Picologlou, B.F.; Doss, E.D.; Geyer, H.K. (Argonne National Lab., IL (United States)); Sikes, W.C.; Ranellone, R.F. (Newport News Shipbuilding and Dry Dock Co., VA (United States))
1992-01-01
A two Tesla test facility was designed, built, and operated to investigate the performance of magnetohydrodynamic (MHD) seawater thrusters. The results of this investigation are used to validate a design oriented MHD thruster performance computer code. The thruster performance code consists of a one-dimensional MHD hydrodynamic model coupled to a two-dimensional electrical model. The code includes major loss mechanisms affecting the performance of the thruster. Among these losses are the joule dissipation losses, frictional losses, electrical end losses, and single electrode potential losses. The facility test loop, its components, and their design are presented in detail. Additionally, the test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to pretest computer model predictions. Good agreement between predicted and measured data has served to validate the thruster performance computer models.
Performance and flow characteristics of MHD seawater thruster
Doss, E.D.
1990-01-01
The main goal of the research is to investigate the effects of strong magnetic fields on the electrical and flow fields inside MHD thrusters. The results of this study is important in the assessment of the feasibility of MHD seawater propulsion for the Navy. To accomplish this goal a three-dimensional fluid flow computer model has been developed and applied to study the concept of MHD seawater propulsion. The effects of strong magnetic fields on the current and electric fields inside the MHD thruster and their interaction with the flow fields, particularly those in the boundary layers, have been investigated. The results of the three-dimensional computations indicate that the velocity profiles are flatter over the sidewalls of the thruster walls in comparison to the velocity profiles over the electrode walls. These nonuniformities in the flow fields give rise to nonuniform distribution of the skin friction along the walls of the thrusters, where higher values are predicted over the sidewalls relative to those over the electrode walls. Also, a parametric study has been performed using the three-dimensional MHD flow model to analyze the performance of continuous electrode seawater thrusters under different operating parameters. The effects of these parameters on the fluid flow characteristics, and on the thruster efficiency have been investigated. Those parameters include the magnetic field (10--20 T), thruster diameter, surface roughness, flow velocity, and the electric load factor. The results show also that the thruster performance improves with the strength of the magnetic field and thruster diameter, and the efficiency decreases with the flow velocity and surface roughness.
2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster
Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.
Electrolysis Bubble Noise in Small-Scale Tests of a Seawater MHD thruster
1990-09-01
reported on an MHD ship propulsion program. 7,8 Their work has apparently resulted in the construc- tion of a prototype which is reported to have two MHD...150 tons.* Recent interest in this ship propulsion concept is also stimulated in part by the cx- pectation tha! an I-il thruster would be qieter than...1. The production of hydrogen bubbles through the electrolysis of seawater at cur- rent densities expected for M-ID ship propulsion , 0.1 to 0.3 A/cm
Sea-Water Magnetohydrodynamic Propulsion for Next-Generation Undersea Vehicles
1990-02-01
1961. 2 J. B. Friauf, "Electromagnetic Ship Propulsion ," J. of Amer. Soc. of Naval Engrs., Feb., 1961, pp 139-142. 3 0. M. Phillips, "The Prospects for...Magnetohydrodynamic Ship Propulsion ," J. of Ship Research, March, 1962, pp 43-51. 4 R. A. Doragh, "Magnetohydrodynamic Ship Propulsion using...Paper # 67-432. I A. P. Baranov, "Future of Magnetohydrodynamic Ship Propulsion ," Sudostroyeniye, No. 12, 1966, pp 3-6. 8 A. Iwata, Y. Saji and S. Sato
Andersson, G.
2015-09-01
The thruster module described in this paper provides a low but controlled acceleration in a mission which would normally be labelled “microgravity”. The first mission was Cryofenix, where tanks containing liquid hydrogen were used in the experiment. The experiment utilizing the low acceleration is using liquids and requires a precise acceleration profile throughout the mission. Acceleration obtained by payload rotation is not feasible due to that the transversal forces required to change the acceleration will cause undesired liquid turbulence. In order to satisfy the experiment requirements a thruster module was developed by SSC for the Cryofenix mission funded by CNES. The Cryofenix mission had a payload weight of 380 kg and an apogee of about 260 km. The module produces a controlled thrust in flight direction by means of a cold gas system.
Relativistic magnetohydrodynamics
Hernandez, Juan; Kovtun, Pavel
2017-05-01
We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the "conventional" magnetohydrodynamics (formulated using Maxwell's equations in matter) to those in the "dual" version of magnetohydrodynamics (formulated using the conserved magnetic flux).
Haas, Fernando; Pascoal, Kellen Alves [Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Mendonça, José Tito [IPFN, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal and Instituto de Física, Universidade de São Paulo, 05508-090 São Paulo, SP (Brazil)
2016-01-15
A new neutrino magnetohydrodynamics (NMHD) model is formulated, where the effects of the charged weak current on the electron-ion magnetohydrodynamic fluid are taken into account. The model incorporates in a systematic way the role of the Fermi neutrino weak force in magnetized plasmas. A fast neutrino-driven short wavelengths instability associated with the magnetosonic wave is derived. Such an instability should play a central role in strongly magnetized plasma as occurs in supernovae, where dense neutrino beams also exist. In addition, in the case of nonlinear or high frequency waves, the neutrino coupling is shown to be responsible for breaking the frozen-in magnetic field lines condition even in infinite conductivity plasmas. Simplified and ideal NMHD assumptions were adopted and analyzed in detail.
Gorlin, S.M.; Ljubimov, G.A.; Bitjurin, V.A.; Kovbasjuk, V.I.; Maximenko, V.I.; Medin, S.A.; Barshak, A.E.
1979-12-25
A magnetohydrodynamic device having a duct for a conducting gas to flow at an angle with the direction of the magnetic field induction vector is described. The duct is situated in the magnetic system and is provided with a plurality of electrodes adapted to interact electrically with the gas, whereas the cross-sectional shape of the duct working space is bounded by a closed contour formed by a curve inscribed into a rectangle. 1 claim.
Boquist, Carl W.; Marchant, David D.
1978-01-01
A ceramic-metal composite suitable for use in a high-temperature environment consists of a refractory ceramic matrix containing 10 to 50 volume percent of a continuous high-temperature metal reinforcement. In a specific application of the composite, as an electrode in a magnetohydrodynamic generator, the one surface of the electrode which contacts the MHD fluid may have a layer of varying thickness of nonreinforced refractory ceramic for electrode temperature control. The side walls of the electrode may be coated with a refractory ceramic insulator. Also described is an electrode-insulator system for a MHD channel.
Cylindrical geometry hall thruster
Raitses, Yevgeny; Fisch, Nathaniel J.
2002-01-01
An apparatus and method for thrusting plasma, utilizing a Hall thruster with a cylindrical geometry, wherein ions are accelerated in substantially the axial direction. The apparatus is suitable for operation at low power. It employs small size thruster components, including a ceramic channel, with the center pole piece of the conventional annular design thruster eliminated or greatly reduced. Efficient operation is accomplished through magnetic fields with a substantial radial component. The propellant gas is ionized at an optimal location in the thruster. A further improvement is accomplished by segmented electrodes, which produce localized voltage drops within the thruster at optimally prescribed locations. The apparatus differs from a conventional Hall thruster, which has an annular geometry, not well suited to scaling to small size, because the small size for an annular design has a great deal of surface area relative to the volume.
MHD (magnetohydrodynamic) undersea propulsion: A novel concept with renewed interest
Doss, E.D.; Geyer, H.K. (Argonne National Lab., IL (USA)); Roy, G.D. (Office of Naval Research, Arlington, VA (USA))
1990-01-01
This paper discusses the reasons for the national and international renewed interest in the concept of MHD seawater propulsion. The main advantages of this concept are presented, together with some of the technical challenges that need to be overcome to achieve reliability, performance, and stealth. The paper discusses in more detail some of the technical issues and loss mechanisms influencing the thruster performance in terms of its electrical efficiency. Among the issues discussed are the jet losses and nozzle efficiency. Ohmic losses and frictional losses inside the thruster. Also discussed are the electrical end losses caused by the fringing magnetic field near the end of the electrodes. It has been shown that the frictional and end losses can have strong adverse effects on the thruster performance. Furthermore, a parametric study has been performed to investigate the effects of several parameters on the performance of the MHD thrusters. Those parameters include the magnetic field, thruster diameter, all roughness, flow velocity, and electrical load factor. The results of the parametric study indicate that the thruster efficiency increases with the strength of the magnetic field and thruster diameter, and decreases with the wall roughness and the flow velocity. 8 refs., 8 figs.
Conducting Wall Hall Thrusters
Goebel, Dan M.; Hofer, Richard R.; Mikellides, Ioannis G.; Katz, Ira; Polk, James E.; Dotson, Brandon
2013-01-01
A unique configuration of the magnetic field near the wall of Hall thrusters, called Magnetic Shielding, has recently demonstrated the ability to significantly reduce the erosion of the boron nitride (BN) walls and extend the life of Hall thrusters by orders of magnitude. The ability of magnetic shielding to minimize interactions between the plasma and the discharge chamber walls has for the first time enabled the replacement of insulating walls with conducting materials without loss in thruster performance. The boron nitride rings in the 6 kW H6 Hall thruster were replaced with graphite that self-biased to near the anode potential. The thruster efficiency remained over 60% (within two percent of the baseline BN configuration) with a small decrease in thrust and increase in Isp typical of magnetically shielded Hall thrusters. The graphite wall temperatures decreased significantly compared to both shielded and unshielded BN configurations, leading to the potential for higher power operation. Eliminating ceramic walls makes it simpler and less expensive to fabricate a thruster to survive launch loads, and the graphite discharge chamber radiates more efficiently which increases the power capability of the thruster compared to conventional Hall thruster designs.
Pickens, Tim
2012-01-01
An oxygen-methane thruster was conceived with integrated igniter/injector capable of nominal operation on either gaseous or liquid propellants. The thruster was designed to develop 100 lbf (approximately 445 N) thrust at vacuum conditions and use oxygen and methane as propellants. This continued development included refining the design of the thruster to minimize part count and manufacturing difficulties/cost, refining the modeling tools and capabilities that support system design and analysis, demonstrating the performance of the igniter and full thruster assembly with both gaseous and liquid propellants, and acquiring data from this testing in order to verify the design and operational parameters of the thruster. Thruster testing was conducted with gaseous propellants used for the igniter and thruster. The thruster was demonstrated to work with all types of propellant conditions, and provided the desired performance. Both the thruster and igniter were tested, as well as gaseous propellants, and found to provide the desired performance using the various propellant conditions. The engine also served as an injector testbed for MSFC-designed refractory combustion chambers made of rhenium.
Magnetohydrodynamic sea water propulsion
Petrick, M.; Thomas, A.; Genens, L.; Libera, J.; Nietert, R.; Bouillard, J.; Pierson, E.; Hill, D.; Picologlou, B.; Ohlsson, O.; Kasprzyk, T.; Berry, G.
1991-01-01
An experimental and theoretical investigation of a large scale MHD propulsor has been undertaken whose objectives are to (1) investigate the transient and steady state performance of the thruster over operating parameter ranges that are compatible with achievement of high efficiency, (2) to quantify the principal loss mechanisms within the thruster and (3) to obtain preliminary hydroacoustic data. The performance of the thruster was first investigated theoretically with a 3-D code to quantify the loss mechanisms and identify experimental parameter ranges of interest. The loss mechanisms of interest are ohmic losses within the channel and those resulting from electrical currents at the entrance and exit of the thruster, and enhanced frictional losses. The analysis indicated that the relative importance of the loss mechanisms was a function of the thruster design and operating parameters. The experimental investigation of the large scale propulsor is being conducted on a sea water test facility that was designed to match the capabilities of a large 6-T superconducting magnet. The facility design was such that {approximately}90{degrees} of all losses occurred within the propulsion test train (inlet nozzle, propulsor and diffuser) thus facilitating isolation of the loss mechanisms. The test thruster itself is heavily instrumented to provide local measurements of velocity, pressure, and electric fields. The predicted overall thruster performance and value of the loss mechanisms will be compared with measured values. Comparisons will also be presented of the voltage gradients between electrodes, overall thruster efficiency, axial pressure gradients across the propulsor, change in velocity profiles, axial and vertical current distributions and exit distribution of the electrolytic gases.
Magnetohydrodynamic sea water propulsion
Petrick, M.; Thomas, A.; Genens, L.; Libera, J.; Nietert, R.; Bouillard, J.; Pierson, E.; Hill, D.; Picologlou, B.; Ohlsson, O.; Kasprzyk, T.; Berry, G.
1991-12-31
An experimental and theoretical investigation of a large scale MHD propulsor has been undertaken whose objectives are to (1) investigate the transient and steady state performance of the thruster over operating parameter ranges that are compatible with achievement of high efficiency, (2) to quantify the principal loss mechanisms within the thruster and (3) to obtain preliminary hydroacoustic data. The performance of the thruster was first investigated theoretically with a 3-D code to quantify the loss mechanisms and identify experimental parameter ranges of interest. The loss mechanisms of interest are ohmic losses within the channel and those resulting from electrical currents at the entrance and exit of the thruster, and enhanced frictional losses. The analysis indicated that the relative importance of the loss mechanisms was a function of the thruster design and operating parameters. The experimental investigation of the large scale propulsor is being conducted on a sea water test facility that was designed to match the capabilities of a large 6-T superconducting magnet. The facility design was such that {approximately}90{degrees} of all losses occurred within the propulsion test train (inlet nozzle, propulsor and diffuser) thus facilitating isolation of the loss mechanisms. The test thruster itself is heavily instrumented to provide local measurements of velocity, pressure, and electric fields. The predicted overall thruster performance and value of the loss mechanisms will be compared with measured values. Comparisons will also be presented of the voltage gradients between electrodes, overall thruster efficiency, axial pressure gradients across the propulsor, change in velocity profiles, axial and vertical current distributions and exit distribution of the electrolytic gases.
Oxygen-Methane Thruster Project
National Aeronautics and Space Administration — Orion Propulsion, Inc. proposes to develop an Oxygen and Methane RCS Thruster to advance the technology of alternate fuels. A successful Oxygen/CH4 RCS Thruster will...
Szabo, James
2015-01-01
Iodine enables dramatic mass and cost savings for lunar and Mars cargo missions, including Earth escape and near-Earth space maneuvers. The demonstrated throttling ability of iodine is important for a singular thruster that might be called upon to propel a spacecraft from Earth to Mars or Venus. The ability to throttle efficiently is even more important for missions beyond Mars. In the Phase I project, Busek Company, Inc., tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high-flow iodine feed system and supported by an existing Busek hollow cathode flowing xenon gas. The Phase I propellant feed system was evolved from a previously demonstrated laboratory feed system. Throttling of the thruster between 2 and 11 kW at 200 to 600 V was demonstrated. Testing showed that the efficiency of iodine fueled BHT-8000 is the same as with xenon, with iodine delivering a slightly higher thrust-to-power (T/P) ratio. In Phase II, a complete iodine-fueled system was developed, including the thruster, hollow cathode, and iodine propellant feed system. The nominal power of the Phase II system is 8 kW; however, it can be deeply throttled as well as clustered to much higher power levels. The technology also can be scaled to greater than 100 kW per thruster to support megawatt-class missions. The target thruster efficiency for the full-scale system is 65 percent at high specific impulse (Isp) (approximately 3,000 s) and 60 percent at high thrust (Isp approximately 2,000 s).
Experiments in Magnetohydrodynamics
Rayner, J. P.
1970-01-01
Describes three student experiments in magnetohydrodynamics (MHD). In these experiments, it was found that the electrical conductivity of the local water supply was sufficient to demonstrate effectively some of the features of MHD flowmeters, generators, and pumps. (LC)
Szabo, James J.
2015-01-01
This Phase II project is developing a magnesium (Mg) Hall effect thruster system that would open the door for in situ resource utilization (ISRU)-based solar system exploration. Magnesium is light and easy to ionize. For a Mars- Earth transfer, the propellant mass savings with respect to a xenon Hall effect thruster (HET) system are enormous. Magnesium also can be combusted in a rocket with carbon dioxide (CO2) or water (H2O), enabling a multimode propulsion system with propellant sharing and ISRU. In the near term, CO2 and H2O would be collected in situ on Mars or the moon. In the far term, Mg itself would be collected from Martian and lunar regolith. In Phase I, an integrated, medium-power (1- to 3-kW) Mg HET system was developed and tested. Controlled, steady operation at constant voltage and power was demonstrated. Preliminary measurements indicate a specific impulse (Isp) greater than 4,000 s was achieved at a discharge potential of 400 V. The feasibility of delivering fluidized Mg powder to a medium- or high-power thruster also was demonstrated. Phase II of the project evaluated the performance of an integrated, highpower Mg Hall thruster system in a relevant space environment. Researchers improved the medium power thruster system and characterized it in detail. Researchers also designed and built a high-power (8- to 20-kW) Mg HET. A fluidized powder feed system supporting the high-power thruster was built and delivered to Busek Company, Inc.
Magnetohydrodynamic fluidic system
Lee, Abraham P.; Bachman, Mark G.
2004-08-24
A magnetohydrodynamic fluidic system includes a reagent source containing a reagent fluid and a sample source containing a sample fluid that includes a constituent. A reactor is operatively connected to the supply reagent source and the sample source. MHD pumps utilize a magnetohydrodynamic drive to move the reagent fluid and the sample fluid in a flow such that the reagent fluid and the sample fluid form an interface causing the constituent to be separated from the sample fluid.
Liquid micro pulsed plasma thruster
Szelecka Agnieszka
2015-06-01
Full Text Available A new type of pulsed plasma thruster (PPT for small satellite propulsion is investigated, of which the most innovative aspect is the use of a non-volatile liquid propellant. The thruster is based on an open capillary design. The thruster achieved a thrust-to-power ratio above 45 μN/W, which constitutes a 5-fold improvement over the water-propelled pulsed plasma thruster, and which is also slightly above the performance of a similarly sized PPT with a solid propellant.
Beklemishev, A. D., E-mail: bekl@bk.ru [Budker Institute of Nuclear Physics SB RAS, Novosibirsk (Russian Federation)
2015-10-15
A new scheme of plasma thruster is proposed. It is based on axial acceleration of rotating magnetized plasmas in magnetic field with helical corrugation. The idea is that the propellant ionization zone can be placed into the local magnetic well, so that initially the ions are trapped. The E × B rotation is provided by an applied radial electric field that makes the setup similar to a magnetron discharge. Then, from the rotating plasma viewpoint, the magnetic wells of the helically corrugated field look like axially moving mirror traps. Specific shaping of the corrugation can allow continuous acceleration of trapped plasma ions along the magnetic field by diamagnetic forces. The accelerated propellant is expelled through the expanding field of magnetic nozzle. By features of the acceleration principle, the helical plasma thruster may operate at high energy densities but requires a rather high axial magnetic field, which places it in the same class as the VASIMR{sup ®} rocket engine.
Keefer, Dennis; Rhodes, Robert
1993-01-01
Electrically powered arc jets which produce thrust at high specific impulse could provide a substantial cost reduction for orbital transfer and station keeping missions. There is currently a limited understanding of the complex, nonlinear interactions in the plasma propellant which has hindered the development of high efficiency arc jet thrusters by making it difficult to predict the effect of design changes and to interpret experimental results. A computational model developed at the University of Tennessee Space Institute (UTSI) to study laser powered thrusters and radio frequency gas heaters has been adapted to provide a tool to help understand the physical processes in arc jet thrusters. The approach is to include in the model those physical and chemical processes which appear to be important, and then to evaluate our judgement by the comparison of numerical simulations with experimental data. The results of this study have been presented at four technical conferences. The details of the work accomplished in this project are covered in the individual papers included in the appendix of this report. We present a brief description of the model covering its most important features followed by a summary of the effort.
Analyses of magnetohydrodynamic propulsion with seawater for underwater vehicles
Lin, T. F.; Gilbert, J. B.; Roy, G. D.
1991-12-01
In naval applications where the importance of reducing acoustic signature outweighs other considerations, MHD propulsion furnishes the requisite quietness due to its obviation of mechanical moving parts. Attention is presently given to the results of performance calculations for torpedo-sized and submarine-sized vehicles operating 30 m beneath the sea surface. Reasonable submarine velocity can be achieved with a magnetic field of about 5 T.
NASA Brief: Q-Thruster Physics
White, Harold
2013-01-01
Q-thrusters are a low-TRL form of electric propulsion that operates on the principle of pushing off of the quantum vacuum. A terrestrial analog to this is to consider how a submarine uses its propeller to push a column of water in one direction, while the sub recoils in the other to conserve momentum -the submarine does not carry a "tank" of sea water to be used as propellant. In our case, we use the tools of Magnetohydrodynamics (MHD) to show how the thruster pushes off of the quantum vacuum which can be thought of as a sea of virtual particles -principally electrons and positrons that pop into and out of existence, and where fields are stronger, there are more virtual particles. The idea of pushing off the quantum vacuum has been in the technical literature for a few decades, but to date, the obstacle has been the magnitude of the predicted thrust which has been derived analytically to be very small, and therefore not likely to be useful for human spaceflight. Our recent theoretical model development and test data suggests that we can greatly increase the magnitude of the negative pressure of the quantum vacuum and generate a specific force such that technology based on this approach can be competitive for in-space propulsion approx. 0.1N/kW), and possibly for terrestrial applications (approx. 10N/kW). As an additional validation of the approach, the theory allows calculation of physics constants from first principles: Gravitational constant, Planck constant, Bohr radius, dark energy fraction, electron mass.
Magnetohydrodynamics of the sun
Priest, Eric
2014-01-01
Magnetohydrodynamics of the Sun is a completely new up-to-date rewrite from scratch of the 1982 book Solar Magnetohydrodynamics, taking account of enormous advances in understanding since that date. It describes the subtle and complex interaction between the Sun's plasma atmosphere and its magnetic field, which is responsible for many fascinating dynamic phenomena. Chapters cover the generation of the Sun's magnetic field by dynamo action, magnetoconvection and the nature of photospheric flux tubes such as sunspots, the heating of the outer atmosphere by waves or reconnection, the structure of prominences, the nature of eruptive instability and magnetic reconnection in solar flares and coronal mass ejections, and the acceleration of the solar wind by reconnection or wave-turbulence. It is essential reading for graduate students and researchers in solar physics and related fields of astronomy, plasma physics and fluid dynamics. Problem sets and other resources are available at www.cambridge.org/9780521854719.
Thermoacoustic magnetohydrodynamic electrical generator
Wheatley, John C.; Swift, Gregory W.; Migliori, Albert
1986-01-01
A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.
Lectures on magnetohydrodynamical drives
Loigom, Villem
The paper deals with nonconventional types of electrical machines and drives - magnetohydrodynamical (MHD) machines and drives. In cardinal it is based on the research conducted with participation of the author in Tallinn Technical University at the Institute of Electrical Drives and Power Electronics, where the use of magnetohydrodynamical motors and drives in the metallurgical and casting industries have been studied for a long time. Major research interests include the qualities and applications of the induction MHD-drives for set in the motion (pumping, turning, dosing, mixing, etc.) non-ferrous molten metals like Al, Mg, Sn, Pb, Na, K, and their alloys. The first part of the paper describes induction MHD motors and their electrohydraulical qualities. In the second part energy conversion problems are described. Also, on the basis of the analogy between electromechanical and electrohydraulical phenomenas, static and dynamic qualities of MHD drives with induction MHD machines are discussed.
Adventures in magnetohydrodynamics
Johnson, John L.
1988-03-01
The material in the report was presented in a series of three lectures presented on two days, October 29 and 30, 1987, at Nagoya University. A survey of magnetohydrodynamic theory was given as it applies to toroidal confinement. The material was broken down into four sections: (1) the derivation and justification of the MHD equations; (2) the equilibrium problem; (3) linearized stability; and (4) comments on nonlinear evolution, magnetic islands and transport theory.
