WorldWideScience

Sample records for magnum-2d heat transport

  1. MAGNUM-2D, Heat Transport and Groundwater Flow in Fractured Porous Media

    International Nuclear Information System (INIS)

    Langford, D.W.; Baca, R.G.

    2001-01-01

    1 - Description of program or function: MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water-rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and inter- connecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculations assume local thermodynamic equilibrium between the rock and groundwater, non- isothermal Darcy flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER post-processor interpolates non-regularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH post-processor plots flow paths and computes the corresponding travel times. 2 - Method of solution: MAGNUM2

  2. Ab-initio quantum transport simulation of self-heating in single-layer 2-D materials

    Science.gov (United States)

    Stieger, Christian; Szabo, Aron; Bunjaku, Teutë; Luisier, Mathieu

    2017-07-01

    Through advanced quantum mechanical simulations combining electron transport and phonon transport from first-principles, self-heating effects are investigated in n-type transistors with single-layer MoS2, WS2, and black phosphorus as channel materials. The selected 2-D crystals all exhibit different phonon-limited mobility values, as well as electron and phonon properties, which have a direct influence on the increase in their lattice temperature and on the power dissipated inside their channel as a function of the applied gate voltage and electrical current magnitude. This computational study reveals (i) that self-heating plays a much more important role in 2-D materials than in Si nanowires, (ii) that it could severely limit the performance of 2-D devices at high current densities, and (iii) that black phosphorus appears less sensitive to this phenomenon than transition metal dichalcogenides.

  3. Operational characteristics of the high flux plasma generator Magnum-PSI

    Energy Technology Data Exchange (ETDEWEB)

    Eck, H.J.N. van, E-mail: h.j.n.vaneck@differ.nl [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Abrams, T. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Berg, M.A. van den; Brons, S.; Eden, G.G. van [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Jaworski, M.A.; Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Meiden, H.J. van der; Morgan, T.W.; Pol, M.J. van de; Scholten, J.; Smeets, P.H.M.; De Temmerman, G.; Vries, P.C. de; Zeijlmans van Emmichoven, P.A. [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands)

    2014-10-15

    Highlights: •We have described the design and capabilities of the plasma experiment Magnum-PSI. •The plasma conditions are well suited for PSI studies in support of ITER. •Quasi steady state heat fluxes over 10 MW m{sup −2} have been achieved. •Transient heat and particle loads can be generated to simulate ELM instabilities. •Lithium coating can be applied to the surfaces of samples under vacuum. -- Abstract: In Magnum-PSI (MAgnetized plasma Generator and NUMerical modeling for Plasma Surface Interactions), the high density, low temperature plasma of a wall stabilized dc cascaded arc is confined to a magnetized plasma beam by a quasi-steady state axial magnetic field up to 1.3 T. It aims at conditions that enable fundamental studies of plasma–surface interactions in the regime relevant for fusion reactors such as ITER: 10{sup 23}–10{sup 25} m{sup −2} s{sup −1} hydrogen plasma flux densities at 1–5 eV. To study the effects of transient heat loads on a plasma-facing surface, a high power pulsed magnetized arc discharge has been developed. Additionally, the target surface can be transiently heated with a pulsed laser system during plasma exposure. In this contribution, the current status, capabilities and performance of Magnum-PSI are presented.

  4. Magnum-PSI: A new plasma-wall interaction experiment

    International Nuclear Information System (INIS)

    Koppers, W.; Eck, H. van; Scholten, J.

    2006-01-01

    The FOM-Institute for Plasma Physics Rijnhuizen is preparing the construction of Magnum-PSI, a magnetized (3 T), steady-state, large area (diameter 10 cm), high-flux plasma (10 24 ions m -2 s -1 generator. The aim of the linear plasma device Magnum-PSI is to provide a controlled, highly accessible laboratory experiment in which the interaction of a magnetized plasma with different surfaces can be studied in detail. Plasma parameters can be varied over a wide range, in particular covering the high-density, low-temperature conditions expected for the detached divertor plasma of ITER. The target set-up will be extremely flexible allowing the investigation of different materials under a large variety of conditions (temperatures, inclination, biasing, coatings, etc.). A range of target materials will be used, including carbon, tungsten and other metals, and mixed materials. Because of the large plasma beam of 10 cm diameter and spacious vacuum tank, even the test of whole plasma-facing component mock-ups will be possible. Dedicated diagnostics will be installed to allow for detailed studies of the fundamental physics and chemistry of plasma-surface interaction, such as erosion and deposition, hydrogen recycling, retention and removal, dust and layer formation, plasma sheath physics and heat loads (steady-state or transient). Magnum-PSI will be a unique experiment to address the ITER divertor physics which will essentially differ from present day Tokamak and/or linear plasma generator physics. In this contribution, we will present the pre-design of the Magnum-PSI experiment. We will discuss the requirements on the vacuum system, 3T superconducting magnet, plasma source, target manipulator and additional plasma heating. In addition, we will briefly introduce the plasma and surface diagnostics that will be used in the Magnum-PSI experiment. (author)

  5. 76 FR 24934 - Magnum d'Or Resources, Inc.; Order of Suspension of Trading

    Science.gov (United States)

    2011-05-03

    ... press releases to investors concerning, among other things: (1) The company's current financial... lack of current and accurate information concerning the securities of Magnum d'Or Resources, Inc... interest and the protection of investors require a suspension of trading in the securities of the above...

  6. Magnetic Field Enhancement of Heat Transport in the 2D Heisenberg Antiferromagnet K_2V_3O_8

    Science.gov (United States)

    Sales, B. C.; Lumsden, M. D.; Nagler, S. E.; Mandrus, D.; Jin, R.

    2002-03-01

    The thermal conductivity and heat capacity of single crystals of the spin 1/2 quasi-2D Heisenberg antiferromagnet K_2V_3O8 have been measured from 1.9 to 300 K in magnetic fields from 0 to 8T. The data are consistent with resonant scattering of phonons by magnons near the zone boundary and heat transport by long wavelength magnons. The magnon heat transport only occurs after the small anisotropic gap at k=0 is closed by the application of a magnetic field. The low temperature thermal conductivity increases linearly with magnetic field after the gap has been closed. Oak Ridge National Laboratory is managed by UT-Battelle LLC for the U.S. Department of Energy under Contract No. DE-AC05-00R22725.

  7. Moodne Magnum kasutab tipptaset / Tanel Raig

    Index Scriptorium Estoniae

    Raig, Tanel, 1975-

    2008-01-01

    Logistikateo konkursil esikoha saanud Magnum Logisticsi uus ladu on omataolistest Ida-Euroopas moodsaim. Vt. samas: Aasta logistikateo finaali jõudnud tööd olid suunatud efektiivsusele. Kommenteerivad Erki Lehiste ja Indrek Reismann

  8. Foramen magnum position in bipedal mammals.

    Science.gov (United States)

    Russo, Gabrielle A; Kirk, E Christopher

    2013-11-01

    The anterior position of the human foramen magnum is often explained as an adaptation for maintaining balance of the head atop the cervical vertebral column during bipedalism and the assumption of orthograde trunk postures. Accordingly, the relative placement of the foramen magnum on the basicranium has been used to infer bipedal locomotion and hominin status for a number of Mio-Pliocene fossil taxa. Nonetheless, previous studies have struggled to validate the functional link between foramen magnum position and bipedal locomotion. Here, we test the hypothesis that an anteriorly positioned foramen magnum is related to bipedalism through a comparison of basicranial anatomy between bipeds and quadrupeds from three mammalian clades: marsupials, rodents and primates. Additionally, we examine whether strepsirrhine primates that habitually assume orthograde trunk postures exhibit more anteriorly positioned foramina magna compared with non-orthograde strepsirrhines. Our comparative data reveal that bipedal marsupials and rodents have foramina magna that are more anteriorly located than those of quadrupedal close relatives. The foramen magnum is also situated more anteriorly in orthograde strepsirrhines than in pronograde or antipronograde strepsirrhines. Among the primates sampled, humans exhibit the most anteriorly positioned foramina magna. The results of this analysis support the utility of foramen magnum position as an indicator of bipedal locomotion in fossil hominins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Magnum seljatas Tamro kasvuga / Sten-Aleks Pihlak

    Index Scriptorium Estoniae

    Pihlak, Sten-Aleks

    2007-01-01

    Ravimite hulgimüüja Magnum Medical ületas käibe kasvult turuliidrit Tamro Eesti OÜ-d, siiski ei kavatse viimane Magnumile liidripositsiooni ära anda. Diagramm: Tamrol ja Magnumil pea võrdne turuosa. Tabel: Magnumil kasvas käive rohkem kui Tamrol. Lisa: Number

  10. Hypochondroplasia with Foramen Magnum Stenosis: a Case Report

    Directory of Open Access Journals (Sweden)

    Nazik Aşılıoğlu

    2011-09-01

    Full Text Available Hypochondroplasia was first reported in the English literature by Beals (1969. The features are similar to those of achondroplasia but are less severe and are usually reported not to involve the skull. The foramen magnum and whole spinal canal are reduced in diameter in achondroplasia, but less so in hypochondroplasia. In this study, we present an unique case of a seven month old child with hypochondroplasia with symptomatic foramen magnum stenosis which required surgical decompression. This 7-month-old child with hypochondroplasia presented with hypotonia and severe respiratory disabilities, including apneic episodes requiring continuous positive airway pressure. Magnetic resonance imaging revealed marked foramen magnum stenosis. Foramen magnum decompression was performed. Postoperatively, steady motor improvement has been observed and the patient no longer requires ventilatory support. To the our knowledge, this is the first report of hypochondroplasia and symptomatic foramen magnum stenosis. In this case we wish to emphasize the necessity of the radiological imaging of foramen magnum and spinal cord for the patient who has respiratory distress and hypotonia with skeletal dysplasia.

  11. The linear plasma generator Magnum-PSI

    NARCIS (Netherlands)

    Eck, van H.J.N.

    2013-01-01

    The Dutch Institute for Fundamental Energy Research (DIFFER) has built the new experimental research facility Magnum-PSI. In Magnum-PSI, Plasma Surface Interaction (PSI) research for the nuclear fusion reactor ITER and reactors beyond ITER will be carried out. As such, it is essential that the

  12. Modular to Monoblock: Difficulties of Detaching the M(2)a-Magnum(TM) Head Are Common in Metal-on-metal Revisions.

    Science.gov (United States)

    Mäntymäki, Heikki; Mäkelä, Keijo T; Vahlberg, Tero; Hirviniemi, Joni; Niinimäki, Tuukka

    2016-09-01

    Modern hip implants typically feature modular heads, which allow for easy exchange and removal from the femoral stem at the time of revision. However, owing to fretting, corrosion, or cold welding, the modular head may be difficult or impossible to separate from the underlying trunnion, especially if the implant has titanium interfaces between the head and the stem. We have repeatedly encountered difficulty removing the titanium sleeve adapter in the M(2)a-Magnum(TM) implant. Although the manufacturer warns about this complication and cases with these difficulties have been reported to the United States FDA, we believed this topic is important to study, because the frequency of difficulties in head removal is unknown and the complications related to this event have not been characterized. We asked: (1) Do revisions of M(2)a-Magnum(TM) implants differ from those of M(2)a-38(TM) implants in terms of ease of removal of the femoral head? (2) In cases where difficulty with M(2)a-Magnum(TM) head removal occurred, was the operative time, bleeding, risk of periprosthetic fracture, or joint infection increased compared with cases where the M(2)a-Magnum(TM) head was removed without difficulties? Between 2004 and 2014, we revised 296 THAs with metal-on-metal implants that involved M(2)a-Magnum(TM) (123) or M(2)a-38(TM) heads (88); of those, 84 were planned to include a femoral stem revision and insufficient data were available for three operations, so they were excluded from this analysis, leaving 124 THAs in the current retrospective study (70 THAs with M(2)a-Magnum(TM) and 54 THAs with M(2)a-38(TM) heads).The method of modular head removal, any difficulties removing the femoral head from the trunnion, operation time, and complications were recorded based on chart review. All the observed problems of detaching the head or taper adapter were among M(2)a-Magnum(TM) heads; there were no problems detaching the head in revisions of the M(2)a-38(TM) implant. In 29% (20 of 70) of

  13. Survey of 1 1/2D transport codes

    International Nuclear Information System (INIS)

    Grad, H.

    1978-10-01

    A survey is given of a family of classical transport codes, recently termed ''1 1/2D'', which efficiently and accurately follow the evolution of plasma configurations on a long time scale, following coupled changes in plasma shape and topology with transport (but not wave motion). Codes have been constructed and operated (since 1974) which include various combinations of finite beta, general plasma cross-section and aspect, various topologies (Doublet, tearing, reversed-field mirror) including time dependent transitions in topology resulting from external coil variation and plasma transport, with models including (classical) tensor resistivity and heat flow as well as the adiabatic limiting case

  14. 3D modeling of groundwater heat transport in the shallow Westliches Leibnitzer Feld aquifer, Austria

    Science.gov (United States)

    Rock, Gerhard; Kupfersberger, Hans

    2018-02-01

    For the shallow Westliches Leibnitzer feld aquifer (45 km2) we applied the recently developed methodology by Kupfersberger et al. (2017a) to derive the thermal upper boundary for a 3D heat transport model from observed air temperatures. We distinguished between land uses of grass and agriculture, sealed surfaces, forest and water bodies. To represent the heat flux from heated buildings and the mixture between different land surfaces in urban areas we ran the 1D vertical heat conduction module SoilTemp which is coupled to the heat transport model (using FEFLOW) on a time step basis. Over a simulation period of 23 years the comparison between measured and observed groundwater temperatures yielded NSE values ranging from 0.41 to 0.92 including readings at different depths. The model results showed that the thermal input signals lead to distinctly different vertical groundwater temperature distributions. To overcome the influence of specific warm or cold years we introduced the computation of an annual averaged groundwater temperature profile. With respect to the use of groundwater cooling or heating facilities we evaluated the application of vertically averaged statistical groundwater temperature distributions compared to the use of temperature distributions at selected dates. We concluded that the heat transport model serves well as an aquifer scale management tool to optimize the use of the shallow subsurface for thermal purposes and to analyze the impacts of corresponding measures on groundwater temperatures.

  15. Suitability of foramen magnum measurements in sex determination and their clinical significance.

    Science.gov (United States)

    Tellioglu, A Metin; Durum, Y; Gok, M; Karakas, S; Polat, A G; Karaman, C Z

    2018-01-01

    The foramen magnum provides a transition between fossa cranii posterior and canalis vertebralis. Medulla oblongata, arteria vertebralis and nervus accessorius spinal part pass through the foramen magnum. In this study, we aimed to make the morphometric measurements of the foramen magnum on computed tomography (CT) and to determine the feasibility of sex determination based on these measurements. Besides sex determination, from a clinical aspect, it is important to know the measurements of the foramen magnum in the normal population in terms of diseases characterised by displacement of the posterior fossa structures through foramen magnum to upper cervical spinal canal such as Chiari malformations and syringomyelia. All the data for our study was obtained retrospectively from 100 patients (50 males, 50 females) who had a CT scan of the head and neck region in Adnan Menderes University Hospital, Department of Radiology. To examine the foramen magnum in each and every occipital bone, we measured the foramen magnum's anteroposterior diameter, transverse diameter, the area of the foramen magnum and its circumference. We found that men have a higher average value than women in our study. According to Student's t-test results; in all measured parameters, there is significant difference between the genders (p discriminant function test is performed for all four measurements, the discrimination rate is 64% for all women, 70% for all men and 67% for both genders. As a result of our study, the metric data we obtained will be useful in cases where the skeletons' sex could not be determined by any other methods. We believe that, our study may be useful for other studies in determining of sex from foramen magnum. Our measurements could give some information of the normal ranges of the foramen magnum in normal population, so that this can contribute to the diagnosis process of some diseases by imaging. (Folia Morphol 2018; 77, 1: 99-104).

  16. Morphometric aspects of the foramen magnum and the orbit in Brazilian dry skulls

    Directory of Open Access Journals (Sweden)

    Lucas A. S. Pires

    2016-04-01

    Full Text Available Morphometric analysis of crania structures are of great significance to anatomists, forensic doctors, anthropologists, and surgeons. We performed a morphometric study regarding the foramen magnum and the bony orbit on the right side of the cranium in 77 skulls with the purpose of identifying a correlation between these measures, as they are often employed alone to identify the genre and race of a skeleton with no other remains, since the cranium is a structure that can resist fire, explosions, and mutilations. The foramen magnum receives special attention, as it is located in a region together with many strong muscles and ligaments. The measures were taken with a sliding digital caliper. Our results showed that the foramen magnum had a mean anteroposterior diameter of 34.23±2.54 mm, and the mean transverse diameter was 28.62±2.83 mm. The most common shape for the foramen magnum was oval. The mean right orbital height was 32.89±2.45 mm, and the mean right orbital breadth was 37.15±2.68 mm. There was a weak to moderate correlation between these measures. Furthermore, the foramen magnum and the orbit are regions of surgical and clinical significance, thus requiring knowledge regarding the morphometric aspects of such areas, since they can often suffer morphological changes due to a number of diseases and they undergo surgical procedures in order to treat these conditions.

  17. Core 2D. A code for non-isothermal water flow and reactive solute transport. Users manual version 2

    Energy Technology Data Exchange (ETDEWEB)

    Samper, J.; Juncosa, R.; Delgado, J.; Montenegro, L. [Universidad de A Coruna (Spain)

    2000-07-01

    Understanding natural groundwater quality patterns, quantifying groundwater pollution and assessing the effects of waste disposal, require modeling tools accounting for water flow, and transport of heat and dissolved species as well as their complex interactions with solid and gases phases. This report contains the users manual of CORE ''2D Version V.2.0, a COde for modeling water flow (saturated and unsaturated), heat transport and multicomponent Reactive solute transport under both local chemical equilibrium and kinetic conditions. it is an updated and improved version of CORE-LE-2D V0 (Samper et al., 1988) which in turns is an extended version of TRANQUI, a previous reactive transport code (ENRESA, 1995). All these codes were developed within the context of Research Projects funded by ENRESA and the European Commission. (Author)

  18. Core2D. A code for non-isothermal water flow and reactive solute transport. Users manual version 2

    International Nuclear Information System (INIS)

    Samper, J.; Juncosa, R.; Delgado, J.; Montenegro, L.

    2000-01-01

    Understanding natural groundwater quality patterns, quantifying groundwater pollution and assessing the effects of waste disposal, require modeling tools accounting for water flow, and transport of heat and dissolved species as well as their complex interactions with solid and gases phases. This report contains the users manual of CORE ''2D Version V.2.0, a COde for modeling water flow (saturated and unsaturated), heat transport and multicomponent Reactive solute transport under both local chemical equilibrium and kinetic conditions. it is an updated and improved version of CORE-LE-2D V0 (Samper et al., 1988) which in turns is an extended version of TRANQUI, a previous reactive transport code (ENRESA, 1995). All these codes were developed within the context of Research Projects funded by ENRESA and the European Commission. (Author)

  19. Core 2D. A code for non-isothermal water flow and reactive solute transport. Users manual version 2

    Energy Technology Data Exchange (ETDEWEB)

    Samper, J; Juncosa, R; Delgado, J; Montenegro, L [Universidad de A Coruna (Spain)

    2000-07-01

    Understanding natural groundwater quality patterns, quantifying groundwater pollution and assessing the effects of waste disposal, require modeling tools accounting for water flow, and transport of heat and dissolved species as well as their complex interactions with solid and gases phases. This report contains the users manual of CORE ''2D Version V.2.0, a COde for modeling water flow (saturated and unsaturated), heat transport and multicomponent Reactive solute transport under both local chemical equilibrium and kinetic conditions. it is an updated and improved version of CORE-LE-2D V0 (Samper et al., 1988) which in turns is an extended version of TRANQUI, a previous reactive transport code (ENRESA, 1995). All these codes were developed within the context of Research Projects funded by ENRESA and the European Commission. (Author)

  20. MAGNUM-PSI, a plasma generator for plasma-surface interaction research in ITER-like conditions

    International Nuclear Information System (INIS)

    Goedheer, W.J.; Rooij, G.J. van; Veremiyenko, V.; Ahmad, Z.; Barth, C.J.; Eck, H.J.N. van; Groot, B. de; Hellermann, M.G. von; Kruijtzer, G.L.; Wolff, J.C.; Brezinsek, S.; Philipps, V.; Pospieszczyk, A.; Samm, U.; Schweer, B.; Dahiya, R.P.; Engeln, R.A.H.; Schram, D.C.; Fantz, U.; Kleyn, A.W.; Lopes Cardozo, N.J.

    2005-01-01

    The FOM-Institute for Plasma Physics - together with its TEC partners - is preparing the construction of Magnum-psi, a magnetized (3 T), steady-state, large area (100 cm 2 ), high-flux (up to 10 24 H + ions m -2 s -1 ) plasma generator. The research programme of Magnum-psi will address the questions for the ITER divertor: erosion, redeposition and hydrogen retention with carbon substrates, melting of metal surfaces, erosion and redeposition with mixed materials. In order to explore and develop the techniques to be applied in Magnum-psi, a pilot experiment (Pilot-psi), operating at a magnetic field up to 1.6 Tesla, has been constructed. Pilot-psi produces a hydrogen plasma beam with the required parameters (T e ≤ 1eV and flux ≥ 10 23 m -2 s -1 ) over an area of 1 cm 2 . In this paper the results of extensive diagnostic measurements on Pilot-psi (a.o., Thomson Scattering and high-resolution spectroscopy), combined with numerical studies of the source and the expansion of the plasma will be presented to demonstrate the feasibility of the large Magnum-psi plasma generator. (author)

  1. Achondroplasia in children: correlation of ventriculomegaly, size of foramen magnum and jugular foramina, and emissary vein enlargement.

    Science.gov (United States)

    Bosemani, Thangamadhan; Orman, Gunes; Hergan, Benedikt; Carson, Kathryn A; Huisman, Thierry A G M; Poretti, Andrea

    2015-01-01

    Achondroplasia is a skeletal dysplasia with diminished growth of the skull base secondary to defective enchondral bone formation. This leads to narrowing of the foramen magnum and jugular foramina, which further leads to ventricular dilatation and prominence of the emissary veins. The primary goal of our study was to determine a correlation between the degree of ventricular dilatation, jugular foramina and foramen magnum narrowing, as well as emissary vein enlargement. Conventional T2-weighted MR images were evaluated for surface area of the foramen magnum and jugular foramina, ventricular dilatation, and emissary veins enlargement in 16 achondroplasia patients and 16 age-matched controls. Ratios were calculated for the individual parameters using median values from age-matched control groups to avoid age as a confounder. Compared to age-matched controls, in children with achondroplasia, the surface area of the foramen magnum (median 0.50 cm(2), range 0.23-1.37 cm(2) vs. 3.14 cm(2), 1.83-6.68 cm(2), p achondroplasia, (1) the variation in ventricular dilatation may be related to an unquantifiable interdependent relationship of emissary vein enlargement, venous channel narrowing, and foramen magnum compression and (2) stable ventricular size facilitated by interdependent factors likely obviates the need for ventricular shunt placement.

  2. SURGICAL OUTCOME OF CERVICAL AND FORAMEN MAGNUM INTRA DURAL AND INTRA MEDULLARY TUMOURS

    OpenAIRE

    Kumar Babu; Deekshanti Narayan; Biju; Manas; Vijaya Saradhi; Pathapati Rama; Madhavalu

    2014-01-01

    : INTRODUCTION: Spinal tumors account for only approximately 5-15% of the nervous system neoplasms. Technical advances in imaging and surgical procedures have brought about significant better clinical results in the last 2 decades. We also evaluated surgical and functional outcomes in patients having cervical intradural tumors including tumors at foramen magnum. METHODS: All patients who underwent surgical treatment for cervical intradural tumors from foramen magnum to C7,...

  3. POSITION OF CEREBELLAR TONSILS IN REFERENCE TO FORAMEN MAGNUM: AN MRI STUDY

    OpenAIRE

    Lakshmi

    2015-01-01

    Normal position of the cerebellar tonsils is described to be at or above the foramen magnum. Western studies have shown the cerebellar tonsils to be below the foramen magnum. Position of tonsils is of great importance in assessing the hind brain deformity–Chiari malformation. There are no Indian studies to corroborate the findings. Hence, we proposed a basic study to find out the existence of tonsillar ectopia (Position of tonsils below the foramen magnum) in normal population. Ou...

  4. Magnetic heat transport in Sr{sub 2}IrO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Steckel, Frank [Leibniz Institute for Solid State and Materials Research, IFW Dresden (Germany); Takagi, Hidenori [Max-Planck-Institute for Solid State Research, Stuttgart (Germany); Buechner, Bernd; Hess, Christian [Leibniz Institute for Solid State and Materials Research, IFW Dresden (Germany); Center for Transport and Devices, TU Dresden (Germany)

    2015-07-01

    The layered perovskite Sr{sub 2}IrO{sub 4} is a 5d transition metal oxide with an enhanced spin-orbit coupling leading to a Mott insulating ground state with J{sub eff}=(1)/(2). It exhibits canted antiferromagnetism below T{sub N}=240 K with an antiferromagnetic coupling constant of about J=0.1 eV. Thermal conductivity measurements along the ab plane of a Sr{sub 2}IrO{sub 4} single crystal provide evidence for a contribution of magnons (below T{sub N}) to the thermal conductivity, similar to that of the isostructural 2D S=(1)/(2) Heisenberg antiferromagnet La{sub 2}CuO{sub 4}, where a significant magnonic contribution to the heat transport is known.

  5. AN ANATOMICAL PERSPECTIVE OF HUMAN OCCIPITAL CONDYLES AND FORAMEN MAGNUM WITH NEUROSURGICAL CORRELATES

    OpenAIRE

    Gaurav; Divya; Abha

    2014-01-01

    AIMS: Knowledge of condylar anatomy helps the surgeon in making important decisions regarding extent and direction of condylar drilling and minimizing injury and retraction of neural structures. Important preoperative information includes length, width, axis/directions and overriding of occipital condyle in foramen magnum, relationships of condyles to foramen magnum and to hypoglossal canal. The antero-posterior and transverse diameters of foramen magnum and amount of over...

  6. ELECTRON TEMPERATURE FLUCTUATIONS AND CROSS-FIELD HEAT TRANSPORT IN THE EDGE OF DIII-D

    International Nuclear Information System (INIS)

    RUDAKOV, DL; BOEDO, JA; MOYER, RA; KRASENINNIKOV, S; MAHDAVI, MA; McKEE, GR; PORTER, GD; STANGEBY, PC; WATKINS, JG; WEST, WP; WHYTE, DG.

    2003-01-01

    OAK-B135 The fluctuating E x B velocity due to electrostatic turbulence is widely accepted as a major contributor to the anomalous cross-field transport of particles and heat in the tokamak edge and scrape-off layer (SOL) plasmas. This has been confirmed by direct measurements of the turbulent E x B transport in a number of experiments. Correlated fluctuations of the plasma radial velocity v r , density n, and temperature T e result in time-average fluxes of particles and heat given by (for electrons): Equation 1--Λ r ES = r > = 1/B varφ θ ; Equation 2--Q r ES = e (tilde v) r > ∼ 3/2 kT e Λ r ES + 3 n e /2 B varφ e (tilde E) θ > Q conv + Q cond . The first term in Equation 2 is referred to as convective and the second term as conductive heat flux. Experimental determination of fluxes given by Equations 1 and 2 requires simultaneous measurements of the density, temperature and poloidal electric field fluctuations with high spatial and temporal resolution. Langmuir probes provide most readily available (if not the only) tool for such measurements. However, fast measurements of electron temperature using probes are non-trivial and are not always performed. Thus, the contribution of the T e fluctuations to the turbulent fluxes is usually neglected. Here they report results of the studies of T e fluctuations and their effect on the cross-field transport in the SOL of DIII-D

  7. Integrated heat transport simulation of high ion temperature plasma of LHD

    International Nuclear Information System (INIS)

    Murakami, S.; Yamaguchi, H.; Sakai, A.

    2014-10-01

    A first dynamical simulation of high ion temperature plasma with carbon pellet injection of LHD is performed by the integrated simulation GNET-TD + TASK3D. NBI heating deposition of time evolving plasma is evaluated by the 5D drift kinetic equation solver, GNET-TD and the heat transport of multi-ion species plasma (e, H, He, C) is studied by the integrated transport simulation code, TASK3D. Achievement of high ion temperature plasma is attributed to the 1) increase of heating power per ion due to the temporal increase of effective charge, 2) reduction of effective neoclassical transport with impurities, 3) reduction of turbulence transport. The reduction of turbulence transport is most significant contribution to achieve the high ion temperature and the reduction of the turbulent transport from the L-mode plasma (normal hydrogen plasma) is evaluated to be a factor about five by using integrated heat transport simulation code. Applying the Z effective dependent turbulent reduction model we obtain a similar time behavior of ion temperature after the C pellet injection with the experimental results. (author)

  8. Morphometrics of foramen magnum in African four-toed hedgehog (Atelerix albiventris).

    Science.gov (United States)

    Girgiri, I; Olopade, J O; Yahaya, A

    The purpose of this study was to examine the morphometry of the foramen magnum of African four-toed hedgehog (Atelerix albiventris) in Maiduguri. Fourteen hedgehog skulls (7 male and 7 female each) were used for this study. The overall mean value of foramen magnum height and width were 0.51 ± 0.05 cm and 0.64 ± 0.04 cm while occipital condylar and interparacondylar widths were 1.00 ± 0.12 cm and 1.62 ± 0.07 cm, respectively. There was no significant difference between the two sexes. The foramen magnum index was 83.4 ± 5.51 cm in males and was significantly higher than 76.3 ± 6.37 cm observed in females. The presences of dorsal notches (occipital dysplasia) were observed, that were of three distinct types. It is envisaged, that the study will provide a valuable database on the anatomy of foramen magnum of hedgehogs in Nigeria for morphological, neurological, zooarchaeological, and comparative anatomical studies.

  9. Magnum-psi, a plasma generator for plasma-surface interaction research in ITER-like conditions

    International Nuclear Information System (INIS)

    Groot, B. de; Rooij, G.J. van; Veremiyenko, V.; Hellermann, M.G. von; Eck, H.J.N. van; Barth, C.J.; Kruijtzer, G.L.; Wolff, J.C.; Goedheer, W.J.; Lopes Cardozo, N.J.; Kleyn, A.W.; Smeets, P.H.M.; Brezinsek, S.; Pospieszczyk, A.; Engeln, R.A.H.; Dahiya, R.P.

    2005-01-01

    The FOM Institute for Plasma Physics is preparing the construction of the linear plasma generator, Magnum-psi. A pilot experiment (Pilot-psi) has been constructed, which we have used to optimize the cascaded arc plasma source and to explore the effect of high magnetic fields on the source operation as well as the expanding plasma beam and the effectiveness of Ohmic heating for manipulating the electron temperature and plasma density after the plasma expansion. Results are presented that demonstrate increasing source efficiency for increasing magnetic fields (up to 1.6 T). Thomson scattering measurements demonstrate that ITER relevant plasma fluxes are presently achieved in Pilot-psi: ∼10 24 m -2 s -1 and that additional heating could elevate the plasma temperature from 1.0 to 1.7 eV

  10. SEAWAT-based simulation of axisymmetric heat transport.

    Science.gov (United States)

    Vandenbohede, Alexander; Louwyck, Andy; Vlamynck, Nele

    2014-01-01

    Simulation of heat transport has its applications in geothermal exploitation of aquifers and the analysis of temperature dependent chemical reactions. Under homogeneous conditions and in the absence of a regional hydraulic gradient, groundwater flow and heat transport from or to a well exhibit radial symmetry, and governing equations are reduced by one dimension (1D) which increases computational efficiency importantly. Solute transport codes can simulate heat transport and input parameters may be modified such that the Cartesian geometry can handle radial flow. In this article, SEAWAT is evaluated as simulator for heat transport under radial flow conditions. The 1971, 1D analytical solution of Gelhar and Collins is used to compare axisymmetric transport with retardation (i.e., as a result of thermal equilibrium between fluid and solid) and a large diffusion (conduction). It is shown that an axisymmetric simulation compares well with a fully three dimensional (3D) simulation of an aquifer thermal energy storage systems. The influence of grid discretization, solver parameters, and advection solution is illustrated. Because of the high diffusion to simulate conduction, convergence criterion for heat transport must be set much smaller (10(-10) ) than for solute transport (10(-6) ). Grid discretization should be considered carefully, in particular the subdivision of the screen interval. On the other hand, different methods to calculate the pumping or injection rate distribution over different nodes of a multilayer well lead to small differences only. © 2013, National Ground Water Association.

  11. Ion cyclotron heating of JET D-D and D-T optimised shear plasmas

    International Nuclear Information System (INIS)

    Cottrell, G.; Baranov, Y.; Bartlett, D.

    1998-12-01

    This paper discusses the unique roles played by Ion Cyclotron Resonance Heating (ICRH) in the preparation, formation and sustainment of internal transport barriers (ITBs) in high fusion performance JET optimised shear experiments using the Mk. H poloidal divertor. Together with Lower Hybrid Current Drive (LHCD), low power ICRH is applied during the early ramp-up phase of the plasma current, 'freezing in' a hollow or flat current density profile with q(0)>1. In combination with up to ∼ 20 MW of Neutral Beam Injection (NBI), the ICRH power is stepped up to ∼ 6 MW during the main low confinement (L-mode) heating phase. An ITB forms promptly after the power step, revealed by a region of reduced central energy transport and peaked profiles, with the ion thermal diffusivity falling to values close to the standard neo-classical level near the centre of both D-D and D-T plasmas. At the critical time of ITB formation, the plasma contains an energetic ICRF hydrogen minority ion population, contributing ∼ 50% to the total plasma pressure and heating mainly electrons. As both the NBI population and the thermal ion pressure develop, a substantial part of the ICRF power is damped resonantly on core ions (ω = 2 ω cD = 3 ω cT ) contributing to the ion heating. In NBI step-down experiments, high performance has been sustained by maintaining central ICRH heating; analysis shows the efficiency of central ICRH ion heating to be comparable with that of NBI. The highest D-D fusion neutron rates (R NT = 5.6 x 10 16 s -1 ) yet achieved in JET plasmas have been produced by combining a low magnetic shear core with a high confinement (H-mode) edge. In D-T, a fusion triple product n i T i τ E = (1.2 ± 0.2) x 10 21 m -3 keVs was achieved with 7.2 MW of fusion power obtained in the L-mode and up to 8.2 MW of fusion power in the H-mode phase. (author)

  12. Sex Prediction using Foramen Magnum and Occipital Condyles Computed Tomography Measurements in Sudanese Population

    Directory of Open Access Journals (Sweden)

    Usama Mohamed El-Barrany

    2016-12-01

    Full Text Available Sex determination is important in establishing the identity of an individual. The foramen magnum is an important landmark of the skull base. The present research aimed to study the value of foramen magnum measurements to determine sex using computed tomography (CT among Sudanese individuals. Foramen magnum CT scans of 400 Sudanese individuals (200 males and 200 females aged 18 - 83 years were included in this study. Foramen magnum (length and width, right occipital condyle (length and width, left occipital condyle (length and width, minimum intercondylar distance, maximum bicondylar distance and maximum medial intercondylar distance were measured. All data were subjected to discriminant functions analysis. All nine measurements were significantly higher in males than females. Among these measurements, the right condyle length, minimum intercondylar distance, and foramen magnum width were able to determine sex in Sudanese individuals with an accuracy rate of 83 %.

  13. Relationship between foramen magnum position and locomotion in extant and extinct hominoids.

    Science.gov (United States)

    Neaux, Dimitri; Bienvenu, Thibaut; Guy, Franck; Daver, Guillaume; Sansalone, Gabriele; Ledogar, Justin A; Rae, Todd C; Wroe, Stephen; Brunet, Michel

    2017-12-01

    From the Miocene Sahelanthropus tchadensis to Pleistocene Homo sapiens, hominins are characterized by a derived anterior position of the foramen magnum relative to basicranial structures. It has been previously suggested that the anterior position of the foramen magnum in hominins is related to bipedal locomotor behavior. Yet, the functional relationship between foramen magnum position and bipedal locomotion remains unclear. Recent studies, using ratios based on cranial linear measurements, have found a link between the anterior position of the foramen magnum and bipedalism in several mammalian clades: marsupials, rodents, and primates. In the present study, we compute these ratios in a sample including a more comprehensive dataset of extant hominoids and fossil hominins. First, we verify if the values of ratios can distinguish extant humans from apes. Then, we test whether extinct hominins can be distinguished from non-bipedal extant hominoids. Finally, we assess if the studied ratios are effective predictors of bipedal behavior by testing if they mainly relate to variation in foramen magnum position rather than changes in other cranial structures. Our results confirm that the ratios discriminate between extant bipeds and non-bipeds. However, the only ratio clearly discriminating between fossil hominins and other extant apes is that which only includes basicranial structures. We show that a large proportion of the interspecific variation in the other ratios relates to changes in facial, rather than basicranial, structures. In this context, we advocate the use of measurements based only on basicranial structures when assessing the relationship between foramen magnum position and bipedalism in future studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Fast-ion transport in qmin>2, high-β steady-state scenarios on DIII-D

    International Nuclear Information System (INIS)

    Holcomb, C. T.; Heidbrink, W. W.; Collins, C.; Ferron, J. R.; Van Zeeland, M. A.; Garofalo, A. M.; Bass, E. M.; Luce, T. C.; Pace, D. C.; Solomon, W. M.; Mueller, D.; Grierson, B.; Podesta, M.; Gong, X.; Ren, Q.; Park, J. M.; Kim, K.; Turco, F.

    2015-01-01

    Results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-q min confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β N and the noninductive current drive. However, in scenarios with q min >2 that target the typical range of q 95 = 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. This enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable β N . In contrast, similar plasmas except with q min just above 1 have approximately classical fast-ion transport. Experiments that take q min >3 plasmas to higher β P with q 95 = 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-q min scenario, the high β P cases have shorter slowing-down time and lower ∇β fast , and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β N , and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q 95 , high-q min plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes

  15. Magnum ihkas teha apteekide suurketti / Kadi Heinsalu

    Index Scriptorium Estoniae

    Heinsalu, Kadi, 1966-

    2008-01-01

    Eesti suurimaid apteegiketi omanikke ja ravimite hulgimüüjaid Magnum tahtis koonduda apteegiketiga Farmacia, millega ta oleks saanud suurimaks apteekide haldajaks Eestis. Vt. samas: Võrdlus: apteeke rohkem kolme suurema kaubamärgi all

  16. Software architecture for control and data acquisition of linear plasma generator Magnum-PSI

    NARCIS (Netherlands)

    Groen, P. W. C.; van Beveren, V.; Broekema, A.; Busch, P. J.; Genuit, J. W.; Kaas, G.; Poelman, A. J.; Scholten, J.; van Emmichoven, P. A. Zeijlma

    2013-01-01

    The FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research has completed the construction phase of Magnum-PSI, a magnetized, steady-state, large area, high-flux linear plasma beam generator to study plasma surface interactions under ITER divertor conditions. Magnum-PSI consists of

  17. Surgical experience with skull base approaches for foramen magnum meningioma.

    Science.gov (United States)

    Marin Sanabria, Elio Arnaldo; Ehara, Kazumasa; Tamaki, Norihiko

    2002-11-01

    The surgical treatment of patients with foramen magnum meningioma remains challenging. This study evaluated the outcome of this tumor according to the evolution of surgical approaches during the last 29 years. A retrospective analysis of medical records, operative notes, and neuroimages of 492 meningioma cases from 1972 to 2001 identified seven cases of foramen magnum meningioma (1.4%). All patients showed various neurological symptoms corresponding with foramen magnum syndrome. The tumor locations were anterior in five cases and posterior in two. Surgical removal was performed through a transoral approach in one patient, the suboccipital approach in three, and the transcondylar approach in two. Total removal was achieved in all patients, except for one who refused any surgical treatment. The major complications were tetraparesis and lower cranial nerve paresis for tumors in anterior locations, and minor complications for posterior locations. One patient died of atelectasis and pneumonia after a long hospitalization. The transcondylar approach is recommended for anterior locations, and the standard suboccipital approach for posterior locations.

  18. SAGITTAL DIAMETER OF FORAMEN MAGNUM IN NORMAL POPULATION: AN MRI STUDY

    OpenAIRE

    Lakshmi

    2015-01-01

    Lower position of cerebellar tonsils was frequently noticed in Western studies. In some of the studies, sagittal diameter of foramen magnum was found to be larger in cases of Chiari malformation. However, there are no Indian studies for comparison. Our study was proposed to determine the standard values for sagittal diameter of foramen magnum in various age groups and both sexes. This gives a guideline for further studies in pathological conditions like Craniovertebral Junctional ...

  19. Heat transport inventory monitoring for CANDU-PHW reactors

    International Nuclear Information System (INIS)

    Hussein, E.; Luxat, J.C.

    1984-01-01

    A computer-based D 2 O coolant inventory monitoring system proposed for implementation on the digital computer controllers at Ontario Hydro's CANDU generating units is discussed. By monitoring process parameters and utilizing probabilistically-based decision algorithms, timely indication of any significant loss of D 2 O inventory will be provided to the operator. The monitoring is performed in a co-ordinated manner such that D 2 O losses from either the heat transport system or the inventory control system can be detected. (orig.)

  20. Paleoclassical electron heat transport

    International Nuclear Information System (INIS)

    Callen, J.D.

    2005-01-01

    Radial electron heat transport in low collisionality, magnetically-confined toroidal plasmas is shown to result from paleoclassical Coulomb collision processes (parallel electron heat conduction and magnetic field diffusion). In such plasmas the electron temperature equilibrates along magnetic field lines a long length L, which is the minimum of the electron collision length and a maximum effective half length of helical field lines. Thus, the diffusing field lines induce a radial electron heat diffusivity M ≅ L/(πR 0q ) ∼ 10 >> 1 times the magnetic field diffusivity η/μ 0 ≅ ν e (c/ω p ) 2 . The paleoclassical electron heat flux model provides interpretations for many features of 'anomalous' electron heat transport: magnitude and radial profile of electron heat diffusivity (in tokamaks, STs, and RFPs), Alcator scaling in high density plasmas, transport barriers around low order rational surfaces and near a separatrix, and a natural heat pinch (or minimum temperature gradient) heat flux form. (author)

  1. Design of the Magnum-PSI safety, control and data acquisition system

    NARCIS (Netherlands)

    van der Linden, G. W.; Wijnoltz, F.; Scholten, J.; Busch, P. J.; Poelman, A. J.; Smeets, P. H.; de Groot, B.; Koppers, W. R.

    2008-01-01

    The FOM-Institute for Plasma Physics Rijnhuizen has started the construction of Magnum-PSI, a magnetized (3 T), steady-state, large area (80cm(2)) high-flux (up to 10(24) H(+)ions m(-2) s(-1)) plasma generator. The aim of this linear plasma device is to provide a controlled, highly accessible

  2. Integrating protein structures and precomputed genealogies in the Magnum database: Examples with cellular retinoid binding proteins

    Directory of Open Access Journals (Sweden)

    Bradley Michael E

    2006-02-01

    Full Text Available Abstract Background When accurate models for the divergent evolution of protein sequences are integrated with complementary biological information, such as folded protein structures, analyses of the combined data often lead to new hypotheses about molecular physiology. This represents an excellent example of how bioinformatics can be used to guide experimental research. However, progress in this direction has been slowed by the lack of a publicly available resource suitable for general use. Results The precomputed Magnum database offers a solution to this problem for ca. 1,800 full-length protein families with at least one crystal structure. The Magnum deliverables include 1 multiple sequence alignments, 2 mapping of alignment sites to crystal structure sites, 3 phylogenetic trees, 4 inferred ancestral sequences at internal tree nodes, and 5 amino acid replacements along tree branches. Comprehensive evaluations revealed that the automated procedures used to construct Magnum produced accurate models of how proteins divergently evolve, or genealogies, and correctly integrated these with the structural data. To demonstrate Magnum's capabilities, we asked for amino acid replacements requiring three nucleotide substitutions, located at internal protein structure sites, and occurring on short phylogenetic tree branches. In the cellular retinoid binding protein family a site that potentially modulates ligand binding affinity was discovered. Recruitment of cellular retinol binding protein to function as a lens crystallin in the diurnal gecko afforded another opportunity to showcase the predictive value of a browsable database containing branch replacement patterns integrated with protein structures. Conclusion We integrated two areas of protein science, evolution and structure, on a large scale and created a precomputed database, known as Magnum, which is the first freely available resource of its kind. Magnum provides evolutionary and structural

  3. VS2DRTI: Simulating Heat and Reactive Solute Transport in Variably Saturated Porous Media.

    Science.gov (United States)

    Healy, Richard W; Haile, Sosina S; Parkhurst, David L; Charlton, Scott R

    2018-01-29

    Variably saturated groundwater flow, heat transport, and solute transport are important processes in environmental phenomena, such as the natural evolution of water chemistry of aquifers and streams, the storage of radioactive waste in a geologic repository, the contamination of water resources from acid-rock drainage, and the geologic sequestration of carbon dioxide. Up to now, our ability to simulate these processes simultaneously with fully coupled reactive transport models has been limited to complex and often difficult-to-use models. To address the need for a simple and easy-to-use model, the VS2DRTI software package has been developed for simulating water flow, heat transport, and reactive solute transport through variably saturated porous media. The underlying numerical model, VS2DRT, was created by coupling the flow and transport capabilities of the VS2DT and VS2DH models with the equilibrium and kinetic reaction capabilities of PhreeqcRM. Flow capabilities include two-dimensional, constant-density, variably saturated flow; transport capabilities include both heat and multicomponent solute transport; and the reaction capabilities are a complete implementation of geochemical reactions of PHREEQC. The graphical user interface includes a preprocessor for building simulations and a postprocessor for visual display of simulation results. To demonstrate the simulation of multiple processes, the model is applied to a hypothetical example of injection of heated waste water to an aquifer with temperature-dependent cation exchange. VS2DRTI is freely available public domain software. © 2018, National Ground Water Association.

  4. 2D numerical comparison between S{sub n} and M{sub 1} radiation transport methods

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Matthias [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, calle Jose Gutierrez Abascal 2, 28006 Madrid (Spain)], E-mail: matthias@din.upm.es; Garcia-Fernandez, Carlos [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, calle Jose Gutierrez Abascal 2, 28006 Madrid (Spain)], E-mail: carlos@din.upm.es; Velarde, Pedro [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, calle Jose Gutierrez Abascal 2, 28006 Madrid (Spain)], E-mail: velarde@din.upm.es

    2009-07-15

    In this article we study the accuracy of the M{sub 1} method to solve some relevant radiation transport problems in 2D. We compare two radiation models (S{sub n} and M{sub 1}) with analytical and numerical tests to highlight the strengths and limitations of each method. These methods give comparable results except when sharp geometry effects are present. We have used these methods in a test that mimics, without fluid motion or electron heat conduction, the cone-target interaction relevant to inertial confinement fusion physics. In this case, we show that S{sub n} and M{sub 1} models agree with a quite good accuracy but shows differences in the temperature profiles and heating times inside the target. These results point out that M{sub 1} is a possible alternative candidate for 3D simulations, where full energy transport methods are extremely computer time consuming.

  5. Computed tomography in the foramen magnum and high cervical cord lesion

    Energy Technology Data Exchange (ETDEWEB)

    Isu, T.; Ito, T.; Iwasaki, Y.; Tsuru, M. (Hokkaido Univ., Sapporo (Japan). School of Medicine); Kitaoka, K.

    1981-10-01

    The value of computed tomography in the spine and spinal cord disease recently has been well documented. However, little attention is made to the role of computed tomography in foramen magnum and high cervical cord lesion. We report 16 cases of the foramen magnum and high cervical cord lesion. Method: Either EMI Head Scanner, CT 1010 (slice thickness 10 mm) or EMI Whole Body Scanner, CT 5005 (slice thickness 13 mm) was used. In 9 cases enhanced CT with intravenous injection of contrast medium was performed. Eleven cases received intrathecal injection of metrizamide. Materials: 1) control group without cervical pathology 70 cases, 2) spinal cord tumor 6 cases, 3) atlanto-axial dislocation 6 cases, 4) Chiari malformation (type 1) 3 cases, 5) spinal foreign body (acupuncture needle) 1 case. Results: 1. plain CT. 1) In control group without cervical pathology the cervical cord at C/sub 1/ level was seen as area surrounded by ring of subarachnoid space. 2) In 14 cases except for 1 case of atlanto-axial dislocation and 1 case of spinal foreign body identification of the cervical cord at C/sub 1/ level was impossible. 3) CT was of diagnostic value in detecting altanto-axial dislocation and spinal foreign body. 2. enhanded CT. Meningioma and neurinoma showed positive contrast enhancement. However, astrocytoma and herniated cerebellar tonsils were not detectable. 3. CT metrizamide myelography visualized the subarachnoid space and made it possible to localize the lesion in the spinal canal in relation to the spinal cord. Conclusion: Attention should be given to plain CT finding at C/sub 1/ level in diagnosis of foramen magnum and high cervical cord lesion. If identification of cervical cord at C/sub 1/ level is impossible, it is suspected that subarachnoid space is blocked by the lesion, and enhanced CT and CT metrizamide myelography must be performed.

  6. Computed tomography in the foramen magnum and high cervical cord lesion

    International Nuclear Information System (INIS)

    Isu, Toyohiko; Ito, Terufumi; Iwasaki, Yoshnobu; Tsuru, Mitsuo; Kitaoka, Kenichi.

    1981-01-01

    The value of computed tomography in the spine and spinal cord disease recently has been well documented. However, little attention is made to the role of computed tomography in foramen magnum and high cervical cord lesion. We report 16 cases of the foramen magnum and high cervical cord lesion. Method: Either EMI Head Scanner, CT 1010 (slice thickness 10 mm) or EMI Whole Body Scanner, CT 5005 (slice thickness 13 mm) was used. In 9 cases enhanced CT with intravenous injection of contrast medium was performed. Eleven cases received intrathecal injection of metrizamide. Materials: 1) control group without cervical pathology 70 cases, 2) spinal cord tumor 6 cases, 3) atlanto-axial dislocation 6 cases, 4) Chiari malformation (type 1) 3 cases, 5) spinal foreign body (acupuncture needle) 1 case. Results: 1. plain CT. 1) In control group without cervical pathology the cervical cord at C 1 level was seen as area surrounded by ring of subarachnoid space. 2) In 14 cases except for 1 case of atlanto-axial dislocation and 1 case of spinal foreign body identification of the cervical cord at C 1 level was impossible. 3) CT was of diagnostic value in detecting altanto-axial dislocation and spinal foreign body. 2. enhanded CT. Meningioma and neurinoma showed positive contrast enhancement. However, astrocytoma and herniated cerebellar tonsils were not detectable. 3. CT metrizamide myelography visualized the subarachnoid space and made it possible to localize the lesion in the spinal canal in relation to the spinal cord. Conclusion: Attention should be given to plain CT finding at C 1 level in diagnosis of foramen magnum and high cervical cord lesion. If identification of cervical cord at C 1 level is impossible, it is suspected that subarachnoid space is blocked by the lesion, and enhanced CT and CT metrizamide myelography must be performed. (author)

  7. Thermal relaxation and heat transport in spin ice Dy{sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Klemke, Bastian; Meissner, M.; Tennant, D.A. [Helmholtz-Zentrum Berlin (Germany); Technische Universitaet Berlin (Germany); Strehlow, P. [Technische Universitaet Berlin (Germany); Physikalisch Technische Bundesanstalt, Institut Berlin (Germany); Kiefer, K. [Helmholtz-Zentrum Berlin (Germany); Grigera, S.A. [School of Physics and Astronomy, St. Andrews (United Kingdom); Instituto de Fisica de Liquidos y Sistemas Biologicos, CONICET, UNLP, La Plata (Argentina)

    2011-07-01

    The thermal properties of single crystalline Dy{sub 2}Ti{sub 2}O{sub 7} have been studied at temperature below 30 K and magnetic fields applied along [110] direction up to 1.5 T. Based on a thermodynamic field theory (TFT) various heat relaxation and thermal transport measurements were analysed. So we were able to present not only the heat capacity of Dy{sub 2}Ti{sub 2}O{sub 7}, but also for the first time the different contributions of the magnetic excitations and their corresponding relaxation times in the spin ice phase. In addition, the thermal conductivity and the shortest relaxation time were determined by thermodynamic analysis of steady state heat transport measurements. Finally, we were able to reproduce the temperature profiles recorded in heat pulse experiments on the basis of TFT using the previously determined heat capacity and thermal conductivity data without additional parameters. Thus, TFT has been proved to be thermodynamically consistent in describing three thermal transport experiments on different time scales. The observed temperature and field dependencies of heat capacity contributions and relaxation times indicate the magnetic excitations in the spin ice Dy{sub 2}Ti{sub 2}O{sub 7} as thermally activated monopole-antimonopole defects.

  8. Meningioma of Foramen Magnum Causing Drop Attacks

    Directory of Open Access Journals (Sweden)

    Amit Mahore

    2015-01-01

    Full Text Available A 52-year-old female presented with frequent episodes of falls without loss of consciousness. These episodes lasted for brief period followed by full neurological recovery. Magnetic resonance imaging (MRI of the brain showed foramen magnum meningioma encasing left vertebral artery. The patient had dramatic improvement after excision of the tumor.

  9. Progress in understanding heat transport at JET

    International Nuclear Information System (INIS)

    Mantica, P.; Garbet, X.; Angioni, C.

    2005-01-01

    This paper reports recent progress in understanding heat transport mechanisms either in conventional or advanced tokamak scenarios in JET. A key experimental tool has been the use of perturbative transport techniques, both by ICH power modulation and by edge cold pulses. The availability of such results has allowed careful comparison with theoretical modelling using 1D empirical or physics based transport models, 3D fluid turbulence simulations or gyrokinetic stability analysis. In conventional L- and H-mode plasmas the issue of temperature profile stiffness has been addressed. JET results are consistent with the concept of a critical inverse temperature gradient length above which transport is enhanced by the onset of turbulence. A threshold value R/L Te ∼5 has been found for the onset of stiff electron transport, while the level of electron stiffness appears to vary strongly with plasma parameters, in particular with the ratio of electron and ion heating: electrons become stiffer when ions are strongly heated, resulting in larger R/L Ti values. This behaviour has also been found theoretically, although quantitatively weaker than in experiments. In plasmas characterized by Internal Transport Barriers (ITB), the properties of heat transport inside the ITB layer and the ITB formation mechanisms have been investigated. The plasma current profile is found to play a major role in ITB formation. The effect of negative magnetic shear on electron and ion stabilization is demonstrated both experimentally and theoretically using turbulence codes. The role of rational magnetic surfaces in ITB triggering is well assessed experimentally, but still lacks a convincing theoretical explanation. Attempts to trigger an ITB by externally induced magnetic reconnection using saddle coils have shown that MHD islands in general do not produce a sufficient variation of ExB flow shear to lead to ITB formation. First results of perturbative transport in ITBs show that the ITB is a narrow

  10. Radiative heat transfer in 2D Dirac materials

    International Nuclear Information System (INIS)

    Rodriguez-López, Pablo; Tse, Wang-Kong; Dalvit, Diego A R

    2015-01-01

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials. (paper)

  11. Is there a correlation between sleep disordered breathing and foramen magnum stenosis in children with achondroplasia?

    Science.gov (United States)

    White, Klane K; Parnell, Shawn E; Kifle, Yemiserach; Blackledge, Marcella; Bompadre, Viviana

    2016-01-01

    Children with achondroplasia have midface hypoplasia, frontal bossing, spinal stenosis, rhizomelia, and a small foramen magnum. Central sleep apnea, with potential resultant sudden death, is thought to be related to compression of the spinal cord at the cervicomedullary junction in these patients. Screening polysomnography and/or cervical spine MRI are often performed for infants with achondroplasia. Decompressive suboccipital craniectomy has been performed in selected cases. We aim to better delineate the relationship between polysomnography, cervical spine MRI, and indications for surgical decompression in achondroplasia.We retrospectively review electronic medical records of all children with achondroplasia in our IRB-approved skeletal dysplasia registry who had received screening polysomnography and cervical spine MRI examination was performed. We explored correlations of polysomnography, MRI parameters, and need for decompressive surgery. Seventeen patients with both polysomnography and MRI of the cervical spine met inclusion criteria. The average age at time of the sleep study was 2.4 ± 3.6 years. An abnormal apnea-hypopnea index was found in all patients, with central sleep apnea found in 6/17. Five patients (29%) required foramen magnum decompression. We found no statistically significant correlation between central sleep apnea and abnormal MRI findings suggestive of foramen magnum stenosis. Screening polysomnography is an important tool but does not appear to correlate with MRI findings of foramen magnum stenosis. Cord compression, with either associated T2 cord signal abnormality or clinical findings of clonus, was most predictive of subsequent surgical decompression. © 2015 Wiley Periodicals, Inc.

  12. Specific heat and magnetization of RMn2(H,D)2

    International Nuclear Information System (INIS)

    Tarnawski, Z.; Kolwicz-Chodak, L.; Figiel, H.; Kim-Ngan, N.-T.H.; Havela, L.; Miliyanchuk, K.; Sechovsky, V.; Santava, E.; Sebek, J.

    2007-01-01

    The effect of hydrogen absorption on magnetic and thermodynamic properties of hydrides compounds RMn 2 (H,D) 2 (R = Y, Nd, Tb, Ho, and Er) have been investigated by performing specific heat and magnetization measurements in the temperature range of 2-320 K and in magnetic fields up to 9 T. The phase transition to the antiferromagnetic order accompanying a crystal structure transformation have been revealed by complicated-structure anomalies in specific heat and weak anomalies in magnetization

  13. Cellular Evidence of Telocytes as Novel Interstitial Cells Within the Magnum of Chicken Oviduct.

    Science.gov (United States)

    Yang, Ping; Zhu, Xudong; Wang, Lingling; Ahmed, Nisar; Huang, Yufei; Chen, Hong; Zhang, Qian; Ullah, Shakeeb; Liu, Tengfei; Guo, Dawei; Brohi, Sarfaraz Ahmed; Chen, Qiusheng

    2017-01-24

    Telocytes are a novel type of interstitial cell that has been identified in many organs of mammals, but there is little information available on these cells in avian species. This study shows the latest findings associated with telocytes in the muscular layer and lamina propria of the magnum of chicken oviduct analyzed by transmission electron microscopy. Telocytes are characterized by telopodes, which are thin and long prolongations, and a small amount of cytoplasm rich with mitochondria. Spindle- or triangular-shaped telocytes were detected at various locations in the magnum. In the muscular layer, telocytes have direct connection with smooth muscle cells. The cell body of telocytes along with their long telopodes mainly exists in the interstitial space between the smooth muscle bundles, whereas large numbers of short telopodes are scattered in between the smooth muscle cells. In the lamina propria, extremely long telopodes are twisting around each other and are usually collagen embedded. Both in the lamina propria and muscular layer, telocytes have a close relationship with other cell types, such as immune cells and blood vessels. Telopodes appear with dichotomous branching alternating between the podom and podomer, forming a 3D network structure with complex homo- and heterocellular junctions. In addition, a distinctive size of the vesicles is visible around the telopodes and may be released from telopodes because of the close relation between the vesicle and telopode. All characteristics of telocytes in the magnum indicate that telocytes may play a potential, but important, role in the pathogenesis of oviduct diseases.

  14. 2D heat flux pattern in ASDEX upgrade L-mode with magnetic perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Faitsch, Michael; Sieglin, Bernhard; Eich, Thomas; Herrmann, Albrecht; Suttrop, Wolfgang [Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, D-85748 Garching (Germany); Collaboration: the ASDEDX Upgrade Team

    2016-07-01

    A future fusion reactor is likely to operate in high confinement mode (H-mode). This mode is associated with a periodic instability at the plasma edge that expels particles and energy. This instability is called edge localized mode (ELM). External magnetic perturbation (MP) is one technique that is thought to be able to mitigate or even suppress large ELMs in next step fusion devices such as ITER, where the ELM induced heat load for unmitigated ELMs might limit the lifetime of the divertor. Applying an external magnetic perturbation breaks the axisymmetry and leads to a 2D steady state heat flux pattern at the divertor. The ASDEX Upgrade tokamak is equipped with 16 perturbation coils, 8 above (upper row) and 8 below (lower row) the outer mid plane, toroidal equally distributed. A high resolution infra red system is measuring the heat flux at the outer target at a fixed toroidal position with a resolution of around 0.6 mm. In order to measure the 2D structure a slow rotation of the MP field was applied (1 Hz) with a toroidal mode number n=2. The differential phase between the upper and lower row was changed to investigate the effect of the alignment with the field lines at the edge. The density was varied to study the density dependence of the heat transport with applied external MP and compare it to the axisymmetric scenario.

  15. Numerical modelling of coupled fluid, heat, and solute transport in deformable fractured rock

    International Nuclear Information System (INIS)

    Chan, T.; Reid, J.A.K.

    1987-01-01

    This paper reports on a three-dimensional (3D) finite-element code, MOTIF (model of transport in fractured/porous media), developed to model the coupled processes of groundwater flow, heat transport, brine transport, and one-species radionuclide transport in geological media. Three types of elements are available: a 3D continuum element, a planar fracture element that can be oriented in any arbitrary direction in 3D space or pipe flow in 3D space, and a line element for simulating fracture flow in 2D space or pipe flow in 3D space. As a quality-assurance measure, the MOTIF code was verified by comparison of its results with analytical solutions and other published numerical solutions

  16. Heat transport modelling in EXTRAP T2R

    Science.gov (United States)

    Frassinetti, L.; Brunsell, P. R.; Cecconello, M.; Drake, J. R.

    2009-02-01

    A model to estimate the heat transport in the EXTRAP T2R reversed field pinch (RFP) is described. The model, based on experimental and theoretical results, divides the RFP electron heat diffusivity χe into three regions, one in the plasma core, where χe is assumed to be determined by the tearing modes, one located around the reversal radius, where χe is assumed not dependent on the magnetic fluctuations and one in the extreme edge, where high χe is assumed. The absolute values of the core and of the reversal χe are determined by simulating the electron temperature and the soft x-ray and by comparing the simulated signals with the experimental ones. The model is used to estimate the heat diffusivity and the energy confinement time during the flat top of standard plasmas, of deep F plasmas and of plasmas obtained with the intelligent shell.

  17. CORRELATION BETWEEN ENDOCRANIAL CAPACITY AND SIZE OF FORAMEN MAGNUM WITH SPECIAL REFERENCE TO SEX

    OpenAIRE

    Muralidhar P Shepur; Magi M; Nanjundappa B; Pavan P Havaldar; Premalatha Gogi; Shaik Hussain Saheb

    2014-01-01

    Background: Endocranial capacity is an important parameter in the study of human evolution, race and sex determination of skull. Diameters of foramen magnum are important because vital structures passing through it may endues compression and for sex determination of skulls. Correlation between endocranial capacity and area of foramen magnum was reported in mammals. This relation in human can be used to determine sex of damaged skulls. Methods: 150 dry skulls and 30 CT scan imag...

  18. Heating and transport in TFTR D-T plasmas

    International Nuclear Information System (INIS)

    Zarnstorff, M.C.; Scott, S.D.

    1994-01-01

    The confinement and heating of supershot plasmas are significantly enhanced with tritium beam injection relative to deuterium injection in TFTR. The global energy confinement and local thermal transport are analyzed for deuterium and tritium fueled plasmas to quantify their dependence on the average mass of the hydrogenic ions. The radial profiles of the deuterium and tritium densities are determined from the DT fusion neutron emission profile

  19. Multi-scale transport in the DIII-D ITER baseline scenario with direct electron heating and projection to ITER

    Science.gov (United States)

    Grierson, B. A.; Staebler, G. M.; Solomon, W. M.; McKee, G. R.; Holland, C.; Austin, M.; Marinoni, A.; Schmitz, L.; Pinsker, R. I.; DIII-D Team

    2018-02-01

    Multi-scale fluctuations measured by turbulence diagnostics spanning long and short wavelength spatial scales impact energy confinement and the scale-lengths of plasma kinetic profiles in the DIII-D ITER baseline scenario with direct electron heating. Contrasting discharge phases with ECH + neutral beam injection (NBI) and NBI only at similar rotation reveal higher energy confinement and lower fluctuations when only NBI heating is used. Modeling of the core transport with TGYRO using the TGLF turbulent transport model and NEO neoclassical transport reproduces the experimental profile changes upon application of direct electron heating and indicates that multi-scale transport mechanisms are responsible for changes in the temperature and density profiles. Intermediate and high-k fluctuations appear responsible for the enhanced electron thermal flux, and intermediate-k electron modes produce an inward particle pinch that increases the inverse density scale length. Projection to ITER is performed with TGLF and indicates a density profile that has a finite scale length due to intermediate-k electron modes at low collisionality and increases the fusion gain. For a range of E × B shear, the dominant mechanism that increases fusion performance is suppression of outward low-k particle flux and increased density peaking.

  20. Increased Heat Transport in Ultra-hot Jupiter Atmospheres through H2 Dissociation and Recombination

    Science.gov (United States)

    Bell, Taylor J.; Cowan, Nicolas B.

    2018-04-01

    A new class of exoplanets is beginning to emerge: planets with dayside atmospheres that resemble stellar atmospheres as most of their molecular constituents dissociate. The effects of the dissociation of these species will be varied and must be carefully accounted for. Here we take the first steps toward understanding the consequences of dissociation and recombination of molecular hydrogen (H2) on atmospheric heat recirculation. Using a simple energy balance model with eastward winds, we demonstrate that H2 dissociation/recombination can significantly increase the day–night heat transport on ultra-hot Jupiters (UHJs): gas giant exoplanets where significant H2 dissociation occurs. The atomic hydrogen from the highly irradiated daysides of UHJs will transport some of the energy deposited on the dayside toward the nightside of the planet where the H atoms recombine into H2; this mechanism bears similarities to latent heat. Given a fixed wind speed, this will act to increase the heat recirculation efficiency; alternatively, a measured heat recirculation efficiency will require slower wind speeds after accounting for H2 dissociation/recombination.

  1. The Colletotrichum dracaenophilum, C. magnum and C. orchidearum species complexes

    NARCIS (Netherlands)

    Damm, U.; Sato, T.; Alizadeh, A.; Groenewald, J.Z.; Crous, P.W.

    2019-01-01

    Although Glomerella glycines, Colletotrichum magnum and C. orchidearum are known as causal agents of anthracnose of soybean, Cucurbitaceae and Orchidaceae, respectively, their taxonomy remains unresolved. In preliminary analyses based on ITS, strains of these species appear basal in

  2. Electronic contributions to the transport properties and specific heat of solid UO2: an empirical, self-consistent analysis

    International Nuclear Information System (INIS)

    Hyland, G.J.; Ralph, J.

    1982-07-01

    From an empirical, self-consistent analysis of new high temperature data on the thermo-electric Seebeck coefficient and d.c. electrical conductivity, the value of the free energy controlling the equilibrium of the thermally induced reaction, 2U 4+ reversible U 3+ + U 5+ is determined (treating the U 3+ and U 5+ as small polarons) and used to calculate the contribution of the process to the high temperature thermal conductivity and specific heat of UO 2 . It is found that the transport properties can be completely accounted for in this way, but not the anomalous rise in specific heat - the origin of which remains obscure. (U.K.)

  3. Measurements and 2-D Modeling of Recycling and Edge Transport in Discharges with Lithium-coated PFCs in NSTX

    International Nuclear Information System (INIS)

    Canik, John; Maingi, R.; Soukhanovskii, V.A.; Bell, R.E.; Kugel, H.; LeBlanc, B.; Osborne, T.H.

    2011-01-01

    The application of lithium coatings on plasma facing components has been shown to profoundly affect plasma performance in the National Spherical Torus Experiment, improving energy confinement and eliminating edge-localized modes. The edge particle balance during these ELM-free discharges has been studied through 2-D plasma-neutrals modeling, constrained by measurements of the upstream plasma density and temperature profiles and the divertor heat flux and D-alpha emission. The calculations indicate that the reduction in divertor D-alpha emission with lithium coatings applied is consistent with a drop in recycling coefficient from R similar to 0.98 to R similar to 0.9. The change in recycling is not sufficient to account for the change in edge density profiles: interpretive modeling indicates similar transport coefficients within the edge transport barrier (D/chi(e) similar to 0.2/1.0 m(2)/s), but a widening of the barrier with lithium.

