing technologies, bacterial genome projects have undergone a major boost. Still, chromosome completion needs a costly and time-consuming gap closure, especially when containing highly repetitive elements. However, incomplete genome data may be sufficiently informative to derive the pursued information. For emerging pathogens, i.e. newly identified pathogens, lack of release of genome data during gap closure stage is clearly medically counterproductive. We thus investigated the feasibility of a dirty genome approach, i.e. the release of unfinished genome sequences to develop serological diagnostic tools. We showed that almost the whole genome sequence of the emerging pathogen Parachlamydia acanthamoebae was retrieved even with relatively short reads from Genome Sequencer 20 and Solexa. The bacterial proteome was analyzed to select immunogenic proteins, which were then expressed and used to elaborate the first steps of an ELISA. This work constitutes the proof of principle for a dirty genome approach, i.e. the use of unfinished genome sequences of pathogenic bacteria, coupled with proteomics to rapidly identify new immunogenic proteins useful to develop in the future specific diagnostic tests such as ELISA, immunohistochemistry and direct antigen detection. Although applied here to an emerging pathogen, this combined dirty genome sequencing/proteomic approach may be used for any pathogen for which better diagnostics are needed. These genome sequences may also be very useful to develop DNA based diagnostic tests. All these diagnostic tools will allow further evaluations of the pathogenic potential of this obligate intracellular bacterium.

  8. Immunogenicity and safety of a novel quadrivalent meningococcal conjugate vaccine (MenACWY-CRM in healthy Korean adolescents and adults

    Directory of Open Access Journals (Sweden)

    Hoan Jong Lee

    2014-11-01

    Conclusions: Findings of this first study of a quadrivalent meningococcal polysaccharide conjugate vaccine in Korean adults and adolescents demonstrated that a single dose of MenACWY-CRM was well tolerated and immunogenic, as indicated by the percentages of subjects with hSBA titers ≥8 (79%, 99%, 98%, and 94% of subjects and geometric mean titers (48, 231, 147, and 107 against serogroups A, C, W, and Y, respectively, at 1 month post-vaccination.

  9. A comparative immunogenicity study in rabbits of disulfide-stabilized, proteolytically cleaved, soluble trimeric human immunodeficiency virus type 1 gp140, trimeric cleavage-defective gp140 and monomeric gp120

    International Nuclear Information System (INIS)

    Beddows, Simon; Franti, Michael; Dey, Antu K.; Kirschner, Marc; Iyer, Sai Prasad N.; Fisch, Danielle C.; Ketas, Thomas; Yuste, Eloisa; Desrosiers, Ronald C.; Klasse, Per Johan; Maddon, Paul J.; Olson, William C.; Moore, John P.

    2007-01-01

    The human immunodeficiency virus type 1 (HIV-1) surface envelope glycoprotein (Env) complex, a homotrimer containing gp120 surface glycoprotein and gp41 transmembrane glycoprotein subunits, mediates the binding and fusion of the virus with susceptible target cells. The Env complex is the target for neutralizing antibodies (NAbs) and is the basis for vaccines intended to induce NAbs. Early generation vaccines based on monomeric gp120 subunits did not confer protection from infection; one alternative approach is therefore to make and evaluate soluble forms of the trimeric Env complex. We have directly compared the immunogenicity in rabbits of two forms of soluble trimeric Env and monomeric gp120 based on the sequence of HIV-1 JR-FL . Both protein-only and DNA-prime, protein-boost immunization formats were evaluated, DNA-priming having little or no influence on the outcome. One form of trimeric Env was made by disrupting the gp120-gp41 cleavage site by mutagenesis (gp140 UNC ), the other contains an intramolecular disulfide bond to stabilize the cleaved gp120 and gp41 moieties (SOSIP.R6 gp140). Among the three immunogens, SOSIP.R6 gp140 most frequently elicited neutralizing antibodies against the homologous, neutralization-resistant strain, HIV-1 JR-FL . All three proteins induced NAbs against more sensitive strains, but the breadth of activity against heterologous primary isolates was limited. When antibodies able to neutralize HIV-1 JR-FL were detected, antigen depletion studies showed they were not directed at the V3 region but were targeted at other, undefined gp120 and also non-gp120 epitopes

  10. Randomized trial on the safety, tolerability, and immunogenicity of MenACWY-CRM, an investigational quadrivalent meningococcal glycoconjugate vaccine, administered concomitantly with a combined tetanus, reduced diphtheria, and acellular pertussis vaccine in adolescents and young adults.

    Science.gov (United States)

    Gasparini, Roberto; Conversano, Michele; Bona, Gianni; Gabutti, Giovanni; Anemona, Alessandra; Dull, Peter M; Ceddia, Francesca

    2010-04-01

    This study evaluated the safety, tolerability, and immunogenicity of an investigational quadrivalent meningococcal conjugate vaccine, MenACWY-CRM, when administered concomitantly with a combined tetanus, reduced diphtheria, and acellular pertussis (Tdap) vaccine, in subjects aged 11 to 25 years. Subjects received either MenACWY-CRM and Tdap, MenACWY-CRM and saline placebo, or Tdap and saline placebo. No significant increase in reactogenicity and no clinically significant vaccine-related adverse events (AEs) occurred when MenACWY-CRM and Tdap were administered concomitantly. Similar immunogenic responses to diphtheria, tetanus, and meningococcal (serogroups A, C, W-135, and Y) antigens were observed, regardless of concomitant vaccine administration. Antipertussis antibody responses were comparable between vaccine groups for filamentous hemagglutinin and were slightly lower, although not clinically significantly, for pertussis toxoid and pertactin when the two vaccines were administered concomitantly. These results indicate that the investigational MenACWY-CRM vaccine is well tolerated and immunogenic and that it can be coadministered with Tdap to adolescents and young adults.

  11. Comparison of the safety and immunogenicity of live attenuated and inactivated hepatitis A vaccine in healthy Chinese children aged 18 months to 16 years: results from a randomized, parallel controlled, phase IV study.