Future of Magnetohydrodynamic Ship Propulsion,
1983-08-16
83 FOREIGN TECHNOLOGY DIVISION FUTURE OF MAGNETOHYDRODYNAMIC SHIP PROPULSION by A.P. Baranov DTIQ ~E tJ Approved for public release; 0.. distribution...MAGNETOHYDRODYNAMIC SHIP PROPULSION By: A.P. Baranov -,English pages: 10 Source: Sudostroyeniye, Nr. 12, December 1966, pp. 3-6 . Country of origin: USSR X...equations, etc. merged into this translation were extracted from the best quality copy available. FUTURE OF MAGNETOHYDRODYNAMIC SHIP PROPULSION A. P
Temperature Gradient in Hall Thrusters
D. Staack; Y. Raitses; N.J. Fisch
2003-11-24
Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200-400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is significantly smaller than might be expected by models employing Ohmic heating of electrons.
NEXT Ion Thruster Performance Dispersion Analyses
Soulas, George C.; Patterson, Michael J.
2008-01-01
The NEXT ion thruster is a low specific mass, high performance thruster with a nominal throttling range of 0.5 to 7 kW. Numerous engineering model and one prototype model thrusters have been manufactured and tested. Of significant importance to propulsion system performance is thruster-to-thruster performance dispersions. This type of information can provide a bandwidth of expected performance variations both on a thruster and a component level. Knowledge of these dispersions can be used to more conservatively predict thruster service life capability and thruster performance for mission planning, facilitate future thruster performance comparisons, and verify power processor capabilities are compatible with the thruster design. This study compiles the test results of five engineering model thrusters and one flight-like thruster to determine unit-to-unit dispersions in thruster performance. Component level performance dispersion analyses will include discharge chamber voltages, currents, and losses; accelerator currents, electron backstreaming limits, and perveance limits; and neutralizer keeper and coupling voltages and the spot-to-plume mode transition flow rates. Thruster level performance dispersion analyses will include thrust efficiency.
Shared Magnetics Hall Thruster Project
National Aeronautics and Space Administration — In the proposed Phase II program, Busek Co. will demonstrate an innovative methodology for clustering Hall thrusters into a high performance, very high power...
Oxygen-Methane Thruster Project
National Aeronautics and Space Administration — Two main innovations will be developed in the Phase II effort that are fundamentally associated with our gaseous oxygen/gaseous methane RCS thruster. The first...
Shared Magnetics Hall Thruster Project
National Aeronautics and Space Administration — In the proposed Phase I program, Busek Co. will demonstrate an innovative methodology for clustering Hall thrusters into a high performance, very high power...
The Modified Magnetohydrodynamical Equations
Evangelos Chaliasos
2003-01-01
After finding the really self-consistent electromagnetic equations for a plasma, we proceed in a similarfashion to find how the magnetohydrodynamical equations have to be modified accordingly. Substantially this is doneby replacing the "Lorentz" force equation by the correct (in our case) force equation. Formally we have to use the vectorpotential instead of the magnetic field intensity. The appearance of the formulae presented is the one of classical vectoranalysis. We thus find a set of eight equations in eight unknowns, as previously known concerning the traditional MHDequations.
The Modified Magnetohydrodynamical Equations
EvangelosChaliasos
2003-01-01
After finding the really self-consistent electromagnetic equations for a plasma, we proceed in a similar fashion to find how the magnetohydrodynamical equations have to be modified accordingly. Substantially this is done by replacing the "Lorentz" force equation by the correct (in our case) force equation. Formally we have to use the vector potential instead of the magnetic field intensity. The appearance of the formulae presented is the one of classical vector analysis. We thus find a set of eight equations in eight unknowns, as previously known concerning the traditional MHD equations.
Solitary vortexes in magnetohydrodynamics
Vainshtein, S.I.
1985-12-01
Stationary configurations in magnetohydrodynamics are investigated for the following two particular cases: (1) there is no motion, which corresponds to a state of magnetostatic equilibrium; and (2) the magnetic field intensity becomes zero, i.e., hydrodynamic vortexes are involved. It is shown that in certain cases the line-of-force topology must be sufficiently simple in order before a stationary or equilibrium state can be achieved. It is also shown that in the two-dimensional case, the magnetic surfaces of an equilibrium configuration represent coaxial cylindrical surfaces. 12 references.
Elements of magnetohydrodynamic stability theory
Spies, G O
1976-11-01
The nonlinear equations of ideal magnetohydrodynamics are discussed along with the following topics: (1) static equilibrium, (2) strict linear theory, (3) stability of a system with one degree of freedom, (4) spectrum and variational principles in magnetohydrodynamics, (5) elementary proof of the modified energy principle, (6) sufficient stability criteria, (7) local stability, and (8) normal modes. (MOW)
Conservation of Circulation in Magnetohydrodynamics
Bekenstein, J D; Bekenstein, Jacob D.; Oron, Asaf
2000-01-01
We demonstrate, both at the Newtonian and (general) relativistic levels, theexistence of a generalization of Kelvin's circulation theorem (for pure fluids)which is applicable to perfect magnetohydrodynamics. The argument is based onthe least action principle for magnetohydrodynamic flow. Examples of the newconservation law are furnished. The new theorem should be helpful inidentifying new kinds of vortex phenomena distinct from magnetic ropes or fluidvortices.
Magnetohydrodynamic process in solar activity
Jingxiu Wang
2014-01-01
Full Text Available Magnetohydrodynamics is one of the major disciplines in solar physics. Vigorous magnetohydrodynamic process is taking place in the solar convection zone and atmosphere. It controls the generating and structuring of the solar magnetic fields, causes the accumulation of magnetic non-potential energy in the solar atmosphere and triggers the explosive magnetic energy release, manifested as violent solar flares and coronal mass ejections. Nowadays detailed observations in solar astrophysics from space and on the ground urge a great need for the studies of magnetohydrodynamics and plasma physics to achieve better understanding of the mechanism or mechanisms of solar activity. On the other hand, the spectacular solar activity always serves as a great laboratory of magnetohydrodynamics. In this article, we reviewed a few key unresolved problems in solar activity studies and discussed the relevant issues in solar magnetohydrodynamics.
Magnetohydrodynamics of blood flow.
Keltner, J R; Roos, M S; Brakeman, P R; Budinger, T F
1990-10-01
The changes in hydrostatic pressure and electrical potentials across vessels in the human vasculature in the presence of a large static magnetic field are estimated to determine the feasibility of in vivo NMR spectroscopy at fields as high as 10 T.A 10-T magnetic field changes the vascular pressure in a model of the human vasculature by less than 0.2%. An exact solution to the magnetohydrodynamic equations describing a conducting fluid flowing transverse to a static magnetic field in a nonconducting, straight, circular tube is used. This solution is compared to an approximate solution that assumes that no magnetic fields are induced in the fluid and that has led previous investigators to predict significant biological effects from static magnetic fields. Experimental results show that the exact solution accurately predicts the magnetohydrodynamic slowing of 15% NaCl flowing transverse to 2.3- and 4.7-T magnetic fields for fluxes below 0.5 liter/min while the approximate solution predicts a much more retarded flow.
Iodine Hall Thruster for Space Exploration Project
National Aeronautics and Space Administration — In the Phase I program, Busek Co. Inc. tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high flow iodine feed system,...
Introduction to magnetohydrodynamics
Thompson, Ian
2016-01-01
Magnetohydrodynamics (MHD) plays a crucial role in astrophysics, planetary magnetism, engineering and controlled nuclear fusion. This comprehensive textbook emphasizes physical ideas, rather than mathematical detail, making it accessible to a broad audience. Starting from elementary chapters on fluid mechanics and electromagnetism, it takes the reader all the way through to the latest ideas in more advanced topics, including planetary dynamos, stellar magnetism, fusion plasmas and engineering applications. With the new edition, readers will benefit from additional material on MHD instabilities, planetary dynamos and applications in astrophysics, as well as a whole new chapter on fusion plasma MHD. The development of the material from first principles and its pedagogical style makes this an ideal companion for both undergraduate students and postgraduate students in physics, applied mathematics and engineering. Elementary knowledge of vector calculus is the only prerequisite.
Magnetohydrodynamic inertial reference system
Eckelkamp-Baker, Dan; Sebesta, Henry R.; Burkhard, Kevin
2000-07-01
Optical platforms increasingly require attitude knowledge and optical instrument pointing at sub-microradian accuracy. No low-cost commercial system exists to provide this level of accuracy for guidance, navigation, and control. The need for small, inexpensive inertial sensors, which may be employed in pointing control systems that are required to satisfy angular line-of-sight stabilization jitter error budgets to levels of 1-3 microradian rms and less, has existed for at least two decades. Innovations and evolutions in small, low-noise inertial angular motion sensor technology and advances in the applications of the global positioning system have converged to allow improvement in acquisition, tracking and pointing solutions for a wide variety of payloads. We are developing a small, inexpensive, and high-performance inertial attitude reference system that uses our innovative magnetohydrodynamic angular rate sensor technology.
Magnetohydrodynamic Shearing Waves
Johnson, B M
2006-01-01
I consider the nonaxisymmetric linear theory of an isothermal magnetohydrodynamic (MHD) shear flow. The analysis is performed in the shearing box, a local model appropriate for a thin disk geometry. Linear perturbations in this model can be decomposed in terms of shearing waves (shwaves), which appear spatially as plane waves in a frame comoving with the shear. The time dependence of these waves cannot in general be expressed in terms of a frequency eigenvalue as in a normal mode decomposition, and numerical integration of a set of first-order amplitude equations is required for a complete characterization of their behavior. Their generic time dependence, however, is oscillatory with slowly-varying frequency and amplitude, and one can construct accurate analytic solutions by applying the Wentzel-Kramers-Brillouin method to the full set of amplitude equations. For the bulk of wavenumber space, therefore, the shwaves are well-approximated as modes with time-dependent frequencies and amplitudes. The incompressiv...
Astrophysical Weighted Particle Magnetohydrodynamics
Gaburov, Evghenii
2010-01-01
This paper presents applications of weighted meshless scheme for conservation laws to the Euler equations and the equations of ideal magnetohydrodynamics. The divergence constraint of the latter is maintained to the truncation error by a new meshless divergence cleaning procedure. The physics of the interaction between the particles is described by an one-dimensional Riemann problem in a moving frame. As a result, necessary diffusion which is required to treat dissipative processes is added automatically. As a result, our scheme has no free parameters that controls the physics of inter-particle interaction, with the exception of the number of the interacting neighbours which control the resolution and accuracy. The resulting equations have the form similar to SPH equations, and therefore existing SPH codes can be used to implement the weighed particle scheme. The scheme is validated in several hydrodynamic and MHD test cases. In particular, we demonstrate for the first time the ability of a meshless MHD schem...
Introduction to modern magnetohydrodynamics
Galtier, Sébastien
2016-01-01
Ninety-nine percent of ordinary matter in the Universe is in the form of ionized fluids, or plasmas. The study of the magnetic properties of such electrically conducting fluids, magnetohydrodynamics (MHD), has become a central theory in astrophysics, as well as in areas such as engineering and geophysics. This textbook offers a comprehensive introduction to MHD and its recent applications, in nature and in laboratory plasmas; from the machinery of the Sun and galaxies, to the cooling of nuclear reactors and the geodynamo. It exposes advanced undergraduate and graduate students to both classical and modern concepts, making them aware of current research and the ever-widening scope of MHD. Rigorous derivations within the text, supplemented by over 100 illustrations and followed by exercises and worked solutions at the end of each chapter, provide an engaging and practical introduction to the subject and an accessible route into this wide-ranging field.
Review of magnetohydrodynamic pump applications
Al-Habahbeh, O.M; Al-Saqqa, M; Safi, M; Abo Khater, T
2016-01-01
Magneto-hydrodynamic (MHD) principle is an important interdisciplinary field. One of the most important applications of this effect is pumping of materials that are hard to pump using conventional pumps...
Helicon plasma thruster discharge model
Lafleur, T., E-mail: trevor.lafleur@lpp.polytechnique.fr [Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universités, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau, France and ONERA - The French Aerospace Lab, 91120 Palaiseau (France)
2014-04-15
By considering particle, momentum, and energy balance equations, we develop a semi-empirical quasi one-dimensional analytical discharge model of radio-frequency and helicon plasma thrusters. The model, which includes both the upstream plasma source region as well as the downstream diverging magnetic nozzle region, is compared with experimental measurements and confirms current performance levels. Analysis of the discharge model identifies plasma power losses on the radial and back wall of the thruster as the major performance reduction factors. These losses serve as sinks for the input power which do not contribute to the thrust, and which reduce the maximum plasma density and hence propellant utilization. With significant radial plasma losses eliminated, the discharge model (with argon) predicts specific impulses in excess of 3000 s, propellant utilizations above 90%, and thruster efficiencies of about 30%.
Electron dynamics in Hall thruster
Marini, Samuel; Pakter, Renato
2015-11-01
Hall thrusters are plasma engines those use an electromagnetic fields combination to confine electrons, generate and accelerate ions. Widely used by aerospace industries those thrusters stand out for its simple geometry, high specific impulse and low demand for electric power. Propulsion generated by those systems is due to acceleration of ions produced in an acceleration channel. The ions are generated by collision of electrons with propellant gas atoms. In this context, we can realize how important is characterizing the electronic dynamics. Using Hamiltonian formalism, we derive the electron motion equation in a simplified electromagnetic fields configuration observed in hall thrusters. We found conditions those must be satisfied by electromagnetic fields to have electronic confinement in acceleration channel. We present configurations of electromagnetic fields those maximize propellant gas ionization and thus make propulsion more efficient. This work was supported by CNPq.
Conservation of Circulation in Magnetohydrodynamics
Bekenstein, Jacob D.; Oron, Asaf
2000-01-01
We demonstrate, both at the Newtonian and (general) relativistic levels, the existence of a generalization of Kelvin's circulation theorem (for pure fluids) which is applicable to perfect magnetohydrodynamics. The argument is based on the least action principle for magnetohydrodynamic flow. Examples of the new conservation law are furnished. The new theorem should be helpful in identifying new kinds of vortex phenomena distinct from magnetic ropes or fluid vortices.
Conservation of circulation in magnetohydrodynamics
Bekenstein; Oron
2000-10-01
We demonstrate at both the Newtonian and (general) relativistic levels the existence of a generalization of Kelvin's circulation theorem (for pure fluids) that is applicable to perfect magnetohydrodynamics. The argument is based on the least action principle for magnetohydrodynamic flow. Examples of the new conservation law are furnished. The new theorem should be helpful in identifying new kinds of vortex phenomena distinct from magnetic ropes or fluid vortices.
Seawater predesalination with electrodialysis
Galama, A.H.; Saakes, M.; Bruning, H.; Rijnaarts, H.H.M.; Post, J.W.
2014-01-01
The suitability of ED for seawater desalination was investigated and we quantified the energy losses that play a role in electrodialysis. The combination of electrodialysis (ED) and brackish water reverse osmosis (BWRO) is presented as an alternative desalination strategy for seawater reverse osmosi
Seawater predesalination with electrodialysis
Galama, A.H.; Saakes, M.; Bruning, H.; Rijnaarts, H.H.M.; Post, J.W.
2014-01-01
The suitability of ED for seawater desalination was investigated and we quantified the energy losses that play a role in electrodialysis. The combination of electrodialysis (ED) and brackish water reverse osmosis (BWRO) is presented as an alternative desalination strategy for seawater reverse
Magnetohydrodynamic Augmented Propulsion Experiment
Litchford, Ron J.; Cole, John; Lineberry, John; Chapman, Jim; Schmidt, Harold; Cook, Stephen (Technical Monitor)
2002-01-01
A fundamental obstacle to routine space access is the specific energy limitations associated with chemical fuels. In the case of vertical take-off, the high thrust needed for vertical liftoff and acceleration to orbit translates into power levels in the 10 GW range. Furthermore, useful payload mass fractions are possible only if the exhaust particle energy (i.e., exhaust velocity) is much greater than that available with traditional chemical propulsion. The electronic binding energy released by the best chemical reactions (e.g., LOX/LH2 for example, is less than 2 eV per product molecule (approx. 1.8 eV per H2O molecule), which translates into particle velocities less than 5 km/s. Useful payload fractions, however, will require exhaust velocities exceeding 15 km/s (i.e., particle energies greater than 20 eV). As an added challenge, the envisioned hypothetical RLV (reusable launch vehicle) should accomplish these amazing performance feats while providing relatively low acceleration levels to orbit (2-3g maximum). From such fundamental considerations, it is painfully obvious that planned and current RLV solutions based on chemical fuels alone represent only a temporary solution and can only result in minor gains, at best. What is truly needed is a revolutionary approach that will dramatically reduce the amount of fuel and size of the launch vehicle. This implies the need for new compact high-power energy sources as well as advanced accelerator technologies for increasing engine exhaust velocity. Electromagnetic acceleration techniques are of immense interest since they can be used to circumvent the thermal limits associated with conventional propulsion systems. This paper describes the Magnetohydrodynamic Augmented Propulsion Experiment (MAPX) being undertaken at NASA Marshall Space Flight Center (MSFC). In this experiment, a 1-MW arc heater is being used as a feeder for a 1-MW magnetohydrodynamic (MHD) accelerator. The purpose of the experiment is to demonstrate
Helmreich, Stefan
2011-01-01
Seawater has occupied an ambiguous place in anthropological categories of "nature" and "culture." Seawater as nature appears as potentiality of form and uncontainable flux; it moves faster than culture - with culture frequently figured through land-based metaphors - even as culture seeks to channel water's (nature's) flow. Seawater as culture manifests as a medium of pleasure, sustenance, travel, disaster. I argue that, although seawater's qualities in early anthropology were portrayed impressionistically, today technical, scientific descriptions of water's form prevail. For example, processes of globalization - which may also be called "oceanization" - are often described as "currents," "flows," and "circulations." Examining sea-set ethnography, maritime anthropologies, and contemporary social theory, I propose that seawater has operated as a “theory machine” for generating insights about human cultural organization. I develop this argument with ethnography from the Sargasso Sea and in the Sea Islands. I conclude with a critique of appeals to water's form in social theory.
Generalized reduced magnetohydrodynamic equations
Kruger, S.E.
1999-02-01
A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-Alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson. The equations have been programmed into a spectral initial value code and run with shear flow that is consistent with the equilibrium input into the code. Linear results of tearing modes with shear flow are presented which differentiate the effects of shear flow gradients in the layer with the effects of the shear flow decoupling multiple harmonics.
Multifluid magnetohydrodynamic turbulent decay
Downes, Turlough P
2011-01-01
It is generally believed that turbulence has a significant impact on the dynamics and evolution of molecular clouds and the star formation which occurs within them. Non-ideal magnetohydrodynamic effects are known to influence the nature of this turbulence. We present the results of a suite of 512-cubed resolution simulations of the decay of initially super-Alfvenic and supersonic fully multifluid MHD turbulence. We find that ambipolar diffusion increases the rate of decay of the turbulence while the Hall effect has virtually no impact. The decay of the kinetic energy can be fitted as a power-law in time and the exponent is found to be -1.34 for fully multifluid MHD turbulence. The power spectra of density, velocity and magnetic field are all steepened significantly by the inclusion of non-ideal terms. The dominant reason for this steepening is ambipolar diffusion with the Hall effect again playing a minimal role except at short length scales where it creates extra structure in the magnetic field. Interestingl...
Miniature Bipolar Electrostatic Ion Thruster
Hartley, Frank T.
2006-01-01
The figure presents a concept of a bipolar miniature electrostatic ion thruster for maneuvering a small spacecraft. The ionization device in the proposed thruster would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several mega-volts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. In a thruster-based on this concept, one or more propellant gases would be introduced into such a membrane ionizer. Unlike in larger prior ion thrusters, all of the propellant molecules would be ionized. This thruster would be capable of bipolar operation. There would be two accelerator grids - one located forward and one located aft of the membrane ionizer. In one mode of operation, which one could denote the forward mode, positive ions leaving the ionizer on the backside would be accelerated to high momentum by an electric field between the ionizer and an accelerator grid. Electrons leaving the ionizer on the front side would be ejected into free space by a smaller accelerating field. The equality of the ion and electron currents would eliminate the need for an additional electron- or ion-emitting device to keep the spacecraft charge-neutral. In another mode of operation, which could denote the reverse mode, the polarities of the voltages applied to the accelerator grids and to the electrodes of the membrane ionizer would be the reverse of those of the forward mode. The reversal of electric fields would cause the ion and electrons to be ejected in the reverse of their forward mode directions, thereby giving rise to thrust in the direction opposite that of the forward mode.
Pulsed Electrogasdynamic Thruster for Attitude Control and Orbit Maneuver Project
National Aeronautics and Space Administration — A new pulsed electric thruster, named "pulsed electrogasdynamic thruster," for attitude control and orbit maneuver is proposed. In this thruster, propellant gas is...
Solar Flares: Magnetohydrodynamic Processes
Kazunari Shibata
2011-12-01
Full Text Available This paper outlines the current understanding of solar flares, mainly focused on magnetohydrodynamic (MHD processes responsible for producing a flare. Observations show that flares are one of the most explosive phenomena in the atmosphere of the Sun, releasing a huge amount of energy up to about 10^32 erg on the timescale of hours. Flares involve the heating of plasma, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes for producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence, local enhancement of electric current in the corona (formation of a current sheet, and rapid dissipation of electric current (magnetic reconnection that causes shock heating, mass ejection, and particle acceleration. The evolution toward the onset of a flare is rather quasi-static when free energy is accumulated in the form of coronal electric current (field-aligned current, more precisely, while the dissipation of coronal current proceeds rapidly, producing various dynamic events that affect lower atmospheres such as the chromosphere and photosphere. Flares manifest such rapid dissipation of coronal current, and their theoretical modeling has been developed in accordance with observations, in which numerical simulations proved to be a strong tool reproducing the time-dependent, nonlinear evolution of a flare. We review the models proposed to explain the physical mechanism of flares, giving an comprehensive explanation of the key processes mentioned above. We start with basic properties of flares, then go into the details of energy build-up, release and transport in flares where magnetic reconnection works as the central engine to produce a flare.
MAGNETOHYDRODYNAMIC EQUATIONS (MHD GENERATION CODE
Francisco Frutos Alfaro
2017-04-01
Full Text Available A program to generate codes in Fortran and C of the full magnetohydrodynamic equations is shown. The program uses the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the magnetohydrodynamic equations to obtain a code that can be used as a seed for a magnetohydrodynamic code for numerical applications. As an example, we present part of the output of our programs for Cartesian coordinates and how to do the discretization.
A Microwave Thruster for Spacecraft Propulsion
Chiravalle, Vincent P [Los Alamos National Laboratory
2012-07-23
This presentation describes how a microwave thruster can be used for spacecraft propulsion. A microwave thruster is part of a larger class of electric propulsion devices that have higher specific impulse and lower thrust than conventional chemical rocket engines. Examples of electric propulsion devices are given in this presentation and it is shown how these devices have been used to accomplish two recent space missions. The microwave thruster is then described and it is explained how the thrust and specific impulse of the thruster can be measured. Calculations of the gas temperature and plasma properties in the microwave thruster are discussed. In addition a potential mission for the microwave thruster involving the orbit raising of a space station is explored.
J series thruster thermal test results
Bechtel, R. T.; Dulgeroff, C. R.