  4. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    International Nuclear Information System (INIS)

    Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; Young, Mitchell T.H.; Kochunas, Brendan; Graham, Aaron; Larsen, Edward W.; Downar, Thomas; Godfrey, Andrew

    2016-01-01

    A consistent “2D/1D” neutron transport method is derived from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. This paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. Several applications have been performed on both leadership-class and industry-class computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.

  5. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Benjamin, E-mail: collinsbs@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Stimpson, Shane, E-mail: stimpsonsg@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Kelley, Blake W., E-mail: kelleybl@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Young, Mitchell T.H., E-mail: youngmit@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Kochunas, Brendan, E-mail: bkochuna@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Graham, Aaron, E-mail: aarograh@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Larsen, Edward W., E-mail: edlarsen@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Downar, Thomas, E-mail: downar@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Godfrey, Andrew, E-mail: godfreyat@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Rd., Oak Ridge, TN 37831 (United States)

    2016-12-01

    A consistent “2D/1D” neutron transport method is derived from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. This paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. Several applications have been performed on both leadership-class and industry-class computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.

  6. Large Dumbbell-Shaped C1 Schwannoma Presenting as a Foramen Magnum Mass

    Science.gov (United States)

    Helms, Jody; Michael, Lattimore Madison

    2012-01-01

    Schwannomas involving the foramen magnum commonly originate from the lower cranial nerves, but they are rarely found arising from the first cervical root. To date, very few cases have been described in the literature. The majority involve either the intradural or extradural compartment but not both. We report the second case of a dumbbell-shaped schwannoma arising from the first cervical root. Our patient presented with hemisensory deficits secondary to brainstem compression at the level of the foramen magnum. The patient underwent a far lateral approach, and a gross total resection was achieved. Preoperative suspicion of the diagnosis is helpful in anticipating displacement and avoiding damage to the surrounding neurovascular structures. PMID:23946923

  7. Thermal transport in low dimensions from statistical physics to nanoscale heat transfer

    CERN Document Server

    2016-01-01

    Understanding non-equilibrium properties of classical and quantum many-particle systems is one of the goals of contemporary statistical mechanics. Besides its own interest for the theoretical foundations of irreversible thermodynamics(e.g. of the Fourier's law of heat conduction), this topic is also relevant to develop innovative ideas for nanoscale thermal management with possible future applications to nanotechnologies and effective energetic resources. The first part of the volume (Chapters 1-6) describes the basic models, the phenomenology and the various theoretical approaches to understand heat transport in low-dimensional lattices (1D e 2D). The methods described will include equilibrium and nonequilibrium molecular dynamics simulations, hydrodynamic and kinetic approaches and the solution of stochastic models. The second part (Chapters 7-10) deals with applications to nano and microscale heat transfer, as for instance phononic transport in carbon-based nanomaterials, including the prominent case of na...

  8. Another look at the foramen magnum in bipedal mammals.

    Science.gov (United States)

    Russo, Gabrielle A; Kirk, E Christopher

    2017-04-01

    A more anteriorly positioned foramen magnum evolved in concert with bipedalism at least four times within Mammalia: once in macropodid marsupials, once in heteromyid rodents, once in dipodid rodents, and once in hominoid primates. Here, we expand upon previous research on the factors influencing mammalian foramen magnum position (FMP) and angle with four new analyses. First, we quantify FMP using a metric (basioccipital ratio) not previously examined in a broad comparative sample of mammals. Second, we evaluate the potential influence of relative brain size on both FMP and foramen magnum angle (FMA). Third, we assess FMP in an additional rodent clade (Anomaluroidea) containing bipedal springhares (Pedetes spp.) and gliding/quadrupedal anomalures (Anomalurus spp.). Fourth, we determine the relationship between measures of FMP and FMA in extant hominoids and an expanded mammalian sample. Our results indicate that bipedal/orthograde mammals have shorter basioccipitals than their quadrupedal/non-orthograde relatives. Brain size alone has no discernible effect on FMP or FMA. Brain size relative to palate size has a weak influence on FMP in some clades, but effects are not evident in all metrics of FMP and are inconsistent among clades. Among anomaluroids, bipedal Pedetes exhibits a more anterior FMP than gliding/quadrupedal Anomalurus. The relationship between FMA and FMP in hominoids depends on the metric chosen for quantifying FMP, and if modern humans are included in the sample. However, the relationship between FMA and FMP is nonexistent or weak across rodents, marsupials, and, to a lesser extent, strepsirrhine primates. These results provide further evidence that bipedal mammals tend to have more anteriorly positioned foramina magna than their quadrupedal close relatives. Our findings also suggest that the evolution of FMP and FMA in hominins may not be closely coupled. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Software architecture for control and data acquisition of linear plasma generator Magnum-PSI

    International Nuclear Information System (INIS)

    Groen, P.W.C.; Beveren, V. van; Broekema, A.; Busch, P.J.; Genuit, J.W.; Kaas, G.; Poelman, A.J.; Scholten, J.; Zeijlmans van Emmichoven, P.A.

    2013-01-01

    Highlights: ► An architecture based on a modular design. ► The design offers flexibility and extendability. ► The design covers the overall software architecture. ► It also covers its (sub)systems’ internal structure. -- Abstract: The FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research has completed the construction phase of Magnum-PSI, a magnetized, steady-state, large area, high-flux linear plasma beam generator to study plasma surface interactions under ITER divertor conditions. Magnum-PSI consists of several hardware subsystems, and a variety of diagnostic systems. The COntrol, Data Acquisition and Communication (CODAC) system integrates these subsystems and provides a complete interface for the Magnum-PSI users. Integrating it all, from the lowest hardware level of sensors and actuators, via the level of networked PLCs and computer systems, up to functions and classes in programming languages, demands a sound and modular software architecture, which is extendable and scalable for future changes. This paper describes this architecture, and the modular design of the software subsystems. The design is implemented in the CODAC system at the level of services and subsystems (the overall software architecture), as well as internally in the software subsystems

  10. Measurements and 2-D modeling of recycling and edge transport in discharges with lithium-coated PFCs in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Canik, J.M., E-mail: canikjm@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Soukhanovskii, V.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Bell, R.E.; Kugel, H.W.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Osborne, T.H. [General Atomics, San Diego, CA (United States)

    2011-08-01

    The application of lithium coatings on plasma facing components has been shown to profoundly affect plasma performance in the National Spherical Torus Experiment, improving energy confinement and eliminating edge-localized modes. The edge particle balance during these ELM-free discharges has been studied through 2-D plasma-neutrals modeling, constrained by measurements of the upstream plasma density and temperature profiles and the divertor heat flux and D{sub {alpha}} emission. The calculations indicate that the reduction in divertor D{sub {alpha}} emission with lithium coatings applied is consistent with a drop in recycling coefficient from R {approx} 0.98 to R {approx} 0.9. The change in recycling is not sufficient to account for the change in edge density profiles: interpretive modeling indicates similar transport coefficients within the edge transport barrier (D/{chi}{sub e} {approx} 0.2/1.0 m{sup 2}/s), but a widening of the barrier with lithium.

  11. Best practices in the evaluation and treatment of foramen magnum stenosis in achondroplasia during infancy.

    Science.gov (United States)

    White, Klane K; Bompadre, Viviana; Goldberg, Michael J; Bober, Michael B; Campbell, Jeffrey W; Cho, Tae-Joon; Hoover-Fong, Julie; Mackenzie, William; Parnell, Shawn E; Raggio, Cathleen; Rapoport, David M; Spencer, Samantha A; Savarirayan, Ravi

    2016-01-01

    Achondroplasia is the most common inherited disorder of bone growth (skeletal dysplasia). Despite this fact, consistent and evidence-based management approaches to recognized, life-threatening complications, such as foramen magnum stenosis, are lacking. This study aims to outline best practice, based on evidence and expert consensus, regarding the diagnosis, assessment, and management of foramen magnum stenosis in achondroplasia during infancy. A panel of 11 multidisciplinary international experts on skeletal dysplasia was invited to participate in a Delphi process. They were: 1) presented with a list of 26 indications and a thorough literature review, 2) given the opportunity to anonymously rate the indications and discuss in face to face discussion; 3) edit the list and rate it in a second round. Those indications with more than 80% agreement were considered as consensual. After two rounds of rating and a face-to-face meeting, consensus was reached to support 22 recommendations for the evaluation and treatment of foramen magnum stenosis in infants with achondroplasia. These recommendations include indications for surgical decompression, ventriculomegaly, and hydrocephalus, sleep-disordered breathing, physical exams and the use of polysomnography and imaging in this condition. We present a consensus-based best practice guidelines consisting of 22 recommendations. It is hoped that these guidelines will lead to more uniform and structured evaluation, standardizing care pathways, and improving mortality and morbidity outcomes for this cohort. © 2015 Wiley Periodicals, Inc.

  12. 3-D Whole-Core Transport Calculation with 3D/2D Rotational Plane Slicing Method

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Han Jong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    Use of the method of characteristics (MOC) is very popular due to its capability of heterogeneous geometry treatment and widely used for 2-D core calculation, but direct extension of MOC to 3-D core is not so attractive due to huge calculational cost. 2-D/1-D fusion method was very successful for 3-D calculation of current generation reactor types (highly heterogeneous in radial direction but piece-wise homogeneous in axial direction). In this paper, 2-D MOC concept is extended to 3-D core calculation with little modification of an existing 2-D MOC code. The key idea is to suppose 3-D geometry as a set of many 2-D planes like a phone-directory book. Dividing 3-D structure into a large number of 2-D planes and solving each plane with a simple 2-D SN transport method would give the solution of a 3-D structure. This method was developed independently at KAIST but it is found that this concept is similar with that of 'plane tracing' in the MCCG-3D code. The method developed was tested on the 3-D C5G7 OECD/NEA benchmark problem and compared with the 2-D/1-D fusion method. Results show that the proposed method is worth investigating further. A new approach to 3-D whole-core transport calculation is described and tested. By slicing 3-D structure along characteristic planes and solving each 2-D plane problem, we can get 3-D solution. The numerical test results indicate that the new method is comparable with the 2D/1D fusion method and outperforms other existing methods. But more fair comparison should be done in similar discretization level.

  13. Eesti ravimimüüja Magnum napsas Soomes kopsaka lepingu / Andrus Karnau

    Index Scriptorium Estoniae

    Karnau, Andrus

    2010-01-01

    Eesti ravimimüüja Magnum juhtidel õnnestus ravimitootjaga Claxo Smith Kline jõuda kokkuleppele, et hakatakse nende toodangut vahendama Soomes. Eesti ja Soome ravimituru vahe on kümnekordne. Diagramm

  14. 1D momentum-conserving systems: the conundrum of anomalous versus normal heat transport

    International Nuclear Information System (INIS)

    Li, Yunyun; Li, Nianbei; Hänggi, Peter; Li, Baowen; Liu, Sha

    2015-01-01

    Transport and the spread of heat in Hamiltonian one dimensional momentum conserving nonlinear systems is commonly thought to proceed anomalously. Notable exceptions, however, do exist of which the coupled rotator model is a prominent case. Therefore, the quest arises to identify the origin of manifest anomalous energy and momentum transport in those low dimensional systems. We develop the theory for both, the statistical densities for momentum- and energy-spread and particularly its momentum-/heat-diffusion behavior, as well as its corresponding momentum/heat transport features. We demonstrate that the second temporal derivative of the mean squared deviation of the momentum spread is proportional to the equilibrium correlation of the total momentum flux. Subtracting the part which corresponds to a ballistic momentum spread relates (via this integrated, subleading momentum flux correlation) to an effective viscosity, or equivalently, to the underlying momentum diffusivity. We next put forward the intriguing hypothesis: normal spread of this so adjusted excess momentum density causes normal energy spread and alike normal heat transport (Fourier Law). Its corollary being that an anomalous, superdiffusive broadening of this adjusted excess momentum density in turn implies an anomalous energy spread and correspondingly anomalous, superdiffusive heat transport. This hypothesis is successfully corroborated within extensive molecular dynamics simulations over large extended time scales. Our numerical validation of the hypothesis involves four distinct archetype classes of nonlinear pair-interaction potentials: (i) a globally bounded pair interaction (the noted coupled rotator model), (ii) unbounded interactions acting at large distances (the coupled rotator model amended with harmonic pair interactions), (iii) the case of a hard point gas with unbounded square-well interactions and (iv) a pair interaction potential being unbounded at short distances while displaying an

  15. 1D momentum-conserving systems: the conundrum of anomalous versus normal heat transport

    Science.gov (United States)

    Li, Yunyun; Liu, Sha; Li, Nianbei; Hänggi, Peter; Li, Baowen

    2015-04-01

    Transport and the spread of heat in Hamiltonian one dimensional momentum conserving nonlinear systems is commonly thought to proceed anomalously. Notable exceptions, however, do exist of which the coupled rotator model is a prominent case. Therefore, the quest arises to identify the origin of manifest anomalous energy and momentum transport in those low dimensional systems. We develop the theory for both, the statistical densities for momentum- and energy-spread and particularly its momentum-/heat-diffusion behavior, as well as its corresponding momentum/heat transport features. We demonstrate that the second temporal derivative of the mean squared deviation of the momentum spread is proportional to the equilibrium correlation of the total momentum flux. Subtracting the part which corresponds to a ballistic momentum spread relates (via this integrated, subleading momentum flux correlation) to an effective viscosity, or equivalently, to the underlying momentum diffusivity. We next put forward the intriguing hypothesis: normal spread of this so adjusted excess momentum density causes normal energy spread and alike normal heat transport (Fourier Law). Its corollary being that an anomalous, superdiffusive broadening of this adjusted excess momentum density in turn implies an anomalous energy spread and correspondingly anomalous, superdiffusive heat transport. This hypothesis is successfully corroborated within extensive molecular dynamics simulations over large extended time scales. Our numerical validation of the hypothesis involves four distinct archetype classes of nonlinear pair-interaction potentials: (i) a globally bounded pair interaction (the noted coupled rotator model), (ii) unbounded interactions acting at large distances (the coupled rotator model amended with harmonic pair interactions), (iii) the case of a hard point gas with unbounded square-well interactions and (iv) a pair interaction potential being unbounded at short distances while displaying an

  16. Study of heat transfer and particle transport in Tore Supra and HL-2A tokamaks

    International Nuclear Information System (INIS)

    Song, S.

    2011-12-01

    This thesis reports on experimental studies of heat and particles transport performed on 2 large tokamaks: Tore Supra (based at CEA/Cadarache, France) and HL-2A (based at the Southwestern Institute of Physics, Chengdu, China). The modulated source is the Electron Cyclotron Resonance Heating (ECRH) for the heat pinch and density pump-out studies, while the non-local transport experiments use the Supersonic Molecular Beam Injection (SMBI) as source of modulation. The emphasis is put on the inward heat pinch. In the off-axis ECRH modulation experiments on Tore Supra with low frequency (1 Hz), strong heat inward transport has been observed, in particular for low density. Two transport models have been applied in order to analyze the experimental behavior. The first one is the linear pinch model (LPM) and the second one is an empirical model based on micro-instabilities theory, named Critical Gradient Model (CGM). Good agreement has been found for all harmonics between the experimental data and the simulation using LPM. On the other hand, good agreement has not been achieved using CGM. The density pump-out with large particles and energy losses during ECRH is commonly observed in tokamaks. A new dynamic approach using the modulation technique has been used in HL-2A for analyzing the transient phase of the density pump-out. A correlation between the turbulence increase and the density pump-out has been found. The non-local transport phenomenon, characterized by a fast transient process compared to the normal diffusive response to the perturbation is observed. Both phenomena, i.e., pump-out and non-locality, show as simultaneous variation of density and temperature. This can be an inspiration for the usage of a transport matrix which considers the density and temperature evolution together. Simulations with a simple transport matrix, with non-diagonal terms coupling temperature and density qualitatively reproduce the non-local and pump-out effects qualitatively

  17. Nonlinear 2D convection and enhanced cross-field plasma transport near the MHD instability threshold

    International Nuclear Information System (INIS)

    Pastukhov, V.P.; Chudin, N.V.

    2003-01-01

    Results of theoretical study and computer simulations of nonlinear 2D convection induced by a convective MHD instability near its threshold in FRC-like non-paraxial magnetic confinement system are presented. An appropriate closed set of weakly nonideal reduced MHD equations is derived to describe the self-consistent plasma dynamics. It is shown that the convection forms nonlinear large scale stochastic vortices (convective cells), which tend to restore and to maintain the marginally stable pressure pro e and result in an essentially nonlocal enhanced heat transport. A large amount of data on the structure of the nascent convective flows is obtained and analyzed. The computer simulations of long time plasma evolutions demonstrate such features of the resulting anomalous transport as pro e consistency, L-H transition, external transport barrier, pinch of impurities, etc. (author)

  18. Operational characteristics of the high flux plasma generator magnum-PSI

    NARCIS (Netherlands)

    Van Eck, H.J.N.; Abrams, T.; Van Den Berg, M.A.; Brons, S.D.N.; Van Eden, G.G.; Jaworski, M.A.; Kaita, R.; Van Der Meiden, H.J.; Morgan, T.W.; van de Pol, Marc J.; Scholten, J.; Smeets, P.H.M.; De Temmerman, G.; De Vries, P.C.; Zeijlmans Van Emmichoven, P.A.

    2014-01-01

    In Magnum-PSI (MAgnetized plasma Generator and NUMerical modeling for Plasma Surface Interactions), the high density, low temperature plasma of a wall stabilized dc cascaded arc is confined to a magnetized plasma beam by a quasi-steady state axial magnetic field up to 1.3 T. It aims at conditions

  19. Some factors affecting radiative heat transport in PWR cores

    International Nuclear Information System (INIS)

    Hall, A.N.

    1989-04-01

    This report discusses radiative heat transport in Pressurized Water Reactor cores, using simple models to illustrate basic features of the transport process. Heat transport by conduction and convection is ignored in order to focus attention on the restrictions on radiative heat transport imposed by the geometry of the heat emitting and absorbing structures. The importance of the spacing of the emitting and absorbing structures is emphasised. Steady state temperature distributions are found for models of cores which are uniformly heated by fission product decay. In all of the models, a steady state temperature distribution can only be obtained if the central core temperature is in excess of the melting point of UO 2 . It has recently been reported that the MIMAS computer code, which takes into account radiative heat transport, has been used to model the heat-up of the Three Mile Island-2 reactor core, and the computations indicate that the core could not have reached the melting point of UO 2 at any time or any place. We discuss this result in the light of the calculations presented in this paper. It appears that the predicted stabilisation of the core temperatures at ∼ 2200 0 C may be a consequence of the artificially large spacing between the radial rings employed in the MIMAS code, rather than a result of physical significance. (author)

  20. Foramen Magnum Meningioma: a Case Report and Review of Literature.

    Science.gov (United States)

    Jurinovic, Pavao; Bulicic, Ana Repic; Marcic, Marino; Mise, Nikolina Ivica; Titlic, Marina; Suljic, Enra

    2016-02-01

    Meningiomas are slow-growing benign tumors that arise at any location where arachnoid cells reside. Although meningiomas account for a sizable proportion of all primary intracranial neoplasms (14.3-19%), only 1.8 to 3.2% arise at the foramen magnum. Their indolent development at the craniocervical junction makes clinical diagnosis complex and often leads to a long interval between onset of symptoms and diagnosis. We report a case of a 79-year-old male patient, presented with ataxia and sense of threatening fainting during verticalization. Magnetic resonance imaging revealed the presence of meningioma in the right side of craniospinal junction.

  1. Comprehensive energy transport scalings derived from DIII-D similarity experiments

    International Nuclear Information System (INIS)

    Petty, C.C.; Luce, T.C.; Baity, F.W.

    1998-12-01

    The dependences of heat transport on the dimensionless plasma physics parameters has been measured for both L-mode and H-mode plasmas on the DIII-D tokamak. Heat transport in L-mode plasmas has a gyroradius scaling that is gyro-Bohm-like for electrons and worse than Bohm-like for ions, with no measurable beta or collisionality dependence; this corresponds to having an energy confinement time that scales like τ E ∝ n 0.5 P -0.5 . H-mode plasmas have gyro-Bohm-like scaling of heat transport for both electrons and ions, weak beta scaling, and moderate collisionality scaling. In addition, H-mode plasmas have a strong safety factor scaling (χ ∼ q 2 ) at all radii. Combining these four dimensionless parameter scalings together gives an energy confinement time scaling for H-mode plasmas like τ E ∝ B -1 ρ -3.15 β 0.03 v -0.42 q 95 -1.43 ∝ I 0.84 B 0.39 n 0.18 P -0.41 L 2.0 , which is similar to empirical scalings derived from global confinement databases

  2. Comprehensive energy transport scalings derived from DIII-D similarity experiments

    International Nuclear Information System (INIS)

    Petty, C.C.; Luce, T.C.; Baity, F.W.

    1999-01-01

    The dependences of heat transport on the dimensionless plasma physics parameters has been measured for both L-mode and H-mode plasmas on the DIII-D tokamak. Heat transport in L-mode plasmas has a gyroradius scaling that is gyro-Bohm-like for electrons and worse than Bohm-like for ions, with no measurable beta or collisionality dependence; this corresponds to having an energy confinement time that scales like τ E ∝ n 0.5 P -0.5 . H-mode plasmas have gyro-Bohm-like scaling of heat transport for both electrons and ions, weak beta scaling, and moderate collisionality scaling. In addition, H-mode plasmas have a strong safety factor scaling (χ ∼ q 2 ) at all radii. Combining these four dimensionless parameter scalings together gives an energy confinement time scaling for H-mode plasmas like τ E ∝ B -1 ρ -3.15 β 0.03 ν -0.42 q 95 -1.43 ∝ I 0.84 B 0.39 n 0.18 P -0.41 L 2.0 , which is similar to empirical scalings derived from global confinement databases. (author)

  3. Comprehensive energy transport scalings derived from DIII-D similarity experiments

    International Nuclear Information System (INIS)

    Petty, C.C.; Luce, T.C.; Baker, D.R.

    2001-01-01

    The dependences of heat transport on the dimensionless plasma physics parameters has been measured for both L-mode and H-mode plasmas on the DIII-D tokamak. Heat transport in L-mode plasmas has a gyroradius scaling that is gyro-Bohm-like for electrons and worse than Bohm-like for ions, with no measurable beta or collisionality dependence; this corresponds to having an energy confinement time that scales like τ E ∝n 0.5 P -0.5 . H-mode plasmas have gyro-Bohm-like scaling of heat transport for both electrons and ions, weak beta scaling, and moderate collisionality scaling. In addition, H-mode plasmas have a strong safety factor scaling (χ∼q 2 ) at all radii. Combining these four dimensionless parameter scalings together gives an energy confinement time scaling for H-mode plasmas like τ E ∝ B -1 ρ -3.15 β 0.03 ν -0.42 q 95 -1.43 ∝ I 0.84 B 0.39 n 0.18 P -0.41 L 2.0 , which is similar to empirical scalings derived from global confinement databases. (author)

  4. One-Loop Operation of Primary Heat Transport System in MONJU During Heat Transport System Modifications

    International Nuclear Information System (INIS)

    Goto, T.; Tsushima, H.; Sakurai, N.; Jo, T.

    2006-01-01

    MONJU is a prototype fast breeder reactor (FBR). Modification work commenced in March 2005. Since June 2004, MONJU has changed to one-loop operation of the primary heat transport system (PHTS) with all of the secondary heat transport systems (SHTS) drained of sodium. The purposes of this change are to shorten the modification period and to reduce the cost incurred for circuit trace heating electrical consumption. Before changing condition, the following issues were investigated to show that this mode of operation was possible. The heat loss from the reactor vessel and the single primary loop must exceed the decay heat by an acceptable margin but the capacity of pre-heaters to keep the sodium within the primary vessel at about 200 deg. C must be maintained. With regard to the heat loss and the decay heat, the estimated heat loss in the primary system was in the range of 90-170 kW in one-loop operation, and the calculated decay heat was 21.2 kW. Although the heat input of the primary pump was considered, it was clear that circuit heat loss greatly exceeded the decay heat. As for pre-heaters, effective capacity was less than the heat loss. Therefore, the temperature of the reactor vessel room was raised to reduce the heat loss. One-loop operation of the PHTS was able to be executed by means of these measures. The cost of electrical consumption in the power plant has been reduced by one-loop operation of the PHTS and the modification period was shortened. (authors)

  5. An alternatively spliced heat shock transcription factor, OsHSFA2dI, functions in the heat stress-induced unfolded protein response in rice.

    Science.gov (United States)

    Cheng, Q; Zhou, Y; Liu, Z; Zhang, L; Song, G; Guo, Z; Wang, W; Qu, X; Zhu, Y; Yang, D

    2015-03-01

    As sessile organisms, plants have evolved a wide range of defence pathways to cope with environmental stress such as heat shock. However, the molecular mechanism of these defence pathways remains unclear in rice. In this study, we found that OsHSFA2d, a heat shock transcriptional factor, encodes two main splice variant proteins, OsHSFA2dI and OsHSFA2dII in rice. Under normal conditions, OsHSFA2dII is the dominant but transcriptionally inactive spliced form. However, when the plant suffers heat stress, OsHSFA2d is alternatively spliced into a transcriptionally active form, OsHSFA2dI, which participates in the heat stress response (HSR). Further study found that this alternative splicing was induced by heat shock rather than photoperiod. We found that OsHSFA2dI is localised to the nucleus, whereas OsHSFA2dII is localised to the nucleus and cytoplasm. Moreover, expression of the unfolded protein response (UNFOLDED PROTEIN RESPONSE) sensors, OsIRE1, OsbZIP39/OsbZIP60 and the UNFOLDED PROTEIN RESPONSE marker OsBiP1, was up-regulated. Interestingly, OsbZIP50 was also alternatively spliced under heat stress, indicating that UNFOLDED PROTEIN RESPONSE signalling pathways were activated by heat stress to re-establish cellular protein homeostasis. We further demonstrated that OsHSFA2dI participated in the unfolded protein response by regulating expression of OsBiP1. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Heat transport in an anharmonic crystal

    Science.gov (United States)

    Acharya, Shiladitya; Mukherjee, Krishnendu

    2018-04-01

    We study transport of heat in an ordered, anharmonic crystal in the form of slab geometry in three dimensions. Apart from attaching baths of Langevin type to two extreme surfaces, we also attach baths of same type to the intermediate surfaces of the slab. Since the crystal is uninsulated, it exchanges energy with the intermediate heat baths. We find that both Fourier’s law of heat conduction and the Newton’s law of cooling hold to leading order in anharmonic coupling. The leading behavior of the temperature profile is exponentially falling from high to low temperature surface of the slab. As the anharmonicity increases, profiles fall more below the harmonic one in the log plot. In the thermodynamic limit thermal conductivity remains independent of the environment temperature and its leading order anharmonic contribution is linearly proportional to the temperature change between the two extreme surfaces of the slab. A fast crossover from one-dimensional (1D) to three-dimensional (3D) behavior of the thermal conductivity is observed in the system.

  7. Heat pulse propagation studies on DIII-D and the Tokamak Fusion Test Reactor

    Science.gov (United States)

    Fredrickson, E. D.; Austin, M. E.; Groebner, R.; Manickam, J.; Rice, B.; Schmidt, G.; Snider, R.

    2000-12-01

    Sawtooth phenomena have been studied on DIII-D and the Tokamak Fusion Test Reactor (TFTR) [D. Meade and the TFTR Group, in Proceedings of the International Conference on Plasma Physics and Controlled Nuclear Fusion, Washington, DC, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 1, pp. 9-24]. In the experiments the sawtooth characteristics were studied with fast electron temperature (ECE) and soft x-ray diagnostics. For the first time, measurements of a strong ballistic electron heat pulse were made in a shaped tokamak (DIII-D) [J. Luxon and DIII-D Group, in Proceedings of the 11th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Kyoto (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159] and the "ballistic effect" was stronger than was previously reported on TFTR. Evidence is presented in this paper that the ballistic effect is related to the fast growth phase of the sawtooth precursor. Fast, 2 ms interval, measurements on DIII-D were made of the ion temperature evolution following sawteeth and partial sawteeth to document the ion heat pulse characteristics. It is found that the ion heat pulse does not exhibit the very fast, "ballistic" behavior seen for the electrons. Further, for the first time it is shown that the electron heat pulses from partial sawtooth crashes (on DIII-D and TFTR) are seen to propagate at speeds close to those expected from the power balance calculations of the thermal diffusivities whereas heat pulses from fishbones propagate at rates more consistent with sawtooth induced heat pulses. These results suggest that the fast propagation of sawtooth-induced heat pulses is not a feature of nonlinear transport models, but that magnetohydrodynamic events can have a strong effect on electron thermal transport.

  8. Distributed Control of Heat Conduction in Thermal Inductive Materials with 2D Geometrical Isomorphism

    Directory of Open Access Journals (Sweden)

    Chia-Yu Chou

    2014-09-01

    Full Text Available In a previous study we provided analytical and experimental evidence that some materials are able to store entropy-flow, of which the heat-conduction behaves as standing waves in a bounded region small enough in practice. In this paper we continue to develop distributed control of heat conduction in these thermal-inductive materials. The control objective is to achieve subtle temperature distribution in space and simultaneously to suppress its transient overshoots in time. This technology concerns safe and accurate heating/cooling treatments in medical operations, polymer processing, and other prevailing modern day practices. Serving for distributed feedback, spatiotemporal H ∞ /μ control is developed by expansion of the conventional 1D-H ∞ /μ control to a 2D version. Therein 2D geometrical isomorphism is constructed with the Laplace-Galerkin transform, which extends the small-gain theorem into the mode-frequency domain, wherein 2D transfer-function controllers are synthesized with graphical methods. Finally, 2D digital-signal processing is programmed to implement 2D transfer-function controllers, possibly of spatial fraction-orders, into DSP-engine embedded microcontrollers.

  9. Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

    International Nuclear Information System (INIS)

    Takenaga, Hidenobu; Higashijima, S.; Oyama, N.

    2003-01-01

    The relationship between particle and heat transport in an internal transport barrier (ITB) has been systematically investigated in reversed shear (RS) and high β p ELMy H-mode plasmas in JT-60U. No helium and carbon accumulation inside the ITB is observed even with ion heat transport reduced to a neoclassical level. On the other hand, the heavy impurity argon is accumulated inside the ITB. The argon density profile estimated from the soft x-ray profile is more peaked, by a factor of 2-4 in the RS plasma and of 1.6 in the high β p mode plasma, than the electron density profile. The helium diffusivity (D He ) and the ion thermal diffusivity (χ i ) are at an anomalous level in the high β p mode plasma, where D He and χ i are higher by a factor of 5-10 than the neoclassical value. In the RS plasma, D He is reduced from the anomalous to the neoclassical level, together with χ i . The carbon and argon density profiles calculated using the transport coefficients reduced to the neoclassical level only in the ITB are more peaked than the measured profiles, even when χ i is reduced to the neoclassical level. Argon exhaust from the inside of the ITB is demonstrated by applying ECH in the high β p mode plasma, where both electron and argon density profiles become flatter. The reduction of the neoclassical inward velocity for argon due to the reduction of density gradient is consistent with the experimental observation. In the RS plasma, the density gradient is not decreased by ECH and argon is not exhausted. These results suggest the importance of density control to suppress heavy impurity accumulation. (author)

  10. Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

    International Nuclear Information System (INIS)

    Takenaga, H.; Higashijima, S.; Oyama, N.

    2003-01-01

    The relationship between particle and heat transport in an internal transport barrier (ITB) has been systematically investigated in reversed shear (RS) and high β p ELMy H-mode plasmas in JT-60U. No helium and carbon accumulation inside the ITB is observed even with ion heat transport reduced to a neoclassical level. On the other hand, the heavy impurity argon is accumulated inside the ITB. The argon density profile estimated from the soft x-ray profile is more peaked, by a factor of 2-4 in the RS plasma and of 1.6 in the high β p mode plasma, than the electron density profile. The helium diffusivity (D He ) and the ion thermal diffusivity (χ i ) are at an anomalous level in the high β p mode plasma, where D He and χ i are higher by a factor of 5-10 than the neoclassical value. In the RS plasma, D He is reduced from the anomalous to the neoclassical level, together with χ i . The carbon and argon density profiles calculated using the transport coefficients reduced to the neoclassical level only in the ITB are more peaked than the measured profiles, even when χ i is reduced to the neoclassical level. Argon exhaust from the inside of the ITB is demonstrated by applying ECH in the high β p mode plasma, where both electron and argon density profiles become flatter. The reduction of the neoclassical inward velocity for argon due to the reduction of density gradient is consistent with the experimental observation. In the RS plasma, the density gradient is not decreased by ECH and argon is not exhausted. These results suggest the importance of density gradient control to suppress heavy impurity accumulation. (author)

  11. Kinetic modeling of divertor heat load fluxes in the Alcator C-Mod and DIII-D tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Pankin, A. Y. [Tech-X Corporation, Boulder, Colorado 80303 (United States); Rafiq, T.; Kritz, A. H. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Park, G. Y. [National Fusion Research Institute, Daejeon, 305-333 (Korea, Republic of); Chang, C. S.; Ku, S. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Brunner, D.; Hughes, J. W.; LaBombard, B.; Terry, J. L. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Groebner, R. J. [General Atomics, San Diego, California 92121 (United States)

    2015-09-15

    The guiding-center kinetic neoclassical transport code, XGC0 [Chang et al., Phys. Plasmas 11, 2649 (2004)], is used to compute the heat fluxes and the heat-load width in the outer divertor plates of Alcator C-Mod and DIII-D tokamaks. The dependence of the width of heat-load fluxes on neoclassical effects, neutral collisions, and anomalous transport is investigated using the XGC0 code. The XGC0 code includes realistic X-point geometry, a neutral source model, the effects of collisions, and a diffusion model for anomalous transport. It is observed that the width of the XGC0 neoclassical heat-load is approximately inversely proportional to the total plasma current I{sub p.} The scaling of the width of the divertor heat-load with plasma current is examined for an Alcator C-Mod discharge and four DIII-D discharges. The scaling of the divertor heat-load width with plasma current is found to be weaker in the Alcator C-Mod discharge compared to scaling found in the DIII-D discharges. The effect of neutral collisions on the 1/I{sub p} scaling of heat-load width is shown not to be significant. Although inclusion of poloidally uniform anomalous transport results in a deviation from the 1/I{sub p} scaling, the inclusion of the anomalous transport that is driven by ballooning-type instabilities results in recovering the neoclassical 1/I{sub p} scaling. The Bohm or gyro-Bohm scalings of anomalous transport do not strongly affect the dependence of the heat-load width on plasma current. The inclusion of anomalous transport, in general, results in widening the width of neoclassical divertor heat-load and enhances the neoclassical heat-load fluxes on the divertor plates. Understanding heat transport in the tokamak scrape-off layer plasmas is important for strengthening the basis for predicting divertor conditions in ITER.

  12. Multiple-canister flow and transport code in 2-dimensional space. MCFT2D: user's manual

    International Nuclear Information System (INIS)

    Lim, Doo-Hyun

    2006-03-01

    A two-dimensional numerical code, MCFT2D (Multiple-Canister Flow and Transport code in 2-Dimensional space), has been developed for groundwater flow and radionuclide transport analyses in a water-saturated high-level radioactive waste (HLW) repository with multiple canisters. A multiple-canister configuration and a non-uniform flow field of the host rock are incorporated in the MCFT2D code. Effects of heterogeneous flow field of the host rock on migration of nuclides can be investigated using MCFT2D. The MCFT2D enables to take into account the various degrees of the dependency of canister configuration for nuclide migration in a water-saturated HLW repository, while the dependency was assumed to be either independent or perfectly dependent in previous studies. This report presents features of the MCFT2D code, numerical simulation using MCFT2D code, and graphical representation of the numerical results. (author)

  13. Development of 2-D/1-D fusion method for three-dimensional whole-core heterogeneous neutron transport calculations

    International Nuclear Information System (INIS)

    Lee, Gil Soo

    2006-02-01

    To describe power distribution and multiplication factor of a reactor core accurately, it is necessary to perform calculations based on neutron transport equation considering heterogeneous geometry and scattering angles. These calculations require very heavy calculations and were nearly impossible with computers of old days. From the limitation of computing power, traditional approach of reactor core design consists of heterogeneous transport calculation in fuel assembly level and whole core diffusion nodal calculation with assembly homogenized properties, resulting from fuel assembly transport calculation. This approach may be effective in computation time, but it gives less accurate results for highly heterogeneous problems. As potential for whole core heterogeneous transport calculation became more feasible owing to rapid development of computing power during last several years, the interests in two and three dimensional whole core heterogeneous transport calculations by deterministic method are increased. For two dimensional calculation, there were several successful approaches using even parity transport equation with triangular meshes, S N method with refined rectangular meshes, the method of characteristics (MOC) with unstructured meshes, and so on. The work in this thesis originally started from the two dimensional whole core heterogeneous transport calculation by using MOC. After successful achievement in two dimensional calculation, there were efforts in three-dimensional whole-core heterogeneous transport calculation using MOC. Since direct extension to three dimensional calculation of MOC requires too much computing power, indirect approach to three dimensional calculation was considered.Thus, 2D/1D fusion method for three dimensional heterogeneous transport calculation was developed and successfully implemented in a computer code. The 2D/1D fusion method is synergistic combination of the MOC for radial 2-D calculation and S N -like methods for axial 1

  14. Heat transport and storage

    International Nuclear Information System (INIS)

    Despois, J.

    1977-01-01

    Recalling the close connections existing between heat transport and storage, some general considerations on the problem of heat distribution and transport are presented 'in order to set out the problem' of storage in concrete form. This problem is considered in its overall plane, then studied under the angle of the different technical choices it involves. The two alternatives currently in consideration are described i.e.: storage in a mined cavity and underground storage as captive sheet [fr

  15. Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation

    Directory of Open Access Journals (Sweden)

    Sophia Haussener

    2012-01-01

    Full Text Available High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium.

  16. MORPHOMETRIC EVALUATION OF FORAMEN MAGNUM FOR SEX DETERMINATION IN A DOCUMENTED NORTH INDIAN SAMPLE

    OpenAIRE

    Jain; Alok Kumar; Pankaj

    2013-01-01

    ABSTRACT: Sex determination is used in anthropology, forensic medicine and medic o - legal cases. It is (1) remarked that “next to the pelvis, the skull is the most easily sexed portion of the skeleton”. It has been suggested (2 - 5) that the measurements of the foramen magnum are useful for determining the sex. There are two osteological techniques used to determine the sex of an individual; the first is visual assessment to evaluate the morphological sex tra...

  17. Elliptical Fourier descriptors of outline and morphological analysis in caudal view of foramen magnum of the tropical raccoon (Procyon cancrivorus) (Linnaeus, 1758).

    Science.gov (United States)

    Samuel, O M; Casanova, P M; Olopade, J O

    2018-03-01

    To evaluate sexual-size dimorphism and attempt at categorization of inter-individual shapes of foramen magnum outlines using Fourier descriptors which allow for shape outline evaluations with a resultant specimen character definition. Individual characterization and quantification of foramen magnum shapes in direct caudal view based on elliptical Fourier technique was applied to 46 tropical raccoon skulls (26 females, 20 males). Incremental number of harmonics demonstrates morphological contributions of such descriptors with their relations to specific anatomical constructions established. The initial harmonics (1st to 3rd) described the general foramen shapes while the second (4th to 12th) demonstrated fine morphological details. Sexual-size dimorphism was observed in females (87.1%) and 91.7% in males, normalization of size produces 75% in females and 83% in males. With respect to foramen magnum dimorphism analysis, the result obtained through elliptic Fourier analysis was comparatively better in detail information of outline contours than earlier classical methods. The first four effective principal components defined 70.63% of its shape properties while the rest (22.51%) constituted fine details of morphology. Both size and shape seems important in sexual dimorphisms in this species, this investigation suggest clinical implications, taxonomic and anthropologic perspectives in foramen characterization magnum characterization and further postulates an increased possibility of volume reduction cerebellar protrusion, ontogenic magnum shape irregularities in the sample population with neurologic consequences especially among females. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. TOUGH, Unsaturated Groundwater Transport and Heat Transport Simulation

    International Nuclear Information System (INIS)

    Pruess, K.A.; Cooper, C.; Osnes, J.D.

    1992-01-01

    1 - Description of program or function: A successor to the TOUGH program, TOUGH2 offers added capabilities and user features, including the flexibility to handle different fluid mixtures (water, water with tracer; water, CO 2 ; water, air; water, air with vapour pressure lowering, and water, hydrogen), facilities for processing of geometric data (computational grids), and an internal version control system to ensure referenceability of code applications. TOUGH (Transport of Unsaturated Groundwater and Heat) is a multi-dimensional numerical model for simulating the coupled transport of water, vapor, air, and heat in porous and fractured media. The program provides options for specifying injection or withdrawal of heat and fluids. Although primarily designed for studies of high-level nuclear waste isolation in partially saturated geological media, it should also be useful for a wider range of problems in heat and moisture transfer, and in the drying of porous materials. For example, geothermal reservoir simulation problems can be handled simply by setting the air mass function equal to zero on input. The TOUGH simulator was developed for problems involving strongly heat-driven flow. To describe these phenomena a multi-phase approach to fluid and heat flow is used, which fully accounts for the movement of gaseous and liquid phases, their transport of latent transitions between liquid and vapor. TOUGH takes account of fluid flow in both liquid and gaseous phases occurring under pressure, viscous, and gravity forces according to Darcy's law. Interference between the phases is represented by means of relative permeability functions. The code handles binary, but not Knudsen, diffusion in the gas phase and capillary and phase absorption effects for the liquid phase. Heat transport occurs by means of conduction with thermal conductivity dependent on water saturation, convection, and binary diffusion, which includes both sensible and latent heat. 2 - Method of solution: All

  19. Dimensionally similar discharges with central rf heating on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Petty, C.C.; Luce, T.C.; Pinsker, R.I.

    1993-04-01

    The scaling of L-mode heat transport with normalized gyroradius is investigated on the DIII-D tokamak using central rf heating. A toroidal field scan of dimensionally similar discharges with central ECH and/or fast wave heating show gyro-Bohm-like scaling both globally and locally. The main difference between these restats and those using NBI heating on DIII-D is that with rf heating the deposition profile is not very sensitive to the plasma density. Therefore central heating can be utilized for both the low-B and high-B discharges, whereas for NBI the power deposition is decidedly off-axis for the high-B discharge (i.e., high density)

  20. MXene Ti3C2: An Effective 2D Light-to-Heat Conversion Material

    KAUST Repository

    Li, Renyuan

    2017-03-25

    MXene, a new series of 2D material, has been steadily advancing its applications to a variety of fields, such as catalysis, supercapacitor, molecular separation, electromagnetic wave interference shielding. This work reports a carefully designed aqueous droplet light heating system along with a thorough mathematical procedure, which combined leads to a precise determination of internal light-to-heat conversion efficiency of a variety of nanomaterials. The internal light-to-heat conversion efficiency of MXene, more specifically Ti3C2, was measured to be 100%, indicating a perfect energy conversion. Furthermore, a self-floating MXene thin membrane was prepared by simple vacuum filtration and the membrane, in the presence of a rationally chosen heat barrier, produced a light-to-water-evaporation efficiency of 84% under one sun irradiation, which is among the state of art energy efficiency for similar photothermal evaporation system. The outstanding internal light-to-heat conversion efficiency and great light-to-water evaporation efficiency reported in this work suggest that MXene is a very promising light-to-heat conversion material and thus deserves more research attention toward practical applications.

  1. Study of electronic heat transport in plasma through diagnosis based on modulated electron cyclotron heating; Etudes de transport de la chaleur electronique par injection modulee d'ondes a la frequence cyclotronique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Clemencon, A.; Guivarch, C

    2003-07-01

    In order to make nuclear fusion energetically profitable, it is crucial to heat and confine the plasma efficiently. Studying the behavior of the heat diffusion coefficient is a key issue in this matter. The use of modulated electron cyclotron heating as a diagnostic has suggested the existence of a transport barrier under certain plasma conditions. We have determined the solution to the heat transport equation, for several heat diffusion coefficient profiles. By comparing the analytical solutions with experimental data; we are able to study the heat diffusion coefficient profile. Thus, in certain experiments, we can confirm that the heat diffusion coefficient switches from low to high values at the radius where the electron cyclotron heat deposition is made. (authors)

  2. Heat transport in the quasi-single-helicity islands of EXTRAP T2R

    Science.gov (United States)

    Frassinetti, L.; Brunsell, P. R.; Drake, J.

    2009-03-01

    The heat transport inside the magnetic island generated in a quasi-single-helicity regime of a reversed-field pinch device is studied by using a numerical code that simulates the electron temperature and the soft x-ray emissivity. The heat diffusivity χe inside the island is determined by matching the simulated signals with the experimental ones. Inside the island, χe turns out to be from one to two orders of magnitude lower than the diffusivity in the surrounding plasma, where the magnetic field is stochastic. Furthermore, the heat transport properties inside the island are studied in correlation with the plasma current and with the amplitude of the magnetic fluctuations.

  3. A low-frequency wave motion mechanism enables efficient energy transport in carbon nanotubes at high heat fluxes.

    Science.gov (United States)

    Zhang, Xiaoliang; Hu, Ming; Poulikakos, Dimos

    2012-07-11

    The great majority of investigations of thermal transport in carbon nanotubes (CNTs) in the open literature focus on low heat fluxes, that is, in the regime of validity of the Fourier heat conduction law. In this paper, by performing nonequilibrium molecular dynamics simulations we investigated thermal transport in a single-walled CNT bridging two Si slabs under constant high heat flux. An anomalous wave-like kinetic energy profile was observed, and a previously unexplored, wave-dominated energy transport mechanism is identified for high heat fluxes in CNTs, originated from excited low frequency transverse acoustic waves. The transported energy, in terms of a one-dimensional low frequency mechanical wave, is quantified as a function of the total heat flux applied and is compared to the energy transported by traditional Fourier heat conduction. The results show that the low frequency wave actually overtakes traditional Fourier heat conduction and efficiently transports the energy at high heat flux. Our findings reveal an important new mechanism for high heat flux energy transport in low-dimensional nanostructures, such as one-dimensional (1-D) nanotubes and nanowires, which could be very relevant to high heat flux dissipation such as in micro/nanoelectronics applications.

  4. Local transport method for hybrid diffusion-transport calculations in 2-D cylindrical (R, THETA) geometry

    International Nuclear Information System (INIS)

    Zhang, Dingkang; Rahnema, Farzad; Ougouag, Abderrfi M.

    2011-01-01

    A response-based local transport method has been developed in 2-D (r, θ) geometry for coupling to any coarse-mesh (nodal) diffusion method/code. Monte Carlo method is first used to generate a (pre-computed) the response function library for each unique coarse mesh in the transport domain (e.g., the outer reflector region of the Pebble Bed Reactor). The scalar flux and net current at the diffusion/transport interface provided by the diffusion method are used as an incoming surface source to the transport domain. A deterministic iterative sweeping method together with the response function library is utilized to compute the local transport solution within all transport coarse meshes. After the partial angular currents crossing the coarse mesh surfaces are converged, albedo coefficients are computed as boundary conditions for the diffusion methods. The iteration on the albedo boundary condition (for the diffusion method via transport) and the incoming angular flux boundary condition (for the transport via diffusion) is continued until convergence is achieved. The method was tested for in a simplified 2-D (r, θ) pebble bed reactor problem consisting of an inner reflector, an annular fuel region and a controlled outer reflector. The comparisons have shown that the results of the response-function-based transport method agree very well with a direct MCNP whole core solution. The agreement in coarse mesh averaged flux was found to be excellent: relative difference of about 0.18% and a maximum difference of about 0.55%. Note that the MCNP uncertainty was less than 0.1%. (author)

  5. 2D heat and mass transfer modeling of methane steam reforming for hydrogen production in a compact reformer

    International Nuclear Information System (INIS)

    Ni Meng

    2013-01-01

    Highlights: ► A heat and mass transfer model is developed for a compact reformer. ► Hydrogen production from methane steam reforming is simulated. ► Increasing temperature greatly increases the reaction rates at the inlet. ► Temperature in the downstream is increased at higher rate of heat supply. ► Larger permeability enhances gas flow and reaction rates in the catalyst layer. - Abstract: Compact reformers (CRs) are promising devices for efficient fuel processing. In CRs, a thin solid plate is sandwiched between two catalyst layers to enable efficient heat transfer from combustion duct to the reforming duct for fuel processing. In this study, a 2D heat and mass transfer model is developed to investigate the fundamental transport phenomenon and chemical reaction kinetics in a CR for hydrogen production by methane steam reforming (MSR). Both MSR reaction and water gas shift reaction (WGSR) are considered in the numerical model. Parametric simulations are performed to examine the effects of various structural/operating parameters, such as pore size, permeability, gas velocity, temperature, and rate of heat supply on the reformer performance. It is found that the reaction rates of MSR and WGSR are the highest at the inlet but decrease significantly along the reformer. Increasing the operating temperature raises the reaction rates at the inlet but shows very small influence in the downstream. For comparison, increasing the rate of heat supply raises the reaction rates in the downstream due to increased temperature. A high gas velocity and permeability facilitates gas transport in the porous structure thus enhances reaction rates in the downstream of the reformer.

  6. Diffusive and convective transport modelling from analysis of ECRH-stimulated electron heat wave propagation. [ECRH (Electron Cyclotron Resonance Heating)

    Energy Technology Data Exchange (ETDEWEB)

    Erckmann, V; Gasparino, U; Giannone, L. (Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)) (and others)

    1992-01-01

    ECRH power modulation experiments in toroidal devices offer the chance to analyze the electron heat transport more conclusively: the electron heat wave propagation can be observed by ECE (or SX) leading to radial profiles of electron temperature modulation amplitude and time delay (phase shift). Taking also the stationary power balance into account, the local electron heat transport can be modelled by a combination of diffusive and convective transport terms. This method is applied to ECRH discharges in the W7-AS stellarator (B=2.5T, R=2m, a[<=]18 cm) where the ECRH power deposition is highly localized. In W7-AS, the T[sub e] modulation profiles measured by a high resolution ECE system are the basis for the local transport analysis. As experimental errors limit the separation of diffusive and convective terms in the electron heat transport for central power deposition, also ECRH power modulation experiments with off-axis deposition and inward heat wave propagation were performed (with 70 GHz o-mode as well as with 140 GHz x-mode for increased absorption). Because collisional electron-ion coupling and radiative losses are only small, low density ECRH discharges are best candidates for estimating the electron heat flux from power balance. (author) 2 refs., 3 figs.

  7. Energy and particle transport in the radiative divertor plasmas of DIII-D

    International Nuclear Information System (INIS)

    Leonard, A.W.; Allen, S.L.; Brooks, N.H.

    1997-06-01

    It has been argued that divertor energy transport dominated by parallel electron thermal conduction, or q parallel = -kT 5/2 2 dT e /ds parallel, leads to severe localization of the intense radiating region and ultimately limits the fraction of energy flux that can be radiated before striking the divertor target. This is due to the strong T 5/2 e dependence of electron heat conduction which results in very short spatial scales of the T e gradient at high power densities and low temperatures where deuterium and impurities radiate most effectively. However, we have greatly exceeded this constraint on DIII-D with deuterium gas puffing which reduces the peak heat flux to the divertor plate a factor of 5 while distributing the divertor radiation over a long length

  8. Multiyear Statistics of 2-D Shortwave Radiative Effects at Three ARM Sites

    Science.gov (United States)

    Varnai, Tamas

    2010-01-01

    This study examines the importance of horizontal photon transport effects, which are not considered in the 1-D calculations of solar radiative heating used by most atmospheric dynamical models. In particular, the paper analyzes the difference between 2-D and 1-D radiative calculations for 2-D vertical cross-sections of clouds that were observed at three sites over 2- to 3-year periods. The results show that 2-D effects increase multiyear 24-hour average total solar absorption by about 4.1 W/sq m, 1.2 W/sq m, and 0.3 W/sq m at a tropical, mid-latitude, and arctic site, respectively. However, 2-D effects are often much larger than these average values, especially for high sun and for convective clouds. The results also reveal a somewhat unexpected behavior, that horizontal photon transport often enhances solar heating even for oblique sun. These findings underscore the need for fast radiation calculation methods that can allow atmospheric dynamical simulations to consider the inherently multidimensional nature of shortwave radiative processes.

  9. Development and preliminary verification of 2-D transport module of radiation shielding code ARES

    International Nuclear Information System (INIS)

    Zhang Penghe; Chen Yixue; Zhang Bin; Zang Qiyong; Yuan Longjun; Chen Mengteng

    2013-01-01

    The 2-D transport module of radiation shielding code ARES is two-dimensional neutron and radiation shielding code. The theory model was based on the first-order steady state neutron transport equation, adopting the discrete ordinates method to disperse direction variables. Then a set of differential equations can be obtained and solved with the source iteration method. The 2-D transport module of ARES was capable of calculating k eff and fixed source problem with isotropic or anisotropic scattering in x-y geometry. The theoretical model was briefly introduced and series of benchmark problems were verified in this paper. Compared with the results given by the benchmark, the maximum relative deviation of k eff is 0.09% and the average relative deviation of flux density is about 0.60% in the BWR cells benchmark problem. As for the fixed source problem with isotropic and anisotropic scattering, the results of the 2-D transport module of ARES conform with DORT very well. These numerical results of benchmark problems preliminarily demonstrate that the development process of the 2-D transport module of ARES is right and it is able to provide high precision result. (authors)

  10. D2O, Computation of Thermodynamic and Transport Properties of Heavy Water

    International Nuclear Information System (INIS)

    Durmayaz, Ahmet

    2000-01-01

    1 - Description of program or function: A computer program for the fast computation of the thermodynamic and transport properties of heavy water (D 2 O) at saturation, in subcooled liquid and superheated vapor states. Specific volume (or density), specific enthalpy, specific entropy, constant-pressure specific heat and temperature at saturation are calculated by a number of piecewise continuous approximation functions of (and their derivatives are calculated with respect to) pressure whereas pressure at saturation is calculated by a piecewise continuous approximation function of temperature for heavy water. Density in subcooled liquid state, specific volume in super-heated vapor state, specific enthalpy, specific entropy and constant-pressure specific heat in both of these states are calculated by some piecewise continuous approximation functions of pressure and temperature for heavy water. The correlations used in the calculation of these thermodynamic properties of heavy water were derived by fitting some appropriate curves to the data given in the steam tables by Hill et al (1981). The whole set of correlations and the approximation method used in their derivation are presented by Durmayaz (1997). Dynamic viscosity and thermal conductivity for heavy water are calculated as functions of temperature and density with the correlations given by Hill et al (1981), by Matsunaga and Nagashima (1983) and by Kestin et al (1984). Surface tension for heavy water is calculated as a function of temperature with the correlation given by Crabtree and Siman-Tov (1993). 2 - Methods: A group of pressure-enthalpy (P-h) pairs can be given in an input data file or assigned in the main program without knowing the state in which fluid takes place. In this case, first, the enthalpies at saturation corresponding to the given pressure are computed. Second, the state is determined by comparing the given enthalpy to the saturation enthalpies. Then, the properties are computed. Program D 2 O

  11. A simple Boltzmann transport equation for ballistic to diffusive transient heat transport

    International Nuclear Information System (INIS)

    Maassen, Jesse; Lundstrom, Mark

    2015-01-01

    Developing simplified, but accurate, theoretical approaches to treat heat transport on all length and time scales is needed to further enable scientific insight and technology innovation. Using a simplified form of the Boltzmann transport equation (BTE), originally developed for electron transport, we demonstrate how ballistic phonon effects and finite-velocity propagation are easily and naturally captured. We show how this approach compares well to the phonon BTE, and readily handles a full phonon dispersion and energy-dependent mean-free-path. This study of transient heat transport shows (i) how fundamental temperature jumps at the contacts depend simply on the ballistic thermal resistance, (ii) that phonon transport at early times approach the ballistic limit in samples of any length, and (iii) perceived reductions in heat conduction, when ballistic effects are present, originate from reductions in temperature gradient. Importantly, this framework can be recast exactly as the Cattaneo and hyperbolic heat equations, and we discuss how the key to capturing ballistic heat effects is to use the correct physical boundary conditions

  12. 3D CFD for chemical transport profiles in a rotating disk CVD reactor

    Science.gov (United States)

    Han, Jong-Hyun; Yoon, Do-Young

    2010-06-01

    The RDCVD (Rotating Disk Chemical Vapor Deposition) technique is an appropriate method for uniform deposition of grains, such as compound semiconductior materials. The substrate temperature and rotation speed are the major factors, which determine the thickness uniformity of the deposited films. This paper investigates 3D CFD (3 Dimensional Computational Fluid Dynamics) simulation results of flow and heat transfer in a reactor of RDCVD using Fluent. In order to establish the reducibility of buoyancy effect on deposition quality, the chemical transport profile upon the disk heated is examined successfully in 3D domain for different rotating speeds. The resulting vortex flows due the simultaneous buoyance and centrifuge are discussed qualitatively in the 3D virtual system of a RDCVD reactor. 3D CFD is even more effective to describe the internal vortex flows due to the competitive inlet, buoyancy and centrifuge flows, which cannot be realized in the general 2D (2 Dimensional) CFD.[Figure not available: see fulltext.

  13. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion

    Directory of Open Access Journals (Sweden)

    Martin Gregory T

    2004-11-01

    Full Text Available Abstract Background Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. Methods We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1 surface contact heating and (2 spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42°C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. Results The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45°C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. Conclusions The heat transport system model of the

  14. Particle and heat transport in Tokamaks

    International Nuclear Information System (INIS)

    Chatelier, M.

    1984-01-01

    A limitation to performances of tokamaks is heat transport through magnetic surfaces. Principles of ''classical'' or ''neoclassical'' transport -i.e. transport due to particle and heat fluxes due to Coulomb scattering of charged particle in a magnetic field- are exposed. It is shown that beside this classical effect, ''anomalous'' transport occurs; it is associated to the existence of fluctuating electric or magnetic fields which can appear in the plasma as a result of charge and current perturbations. Tearing modes and drift wave instabilities are taken as typical examples. Experimental features are presented which show that ions behave approximately in a classical way whereas electrons are strongly anomalous [fr

  15. Comparison of 2D and 3D Neutron Transport Analyses on Yonggwang Unit 3 Reactor

    International Nuclear Information System (INIS)

    Maeng, Aoung Jae; Kim, Byoung Chul; Lim, Mi Joung; Kim, Kyung Sik; Jeon, Young Kyou; Yoo, Choon Sung

    2012-01-01

    10 CFR Part 50 Appendix H requires periodical surveillance program in the reactor vessel (RV) belt line region of light water nuclear power plant to check vessel integrity resulting from the exposure to neutron irradiation and thermal environment. Exact exposure analysis of the neutron fluence based on right modeling and simulations is the most important in the evaluation. Traditional 2 dimensional (D) and 1D synthesis methodologies have been widely applied to evaluate the fast neutron (E > 1.0 MeV) fluence exposure to RV. However, 2D and 1D methodologies have not provided accurate fast neutron fluence evaluation at elevations far above or below the active core region. RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries) program for 3D geometries calculation was therefore developed both by Westinghouse Electronic Company, USA and Korea Reactor Integrity Surveillance Technology (KRIST) for the analysis of In-Vessel Surveillance Test and Ex-Vessel Neutron Dosimetry (EVND). Especially EVND which is installed at active core height between biological shielding material and concrete also evaluates axial neutron fluence by placing three dosimetries each at Top, Middle and Bottom part of the angle representing maximum neutron fluence. The EVND programs have been applied to the Korea Nuclear Plants. The objective of this study is therefore to compare the 3D and the 2D Neutron Transport Calculations and Analyses on the Yonggwang unit 3 Reactor as an example

  16. Results from transient transport experiments in Rijnhuizen tokamak project: Heat convection, transport barriers and 'non-local' effects

    International Nuclear Information System (INIS)

    Mantica, P.; Gorini, G.; Hogeweij, G.M.D.; Kloe, J. de; Lopez Cardozo, N.J.; Schilham, A.M.R.

    2001-01-01

    An overview of experimental transport studies performed on the Rijnhuizen Tokamak Project (RTP) using transient transport techniques in both Ohmic and ECH dominated plasmas is presented. Modulated Electron Cyclotron Heating (ECH) and oblique pellet injection (OPI) have been used to induce electron temperature (T e ) perturbations at different radial locations. These were used to probe the electron transport barriers observed near low order rational magnetic surfaces in ECH dominated steady-state RTP plasmas. Layers of inward electron heat convection in off-axis ECH plasmas were detected with modulated ECH. This suggests that RTP electron transport barriers consist of heat pinch layers rather than layers of low thermal diffusivity. In a different set of experiments, OPI triggered a transient rise of the core T e due to an increase of the T e gradient in the 1< q<2 region. These transient transport barriers were probed with modulated ECH and found to be due to a transient drop of the electron heat diffusivity, except for off-axis ECH plasmas, where a transient inward pinch is also observed. Transient transport studies in RTP could not solve this puzzling interplay between heat diffusion and convection in determining an electron transport barrier. They nevertheless provided challenging experimental evidence both for theoretical modelling and for future experiments. (author)

  17. Implications of Thermal Diffusity being Inversely Proportional to Temperature Times Thermal Expansivity on Lower Mantle Heat Transport

    Science.gov (United States)

    Hofmeister, A.

    2010-12-01

    Many measurements and models of heat transport in lower mantle candidate phases contain systematic errors: (1) conventional methods of insulators involve thermal losses that are pressure (P) and temperature (T) dependent due to physical contact with metal thermocouples, (2) measurements frequently contain unwanted ballistic radiative transfer which hugely increases with T, (3) spectroscopic measurements of dense samples in diamond anvil cells involve strong refraction by which has not been accounted for in analyzing transmission data, (4) the role of grain boundary scattering in impeding heat and light transfer has largely been overlooked, and (5) essentially harmonic physical properties have been used to predict anharmonic behavior. Improving our understanding of the physics of heat transport requires accurate data, especially as a function of temperature, where anharmonicity is the key factor. My laboratory provides thermal diffusivity (D) at T from laser flash analysis, which lacks the above experimental errors. Measuring a plethora of chemical compositions in diverse dense structures (most recently, perovskites, B1, B2, and glasses) as a function of temperature provides a firm basis for understanding microscopic behavior. Given accurate measurements for all quantities: (1) D is inversely proportional to [T x alpha(T)] from ~0 K to melting, where alpha is thermal expansivity, and (2) the damped harmonic oscillator model matches measured D(T), using only two parameters (average infrared dielectric peak width and compressional velocity), both acquired at temperature. These discoveries pertain to the anharmonic aspects of heat transport. I have previously discussed the easily understood quasi-harmonic pressure dependence of D. Universal behavior makes application to the Earth straightforward: due to the stiffness and slow motions of the plates and interior, and present-day, slow planetary cooling rates, Earth can be approximated as being in quasi

  18. JET ({sup 3}He)-D scenarios relying on RF heating: survey of selected recent experiments

    Energy Technology Data Exchange (ETDEWEB)

    Van Eester, D; Lerche, E; Andrew, Y; Biewer, T M; Casati, A; Crombe, K; De la Luna, E; Ericsson, G; Felton, R; Giacomelli, L; Giroud, C; Hawkes, N; Hellesen, C; Hjalmarsson, A; Joffrin, E; Kaellne, J; Kiptily, V; Lomas, P; Mantica, P; Marinoni, A [JET-EFDA Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)] (and others)

    2009-04-15

    Recent JET experiments have been devoted to the study of ({sup 3}He)-D plasmas involving radio frequency (RF) heating. This paper starts by discussing the RF heating efficiency theoretically expected in such plasmas, covering both relevant aspects of wave and of particle dynamics. Then it gives a concise summary of the main conclusions drawn from recent experiments that were either focusing on studying RF heating physics aspects or that were adopting RF heating as a tool to study plasma behavior. Depending on the minority concentration chosen, different physical phenomena are observed. At very low concentration (X[{sup 3}He] < 1%), energetic tails are formed which trigger MHD activity and result in loss of fast particles. Alfven cascades were observed and gamma ray tomography indirectly shows the impact of sawtooth crashes on the fast particle orbits. Low concentration (X[{sup 3}He] < 10%) favors minority heating while for X[{sup 3}He] >> 10% electron mode conversion damping becomes dominant. Evidence for the Fuchs et al standing wave effect (Fuchs et al 1995 Phys. Plasmas 2 1637-47) on the absorption is presented. RF induced deuterium tails were observed in mode conversion experiments with large X[{sup 3}He] ({approx}18%). As tentative modeling shows, the formation of these tails can be explained as a consequence of wave power absorption by neutral beam particles that efficiently interact with the waves well away from the cold D cyclotron resonance position as a result of their substantial Doppler shift. As both ion and electron RF power deposition profiles in ({sup 3}He)-D plasmas are fairly narrow-giving rise to localized heat sources-the RF heating method is an ideal tool for performing transport studies. Various of the experiments discussed here were done in plasmas with internal transport barriers (ITBs). ITBs are identified as regions with locally reduced diffusivity, where poloidal spinning up of the plasma is observed. The present know-how on the role of

  19. Numerical Simulation of Density-Driven Flow and Heat Transport Processes in Porous Media Using the Network Method

    Directory of Open Access Journals (Sweden)

    Manuel Cánovas

    2017-09-01

    Full Text Available Density-driven flow and heat transport processes in 2-D porous media scenarios are governed by coupled, non-linear, partial differential equations that normally have to be solved numerically. In the present work, a model based on the network method simulation is designed and applied to simulate these processes, providing steady state patterns that demonstrate its computational power and reliability. The design is relatively simple and needs very few rules. Two applications in which heat is transported by natural convection in confined and saturated media are studied: slender boxes heated from below (a kind of Bénard problem and partially heated horizontal plates in rectangular domains (the Elder problem. The streamfunction and temperature patterns show that the results are coherent with those of other authors: steady state patterns and heat transfer depend both on the Rayleigh number and on the characteristic Darcy velocity derived from the values of the hydrological, thermal and geometrical parameters of the problems.

  20. High efficiency heat transport and power conversion system for cascade

    International Nuclear Information System (INIS)

    Maya, I.; Bourque, R.F.; Creedon, R.L.; Schultz, K.R.

    1985-02-01

    The Cascade ICF reactor features a flowing blanket of solid BeO and LiAlO 2 granules with very high temperature capability (up to approx. 2300 K). The authors present here the design of a high temperature granule transport and heat exchange system, and two options for high efficiency power conversion. The centrifugal-throw transport system uses the peripheral speed imparted to the granules by the rotating chamber to effect granule transport and requires no additional equipment. The heat exchanger design is a vacuum heat transfer concept utilizing gravity-induced flow of the granules over ceramic heat exchange surfaces. A reference Brayton power cycle is presented which achieves 55% net efficiency with 1300 K peak helium temperature. A modified Field steam cycle (a hybrid Rankine/Brayton cycle) is presented as an alternate which achieves 56% net efficiency

  1. A giant cholesteatoma of the mastoid extending into the foramen magnum: A case report and review of literature

    Directory of Open Access Journals (Sweden)

    Seidu A Richard

    2018-04-01

    Full Text Available Cholesteatomas are very rare benign, progressive lesions that have embryologic derivation and usually result in progressive exfoliation and confinement of squamous epithelium behind an intact or preciously infected tympanic membrane. To the best of our understanding no reports demonstrates the extension of cholesteatoma from the temporal bone into the foramen magnum. We therefore present a case of cholesteatoma extending down into the foramen magnum. We report a case of 67- year-old man with a giant cholesteatoma extending into the foramen magnum without substantial destruction of the mastoid and petrous temporal bones. The patient’s major symptoms were recurrent tinnitus in the left ear and dizziness with unilateral conductive hearing loss. A working diagnosis of cholesteatomas was made combining the symptoms and magnetic resonance imaging findings. He was then successfully operated on with very minimal postoperative complications. Cholesteatomas originating from the mastoid bone often linger with the patients for many years in a subclinical state and progress into a massive size before causing symptoms. Patients with unilateral conductive hearing loss who are otherwise asymptomatic and have a normal tympanic membrane should be suspected with a progressive cholesteatoma. Cholesteatoma should be one of the working diagnosis when an elderly patient present with unilateral conductive hearing loss that is associated with tinnitus and dizziness.