    Science.gov (United States)

    Ma, F; Yang, J; Kang, G; Sun, Q; Lu, P; Zhao, Y; Wang, Z; Luo, J; Wang, Z

    2016-09-01

    For large-scale immunization of children with hepatitis A (HA) vaccines in China, accurately designed studies comparing the safety and immunogenicity of the live attenuated HA vaccine (HA-L) and inactivated HA vaccine (HA-I) are necessary. A randomized, parallel controlled, phase IV clinical trial was conducted with 6000 healthy children aged 18 months to 16 years. HA-L or HA-I was administered at a ratio of 1: 1 to randomized selected participants. The safety and immunogenicity were evaluated. Both HA-L and HA-I were well tolerated by all participants. The immunogenicity results showed that the seroconversion rates (HA-L versus HA-I: 98.0% versus 100%, respectively, p >0.05), and geometric mean concentrations in participants negative for antibodies against HA virus IgG (anti-HAV IgG) before vaccination did not differ significantly between the two types of vaccines (HA-L versus HA-I first dose: 898.9 versus 886.2 mIU/mL, respectively, p >0.05). After administration of the booster dose of HA-I, the geometric mean concentrations of anti-HAV IgG (HA-I booster dose: 2591.2 mIU/mL) was higher than that after the first dose (p children. The effects of long-term immunogenicity after natural exposure to wild-type HA virus and the possibility of mutational shifts of the live vaccine virus in the field need to be studied in more detail. Copyright © 2016. Published by Elsevier Ltd.

  12. The effect of current Schistosoma mansoni infection on the immunogenicity of a candidate TB vaccine, MVA85A, in BCG-vaccinated adolescents: An open-label trial.

    Directory of Open Access Journals (Sweden)

    Anne Wajja

    2017-05-01

    Full Text Available Helminth infection may affect vaccine immunogenicity and efficacy. Adolescents, a target population for tuberculosis booster vaccines, often have a high helminth burden. We investigated effects of Schistosoma mansoni (Sm on the immunogenicity and safety of MVA85A, a model candidate tuberculosis vaccine, in BCG-vaccinated Ugandan adolescents.In this phase II open label trial we enrolled 36 healthy, previously BCG-vaccinated adolescents, 18 with no helminth infection detected, 18 with Sm only. The primary outcome was immunogenicity measured by Ag85A-specific interferon gamma ELISpot assay. Tuberculosis and schistosome-specific responses were also assessed by whole-blood stimulation and multiplex cytokine assay, and by antibody ELISAs.Ag85A-specific cellular responses increased significantly following immunisation but with no differences between the two groups. Sm infection was associated with higher pre-immunisation Ag85A-specific IgG4 but with no change in antibody levels following immunisation. There were no serious adverse events. Most reactogenicity events were of mild or moderate severity and resolved quickly.The significant Ag85A-specific T cell responses and lack of difference between Sm-infected and uninfected participants is encouraging for tuberculosis vaccine development. The implications of pre-existing Ag85A-specific IgG4 antibodies for protective immunity against tuberculosis among those infected with Sm are not known. MVA85A was safe in this population.ClinicalTrials.gov NCT02178748.

  13. Reducing the activity and secretion of microbial antioxidants enhances the immunogenicity of BCG.

    Directory of Open Access Journals (Sweden)

    Shanmugalakshmi Sadagopal

    Full Text Available In early clinical studies, the live tuberculosis vaccine Mycobacterium bovis BCG exhibited 80% protective efficacy against pulmonary tuberculosis (TB. Although BCG still exhibits reliable protection against TB meningitis and miliary TB in early childhood it has become less reliable in protecting against pulmonary TB. During decades of in vitro cultivation BCG not only lost some genes due to deletions of regions of the chromosome but also underwent gene duplication and other mutations resulting in increased antioxidant production.To determine whether microbial antioxidants influence vaccine immunogenicity, we eliminated duplicated alleles encoding the oxidative stress sigma factor SigH in BCG Tice and reduced the activity and secretion of iron co-factored superoxide dismutase. We then used assays of gene expression and flow cytometry with intracellular cytokine staining to compare BCG-specific immune responses in mice after vaccination with BCG Tice or the modified BCG vaccine. Compared to BCG, the modified vaccine induced greater IL-12p40, RANTES, and IL-21 mRNA in the spleens of mice at three days post-immunization, more cytokine-producing CD8+ lymphocytes at the peak of the primary immune response, and more IL-2-producing CD4+ lymphocytes during the memory phase. The modified vaccine also induced stronger secondary CD4+ lymphocyte responses and greater clearance of challenge bacilli.We conclude that antioxidants produced by BCG suppress host immune responses. These findings challenge the hypothesis that the failure of extensively cultivated BCG vaccines to prevent pulmonary tuberculosis is due to over-attenuation and suggest instead a new model in which BCG evolved to produce more immunity-suppressing antioxidants. By targeting these antioxidants it may be possible to restore BCG's ability to protect against pulmonary TB.

  14. Safety, immunogenicity and duration of immunity elicited by an inactivated bovine ephemeral fever vaccine.

    Directory of Open Access Journals (Sweden)

    Orly Aziz-Boaron

    Full Text Available Bovine ephemeral fever (BEF is an economically important viral vector-borne cattle disease. Several live-attenuated, inactivated and recombinant vaccines have been tested, demonstrating varying efficacy. However, to the best of our knowledge, duration of immunity conferred by an inactivated vaccine has never been reported. In the last decade, Israel has faced an increasing number of BEF outbreaks. The need for an effective vaccine compatible with strains circulating in the Middle East region led to the development of a MONTANIDE™ ISA 206 VG (water-in-oil-in-water, inactivated vaccine based on a local strain. We tested the safety, immunogenicity and duration of immunity conferred by this vaccine. The induced neutralizing antibody (NA response was followed for 493 days in 40 cows vaccinated by different protocols. The vaccine did not cause adverse reactions or a decrease in milk production. All cows [except 2 (6.7% which did not respond to vaccination] showed a significant rise in NA titer of up to 1:256 following the second, third or fourth booster vaccination. Neutralizing antibody levels declined gradually to 1:16 up to 120 days post vaccination. This decline continued in cows vaccinated only twice, whereas cows vaccinated 3 or 4 times showed stable titers of approximately 1:16 for up to 267 days post vaccination. At least three vaccinations with the inactivated BEF vaccine were needed to confer long-lasting immunity. These results may have significant implications for the choice of vaccination protocol with inactivated BEF vaccines. Complementary challenge data should however be added to the above results in order to determine what is the minimal NA response conferring protection from clinical disease.