1982-01-01
Test experience with J series ion thrusters have indicated that the present thruster design may result in excessive temperatures in areas which utilize organic materials such as wire insulation, with the resultant outgassing and potential contamination of insulating materials. Further, it appears that thermal data obtained with earlier thruster designs, such as the 700 series thruster, may not be directly applicable to the J series design. Two J series thrusters were fitted with thermocouples and critical temperatures measured for a variety of configurations and operating parameters. Completely enclosing the thruster to reduce facility contamination significantly increased temperatures prompting the selection of a compromise geometry for life testing. The operating parameter having the largest effect on temperatures was discharge power, while beam power affected little else than extraction system temperatures. Several off-normal operating modes were also investigated. Data believed to be sufficient to effectively modify existing thermal models were obtained from the tests.
Progress in Seawater Desalination
无
2005-01-01
@@ Scientists from the CAS Changchun Institute of Applied Chemistry have made significant progress in developing advanced expertise of seawater desalination. Their work was recently appraised and confirmed by a panel of experts in northeast China's Jilin Province.
Gregg, D.; Folkendt, M.
1982-09-21
A novel process for recovering uranium from seawater is proposed and some of the critical technical parameters are evaluated. The process, in summary, consists of two different options for contacting adsorbant pellets with seawater without pumping the seawater. It is expected that this will reduce the mass handling requirements, compared to pumped seawater systems, by a factor of approximately 10/sup 5/, which should also result in a large reduction in initial capital investment. Activated carbon, possibly in combination with a small amount of dissolved titanium hydroxide, is expected to be the preferred adsorbant material instead of the commonly assumed titanium hydroxide alone. The activated carbon, after exposure to seawater, can be stripped of uranium with an appropriate eluant (probably an acid) or can be burned for its heating value (possible in a power plant) leaving the uranium further enriched in its ash. The uranium, representing about 1% of the ash, is then a rich ore and would be recovered in a conventional manner. Experimental results have indicated that activated carbon, acting alone, is not adequately effective in adsorbing the uranium from seawater. We measured partition coefficients (concentration ratios) of approximately 10/sup 3/ in seawater instead of the reported values of 10/sup 5/. However, preliminary tests carried out in fresh water show considerable promise for an extraction system that uses a combination of dissolved titanium hydroxide (in minute amounts) which forms an insoluble compound with the uranyl ion, and the insoluble compound then being sorbed out on activated carbon. Such a system showed partition coefficients in excess of 10/sup 5/ in fresh water. However, the system was not tested in seawater.
Strings and large scale magnetohydrodynamics
Olesen, P
1995-01-01
From computer simulations of magnetohydrodynamics one knows that a turbulent plasma becomes very intermittent, with the magnetic fields concentrated in thin flux tubes. This situation looks very "string-like", so we investigate whether strings could be solutions of the magnetohydrodynamics equations in the limit of infinite conductivity. We find that the induction equation is satisfied, and we discuss the Navier-Stokes equation (without viscosity) with the Lorentz force included. We argue that the string equations (with non-universal maximum velocity) should describe the large scale motion of narrow magnetic flux tubes, because of a large reparametrization (gauge) invariance of the magnetic and electric string fields.
Low Mass Electromagnetic Plasmoid Thruster with Integrated PPU Project
National Aeronautics and Space Administration — The Electromagnetic Plasmoid Thruster (EMPT) is a revolutionary electric propulsion thruster and power processing (PPU) system that will allow a dramatic decrease...
Electron-wall Interaction in Hall Thrusters
Y. Raitses; D. Staack; M. Keidar; N.J. Fisch
2005-02-11
Electron-wall interaction effects in Hall thrusters are studied through measurements of the plasma response to variations of the thruster channel width and the discharge voltage. The discharge voltage threshold is shown to separate two thruster regimes. Below this threshold, the electron energy gain is constant in the acceleration region and therefore, secondary electron emission (SEE) from the channel walls is insufficient to enhance electron energy losses at the channel walls. Above this voltage threshold, the maximum electron temperature saturates.
Low-Voltage Hall Thruster Mode Transitions
2014-06-01
Technical Paper 3. DATES COVERED (From - To) June 2014- July 2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER In-House Low-Voltage Hall Thruster Mode...ABSTRACT Past investigations of the 6kW-class H6 Hall thruster during low-voltage operation revealed two operating modes, corresponding to the...topologies were characterized for the H6 Hall thruster from 100V to 200V discharge, with variation in cathode flow fraction, cathode position inside and
Advanced Microwave Electrothermal Thruster (AMET) Project
National Aeronautics and Space Administration — Orbital Technologies Corporation (ORBITEC) and the University of Alabama at Huntsville (UAH) propose to develop the Advanced Microwave Electrothermal Thruster...
Electrodeless plasma thrusters for spacecraft: A review
Bathgate, S. N.; Bilek, M. M. M.; McKenzie, D. R.
2017-08-01
The physics of electrodeless electric thrusters that use directed plasma to propel spacecraft without employing electrodes subject to plasma erosion is reviewed. Electrodeless plasma thrusters are potentially more durable than presently deployed thrusters that use electrodes such as gridded ion, Hall thrusters, arcjets and resistojets. Like other plasma thrusters, electrodeless thrusters have the advantage of reduced fuel mass compared to chemical thrusters that produce the same thrust. The status of electrodeless plasma thrusters that could be used in communications satellites and in spacecraft for interplanetary missions is examined. Electrodeless thrusters under development or planned for deployment include devices that use a rotating magnetic field; devices that use a rotating electric field; pulsed inductive devices that exploit the Lorentz force on an induced current loop in a plasma; devices that use radiofrequency fields to heat plasmas and have magnetic nozzles to accelerate the hot plasma and other devices that exploit the Lorentz force. Using metrics of specific impulse and thrust efficiency, we find that the most promising designs are those that use Lorentz forces directly to expel plasma and those that use magnetic nozzles to accelerate plasma.
Spectral analysis in magnetohydrodynamic equilibria
Nunez, Manuel; Galindo, Felix [Departamento de Analisis Matematico, Universidad de Valladolid, Valladolid (Spain)
1998-12-11
It has been universally assumed that the spectrum of the magnetohydrodynamics equations, linearized around an equilibrium state, provides enough information on the short-term evolution of the plasma to study certain stability properties. We show that this is true if one takes into account viscous and resistive effects and the equilibrium satisfies certain regularity conditions. (author)
MAGNETOHYDRODYNAMIC MODELING FOR FUSION PLASMAS
Keppens, R.; Goedbloed, J. P.; Blokland, J. W. S.
2010-01-01
The magnetohydrodynamic model for fusion plasma dynamics governs the large-scale equilibrium properties, and sets the most stringent constraints on the parameter space accessible without violent disruptions. In conjunction with linear stability analysis in the complex tokamak geometry, the MHD parad
Kawasaki, Akira; Kubota, Kenichi; Funaki, Ikkoh; Okuno, Yoshihiro
2016-09-01
Steady-state and self-field magnetoplasmadynamic (MPD) thruster, which utilizes high-intensity direct-current (DC) discharge, is one of the prospective candidates of future high-power electric propulsion devices. In order to accurately assess the thrust performance and the electrode temperature, input electric power and wall heat flux must correctly be evaluated where electrostatic sheaths formed in close proximity of the electrodes affect these quantities. Conventional model simulates only plasma flows occurring in MPD thrusters with the absence of electrostatic sheath consideration. Therefore, this study extends the conventional model to a coupled magnetohydrodynamic (MHD) and thermal model by incorporating the phenomena relevant to the electrostatic sheaths. The sheaths are implemented as boundary condition of the MHD model on the walls. This model simulated the operation of the 100-kW-class thruster at discharge current ranging from 6 to 10 kA with argon propellant. The extended model reproduced the discharge voltages and wall heat load which are consistent with past experimental results. In addition, the simulation results indicated that cathode sheath voltages account for approximately 5-7 V subject to approximately 20 V of discharge voltages applied between the electrodes. This work was supported by JSPS KAKENHI Grant Numbers 26289328 and 15J10821.
Development of ion thruster IT-500
Koroteev, Anatoly S.; Lovtsov, Alexander S.; Muravlev, Vyacheslav A.; Selivanov, Mikhail Y.; Shagayda, Andrey A.
2017-05-01
A high-power ion thruster IT-500 was designed, manufactured and tested at Keldysh Research Center within a transport-power module project. This module is being designed to perform near-Earth space and interplanetary transport missions. In its nominal operation mode, IT-500 provides thrust in the range from 375 to 750 mN at specific impulse of 70 000 m/s and thrust efficiency of 0.75. Due to a high cost of the experimental testing of a large thruster, the emphasis was placed on the numerical optimization of the thruster design. The thruster completed performance tests and a 300 h wear test. The output characteristics of the thruster, obtained during the tests, confirmed the correctness of the provisional numerical optimization. IT-500 design, performance, and validation of the design approaches are discussed in this paper. Contribution to the Topical Issue: "Physics of Ion Beam Sources", edited by Holger Kersten and Horst Neumann.
Seawater Acclimation of Spirulina
Shaochen GUAN; Yixuan LI; Gan WANG; Lang QIN; Yi ZHU; Yunbo LUO
2012-01-01
Abstract [Objective] This study aimed to seek the cultivation method for Spirulina with seawater. [Method] Spirulina was habituated culture progressively with pre- pared seawater acclimation solution. The morphological changes of Spirulina were observed and its biochemical indicators were measured. [Result] A new algae species was obtained, which had better stability and greater average length than Spirulina in fresh water. Compared with the Spirulina in fresh water, the new al- gae species showed no significant change in chlorophyll content, but a 62.8% in- crease in the concentration of phycocyanin. [Conclusion] The method could save resources and cost, which lays the foundation for large scale production and processing of Spirulina.
BOOK REVIEW: Nonlinear Magnetohydrodynamics
Shafranov, V.
1998-08-01
Nonlinear magnetohydrodynamics by Dieter Biskamp is a thorough introduction to the physics of the most impressive non-linear phenomena that occur in conducting magnetoplasmas. The basic systems, in which non-trivial dynamic processes are observed, accompanied by changes of geometry of the magnetic field and the effects of energy transformation (magnetic energy into kinetic energy or the opposite effect in magnetic dynamos), are the plasma magnetic confinement systems for nuclear fusion and space plasmas, mainly the solar plasma. A significant number of the examples of the dynamic processes considered are taken from laboratory plasmas, for which an experimental check of the theory is possible. Therefore, though the book is intended for researchers and students interested in both laboratory, including nuclear fusion, and astrophysical plasmas, it is most probably closer to the first category of reader. In the Introduction the author notes that unlike the hydrodynamics of non-conducting fluids, where the phenomena caused by rapid fluid motions are the most interesting, for plasmas in a strong magnetic field the quasi-static configurations inside which the local dynamic processes occur are often the most important. Therefore, the reader will also find in this book rather traditional material on the theory of plasma equilibrium and stability in magnetic fields. In addition, it is notable that, as opposed to a linear theory, the non-linear theory, as a rule, cannot give quite definite explanations or predictions of phenomena, and consequently there are in the book many results obtained by consideration of numerical models with the use of supercomputers. The treatment of non-linear dynamics is preceded by Chapters 2 to 4, in which the basics of MHD theory are presented with an emphasis on the role of integral invariants of the magnetic helicity type, a derivation of the reduced MHD equations is given, together with examples of the exact solutions of the equilibrium
Variational Integrators for Reduced Magnetohydrodynamics
Kraus, Michael; Grasso, Daniela
2015-01-01
Reduced magnetohydrodynamics is a simplified set of magnetohydrodynamics equations with applications to both fusion and astrophysical plasmas, possessing a noncanonical Hamiltonian structure and consequently a number of conserved functionals. We propose a new discretisation strategy for these equations based on a discrete variational principle applied to a formal Lagrangian. The resulting integrator preserves important quantities like the total energy, magnetic helicity and cross helicity exactly (up to machine precision). As the integrator is free of numerical resistivity, spurious reconnection along current sheets is absent in the ideal case. If effects of electron inertia are added, reconnection of magnetic field lines is allowed, although the resulting model still possesses a noncanonical Hamiltonian structure. After reviewing the conservation laws of the model equations, the adopted variational principle with the related conservation laws are described both at the continuous and discrete level. We verify...
Coil system for plasmoid thruster
Eskridge, Richard H. (Inventor); Lee, Michael H. (Inventor); Martin, Adam K. (Inventor); Fimognari, Peter J. (Inventor)
2010-01-01
A coil system for a plasmoid thruster includes a bias coil, a drive coil and field coils. The bias and drive coils are interleaved with one another as they are helically wound about a conical region. A first field coil defines a first passage at one end of the conical region, and is connected in series with the bias coil. A second field coil defines a second passage at an opposing end of the conical region, and is connected in series with the bias coil.
Dynamic multiscaling in magnetohydrodynamic turbulence
Ray, Samriddhi Sankar; Pandit, Rahul
2016-01-01
We present the first study of the multiscaling of time-dependent velocity and magnetic-field structure functions in homogeneous, isotropic magnetohydrodynamic (MHD) turbulence in three dimensions. We generalize the formalism that has been developed for analogous studies of time-dependent structure functions in fluid turbulence to MHD. By carrying out detailed numerical studies of such time-dependent structure functions in a shell model for three-dimensional MHD turbulence, we obtain both equal-time and dynamic scaling exponents.
Dynamic multiscaling in magnetohydrodynamic turbulence.
Ray, Samriddhi Sankar; Sahoo, Ganapati; Pandit, Rahul
2016-11-01
We present a study of the multiscaling of time-dependent velocity and magnetic-field structure functions in homogeneous, isotropic magnetohydrodynamic (MHD) turbulence in three dimensions. We generalize the formalism that has been developed for analogous studies of time-dependent structure functions in fluid turbulence to MHD. By carrying out detailed numerical studies of such time-dependent structure functions in a shell model for three-dimensional MHD turbulence, we obtain both equal-time and dynamic scaling exponents.
Making Artificial Seawater More Natural
无
2004-01-01
@@ Marine fish will die if placed in fresh water and they cannot live in simple salt water. Instead, they need water that contains a mixture of different ingredients, as found in natural seawater. Conventional methods of making artificial seawater have shortcomings, because the water so achieved is only composed of mineral elements and lacks organic components similar to those in natural seawater.
Mechanical design of SERT 2 thruster system
Zavesky, R. J.; Hurst, E. B.
1972-01-01
The mechanical design of the mercury bombardment thruster that was tested on SERT is described. The report shows how the structural, thermal, electrical, material compatibility, and neutral mercury coating considerations affected the design and integration of the subsystems and components. The SERT 2 spacecraft with two thrusters was launched on February 3, 1970. One thruster operated for 3782 hours and the other for 2011 hours. A high voltage short resulting from buildup of loose eroded material was believed to be the cause of failure.
Glyphosate persistence in seawater.
Mercurio, Philip; Flores, Florita; Mueller, Jochen F; Carter, Steve; Negri, Andrew P
2014-08-30
Glyphosate is one of the most widely applied herbicides globally but its persistence in seawater has not been reported. Here we quantify the biodegradation of glyphosate using standard "simulation" flask tests with native bacterial populations and coastal seawater from the Great Barrier Reef. The half-life for glyphosate at 25 °C in low-light was 47 days, extending to 267 days in the dark at 25 °C and 315 days in the dark at 31 °C, which is the longest persistence reported for this herbicide. AMPA, the microbial transformation product of glyphosate, was detected under all conditions, confirming that degradation was mediated by the native microbial community. This study demonstrates glyphosate is moderately persistent in the marine water under low light conditions and is highly persistent in the dark. Little degradation would be expected during flood plumes in the tropics, which could potentially deliver dissolved and sediment-bound glyphosate far from shore.
Light Metal Propellant Hall Thruster Project
National Aeronautics and Space Administration — Busek proposes to develop light metal Hall Effect thrusters that will help reduce the travel time, mass, and cost of SMD spacecraft. Busek has identified three...
Precision Electrospray Thruster Assembly (PETA) Project
National Aeronautics and Space Administration — New low cost, low volume, low power, rugged electrospray thrusters will be ideal as actuators for precision thrusting, if provided with precision high voltage power...
T6 Ion Thruster Technology Development Project
National Aeronautics and Space Administration — Provide discharge chamber and grid modeling for the new T6 based on JPL expertise on ion thruster performance and life; Enable/guide the T6 upgrade development to...
Dual Mode Low Power Hall Thruster Project
National Aeronautics and Space Administration — Sample and return missions desire and missions like Saturn Observer require a low power Hall thruster that can operate at high thrust to power as well as high...
Q-thruster Breadboard Campaign Project
National Aeronautics and Space Administration — Q-thruster technology is a mission enabling form of electric propulsion and is already being traded by NASA's Concept Architecture Team (CAT) & Human Space...
Iodine Hall Thruster for Space Exploration Project
National Aeronautics and Space Administration — Busek Co. Inc. proposes to develop a high power (high thrust) electric propulsion system featuring an iodine fueled Hall Effect Thruster (HET). The system to be...
High Thrust Efficiency MPD Thruster Project
National Aeronautics and Space Administration — Magnetoplasmadynamic (MPD) thrusters can provide the high-specific impulse, high-power propulsion required to support human and robotic exploration missions to the...
Optimized Magnetic Nozzles for MPD Thrusters Project
National Aeronautics and Space Administration — Magnetoplasmadynamic (MPD) thrusters can provide the high-specific impulse, high-power propulsion required to enable ambitious human and robotic exploration missions...
Advanced High Efficiency Durable DACS Thruster Project
National Aeronautics and Space Administration — Systima is developing a high performance 25 lbf DACS thruster that operates with a novel non-toxic monopropellant. The monopropellant has a 30% higher...
Acoustic Resonance Reaction Control Thruster (ARCTIC) Project
National Aeronautics and Space Administration — ORBITEC proposes to develop and demonstrate the innovative Acoustic Resonance Reaction Control Thruster (ARCTIC) to provide rapid and reliable in-space impulse...
Multiscale Modeling of Hall Thrusters Project
National Aeronautics and Space Administration — New multiscale modeling capability for analyzing advanced Hall thrusters is proposed. This technology offers NASA the ability to reduce development effort of new...
Additive Manufacturing of Ion Thruster Optics Project
National Aeronautics and Space Administration — Plasma Controls will manufacture and test a set of ion optics for electric propulsion ion thrusters using additive manufacturing technology, also known as 3D...
Data assimilation for magnetohydrodynamics systems
Mendoza, O. Barrero; de Moor, B.; Bernstein, D. S.
2006-05-01
Prediction of solar storms has become a very important issue due to the fact that they can affect dramatically the telecommunication and electrical power systems at the earth. As a result, a lot of research is being done in this direction, space weather forecast. Magnetohydrodynamics systems are being studied in order to analyse the space plasma dynamics, and techniques which have been broadly used in the prediction of earth environmental variables like the Kalman filter (KF), the ensemble Kalman filter (EnKF), the extended Kalman filter (EKF), etc., are being studied and adapted to this new framework. The assimilation of a wide range of space environment data into first-principles-based global numerical models will improve our understanding of the physics of the geospace environment and the forecasting of its behaviour. Therefore, the aim of this paper is to study the performance of nonlinear observers in magnetohydrodynamics systems, namely, the EnKF.The EnKF is based on a Monte Carlo simulation approach for propagation of process and measurement errors. In this paper, the EnKF for a nonlinear two-dimensional magnetohydrodynamic (2D-MHD) system is considered. For its implementation, two software packages are merged, namely, the Versatile Advection Code (VAC) written in Fortran and Matlab of Mathworks. The 2D-MHD is simulated with the VAC code while the EnKF is computed in Matlab. In order to study the performance of the EnKF in MHD systems, different number of measurement points as well as ensemble members are set.
Plasma Relaxation in Hall Magnetohydrodynamics
Shivamoggi, B K
2011-01-01
Parker's formulation of isotopological plasma relaxation process in magnetohydrodynamics (MHD) is extended to Hall MHD. The torsion coefficient alpha in the Hall MHD Beltrami condition turns out now to be proportional to the "potential vorticity." The Hall MHD Beltrami condition becomes equivalent to the "potential vorticity" conservation equation in two-dimensional hydrodynamics if the Hall MHD Lagrange multiplier beta is taken to be proportional to the "potential vorticity" as well. The winding pattern of the magnetic field lines in Hall MHD then appears to evolve in the same way as "potential vorticity" lines in 2D hydrodynamics.
Fundamental fluid mechanics and magnetohydrodynamics
Hosking, Roger J
2016-01-01
This book is primarily intended to enable postgraduate research students to enhance their understanding and expertise in Fluid Mechanics and Magnetohydrodynamics (MHD), subjects no longer treated in isolation. The exercises throughout the book often serve to provide additional and quite significant knowledge or to develop selected mathematical skills, and may also fill in certain details or enhance readers’ understanding of essential concepts. A previous background or some preliminary reading in either of the two core subjects would be advantageous, and prior knowledge of multivariate calculus and differential equations is expected.
Magnetohydrodynamic mechanism for pedestal formation.
Guazzotto, L; Betti, R
2011-09-16
Time-dependent two-dimensional magnetohydrodynamic simulations are carried out for tokamak plasmas with edge poloidal flow. Differently from conventional equilibrium theory, a density pedestal all around the edge is obtained when the poloidal velocity exceeds the poloidal sound speed. The outboard pedestal is induced by the transonic discontinuity, the inboard one by mass redistribution. The density pedestal follows the formation of a highly sheared flow at the transonic surface. These results may be relevant to the L-H transition and pedestal formation in high performance tokamak plasmas.
Parametric resonance in ideal magnetohydrodynamics
Zaqarashvili
2000-08-01
We show that an external nonelectromagnetic periodic inhomogeneous force sets up a parametric resonance in an ideal magnetohydrodynamics. Alfven waves with certain wavelengths grow exponentially in amplitude. Nonlinear interaction between the resonant harmonics produces the long-term modulation of amplitudes. The mechanism of the energy transformation from an external nonelectromagnetic force to magnetic oscillations of the system presented here can be used in understanding the physical background of the gravitational action on the magnetized medium. Future application of this theory to several astrophysical problems is briefly discussed.
MPD thruster research issues, activities, strategies
1991-01-01
The following activities and plans in the MPD thruster development are summarized: (1) experimental and theoretical research (magnetic nozzles at present and high power levels, MPD thrusters with applied fields extending into the thrust chamber, and improved electrode performance); and (2) tools (MACH2 code for MPD and nozzle flow calculation, laser diagnostics and spectroscopy for non-intrusive measurements of flow conditions, and extension to higher power). National strategies are also outlined.
Colloid Thrusters, Physics, Fabrication and Performance
2005-11-17
response, including the time for reviewing in. tata needed, and completing and reviewing this collection of information. Send comments regarding this...a discussion with colleagues during the 2nd Colloid Thruster/ Nano Electrojet Workshop (MIT, April 14- 15, 2005, Ref. [11]) an agreement was reached...23 Jul 2003. 11. Second Colloid Thruster/ Nano Electrojet Workshop, CD with a collection of presentations by attendees to this Workshop. MIT, April 14
Variational integrators for reduced magnetohydrodynamics
Kraus, Michael, E-mail: michael.kraus@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Technische Universität München, Zentrum Mathematik, Boltzmannstraße 3, 85748 Garching (Germany); Tassi, Emanuele, E-mail: tassi@cpt.univ-mrs.fr [Aix-Marseille Université, Université de Toulon, CNRS, CPT, UMR 7332, 163 avenue de Luminy, case 907, 13288 cedex 9 Marseille (France); Grasso, Daniela, E-mail: daniela.grasso@infm.polito.it [ISC-CNR and Politecnico di Torino, Dipartimento Energia, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)
2016-09-15
Reduced magnetohydrodynamics is a simplified set of magnetohydrodynamics equations with applications to both fusion and astrophysical plasmas, possessing a noncanonical Hamiltonian structure and consequently a number of conserved functionals. We propose a new discretisation strategy for these equations based on a discrete variational principle applied to a formal Lagrangian. The resulting integrator preserves important quantities like the total energy, magnetic helicity and cross helicity exactly (up to machine precision). As the integrator is free of numerical resistivity, spurious reconnection along current sheets is absent in the ideal case. If effects of electron inertia are added, reconnection of magnetic field lines is allowed, although the resulting model still possesses a noncanonical Hamiltonian structure. After reviewing the conservation laws of the model equations, the adopted variational principle with the related conservation laws is described both at the continuous and discrete level. We verify the favourable properties of the variational integrator in particular with respect to the preservation of the invariants of the models under consideration and compare with results from the literature and those of a pseudo-spectral code.