  2. Heat in the Barents Sea: transport, storage, and surface fluxes

    Directory of Open Access Journals (Sweden)

    L. H. Smedsrud

    2010-02-01

    Full Text Available A column model is set up for the Barents Sea to explore sensitivity of surface fluxes and heat storage from varying ocean heat transport. Mean monthly ocean transport and atmospheric forcing are synthesised and force the simulations. Results show that by using updated ocean transports of heat and freshwater the vertical mean hydrographic seasonal cycle can be reproduced fairly well.

    Our results indicate that the ~70 TW of heat transported to the Barents Sea by ocean currents is lost in the southern Barents Sea as latent, sensible, and long wave radiation, each contributing 23–39 TW to the total heat loss. Solar radiation adds 26 TW in the south, as there is no significant ice production.

    The northern Barents Sea receives little ocean heat transport. This leads to a mixed layer at the freezing point during winter and significant ice production. There is little net surface heat loss annually in the north. The balance is achieved by a heat loss through long wave radiation all year, removing most of the summer solar heating.

    During the last decade the Barents Sea has experienced an atmospheric warming and an increased ocean heat transport. The Barents Sea responds to such large changes by adjusting temperature and heat loss. Decreasing the ocean heat transport below 50 TW starts a transition towards Arctic conditions. The heat loss in the Barents Sea depend on the effective area for cooling, and an increased heat transport leads to a spreading of warm water further north.

  3. Design to nullify activity movement in heat transport systems

    International Nuclear Information System (INIS)

    Hemmings, R.L.; Barber, D.

    1975-01-01

    This article describes the methods by which designers can reduce the adverse effects of system corrosion and the resultant activation of the corrosion products in heat transport systems. The presentation will cover: a) choice of materials; b) assessment of the need of components; c) control of system chemistry; d) factors considered in sizing HTS purification systems; i) control of activation and fission products; ii) decontamination. (author)

  4. Transectional heat transfer in thermoregulating bigeye tuna (Thunnus obesus) - a 2D heat flux model.

    Science.gov (United States)

    Boye, Jess; Musyl, Michael; Brill, Richard; Malte, Hans

    2009-11-01

    We developed a 2D heat flux model to elucidate routes and rates of heat transfer within bigeye tuna Thunnus obesus Lowe 1839 in both steady-state and time-dependent settings. In modeling the former situation, we adjusted the efficiencies of heat conservation in the red and the white muscle so as to make the output of the model agree as closely as possible with observed cross-sectional isotherms. In modeling the latter situation, we applied the heat exchanger efficiencies from the steady-state model to predict the distribution of temperature and heat fluxes in bigeye tuna during their extensive daily vertical excursions. The simulations yielded a close match to the data recorded in free-swimming fish and strongly point to the importance of the heat-producing and heat-conserving properties of the white muscle. The best correspondence between model output and observed data was obtained when the countercurrent heat exchangers in the blood flow pathways to the red and white muscle retained 99% and 96% (respectively) of the heat produced in these tissues. Our model confirms that the ability of bigeye tuna to maintain elevated muscle temperatures during their extensive daily vertical movements depends on their ability to rapidly modulate heating and cooling rates. This study shows that the differential cooling and heating rates could be fully accounted for by a mechanism where blood flow to the swimming muscles is either exclusively through the heat exchangers or completely shunted around them, depending on the ambient temperature relative to the body temperature. Our results therefore strongly suggest that such a mechanism is involved in the extensive physiological thermoregulatory abilities of endothermic bigeye tuna.

  5. Heat transport and surface heat transfer with helium in rotating channels

    International Nuclear Information System (INIS)

    Schnapper, C.

    1978-06-01

    Heat transport and surface heat transfer with helium in rotating radially arranged channels were experimentally studied with regard to cooling of large turbogenerators with superconducting windings. Measurements with thermosiphon and thermosiphon loops of different channel diameters were performed, and results are presented. The thermodynamic state of the helium in a rotating thermosiphon and the mass flow rate in a thermosiphon loop is characterized by formulas. Heat transport by directed convection in thermosiphon loops is found to be more efficient 12 cm internal convection in thermosiphons. Steady state is reached sooner in thermosiphon loops than in thermosiphons, when heat load suddenly changes. In a very large centrifugal field single-phase heat transfer with natural and forced convection is described by similar formulas which are also applicable 10 thermosiphons in gravitation field or to heat transfer to non-rotating helium. (orig.) [de

  6. Electron heat transport studies using transient phenomena in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Jacchia, A.; Angioni, C.; Manini, A.; Ryter, F.; Apostoliceanu, M.; Conway, G.; Fahrbach, H.-U.; Kirov, K.K.; Leuterer, F.; Reich, M.; Sutttrop, W.; Cirant, S.; Mantica, P.; De Luca, F.; Weiland, J.

    2005-01-01

    Experiments in tokamaks suggest that a critical gradient length may cause the resilient behavior of T e profiles, in the absence of ITBs. This agrees in general with ITG/TEM turbulence physics. Experiments in ASDEX Upgrade using modulation techniques with ECH and/or cold pulses demonstrate the existence of a threshold in R/L Te when T e >T i and T e ≤T i . For T e >T i linear stability analyses indicate that electron heat transport is dominated by TEM modes. They agree in the value of the threshold (both T e and n e ) and for the electron heat transport increase above the threshold. The stabilization of TEM modes by collisions yielded by gyro-kinetic calculations, which suggests a transition from TEM to ITG dominated transport at high collisionality, is experimentally demonstrated by comparing heat pulse and steady-state diffusivities. For the T e ∼T i discharges above the threshold the resilience, normalized by T e 3/2 , is similar to that of the TEM dominated cases, despite very different conditions. The heat pinch predicted by fluid modeling of ITG/TEM turbulence is investigated by perturbative transport in off-axis ECH-heated discharges. (author)

  7. Locomotor pattern fails to predict foramen magnum angle in rodents, strepsirrhine primates, and marsupials.

    Science.gov (United States)

    Ruth, Aidan A; Raghanti, Mary Ann; Meindl, Richard S; Lovejoy, C Owen

    2016-05-01

    Foramen magnum position has traditionally been used as an indicator of bipedality because it has been thought to favor a more "balanced" skull position. Here, we analyzed foramen magnum angle (FMA) in relation to locomotion in three mammalian orders that include bipedal or orthograde species in addition to quadrupedal or pronograde species. In marsupials and strepsirrhine primates, we found that there is no relationship between locomotor pattern and FMA. In rodents, we found that there is a significant difference in FMA between bipedal and quadrupedal rodents. However, when these species are analyzed in the context of enlarged auditory bullae, this relationship is no longer significant. Additionally, we find a significant relationship between relative brain size and FMA in strepsirrhine primates. Taken together, these data indicate that several developmental modules of the cranium influence FMA, but that locomotion does not. We caution that basicranial evolution is a complex phenomenon that must be explored in the context of each taxon's unique evolutionary and developmental history. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Understanding of flux-limited behaviors of heat transport in nonlinear regime

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yangyu, E-mail: yangyuhguo@gmail.com [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics and CNMM, Tsinghua University, Beijing 100084 (China); Jou, David, E-mail: david.jou@uab.es [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Wang, Moran, E-mail: mrwang@tsinghua.edu [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics and CNMM, Tsinghua University, Beijing 100084 (China)

    2016-01-28

    The classical Fourier's law of heat transport breaks down in highly nonequilibrium situations as in nanoscale heat transport, where nonlinear effects become important. The present work is aimed at exploring the flux-limited behaviors based on a categorization of existing nonlinear heat transport models in terms of their theoretical foundations. Different saturation heat fluxes are obtained, whereas the same qualitative variation trend of heat flux versus exerted temperature gradient is got in diverse nonlinear models. The phonon hydrodynamic model is proposed to act as a standard to evaluate other heat flux limiters because of its more rigorous physical foundation. A deeper knowledge is thus achieved about the phenomenological generalized heat transport models. The present work provides deeper understanding and accurate modeling of nonlocal and nonlinear heat transport beyond the diffusive limit. - Highlights: • Exploring flux-limited behaviors based on a categorization of existing nonlinear heat transport models. • Proposing phonon hydrodynamic model as a standard to evaluate heat flux limiters. • Providing accurate modeling of nonlocal and nonlinear heat transport beyond the diffusive limit.

  9. Turbulent transport in 2D collisionless guide field reconnection

    Science.gov (United States)

    Muñoz, P. A.; Büchner, J.; Kilian, P.

    2017-02-01

    Transport in hot and dilute, i.e., collisionless, astrophysical and space, plasmas is called "anomalous." This transport is due to the interaction between the particles and the self-generated turbulence by their collective interactions. The anomalous transport has very different and not well known properties compared to the transport due to binary collisions, dominant in colder and denser plasmas. Because of its relevance for astrophysical and space plasmas, we explore the excitation of turbulence in current sheets prone to component- or guide-field reconnection, a process not well understood yet. This configuration is typical for stellar coronae, and it is created in the laboratory for which a 2.5D geometry applies. In our analysis, in addition to the immediate vicinity of the X-line, we also include regions outside and near the separatrices. We analyze the anomalous transport properties by using 2.5D Particle-in-Cell code simulations. We split off the mean slow variation (in contrast to the fast turbulent fluctuations) of the macroscopic observables and determine the main transport terms of the generalized Ohm's law. We verify our findings by comparing with the independently determined slowing-down rate of the macroscopic currents (due to a net momentum transfer from particles to waves) and with the transport terms obtained by the first order correlations of the turbulent fluctuations. We find that the turbulence is most intense in the "low density" separatrix region of guide-field reconnection. It is excited by streaming instabilities, is mainly electrostatic and "patchy" in space, and so is the associated anomalous transport. Parts of the energy exchange between turbulence and particles are reversible and quasi-periodic. The remaining irreversible anomalous resistivity can be parametrized by an effective collision rate ranging from the local ion-cyclotron to the lower-hybrid frequency. The contributions to the parallel and the perpendicular (to the magnetic

  10. Theory of ion heat transport in tokamaks

    International Nuclear Information System (INIS)

    Gott, Y.V.; Yurchenko, E.I.

    1987-01-01

    Experiments which have been carried out in several tokamaks to determine the ion thermal conductivity show that it is several times the value predicted by the neoclassical theory. A possible explanation for this discrepancy is proposed. When the finite width of a banana is taken into account, there are substantial increases in the heat fluxes which stem from the important contribution of superthermal ions to the transport. If the electron diffusive flux is zero, a systematic account of the ions with E>T leads to an ion heat flux with a finite banana width which is two to four times the neoclassical prediction. The effect of the anomalous nature of the electron flux on the ion heat transport is analyzed. An expression is derived for calculating the ion heat transport over the entire range of collision rates

  11. 2-D temperature distribution and heat flux of PFC in 2011 KSTAR campaign

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Eunnam, E-mail: bang14@nfri.re.kr; Hong, Suk-Ho; Yu, Yaowei; Kim, Kyungmin; Kim, Hongtack; Kim, Hakkun; Lee, Kunsu; Yang, Hyunglyul

    2013-10-15

    Highlights: • The heat flux on PFC tiles of 12 s pulse duration and 630 kA plasma current is about 0.02 MW/m{sup 2}. • When the cryopump is operated, the heat flux of CD is higher than without cryopump. • The more H-mode duration is long, the more heat flux on divertor is high. -- Abstract: KSTAR has reached a plasma current up to 630 kA, plasma duration up to 12 s, and has achieved high confinement mode (H-mode) in 2011 campaign. The heat flux of PFC tile was estimated from the temperature increase of PFC since 2010. The heat flux of PFC tiles increases significantly with higher plasma current and longer pulse duration. The time-averaged heat flux of shots in 2010 campaign (with 3 s pulse durations and I{sub p} of 611 kA) is 0.01 MW/m{sup 2} while that in 2011 campaign (with 12 s pulse duration and I{sub p} of 630 kA) is about 0.02 MW/m{sup 2}. The heat flux at divertor is 1.4–2 times higher than that at inboard limiter or passive stabilizer. With the cryopump operation, the heat flux at the central divertor is higher than that without cryopump. The heat flux at divertor is proportional to, of course, the duration of H-mode. Furthermore, a software tool, which visualizes the 2D temperature distribution of PFC tile and estimates the heat flux in real time, is developed.

  12. Active transport and heat.

    Science.gov (United States)

    Tait, Peter W

    2011-07-01

    Increasing heat may impede peoples' ability to be active outdoors thus limiting active transport options. Co-benefits from mitigation of and adaptation to global warming should not be assumed but need to be actively designed into strategies.

  13. Three dimensional heat transport modeling in Vossoroca reservoir

    Science.gov (United States)

    Arcie Polli, Bruna; Yoshioka Bernardo, Julio Werner; Hilgert, Stephan; Bleninger, Tobias

    2017-04-01

    Curitiba - Brazil. It is monomictic and its function is to regulate the flow to Chaminé hydropower plant. Vossoroca is monitored since 2012. Temperature is measured with seven temperature sensors in the deepest region of the reservoir and meteorological data is measured on a station close to the reservoir. The objective of this work is the 3D modeling of heat transport in Vossoroca reservoir with Delft3D. Temperature gradients between surface and bottom of Vossoroca reservoir during summer may reach 10°C, with surface temperatures around 25°C. Vossoroca is mixed during winter, with temperatures around 15°C. Based on these results, the position of the oxycline can be reconstructed. This information may lead to an adapted reservoir management, minimizing the potential effects to the downstream ecosystem, which normally can be strongly affected by the exposure to oxygen depleted water.

  14. Calculation on the heat of gasification for the saturated liquid of D2

    International Nuclear Information System (INIS)

    Ge Fangfang; China Academy of Engineering Physics, Mianyang; Zhu Zhenghe; Wang Hongbin; Zhou Weimin; Chen Hao; Liu Hongjie

    2005-01-01

    In general, the saturated stream is regarded as the ideal gas for calculating the heat of gasification for the saturated liquid. However, the result of calculation was not consistent with the general law if D 2 was treated as the ideal gas under T c =38.34 K, the critical temperature. Considering the change of the volume from the liquid state to the gas state, this paper implored the Clapeyron differential equation and the equation of vapor-liquid equilibrium, and then obtained the heat of gasification and the entropy from 20 K to 38 K and the saturation curve. The method avoided regarding the saturate gas D 2 as the ideal gas and ignoring the volume change from the liquid state to the gas state, improving the calculation exactitude. (authors)

  15. Study of heat transport in structured soil under grass cover. Dual-continuum approach

    Czech Academy of Sciences Publication Activity Database

    Votrubová, J.; Dohnal, M.; Tesař, Miroslav; Vogel, T.

    2011-01-01

    Roč. 13, - (2011), s. 7414 ISSN 1607-7962. [European Geosciences Union General Assembly 2011. 03.04.2011-08.04.2011, Vienna] R&D Projects: GA ČR GA205/08/1174 Institutional research plan: CEZ:AV0Z20600510 Keywords : water and heat transport * model S1D * Sumava Mts. Subject RIV: DA - Hydrology ; Limnology

  16. Possible role of oceanic heat transport in early Eocene climate

    Science.gov (United States)

    Sloan, L. C.; Walker, J. C.; Moore, T. C. Jr

    1995-01-01

    Increased oceanic heat transport has often been cited as a means of maintaining warm high-latitude surface temperatures in many intervals of the geologic past, including the early Eocene. Although the excess amount of oceanic heat transport required by warm high latitude sea surface temperatures can be calculated empirically, determining how additional oceanic heat transport would take place has yet to be accomplished. That the mechanisms of enhanced poleward oceanic heat transport remain undefined in paleoclimate reconstructions is an important point that is often overlooked. Using early Eocene climate as an example, we consider various ways to produce enhanced poleward heat transport and latitudinal energy redistribution of the sign and magnitude required by interpreted early Eocene conditions. Our interpolation of early Eocene paleotemperature data indicate that an approximately 30% increase in poleward heat transport would be required to maintain Eocene high-latitude temperatures. This increased heat transport appears difficult to accomplish by any means of ocean circulation if we use present ocean circulation characteristics to evaluate early Eocene rates. Either oceanic processes were very different from those of the present to produce the early Eocene climate conditions or oceanic heat transport was not the primary cause of that climate. We believe that atmospheric processes, with contributions from other factors, such as clouds, were the most likely primary cause of early Eocene climate.

  17. Large Dumbbell-Shaped C1 Schwannoma Presenting as a Foramen Magnum Mass

    OpenAIRE

    Helms, Jody; Michael, Lattimore Madison

    2012-01-01

    Schwannomas involving the foramen magnum commonly originate from the lower cranial nerves, but they are rarely found arising from the first cervical root. To date, very few cases have been described in the literature. The majority involve either the intradural or extradural compartment but not both. We report the second case of a dumbbell-shaped schwannoma arising from the first cervical root. Our patient presented with hemisensory deficits secondary to brainstem compression at the level of t...

  18. Diffusive and convective transport modelling from analysis of ECRH-stimulated electron heat wave propagation

    International Nuclear Information System (INIS)

    Erckmann, V.; Gasparino, U.; Giannone, L.

    1992-01-01

    ECRH power modulation experiments in toroidal devices offer the chance to analyze the electron heat transport more conclusively: the electron heat wave propagation can be observed by ECE (or SX) leading to radial profiles of electron temperature modulation amplitude and time delay (phase shift). Taking also the stationary power balance into account, the local electron heat transport can be modelled by a combination of diffusive and convective transport terms. This method is applied to ECRH discharges in the W7-AS stellarator (B=2.5T, R=2m, a≤18 cm) where the ECRH power deposition is highly localized. In W7-AS, the T e modulation profiles measured by a high resolution ECE system are the basis for the local transport analysis. As experimental errors limit the separation of diffusive and convective terms in the electron heat transport for central power deposition, also ECRH power modulation experiments with off-axis deposition and inward heat wave propagation were performed (with 70 GHz o-mode as well as with 140 GHz x-mode for increased absorption). Because collisional electron-ion coupling and radiative losses are only small, low density ECRH discharges are best candidates for estimating the electron heat flux from power balance. (author) 2 refs., 3 figs

  19. Chaotic advection and heat transfer in two similar 2-D periodic flows and in their corresponding 3-D periodic flows

    Science.gov (United States)

    Vinsard, G.; Dufour, S.; Saatdjian, E.; Mota, J. P. B.

    2016-03-01

    Chaotic advection can effectively enhance the heat transfer rate between a boundary and fluids with high Prandtl number. These fluids are usually highly viscous and thus turbulent agitation is not a viable solution since the energy required to mix the fluid would be prohibitive. Here, we analyze previously obtained results on chaotic advection and heat transfer in two similar 2-D periodic flows and on their corresponding 3-D periodic flows when an axial velocity component is superposed. The two flows studied are the flow between eccentric rotating cylinders and the flow between confocal ellipses. For both of these flows the analysis is simplified because the Stokes equations can be solved analytically to obtain a closed form solution. For both 2-D periodic flows, we show that chaotic heat transfer is enhanced by the displacement of the saddle point location during one period. Furthermore, the enhancement by chaotic advection in the elliptical geometry is approximately double that obtained in the cylindrical geometry because there are two saddle points instead of one. We also explain why, for high eccentricity ratios, there is no heat transfer enhancement in the cylindrical geometry. When an axial velocity component is added to both of these flows so that they become 3-D, previous work has shown that there is an optimum modulation frequency for which chaotic advection and heat transfer enhancement is a maximum. Here we show that the optimum modulation frequency can be derived from results without an axial flow. We also explain by physical arguments other previously unanswered questions in the published data.

  20. Transport of D-D fusion neutrons in thick concrete

    International Nuclear Information System (INIS)

    Ku, L.P.; Kolibal, J.G.

    1982-07-01

    By altering the collision mechanism in the numerical transport calculations, and by constructing an analytical model based on age-diffusion theory, the outstanding feature in the life history of D-D fusion neutrons penetrating deeply into ordinary concrete is shown to be the transport in the 2.3 MeV oxygen anti-resonance. This result is used to assess the impact of the cross-section uncertainties and the uncertainties due to variations in the D-D fusion spectrum and temperature

  1. Dynamics of water transport and storage in conifers studied with deuterium and heat tracing techniques.

    Science.gov (United States)

    F.C. Meinzer; J.R. Brooks; J.-C. Domec; B.L. Gartner; J.M. Warren; D.R. Woodruff; K. Bible; D.C. Shaw

    2006-01-01

    The volume and complexity of their vascular systems make the dynamics of tong-distance water transport in large trees difficult to study. We used heat and deuterated water (D20) as tracers to characterize whole-tree water transport and storage properties in individual trees belonging to the coniferous species Pseudotsuga menziesii...

  2. Coupled heat transfer in high temperature transporting system with semitransparent/opaque material

    International Nuclear Information System (INIS)

    Du Shenghua; Xia Xinjin

    2010-01-01

    The heat transfer model of the aerodynamic heating coupled with radiative cooling was developed. The thermal protect system includes the higher heat flux region with high temperature semitransparent material, the heat transporting channel and the lower heat flux region with metal. The control volume method was combined with the Monte Carlo method to calculate the coupled heat transfer of the transporting system, and the thermal equilibrium equation for the transporting channel was solved simultaneously. The effect of the aeroheating flux radio, the area ratio of radiative surfaces, the convective heat transfer coefficient of the heat transporting channel on the radiative surface temperature and the fluid temperature in the heat transporting channel were analyzed. The effect of radiation and conduction in the semitransparent material was discussed. The result shows that to increase the convective heat transfer coefficient in heat flux channel can enhance the heat transporting ability of the system, but the main parameter to effect on the temperature of the heat transporting system is the area ratio of radiative surfaces. (authors)

  3. Foramen magnum decompression versus terminal ventriculostomy for the treatment of syringomyelia.

    Science.gov (United States)

    Filizzolo, F; Versari, P; D'Aliberti, G; Arena, O; Scotti, G; Mariani, C

    1988-01-01

    The A.A review 30 consecutive cases of syringomyelia operated on during the last seven years. Six terminal ventriculostomies (TV) and twenty-seven procedures for foramen magnum decompression (FMD) were performed. All patients of TV group had CT-myelography (CTM) and/or NMR controls at different times after surgery. Clinical results are as follows: 1) of the 6 patients who had TV, only one showed an improvement while five continued to deteriorate and three of them needed a FMD, one a cysto-peritoneal shunt and the last one died from lung cancer. 2) of the 27 patients who had FMD, twenty improved, four were unchanged and three worsened. 3) no surgical deaths occurred in this series. Postoperative NMR monitoring represents an effective non-invasive neuroradiological procedure that allows follow-up of syrinx evolution over the years.

  4. Heat Transfer in Directional Water Transport Fabrics

    Directory of Open Access Journals (Sweden)

    Chao Zeng

    2016-10-01

    Full Text Available Directional water transport fabrics can proactively transfer moisture from the body. They show great potential in making sportswear and summer clothing. While moisture transfer has been previously reported, heat transfer in directional water transport fabrics has been little reported in research literature. In this study, a directional water transport fabric was prepared using an electrospraying technique and its heat transfer properties under dry and wet states were evaluated, and compared with untreated control fabric and the one pre-treated with NaOH. All the fabric samples showed similar heat transfer features in the dry state, and the equilibrium temperature in the dry state was higher than for the wet state. Wetting considerably enhanced the thermal conductivity of the fabrics. Our studies indicate that directional water transport treatment assists in moving water toward one side of the fabric, but has little effect on thermal transfer performance. This study may be useful for development of “smart” textiles for various applications.

  5. Effect of land albedo, CO2, orography, and oceanic heat transport on extreme climates

    Directory of Open Access Journals (Sweden)

    V. Romanova

    2006-01-01

    Full Text Available Using an atmospheric general circulation model of intermediate complexity coupled to a sea ice – slab ocean model, we perform a number of sensitivity experiments under present-day orbital conditions and geographical distribution to assess the possibility that land albedo, atmospheric CO2, orography and oceanic heat transport may cause an ice-covered Earth. Changing only one boundary or initial condition, the model produces solutions with at least some ice-free oceans in the low latitudes. Using some combination of these forcing parameters, a full Earth's glaciation is obtained. We find that the most significant factor leading to an ice-covered Earth is the high land albedo in combination with initial temperatures set equal to the freezing point. Oceanic heat transport and orography play only a minor role for the climate state. Extremely low concentrations of CO2 also appear to be insufficient to provoke a runaway ice-albedo feedback, but the strong deviations in surface air temperatures in the Northern Hemisphere point to the existence of a strong nonlinearity in the system. Finally, we argue that the initial condition determines whether the system can go into a completely ice covered state, indicating multiple equilibria, a feature known from simple energy balance models.

  6. Heat transport analysis in a district heating and snow melting system in Sapporo and Ishikari, Hokkaido applying waste heat from GTHTR300

    International Nuclear Information System (INIS)

    Kasahara, Seiji; Kamiji, Yu; Terada, Atsuhiko; Yan Xing; Inagaki, Yoshiyuki; Murata, Tetsuya; Mori, Michitsugu

    2015-01-01

    A district heating and snow melting system utilizing waste heat from Gas Turbine High temperature Gas Reactor of 300 MW_e (GTHTR300), a heat-electricity cogeneration design of high temperature gas-cooled reactor, was analyzed. Application areas are set in Sapporo and Ishikari, the heavy snowfall cities in Northern Japan. The heat transport analyses are carried out by modeling the components in the system; pipelines of the secondary water loops between GTHTR300s and heat demand district and heat exchangers to transport the heat from the secondary water loops to the tertiary loops in the district. Double pipe for the secondary loops are advantageous for less heat loss and smaller excavation area. On the other hand, these pipes has disadvantage of more electricity consumption for pumping. Most of the heat demand in the month of maximum requirement can be supplied by 2 GTHTR300s and delivered by 9 secondary loops and around 5000 heat exchangers. Closer location of GTHTR300 site to the heat demand district is largely advantageous economically. Less decrease of the distance from 40 km to 20 km made the heat loss half and cost of the heat transfer system 22% smaller. (author)

  7. Ion heat transport studies in JET

    DEFF Research Database (Denmark)

    Mantica, P; Angioni, C; Baiocchi, B

    2011-01-01

    Detailed experimental studies of ion heat transport have been carried out in JET exploiting the upgrade of active charge exchange spectroscopy and the availability of multi-frequency ion cyclotron resonance heating with 3He minority. The determination of ion temperature gradient (ITG) threshold a...

  8. Albedo and heat transport in 3-D model simulations of the early Archean climate

    Directory of Open Access Journals (Sweden)

    H. Kienert

    2013-08-01

    Full Text Available At the beginning of the Archean eon (ca. 3.8 billion years ago, the Earth's climate state was significantly different from today due to the lower solar luminosity, smaller continental fraction, higher rotation rate and, presumably, significantly larger greenhouse gas concentrations. All these aspects play a role in solutions to the "faint young Sun paradox" which must explain why the ocean surface was not fully frozen at that time. Here, we present 3-D model simulations of climate states that are consistent with early Archean boundary conditions and have different CO2 concentrations, aiming at an understanding of the fundamental characteristics of the early Archean climate system. In order to do so, we have appropriately modified an intermediate complexity climate model that couples a statistical-dynamical atmosphere model (involving parameterizations of the dynamics to an ocean general circulation model and a thermodynamic-dynamic sea-ice model. We focus on three states: one of them is ice-free, one has the same mean surface air temperature of 288 K as today's Earth and the third one is the coldest stable state in which there is still an area with liquid surface water (i.e. the critical state at the transition to a "snowball Earth". We find a reduction in meridional heat transport compared to today, which leads to a steeper latitudinal temperature profile and has atmospheric as well as oceanic contributions. Ocean surface velocities are largely zonal, and the strength of the atmospheric meridional circulation is significantly reduced in all three states. These aspects contribute to the observed relation between global mean temperature and albedo, which we suggest as a parameterization of the ice-albedo feedback for 1-D model simulations of the early Archean and thus the faint young Sun problem.

  9. ICF target 2D modeling using Monte Carlo SNB electron thermal transport in DRACO

    Science.gov (United States)

    Chenhall, Jeffrey; Cao, Duc; Moses, Gregory

    2016-10-01

    The iSNB (implicit Schurtz Nicolai Busquet multigroup diffusion electron thermal transport method is adapted into a Monte Carlo (MC) transport method to better model angular and long mean free path non-local effects. The MC model was first implemented in the 1D LILAC code to verify consistency with the iSNB model. Implementation of the MC SNB model in the 2D DRACO code enables higher fidelity non-local thermal transport modeling in 2D implosions such as polar drive experiments on NIF. The final step is to optimize the MC model by hybridizing it with a MC version of the iSNB diffusion method. The hybrid method will combine the efficiency of a diffusion method in intermediate mean free path regions with the accuracy of a transport method in long mean free path regions allowing for improved computational efficiency while maintaining accuracy. Work to date on the method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.

  10. Advective-diffusive transport of D2O in unsaturated media under evaporation condition

    International Nuclear Information System (INIS)

    Koarashi, Jun; Atarashi-Andoh, Mariko; Amano, Hikaru; Yamazawa, Hiromi; Iida, Takao

    2003-01-01

    Advective-diffusive transport of HTO in unsaturated media was investigated empirically using deuterated water (D 2 O) and columns filled with glass beads. The tortuosity factor was evaluated by numerical model calculations corresponding to first experiment for diffusion under no-evaporation condition. Temporal variations in depth profiles of D 2 O concentrations in the columns were observed by second experiment, which considers the transferring and spreading of D 2 O by pore-water flow caused by evaporation. Measurements and model calculations indicated that diffusion was about two times more efficient than dispersion for D 2 O spreading process under this evaporation condition. (author)

  11. Electron and ion heat transport with lower hybrid current drive and neutral beam injection heating in ASDEX

    International Nuclear Information System (INIS)

    Soeldner, F.X.; Pereverzev, G.V.; Bartiromo, R.; Fahrbach, H.U.; Leuterer, F.; Murmann, H.D.; Staebler, A.; Steuer, K.H.

    1993-01-01

    Transport code calculations were made for experiments with the combined operation of lower hybrid current drive and heating and of neutral beam injection heating on ASDEX. Peaking or flattening of the electron temperature profile are mainly explained by modifications of the MHD induced electron heat transport. They originate from current profile changes due to lower hybrid and neutral beam current drive and to contributions from the bootstrap current. Ion heat transport cannot be described by one single model for all heating scenarios. The ion heat conductivity is reduced during lower hybrid heated phases with respect to Ohmic and neutral beam heating. (author). 13 refs, 5 figs

  12. An Overview of Liquid Fluoride Salt Heat Transport Systems

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Cetiner, Sacit M [ORNL

    2010-09-01

    Heat transport is central to all thermal-based forms of electricity generation. The ever increasing demand for higher thermal efficiency necessitates power generation cycles transitioning to progressively higher temperatures. Similarly, the desire to provide direct thermal coupling between heat sources and higher temperature chemical processes provides the underlying incentive to move toward higher temperature heat transfer loops. As the system temperature rises, the available materials and technology choices become progressively more limited. Superficially, fluoride salts at {approx}700 C resemble water at room temperature being optically transparent and having similar heat capacity, roughly three times the viscosity, and about twice the density. Fluoride salts are a leading candidate heat-transport material at high temperatures. Fluoride salts have been extensively used in specialized industrial processes for decades, yet they have not entered widespread deployment for general heat transport purposes. This report does not provide an exhaustive screening of potential heat transfer media and other high temperature liquids such as alkali metal carbonate eutectics or chloride salts may have economic or technological advantages. A particular advantage of fluoride salts is that the technology for their use is relatively mature as they were extensively studied during the 1940s-1970s as part of the U.S. Atomic Energy Commission's program to develop molten salt reactors (MSRs). However, the instrumentation, components, and practices for use of fluoride salts are not yet developed sufficiently for commercial implementation. This report provides an overview of the current understanding of the technologies involved in liquid salt heat transport (LSHT) along with providing references to the more detailed primary information resources. Much of the information presented here derives from the earlier MSR program. However, technology has evolved over the intervening years

  13. Numerically robust and efficient nonlocal electron transport in 2D DRACO simulations

    Science.gov (United States)

    Cao, Duc; Chenhall, Jeff; Moses, Greg; Delettrez, Jacques; Collins, Tim

    2013-10-01

    An improved implicit algorithm based on Schurtz, Nicolai and Busquet (SNB) algorithm for nonlocal electron transport is presented. Validation with direct drive shock timing experiments and verification with the Goncharov nonlocal model in 1D LILAC simulations demonstrate the viability of this efficient algorithm for producing 2D lagrangian radiation hydrodynamics direct drive simulations. Additionally, simulations provide strong incentive to further modify key parameters within the SNB theory, namely the ``mean free path.'' An example 2D polar drive simulation to study 2D effects of the nonlocal flux as well as mean free path modifications will also be presented. This research was supported by the University of Rochester Laboratory for Laser Energetics.

  14. The Role of Ocean and Atmospheric Heat Transport in the Arctic Amplification

    Science.gov (United States)

    Vargas Martes, R. M.; Kwon, Y. O.; Furey, H. H.

    2017-12-01

    Observational data and climate model projections have suggested that the Arctic region is warming around twice faster than the rest of the globe, which has been referred as the Arctic Amplification (AA). While the local feedbacks, e.g. sea ice-albedo feedback, are often suggested as the primary driver of AA by previous studies, the role of meridional heat transport by ocean and atmosphere is less clear. This study uses the Community Earth System Model version 1 Large Ensemble simulation (CESM1-LE) to seek deeper understanding of the role meridional oceanic and atmospheric heat transports play in AA. The simulation consists of 40 ensemble members with the same physics and external forcing using a single fully coupled climate model. Each ensemble member spans two time periods; the historical period from 1920 to 2005 using the Coupled Model Intercomparison Project Phase 5 (CMIP5) historical forcing and the future period from 2006 to 2100 using the CMIP5 Representative Concentration Pathways 8.5 (RCP8.5) scenario. Each of the ensemble members are initialized with slightly different air temperatures. As the CESM1-LE uses a single model unlike the CMIP5 multi-model ensemble, the internal variability and the externally forced components can be separated more clearly. The projections are calculated by comparing the period 2081-2100 relative to the time period 2001-2020. The CESM1-LE projects an AA of 2.5-2.8 times faster than the global average, which is within the range of those from the CMIP5 multi-model ensemble. However, the spread of AA from the CESM1-LE, which is attributed to the internal variability, is 2-3 times smaller than that of the CMIP5 ensemble, which may also include the inter-model differences. CESM1LE projects a decrease in the atmospheric heat transport into the Arctic and an increase in the oceanic heat transport. The atmospheric heat transport is further decomposed into moisture transport and dry static energy transport. Also, the oceanic heat

  15. A Randomized Seven-Year Study on Performance of the Stemmed Metal M2a-Magnum and Ceramic C2a-Taper, and the Resurfacing ReCap Hip Implants

    DEFF Research Database (Denmark)

    Borgwardt, Arne; Borgwardt, Lotte; Zerahn, Bo

    2018-01-01

    BACKGROUND: The large-diameter metal-on-metal hip prostheses were expected to have low wear and reduced dislocation rate compared to the traditional metal-on-polyethylene implants. We compare 2 such prostheses, the ReCap resurfacing implant and the M2a-Magnum stemmed implant, with the C2a ceramic......-on-ceramic stemmed implant as to clinical performance, serum concentrations of prosthesis metals, and the durability of the implants in a randomized, controlled clinical trial at 7 years of follow-up. METHODS: All included patients had osteoarthritis. Preoperatively, the size of the implants was estimated from...... of the soft tissue adjacent to the implant as well as MRI with metal artifact reduction sequence (MARS-MRI) when indicated. RESULTS: One hundred fifty-two hips in 146 patients were included. The serum cobalt and chromium concentrations were significantly higher for the 2 metal-on-metal prostheses than...

  16. A 2D/1D coupling neutron transport method based on the matrix MOC and NEM methods

    International Nuclear Information System (INIS)

    Zhang, H.; Zheng, Y.; Wu, H.; Cao, L.

    2013-01-01

    A new 2D/1D coupling method based on the matrix MOC method (MMOC) and nodal expansion method (NEM) is proposed for solving the three-dimensional heterogeneous neutron transport problem. The MMOC method, used for radial two-dimensional calculation, constructs a response matrix between source and flux with only one sweep and then solves the linear system by using the restarted GMRES algorithm instead of the traditional trajectory sweeping process during within-group iteration for angular flux update. Long characteristics are generated by using the customization of commercial software AutoCAD. A one-dimensional diffusion calculation is carried out in the axial direction by employing the NEM method. The 2D and ID solutions are coupled through the transverse leakage items. The 3D CMFD method is used to ensure the global neutron balance and adjust the different convergence properties of the radial and axial solvers. A computational code is developed based on these theories. Two benchmarks are calculated to verify the coupling method and the code. It is observed that the corresponding numerical results agree well with references, which indicates that the new method is capable of solving the 3D heterogeneous neutron transport problem directly. (authors)

  17. A 2D/1D coupling neutron transport method based on the matrix MOC and NEM methods

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.; Zheng, Y.; Wu, H.; Cao, L. [School of Nuclear Science and Technology, Xi' an Jiaotong University, No. 28, Xianning West Road, Xi' an, Shaanxi 710049 (China)

    2013-07-01

    A new 2D/1D coupling method based on the matrix MOC method (MMOC) and nodal expansion method (NEM) is proposed for solving the three-dimensional heterogeneous neutron transport problem. The MMOC method, used for radial two-dimensional calculation, constructs a response matrix between source and flux with only one sweep and then solves the linear system by using the restarted GMRES algorithm instead of the traditional trajectory sweeping process during within-group iteration for angular flux update. Long characteristics are generated by using the customization of commercial software AutoCAD. A one-dimensional diffusion calculation is carried out in the axial direction by employing the NEM method. The 2D and ID solutions are coupled through the transverse leakage items. The 3D CMFD method is used to ensure the global neutron balance and adjust the different convergence properties of the radial and axial solvers. A computational code is developed based on these theories. Two benchmarks are calculated to verify the coupling method and the code. It is observed that the corresponding numerical results agree well with references, which indicates that the new method is capable of solving the 3D heterogeneous neutron transport problem directly. (authors)

  18. Current & Heat Transport in Graphene Nanoribbons: Role of Non-Equilibrium Phonons

    Science.gov (United States)

    Pennington, Gary; Finkenstadt, Daniel

    2010-03-01

    The conducting channel of a graphitic nanoscale device is expected to experience a larger degree of thermal isolation when compared to traditional inversion channels of electronic devices. This leads to enhanced non-equilibrium phonon populations which are likely to adversely affect the mobility of graphene-based nanoribbons due to enhanced phonon scattering. Recent reports indicating the importance of carrier scattering with substrate surface polar optical phonons in carbon nanotubes^1 and graphene^2,3 show that this mechanism may allow enhanced heat removal from the nanoribbon channel. To investigate the effects of hot phonon populations on current and heat conduction, we solve the graphene nanoribbon multiband Boltzmann transport equation. Monte Carlo transport techniques are used since phonon populations may be tracked and updated temporally.^4 The electronic structure is solved using the NRL Tight-Binding method,^5 where carriers are scattered by confined acoustic, optical, edge and substrate polar optical phonons. [1] S. V. Rotkin et al., Nano Lett. 9, 1850 (2009). [2] J. H. Chen, C. Jang, S. Xiao, M. Ishigami and M. S. Fuhrer, Nature Nanotech. 3, 206 (2008). [3] V. Perebeinos and P. Avouris, arXiv:0910.4665v1 [cond-mat.mes-hall] (2009). [4] P. Lugli et al., Appl. Phys. Lett. 50, 1251 (1987). [5] D. Finkenstadt, G. Pennington & M.J. Mehl, Phys. Rev. B 76, 121405(R) (2007).

  19. Novel specific heat and magnetoresistance behavior of Tb0.5Ho0.5Mn2Si2

    Science.gov (United States)

    Pandey, Swati; Siruguri, V.; Rawat, R.

    2018-04-01

    In this report, we study temperature dependent heat capacity and electrical resistance of Tb1-xHoxMn2Si2 (x = 0.5). Two successive low temperature magnetic transitions T1 (˜15 K) and T2 (˜25 K) are observed from both measurements. Anomalous rise in heat capacity at low temperatures is ascribed to the nuclear Schottky effect. Sommerfeld coefficient (γ), Debye temperature (θD) and density of states at Fermi level N(EF) is calculated from the zero field specific heat data. We observe 4f contribution to heat capacity from T1 to 100K, which is attributed to crystal field effect. In the electrical transport study, application of the magnetic field shows a substantial change around the ordering temperature of rare earth moment resulting in large positive magnetoresistance of about 20% with field change of 6T.

  20. 2D deterministic radiation transport with the discontinuous finite element method

    International Nuclear Information System (INIS)

    Kershaw, D.; Harte, J.

    1993-01-01

    This report provides a complete description of the analytic and discretized equations for 2D deterministic radiation transport. This computational model has been checked against a wide variety of analytic test problems and found to give excellent results. We make extensive use of the discontinuous finite element method

  1. Momentum, heat, and mass transfer analogy for vertical hydraulic transport of inert particles

    Directory of Open Access Journals (Sweden)

    Jaćimovski Darko R.

    2014-01-01

    Full Text Available Wall-to-bed momentum, heat and mass transfer in vertical liquid-solids flow, as well as in single phase flow, were studied. The aim of this investigation was to establish the analogy among those phenomena. Also, effect of particles concentration on momentum, heat and mass transfer was studied. The experiments in hydraulic transport were performed in a 25.4 mm I.D. cooper tube equipped with a steam jacket, using spherical glass particles of 1.94 mm in diameter and water as a transport fluid. The segment of the transport tube used for mass transfer measurements was inside coated with benzoic acid. In the hydraulic transport two characteristic flow regimes were observed: turbulent and parallel particle flow regime. The transition between two characteristic regimes (γ*=0, occurs at a critical voidage ε≈0.85. The vertical two-phase flow was considered as the pseudofluid, and modified mixture-wall friction coefficient (fw and modified mixture Reynolds number (Rem were introduced for explanation of this system. Experimental data show that the wall-to-bed momentum, heat and mass transfer coefficients, in vertical flow of pseudofluid, for the turbulent regime are significantly higher than in parallel regime. Wall-to-bed, mass and heat transfer coefficients in hydraulic transport of particles were much higher then in single-phase flow for lower Reynolds numbers (Re15000, there was not significant difference. The experimental data for wall-to-bed momentum, heat and mass transfer in vertical flow of pseudofluid in parallel particle flow regime, show existing analogy among these three phenomena. [Projekat Ministarstva nauke Republike Srbije, br. 172022

  2. Understanding and Control of Transport in Advanced Tokamak Regimes in DIII-D

    International Nuclear Information System (INIS)

    C.M. Greenfield; J.C. DeBoo; T.C. Luce; B.W. Stallard; E.J. Synakowski; L.R. Baylor; K.H. Burrell; T.A. Casper; E.J. Doyle; D.R. Ernst; J.R. Ferron; P. Gohil; R.J. Groebner; L.L. Lao; M. Makowski; G.R. McKee; M. Murakami; C.C. Petty; R.I. Pinsker; P.A. Politzer; R. Prater; C.L. Rettig; T.L. Rhodes; B.W. Rice; G.L. Schmidt; G.M. Staebler; E.J. Strait; D.M. Thomas; M.R. Wade

    1999-01-01

    Transport phenomena are studied in Advanced Tokamak (AT) regimes in the DIII-D tokamak [Plasma Physics and Controlled Nuclear Fusion Research, 1986 (International Atomics Energy Agency, Vienna, 1987), Vol. I, p. 159], with the goal of developing understanding and control during each of three phases: Formation of the internal transport barrier (ITB) with counter neutral beam injection takes place when the heating power exceeds a threshold value of about 9 MW, contrasting to CO-NBI injection, where P threshold N H 89 = 9 for 16 confinement times has been accomplished in a discharge combining an ELMing H-mode edge and an ITB, and exhibiting ion thermal transport down to 2-3 times neoclassical. The microinstabilities usually associated with ion thermal transport are predicted stable, implying that another mechanism limits performance. High frequency MHD activity is identified as the probable cause

  3. Coupled light transport-heat diffusion model for laser dosimetry with dynamic optical properties

    International Nuclear Information System (INIS)

    London, R.A.; Glinsky, M.E.; Zimmerman, G.B.; Eder, D.C.; Jacques, S.L.

    1995-01-01

    The effect of dynamic optical properties on the spatial distribution of light in laser therapy is studied via numerical simulations. A two-dimensional, time dependent computer program called LATIS is used. Laser light transport is simulated with a Monte Carlo technique including anisotropic scattering and absorption. Thermal heat transport is calculated with a finite difference algorithm. Material properties are specified on a 2-D mesh and can be arbitrary functions of space and time. Arrhenius rate equations are solved for tissue damage caused by elevated temperatures. Optical properties are functions of tissue damage, as determined by previous measurements. Results are presented for the time variation of the light distribution and damage within the tissue as the optical properties of the tissue are altered

  4. Influence of geologic layering on heat transport and storage in an aquifer thermal energy storage system

    Science.gov (United States)

    Bridger, D. W.; Allen, D. M.

    2014-01-01

    A modeling study was carried out to evaluate the influence of aquifer heterogeneity, as represented by geologic layering, on heat transport and storage in an aquifer thermal energy storage (ATES) system in Agassiz, British Columbia, Canada. Two 3D heat transport models were developed and calibrated using the flow and heat transport code FEFLOW including: a "non-layered" model domain with homogeneous hydraulic and thermal properties; and, a "layered" model domain with variable hydraulic and thermal properties assigned to discrete geological units to represent aquifer heterogeneity. The base model (non-layered) shows limited sensitivity for the ranges of all thermal and hydraulic properties expected at the site; the model is most sensitive to vertical anisotropy and hydraulic gradient. Simulated and observed temperatures within the wells reflect a combination of screen placement and layering, with inconsistencies largely explained by the lateral continuity of high permeability layers represented in the model. Simulation of heat injection, storage and recovery show preferential transport along high permeability layers, resulting in longitudinal plume distortion, and overall higher short-term storage efficiencies.

  5. Crossover from ballistic to normal heat transport in the ϕ4 lattice: If nonconservation of momentum is the reason, what is the mechanism?

    Science.gov (United States)

    Xiong, Daxing; Saadatmand, Danial; Dmitriev, Sergey V.

    2017-10-01

    Anomalous (non-Fourier) heat transport is no longer just a theoretical issue since it has been observed experimentally in a number of low-dimensional nanomaterials, such as SiGe nanowires, carbon nanotubes, and others. To understand these anomalous behaviors, exploring the microscopic origin of normal (Fourier) heat transport is a fascinating theoretical topic. However, this issue has not yet been fully understood even for one-dimensional (1D) model chains, in spite of a great amount of thorough studies done to date. From those studies, it has been widely accepted that the conservation of momentum is a key ingredient to induce anomalous heat transport, while momentum-nonconserving systems usually support normal heat transport where Fourier's law is valid. But if the nonconservation of momentum is the reason, what is the underlying microscopic mechanism for the observed normal heat transport? Here we carefully revisit a typical 1D momentum-nonconserving ϕ4 model, and we present evidence that the mobile discrete breathers, or, in other words, the moving intrinsic localized modes with frequency components above the linear phonon band, can be responsible for that.

  6. Comparing 1.5D ONETWO and 2D SOLPS analyses of inter-ELM H-mode plasma in DIII-D

    International Nuclear Information System (INIS)

    Owen, Larry W.; Canik, John; Groebner, R.; Callen, J.D.; Bonnin, X.; Osborne, T.H.

    2010-01-01

    A DIII-D inter-ELM H-mode plasma that is in approximate transport equilibrium is analysed with the 1.5D ONETWO core code and the 2D SOLPS code. In order to investigate the importance of core-edge coupling and 2D effects, including divertor fuelling across the X-point and poloidal asymmetries that are not explicitly included in ONETWO, the domain of SOLPS is extended to very near the magnetic axis. Two principal objectives are (1) to determine whether poloidal asymmetries in the plasma distributions are large enough to vitiate a core-type interpretive plasma transport analysis and (2) to determine whether the interpretive transport coefficients and neutral beam power and particle sources from ONETWO, when used in 2D SOLPS full plasma simulations, yield the same quality fits to the measured upstream density and temperature profiles as obtained with ONETWO. Results show that only a small increase in the separatrix value of the particle diffusion coefficient, and no change in the thermal diffusivities from ONETWO was needed to get excellent agreement of the upstream SOLPS density and temperature profiles and the Thomson scattering and CER data. Good agreement of the ONETWO and SOLPS flux surface averaged distributions of the core electron and D+ densities and temperatures are also obtained. Likewise the C6+ density, with a simple chemical sputtering model based on a constant fraction of the divertor D+ flux, the core heat and particle fluxes and the neutral density reveal no 2D effects in the core/pedestal region that would vitiate a 1.5D treatment of the inter-ELM H-mode plasma.

  7. SWIFT, 3-D Fluid Flow, Heat Transfer, Decay Chain Transport in Geological Media

    International Nuclear Information System (INIS)

    Cranwell, R.M.; Reeves, M.

    2003-01-01

    1 - Description of problem or function: SWIFT solves the coupled or individual equations governing fluid flow, heat transport, brine displacement, and radionuclide displacement in geologic media. Fluid flow may be transient or steady-state. One, two, or three dimensions are available and transport of radionuclides chains is possible. 4. Method of solution: Finite differencing is used to discretize the partial differential equations in space and time. The user may choose centered or backward spatial differencing, coupled with either central or backward temporal differencing. The matrix equations may be solved iteratively (two line successive-over-relaxation) or directly (special matrix banding and Gaussian elimination). 5. Restrictions on the complexity of the problem: On the CDC7600 in direct solution mode, the maximum number of grid blocks allowed is approximately 1400

  8. Flexural resonance mechanism of thermal transport across graphene-SiO2 interfaces

    Science.gov (United States)

    Ong, Zhun-Yong; Qiu, Bo; Xu, Shanglong; Ruan, Xiulin; Pop, Eric

    2018-03-01

    Understanding the microscopic mechanism of heat dissipation at the dimensionally mismatched interface between a two-dimensional (2D) crystal and its substrate is crucial for the thermal management of devices based on 2D materials. Here, we study the lattice contribution to thermal (Kapitza) transport at graphene-SiO2 interfaces using molecular dynamics (MD) simulations and non-equilibrium Green's functions (NEGF). We find that 78 percent of the Kapitza conductance is due to sub-20 THz flexural acoustic modes, and that a resonance mechanism dominates the interfacial phonon transport. MD and NEGF estimate the classical Kapitza conductance to be hK ≈ 10 to 16 MW K-1 m-2 at 300 K, respectively, consistent with existing experimental observations. Taking into account quantum mechanical corrections, this value is approximately 28% lower at 300 K. Our calculations also suggest that hK scales as T2 at low temperatures (T < 100 K) due to the linear frequency dependence of phonon transmission across the graphene-SiO2 interface at low frequencies. Our study sheds light on the role of flexural acoustic phonons in heat dissipation from graphene to its substrate.

  9. Surface heat flow and CO2 emissions within the Ohaaki hydrothermal field, Taupo Volcanic Zone, New Zealand

    International Nuclear Information System (INIS)

    Rissmann, Clinton; Christenson, Bruce; Werner, Cynthia; Leybourne, Matthew; Cole, Jim; Gravley, Darren

    2012-01-01

    contributed little ( 2 emissions due to the loss of >99% of the original CO 2 content due to depressurisation and boiling as the fluids ascended to the surface. Consequently, the soil has persisted as the major (99%) pathway of CO 2 release to the atmosphere from the high temperature reservoir at Ohaaki. The CO 2 flux and heat flow surveys indicate that despite 20 a of production the variability in location, spatial extent and magnitude of CO 2 flux remains consistent with established geochemical and geophysical models of the Ohaaki Field. At both OHW and OHE carbon isotopic analyses of soil gas indicate a two-stage fractionation process for moderate-flux (>60 g m −2 d −1 ) sites; boiling during fluid ascent within the underlying reservoir and isotopic enrichment as CO 2 diffuses through porous media of the soil zone. For high-flux sites (>300 g m −2 d −1 ), the δ 13 CO 2 signature (−7.4 ± 0.3‰ OHW and −6.5 ± 0.6‰ OHE) is unaffected by near-surface (soil zone) fractionation processes and reflects the composition of the boiled magmatic CO 2 source for each respective upflow. Flux thresholds of −2 d −1 for purely diffusive gas transport, between 30 and 300 g m −2 d −1 for combined diffusive–advective transport, and ⩾300 g m −2 d −1 for purely advective gas transport at Ohaaki were assigned. δ 13 CO 2 values and cumulative probability plots of CO 2 flux data both identified a threshold of ∼15 g m −2 d −1 by which background (atmospheric and soil respired) CO 2 may be differentiated from hydrothermal CO 2 .

  10. Analysis of pedestal plasma transport

    International Nuclear Information System (INIS)

    Callen, J.D.; Groebner, R.J.; Osborne, T.H.; Canik, J.M.; Owen, L.W.; Pankin, A.Y.; Rafiq, T.; Rognlien, T.D.; Stacey, W.M.

    2010-01-01

    An H-mode edge pedestal plasma transport benchmarking exercise was undertaken for a single DIII-D pedestal. Transport modelling codes used include 1.5D interpretive (ONETWO, GTEDGE), 1.5D predictive (ASTRA) and 2D ones (SOLPS, UEDGE). The particular DIII-D discharge considered is 98889, which has a typical low density pedestal. Profiles for the edge plasma are obtained from Thomson and charge-exchange recombination data averaged over the last 20% of the average 33.53 ms repetition time between type I edge localized modes. The modelled density of recycled neutrals is largest in the divertor X-point region and causes the edge plasma source rate to vary by a factor ∼10 2 on the separatrix. Modelled poloidal variations in the densities and temperatures on flux surfaces are small on all flux surfaces up to within about 2.6 mm (ρ N > 0.99) of the mid-plane separatrix. For the assumed Fick's-diffusion-type laws, the radial heat and density fluxes vary poloidally by factors of 2-3 in the pedestal region; they are largest on the outboard mid-plane where flux surfaces are compressed and local radial gradients are largest. Convective heat flows are found to be small fractions of the electron (∼ 2 s -1 . Electron heat transport is found to be best characterized by electron-temperature-gradient-induced transport at the pedestal top and paleoclassical transport throughout the pedestal. The effective ion heat diffusivity in the pedestal has a different profile from the neoclassical prediction and may be smaller than it. The very small effective density diffusivity may be the result of an inward pinch flow nearly balancing a diffusive outward radial density flux. The inward ion pinch velocity and density diffusion coefficient are determined by a new interpretive analysis technique that uses information from the force balance (momentum conservation) equations; the paleoclassical transport model provides a plausible explanation of these new results. Finally, the measurements

  11. Source effects on impurity and heat transport in a tokamak

    International Nuclear Information System (INIS)

    Bennett, R.B.

    1980-12-01

    A recently developed generalization of neoclassical theory is extended here to study heat flux contributions to impurity transport, as well as the heat fluxes themselves. The theory accounts for the first four source moments, with external drags, which has been studied previously with either fewer moments or restricted to a collisional plasma. Conditions are established for which a momentum source may be used to modify the particle and heat transport. In the course of this work, the particle and heat transport is evaluated for a two species plasma with arbitrary plasma geometry, beta, and collisionality

  12. Biosynthesis of the D2-cell adhesion molecule: post-translational modifications, intracellular transport, and developmental changes

    DEFF Research Database (Denmark)

    Lyles, J M; Linnemann, D; Bock, E

    1984-01-01

    Posttranslational modifications and intracellular transport of the D2-cell adhesion molecule (D2-CAM) were examined in cultured fetal rat neuronal cells. Developmental changes in biosynthesis were studied in rat forebrain explant cultures. Two D2-CAM polypeptides with Mr of 187,000-210,000 (A...

  13. Cooperative program to analyze heat and particle transport at high beta in DIII-D

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1990-01-01

    The objective is to collaborate with the General Atomics staff and the LLNL staff at General Atomics in the analysis of transport data from DIII-D. The Berkeley effort is integrated into the ongoing efforts at GA to help expedite progress in the fundamental understanding of transport phenomena in tokamaks

  14. Zeff measurements and low-Z impurity transport for NBI and ICRF heated plasma in JIPP T-IIU tokamak

    International Nuclear Information System (INIS)

    Ida, K.; Amano, T.; Kawahata, K.; Kaneko, O.

    1988-12-01

    A visible bremsstrahlung detector array system for Z eff measurements and a charge exchange recombination spectroscopy (CXRS) system for fully ionized impurity profile measurements were installed on JIPP TII-U to study impurity transport for NBI and ICRF heated plasma. More impurities are sputtered by ICRF heating than by NBI and/or ohmic heatings. The carbon contribution to Z eff is 80-90 % for NBI heated plasmas, and 60 % for NBI + ICRF heated plasmas. With a carbon coating of vacuum vessel, the Z eff value decreases 2.4 to 1.7 and the carbon contribution to Z eff increases up to 80-90 %. We obtain the diffusion coefficient D a = 1.0 m 2 /s and the convective velocity V a (a) = 13 m/s at the plasma edge for carbon impurity from the radial profile and time evolution of fully ionized carbon after the ICRF pulse is turned on. (author)

  15. Ionized Gas Outflows from the MAGNUM Survey: NGC 1365 and NGC 4945

    Energy Technology Data Exchange (ETDEWEB)

    Venturi, Giacomo; Marconi, Alessandro [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Sesto Fiorentino (Italy); Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy); Mingozzi, Matilde [Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna (Italy); Carniani, Stefano [Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge (United Kingdom); Kavli Institute for Cosmology, University of Cambridge, Cambridge (United Kingdom); Cresci, Giovanni [Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy); Risaliti, Guido [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Sesto Fiorentino (Italy); Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy); Mannucci, Filippo, E-mail: gventuri@arcetri.astro.it [Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy)

    2017-11-24

    AGN feedback, acting through strong outflows accelerated in the nuclear region of AGN hosts, is invoked as a key ingredient for galaxy evolution by many models to explain the observed BH-galaxy scaling relations. Recently, some direct observational evidence of radiative mode feedback in action has been finally found in quasars at z >1.5. However, it is not possible to study outflows in quasars at those redshifts on small scales (≲100 pc), as spatial information is limited by angular resolution. This is instead feasible in nearby active galaxies, which are ideal laboratories to explore outflow structure and properties, as well as the effects of AGN on their host galaxies. In this proceeding we present preliminary results from the MAGNUM survey, which comprises nearby Seyfert galaxies observed with the integral field spectrograph VLT/MUSE. We focus on two sources, NGC 1365 and NGC 4945, that exhibit double conical outflows extending on distances >1 kpc. We disentangle the dominant contributions to ionization of the various gas components observed in the central ~5.3 kpc of NGC 1365. An attempt to infer outflow 3D structure in NGC 4945 is made via simple kinematic modeling, suggesting a hollow cone geometry.

  16. Intense radiative heat transport across a nano-scale gap

    International Nuclear Information System (INIS)

    Budaev, Bair V.; Ghafari, Amin; Bogy, David B.

    2016-01-01

    In this paper, we analyze the radiative heat transport in layered structures. The analysis is based on our prior description of the spectrum of thermally excited waves in systems with a heat flux. The developed method correctly predicts results for all known special cases for both large and closing gaps. Numerical examples demonstrate the applicability of our approach to the calculation of the radiative heat transport coefficient across various layered structures.

  17. Anterolateral meningioma of the foramen magnum and high cervical spine presenting intradural and extradural growth in a child: case report and literature review.

    Science.gov (United States)

    Athanasiou, Alkinoos; Magras, Ioannis; Sarlis, Panagiotis; Spyridopoulos, Evangelos; Polyzoidis, Konstantinos

    2015-12-01

    We report a rare case of anterolateral meningioma of the foramen magnum (FMM) and high cervical spine presenting both intradural and extradural growth in a 7.5-year-old boy. We also performed a review of the relevant peer-reviewed literature. The patient presented with progressive tetraparesis and gait instability. Neuroimaging revealed an anterolateral tumor of the foramen magnum, C1 and C2 cervical spine level. The patient was treated in two stages: During the first operation, the extradural part was resected while the intradural part was removed in a second operation. Following the second operation, the patient showed almost complete neurological recovery as a result of cervical spinal cord and brainstem decompression but was complicated with cerebrospinal fluid leakage and infection by Acinetobacter. He sustained two further operations for dural sealing and external ventricular drainage and was treated with intraventricular administration of antibiotics. Histopathology of the tumor confirmed a meningotheliomatous meningioma. At the 6-month post-op follow-up examination, the patient exhibited complete neurological recovery and no radiological tumor recurrence. To the authors' best knowledge, we report the third case of sporadic pediatric meningioma of the foramen magnum and high cervical compartments with an extradural growth. Accurate pre-operative estimation of possible extradural growth is crucial towards surgical planning and sufficient treatment. Treatment of choice is total resection in a single operating session to avoid re-operations and increased risk of complications. If not possible, a re-operation should always attempt to secure the desired result.

  18. Neuroradiological evaluation of benign extramedullary tumors in the high cervical region and at the foramen magnum

    Energy Technology Data Exchange (ETDEWEB)

    Nishiura, Iwao; Koyama, Tsunemaro; Tanaka, Kimito; Aii, Heihachirou

    1986-06-01

    Twelve cases of benign extramedullary tumors in the high cervical region and at the foramen magnum were experienced during past five years among eighty all spinal and paraspinal tumors. The diagnosis of masses in this region is very difficult because of the variety of clinical course, symptoms and neurological findings as pointed out by many reporters. Also in our cases, 70 % of the patients complained of the deteriorated motor weakness of the upper or lower extremities on admission, though they had noticed the onset of slight neck or occipital pain a few years ago. Neurological examination on admission clearly showed the symptom of myelopathy except in two cases with a tumor at the foramen magnum and C/sub 1/ level. The percentage of positive findings of plain X-rays was 50 %, that of metrizamide myelography was 92 % and that of IV. e. CT and met. e. CT was 100 %. NMR-CT was performed in 2 cases, and in one of them it was useful in confirming the tumor configuration and extension. Five interesting cases were described mainly from the neuroradiological aspects. Finally the differentiation between meningioma and neurinoma was discussed from the aspects of myelogram, CT and NMR-CT. As already pointed out, it is most important not to forget the existence of tumors in this region when one comes across the confused symptoms, afterwards not to overlook the slight positive neurological and neuroradiological findings.

  19. Modelling of Temperature Profiles and Transport Scaling in Auxiliary Heated Tokamaks

    DEFF Research Database (Denmark)

    Callen, J.D.; Christiansen, J.P.; Cordey, J.G.

    1987-01-01

    time , the heating effectiveness η, and the energy offset W(0). Considering both the temperature profile responses and the global transport scaling, the constant heat pinch or excess temperature gradient model is found to best characterize the present JET data. Finally, new methods are proposed......The temperature profiles produced by various heating profiles are calculated from local heat transport models. The models take the heat flux to be the sum of heat diffusion and a non-diffusive heat flow, consistent with local measurements of heat transport. Two models are developed analytically...... in detail: (i) a heat pinch or excess temperature gradient model with constant coefficients; and (ii) a non-linear heat diffusion coefficient (χ) model. Both models predict weak (lesssim20%) temperature profile responses to physically relevant changes in the heat deposition profile – primarily because...

  20. ECRH and electron heat transport in tokamaks

    International Nuclear Information System (INIS)

    Zou, X.L.; Giruzzi, G.; Dumont, R.J.

    2003-01-01

    It has been observed during the ECRH experiments in tokamaks that the shape of the electron temperature profile in stationary regimes is not very sensitive to the ECRH power deposition i.e. the temperature profile remains peaked at the center even though the ECRH power deposition is off-axis. Various models have been invoked for the interpretation of this profile resilience phenomenon: the inward heat pinch, the critical temperature gradient, the Self-Organized Criticality, etc. Except the pinch effect, all of these models need a specific form of the diffusivity in the heat transport equation. In this work, our approach is to solve a simplified time-dependent heat transport equation analytically in cylindrical geometry. The features of this analytical solution are analyzed, in particular the relationship between the temperature profile resilience and the Eigenmode of the physical system with respect to the heat transport phenomenon. Finally, applications of this analytical solution for the determination of the transport coefficient and the polarization of the EC waves are presented. It has been shown that the solution of the simplified transport equation in a finite cylinder is a Fourier-Bessel series. This series represents in fact a decomposition of the heat source in Eigenmode, which are characterized by the Bessel functions of order 0. The physical interpretation of the Eigenmodes is the following: when the heat source is given by a Bessel function of order 0, the temperature profile has exactly the same form as the source at every time. At the beginning of the power injection, the effectiveness of the temperature response is the same for each Eigenmode, and the response in temperature, having the same form as the source, is local. Conversely, in the later phase of the evolution, the effectiveness of the temperature response for each Eigenmode is different: the higher the order, the lower the effectiveness. In this case the response in temperature appears as

  1. Non-local electron transport validation using 2D DRACO simulations

    Science.gov (United States)

    Cao, Duc; Chenhall, Jeff; Moll, Eli; Prochaska, Alex; Moses, Gregory; Delettrez, Jacques; Collins, Tim

    2012-10-01

    Comparison of 2D DRACO simulations, using a modified versionfootnotetextprivate communications with M. Marinak and G. Zimmerman, LLNL. of the Schurtz, Nicolai and Busquet (SNB) algorithmfootnotetextSchurtz, Nicolai and Busquet, ``A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes,'' Phys. Plasmas 7, 4238(2000). for non-local electron transport, with direct drive shock timing experimentsfootnotetextT. Boehly, et. al., ``Multiple spherically converging shock waves in liquid deuterium,'' Phys. Plasmas 18, 092706(2011). and with the Goncharov non-local modelfootnotetextV. Goncharov, et. al., ``Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution,'' Phys. Plasmas 13, 012702(2006). in 1D LILAC will be presented. Addition of an improved SNB non-local electron transport algorithm in DRACO allows direct drive simulations with no need for an electron conduction flux limiter. Validation with shock timing experiments that mimic the laser pulse profile of direct drive ignition targets gives a higher confidence level in the predictive capability of the DRACO code. This research was supported by the University of Rochester Laboratory for Laser Energetics.

  2. Coupling heat conduction and radiation in complex 2D and 3D geometries

    Energy Technology Data Exchange (ETDEWEB)

    Peniguel, C [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches; Rupp, I [SIMULOG, 78 - Guyancourt (France)

    1998-12-31

    Thermal radiation is a very important mode of heat transfer in most real industrial systems. A numerical approach coupling radiation (restricted to non participant medium) and conduction is presented. The code (SYRTHES) is able to handle 2D and 3D problems (including cases with symmetries and periodicity). Radiation is solved by a radiosity approach, and conduction by a finite element method. Accurate and efficient algorithms based on a mixing of analytical/numerical integration, and ray tracing techniques are used to compute the view factors. Validation has been performed on numerous test cases. A conjugate residual algorithm solves the radiosity system. An explicit interactive numerical procedure is then used to couple conduction and radiation. No stability problem has been encountered so far. One specificity of SYRTHES is that conduction and radiation are solved on independent grids. This brings much flexibility and allows to keep the number of independent radiation patches at a reasonable level. Several industrial examples are given as illustration. (author) 6 refs.

  3. Coupling heat conduction and radiation in complex 2D and 3D geometries

    International Nuclear Information System (INIS)

    Peniguel, C.

    1997-01-01

    Thermal radiation is a very important mode of heat transfer in most real industrial systems. A numerical approach coupling radiation (restricted to non participant medium) and conduction is presented. The code (SYRTHES) is able to handle 2D and 3D problems (including cases with symmetries and periodicity). Radiation is solved by a radiosity approach, and conduction by a finite element method. Accurate and efficient algorithms based on a mixing of analytical/numerical integration, and ray tracing techniques are used to compute the view factors. Validation has been performed on numerous test cases. A conjugate residual algorithm solves the radiosity system. An explicit interactive numerical procedure is then used to couple conduction and radiation. No stability problem has been encountered so far. One specificity of SYRTHES is that conduction and radiation are solved on independent grids. This brings much flexibility and allows to keep the number of independent radiation patches at a reasonable level. Several industrial examples are given as illustration. (author)

  4. Integrated Heat, Air and Moisture Modeling and Simulation in Hamlab, Reference: A41-T3-NL-05-2

    NARCIS (Netherlands)

    Schijndel, van A.W.M.