  15. Analysis of main artifacts in scanning probe microscopy (1)

    International Nuclear Information System (INIS)

    Alekperov, S.D.; Alekperov, S.D.

    2012-01-01

    The analysis of experiment carrying methodology in the scanning probe microscopy (SPM) region is carried out, the main parameters influencing on image quality are revealed. In order to reveal the artifact reason the main components of SPM signal which are divided on 5 groups : the useful signal; noises connected with external influences and temperature drift; distortions connected with piezoceramics and piezo-scanner non-ideality; probe geometry influence; apparatus noises are considered. The main methods of removal and minimization of the given artifacts are considered. The second and third groups of main components of SPM signal are considered in the articles first part

  16. Safety and immunogenicity of three different formulations of an adjuvanted varicella-zoster virus subunit candidate vaccine in older adults: a phase II, randomized, controlled study

    NARCIS (Netherlands)

    Chlibek, Roman; Smetana, Jan; Pauksens, Karlis; Rombo, Lars; van den Hoek, J. Anneke R.; Richardus, Jan H.; Plassmann, Georg; Schwarz, Tino F.; Ledent, Edouard; Heineman, Thomas C.

    2014-01-01

    This study investigated the safety and immunogenicity of different formulations and schedules of a candidate subunit herpes zoster vaccine containing varicella-zoster virus glycoprotein E (gE) with or without the adjuvant system AS01B. In this phase II, single-blind, randomized, controlled study,

  17. EVALUATION OF THE ANTIGENICITY AND IMMUNOGENICITY OF Eimeria tenella BY REPRODUCTIVE INDEX AND HISTOPATHOLOGICAL CHANGES OF CECAL COCCIDIOSIS VIRULENT LIVE VACCINE IN BROILER CHICKENS.

    Science.gov (United States)

    Suprihati, Endang; Yunus, Muchammad

    2018-01-01

    The development of vaccine to control coccidiosis caused by Eimeria tenella ( E. tenella ) in chickens is intensifying because of the increasing threat of drug resistance to anticoccidial agents. It is important, therefore, to develop a reliable standard method for the assessment of vaccine afficacy particularly antigenicity and immunogenicity become crucial. Evaluation of E. tenella antigenicity and immunogenicity to some low doses can be reflected by reproductive index and histopathological changes. The complete random design of research was used in this study. Sixty of two weeks old broilers were divided into four groups and each group composed 15 replications. The group 1 was chicken group without virulent E. tenella oocyst inoculation. The group 2, 3 and group 4 were chicken group inoculated with virulent E. tenella oocyst at doses of 1.0 x 10 2 , 2.0 x 10 2 , 3.0 x 10 2 , respectively. Then all chicken groups were challenged with E. tenella oocyst at doses of 1.0 x 10 3 . Observation of research that represented antigenicity and immunogenicity was clinical sign, reproductive index, histopathological changes. On virulent E. tenella inoculation step, some clinical signs such as appetite, weakness, and diarrhea were very slight on all chicken groups. While on challenge test step, there were no clinical signs of all chicken groups except the group 1. For the reproductive index of virulent E. tenella inoculation step, there were no significantly differences in all chicken groups except the group 1. As reproductive index, the same result pattern was seen for histopathological changes. The low number virulent E. tenella had low reproductive index and few histopathological changes effect that represents a promising strategy to prevent cecal coccidiosis in chickens.

  18. Individual medicine in inflammatory bowel disease: monitoring bioavailability, pharmacokinetics and immunogenicity of anti-tumour necrosis factor-alpha antibodies

    DEFF Research Database (Denmark)

    Bendtzen, Klaus; Ainsworth, Mark; Steenholdt, Casper

    2009-01-01

    (s) for these response failures are not clear but inter-individual and even intra-individual differences in bioavailability and pharmacokinetics may contribute. Furthermore, immunogenicity of the drugs, causing patients to develop anti-drug antibodies (ADAs), contributes to treatment failure. Monitoring patients...... for circulating levels of functional anti-TNF drugs and ADAs is therefore warranted so that treatment can be tailored to the individual patient (individual medicine or personal medicine) in order that effective and economical long-term therapy can be given with minimal risks to the patients....

  19. Safety and immunogenicity of inactivated poliovirus vaccine based on Sabin strains with and without aluminum hydroxide: a phase I trial in healthy adults.

    Science.gov (United States)

    Verdijk, Pauline; Rots, Nynke Y; van Oijen, Monique G C T; Oberste, M Steven; Boog, Claire J; Okayasu, Hiromasa; Sutter, Roland W; Bakker, Wilfried A M

    2013-11-12

    An inactivated poliovirus vaccine (IPV) based on attenuated poliovirus strains (Sabin-1, -2 and -3) was developed for technology transfer to manufacturers in low- and middle income countries in the context of the Global Polio Eradication Initiative. Safety and immunogenicity of the Sabin-IPV was evaluated in a double-blind, randomized, controlled, phase I 'proof-of-concept' trial. Healthy male adults received a single intramuscular injection with Sabin-IPV, Sabin-IPV adjuvanted with aluminum hydroxide or conventional IPV. Virus-neutralizing titers against both Sabin and wild poliovirus strains were determined before and 28 days after vaccination. No vaccine-related serious adverse events were observed, and all local and systemic reactions were mild or moderate and transient. In all subjects, an increase in antibody titer for all types of poliovirus (both Sabin and wild strains) was observed 28 days after vaccination. Sabin-IPV and Sabin-IPV adjuvanted with aluminum hydroxide administered as a booster dose were equally immunogenic and safe as conventional IPV. EudraCTnr: 2010-024581-22, NCT01708720. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Main-sequence photometry in NGC 2808

    International Nuclear Information System (INIS)

    Buonanno, R.; Corsi, C.E.; Fusi Pecci, F.; Harris, W.E.