Variational integrators for reduced magnetohydrodynamics
Kraus, Michael; Tassi, Emanuele; Grasso, Daniela
2016-09-01
Reduced magnetohydrodynamics is a simplified set of magnetohydrodynamics equations with applications to both fusion and astrophysical plasmas, possessing a noncanonical Hamiltonian structure and consequently a number of conserved functionals. We propose a new discretisation strategy for these equations based on a discrete variational principle applied to a formal Lagrangian. The resulting integrator preserves important quantities like the total energy, magnetic helicity and cross helicity exactly (up to machine precision). As the integrator is free of numerical resistivity, spurious reconnection along current sheets is absent in the ideal case. If effects of electron inertia are added, reconnection of magnetic field lines is allowed, although the resulting model still possesses a noncanonical Hamiltonian structure. After reviewing the conservation laws of the model equations, the adopted variational principle with the related conservation laws is described both at the continuous and discrete level. We verify the favourable properties of the variational integrator in particular with respect to the preservation of the invariants of the models under consideration and compare with results from the literature and those of a pseudo-spectral code.
Control capability analysis for complex spacecraft thruster configurations
无
2010-01-01
The set of forces and moments that can be generated by thrusters of a spacecraft is called the"control capability"with respect to the thruster configuration.If the control capability of a thruster configuration is adequate to fulfill a given space mission,we say this configuration is a feasible one with respect to the task.This study proposed a new way to analyze the control capability of the complex thruster configuration.Precise mathematical definitions of feasibility were proposed,based on which a criterion to judge the feasibility of the thruster configuration was presented through calculating the shortest distance to the boundary of the controllable region as a function of the thruster configuration.Finally,control capability analysis for the complex thruster configuration based on its feasibility with respect to the space mission was given followed by a 2-D thruster configuration example to demonstrate its validity.
Low Mass Electromagnetic Plasmoid Thruster with Integrated PPU Project
National Aeronautics and Space Administration — The Electromagnetic Plasmoid Thruster (EMPT) is a revolutionary electric propulsion thruster and power processing (PPU) system that will allow a dramatic decrease in...
Performance Characterization of a Three-Axis Hall Effect Thruster
2010-12-01
here represents the first efforts to operate and quantify the performance of a three-axis Hall effect thruster. This thruster is based on the Busek BHT ...thruster were developed and thrust and current density measurements were performed and compared with the baseline BHT -200. The three-axis thruster was...efficiencies than the BHT -200. Beam current density measurements conducted using a guarded Faraday probe showed significant differences in plume divergence
Design and operations of Hall thruster with segmented electrodes
Fisch, N.J.; Raitses, Y.; Dorf, L.A.; Litvak, A.A.
1999-12-10
Principles of the Hall thruster with segmented electrodes are explored. A suitable vacuum facility was put into service. For purposes of comparison between segmented and conventional thruster approaches, a modular laboratory prototype thruster was designed and built. Under conventional operation, the thruster achieves state-of-the-art efficiencies (56% at 300 V and 890 W). Very preliminary results under operation with segmented electrodes are also described.
Design and Operation of Hall Thruster with Segmented Electrodes
A.A. Litvak; L.A. Dorf; N.J. Fisch; Y. Raitses
1999-07-01
Principles of the Hall thruster with segmented electrodes are explored. A suitable vacuum facility was put into service. For purposes of comparison between segmented and conventional thruster approaches, a modular laboratory prototype thruster was designed and built. Under conventional operation, the thruster achieves state-of-the-art efficiencies (56% at 300 V and 890 W). Very preliminary results under operation with segmented electrodes are also described.
Investigations of Probe Induced Perturbations in a Hall Thruster
D. Staack; Y. Raitses; N.J. Fisch
2002-08-12
An electrostatic probe used to measure spatial plasma parameters in a Hall thruster generates perturbations of the plasma. These perturbations are examined by varying the probe material, penetration distance, residence time, and the nominal thruster conditions. The study leads us to recommendations for probe design and thruster operating conditions to reduce discharge perturbations, including metal shielding of the probe insulator and operation of the thruster at lower densities.
Coaxial plasma thrusters for high specific impulse propulsion
Schoenberg, Kurt F.; Gerwin, Richard A.; Barnes, Cris W.; Henins, Ivars; Mayo, Robert; Moses, Ronald, Jr.; Scarberry, Richard; Wurden, Glen
1991-01-01
A fundamental basis for coaxial plasma thruster performance is presented and the steady-state, ideal MHD properties of a coaxial thruster using an annular magnetic nozzle are discussed. Formulas for power usage, thrust, mass flow rate, and specific impulse are acquired and employed to assess thruster performance. The performance estimates are compared with the observed properties of an unoptimized coaxial plasma gun. These comparisons support the hypothesis that ideal MHD has an important role in coaxial plasma thruster dynamics.
Recent activities in the development of the MOA thruster
Frischauf, Norbert; Hettmer, Manfred; Grassauer, Andreas; Bartusch, Tobias; Koudelka, Otto
2008-07-01
More than 60 years after the later Nobel laureate Hannes Alfvén had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfvén waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfvén waves to accelerate ionised matter for propulsive purposes, is MOA-magnetic field oscillating amplified thruster. Alfvén waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfvén waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. Based on computer simulations, which were conducted to get a first estimate on the performance of the system, MOA is a corrosion free and highly flexible propulsion system, whose performance parameters might easily be adapted in flight, by changing the mass flow and/or the power level. As such the system is capable to deliver a maximum specific impulse of 13 116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. First tests-that are further described in this paper-have been conducted successfully and underline the feasibility of the concept. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an "afterburner system" for nuclear thermal propulsion, other terrestrial applications can be thought of as well, making the system highly suited for a common space
Parametric Investigations of Non-Conventional Hall Thruster
Raitses, Y.; Fisch, N.J.
2001-01-12
Hall thrusters might better scale to low power with non-conventional geometry. A 9 cm cylindrical, ceramic-channel, Hall thruster with a cusp-type magnetic field distribution has been investigated. It exhibits discharge characteristics similar to conventional coaxial Hall thrusters, but does not expose as much channel surface. Significantly, its operation is not accompanied by large amplitude discharge low frequency oscillations.
OL-AC Phillips Laboratory MPD thruster research program
Tilley, Dennis L.
1992-01-01
The topics are presented in viewgraph form and include the following: facility construction; quadruple langmuir probe measurements; hollow/porous anode magnetoplasmadynamic (MPD) thruster; the measurement of the ionization fraction inside of the MPD thruster; and the experimental investigation of the effects of microturbulence on MPD thruster performance.
Magnetohydrodynamic Turbulence and the Geodynamo
Shebalin, John V.
2016-01-01
Recent research results concerning forced, dissipative, rotating magnetohydrodynamic (MHD) turbulence will be discussed. In particular, we present new results from long-time Fourier method (periodic box) simulations in which forcing contains varying amounts of magnetic and kinetic helicity. Numerical results indicate that if MHD turbulence is forced so as to produce a state of relatively constant energy, then the largest-scale components are dominant and quasistationary, and in fact, have an effective dipole moment vector that aligns closely with the rotation axis. The relationship of this work to established results in ideal MHD turbulence, as well as to models of MHD turbulence in a spherical shell will also be presented. These results appear to be very pertinent to understanding the Geodynamo and the origin of its dominant dipole component. Our conclusion is that MHD turbulence, per se, may well contain the origin of the Earth's dipole magnetic field.
Kinetic approach to Kaluza's magnetohydrodynamics
Sandoval-Villalbazo, A.; Garcia-Colin, L. S.
2011-11-01
Ten years ago we presented a formalism by means of which the basic tenets of relativistic magnetohydrodynamics were derived using Kaluza's ideas about unifying fields in terms of the corresponding space time curvature for a given metric. In this work we present an attempt to obtain the thermodynamic properties of a charged fluid using using Boltzmann's equation for a dilute system adapted to kaluza's formalism. The main results that we obtain are analytical expressions for the main currents and corresponding forces, within the formalism of linear irreversible thermodynamics. We also indicate how transport coefficients can be calculated. Other relevant results are also mentioned. A. Sandoval-Villalbazo and L.S. Garcia-Colin; Phys. of Plasmas 7, 4823 (2000).
Vortex disruption by magnetohydrodynamic feedback
Mak, Julian; Hughes, D W
2016-01-01
In an electrically conducting fluid, vortices stretch out a weak, large-scale magnetic field to form strong current sheets on their edges. Associated with these current sheets are magnetic stresses, which are subsequently released through reconnection, leading to vortex disruption, and possibly even destruction. This disruption phenomenon is investigated here in the context of two-dimensional, homogeneous, incompressible magnetohydrodynamics. We derive a simple order of magnitude estimate for the magnetic stresses --- and thus the degree of disruption --- that depends on the strength of the background magnetic field (measured by the parameter $M$, a ratio between the Alfv\\'en speed and a typical flow speed) and on the magnetic diffusivity (measured by the magnetic Reynolds number $\\mbox{Rm}$). The resulting estimate suggests that significant disruption occurs when $M^{2}\\mbox{Rm} = O(1)$. To test our prediction, we analyse direct numerical simulations of vortices generated by the breakup of unstable shear flo...
Shell Models of Magnetohydrodynamic Turbulence
Plunian, Franck; Frick, Peter
2012-01-01
Shell models of hydrodynamic turbulence originated in the seventies. Their main aim was to describe the statistics of homogeneous and isotropic turbulence in spectral space, using a simple set of ordinary differential equations. In the eighties, shell models of magnetohydrodynamic (MHD) turbulence emerged based on the same principles as their hydrodynamic counter-part but also incorporating interactions between magnetic and velocity fields. In recent years, significant improvements have been made such as the inclusion of non-local interactions and appropriate definitions for helicities. Though shell models cannot account for the spatial complexity of MHD turbulence, their dynamics are not over simplified and do reflect those of real MHD turbulence including intermittency or chaotic reversals of large-scale modes. Furthermore, these models use realistic values for dimensionless parameters (high kinetic and magnetic Reynolds numbers, low or high magnetic Prandtl number) allowing extended inertial range and accu...
Method for manufacturing magnetohydrodynamic electrodes
Killpatrick, Don H.; Thresh, Henry R.
1982-01-01
A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator comprising the steps of preparing a billet having a core 10 of a first metal, a tubular sleeve 12 of a second metal, and an outer sheath 14, 16, 18 of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket 14. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MDH channel frame. The method forms a bond between the first metal of the core 10 and the second metal of the sleeve 12 strong enough to withstand a hot and corrosive environment.
Scale locality of magnetohydrodynamic turbulence.
Aluie, Hussein; Eyink, Gregory L
2010-02-26
We investigate the scale locality of cascades of conserved invariants at high kinetic and magnetic Reynold's numbers in the "inertial-inductive range" of magnetohydrodynamic (MHD) turbulence, where velocity and magnetic field increments exhibit suitable power-law scaling. We prove that fluxes of total energy and cross helicity-or, equivalently, fluxes of Elsässer energies-are dominated by the contributions of local triads. Flux of magnetic helicity may be dominated by nonlocal triads. The magnetic stretching term may also be dominated by nonlocal triads, but we prove that it can convert energy only between velocity and magnetic modes at comparable scales. We explain the disagreement with numerical studies that have claimed conversion nonlocally between disparate scales. We present supporting data from a 1024{3} simulation of forced MHD turbulence.
Micromachined magnetohydrodynamic actuators and sensors
Lee, Abraham P.; Lemoff, Asuncion V.
2000-01-01
A magnetohydrodynamic (MHD) micropump and microsensor which utilizes micromachining to integrate the electrodes with microchannels and includes a magnet for producing magnetic fields perpendicular to both the electrical current direction and the fluid flow direction. The magnet can also be micromachined and integrated with the micropump using existing technology. The MHD micropump, for example, can generate continuous, reversible flow, with readily controllable flow rates. The flow can be reversed by either reversing the electrical current flow or reversing the magnetic field. By mismatching the electrodes, a swirling vortex flow can be generated for potential mixing applications. No moving parts are necessary and the dead volume is minimal. The micropumps can be placed at any position in a fluidic circuit and a combination of micropumps can generate fluidic plugs and valves.
Magnetohydrodynamic turbulence: Observation and experiment
Brown, M. R.; Schaffner, D. A.; Weck, P. J. [Department of Physics and Astronomy, Swarthmore College, 500 College Avenue, Swarthmore, Pennsylvania 19081 (United States)
2015-05-15
We provide a tutorial on the paradigms and tools of magnetohydrodynamic (MHD) turbulence. The principal paradigm is that of a turbulent cascade from large scales to small, resulting in power law behavior for the frequency power spectrum for magnetic fluctuations E{sub B}(f). We will describe five useful statistical tools for MHD turbulence in the time domain: the temporal autocorrelation function, the frequency power spectrum, the probability distribution function of temporal increments, the temporal structure function, and the permutation entropy. Each of these tools will be illustrated with an example taken from MHD fluctuations in the solar wind. A single dataset from the Wind satellite will be used to illustrate all five temporal statistical tools.
Spectrum of weak magnetohydrodynamic turbulence.
Boldyrev, Stanislav; Perez, Jean Carlos
2009-11-27
Turbulence of magnetohydrodynamic waves in nature and in the laboratory is generally cross-helical or nonbalanced, in that the energies of Alfvén waves moving in opposite directions along the guide magnetic field are unequal. Based on high-resolution numerical simulations it is proposed that such turbulence spontaneously generates a condensate of the residual energy E(v) - E(b) at small field-parallel wave numbers. As a result, the energy spectra of Alfvén waves are generally not scale invariant in an inertial interval of limited extent. In the limit of an infinite Reynolds number, the universality is asymptotically restored at large wave numbers, and both spectra attain the scaling E(k) proportional to k(perpendicular)(-2). The generation of a condensate is apparently related to the breakdown of mirror symmetry in nonbalanced turbulence.
Relativistic magnetohydrodynamics in one dimension.
Lyutikov, Maxim; Hadden, Samuel
2012-02-01
We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation.
Introduction to Magneto-Hydrodynamics
Pelletier, Guy
Magneto-Hydrodynamics (hereafter MHD) describes plasmas on large scales and more generally electrically conducting fluids. This description does not discriminate between the various fluids that constitute the medium. In laboratory, it allows to globally describe a plasma machine, for instance a toroidal nuclear fusion reactor like a Tokamak. In astrophysics it plays an essential role in the description of cosmic objects and their environments, as well as the media, such as the interstellar or the intergalactic medium. A set of phenomena are specific to MHD description. Some of them will be presented in this lecture such as the tension effect, confinement, magnetic diffusivity, magnetic field freezing, Alfvén waves, magneto-sonic waves, reconnection. A celebrated phenomenon of MHD will not be introduced in this brief lecture, namely the dynamo effect.
Diagnostics Systems for Permanent Hall Thrusters Development
Ferreira, Jose Leonardo; Soares Ferreira, Ivan; Santos, Jean; Miranda, Rodrigo; Possa, M. Gabriela
This work describes the development of Permanent Magnet Hall Effect Plasma Thruster (PHALL) and its diagnostic systems at The Plasma Physics Laboratory of University of Brasilia. The project consists on the construction and characterization of plasma propulsion engines based on the Hall Effect. Electric thrusters have been employed in over 220 successful space missions. Two types stand out: the Hall-Effect Thruster (HET) and the Gridded Ion Engine (GIE). The first, which we deal with in this project, has the advantage of greater simplicity of operation, a smaller weight for the propulsion subsystem and a longer shelf life. It can operate in two configurations: magnetic layer and anode layer, the difference between the two lying in the positioning of the anode inside the plasma channel. A Hall-Effect Thruster-HET is a type of plasma thruster in which the propellant gas is ionized and accelerated by a magneto hydrodynamic effect combined with electrostatic ion acceleration. So the essential operating principle of the HET is that it uses a J x B force and an electrostatic potential to accelerate ions up to high speeds. In a HET, the attractive negative charge is provided by electrons at the open end of the Thruster instead of a grid, as in the case of the electrostatic ion thrusters. A strong radial magnetic field is used to hold the electrons in place, with the combination of the magnetic field and the electrostatic potential force generating a fast circulating electron current, the Hall current, around the axis of the Thruster, mainly composed by drifting electrons in an ion plasma background. Only a slow axial drift towards the anode occurs. The main attractive features of the Hall-Effect Thruster are its simple design and operating principles. Most of the Hall-Effect Thrusters use electromagnet coils to produce the main magnetic field responsible for plasma generation and acceleration. In this paper we present a different new concept, a Permanent Magnet Hall
Electrostatic ion thrusters - towards predictive modeling
Kalentev, O.; Matyash, K.; Duras, J.; Lueskow, K.F.; Schneider, R. [Ernst-Moritz-Arndt Universitaet Greifswald, D-17489 (Germany); Koch, N. [Technische Hochschule Nuernberg Georg Simon Ohm, Kesslerplatz 12, D-90489 Nuernberg (Germany); Schirra, M. [Thales Electronic Systems GmbH, Soeflinger Strasse 100, D-89077 Ulm (Germany)
2014-02-15
The development of electrostatic ion thrusters so far has mainly been based on empirical and qualitative know-how, and on evolutionary iteration steps. This resulted in considerable effort regarding prototype design, construction and testing and therefore in significant development and qualification costs and high time demands. For future developments it is anticipated to implement simulation tools which allow for quantitative prediction of ion thruster performance, long-term behavior and space craft interaction prior to hardware design and construction. Based on integrated numerical models combining self-consistent kinetic plasma models with plasma-wall interaction modules a new quality in the description of electrostatic thrusters can be reached. These open the perspective for predictive modeling in this field. This paper reviews the application of a set of predictive numerical modeling tools on an ion thruster model of the HEMP-T (High Efficiency Multi-stage Plasma Thruster) type patented by Thales Electron Devices GmbH. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Bi-directional thruster development and test report
Jacot, A. D.; Bushnell, G. S.; Anderson, T. M.
1990-01-01
The design, calibration and testing of a cold gas, bi-directional throttlable thruster are discussed. The thruster consists of an electro-pneumatic servovalve exhausting through opposite nozzles with a high gain pressure feedback loop to optimize performance. The thruster force was measured to determine hysteresis and linearity. Integral gain was used to maximize performance for linearity, hysteresis, and minimum thrust requirements. Proportional gain provided high dynamic response (bandwidth and phase lag). Thruster performance is very important since the thrusters are intended to be used for active control.
Mode Transitions in Hall Effect Thrusters
Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Brown, Daniel L.; Hofer, Richard R.; Polk, James E.
2013-01-01
Mode transitions have been commonly observed in Hall Effect Thruster (HET) operation where a small change in a thruster operating parameter such as discharge voltage, magnetic field or mass flow rate causes the thruster discharge current mean value and oscillation amplitude to increase significantly. Mode transitions in a 6-kW-class HET called the H6 are induced by varying the magnetic field intensity while holding all other operating parameters constant and measurements are acquired with ion saturation probes and ultra-fast imaging. Global and local oscillation modes are identified. In the global mode, the entire discharge channel oscillates in unison and azimuthal perturbations (spokes) are either absent or negligible. Downstream azimuthally spaced probes show no signal delay between each other and are very well correlated to the discharge current signal. In the local mode, signals from the azimuthally spaced probes exhibit a clear delay indicating the passage of "spokes" and are not well correlated to the discharge current. These spokes are localized oscillations propagating in the ExB direction that are typically 10-20% of the mean value. In contrast, the oscillations in the global mode can be 100% of the mean value. The transition between global and local modes occurs at higher relative magnetic field strengths for higher mass flow rates or higher discharge voltages. The thrust is constant through mode transition but the thrust-to-power decreased by 25% due to increasing discharge current. The plume shows significant differences between modes with the global mode significantly brighter in the channel and the near-field plasma plume as well as exhibiting a luminous spike on thruster centerline. Mode transitions provide valuable insight to thruster operation and suggest improved methods for thruster performance characterization.
Measurements of Plasma Potential Distribution in Segmented Electrode Hall Thruster
Y. Raitses; D. Staack; N.J. Fisch
2001-10-16
Use of a segmented electrode placed at the Hall thruster exit can substantially reduce the voltage potential drop in the fringing magnetic field outside the thruster channel. In this paper, we investigate the dependence of this effect on thruster operating conditions and segmented electrode configuration. A fast movable emissive probe is used to measure plasma potential in a 1 kW laboratory Hall thruster with semented electrodes made of a graphite material. Relatively small probe-induced perturbations of the thruster discharge in the vicinity of the thruster exit allow a reasonable comparison of the measured results for different thruster configurations. It is shown that the plasma potential distribution is almost not sensitive to changes of the electrode potential, but depends on the magnetic field distribution and the electrode placement.
A Numerical Study on Hydrodynamic Interactions between Dynamic Positioning Thrusters
Jin, Doo Hwa; Lee, Sang Wook [University of Ulsan, Ulsan (Korea, Republic of)
2017-06-15
In this study, we conducted computational fluid dynamics (CFD) simulations for the unsteady hydrodynamic interaction of multiple thrusters by solving Reynolds averaged Navier-Stokes equations. A commercial CFD software, STAR-CCM+ was used for all simulations by employing a ducted thruster model with combination of a propeller and No. 19a duct. A sliding mesh technique was used to treat dynamic motion of propeller rotation and non-conformal hexahedral grid system was considered. Four different combinations in tilting and azimuth angles of the thrusters were considered to investigate the effects on the propulsion performance. We could find that thruster-hull and thruster-thruster interactions has significant effect on propulsion performance and further study will be required for the optimal configurations with the best tilting and relative azimuth angle between thrusters.
Advanced laboratory for testing plasma thrusters and Hall thruster measurement campaign
Szelecka Agnieszka
2016-06-01
Full Text Available Plasma engines are used for space propulsion as an alternative to chemical thrusters. Due to the high exhaust velocity of the propellant, they are more efficient for long-distance interplanetary space missions than their conventional counterparts. An advanced laboratory of plasma space propulsion (PlaNS at the Institute of Plasma Physics and Laser Microfusion (IPPLM specializes in designing and testing various electric propulsion devices. Inside of a special vacuum chamber with three performance pumps, an environment similar to the one that prevails in space is created. An innovative Micro Pulsed Plasma Thruster (LμPPT with liquid propellant was built at the laboratory. Now it is used to test the second prototype of Hall effect thruster (HET operating on krypton propellant. Meantime, an improved prototype of krypton Hall thruster is constructed.
Computational Methods for Ideal Magnetohydrodynamics
Kercher, Andrew D.