    2005-01-01

    This paper gives an overview of recent developments and results of a new integrated heat, air and moisture (HAM) modeling toolkit in Matlab named HAMLab. The recent developments include integration of a whole building model with building systems and controllers, 2D/3D HAM transport in constructions

  5. Topology optimization of a pseudo 3D thermofluid heat sink model

    DEFF Research Database (Denmark)

    Haertel, Jan H. K.; Engelbrecht, Kurt; Lazarov, Boyan S.

    2018-01-01

    sink and a fixed heat production rate in the base plate. Optimized designs are presented and the resulting fin geometry is discussed from a thermal engineering point of view and compared to fin shapes resulting from a pressure drop minimization objective. Parametric studies are conducted to analyze......This paper investigates the application of density-based topology optimization to the design of air-cooled forced convection heat sinks. To reduce the computational burden that is associated with a full 3D optimization, a pseudo 3D optimization model comprising a 2D modeled conducting metal base...... layer and a thermally coupled 2D modeled thermofluid design layer is used. Symmetry conditions perpendicular to the flow direction are applied to generate periodic heat sink designs. The optimization objective is to minimize the heat sink heat transfer resistance for a fixed pressure drop over the heat...

  6. Electronic transport properties of 1D-defects in graphene and other 2D-systems

    Energy Technology Data Exchange (ETDEWEB)

    Willke, P.; Wenderoth, M. [IV. Physical Institute, Solids and Nanostructures, Georg-August-University Goettingen (Germany); Schneider, M.A. [Lehrstuhl fuer Festkoerperphysik, Universitaet Erlangen-Nuernberg, Erlangen (Germany)

    2017-11-15

    The continuous progress in device miniaturization demands a thorough understanding of the electron transport processes involved. The influence of defects - discontinuities in the perfect and translational invariant crystal lattice - plays a crucial role here. For graphene in particular, they limit the carrier mobility often demanded for applications by contributing additional sources of scattering to the sample. Due to its two-dimensional nature graphene serves as an ideal system to study electron transport in the presence of defects, because one-dimensional defects like steps, grain boundaries and interfaces are easy to characterize and have profound effects on the transport properties. While their contribution to the resistance of a sample can be extracted by carefully conducted transport experiments, scanning probe methods are excellent tools to study the influence of defects locally. In this letter, the authors review the results of scattering at local defects in graphene and other 2D systems by scanning tunneling potentiometry, 4-point-probe microscopy, Kelvin probe force microscopy and conventional transport measurements. Besides the comparison of the different defect resistances important for device fabrication, the underlying scattering mechanisms are discussed giving insight into the general physics of electron scattering at defects. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Normal and pathological growth of the foramen occipitale magnum shown in the plain radiograph

    Energy Technology Data Exchange (ETDEWEB)

    Bliesener, J.A.; Schmidt, L.R.

    1980-01-01

    The transverse diameter of the foramen occipitale magnum (f.o.m.) in the semiaxial skull X-ray was measured and evaluated statistically in 174 cerebrally healthy children of different ages. These normal values are contrasted with the foramen diameters of 35 children with verified Arnold-Chiari malformation as well as children with macrocephaly and microcephaly. The values in children with Arnold-Chiari malformation are all above the norm, irrespective of whether or not there is a concomitant hydrocephalus.

  8. Validation of accuracy and stability of numerical simulation for 2-D heat transfer system by an entropy production approach

    Directory of Open Access Journals (Sweden)

    Brohi Ali Anwar

    2017-01-01

    Full Text Available The entropy production in 2-D heat transfer system has been analyzed systematically by using the finite volume method, to develop new criteria for the numerical simulation in case of multidimensional systems, with the aid of the CFD codes. The steady-state heat conduction problem has been investigated for entropy production, and the entropy production profile has been calculated based upon the current approach. From results for 2-D heat conduction, it can be found that the stability of entropy production profile exhibits a better agreement with the exact solution accordingly, and the current approach is effective for measuring the accuracy and stability of numerical simulations for heat transfer problems.

  9. Miniature Heat Transport System for Spacecraft Thermal Control

    Science.gov (United States)

    Ochterbeck, Jay M.; Ku, Jentung (Technical Monitor)

    2002-01-01

    Loop heat pipes (LHP) are efficient devices for heat transfer and use the basic principle of a closed evaporation-condensation cycle. The advantage of using a loop heat pipe over other conventional methods is that large quantities of heat can be transported through a small cross-sectional area over a considerable distance with no additional power input to the system. By using LHPs, it seems possible to meet the growing demand for high-power cooling devices. Although they are somewhat similar to conventional heat pipes, LHPs have a whole set of unique properties, such as low pressure drops and flexible lines between condenser and evaporator, that make them rather promising. LHPs are capable of providing a means of transporting heat over long distances with no input power other than the heat being transported because of the specially designed evaporator and the separation of liquid and vapor lines. For LHP design and fabrication, preliminary analysis on the basis of dimensionless criteria is necessary because of certain complicated phenomena that take place in the heat pipe. Modeling the performance of the LHP and miniaturizing its size are tasks and objectives of current research. In the course of h s work, the LHP and its components, including the evaporator (the most critical and complex part of the LHP), were modeled with the corresponding dimensionless groups also being investigated. Next, analysis of heat and mass transfer processes in the LHP, selection of the most weighted criteria from known dimensionless groups (thermal-fluid sciences), heat transfer rate limits, (heat pipe theory), and experimental ratios which are unique to a given heat pipe class are discussed. In the third part of the report, two-phase flow heat and mass transfer performances inside the LHP condenser are analyzed and calculated for Earth-normal gravity and microgravity conditions. On the basis of recent models and experimental databanks, an analysis for condensing two-phase flow regimes

  10. Policies and initiatives for carbon neutrality in nordic heating and transport systems

    DEFF Research Database (Denmark)

    Muller, Jakob Glarbo; Wu, Qiuwei; Ostergaard, Jacob

    2012-01-01

    Policies and initiatives promoting carbon neutrality in the Nordic heating and transport systems are presented. The focus within heating systems is the propagation of heat pumps while the focus within transport systems is initiatives regarding electric vehicles (EVs). It is found that conversion...... to heat pumps in the Nordic region rely on both private economic and national economic incentives. Initiatives toward carbon neutrality in the transport system are mostly concentrated on research, development and demonstration for deployment of a large number of EVs. All Nordic countries have plans...... for the future heating and transport systems with the ambition of realizing carbon neutrality....

  11. Study on a neon cryogenic oscillating heat pipe with long heat transport distance

    Science.gov (United States)

    Liang, Qing; Li, Yi; Wang, Qiuliang

    2017-12-01

    An experimental study is carried out to study the heat transfer characteristics of a cryogenic oscillating heat pipe (OHP) with long heat transport distance. The OHP is made up of a capillary tube with an inner diameter of 1.0 mm and an outer diameter of 2.0 mm. The working fluid is neon, and the length of the adiabatic section is 480 mm. Tests are performed with the different heat inputs, liquid filling ratios and condenser temperature. For the cryogenic OHP with a liquid filling ratio of 30.7% at the condenser temperature of 28 K, the effective thermal conductivity is 3466-30,854 W/m K, and the maximum transfer power is 35.60 W. With the increment of the heat input, the effective thermal conductivity of the cryogenic OHP increases at the liquid filling ratios of 30.7% and 38.5%, while it first increases and then decreases at the liquid filling ratios of 15.2% and 23.3%. Moreover, the effective thermal conductivity increases with decreasing liquid filling ratio at the small heat input, and the maximum transfer power first increases and then decreases with increasing liquid filling ratio. Finally, it is found that the thermal performance of the cryogenic OHP can be improved by increasing the condenser temperature.

  12. Heating and active control of profiles and transport by IBW in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Zhao Yanping

    2002-01-01

    By a series of technical improvements and intensive RF boronization, significant progresses on the IBW heating and control of profiles and transport has been obtained since last IAEA meeting. Both on-axis and off-axis electron heating with global peaked and local steeped electron pressure profile was realized if the resonant layer is in plasma far from the edge region. Maximum increment of electron temperature was about 2 keV at power of 200 kW. The heating factor reached 9.4 eV x 10 13 cm -3 /kW. Reduction of local electron heat transport around resonant layer has been observed. Significant improvement of particle confinement by a factor of 2-4 with very peaked density profile was obtained if 5/2-deuterium resonant layer is located at the plasma edge. Global transport and edge poloidal velocity shear can been controlled by IBW. (author)

  13. Subdural Fluid Collection and Hydrocephalus After Foramen Magnum Decompression for Chiari Malformation Type I: Management Algorithm of a Rare Complication.

    Science.gov (United States)

    Rossini, Zefferino; Milani, Davide; Costa, Francesco; Castellani, Carlotta; Lasio, Giovanni; Fornari, Maurizio

    2017-10-01

    Chiari malformation type I is a hindbrain abnormality characterized by descent of the cerebellar tonsils beneath the foramen magnum, frequently associated with symptoms or brainstem compression, impaired cerebrospinal fluid circulation, and syringomyelia. Foramen magnum decompression represents the most common way of treatment. Rarely, subdural fluid collection and hydrocephalus represent postoperative adverse events. The treatment of this complication is still debated, and physicians are sometimes uncertain when to perform diversion surgery and when to perform more conservative management. We report an unusual occurrence of subdural fluid collection and hydrocephalus that developed in a 23-year-old patient after foramen magnum decompression for Chiari malformation type I. Following a management protocol, based on a step-by-step approach, from conservative therapy to diversion surgery, the patient was managed with urgent external ventricular drainage, and then with conservative management and wound revision. Because of the rarity of this adverse event, previous case reports differ about the form of treatment. In future cases, finding clinical and radiologic features to identify risk factors that are useful in predicting if the patient will benefit from conservative management or will need to undergo diversion surgery is only possible if a uniform form of treatment is used. Therefore, we believe that a management algorithm based on a step-by-step approach will reduce the use of invasive therapies and help to create a standard of care. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Transport in Auxiliary Heated NSTX Discharges

    International Nuclear Information System (INIS)

    LeBlanc, B.P.; Bell, M.G.; Bell, R.E.; Bitte, M.L.; Bourdelle, C.; Gates, D.A.; Kaye, S.M.; Maingi, R.; Menard, J.E.; Mueller, D.; Ono, M.; Paul, S.F.; Redi, M.H.; Roquemore, A.L.; Rosenberg, A.; Sabbagh, S.A.; Stutman, D.; Synakowski, E.J.; Soukhanovskii, V.A.; Wilson, J.R.

    2003-01-01

    The NSTX spherical torus (ST) provides a unique platform to investigate magnetic confinement in auxiliary-heated plasmas at low aspect ratio. Auxiliary power is routinely coupled to ohmically heated plasmas by deuterium neutral-beam injection (NBI) and by high-harmonic fast waves (HHFW) launch. While theory predicts both techniques to preferentially heat electrons, experiment reveals the electron temperature is greater than the ion temperature during HHFW, but the electron temperature is less than the ion temperature during NBI. In the following we present the experimental data and the results of transport analyses

  15. Parallel algorithms for 2-D cylindrical transport equations of Eigenvalue problem

    International Nuclear Information System (INIS)

    Wei, J.; Yang, S.

    2013-01-01

    In this paper, aimed at the neutron transport equations of eigenvalue problem under 2-D cylindrical geometry on unstructured grid, the discrete scheme of Sn discrete ordinate and discontinuous finite is built, and the parallel computation for the scheme is realized on MPI systems. Numerical experiments indicate that the designed parallel algorithm can reach perfect speedup, it has good practicality and scalability. (authors)

  16. Electron heat transport analysis of low-collisionality plasmas in the neoclassical-transport-optimized configuration of LHD

    International Nuclear Information System (INIS)

    Murakami, Sadayoshi; Yamada, Hiroshi; Wakasa, Arimitsu

    2002-01-01

    Electron heat transport in low-collisionality LHD plasma is investigated in order to study the neoclassical transport optimization effect on thermal plasma transport with an optimization level typical of so-called ''advanced stellarators''. In the central region, a higher electron temperature is obtained in the optimized configuration, and transport analysis suggests the considerable effect of neoclassical transport on the electron heat transport assuming the ion-root level of radial electric field. The obtained experimental results support future reactor design in which the neoclassical and/or anomalous transports are reduced by magnetic field optimization in a non-axisymmetric configuration. (author)

  17. Maternal administration of meclozine for the treatment of foramen magnum stenosis in transgenic mice with achondroplasia.

    Science.gov (United States)

    Matsushita, Masaki; Mishima, Kenichi; Esaki, Ryusaku; Ishiguro, Naoki; Ohno, Kinji; Kitoh, Hiroshi

    2017-01-01

    OBJECTIVE Achondroplasia (ACH) is the most common short-limbed skeletal dysplasia caused by gain-of-function mutations in the fibroblast growth factor receptor 3 (FGFR3) gene. Foramen magnum stenosis (FMS) is one of the serious neurological complications in ACH. Through comprehensive drug screening, the authors identified that meclozine, an over-the-counter drug for motion sickness, inhibited activation of FGFR3 signaling. Oral administration of meclozine to the growing ACH mice promoted longitudinal bone growth, but it did not prevent FMS. In the current study, the authors evaluated the effects of maternal administration of meclozine on FMS in ACH mice. METHODS The area of the foramen magnum was measured in 17-day-old Fgfr3 ach mice and wild-type mice using micro-CT scanning. Meclozine was administered to the pregnant mice carrying Fgfr3 ach offspring from embryonic Day (ED) 14.5 to postnatal Day (PD) 4.5. Spheno-occipital and anterior intraoccipital synchondroses were histologically examined, and the bony bridges were scored on PD 4.5. In wild-type mice, tissue concentrations of meclozine in ED 17.5 fetuses and PD 6.5 pups were investigated. RESULTS The area of the foramen magnum was significantly smaller in 17-day-old Fgfr3 ach mice than in wild-type mice (p < 0.005). There were no bony bridges in the spheno-occipital and anterior intraoccipital synchondroses in wild-type mice, while some of the synchondroses prematurely closed in untreated Fgfr3 ach mice at PD 4.5. The average bony bridge score in the cranial base was 7.053 ± 1.393 in untreated Fgfr3 ach mice and 6.125 ± 2.029 in meclozine-treated Fgfr3 ach mice. The scores were not statistically significant between mice with and those without meclozine treatment (p = 0.12). The average tissue concentration of meclozine was significantly higher (508.88 ± 205.16 ng/g) in PD 6.5 mice than in ED 17.5 mice (56.91 ± 20.05 ng/g) (p < 0.005). CONCLUSIONS Maternal administration of meclozine postponed premature

  18. Heat Roadmap Europe 2

    DEFF Research Database (Denmark)

    Connolly, David; Mathiesen, Brian Vad; Østergaard, Poul Alberg

    Many strategies have already been proposed for the decarbonisation of the EU energy system by the year 2050. These typically focus on the expansion of renewable energy in the electricity sector and subsequently, electrifying both the heat and transport sectors as much as possible. In these strate......Many strategies have already been proposed for the decarbonisation of the EU energy system by the year 2050. These typically focus on the expansion of renewable energy in the electricity sector and subsequently, electrifying both the heat and transport sectors as much as possible....... In these strategies, the role of district heating has never been fully explored system, nor have the benefits of district heating been quantified at the EU level. This study combines the mapping of local heat demands and local heat supplies across the EU27. Using this local knowledge, new district heating potentials...... are identified and then, the EU27 energy system is modelled to investigate the impact of district heating. The results indicate that a combination of heat savings, district heating in urban areas, and individual heat pumps in rural areas will enable the EU27 to reach its greenhouse gas emission targets by 2050...

  19. Interpreting the cross-sectional flow field in a river bank based on a genetic-algorithm two-dimensional heat-transport method (GA-VS2DH)

    Science.gov (United States)

    Su, Xiaoru; Shu, Longcang; Chen, Xunhong; Lu, Chengpeng; Wen, Zhonghui

    2016-12-01

    Interactions between surface waters and groundwater are of great significance for evaluating water resources and protecting ecosystem health. Heat as a tracer method is widely used in determination of the interactive exchange with high precision, low cost and great convenience. The flow in a river-bank cross-section occurs in vertical and lateral directions. In order to depict the flow path and its spatial distribution in bank areas, a genetic algorithm (GA) two-dimensional (2-D) heat-transport nested-loop method for variably saturated sediments, GA-VS2DH, was developed based on Microsoft Visual Basic 6.0. VS2DH was applied to model a 2-D bank-water flow field and GA was used to calibrate the model automatically by minimizing the difference between observed and simulated temperatures in bank areas. A hypothetical model was developed to assess the reliability of GA-VS2DH in inverse modeling in a river-bank system. Some benchmark tests were conducted to recognize the capability of GA-VS2DH. The results indicated that the simulated seepage velocity and parameters associated with GA-VS2DH were acceptable and reliable. Then GA-VS2DH was applied to two field sites in China with different sedimentary materials, to verify the reliability of the method. GA-VS2DH could be applied in interpreting the cross-sectional 2-D water flow field. The estimates of horizontal hydraulic conductivity at the Dawen River and Qinhuai River sites are 1.317 and 0.015 m/day, which correspond to sand and clay sediment in the two sites, respectively.

  20. Generalized heat-transport equations: parabolic and hyperbolic models

    Science.gov (United States)

    Rogolino, Patrizia; Kovács, Robert; Ván, Peter; Cimmelli, Vito Antonio

    2018-03-01

    We derive two different generalized heat-transport equations: the most general one, of the first order in time and second order in space, encompasses some well-known heat equations and describes the hyperbolic regime in the absence of nonlocal effects. Another, less general, of the second order in time and fourth order in space, is able to describe hyperbolic heat conduction also in the presence of nonlocal effects. We investigate the thermodynamic compatibility of both models by applying some generalizations of the classical Liu and Coleman-Noll procedures. In both cases, constitutive equations for the entropy and for the entropy flux are obtained. For the second model, we consider a heat-transport equation which includes nonlocal terms and study the resulting set of balance laws, proving that the corresponding thermal perturbations propagate with finite speed.

  1. Normal and pathological growth of the foramen occipitale magnum shown in the plain radiograph

    International Nuclear Information System (INIS)

    Bliesener, J.A.; Schmidt, L.R.

    1980-01-01

    The transverse diameter of the foramen occipitale magnum (f.o.m.) in the semiaxial skull X-ray was measured and evaluated statistically in 174 cerebrally healthy children of different ages. These normal values are contrasted with the foramen diameters of 35 children with verified Arnold-Chiari malformation as well as children with macrocephaly and microcephaly. The values in children with Arnold-Chiari malformation are all above the norm, irrespective of whether or not there is a concomitant hydrocephalus. (orig.) [de

  2. The heat transport system and plant design for the HYLIFE-2 fusion reactor

    International Nuclear Information System (INIS)

    Hoffman, M.A.

    1990-01-01

    HYLIFE is the name given to a family of self-healing liquid-wall reactor concepts for inertial confinement fusion. This HYLIFE-II concept employs the molten salt, Flibe, for the liquid jets instead of liquid lithium used in the original HYLIFE-I study. A preliminary conceptual design study of the heat transport system and the balance of plant of the HYLIFE-II fusion power plant is described in this paper with special emphasis on a scoping study to determine the best intermediate heat exchanger geometry and flow conditions for minimum cost of electricity. 11 refs., 8 figs

  3. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    Energy Technology Data Exchange (ETDEWEB)

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  4. Study of the electron heat transport in Tore-Supra tokamak

    International Nuclear Information System (INIS)

    Harauchamps, E.

    2004-01-01

    This work presents analytical solutions to the electron heat transport equation involving a damping term and a convection term in a cylindrical geometry. These solutions, processed by Matlab, allow the determination of the evolution of the radial profile of electron temperature in tokamaks during heating. The modulated injection of waves around the electron cyclotron frequency is an efficient tool to study heat transport experimentally in tokamaks. The comparison of these analytical solutions with experimental results from Tore-Supra during 2 discharges (30550 and 31165) shows the presence of a sudden change for the diffusion and damping coefficients. The hypothesis of the presence of a pinch spread all along the plasma might explain the shape of the experimental temperature profiles. These analytical solutions could be used to determine the time evolution of plasma density as well or of any parameter whose evolution is governed by a diffusion-convection equation. (A.C.)

  5. Heat transport system

    International Nuclear Information System (INIS)

    Pierce, B.L.

    1978-01-01

    A heat transport system of small size which can be operated in any orientation consists of a coolant loop containing a vaporizable liquid as working fluid and includes in series a vaporizer, a condenser and two one-way valves and a pressurizer connected to the loop between the two valves. The pressurizer may be divided into two chambers by a flexible diaphragm, an inert gas in one chamber acts as a pneumatic spring for the system. This system is suitable for use in a nuclear-powered artificial heart

  6. Conceptual design of heat transport systems and components of PFBR-NSSS

    International Nuclear Information System (INIS)

    Chetal, S.C.; Bhoje, S.B.; Kale, R.D.; Rao, A.S.L.K.; Mitra, T.K.; Selvaraj, A.; Sethi, V.K.; Sundaramoorthy, T.R.; Balasubramaniyan, V.; Vaidyanathan, G.

    1996-01-01

    The production of electrical power from sodium cooled fast reactors in the present power scenario in India demands emphasis on plant economics consistent with safety. Number of heat transport systems/components and the design of principal heat transport components viz sodium pumps, IHX and steam generators play significant role in the plant capital cost and capacity factor. The paper discusses the basis of selection of 2 primary pumps, 4 IHX, 2 secondary loops, 2 secondary pumps and 8 steam generators for the 500 MWe Prototype Fast Breeder Reactor (PFBR), which is now in design stage. The principal design features of primary pump, IHX and steam generator have been selected based on design simplicity, ease of manufacture and utilization of established designs. The paper also describes the conceptual design of above mentioned three components. (author). 3 figs, 2 tabs

  7. Latent heat transport and microlayer evaporation in nucleate boiling

    International Nuclear Information System (INIS)

    Jawurek, H.H.

    1977-08-01

    Part 1 of this work provides a broad overview and, where possible, a quantitative assessment of the complex physical processes which together constitute the mechanism of nucleate boiling heat transfer. It is shown that under a wide range of conditions the primary surface-to-liquid heat flows within an area of bubble influence are so redistributed as to manifest themselves predominantly as latent heat transport, that is, as vaporisation into attached bubbles. Part 2 deals in greater detail with one of the component processes of latent heat transport, namely microlayer evaporation. A literature review reveals the need for synchronised records of microlayer geometry versus time and of normal bubble growth and departure. An apparatus developed to provide such records is described. High-speed cine interference photography from beneath and through a transparent heating surface provided details of microlayer geometry and an image reflection system synchronised these records with the bubble profile views. Results are given for methanol and ethanol boiling at sub-atmospheric pressures and at various heat fluxes and bulk subcoolings. In all cases it is found that microlayers were of sub-micron thickness, that microlayer thinning was restricted to the inner layer edge (with the thickness elsewhere remaining constant or increasing with time) and that the contribution of this visible evaporation to the total vapour flow into bubbles was negligible. The observation of thickening towards the outer microlayer edge, however, demonstrates that a liquid replenishment flow occurred simultaneously with the evaporation process

  8. Heat Transport Enhancement of Turbulent Thermal Convection by Inserted Channels

    Science.gov (United States)

    Xia, Ke-Qing; Zhang, Lu

    2017-11-01

    We report an experimental study on the heat transport properties of turbulent Rayleigh Benard Convection (RBC) in a rectangular cell with two types of 3D-printed structures inserted inside. The first one splits the original rectangular cell into 60 identical sub cells whose aspect ratio is 1:1:10 (length, width, height). The second one splits the cell into 30 sub cells, each with a 1:2:10 aspect ratio and a baffle in the center. We find that for large Rayleigh numbers (Ra), the Nusselt numbers (Nu) of both structures increase compared with that of the empty rectangular cell. An enhancement in Nu as much as 20% is found for the second type of insertion at Rayleigh number 2 ×109 . Moreover, the Nu-Ra scaling shows a transition with both geometries. The particle image velocimetry (PIV) measurement within a single sub unit indicates that the transition may be related to the laminar to turbulent transition in flow field. Direct numerical simulations (DNS) confirm the experimental results. Our results demonstrate the potential in using insertions to enhance passive heat transfer. This work was supported by the Research Grants Council (RGC) of HKSAR (Nos. CUHK404513 and CUHK14301115).

  9. Notes on HP1 a software package for simulating variably-saturated water flow, heat transport, solute transport, and biogeochemistry in porous media. HP1 Version 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, D.; Simunek, J.

    2010-01-15

    HP1 is a comprehensive modeling tool in terms of processes and reactions for simulating reactive transport and biogeochemical processes in variably-saturated porous media. HP1 results from coupling the water and solute transport model HYDRUS-1D (Simunek et al., 2009a) and PHREEQC-2 (Parkhurst and Appelo, 1999). This note provides an overview of how to set up and execute a HP1 project using version 2.2.002 of HP1 and version 4.13 of the graphical user interface (GUI) of HYDRUS-1D. A large part of this note are step-by-step instructions for selected examples involving mineral dissolution and precipitation, cation exchange, surface complexation and kinetic degradation networks. The implementation of variably-saturated flow conditions, changing boundary conditions, a layered soil profile or immobile water is also illustrated.

  10. Notes on HP1 a software package for simulating variably-saturated water flow, heat transport, solute transport, and biogeochemistry in porous media. HP1 Version 2.2

    International Nuclear Information System (INIS)

    Jacques, D.; Simunek, J.

    2010-01-01

    HP1 is a comprehensive modeling tool in terms of processes and reactions for simulating reactive transport and biogeochemical processes in variably-saturated porous media. HP1 results from coupling the water and solute transport model HYDRUS-1D (Simunek et al., 2009a) and PHREEQC-2 (Parkhurst and Appelo, 1999). This note provides an overview of how to set up and execute a HP1 project using version 2.2.002 of HP1 and version 4.13 of the graphical user interface (GUI) of HYDRUS-1D. A large part of this note are step-by-step instructions for selected examples involving mineral dissolution and precipitation, cation exchange, surface complexation and kinetic degradation networks. The implementation of variably-saturated flow conditions, changing boundary conditions, a layered soil profile or immobile water is also illustrated.

  11. Climate of Earth-Like Planets With and Without Ocean Heat Transport Orbiting a Range of M and K Stars

    Science.gov (United States)

    Kiang, N. Y.; Jablonski, Emma R.; Way, Michael J.; Del Genio, Anthony; Roberge, Aki

    2015-01-01

    The mean surface temperature of a planet is now acknowledged as insufficient to surmise its full potential habitability. Advancing our understanding requires exploration with 3D general circulation models (GCMs), which can take into account how gradients and fluxes across a planet's surface influence the distribution of heat, clouds, and the potential for heterogeneous distribution of liquid water. Here we present 3D GCM simulations of the effects of alternative stellar spectra, instellation, model resolution, and ocean heat transport, on the simulated distribution of heat and moisture of an Earth-like planet (ELP).

  12. Ballistic near-field heat transport in dense many-body systems

    Science.gov (United States)

    Latella, Ivan; Biehs, Svend-Age; Messina, Riccardo; Rodriguez, Alejandro W.; Ben-Abdallah, Philippe

    2018-01-01

    Radiative heat transport mediated by near-field interactions is known to be superdiffusive in dilute, many-body systems. Here we use a generalized Landauer theory of radiative heat transfer in many-body planar systems to demonstrate a nonmonotonic transition from superdiffusive to ballistic transport in dense systems. We show that such a transition is associated to a change of the polarization of dominant modes. Our findings are complemented by a quantitative study of the relaxation dynamics of the system in the different regimes of heat transport. This result could have important consequences on thermal management at nanoscale of many-body systems.

  13. Enhanced heat transport in environmental systems using microencapsulated phase change materials

    Science.gov (United States)

    Colvin, D. P.; Mulligan, J. C.; Bryant, Y. G.

    1992-01-01

    A methodology for enhanced heat transport and storage that uses a new two-component fluid mixture consisting of a microencapsulated phase change material (microPCM) for enhanced latent heat transport is outlined. SBIR investigations for NASA, USAF, SDIO, and NSF since 1983 have demonstrated the ability of the two-component microPCM coolants to provide enhancements in heat transport up to 40 times over that of the carrier fluid alone, enhancements of 50 to 100 percent in the heat transfer coefficient, practically isothermal operation when the coolant flow is circulated in an optimal manner, and significant reductions in pump work.

  14. Excessive fructose intake causes 1,25-(OH)2D3-dependent inhibition of intestinal and renal calcium transport in growing rats

    Science.gov (United States)

    Douard, Veronique; Sabbagh, Yves; Lee, Jacklyn; Patel, Chirag; Kemp, Francis W.; Bogden, John D.; Lin, Sheldon

    2013-01-01

    We recently discovered that chronic high fructose intake by lactating rats prevented adaptive increases in rates of active intestinal Ca2+ transport and in levels of 1,25-(OH)2D3, the active form of vitamin D. Since sufficient Ca2+ absorption is essential for skeletal growth, our discovery may explain findings that excessive consumption of sweeteners compromises bone integrity in children. We tested the hypothesis that 1,25-(OH)2D3 mediates the inhibitory effect of excessive fructose intake on active Ca2+ transport. First, compared with those fed glucose or starch, growing rats fed fructose for 4 wk had a marked reduction in intestinal Ca2+ transport rate as well as in expression of intestinal and renal Ca2+ transporters that was tightly associated with decreases in circulating levels of 1,25-(OH)2D3, bone length, and total bone ash weight but not with serum parathyroid hormone (PTH). Dietary fructose increased the expression of 24-hydroxylase (CYP24A1) and decreased that of 1α-hydroxylase (CYP27B1), suggesting that fructose might enhance the renal catabolism and impair the synthesis, respectively, of 1,25-(OH)2D3. Serum FGF23, which is secreted by osteocytes and inhibits CYP27B1 expression, was upregulated, suggesting a potential role of bone in mediating the fructose effects on 1,25-(OH)2D3 synthesis. Second, 1,25-(OH)2D3 treatment rescued the fructose effect and normalized intestinal and renal Ca2+ transporter expression. The mechanism underlying the deleterious effect of excessive fructose intake on intestinal and renal Ca2+ transporters is a reduction in serum levels of 1,25-(OH)2D3. This finding is significant because of the large amounts of fructose now consumed by Americans increasingly vulnerable to Ca2+ and vitamin D deficiency. PMID:23571713

  15. Ionized Gas Outflows from the MAGNUM Survey: NGC 1365 and NGC 4945

    Directory of Open Access Journals (Sweden)

    Giacomo Venturi

    2017-11-01

    Full Text Available AGN feedback, acting through strong outflows accelerated in the nuclear region of AGN hosts, is invoked as a key ingredient for galaxy evolution by many models to explain the observed BH-galaxy scaling relations. Recently, some direct observational evidence of radiative mode feedback in action has been finally found in quasars at z >1.5. However, it is not possible to study outflows in quasars at those redshifts on small scales (≲100 pc, as spatial information is limited by angular resolution. This is instead feasible in nearby active galaxies, which are ideal laboratories to explore outflow structure and properties, as well as the effects of AGN on their host galaxies. In this proceeding we present preliminary results from the MAGNUM survey, which comprises nearby Seyfert galaxies observed with the integral field spectrograph VLT/MUSE. We focus on two sources, NGC 1365 and NGC 4945, that exhibit double conical outflows extending on distances >1 kpc. We disentangle the dominant contributions to ionization of the various gas components observed in the central ~5.3 kpc of NGC 1365. An attempt to infer outflow 3D structure in NGC 4945 is made via simple kinematic modeling, suggesting a hollow cone geometry.

  16. Experimental study on the supercritical startup and heat transport capability of a neon-charged cryogenic loop heat pipe

    International Nuclear Information System (INIS)

    Guo, Yuandong; Lin, Guiping; He, Jiang; Bai, Lizhan; Zhang, Hongxing; Miao, Jianyin

    2017-01-01

    Highlights: • A neon-charged CLHP integrated with a G-M cryocooler was designed and investigated. • The CLHP can realize the supercritical startup with an auxiliary heat load of 1.5 W. • Maximum heat transport capability of the CLHP was 4.5 W over a distance of 0.6 m. • There existed an optimum auxiliary heat load to expedite the supercritical startup. • There existed an optimum charged pressure to reach the largest heat transfer limit. - Abstract: Neon-charged cryogenic loop heat pipe (CLHP) can realize efficient cryogenic heat transport in the temperature range of 30–40 K, and promises great application potential in the thermal control of future space infrared exploration system. In this work, extensive experimental studies on the supercritical startup and heat transport capability of a neon-charged CLHP integrated with a G-M cryocooler were carried out, where the effects of the auxiliary heat load applied to the secondary evaporator and charged pressure of the working fluid were investigated. Experimental results showed that the CLHP could successfully realize the supercritical startup with an auxiliary heat load of 1.5 W, and there existed an optimum auxiliary heat load and charged pressure of the working fluid respectively, to achieve the maximum temperature drop rate of the primary evaporator during the supercritical startup. The CLHP could reach a maximum heat transport capability of 4.5 W over a distance of 0.6 m corresponding to the optimum charged pressure of the working fluid; however, the heat transport capability decreased with the increase of the auxiliary heat load. Furthermore, the inherent mechanisms responsible for the phenomena observed in the experiments were analyzed and discussed, to provide a better understanding from the theoretical view.

  17. Report of the 1988 2-D Intercomparison Workshop, chapter 3

    Science.gov (United States)

    Jackman, Charles H.; Brasseur, Guy; Soloman, Susan; Guthrie, Paul D.; Garcia, Rolando; Yung, Yuk L.; Gray, Lesley J.; Tung, K. K.; Ko, Malcolm K. W.; Isaken, Ivar

    1989-01-01

    Several factors contribute to the errors encountered. With the exception of the line-by-line model, all of the models employ simplifying assumptions that place fundamental limits on their accuracy and range of validity. For example, all 2-D modeling groups use the diffusivity factor approximation. This approximation produces little error in tropospheric H2O and CO2 cooling rates, but can produce significant errors in CO2 and O3 cooling rates at the stratopause. All models suffer from fundamental uncertainties in shapes and strengths of spectral lines. Thermal flux algorithms being used in 2-D tracer tranport models produce cooling rates that differ by as much as 40 percent for the same input model atmosphere. Disagreements of this magnitude are important since the thermal cooling rates must be subtracted from the almost-equal solar heating rates to derive the net radiative heating rates and the 2-D model diabatic circulation. For much of the annual cycle, the net radiative heating rates are comparable in magnitude to the cooling rate differences described. Many of the models underestimate the cooling rates in the middle and lower stratosphere. The consequences of these errors for the net heating rates and the diabatic circulation will depend on their meridional structure, which was not tested here. Other models underestimate the cooling near 1 mbar. Suchs errors pose potential problems for future interactive ozone assessment studies, since they could produce artificially-high temperatures and increased O3 destruction at these levels. These concerns suggest that a great deal of work is needed to improve the performance of thermal cooling rate algorithms used in the 2-D tracer transport models.

  18. Optimization of pipeline transport for CO2 sequestration

    International Nuclear Information System (INIS)

    Zhang, Z.X.; Wang, G.X.; Massarotto, P.; Rudolph, V.

    2006-01-01

    Coal fired power generation will continue to provide energy to the world for the foreseeable future. However, this energy use is a significant contributor to increased atmospheric CO 2 concentration and, hence, global warming. Capture and disposal of CO 2 has received increased R and D attention in the last decade as the technology promises to be the most cost effective for large scale reductions in CO 2 emissions. This paper addresses CO 2 transport via pipeline from capture site to disposal site, in terms of system optimization, energy efficiency and overall economics. Technically, CO 2 can be transported through pipelines in the form of a gas, a supercritical fluid or in the subcooled liquid state. Operationally, most CO 2 pipelines used for enhanced oil recovery transport CO 2 as a supercritical fluid. In this paper, supercritical fluid and subcooled liquid transport are examined and compared, including their impacts on energy efficiency and cost. Using a commercially available process simulator, ASPEN PLUS 10.1, the results show that subcooled liquid transport maximizes the energy efficiency and minimizes the cost of CO 2 transport over long distances under both isothermal and adiabatic conditions. Pipeline transport of subcooled liquid CO 2 can be ideally used in areas of cold climate or by burying and insulating the pipeline. In very warm climates, periodic refrigeration to cool the CO 2 below its critical point of 31.1 o C, may prove economical. Simulations have been used to determine the maximum safe pipeline distances to subsequent booster stations as a function of inlet pressure, environmental temperature and ground level heat flux conditions

  19. Active heat pulse sensing of 3-D-flow fields in streambeds

    Science.gov (United States)

    Banks, Eddie W.; Shanafield, Margaret A.; Noorduijn, Saskia; McCallum, James; Lewandowski, Jörg; Batelaan, Okke

    2018-03-01

    Profiles of temperature time series are commonly used to determine hyporheic flow patterns and hydraulic dynamics in the streambed sediments. Although hyporheic flows are 3-D, past research has focused on determining the magnitude of the vertical flow component and how this varies spatially. This study used a portable 56-sensor, 3-D temperature array with three heat pulse sources to measure the flow direction and magnitude up to 200 mm below the water-sediment interface. Short, 1 min heat pulses were injected at one of the three heat sources and the temperature response was monitored over a period of 30 min. Breakthrough curves from each of the sensors were analysed using a heat transport equation. Parameter estimation and uncertainty analysis was undertaken using the differential evolution adaptive metropolis (DREAM) algorithm, an adaption of the Markov chain Monte Carlo method, to estimate the flux and its orientation. Measurements were conducted in the field and in a sand tank under an extensive range of controlled hydraulic conditions to validate the method. The use of short-duration heat pulses provided a rapid, accurate assessment technique for determining dynamic and multi-directional flow patterns in the hyporheic zone and is a basis for improved understanding of biogeochemical processes at the water-streambed interface.

  20. Coherent heat transport in 2D phononic crystals with acoustic impedance mismatch

    International Nuclear Information System (INIS)

    Arantes, A; Anjos, V

    2016-01-01

    In this work we have calculated the cumulative thermal conductivities of micro-phononic crystals formed by different combinations of inclusions and matrices at a sub-Kelvin temperature regime. The low-frequency phonon spectra (up to tens of GHz) were obtained by solving the generalized wave equation for inhomogeneous media with the plane wave expansion method. The thermal conductivity was calculated from Boltzmann transport theory highlighting the role of the low-frequency thermal phonons and neglecting phonon–phonon scattering. A purely coherent thermal transport regime was assumed throughout the structures. Our findings show that the cumulative thermal conductivity drops dramatically when compared with their bulk counterpart. Depending on the structural composition this reduction may be attributed to the phonon group velocity due to a flattening of the phonon dispersion relation, the extinction of phonon modes in the density of states or due to the presence of complete band gaps. According to the contrast between the inclusions and the matrices, three types of two dimensional phononic crystals were considered: carbon/epoxy, carbon/polyethylene and tungsten/silicon, which correspond respectively to a moderate, strong and very strong mismatch in the mechanical properties of these materials. (paper)

  1. Long-distance heat transport by hot water

    International Nuclear Information System (INIS)

    Munser, H.; Reetz, B.

    1990-01-01

    From the analysis of the centralized heat supply in the GDR energy-economical and ecological indispensable developments of long-distance heat systems in conurbation are derived. The heat extraction from a nuclear power plant combined with long- distance hot-water transport over about 110 kilometres is investigated and presented as a possibility to perspective base load heat demands for the district around Dresden. By help of industrial-economic, hydraulic and thermic evaluations of first design variants of the transit system the acceptance of this ecologic and energetic preferred solution is proved and requirements for its realization are shown

  2. A way to visualise heat transfer in 3D unsteady flows

    NARCIS (Netherlands)

    Speetjens, M.F.M.

    2009-01-01

    Heat transfer in fluid flows traditionally is examined in terms of temperature field and heat-transfer coefficients. However, heat transfer may alternatively be considered as the transport of thermal energy by the total convective-conductive heat flux in a way analogous to the transport of fluid by

  3. Heat and fission product transport in molten core material pool with crust

    International Nuclear Information System (INIS)

    Yun, J.I.; Suh, K.Y.; Kang, C.S.

    2005-01-01

    Heat transfer and fluid flow in a molten pool are influenced by internal volumetric heat generated from the radioactive decay of fission product species retained in the reactor vessel during a severe accident. The pool superheat is determined based on the overall energy balance that equates the heat production rate to the heat loss rate. Decay heat of fission products in the pool is estimated by product of the mass concentration and energy conversion factor of each fission product. Twenty-nine elements are chosen and classified by their chemical properties to calculate heat generation rate in the pool. The mass concentration of a fission product is obtained from released fraction and the tabular output of the ORIGEN 2 code. The initial core and pool inventories at each time can also be estimated using ORIGEN 2. The released fraction of each fission product is calculated based on the bubble dynamics and mass transport. Numerical analysis is performed for heat and fission product transport in a molten core material pool during the Three Mile Island Unit 2 (TMI-2) accident. The pool is assumed to be a partially filled hemisphere, whose change in geometry is neglected during the numerical calculation. Calculated results indicate that the peak temperature in the molten pool is significantly lowered, since a substantial amount of the volatile fission products is released from the molten pool during progression of the accident. The results may directly be applied to the existing severe accident analysis codes to more mechanistically determine the thermal load to the reactor vessel lower head during the in-vessel retention

  4. Impact of high speed civil transports on stratospheric ozone. A 2-D model investigation

    Energy Technology Data Exchange (ETDEWEB)

    Kinnison, D E; Connell, P S [Lawrence Livermore National Lab., CA (United States)

    1998-12-31

    This study investigates the effect on stratospheric ozone from a fleet of proposed High Speed Civil Transports (HSCTs). The new LLNL 2-D operator-split chemical-radiative-transport model of the troposphere and stratosphere is used for this HSCT investigation. This model is integrated in a diurnal manner, using an implicit numerical solver. Therefore, rate coefficients are not modified by any sort of diurnal average factor. This model also does not make any assumptions on lumping of chemical species into families. Comparisons to previous model-derived HSCT assessment of ozone change are made, both to the previous LLNL 2-D model and to other models from the international assessment modeling community. The sensitivity to the NO{sub x} emission index and sulfate surface area density is also explored. (author) 7 refs.

  5. Impact of high speed civil transports on stratospheric ozone. A 2-D model investigation

    Energy Technology Data Exchange (ETDEWEB)

    Kinnison, D.E.; Connell, P.S. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    This study investigates the effect on stratospheric ozone from a fleet of proposed High Speed Civil Transports (HSCTs). The new LLNL 2-D operator-split chemical-radiative-transport model of the troposphere and stratosphere is used for this HSCT investigation. This model is integrated in a diurnal manner, using an implicit numerical solver. Therefore, rate coefficients are not modified by any sort of diurnal average factor. This model also does not make any assumptions on lumping of chemical species into families. Comparisons to previous model-derived HSCT assessment of ozone change are made, both to the previous LLNL 2-D model and to other models from the international assessment modeling community. The sensitivity to the NO{sub x} emission index and sulfate surface area density is also explored. (author) 7 refs.

  6. A turbulent transport network model in MULTIFLUX coupled with TOUGH2

    International Nuclear Information System (INIS)

    Danko, G.; Bahrami, D.; Birkholzer, J.T.

    2011-01-01

    A new numerical method is described for the fully iterated, conjugate solution of two discrete submodels, involving (a) a transport network model for heat, moisture, and airflows in a high-permeability, air-filled cavity; and (b) a variably saturated fractured porous medium. The transport network submodel is an integrated-parameter, computational fluid dynamics solver, describing the thermal-hydrologic transport processes in the flow channel system of the cavity with laminar or turbulent flow and convective heat and mass transport, using MULTIFLUX. The porous medium submodel, using TOUGH2, is a solver for the heat and mass transport in the fractured rock mass. The new model solution extends the application fields of TOUGH2 by integrating it with turbulent flow and transport in a discrete flow network system. We present demonstrational results for a nuclear waste repository application at Yucca Mountain with the most realistic model assumptions and input parameters including the geometrical layout of the nuclear spent fuel and waste with variable heat load for the individual containers. The MULTIFLUX and TOUGH2 model elements are fully iterated, applying a programmed reprocessing of the Numerical Transport Code Functionalization model-element in an automated Outside Balance Iteration loop. The natural, convective airflow field and the heat and mass transport in a representative emplacement drift during postclosure are explicitly solved in the new model. The results demonstrate that the direction and magnitude of the air circulation patterns and all transport modes are strongly affected by the heat and moisture transport processes in the surrounding rock, justifying the need for a coupled, fully iterated model solution such as the one presented in the paper.

  7. Exposure of wide cerebellomedullary cisterns for vascular lesion surgeries in cerebellomedullary cisterns: opening of unilateral cerebellomedullary fissures combined with lateral foramen magnum approach.

    Science.gov (United States)

    Matsushima, Toshio; Kawashima, Masatou; Inoue, Kohei; Matsushima, Ken; Miki, Koichi

    2014-11-01

    To clarify microsurgical anatomic features of the cerebellomedullary fissure (CMF), the natural cleavage plane between the cerebellum and the medulla, and its relationship to the cerebellomedullary cistern (CMC) and to describe a surgical technique that uses the unilateral trans-CMF approach for CMC surgeries. In the anatomic study, 2 formalin-fixed cadaver heads were used. In the clinical study, 3 patients with vertebral artery-posterior inferior cerebellar artery aneurysms and 3 patients with glossopharyngeal neuralgia were surgically treated through the unilateral trans-CMF approach combined with the transcondylar fossa approach, which is a lateral foramen magnum approach. The CMC was present at the lateral end of the CMF. The CMF was closed by arachnoidal adhesion, and the cerebellar hemisphere was superiorly attached to the cerebellar peduncle. After the unilateral CMF was completely opened, the cerebellar hemisphere was easily retracted rostrodorsally. Clinically, almost completely opening the unilateral CMF markedly enabled the retraction of the biventral lobule to obtain a wide surgical field safely for vascular CMC lesions. We present 2 representative cases. Combined unilateral trans-CMF/lateral foramen magnum approaches provide a wide and close surgical field in the CMC, allowing easy and safe CMC surgery. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. A review on transportation of heat energy over long distance. Exploratory development

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Q.; Wang, R.Z. [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Luo, L.; Sauce, G. [LOCIE, Polytech' Savoie, Campus Scientifique, Savoie Technolac, 73376 Le Bourget-Du-Lac cedex (France)

    2009-08-15

    This paper presents a review on transportation of heat energy over long distance. For the transportation of high-temperature heat energy, the chemical catalytic reversible reaction is almost the only way available, and there are several reactions have been studied. For the relatively low-temperature heat energy, which exists widely as waste heat, there are mainly five researching aspects at present: chemical reversible reactions, phase change thermal energy storage and transportation, hydrogen-absorbing alloys, solid-gas adsorption and liquid-gas absorption. The basic principles and the characteristics of these methods are discussed. (author)

  9. Monte Carlo impurity transport modeling in the DIII-D transport

    International Nuclear Information System (INIS)

    Evans, T.E.; Finkenthal, D.F.

    1998-04-01

    A description of the carbon transport and sputtering physics contained in the Monte Carlo Impurity (MCI) transport code is given. Examples of statistically significant carbon transport pathways are examined using MCI's unique tracking visualizer and a mechanism for enhanced carbon accumulation on the high field side of the divertor chamber is discussed. Comparisons between carbon emissions calculated with MCI and those measured in the DIII-D tokamak are described. Good qualitative agreement is found between 2D carbon emission patterns calculated with MCI and experimentally measured carbon patterns. While uncertainties in the sputtering physics, atomic data, and transport models have made quantitative comparisons with experiments more difficult, recent results using a physics based model for physical and chemical sputtering has yielded simulations with about 50% of the total carbon radiation measured in the divertor. These results and plans for future improvement in the physics models and atomic data are discussed

  10. ECR heating in L-2M stellarator

    International Nuclear Information System (INIS)

    Grebenshchikov, S.E.; Batanov, G.M.; Fedyanin, O.I.

    1995-01-01

    The first results of ECH experiments in the L-2M stellarator are presented. The main goal of the experiments is to investigate the physics of ECH and plasma confinement at very high values of the volume heating power density. A current free plasma is produced and heated by extraordinary waves at the second harmonic of the electron cyclotron frequency. The experimental results are compared with the numerical simulations of plasma confinement and heating processes based on neoclassical theory using the full matrix of transport coefficients and with LHD-scaling. 4 refs., 2 figs

  11. Fluctuation theory for transport properties in multicomponent mixtures: thermodiffusion and heat conductivity

    DEFF Research Database (Denmark)

    Shapiro, Alexander

    2004-01-01

    The theory of transport properties in multicomponent gas and liquid mixtures, which was previously developed for diffusion coefficients, is extended onto thermodiffusion coefficients and heat conductivities. The derivation of the expressions for transport properties is based on the general statis...... of the heat conductivity coefficient for ideal gas. (C) 2003 Elsevier B.V. All rights reserved.......The theory of transport properties in multicomponent gas and liquid mixtures, which was previously developed for diffusion coefficients, is extended onto thermodiffusion coefficients and heat conductivities. The derivation of the expressions for transport properties is based on the general...

  12. Performance of the FFTF heat transport system during cycles 1 and 2

    International Nuclear Information System (INIS)

    Burke, T.M.; Yunker, W.H.; Cramer, E.R.

    1983-01-01

    From April 1982 through May 1983, the Fast Flux Test Facility (FFTF) completed its first two full cycles of operation. This experience has provided significant information relative to the performance of the Main Heat Transport System (MHTS). While in general, the MHTS performance has been extremely good, there have been a few unanticipated events and trends which could very well influence the design and/or operation of further LMFBR plants. The performance of the major MHTS components is discussed

  13. 3-D neutron transport benchmarks

    International Nuclear Information System (INIS)

    Takeda, T.; Ikeda, H.

    1991-03-01

    A set of 3-D neutron transport benchmark problems proposed by the Osaka University to NEACRP in 1988 has been calculated by many participants and the corresponding results are summarized in this report. The results of K eff , control rod worth and region-averaged fluxes for the four proposed core models, calculated by using various 3-D transport codes are compared and discussed. The calculational methods used were: Monte Carlo, Discrete Ordinates (Sn), Spherical Harmonics (Pn), Nodal Transport and others. The solutions of the four core models are quite useful as benchmarks for checking the validity of 3-D neutron transport codes

  14. Foramen magnum meningiomas: surgical treatment in a single public institution in a developing country

    Directory of Open Access Journals (Sweden)

    Benedicto Oscar Colli

    2014-07-01

    Full Text Available Objective: To analyze the clinical outcome of patients with foramen magnum (FM meningiomas. Method: Thirteen patients (11 Feminine / 2 Masculine with FM meningiomas operated on through lateral suboccipital approach were studied. Clinical outcome were analyzed using survival (SC and recurrence-free survival curves (RFSC. Results: All tumors were World Health Organization grade I. Total, subtotal and partial resections were acchieved in 69.2%, 23.1% and 7.7%, respectively, and SC was better for males and RFSC for females. Tumor location, extent of resection and involvement of vertebral artery/lower cranial nerves did not influence SC and RFSC. Recurrence rate was 7.7%. Operative mortality was 0. Main complications were transient (38.5% and permanent (7.7% lower cranial nerve deficits, cerebrospinal fluid fistula (30.8%, and transient and permanent respiratory difficulties in 7.7% each. Conclusions: FM meningiomas can be adequately treated in public hospitals in developing countries if a multidisciplinary team is available for managing postoperative lower cranial nerve deficits.

  15. SRNA-2K5, Proton Transport Using 3-D by Monte Carlo Techniques

    International Nuclear Information System (INIS)

    Ilic, Radovan D.

    2005-01-01

    1 - Description of program or function: SRNA-2K5 performs Monte Carlo transport simulation of proton in 3D source and 3D geometry of arbitrary materials. The proton transport based on condensed history model, and on model of compound nuclei decays that creates in nonelastic nuclear interaction by proton absorption. 2 - Methods: The SRNA-2K5 package is developed for time independent simulation of proton transport by Monte Carlo techniques for numerical experiments in complex geometry, using PENGEOM from PENELOPE with different material compositions, and arbitrary spectrum of proton generated from the 3D source. This package developed for 3D proton dose distribution in proton therapy and dosimetry, and it was based on the theory of multiple scattering. The compound nuclei decay was simulated by our and Russian MSDM models using ICRU 49 and ICRU 63 data. If protons trajectory is divided on great number of steps, protons passage can be simulated according to Berger's Condensed Random Walk model. Conditions of angular distribution and fluctuation of energy loss determinate step length. Physical picture of these processes is described by stopping power, Moliere's angular distribution, Vavilov's distribution with Sulek's correction per all electron orbits, and Chadwick's cross sections for nonelastic nuclear interactions, obtained by his GNASH code. According to physical picture of protons passage and with probabilities of protons transition from previous to next stage, which is prepared by SRNADAT program, simulation of protons transport in all SRNA codes runs according to usual Monte Carlo scheme: (i) proton from the spectrum prepared for random choice of energy, position and space angle is emitted from the source; (ii) proton is loosing average energy on the step; (iii) on that step, proton experience a great number of collisions, and it changes direction of movement randomly chosen from angular distribution; (iv) random fluctuation is added to average energy loss; (v

  16. A differentially pumped argon plasma in the linear plasma generator Magnum-PSI: gas flow and dynamics of the ionized fraction

    NARCIS (Netherlands)

    Eck, van H.J.N.; Hansen, T.A.R.; Kleyn, A.W.; Meiden, van der H.J.; Schram, D.C.; Zeijlmans van Emmichoven, P.A.

    2011-01-01

    Magnum-PSI is a linear plasma generator designed to reach the plasma–surface interaction (PSI) regime of ITER and nuclear fusion reactors beyond ITER. To reach this regime, the influx of cold neutrals from the source must be significantly lower than the plasma flux reaching the target. This is

  17. A differentially pumped argon plasma in the linear plasma generator Magnum-PSI: gas flow and dynamics of the ionized fraction

    NARCIS (Netherlands)

    van Eck, H.J.N.; Hansen, T.A.R.; Kleyn, A.W.; van der Meiden, H.J.; Schram, D.C.; Zeijlmans van Emmichoven, P.A.

    2011-01-01

    Magnum-PSI is a linear plasma generator designed to reach the plasma-surface interaction (PSI) regime of ITER and nuclear fusion reactors beyond ITER. To reach this regime, the influx of cold neutrals from the source must be significantly lower than the plasma flux reaching the target. This is

  18. Radio-frequency heating and neutral atom transport in a fluid-magnetohydrodynamic treatment of burning tokamak plasmas

    International Nuclear Information System (INIS)

    Conn, R.W.; Mau, T.K.; Prinja, A.K.

    1983-01-01

    A physical model for the space and time evolution of the primary parameters of ordinary and burning tokamak plasmas is described by employing a fluid plasma treatment coupled to a magnetohydrodynamic equilibrium description, the solution to the appropriate Maxwell equations, and the solution of the linear transport equation describing neutral atom transport in plasmas. The specific problems of plasma heating by ion cyclotron radiofrequency (ICRF) waves and neutral atom transport in the plasma edge and in complicated geometrical components such as divertor channels or pumped limiter structures are analyzed. A theoretical, onedimensional slab model of ICRF heating at ω = 2ω/SUB cD/ is developed and applied to determine the space-time response of tokamak plasmas. Generally, strong single-pass absorption is found for high-density, high (β) plasmas using a low k 11 spectrum (0.05 to 0.1 cm -1 ) although for (β > 1%, electron Landau damping becomes important. Deterministic and Monte Carlo methods to solve the neutral atom transport problem are described. Specific application to determine the spectrum of neutral atoms emerging from the duct of a pump limiter shows it to be hard (mean energy > 20 eV), indicating very incomplete energy thermalization. Uncertainties are identified in the overall problem of dynamic burning plasma analysis caused by the complexity of the problem itself and by uncertainties in fundamental areas such as plasma transport coefficients, stability, and plasma edge physics

  19. Heat and damp transport in cavity bricks. Waerme- und Feuchtetransport in Hochlochziegeln

    Energy Technology Data Exchange (ETDEWEB)

    Elsner, M

    1987-11-19

    The aim of this work is a systematic measurement of the structural effect of cavity bricks on the thermal insulation and thermal storage values depending on the material values of the bricks and the mortar. The arrangement and orientation of the hollow spaces and their dimensions should be varied. Brick shapes with socalled handle slots, which give more convenient handling, and with mortar pockets instead of mortar gaps, should be taken into account in the investigation. Special attention should be paid to the heat transport mechanism in the hollow spaces, where thermal conduction, thermal radiation and convection heat transport are superimposed on one another. The second main aim of the work is the calculation of the coupled heat and damp transport in hollow bricks. The heat and damp transport is described by a coupled system of differential equations, where the decisive transport coefficients should be shown as a function of the variables determining the transport processes. (orig./MM).

  20. Seasonal and mesoscale variability of oceanic transport of anthropogenic CO2

    Directory of Open Access Journals (Sweden)

    J.-C. Dutay

    2009-11-01

    Full Text Available Estimates of the ocean's large-scale transport of anthropogenic CO2 are based on one-time hydrographic sections, but the temporal variability of this transport has not been investigated. The aim of this study is to evaluate how the seasonal and mesoscale variability affect data-based estimates of anthropogenic CO2 transport. To diagnose this variability, we made a global anthropogenic CO2 simulation using an eddy-permitting version of the coupled ocean sea-ice model ORCA-LIM. As for heat transport, the seasonally varying transport of anthropogenic CO2 is largest within 20° of the equator and shows secondary maxima in the subtropics. Ekman transport generally drives most of the seasonal variability, but the contribution of the vertical shear becomes important near the equator and in the Southern Ocean. Mesoscale variabilty contributes to the annual-mean transport of both heat and anthropogenic CO2 with strong poleward transport in the Southern Ocean and equatorward transport in the tropics. This "rectified" eddy transport is largely baroclinic in the tropics and barotropic in the Southern Ocean due to a larger contribution from standing eddies. Our analysis revealed that most previous hydrographic estimates of meridional transport of anthropogenic CO2 are severely biased because they neglect temporal fluctuations due to non-Ekman velocity variations. In each of the three major ocean basins, this bias is largest near the equator and in the high southern latitudes. In the subtropical North Atlantic, where most of the hydrographic-based estimates have been focused, this uncertainty represents up to 20% and 30% of total meridional transport of heat and CO2. Generally though, outside the tropics and Southern Ocean, there are only small variations in meridional transport due to seasonal variations in tracer fields and time variations in eddy transport. For the North Atlantic, eddy variability accounts for up to 10% and 15% of the total transport of

  1. Heat transport the cold way

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    A novel system for long-distance heat transport is being born in the 'Kernforschungsanlage Juelich' with the project being called 'Nukleare Fernenergie' (nuclear district energy). The project is also known as 'EVA/ADAM' [EVA = Einzelrohr-Versuchs-Anlage (single tube test facility); ADAM = Anlage mit Drei Adiabaten Methanisierungsreaktoren (plant provided with three adiabate methanising reactors)] and is based in principle on transport of energy in chemical bond within a closed loop. In the 60ies already this development was discussed both in the 'Kernforschungsanlage Juelich' and in the 'Rheinische Braunkohlenwerke' independent of each other. In 1975 these two organizations concluded a co-operation contract. (orig.) [de

  2. Heat pulse analysis in JET and relation to local energy transport models

    International Nuclear Information System (INIS)

    Haas, J.C.M. de; Lopes Cardozo, N.J.; Han, W.; Sack, C.; Taroni, A.

    1989-01-01

    The evolution of a perturbation T e of the electron temperature depends on the linearised expression of the heat flux q e and may be not simply related to the local value of the electron heat conductivity χ e . It is possible that local heat transport models predicting similar temperature profiles and global energy confinement properties, imply a different propagation of heat pulses. We investigate here this possibility for the case of two models developed at JET. We also present results obtained at JET on a set of discharges covering the range of currents from 2 to 5 MA. Only L-modes, limiter discharges are considered here. Experimental results on the scaling of χ HP , the value of χ e related to heat pulse propagation, are compared with those of χ HP derived from the models. (author) 7 refs., 2 figs., 2 tabs

  3. Heat transport in the XXZ spin chain: from ballistic to diffusive regimes and dephasing enhancement

    International Nuclear Information System (INIS)

    Mendoza-Arenas, J J; Al-Assam, S; Clark, S R; Jaksch, D

    2013-01-01

    In this work we study the heat transport in an XXZ spin-1/2 Heisenberg chain with homogeneous magnetic field, incoherently driven out of equilibrium by reservoirs at the boundaries. We focus on the effect of bulk dephasing (energy-dissipative) processes in different parameter regimes of the system. The non-equilibrium steady state of the chain is obtained by simulating its evolution under the corresponding Lindblad master equation, using the time evolving block decimation method. In the absence of dephasing, the heat transport is ballistic for weak interactions, while being diffusive in the strongly interacting regime, as evidenced by the heat current scaling with the system size. When bulk dephasing takes place in the system, diffusive transport is induced in the weakly interacting regime, with the heat current monotonically decreasing with the dephasing rate. In contrast, in the strongly interacting regime, the heat current can be significantly enhanced by dephasing for systems of small size. (paper)

  4. Electron heat transport in shaped TCV L-mode plasmas

    International Nuclear Information System (INIS)

    Camenen, Y; Pochelon, A; Bottino, A; Coda, S; Ryter, F; Sauter, O; Behn, R; Goodman, T P; Henderson, M A; Karpushov, A; Porte, L; Zhuang, G

    2005-01-01

    Electron heat transport experiments are performed in L-mode discharges at various plasma triangularities, using radially localized electron cyclotron heating to vary independently both the electron temperature T e and the normalized electron temperature gradient R/L T e over a large range. Local gyro-fluid (GLF23) and global collisionless gyro-kinetic (LORB5) linear simulations show that, in the present experiments, trapped electron mode (TEM) is the most unstable mode. Experimentally, the electron heat diffusivity χ e is shown to decrease with increasing collisionality, and no dependence of χ e on R/L T e is observed at high R/L T e values. These two observations are consistent with the predictions of TEM simulations, which supports the fact that TEM plays a crucial role in electron heat transport. In addition, over the broad range of positive and negative triangularities investigated, the electron heat diffusivity is observed to decrease with decreasing plasma triangularity, leading to a strong increase of plasma confinement at negative triangularity

  5. Thaw flow control for liquid heat transport systems

    Science.gov (United States)

    Kirpich, Aaron S.

    1989-01-01

    In a liquid metal heat transport system including a source of thaw heat for use in a space reactor power system, the thaw flow throttle or control comprises a fluid passage having forward and reverse flow sections and a partition having a plurality of bleed holes therein to enable fluid flow between the forward and reverse sections. The flow throttle is positioned in the system relatively far from the source of thaw heat.

  6. Perturbative Heat Transport Experiments on TJ-II

    International Nuclear Information System (INIS)

    Eguilor, S.; Castejon, F.; Luna, E. de la; Cappa, A.; Likin, K.; Fernandez, A.; Tj-II, T.

    2002-01-01

    Heat wave experiments are performed on TJ-II stellarator plasmas to estimate both heat diffusivity and power deposition profiles. High frequency ECRH modulation experiments are used to obtain the power deposition profiles, which is observed to be wider and duller than estimated by tracing techniques. The causes of this difference are discussed in the paper. Fourier analysis techniques are used to estimate the heat diffusivity in low frequency ECRH modulation experiments. This include the power deposition profile as a new ingredient. ECHR switch on/off experiments are exploited to obtain power deposition and heat diffusivities profile. Those quantities are compared with the obtained by modulation experiments and transport analysis, showing a good agreement. (Author) 18 refs

  7. Perturbative Heat Transport Experiments on TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Eguilor, S.; Castejon, F.; Luna, E. de la; Cappa, A.; Likin, K.; Fernandez, A.; Tj-II, T.

    2002-07-01

    Heat wave experiments are performed on TJ-II stellarator plasmas to estimate both heat diffusivity and power deposition profiles. High frequency ECRH modulation experiments are used to obtain the power deposition profiles, which is observed to be wider and duller than estimated by tracing techniques. The causes of this difference are discussed in the paper. Fourier analysis techniques are used to estimate the heat diffusivity in low frequency ECRH modulation experiments. This include the power deposition profile as a new ingredient. ECHR switch on/off experiments are exploited to obtain power deposition and heat diffusivities profile. Those quantities are compared with the obtained by modulation experiments and transport analysis, showing a good agreement. (Author) 18 refs.

  8. D III-D divertor target heat flux measurements during Ohmic and neutral beam heating

    International Nuclear Information System (INIS)

    Hill, D.N.; Petrie, T.; Mahdavi, M.A.; Lao, L.; Howl, W.

    1988-01-01

    Time resolved power deposition profiles on the D III-D divertor target plates have been measured for Ohmic and neutral beam injection heated plasmas using fast response infrared thermography (τ ≤ 150 μs). Giant Edge Localized Modes have been observed which punctuate quiescent periods of good H-mode confinement and deposit more than 5% of the stored energy of the core plasma on the divertor armour tiles on millisecond time-scales. The heat pulse associated with these events arrives approximately 0.5 ms earlier on the outer leg of the divertor relative to the inner leg. The measured power deposition profiles are displaced relative to the separatrix intercepts on the target plates, and the peak heat fluxes are a function of core plasma density. (author). Letter-to-the-editor. 11 refs, 7 figs

  9. Non-standard model for electron heat transport for multidimensional hydrodynamic codes

    Energy Technology Data Exchange (ETDEWEB)

    Nicolai, Ph.; Busquet, M.; Schurtz, G. [CEA/DAM-Ile de France, 91 - Bruyeres Le Chatel (France)

    2000-07-01

    In simulations of laser-produced plasma, modeling of heat transport requires an artificial limitation of standard Spitzer-Haerm fluxes. To improve heat conduction processing, we have developed a multidimensional model which accounts for non-local features of heat transport and effects of self-generated magnetic fields. This consistent treatment of both mechanisms has been implemented in a two-dimensional radiation-hydrodynamic code. First results indicate good agreements between simulations and experimental data. (authors)

  10. Non-standard model for electron heat transport for multidimensional hydrodynamic codes

    International Nuclear Information System (INIS)

    Nicolai, Ph.; Busquet, M.; Schurtz, G.

    2000-01-01

    In simulations of laser-produced plasma, modeling of heat transport requires an artificial limitation of standard Spitzer-Haerm fluxes. To improve heat conduction processing, we have developed a multidimensional model which accounts for non-local features of heat transport and effects of self-generated magnetic fields. This consistent treatment of both mechanisms has been implemented in a two-dimensional radiation-hydrodynamic code. First results indicate good agreements between simulations and experimental data. (authors)

  11. Magnetically Modulated Heat Transport in a Global Simulation of Solar Magneto-convection

    Energy Technology Data Exchange (ETDEWEB)

    Cossette, Jean-Francois [Laboratory for Atmospheric and Space Physics, Campus Box 600, University of Colorado, Boulder, CO 80303 (United States); Charbonneau, Paul [Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7 (Canada); Smolarkiewicz, Piotr K. [European Centre for Medium-Range Weather Forecasts, Reading, RG2 9AX (United Kingdom); Rast, Mark P., E-mail: Jean-Francois.Cossette@lasp.colorado.edu, E-mail: paulchar@astro.umontreal.ca, E-mail: smolar@ecmwf.int, E-mail: Mark.Rast@lasp.colorado.edu [Department of Astrophysical and Planetary Sciences, Laboratory for Atmospheric and Space Physics, Campus Box 391, University of Colorado, Boulder, CO 80303 (United States)

    2017-05-20

    We present results from a global MHD simulation of solar convection in which the heat transported by convective flows varies in-phase with the total magnetic energy. The purely random initial magnetic field specified in this experiment develops into a well-organized large-scale antisymmetric component undergoing hemispherically synchronized polarity reversals on a 40 year period. A key feature of the simulation is the use of a Newtonian cooling term in the entropy equation to maintain a convectively unstable stratification and drive convection, as opposed to the specification of heating and cooling terms at the bottom and top boundaries. When taken together, the solar-like magnetic cycle and the convective heat flux signature suggest that a cyclic modulation of the large-scale heat-carrying convective flows could be operating inside the real Sun. We carry out an analysis of the entropy and momentum equations to uncover the physical mechanism responsible for the enhanced heat transport. The analysis suggests that the modulation is caused by a magnetic tension imbalance inside upflows and downflows, which perturbs their respective contributions to heat transport in such a way as to enhance the total convective heat flux at cycle maximum. Potential consequences of the heat transport modulation for solar irradiance variability are briefly discussed.