    1984-01-01

    We have obtained a color-magnitude diagram for the southern globular cluster NGC 2808, to V/sub lim/approx. =21 (about 2 mag below the main-sequence turnoff). The internal photographic errors are sigma/sub V/approx. =0.02, sigma/sub B/-Vapprox. =0.03, small enough to permit a precise definition of the turnoff region and an estimate of the ''cosmic scatter'' along the main sequence. Fitting of the CMD to VandenBerg's [Astrophys. J. Suppl. 51, 29 (1983)] isochrones shows that an excellent match to the observations is achieved for model parameters of Yapprox. =0.2, Zapprox. =0.003 ([Fe/H]approx. =-0.8), and an age of (16 +- 2) billion years. All these characteristics are within the expected range from other observational constraints; no new clues from the main-sequence data alone have arisen to help explain the presence of the anomalous blue horizontal-branch stars

  1. Dvigateli regional'nogo stroitel'stva. Vlijanie regional'nyh politicheskih organizacij na sotrudnichestvo universitetov v regione Baltijskogo morja [Motors for regional development: impact on regional political organizations on the university cooperation in the Baltic Sea region

    Directory of Open Access Journals (Sweden)

    Ewert Stefan

    2010-01-01

    Full Text Available Educational co-operation is one of the main aspects of the regional political agenda in the Baltic Sea Region. The article analyzes the political impact of the organizations, as perceived by the universities in the region and political decision-makers on national and regional levels. Based on the success of the OECD in becoming an influential actor in educational policies, this article discusses different strategies for the regional political organizations to enhance their influence.

  2. Meningococcal polysaccharide A O-acetylation levels do not impact the immunogenicity of the quadrivalent meningococcal tetanus toxoid conjugate vaccine: results from a randomized, controlled phase III study of healthy adults aged 18 to 25 years.

    Science.gov (United States)

    Lupisan, Socorro; Limkittikul, Kriengsak; Sosa, Nestor; Chanthavanich, Pornthep; Bianco, Véronique; Baine, Yaela; Van der Wielen, Marie; Miller, Jacqueline M

    2013-10-01

    In this study, we compared the immunogenicities of two lots of meningococcal ACWY-tetanus toxoid conjugate vaccine (MenACWY-TT) that differed in serogroup A polysaccharide (PS) O-acetylation levels and evaluated their immunogenicities and safety in comparison to a licensed ACWY polysaccharide vaccine (Men-PS). In this phase III, partially blinded, controlled study, 1,170 healthy subjects aged 18 to 25 years were randomized (1:1:1) to receive one dose of MenACWY-TT lot A (ACWY-A) (68% O-acetylation), MenACWY-TT lot B (ACWY-B) (92% O-acetylation), or Men-PS (82% O-acetylation). Immunogenicity was evaluated in terms of serum bactericidal activity using rabbit complement (i.e., rabbit serum bactericidal activity [rSBA]). Solicited symptoms, unsolicited adverse events (AEs), and serious AEs (SAEs) were recorded. The immunogenicities, in terms of rSBA geometric mean titers, were comparable for both lots of MenACWY-TT. The vaccine response rates across the serogroups were 79.1 to 97.0% in the two ACWY groups and 73.7 to 94.1% in the Men-PS group. All subjects achieved rSBA titers of ≥1:8 for all serogroups. All subjects in the two ACWY groups and 99.5 to 100% in the Men-PS group achieved rSBA titers of ≥1:128. Pain was the most common solicited local symptom and was reported more frequently in the ACWY group (53.9 to 54.7%) than in the Men-PS group (36.8%). The most common solicited general symptoms were fatigue and headache, which were reported by 28.6 to 30.3% and 26.9 to 31.0% of subjects, respectively. Two subjects reported SAEs; one SAE was considered to be related to vaccination (blighted ovum; ACWY-B group). The level of serogroup A PS O-acetylation did not affect vaccine immunogenicity. MenACWY-TT (lot A) was not inferior to Men-PS in terms of vaccine response and was well tolerated.

  3. Anti-alpha interferon immunization: safety and immunogenicity in asymptomatic HIV positive patients at high risk of disease progression.

    Science.gov (United States)

    Gringeri, A; Santagostino, E; Mannucci, P M; Siracusano, L; Marinoni, A; Criscuolo, M; Carcagno, M; Fall, L S; M'Bika, J P; Bizzini, B

    1995-05-01

    A randomized, placebo-controlled trial was designed to evaluate safety and immunogenicity of an anti-cytokine vaccine in high risk HIV-positive patients. This strategy was aimed to modulate the impaired cytokine regulation in AIDS. Twelve asymptomatic patients on antiretroviral therapy for at least 1 year and with CD4 cell counts between 100-300/mm3 were randomized to receive adjuvanted formol-inactivated interferon alpha-2a (IFN alpha) and continue the current antiretroviral treatment, whatever it was, or to receive the adjuvant alone and the current antiretroviral treatment. All patients received 4 i.m. injections monthly, followed by booster injections every 3 months. Clinical status, immunology and virology were monitored. Immune response to vaccination was evaluated in term of antibody detection (ELISA) and serum anti-IFN alpha neutralizing capacity. Only local discomfort and transient fever were reported. All vaccines except one showed increased levels of anti-IFN alpha Abs and developed serum IFN alpha neutralizing capacity. Viral load did not increase in vaccinees while it remained unchanged or even increased in placebo-treated patients. None of them showed HIV-related symptoms and all had their CD4 cell counts stabilized over 18 months, whereas 2 placebo-treated patients developed full-blow AIDS. In conclusion, anti-IFN alpha vaccine was safe and immunogenic. Stable clinical and immunological status over 18 months was observed in vaccinees coupled to increased serum IFN alpha neutralizing capacity.

  4. High throughput sequencing and proteomics to identify immunogenic proteins of a new pathogen: the dirty genome approach.