Numerical schemes for the ideal magnetohydrodynamics (MHD) are widely used for modeling space weather and astrophysical flows. They are designed to resolve the different waves that propagate through a magnetohydro fluid, namely, the fast, Alfven, slow, and entropy waves. Numerical schemes for ideal magnetohydrodynamics that are based on the standard finite volume (FV) discretization exhibit pseudo-convergence in which non-regular waves no longer exist only after heavy grid refinement. A method is described for obtaining solutions for coplanar and near coplanar cases that consist of only regular waves, independent of grid refinement. The method, referred to as Compound Wave Modification (CWM), involves removing the flux associated with non-regular structures and can be used for simulations in two- and three-dimensions because it does not require explicitly tracking an Alfven wave. For a near coplanar case, and for grids with 213 points or less, we find root-mean-square-errors (RMSEs) that are as much as 6 times smaller. For the coplanar case, in which non-regular structures will exist at all levels of grid refinement for standard FV schemes, the RMSE is as much as 25 times smaller. A multidimensional ideal MHD code has been implemented for simulations on graphics processing units (GPUs). Performance measurements were conducted for both the NVIDIA GeForce GTX Titan and Intel Xeon E5645 processor. The GPU is shown to perform one to two orders of magnitude greater than the CPU when using a single core, and two to three times greater than when run in parallel with OpenMP. Performance comparisons are made for two methods of storing data on the GPU. The first approach stores data as an Array of Structures (AoS), e.g., a point coordinate array of size 3 x n is iterated over. The second approach stores data as a Structure of Arrays (SoA), e.g. three separate arrays of size n are iterated over simultaneously. For an AoS, coalescing does not occur, reducing memory efficiency
Nuclear-electric magnetohydrodynamic propulsion for submarine. Master's thesis
Bednarczyk, A.A.
1989-05-01
The thesis analyzes the superconducting technology for a shipboard magnetohydrodynamic propulsion system. Based on the the principles of magnetohydrodynamics (MHD), the concept of open-water efficiency was used to optimize the preliminary design of the MHD thruster. After the baseline submarine hull modeled after the Los Angeles class submarine was selected, propulsive efficiency and the top speed for four variant MHD submarines were evaluated. The design criteria were set at a 100-MWt nuclear reactor power upper limit and a requirement of 30 knots for the top speed. This required advanced reactor plants and advanced energy conversion systems. The selection of High Temperature Gas Reactor (HTGR) and Liquid-Metal Fast Breeder Reactor (LMFBR) was based on the combined merits of safety, environmental impact, high source temperature and maximum-volume power density (KW/L). With the reactor outlet temperatures of 2000 K, direct-cycle energy conversion-systems gave the best results in terms of thermal efficiency and propulsion plant power density. Two energy conversion systems selected were closed-cycle gas turbine geared to a superconducting generator, and closed-cycle liquid-metal MHD generator. Based on submarine reliability and safety, the option of using an intermediate heat exchanger was also considered. Finally, non-nuclear support systems affected by the advanced power plant and MHD propulsion, stressing submarine safety, are proposed.
Pulsed Plasma Thruster plume analysis
Parker, K. [Washington Univ., Aerospace and Energetics Research Program, Seattle, WA (United States)
2003-11-01
Micro-Pulsed Plasma Thrusters ({mu}PPTs) are a promising method for precision attitude control for small spacecraft in formation flying. They create an ionized plasma plume, which may interfere with other spacecraft in the formation. To characterize the ions in the plume, a diagnostic has been built that couples a drift tube with an energy analyzer. The drift tube provides time of flight measurements to determine the exhaust velocity, and the energy analyzer discriminates the ion energies. The energy analyzer measures the current on a collector plate downstream of four grids that repel electrons and ions below a specified energy. The first grid lowers the density of the plasma, therefore increasing Debye length. The second and fourth grids have a negative potential applied to them so they repel the electrons, while the third grid's voltage can be varied to repel lower energy ions. The ion energies can be computed by differentiating the data. Combining the information of the ion energies and their velocities identifies the ion masses in the PPT plume. The PPT used for this diagnostic is the micro-PPT developed for the Dawgstar satellite. This PPT uses 5.2 Joules per pulse and has a 2.3 cm{sup 2} propellant area, a 1.3 cm electrode length, and an estimated thrust of 85 {mu}N [C. Rayburn et al., AIAA-2000-3256]. This paper will describe the development and design of the time of flight/gridded energy analyzer diagnostic and present recent experimental results. (Author)
Fresco, J; Weiss, H V; Phillips, R B; Askeland, R A
1985-08-01
Iridium in sea-water has been measured (after isolation from the saline matrix by reduction with magnesium) by neutron bombardment, radiochemical purification and high-resolution gamma-ray spectroscopy. The concentration obtained in a Pacific coastal water was 1.02 +/- 0.26 x 10(-14) g per g of sea-water. At such extremely low concentrations, seawater is an extremely unlikely source for anomalously high iridium concentrations measured in the Cretaceous-Tertiary boundary layer of deep-sea sediments.
Fresco, J.; Weiss, H.V.; Phillips, R.B.; Askeland, R.A.
1985-08-01
Iridium in sea-water has been measured (after isolation from the saline matrix by reduction with magnesium) by neutron bombardment, radiochemical purification and high resolution ..gamma..-ray spectroscopy. The concentration obtained in a Pacific coastal water was 1.02 +- 0.26 x 10/sup 14/ g per g of sea-water. At such extremely low concentrations, seawater is an extremely unlikely source for anomalously high iridium concentrations measured in the Cretaceous-Tertiary boundary layer of deep-sea sediments.
Magnetohydrodynamics turbulence: An astronomical perspective
S Sridhar
2011-07-01
Early work on magnetohydrodynamic (MHD) turbulence in the 1960s due, independently, to Iroshnikov and Kraichnan (IK) considered isotropic inertial-range spectra. Whereas laboratory experiments were not in a position to measure the spectral index, they showed that the turbulence was strongly anisotropic. Theoretical horizons correspondingly expanded in the 1980s, to accommodate both the isotropy of the IK theory and the anisotropy suggested by the experiments. Since the discovery of pulsars in 1967, many years of work on interstellar scintillation suggested that small-scale interstellar turbulence must have a hydromagnetic origin; but the IK spectrum was too ﬂat and the ideas on anisotropic spectra too qualitative to explain the observations. In response, new theories of balanced MHD turbulence were proposed in the 1990s, which argued that the IK theory was incorrect, and made quantitative predictions of anisotropic inertial-range spectra; these theories have since found applications in many areas of astrophysics. Spacecraft measurements of solar-wind turbulence show that there is more power in Alfvén waves that travel away from the Sun than towards it. Theories of imbalanced MHD turbulence have now been proposed to address interplanetary turbulence. This very active area of research continues to be driven by astronomy.
Magnetohydrodynamic (MHD) driven droplet mixer
Lee, Abraham P.; Lemoff, Asuncion V.; Miles, Robin R.
2004-05-11
A magnetohydrodynamic fluidic system mixes a first substance and a second substance. A first substrate section includes a first flow channel and a first plurality of pairs of spaced electrodes operatively connected to the first flow channel. A second substrate section includes a second flow channel and a second plurality of pairs of spaced electrodes operatively connected to the second flow channel. A third substrate section includes a third flow channel and a third plurality of pairs of spaced electrodes operatively connected to the third flow channel. A magnetic section and a control section are operatively connected to the spaced electrodes. The first substrate section, the second substrate section, the third substrate section, the first plurality of pairs of spaced electrodes, the second plurality of pairs of spaced electrodes, the third plurality of pairs of spaced electrodes, the magnetic section, and the control section are operated to move the first substance through the first flow channel, the second substance through the second flow channel, and both the first substance and the second substance into the third flow channel where they are mixed.
Magnetohydrodynamic Propulsion for the Classroom
Font, Gabriel I.; Dudley, Scott C.
2004-10-01
The cinema industry can sometimes prove to be an ally when searching for material with which to motivate students to learn physics. Consider, for example, the electromagnetic force on a current in the presence of a magnetic field. This phenomenon is at the heart of magnetohydrodynamic (MHD) propulsion systems. A submarine employing this type of propulsion was immortalized in the movie Hunt for Red October. While mentioning this to students certainly gets their attention, it often elicits comments that it is only fiction and not physically possible. Imagine their surprise when a working system is demonstrated! It is neither difficult nor expensive to construct a working system that can be demonstrated in the front of a classroom.2 In addition, all aspects of the engineering hurdles that must be surmounted and myths concerning this "silent propulsion" system are borne out in a simple apparatus. This paper details how to construct an inexpensive MHD propulsion boat that can be demonstrated for students in the classroom.
Buoyancy-driven Magnetohydrodynamic Waves
Hague, A.; Erdélyi, R.
2016-09-01
Turbulent motions close to the visible solar surface may generate low-frequency internal gravity waves (IGWs) that propagate through the lower solar atmosphere. Magnetic activity is ubiquitous throughout the solar atmosphere, so it is expected that the behavior of IGWs is to be affected. In this article we investigate the role of an equilibrium magnetic field on propagating and standing buoyancy oscillations in a gravitationally stratified medium. We assume that this background magnetic field is parallel to the direction of gravitational stratification. It is known that when the equilibrium magnetic field is weak and the background is isothermal, the frequencies of standing IGWs are sensitive to the presence of magnetism. Here, we generalize this result to the case of a slowly varying temperature. To do this, we make use of the Boussinesq approximation. A comparison between the hydrodynamic and magnetohydrodynamic cases allows us to deduce the effects due to a magnetic field. It is shown that the frequency of IGWs may depart significantly from the Brunt-Väisälä frequency, even for a weak magnetic field. The mathematical techniques applied here give a clearer picture of the wave mode identification, which has previously been misinterpreted. An observational test is urged to validate the theoretical findings.
Magnetohydrodynamic Models of Molecular Tornadoes
Au, Kelvin; Fiege, Jason D.
2017-07-01
Recent observations near the Galactic Center (GC) have found several molecular filaments displaying striking helically wound morphology that are collectively known as molecular tornadoes. We investigate the equilibrium structure of these molecular tornadoes by formulating a magnetohydrodynamic model of a rotating, helically magnetized filament. A special analytical solution is derived where centrifugal forces balance exactly with toroidal magnetic stress. From the physics of torsional Alfvén waves we derive a constraint that links the toroidal flux-to-mass ratio and the pitch angle of the helical field to the rotation laws, which we find to be an important component in describing the molecular tornado structure. The models are compared to the Ostriker solution for isothermal, nonmagnetic, nonrotating filaments. We find that neither the analytic model nor the Alfvén wave model suffer from the unphysical density inversions noted by other authors. A Monte Carlo exploration of our parameter space is constrained by observational measurements of the Pigtail Molecular Cloud, the Double Helix Nebula, and the GC Molecular Tornado. Observable properties such as the velocity dispersion, filament radius, linear mass, and surface pressure can be used to derive three dimensionless constraints for our dimensionless models of these three objects. A virial analysis of these constrained models is studied for these three molecular tornadoes. We find that self-gravity is relatively unimportant, whereas magnetic fields and external pressure play a dominant role in the confinement and equilibrium radial structure of these objects.
Smoothed particle hydrodynamics and magnetohydrodynamics
Price, Daniel J.
2012-02-01
This paper presents an overview and introduction to smoothed particle hydrodynamics and magnetohydrodynamics in theory and in practice. Firstly, we give a basic grounding in the fundamentals of SPH, showing how the equations of motion and energy can be self-consistently derived from the density estimate. We then show how to interpret these equations using the basic SPH interpolation formulae and highlight the subtle difference in approach between SPH and other particle methods. In doing so, we also critique several 'urban myths' regarding SPH, in particular the idea that one can simply increase the 'neighbour number' more slowly than the total number of particles in order to obtain convergence. We also discuss the origin of numerical instabilities such as the pairing and tensile instabilities. Finally, we give practical advice on how to resolve three of the main issues with SPMHD: removing the tensile instability, formulating dissipative terms for MHD shocks and enforcing the divergence constraint on the particles, and we give the current status of developments in this area. Accompanying the paper is the first public release of the NDSPMHD SPH code, a 1, 2 and 3 dimensional code designed as a testbed for SPH/SPMHD algorithms that can be used to test many of the ideas and used to run all of the numerical examples contained in the paper.
NDSPMHD Smoothed Particle Magnetohydrodynamics Code
Price, Daniel J.
2011-01-01
This paper presents an overview and introduction to Smoothed Particle Hydrodynamics and Magnetohydrodynamics in theory and in practice. Firstly, we give a basic grounding in the fundamentals of SPH, showing how the equations of motion and energy can be self-consistently derived from the density estimate. We then show how to interpret these equations using the basic SPH interpolation formulae and highlight the subtle difference in approach between SPH and other particle methods. In doing so, we also critique several 'urban myths' regarding SPH, in particular the idea that one can simply increase the 'neighbour number' more slowly than the total number of particles in order to obtain convergence. We also discuss the origin of numerical instabilities such as the pairing and tensile instabilities. Finally, we give practical advice on how to resolve three of the main issues with SPMHD: removing the tensile instability, formulating dissipative terms for MHD shocks and enforcing the divergence constraint on the particles, and we give the current status of developments in this area. Accompanying the paper is the first public release of the NDSPMHD SPH code, a 1, 2 and 3 dimensional code designed as a testbed for SPH/SPMHD algorithms that can be used to test many of the ideas and used to run all of the numerical examples contained in the paper.
Magnetohydrodynamics of Chiral Relativistic Fluids
Boyarsky, Alexey; Ruchayskiy, Oleg
2015-01-01
We study the dynamics of a plasma of charged relativistic fermions at very high temperature $T\\gg m$, where $m$ is the fermion mass, coupled to the electromagnetic field. In particular, we derive a magneto-hydrodynamical description of the evolution of such a plasma. We show that, as compared to conventional MHD for a plasma of non-relativistic particles, the hydrodynamical description of the relativistic plasma involves new degrees of freedom described by a pseudo-scalar field originating in a local asymmetry in the densities of left-handed and right-handed fermions. This field can be interpreted as an effective axion field. Taking into account the chiral anomaly we present dynamical equations for the evolution of this field, as well as of other fields appearing in the MHD description of the plasma. Due to its non-linear coupling to helical magnetic fields, the axion field significantly affects the dynamics of a magnetized plasma and can give rise to a novel type of inverse cascade.
The electrodeless Lorentz force thruster experiment
Weber, Thomas E.
The Electrodeless Lorentz Force (ELF) thruster is a novel type of plasma thruster, which utilizes Rotating Magnetic Field current drive within a diverging magnetic field to form, accelerate, and eject a Field Reversed Configuration plasmoid. The ELF program is a result of a Small Business Technology Transfer grant awarded to MSNW LLC by the Air Force Office of Scientific Research for the research of the revolutionary space propulsion concept represented by ELF. These grants are awarded to small businesses working in collaboration with a university, in this case, the University of Washington. The program was split into two concurrent research efforts; a numerical modeling study undertaken at the UW branch of the Plasma Science and Innovation Center, and an experimental effort taking place at the UW Plasma Dynamics Laboratory with additional support from MSNW (the latter being the subject of this dissertation). It is the aim of this dissertation is to present to the reader the necessary background information needed to understand the operation of the ELF thruster, an overview of the experimental setup, a review of the significant experimental findings, and a discussion regarding the operation and performance of the thruster.
Hall Effect Thruster Ground Testing Challenges
2009-08-18
conditional stability of the inverted pendulum thrust stand provides improved measurement sensitivity.5 With the displacement of the inverted pendulum...July 2005. 12Samiento, C., “RHETT2/ EPDM Hall Thruster Propulsion System Electromagnetic Compatability Evaluation,” Proceed- ings of the 25th
Microdischarge plasma thrusters for small satellite propulsion
Raja, Laxminarayan
2009-10-01
Small satellites weighing less than 100 kg are gaining importance in the defense and commercial satellite community owing to advantages of low costs to build and operate, simplicity of design, rapid integration and testing, formation flying, and multi-vehicle operations. The principal challenge in the design and development of small satellite subsystems is the severe mass, volume, and power constraints posed by the overall size of the satellite. The propulsion system in particular is hard to down scale and as such poses a major stumbling block for small satellite technology. Microdischarge-based miniaturized plasma thrusters are potentially a novel solution to this problem. In its most basic form a microdischarge plasma thruster is a simple extension of a cold gas micronozzle propulsion device, where a direct or alternating current microdischarge is used to preheat the gas stream to improve to specific impulse of the device. We study a prototypical thruster device using a detailed, self-consistent coupled plasma and fluid flow computational model. The model describes the microdischarge power deposition, plasma dynamics, gas-phase chemical kinetics, coupling of the plasma phenomena with high-speed flow, and overall propulsion system performance. Unique computational challenges associated with microdischarge modeling in the presence of high-speed flows are addressed. Compared to a cold gas micronozzle, a significant increase in specific impulse (50 to 100 %) is obtained from the power deposition in the diverging supersonic section of the thruster nozzle. The microdischarge remains mostly confined inside the micronozzle and operates in an abnormal glow discharge regime. Gas heating, primarily due to ion Joule heating, is found to have a strong influence on the overall discharge behavior. The study provides a validation of the concept as simple and effective approach to realizing a relatively high-specific impulse thruster device at small geometric scales.
Accurate, meshless methods for magnetohydrodynamics
Hopkins, Philip F.; Raives, Matthias J.
2016-01-01
Recently, we explored new meshless finite-volume Lagrangian methods for hydrodynamics: the `meshless finite mass' (MFM) and `meshless finite volume' (MFV) methods; these capture advantages of both smoothed particle hydrodynamics (SPH) and adaptive mesh refinement (AMR) schemes. We extend these to include ideal magnetohydrodynamics (MHD). The MHD equations are second-order consistent and conservative. We augment these with a divergence-cleaning scheme, which maintains nabla \\cdot B≈ 0. We implement these in the code GIZMO, together with state-of-the-art SPH MHD. We consider a large test suite, and show that on all problems the new methods are competitive with AMR using constrained transport (CT) to ensure nabla \\cdot B=0. They correctly capture the growth/structure of the magnetorotational instability, MHD turbulence, and launching of magnetic jets, in some cases converging more rapidly than state-of-the-art AMR. Compared to SPH, the MFM/MFV methods exhibit convergence at fixed neighbour number, sharp shock-capturing, and dramatically reduced noise, divergence errors, and diffusion. Still, `modern' SPH can handle most test problems, at the cost of larger kernels and `by hand' adjustment of artificial diffusion. Compared to non-moving meshes, the new methods exhibit enhanced `grid noise' but reduced advection errors and diffusion, easily include self-gravity, and feature velocity-independent errors and superior angular momentum conservation. They converge more slowly on some problems (smooth, slow-moving flows), but more rapidly on others (involving advection/rotation). In all cases, we show divergence control beyond the Powell 8-wave approach is necessary, or all methods can converge to unphysical answers even at high resolution.
On magnetohydrodynamic gauge field theory
Webb, G. M.; Anco, S. C.
2017-06-01
Clebsch potential gauge field theory for magnetohydrodynamics is developed based in part on the theory of Calkin (1963 Can. J. Phys. 41 2241-51). It is shown how the polarization vector {P} in Calkin’s approach naturally arises from the Lagrange multiplier constraint equation for Faraday’s equation for the magnetic induction {B} , or alternatively from the magnetic vector potential form of Faraday’s equation. Gauss’s equation, (divergence of {B} is zero) is incorporated in the variational principle by means of a Lagrange multiplier constraint. Noether’s theorem coupled with the gauge symmetries is used to derive the conservation laws for (a) magnetic helicity, (b) cross helicity, (c) fluid helicity for non-magnetized fluids, and (d) a class of conservation laws associated with curl and divergence equations which applies to Faraday’s equation and Gauss’s equation. The magnetic helicity conservation law is due to a gauge symmetry in MHD and not due to a fluid relabelling symmetry. The analysis is carried out for the general case of a non-barotropic gas in which the gas pressure and internal energy density depend on both the entropy S and the gas density ρ. The cross helicity and fluid helicity conservation laws in the non-barotropic case are nonlocal conservation laws that reduce to local conservation laws for the case of a barotropic gas. The connections between gauge symmetries, Clebsch potentials and Casimirs are developed. It is shown that the gauge symmetry functionals in the work of Henyey (1982 Phys. Rev. A 26 480-3) satisfy the Casimir determining equations.
Electron magnetohydrodynamics: dynamics and turbulence.
Lyutikov, Maxim
2013-11-01
We consider dynamics and turbulent interaction of whistler modes within the framework of inertialess electron magnetohydrodynamics (EMHD). We argue that there is no energy principle in EMHD: any stationary closed configuration is neutrally stable. On the other hand, the relaxation principle, the long term evolution of a weakly dissipative system towards Taylor-Beltrami state, remains valid in EMHD. We consider the turbulent cascade of whistler modes. We show that (i) harmonic whistlers are exact nonlinear solutions; (ii) collinear whistlers do not interact (including counterpropagating); (iii) waves with the same value of the wave vector k(1)=k(2) do not interact; (iv) whistler modes have a dispersion that allows a three-wave decay, including into a zero frequency mode; (v) the three-wave interaction effectively couples modes with highly different wave numbers and propagation angles. In addition, linear interaction of a whistler with a single zero mode can lead to spatially divergent structures via parametric instability. All these properties are drastically different from MHD, so that the qualitative properties of the Alfvén turbulence can not be transferred to the EMHD turbulence. We derive the Hamiltonian formulation of EMHD, and using Bogoliubov transformation reduce it to the canonical form; we calculate the matrix elements for the three-wave interaction of whistlers. We solve numerically the kinetic equation and show that, generally, the EMHD cascade develops within a broad range of angles, while transiently it may show anisotropic, nearly two-dimensional structures. Development of a cascade depends on the forcing (nonuniversal) and often fails to reach a steady state. Analytical estimates predict the spectrum of magnetic fluctuations for the quasi-isotropic cascade [proportionality]k(-2). The cascade remains weak (not critically balanced). The cascade is UV local, while the infrared locality is weakly (logarithmically) violated.
From the Einstein-Szilard Patent to Modern Magnetohydrodynamics.
Povh, I. L.; Barinberg, A. D.
1979-01-01
Examines present-day and future prospects of the applications of modern magnetohydrodynamics in a number of countries. Explains how the electromagnetic pump, which was invented by Einstein and Leo Szilard, led to the development of applied magnetohydrodynamics. (HM)
Variational Integrators for Ideal and Reduced Magnetohydrodynamics
Kraus, Michael; Maj, Omar; Tassi, Emanuele; Grasso, Daniela
2016-10-01
Ideal and reduced magnetohydrodynamics are simplified sets of magnetohydrodynamics equations with applications to both fusion and astrophysical plasmas, possessing a noncanonical Hamiltonian structure and a number of conserved functionals. We propose a new discretisation strategy for these equations based on a discrete variational principle applied to a formal Lagrangian. Discrete exterior calculus is used for the discretisation of the field variables in order to preserve their geometrical character. The resulting integrators preserve important quantities like the total energy, magnetic helicity and cross helicity exactly (up to machine precision). As these integrators are free of numerical resistivity, the magnetic field line topology is preserved and spurious reconnection is absent in the ideal case. Only when effects of finite electron mass are added, magnetic reconnection takes place. The excellent conservation properties of the methods are exemplified with numerical examples in 2D. We conclude with an outlook towards the treatment of general geometries in 3D and full magnetohydrodynamics.
Plasma Diagnostic and Performance of a Permanent Magnet Hall Thruster
Ferreira, J L; Rego, I D S; Ferreira, I S; Ferreira, Jose Leonardo; Souza, Joao Henrique Campos De; Rego, Israel Da Silveira; Ferreira, Ivan Soares
2004-01-01
Electric propulsion is now a sucessfull method for primary propulsion of deep space long duration missions and for geosyncronous satellite attitude control. Closed Drift Plasma Thruster, so called Hall Thruster or SPT (stationary plasma thruster) were primarily conceived in USSR (the ancient Soviet Union) and now it is been developed by space agencies, space research institutes and industries in several countries such as France, USA, Israel, Russian Federation and Brazil. In this work, we show plasma characteristics and performance of a Hall Thruster designed with an innovative concept which uses an array of permanent magnets, instead of an eletromagnet, to produce a radial magnetic field inside its cylindrical plasma drift channel. Within this new concept, we expect to develop a Hall Thruster within power consuption that will scale up to small and medium size satellites. A plasma density and temperature space profiles inside and outside the thruster channel will be shown. Space plasma potential, ion temperat...