  12. A Static and Dynamic Investigation of Quantum Nonlinear Transport in Highly Dense and Mobile 2D Electron Systems

    Science.gov (United States)

    Dietrich, Scott

    Heterostructures made of semiconductor materials may be one of most versatile environments for the study of the physics of electron transport in two dimensions. These systems are highly customizable and demonstrate a wide range of interesting physical phenomena. In response to both microwave radiation and DC excitations, strongly nonlinear transport that gives rise to non-equilibrium electron states has been reported and investigated. We have studied GaAs quantum wells with a high density of high mobility two-dimensional electrons placed in a quantizing magnetic field. This study presents the observation of several nonlinear transport mechanisms produced by the quantum nature of these materials. The quantum scattering rate, 1tau/q, is an important parameter in these systems, defining the width of the quantized energy levels. Traditional methods of extracting 1tau/q involve studying the amplitude of Shubnikov-de Haas oscillations. We analyze the quantum positive magnetoresistance due to the cyclotron motion of electrons in a magnetic field. This method gives 1tau/q and has the additional benefit of providing access to the strength of electron-electron interactions, which is not possible by conventional techniques. The temperature dependence of the quantum scattering rate is found to be proportional to the square of the temperature and is in very good agreement with theory that considers electron-electron interactions in 2D systems. In quantum wells with a small scattering rate - which corresponds to well-defined Landau levels - quantum oscillations of nonlinear resistance that are independent of magnetic field strength have been observed. These oscillations are periodic in applied bias current and are connected to quantum oscillations of resistance at zero bias: either Shubnikov-de Haas oscillations for single subband systems or magnetointersubband oscillations for two subband systems. The bias-induced oscillations can be explained by a spatial variation of electron

  13. Behavior of electron and ion transport in discharges with an internal transport barrier in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Greenfield, C.M.; Staebler, G.M.; Rettig, C.L.

    1999-01-01

    We report results of experiments to further determine the underlying physics behind the formation and development of internal transport barriers (ITB) in the DIII-D tokamak. The initial ITB formation occurs when the neutral beam heating power exceeds a threshold value during the early stages of the current ramp in low-density discharges. This region of reduced transport, made accessible by suppression of long-wavelength turbulence by sheared flows, is most evident in the ion temperature and impurity rotation profiles. In some cases, reduced transport is also observed in the electron temperature and density profiles. If the power is near the threshold, the barrier remains stationary and encloses only a small fraction of the plasma volume. If, however, the power is increased, the transport barrier expands to encompass a larger fraction of the plasma volume. The dynamic behavior of the transport barrier during the growth phase exhibits rapid transport events that are associated with both broadening of the profiles and reductions in turbulence and associated transport. In some, but not all, cases, these events are correlated with the safety factor q passing through integer values. The final state following this evolution is a plasma exhibiting ion thermal transport at or below neoclassical levels. Typically, the electron thermal transport remains anomalously high. Recent experimental results are reported in which rf electron heating was applied to plasmas with an ion ITB, thereby increasing both the electron and ion transport. Although the results are partially in agreement with the usual E-vector x B-vector shear suppression hypothesis, the results still leave questions that must be addressed in future experiments. (author)

  14. Behavior of electron and ion transport in discharges with an internal transport barrier in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Greenfield, C.M.; Staebler, G.M.; Rettig, C.L.

    1998-12-01

    The authors report results of experiments to further determine the underlying physics behind the formation and development of internal transport barriers (ITB) in the DIII-D tokamak. The initial ITB formation occurs when the neutral beam heating power exceeds a threshold value during the early stages of the current ramp in low-density discharges. This region of reduced transport, made accessible by suppression of long-wavelength turbulence by sheared flows, is most evident in the ion temperature and impurity rotation profiles. In some cases, reduced transport is also observed in the electron temperature and density profiles. If the power is near the threshold, the barrier remains stationary and enclosed only a small fraction of the plasma volume. If, however, the power is increased, the transport barrier expands to encompass a larger fraction of the plasma volume. The dynamic behavior of the transport barrier during the growth phase exhibits rapid transport events that are associated with both broadening of the profiles and reductions in turbulence and associated transport. In some, but not all, cases, these events are correlated with the safety factor q passing through integer values. The final state following this evolution is a plasma exhibiting ion thermal transport at or below neoclassical levels. Typically, the electron thermal transport remains anomalously high. Recent experimental results are reported in which rf electron heating was applied to plasmas with an ion ITB, thereby increasing both the electron and ion transport. Although the results are partially in agreement with the usual rvec E x rvec B shear suppression hypothesis, the results still leave questions that must be addressed in future experiments

  15. Analysis of natural convection heat transfer with crust formation in the molten metal pool using CONV-2 and 3D computer codes

    International Nuclear Information System (INIS)

    Park, R. J.; Kang, K. H.; Kim, S. B.; Kim, H. D.; Choi, S. M.

    1998-01-01

    Analytical studies have been performed on natural convection heat transfer with crust formation in a molten metal pool to validate and evaluate experimental data using the CONV-2 and 3D computer codes. Two types of steady state tests, a low and high geometric aspect ratio case in the molten metal pool, were performed to investigate crust thickness as a function of boundary conditions. The CONV-2 and 3D computer codes were developed under the OECD/NEA RASPLAV project to simulate two- and three-dimensional natural convection heat transfer with crust formation, respectively. The Rayleigh-Benard flow patterns in the molten metal pool contribute to the temperature distribution, which affects non-uniform crust formation. The CONV-2D results on crust thickness are a little higher than the experimental data because of heat loss during the test. In comparison of the CONV-3D results with the CONV-2D results on crust thickness, the three-dimensional results are higher than the two-dimensional results, because of three dimensional natural convection flow and wall effect

  16. Foramen magnum schwannoma: review of the literature and report of a case

    International Nuclear Information System (INIS)

    Nacif, Marcelo Souto; Caiado, Stella; Oliveira, Nidia di Paula Silva; Paula Neto, Walter Teixeira de; Campos, Flavio do Amaral; Santos, Alair Augusto Sarmet Moreira Damas dos

    2001-01-01

    The authors report an unusual presentation of a voluminous neck schwannoma in a 53-year-old female that presented with a three-year history of progressive weakness associated with impaired movement of the limbs. Neurological examination revealed postural instability, unstable and paraparetic gait, tetraparesis and dyspnea. A preoperative magnetic resonance imaging of the neck revealed an expansive, extradural, well-circumscribed lesion, with soft-tissue attenuation, at the level of C1-C2 vertebral bodies. During surgery, the tumor was found to be extradural, lateral to the cervical spinal cord, attached to the C1 left nerve root and extending upwards through the foramen magnum. Histopathological analysis of the resected specimen confirmed the diagnosis of schwannoma. The patient showed a favorable outcome with progressive improvement of the symptoms. Magnetic resonance imaging proved to be valuable in the detection and evaluation of the lesion, although the definite diagnosis was achieved only after histopathological studies. We concluded that magnetic resonance imaging for early diagnosis and prompt surgical resection seems to be the best approach to achieve good prognosis. (author)

  17. LLE-LLNL progress report on studies in nonlocal heat transport in spherical plasmas using the Fokker-Planck code SPARK

    International Nuclear Information System (INIS)

    Epperlein, E.M.

    1992-01-01

    Preliminary 1-D studies of nonlocal heat transport in spherical plasmas based on the Fokker-Planck code SPARK indicate significant levels of electron preheat and radial heat flux across a spherical heat sink surface kept at fixed temperature. However, the diffusive approximation to the Fokker-Planck equation is shown to be particularly sensitive to the nature of the inner surface boundary condition chosen. A suggested remedy is the inclusion of a target capsule in future simulations studies with SPARK

  18. NON-LINEAR TRANSIENT HEAT CONDUCTION ANALYSIS OF INSULATION WALL OF TANK FOR TRANSPORTATION OF LIQUID ALUMINUM

    Directory of Open Access Journals (Sweden)

    Miroslav M Živković

    2010-01-01

    Full Text Available This paper deals with transient nonlinear heat conduction through the insulation wall of the tank for transportation of liquid aluminum. Tanks designed for this purpose must satisfy certain requirements regarding temperature of loading and unloading, during transport. Basic theoretical equations are presented, which describe the problem of heat conduction finite element (FE analysis, starting from the differential equation of energy balance, taking into account the initial and boundary conditions of the problem. General 3D problem for heat conduction is considered, from which solutions for two- and one-dimensional heat conduction can be obtained, as special cases. Forming of the finite element matrices using Galerkin method is briefly described. The procedure for solving equations of energy balance is discussed, by methods of resolving iterative processes of nonlinear transient heat conduction. Solution of this problem illustrates possibilities of PAK-T software package, such as materials properties, given as tabular data, or analytical functions. Software also offers the possibility to solve nonlinear and transient problems with incremental methods. Obtained results for different thicknesses of the tank wall insulation materials enable its comparison in regards to given conditions

  19. FireStem2D — A two-dimensional heat transfer model for simulating tree stem injury in fires

    Science.gov (United States)

    Efthalia K. Chatziefstratiou; Gil Bohrer; Anthony S. Bova; Ravishankar Subramanian; Renato P.M. Frasson; Amy Scherzer; Bret W. Butler; Matthew B. Dickinson

    2013-01-01

    FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem) and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by...

  20. 3D modelling of coupled mass and heat transfer of a convection-oven roasting process

    DEFF Research Database (Denmark)

    Feyissa, Aberham Hailu; Adler-Nissen, Jens; Gernaey, Krist

    2013-01-01

    A 3D mathematical model of coupled heat and mass transfer describing oven roasting of meat has been developed from first principles. The proposed mechanism for the mass transfer of water is modified and based on a critical literature review of the effect of heat on meat. The model equations...... are based on a conservation of mass and energy, coupled through Darcy's equations of porous media - the water flow is mainly pressure-driven. The developed model together with theoretical and experimental assessments were used to explain the heat and water transport and the effect of the change...

  1. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1)

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, Marta; Zaja, Roko [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb (Croatia); Fent, Karl [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology (ETH Zürich), Department of Environmental System Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich (Switzerland); Smital, Tvrtko, E-mail: smital@irb.hr [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb (Croatia)

    2014-10-01

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos

  2. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1)

    International Nuclear Information System (INIS)

    Popovic, Marta; Zaja, Roko; Fent, Karl; Smital, Tvrtko

    2014-01-01

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos

  3. Heat Transport in Gapped Spin-Chain Systems

    International Nuclear Information System (INIS)

    Shimshoni, E.

    2006-01-01

    Full Text: We study the contribution of magnetic excitations to the heat transport in gapped spin-chain systems. These systems are characterized by a substantially enhanced heat conductivity, which can be traced back to the existence of weakly violated conservation laws. We focus particularly on the behavior of clean two-leg spin ladder compounds, where one-dimensional exotic spin excitations are coupled to three-dimensional phonons. We show that the contributions of the two types of heat carriers can not be easily disentangled. Depending on the ratios of spin gaps and the Debye energy, the heat conductivity can be either exponentially increasing or exponentially decreasing as a function of temperature (T). In addition, the magnetic contribution to the total heat conductivity may be either positive or negative. We discuss its T-dependence in various possible regimes, and note that in most regimes it is dominated by spin-phonon drag: the two types of heat carriers have almost the

  4. Temporally resolved characterization of shock-heated foam target with Al absorption spectroscopy for fast electron transport study

    Energy Technology Data Exchange (ETDEWEB)

    Yabuuchi, T.; Sawada, H.; Wei, M. S.; Beg, F. N. [Center for Energy Research, University of California, San Diego, La Jolla, California 92093 (United States); Regan, S. P.; Anderson, K.; Betti, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Hund, J.; Paguio, R. R.; Saito, K. M.; Stephens, R. B. [General Atomics, San Diego, California 92186 (United States); Key, M. H.; Mackinnon, A. J.; McLean, H. S.; Patel, P. K.; Wilks, S. C. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2012-09-15

    The CH foam plasma produced by a laser-driven shock wave has been characterized by a temporally resolved Al 1s-2p absorption spectroscopy technique. A 200 mg/cm{sup 3} foam target with Al dopant was developed for this experiment, which used an OMEGA EP [D. D. Meyerhofer et al., J. Phys.: Conf. Ser. 244, 032010 (2010)] long pulse beam with an energy of 1.2 kJ and 3.5 ns pulselength. The plasma temperatures were inferred with the accuracy of 5 eV from the fits to the measurements using an atomic physics code. The results show that the inferred temperature is sustained at 40-45 eV between 6 and 7 ns and decreases to 25 eV at 8 ns. 2-D radiation hydrodynamic simulations show a good agreement with the measurements. Application of the shock-heated foam plasma platform toward fast electron transport experiments is discussed.

  5. Modeling of heat and mass transfer in 2D and 3D molten pools. Progress and future trends

    International Nuclear Information System (INIS)

    Tchoudanov, V.V.

    2001-01-01

    Under increasing of complexity of heat and mass transfer problems in molten pools (the three-dimensional complex geometries of molten pool, turbulence, variable properties of materials, phase changes under local non-equilibrium etc.) for us a need has arisen in more perfect algorithms and methods of solution. To solve computational fluid dynamics problems in domain of arbitrary shapes including the variable properties of materials the new effective finite-volume numerical algorithm is developed, which based on a using the orthogonal and Cartesian local refinement matching and/or non-matching grids constructed automatically for a multi-block decomposition of a complex computational domain. The developed algorithm is applied to the heat and fluid flow equations (i.e. Navier-Stokes equations with energy equation) in the primitive variables formulation. Validation of the developed approach is carried out on the set of test problems, namely forced convection (flow about complex objects), natural convection and fluid flows with melting. Good agreement is obtained between numerical predictions and experimental data via the new multi-block approach. New approach is implemented in CONV2D and 3D codes. (author)

  6. Visualisation of heat transfer in 3D unsteady flows

    NARCIS (Netherlands)

    Speetjens, M.F.M.; Steenhoven, van A.A.

    2010-01-01

    Heat transfer in fluid flows traditionally is examined in terms oftemperature field and heat-transfer coefficients at non-adiabaticwalls. However, heat transfer may alternatively be considered asthe transport of thermal energy by the total convective-conductiveheat flux in a way analogous to the

  7. A one-dimensional transport code for the simulation of D-T burning tokamak plasma

    International Nuclear Information System (INIS)

    Tone, Tatsuzo; Maki, Koichi; Kasai, Masao; Nishida, Hidetsugu

    1980-11-01

    A one-dimensional transport code for D-T burning tokamak plasma has been developed, which simulates the spatial behavior of fuel ions(D, T), alpha particles, impurities, temperatures of ions and electrons, plasma current, neutrals, heating of alpha and injected beam particles. The basic transport equations are represented by one generalized equation so that the improvement of models and the addition of new equations may be easily made. A model of burn control using a variable toroidal field ripple is employed. This report describes in detail the simulation model, numerical method and the usage of the code. Some typical examples to which the code has been applied are presented. (author)

  8. Modification of the finite element heat and mass transfer code (FEHMN) to model multicomponent reactive transport

    International Nuclear Information System (INIS)

    Viswanathan, H.S.

    1995-01-01

    The finite element code FEHMN is a three-dimensional finite element heat and mass transport simulator that can handle complex stratigraphy and nonlinear processes such as vadose zone flow, heat flow and solute transport. Scientists at LANL have been developed hydrologic flow and transport models of the Yucca Mountain site using FEHMN. Previous FEHMN simulations have used an equivalent K d model to model solute transport. In this thesis, FEHMN is modified making it possible to simulate the transport of a species with a rigorous chemical model. Including the rigorous chemical equations into FEHMN simulations should provide for more representative transport models for highly reactive chemical species. A fully kinetic formulation is chosen for the FEHMN reactive transport model. Several methods are available to computationally implement a fully kinetic formulation. Different numerical algorithms are investigated in order to optimize computational efficiency and memory requirements of the reactive transport model. The best algorithm of those investigated is then incorporated into FEHMN. The algorithm chosen requires for the user to place strongly coupled species into groups which are then solved for simultaneously using FEHMN. The complete reactive transport model is verified over a wide variety of problems and is shown to be working properly. The simulations demonstrate that gas flow and carbonate chemistry can significantly affect 14 C transport at Yucca Mountain. The simulations also provide that the new capabilities of FEHMN can be used to refine and buttress already existing Yucca Mountain radionuclide transport studies

  9. Subcooled He II heat transport in the channel with abrupt contractions/enlargements

    International Nuclear Information System (INIS)

    Maekawa, R.; Iwamoto, A.; Hamaguchi, S.; Mito, T.

    2002-01-01

    Heat transport mechanisms for subcooled He II in the channel with abrupt contractions and/or enlargements have been investigated under steady state conditions. The channel, made of G-10, contains various contraction geometries to simulate the cooling channel of a superconducting magnet. In other words, contractions are periodically placed along the channel to simulate the spacers within the magnet winding. A copper block heater inputs the heat to the channel from one end, while the other end is open to the He II bath. Temperature profiles were measured with temperature sensors embedded in the channel as a function of heat input. Calculations were performed using a simple one-dimensional turbulent heat transport equation and with geometric factor consideration. The effects on heat transport mechanisms in He II caused by abrupt change of channel geometry and size are discussed

  10. Status of the solar and infrared radiation submodels in the LLNL 1-D and 2-D chemical-transport models

    International Nuclear Information System (INIS)

    Grant, K.E.; Taylor, K.E.; Ellis, J.S.; Wuebbles, D.J.

    1987-07-01

    The authors have implemented a series of state of the art radiation transport submodels in previously developed one dimensional and two dimensional chemical transport models of the troposphere and stratosphere. These submodels provide the capability of calculating accurate solar and infrared heating rates. They are a firm basis for further radiation submodel development as well as for studying interactions between radiation and model dynamics under varying conditions of clear sky, clouds, and aerosols. 37 refs., 3 figs

  11. Thermal performance and heat transport in aquifer thermal energy storage

    Science.gov (United States)

    Sommer, W. T.; Doornenbal, P. J.; Drijver, B. C.; van Gaans, P. F. M.; Leusbrock, I.; Grotenhuis, J. T. C.; Rijnaarts, H. H. M.

    2014-01-01

    Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as their thermal performance. Furthermore, the increasing density of systems generates concern regarding thermal interference between the wells of one system and between neighboring systems. An assessment is made of (1) the thermal storage performance, and (2) the heat transport around the wells of an existing ATES system in the Netherlands. Reconstruction of flow rates and injection and extraction temperatures from hourly logs of operational data from 2005 to 2012 show that the average thermal recovery is 82 % for cold storage and 68 % for heat storage. Subsurface heat transport is monitored using distributed temperature sensing. Although the measurements reveal unequal distribution of flow rate over different parts of the well screen and preferential flow due to aquifer heterogeneity, sufficient well spacing has avoided thermal interference. However, oversizing of well spacing may limit the number of systems that can be realized in an area and lower the potential of ATES.

  12. Identification of coronal heating events in 3D simulations

    Science.gov (United States)

    Kanella, Charalambos; Gudiksen, Boris V.

    2017-07-01

    Context. The solar coronal heating problem has been an open question in the science community since 1939. One of the proposed models for the transport and release of mechanical energy generated in the sub-photospheric layers and photosphere is the magnetic reconnection model that incorporates Ohmic heating, which releases a part of the energy stored in the magnetic field. In this model many unresolved flaring events occur in the solar corona, releasing enough energy to heat the corona. Aims: The problem with the verification and quantification of this model is that we cannot resolve small scale events due to limitations of the current observational instrumentation. Flaring events have scaling behavior extending from large X-class flares down to the so far unobserved nanoflares. Histograms of observable characteristics of flares show powerlaw behavior for energy release rate, size, and total energy. Depending on the powerlaw index of the energy release, nanoflares might be an important candidate for coronal heating; we seek to find that index. Methods: In this paper we employ a numerical three-dimensional (3D)-magnetohydrodynamic (MHD) simulation produced by the numerical code Bifrost, which enables us to look into smaller structures, and a new technique to identify the 3D heating events at a specific instant. The quantity we explore is the Joule heating, a term calculated directly by the code, which is explicitly correlated with the magnetic reconnection because it depends on the curl of the magnetic field. Results: We are able to identify 4136 events in a volume 24 × 24 × 9.5 Mm3 (I.e., 768 × 786 × 331 grid cells) of a specific snapshot. We find a powerlaw slope of the released energy per second equal to αP = 1.5 ± 0.02, and two powerlaw slopes of the identified volume equal to αV = 1.53 ± 0.03 and αV = 2.53 ± 0.22. The identified energy events do not represent all the released energy, but of the identified events, the total energy of the largest events

  13. H-mode WEST tungsten divertor operation: deuterium and nitrogen seeded simulations with SOLEDGE2D-EIRENE

    Directory of Open Access Journals (Sweden)

    G. Ciraolo

    2017-08-01

    Full Text Available Simulations of WEST H-mode divertor scenarios have been performed with SOLEDGE2D-EIRENE edge plasma transport code, both for pure deuterium and nitrogen seeded discharge. In the pure deuterium case, a target heat flux of 8 MW/m2 is reached, but misalignment between heat and the particle outflux yields 50 eV plasma temperature at the target plates. With nitrogen seeding, the heat and particle outflux are observed to be aligned so that lower plasma temperatures at the target plates are achieved together with the required high heat fluxes. This change in heat and particle outflux alignment is analysed with respect to the role of divertor geometry and the impact of vertical vs horizontal target plates on neutrals spreading.

  14. A conserved WW domain-like motif regulates invariant chain-dependent cell-surface transport of the NKG2D ligand ULBP2.

    Science.gov (United States)

    Uhlenbrock, Franziska; van Andel, Esther; Andresen, Lars; Skov, Søren

    2015-08-01

    Malignant cells expressing NKG2D ligands on their cell surface can be directly sensed and killed by NKG2D-bearing lymphocytes. To ensure this immune recognition, accumulating evidence suggests that NKG2D ligands are trafficed via alternative pathways to the cell surface. We have previously shown that the NKG2D ligand ULBP2 traffics over an invariant chain (Ii)-dependent pathway to the cell surface. This study set out to elucidate how Ii regulates ULBP2 cell-surface transport: We discovered conserved tryptophan (Trp) residues in the primary protein sequence of ULBP1-6 but not in the related MICA/B. Substitution of Trp to alanine resulted in cell-surface inhibition of ULBP2 in different cancer cell lines. Moreover, the mutated ULBP2 constructs were retained and not degraded inside the cell, indicating a crucial role of this conserved Trp-motif in trafficking. Finally, overexpression of Ii increased surface expression of wt ULBP2 while Trp-mutants could not be expressed, proposing that this Trp-motif is required for an Ii-dependent cell-surface transport of ULBP2. Aberrant soluble ULBP2 is immunosuppressive. Thus, targeting a distinct protein module on the ULBP2 sequence could counteract this abnormal expression of ULBP2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Comparison of temperature estimates from heat transport model and electrical resistivity tomography during a shallow heat injection and storage experiment

    OpenAIRE

    Hermans, Thomas; Daoudi, Moubarak; Vandenbohede, Alexander; Robert, Tanguy; Caterina, David; Nguyen, Frédéric

    2012-01-01

    Groundwater resources are increasingly used around the world as geothermal systems. Understanding physical processes and quantification of parameters determining heat transport in porous media is therefore important. Geophysical methods may be useful in order to yield additional information with greater coverage than conventional wells. We report a heat transport study during a shallow heat injection and storage field test. Heated water (about 50°C) was injected for 6 days at the rate of 80 l...

  16. Experimental determination of local heat flux variation in an electrically heated BR-2 rod

    International Nuclear Information System (INIS)

    Meyer, L.; Merschroth, F.

    1977-08-01

    The installation of thermocouples within the cladding of an electrically heated BR-2 rod might cause local variations of heat flux. In order to detect a resulting temperature variation at the outer surface, experiments with a single electrically heated rod with heat fluxes up to 30.80 W/cm 2 and heat transfer coefficients up to 1000 W/m 2 K by forced convection in air were conducted. The surface temperatures were measured with an optical pyrometer. The experiment showed about 0.6% variation in the surface temperature. An analysis with the TAC2D-code shows that local variation in the heat flux under these conditions is less than 1.2%. (orig.) [de

  17. Detergent-induced stabilization and improved 3D map of the human heteromeric amino acid transporter 4F2hc-LAT2.

    Science.gov (United States)

    Meury, Marcel; Costa, Meritxell; Harder, Daniel; Stauffer, Mirko; Jeckelmann, Jean-Marc; Brühlmann, Béla; Rosell, Albert; Ilgü, Hüseyin; Kovar, Karin; Palacín, Manuel; Fotiadis, Dimitrios

    2014-01-01

    Human heteromeric amino acid transporters (HATs) are membrane protein complexes that facilitate the transport of specific amino acids across cell membranes. Loss of function or overexpression of these transporters is implicated in several human diseases such as renal aminoacidurias and cancer. HATs are composed of two subunits, a heavy and a light subunit, that are covalently connected by a disulphide bridge. Light subunits catalyse amino acid transport and consist of twelve transmembrane α-helix domains. Heavy subunits are type II membrane N-glycoproteins with a large extracellular domain and are involved in the trafficking of the complex to the plasma membrane. Structural information on HATs is scarce because of the difficulty in heterologous overexpression. Recently, we had a major breakthrough with the overexpression of a recombinant HAT, 4F2hc-LAT2, in the methylotrophic yeast Pichia pastoris. Microgram amounts of purified protein made possible the reconstruction of the first 3D map of a human HAT by negative-stain transmission electron microscopy. Here we report the important stabilization of purified human 4F2hc-LAT2 using a combination of two detergents, i.e., n-dodecyl-β-D-maltopyranoside and lauryl maltose neopentyl glycol, and cholesteryl hemisuccinate. The superior quality and stability of purified 4F2hc-LAT2 allowed the measurement of substrate binding by scintillation proximity assay. In addition, an improved 3D map of this HAT could be obtained. The detergent-induced stabilization of the purified human 4F2hc-LAT2 complex presented here paves the way towards its crystallization and structure determination at high-resolution, and thus the elucidation of the working mechanism of this important protein complex at the molecular level.

  18. Detergent-induced stabilization and improved 3D map of the human heteromeric amino acid transporter 4F2hc-LAT2.

    Directory of Open Access Journals (Sweden)

    Marcel Meury

    Full Text Available Human heteromeric amino acid transporters (HATs are membrane protein complexes that facilitate the transport of specific amino acids across cell membranes. Loss of function or overexpression of these transporters is implicated in several human diseases such as renal aminoacidurias and cancer. HATs are composed of two subunits, a heavy and a light subunit, that are covalently connected by a disulphide bridge. Light subunits catalyse amino acid transport and consist of twelve transmembrane α-helix domains. Heavy subunits are type II membrane N-glycoproteins with a large extracellular domain and are involved in the trafficking of the complex to the plasma membrane. Structural information on HATs is scarce because of the difficulty in heterologous overexpression. Recently, we had a major breakthrough with the overexpression of a recombinant HAT, 4F2hc-LAT2, in the methylotrophic yeast Pichia pastoris. Microgram amounts of purified protein made possible the reconstruction of the first 3D map of a human HAT by negative-stain transmission electron microscopy. Here we report the important stabilization of purified human 4F2hc-LAT2 using a combination of two detergents, i.e., n-dodecyl-β-D-maltopyranoside and lauryl maltose neopentyl glycol, and cholesteryl hemisuccinate. The superior quality and stability of purified 4F2hc-LAT2 allowed the measurement of substrate binding by scintillation proximity assay. In addition, an improved 3D map of this HAT could be obtained. The detergent-induced stabilization of the purified human 4F2hc-LAT2 complex presented here paves the way towards its crystallization and structure determination at high-resolution, and thus the elucidation of the working mechanism of this important protein complex at the molecular level.

  19. Effect of preliminary heat treatment on phase transformations and properties of the Kh15N5D2T (VNS-2) steel

    International Nuclear Information System (INIS)

    Madyanov, S.A.; Voronenko, B.I.; Makhnev, E.S.

    1978-01-01

    It is shown that preliminary heat treatment has a significant effect on the α→γ transformation kinetics, the quantity of residual austenite, the grain size and mechanical properties of the Kh15N5D2T steel after final heat treatment. The preliminary heat treatment regimes leading to the increase of the quantity of residual austenite and to grain refining increase the work of crack propagation in the finally strengthened state. The optimum properties were obtained after threefold preliminary tempering for 1h at 650 deg C. An approximately constant relation of α- and γ-phases (approximately 50%) is observed at 625 deg C irrespective of the investigated regimes of preliminary heat treatment

  20. Heat and momentum transport scalings in vertical convection

    Science.gov (United States)

    Shishkina, Olga

    2016-11-01

    For vertical convection, where a fluid is confined between two differently heated isothermal vertical walls, we investigate the heat and momentum transport, which are measured, respectively, by the Nusselt number Nu and the Reynolds number Re . For laminar vertical convection we derive analytically the dependence of Re and Nu on the Rayleigh number Ra and the Prandtl number Pr from our boundary layer equations and find two different scaling regimes: Nu Pr 1 / 4 Ra 1 / 4 , Re Pr - 1 / 2 Ra 1 / 2 for Pr > 1 . Direct numerical simulations for Ra from 105 to 1010 and Pr from 0.01 to 30 are in excellent ageement with our theoretical findings and show that the transition between the regimes takes place for Pr around 0.1. We summarize the results from and present new theoretical and numerical results for transitional and turbulent vertical convection. The work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh 405/4 - Heisenberg fellowship.

  1. D2O clusters isolated in rare-gas solids: Dependence of infrared spectrum on concentration, deposition rate, heating temperature, and matrix material

    Science.gov (United States)

    Shimazaki, Yoichi; Arakawa, Ichiro; Yamakawa, Koichiro

    2018-04-01

    The infrared absorption spectra of D2O monomers and clusters isolated in rare-gas matrices were systematically reinvestigated under the control of the following factors: the D2O concentration, deposition rate, heating temperature, and rare-gas species. We clearly show that the cluster-size distribution is dependent on not only the D2O concentration but also the deposition rate of a sample; as the rate got higher, smaller clusters were preferentially formed. Under the heating procedures at different temperatures, the cluster-size growth was successfully observed. Since the monomer diffusion was not enough to balance the changes in the column densities of the clusters, the dimer diffusion was likely to contribute the cluster growth. The frequencies of the bonded-OD stretches of (D2O)k with k = 2-6 were almost linearly correlated with the square root of the critical temperature of the matrix material. Additional absorption peaks of (D2O)2 and (D2O)3 in a Xe matrix were assigned to the species trapped in tight accommodation sites.

  2. Molecular dynamics study on heat transport from single-walled carbon nanotubes to Si substrate

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Ya; Zhu, Jie, E-mail: zhujie@iet.cn; Tang, Da-Wei

    2015-02-06

    In this paper, non-equilibrium molecular dynamics simulations were performed to investigate the heat transport between a vertically aligned single-walled carbon nanotube (SWNT) and Si substrate, to find out the influence of temperature and system sizes, including diameter and length of SWNT and measurements of substrate. Results revealed that high temperature hindered heat transport in SWNT itself but was a beneficial stimulus for heat transport at interface of SWNT and Si. Furthermore, the system sizes strongly affected the peaks in vibrational density of states of Si, which led to interfacial thermal conductance dependent on system sizes. - Highlights: • NEMD is performed to simulate the heat transport from SWNT to Si substrate. • We analyze both interfacial thermal conductance and thermal conductivity of SWNT. • High temperature is a beneficial stimulus for heat transport at the interface. • Interfacial thermal conductance strongly depends on the sizes of SWNT and substrate. • We calculate VDOS of C and Si atoms to analyze phonon couplings between them.

  3. Dynamical heat transport amplification in a far-field thermal transistor of VO{sub 2} excited with a laser of modulated intensity

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez-Miranda, Jose, E-mail: jose.ordonez@cnrs.pprime.fr; Ezzahri, Younès; Drevillon, Jérémie; Joulain, Karl [Institut Pprime, CNRS, Université de Poitiers, ISAE-ENSMA, F-86962 Futuroscope Chasseneuil (France)

    2016-05-28

    Far-field radiative heat transport in a thermal transistor made up of a vanadium dioxide base excited with a laser of modulated intensity is analytically studied and optimized. This is done by solving the equation of energy conservation for the steady-state and modulated components of the temperature and heat fluxes that the base exchanges with the collector and emitter. The thermal bistability of VO{sub 2} is used to find an explicit condition on the laser intensity required to maximize these heat fluxes to values higher than the incident flux. For a 1 μm-thick base heated with a modulation frequency of 0.5 Hz, it is shown that both the DC and AC components of the heat fluxes are about 4 times the laser intensity, while the AC temperature remains an order of magnitude smaller than the DC one at around 343 K. Higher AC heat fluxes are obtained for thinner bases and/or lower frequencies. Furthermore, we find that out of the bistability temperatures associated with the dielectric-to-metal and metal-to-dielectric transitions of VO{sub 2}, the amplification of the collector-to-base and base-to-emitter heat fluxes is still possible, but at modulation frequencies lower than 0.1 Hz.

  4. The influence of layering and barometric pumping on firn air transport in a 2-D model

    Directory of Open Access Journals (Sweden)

    B. Birner

    2018-06-01

    Full Text Available Ancient air trapped in ice core bubbles has been paramount to developing our understanding of past climate and atmospheric composition. Before air bubbles become isolated in ice, the atmospheric signal is altered in the firn column by transport processes such as advection and diffusion. However, the influence of low-permeability layers and barometric pumping (driven by surface pressure variability on firn air transport is not well understood and is not readily captured in conventional one-dimensional (1-D firn air models. Here we present a two-dimensional (2-D trace gas advection–diffusion–dispersion model that accounts for discontinuous horizontal layers of reduced permeability. We find that layering or barometric pumping individually yields too small a reduction in gravitational settling to match observations. In contrast, when both effects are active, the model's gravitational fractionation is suppressed as observed. Layering focuses airflows in certain regions in the 2-D model, which acts to amplify the dispersive mixing resulting from barometric pumping. Hence, the representation of both factors is needed to obtain a realistic emergence of the lock-in zone. In contrast to expectations, we find that the addition of barometric pumping in the layered 2-D model does not substantially change the differential kinetic fractionation of fast- and slow-diffusing trace gases. Like 1-D models, the 2-D model substantially underestimates the amount of differential kinetic fractionation seen in actual observations, suggesting that further subgrid-scale processes may be missing in the current generation of firn air transport models. However, we find robust scaling relationships between kinetic isotope fractionation of different noble gas isotope and elemental ratios. These relationships may be used to correct for kinetic fractionation in future high-precision ice core studies and can amount to a bias of up to 0.45 °C in noble-gas-based mean ocean

  5. Circum-Antarctic Shoreward Heat Transport Derived From an Eddy- and Tide-Resolving Simulation

    Science.gov (United States)

    Stewart, Andrew L.; Klocker, Andreas; Menemenlis, Dimitris

    2018-01-01

    Almost all heat reaching the bases of Antarctica's ice shelves originates from warm Circumpolar Deep Water in the open Southern Ocean. This study quantifies the roles of mean and transient flows in transporting heat across almost the entire Antarctic continental slope and shelf using an ocean/sea ice model run at eddy- and tide-resolving (1/48°) horizontal resolution. Heat transfer by transient flows is approximately attributed to eddies and tides via a decomposition into time scales shorter than and longer than 1 day, respectively. It is shown that eddies transfer heat across the continental slope (ocean depths greater than 1,500 m), but tides produce a stronger shoreward heat flux across the shelf break (ocean depths between 500 m and 1,000 m). However, the tidal heat fluxes are approximately compensated by mean flows, leaving the eddy heat flux to balance the net shoreward heat transport. The eddy-driven cross-slope overturning circulation is too weak to account for the eddy heat flux. This suggests that isopycnal eddy stirring is the principal mechanism of shoreward heat transport around Antarctica, though likely modulated by tides and surface forcing.

  6. Characteristics of convective heat transport in a packed pebble-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abdulmohsin, Rahman S., E-mail: rsar62@mst.edu [Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 400 West 11th Street/231 Schrenk Hall, Rolla, MO 65409-1230 (United States); Al-Dahhan, Muthanna H., E-mail: aldahhanm@mst.edu [Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 400 West 11th Street/231 Schrenk Hall, Rolla, MO 65409-1230 (United States); Department of Nuclear Engineering, 301 W. 14th St./222 Fulton Hall (United States)

    2015-04-01

    Highlights: • A fast-response heat transfer probe has been developed and used in this work. • Heat transport has been quantified in terms of local heat transfer coefficients. • The method of the electrically heated single sphere in packing has been applied. • The heat transfer coefficient increases from the center to the wall of packed bed. • This work advancing the knowledge of heat transport in the studied packed bed. - Abstract: Obtaining more precise results and a better understanding of the heat transport mechanism in the dynamic core of packed pebble-bed reactors is needed because this mechanism poses extreme challenges to the reliable design and efficient operation of these reactors. This mechanism can be quantified in terms of a solid-to-gas convective heat transfer coefficient. Therefore, in this work, the local convective heat transfer coefficients and their radial profiles were measured experimentally in a separate effect pilot-plant scale and cold-flow experimental setup of 0.3 m in diameter, using a sophisticated noninvasive heat transfer probe of spherical type. The effect of gas velocity on the heat transfer coefficient was investigated over a wide range of Reynolds numbers of practical importance. The experimental investigations of this work include various radial locations along the height of the bed. It was found that an increase in coolant gas flow velocity causes an increase in the heat transfer coefficient and that effect of the gas flow rate varies from laminar to turbulent flow regimes at all radial positions of the studied packed pebble-bed reactor. The results show that the local heat transfer coefficient increases from the bed center to the wall due to the change in the bed structure, and hence, in the flow pattern of the coolant gas. The findings clearly indicate that one value of an overall heat transfer coefficient cannot represent the local heat transfer coefficients within the bed; therefore, correlations are needed to

  7. Tamoxifen and CYP2D6

    DEFF Research Database (Denmark)

    Cronin-Fenton, Deirdre P.; Damkier, Per

    2018-01-01

    Tamoxifen reduces the rate of breast cancer recurrence by about one-half. It is converted to more active metabolites by enzymes encoded by polymorphic genes, including cytochrome P450 2D6 (CYP2D6) and transported by ATP-binding cassette transporters. Genetic polymorphisms that confer reduced CYP2...

  8. Hydrogen isotope effect through Pd in hydrogen transport pipe

    International Nuclear Information System (INIS)

    Tamaki, Masayoshi

    1992-01-01

    This investigation concerns hydrogen system with hydrogen transport pipes for transportation, purification, isotope separation and storage of hydrogen and its isotopes. A principle of the hydrogen transport pipe (heat pipe having hydrogen transport function) was proposed. It is comprised of the heat pipe and palladium alloy tubes as inlet, outlet, and the separation membrane of hydrogen. The operation was as follows: (1) gas was introduced into the heat pipe through the membrane in the evaporator; (2) the introduced gas was transported toward the condenser by the vapor flow; (3) the transported gas was swept and compressed to the end of the condenser by the vapor pressure; and (4) the compressed gas was exhausted from the heat pipe through the membrane in the condenser. The characteristics of the hydrogen transport pipe were examined for various working conditions. Basic performance concerning transportation, evacuation and compression was experimentally verified. Isotopic dihydrogen gases (H 2 and D 2 ) were used as feed gas for examining the intrinsic performance of the isotope separation by the hydrogen transport pipe. A simulated experiment for hydrogen isotope separation was carried out using a hydrogen-helium gas mixture. The hydrogen transport pipe has a potential for isotope separation and purification of hydrogen, deuterium and tritium in fusion reactor technology. (author)

  9. Hall-Effect Thruster Simulations with 2-D Electron Transport and Hydrodynamic Ions

    Science.gov (United States)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard H.; Goebel, Dan M.

    2009-01-01

    A computational approach that has been used extensively in the last two decades for Hall thruster simulations is to solve a diffusion equation and energy conservation law for the electrons in a direction that is perpendicular to the magnetic field, and use discrete-particle methods for the heavy species. This "hybrid" approach has allowed for the capture of bulk plasma phenomena inside these thrusters within reasonable computational times. Regions of the thruster with complex magnetic field arrangements (such as those near eroded walls and magnets) and/or reduced Hall parameter (such as those near the anode and the cathode plume) challenge the validity of the quasi-one-dimensional assumption for the electrons. This paper reports on the development of a computer code that solves numerically the 2-D axisymmetric vector form of Ohm's law, with no assumptions regarding the rate of electron transport in the parallel and perpendicular directions. The numerical challenges related to the large disparity of the transport coefficients in the two directions are met by solving the equations in a computational mesh that is aligned with the magnetic field. The fully-2D approach allows for a large physical domain that extends more than five times the thruster channel length in the axial direction, and encompasses the cathode boundary. Ions are treated as an isothermal, cold (relative to the electrons) fluid, accounting for charge-exchange and multiple-ionization collisions in the momentum equations. A first series of simulations of two Hall thrusters, namely the BPT-4000 and a 6-kW laboratory thruster, quantifies the significance of ion diffusion in the anode region and the importance of the extended physical domain on studies related to the impact of the transport coefficients on the electron flow field.

  10. Fiscal 1997 survey report. Investigational study on the cascade utilization of thermal energy (cold heat and hot heat) (feasibility study by the off-line system); 1997 nendo chosa hokokusho. Netsu energy (reinetsu to onnetsu) no cascade riyo ni kansuru chosa kenkyu (off-line hoshiki ni yoru feasibility study)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper studied a system to effectively use unused and low-grade thermal energy (cold heat and hot heat) in the Tokyo-Yokohama seaside area. For transportation of thermal energy, the batch transportation, that is, off-line system was discussed which uses insulated tank loaded barges and railroad freight trains. Thermal energy supply sources are 1) 0.3 million kW class thermal power plant, and 2) LNG storage base of 3 million ton/year class. Thermal energy users are Tokyo (Haneda) Airport D.H.C. (District Heating/Cooling Co.), MM 21 D.H.C. and Shin-Kawasaki D.H.C. The cold heat energy supplied to these three is about 1.5 million Mcal/daytimes300 days/year, and the hot heat energy supplied is about 1.33 million Mcal/daytimes150 days/year. Cold heat is obtained from seawater after the LNG vaporization, and hot heat from heat extracted from thermal turbine. Subcooled ice was selected for cold heat medium, and PCM-120A for hot heat medium. For batch transportation, an STL heat storage system is used which transports plastic capsules sealed with heat medium. Oil saving of 62,000 tons/year and CO2 reduction of about 53,000 tons/year can be expected. 85 figs., 98 tabs.

  11. Divertor heat and particle control experiments on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Mahdavi, M.A.; Baker, D.R.; Allen, S.L.

    1994-05-01

    In this paper we present a summary of recent DIII-D divertor physics activity and plans for future divertor upgrades. During the past year, DIII-D experimental effort was focused on areas of active heat and particle control and divertor target erosion studies. Using the DIII-D Advanced Divertor system we have succeeded for the first time to control the plasma density and demonstrate helium exhaust in H-mode plasmas. Divertor heat flux control by means of D 2 gas puffing and impurity injection were studied separately and in, both cases up to a factor of five reduction of the divertor peak heat flux was observed. Using the DiMES sample transfer system we have obtained erosion data on various material samples in well diagnosed plasmas and compared the results with predictions of numerical models

  12. BETA SCALING OF TRANSPORT ON THE DIII-D TOKAMAK: IS TRANSPORTELECTROSTATIC OR ELECTROMAGNETIC?

    International Nuclear Information System (INIS)

    PETTY, C.C; LUCE, T.C; McDONALD, D.C; MANDREKAS, J; WADE, M.R; CANDY, J; CORDEY, J.G; DROZDOV, V; EVANS, T.E; FERRON, J.R; GROEBNER, R.J; HYATT, A.W; JACKSON, G.L; LA HAYE, R.J; OSBORNE, T.H; WALTZ, R.E.

    2003-01-01

    Determining the scaling of transport with (β), the ratio of the plasma kinetic pressure to the magnetic pressure, helps to differentiate between various proposed theories of turbulent transport since mechanisms that are primarily electrostatic show little change in transport with increasing β, while primarily electromagnetic mechanisms generally have a strong unfavorable β scaling. Experiments on the DIII-D tokamak have measured the β scaling of heat transport with all of the other dimensionless parameters held constant in high confinement mode (H-mode) plasmas with edge localized modes (ELMs). A four point scan varied β from 30% to 85% of the ideal ballooning stability limit (normalized beta from 1.0 to 2.8) and found no change in the normalized confinement time, i.e., Bτ th ∞ β -0.01 ± 0.09. The measured thermal diffusivities, normalized to the Bohm diffusion coefficient, also did not vary during the β can to within the experimental uncertainties, whereas the normalized helium particle transport decreased with increasing β. The H-mode pedestal β varied in concert with the core β and showed no signs of saturation. This weak, possibly non-existent, β scaling of transport favors primarily electrostatic mechanisms such as E x B transport, and is in marked disagreement with the strong unfavorable β dependence contained in empirical scaling relations derived from multi-machine H-mode confinement databases

  13. Mobile heat accumulators for lorry or train transport?; Mobile Waermespeicher fuer den LKW- oder Zugtransport?

    Energy Technology Data Exchange (ETDEWEB)

    Goldenberg, Philipp

    2013-07-01

    Where heat grids cannot be laid for geographic reasons, mobile heat accumulators may be appropriate. The mobile heat accumulators are transported by lorry or train between the heat source and the heat sink. The waste heat can be decoupled from biogas plants, waste incineration plants or industrial sites. Existing road or rail networks can be used for transportation. Decisive factors to achieve low heat production costs are: free waste heat, large and continuous heat quantities as well as a short distance between the heat source and the heat sink. (orig.)

  14. Stable solutions of nonlocal electron heat transport equations

    International Nuclear Information System (INIS)

    Prasad, M.K.; Kershaw, D.S.

    1991-01-01

    Electron heat transport equations with a nonlocal heat flux are in general ill-posed and intrinsically unstable, as proved by the present authors [Phys. Fluids B 1, 2430 (1989)]. A straightforward numerical solution of these equations will therefore lead to absurd results. It is shown here that by imposing a minimal set of constraints on the problem it is possible to arrive at a globally stable, consistent, and energy conserving numerical solution

  15. Application of ECH to the Study of Transport in ITER Baseline Scenario-like Discharges in DIII-D

    Directory of Open Access Journals (Sweden)

    Pinsker R.I.

    2015-01-01

    Full Text Available Recent DIII-D experiments in the ITER Baseline Scenario (IBS have shown strong increases in fluctuations and correlated reduction of confinement associated with entering the electron-heating-dominated regime with strong electron cyclotron heating (ECH. The addition of 3.2 MW of 110 GHz EC power deposited at ρ∼0.42 to IBS discharges with ∼3 MW of neutral beam injection causes large increases in low-k and medium-k turbulent density fluctuations observed with Doppler backscatter (DBS, beam emission spectroscopy (BES and phase-contrast imaging (PCI diagnostics, correlated with decreases in the energy, particle, and momentum confinement times. Power balance calculations show the electron heat diffusivity χe increases significantly in the mid-radius region 0.4<ρ<0.8, which is roughly the same region where the DBS and BES diagnostics show the increases in turbulent density fluctuations. Confinement of angular momentum is also reduced during ECH. Studies with the TGYRO transport solver show that the model of turbulent transport embodied in the TGLF code quantitatively reproduces the measured transport in both the neutral beam (NB-only and in the NB plus EC cases. A simple model of the decrease in toroidal rotation with EC power is set forth, which exhibits a bifurcation in the rotational state of the discharge.

  16. The adjoint space in heat transport theory

    International Nuclear Information System (INIS)

    Dam, H. van; Hoogenboom, J.E.

    1980-01-01

    The mathematical concept of adjoint operators is applied to the heat transport equation and an adjoint equation is defined with a detector function as source term. The physical meaning of the solutions for the latter equation is outlined together with an application in the field of perturbation analysis. (author)

  17. Latent heat increases storage capacity. Heat transport by truck; Latente warmte vergroot opslagcapaciteit. Warmtetransport per vrachtauto is soms heel slim

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, K.

    2012-11-15

    The project-group Biomass CHP (combined production of heat and power) organized a tour with a workshop in Dortmund, Germany, September 26, 2012, on storage and transport of heat and biogas. There are several projects in Germany involving road transport of heat by means of containers. A swimming pool in Dortmund already is using this option since 2008. Waste heat from a CHP-installation for landfill gas is collected from a waste dump [Dutch] De projectgroep Biomassa en WKK organiseerde 26 September een excursie met workshop in Dortmund over opslag en transport van warmte en biogas. Er zijn in Duitsland al meerdere projecten waarbij warmte per container over de weg wordt vervoerd. Een Dortmunds zwembad werkt hier al sinds 2008 mee. De restwarmte van een wkk op stortgas wordt opgehaald bij een afvalstortplaats.

  18. Heat transport in low-dimensional materials: A review and perspective

    Directory of Open Access Journals (Sweden)

    Zhiping Xu

    2016-05-01

    Full Text Available Heat transport is a key energetic process in materials and devices. The reduced sample size, low dimension of the problem and the rich spectrum of material imperfections introduce fruitful phenomena at nanoscale. In this review, we summarize recent progresses in the understanding of heat transport process in low-dimensional materials, with focus on the roles of defects, disorder, interfaces, and the quantum-mechanical effect. New physics uncovered from computational simulations, experimental studies, and predictable models will be reviewed, followed by a perspective on open challenges.

  19. Atmospheric Nitrogen Trifluoride: Optimized emission estimates using 2-D and 3-D Chemical Transport Models from 1973-2008

    Science.gov (United States)

    Ivy, D. J.; Rigby, M. L.; Prinn, R. G.; Muhle, J.; Weiss, R. F.

    2009-12-01

    We present optimized annual global emissions from 1973-2008 of nitrogen trifluoride (NF3), a powerful greenhouse gas which is not currently regulated by the Kyoto Protocol. In the past few decades, NF3 production has dramatically increased due to its usage in the semiconductor industry. Emissions were estimated through the 'pulse-method' discrete Kalman filter using both a simple, flexible 2-D 12-box model used in the Advanced Global Atmospheric Gases Experiment (AGAGE) network and the Model for Ozone and Related Tracers (MOZART v4.5), a full 3-D atmospheric chemistry model. No official audited reports of industrial NF3 emissions are available, and with limited information on production, a priori emissions were estimated using both a bottom-up and top-down approach with two different spatial patterns based on semiconductor perfluorocarbon (PFC) emissions from the Emission Database for Global Atmospheric Research (EDGAR v3.2) and Semiconductor Industry Association sales information. Both spatial patterns used in the models gave consistent results, showing the robustness of the estimated global emissions. Differences between estimates using the 2-D and 3-D models can be attributed to transport rates and resolution differences. Additionally, new NF3 industry production and market information is presented. Emission estimates from both the 2-D and 3-D models suggest that either the assumed industry release rate of NF3 or industry production information is still underestimated.

  20. In vivo high-affinity uptake and axonal transport of D-(2,3-/sup 3/H)aspartate in excitatory neurons

    Energy Technology Data Exchange (ETDEWEB)

    Storm-Mathisen, J.; Wold, J.E. (Oslo Univ. (Norway))

    1981-12-28

    D-(2,3-/sup 3/H)aspartate ((/sup 3/H)D-Asp) at ..mu..M concentrations in Krebs' solution was infused intracerebrally in rats, mice and hamsters. Neuropil sites in the hippocampal formation, septum and neostriatum, known to receive excitatory nerve inputs with glutamate and aspartate as putative transmitters, showed strong autoradiographic labeling after intraventricular infusions. There was evidence for retrograde axonal transport to pyramidal cell bodies in hippocampus CA3 and neocortex. Infusions into the hilus fasciae dentatae led to anterograde axonal transport of (/sup 3/H)D-Asp in the mossy fibers.

  1. Integral representation of nonlinear heat transport

    International Nuclear Information System (INIS)

    Kishimoto, Y.; Mima, K.; Haines, M.G.

    1985-07-01

    The electron distribution function in a plasma with steep temperature gradient is obtained from a Fokker-Planck equation by Green's function method. The formula describes the nonlocal effects on thermal transport over the range, λ e /L e /L → 0. As an example, the heat wave is analyzed numerically by the integral formula and it is found that the previous simulation results are well reproduced. (author)

  2. MICADO: Parallel implementation of a 2D-1D iterative algorithm for the 3D neutron transport problem in prismatic geometries

    International Nuclear Information System (INIS)

    Fevotte, F.; Lathuiliere, B.

    2013-01-01

    The large increase in computing power over the past few years now makes it possible to consider developing 3D full-core heterogeneous deterministic neutron transport solvers for reference calculations. Among all approaches presented in the literature, the method first introduced in [1] seems very promising. It consists in iterating over resolutions of 2D and ID MOC problems by taking advantage of prismatic geometries without introducing approximations of a low order operator such as diffusion. However, before developing a solver with all industrial options at EDF, several points needed to be clarified. In this work, we first prove the convergence of this iterative process, under some assumptions. We then present our high-performance, parallel implementation of this algorithm in the MICADO solver. Benchmarking the solver against the Takeda case shows that the 2D-1D coupling algorithm does not seem to affect the spatial convergence order of the MOC solver. As for performance issues, our study shows that even though the data distribution is suited to the 2D solver part, the efficiency of the ID part is sufficient to ensure a good parallel efficiency of the global algorithm. After this study, the main remaining difficulty implementation-wise is about the memory requirement of a vector used for initialization. An efficient acceleration operator will also need to be developed. (authors)

  3. PERICLES 2D experiment

    International Nuclear Information System (INIS)

    Morel, Christophe

    2001-01-01

    Scope of the lecture was the modelling of severe reactor accidents. The PERICLES 2D experiment was compared to CATHARE 3D simulation results considering progression of a quench front inside the reactor core, steam flow rates, heat conduction, cladding temperature. (uke)

  4. Moment approach to neoclassical flows, currents and transport in auxiliary heated tokamaks

    International Nuclear Information System (INIS)

    Kim, Yil Bong.

    1988-02-01

    The moment approach is utilized to derive the full complement of neoclassical transport processes in auxiliary heated tokamaks. The effects of auxiliary heating [neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH)] considered arise from the collisional interaction between the background plasma species and the fast-ion-tail species. From a known fast ion distribution function we evaluate the parallel (to the magnetic field) momentum and heat flow inputs to the background plasma. Then, through the momentum and heat flow balance equations, we can determine the induced parallel flows (and current) and radial transpot fluxes in ''equilibrium'' (on the time scale much longer than the collisional relaxation time, i.e., t >> 1ν/sub ii/). In addition to the fast-ion-induced current, the total neoclassical current includes the boostap current, which is driven by the pressure and temperature gradients, the Pfirsch-Schlueter current which is required for charge neutrality, and the neoclassical (including trapped particle effects) Spitzer current due to the parallel electric field. The radial transport fluxes also include off-diagonal compnents in the transport matrix which correspond to the Ware (neoclassical) pinch due to the inductive applied electric field an the fast-ion-induced radial fluxes, in addition to the usual pressure- and temperature-gradient-driven fluxes (particle diffusion and heat conduction). Once the tranport coefficient are completely determined, the radial fluxes and the heat fluxes can be substituted into the density and energy evolution equations to provide a complete description of ''equilibrium'' (δδt << ν/sub ii/) neoclassical transport processes in a plasma. 47 refs., 14 figs

  5. A new treatment of the heat transport equation with a transport barrier and applications to ECRH experiments in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Zou, X.L.; Giruzzi, A.G.; Bouquey, F.; Clary, J.; Darbos, C.; Lennholm, M.; Magne, R.; Segui, J.L. [CEA Cadarache, Dept. de Recherches sur la Fusion Controlee, 13 - Saint-Paul-lez-Durance (France); Clemencon, A. [MIT, Electrochemical Energy Laboratory, Cambridge, MA (United States); Guivarch, C. [Ecole Nationale des Ponts et Chaussees, 77 - Marne-la-Vallee (France)

    2004-07-01

    An exact analytical solution of the electron heat diffusion equation in a cylinder has been found with a step-like diffusion coefficient, plus a monomial increase in the radial direction and a constant damping term. This model is sufficiently general to describe heat diffusion in the presence of a critical gradient threshold or a transport barrier, superimposed to the usual trend of increasing heat diffusivity from the plasma core to the edge. This type of representation allows us to see some well-known properties of heat transport phenomena in a different light. For instance, it has been shown that the contributions of the Eigenmodes to the time dependent solution grow at speeds that depend on the Eigenmode order i.e. at the beginning of the heating phase all the Eigenmodes are equally involved, whereas at the end only the lower order ones are left. This implies, e.g., that high frequency modulation experiments provide a characterization of transport phenomena that is intrinsically different with respect to power balance analysis of a stationary phase. It is particularly useful to analyse power switch on/off events and whenever high frequency modulations are not technically feasible. Low-frequency (1-2 Hz) ECRH modulation experiments have been performed on Tore Supra. A large jump (a factor of 8) in the heat diffusivity has been clearly identified at the ECRH power deposition layer. The amplitude and phase of several harmonics of the Fourier transform of the modulated temperature, as well as the time evolution of the modulated temperature have been reproduced by the analytical solution. The jump is found to be much weaker at lower ECRH power (one gyrotron)

  6. Acquisition and Processing of High Resolution Hyperspectral Imageries for the 3d Mapping of Urban Heat Islands and Microparticles of Montreal

    Science.gov (United States)

    Mongeau, R.; Baudouin, Y.; Cavayas, F.

    2017-10-01

    Ville de Montreal wanted to develop a system to identify heat islands and microparticles at the urban scale and to study their formation. UQAM and UdeM universities have joined their expertise under the framework "Observatoire Spatial Urbain" to create a representative geospatial database of thermal and atmospheric parameters collected during the summer months. They innovated in the development of a methodology for processing high resolution hyperspectral images (1-2 m). In partnership with Ville de Montreal, they integrated 3D geospatial data (topography, transportation and meteorology) in the process. The 3D mapping of intraurban heat islands as well as air micro-particles makes it possible, initially, to identify the problematic situations for future civil protection interventions during extreme heat. Moreover, it will be used as a reference for the Ville de Montreal to establish a strategy for public domain tree planting and in the analysis of urban development projects.

  7. He++ transport in the PDX tokamak

    International Nuclear Information System (INIS)

    Fonck, R.J.; Hulse, R.A.

    1983-12-01

    A powerful new approach to the study of particle transport and helium ash confinement in high-temperature fusion plasmas is demonstrated by charge-exchange recombination spectroscopy of He ++ in ohmically heated PDX discharges. Time and space resolved measurements of He ++ density following a short puff of helium gas into the plasma edge are fitted using a diffusive/convective transport model with coefficients D = (2.1 +- 0.9) x 10 4 cm 2 s -1 and v(r)/D = (0.8 +- 0.3) delta (ln n/sub e/)/deltar

  8. Climate in the Absence of Ocean Heat Transport

    Science.gov (United States)

    Rose, B. E. J.

    2015-12-01

    The energy transported by the oceans to mid- and high latitudes is small compared to the atmosphere, yet exerts an outsized influence on the climate. A key reason is the strong interaction between ocean heat transport (OHT) and sea ice extent. I quantify this by comparing a realistic control climate simulation with a slab ocean simulation in which OHT is disabled. Using the state-of-the-art CESM with a realistic present-day continental configuration, I show that the absence of OHT leads to a 23 K global cooling and massive expansion of sea ice to near 30º latitude in both hemisphere. The ice expansion is asymmetric, with greatest extent in the South Pacific and South Indian ocean basins. I discuss implications of this enormous and asymmetric climate change for atmospheric circulation, heat transport, and tropical precipitation. Parameter sensitivity studies show that the simulated climate is far more sensitive to small changes in ice surface albedo in the absence of OHT, with some perturbations sufficient to cause a runaway Snowball Earth glaciation. I conclude that the oceans are responsible for an enormous global warming by mitigating an otherwise very potent sea ice albedo feedback, but that the magnitude of this effect is still rather uncertain. I will also present some ideas on adapting the simple energy balance model to account for the enhanced sensitivity of sea ice to heating from the ocean.

  9. Intraoperative computed tomography for cervicomedullary decompression of foramen magnum stenosis in achondroplasia: two case reports.

    Science.gov (United States)

    Arishima, Hidetaka; Tsunetoshi, Kenzo; Kodera, Toshiaki; Kitai, Ryuhei; Takeuchi, Hiroaki; Kikuta, Ken-Ichiro

    2013-01-01

    The authors report two cases of cervicomedullary decompression of foramen magnum (FM) stenosis in children with achondroplasia using intraoperative computed tomography (iCT). A 14-month-old girl with myelopathy and retarded motor development, and a 10-year-old girl who had already undergone incomplete FM decompression was presented with myelopathy. Both patients underwent decompressive sub-occipitalcraniectomy and C1 laminectomy without duraplasty using iCT. It clearly showed the extent of FM decompression during surgery, which finally enabled sufficient decompression. After the operation, their myelopathy improved. We think that iCT can provide useful information and guidance for sufficient decompression for FM stenosis in children with achondroplasia.

  10. Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars.

    Science.gov (United States)

    Hu, Yongyun; Yang, Jun

    2014-01-14

    The distinctive feature of tidally locked exoplanets is the very uneven heating by stellar radiation between the dayside and nightside. Previous work has focused on the role of atmospheric heat transport in preventing atmospheric collapse on the nightside for terrestrial exoplanets in the habitable zone around M dwarfs. In the present paper, we carry out simulations with a fully coupled atmosphere-ocean general circulation model to investigate the role of ocean heat transport in climate states of tidally locked habitable exoplanets around M dwarfs. Our simulation results demonstrate that ocean heat transport substantially extends the area of open water along the equator, showing a lobster-like spatial pattern of open water, instead of an "eyeball." For sufficiently high-level greenhouse gases or strong stellar radiation, ocean heat transport can even lead to complete deglaciation of the nightside. Our simulations also suggest that ocean heat transport likely narrows the width of M dwarfs' habitable zone. This study provides a demonstration of the importance of exooceanography in determining climate states and habitability of exoplanets.

  11. Turbulent transport regimes and the SOL heat flux width

    Science.gov (United States)

    Myra, J. R.; D'Ippolito, D. A.; Russell, D. A.

    2014-10-01

    Understanding the responsible mechanisms and resulting scaling of the scrape-off layer (SOL) heat flux width is important for predicting viable operating regimes in future tokamaks, and for seeking possible mitigation schemes. Simulation and theory results using reduced edge/SOL turbulence models have produced SOL widths and scalings in reasonable accord with experiments in many cases. In this work, we attempt to qualitatively and conceptually understand various regimes of edge/SOL turbulence and the role of turbulent transport in establishing the SOL heat flux width. Relevant considerations include the type and spectral characteristics of underlying instabilities, the location of the gradient drive relative to the SOL, the nonlinear saturation mechanism, and the parallel heat transport regime. Recent SOLT turbulence code results are employed to understand the roles of these considerations and to develop analytical scalings. We find a heat flux width scaling with major radius R that is generally positive, consistent with older results reviewed in. The possible relationship of turbulence mechanisms to the heuristic drift mechanism is considered, together with implications for future experiments. Work supported by US DOE grant DE-FG02-97ER54392.

  12. Magnetic-field asymmetry of nonlinear thermoelectric and heat transport

    International Nuclear Information System (INIS)

    Hwang, Sun-Yong; Sánchez, David; López, Rosa; Lee, Minchul

    2013-01-01

    Nonlinear transport coefficients do not obey, in general, reciprocity relations. We here discuss the magnetic-field asymmetries that arise in thermoelectric and heat transport of mesoscopic systems. Based on a scattering theory of weakly nonlinear transport, we analyze the leading-order symmetry parameters in terms of the screening potential response to either voltage or temperature shifts. We apply our general results to a quantum Hall antidot system. Interestingly, we find that certain symmetry parameters show a dependence on the measurement configuration. (paper)

  13. An inexact Newton method for fully-coupled solution of the Navier-Stokes equations with heat and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J.N.; Tuminaro, R.S. [Sandia National Labs., Albuquerque, NM (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States). Dept. of Mathematics and Statistics

    1997-02-01

    The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript the authors focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context they use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier-Stokes equations with heat and mass transport. The discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.

  14. Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system

    Science.gov (United States)

    Kaizawa, Akihide; Maruoka, Nobuhiro; Kawai, Atsushi; Kamano, Hiroomi; Jozuka, Tetsuji; Senda, Takeshi; Akiyama, Tomohiro

    2008-05-01

    A waste heat transportation system trans-heat (TH) system is quite attractive that uses the latent heat of a phase change material (PCM). The purpose of this paper is to study the thermophysical properties of various sugars and sodium acetate trihydrate (SAT) as PCMs for a practical TH system and the heat transfer property between PCM selected and heat transfer oil, by using differential scanning calorimetry (DSC), thermogravimetry-differential thermal analysis (TG-DTA) and a heat storage tube. As a result, erythritol, with a large latent heat of 344 kJ/kg at melting point of 117°C, high decomposition point of 160°C and excellent chemical stability under repeated phase change cycles was found to be the best PCM among them for the practical TH system. In the heat release experiments between liquid erythritol and flowing cold oil, we observed foaming phenomena of encapsulated oil, in which oil droplet was coated by solidification of PCM.

  15. Interaction with the 5D3 monoclonal antibody is regulated by intramolecular rearrangements but not by covalent dimer formation of the human ABCG2 multidrug transporter

    DEFF Research Database (Denmark)

    Özvegy-Laczka, Csilla; Laczkó, Rozália; Hegedűs, Csilla

    2008-01-01

    D3 monoclonal antibody shows a function-dependent reactivity to an extracellular epitope of the ABCG2 transporter. In the current experiments we have further characterized the 5D3-ABCG2 interaction. The effect of chemical cross-linking and the modulation of extracellular S-S bridges...... on the transporter function and 5D3 reactivity of ABCG2 were investigated in depth. We found that several protein cross-linkers greatly increased 5D3 labeling in ABCG2 expressing HEK cells; however, there was no correlation between covalent dimer formation, the inhibition of transport activity, and the increase in 5...

  16. Finding evidence for density fluctuation effects on electron cyclotron heating deposition profiles on DIII-D

    International Nuclear Information System (INIS)

    Brookman, M. W.; Austin, M. E.; Petty, C. C.

    2015-01-01

    Theoretical work, computation, and results from TCV [J. Decker “Effect of density fluctuations on ECCD in ITER and TCV,” EPJ Web of Conf. 32, 01016 (2012)] suggest that density fluctuations in the edge region of a tokamak plasma can cause broadening of the ECH deposition profile. In this paper, a GUI tool is presented which is used for analysis of ECH deposition as a first step towards looking for this broadening, which could explain effects seen in previous DIII-D ECH transport studies [K.W. Gentle “Electron energy transport inferences from modulated electron cyclotron heating in DIII-D,” Phys. Plasmas 13, 012311 (2006)]. By applying an FFT to the T e measurements from the University of Texas’s 40-channel ECE Radiometer, and using a simplified thermal transport equation, the flux surface extent of ECH deposition is determined. The Fourier method analysis is compared with a Break-In-Slope (BIS) analysis and predictions from the ray-tracing code TORAY. Examination of multiple Fourier harmonics and BIS fitting methods allow an estimation of modulated transport coefficients and thereby the true ECH deposition profile. Correlations between edge fluctuations and ECH deposition in legacy data are also explored as a step towards establishing a link between fluctuations and deposition broadening in DIII-D

  17. Finding evidence for density fluctuation effects on electron cyclotron heating deposition profiles on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Brookman, M. W., E-mail: brookmanmw@fusion.gat.com; Austin, M. E. [Institute for Fusion Studies, University of Texas at Austin, MS 13-505, 3483 Dunhill St, San Diego, CA 92121-1200 (United States); Petty, C. C. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States)

    2015-12-10

    Theoretical work, computation, and results from TCV [J. Decker “Effect of density fluctuations on ECCD in ITER and TCV,” EPJ Web of Conf. 32, 01016 (2012)] suggest that density fluctuations in the edge region of a tokamak plasma can cause broadening of the ECH deposition profile. In this paper, a GUI tool is presented which is used for analysis of ECH deposition as a first step towards looking for this broadening, which could explain effects seen in previous DIII-D ECH transport studies [K.W. Gentle “Electron energy transport inferences from modulated electron cyclotron heating in DIII-D,” Phys. Plasmas 13, 012311 (2006)]. By applying an FFT to the T{sub e} measurements from the University of Texas’s 40-channel ECE Radiometer, and using a simplified thermal transport equation, the flux surface extent of ECH deposition is determined. The Fourier method analysis is compared with a Break-In-Slope (BIS) analysis and predictions from the ray-tracing code TORAY. Examination of multiple Fourier harmonics and BIS fitting methods allow an estimation of modulated transport coefficients and thereby the true ECH deposition profile. Correlations between edge fluctuations and ECH deposition in legacy data are also explored as a step towards establishing a link between fluctuations and deposition broadening in DIII-D.