    Directory of Open Access Journals (Sweden)

    Gilbert Greub

    Full Text Available BACKGROUND: With the availability of new generation sequencing technologies, bacterial genome projects have undergone a major boost. Still, chromosome completion needs a costly and time-consuming gap closure, especially when containing highly repetitive elements. However, incomplete genome data may be sufficiently informative to derive the pursued information. For emerging pathogens, i.e. newly identified pathogens, lack of release of genome data during gap closure stage is clearly medically counterproductive. METHODS/PRINCIPAL FINDINGS: We thus investigated the feasibility of a dirty genome approach, i.e. the release of unfinished genome sequences to develop serological diagnostic tools. We showed that almost the whole genome sequence of the emerging pathogen Parachlamydia acanthamoebae was retrieved even with relatively short reads from Genome Sequencer 20 and Solexa. The bacterial proteome was analyzed to select immunogenic proteins, which were then expressed and used to elaborate the first steps of an ELISA. CONCLUSIONS/SIGNIFICANCE: This work constitutes the proof of principle for a dirty genome approach, i.e. the use of unfinished genome sequences of pathogenic bacteria, coupled with proteomics to rapidly identify new immunogenic proteins useful to develop in the future specific diagnostic tests such as ELISA, immunohistochemistry and direct antigen detection. Although applied here to an emerging pathogen, this combined dirty genome sequencing/proteomic approach may be used for any pathogen for which better diagnostics are needed. These genome sequences may also be very useful to develop DNA based diagnostic tests. All these diagnostic tools will allow further evaluations of the pathogenic potential of this obligate intracellular bacterium.

  5. Polymerase chain reaction amplification and cloning of immunogenic protein NAD-dependent beta hydroxybutyryl CoA dehydrogenase gene of Clostridium chauvoei

    Directory of Open Access Journals (Sweden)

    Saroj K. Dangi

    2014-10-01

    Full Text Available Aim: The present study was aimed at polymerase chain reaction (PCR amplification and cloning of NAD-dependent betahydroxybutyryl coenzyme A dehydrogenase (BHBD gene of Clostridium chauvoei. Materials and Methods: C. chauvoei was cultured and confirmed by 16-23S rDNA spacer region primers. The primers for nad-bhbd gene of C. chauvoei were designed to aid in cloning into pRham-N-His SUMO-Kan vector, and nad-bhbd gene was amplified by PCR. The amplified nad-bhbd gene was purified and cloned into pRham-N-His SUMO-Kan expression vector. The recombinant plasmid was transformed into E. cloni 10 G cells and the clone was confirmed by colony PCR using the pRham-SUMO-NAD-For and pRham-SUMO-NAD-Rev primers and also by sequencing. Results: PCR amplification of nad-bhbd gene yielded a product length of 844 base pairs which was cloned into pRham-NHis SUMO-Kan vector followed by transformation into E. cloni 10G chemically competent cells. The recombinant clones were characterized by colony PCR, sequencing, followed by basic local alignment search tool (BLAST analysis to confirm the insert. Conclusions: Immunogenic protein NAD- dependent BHBD of C. chauvoei was cloned and the recombinant clones were confirmed by colony PCR and sequencing analysis.

  6. Associations between damage location and five main body region injuries of MAIS 3–6 injured occupants

    Science.gov (United States)

    Tang, Youming; Cao, Libo; Kan, Steven

    2014-01-01

    Objectives To examine the damage location distribution of five main body region injuries of maximum abbreviated injury score (MAIS) 3–6 injured occupants for nearside struck vehicle in front-to-side impact crashes. Design and setting MAIS 3–6 injured occupants information was extracted from the US-National Automotive Sampling System/Crashworthiness Data System in the year 2007; it included the head/face/neck, chest, pelvis, upper extremity and lower extremity. Struck vehicle collision damage was classified in a three-dimensional system according to the J224 Collision Deformation Classification of SAE Surface Vehicle Standard. Participants Nearside occupants seated directly adjacent to the struck side of the vehicle with MAIS 3–6 injured, in light truck vehicles–passenger cars (LTV–PC) side impact crashes. Outcome measures Distribution of MAIS 3–6 injured occupants by body regions and specific location of damage (lateral direction, horizontal direction and vertical direction) were examined. Injury risk ratio was also assessed. Results The lateral crush zone contributed to MAIS 3–6 injured occupants (n=705) and 50th centile injury risks when extended into zone 3. When the crush extended to zone 4, the injury risk ratio of MAIS 3–6 injured occupants approached 81%. The horizontal crush zones contributing to the highest injury risk ratio of MAIS 3–6 occupants were zones ‘D’ and ‘Y’, and the injury risk ratios were 25.4% and 36.9%, respectively. In contrast, the lowest injury risk ratio was 5.67% caused by zone ‘B’. The vertical crush zone which contributed to the highest injury risk ratio of MAIS 3–6 occupants was zone ‘E’, whose injury risk ratio was 58%. In contrast, the lowest injury risk ratio was 0.14% caused by zone ‘G+M’. Conclusions The highest injury risk ratio of MAIS 3–6 injured occupants caused by crush intrusion between 40 and 60 cm in LTV–PC nearside impact collisions and the damage region of the struck

  7. A main sequence for quasars

    Science.gov (United States)

    Marziani, Paola; Dultzin, Deborah; Sulentic, Jack W.; Del Olmo, Ascensión; Negrete, C. A.; Martínez-Aldama, Mary L.; D'Onofrio, Mauro; Bon, Edi; Bon, Natasa; Stirpe, Giovanna M.

    2018-03-01

    The last 25 years saw a major step forward in the analysis of optical and UV spectroscopic data of large quasar samples. Multivariate statistical approaches have led to the definition of systematic trends in observational properties that are the basis of physical and dynamical modeling of quasar structure. We discuss the empirical correlates of the so-called “main sequence” associated with the quasar Eigenvector 1, its governing physical parameters and several implications on our view of the quasar structure, as well as some luminosity effects associated with the virialized component of the line emitting regions. We also briefly discuss quasars in a segment of the main sequence that includes the strongest FeII emitters. These sources show a small dispersion around a well-defined Eddington ratio value, a property which makes them potential Eddington standard candles.