Los Alamos NEP research in advanced plasma thrusters
Schoenberg, Kurt; Gerwin, Richard
1991-01-01
Research was initiated in advanced plasma thrusters that capitalizes on lab capabilities in plasma science and technology. The goal of the program was to examine the scaling issues of magnetoplasmadynamic (MPD) thruster performance in support of NASA's MPD thruster development program. The objective was to address multi-megawatt, large scale, quasi-steady state MPD thruster performance. Results to date include a new quasi-steady state operating regime which was obtained at space exploration initiative relevant power levels, that enables direct coaxial gun-MPD comparisons of thruster physics and performance. The radiative losses are neglible. Operation with an applied axial magnetic field shows the same operational stability and exhaust plume uniformity benefits seen in MPD thrusters. Observed gun impedance is in close agreement with the magnetic Bernoulli model predictions. Spatial and temporal measurements of magnetic field, electric field, plasma density, electron temperature, and ion/neutral energy distribution are underway. Model applications to advanced mission logistics are also underway.
Mean-field magnetohydrodynamics and dynamo theory
Krause, F
2013-01-01
Mean-Field Magnetohydrodynamics and Dynamo Theory provides a systematic introduction to mean-field magnetohydrodynamics and the dynamo theory, along with the results achieved. Topics covered include turbulence and large-scale structures; general properties of the turbulent electromotive force; homogeneity, isotropy, and mirror symmetry of turbulent fields; and turbulent electromotive force in the case of non-vanishing mean flow. The turbulent electromotive force in the case of rotational mean motion is also considered. This book is comprised of 17 chapters and opens with an overview of the gen
Magnetohydrodynamically generated velocities in confined plasma
Morales, Jorge A.; Bos, Wouter J. T.; Schneider, Kai; Montgomery, David C.
2015-04-01
We investigate by numerical simulation the rotational flows in a toroid confining a conducting magnetofluid in which a current is driven by the application of externally supported electric and magnetic fields. The computation involves no microscopic instabilities and is purely magnetohydrodynamic (MHD). We show how the properties and intensity of the rotations are regulated by dimensionless numbers (Lundquist and viscous Lundquist) that contain the resistivity and viscosity of the magnetofluid. At the magnetohydrodynamic level (uniform mass density and incompressible magnetofluids), rotational flows appear in toroidal, driven MHD. The evolution of these flows with the transport coefficients, geometry, and safety factor are described.
Generalized magnetofluid connections in relativistic magnetohydrodynamics.
Asenjo, Felipe A; Comisso, Luca
2015-03-20
The concept of magnetic connections is extended to nonideal relativistic magnetohydrodynamical plasmas. Adopting a general set of equations for relativistic magnetohydrodynamics including thermal-inertial, thermal electromotive, Hall, and current-inertia effects, we derive a new covariant connection equation showing the existence of generalized magnetofluid connections that are preserved during the dissipationless plasma dynamics. These connections are intimately linked to a general antisymmetric tensor that unifies the electromagnetic and fluid fields, allowing the extension of the magnetic connection notion to a much broader concept.
High-Pressure Lightweight Thrusters
Holmes, Richard; McKechnie, Timothy; Shchetkovskiy, Anatoliy; Smirnov, Alexander
2013-01-01
interface realizes pseudo-plastic behavior with significant increase in the tensile strength. The investigation of high-temperature strength of C/Cs under high-rate heating (critical for thrust chambers) shows that tensile and compression strength increases from 70 MPa at room temperature to 110 MPa at 1,773 K, and up to 125 MPa at 2,473 K. Despite these unique properties, the use of C/Cs is limited by its high oxidation rate at elevated temperatures. Lining carbon/carbon chambers with a thin layer of iridium or iridium and rhenium is an innovative way to use proven refractory metals and provide the oxidation barrier necessary to enable the use of carbon/ carbon composites. Due to the lower density of C/Cs as compared to SiC/SiC composites, an iridium liner can be added to the C/C structure and still be below the overall thruster weight. Weight calculations show that C/C, C/C with 50 microns of Ir, and C/C with 100 microns of Ir are of less weight than alternative materials for the same construction.
Carbon Nanotube Based Electric Propulsion Thruster with Low Power Consumption Project
National Aeronautics and Space Administration — This SBIR project is to develop field emission electric propulsion (FEEP) thruster using carbon nanotubes (CNT) integrated anode. FEEP thrusters have gained...
Pseudospectral Model for Hybrid PIC Hall-effect Thruster Simulation
2015-07-01
1149. 8Goebel, D. M. and Katz, I., Fundamentals of Electric Propulsion : Ion and Hall Thrusters, John Wiley & Sons, Inc., 2008. 9Martin, R., J.W., K...Bilyeu, D., and Tran, J., “Dynamic Particle Weight Remapping in Hybrid PIC Hall -effect Thruster Simulation,” 34th Int. Electric Propulsion Conf...Paper 3. DATES COVERED (From - To) July 2015-July 2015 4. TITLE AND SUBTITLE Pseudospectral model for hybrid PIC Hall -effect thruster simulationect
Thermo-mechanical design aspects of mercury bombardment ion thrusters.
Schnelker, D. E.; Kami, S.
1972-01-01
The mechanical design criteria are presented as background considerations for solving problems associated with the thermomechanical design of mercury ion bombardment thrusters. Various analytical procedures are used to aid in the development of thruster subassemblies and components in the fields of heat transfer, vibration, and stress analysis. Examples of these techniques which provide computer solutions to predict and control stress levels encountered during launch and operation of thruster systems are discussed. Computer models of specific examples are presented.
Thermal Management of Superconducting Electromagnets in VASIMR Thrusters Project
National Aeronautics and Space Administration — Future manned space exploration missions will require high power electric propulsion. VASIMR thrusters are the most attractive option because they offer short...
High Throughput 600 Watt Hall Effect Thruster for Space Exploration
Szabo, James; Pote, Bruce; Tedrake, Rachel; Paintal, Surjeet; Byrne, Lawrence; Hruby, Vlad; Kamhawi, Hani; Smith, Tim
2016-01-01
A nominal 600-Watt Hall Effect Thruster was developed to propel unmanned space vehicles. Both xenon and iodine compatible versions were demonstrated. With xenon, peak measured thruster efficiency is 46-48% at 600-W, with specific impulse from 1400 s to 1700 s. Evolution of the thruster channel due to ion erosion was predicted through numerical models and calibrated with experimental measurements. Estimated xenon throughput is greater than 100 kg. The thruster is well sized for satellite station keeping and orbit maneuvering, either by itself or within a cluster.
Control Valve for Miniature Xenon Ion Thruster Project
National Aeronautics and Space Administration — NASA is continuing its development of electric propulsion engines for various applications. Efforts have been directed toward both large and small thrusters,...
High Efficiency Hall Thruster Discharge Power Converter Project
National Aeronautics and Space Administration — Busek leveraged previous, internally sponsored, high power, Hall thruster discharge converter development which allowed it to design, build, and test new printed...
NASA HERMeS Hall Thruster Electrical Configuration Characterization
Peterson, Peter Y.; Kamhawi, Hani; Huang, Wensheng; Yim, John; Herman, Daniel; Williams, George; Gilland, James; Hofer, Richard
2015-01-01
The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight ready propulsion system. Part of the technology maturation was to test the TDU-1 thruster in several ground based electrical configurations to assess the thruster robustness and suitability to successful in-space operation. The ground based electrical configuration testing has recently been demonstrated as an important step in understanding and assessing how a Hall thruster may operate differently in-space compared to ground based testing, and to determine the best configuration to conduct development and qualification testing. This paper describes the electrical configuration testing of the HERMeS TDU-1 Hall thruster in NASA Glenn Research Center's Vacuum Facility 5. The three electrical configurations examined were 1) thruster body tied to facility ground, 2) thruster floating, and 3) thruster body electrically tied to cathode common. The HERMeS TDU-1 Hall thruster was also configured with two different exit plane boundary conditions, dielectric and conducting, to examine the influence on the electrical configuration characterization.
Studies of Non-Conventional Configuration Closed Electron Drift Thrusters
Y. Raitses; D. Staack; A. Smirnov; A.A. Litvak; L.A. Dorf; T. Graves; and N.J. Fisch
2001-09-10
In this paper, we review recent results obtained for segmented electrode and cylindrical Hall thrusters. A low sputtering graphite segmented electrode, placed at the exit of the annular thruster, is shown to affect the plasma potential distribution in the ceramic channel. This effect appears to be correlated with an observed plume reduction compared to a conventional, nonsegmented thruster. In preliminary experiments a 3-cm thruster was operated in the 50-200 W power range. Two operating regimes, stable and oscillating, were observed and investigated.
Conducting wall Hall thrusters in magnetic shielding and standard configurations
Grimaud, Lou; Mazouffre, Stéphane
2017-07-01
Traditional Hall thrusters are fitted with boron nitride dielectric discharge channels that confine the plasma discharge. Wall properties have significant effects on the performances and stability of the thrusters. In magnetically shielded thrusters, interactions between the plasma and the walls are greatly reduced, and the potential drop responsible for ion acceleration is situated outside the channel. This opens the way to the utilization of alternative materials for the discharge channel. In this work, graphite walls are compared to BN-SiO2 walls in the 200 W magnetically shielded ISCT200-MS and the unshielded ISCT200-US Hall thrusters. The magnetically shielded thruster shows no significant change in the discharge current mean value and oscillations, while the unshielded thruster's discharge current increases by 25% and becomes noticeably less stable. The electric field profile is also investigated through laser spectroscopy, and no significant difference is recorded between the ceramic and graphite cases for the shielded thruster. The unshielded thruster, on the other hand, has its acceleration region shifted 15% of the channel length downstream. Lastly, the plume profile is measured with planar probes fitted with guard rings. Once again the material wall has little influence on the plume characteristics in the shielded thruster, while the unshielded one is significantly affected.
A collisionless plasma thruster plume expansion model
Merino, Mario; Cichocki, Filippo; Ahedo, Eduardo
2015-06-01
A two-fluid model of the unmagnetized, collisionless far region expansion of the plasma plume for gridded ion thrusters and Hall effect thrusters is presented. The model is integrated into two semi-analytical solutions valid in the hypersonic case. These solutions are discussed and compared against the results from the (exact) method of characteristics; the relative errors in density and velocity increase slowly axially and radially and are of the order of 10-2-10-3 in the cases studied. The plasma density, ion flux and ambipolar electric field are investigated. A sensitivity analysis of the problem parameters and initial conditions is carried out in order to characterize the far plume divergence angle in the range of interest for space electric propulsion. A qualitative discussion of the physics of the secondary plasma plume is also provided.
Thermal Characterization of a Hall Effect Thruster
2008-03-01
Material Curie Temperature Iron 770 °C Nickel 358 °C Cobalt 1130 °C Gadolinium 20 °C Terfenol 380-430 °C Alnico 850 °C Hard Ferrites 400-700...C Barium Ferrite 450 °C Hall Effect thrusters generally use iron magnets with a Curie temperature of 770 °C. Decreasing the magnetic strength
Seawater transport during coral biomineralization
Gagnon, Alexander C.; Adkins, Jess F.; Erez, Jonathan
2012-05-01
Cation transport during skeletal growth is a key process controlling metal/calcium (Me/Ca) paleoproxy behavior in coral. To characterize this transport, cultured corals were transferred into seawater enriched in the rare earth element Tb3 + as well as stable isotopes of calcium, strontium, and barium. Subsequent NanoSIMS ion images of each coral skeleton were used to follow uptake dynamics. These images show a continuous region corresponding to new growth that is homogeneously enriched in each tracer. Isotope ratio profiles across the new growth boundary transition rapidly from natural abundance ratios to a ratio matching the enriched culture solution. The location of this transition is the same for each element, within analytical resolution. The synchronous incorporation of all these cations, including the dissimilar ion terbium, which has no known biological function in coral, suggests that: (1) there is cation exchange between seawater and the calcifying fluid, and (2) these elements are influenced by similar transport mechanisms consistent with direct and rapid seawater transport to the site of calcification. Measured using isotope ratio profiles, seawater transport rates differ from place to place on the growing coral skeleton, with calcifying fluid turnover times from 30 min to 5.7 h. Despite these differences, all the elements measured in this study show the same transport dynamics at each location. Using an analytical geochemical model of biomineralization that includes direct seawater transport we constrain the role of active calcium pumping during calcification and we show that the balance between seawater transport and precipitation can explain observed Me/Ca variability in deep-sea coral.
On energy conservation in extended magnetohydrodynamics
Kimura, Keiji [Research Institute for Mathematical Sciences, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Morrison, P. J. [Department of Physics and Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712-1060 (United States)
2014-08-15
A systematic study of energy conservation for extended magnetohydrodynamic models that include Hall terms and electron inertia is performed. It is observed that commonly used models do not conserve energy in the ideal limit, i.e., when viscosity and resistivity are neglected. In particular, a term in the momentum equation that is often neglected is seen to be needed for conservation of energy.
Dynamic grid adaptation for computational magnetohydrodynamics
Keppens, R.; Nool, M.; Zegeling, P. A.; Goedbloed, J. P.; Bubak, M.; Williams, R.; Afsarmanesh, H.; Hertzberger, B.
2000-01-01
In many plasma physical and astrophysical problems, both linear and nonlinear effects can lead to global dynamics that induce, or occur simultaneously with, local phenomena. For example, a magnetically confined plasma column can potentially posses global magnetohydrodynamic (MHD) eigenmodes with an
Potential vorticity formulation of compressible magnetohydrodynamics.
Arter, Wayne
2013-01-04
Compressible ideal magnetohydrodynamics is formulated in terms of the time evolution of potential vorticity and magnetic flux per unit mass using a compact Lie bracket notation. It is demonstrated that this simplifies analytic solution in at least one very important situation relevant to magnetic fusion experiments. Potentially important implications for analytic and numerical modelling of both laboratory and astrophysical plasmas are also discussed.
Using high performance Fortran for magnetohydrodynamic simulations
Keppens, R.; Toth, G.
2000-01-01
Two scientific application programs, the Versatile Advection Code (VAC) and the HEating by Resonant Absorption (HERA) code are adapted to parallel computer platforms. Both programs can solve the time-dependent nonlinear partial differential equations of magnetohydrodynamics (MHD) with different nume
ELECTROSTATIC ION THRUSTERS - TOWARDS PREDICTIVE MODELING
Julia Duras
2015-02-01
Full Text Available For satellite missions, thrusters have to be qualified in large vacuum vessels to simulate space environment. One caveat of these experiments is the possible modification of the beam properties due to the interaction of the energetic ions with the vessel walls. Impinging ions can produce sputtered impurities or secondary electrons from the wall. These can stream back into the acceleration channel of the thruster and produce co-deposited layers. Over the long operation time of thousands of hours, such layers can modify the optimized geometry and induce changes of the ion beam properties, e.g. broadening of the angular distribution and thrust reduction. To study such effects, a Monte Carlo code for the simulation of the interaction of ion thruster beams with vessel walls was developed. Strategies to overcome sputter limitations by additional baffles are studied with the help of this Monte-Carlo erosion code.
Multi-Scale Modeling of Plasma Thrusters
Batishchev, Oleg
2004-11-01
Plasma thrusters are characterized with multiple spatial and temporal scales, which are due to the intrinsic physical processes such as gas ionization, wall effects and plasma acceleration. Characteristic times for hot plasma and cold gas are differing by 6-7 orders of magnitude. The typical collisional mean-free-paths vary by 3-5 orders along the devices. These make questionable a true self-consistent modeling of the thrusters. The latter is vital to the understanding of complex physics, non-linear dynamics and optimization of the performance. To overcome this problem we propose the following approach. All processes are divided into two groups: fast and slow. The slow ones include gas evolution with known sources and ionization sink. The ionization rate, transport coefficients, energy sources are defined during "fast step". Both processes are linked through external iterations. Multiple spatial scales are handled using moving adaptive mesh. Development and application of this method to the VASIMR helicon plasma source and other thrusters will be discussed. Supported by NASA.
Plume Comparisons between Segmented Channel Hall Thrusters
Niemack, Michael; Staack, David; Raitses, Yevgeny; Fisch, Nathaniel
2001-10-01
Angular ion flux plume measurements were taken in several configurations of segmented channel Hall thrusters. The configurations differed by the placement of relatively short rings made from materials with different conductive and secondary electron emission properties along the boron nitride ceramic channel of the thrusters (these have been shown to affect the plume [1]). The ion fluxes are compared with ion trajectory simulations based on plasma potential data acquired with a high speed emissive probe [2]. Preliminary results indicate that in addition to the physical properties of the segments, the plume angle can be strongly affected by the placement of segmented rings relative to the external and internal walls of the channel. [1] Y. Raitses, L. Dorf, A. Litvak and N. J. Fisch, Journal of Applied Physics 88, 1263, 2000 [2] D. Staack, Y. Raitses, N. J. Fisch, Parametric Investigations of Langmuir Probe Induced Perturbations in a Hall Thruster, DPP01 Poster Presentation This work was supported by the U.S. DOE Contract No. DE-ACO2-76-CHO3073.
Validation of Magnetospheric Magnetohydrodynamic Models
Curtis, Brian
Magnetospheric magnetohydrodynamic (MHD) models are commonly used for both prediction and modeling of Earth's magnetosphere. To date, very little validation has been performed to determine their limits, uncertainties, and differences. In this work, we performed a comprehensive analysis using several commonly used validation techniques in the atmospheric sciences to MHD-based models of Earth's magnetosphere for the first time. The validation techniques of parameter variability/sensitivity analysis and comparison to other models were used on the OpenGGCM, BATS-R-US, and SWMF magnetospheric MHD models to answer several questions about how these models compare. The questions include: (1) the difference between the model's predictions prior to and following to a reversal of Bz in the upstream interplanetary field (IMF) from positive to negative, (2) the influence of the preconditioning duration, and (3) the differences between models under extreme solar wind conditions. A differencing visualization tool was developed and used to address these three questions. We find: (1) For a reversal in IMF Bz from positive to negative, the OpenGGCM magnetopause is closest to Earth as it has the weakest magnetic pressure near-Earth. The differences in magnetopause positions between BATS-R-US and SWMF are explained by the influence of the ring current, which is included in SWMF. Densities are highest for SWMF and lowest for OpenGGCM. The OpenGGCM tail currents differ significantly from BATS-R-US and SWMF; (2) A longer preconditioning time allowed the magnetosphere to relax more, giving different positions for the magnetopause with all three models before the IMF Bz reversal. There were differences greater than 100% for all three models before the IMF Bz reversal. The differences in the current sheet region for the OpenGGCM were small after the IMF Bz reversal. The BATS-R-US and SWMF differences decreased after the IMF Bz reversal to near zero; (3) For extreme conditions in the solar
Occurrence of seawater intrusion overshoot
Morgan, L.K.; Bakker, M.; Werner, A.D.
2015-01-01
A number of numerical modeling studies of transient sea level rise (SLR) and seawater intrusion (SI) in flux-controlled aquifer systems have reported an overshoot phenomenon, whereby the freshwater-saltwater interface temporarily extends further inland than the eventual steady state position. Recent
Faraday's Law and Seawater Motion
De Luca, R.
2010-01-01
Using Faraday's law, one can illustrate how an electromotive force generator, directly utilizing seawater motion, works. The conceptual device proposed is rather simple in its components and can be built in any high school or college laboratory. The description of the way in which the device generates an electromotive force can be instructive not…
MOA—The Magnetic Field Amplified Thruster, a Novel Concept for a Pulsed Plasma Accelerator
Frischauf, Norbert; Hettmer, Manfred; Grassauer, Andreas; Bartusch, Tobias; Koudelka, Otto
2008-01-01
More than 60 years after the later Nobel laureate Hannes Alfvén had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfvén waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept is MOA—Magnetic field Oscillating Amplified thruster. Based on computer simulations, MOA is a highly flexible propulsion system, whose performance parameters might easily be adapted, by changing the mass flow and/or the power level. As such the system is capable to deliver a maximum specific impulse of 13116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an `afterburner system' for Nuclear Thermal Propulsion, other terrestrial applications can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilisation strategy. This paper presents the recent developments of the MOA Thruster R&D activities at QASAR (www.qasar.at), the company in Vienna, which has been set up to further develop and test the Alfvén wave technology and its applications.
A high power ion thruster for deep space missions
Polk, James E.; Goebel, Dan M.; Snyder, John S.; Schneider, Analyn C.; Johnson, Lee K.; Sengupta, Anita
2012-07-01
The Nuclear Electric Xenon Ion System ion thruster was developed for potential outer planet robotic missions using nuclear electric propulsion (NEP). This engine was designed to operate at power levels ranging from 13 to 28 kW at specific impulses of 6000-8500 s and for burn times of up to 10 years. State-of-the-art performance and life assessment tools were used to design the thruster, which featured 57-cm-diameter carbon-carbon composite grids operating at voltages of 3.5-6.5 kV. Preliminary validation of the thruster performance was accomplished with a laboratory model thruster, while in parallel, a flight-like development model (DM) thruster was completed and two DM thrusters fabricated. The first thruster completed full performance testing and a 2000-h wear test. The second successfully completed vibration tests at the full protoflight levels defined for this NEP program and then passed performance validation testing. The thruster design, performance, and the experimental validation of the design tools are discussed in this paper.
An Investigation into the Spectral Imaging of Hall Thruster Plumes
2015-07-01
zone shifting to a more upstream location in the discharge channel as observed in Ref. 14 for the BHT -600 thruster likely due to increased electron...to a more upstream location in the discharge channel as observed in Ref. 14 for the BHT -600 thruster likely due to increased electron mobility from
NASA HERMeS Hall Thruster Electrical Configuration Characterization
Peterson, Peter; Kamhawi, Hani; Huang, Wensheng; Yim, John; Herman, Daniel; Williams, George; Gilland, James; Hofer, Richard
2016-01-01
NASAs Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight ready propulsion system. Part of the technology maturation was to test the TDU-1 thruster in several ground based electrical configurations to assess the thruster robustness and suitability to successful in-space operation. The ground based electrical configuration testing has recently been demonstrated as an important step in understanding and assessing how a Hall thruster may operate differently in space compared to ground based testing, and to determine the best configuration to conduct development and qualification testing. This presentation will cover the electrical configuration testing of the TDU-1 HERMeS Hall thruster in NASA Glenn Research Centers Vacuum Facility 5. The three electrical configurations examined are the thruster body tied to facility ground, thruster floating, and finally the thruster body electrically tied to cathode common. The TDU-1 HERMeS was configured with two different exit plane boundary conditions, dielectric and conducting, to examine the influence on the electrical configuration characterization.
Two Types of Magnetohydrodynamic Sheath Jets
Kaburaki, Osamu
2009-01-01
Recent observations of astrophysical jets emanating from various galactic nuclei strongly suggest that a double layered structure, or a spine-sheath structure, is likely to be their common feature. We propose that such a sheath jet structure can be formed magnetohydrodynamically within a valley of the magnetic pressures, which is formed between the peaks due to the poloidal and toroidal components, with the centrifugal force acting on the rotating sheath plasma is balanced by the hoop stress of the toroidal field. The poloidal field concentrated near the polar axis is maintained by a converging plasma flow toward the jet region, and the toroidal field is developed outside the jet cone owing to the poloidal current circulating through the jet. Under such situations, the set of magnetohydrodynamic (MHD) equations allows two main types of solutions, at least, in the region far from the footpoint. The first type solution describes the jets of marginally bound nature. This type is realized when the jet temperature...