  18. Comparison and analysis of 1D/2D/3D neutronics modeling for a fusion reactor

    International Nuclear Information System (INIS)

    Li, J.; Zeng, Q.; Chen, M.; Jiang, J.; Wu, Y.

    2007-01-01

    During the course of analyzing the characteristics for fusion reactors, the refined calculations are needed to confirm that the nuclear design requirements are met. Since the long computational time is consumed, the refined three-dimensional (3D) representation has been used primarily for establishing the baseline reference values, analyzing problems which cannot be reduced by symmetry considerations to lower dimensions, or where a high level of accuracy is desired locally. The two-dimensional (2D) or one-dimensional (1D) description leads itself readily to resolve many problems, such as the studies for the material fraction optimization, or for the blanket size optimization. The purpose of this paper is to find out the differences among different geometric descriptions, which can guide the way to approximate and simplify the computational model. The fusion power reactor named FDS-II was designed as an advanced fusion power reactor to demonstrate and validate the commercialization of fusion power by Institute of Plasma Physics, Chinese Academy of Science. In this contribution, the dual-cooled lithium lead (DLL) blanket of FDS-II was used as a reference for neutronics comparisons and analyses. The geometric descriptions include 1D concentric sphere model, 1D, 2D and 3D cylinder models. The home-developed multi-functional neutronics analysis code system VisualBUS, the Monte Carlo transport code MCNP and nuclear data library HENDL have been used for these analyses. The neutron wall loading distribution, tritium breeding ratio (TBR) and nuclear heat were calculated to evaluate the nuclear performance. The 3D calculation has been used as a comparison reference because it has the least errors in the treatment of geometry. It is suggested that the value of TBR calculated by the 1D approach should be greater than 1.3 to satisfy the practical need of tritium self-sufficiency. The distribution of nuclear heat based on the 2D and 3D models were similar since they all consider

  19. First-principles simulations of heat transport

    Science.gov (United States)

    Puligheddu, Marcello; Gygi, Francois; Galli, Giulia

    2017-11-01

    Advances in understanding heat transport in solids were recently reported by both experiment and theory. However an efficient and predictive quantum simulation framework to investigate thermal properties of solids, with the same complexity as classical simulations, has not yet been developed. Here we present a method to compute the thermal conductivity of solids by performing ab initio molecular dynamics at close to equilibrium conditions, which only requires calculations of first-principles trajectories and atomic forces, thus avoiding direct computation of heat currents and energy densities. In addition the method requires much shorter sequential simulation times than ordinary molecular dynamics techniques, making it applicable within density functional theory. We discuss results for a representative oxide, MgO, at different temperatures and for ordered and nanostructured morphologies, showing the performance of the method in different conditions.

  20. Mesoscale Eddies in the Northwestern Pacific Ocean: Three-Dimensional Eddy Structures and Heat/Salt Transports

    Science.gov (United States)

    Dong, Di; Brandt, Peter; Chang, Ping; Schütte, Florian; Yang, Xiaofeng; Yan, Jinhui; Zeng, Jisheng

    2017-12-01

    The region encompassing the Kuroshio Extension (KE) in the Northwestern Pacific Ocean (25°N-45°N and 130°E-180°E) is one of the most eddy-energetic regions of the global ocean. The three-dimensional structures and transports of mesoscale eddies in this region are comprehensively investigated by combined use of satellite data and Argo profiles. With the allocation of Argo profiles inside detected eddies, the spatial variations of structures of eddy temperature and salinity anomalies are analyzed. The results show that eddies predominantly have subsurface (near-surface) intensified temperature and salinity anomalies south (north) of the KE jet, which is related to different background stratifications between these regions. A new method based on eddy trajectories and the inferred three-dimensional eddy structures is proposed to estimate heat and salt transports by eddy movements in a Lagrangian framework. Spatial distributions of eddy transports are presented over the vicinity of the KE for the first time. The magnitude of eddy-induced meridional heat (freshwater volume) transport is on the order of 0.01 PW (103 m3/s). The eddy heat transport divergence results in an oceanic heat loss south and heat gain north of the KE, thereby reinforcing and counteracting the oceanic heat loss from air-sea fluxes south and north of the KE jet, respectively. It also suggests a poleward heat transport across the KE jet due to eddy propagation.

  1. Solar-energy heats a transportation test center--Pueblo, Colorado

    Science.gov (United States)

    1981-01-01

    Petroleum-base, thermal energy transport fluid circulating through 583 square feet of flat-plate solar collectors accumulates majority of energy for space heating and domestic hot-water of large Test Center. Report describes operation, maintenance, and performance of system which is suitable for warehouses and similar buildings. For test period from February 1979 to January 1980, solar-heating fraction was 31 percent, solar hot-water fraction 79 percent.

  2. Liquid metals as a divertor plasma-facing material explored using the Pilot-PSI and Magnum-PSI linear devices

    Science.gov (United States)

    Morgan, T. W.; Rindt, P.; van Eden, G. G.; Kvon, V.; Jaworksi, M. A.; Lopes Cardozo, N. J.

    2018-01-01

    For DEMO and beyond, liquid metal plasma-facing components are considered due to their resilience to erosion through flowed replacement, potential for cooling beyond conduction and inherent immunity to many of the issues of neutron loading compared to solid materials. The development curve of liquid metals is behind that of e.g. tungsten however, and tokamak-based research is currently somewhat limited in scope. Therefore, investigation into linear plasma devices can provide faster progress under controlled and well-diagnosed conditions in assessing many of the issues surrounding the use of liquid metals. The linear plasma devices Magnum-PSI and Pilot-PSI are capable of producing DEMO-relevant plasma fluxes, which well replicate expected divertor conditions, and the exploration of physics issues for tin (Sn) and lithium (Li) such as vapour shielding, erosion under high particle flux loading and overall power handling are reviewed here. A deeper understanding of erosion and deposition through this work indicates that stannane formation may play an important role in enhancing Sn erosion, while on the other hand the strong hydrogen isotope affinity reduces the evaporation rate and sputtering yields for Li. In combination with the strong redeposition rates, which have been observed under this type of high-density plasma, this implies that an increase in the operational temperature range, implying a power handling range of 20-25 MW m-2 for Sn and up to 12.5 MW m-2 for Li could be achieved. Vapour shielding may be expected to act as a self-protection mechanism in reducing the heat load to the substrate for off-normal events in the case of Sn, but may potentially be a continual mode of operation for Li.

  3. Mitigation of strontium and ruthenium release in the CANDU primary heat transport system

    International Nuclear Information System (INIS)

    McFarlane, J.

    1998-03-01

    In certain severe accident scenarios, low-volatility fission products can appear to contribute significantly to dose, if treated with undue conservatism. Hence a survey was performed, to see if factors that may mitigate release of strontium and ruthenium could be incorporated into safety analyses, to cover parameters such as location in the fuel matrix under normal operating conditions, release from fuel, transport and deposition in the primary heat transport system and chemistry. In addition chemical equilibrium calculations were performed to investigate the volatility of strontium and ruthenium in the presence of uranium and important fission products. Strontium is very soluble in the U0 2 fuel, up to 12 atom %, and hence release is improbable, particularly under oxidizing conditions until volatilization of the fuel matrix itself occurs. Ruthenium, however, can be released at low temperatures, but only under oxidizing conditions. These may occur during a fuel-handling accident or as a result of an end-fitting failure. Under these conditions, the primary heat transport system cannot be credited for retention. The volatile form of ruthenium, RuO 4 (g), is thermally unstable above 381 K and decomposes to RuO 2 (s) and O 2 (g) upon contact with surfaces, a factor that is likely to minimize the release of ruthenium into the environment. (author)

  4. Thickness Optimisation of Textiles Subjected to Heat and Mass Transport during Ironing

    Directory of Open Access Journals (Sweden)

    Korycki Ryszard

    2016-09-01

    Full Text Available Let us next analyse the coupled problem during ironing of textiles, that is, the heat is transported with mass whereas the mass transport with heat is negligible. It is necessary to define both physical and mathematical models. Introducing two-phase system of mass sorption by fibres, the transport equations are introduced and accompanied by the set of boundary and initial conditions. Optimisation of material thickness during ironing is gradient oriented. The first-order sensitivity of an arbitrary objective functional is analysed and included in optimisation procedure. Numerical example is the thickness optimisation of different textile materials in ironing device.

  5. Predictor-Corrector Quasi-Static Method Applied to Nonoverlapping Local/Global Iterations with 2-D/1-D Fusion Transport Kernel and p-CMFD Wrapper for Transient Reactor Analysis

    International Nuclear Information System (INIS)

    Cho, Bumhee; Cho, Nam Zin

    2015-01-01

    In this study, the steady-state p-CMFD adjoint flux is used as the weighting function to obtain PK parameters instead of the computationally expensive transport adjoint angular flux. Several numerical problems are investigated to see the capability of the PCQS method applied to the NLG iteration. CRX-2K adopts the nonoverlapping local/global (NLG) iterative method with the 2-D/1-D fusion transport kernel and the global p-CMFD wrapper. The parallelization of the NLG iteration has been recently implemented in CRX-2K and several numerical results are reported in a companion paper. However, the direct time discretization leads to a fine time step size to acquire an accurate transient solution, and the step size involved in the transport transient calculations is millisecond-order. Therefore, the transient calculations need much longer computing time than the steady-state calculation. To increase the time step size, Predictor-Corrector Quasi-Static (PCQS) method can be one option to apply to the NLG iteration. The PCQS method is a linear algorithm, so the shape function does not need to be updated more than once at a specific time step like a conventional quasi-static (QS) family such as Improved Quasi-Static (IQS) method. Moreover, the shape function in the PCQS method directly comes from the direct transport calculation (with a large time step), so one can easily implement the PCQS method in an existing transient transport code. Any QS method needs to solve the amplitude function in the form of the point kinetics (PK) equations, and accurate PK parameters can be obtained by the transport steady-state adjoint angular flux as a weighting function. The PCQS method is applied to the transient NLG iteration with the 2-D/1-D fusion transport kernel and the global p-CMFD wrapper, and has been implemented in CRX-2K. In the numerical problems, the PCQS method with the NLG iteration shows more accurate solutions compared to the direct transient calculations with large time step

  6. Systems with a constant heat flux with applications to radiative heat transport across nanoscale gaps and layers

    Science.gov (United States)

    Budaev, Bair V.; Bogy, David B.

    2018-06-01

    We extend the statistical analysis of equilibrium systems to systems with a constant heat flux. This extension leads to natural generalizations of Maxwell-Boltzmann's and Planck's equilibrium energy distributions to energy distributions of systems with a net heat flux. This development provides a long needed foundation for addressing problems of nanoscale heat transport by a systematic method based on a few fundamental principles. As an example, we consider the computation of the radiative heat flux between narrowly spaced half-spaces maintained at different temperatures.

  7. Cascade: a review of heat transport and plant design issues

    International Nuclear Information System (INIS)

    Murray, K.A.; McDowell, M.W.

    1984-01-01

    A conceptual heat transfer loop for Cascade, a centrifugal-action solid-breeder reaction chamber, has been investigated and results are presented. The Cascade concept, a double-cone-shaped reaction chamber, rotates along its horizontal axis. Solid Li 2 O or other lithium-ceramic granules are injected tangentially through each end of the chamber. The granules cascade axially from the smaller radii at the ends to the larger radius at the center, where they are ejected into a stationary granule catcher. Heat and tritium are then removed from the granules and the granules are reinjected into the chamber. A 50% dense Li 2 O granule throughput of 2.8 m 3 /s is transferred from the reaction chamber to the steam generators via continuous bucket elevators. The granules then fall by gravity through 4 vertical steam generators. The entire transport system is maintained at the same vacuum conditions present inside the reaction chamber

  8. Collisional transport in nonneutral plasmas

    International Nuclear Information System (INIS)

    Dubin, D.H.E.

    1999-01-01

    Classical transport theory grossly underestimates collisionally-driven cross-field transport for plasmas in the parameter regime of r c D , where r c ≡ v-bar/Ω c , λ D 2 ≡ T/4πe 2 n. In current experiments operating in this regime, cross-field test particle transport is observed to be a factor of 10 larger than the prediction of classical theory. Heat conduction is enhanced by up to 300 times over classical theory, and viscosity is up to 10 4 times larger. New guiding center theories of transport due to long-range collisions have been developed that agree with the measurements. Theory also predicts that emission and absorption of plasma waves may further enhance the thermal conduction and viscosity, providing a possible mechanism for anomalous thermal conductivity in the electron channel of fusion plasmas. (author)

  9. Analysis technology in the thick plate free drop impact, heat and thermal stress of the cask for radioactive material transport

    International Nuclear Information System (INIS)

    Lee, Dew Hey; Lee, Young Shin; Ryu, Chung Hyun; Kim, Hyun Su; Choi, Kyung Joo; Choi, Young Jin; Lee, Jae Hyung; Na, Jae Yun; Kim, Seong Jong

    2002-03-01

    In this study, The regulatory condition and analysis condition is analyzed for thick plate free drop, heat and thermal stress analysis to develop the safety assessment technology. Analysis is performed with finite element method which is one of the many analysis methods of the shipping cask. ANSYS, LS-DYNA3D and ABAQUS is suitable for thick plate free drop, heat and thermal stress analysis of the shipping cask. For the analysis model, the KSC-4 that is the shipping cask to transport spent nuclear fuel is investigated. The results of both LS-DYNA3D and ABAQUS for thick plate free drop and the results of ANSYS, LS-DYNA3D and ABAQUS for heat and thermal stress analysis is completely corresponded. And the integrity of the shipping cask is verified. Using this study, the reliable safety assessment technology is supplied to the staff. The efficient and reliable regulatory tasks is performed using the standard safety assessment technology

  10. Analysis technology in the thick plate free drop impact, heat and thermal stress of the cask for radioactive material transport

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dew Hey [Korea Institute of Nuclear and Safety, Taejon (Korea, Republic of); Lee, Young Shin; Ryu, Chung Hyun; Kim, Hyun Su; Choi, Kyung Joo; Choi, Young Jin; Lee, Jae Hyung; Na, Jae Yun; Kim, Seong Jong [Chungnam National Univ., Taejon (Korea, Republic of)

    2002-03-15

    In this study, The regulatory condition and analysis condition is analyzed for thick plate free drop, heat and thermal stress analysis to develop the safety assessment technology. Analysis is performed with finite element method which is one of the many analysis methods of the shipping cask. ANSYS, LS-DYNA3D and ABAQUS is suitable for thick plate free drop, heat and thermal stress analysis of the shipping cask. For the analysis model, the KSC-4 that is the shipping cask to transport spent nuclear fuel is investigated. The results of both LS-DYNA3D and ABAQUS for thick plate free drop and the results of ANSYS, LS-DYNA3D and ABAQUS for heat and thermal stress analysis is completely corresponded. And the integrity of the shipping cask is verified. Using this study, the reliable safety assessment technology is supplied to the staff. The efficient and reliable regulatory tasks is performed using the standard safety assessment technology.

  11. 3D coupled heat and mass transfer processes at the scale of sedimentary basisn

    Science.gov (United States)

    Cacace, M.; Scheck-Wenderoth, M.; Kaiser, B. O.

    2014-12-01

    We use coupled 3D simulations of fluid, heat, and transport based on a 3D structural model of a complex geological setting, the Northeast German Basin (NEGB). The geological structure of the NEGB is characterized by a relatively thick layer of Permian Zechstein salt, structured in differnet diapirs (up to 5000 m thick) and pillows locally reaching nearly the surface. Salt is thermally more conductive than other sediments, hydraulically impervious but highly solvable. Thus salt structures have first order influence on the temperature distribution, the deep flow regime and the salinity of groundawater bearing aquifers. In addition, the post-Permian sedimentary sequence is vertically subdivided into several aquifers and aquitards. The shallow Quaternary to late Tertiary freshwater aquifer is separated from the underlying Mesozoic saline aquifers by an embedded Tertiary clay enriched aquitard (Rupelian Aquitard). An important feature of this aquitard is that hydraulic connections between the upper and lower aquifers exist in areas where the Rupelian Aquitard is missing (hydrogeological windows). By means of 3D numerical simulations we explore the role of heat conduction, pressure, and density driven groundwater flow as well as fluid viscosity-related and salinity-dependent effects on the resulting flow and temperature fields. Our results suggest that the regional temperature distribution within the basin results from interactions between regional pressure forces and thermal diffusion locally enhanced by thermal conductivity contrasts between the different sedimentary rocks with the highly conductive salt. Buoyancy forces triggered by temperature-dependent fluid density variations affect only locally the internal thermal configuration. Locations, geometry, and wavelengths of convective thermal anomalies are mainly controlled by the permeability field and thickness values of the respective geological layers. Numerical results from 3D thermo-haline numerical simulations

  12. Study of the electron heat transport in Tore-Supra tokamak; Etude du transport de la chaleur electronique dans le Tokamak Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Harauchamps, E

    2004-07-01

    This work presents analytical solutions to the electron heat transport equation involving a damping term and a convection term in a cylindrical geometry. These solutions, processed by Matlab, allow the determination of the evolution of the radial profile of electron temperature in tokamaks during heating. The modulated injection of waves around the electron cyclotron frequency is an efficient tool to study heat transport experimentally in tokamaks. The comparison of these analytical solutions with experimental results from Tore-Supra during 2 discharges (30550 and 31165) shows the presence of a sudden change for the diffusion and damping coefficients. The hypothesis of the presence of a pinch spread all along the plasma might explain the shape of the experimental temperature profiles. These analytical solutions could be used to determine the time evolution of plasma density as well or of any parameter whose evolution is governed by a diffusion-convection equation. (A.C.)

  13. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  14. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  15. The Mimivirus Genome Encodes a Mitochondrial Carrier That Transports dATP and dTTP▿

    Science.gov (United States)

    Monné, Magnus; Robinson, Alan J.; Boes, Christoph; Harbour, Michael E.; Fearnley, Ian M.; Kunji, Edmund R. S.

    2007-01-01

    Members of the mitochondrial carrier family have been reported in eukaryotes only, where they transport metabolites and cofactors across the mitochondrial inner membrane to link the metabolic pathways of the cytosol and the matrix. The genome of the giant virus Mimiviridae mimivirus encodes a member of the mitochondrial carrier family of transport proteins. This viral protein has been expressed in Lactococcus lactis and is shown to transport dATP and dTTP. As the 1.2-Mb double-stranded DNA mimivirus genome is rich in A and T residues, we speculate that the virus is using this protein to target the host mitochondria as a source of deoxynucleotides for its replication. PMID:17229695

  16. Analysis for Heat Transfer in a High Current-Passing Carbon Nanosphere Using Nontraditional Thermal Transport Model.

    Science.gov (United States)

    Hol C Y; Chen, B C; Tsai, Y H; Ma, C; Wen, M Y

    2015-11-01

    This paper investigates the thermal transport in hollow microscale and nanoscale spheres subject to electrical heat source using nontraditional thermal transport model. Working as supercapacitor electrodes, carbon hollow micrometer- and nanometer-sized spheres needs excellent heat transfer characteristics to maintain high specific capacitance, long cycle life, and high power density. In the nanoscale regime, the prediction of heat transfer from the traditional heat conduction equation based on Fourier's law deviates from the measured data. Consequently, the electrical heat source-induced heat transfer characteristics in hollow micrometer- and nanometer-sized spheres are studied using nontraditional thermal transport model. The effects of parameters on heat transfer in the hollow micrometer- and nanometer-sized spheres are discussed in this study. The results reveal that the heat transferred into the spherical interior, temperature and heat flux in the hollow sphere decrease with the increasing Knudsen number when the radius of sphere is comparable to the mean free path of heat carriers.

  17. Hierarchic modeling of heat exchanger thermal hydraulics

    International Nuclear Information System (INIS)

    Horvat, A.; Koncar, B.

    2002-01-01

    Volume Averaging Technique (VAT) is employed in order to model the heat exchanger cross-flow as a porous media flow. As the averaging of the transport equations lead to a closure problem, separate relations are introduced to model interphase momentum and heat transfer between fluid flow and the solid structure. The hierarchic modeling is used to calculate the local drag coefficient C d as a function of Reynolds number Re h . For that purpose a separate model of REV is built and DNS of flow through REV is performed. The local values of heat transfer coefficient h are obtained from available literature. The geometry of the simulation domain and boundary conditions follow the geometry of the experimental test section used at U.C.L.A. The calculated temperature fields reveal that the geometry with denser pin-fins arrangement (HX1) heats fluid flow faster. The temperature field in the HX2 exhibits the formation of thermal boundary layer between pin-fins, which has a significant role in overall thermal performance of the heat exchanger. Although presented discrepancies of the whole-section drag coefficient C d are large, we believe that hierarchic modeling is an appropriate strategy for calculation of complex transport phenomena in heat exchanger geometries.(author)

  18. Numerical simulation of the transport phenomena due to sudden heating in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Lei, S.Y.; Zheng, G.Y.; Wang, B.X.; Yang, R.G.; Xia, C.M.

    1997-07-01

    Such process as wet porous media suddenly heated by hot fluids frequently occurs in nature and in industrial applications. The three-variable simulation model was developed to predict violent transport phenomena due to sudden heating in porous media. Two sets of independent variables were applied to different regions in porous media in the simulation. For the wet zone, temperature, wet saturation and air pressure were used as the independent variables. For the dry zone, the independent variables were temperature, vapor pressure and air pressure. The model simulated two complicated transport processes in wet unsaturated porous media which is suddenly heated by melting metal or boiling water. The effect of the gas pressure is also investigated on the overall transport phenomena.

  19. Estimating the health benefits from natural gas use in transport and heating in Santiago, Chile.

    Science.gov (United States)

    Mena-Carrasco, Marcelo; Oliva, Estefania; Saide, Pablo; Spak, Scott N; de la Maza, Cristóbal; Osses, Mauricio; Tolvett, Sebastián; Campbell, J Elliott; Tsao, Tsao Es Chi-Chung; Molina, Luisa T

    2012-07-01

    Chilean law requires the assessment of air pollution control strategies for their costs and benefits. Here we employ an online weather and chemical transport model, WRF-Chem, and a gridded population density map, LANDSCAN, to estimate changes in fine particle pollution exposure, health benefits, and economic valuation for two emission reduction strategies based on increasing the use of compressed natural gas (CNG) in Santiago, Chile. The first scenario, switching to a CNG public transportation system, would reduce urban PM2.5 emissions by 229 t/year. The second scenario would reduce wood burning emissions by 671 t/year, with unique hourly emission reductions distributed from daily heating demand. The CNG bus scenario reduces annual PM2.5 by 0.33 μg/m³ and up to 2 μg/m³ during winter months, while the residential heating scenario reduces annual PM2.5 by 2.07 μg/m³, with peaks exceeding 8 μg/m³ during strong air pollution episodes in winter months. These ambient pollution reductions lead to 36 avoided premature mortalities for the CNG bus scenario, and 229 for the CNG heating scenario. Both policies are shown to be cost-effective ways of reducing air pollution, as they target high-emitting area pollution sources and reduce concentrations over densely populated urban areas as well as less dense areas outside the city limits. Unlike the concentration rollback methods commonly used in public policy analyses, which assume homogeneous reductions across a whole city (including homogeneous population densities), and without accounting for the seasonality of certain emissions, this approach accounts for both seasonality and diurnal emission profiles for both the transportation and residential heating sectors. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Experimental constraints on transport from dimensionless parameter scaling studies

    International Nuclear Information System (INIS)

    Petty, C.C.; Luce, T.C.; Baker, D.R.

    1998-02-01

    The scalings of heat transport with safety factor (q), normalized collisionality (v), plasma beta (β), and relative gyroradius (ρ*) have been measured on the DIII-D tokamak. The measured ρ* β and v scalings of heat transport indicate that E x B transport from drive wave turbulence is a plausible basis for anomalous transport. For high confinement (H) mode plasmas where the safety factor was varied at fixed magnetic shear, the effective (or one-fluid) thermal diffusivity was found to scale like χ eff ∝ q 2.3±0.64 , with the ion and electron fluids having the same q scaling to within the experimental errors except near the plasma edge. The scaling of the thermal confinement time with safety factor was in good agreement with this local transport dependence, τ th ∝ q -2.42±0.31 ; however, when the magnetic shear was allowed to vary to keep q 0 fixed during the (edge) safety factor scan, a weaker global dependence was observed, τ th ∝ q 95 -1.43±0.23 . This weaker dependence was mainly due to the change in the local value of q between the two types of scans. The combined ρ*, β, v and q scalings of heat transport for H-mode plasmas on DIII-D reproduce the empirical confinement scaling using physical (dimensionless) parameters with the exception of weaker power degradation

  1. Heat science and transport phenomena in fuel cells; Thermique et phenomenes de transport dans les piles a combustible

    Energy Technology Data Exchange (ETDEWEB)

    Liberatore, P.M.; Boillot, M. [Laboratoire des Sciences du Genie Chimique de Nancy, 54 - Vandoeuvre-les-Nancy (France); Bonnet, C.; Didieerjean, S.; Lapicque, F.; Deseure, J.; Lottin, O.; Maillet, D.; Oseen-Senda, J. [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee, 54 - Vandoeuvre Les Nancy (France); Alexandre, A. [Laboratoire d' Etudes Thermiques, ENSMA, 86 Poitiers (France); Topin, F.; Occelli, R.; Daurelle, J.V. [IUSTI / Polytech' Marseille, Institut universitaire des Systemes Thermiques Industriels Ecole, 13 - Marseille (France); Pauchet, J.; Feidt, M. [CEA Grenoble, Groupement pour la recherche sur les echangeurs thermiques (Greth), 38 (France); Voarino, C. [CEA Centre d' Etudes du Ripault, 37 - Tours (France); Morel, B.; Laurentin, J.; Bultel, Y.; Lefebvre-Joud, F. [CEA Grenoble, LEPMI, 38 (France); Auvity, B.; Lasbet, Y.; Castelain, C.; Peerohossaini, H. [Ecole Centrale de Nantes, Laboratoire de Thermocinetique de Nantes (LTN), 44 - Nantes (France)

    2005-07-01

    In this work are gathered the transparencies of the lectures presented at the conference 'heat science and transport phenomena in fuel cells'. The different lectures have dealt with 1)the gas distribution in the bipolar plates of a fuel cell: experimental studies and computerized simulations 2)two-phase heat distributors in the PEMFC 3)a numerical study of the flow properties of the backing layers on the transfers in a PEMFC 4)modelling of the heat and mass transfers in a PEMFC 5)two-phase cooling of the PEMFC with pentane 6)stationary thermodynamic model of the SOFC in the GECOPAC system 7)modelling of the internal reforming at the anode of the SOFC 8)towards a new thermal design of the PEMFC bipolar plates. (O.M.)

  2. Tokamak electron heat transport by direct numerical simulation of small scale turbulence; Transport de chaleur electronique dans un tokamak par simulation numerique directe d'une turbulence de petite echelle

    Energy Technology Data Exchange (ETDEWEB)

    Labit, B

    2002-10-01

    In a fusion machine, understanding plasma turbulence, which causes a degradation of the measured energy confinement time, would constitute a major progress in this field. In tokamaks, the measured ion and electron thermal conductivities are of comparable magnitude. The possible sources of turbulence are the temperature and density gradients occurring in a fusion plasma. Whereas the heat losses in the ion channel are reasonably well understood, the origin of the electron losses is more uncertain. In addition to the radial velocity associated to the fluctuations of the electric field, electrons are more affected than ions by the magnetic field fluctuations. In experiments, the confinement time can be conveniently expressed in terms of dimensionless parameters. Although still somewhat too imprecise, these scaling laws exhibit strong dependencies on the normalized pressure {beta} or the normalized Larmor radius, {rho}{sub *}. The present thesis assesses whether a tridimensional, electromagnetic, nonlinear fluid model of plasma turbulence driven by a specific instability can reproduce the dependence of the experimental electron heat losses on the dimensionless parameters {beta} and {rho}{sub *}. The investigated interchange instability is the Electron Temperature Gradient driven one (ETG). The model is built by using the set of Braginskii equations. The developed simulation code is global in the sense that a fixed heat flux is imposed at the inner boundary, leaving the gradients free to evolve. From the nonlinear simulations, we have put in light three characteristics for the ETG turbulence: the turbulent transport is essentially electrostatic; the potential and pressure fluctuations form radially elongated cells called streamers; the transport level is very low compared to the experimental values. The thermal transport dependence study has shown a very small role of the normalized pressure, which is in contradiction with the Ohkama's formula. On the other hand

  3. Is the Ca2+-ATPase from sarcoplasmic reticulum also a heat pump?

    Science.gov (United States)

    Kjelstrup, Signe; de Meis, Leopoldo; Bedeaux, Dick; Simon, Jean-Marc

    2008-11-01

    We calculate, using the first law of thermodynamics, the membrane heat fluxes during active transport of Ca(2+) in the Ca(2+)-ATPase in leaky and intact vesicles, during ATP hydrolysis or synthesis conditions. The results show that the vesicle interior may cool down during hydrolysis and Ca(2+)-uptake, and heat up during ATP synthesis and Ca(2+)-efflux. The heat flux varies with the SERCA isoform. Electroneutral processes and rapid equilibration of water were assumed. The results are consistent with the second law of thermodynamics for the overall processes. The expression for the heat flux and experimental data, show that important contributions come from the enthalpy of hydrolysis for the medium in question, and from proton transport between the vesicle interior and exterior. The analysis give quantitative support to earlier proposals that certain, but not all, Ca(2+)-ATPases, not only act as Ca(2+)-pumps, but also as heat pumps. It can thus help explain why SERCA 1 type enzymes dominate in tissues where thermal regulation is important, while SERCA 2 type enzymes, with their lower activity and better ability to use the energy from the reaction to pump ions, dominate in tissues where this is not an issue.

  4. Turbulent transport regimes and the scrape-off layer heat flux width

    Science.gov (United States)

    Myra, J. R.; D'Ippolito, D. A.; Russell, D. A.

    2015-04-01

    Understanding the responsible mechanisms and resulting scaling of the scrape-off layer (SOL) heat flux width is important for predicting viable operating regimes in future tokamaks and for seeking possible mitigation schemes. In this paper, we present a qualitative and conceptual framework for understanding various regimes of edge/SOL turbulence and the role of turbulent transport as the mechanism for establishing the SOL heat flux width. Relevant considerations include the type and spectral characteristics of underlying instabilities, the location of the gradient drive relative to the SOL, the nonlinear saturation mechanism, and the parallel heat transport regime. We find a heat flux width scaling with major radius R that is generally positive, consistent with the previous findings [Connor et al., Nucl. Fusion 39, 169 (1999)]. The possible relationship of turbulence mechanisms to the neoclassical orbit width or heuristic drift mechanism in core energy confinement regimes known as low (L) mode and high (H) mode is considered, together with implications for the future experiments.

  5. Turbulent transport regimes and the scrape-off layer heat flux width

    International Nuclear Information System (INIS)

    Myra, J. R.; D'Ippolito, D. A.; Russell, D. A.

    2015-01-01

    Understanding the responsible mechanisms and resulting scaling of the scrape-off layer (SOL) heat flux width is important for predicting viable operating regimes in future tokamaks and for seeking possible mitigation schemes. In this paper, we present a qualitative and conceptual framework for understanding various regimes of edge/SOL turbulence and the role of turbulent transport as the mechanism for establishing the SOL heat flux width. Relevant considerations include the type and spectral characteristics of underlying instabilities, the location of the gradient drive relative to the SOL, the nonlinear saturation mechanism, and the parallel heat transport regime. We find a heat flux width scaling with major radius R that is generally positive, consistent with the previous findings [Connor et al., Nucl. Fusion 39, 169 (1999)]. The possible relationship of turbulence mechanisms to the neoclassical orbit width or heuristic drift mechanism in core energy confinement regimes known as low (L) mode and high (H) mode is considered, together with implications for the future experiments

  6. Particle-tracking code (track3d) for convective solute transport modelling in the geosphere: Description and user`s manual; Programme de reperage de particules (track3d) pour la modelisation du transport par convection des solutes dans la geosphere: description et manuel de l`utilisateur

    Energy Technology Data Exchange (ETDEWEB)

    Nakka, B W; Chan, T

    1994-12-01

    A deterministic particle-tracking code (TRACK3D) has been developed to compute convective flow paths of conservative (nonreactive) contaminants through porous geological media. TRACK3D requires the groundwater velocity distribution, which, in our applications, results from flow simulations using AECL`s MOTIF code. The MOTIF finite-element code solves the transient and steady-state coupled equations of groundwater flow, solute transport and heat transport in fractured/porous media. With few modifications, TRACK3D can be used to analyse the velocity distributions calculated by other finite-element or finite-difference flow codes. This report describes the assumptions, limitations, organization, operation and applications of the TRACK3D code, and provides a comprehensive user`s manual.

  7. Conductivity equations of protons transporting through 2D crystals obtained with the rate process theory and free volume concept

    Science.gov (United States)

    Hao, Tian; Xu, Yuanze; Hao, Ting

    2018-04-01

    The Eyring's rate process theory and free volume concept are employed to treat protons (or other particles) transporting through a 2D (two dimensional) crystal like graphene and hexagonal boron nitride. The protons are assumed to be activated first in order to participate conduction and the conduction rate is dependent on how much free volume available in the system. The obtained proton conductivity equations show that only the number of conduction protons, proton size and packing structure, and the energy barrier associated with 2D crystals are critical; the quantization conductance is unexpectedly predicted with a simple Arrhenius type temperature dependence. The predictions agree well with experimental observations and clear out many puzzles like much smaller energy barrier determined from experiments than from the density function calculations and isotope separation rate independent of the energy barrier of 2D crystals, etc. Our work may deepen our understandings on how protons transport through a membrane and has direct implications on hydrogen related technology and proton involved bioprocesses.

  8. Nuclear Energy R and D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    International Nuclear Information System (INIS)

    Petti, David; Herring, J. Stephen

    2010-01-01

    As described in the Department of Energy Office of Nuclear Energy's Nuclear Energy R and D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R and D Roadmap, entitled 'Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors', addresses this need. This document presents an Implementation Plan for R and D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: (1) Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, (2) Produce hydrogen for industrial processes and transportation fuels, and (3) Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation

  9. Dopamine-transporter SPECT and Dopamine-D2-receptor SPECT in basal ganglia diseases

    International Nuclear Information System (INIS)

    Hesse, S.; Barthel, H.; Seese, A.; Sabri, O.

    2007-01-01

    The basal ganglia comprise a group of subcortical nuclei, which are essential for motor control. Dysfunction of these areas, especially in dopaminergic transmission, results in disordered movement and neurological diseases such as Parkinson's disease, Wilson's disease, or Huntington disease. Positron emission tomography and single photon emission computed tomography (SPECT) have enhanced the understanding of the underlying pathophysiology, but they much more contribute to the early differential diagnosis of patients suffering from Parkinsonian syndrome in routine care. The present article provides dopamine transporter and D 2 receptor SPECT findings in selected movement disorders. (orig.)

  10. Optimizing the design of large-scale ground-coupled heat pump systems using groundwater and heat transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, H.; Itoi, R.; Fujii, J. [Kyushu University, Fukuoka (Japan). Faculty of Engineering, Department of Earth Resources Engineering; Uchida, Y. [Geological Survey of Japan, Tsukuba (Japan)

    2005-06-01

    In order to predict the long-term performance of large-scale ground-coupled heat pump (GCHP) systems, it is necessary to take into consideration well-to-well interference, especially in the presence of groundwater flow. A mass and heat transport model was developed to simulate the behavior of this type of system in the Akita Plain, northern Japan. The model was used to investigate different operational schemes and to maximize the heat extraction rate from the GCHP system. (author)

  11. Physical aspects of thermotherapy: A study of heat transport with a view to treatment optimisation

    Science.gov (United States)

    Olsrud, Johan Karl Otto

    1998-12-01

    Local treatment with the aim to destruct tissue by heating (thermotherapy) may in some cases be an alternative or complement to surgical methods, and has gained increased interest during the last decade. The major advantage of these, often minimally-invasive methods, is that the disease can be controlled with reduced treatment trauma and complications. The extent of thermal damage is a complex function of the physical properties of tissue, which influence the temperature distribution, and of the biological response to heat. In this thesis, methods of obtaining a well-controlled treatment have been studied from a physical point of view, with emphasis on interstitial laser-induced heating of tumours in the liver and intracavitary heating as a treatment for menorrhagia. Hepatic inflow occlusion, in combination with temperature-feedback control of the output power of the laser, resulted in well defined damaged volumes during interstitial laser thermotherapy in normal porcine liver. In addition, phantom experiments showed that the use of multiple diffusing laser fibres allows heating of clinically relevant tissue volumes in a single session. Methods for numerical simulation of heat transport were used to calculate the temperature distribution and the results agreed well with experiments. It was also found from numerical simulation that the influence of light transport on the damaged volume may be negligible in interstitial laser thermotherapy in human liver. Finite element analysis, disregarding light transport, was therefore proposed as a suitable method for 3D treatment planning. Finite element simulation was also used to model intracavitary heating of the uterus, with the purpose of providing an increased understanding of the influence of various treatment parameters on blood flow and on the depth of tissue damage. The thermal conductivity of human uterine tissue, which was used in these simulations, was measured. Furthermore, magnetic resonance imaging (MRI) was

  12. Magnetic flux tubes and transport of heat in the convection zone of the sun

    International Nuclear Information System (INIS)

    Spruit, H.C.

    1977-01-01

    This thesis consists of five papers dealing with transport of heat in the solar convection zone on the one hand, and with the structure of magnetic flux tubes in the top of the convection zone on the other hand. These subjects are interrelated. For example, the heat flow in the convection zone is disturbed by the presence of magnetic flux tubes, while exchange of heat between a flux tube and the convection zone is important for the energy balance of such a tube. A major part of this thesis deals with the structure of small magnetic flux tubes. Such small tubes (diameters less than about 2'') carry most of the flux appearing at the solar surface. An attempt is made to construct models of the surface layers of such small tubes in sufficient detail to make a comparison with observations possible. Underlying these model calculations is the assumption that the magnetic elements at the solar surface are flux tubes in a roughly static equilibrium. The structure of such tubes is governed by their pressure equilibrium, exchange of heat with the surroundings, and transport of heat by some modified form of convection along the tube. The tube models calculated are compared with observations

  13. Mitigation of strontium and ruthenium release in the CANDU primary heat transport system

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, J

    1998-03-01

    In certain severe accident scenarios, low-volatility fission products can appear to contribute significantly to dose, if treated with undue conservatism. Hence a survey was performed, to see if factors that may mitigate release of strontium and ruthenium could be incorporated into safety analyses, to cover parameters such as location in the fuel matrix under normal operating conditions, release from fuel, transport and deposition in the primary heat transport system and chemistry. In addition chemical equilibrium calculations were performed to investigate the volatility of strontium and ruthenium in the presence of uranium and important fission products. Strontium is very soluble in the U0{sub 2} fuel, up to 12 atom %, and hence release is improbable, particularly under oxidizing conditions until volatilization of the fuel matrix itself occurs. Ruthenium, however, can be released at low temperatures, but only under oxidizing conditions. These may occur during a fuel-handling accident or as a result of an end-fitting failure. Under these conditions, the primary heat transport system cannot be credited for retention. The volatile form of ruthenium, RuO{sub 4}(g), is thermally unstable above 381 K and decomposes to RuO{sub 2}(s) and O{sub 2}(g) upon contact with surfaces, a factor that is likely to minimize the release of ruthenium into the environment. (author)

  14. Consequences of nonlinear heat transport laws on expected plasma profiles

    International Nuclear Information System (INIS)

    Lackner, K.

    1987-03-01

    The expected variation of plasma pressure profiles against changes in power deposition is investigated by using a simple linear heat transport law as well as a quadratic one. Applying the quadratic transport law it can be shown that the stiffening of the resulting profiles is sufficient to understand the experimentally measured phenomenon of 'profile consistence' without further assumptions of nonlocal effects. (orig.) [de

  15. The Use of Celebrity Endorsement with the Help of Electronic Communication Channel (Instagram) : Case study of Magnum Ice Cream in Thailand

    OpenAIRE

    Kutthakaphan, Rangsima; Chokesamritpol, Wahloonluck

    2013-01-01

    TITLE The Use of Celebrity Endorsement with the Help of Electronic Communication Channel (Instagram): Case Study of Magnum Ice Cream Thailand RESEARCH QUESTION How does the use of celebrity endorsement with the help of electronic communication channel (Social media: Instagram) affect the buying behavior of generation Y consumers in Thailand? STRATEGIC QUESTION How can marketers use this marketing technique in an effective way to increase the number of consumers? PURPOSE OF THE STUDY The pu...

  16. Comparison of 2D and 3D Experiments for IVR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae Kyun; Kim, Su Hyeon; Chung Bum Jin [Kyunghee University, Yongin (Korea, Republic of)

    2016-05-15

    The integrity of reactor vessel is one of the prime concern in a severe accident condition. When the InVessel core melts Retention by External Reactor Vessel Cooling (IVR-ERVC) strategy is adopted as the design concept, the local heat load imposed on the reactor vessel should be identified in order to confirm the integrity of the reactor vessel. There are several studies simulating the natural convection of the oxide pool experimentally. In them, modified Ra (Ra') substitutes conventional Ra in order to represents decay heat of the core melts, due to the self-exothermic condition of the oxide pool. Difficulties in those experiments were the realization of the homogeneous self-exothermic volumetric heat sources. For this reason, the experiments using semicircular facility were also carried out instead of those of hemisphere facility [5-8]. The mean and local Nu of the lower head and the top plate were measured and correlations of the mean Nu were developed in existing studies. However, the comparisons between 2D and 3D results and phenomenological analyses have not been sufficiently performed. In this study we measured and compared the mean and local Nu using 2D and 3D Mass Transfer Experimental Rig for Oxide Pool (MassTER-OP). The experiments were carried out using cupric acid copper sulfate (H{sub 2}SO{sub 4}-CuSO{sub 4}) electroplating system based on the analogy between heat and mass transfer system. The Pr was 2,014 and Ra'H were varied from 7.15X10{sup 12} to 3.05X10{sup 15}.

  17. Improved confinement during ICRF heating on JFT-2M

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshi; Ogawa, Toshihide; Tamai, Hiroshi

    1986-10-01

    Significant improvement of energy confinement was observed on JFT-2M during ICRF heating. This improvement is associated with the sudden depression of H α /D α emission and the following increase of plasma stored energy, electron density and the radiation loss. This should be the same phenomena as H-mode transitions observed in ASDEX, PDX, and D-III divertor experiments with neutral beam injection heating. However, this transition is also observed in limiter discharges as well as in open divertor configurations on JFT-2M. (author)

  18. Diffusive heat transport across magnetic islands and stochastic layers in tokamaks

    International Nuclear Information System (INIS)

    Hoelzl, Matthias

    2010-01-01

    Heat transport in tokamak plasmas with magnetic islands and ergodic field lines was simulated at realistic plasma parameters in realistic tokamak geometries. This requires the treatment of anisotropic heat diffusion, which is more efficient along magnetic field lines by up to ten orders of magnitude than perpendicular to them. Comparisons with analytical predictions and experimental measurements allow to determine the stability properties of neoclassical tearing modes as well as the experimental heat diffusion anisotropy.

  19. FEHM, Finite Element Heat and Mass Transfer Code

    International Nuclear Information System (INIS)

    Zyvoloski, G.A.

    2002-01-01

    1 - Description of program or function: FEHM is a numerical simulation code for subsurface transport processes. It models 3-D, time-dependent, multiphase, multicomponent, non-isothermal, reactive flow through porous and fractured media. It can accurately represent complex 3-D geologic media and structures and their effects on subsurface flow and transport. Its capabilities include flow of gas, water, and heat; flow of air, water, and heat; multiple chemically reactive and sorbing tracers; finite element/finite volume formulation; coupled stress module; saturated and unsaturated media; and double porosity and double porosity/double permeability capabilities. 2 - Methods: FEHM uses a preconditioned conjugate gradient solution of coupled linear equations and a fully implicit, fully coupled Newton Raphson solution of nonlinear equations. It has the capability of simulating transport using either a advection/diffusion solution or a particle tracking method. 3 - Restriction on the complexity of the problem: Disk space and machine memory are the only limitations

  20. Heat, mass, and momentum transport model for hydrogen diffusion flames in nuclear reactor containments

    International Nuclear Information System (INIS)

    Travis, J.R.

    1985-01-01

    It is now possible to analyze the time-dependent, fully three-dimensional behavior of hydrogen diffusion flames in nuclear reactor containments. This analysis involves coupling the full Navier-Stokes equations with multi-species transport to the global chemical kinetics of hydrogen combustion. A transport equation for the subgrid scale turbulent kinetic energy density is solved to produce the time and space dependent turbulent transport coefficients. The heat transfer coefficient governing the exchange of heat between fluid computational cells adjacent to wall cells is calculated by a modified Reynolds analogy formulation. The analysis of a MARK-III containment indicates very complex flow patterns that greatly influence fluid and wall temperatures and heat fluxes. 18 refs., 24 figs

  1. Transport stress induces heart damage in newly hatched chicks via blocking the cytoprotective heat shock response and augmenting nitric oxide production.

    Science.gov (United States)

    Sun, F; Zuo, Y-Z; Ge, J; Xia, J; Li, X-N; Lin, J; Zhang, C; Xu, H-L; Li, J-L

    2018-04-20

    Transport stress affects the animal's metabolism and psychological state. As a pro-survival pathway, the heat shock response (HSR) protects healthy cells from stressors. However, it is unclear whether the HSR plays a role in transport stress-induced heart damage. To evaluate the effects of transport stress on heart damage and HSR protection, newly hatched chicks were treated with transport stress for 2 h, 4 h and 8 h. Transport stress caused decreases in body weight and increases in serum creatine kinase (CK) activity, nitric oxide (NO) content in heart tissue, cardiac nitric oxide syntheses (NOS) activity and NOS isoforms transcription. The mRNA expression of heat shock factors (HSFs, including HSF1-3) and heat shock proteins (HSPs, including HSP25, HSP40, HSP47, HSP60, HSP70, HSP90 and HSP110) in the heart of 2 h transport-treated chicks was upregulated. After 8 h of transport stress in chicks, the transcription levels of the same HSPs and HSF2 were reduced in the heart. It was also found that the changes in the HSP60, HSP70 and HSP90 protein levels had similar tendencies. These results suggested that transport stress augmented NO generation through enhancing the activity of NOS and the transcription of NOS isoforms. Therefore, this study provides new evidence that transport stress induces heart damage in the newly hatched chicks by blocking the cytoprotective HSR and augmenting NO production.

  2. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    International Nuclear Information System (INIS)

    Calderoni, Pattrick

    2010-01-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogeneous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R and D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part

  3. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the

  4. Heat Transport in Graphene Ferromagnet-Insulator-Superconductor Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Wei

    2011-01-01

    We study heat transport in a graphene ferromagnet-insulator-superconducting junction. It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor (FIS) junction is an oscillatory function of the barrier strength x in the thin-barrier limit. The gate potential U0 decreases the amplitude of thermal conductance oscillation. Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh. The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.%@@ We study heat transport in a graphene ferromagnet-insulator-superconducting junction.It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor(FIS)junction is an oscillatory function of the barrier strength X in the thin-barrier limit.The gate potential Uo decreases the amplitude of thermal conductance oscillation.Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh.The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.

  5. Poloidal profiles and transport during turbulent heating

    International Nuclear Information System (INIS)

    Mascheroni, P.L.

    1977-01-01

    The current penetration stage of a turbulently heated tokamak is modeled. The basic formulae are written in slab geometry since the dominant anomalous transport has a characteristic frequency much larger than the bounce frequency. Thus, the basic framework is provided by the Maxwell and fluid equations, with classical and anomalous transport. Quasi-neutrality is used. It is shown that the anomalous collision frequency dominates the anomalous viscosity and thermal conductivity, and that the convective wave transport can be neglected. For these numerical estimates, the leading term in the quasi-linear series is used. During the current penetration stage the distribution function for the particles will depart from a single Maxwellian type. Hence, the first objective was to numerically compare calculated poloidal magnetic field profiles with measured, published poloidal profiles. The poloidal magnetic field has been calculated using a code which handles the anomalous collision frequency self-consistently. The agreement is good, and it is concluded that the current penetration stage can be satisfactorily described by this model

  6. Mobile heat storage containers and their transport by rail or road

    Energy Technology Data Exchange (ETDEWEB)

    Goldenberg, Philipp

    2013-10-15

    Mobile heat storage containers are capable of making a contribution to the meaningful use of energy which is needed for use at a location other than where it originates. The study presented in this report outlines the technology of mobile heat storage and analyses an example of its transport by rail or road. (orig.)

  7. Process for the transport of heat energy released by a nuclear reactor

    International Nuclear Information System (INIS)

    Nuernberg, H.W.; Wolff, G.

    1978-01-01

    The heat produced in a nuclear reactor is converted into latent chemical binding energy. The heat can be released again below 400 0 C by recombination after transport by decomposition of ethane or propane into ethylene or propylene and hydrogen. (TK) [de

  8. Modulation of transport properties of RuO2 with 3d transition metals

    International Nuclear Information System (INIS)

    Music, Denis; Chen, Yen-Ting; Geyer, Richard W; Bliem, Pascal; Schneider, Jochen M

    2014-01-01

    Using density functional theory, we have demonstrated that alloying of RuO 2 (P4 2 /mnm) with 3d transition metals (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) gives rise to a substantial increase in the Seebeck coefficient probably due to quantum confinement. As Fe yields the largest enhancement, it was selected for experimental verification. We synthesized combinatorial Ru–Fe–O thin films and subsequently measured their transport properties at elevated temperatures. The Fe-alloyed samples increase the Seebeck coefficient threefold with respect to the unalloyed RuO 2 specimen thereby verifying the theoretical prediction. The here obtained power factor of 274 μW K −2 m −1 is not only the largest reported value for RuO 2 based compounds but it also occurs at ∼600 °C thus increasing the Carnot efficiency significantly. (paper)

  9. Multifunctional Nanofluids with 2D Nanosheets for thermal management and tribological applications

    Science.gov (United States)

    Taha Tijerina, Jose Jaime

    Conventional heat-transfer fluids such as water, ethylene glycol, standard oils and other lubricants are typically low-efficiency heat-transfer fluids. Thermal management plays a critical factor in many applications where these fluids can be used, such as in motors/engines, solar cells, biopharmaceuticals, fuel cells, high voltage power transmission systems, micro/nanoelectronics mechanical systems (MEMS/NEMS), and nuclear cooling among others. These insulating fluids require superb filler dispersion, high thermal conduction, and for certain applications as in electrical/electronic devices also electrical insulation. The miniaturization and high efficiency of electrical/electronic devices in these fields demand successful heat management and energy-efficient fluid-based heat-transfer systems. Recent advances in layered materials enable large scale synthesis of various two-dimensional (2D) structures. Some of these 2D materials are good choices as nanofillers in heat transfer fluids; mainly due to their inherent high thermal conductivity (TC) and high surface area available for thermal energy transport. Among various 2D-nanostructures, hexagonal boron nitride (h-BN) and graphene (G) exhibit versatile properties such as outstanding TC, excellent mechanical stability, and remarkable chemical inertness. The following research, even though investigate various conventional fluids, will focus on dielectric insulating nanofluids (mineral oil -- MO) with significant thermal performance. It is presented the plan for synthesis and characterization of stable high-thermal conductivity nanofluids using 2D-nanostructures of h-BN, which will be further incorporated at diverse filler concentrations to conventional fluids for cooling applications, without compromising its electrical insulating property. For comparison, properties of h-BN based fluids are compared with conductive fillers such as graphene; where graphene has similar crystal structure of h-BN and also has similar bulk

  10. Studies of heat transport to forced-flow He II

    International Nuclear Information System (INIS)

    Dresner, L.; Kashani, A.; Van Sciver, S.W.

    1985-01-01

    Analytical and experimental studies of heat transport to forced-flow He II are reported. The work is pertinent to the transfer of He II in space. An analytical model has been developed that establishes a condition for two-phase flow to occur in the transfer line. This condition sets an allowable limit to the heat leak into the transfer line. Experimental measurements of pressure drop and flow meter performances indicate that turbulent He II can be analyzed in terms of classical pressure drop correlations

  11. Experimental constraints on transport

    International Nuclear Information System (INIS)

    Luce, T.C.; Petty, K.H.; Burrell, K.H.; Forest, C.B.; Gohil, P.; Groebner, R.J.; De Haas, J.C.M.; James, R.A.; Makowski, M.A.

    1994-12-01

    Characterization of the cross-field energy transport in magnetic confinement experiments in a manner applicable to the accurate assessment of future machine performance continues to be a challenging goal. Experimental results from the DIII-D tokamak in the areas of dimensionless scaling and non-diffusive transport represent progress toward this goal. Dimensionless scaling shows how beneficial the increase in machine size and magnetic field is for future devices. The experiments on DIII-D are the first to determine separately the electron and ion scaling with normalized gyroradius ρ * ; the electrons scale as expected from gyro-Bohm class theories, while the ions scale consistent with the Goldston empirical scaling. This result predicts an increase in transport relative to Bohm diffusion as ρ * decreases in future devices. The existence of distinct ρ * scalings for ions and electrons cautions against a physical interpretation of one-fluid or global analysis. The second class of experiments reported here are the first to demonstrate the existence of non-diffusive energy transport. Electron cyclotron heating was applied at the half radius; the electron temperature profile remains substantially peaked. Power balance analysis indicates that heat must flow in the direction of increasing temperature, which is inconsistent with purely diffusive transport. The dynamics of electron temperature perturbations indicate the presence in the heat flux of a term dependent on temperature rather than its gradient. These two observations strongly constrain the types of models which can be applied to cross-field heat transport

  12. Required momentum, heat, and mass transport experiments for liquid-metal blankets

    International Nuclear Information System (INIS)

    Tillack, M.S.; Sze, D.K.; Abdou, M.A.

    1986-01-01

    Through the effects on fluid flow, many aspects of blanket behavior are affected by magnetohydrodynamic (MHD) effects, including pressure drop, heat transfer, mass transfer, and structural behavior. In this paper, a set of experiments is examined that could be performed in order to reduce the uncertainties in the highly related set of issues dealing with momentum, heat, and mass transport under the influence of a strong magnetic field (i.e., magnetic transport phenomena). By improving our basic understanding and by providing direct experimental data on blanket behavior, these experiments will lead to improved designs and an accurate assessment of the attractiveness of liquid-metal blankets

  13. Fast wave direct electron heating in advanced inductive and ITER baseline scenario discharges in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Pinsker, R. I.; Jackson, G. L.; Luce, T. C.; Politzer, P. A. [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States); Austin, M. E. [University of Texas at Austin, Austin, Texas 78712 (United States); Diem, S. J.; Kaufman, M. C.; Ryan, P. M. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Doyle, E. J.; Zeng, L. [University of California Los Angeles, Los Angeles, California 90095 (United States); Grierson, B. A.; Hosea, J. C.; Nagy, A.; Perkins, R.; Solomon, W. M.; Taylor, G. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Maggiora, R.; Milanesio, D. [Politecnico di Torino, Dipartimento di Elettronica, Torino (Italy); Porkolab, M. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Turco, F. [Columbia University, New York, New York 10027 (United States)

    2014-02-12

    Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ∼2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedly strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. The AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.

  14. Experimental constraints on transport from dimensionless parameter scaling studies

    International Nuclear Information System (INIS)

    Petty, C.C.; Luce, T.C.; Baker, D.R.; Ballet, B.; Carlstrom, T.N.; Cordey, J.G.; DeBoo, J.C.; Gohil, P.; Groebner, R.J.; Rice, B.W.; Thomas, D.M.; Wade, M.R.; Waltz, R.E.

    1998-01-01

    The scalings of heat transport with safety factor (q), normalized collisionality (ν), plasma beta (β), and relative gyroradius (ρ * ) have been measured on the DIII-D tokamak [Fusion Technol. 8, 441 (1985)]. The measured ρ * , β and ν scalings of heat transport indicate that ExB transport from drift wave turbulence is a plausible basis for anomalous transport. For high confinement (H) mode plasmas where the safety factor was varied at fixed magnetic shear, the effective (or one-fluid) thermal diffusivity was found to scale like χ eff ∝q 2.3±0.64 , with the ion and electron fluids having the same q scaling to within the experimental errors except near the plasma edge. The scaling of the thermal confinement time with safety factor was in good agreement with this local transport dependence, τ th ∝q -2.42±0.31 ; however, when the magnetic shear was allowed to vary to keep q 0 fixed during the (edge) safety factor scan, a weaker global dependence was observed, τ th ∝q 95 -1.43±0.23 . This weaker dependence was mainly due to the change in the local value of q between the two types of scans. The combined ρ * , β , ν and q scalings of heat transport for H-mode plasmas on DIII-D reproduce the empirical confinement scaling using physical (dimensional) parameters with the exception of weaker power degradation. copyright 1998 American Institute of Physics

  15. Heat transfer analysis of porous media receiver with different transport and thermophysical models using mixture as feeding gas

    International Nuclear Information System (INIS)

    Wang, Fuqiang; Tan, Jianyu; Wang, Zhiqiang

    2014-01-01

    Highlights: • Using local thermal non-equilibrium model to solve heat transfer of porous media. • CH 4 /H 2 O mixture is adopted as feeding gas of porous media receiver. • Radiative transfer equation between porous strut is solved by Rosseland approximation. • Transport and thermophysical models not included in Fluent are programmed by UDFs. • Variations of model on thermal performance of porous media receiver are studied. - Abstract: The local thermal non-equilibrium model is adopted to solve the steady state heat and mass transfer problems of porous media solar receiver. The fluid entrance surface is subjected to concentrated solar radiation, and CH 4 /H 2 O mixture is adopted as feeding gas. The radiative heat transfer equation between porous strut is solved by Rosseland approximation. The impacts of variation in transport and thermophysical characteristics model of gas mixture on thermal performance of porous media receiver are investigated. The transport and thermophysical characteristics models which are not included in software Fluent are programmed by user defined functions (UDFs). The numerical results indicate that models of momentum source term for porous media receiver have significant impact on pressure drop and static pressure distribution, and the radiative heat transfer cannot be omitted during the thermal performance analysis of porous media receiver

  16. Transport durable et développement économique

    Directory of Open Access Journals (Sweden)

    Corinne Meunier

    2006-12-01

    Full Text Available Le transport génère des externalités négatives – notamment environnementales – largement reconnues et dénoncées. Aussi, la référence à la durabilité désormais incontournable dans de nombreux domaines de l’action publique, s’étend inévitablement au transport via la notion de transport durable. C’est notamment en matière de fret que les enjeux de durabilité semblent les plus importants : le taux de croissance du transport des marchandises est en effet plus élevé que celui des passagers et le déséquilibre des parts modales s’y creuse davantage, en défaveur des modes les moins polluants. Dans le transport de fret, c’est la politique européenne des transports qui exerce aujourd'hui une influence déterminante à la fois sur la conduite de la politique française (à toutes les échelles et sur les comportements de la quasi-totalité des acteurs et des opérateurs qui interviennent dans le domaine des transports en France. C’est donc sur le segment des flux de marchandises que notre papier traitera de la traduction européenne des principes fondateurs de la notion de transport durable.Transportation generates negative externalities (especially environmental ones widely known and denounced. Thereby, the reference to sustainability, now incontrovertible in many areas of the public action, reaches transportation via the concept of sustainable transportation. The most important need in sustainability is on freight transportation : carriage growth rate is higher than passenger transportation, and the unevenness between the modal parts is in favour of the most polluting. On freight transportation, the European Union policy exercises a determining opinion, both on the French public policies (at every scale and on most of the actors stepping in the transportation domain in France. The topic of this paper is on the segment of carriage flux and on the European translation of the founding principles of sustainable

  17. Simulation of transport in the ignited ITER with 1.5-D predictive code

    International Nuclear Information System (INIS)

    Becker, G.

    1995-01-01

    The confinement in the bulk and scrape-off layer plasmas of the ITER EDA and CDA is investigated with special versions of the 1.5-D BALDUR predictive transport code for the case of peaked density profiles (C υ = 1.0). The code self-consistently computes 2-D equilibria and solves 1-D transport equations with empirical transport coefficients for the ohmic, L and ELMy H mode regimes. Self-sustained steady state thermonuclear burn is demonstrated for up to 500 s. It is shown to be compatible with the strong radiation losses for divertor heat load reduction caused by the seeded impurities iron, neon and argon. The corresponding global and local energy and particle transport are presented. The required radiation corrected energy confinement times of the EDA and CDA are found to be close to 4 s. In the reference cases, the steady state helium fraction is 7%. The fractions of iron, neon and argon needed for the prescribed radiative power loss are given. It is shown that high radiative losses from the confinement zone, mainly by bremsstrahlung, cannot be avoided. The radiation profiles of iron and argon are found to be the same, with two thirds of the total radiation being emitted from closed flux surfaces. Fuel dilution due to iron and argon is small. The neon radiation is more peripheral. But neon is found to cause high fuel dilution. The combined dilution effect by helium and neon conflicts with burn control, self-sustained burn and divertor power reduction. Raising the helium fraction above 10% leads to the same difficulties owing to fuel dilution. The high helium levels of the present EDA design are thus unacceptable. The bootstrap current has only a small impact on the current profile. The sawtooth dominated region is found to cover 35% of the plasma cross-section. Local stability analysis of ideal ballooning modes shows that the plasma is everywhere well below the stability limit. 23 refs, 34 figs, 3 tabs

  18. PHITS: Particle and heavy ion transport code system, version 2.23

    International Nuclear Information System (INIS)

    Niita, Koji; Matsuda, Norihiro; Iwamoto, Yosuke; Sato, Tatsuhiko; Nakashima, Hiroshi; Sakamoto, Yukio; Iwase, Hiroshi; Sihver, Lembit

    2010-10-01

    A Particle and Heavy-Ion Transport code System PHITS has been developed under the collaboration of JAEA (Japan Atomic Energy Agency), RIST (Research Organization for Information Science and Technology) and KEK (High Energy Accelerator Research Organization). PHITS can deal with the transport of all particles (nucleons, nuclei, mesons, photons, and electrons) over wide energy ranges, using several nuclear reaction models and nuclear data libraries. Geometrical configuration of the simulation can be set with GG (General Geometry) or CG (Combinatorial Geometry). Various quantities such as heat deposition, track length and production yields can be deduced from the simulation, using implemented estimator functions called 'tally'. The code also has a function to draw 2D and 3D figures of the calculated results as well as the setup geometries, using a code ANGEL. Because of these features, PHITS has been widely used for various purposes such as designs of accelerator shielding, radiation therapy and space exploration. Recently PHITS introduces an event generator for particle transport parts in the low energy region. Thus, PHITS was completely rewritten for the introduction of the event generator for neutron-induced reactions in energy region less than 20 MeV. Furthermore, several new tallis were incorporated for estimation of the relative biological effects. This document provides a manual of the new PHITS. (author)

  19. Characteristics of nonlocally-coupled transition of the heat transport in LHD

    International Nuclear Information System (INIS)

    Tamura, N.; Ida, K.; Tanaka, K.; Tokuzawa, T.; Itoh, K.; Shimozuma, T.; Kubo, S.; Tsuchiya, H.; Nagayama, Y.; Kawahata, K.; Sudo, S.; Yamada, H.; Inagaki, S.

    2010-01-01

    A comparison of characteristics between a nonlocal transport phenomenon and an electron internal transport barrier (ITB) in the Large Helical Device is performed with a transient transport analysis and from the viewpoint of a dynamic behavior of transport state. The electron ITB is characterized by a jump of electron temperature gradient. In contrast, the transient transport analysis indicates the nonlocal transport phenomenon is characterized by a jump of electron heat flux. And seen from the viewpoint of the dynamic behavior of transport state, the physical mechanism of the appearance of the nonlocal transport phenomenon is found to be qualitatively different from that of the formation of the electron ITB. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Effect of heating scheme on SOL width in DIII-D and EAST

    Directory of Open Access Journals (Sweden)

    L. Wang

    2017-08-01

    Full Text Available Joint DIII-D/EAST experiments in the radio-frequency (RF heated H-mode scheme with comparison to that of neutral beam (NB heated H-mode scheme were carried out on DIII-D and EAST under similar conditions to examine the effect of heating scheme on scrape-off layer (SOL width in H-mode plasmas for application to ITER. A dimensionally similar plasma equilibrium was used to match the EAST shape parameters. The divertor heat flux and SOL widths were measured with infra-red camera in DIII-D, while with divertor Langmuir probe array in EAST. It has been demonstrated on both DIII-D and EAST that RF-heated plasma has a broader SOL than NB-heated plasma when the edge electrons are effectively heated in low plasma current and low density regime with low edge collisionality. Detailed edge and pedestal profile analysis on DIII-D suggests that the low edge collisionality and ion orbit loss effect may account for the observed broadening. The joint experiment in DIII-D has also demonstrated the strong inverse dependence of SOL width on the plasma current in electron cyclotron heated (ECH H-mode plasmas.

  1. Monju secondary heat transport system sodium leak

    International Nuclear Information System (INIS)

    Suzuki, Takeo; Hiroi, Hiroshi; Usami, Shin; Iwata, Koji.

    1996-01-01

    On December 8, 1995, the sodium leakage from the secondary heat transport system (SHTS) occurred in the piping room of the reactor auxiliary building in Monju. The secondary sodium leaked through a temperature sensor, due to the breakaway of the tip of the well tube of the sensor installed near the outlet of the intermediate heat exchanger (IHX) in the C loop of SHTS. The reactor core remained cooled and thus, from the viewpoint of radiological hazards, the safety of the reactor was secured. There were no adverse effects for operating personnel or the surrounding environment. The cause of the well tube failure is considered to result from high cycle fatigue due to flow induced vibrations. Delay in draining the sodium from the leaking loop increased the consequential effects from sodium combustion products. (author)

  2. EFFECT OF SANDSTONE ANISOTROPY ON ITS HEAT AND MOISTURE TRANSPORT PROPERTIES

    Directory of Open Access Journals (Sweden)

    Jan Fořt

    2015-09-01

    Full Text Available Each type of natural stone has its own geological history, formation conditions, different chemical and mineralogical composition, which influence its possible anisotropy. Knowledge in the natural stones anisotropy represents crucial information for the process of stone quarrying, its correct usage and arrangement in building applications. Because of anisotropy, many natural stones exhibit different heat and moisture transport properties in various directions. The main goal of this study is to analyse several anisotropy indices and their effect on heat transport and capillary absorption. For the experimental determination of the anisotropy effect, five types of sandstone coming from different operating quarries in the Czech Republic are chosen. These materials are often used for restoration of culture heritage monuments as well as for other building applications where they are used as facing slabs, facade panels, decoration stones, paving, etc. For basic characterization of studied materials, determination of their bulk density, matrix density and total open porosity is done. Chemical composition of particular sandstones is analysed by X-Ray Fluorescence. Anisotropy is examined by the non-destructive measurement of velocity of ultrasonic wave propagation. On the basis of ultrasound testing data, the relative anisotropy, total anisotropy and anisotropy coefficient are calculated. Then, the measurement of thermal conductivity and thermal diffusivity in various directions of samples orientation is carried out. The obtained results reveal significant differences between the parameters characterizing the heat transport in various directions, whereas these values are in accordance with the indices of anisotropy. Capillary water transport is described by water absorption coefficient measured using a sorption experiment, which is performed for distilled water and 1M NaCl water solution.  The measured data confirm the effect of anisotropy which is

  3. The low-temperature heat capacities of Tb, Lu and Y

    International Nuclear Information System (INIS)

    Wells, P.; Lanchester, P.C.; Jones, D.W.; Jordan, R.G.