  8. A Main Sequence for Quasars

    Directory of Open Access Journals (Sweden)

    Paola Marziani

    2018-03-01

    Full Text Available The last 25 years saw a major step forward in the analysis of optical and UV spectroscopic data of large quasar samples. Multivariate statistical approaches have led to the definition of systematic trends in observational properties that are the basis of physical and dynamical modeling of quasar structure. We discuss the empirical correlates of the so-called “main sequence” associated with the quasar Eigenvector 1, its governing physical parameters and several implications on our view of the quasar structure, as well as some luminosity effects associated with the virialized component of the line emitting regions. We also briefly discuss quasars in a segment of the main sequence that includes the strongest FeII emitters. These sources show a small dispersion around a well-defined Eddington ratio value, a property which makes them potential Eddington standard candles.

  9. Observing environmental change in of the Gulf of Maine: ICUC smartphone app

    Science.gov (United States)

    Want to help collect data on environmental change in the Gulf of Maine with your smartphone? The Gulf of Maine Council’s EcoSystem Indicator Partnership (ESIP) is growing the community of citizen scientists in the Gulf of Maine region through its new smartphone app: ICUC (...

  10. Immunogenicity and safety of the new reduced-dose tetanus-diphtheria vaccine in healthy Korean adolescents: A comparative active control, double-blind, randomized, multicenter phase III study.

    Science.gov (United States)

    Han, Seung Beom; Rhim, Jung-Woo; Shin, Hye Jo; Kim, Sang Yong; Kim, Jong-Hyun; Kim, Hyun-Hee; Lee, Kyung-Yil; Kim, Hwang Min; Choi, Young Youn; Ma, Sang Hyuk; Kim, Chun Soo; Kim, Dong Ho; Ahn, Dong Ho; Kang, Jin Han

    2017-04-01

    A new reduced-dose tetanus-diphtheria (Td) vaccine was developed in Korea, and phase I and II clinical trials were successfully undertaken. We conducted this double-blind, randomized, multicenter phase III clinical trial to assess the immunogenicity and safety of the new Td vaccine. Healthy adolescents 11-12 years of age were enrolled and randomized to receive the new Td vaccine (study group) or a commercially available Td vaccine (control group). Blood samples were collected prior to and 4 weeks after the vaccination. Between the study and control groups, seroprotection rate, booster response, and geometric mean titer of antibodies against diphtheria and tetanus toxoids were compared after the vaccination. All solicited and unsolicited adverse events and serious adverse events during the 6-week study period were monitored. A total of 164 adolescents received vaccination, and 156 of them were evaluated to assess immunogenicity. The seroprotection rate and geometric mean titer for antibodies against diphtheria were significantly higher in the study group, whereas those against tetanus were significantly higher in the control group. However, all seroprotection rates against diphtheria and tetanus in the study and control groups were high: 100% against diphtheria and tetanus in the study group, and 98.7% against diphtheria and 100% against tetanus in the control group. No significant differences in the frequency of solicited and unsolicited adverse events were observed between the two vaccine groups. The new Td vaccine is highly immunogenic and safe, and this new Td vaccine can be effectively used for preventing diphtheria and tetanus. Copyright © 2015. Published by Elsevier B.V.

  11. Generation of the Bovine Viral Diarrhea Virus E0 Protein in Transgenic Astragalus and Its Immunogenicity in Sika Deer

    OpenAIRE

    Gao, Yugang; Zhao, Xueliang; Zang, Pu; Liu, Qun; Wei, Gongqing; Zhang, Lianxue

    2014-01-01

    The bovine viral diarrhea virus (BVDV), a single-stranded RNA virus, can cause fatal diarrhea syndrome, respiratory problems, and reproductive disorders in herds. Over the past few years, it has become clear that the BVDV infection rates are increasing and it is likely that an effective vaccine for BVDV will be needed. In this study, transgenic Astragalus was used as an alternative productive platform for the expression of glycoprotein E0. The immunogenicity of glycoprotein E0 expressed in tr...

  12. Implications of greenhouse gas emission mitigation scenarios for the main Asian regions

    NARCIS (Netherlands)

    van Ruijven, B.J.|info:eu-repo/dai/nl/304834521; van Vuuren, D.P.|info:eu-repo/dai/nl/11522016X; van Vliet, J.; Mendoza Beltran, A.; Deetman, S.; den Elzen, M.G.J.

    2012-01-01

    In order to limit global mean temperature increase, long-term greenhouse gas emissions need to be reduced. This paper discusses the implications of greenhouse gas emission reductions for major Asian regions (China, India, Indonesia, South-East Asia, Japan and Korea) based on results from the IMAGE

  13. Structure-Based Design of a Soluble Prefusion-Closed HIV-1 Env Trimer with Reduced CD4 Affinity and Improved Immunogenicity

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Gwo-Yu; Geng, Hui; Pancera, Marie; Xu, Kai; Cheng, Cheng; Acharya, Priyamvada; Chambers, Michael; Druz, Aliaksandr; Tsybovsky, Yaroslav; Wanninger, Timothy G.; Yang, Yongping; Doria-Rose, Nicole A.; Georgiev, Ivelin S.; Gorman, Jason; Joyce, M.Gordon; O; Dell, Sijy; Zhou, Tongqing; McDermott, Adrian B.; Mascola, John R.; Kwong, Peter D. (NIH); (FNL)