Magnetohydrodynamics on Heterogeneous architectures: a performance comparison
Pang, Bijia; Perrone, Michael
2010-01-01
We present magneto-hydrodynamic simulation results for heterogeneous systems. Heterogeneous architectures combine high floating point performance many-core units hosted in conventional server nodes. Examples include Graphics Processing Units (GPU's) and Cell. They have potentially large gains in performance, at modest power and monetary cost. We implemented a magneto-hydrodynamic (MHD) simulation code on a variety of heterogeneous and multi-core architectures --- multi-core x86, Cell, Nvidia and ATI GPU --- in different languages, FORTRAN, C, Cell, CUDA and OpenCL. We present initial performance results for these systems. To our knowledge, this is the widest comparison of heterogeneous systems for MHD simulations. We review the different challenges faced in each architecture, and potential bottlenecks. We conclude that substantial gains in performance over traditional systems are possible, and in particular that is possible to extract a greater percentage of peak theoretical performance from some systems when...
Efficient Acceleration of Relativistic Magnetohydrodynamic Jets
Toma, Kenji
2013-01-01
Relativistic jets in active galactic nuclei, galactic microquasars, and gamma-ray bursts are widely considered to be magnetohydrodynamically driven by black hole accretion systems, although conversion mechanism from Poynting into particle kinetic energy flux is still open. Recent detailed numerical and analytical studies of global structures of steady, axisymmetric magnetohydrodynamic (MHD) flows with specific boundary conditions have not reproduced as rapid an energy conversion as required by observations. In order to find more suitable boundary conditions, we focus on the flow along a poloidal magnetic field line just inside the external boundary, without treating transfield force balance in detail. We find some examples of the poloidal field structure and corresponding external pressure profile for an efficient and rapid energy conversion as required by observations, and that the rapid acceleration requires a rapid decrease of the external pressure above the accretion disk. We also clarify the differences ...
Magnetohydrodynamic stability of stochastically driven accretion flows
Nath, Sujit K; Chattopadhyay, Amit K
2013-01-01
We investigate the evolution of magnetohydrodynamic/hydromagnetic perturbations in the presence of stochastic noise in rotating shear flows. The particular emphasis is the flows whose angular velocity decreases but specific angular momentum increases with increasing radial coordinate. Such flows, however, are Rayleigh stable, but must be turbulent in order to explain astrophysical observed data and, hence, reveal a mismatch between the linear theory and observations/experiments. The mismatch seems to have been resolved, atleast in certain regimes, in the presence of weak magnetic field revealing magnetorotational instability. The present work explores the effects of stochastic noise on such magnetohydrodynamic flows, in order to resolve the above mismatch generically for the hot flows. We essentially concentrate on a small section of such a flow which is nothing but a plane shear flow supplemented by the Coriolis effect, mimicking a small section of an astrophysical accretion disk around a compact object. It ...
Multi-region relaxed magnetohydrodynamics with flow
Dennis, G R; Dewar, R L; Hole, M J
2014-01-01
We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes plasma flow. This new model is a generalization of Woltjer's model of relaxed magnetohydrodynamics equilibria with flow. We prove that as the number of plasma regions becomes infinite our extension of MRxMHD reduces to ideal MHD with flow. We also prove that some solutions to MRxMHD with flow are not time-independent in the laboratory frame, and instead have 3D structure which rotates in the toroidal direction with fixed angular velocity. This capability gives MRxMHD potential application to describing rotating 3D MHD structures such as 'snakes' and long-lived modes.
Multi-region relaxed magnetohydrodynamics with flow
Dennis, G. R., E-mail: graham.dennis@anu.edu.au; Dewar, R. L.; Hole, M. J. [Research School of Physics and Engineering, Australian National University, ACT 0200 (Australia); Hudson, S. R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)
2014-04-15
We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes plasma flow. This new model is a generalization of Woltjer's model of relaxed magnetohydrodynamics equilibria with flow. We prove that as the number of plasma regions becomes infinite, our extension of MRxMHD reduces to ideal MHD with flow. We also prove that some solutions to MRxMHD with flow are not time-independent in the laboratory frame, and instead have 3D structure which rotates in the toroidal direction with fixed angular velocity. This capability gives MRxMHD potential application to describing rotating 3D MHD structures such as 'snakes' and long-lived modes.
Protostellar outflows with Smoothed Particle Magnetohydrodynamics (SPMHD)
Bürzle, Florian; Stasyszyn, Federico; Dolag, Klaus; Klessen, Ralf S
2011-01-01
The protostellar collapse of a molecular cloud core is usually accompanied by outflow phenomena. The latter are thought to be driven by magnetorotational processes from the central parts of the protostellar disc. While several 3D AMR/nested grid studies of outflow phenomena in collapsing magnetically supercritical dense cores have been reported in the literature, so far no such simulation has been performed using the Smoothed Particle Hydrodynamics (SPH) method. This is mainly due to intrinsic numerical difficulties in handling magnetohydrodynamics within SPH, which only recently were partly resolved. In this work, we use an approach where we evolve the magnetic field via the induction equation, augmented with stability correction and divergence cleaning schemes. We consider the collapse of a rotating core of one solar mass, threaded by a weak magnetic field initially parallel to the rotation axis so that the core is magnetically supercritical. We show, that Smoothed Particle Magnetohydrodynamics (SPMHD) is a...
Azimuthal Spoke Propagation in Hall Effect Thrusters
Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Brown, Daniel L.; Hofer, Richard R.; Polk, James E.
2013-01-01
Spokes are azimuthally propagating perturbations in the plasma discharge of Hall Effect Thrusters (HETs) that travel in the E x B direction and have been observed in many different systems. The propagation of azimuthal spokes are investigated in a 6 kW HET known as the H6 using ultra-fast imaging and azimuthally spaced probes. A spoke surface is a 2-D plot of azimuthal light intensity evolution over time calculated from 87,500 frames/s videos. The spoke velocity has been determined using three methods with similar results: manual fitting of diagonal lines on the spoke surface, linear cross-correlation between azimuthal locations and an approximated dispersion relation. The spoke velocity for three discharge voltages (300, 400 and 450 V) and three anode mass flow rates (14.7, 19.5 and 25.2 mg/s) yielded spoke velocities between 1500 and 2200 m/s across a range of normalized magnetic field settings. The spoke velocity was inversely dependent on magnetic field strength for low B-field settings and asymptoted at B-field higher values. The velocities and frequencies are compared to standard drifts and plasma waves such as E x B drift, electrostatic ion cyclotron, magnetosonic and various drift waves. The empirically approximated dispersion relation yielded a characteristic velocity that matched the ion acoustic speed for 5 eV electrons that exist in the near-anode and near-field plume regions of the discharge channel based on internal measurements. Thruster performance has been linked to operating mode where thrust-to-power is maximized when azimuthal spokes are present so investigating the underlying mechanism of spokes will benefit thruster operation.
Capacitor discharges, magnetohydrodynamics, X-rays, ultrasonics
Früngel, Frank B A
1965-01-01
High Speed Pulse Technology, Volume 1: Capacitor Discharges - Magnetohydrodynamics - X-Rays - Ultrasonics deals with the theoretical and engineering problems that arise in the capacitor discharge technique.This book discusses the characteristics of dielectric material, symmetrical switch tubes with mercury filling, and compensation conductor forms. The transformed discharge for highest current peaks, ignition transformer for internal combustion engines, and X-ray irradiation of subjects in mechanical motion are also elaborated. This text likewise covers the transformed capacitor discharge in w
Relabeling symmetries in hydrodynamics and magnetohydrodynamics
Padhye, N.; Morrison, P.J.
1996-04-01
Lagrangian symmetries and concomitant generalized Bianchi identities associated with the relabeling of fluid elements are found for hydrodynamics and magnetohydrodynamics (MHD). In hydrodynamics relabeling results in Ertel`s theorem of conservation of potential vorticity, while in MHD it yields the conservation of cross helicity. The symmetries of the reduction from Lagrangian (material) to Eulerian variables are used to construct the Casimir invariants of the Hamiltonian formalism.
Micro-Discharge Micro-Thruster
2005-06-01
breakdown at the maximum applied voltage (900 V) in Argon. The back side of the Paschen curve for Ar occurs at a pressure-length (P·d) product of less than...significant capacitance to ground from either lead (~ 100 nF). As small as this is, it had a profound effect on the discharge (see next section). A more space... effect in most thrusters even in the 100 Watt class. For a micro-discharge, even a stray coupling capacitance 50 pF observed for the power leads
Cassini Thruster Calibration Algorithm Using Reaction Wheel Biasing Data
Rizvi, Farheen
2012-01-01
Thrust force estimates for the reaction control thrusters on-board Cassini spacecraft are presented in this paper. Cassini consists of two thruster branches (A and B) each with eight thrusters. The four Z-thrusters control the X and Y-axes, while the four Y-thrusters control the Z-axis. It is important to track the thrust force estimates in order to detect any thruster degradation and for supporting various activities in spacecraft operations (Titan flyby, spacecraft maneuvers). The Euler equation, which describes the rotational motion of the spacecraft during a reaction wheel bias event, is used to develop the algorithm. The thrust estimates are obtained from the pseudo inverse solution using flight telemetry during the bias. Results show that the A-branch Z3A and Z4A thrusters exhibited degraded thrust in November 2008. Due to the degraded thrust performance of Z3A and Z4A, A-branch usage was discontinued and prime branch was swapped to B-branch in March 2009. The thrust estimates from the B-branch do not show any degradation to date. The algorithm is used to trend the B-branch thrust force estimates as the mission continues.
Global model of an iodine gridded plasma thruster
Grondein, P.; Lafleur, T.; Chabert, P.; Aanesland, A.
2016-03-01
Most state-of-the-art electric space propulsion systems such as gridded and Hall effect thrusters use xenon as the propellant gas. However, xenon is very rare, expensive to produce, and used in a number of competing industrial applications. Alternatives to xenon are currently being investigated, and iodine has emerged as a potential candidate. Its lower cost and larger availability, its solid state at standard temperature and pressure, its low vapour pressure and its low ionization potential make it an attractive option. In this work, we compare the performances of a gridded ion thruster operating separately with iodine and xenon, under otherwise identical conditions using a global model. The thruster discharge properties such as neutral, ion, and electron densities and electron temperature are calculated, as well as the thruster performance parameters such as thrust, specific impulse, and system efficiencies. For similar operating conditions, representative of realistic thrusters, the model predicts similar thrust levels and performances for both iodine and xenon. The thruster efficiency is however slightly higher for iodine compared with xenon, due to its lower ionization potential. This demonstrates that iodine could be a viable alternative propellant for gridded plasma thrusters.
High-Power, High-Thrust Ion Thruster (HPHTion)
Peterson, Peter Y.
2015-01-01
Advances in high-power photovoltaic technology have enabled the possibility of reasonably sized, high-specific power solar arrays. At high specific powers, power levels ranging from 50 to several hundred kilowatts are feasible. Ion thrusters offer long life and overall high efficiency (typically greater than 70 percent efficiency). In Phase I, the team at ElectroDynamic Applications, Inc., built a 25-kW, 50-cm ion thruster discharge chamber and fabricated a laboratory model. This was in response to the need for a single, high-powered engine to fill the gulf between the 7-kW NASA's Evolutionary Xenon Thruster (NEXT) system and a notional 25-kW engine. The Phase II project matured the laboratory model into a protoengineering model ion thruster. This involved the evolution of the discharge chamber to a high-performance thruster by performance testing and characterization via simulated and full beam extraction testing. Through such testing, the team optimized the design and built a protoengineering model thruster. Coupled with gridded ion thruster technology, this technology can enable a wide range of missions, including ambitious near-Earth NASA missions, Department of Defense missions, and commercial satellite activities.
Servidio, S; Matthaeus, W H; Carbone, V
2008-10-01
We explore the problem of the ergodicity of magnetohydrodynamics and Hall magnetohydrodynamics in three-dimensional, ideal Galerkin systems that are truncated to a finite number of Fourier modes. We show how single Fourier modes follow the Gibbs ensemble prediction, and how the ergodicity of the phase space is restored for long-time Galerkin solutions. Running time averages and two-time correlation functions show, at long times, a convergence towards zero of time averaged single Fourier modes. This suggests a delayed approach to, rather than a breaking of, ergodicity. Finally, we present some preliminary ideas concerning the origin of the associated time scales.
Transient tests on an MHD thruster
Pierson, E.S. (Purdue Univ., Hammond, IN (United States). Dept. of Engineering); Libera, J.; Petrick, M. (Argonne National Lab., IL (United States). Energy Systems Div.)
1993-01-01
Three different types of transient tests were made -- coast downs to zero voltage and current under open circuit and short circuit conditions, reverses where the applied voltage was reversed to the same or a different value, and jumps where the voltage applied to the thruster was increased without a change in polarity. Most except the coast downs were dons both quickly (voltage changes as fast as possible) and slowly (6 s to complete the voltage change). A few slower (12 s) transients were done. Transient runs were made for water conductivities of 16.2 and 5.09 S/m. In all cases steady-state conditions were established and several seconds of data taken before initiating the transients. Data were measured every 0.75 to 1 .5 second over the time interval of interest. Particular attention was paid to looking for evidence of gas bubbles, and to the chance of the voltage profiles between the electrodes. The data are interpreted based on the behavior of the power supply and the thruster.
Optimisation of a quantum pair space thruster
Valeriu DRAGAN
2012-06-01
Full Text Available The paper addresses the problem of propulsion for long term space missions. Traditionally a space propulsion unit has a propellant mass which is ejected trough a nozzle to generate thrust; this is also the case with inert gases energized by an on-board power unit. Unconventional methods for propulsion include high energy LASERs that rely on the momentum of photons to generate thrust. Anti-matter has also been proposed for energy storage. Although the momentum of ejected gas is significantly higher, the LASER propulsion offers the perspective of unlimited operational time – provided there is a power source. The paper will propose the use of the quantum pair formation for generating a working mass, this is different than conventional anti-matter thrusters since the material particles generated are used as propellant not as energy storage.Two methods will be compared: LASER and positron-electron, quantum pair formation. The latter will be shown to offer better momentum above certain energy levels.For the demonstrations an analytical solution is obtained and provided in the form of various coefficients. The implications are, for now, theoretical however the practicality of an optimized thruster using such particles is not to be neglected for long term space missions.
Digital computer control of a 30-cm mercury ion thruster
Low, C. A., Jr.
1975-01-01
The major objective was to define the exact role of an onboard spacecraft computer in the control of ion thrusters. An initial computer control system with accurate high speed capability was designed, programmed, and tested with the computer as the sole control element for an operating ion thruster. The command functions and a code format for a spacecraft digital control system were established. A second computer control system was constructed to operate with these functions and format. A throttle program sequence was established and tested. A two thruster array was tested with these computer control systems and the results reported.
Self consistent kinetic simulations of SPT and HEMP thrusters including the near-field plume region
Matyash, K; Mutzke, A; Kalentev, O; Taccogna, F; Koch, N; Schirra, M
2009-01-01
The Particle-in-Cell (PIC) method was used to study two different ion thruster concepts - Stationary Plasma Thrusters (SPT) and High Efficiency Multistage Plasma Thrusters (HEMP-T), in particular the plasma properties in the discharge chamber due to the different magnetic field configurations. Special attention was paid to the simulation of plasma particle fluxes on the thrusters channel surfaces. In both cases, PIC proved itself as a powerful tool, delivering important insight into the basic physics of the different thruster concepts. The simulations demonstrated that the new HEMP thruster concept allows for a high thermal efficiency due to both minimal energy dissipation and high acceleration efficiency. In the HEMP thruster the plasma contact to the wall is limited only to very small areas of the magnetic field cusps, which results in much smaller ion energy flux to the thruster channel surface as compared to SPT. The erosion yields for dielectric discharge channel walls of SPT and HEMP thrusters were calc...
20mN, Variable Specific Impulse Colloid Thruster Project
National Aeronautics and Space Administration — During Phase I, Busek designed and manufactured an electrospray emitter capable of generating 20 mN in a 7" x 7" x 1.7" package. The thruster consists of nine...
20mN, Variable Specific Impulse Colloid Thruster Project
National Aeronautics and Space Administration — Colloid thrusters have long been known for their exceptional thrust efficiency and ability to operate over a range of specific impulse due to easily variable...
A High Performance Cathode Heater for Hall Thrusters Project
National Aeronautics and Space Administration — High current hollow cathodes are the baseline electron source for next generation high power Hall thrusters. Currently for electron sources providing current levels...
High Throughput Hall Thruster for Small Spacecraft Project
National Aeronautics and Space Administration — Busek Co. Inc. proposes to develop a high throughput, nominal 100 W Hall Effect Thruster (HET). This HET will be sized for small spacecraft (< 180 kg), including...
Magnesium Hall Thruster for Solar System Exploration Project
National Aeronautics and Space Administration — The innovation being developed in this program is a Mg Hall Effect Thruster system that would open the door for In-Situ Resource Utilization based solar system...
Plume Characterization of Busek 600W Hall Thruster
2012-03-09
Dr. William A. Hargus Jr. (Member) Date iv Abstract The BHT -600W thruster has a high potential to place on various commercial and...Thrust Measurement ........................................................................................71 A. BHT -200W...71 B. BHT -600W’s Performance
Radio Frequency Micro Ion Thruster for Precision Propulsion Project
National Aeronautics and Space Administration — Busek proposes to develop radio frequency discharge, gridded micro-ion thruster that produces sub-mN thrust precisely adjustable over a wide dynamic thrust range....
Radio Frequency Micro Ion Thruster for Precision Propulsion Project
National Aeronautics and Space Administration — Busek proposes to continue development of an engineering model radio frequency discharge, gridded micro ion thruster that produces sub-mN to mN thrust precisely...
Pulsed Electrogasdynamic Thruster for Attitude Control and Orbit Maneuver Project
National Aeronautics and Space Administration — In the Phase I program we successfully demonstrated the feasibility of the Pulsed ElectroGasdynamic (PEG) thruster for attitude control and orbital maneuvering. In...
Thruster Modelling for Underwater Vehicle Using System Identification Method
Mohd Shahrieel Mohd Aras
2013-05-01
Full Text Available This paper describes a study of thruster modelling for a remotely operated underwater vehicle (ROV by system identification using Microbox 2000/2000C. Microbox 2000/2000C is an XPC target machine device to interface between an ROV thruster with the MATLAB 2009 software. In this project, a model of the thruster will be developed first so that the system identification toolbox in MATLAB can be used. This project also presents a comparison of mathematical and empirical modelling. The experiments were carried out by using a mini compressor as a dummy depth pressure applied to a pressure sensor. The thruster model will thrust and submerge until it reaches a set point and maintain the set point depth. The depth was based on pressure sensor measurement. A conventional proportional controller was used in this project and the results gathered justified its selection.
High Input Voltage Hall Thruster Discharge Converter Project
National Aeronautics and Space Administration — The overall scope of this Phase I/II effort is the development of a high efficiency 15kW (nominal) Hall thruster discharge converter. In Phase I, Busek Co. Inc. will...
High Throughput Hall Thruster for Small Spacecraft Project
National Aeronautics and Space Administration — Busek is developing a high throughput nominal 100-W Hall Effect Thruster. This device is well sized for spacecraft ranging in size from several tens of kilograms to...
Modeling Common Cause Failures of Thrusters on ISS Visiting Vehicles
Haught, Megan
2014-01-01
This paper discusses the methodology used to model common cause failures of thrusters on the International Space Station (ISS) Visiting Vehicles. The ISS Visiting Vehicles each have as many as 32 thrusters, whose redundancy makes them susceptible to common cause failures. The Global Alpha Model (as described in NUREG/CR-5485) can be used to represent the system common cause contribution, but NUREG/CR-5496 supplies global alpha parameters for groups only up to size six. Because of the large number of redundant thrusters on each vehicle, regression is used to determine parameter values for groups of size larger than six. An additional challenge is that Visiting Vehicle thruster failures must occur in specific combinations in order to fail the propulsion system; not all failure groups of a certain size are critical.
Three Phase Resonant DC Power Converter for Ion Thrusters Project
National Aeronautics and Space Administration — The new generation of, high performance electric propulsion missions will require high mass throughput and most likely the use of grided ion thruster equipped with...
Magnesium Hall Thruster for Solar System Exploration Project
National Aeronautics and Space Administration — Busek proposes to prove the feasibility of a Mg Hall effect thruster system that would open the door for In-Situ Resource Utilization (ISRU) based solar system...
Long Life Cold Cathodes for Hall effect Thrusters Project
National Aeronautics and Space Administration — An electron source incorporating long life, high current density cold cathodes inside a microchannel plate for use with ion thrusters is proposed. Cathode lifetime...
Thruster Modelling for Underwater Vehicle Using System Identification Method
Mohd Shahrieel Mohd Aras
2013-05-01
Full Text Available Abstract This paper describes a study of thruster modelling for a remotely operated underwater vehicle (ROV by system identification using Microbox 2000/2000C. Microbox 2000/2000C is an XPC target machine device to interface between an ROV thruster with the MATLAB 2009 software. In this project, a model of the thruster will be developed first so that the system identification toolbox in MATLAB can be used. This project also presents a comparison of mathematical and empirical modelling. The experiments were carried out by using a mini compressor as a dummy depth pressure applied to a pressure sensor. The thruster model will thrust and submerge until it reaches a set point and maintain the set point depth. The depth was based on pressure sensor measurement. A conventional proportional controller was used in this project and the results gathered justified its selection.
Near-Term Laser Launch Capability: The Heat Exchanger Thruster
Kare, Jordin T.
2003-05-01
The heat exchanger (HX) thruster concept uses a lightweight (up to 1 MW/kg) flat-plate heat exchanger to couple laser energy into flowing hydrogen. Hot gas is exhausted via a conventional nozzle to generate thrust. The HX thruster has several advantages over ablative thrusters, including high efficiency, design flexibility, and operation with any type of laser. Operating the heat exchanger at a modest exhaust temperature, nominally 1000 C, allows it to be fabricated cheaply, while providing sufficient specific impulse (~600 seconds) for a single-stage vehicle to reach orbit with a useful payload; a nominal vehicle design is described. The HX thruster is also comparatively easy to develop and test, and offers an extremely promising route to near-term demonstration of laser launch.
Four Thruster Microfluidic Electrospray Propulsion (MEP) Cubesat Board Demonstration Project
National Aeronautics and Space Administration — The Cubesat Microfluidic Electrospray Propulsion (MEP) system module prototype will be designed, built and tested to demonstrate that a four MEP thruster system can...
Thermoelectric magnetohydrodynamic stirring of liquid metals.
Jaworski, M A; Gray, T K; Antonelli, M; Kim, J J; Lau, C Y; Lee, M B; Neumann, M J; Xu, W; Ruzic, D N
2010-03-01
The direct observation of a thermoelectric magnetohydrodynamic (TEMHD) flow has been achieved and is reported here. The origin of the flow is identified based on a series of qualitative tests and corresponds, quantitatively, with a swirling flow TEMHD model. A theory for determining the dominant driver of a free-surface flow, TEMHD or thermocapillary (TC), is found to be consistent with the experimental results. The use of the analytical form for an open geometry develops a new dimensionless parameter describing the ratio of TEMHD to TC generated flows.
Intrinsic rotation of toroidally confined magnetohydrodynamics.
Morales, Jorge A; Bos, Wouter J T; Schneider, Kai; Montgomery, David C
2012-10-26
The spatiotemporal self-organization of viscoresistive magnetohydrodynamics in a toroidal geometry is studied. Curl-free toroidal magnetic and electric fields are imposed. It is observed in our simulations that a flow is generated, which evolves from dominantly poloidal to toroidal when the Lundquist numbers are increased. It is shown that this toroidal organization of the flow is consistent with the tendency of the velocity field to align with the magnetic field. Up-down asymmetry of the geometry causes the generation of a nonzero toroidal angular momentum.
Decaying magnetohydrodynamics: effects of initial conditions
Basu
2000-02-01
We study the effects of homogenous and isotropic initial conditions on decaying magnetohydrodynamics (MHD). We show that for an initial distribution of velocity and magnetic-field fluctuations, appropriately defined structure functions decay as a power law in time. We also show that for a suitable choice of initial cross correlations between velocity and magnetic fields even-order structure functions acquire anomalous scaling in time where as scaling exponents of the odd-order structure functions remain unchanged. We discuss our results in the context of fully developed MHD turbulence.