    1976-01-01

    The heat capacities of Tb, Lu and Y, refined by solid state electro-transport processing have been measured between 1.5 and 16 K. Below 4 K the results were fitted to the expression C = γT + AT 3 where for Tb the nuclear and magnetic contributions were first calculated and subtracted from the total heat capacity. The resultant values of γ(mJ mol -1 K -2 ) and limiting Debye temperatures thetasub(D) (T → 0) were as follows. Tb: γ = 4.4 +- 0.1, thetasub(D) = 178 +- 2 K; Lu: γ = 6.8 +- 0.1, thetasub(D) 205 +- 3 K; Y: γ = 8.2 +- 0.1, thetasub(D) = 248 +- 3 K. The Debye temperature was found in all instances to decrease by about 10% between 4 and 16 K. (author)

  4. The heat and moisture transport properties of wet porous media

    International Nuclear Information System (INIS)

    Wang, B.X.; Fang, Z.H.; Yu, W.P.

    1989-01-01

    Existing methods for determining heat and moisture transport properties in porous media are briefly reviewed, and their merits and deficiencies are discussed. Emphasis is placed on research in developing new transient methods undertaken in China during the recent years. An attempt has been made to relate the coefficients in the heat and mass transfer equations with inherent properties of the liquid and matrix and then to predict these coefficients based on limited measurements

  5. Amino acid derivatives are substrates or non-transported inhibitors of the amino acid transporter PAT2 (slc36a2).

    Science.gov (United States)

    Edwards, Noel; Anderson, Catriona M H; Gatfield, Kelly M; Jevons, Mark P; Ganapathy, Vadivel; Thwaites, David T

    2011-01-01

    The H(+)-coupled amino acid transporter PAT2 (SLC36A2) transports the amino acids proline, glycine, alanine and hydroxyproline. A physiological role played by PAT2 in amino acid reabsorption in the renal proximal tubule is demonstrated by mutations in SLC36A2 that lead to an iminoglycinuric phenotype (imino acid and glycine uria) in humans. A number of proline, GABA and tryptophan derivatives were examined to determine if they function either as transported substrates or non-transported inhibitors of PAT2. The compounds were investigated following heterologous expression of rat PAT2 in Xenopus laevis oocytes. PAT2 function was characterised by: radiotracer uptake and competition (cis-inhibition) studies; radiotracer efflux and trans-stimulation; and measurement of substrate-induced positive inward current by two-electrode voltage-clamp. In general, the proline derivatives appeared to be transported substrates and the relative ability to induce current flow was closely related to the inhibitory effects on PAT2-mediated l-[(3)H]proline uptake. In contrast, certain heterocyclic GABA derivatives (e.g. l-pipecolic acid) were translocated only slowly. Finally, the tryptophan derivatives inhibited PAT2 function but did not undergo transport. l-Proline uptake was inhibited by 5-hydroxy-l-tryptophan (IC(50) 1.6±0.4mM), α-methyl-d,l-tryptophan (3.5±1.5mM), l-tryptophan, 1-methyl-l-tryptophan and indole-3-propionic acid. Although neither 5-hydroxy-l-tryptophan nor α-methyl-d,l-tryptophan were able to elicit inward current in PAT2-expressing oocytes both reduced the current evoked by l-proline. 5-Hydroxy-l-tryptophan and α-methyl-d,l-tryptophan were unable to trans-stimulate l-proline efflux from PAT2-expressing oocytes, confirming that the two compounds act as non-transported blockers of PAT2. These two tryptophan derivatives should prove valuable experimental tools in future investigations of the physiological roles of PAT2. Copyright © 2010 Elsevier B.V. All rights

  6. Large scale 2D/3D hybrids based on gallium nitride and transition metal dichalcogenides.

    Science.gov (United States)

    Zhang, Kehao; Jariwala, Bhakti; Li, Jun; Briggs, Natalie C; Wang, Baoming; Ruzmetov, Dmitry; Burke, Robert A; Lerach, Jordan O; Ivanov, Tony G; Haque, Md; Feenstra, Randall M; Robinson, Joshua A

    2017-12-21

    Two and three-dimensional (2D/3D) hybrid materials have the potential to advance communication and sensing technologies by enabling new or improved device functionality. To date, most 2D/3D hybrid devices utilize mechanical exfoliation or post-synthesis transfer, which can be fundamentally different from directly synthesized layers that are compatible with large scale industrial needs. Therefore, understanding the process/property relationship of synthetic heterostructures is priority for industrially relevant material architectures. Here we demonstrate the scalable synthesis of molybdenum disulfide (MoS 2 ) and tungsten diselenide (WSe 2 ) via metal organic chemical vapor deposition (MOCVD) on gallium nitride (GaN), and elucidate the structure, chemistry, and vertical transport properties of the 2D/3D hybrid. We find that the 2D layer thickness and transition metal dichalcogenide (TMD) choice plays an important role in the transport properties of the hybrid structure, where monolayer TMDs exhibit direct tunneling through the layer, while transport in few layer TMDs on GaN is dominated by p-n diode behavior and varies with the 2D/3D hybrid structure. Kelvin probe force microscopy (KPFM), low energy electron microscopy (LEEM) and X-ray photoelectron spectroscopy (XPS) reveal a strong intrinsic dipole and charge transfer between n-MoS 2 and p-GaN, leading to a degraded interface and high p-type leakage current. Finally, we demonstrate integration of heterogeneous 2D layer stacks of MoS 2 /WSe 2 on GaN with atomically sharp interface. Monolayer MoS 2 /WSe 2 /n-GaN stacks lead to near Ohmic transport due to the tunneling and non-degenerated doping, while few layer stacking is Schottky barrier dominated.

  7. Preparation and luminescence properties of Eu2+-doped CaSi2O2-dN2+2/3d phosphors

    International Nuclear Information System (INIS)

    Gu Yunxin; Zhang Qinghong; Wang Hongzhi; Li Yaogang

    2009-01-01

    Eu 2+ -doped CaSi 2 O 2-d N 2+2/3d phosphors for white LED lamps were prepared by solid-state reaction, and the effects of heat-treatment conditions and the overall composition of host lattice on the optical properties have been discussed. Eu 2+ -doped CaSi 2 O 2-d N 2+2/3d displayed a single broad emission band peak at 540 nm, which could be assigned to the allowed transition of Eu 2+ from the lowest crystal field component of 4f 6 5d to 4f 7 ground-state level. The excitation band of samples, extending from UV to blue, is extremely wide, so the phosphors are suitable for white LED lamps in combination with a UV or blue LED dies. The highest PL intensity is found for the sample sintered at 1400 0 C. Moreover, the emission intensity decreases when N partially replaces O. A red shift of emission wavelength did not occur with increasing of the N content.

  8. A conserved WW domain-like motif regulates invariant chain-dependent cell-surface transport of the NKG2D ligand ULBP2

    DEFF Research Database (Denmark)

    Uhlenbrock, Franziska Katharina; van Andel, Esther; Andresen, Lars

    2015-01-01

    that the NKG2D ligand ULBP2 traffics over an invariant chain (Ii)-dependent pathway to the cell surface. This study set out to elucidate how Ii regulates ULBP2 cell-surface transport: We discovered conserved tryptophan (Trp) residues in the primary protein sequence of ULBP1-6 but not in the related MICA....../B. Substitution of Trp to alanine resulted in cell-surface inhibition of ULBP2 in different cancer cell lines. Moreover, the mutated ULBP2 constructs were retained and not degraded inside the cell, indicating a crucial role of this conserved Trp-motif in trafficking. Finally, overexpression of Ii increased...... surface expression of wt ULBP2 while Trp-mutants could not be expressed, proposing that this Trp-motif is required for an Ii-dependent cell-surface transport of ULBP2. Aberrant soluble ULBP2 is immunosuppressive. Thus, targeting a distinct protein module on the ULBP2 sequence could counteract...

  9. A practical nonlocal model for heat transport in magnetized laser plasmas

    International Nuclear Information System (INIS)

    Nicolaie, Ph.D.; Feugeas, J.-L.A.; Schurtz, G.P.

    2006-01-01

    A model of nonlocal transport for multidimensional radiation magnetohydrodynamics codes is presented. In laser produced plasmas, it is now believed that the heat transport can be strongly modified by the nonlocal nature of the electron conduction. Other mechanisms, such as self-generated magnetic fields, may also affect the heat transport. The model described in this work, based on simplified Fokker-Planck equations aims at extending the model of G. Schurtz, Ph. Nicolaie, and M. Busquet [Phys. Plasmas 7, 4238 (2000)] to magnetized plasmas. A complete system of nonlocal equations is derived from kinetic equations with self-consistent electric and magnetic fields. These equations are analyzed and simplified in order to be implemented into large laser fusion codes and coupled to other relevant physics. The model is applied to two laser configurations that demonstrate the main features of the model and point out the nonlocal Righi-Leduc effect in a multidimensional case

  10. Controlling Heat Transport and Flow Structures in Thermal Turbulence Using Ratchet Surfaces

    Science.gov (United States)

    Jiang, Hechuan; Zhu, Xiaojue; Mathai, Varghese; Verzicco, Roberto; Lohse, Detlef; Sun, Chao

    2018-01-01

    In this combined experimental and numerical study on thermally driven turbulence in a rectangular cell, the global heat transport and the coherent flow structures are controlled with an asymmetric ratchetlike roughness on the top and bottom plates. We show that, by means of symmetry breaking due to the presence of the ratchet structures on the conducting plates, the orientation of the large scale circulation roll (LSCR) can be locked to a preferred direction even when the cell is perfectly leveled out. By introducing a small tilt to the system, we show that the LSCR orientation can be tuned and controlled. The two different orientations of LSCR give two quite different heat transport efficiencies, indicating that heat transport is sensitive to the LSCR direction over the asymmetric roughness structure. Through a quantitative analysis of the dynamics of thermal plume emissions and the orientation of the LSCR over the asymmetric structure, we provide a physical explanation for these findings. The current work has important implications for passive and active flow control in engineering, biofluid dynamics, and geophysical flows.

  11. Impact of plasma triangularity and collisionality on electron heat transport in TCV L-mode plasmas

    International Nuclear Information System (INIS)

    Camenen, Y.; Pochelon, A.; Behn, R.; Bottino, A.; Bortolon, A.; Coda, S.; Karpushov, A.; Sauter, O.; Zhuang, G.

    2007-01-01

    The impact of plasma shaping on electron heat transport is investigated in TCV L-mode plasmas. The study is motivated by the observation of an increase in the energy confinement time with decreasing plasma triangularity which may not be explained by a change in the temperature gradient induced by changes in the geometry of the flux surfaces. The plasma triangularity is varied over a wide range, from positive to negative values, and various plasmas conditions are explored by changing the total electron cyclotron (EC) heating power and the plasma density. The mid-radius electron heat diffusivity is shown to significantly decrease with decreasing triangularity and, for similar plasma conditions, only half of the EC power is required at a triangularity of -0.4 compared with +0.4 to obtain the same temperature profile. Besides, the observed dependence of the electron heat diffusivity on the electron temperature, electron density and effective charge can be grouped in a unique dependence on the plasma effective collisionality. In summary, the electron heat transport level exhibits a continuous decrease with decreasing triangularity and increasing collisionality. Local gyro-fluid and global gyro-kinetic simulations predict that trapped electron modes are the most unstable modes in these EC heated plasmas with an effective collisionality ranging from 0.2 to 1. The modes stability dependence on the plasma triangularity is investigated

  12. Heat and Fission Product Transport in a Molten U-Zr-O Pool With Crust

    International Nuclear Information System (INIS)

    Yun, J.I.; Suh, K.Y.; Kang, C.S.

    2002-01-01

    Heat transfer and fluid flow in a molten pool are influenced by internal volumetric heat generated from the radioactive decay of fission product species retained in the pool. The pool superheat is determined based on the overall energy balance that equates the heat production rate to the heat loss rate. Decay heat of fission products in the pool was estimated by product of the mass concentration and energy conversion factor of each fission product. For the calculation of heat generation rate in the pool, twenty-nine elements were chosen and classified by their chemical properties. The mass concentration of a fission product is obtained from released fraction and the tabular output of the ORIGEN 2 code. The initial core and pool inventories at each time can also be estimated using ORIGEN 2. The released fraction of each fission product is calculated based on the bubble dynamics and mass transport. Numerical analysis was performed for the TMI-2 accident. The pool is assumed to be a partially filled hemispherical geometry and the change of pool geometry during the numerical calculation was neglected. Results of the numerical calculation revealed that the peak temperature of the molten pool significantly decreased and most of the volatile fission products were released from the molten pool during the accident. (authors)

  13. Waste heat of HTR power stations for district heating

    International Nuclear Information System (INIS)

    Bonnenberg, H.; Schlenker, H.V.

    1975-01-01

    The market situation, the applied techniques, and the transport, for district heating in combination with HTR plants are considered. Analysis of the heat market indicates a high demand for heat at temperatures between 100 and 150 0 C in household and industry. This market for district heating can be supplied by heat generated in HTR plants using two methods: (1) the combined heat and power generation in steam cycle plants by extracting steam from the turbine, and (2) the use of waste heat of a closed gas turbine cycle. The heat generation costs of (2) are negligible. The cost for transportation of heat over the average distance between existing plant sites and consumer regions (25 km) are between 10 and 20% of the total heat price, considering the high heat output of nuclear power stations. Comparing the price of heat gained by use of waste heat in HTR plants with that of conventional methods, considerable advantages are indicated for the combined heat and power generation in HTR plants. (author)

  14. Fluidized-Bed Heat Transfer Modeling for the Development of Particle/Supercritical-CO2 Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiwen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Martinek, Janna G [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-06-03

    Concentrating solar power (CSP) technology is moving toward high-temperature and high-performance design. One technology approach is to explore high-temperature heat-transfer fluids and storage, integrated with a high-efficiency power cycle such as the supercritical carbon dioxide (s-CO2) Brayton power cycle. The s-CO2 Brayton power system has great potential to enable the future CSP system to achieve high solar-to-electricity conversion efficiency and to reduce the cost of power generation. Solid particles have been proposed as a possible high-temperature heat-transfer medium that is inexpensive and stable at high temperatures above 1,000 degrees C. The particle/heat exchanger provides a connection between the particles and s-CO2 fluid in the emerging s-CO2 power cycles in order to meet CSP power-cycle performance targets of 50% thermal-to-electric efficiency, and dry cooling at an ambient temperature of 40 degrees C. The development goals for a particle/s-CO2 heat exchanger are to heat s-CO2 to =720 degrees C and to use direct thermal storage with low-cost, stable solid particles. This paper presents heat-transfer modeling to inform the particle/s-CO2 heat-exchanger design and assess design tradeoffs. The heat-transfer process was modeled based on a particle/s-CO2 counterflow configuration. Empirical heat-transfer correlations for the fluidized bed and s-CO2 were used in calculating the heat-transfer area and optimizing the tube layout. A 2-D computational fluid-dynamics simulation was applied for particle distribution and fluidization characterization. The operating conditions were studied from the heat-transfer analysis, and cost was estimated from the sizing of the heat exchanger. The paper shows the path in achieving the cost and performance objectives for a heat-exchanger design.

  15. Flexibility analysis of main primary heat transport system : Narora Atomic Power Project

    International Nuclear Information System (INIS)

    Rastogi, S.K.

    1975-01-01

    The paper presents flexibility analysis problem of main primary heat transport system and the approximate analysis that has been made to estimate the loads coming on major equipments. The primary heat transport system for Narora Atomic Power Project is adopting vertical steam generators and pumps equally divided on either side of the reactor with inter-connecting pipes and feeders. Since the system is mainly spring supported with movement of a few points in certain direction defined but no anchorage, it represents a good problem for flexibility analysis which can only be solved in one step by developing a good computer programme. (author)

  16. Upgrading primary heat transport pump seals

    International Nuclear Information System (INIS)

    Graham, T.; Metcalfe, R.; Rhodes, D.; McInnes, D.

    1995-01-01

    Changes in the operating environment at the Bruce-A Nuclear Generating Station created the need for an upgraded Primary Heat Transport Pump (PHTP) seal. In particular, the requirement for low pressure running during more frequent start-ups exposed a weakness of the CAN2 seal and reduced its reliability. The primary concern at Bruce-A was the rotation of the CAN2 No. 2 stators in their holders. The introduction of low pressure running exacerbated this problem, giving rapid wear of the stator back face, overheating, and thermocracking. In addition, the resulting increase in friction between the stator and its holder increased stationary-side hysteresis and thereby changed the seal characteristic to the point where interseal pressure oscillations became prevalent. The resultant increased hysteresis also led to hard rubbing of the seal faces during temperature transients. An upgraded seal was required for improved reliability to avoid forced outages and to reduce maintenance costs. This paper describes this upgraded 'replacement seal' and its performance history. In spite of the 'teething' problems detailed in this paper, there have been no forced outages due to the replacement seal, and in the words of a seal maintenance worker at Bruce-A, 'it allows me to go home and sleep at night instead of worrying about seal failures.' (author)

  17. A continuum self organized critically model of turbulent heat transport in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Tangri, V; Das, A; Kaw, P; Singh, R [Institute for Plasma Research, Gandhinagar (India)

    2003-09-01

    Based on the now well known and experimentally observed critical gradient length (R/L{sub Te} = RT/{nabla}T) in tokamaks, we present a continuum one dimensional model for explaining self organized heat transport in tokamaks. Key parameters of this model include a novel hysteresis parameter which ensures that the switch of heat transport coefficient {chi} upwards and downwards takes place at two different values of R/L{sub Te}. Extensive numerical simulations of this model reproduce many features of present day tokamaks such as submarginal temperature profiles, intermittent transport events, 1/f scaling of the frequency spectra, propagating fronts, etc. This model utilises a minimal set of phenomenological parameters, which may be determined from experiments and/or simulations. Analytical and physical understanding of the observed features has also been attempted. (author)

  18. Handbook of heat and mass transfer. Volume 2

    International Nuclear Information System (INIS)

    Cheremisinoff, N.P.

    1986-01-01

    This two-volume series, the work of more than 100 contributors, presents advanced topics in industrial heat and mass transfer operations and reactor design technology. Volume 2 emphasizes mass transfer and reactor design. Some of the contents discussed are: MASS TRANSFER PRINCIPLES - Effect of turbulence promoters on mass transfer. Mass transfer principles with homogeneous and heterogeneous reactions. Convective diffusion with reactions in a tube. Transient mass transfer onto small particles and drops. Modeling heat and mass transport in falling liquid films. Heat and mass transfer in film absorption. Multicomponent mass transfer: theory and applications. Diffusion limitation for reaction in porous catalysts. Kinetics and mechanisms of catalytic deactivation. DISTILLATION AND EXTRACTION - Generalized equations of state for process design. Mixture boiling. Estimating vapor pressure from normal boiling points of hydrocarbons. Estimating liquid and vapor molar fractions in distillation columns. Principles of multicomponent distillation. Generalized design methods for multicomponent distillation. Interfacial films in inorganic substances extraction. Liquid-liquid extraction in suspended slugs. MULTIPHASE REACTOR SYSTEMS - Reaction and mass transport in two-phase reactors. Mass transfer and kinetics in three-phase reactors. Estimating liquid film mass transfer coefficients in randomly packed columns. Designing packed tower wet scrubbers - emphasis on nitrogen oxides. Gas absorption in aerated mixers. Axial dispersion and heat transfer in gas-liquid bubble columns. Operation and design of trickle-bed reactors

  19. On parameterization of heat conduction in coupled soil water and heat flow modelling

    Czech Academy of Sciences Publication Activity Database

    Votrubová, J.; Dohnal, M.; Vogel, T.; Tesař, Miroslav

    2012-01-01

    Roč. 7, č. 4 (2012), s. 125-137 ISSN 1801-5395 R&D Projects: GA ČR GA205/08/1174 Institutional research plan: CEZ:AV0Z20600510 Keywords : advective heat flux * dual-permeability model * soil heat transport * soil thermal conductivity * surface energy balance Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.333, year: 2012

  20. Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

    International Nuclear Information System (INIS)

    Takenaga, H.

    2002-01-01

    Relationship between particle and heat transport in an internal transport barrier (ITB) has been systematically investigated for the first time in reversed shear (RS) and high-β p ELMy H-mode (weak positive shear) plasmas of JT-60U for understanding of compatibility of improved energy confinement and effective particle control such as exhaust of helium ash and reduction in impurity contamination. In the RS plasma, no helium and carbon accumulation inside the ITB is observed even with highly improved energy confinement. In the high-β p plasma, both helium and carbon density profiles are flat. As the ion temperature profile changes from parabolic- to box-type, the helium diffusivity decreases by a factor of about 2 as well as the ion thermal diffusivity in the RS plasma. The measured soft X-ray profile is more peaked than that calculated by assuming the same n AR profile as the n e profile in the Ar injected RS plasma with the box-type profile, suggesting accumulation of Ar inside the ITB. Particle transport is improved with no change of ion temperature in the RS plasma, when density fluctuation is drastically reduced by a pellet injection. (author)

  1. Heating and active control of profiles and transport by IBW in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Zhao Yanping; Wan Baonian; Li Jiangang

    2003-01-01

    Significant progress on Ion Bernstein Wave (IBW) heating and control of profiles has been obtained in HT-7. Both on-axis and off-axis electron heating with global peaked and local steep electron pressure profiles were realized if the position of the resonant layer was selected to be plasma far from the plasma edge region. Reduction of electron heat transport has been observed from sawtooth heat pulse propagation. Improvement of both particle and energy confinement was slight in the on-axis and considerable in the off-axis heating cases. The improved confinement in off-axis heating mode may be due to the extension of the high performance plasma volume caused by IBW. These studies demonstrate that IBWs are potentially a tool for active control of plasma profiles and transport. (author)

  2. Transport of CO2 and other combustion products in soils during slash-pile burns [Presentation

    Science.gov (United States)

    W. J. Massman; M. M. Nobles; G. Butters; S. J. Mooney

    2010-01-01

    The most obvious indication of transport of mass during a fire is flames and smoke. Furthermore it is well known that localized heating during the fire creates 3-D convective currents in the atmosphere and that these currents carry the combustion products away from the fire.

  3. A comparative study of core and edge transport barrier dynamics of DIII-D and TFTR tokamak plasmas

    International Nuclear Information System (INIS)

    Synakowski, E.J.; Beer, M.; Bell, R.E.

    2001-01-01

    Confinement bifurcations and subsequent plasma dynamics in the TFTR core and the DIII-D core and edge are compared in order to identify a common physics basis. Observations suggest a framework in which ExB shear plays a dominant role in the barrier dynamics. In TFTR, bifurcations from the reverse shear (RS) into the enhanced reverse shear (ERS) regime with high power balanced neutral beam heating (above 25 MW at 4.8 T) resemble edge H mode transitions observed on DIII-D. In both, radial electric field (E r ) excursions precede confinement changes and are manifest as localized changes in the impurity poloidal rotation. Reduced transport follows the excursions, and in both cases strong E r shear is reinforced by the plasma pressure. These characteristics are contrasted with DIII-D negative central shear (NCS) barrier evolution with unidirectional beam injection. There, the improved confinement region can develop slowly, depending on the neutral beam input power and torque. Rapid expansion and deepening of this region follows an increase in the neutral beam heating power. The initial formation phase is modulated by confinement steps and interruptions. An analog for these steps is found in TFTR RS plasmas. Although these do not dominate the TFTR plasma evolution during low power (7 MW) heating, they can represent significant transport reductions when additional heating is applied. In both devices, no strong excursion in E r precedes these latter confinement bifurcations. The triggering event of these steps may be related to current profile relaxation, but it is not always connected with simple integral or half-integer values of the minimum in the q profile. Finally, variations of E r and the ExB shear through the application of unidirectional injection on TFTR yielded plasmas with confinement characteristics and barrier dynamics similar to those of DIII-D NCS plasmas. The data underscore that the physics responsible for the enhanced confinement states is fundamentally

  4. A comparative study of core and edge transport barrier dynamics of DIII-D and TFTR tokamak plasmas

    International Nuclear Information System (INIS)

    Synakowski, E.J.; Beer, M.A.; Bell, R.E.

    1999-01-01

    Confinement bifurcations and subsequent plasma dynamics in the TFTR core and the DIII-D core and edge are compared in order to identify a common physics basis. Observations suggest a framework in which ExB shear plays a dominant role in the barrier dynamics. In TFTR, bifurcations from the reverse shear (RS) into the enhanced reverse shear (ERS) regime with high power balanced neutral beam heating (above 25 MW at 4.8 T) resemble edge H mode transitions observed on DIII-D. In both, radial electric field (E r ) excursions precede confinement changes and are manifest as localized changes in the impurity poloidal rotation. Reduced transport follows the excursions, and in both cases strong E r shear is reinforced by the plasma pressure. These characteristics are contrasted with DIII-D negative central shear (NCS) barrier evolution with unidirectional beam injection. There, the improved confinement region can develop slowly, depending on the neutral beam input power and torque. Rapid expansion and deepening of this region follows an increase in the neutral beam heating power. The initial formation phase is modulated by confinement steps and interruptions. An analog for these steps is found in TFTR RS plasmas. Although these do not dominate the TFTR plasma evolution during low power (7 MW) heating, they can represent significant transport reductions when additional heating is applied. In both devices, no strong excursion in E r precedes these latter confinement bifurcations. The triggering event of these steps may be related to current profile relaxation, but it is not always connected with simple integral or half-integer values of the minimum in the q profile. Finally, variations of E r and the ExB shear through the application of unidirectional injection on TFTR yielded plasmas with confinement characteristics and barrier dynamics similar to those of DIII-D NCS plasmas. The data underscore that the physics responsible for the enhanced confinement states is fundamentally

  5. A practical nonlocal model for heat transport in magnetized laser plasmas

    Science.gov (United States)

    Nicolaï, Ph. D.; Feugeas, J.-L. A.; Schurtz, G. P.

    2006-03-01

    A model of nonlocal transport for multidimensional radiation magnetohydrodynamics codes is presented. In laser produced plasmas, it is now believed that the heat transport can be strongly modified by the nonlocal nature of the electron conduction. Other mechanisms, such as self-generated magnetic fields, may also affect the heat transport. The model described in this work, based on simplified Fokker-Planck equations aims at extending the model of G. Schurtz, Ph. Nicolaï, and M. Busquet [Phys. Plasmas 7, 4238 (2000)] to magnetized plasmas. A complete system of nonlocal equations is derived from kinetic equations with self-consistent electric and magnetic fields. These equations are analyzed and simplified in order to be implemented into large laser fusion codes and coupled to other relevant physics. The model is applied to two laser configurations that demonstrate the main features of the model and point out the nonlocal Righi-Leduc effect in a multidimensional case.

  6. Influence of root-water-uptake parameterization on simulated heat transport in a structured forest soil

    Science.gov (United States)

    Votrubova, Jana; Vogel, Tomas; Dohnal, Michal; Dusek, Jaromir

    2015-04-01

    Coupled simulations of soil water flow and associated transport of substances have become a useful and increasingly popular tool of subsurface hydrology. Quality of such simulations is directly affected by correctness of its hydraulic part. When near-surface processes under vegetation cover are of interest, appropriate representation of the root water uptake becomes essential. Simulation study of coupled water and heat transport in soil profile under natural conditions was conducted. One-dimensional dual-continuum model (S1D code) with semi-separate flow domains representing the soil matrix and the network of preferential pathways was used. A simple root water uptake model based on water-potential-gradient (WPG) formulation was applied. As demonstrated before [1], the WPG formulation - capable of simulating both the compensatory root water uptake (in situations when reduced uptake from dry layers is compensated by increased uptake from wetter layers), and the root-mediated hydraulic redistribution of soil water - enables simulation of more natural soil moisture distribution throughout the root zone. The potential effect on heat transport in a soil profile is the subject of the present study. [1] Vogel T., M. Dohnal, J. Dusek, J. Votrubova, and M. Tesar. 2013. Macroscopic modeling of plant water uptake in a forest stand involving root-mediated soil-water redistribution. Vadose Zone Journal, 12, 10.2136/vzj2012.0154. The research was supported by the Czech Science Foundation Project No. 14-15201J.

  7. Time-dependent 2-D modeling of edge plasma transport with high intermittency due to blobs

    International Nuclear Information System (INIS)

    Pigarov, A. Yu.; Krasheninnikov, S. I.; Rognlien, T. D.

    2012-01-01

    The results on time-dependent 2-D fluid modeling of edge plasmas with non-diffusive intermittent transport across the magnetic field (termed cross-field) based on the novel macro-blob approach are presented. The capability of this approach to simulate the long temporal evolution (∼0.1 s) of the background plasma and simultaneously the fast spatiotemporal dynamics of blobs (∼10 −4 s) is demonstrated. An analysis of a periodic sequence of many macro-blobs (PSMB) is given showing that the resulting plasma attains a dynamic equilibrium. Plasma properties in the dynamic equilibrium are discussed. In PSMB modeling, the effect of macro-blob generation frequency on edge plasma parameters is studied. Comparison between PSMB modeling and experimental profile data is given. The calculations are performed for the same plasma discharge using two different models for anomalous cross-field transport: time-average convection and PSMB. Parametric analysis of edge plasma variation with transport coefficients in these models is presented. The capability of the models to accurately simulate enhanced transport due to blobs is compared. Impurity dynamics in edge plasma with macro-blobs is also studied showing strong impact of macro-blob on profiles of impurity charge states caused by enhanced outward transport of high-charge states and simultaneous inward transport of low-charge states towards the core. Macro-blobs cause enhancement of sputtering rates, increase radiation and impurity concentration in plasma, and change erosion/deposition patterns.

  8. Transition to ballistic regime for heat transport in helium II

    Energy Technology Data Exchange (ETDEWEB)

    Sciacca, Michele, E-mail: michele.sciacca@unipa.it [Dipartimento Scienze Agrarie e Forestali, Università degli studi di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Sellitto, Antonio, E-mail: ant.sellitto@gmail.com [Dipartimento di Matematica, Informatica ed Economia, Università della Basilicata, Campus Macchia Romana, 85100 Potenza (Italy); Jou, David, E-mail: david.jou@uab.cat [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Institut d' Estudis Catalans, Carme 47, 08001 Barcelona, Catalonia (Spain)

    2014-07-04

    The size-dependent and flux-dependent effective thermal conductivity of narrow capillaries filled with superfluid helium is analyzed from a thermodynamic continuum perspective. The classical Landau evaluation of the effective thermal conductivity of quiescent superfluid, or the Gorter–Mellinck regime of turbulent superfluids, is extended to describe the transition to ballistic regime in narrow channels wherein the radius R is comparable to (or smaller than) the phonon mean-free path ℓ in superfluid helium. To do so, we start from an extended equation for the heat flux incorporating non-local terms, and take into consideration a heat slip flow along the walls of the tube. This leads from an effective thermal conductivity proportional to R{sup 2} (Landau regime) to another one proportional to Rℓ (ballistic regime). We consider two kinds of flows: along cylindrical pipes and along two infinite parallel plates. - Highlights: • Heat transport in counterflow helium in the ballistic regime. • The one-fluid model based on the Extended Thermodynamics is used. • The transition from the Landau regime to the ballistic regime. • The transition from quantum turbulence to ballistic regime.

  9. Warm-Core Intensification of a Hurricane Through Horizontal Eddy Heat Transports Inside the Eye

    Science.gov (United States)

    Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.

    2001-01-01

    A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob also identifies subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, excluding the eyewall (at least in an azimuthal mean sense), subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation cannot, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller contributions coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.

  10. ITER-W monoblocks under high pulse number transient heat loads at high temperature

    International Nuclear Information System (INIS)

    Loewenhoff, Th.; Linke, J.; Pintsuk, G.; Pitts, R.A.; Riccardi, B.

    2015-01-01

    In the context of using a full-tungsten (W) divertor for ITER, thermal shock resistance has become even more important as an issue that may potentially influence the long term performance. To address this issue a unique series of experiments has been performed on ITER-W monoblock mock ups in three EU high heat flux facilities: GLADIS (neutral beam), JUDITH 2 (electron beam) and Magnum-PSI (plasma beam). This paper discusses the JUDITH 2 experiments. Two different base temperatures, 1200 °C and 1500 °C, were chosen superimposed by ∼18,000/100,000 transient events (Δt = 0.48 ms) of 0.2 and 0.6 GW/m 2 . Results showed a stronger surface deterioration at higher base temperature, quantified by an increase in roughening. This is intensified if the same test is done after preloading (exposure to high temperature without transients), especially at higher base temperature when the material recrystallizes

  11. A simulation of heat transfer during billet transport

    Energy Technology Data Exchange (ETDEWEB)

    Jaklic, A.; Glogovac, B. [Institute of Metals and Technology, Ljubljana (Slovenia); Kolenko, T. [University of Ljubljana (Slovenia). Faculty of Natural Science and Technology; Zupancic, B. [University of Ljubljana (Slovenia). Faculty of Electrical Engineering; Zak, B. T. [Terming d.o.o., Ljubljana (Slovenia)

    2002-07-01

    This paper presents a simulation model for billet cooling during the billet's transport from the reheating furnace to the rolling mill. During the transport, the billet is exposed to radiation, convection and conduction. Due to the rectangular shape of the billet, the three-dimensional finite-difference model could be applied to calculate the heat conduction inside the billet. The billets are reheated in a gas-fired walking-beam furnace and are exposed to scaling. The model takes into account the effect of the thin oxide scale. We proved that the scale significantly affects the temperature distribution in the billet and should not be neglected. The model was verified by using a thermal camera. (author)

  12. Thermal transport of carbon nanotubes and graphene under optical and electrical heating measured by Raman spectroscopy

    Science.gov (United States)

    Hsu, I.-Kai

    This thesis presents systematic studies of thermal transport in individual single walled carbon nanotubes (SWCNTs) and graphene by optical and electrical approaches using Raman spectroscopy. In the work presented from Chapter 2 to Chapter 6, individual suspended CNTs are preferentially measured in order to explore their intrinsic thermal properties. Moreover, the Raman thermometry is developed to detect the temperature of the carbon nanotube (CNT). A parabolic temperature profile is observed in the suspended region of the CNT while a heating laser scans across it, providing a direct evidence of diffusive thermal transport in an individual suspended CNT. Based on the curvature of the temperature profile, we can solve for the ratio of thermal contact resistance to the thermal resistance of the CNT, which spans the range from 0.02 to 17. The influence of thermal contact resistance on the thermal transport in an individual suspended CNT is also studied. The Raman thermometry is carried out in the center of a CNT, while its contact length is successively shortened by an atomic force microscope (AFM) tip cutting technique. By investigating the dependence of the CNT temperature on its thermal contact length, the temperature of a CNT is found to increase dramatically as the contact length is made shorter. This work reveals the importance of manipulating the CNT thermal contact length when adopting CNT as a thermal management material. In using a focused laser to induce heating in a suspended CNT, one open question that remains unanswered is how many of the incident photons are absorbed by the CNT of interest. To address this question, micro-fabricated platinum thermometers, together with micro-Raman spectroscopy are used to quantify the optical absorption of an individual CNT. The absorbed power in the CNT is equal to the power detected by two thermometers at the end of the CNT. Our result shows that the optical absorption lies in the range between 0.03 to 0.44%. In

  13. Comparison of transient electron heat transport in LHD helical and JT-60U tokamak plasmas

    International Nuclear Information System (INIS)

    Inagaki, S.; Ida, K.; Tamura, N.; Shimozuma, T.; Kubo, S.; Nagayama, Y.; Kawahata, K.; Sudo, S.; Ohkubo, K.; Takenaga, H.; Isayama, A.; Takizuka, T.; Kamada, Y.; Miura, Y.

    2005-01-01

    Transient transport experiments are performed in plasmas with and without Internal Transport Barrier (ITB) on LHD and JT-60U. The dependence of χ e on electron temperature, T e , and electron temperature gradient, ∇T e , is analyzed by an empirical non-linear heat transport model. In plasmas without ITB, two different types of non-linearity of the electron heat transport are observed from cold/heat pulse propagation. The χ e depends on T e and ∇T e in JT-60U, while the ∇T e dependence is weak in LHD. Inside the ITB region, there is no or weak ∇T e dependence both in LHD and JT-60U. A cold pulse growing driven by the negative T e dependence of χ e is observed inside the ITB region (LHD) and near the boundary of the ITB region (JT-60U). (author)

  14. The influence of meridional ice transport on Europa's ocean stratification and heat content

    Science.gov (United States)

    Zhu, P.; Manucharyan, G.; Thompson, A. F.; Goodman, J. C.; Vance, S.

    2017-12-01

    Jupiter's moon Europa likely hosts a saltwater ocean beneath its icy surface. Geothermal heating and rotating convection in the ocean may drive a global overturning circulation that redistributes heat vertically and meridionally, preferentially warming the ice shell at the equator. Here we assess thepreviously unconstrained influence of ocean-ice coupling on Europa's ocean stratification and heat transport. We demonstrate that a relatively fresh layer can form at the ice-ocean interface due to a meridional ice transport forced by the differential ice shell heating between the equator and the poles. We provide analytical and numerical solutions for the layer's characteristics, highlighting their sensitivity to critical ocean parameters. For a weakly turbulent and highly saline ocean, a strong buoyancy gradient at the base of the freshwater layer can suppress vertical tracer exchange with the deeper ocean. As a result, the freshwater layer permits relatively warm deep ocean temperatures.

  15. Controlling heat transport and flow structures in thermal turbulence using ratchet surfaces

    Science.gov (United States)

    Sun, Chao; Jiang, Hechuan; Zhu, Xiaojue; Mathai, Varghese; Verzicco, Roberto; Lohse, Detlef

    2017-11-01

    In this combined experimental and numerical study on thermally driven turbulence in a rectangular cell, the global heat transport and the coherent flow structures are controlled with an asymmetric ratchet-like roughness on the top and bottom plates. We show that, by means of symmetry breaking due to the presence of the ratchet structures on the conducting plates, the orientation of the Large Scale Circulation Roll (LSCR) can be locked to a preferred direction even when the cell is perfectly leveled out. By introducing a small tilt to the system, we show that the LSCR orientation can be tuned and controlled. The two different orientations of LSCR give two quite different heat transport efficiencies, indicating that heat transport is sensitive to the LSCR direction over the asymmetric roughness structure. Through analysis of the dynamics of thermal plume emissions and the orientation of the LSCR over the asymmetric structure, we provide a physical explanation for these findings. This work is financially supported by the Natural Science Foundation of China under Grant No. 11672156, the Dutch Foundation for Fundamental Research on Matter (FOM), the Dutch Technology Foundation (STW) and a VIDI Grant.

  16. The Neighboring Column Approximation (NCA) – A fast approach for the calculation of 3D thermal heating rates in cloud resolving models

    International Nuclear Information System (INIS)

    Klinger, Carolin; Mayer, Bernhard

    2016-01-01

    Due to computational costs, radiation is usually neglected or solved in plane parallel 1D approximation in today's numerical weather forecast and cloud resolving models. We present a fast and accurate method to calculate 3D heating and cooling rates in the thermal spectral range that can be used in cloud resolving models. The parameterization considers net fluxes across horizontal box boundaries in addition to the top and bottom boundaries. Since the largest heating and cooling rates occur inside the cloud, close to the cloud edge, the method needs in first approximation only the information if a grid box is at the edge of a cloud or not. Therefore, in order to calculate the heating or cooling rates of a specific grid box, only the directly neighboring columns are used. Our so-called Neighboring Column Approximation (NCA) is an analytical consideration of cloud side effects which can be considered a convolution of a 1D radiative transfer result with a kernel or radius of 1 grid-box (5 pt stencil) and which does usually not break the parallelization of a cloud resolving model. The NCA can be easily applied to any cloud resolving model that includes a 1D radiation scheme. Due to the neglect of horizontal transport of radiation further away than one model column, the NCA works best for model resolutions of about 100 m or lager. In this paper we describe the method and show a set of applications of LES cloud field snap shots. Correction terms, gains and restrictions of the NCA are described. Comprehensive comparisons to the 3D Monte Carlo Model MYSTIC and a 1D solution are shown. In realistic cloud fields, the full 3D simulation with MYSTIC shows cooling rates up to −150 K/d (100 m resolution) while the 1D solution shows maximum coolings of only −100 K/d. The NCA is capable of reproducing the larger 3D cooling rates. The spatial distribution of the heating and cooling is improved considerably. Computational costs are only a factor of 1.5–2 higher compared to a 1D

  17. The Planar Sandwich and Other 1D Planar Heat Flow Test Problems in ExactPack

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, Jr., Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-24

    This report documents the implementation of several related 1D heat flow problems in the verification package ExactPack [1]. In particular, the planar sandwich class defined in Ref. [2], as well as the classes PlanarSandwichHot, PlanarSandwichHalf, and other generalizations of the planar sandwich problem, are defined and documented here. A rather general treatment of 1D heat flow is presented, whose main results have been implemented in the class Rod1D. All planar sandwich classes are derived from the parent class Rod1D.

  18. Heat transport as torsional responses and Keldysh formalism in a curved spacetime

    OpenAIRE

    Shitade, Atsuo

    2013-01-01

    We revisit a theory of heat transport in the light of a gauge theory of gravity and find the proper heat current with a corresponding gauge field, which yields the natural definitions of the heat magnetization and the Kubo-formula contribution to the thermal conductivity as torsional responses. We also develop a general framework for calculating gravitational responses by combining the Keldysh and Cartan formalisms. By using this framework, we explicitly calculate these two quantities and rep...

  19. Energy Conversion Advanced Heat Transport Loop and Power Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Oh, C. H.

    2006-08-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various

  20. Proteomic analysis of heat treated bitter gourd (Momordica charantia L. var. Hong Kong Green) using 2D-DIGE.

    Science.gov (United States)

    Ng, Zhi Xiang; Chua, Kek Heng; Kuppusamy, Umah Rani

    2014-04-01

    This study aimed to investigate the changes in the proteome of bitter gourd prior to and after subjecting to boiling and microwaving. A comparative analysis of the proteome profiles of raw and thermally treated bitter gourds was performed using 2D-DIGE. The protein content and number of protein spots in raw sample was higher when compared to the cooked samples. Qualitative analysis revealed that 103 (boiled sample) and 110 (microwaved sample) protein spots were up regulated whereas 120 (boiled sample) and 107 (microwaved sample) protein spots were down regulated. Ten protein spots with the highest significant fold change in the cooked samples were involved in carbohydrate/energy metabolisms and stress responses. Small heat shock proteins, superoxide dismutase, quinone oxidoreductase, UDP-glucose pyrophosphorylase and phosphoglycerate kinase play a role in heat-stress-mediated protection of bitter gourd. This study suggests that appropriate heat treatment (cooking methods) can lead to induction of selected proteins in bitter gourd. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Role of vitamin D on the expression of glucose transporters in L6 myotubes

    Directory of Open Access Journals (Sweden)

    Bubblu Tamilselvan

    2013-01-01

    Full Text Available Altered expression of glucose transporters is a major characteristic of diabetes. Vitamin D has evolved widespread interest in the pathogenesis and prevention of diabetes. The present study was designed to investigate the effect of vitamin D in the overall regulation of muscle cell glucose transporter expression. L6 cells were exposed to type 1 and type 2 diabetic conditions and the effect of calcitriol (1,25, dihydroxy cholicalciferol on the expression of glucose transporters was studied by real time polymerase chain reaction (RT-PCR. There was a significant decrease in glucose transporter type 1 (GLUT1, GLUT4, vitamin D receptor (VDR, and IR expression in type 1 and 2 diabetic model compared to control group. Treatment of myoblasts with 10-7 M calcitriol for 24 h showed a significant increase in GLUT1, GLUT4, VDR, and insulin receptor (IR expression. The results indicate a potential antidiabetic function of vitamin D on GLUT1, GLUT4, VDR, and IR by improving receptor gene expression suggesting a role for vitamin D in regulation of expression of the glucose transporters in muscle cells.

  2. Design considerations for CRBRP heat transport system piping operating at elevated temperatures

    International Nuclear Information System (INIS)

    Pollono, L.P.; Mello, R.M.

    1979-01-01

    The heat transport system sodium piping for the Clinch River Breeder Reactor Plant (CRBRP) within the reactor containment building must withstand high temperatures for long periods of time. Each phase of the mechanical design process of the piping system is influenced by elevated temperature considerations which include material thermal creep effects, ratchetting caused by rapid temperature transients and stress relaxation, and material degradation effects. The structural design philosophy taken to design the CRBRP piping operating in a high temperature environment is described. The resulting design of the heat transport system piping is presented along with a discussion of special features that resulted from the elevated temperature considerations

  3. Study on a non-powered heat transporting system; Mudoryoku netsu hanso system ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Y [Kanto Gakuin University, Yokohama (Japan)

    1997-11-25

    This paper proposes a non-powered heat transportation (HT) system. The system is composed of an evaporator, condenser, receiver, switching chamber (SC) and 3 check valves which are connected with each other by vapor and liquid tubes. Condensed liquid supercooled in the condenser exists in the receiver forming a saturated condition at a concerned temperature, and condensed liquid is lifted up from the condenser to the receiver by pressure difference between the evaporator and receiver. Generally evaporation pressure is higher by pressure difference between liquid levels in the condenser and receiver. The lifted up amount of condensed liquid increases with evaporation pressure, resulting in an increase in heating surface area of the condenser and amount of condensed liquid. A proper evaporator pressure is thus retained by reduction of evaporation pressure. SC is connected with the receiver and evaporator, and switches high- and low-pressure valves by motion of an inner float to transport heat from the evaporator to condenser. Reverse HT is possible as normal latent HT by installing a bypass. Some problems are also described. 2 refs., 8 figs.

  4. Suppression of turbulent transport in NSTX internal transport barriers

    Science.gov (United States)

    Yuh, Howard

    2008-11-01

    Electron transport will be important for ITER where fusion alphas and high-energy beam ions will primarily heat electrons. In the NSTX, internal transport barriers (ITBs) are observed in reversed (negative) shear discharges where diffusivities for electron and ion thermal channels and momentum are reduced. While neutral beam heating can produce ITBs in both electron and ion channels, High Harmonic Fast Wave (HHFW) heating can produce electron thermal ITBs under reversed magnetic shear conditions without momentum input. Interestingly, the location of the electron ITB does not necessarily match that of the ion ITB: the electron ITB correlates well with the minimum in the magnetic shear determined by Motional Stark Effect (MSE) [1] constrained equilibria, whereas the ion ITB better correlates with the maximum ExB shearing rate. Measured electron temperature gradients can exceed critical linear thresholds for ETG instability calculated by linear gyrokinetic codes in the ITB confinement region. The high-k microwave scattering diagnostic [2] shows reduced local density fluctuations at wavenumbers characteristic of electron turbulence for discharges with strongly negative magnetic shear versus weakly negative or positive magnetic shear. Fluctuation reductions are found to be spatially and temporally correlated with the local magnetic shear. These results are consistent with non-linear gyrokinetic simulations predictions showing the reduction of electron transport in negative magnetic shear conditions despite being linearly unstable [3]. Electron transport improvement via negative magnetic shear rather than ExB shear highlights the importance of current profile control in ITER and future devices. [1] F.M. Levinton, H. Yuh et al., PoP 14, 056119 [2] D.R. Smith, E. Mazzucato et al., RSI 75, 3840 [3] Jenko, F. and Dorland, W., PRL 89 225001

  5. Gray and multigroup radiation transport models for two-dimensional binary stochastic media using effective opacities

    International Nuclear Information System (INIS)

    Olson, Gordon L.

    2016-01-01

    One-dimensional models for the transport of radiation through binary stochastic media do not work in multi-dimensions. Authors have attempted to modify or extend the 1D models to work in multidimensions without success. Analytic one-dimensional models are successful in 1D only when assuming greatly simplified physics. State of the art theories for stochastic media radiation transport do not address multi-dimensions and temperature-dependent physics coefficients. Here, the concept of effective opacities and effective heat capacities is found to well represent the ensemble averaged transport solutions in cases with gray or multigroup temperature-dependent opacities and constant or temperature-dependent heat capacities. In every case analyzed here, effective physics coefficients fit the transport solutions over a useful range of parameter space. The transport equation is solved with the spherical harmonics method with angle orders of n=1 and 5. Although the details depend on what order of solution is used, the general results are similar, independent of angular order. - Highlights: • Gray and multigroup radiation transport is done through 2D stochastic media. • Approximate models for the mean radiation field are found for all test problems. • Effective opacities are adjusted to fit the means of stochastic media transport. • Test problems include temperature dependent opacities and heat capacities • Transport solutions are done with angle orders n=1 and 5.

  6. Ductile fracture behaviour of primary heat transport piping material ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Design of primary heat transport (PHT) piping of pressurised heavy water reactors (PHWR) has to ensure implementation of leak-before-break con- cepts. In order to be able to do so, the ductile fracture characteristics of PHT piping material have to be quantified. In this paper, the fracture resistance of SA333, Grade.

  7. Fusion performances and alpha heating in future JET D-T plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Balet, B; Cordey, J G; Gibson, A; Lomas, P; Stubberfield, P M; Thomas, P [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    The new pump divertor installed at JET should allow high performance pulses of a few seconds duration by both preventing the impurity influx and controlling the density evolution. The TRANSP code has been used in a predictive mode to assess the possible fusion performance of such plasmas fuelled with a 50:50 mixture of D and T, and the effect of alpha particles heating on Te and Ti. Several cases are considered: 50:50 D-T mix; 50:50 D-T mix, no C bloom; 50:50 D-T mix, VH phase, density control; 50:50 D-T mix, VH phase, density control, 6 Ma. The predictions show that if the the bloom and MHD instabilities can be controlled at higher plasma currents using a higher toroidal field to keep a reasonable beta value, then a higher fusion performance steady state plasma with Q{sub DT} superior to 2.5 should be possible. The alpha heating power of 4.9 MW would lead to a 74% increase in Te. 4 refs., 4 figs., 1 tab.

  8. Human Foramen Magnum Area and Posterior Cranial Fossa Volume Growth in Relation to Cranial Base Synchondrosis Closure in the Course of Child Development.

    Science.gov (United States)

    Coll, Guillaume; Lemaire, Jean-Jacques; Di Rocco, Federico; Barthélémy, Isabelle; Garcier, Jean-Marc; De Schlichting, Emmanuel; Sakka, Laurent

    2016-11-01

    To date, no study has compared the evolution of the foramen magnum area (FMA) and the posterior cranial fossa volume (PCFV) with the degree of cranial base synchondrosis ossification. To illustrate these features in healthy children. The FMA, the PCFV, and the ossification of 12 synchondroses according to the Madeline and Elster scale were retrospectively analyzed in 235 healthy children using millimeter slices on a computed tomography scan. The mean FMA of 6.49 cm in girls was significantly inferior to the FMA of 7.67 cm in boys (P < .001). In both sexes, the growth evolved in a 2-phase process, with a phase of rapid growth from birth to 3.75 years old (yo) followed by a phase of stabilization. In girls, the first phase was shorter (ending at 2.6 yo) than in boys (ending at 4.33 yo) and proceeded at a higher rate. PCFV was smaller in girls (P < .001) and displayed a biphasic pattern in the whole population, with a phase of rapid growth from birth to 3.58 yo followed by a phase of slow growth until 16 yo. In girls, the first phase was more active and shorter (ending at 2.67 yo) than in boys (ending at 4.5 yo). The posterior interoccipital synchondroses close first, followed by the anterior interoccipital and occipitomastoidal synchondroses, the lambdoid sutures simultaneously, then the petro-occipital and spheno-occipital synchondroses simultaneously. The data provide a chronology of synchondrosis closure. We showed that FMA and PCFV are constitutionally smaller in girls at birth (P ≤ .02) and suggest that a sex-related difference in the FMA is related to earlier closure of anterior interoccipital synchondroses in girls (P = .01). AIOS, anterior interoccipital synchondrosesFMA, foramen magnum areaLS, lambdoid suturesOMS, occipitomastoidal synchondrosesPCFV, posterior cranial fossa volumePIOS, posterior interoccipital synchondrosesPOS, petro-occipital synchondrosesSOS, spheno-occipital synchondrosisyo, years old.

  9. Bounds on heat transport in rapidly rotating Rayleigh–Bénard convection

    International Nuclear Information System (INIS)

    Grooms, Ian; Whitehead, Jared P

    2015-01-01

    The heat transport in rotating Rayleigh–Bénard convection is considered in the limit of rapid rotation (small Ekman number E) and strong thermal forcing (large Rayleigh number Ra). The analysis proceeds from a set of asymptotically reduced equations appropriate for rotationally constrained dynamics; the conjectured range of validity for these equations is Ra ≲ E −8/5 . A rigorous bound on heat transport of Nu ⩽ 20.56Ra 3 E 4 is derived in the limit of infinite Prandtl number using the background method. We demonstrate that the exponent in this bound cannot be improved on using a piece-wise monotonic background temperature profile like the one used here. This is true for finite Prandtl numbers as well, i.e. Nu ≲ Ra 3 is the best upper bound for this particular setup of the background method. The feature that obstructs the availability of a better bound in this case is the appearance of small-scale thermal plumes emanating from (or entering) the thermal boundary layer. The derived upper bound is consistent with, although significantly higher than the observed behaviour in simulations of the reduced equations, which find at most Nu ∼ Ra 2 E 8/3 . (paper)

  10. Degradation of energy confinement or degradation of plasma-heating. What is the main definite process for Plasma transport in stellarator?

    International Nuclear Information System (INIS)

    Fedynin, O.I.; Andryuklina, E.D.

    1995-01-01

    The analysis of plasma energy balance in stellarators and tokamaks depends on the different assumptions made and may give different and even contradictory results. When assuming full power absorption by thermal plasmas, paradoxical results can be obtained: degradation of the energy confinement time with heating power as well as degradation of plasma thermal conductivity in very short times (t<< tau:E) during power modulation experiments are deduced. On the other hand, assuming that plasma transport characteristics do not change while pain plasma parameters (density and temperature, their gradients, etc.) are kept constant, leads to conclude that heating efficiency is not unity and that it depends on both, plasma parameters and heating power. In this case no contradiction is found when analyzing plasma energy balances. In this paper the results of ECRH experiments on L-2M will be presented. The experiments were aimed to try to answer this important question. Analyses of the fast processes occurring during the switch off phase of the ECR heating, modulation of the heating power, and specific plasma decay phase, have lead to the conclusion that plasma transport characteristics remaining unchanged during fast variations of the heating power is the correct assumption. 2 refs

  11. Entropy transport in high-Tc superconductors in the fluctuation regime

    International Nuclear Information System (INIS)

    Maki, K.

    1991-01-01

    Making use of the expression for the heat current associated with the space-time-dependent order parameter for the s-wave superconductor, we calculate, in the clean limit, the heat current induced by an electric field. In the absence of a magnetic field we find an extra Peltier coefficient associated with the fluctuations, which diverges logarithmically as the temperature T approaches the transition temperature T c . In the presence of a magnetic field perpendicular to the ab plane, the fluctuation gives rise to the Ettingshausen effect. In a small magnetic field, the corresponding entropy transported by magnetic flux is calculated: left-angle S φ right-angle f =[2π 3 τT/21ζ(3)d](h/var-epsilon)(1 +2α) -1/2 where τ and d are the transport lifetime and the interlayer spacing, ζ(3)=1.202. . ., h=2eξ a 2 B, var-epsilon=ln(T/T c ), and α=2(ξ c /d) 2 var-epsilon -1 . The result is compared with a recent observation of the Ettinghausen effect in a single crystal of YBa 2 Cu 3 O 7

  12. Investigation of Fluctuation-Induced Electron Transport in Hall Thrusters with a 2D Hybrid Code in the Azimuthal and Axial Coordinates

    Science.gov (United States)

    Fernandez, Eduardo; Borelli, Noah; Cappelli, Mark; Gascon, Nicolas

    2003-10-01

    Most current Hall thruster simulation efforts employ either 1D (axial), or 2D (axial and radial) codes. These descriptions crucially depend on the use of an ad-hoc perpendicular electron mobility. Several models for the mobility are typically invoked: classical, Bohm, empirically based, wall-induced, as well as combinations of the above. Experimentally, it is observed that fluctuations and electron transport depend on axial distance and operating parameters. Theoretically, linear stability analyses have predicted a number of unstable modes; yet the nonlinear character of the fluctuations and/or their contribution to electron transport remains poorly understood. Motivated by these observations, a 2D code in the azimuthal and axial coordinates has been written. In particular, the simulation self-consistently calculates the azimuthal disturbances resulting in fluctuating drifts, which in turn (if properly correlated with plasma density disturbances) result in fluctuation-driven electron transport. The characterization of the turbulence at various operating parameters and across the channel length is also the object of this study. A description of the hybrid code used in the simulation as well as the initial results will be presented.

  13. Histologia e morfometria das glândulas das junções infundíbulo-magno e útero-vagina de codorna doméstica Histology and morphometry of the infundibulum-magnum and uterus-vaginal junctions of spotted quails

    Directory of Open Access Journals (Sweden)

    Carime Moraes

    2009-04-01

    Full Text Available A análise comparativa das glândulas armazenadoras de espermatozóides das junções infundíbulo-magno e útero-vagina do oviduto da codorna Nothura maculosa foi realizada durante a fase reprodutiva. As aves foram eutanasiadas por inalação com éter etílico, após a pesagem. Após a laparotomia e o deslocamento cranial do esterno, foram coletadas amostras de dois centímetros da junção infundíbulo-magno e útero-vagina. Os fragmentos foram fixados em solução de Bouin por 24 horas e, posteriormente, banhos sucessivos de álcool 70% foram aplicados sobre as amostras. Em seguida, as amostras foram desidratadas em uma série de concentração crescente de alcoóis (80, 90, 95 e 3x100%, diafanizadas em xilol e incluídas em parafina. Cortes histológicos de sete micrômetros de espessura foram obtidos e corados pela técnica da Hematoxilina-eosina (HE, que foram analisados e fotomicrografados em um fotomicroscópio Olympus BX-50. Para a análise morfométrica, foram capturadas imagens das glândulas armazenadoras de espermatozóides da junção infundíbulo-magno e útero-vagina mediante o programa computacional "Image Pro Plus 4.1" da Cibernetics do Brasil, tornando-se possível a quantificação das mesmas. A mucosa da junção infundíbulo-magno apresentou pregas estreitas no infundíbulo e largas no magno, enquanto na junção útero-vagina mostrou-se amplamente pregueada na vagina e mais lisa na porção uterina. O número médio de glândulas armazenadoras de espermatozóides na junção infundíbulo-magno foi maior (11,7 glândulas (PThe comparative analysis of sperm-host glands of infundibulum-magnum and uterus-vagina junctions of Nothura maculosa quail oviduct was done during the reproductive phase. The birds were euthanized with ethyl ether after weight data were taken. After abdominal laparotomy and cranial displacement of the breastbone, two centimeters samples of infundibulum-magnum and uterus-vagina junctions were collected

  14. Nonlocal heat transport and improved target design for x-ray heating studies at x-ray free electron lasers

    Science.gov (United States)

    Hoidn, Oliver; Seidler, Gerald T.

    2018-01-01

    The extremely high-power densities and short durations of single pulses of x-ray free electron lasers (XFELs) have opened new opportunities in atomic physics, where complex excitation-relaxation chains allow for high ionization states in atomic and molecular systems, and in dense plasma physics, where XFEL heating of solid-density targets can create unique dense states of matter having temperatures on the order of the Fermi energy. We focus here on the latter phenomena, with special emphasis on the problem of optimum target design to achieve high x-ray heating into the warm dense matter (WDM) state. We report fully three-dimensional simulations of the incident x-ray pulse and the resulting multielectron relaxation cascade to model the spatial energy density deposition in multicomponent targets, with particular focus on the effects of nonlocal heat transport due to the motion of high energy photoelectrons and Auger electrons. We find that nanoscale high-Z /low-Z multicomponent targets can give much improved energy density deposition in lower-Z materials, with enhancements reaching a factor of 100. This has three important benefits. First, it greatly enlarges the thermodynamic parameter space in XFEL x-ray heating studies of lower-Z materials. Second, it allows the use of higher probe photon energies, enabling higher-information content x-ray diffraction (XRD) measurements such as in two-color XFEL operations. Third, while this is merely one step toward optimization of x-ray heating target design, the demonstration of the importance of nonlocal heat transport establishes important common ground between XFEL-based x-ray heating studies and more traditional laser plasma methods.

  15. 3D neutron transport modelization

    International Nuclear Information System (INIS)

    Warin, X.

    1996-12-01

    Some nodal methods to solve the transport equation in 3D are presented. Two nodal methods presented at an OCDE congress are described: a first one is a low degree one called RTN0; a second one is a high degree one called BDM1. The two methods can be made faster with a totally consistent DSA. Some results of parallelization show that: 98% of the time is spent in sweeps; transport sweeps are easily parallelized. (K.A.)

  16. Temporal frequency probing for 5D transient analysis of global light transport

    KAUST Repository

    O'Toole, Matthew

    2014-07-27

    We analyze light propagation in an unknown scene using projectors and cameras that operate at transient timescales. In this new photography regime, the projector emits a spatio-temporal 3D signal and the camera receives a transformed version of it, determined by the set of all light transport paths through the scene and the time delays they induce. The underlying 3D-to-3D transformation encodes scene geometry and global transport in great detail, but individual transport components (e.g., direct reflections, inter-reflections, caustics, etc.) are coupled nontrivially in both space and time. To overcome this complexity, we observe that transient light transport is always separable in the temporal frequency domain. This makes it possible to analyze transient transport one temporal frequency at a time by trivially adapting techniques from conventional projector-to-camera transport. We use this idea in a prototype that offers three never-seen-before abilities: (1) acquiring time-of-flight depth images that are robust to general indirect transport, such as interreflections and caustics; (2) distinguishing between direct views of objects and their mirror reflection; and (3) using a photonic mixer device to capture sharp, evolving wavefronts of "light-in-flight".

  17. [18F]FMeNER-D2: Reliable fully-automated synthesis for visualization of the norepinephrine transporter

    International Nuclear Information System (INIS)

    Rami-Mark, Christina; Zhang, Ming-Rong; Mitterhauser, Markus; Lanzenberger, Rupert; Hacker, Marcus; Wadsak, Wolfgang

    2013-01-01

    Purpose: In neurodegenerative diseases and neuropsychiatric disorders dysregulation of the norepinephrine transporter (NET) has been reported. For visualization of NET availability and occupancy in the human brain PET imaging can be used. Therefore, selective NET-PET tracers with high affinity are required. Amongst these, [ 18 F]FMeNER-D2 is showing the best results so far. Furthermore, a reliable fully automated radiosynthesis is a prerequisite for successful application of PET-tracers. The aim of this work was the automation of [ 18 F]FMeNER-D2 radiolabelling for subsequent clinical use. The presented study comprises 25 automated large-scale syntheses, which were directly applied to healthy volunteers and adult patients suffering from attention deficit hyperactivity disorder (ADHD). Procedures: Synthesis of [ 18 F]FMeNER-D2 was automated within a Nuclear Interface Module. Starting from 20–30 GBq [ 18 F]fluoride, azeotropic drying, reaction with Br 2 CD 2 , distillation of 1-bromo-2-[ 18 F]fluoromethane-D2 ([ 18 F]BFM) and reaction of the pure [ 18 F]BFM with unprotected precursor NER were optimized and completely automated. HPLC purification and SPE procedure were completed, formulation and sterile filtration were achieved on-line and full quality control was performed. Results: Purified product was obtained in a fully automated synthesis in clinical scale allowing maximum radiation safety and routine production under GMP-like manner. So far, more than 25 fully automated syntheses were successfully performed, yielding 1.0–2.5 GBq of formulated [ 18 F]FMeNER-D2 with specific activities between 430 and 1707 GBq/μmol within 95 min total preparation time. Conclusions: A first fully automated [ 18 F]FMeNER-D2 synthesis was established, allowing routine production of this NET-PET tracer under maximum radiation safety and standardization

  18. [18F]FMeNER-D2: reliable fully-automated synthesis for visualization of the norepinephrine transporter.

    Science.gov (United States)

    Rami-Mark, Christina; Zhang, Ming-Rong; Mitterhauser, Markus; Lanzenberger, Rupert; Hacker, Marcus; Wadsak, Wolfgang

    2013-11-01

    In neurodegenerative diseases and neuropsychiatric disorders dysregulation of the norepinephrine transporter (NET) has been reported. For visualization of NET availability and occupancy in the human brain PET imaging can be used. Therefore, selective NET-PET tracers with high affinity are required. Amongst these, [(18)F]FMeNER-D2 is showing the best results so far. Furthermore, a reliable fully automated radiosynthesis is a prerequisite for successful application of PET-tracers. The aim of this work was the automation of [(18)F]FMeNER-D2 radiolabelling for subsequent clinical use. The presented study comprises 25 automated large-scale syntheses, which were directly applied to healthy volunteers and adult patients suffering from attention deficit hyperactivity disorder (ADHD). Synthesis of [(18)F]FMeNER-D2 was automated within a Nuclear Interface Module. Starting from 20-30 GBq [(18)F]fluoride, azeotropic drying, reaction with Br2CD2, distillation of 1-bromo-2-[(18)F]fluoromethane-D2 ([(18)F]BFM) and reaction of the pure [(18)F]BFM with unprotected precursor NER were optimized and completely automated. HPLC purification and SPE procedure were completed, formulation and sterile filtration were achieved on-line and full quality control was performed. Purified product was obtained in a fully automated synthesis in clinical scale allowing maximum radiation safety and routine production under GMP-like manner. So far, more than 25 fully automated syntheses were successfully performed, yielding 1.0-2.5 GBq of formulated [(18)F]FMeNER-D2 with specific activities between 430 and 1707 GBq/μmol within 95 min total preparation time. A first fully automated [(18)F]FMeNER-D2 synthesis was established, allowing routine production of this NET-PET tracer under maximum radiation safety and standardization. © 2013.

  19. Flow and Pollutant Transport in Urban Street Canyons of Different Aspect Ratios with Ground Heating: Large-Eddy Simulation

    OpenAIRE

    Li, Xian-Xiang; Koh, Tieh-Yong; Britter, Rex E; Norford, Leslie Keith; Entekhabi, Dara

    2010-01-01

    A validated large-eddy simulation model was employed to study the effect of the aspect ratio and ground heating on the flow and pollutant dispersion in urban street canyons. Three ground-heating intensities (neutral, weak and strong) were imposed in street canyons of aspect ratio 1, 2, and 0.5. The detailed patterns of flow, turbulence, temperature and pollutant transport were analyzed and compared. Significant changes of flow and scalar patterns were caused by ground heating in the street ca...

  20. Early life thermal stress: Impact on future thermotolerance, stress response, behavior, and intestinal morphology in piglets exposed to a heat stress challenge during simulated transport

    Science.gov (United States)

    Study objectives were to evaluate the impact of early life thermal stress (ELTS) on thermoregulation, stress, and intestinal health of piglets subjected to a future heat stress (HS) challenge during simulated transport. Approximately 7 d after farrowing, 12 first parity gilts and their litters were ...

  1. Heat and momentum transport of ion internal transport barrier plasmas on Large Helical Device

    International Nuclear Information System (INIS)

    Nagaoka, K.; Ida, K.; Yoshinuma, M.

    2010-11-01

    The peaked ion-temperature profile with steep gradient so called ion internal transport barrier (ion ITB) was formed in the neutral beam heated plasmas on the Large Helical Device (LHD) and the high-ion-temperature regime of helical plasmas has been significantly extended. The ion thermal diffusivity in the ion ITB plasma decreases down to the neoclassical transport level. The heavy ion beam probe (HIBP) observed the smooth potential profile with negative radial electric field (ion root) in the core region where the ion thermal diffusivity decreases significantly. The large toroidal rotation was also observed in the ion ITB core and the transport of toroidal momentum was analyzed qualitatively. The decrease of momentum diffusivity with ion temperature increase was observed in the ion ITB core. The toroidal rotation driven by ion temperature gradient so called intrinsic rotation is also identified. (author)

  2. Heat transport modeling of the dot spectroscopy platform on NIF

    Science.gov (United States)

    Farmer, W. A.; Jones, O. S.; Barrios, M. A.; Strozzi, D. J.; Koning, J. M.; Kerbel, G. D.; Hinkel, D. E.; Moody, J. D.; Suter, L. J.; Liedahl, D. A.; Lemos, N.; Eder, D. C.; Kauffman, R. L.; Landen, O. L.; Moore, A. S.; Schneider, M. B.