    2017-03-08

    ABSTRACT

    The HIV-1 envelope (Env) trimer is a target for vaccine design as well as a conformational machine that facilitates virus entry by transitioning between prefusion-closed, CD4-bound, and coreceptor-bound conformations by transitioning into a postfusion state. Vaccine designers have sought to restrict the conformation of the HIV-1 Env trimer to its prefusion-closed state as this state is recognized by most broadly neutralizing, but not nonneutralizing, antibodies. We previously identified a disulfide bond, I201C-A433C (DS), which stabilizes Env in the vaccine-desired prefusion-closed state. When placed into the context of BG505 SOSIP.664, a soluble Env trimer mimic developed by Sanders, Moore, and colleagues, the engineered DS-SOSIP trimer showed reduced conformational triggering by CD4. Here, we further stabilize DS-SOSIP through a combination of structure-based design and 96-well-based expression and antigenic assessment. From 103 designs, we identified one, named DS-SOSIP.4mut, with four additional mutations at the interface of potentially mobile domains of the prefusion-closed structure. We also determined the crystal structures of DS-SOSIP.4mut at 4.1-Å resolution and of an additional DS-SOSIP.6mut variant at 4.3-Å resolution, and these confirmed the formation of engineered disulfide bonds. Notably, DS-SOSIP.4mut elicited a higher ratio of tier 2 autologous titers versus tier 1 V3-sensitive titers than BG505 SOSIP.664. DS-SOSIP.4mut also showed reduced recognition of CD4 and increased thermostability. The improved antigenicity, thermostability, and immunogenicity of DS-SOSIP.4mut suggest utility as an immunogen or a serologic probe; moreover, the specific four alterations identified here, M154, M300, M302, and L320 (4mut), can also be transferred to other HIV-1 Env trimers of interest to improve their properties.

    IMPORTANCEOne approach to elicit broadly neutralizing antibodies against HIV-1 is to stabilize the

  14. Differential Expression of Immunogenic Proteins on Virulent Mycobacterium tuberculosis Clinical Isolates

    Directory of Open Access Journals (Sweden)

    Pablo Schierloh

    2014-01-01

    Full Text Available Molecular epidemiology has revealed that Mycobacterium tuberculosis (Mtb, formerly regarded as highly conserved species, displays a considerable degree of genetic variability that can influence the outcome of the disease as well as the innate and adaptive immune response. Recent studies have demonstrated that Mtb families found worldwide today differ in pathology, transmissibility, virulence, and development of immune response. By proteomic approaches seven proteins that were differentially expressed between a local clinical isolate from Latin-American-Mediterranean (LAM and from Haarlem (H lineages were identified. In order to analyze the immunogenic ability, recombinant Rv2241, Rv0009, Rv0407, and Rv2624c proteins were produced for testing specific antibody responses. We found that these proteins induced humoral immune responses in patients with drug-sensitive and drug-resistant tuberculosis with substantial cross-reactivity among the four proteins. Moreover, such reactivity was also correlated with anti-Mtb-cell surface IgM, but not with anti-ManLAM, anti-PPD, or anti-Mtb-surface IgG antibodies. Therefore, the present results describe new Mtb antigens with potential application as biomarkers of TB.

  15. 75 FR 4379 - Maine Marine Sanitation Device Standard-Notice of Determination

    Science.gov (United States)

    2010-01-27

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-R01-OW-2009-0304, FRL-9106-3] Maine Marine Sanitation Device Standard--Notice of Determination AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of Determination. SUMMARY: The Regional Administrator of the Environmental Protection Agency--New England Region...

  16. Characterization of the in vitro expressed autoimmune rippling muscle disease immunogenic domain of human titin encoded by TTN exons 248-249

    Energy Technology Data Exchange (ETDEWEB)

    Zelinka, L. [Biomedical Sciences Program, Kent State University, Kent, OH (United States); McCann, S.; Budde, J.; Sethi, S.; Guidos, M.; Giles, R. [Center for Applied Chemical Biology, Department of Biological Sciences, Youngstown State University, One University Plaza, Youngstown, OH 44555 (United States); Walker, G.R., E-mail: grwalker@ysu.edu [Center for Applied Chemical Biology, Department of Biological Sciences, Youngstown State University, One University Plaza, Youngstown, OH 44555 (United States); Biomedical Sciences Program, Kent State University, Kent, OH (United States)

    2011-08-05

    Highlights: {yields} Affinity purification of the autoimmune rippling muscle disease immunogenic domain of titin. {yields} Partial sequence analysis confirms that the peptides is in the I band region of titin. {yields} This region of the human titin shows high degree of homology to mouse titin N2-A. -- Abstract: Autoimmune rippling muscle disease (ARMD) is an autoimmune neuromuscular disease associated with myasthenia gravis (MG). Past studies in our laboratory recognized a very high molecular weight skeletal muscle protein antigen identified by ARMD patient antisera as the titin isoform. These past studies used antisera from ARMD and MG patients as probes to screen a human skeletal muscle cDNA library and several pBluescript clones revealed supporting expression of immunoreactive peptides. This study characterizes the products of subcloning the titin immunoreactive domain into pGEX-3X and the subsequent fusion protein. Sequence analysis of the fusion gene indicates the cloned titin domain (GenBank ID: (EU428784)) is in frame and is derived from a sequence of N2-A spanning the exons 248-250 an area that encodes the fibronectin III domain. PCR and EcoR1 restriction mapping studies have demonstrated that the inserted cDNA is of a size that is predicted by bioinformatics analysis of the subclone. Expression of the fusion protein result in the isolation of a polypeptide of 52 kDa consistent with the predicted inferred amino acid sequence. Immunoblot experiments of the fusion protein, using rippling muscle/myasthenia gravis antisera, demonstrate that only the titin domain is immunoreactive.

  17. Characterization of the in vitro expressed autoimmune rippling muscle disease immunogenic domain of human titin encoded by TTN exons 248-249

    International Nuclear Information System (INIS)

    Zelinka, L.; McCann, S.; Budde, J.; Sethi, S.; Guidos, M.; Giles, R.; Walker, G.R.

    2011-01-01

    Highlights: → Affinity purification of the autoimmune rippling muscle disease immunogenic domain of titin. → Partial sequence analysis confirms that the peptides is in the I band region of titin. → This region of the human titin shows high degree of homology to mouse titin N2-A. -- Abstract: Autoimmune rippling muscle disease (ARMD) is an autoimmune neuromuscular disease associated with myasthenia gravis (MG). Past studies in our laboratory recognized a very high molecular weight skeletal muscle protein antigen identified by ARMD patient antisera as the titin isoform. These past studies used antisera from ARMD and MG patients as probes to screen a human skeletal muscle cDNA library and several pBluescript clones revealed supporting expression of immunoreactive peptides. This study characterizes the products of subcloning the titin immunoreactive domain into pGEX-3X and the subsequent fusion protein. Sequence analysis of the fusion gene indicates the cloned titin domain (GenBank ID: (EU428784)) is in frame and is derived from a sequence of N2-A spanning the exons 248-250 an area that encodes the fibronectin III domain. PCR and EcoR1 restriction mapping studies have demonstrated that the inserted cDNA is of a size that is predicted by bioinformatics analysis of the subclone. Expression of the fusion protein result in the isolation of a polypeptide of 52 kDa consistent with the predicted inferred amino acid sequence. Immunoblot experiments of the fusion protein, using rippling muscle/myasthenia gravis antisera, demonstrate that only the titin domain is immunoreactive.

  18. Immunogenicity and Reactogenicity of DTPa-IPV/Hib Vaccine Co-administered With Hepatitis B Vaccine for Primary and Booster Vaccination of Taiwanese Infants

    Directory of Open Access Journals (Sweden)

    Pei-Lan Shao

    2011-06-01

    Full Text Available Immunogenicity and reactogenicity of the combined diphtheria-tetanus-acellular pertussis-inactivated poliovirus-Haemophilus influenzae type b (Hib conjugate vaccine (DTPa-IPV/Hib, Infanrix™-IPV + Hib was assessed when co-administered with hepatitis B (HBV vaccine. Seventy healthy infants received DTPa-IPV/Hib at 1.5, 3.5, 6 and 15–18 months, and HBV at birth, 1.5, 6 and 15–18 months of age. Serological responses were assessed. Diphtheria, tetanus, Hib and pertussis seroprotection/seropositivity rates were 100% after primary vaccination. Post-primary immune responses to poliovirus could not be evaluated for technical reasons. However, after the booster dose, seroprotection/seropositivity rates, including poliovirus, were 100%. Over 95% were seroprotected against HBV. Post-booster geometric mean antibody concentrations/titers (GMC/GMTs rose from 14-fold to 45-fold, indicating effective priming against all antigens, including polioviruses. DTPa-IPV/Hib was well tolerated alone or co-administered with HBV. No serious adverse events were considered related to vaccination. Primary and booster vaccination with combined DTPa-IPV/Hib and HBV was immunogenic and well tolerated. Combination vaccines enable vaccine providers to conveniently provide routine pediatric immunizations, with minimal discomfort.

  19. Microbiota epitope similarity either dampens or enhances the immunogenicity of disease-associated antigenic epitopes.

    Directory of Open Access Journals (Sweden)

    Sebastian Carrasco Pro

    Full Text Available The microbiome influences adaptive immunity and molecular mimicry influences T cell reactivity. Here, we evaluated whether the sequence similarity of various antigens to the microbiota dampens or increases immunogenicity of T cell epitopes. Sets of epitopes and control sequences derived from 38 antigenic categories (infectious pathogens, allergens, autoantigens were retrieved from the Immune Epitope Database (IEDB. Their similarity to microbiome sequences was calculated using the BLOSUM62 matrix. We found that sequence similarity was associated with either dampened (tolerogenic; e.g. most allergens or increased (inflammatory; e.g. Dengue and West Nile viruses likelihood of a peptide being immunogenic as a function of epitope source category. Ten-fold cross-validation and validation using sets of manually curated epitopes and non-epitopes derived from allergens were used to confirm these initial observations. Furthermore, the genus from which the microbiome homologous sequences were derived influenced whether a tolerogenic versus inflammatory modulatory effect was observed, with Fusobacterium most associated with inflammatory influences and Bacteroides most associated with tolerogenic influences. We validated these effects using PBMCs stimulated with various sets of microbiome peptides. "Tolerogenic" microbiome peptides elicited IL-10 production, "inflammatory" peptides elicited mixed IL-10/IFNγ production, while microbiome epitopes homologous to self were completely unreactive for both cytokines. We also tested the sequence similarity of cockroach epitopes to specific microbiome sequences derived from households of cockroach allergic individuals and non-allergic controls. Microbiomes from cockroach allergic households were less likely to contain sequences homologous to previously defined cockroach allergens. These results are compatible with the hypothesis that microbiome sequences may contribute to the tolerization of T cells for allergen

  20. Evaluation of immunogenicity and safety of Genevac B: A new recombinant hepatitis b vaccine in comparison with Engerix B and Shanvac B in healthy adults

    Directory of Open Access Journals (Sweden)

    Vijayakumar V

    2004-01-01

    Full Text Available PURPOSE: Genevac B, a new indigenous recombinant hepatitis B vaccine was evaluated for its immunogenicity and safety in comparison with Engerix B (Smithkline Beecham Biologicals, Belgium and Shanvac B (Shantha Biotechnics, India in healthy adult volunteers. METHODS: While 240 study subjects were included in the Genevac B group, 80 each were the subjects for Engerix B and Shanvac B. A three dose regimen of 0,1,2 months was adopted with 20 gm dosage uniformly in all the three groups. Vaccinees were assessed during prevaccination, followup and post vaccination periods for clinical, haematological, biochemical and immunological parameters for safety and immunogenicity. RESULTS: Successful follow-up in all parameters for four months could be achieved in 92.5% (222/240 for Genevac B study subjects and the same was 85% (68/80 and 80% (64/80 for Engerix B and Shanvac B respectively. While 100% seroconversion was observed in all the three groups, the rate of seroprotectivity was 99.5% by Genevac B, 98.5% by Engerix B and 98.4% for Shanvac B. However the difference was not statistically significant (p>0.05. The GMT values of anti HBs after one month of completion of the vaccination were 735.50, 718.23 and 662.20 mIU/mL respectively. No systemic reaction was either seen or reported by the volunteers during the vaccination process of Genevac B and other two vaccines. Clinical, haematological and biochemical safety parameters remained within normal limits throughout the study period. CONCLUSION: The study confirms that Genevac B, the new recombinant Hepatitis B vaccine has the acceptable international standards of safety and immunogenicity.