    2018-04-01

    Electron heat transport within an inertial-fusion hohlraum plasma is difficult to model due to the complex interaction of kinetic plasma effects, magnetic fields, laser-plasma interactions, and microturbulence. Here, simulations using the radiation-hydrodynamic code, HYDRA, are compared to hohlraum plasma experiments which contain a Manganese-Cobalt tracer dot (Barrios et al 2016 Phys. Plasmas 23 056307). The dot is placed either on the capsule or on a film midway between the capsule and the laser-entrance hole. From spectroscopic measurements, electron temperature and position of the dot are inferred. Simulations are performed with ad hoc flux limiters of f = 0.15 and f = 0.03 (with electron heat flux, q, limited to fnT 3/2/m 1/2), and two more physical means of flux limitation: the magnetohydrodynamics and nonlocal packages. The nonlocal model agrees best with the temperature of the dot-on-film and dot-on-capsule. The hohlraum produced x-ray flux is over-predicted by roughly ˜11% for the f = 0.03 model and the remaining models by ˜16%. The simulated trajectories of the dot-on-capsule are slightly ahead of the experimental trajectory for all but the f = 0.03 model. The simulated dot-on-film position disagrees with the experimental measurement for all transport models. In the MHD simulation of the dot-on-film, the dot is strongly perturbative, though the simulation predicts a peak dot-on-film temperature 2-3 keV higher than the measurement. This suggests a deficiency in the MHD modeling possibly due to the neglect of the Righi-Leduc term or interpenetrating flows of multiple ion species which would reduce the strength of the self-generated fields.

  3. Experimental and neoclassical electron heat transport in the LMFP regime for the stellarators W7-A, L-2, and W7-AS

    International Nuclear Information System (INIS)

    Maassberg, H.; Burhenn, R.; Gasparino, U.; Kuehner, G.; Ringler, H.; Dyabilin, K.S.

    1993-01-01

    The electron energy balance is analyzed for equivalent low-density electron cyclotron resonance heated (ECRH) discharges with highly peaked central power deposition in the stellarators W7-A [Plasma Phys. Controlled Fusion 28, 43 (1986)], L-2 [Proceedings of the 6th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Berchtesgaden, 1976 (International Atomic Energy Agency, Vienna, 1977), Vol. 2, p. 115] and W7-AS [Proceedings of the 9th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Baltimore, 1982 (International Atomic Energy Agency, Vienna, 1983), Vol. 3, p. 141]. Within the long mean-free path (LMFP) collisionality regime in stellarators, the neoclassical electron heat diffusivity χ e can overcome the ''anomalous'' one. The neoclassical transport coefficients are calculated by the DKES code (Drift Kinetic Equation Solver) [Phys. Fluids 29, 2951 (1986); Phys. Fluids B 1, 563 (1989)] for these configurations, and the particle and energy fluxes are estimated based on measured density and temperature profiles

  4. A new 2D climate model with chemistry and self consistent eddy-parameterization. The impact of airplane NO{sub x} on the chemistry of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gepraegs, R.; Schmitz, G.; Peters, D. [Institut fuer Atmosphaerenphysik, Kuehlungsborn (Germany)

    1997-12-31

    A 2D version of the ECHAM T21 climate model has been developed. The new model includes an efficient spectral transport scheme with implicit diffusion. Furthermore, photodissociation and chemistry of the NCAR 2D model have been incorporated. A self consistent parametrization scheme is used for eddy heat- and momentum flux in the troposphere. It is based on the heat flux parametrization of Branscome and mixing-length formulation for quasi-geostrophic vorticity. Above 150 hPa the mixing-coefficient K{sub yy} is prescribed. Some of the model results are discussed, concerning especially the impact of aircraft NO{sub x} emission on the model chemistry. (author) 6 refs.

  5. A new 2D climate model with chemistry and self consistent eddy-parameterization. The impact of airplane NO{sub x} on the chemistry of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gepraegs, R; Schmitz, G; Peters, D [Institut fuer Atmosphaerenphysik, Kuehlungsborn (Germany)

    1998-12-31

    A 2D version of the ECHAM T21 climate model has been developed. The new model includes an efficient spectral transport scheme with implicit diffusion. Furthermore, photodissociation and chemistry of the NCAR 2D model have been incorporated. A self consistent parametrization scheme is used for eddy heat- and momentum flux in the troposphere. It is based on the heat flux parametrization of Branscome and mixing-length formulation for quasi-geostrophic vorticity. Above 150 hPa the mixing-coefficient K{sub yy} is prescribed. Some of the model results are discussed, concerning especially the impact of aircraft NO{sub x} emission on the model chemistry. (author) 6 refs.

  6. Advances in the optimisation of apparel heating products: A numerical approach to study heat transport through a blanket with an embedded smart heating system

    International Nuclear Information System (INIS)

    Neves, S.F.; Couto, S.; Campos, J.B.L.M.; Mayor, T.S.

    2015-01-01

    The optimisation of the performance of products with smart/active functionalities (e. g. in protective clothing, home textiles products, automotive seats, etc.) is still a challenge for manufacturers and developers. The aim of this study was to optimise the thermal performance of a heating product by a numerical approach, by analysing several opposing requirements and defining solutions for the identified limitations, before the construction of the first prototype. A transfer model was developed to investigate the transport of heat from the skin to the environment, across a heating blanket with an embedded smart heating system. Several parameters of the textile material and of the heating system were studied, in order to optimise the thermal performance of the heating blanket. Focus was put on the effects of thickness and thermal conductivity of each layer, and on parameters associated with the heating elements, e.g. position of the heating wires relative to the skin, distance between heating wires, applied heating power, and temperature range for operation of the heating system. Furthermore, several configurations of the blanket (and corresponding heating powers) were analysed in order to minimise the heat loss from the body to the environment, and the temperature distribution along the skin. The results show that, to ensure an optimal compromise between the thermal performance of the product and the temperature oscillation along its surface, the distance between the wires should be small (and not bigger than 50 mm), and each layer of the heating blanket should have a specific thermal resistance, based on the expected external conditions during use and the requirements of the heating system (i.e. requirements regarding energy consumption/efficiency and capacity to effectively regulate body exchanges with surrounding environment). The heating system should operate in an ON/OFF mode based on the body heating needs and within a temperature range specified based on

  7. Diffusive-to-ballistic transition of the modulated heat transport in a rarefied air chamber

    Science.gov (United States)

    Gomez-Heredia, C. L.; Macias, J.; Ordonez-Miranda, J.; Ares, O.; Alvarado-Gil, J. J.

    2017-01-01

    Modulated heat transfer in air subject to pressures from 760 Torr to 10-4 Torr is experimentally studied by means of a thermal-wave resonant cavity placed in a vacuum chamber. This is done through the analysis of the amplitude and phase delay of the photothermal signal as a function of the cavity length and pressure through of the Knudsen's number. The viscous, transitional, and free molecular regimes of heat transport are observed for pressures P>1.5 Torr, 25 mTorrheat transport.

  8. DOE program for transportation R and D: a progress report

    International Nuclear Information System (INIS)

    Sisler, J.A.

    1978-01-01

    The Transportation Branch of the Division of Environmental Control Technology (ECT), US Department of Energy (DOE), is managing a research and development program oriented toward the environmental and safety aspects of the transportation of energy materials. This program was started under the US Energy Research and Development Administration (ERDA), and in October 1977 became one of the programs of the newly formed DOE. The objectives of the current R and D program include: (1) development of data and methodology for environment and safety (E and S) assessments including development of transportation environmental data, severe accident analysis and risk assessment; (2) confirmatory full-scale testing of package and vehicular systems to improve scale modeling and analytical techniques for transport system safety assessment; (3) development of an improved capability for assessing the dynamic performance of nuclear packaging under severe accident conditions; (4) evaluation and verification of existing transportation standards to assure adequate environmental controls; and (5) development of the needed information system tools such as films, booklets, and exhibits to permit the public and other interested parties to have access to the results of the R and D program. This paper summarizes the history of this program, describes the accomplishments, includes references to published reports, and discusses the current status of the environmental and safety R and D program as related to transportation of energy material. Comments are also included regarding the future direction of the program

  9. BOT3P5.2, 3D Mesh Generator and Graphical Display of Geometry for Radiation Transport Codes, Display of Results

    International Nuclear Information System (INIS)

    Orsi, Roberto; Bidaud, Adrien

    2007-01-01

    1 - Description of program or function: BOT3P was originally conceived as a set of standard FORTRAN 77 language programs in order to give the users of the DORT and TORT deterministic transport codes some useful diagnostic tools to prepare and check their input data files. Later versions extended the possibility to produce the geometrical, material distribution and fixed neutron source data to other deterministic transport codes such as TWODANT/THREEDANT of the DANTSYS system, PARTISN and, potentially, to any transport code through BOT3P binary output files that can be easily interfaced (see, for example, the Russian two-dimensional (2D) and three-dimensional (3D) discrete ordinates neutron, photon and charged particle transport codes KASKAD-S-2.5 and KATRIN-2.0). As from Version 5.1 BOT3P contained important additions specifically addressed to radiation transport analysis for medical applications. BOT3P-5.2 contains new graphics capabilities. Some of them enable users to select space sub-domains of the total mesh grid in order to improve the zoom simulation of the geometry, both in 2D cuts and in 3D. Moreover the new BOT3P module (PDTM) may improve the interface of BOT3P geometrical models to transport analysis codes. The following programs are included in the BOT3P software package: GGDM, DDM, GGTM, DTM2, DTM3, RVARSCL, COMPARE, MKSRC, CATSM, DTET, and PDTM. The main features of these different programs are described. 2 - Methods: GGDM and GGTM work similarly from the logical point of view. Since the 3D case is more general, the following description refers to GGTM. All the co-ordinate values that characterise the geometrical scheme at the basis of the 3D transport code geometrical and material model are read, sorted and all stored if different from the neighbouring ones more than an input tolerance established by the user. These co-ordinates are always present in the fine-mesh boundary arrays independently of the mesh grid refinement options, because they

  10. Detecting moisture transport pathways to the subtropical North Atlantic free troposphere using paired H2O-δD in situ measurements

    Directory of Open Access Journals (Sweden)

    Y. González

    2016-04-01

    Full Text Available We present two years of in situ measurements of water vapour (H2O and its isotopologue ratio (δD, the standardized ratio between H216O and HD16O, made at two remote mountain sites on Tenerife in the subtropical North Atlantic. We show that the data – if measured during night-time – are well representative for the lower/middle free troposphere. We use the measured H2O-δD pairs, together with dust measurements and back trajectory modelling for analysing the moisture pathways to this region. We can identify four principally different transport pathways. The air mass transport from high altitudes and high latitudes shows two different scenarios. The first scenario brings dry air masses to the stations, as the result of condensation events occurring at low temperatures. The second scenario brings humid air masses to the stations, due to cross-isentropic mixing with lower-level and more humid air during transport since last condensation (LC. The third pathway is transportation from lower latitudes and lower altitudes, whereby we can identify rain re-evaporation as an occasional source of moisture. The fourth pathway is linked to the African continent, where during summer, dry convection processes over the Sahara very effectively inject humidity from the boundary layer to higher altitudes. This so-called Saharan Air Layer (SAL is then advected westward over the Atlantic and contributes to moisten the free troposphere. We demonstrate that the different pathways leave distinct fingerprints on the measured H2O-δD pairs.

  11. Cavisoma magnum (Cavisomidae, a unique Pacific acanthocephalan redescribed from an unusual host, Mugil cephalus (Mugilidae, in the Arabian Gulf, with notes on histopathology and metal analysis

    Directory of Open Access Journals (Sweden)

    Amin Omar M.

    2018-01-01

    Full Text Available Cavisoma magnum (Southwell, 1927 Van Cleave, 1931 was originally described from a sea bass, Serranus sp. and spotted surgeonfish, Ctenochaetus strigosus (Perciformes off Sri Lanka before its more recent redescription from milkfish in the Philippines in 1995. These reports were based on only light infections of their host fishes. Of the few flathead grey mullets, Mugil cephalus (Mugilidae, that we examined in the Arabian Gulf, one fish was infected with 1,450 worms. One milkfish, Chanos chanos (Chanidae, from the same location in the Arabian Gulf, was also heavily infected with specimens of C. magnum. The descriptions of this unique large worm are revised and for the first time, we provide SEM images, new systematic observations, metal analysis of hooks showing extremely high levels of sulfur, and histopathology in the mullet intestinal tissue. Adjustments and corrections of previous descriptive accounts are made. The histopathology studies show extensive damage to the host intestinal tissue including epithelial necrosis, hemorrhaging and worm encapsulation. There is an extensive amount of host connective tissue surrounding the worm. Results of x-ray analysis displayed high levels of sulfur in proboscis hooks, especially at the tips and edges of these attachment structures.

  12. ICRF heating and transport of deuterium-tritium plasmas in TFTR

    International Nuclear Information System (INIS)

    Murakami, M.; Batchelor, D.B.; Bush, C.E.

    1994-01-01

    This paper describes results of the first experiments utilizing high-power ion cyclotron range of frequency (ICRF) to heat deuterium-tritium (D-T) plasmas in reactor-relevant regimes on the Tokamak Fusion Test Reactor (TFTR). Results from these experiments have demonstrated efficient core, second harmonic, tritium heating of D-T supershot plasmas with tritium concentrations ranging from 6%--40%. Significant direct ion heating on the order of 60% of the input radio frequency (rf) power has been observed. The measured deposition profiles are in good agreement with two-dimensional modeling code predictions. Confinement in an rf-heated supershot is at least similar to that without rf, and possibly better in the electron channel. Efficient electron heating via mode conversion of fast waves to ion Bernstein waves (IBW) has been demonstrated in ohmic, deuterium-deuterium and DT-neutral beam injection plasmas with high concentrations of minority 3 He (n 3 He /n e > 10%). By changing the 3 He concentration or the toroidal field strength, the location of the mode-conversion radius was varied. The power deposition profile measured with rf power modulation showed that up to 70% of the power can be deposited on electrons at an off-axis position. Preliminary results with up to 4 MW coupled into the plasma by 90-degree phased antennas showed directional propagation of the mode-converted IBW. Heat wave propagation showed no strong inward thermal pinch in off-axis heating of an ohmically-heated (OH) target plasma in TFIR

  13. 3D neutron transport modelization

    Energy Technology Data Exchange (ETDEWEB)

    Warin, X.

    1996-12-01

    Some nodal methods to solve the transport equation in 3D are presented. Two nodal methods presented at an OCDE congress are described: a first one is a low degree one called RTN0; a second one is a high degree one called BDM1. The two methods can be made faster with a totally consistent DSA. Some results of parallelization show that: 98% of the time is spent in sweeps; transport sweeps are easily parallelized. (K.A.). 10 refs.

  14. Skylab and solar exploration. [chromosphere-corona structure, energy production and heat transport processes

    Science.gov (United States)

    Von Puttkamer, J.

    1973-01-01

    Review of some of the findings concerning solar structure, energy production, and heat transport obtained with the aid of the manned Skylab space station observatory launched on May 14, 1973. Among the topics discussed are the observation of thermonuclear fusion processes which cannot be simulated on earth, the observation of short-wave solar radiation not visible to observers on earth, and the investigation of energy-transport processes occurring in the photosphere, chromosphere, and corona. An apparent paradox is noted in that the cooler chromosphere is heating the hotter corona, seemingly in defiance of the second law of thermodynamics, thus suggesting that a nonthermal mechanism underlies the energy transport. Understanding of this nonthermal mechanism is regarded as an indispensable prerequisite for future development of plasma systems for terrestrial applications.

  15. Transport simulations TFTR: Theoretically-based transport models and current scaling

    International Nuclear Information System (INIS)

    Redi, M.H.; Cummings, J.C.; Bush, C.E.; Fredrickson, E.; Grek, B.; Hahm, T.S.; Hill, K.W.; Johnson, D.W.; Mansfield, D.K.; Park, H.; Scott, S.D.; Stratton, B.C.; Synakowski, E.J.; Tang, W.M.; Taylor, G.

    1991-12-01

    In order to study the microscopic physics underlying observed L-mode current scaling, 1-1/2-d BALDUR has been used to simulate density and temperature profiles for high and low current, neutral beam heated discharges on TFTR with several semi-empirical, theoretically-based models previously compared for TFTR, including several versions of trapped electron drift wave driven transport. Experiments at TFTR, JET and D3-D show that I p scaling of τ E does not arise from edge modes as previously thought, and is most likely to arise from nonlocal processes or from the I p -dependence of local plasma core transport. Consistent with this, it is found that strong current scaling does not arise from any of several edge models of resistive ballooning. Simulations with the profile consistent drift wave model and with a new model for toroidal collisionless trapped electron mode core transport in a multimode formalism, lead to strong current scaling of τ E for the L-mode cases on TFTR. None of the theoretically-based models succeeded in simulating the measured temperature and density profiles for both high and low current experiments

  16. The SPACE 1.0 model: a Landlab component for 2-D calculation of sediment transport, bedrock erosion, and landscape evolution

    Science.gov (United States)

    Shobe, Charles M.; Tucker, Gregory E.; Barnhart, Katherine R.

    2017-12-01

    Models of landscape evolution by river erosion are often either transport-limited (sediment is always available but may or may not be transportable) or detachment-limited (sediment must be detached from the bed but is then always transportable). While several models incorporate elements of, or transition between, transport-limited and detachment-limited behavior, most require that either sediment or bedrock, but not both, are eroded at any given time. Modeling landscape evolution over large spatial and temporal scales requires a model that can (1) transition freely between transport-limited and detachment-limited behavior, (2) simultaneously treat sediment transport and bedrock erosion, and (3) run in 2-D over large grids and be coupled with other surface process models. We present SPACE (stream power with alluvium conservation and entrainment) 1.0, a new model for simultaneous evolution of an alluvium layer and a bedrock bed based on conservation of sediment mass both on the bed and in the water column. The model treats sediment transport and bedrock erosion simultaneously, embracing the reality that many rivers (even those commonly defined as bedrock rivers) flow over a partially alluviated bed. SPACE improves on previous models of bedrock-alluvial rivers by explicitly calculating sediment erosion and deposition rather than relying on a flux-divergence (Exner) approach. The SPACE model is a component of the Landlab modeling toolkit, a Python-language library used to create models of Earth surface processes. Landlab allows efficient coupling between the SPACE model and components simulating basin hydrology, hillslope evolution, weathering, lithospheric flexure, and other surface processes. Here, we first derive the governing equations of the SPACE model from existing sediment transport and bedrock erosion formulations and explore the behavior of local analytical solutions for sediment flux and alluvium thickness. We derive steady-state analytical solutions for

  17. Plasma rotation and rf heating in DIII-D

    International Nuclear Information System (INIS)

    DeGrassie, J.S.; Baker, D.R.; Burrell, K.H.

    1999-05-01

    In a variety of discharge conditions on DIII-D it is observed that rf electron heating reduces the toroidal rotation speed and core ion temperature. The rf heating can be with either fast wave or electron cyclotron heating and this effect is insensitive to the details of the launched toroidal wavenumber spectrum. To date all target discharges have rotation first established with co-directed neutral beam injection. A possible cause is enhanced ion momentum and thermal diffusivity due to electron heating effectively creating greater anomalous viscosity. Another is that a counter directed toroidal force is applied to the bulk plasma via rf driven radial current

  18. Plasma rotation and rf heating in DIII-D

    International Nuclear Information System (INIS)

    Grassie, J. S. de; Baker, D. R.; Burrell, K. H.; Greenfield, C. M.; Lin-Liu, Y. R.; Luce, T. C.; Petty, C. C.; Prater, R.; Heidbrink, W. W.; Rice, B. W.

    1999-01-01

    In a variety of discharge conditions on DIII-D it is observed that rf electron heating reduces the toroidal rotation speed and core ion temperature. The rf heating can be with either fast wave or electron cyclotron heating and this effect is insensitive to the details of the launched toroidal wavenumber spectrum. To date all target discharges have rotation first established with co-directed neutral beam injection. A possible cause is enhanced ion momentum and thermal diffusivity due to electron heating effectively creating greater anomalous viscosity. Another is that a counter directed toroidal force is applied to the bulk plasma via rf driven radial current. (c) 1999 American Institute of Physics

  19. The organic anion transport polypeptide 1d1 (Oatp1d1) mediates hepatocellular uptake of phalloidin and microcystin into skate liver.

    Science.gov (United States)

    Meier-Abt, F; Hammann-Hänni, A; Stieger, B; Ballatori, N; Boyer, J L

    2007-02-01

    Organic anion transporting polypeptides (rodent Oatp; human OATP) mediate cellular uptake of numerous organic compounds including xenobiotic toxins into mammalian hepatocytes. In the little skate Leucoraja erinacea a liver-specific Oatp (Oatp1d1, also called sOatp) has been identified and suggested to represent an evolutionarily ancient precursor of the mammalian liver OATP1B1 (human), Oatp1b2 (rat), and OATP1B3 (human). The present study tested whether Oatp1d1 shares functional transport activity of the xenobiotic oligopeptide toxins phalloidin and microcystin with the mammalian liver Oatps/OATPs. The phalloidin analogue [(3)H]-demethylphalloin was taken up into skate hepatocytes with high affinity (Km approximately 0.4 microM), and uptake could be inhibited by phalloidin and a variety of typical Oatp/OATP substrates such as bromosulfophthalein, bile salts, estrone-3-sulfate, cyclosporine A and high concentrations of microcystin-LR (Ki approximately 150 microM). When expressed in Xenopus laevis oocytes Oatp1d1 increased uptake of demethylphalloin (Km approximately 2.2 microM) and microcystin-LR (Km approximately 27 microM) 2- to 3-fold over water-injected oocytes, whereas the alternative skate liver organic anion transporter, the dimeric Ostalpha/beta, exhibited no phalloidin and only minor microcystin-LR transport. Also, the closest mammalian Oatp1d1 orthologue, the human brain and testis OATP1C1, did not show any phalloidin transport activity. These results demonstrate that the evolutionarily ancient Oatp1d1 is able to mediate uptake of cyclic oligopeptide toxins into skate liver. The findings support the notion that Oatp1d1 is a precursor of the liver-specific mammalian Oatps/OATPs and that its transport properties are closely associated with certain forms of toxic liver injury such as for example protein phosphatase inhibition by the water-borne toxin microcystin.

  20. The organic anion transport polypeptide 1d1 (Oatp1d1) mediates hepatocellular uptake of phalloidin and microcystin into skate liver

    International Nuclear Information System (INIS)

    Meier-Abt, F.; Hammann-Haenni, A.; Stieger, B.; Ballatori, N.; Boyer, J.L.

    2007-01-01

    Organic anion transporting polypeptides (rodent Oatp; human OATP) mediate cellular uptake of numerous organic compounds including xenobiotic toxins into mammalian hepatocytes. In the little skate Leucoraja erinacea a liver-specific Oatp (Oatp1d1, also called sOatp) has been identified and suggested to represent an evolutionarily ancient precursor of the mammalian liver OATP1B1 (human), Oatp1b2 (rat), and OATP1B3 (human). The present study tested whether Oatp1d1 shares functional transport activity of the xenobiotic oligopeptide toxins phalloidin and microcystin with the mammalian liver Oatps/OATPs. The phalloidin analogue [ 3 H]-demethylphalloin was taken up into skate hepatocytes with high affinity (Km ∼ 0.4 μM), and uptake could be inhibited by phalloidin and a variety of typical Oatp/OATP substrates such as bromosulfophthalein, bile salts, estrone-3-sulfate, cyclosporine A and high concentrations of microcystin-LR (Ki ∼ 150 μM). When expressed in Xenopus laevis oocytes Oatp1d1 increased uptake of demethylphalloin (Km ∼ 2.2 μM) and microcystin-LR (Km ∼ 27 μM) 2- to 3-fold over water-injected oocytes, whereas the alternative skate liver organic anion transporter, the dimeric Ostα/β, exhibited no phalloidin and only minor microcystin-LR transport. Also, the closest mammalian Oatp1d1 orthologue, the human brain and testis OATP1C1, did not show any phalloidin transport activity. These results demonstrate that the evolutionarily ancient Oatp1d1 is able to mediate uptake of cyclic oligopeptide toxins into skate liver. The findings support the notion that Oatp1d1 is a precursor of the liver-specific mammalian Oatps/OATPs and that its transport properties are closely associated with certain forms of toxic liver injury such as for example protein phosphatase inhibition by the water-borne toxin microcystin

  1. Transport properties and specific heat of UTe and USb

    International Nuclear Information System (INIS)

    Ochiai, A.; Suzuki, Y.; Shikama, T.; Suzuki, K.; Hotta, E.; Haga, Y.; Suzuki, T.

    1994-01-01

    Uranium monochalcogenides and monopnictides crystallize in the NaCl-type structure and exhibit ferromagnetic and antiferromagnetic order, respectively. These series reveal interesting properties such as Kondo behavior of UTe. However, such interesting properties are much sample dependent. We grew single crystals of USb and UTe with high purity using the Bridgman technique, and measured transport properties and specific heat. ((orig.))

  2. 3D slicing of radiogenic heat production in Bahariya Formation, Tut oil field, North-Western Desert, Egypt.

    Science.gov (United States)

    Al-Alfy, I M; Nabih, M A

    2013-03-01

    A 3D block of radiogenic heat production was constructed from the subsurface total gamma ray logs of Bahariya Formation, Western Desert, Egypt. The studied rocks possess a range of radiogenic heat production varying from 0.21 μWm(-3) to 2.2 μWm(-3). Sandstone rocks of Bahariya Formation have higher radiogenic heat production than the average for crustal sedimentary rocks. The high values of density log of Bahariya Formation indicate the presence of iron oxides which contribute the uranium radioactive ores that increase the radiogenic heat production of these rocks. The average radiogenic heat production produced from the study area is calculated as 6.3 kW. The histogram and cumulative frequency analyses illustrate that the range from 0.8 to 1.2 μWm(-3) is about 45.3% of radiogenic heat production values. The 3D slicing of the reservoir shows that the southeastern and northeastern parts of the study area have higher radiogenic heat production than other parts. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  3. A RSM-based predictive model to characterize heat treating parameters of D2 steel using combined Barkhausen noise and hysteresis loop methods

    International Nuclear Information System (INIS)

    Kahrobaee, Saeed; Hejazi, Taha-Hossein

    2017-01-01

    Highlights: • A statistical relationship between NDE inputs and heat treating outputs was provided. • Predicting austenitizing/tempering temperatures at unknown heat treating conditions. • An optimization model that achieves minimum error in prediction was developed. • Applying two simultaneous magnetic NDE methods led to better measuring reliability. - Abstract: Austenitizing and tempering temperatures are the effective characteristics in heat treating process of AISI D2 tool steel. Therefore, controlling them enables the heat treatment process to be designed more accurately which results in more balanced mechanical properties. The aim of this work is to develop a multiresponse predictive model that enables finding these characteristics based on nondestructive tests by a set of parameters of the magnetic Barkhausen noise technique and hysteresis loop method. To produce various microstructural changes, identical specimens from the AISI D2 steel sheet were austenitized in the range 1025–1130 °C, for 30 min, oil-quenched and finally tempered at various temperatures between 200 °C and 650 °C. A set of nondestructive data have been gathered based on general factorial design of experiments and used for training and testing the multiple response surface model. Finally, an optimization model has been proposed to achieve minimal error prediction. Results revealed that applying Barkhausen and hysteresis loop methods, simultaneously, coupling to the multiresponse model, has a potential to be used as a reliable and accurate nondestructive tool for predicting austenitizing and tempering temperatures (which, in turn, led to characterizing the microstructural changes) of the parts with unknown heat treating conditions.

  4. A RSM-based predictive model to characterize heat treating parameters of D2 steel using combined Barkhausen noise and hysteresis loop methods

    Energy Technology Data Exchange (ETDEWEB)

    Kahrobaee, Saeed, E-mail: kahrobaee@sadjad.ac.ir [Department of Mechanical and Materials Engineering, Sadjad University of Technology, P.O. Box 91881-48848, Mashhad (Iran, Islamic Republic of); Hejazi, Taha-Hossein [Department of Industrial Engineering and Management, Sadjad University of Technology, P.O. Box 91881-48848, Mashhad (Iran, Islamic Republic of)

    2017-07-01

    Highlights: • A statistical relationship between NDE inputs and heat treating outputs was provided. • Predicting austenitizing/tempering temperatures at unknown heat treating conditions. • An optimization model that achieves minimum error in prediction was developed. • Applying two simultaneous magnetic NDE methods led to better measuring reliability. - Abstract: Austenitizing and tempering temperatures are the effective characteristics in heat treating process of AISI D2 tool steel. Therefore, controlling them enables the heat treatment process to be designed more accurately which results in more balanced mechanical properties. The aim of this work is to develop a multiresponse predictive model that enables finding these characteristics based on nondestructive tests by a set of parameters of the magnetic Barkhausen noise technique and hysteresis loop method. To produce various microstructural changes, identical specimens from the AISI D2 steel sheet were austenitized in the range 1025–1130 °C, for 30 min, oil-quenched and finally tempered at various temperatures between 200 °C and 650 °C. A set of nondestructive data have been gathered based on general factorial design of experiments and used for training and testing the multiple response surface model. Finally, an optimization model has been proposed to achieve minimal error prediction. Results revealed that applying Barkhausen and hysteresis loop methods, simultaneously, coupling to the multiresponse model, has a potential to be used as a reliable and accurate nondestructive tool for predicting austenitizing and tempering temperatures (which, in turn, led to characterizing the microstructural changes) of the parts with unknown heat treating conditions.

  5. Study of CO2 automobile heating system. Paper no. IGEC-1-129

    International Nuclear Information System (INIS)

    Zha, S.; Hafner, A.

    2005-01-01

    Carbon dioxide has become a popular working medium in heat pump water heaters and mobile heat pumping systems due to its environment friendliness and its excellent thermal and transport properties in transcritical cycle. It also looks bright as a complete solution to environmental problem associated with automobile air conditionings. As high efficient mobile engines with less waste heat have been developed, extra heating of the passenger compartment is needed in the cold season. In this investigation, three heating solutions for automobile CO 2 air conditioning systems are provided. They are a bypass CO 2 heating cycle, a conventional CO 2 transcritical heat pump cycle and a high capacity heat pump cycle with economizer. These three solutions are compared with the viewpoints of the efficiency and heating capacity. The test results show that the heating capacity of the bypass heating method is only enough for a small automobile although it has the advantage of simple construction and low investment. The heat pump cycle with economizer applying a special construction reciprocating compressor can obtain a highest capacity even in cold climate. But the investment increase for economizer heat pump cycle includes both the modification of the compressor and the flash tank. And the COPh of economizer heat pump cycle is higher than bypass heating cycle, but lower than conventional heat pump cycle due to the highest capacity operation condition. (author)

  6. 1D equation for toroidal momentum transport in a tokamak

    International Nuclear Information System (INIS)

    Rozhansky, V A; Senichenkov, I Yu

    2010-01-01

    A 1D equation for toroidal momentum transport is derived for a given set of turbulent transport coefficients. The averaging is performed taking account of the poloidal variation of the toroidal fluxes and is based on the ambipolar condition of the zero net radial current through the flux surface. It is demonstrated that taking account of the Pfirsch-Schlueter fluxes leads to a torque in the toroidal direction which is proportional to the gradient of the ion temperature. This effect is new and has not been discussed before. The boundary condition at the separatrix, which is based on the results of the 2D simulations of the edge plasma, is formulated.

  7. Study of Heat Flux Threshold and Perturbation Effect on Transport Barrier Formation Based on Bifurcation Model

    International Nuclear Information System (INIS)

    Chatthong, B.; Onjun, T.; Imbeaux, F.; Sarazin, Y.; Strugarek, A.; Picha, R.; Poolyarat, N.

    2011-06-01

    Full text: Formation of transport barrier in fusion plasma is studied using a simple one-field bistable S-curve bifurcation model. This model is characterized by an S-line with two stable branches corresponding to the low (L) and high (H) confinement modes, connected by an unstable branch. Assumptions used in this model are such that the reduction in anomalous transport is caused by v E velocity shear effect and also this velocity shear is proportional to pressure gradient. In this study, analytical and numerical approaches are used to obtain necessary conditions for transport barrier formation, i.e. the ratio of anomalous over neoclassical coefficients and heat flux thresholds which must be exceeded. Several profiles of heat sources are considered in this work including constant, Gaussian, and hyperbolic tangent forms. Moreover, the effect of perturbation in heat flux is investigated with respect to transport barrier formation

  8. Minimization of transport and distribution cost for district heating study of particular cases

    International Nuclear Information System (INIS)

    Barreau, A.; Caizergues, R.; Moret Bailly, J.

    1977-01-01

    The transport and distribution of hot pressurized water involve different sets of criteria: transport networks, heat distribution networks, storages. The minimization of transport cost is studied together with the distribution of thermal energy. The same parameters are introduced into these programs. The same method is used for rate of flow calculations, but mathematical methods of pipe diameter calculation are different. Some transport and distribution networks are studied with the corresponding computed programs: 52 branches networks-27 terminations; 287 branches networks-148 terminations

  9. Developing a friendly I/O graphical interface for the integral transport CP2D computer code

    International Nuclear Information System (INIS)

    Constantin, M.

    2002-01-01

    The code CP 2 D design and developing involved the newest methods and techniques in the first flight collision probability (FFCP) calculations. These methods are strongly connected with the computer developing both in hardware and software. The code CP 2 D was developed in INR Pitesti, between 1997-2001. It is a transport code in the first flight collision probability formalism, able to treat exactly a lot of complicated geometry (such as CANDU clusters, TRIGA and PWR fuel assemblies). The first version CP 2 D1.0 was released in 1998. The second, CP 2 D2.0, was released in 1999 and uses a multistratified coolant model (MM) for CANDU loss of coolant accident analysis. The third version, CP 2 D3.0 (2000), have incorporated a generalized burning scheme. An user-friendly graphical interface was developed in 2001. It is intended to a rapid introduction of the input data and to extract the interest information from the output files. This information is directly converted into graphics and tables contained into a single MsWord document. The introduced input data are validated by the interface if the numerical, physical and mathematical restrictions are fulfilled. The user can see the representation of the model and can interactively modify the input data until the model is correct. The interface and the code were exhaustively documented and the obtained version was released as CP 2 D4.0. The version allows to a low experienced user to build the input files, to correct the possible errors and to extract the information of interest for the analyzed problem. The paper shows the interface as a useful concept for the upgrade of the classical codes. (author)

  10. An experience in the use the Sn method for 1D/2D/3D spallation target neutronics and shielding calculations

    International Nuclear Information System (INIS)

    Kryuchkov, V.P.; Chang, J.; Young-Sik, Cho; Voloschenko, A.M.; Sumaneev, O.V.

    2005-01-01

    A discrete ordinate algorithm for coupled charged/neutral particle transport calculations of the pencil beam problems in 3-dimensional r, θ, z and x,y,z geometries is developed. It is based on the use of the second order of accuracy adaptive WDD (AWDD) scheme for approximation both the continuous slowing down and streaming terms of the charged particle transport equation, and a suitable algorithm for treatment of the extended un collided flux from an initially mono directional beam of charged particles with given spatial distribution in the perpendicular section of the beam. The developed algorithm is an extension to the 3D geometry case of a similar approach, previously implemented for plane mono directional beam in 1D transport code ROZ-6 and for pencil beam r,z geometry problems in 2D transport code KASKAD-S. It is implemented in the 3D transport code KATRIN-2.0 and is applied to the high-energy coupled proton-pion-neutron-photon transport calculations. The updated version of multigroup cross section library SADCO-2.4 for nucleon-meson cascade calculations, coupled with standard neutron and gamma-ray cross-section libraries (CONSYST/ABBN-93 and BUGLE96, for example) below 20 MeV, is used. Some numerical examples are given. (authors)

  11. A pumped, two-phase flow heat transport system for orbiting instrument payloads

    Science.gov (United States)

    Fowle, A. A.

    1981-01-01

    A pumped two-phase (heat absorption/heat rejection) thermal transport system for orbiting instrument payloads is investigated. The thermofluid characteristics necessary for the system design are discussed. A preliminary design with a series arrangement of four instrument heat stations and six radiators in a single loop is described in detail, and the total mass is estimated to be 134 kg, with the radiators, instrument heat stations, and fluid reservoir accounting for approximately 86, 24, and 12 kg, respectively. The evaluation of preliminary test results shows that the system has potential advantages; however, further research is necessary in the areas of one-g and zero-g heat transfer coefficients/fluid regimes, fluid by-pass temperature control, and reliability of small pumps.

  12. An alternative treatment of heat flow for charge transport in semiconductor devices

    International Nuclear Information System (INIS)

    Grupen, Matt

    2009-01-01

    A unique thermodynamic model of Fermi gases suitable for semiconductor device simulation is presented. Like other models, such as drift diffusion and hydrodynamics, it employs moments of the Boltzmann transport equation derived using the Fermi-Dirac distribution function. However, unlike other approaches, it replaces the concept of an electron thermal conductivity with the heat capacity of an ideal Fermi gas to determine heat flow. The model is used to simulate a field-effect transistor and show that the external current-voltage characteristics are strong functions of the state space available to the heated Fermi distribution.

  13. Transported PDF Modeling of Nonpremixed Turbulent CO/H-2/N-2 Jet Flames

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, xinyu; Haworth, D. C.; Huckaby, E. David

    2012-01-01

    Turbulent CO/H{sub 2}/N{sub 2} (“syngas”) flames are simulated using a transported composition probability density function (PDF) method. A consistent hybrid Lagrangian particle/Eulerian mesh algorithm is used to solve the modeled PDF transport equation. The model includes standard k–ϵ turbulence, gradient transport for scalars, and Euclidean minimum spanning tree (EMST) mixing. Sensitivities of model results to variations in the turbulence model, the treatment of radiation heat transfer, the choice of chemical mechanism, and the PDF mixing model are explored. A baseline model reproduces the measured mean and rms temperature, major species, and minor species profiles reasonably well, and captures the scaling that is observed in the experiments. Both our results and the literature suggest that further improvements can be realized with adjustments in the turbulence model, the radiation heat transfer model, and the chemical mechanism. Although radiation effects are relatively small in these flames, consideration of radiation is important for accurate NO prediction. Chemical mechanisms that have been developed specifically for fuels with high concentrations of CO and H{sub 2} perform better than a methane mechanism that was not designed for this purpose. It is important to account explicitly for turbulence–chemistry interactions, although the details of the mixing model do not make a large difference in the results, within reasonable limits.

  14. Effects of vitamin D metabolites on cellular Ca2+ and on Ca transport in primary cultures of bone cells.

    Science.gov (United States)

    Eilam, Y; Szydel, N; Harell, A

    1980-09-01

    Both 1,25-dihydroxycholecalciferol (1,25(OH)2D3) and 24,25-dihydroxycholecalciferol (24,25(OH)2D3) exerted direct effects on Ca2+ transport and accumulation in primary cultures of bone cells. The following changes were recorded. (1) A significant decrease in the amount of intracellular exchangeable Ca2+. (2) A marked increase in the rate constants of efflux from the 'slow'-turnover intracellular Ca pool. (3) A marked increase in the 'initial rate' of Ca influx into the cells. Thus, vitamin D metabolites caused an increase in the turnover of Ca2+ in bone cells and altered the steady-stae level of intracellular exchangeable Ca2+. Whereas the changes in the rate of efflux were abolished in the presence of inhibitors of protein synthesis, the increase in the rate of influx was not sensitive to these inhibitors. It is suggested that the changes in the two fluxes were mediated by different mechanisms and that the changes in influx were due to a direct effect of vitamin D metabolites on the cellular membranes.

  15. 3D city models as a basis for heat demand simulations; 3D-Stadtmodelle als Grundlage fuer Waermebedarfssimulationen

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Claudia; Coors, Volker; Eicker, Ursula [Hochschule fuer Technik (HFT), Stuttgart (Germany)

    2012-07-01

    The biggest potential for heat consumption reduction and CO2 emission reduction in Germany is in older buildings. By applying innovative modernization concepts, primary energy consumption could be reduced by 80 percent. Planning of modernisation and energy concepts requires data on the current status. HFT Stuttgart developed a promising method for assessing heat consumption according to DIN 18599 of urban districts on the basis of 3D models of buildings (CityGML). The method is presented and explained here.

  16. On the solution of fluid flow and heat transfer problem in a 2D channel with backward-facing step

    Directory of Open Access Journals (Sweden)

    Alexander A. Fomin

    2017-06-01

    Full Text Available The stable stationary solutions of the test problem of hydrodynamics and heat transfer in a plane channel with the backward-facing step have been considered in the work for extremely high Reynolds numbers and expansion ratio of the stream $ER$. The problem has been solved by numerical integration of the 2D Navier–Stokes equations in ‘velocity-pressure’ formulation and the heat equation in the range of Reynolds number $500 \\leqslant \\mathrm{ Re} \\leqslant 3000$ and expansion ratio $1.43 \\leqslant ER \\leqslant 10$ for Prandtl number $\\mathrm{ Pr} = 0.71$. Validity of the results has been confirmed by comparing them with literature data. Detailed flow patterns, fields of stream overheating, and profiles of horizontal component of velocity and relative overheating of flow in the cross section of the channel have been presented. Complex behaviors of the coefficients of friction, hydrodynamic resistance and heat transfer (Nusselt number along the channel depending on the problem parameters have been analyzed.

  17. CO{sub 2} audit 1990/2005. Emissions from energy generation and transport; CO{sub 2}-Bilanz 1990/2005. Energie- und verkehrsbedingte Emissionen

    Energy Technology Data Exchange (ETDEWEB)

    Lueth, B.; Hoffmann-Kallen, A. (comps.)

    2007-04-15

    There were two studies investigating changes in energy related CO{sub 2} emissions (including CO{sub 2} equivalents) for Hannover (Federal Republic of Germany) within the period 1990 to 2005. CO{sub 2} emissions result from the combustion of fossil fuels. These have been divided into emissions due to energy consumption (electricity and heating) and the transport sector. The first study, 'Emissions caused by energy consumption (electricity and heating)' depicts the development of energy and CO{sub 2} audits for the years 1990 to 2005. Heating energy demand for 2005 was 8% lower than for 1990 due to increased energy efficiency. Furthermore, CO{sub 2} emissions were in effect reduced by 19% due to increases in the use of district heating and natural gas as alternatives to heating oil and coal. Although electricity consumption rose by 17% an increase of only 1% in CO{sub 2} emissions was registered due to improved energy efficiency through the deployment of combined heat and power plants for electricity generation. The second study, 'CO{sub 2} emissions from the transport sector' examined data for motorised traffic, local public transport, rail and air travel. Although traffic volume for these areas of transport increased during the period 1990 to 2005, effectively energy consumption for the total distance travelled decreased. Road traffic increased by 9% in Hannover over the period but fuel savings from more efficient vehicle engines resulted in an overall reduction of 6% in CO{sub 2} emissions. Despite an increase in carrying capacity of 31% (measured in seat-kilometres), CO{sub 2} emissions could be reduced by 22%. A similar trend was identified in the German rail traffic sector (local- and long-distance). Despite an overall increase in traveller kilometres across Germany, when relating this to the population of Hannover a local reduction in CO{sub 2} emissions of 17% was recorded. Air travel has doubled in Germany over the last 15 years. Thus

  18. Measurements and modeling of intra-ELM tungsten sourcing and transport in DIII-D

    Science.gov (United States)

    Abrams, T.; Leonard, A. W.; Thomas, D. M.; McLean, A. G.; Makowski, M. A.; Wang, H. Q.; Unterberg, E. A.; Briesemeister, A. R.; Rudakov, D. L.; Bykov, I.; Donovan, D.

    2017-10-01

    Intra-ELM tungsten erosion profiles in the DIII-D divertor, acquired via W I spectroscopy with high temporal and spatial resolution, are consistent with SDTrim.SP sputtering modeling using measured ion saturation currents and impact energies during ELMs as input and an ad-hoc 2% C2+ impurity flux. The W sputtering profile peaks close to the OSP both during and between ELMs in the favorable BT direction. In reverse BT the W source peaks close to the OSP between ELMs but strongly broadens and shifts outboard during ELMs, heuristically consistent with radially outward ion transport via ExB drifts. Ion impact energies during ELMs (inferred taking the ratio of divertor heat flux to the ion saturation current) are found to be approximately equal to Te,ped, lower than the 4*Te,ped value predicted by the Fundamenski/Moulton free streaming model. These impact energies imply both D main ions and C impurities contribute strongly to W sputtering during ELMs on DIII-D. This work represents progress towards a predictive model to link upstream conditions (i.e., pedestal height) and SOL impurity levels to the ELM-induced W impurity source at both the strike-point and far-target regions in the ITER divertor. Correlations between ELM size/frequency and SOL W fluxes measured via a midplane deposition probe will also be presented. Work supported by US DOE under DE-FC02-04ER54698.

  19. FFTF Heat Transport System (HTS) component and system design

    International Nuclear Information System (INIS)

    Young, M.W.; Edwards, P.A.

    1980-01-01

    The FFTF Heat Transport Systems and Components designs have been completed and successfully tested at isothermal conditions up to 427 0 C (800 0 F). General performance has been as predicted in the design analyses. Operational flexibility and reliability have been outstanding throughout the test program. The components and systems have been demonstrated ready to support reactor powered operation testing planned later in 1980

  20. Tunable electron heating induced giant magnetoresistance in the high mobility GaAs/AlGaAs 2D electron system.

    Science.gov (United States)

    Wang, Zhuo; Samaraweera, R L; Reichl, C; Wegscheider, W; Mani, R G

    2016-12-07

    Electron-heating induced by a tunable, supplementary dc-current (I dc ) helps to vary the observed magnetoresistance in the high mobility GaAs/AlGaAs 2D electron system. The magnetoresistance at B = 0.3 T is shown to progressively change from positive to negative with increasing I dc , yielding negative giant-magnetoresistance at the lowest temperature and highest I dc . A two-term Drude model successfully fits the data at all I dc and T. The results indicate that carrier heating modifies a conductivity correction σ 1 , which undergoes sign reversal from positive to negative with increasing I dc , and this is responsible for the observed crossover from positive- to negative- magnetoresistance, respectively, at the highest B.

  1. Comparing the value of bioenergy in the heating and transport sectors of an electricity-intensive energy system in Norway

    International Nuclear Information System (INIS)

    Assefa Hagos, Dejene; Gebremedhin, Alemayehu; Folsland Bolkesjø, Torjus

    2015-01-01

    The objective of this paper is to identify the most valuable sector for the use of bioenergy in a flexible energy system in order to meet the energy policy objectives of Inland Norway. A reference system was used to construct alternative systems in the heating and transport sectors. The alternative system in the heating sector is based on heat pumps and bio-heat boilers while the alternative systems in the transport sector are based on three different pathways: bio-dimethyl ether, hydrogen fuel cell vehicles and battery electric vehicles. The alternative systems were compared with the reference system after a business-economic optimisation had been made using an energy system analysis tool. The results show that the excess electricity availability due to increased energy efficiency measures hampers the competitiveness and penetration of bio-heating over heat pumps in the heating sector. Indeed, the synergy effect of using bio-dimethyl ether in the transport sector for an increased share of renewable energy sources is much higher than that of the hydrogen fuel cell vehicle and battery electric vehicle pathways. The study also revealed that increasing renewable energy production would increase the renewable energy share more than what would be achieved by an increase in energy efficiency. -- Highlights: •Bio-heating is less competitive over heat pump for low quality heat production. •Renewable energy production meets policy objectives better than system efficiency. •Bioenergy is more valuable in the transport sector than the heating sector

  2. Experimental study of thermal performance of heat pipe with axial trapezoidal grooves

    International Nuclear Information System (INIS)

    Suh, Jeong Se; Lee, Woon

    2003-01-01

    Analysis and experiment are performed to investigate the thermal performance of a heat pipe with axial grooves. The heat pipe was designed in a 6.5 mm I.D., 17 axial trapezoidal grooves, 1000 mm long tube of aluminium, and ammonia as working fluid. A mathematical equations for heat pipe with axial grooves is formulated to obtain the capillary limitation on heat transport rate in a steady state. As a result, heat transport factor of heat pipe has the maximum at the operating temperature of 293K in 0m elevation. As the elevation of heat pipe increases, the heat transport factor of the heat pipe is reduced markedly, comparing with that of horizontal elevation of the heat pipe. It may be considered that such behavior of heat pipe is caused by the working fluid swarmed back to the condenser port due to gravity force and supercooled by a coolant of heat exchanger. Analytical results of heat transport factor are in a good agreement with those of experiment

  3. The relationship between turbulence measurements and transport in different heating regimes in TFTR

    International Nuclear Information System (INIS)

    Bretz, N.L.; Mazzucato, E.; Nazikian, R.; Paul, S.F.; Hammett, G.; Rewoldt, G.; Tang, W.M.; Zarnstorff, M.C.

    1992-01-01

    The scaling of broad band density fluctuations in the confinement zone of TFTR measured by microwave scattering, beam emission spectroscopy (BES), and reflectometry show a relationship between these fluctuations and energy transport measured from power balance calculations. In L-mode plasmas scattering and BES indicates that the density fluctuation level, δn 2 , in the confinement zone for 0.2 aux and I p in a way that is consistent with variations in energy transport. Fluctuation levels measured with all systems increase strongly toward the edge in all heating regimes following increases in energy transport coefficients. Measurements using BES have shown that poloidal and radial correlation lengths in the confinement zone of L-mode and supershot plasmas fall in the range of 1 to 2 cm. with a wave structure which has k max ∼ 1 cm -1 (k perpendicular ps ∼ 0.2) in the poloidal direction and k max approaching zero in the radial direction. A simple estimate of the diffusion coefficient based on a measured radial correlation length and correlation time indicates good agreement with power balance calculations. Similar estimates using reflectometry give radial coherence lengths at 10 to 20 kHz in low density ohmic and supershot plasmas of between I and 2 cm

  4. Water, solute and heat transport in the soil: the Australian connection

    Science.gov (United States)

    Knight, John

    2016-04-01

    The interest of Peter Raats in water, solute and heat transport in the soil has led to scientific and/or personal interactions with several Australian scientists such as John Philip, David Smiles, Greg Davis and John Knight. Along with John Philip and Robin Wooding, Peter was an early user of the Gardner (1958) linearised model of soil water flow, which brought him into competition with John Philip. I will discuss some of Peter's solutions relevant to infiltration from line and point sources, cavities and basins. A visit to Canberra, Australia in the early 1980s led to joint work on soil water flow, and on combined water and solute movement with David Smiles and others. In 1983 Peter was on the PhD committee for Greg Davis at the University of Wollongong, and some of the methods in his thesis 'Mathematical modelling of rate-limiting mechanisms of pyritic oxidation in overburden dumps' were later used by Peter's student Sjoerd van der Zee. David Smiles and Peter wrote a survey article 'Hydrology of swelling clay soils' in 2005. In the last decade Peter has been investigating the history of groundwater and vadose zone hydrology, and recently he and I have been bringing to light the largely forgotten work of Lewis Fry Richardson on finite difference solution of the heat equation, drainage theory, soil physics, and the soil-plant-atmosphere continuum.

  5. Note: Reliable and non-contact 6D motion tracking system based on 2D laser scanners for cargo transportation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Keun, E-mail: ykkim@handong.edu [Department of Mechanical and Control Engineering, Handong Global University, Pohang (Korea, Republic of); Kim, Kyung-Soo [Department of Mechanical Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2014-10-15

    Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.

  6. 16 CFR Appendix D5 to Part 305 - Water Heaters-Heat Pump

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Water Heaters-Heat Pump D5 Appendix D5 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE... Appendix D5 to Part 305—Water Heaters—Heat Pump Range Information CAPACITY FIRST HOUR RATING Range of...

  7. Effect of heat loss in a geothermal reservoir

    NARCIS (Netherlands)

    Ganguly, Sayantan; Tan, Lippong; Date, Abhijit; Mohan Kumar, Mandalagiri Subbarayappa

    This paper reports a three-dimensional (3D) numerical study to determine the effect of heat loss on the transient heat transport and temperature distribution in a geothermal reservoir. The operation of a geothermal power plant, which is essentially an injection-production process, involves

  8. Tokamak electron heat transport by direct numerical simulation of small scale turbulence

    International Nuclear Information System (INIS)

    Labit, B.

    2002-10-01

    In a fusion machine, understanding plasma turbulence, which causes a degradation of the measured energy confinement time, would constitute a major progress in this field. In tokamaks, the measured ion and electron thermal conductivities are of comparable magnitude. The possible sources of turbulence are the temperature and density gradients occurring in a fusion plasma. Whereas the heat losses in the ion channel are reasonably well understood, the origin of the electron losses is more uncertain. In addition to the radial velocity associated to the fluctuations of the electric field, electrons are more affected than ions by the magnetic field fluctuations. In experiments, the confinement time can be conveniently expressed in terms of dimensionless parameters. Although still somewhat too imprecise, these scaling laws exhibit strong dependencies on the normalized pressure β or the normalized Larmor radius, ρ * . The present thesis assesses whether a tridimensional, electromagnetic, nonlinear fluid model of plasma turbulence driven by a specific instability can reproduce the dependence of the experimental electron heat losses on the dimensionless parameters β and ρ * . The investigated interchange instability is the Electron Temperature Gradient driven one (ETG). The model is built by using the set of Braginskii equations. The developed simulation code is global in the sense that a fixed heat flux is imposed at the inner boundary, leaving the gradients free to evolve. From the nonlinear simulations, we have put in light three characteristics for the ETG turbulence: the turbulent transport is essentially electrostatic; the potential and pressure fluctuations form radially elongated cells called streamers; the transport level is very low compared to the experimental values. The thermal transport dependence study has shown a very small role of the normalized pressure, which is in contradiction with the Ohkama's formula. On the other hand, the crucial role of the

  9. Influence of transport on EBW heating efficiency in magnetic confinement devices

    International Nuclear Information System (INIS)

    Cappa, A.; Castejon, F.; Lopez-Bruna, D.; Tereshchenko, M.

    2007-01-01

    The main advantage of the heating performed by electron Bernstein waves (EBW) in the O-X-B1 regime (O mode injection that is converted into X mode, which is converted in Bernstein wave, strongly absorbed close to the cyclotron resonance layer at first harmonic) is that there is no cut-off density. Therefore, this heating system can work without upper density limit, still having all the advantages of electron cyclotron resonance heating (ECRH), which is localised in phase space due to its resonant nature. The heating efficiency of Bernstein waves depends on the fraction of waves that is transformed from O to X mode at the O mode cut off layer, then on the fraction of power converted into Bernstein waves at the upper hybrid resonance layer and, finally, on the final position of the absorption in the plasma. All these factors are related to the density profile, since the positions of the cut off and of the upper hybrid resonance layers depend on the actual plasma density profile. Besides, the absorption profile depends also on the temperature profile. Moreover, it is possible to observe that the former layers only appear for high enough plasma density, than can be obtained by gas puffing, as has been observed in the simulations performed for TJ-II stellarator. For such reasons, particle transport is basic for understanding and guaranteeing EBW heating. In this work, TJ-II plasmas are taken as a case example in order to simulate the full evolution of a plasma discharge that is created and heated by ECRH in a first step and finally is heated using EBW. The evolution of the discharge is simulated using the transport code ASTRA and the sequence of the discharge is as follows: O mode is launched on a steady state plasma with density lower than the O mode cut-off. Then a gas puff is injected in order to increase the plasma density over the level in which EBW heating is efficient because O mode cut off and upper hybrid layer appear. EBW ray tracing calculations are performed

  10. Evaluation of Heat Removal Performance of Passive Decay Heat Removal system for S-CO{sub 2} Cooled Micro Modular Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jangsik; Lee, Jeong Ik; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The modular systems is able to be transported by large trailer. Moreover, dry cooling system is applied for waste heat removal. The characteristics of MMR takes wide range of construction area from coast to desert, isolated area and disaster area. In MMR, Passive decay heat removal system (PDHRS) is necessary for taking the advantage on selection of construction area where external support cannot be offered. The PDHRS guarantees to protect MMR without external support. In this research, PDHRS of MMR is introduced and decay heat removal performance is analyzed. The PDHRS guarantees integrity of reactor coolant system. The high level of decay heat (2 MW) can be removed by PDHRS without offsite power.

  11. Multiple zonal jets and convective heat transport barriers in a quasi-geostrophic model of planetary cores

    Science.gov (United States)

    Guervilly, C.; Cardin, P.

    2017-10-01

    We study rapidly rotating Boussinesq convection driven by internal heating in a full sphere. We use a numerical model based on the quasi-geostrophic approximation for the velocity field, whereas the temperature field is 3-D. This approximation allows us to perform simulations for Ekman numbers down to 10-8, Prandtl numbers relevant for liquid metals (˜10-1) and Reynolds numbers up to 3 × 104. Persistent zonal flows composed of multiple jets form as a result of the mixing of potential vorticity. For the largest Rayleigh numbers computed, the zonal velocity is larger than the convective velocity despite the presence of boundary friction. The convective structures and the zonal jets widen when the thermal forcing increases. Prograde and retrograde zonal jets are dynamically different: in the prograde jets (which correspond to weak potential vorticity gradients) the convection transports heat efficiently and the mean temperature tends to be homogenized; by contrast, in the cores of the retrograde jets (which correspond to steep gradients of potential vorticity) the dynamics is dominated by the propagation of Rossby waves, resulting in the formation of steep mean temperature gradients and the dominance of conduction in the heat transfer process. Consequently, in quasi-geostrophic systems, the width of the retrograde zonal jets controls the efficiency of the heat transfer.

  12. A RSM-based predictive model to characterize heat treating parameters of D2 steel using combined Barkhausen noise and hysteresis loop methods

    Science.gov (United States)

    Kahrobaee, Saeed; Hejazi, Taha-Hossein

    2017-07-01

    Austenitizing and tempering temperatures are the effective characteristics in heat treating process of AISI D2 tool steel. Therefore, controlling them enables the heat treatment process to be designed more accurately which results in more balanced mechanical properties. The aim of this work is to develop a multiresponse predictive model that enables finding these characteristics based on nondestructive tests by a set of parameters of the magnetic Barkhausen noise technique and hysteresis loop method. To produce various microstructural changes, identical specimens from the AISI D2 steel sheet were austenitized in the range 1025-1130 °C, for 30 min, oil-quenched and finally tempered at various temperatures between 200 °C and 650 °C. A set of nondestructive data have been gathered based on general factorial design of experiments and used for training and testing the multiple response surface model. Finally, an optimization model has been proposed to achieve minimal error prediction. Results revealed that applying Barkhausen and hysteresis loop methods, simultaneously, coupling to the multiresponse model, has a potential to be used as a reliable and accurate nondestructive tool for predicting austenitizing and tempering temperatures (which, in turn, led to characterizing the microstructural changes) of the parts with unknown heat treating conditions.

  13. Neoclassical transport of energetic minority tail ions generated by ion-cyclotron resonance heating in tokamak geometry

    International Nuclear Information System (INIS)

    Chang, C.S.; Hammett, G.W.; Goldston, R.J.

    1990-01-01

    Neoclassical transport of energetic minority tail ions, which are generated by high powered electromagnetic waves of the Ion Cyclotron Range of Frequencies (ICRF) at the fundamental harmonic resonance, is studied analytically in tokamak geometry. The effect of Coulomb collisions on the tail ion transport is investigated in the present work. The total tail ion transport will be the sum of the present collision-driven transport and the wave-driven transport, which is due to the ICRF-wave scattering of the tail particles as reported in the literature. The transport coefficients have been calculated kinetically, and it is found that the large tail ion viscosity, driven by the localized ICRF-heating and Coulomb slowing-down collisions, induces purely convective particle transport of the tail species, while the energy transport is both convective and diffusive. The rate of radial particle transport is shown to be usually small, but the rate of radial energy transport is larger and may not be negligible compared to the Coulomb slowing-down rate. 18 refs., 2 figs

  14. Compressed air energy storage with waste heat export: An Alberta case study

    International Nuclear Information System (INIS)

    Safaei, Hossein; Keith, David W.

    2014-01-01

    Highlights: • Export of compression waste heat from CAES facilities for municipal heating can be profitable. • D-CAES concept has a negative abatement cost of −$40/tCO 2 e under the studied circumstances. • Economic viability of D-CAES highly depends on distance between air storage site and heat load. - Abstract: Interest in compressed air energy storage (CAES) technology has been renewed driven by the need to manage variability form rapidly growing wind and solar capacity. Distributed CAES (D-CAES) design aims to improve the efficiency of conventional CAES through locating the compressor near concentrated heating loads so capturing additional revenue through sales of compression waste heat. A pipeline transports compressed air to the storage facility and expander, co-located at some distance from the compressor. The economics of CAES are strongly dependant on electricity and gas markets in which they are embedded. As a case study, we evaluated the economics of two hypothetical merchant CAES and D-CAES facilities performing energy arbitrage in Alberta, Canada using market data from 2002 to 2011. The annual profit of the D-CAES plant was $1.3 million more on average at a distance of 50 km between the heat load and air storage sites. Superior economic and environmental performance of D-CAES led to a negative abatement cost of −$40/tCO 2 e. We performed a suite of sensitivity analyses to evaluate the impact of size of heat load, size of air storage, ratio of expander to compressor size, and length of pipeline on the economic feasibility of D-CAES

  15. 49 CFR 179.200-11 - Postweld heat treatment.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.200-11 Section 179.200-11 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... Postweld heat treatment. When specified in § 179.201-1, after welding is complete, postweld heat treatment...

  16. Transport of the Glucosamine-Derived Browning Product Fructosazine (Polyhydroxyalkylpyrazine) Across the Human Intestinal Caco-2 Cell Monolayer: Role of the Hexose Transporters.

    Science.gov (United States)

    Bhattacherjee, Abhishek; Hrynets, Yuliya; Betti, Mirko

    2017-06-14

    The transport mechanism of fructosazine, a glucosamine self-condensation product, was investigated using a Caco-2 cell model. Fructosazine transport was assessed by measuring the bidirectional permeability coefficient across Caco-2 cells. The mechanism of transport was evaluated using phlorizin, an inhibitor of sodium-dependent glucose cotransporters (SGLT) 1 and 2, phloretin and quercetin, inhibitors of glucose transporters (GLUT) 1 and 2, transcytosis inhibitor wortmannin, and gap junction disruptor cytochalasin D. The role of hexose transporters was further studied using downregulated or overexpressed cell lines. The apparent permeability (P a,b ) of fructosazine was 1.30 ± 0.02 × 10 -6 cm/s. No significant (p > 0.05) effect was observed in fructosazine transport by adding wortmannin and cytochalasin D. The presence of phlorizin, phloretin, and quercetin decreased fructosazine transport. The downregulated GLUT cells line was unable to transport fructosazine. In human intestinal epithelial Caco-2 cells, GLUT1 or GLUT2 and SGLT are mainly responsible for fructosazine transport.

  17. Local and Nonlocal Parallel Heat Transport in General Magnetic Fields

    International Nuclear Information System (INIS)

    Castillo-Negrete, D. del; Chacon, L.

    2011-01-01

    A novel approach for the study of parallel transport in magnetized plasmas is presented. The method avoids numerical pollution issues of grid-based formulations and applies to integrable and chaotic magnetic fields with local or nonlocal parallel closures. In weakly chaotic fields, the method gives the fractal structure of the devil's staircase radial temperature profile. In fully chaotic fields, the temperature exhibits self-similar spatiotemporal evolution with a stretched-exponential scaling function for local closures and an algebraically decaying one for nonlocal closures. It is shown that, for both closures, the effective radial heat transport is incompatible with the quasilinear diffusion model.

  18. [{sup 18}F]FMeNER-D2: Reliable fully-automated synthesis for visualization of the norepinephrine transporter

    Energy Technology Data Exchange (ETDEWEB)

    Rami-Mark, Christina [Radiochemistry and Biomarker Development Unit, Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna (Austria); Department of Inorganic Chemistry, University of Vienna (Austria); Zhang, Ming-Rong [Molecular Imaging Center, National Institute of Radiological Sciences, Chiba (Japan); Mitterhauser, Markus [Radiochemistry and Biomarker Development Unit, Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna (Austria); Hospital Pharmacy of the General Hospital of Vienna (Austria); Lanzenberger, Rupert [Department of Psychiatry and Psychotherapy, Medical University of Vienna (Austria); Hacker, Marcus [Radiochemistry and Biomarker Development Unit, Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna (Austria); Wadsak, Wolfgang [Radiochemistry and Biomarker Development Unit, Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna (Austria); Department of Inorganic Chemistry, University of Vienna (Austria)

    2013-11-15

    Purpose: In neurodegenerative diseases and neuropsychiatric disorders dysregulation of the norepinephrine transporter (NET) has been reported. For visualization of NET availability and occupancy in the human brain PET imaging can be used. Therefore, selective NET-PET tracers with high affinity are required. Amongst these, [{sup 18}F]FMeNER-D2 is showing the best results so far. Furthermore, a reliable fully automated radiosynthesis is a prerequisite for successful application of PET-tracers. The aim of this work was the automation of [{sup 18}F]FMeNER-D2 radiolabelling for subsequent clinical use. The presented study comprises 25 automated large-scale syntheses, which were directly applied to healthy volunteers and adult patients suffering from attention deficit hyperactivity disorder (ADHD). Procedures: Synthesis of [{sup 18}F]FMeNER-D2 was automated within a Nuclear Interface Module. Starting from 20–30 GBq [{sup 18}F]fluoride, azeotropic drying, reaction with Br{sub 2}CD{sub 2}, distillation of 1-bromo-2-[{sup 18}F]fluoromethane-D2 ([{sup 18}F]BFM) and reaction of the pure [{sup 18}F]BFM with unprotected precursor NER were optimized and completely automated. HPLC purification and SPE procedure were completed, formulation and sterile filtration were achieved on-line and full quality control was performed. Results: Purified product was obtained in a fully automated synthesis in clinical scale allowing maximum radiation safety and routine production under GMP-like manner. So far, more than 25 fully automated syntheses were successfully performed, yielding 1.0–2.5 GBq of formulated [{sup 18}F]FMeNER-D2 with specific activities between 430 and 1707 GBq/μmol within 95 min total preparation time. Conclusions: A first fully automated [{sup 18}F]FMeNER-D2 synthesis was established, allowing routine production of this NET-PET tracer under maximum radiation safety and standardization.

  19. CASKETSS-DYNA2D: a nonlinear impact analysis computer program for nuclear fuel transport casks in two dimensional geometries

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1988-10-01

    A nonlinear impact analysis computer program DYNA2D, which was developed by Hallquist, has been introduced from Lawrence Livermore National Laboratory for the purpose of using impact analysis of nuclear fuel transport casks. DYNA2D has been built in CASKETSS code system (CASKETSS means a modular code system for CASK Evaluation code system for Thermal and Structural Safety). Main features of DYNA2D are as follows; (1) This program has been programmed to provide near optimal speed on vector processing computers. (2) An explicit time integration method is used for fast calculation. (3) Many material models are available in the program. (4) A contact-impact algorithm permits gap and sliding along structural interfaces. (5) A rezoner has been embedded in the program. (6) The graphic program for representations of calculation is provided. In the paper, brief illustration of calculation method, input data and sample calculations are presented. (author)

  20. CAV-OX (trade name) Cavitation Oxidation Process Magnum Water Technology, Inc. applications analysis report. Report for November 1992-November 1993

    Energy Technology Data Exchange (ETDEWEB)

    Stacy, G.L.

    1994-05-01

    The CAV-OX process was developed by magnum Water Technology to destroy organic contaminants in water. The process uses hydrodynamic cavitation, ultraviolet (UV) radiation, and hydrogen peroxide to oxidize organic compounds present in water at or below milligrams per liter levels. This treatment technology produces no air emissions and generated no sludge or spent media that requires further processing, handling, or disposal. Ideally, the end products are water, carbon dioxide, halides, and in some cases, organic acids. The process uses mercury vapor lamps to generate UV radiation. The principal oxidants in the process, hydroxyl radicals, are produced by hydrodynamic cavitation and direct photolysis of hydrogen peroxide at UV wavelengths.