DECAY ESTIMATES FOR ISENTROPIC COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS IN BOUNDED DOMAIN
Mohamed Ahmed Abdallah; Jiang Fei; Tan Zhong
2012-01-01
In this paper,under the hypothesis that (o) is upper bounded,we construct a Lyapunov functional for the multidimensional isentropic compressible magnetohydrodynamic equations and show that the weak solutions decay exponentially to the equilibrium state in L2 norm.Our result verifies that the method of Daoyuan Fang,Ruizhao Zi and Ting Zhang [1] can be adapted to magnetohydrodynamic equations.
Monopropellant Thruster Development Using a Family of Micro Reactors
2017-02-17
SCALE IN MILES HWY 395 ROSAMOND BLVD...AVENUE E H IG H W AY 1 4 LA N C A S TE R B LV D . 14 0t h S TR E E T E A S T RESERVATION BOUNDARY 0 5 10 SCALE IN MILES HWY 395 ROSAMOND BLVD...Monopropellant Thrusters Physical Description • Small (~1-22N) Thrusters Used for Attitude Control and Maneuvering of Small Spacecraft. AF-M315E
Thermal Modeling for Pulsed Inductive FRC Plasmoid Thrusters
Pfaff, Michael
Due to the rising importance of space based infrastructure, long-range robotic space missions, and the need for active attitude control for spacecraft, research into Electric Propulsion is becoming increasingly important. Electric Propulsion (EP) systems utilize electric power to accelerate ions in order to produce thrust. Unlike traditional chemical propulsion, this means that thrust levels are relatively low. The trade-off is that EP thrusters have very high specific impulses (Isp), and can therefore make do with far less onboard propellant than cold gas, monopropellant, or bipropellant engines. As a consequence of the high power levels used to accelerate the ionized propellant, there is a mass and cost penalty in terms of solar panels and a power processing unit. Due to the large power consumption (and waste heat) from electric propulsion thrusters, accurate measurements and predictions of thermal losses are needed. Excessive heating in sensitive locations within a thruster may lead to premature failure of vital components. Between the fixed cost required to purchase these components, as well as the man-hours needed to assemble (or replace) them, attempting to build a high-power thruster without reliable thermal modeling can be expensive. This paper will explain the usage of FEM modeling and experimental tests in characterizing the ElectroMagnetic Plasmoid Thruster (EMPT) and the Electrodeless Lorentz Force (ELF) thruster at the MSNW LLC facility in Redmond, Washington. The EMPT thruster model is validated using an experimental setup, and steady state temperatures are predicted for vacuum conditions. Preliminary analysis of the ELF thruster indicates possible material failure in absence of an active cooling system for driving electronics and for certain power levels.
Capillary Discharge Thruster Experiments and Modeling (Briefing Charts)
2016-06-01
PROPULSION MODELS & EXPERIMENTS Spacecraft Propulsion Relevant Plasma: From hall thrusters to plumes and fluxes on components Complex reaction physics i.e...PROPULSION MODELS & EXPERIMENTS Spacecraft Propulsion Relevant Plasma: From hall thrusters to plumes and fluxes on components Complex reaction ...Conductivity h is the Enthalpy Cs is the Sound Speed Θ is the Wall Energy Flux Pekker, 40th AIAA Plasmadynamics and Laser Conference, 2009. R.S. MARTIN (ERC INC
Preliminary Results of Plasma Flow Measurements in a 2 KW Segmented Hall Thruster
Y. Raitses; D. Staack; A. Dunaevsky; L. Dorf; N.J. Fisch
2003-03-01
A 2-kW Hall thruster was developed, built, and operated in an upgraded vacuum facility. The thruster performance and parameters of the plasma flow were measured by new diagnostics for plume measurements and plasma measurements inside the thruster channel. The thruster demonstrated efficient operation in terms of propellant and current utilization efficiencies in the input power range of 0.5-3.5 kW. Preliminary measurements of the ion energy spectra from the thruster axis region and the distribution of plasma parameters in the vicinity of the thruster exit are reported.
Sterling, Enrique; Lin, Jun; Sinko, John; Kodgis, Lisa; Porter, Simon; Pakhomov, Andrew V.; Larson, C. William; Mead, Franklin B.
2006-05-01
Laser-driven mini-thrusters were studied using Delrin® and PVC (Delrin® is a registered trademark of DuPont) as propellants. TEA CO2 laser (λ = 10.6 μm) was used as a driving laser. Coupling coefficients were deduced from two independent techniques: force-time curves measured with a piezoelectric sensor and ballistic pendulum. Time-resolved ICCD images of the expanding plasma and combustion products were analyzed in order to determine the main process that generates the thrust. The measurements were also performed in a nitrogen atmosphere in order to test the combustion effects on thrust. A pinhole transmission experiment was performed for the study of the cut-off time when the ablation/air breakdown plasma becomes opaque to the incoming laser pulse.
Low-Mass, Low-Power Hall Thruster System
Pote, Bruce
2015-01-01
NASA is developing an electric propulsion system capable of producing 20 mN thrust with input power up to 1,000 W and specific impulse ranging from 1,600 to 3,500 seconds. The key technical challenge is the target mass of 1 kg for the thruster and 2 kg for the power processing unit (PPU). In Phase I, Busek Company, Inc., developed an overall subsystem design for the thruster/cathode, PPU, and xenon feed system. This project demonstrated the feasibility of a low-mass power processing architecture that replaces four of the DC-DC converters of a typical PPU with a single multifunctional converter and a low-mass Hall thruster design employing permanent magnets. In Phase II, the team developed an engineering prototype model of its low-mass BHT-600 Hall thruster system, with the primary focus on the low-mass PPU and thruster. The goal was to develop an electric propulsion thruster with the appropriate specific impulse and propellant throughput to enable radioisotope electric propulsion (REP). This is important because REP offers the benefits of nuclear electric propulsion without the need for an excessively large spacecraft and power system.
Performance Evaluation of the Prototype Model NEXT Ion Thruster
Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.
2008-01-01
The performance testing results of the first prototype model NEXT ion engine, PM1, are presented. The NEXT program has developed the next generation ion propulsion system to enhance and enable Discovery, New Frontiers, and Flagship-type NASA missions. The PM1 thruster exhibits operational behavior consistent with its predecessors, the engineering model thrusters, with substantial mass savings, enhanced thermal margins, and design improvements for environmental testing compliance. The dry mass of PM1 is 12.7 kg. Modifications made in the thruster design have resulted in improved performance and operating margins, as anticipated. PM1 beginning-of-life performance satisfies all of the electric propulsion thruster mission-derived technical requirements. It demonstrates a wide range of throttleability by processing input power levels from 0.5 to 6.9 kW. At 6.9 kW, the PM1 thruster demonstrates specific impulse of 4190 s, 237 mN of thrust, and a thrust efficiency of 0.71. The flat beam profile, flatness parameters vary from 0.66 at low-power to 0.88 at full-power, and advanced ion optics reduce localized accelerator grid erosion and increases margins for electron backstreaming, impingement-limited voltage, and screen grid ion transparency. The thruster throughput capability is predicted to exceed 750 kg of xenon, an equivalent of 36,500 hr of continuous operation at the full-power operating condition.
Thrust Stand Measurements of a Conical Inductive Pulsed Plasma Thruster
Hallock, Ashley K.; Polzin, Kurt A.
2013-01-01
Inductive Pulsed Plasma Thrusters (iPPT) spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current Propellant is accelerated and expelled at a high exhaust velocity (O(10 -- 100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, inductive pulsed plasma thrusters can suffer from both high pulse energy requirements imposed by the voltage demands of inductive propellant ionization, and low propellant utilization efficiencies. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, inductive pulsed plasma thrusters can suffer from both high pulse energy requirements imposed by the voltage demands of inductive propellant ionization, and low propellant utilization efficiencies. A conical coil geometry may offer higher propellant utilization efficiency over that of a at inductive coil, however an increase in propellant utilization may be met with a decrease in axial electromagnetic acceleration, and in turn, a decrease in the total axially-directed kinetic energy imparted to the propellant.
Design and development of the Army KE ASAT ACS thruster
Craddock, Jeff; Janeski, Bruce
1993-06-01
Increasingly ambitious missions for advanced kinetic energy (KE) weapons have necessitated the development of a lightweight storable-propellant attitude control system (ACS) thruster capable of very fast response and long duration firings. This paper summarizes the results of a ACS thruster design and development test effort, performed for the U.S. Army Space and Strategic Defense Command (USASSDC) on the KE Anti Satellite (KE ASAT) weapon system program. Design approaches used to achieve long-duration continuous firing with a composite combustion chamber are detailed. This design effort culminated in a 6.7 lbf. thruster assembly weighing less than 0.2 pounds, approximately one-sixth that of a conventional satellite ACS thruster. Results of tests of flightweight engines with nitrogen tetroxide and monomethyl hydrazine hypergolic propellants are included. The test series culminated in what is believed to be the industry's longest continuous firing of a composite combustion chamber. This thruster will be integrated into the KE ASAT kinetic vehicle for its first free-flight hover test in early FY94. The demonstrated fast response, high pulse performance, and long-duration capabilities of this engine suggest that this thruster can significantly increase the capability of other spacecraft.
Nakamura, M.; Koterayama, W. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Kajiwara, H. [Kyushu Institute of Technology, Kitakyushu (Japan). Faculty of Computer Science and System Engineering; Hyakudome, T. [Kyushu University, Fukuoka (Japan)
1996-12-31
Described herein are dynamics and model experiments of the system in which positioning of a floating marine structure by mooring is combined with thruster-controlled positioning. Coefficients of dynamic forces acting on a floating structure model are determined experimentally and by the three-dimensional singularity distribution method, and the controller is designed by the PID, LQI and H{infinity} control theories. A model having a scale ratio of 1/100 was used for the experiments, where 2 thrusters were arranged in a diagonal line, one on the X-axis. It is found that the LQI and H{infinity} controllers of the thruster can control long-cycle rolling of the floating structure. They allow thruster control which is insensitive to wave cycle motion, and efficiently reduce positioning energy. The H{infinity} control regulates frequency characteristics of a closed loop more finely than the LQI control, and exhibits better controllability. 25 refs., 25 figs.
Nakamura, M.; Koterayama, W. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Kajiwara, H. [Kyushu Institute of Technology, Kitakyushu (Japan). Faculty of Computer Science and System Engineering; Hyakudome, T. [Kyushu University, Fukuoka (Japan)
1996-12-31
Described herein are dynamics and model experiments of the system in which positioning of a floating marine structure by mooring is combined with thruster-controlled positioning. Coefficients of dynamic forces acting on a floating structure model are determined experimentally and by the three-dimensional singularity distribution method, and the controller is designed by the PID, LQI and H{infinity} control theories. A model having a scale ratio of 1/100 was used for the experiments, where 2 thrusters were arranged in a diagonal line, one on the X-axis. It is found that the LQI and H{infinity} controllers of the thruster can control long-cycle rolling of the floating structure. They allow thruster control which is insensitive to wave cycle motion, and efficiently reduce positioning energy. The H{infinity} control regulates frequency characteristics of a closed loop more finely than the LQI control, and exhibits better controllability. 25 refs., 25 figs.
Analytical study of magnetohydrodynamic propulsion stability
Abdollahzadeh Jamalabadi, M. Y.
2014-09-01
In this paper an analytical solution for the stability of the fully developed flow drive in a magneto-hydro-dynamic pump with pulsating transverse Eletro-magnetic fields is presented. To do this, a theoretical model of the flow is developed and the analytical results are obtained for both the cylindrical and Cartesian configurations that are proper to use in the propulsion of marine vessels. The governing parabolic momentum PDEs are transformed into an ordinary differential equation using approximate velocity distribution. The numerical results are obtained and asymptotic analyses are built to discover the mathematical behavior of the solutions. The maximum velocity in a magneto-hydro-dynamic pump versus time for various values of the Stuart number, electro-magnetic interaction number, Reynolds number, aspect ratio, as well as the magnetic and electrical angular frequency and the shift of the phase angle is presented. Results show that for a high Stuart number there is a frequency limit for stability of the fluid flow in a certain direction of the flow. This stability frequency is dependent on the geometric parameters of a channel.
Analytical Study of Magnetohydrodynamic Propulsion Stability
M.Y.Abdollahzadeh Jamalabadi
2014-01-01
In this paper an analytical solution for the stability of the fully developed flow drive in a magneto-hydro-dynamic pump with pulsating transverse Eletro-magnetic fields is presented. To do this, a theoretical model of the flow is developed and the analytical results are obtained for both the cylindrical and Cartesian configurations that are proper to use in the propulsion of marine vessels. The governing parabolic momentum PDEs are transformed into an ordinary differential equation using approximate velocity distribution. The numerical results are obtained and asymptotic analyses are built to discover the mathematical behavior of the solutions. The maximum velocity in a magneto-hydro-dynamic pump versus time for various values of the Stuart number, electro-magnetic interaction number, Reynolds number, aspect ratio, as well as the magnetic and electrical angular frequency and the shift of the phase angle is presented. Results show that for a high Stuart number there is a frequency limit for stability of the fluid flow in a certain direction of the flow. This stability frequency is dependent on the geometric parameters of a channel.
Magnetohydrodynamic stability of stochastically driven accretion flows.
Nath, Sujit Kumar; Mukhopadhyay, Banibrata; Chattopadhyay, Amit K
2013-07-01
We investigate the evolution of magnetohydrodynamic (or hydromagnetic as coined by Chandrasekhar) perturbations in the presence of stochastic noise in rotating shear flows. The particular emphasis is the flows whose angular velocity decreases but specific angular momentum increases with increasing radial coordinate. Such flows, however, are Rayleigh stable but must be turbulent in order to explain astrophysical observed data and, hence, reveal a mismatch between the linear theory and observations and experiments. The mismatch seems to have been resolved, at least in certain regimes, in the presence of a weak magnetic field, revealing magnetorotational instability. The present work explores the effects of stochastic noise on such magnetohydrodynamic flows, in order to resolve the above mismatch generically for the hot flows. We essentially concentrate on a small section of such a flow which is nothing but a plane shear flow supplemented by the Coriolis effect, mimicking a small section of an astrophysical accretion disk around a compact object. It is found that such stochastically driven flows exhibit large temporal and spatial autocorrelations and cross-correlations of perturbation and, hence, large energy dissipations of perturbation, which generate instability. Interestingly, autocorrelations and cross-correlations appear independent of background angular velocity profiles, which are Rayleigh stable, indicating their universality. This work initiates our attempt to understand the evolution of three-dimensional hydromagnetic perturbations in rotating shear flows in the presence of stochastic noise.
Double-duct liquid metal magnetohydrodynamic engine
Haaland, Carsten M.
1995-01-01
An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has-four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.
Initial Thrust Measurements of Marshall's Ion-ioN Thruster
Caruso, Natalie R. S.; Scogin, Tyler; Liu, Thomas M.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.
2015-01-01
Electronegative ion thrusters are a variation of traditional gridded ion thruster technology differentiated by the production and acceleration of both positive and negative ions. Benefits of electronegative ion thrusters include the elimination of lifetime-limiting cathodes from the thruster architecture and the ability to generate appreciable thrust from both charge species. While much progress has been made in the development of electronegative ion thruster technology, direct thrust measurements are required to unambiguously demonstrate the efficacy of the concept and support continued development. In the present work, direct thrust measurements of the thrust produced by the MINT (Marshall's Ion-ioN Thruster) are performed using an inverted-pendulum thrust stand in the High-Power Electric Propulsion Laboratory's Vacuum Test Facility-1 at the Georgia Institute of Technology with operating pressures ranging from 4.8 x 10(exp -5) and 5.7 x 10(exp -5) torr. Thrust is recorded while operating with a propellant volumetric mixture ratio of 5:1 argon to nitrogen with total volumetric flow rates of 6, 12, and 24 sccm (0.17, 0.34, and 0.68 mg/s). Plasma is generated using a helical antenna at 13.56 MHz and radio frequency (RF) power levels of 150 and 350 W. The acceleration grid assembly is operated using both sinusoidal and square waveform biases of +/-350 V at frequencies of 4, 10, 25, 125, and 225 kHz. Thrust is recorded for two separate thruster configurations: with and without the magnetic filter. No thrust is discernable during thruster operation without the magnetic filter for any volumetric flow rate, RF forward Power level, or acceleration grid biasing scheme. For the full thruster configuration, with the magnetic filter installed, a brief burst of thrust of approximately 3.75 mN +/- 3 mN of error is observed at the start of grid operation for a volumetric flow rate of 24 sccm at 350 W RF power using a sinusoidal waveform grid bias at 125 kHz and +/- 350 V
Primary biodegradation of petroleum hydrocarbons in seawater
Comber, M.I.H.; Den Haan, K.H.; Djemel, N.; Eadsforth, C.V.; King, D.; Paumen, M.L.; Parkerton, T.; Dmytrasz, B.
2012-12-15
This report describes primary biodegradation experiments performed to determine the persistence of higher molecular weight petroleum hydrocarbons in seawater. Results from the biodegradation experiments show that the majority of tested petroleum hydrocarbons have half-lives in seawater less than 60 days.
High Performance Plasma Channel Insulators for High Power Hall Thrusters Project
National Aeronautics and Space Administration — NASA missions for planetary exploration require high power, long-life Hall thrusters. However, thruster power and lifetime are limited by the erosion of plasma...
Micro Pulsed Inductive Thruster with Solid Fuel Option (uPIT_SF) Project
National Aeronautics and Space Administration — The Micro Pulsed Inductive Thruster with Solid Fuel Option (5PIT_SF) is a high-precision impulse bit electromagnetic plasma micro-thruster. The 5PIT prototype is a...
Hall Effect Thruster for High Power Solar Electric Propulsion Technology Demonstration Project
National Aeronautics and Space Administration — Busek proposes to develop a flight version of a high power Hall Effect thruster. While numerous high power Hall Effect thrusters have been demonstrated in the...
National Aeronautics and Space Administration — Busek proposes to develop and life-test a flight-weight, 5N class green monopropellant thruster in Phase II. The most important feature that sets this thruster apart...
High Performance Plasma Channel Insulators for High Power Hall Thrusters Project
National Aeronautics and Space Administration — NASA missions for planetary exploration require high power, long-life Hall thrusters. However, thruster power and lifetime are limited by the erosion of plasma...
Automated nutrient analyses in seawater
Whitledge, T.E.; Malloy, S.C.; Patton, C.J.; Wirick, C.D.
1981-02-01
This manual was assembled for use as a guide for analyzing the nutrient content of seawater samples collected in the marine coastal zone of the Northeast United States and the Bering Sea. Some modifications (changes in dilution or sample pump tube sizes) may be necessary to achieve optimum measurements in very pronounced oligotrophic, eutrophic or brackish areas. Information is presented under the following section headings: theory and mechanics of automated analysis; continuous flow system description; operation of autoanalyzer system; cookbook of current nutrient methods; automated analyzer and data analysis software; computer interfacing and hardware modifications; and trouble shooting. The three appendixes are entitled: references and additional reading; manifold components and chemicals; and software listings. (JGB)
Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection
Zenitani, Seiji; Hesse, Michael; Klimas, Alex
2010-01-01
Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv enic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond-chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.
On the convexity of Relativistic Ideal Magnetohydrodynamics
Ibáñez, José-María; Aloy, Miguel-Ángel; Martí, José-María; Miralles, Juan-Antonio
2015-01-01
We analyze the influence of the magnetic field in the convexity properties of the relativistic magnetohydrodynamics system of equations. To this purpose we use the approach of Lax, based on the analysis of the linearly degenerate/genuinely non-linear nature of the characteristic fields. Degenerate and non-degenerate states are discussed separately and the non-relativistic, unmagnetized limits are properly recovered. The characteristic fields corresponding to the material and Alfv\\'en waves are linearly degenerate and, then, not affected by the convexity issue. The analysis of the characteristic fields associated with the magnetosonic waves reveals, however, a dependence of the convexity condition on the magnetic field. The result is expressed in the form of a generalized fundamental derivative written as the sum of two terms. The first one is the generalized fundamental derivative in the case of purely hydrodynamical (relativistic) flow. The second one contains the effects of the magnetic field. The analysis ...
Shear instabilities in shallow-water magnetohydrodynamics
Mak, Julian; Hughes, D W
2016-01-01
Within the framework of shallow-water magnetohydrodynamics, we investigate the linear instability of horizontal shear flows, influenced by an aligned magnetic field and stratification. Various classical instability results, such as H{\\o}iland's growth rate bound and Howard's semi-circle theorem, are extended to this shallow-water system for quite general profiles. Two specific piecewise-constant velocity profiles, the vortex sheet and the rectangular jet, are studied analytically and asymptotically; it is found that the magnetic field and stratification (as measured by the Froude number) are generally both stabilising, but weak instabilities can be found at arbitrarily large Froude number. Numerical solutions are computed for corresponding smooth velocity profiles, the hyperbolic-tangent shear layer and the Bickley jet, for a uniform background field. A generalisation of the long-wave asymptotic analysis of Drazin & Howard (1962) is employed in order to understand the instability characteristics for both ...
Test particle acceleration in explosive magnetohydrodynamic reconnection
Ripperda, Bart; Xia, Chun; Keppens, Rony
2016-01-01
Magnetic reconnection is the mechanism behind many violent phenomena in the universe. We demonstrate that energy released during reconnection can lead to non-thermal particle distribution functions. We use a method in which we combine resistive magnetohydrodynamics (MHD) with relativistic test particle dynamics. Using our open-source grid-adaptive MPI-AMRVAC software, we simulate global MHD evolution combined with test particle treatments in MHD snapshots. This approach is used to evaluate particle acceleration in explosive reconnection. The reconnection is triggered by an ideal tilt instability in two-and-a-half dimensional (2.5D) scenarios and by a combination of ideal tilt and kink instabilities in three-dimensional (3D) scenarios. These instabilities occur in a system with two parallel, adjacent, repelling current channels in an initially force-free equilibrium, as a simplified representation of flux ropes in a stellar magnetosphere. The current channels undergo a rotation and a separation on Alfv\\'enic t...
Generalized global symmetries and dissipative magnetohydrodynamics
Grozdanov, Sašo; Iqbal, Nabil
2016-01-01
The conserved magnetic flux of U(1) electrodynamics coupled to matter in four dimensions is associated with a generalized global symmetry. We study the realization of such a symmetry at finite temperature and develop the hydrodynamic theory describing fluctuations of a conserved 2-form current around thermal equilibrium. This can be thought of as a systematic derivation of relativistic magnetohydrodynamics, constrained only by symmetries and effective field theory. We construct the entropy current and show that at first order in derivatives, there are six dissipative transport coefficients. We present a universal definition of resistivity in a theory of dynamical electromagnetism and derive a direct Kubo formula for the resistivity in terms of correlation functions of the electric field operator. We also study fluctuations and collective modes, deriving novel expressions for the dissipative widths of magnetosonic and Alfven modes. Finally, we demonstrate that a non-trivial truncation of the theory can be perf...
Magnetohydrodynamics simulations on graphics processing units
Wong, Hon-Cheng; Feng, Xueshang; Tang, Zesheng
2009-01-01
Magnetohydrodynamics (MHD) simulations based on the ideal MHD equations have become a powerful tool for modeling phenomena in a wide range of applications including laboratory, astrophysical, and space plasmas. In general, high-resolution methods for solving the ideal MHD equations are computationally expensive and Beowulf clusters or even supercomputers are often used to run the codes that implemented these methods. With the advent of the Compute Unified Device Architecture (CUDA), modern graphics processing units (GPUs) provide an alternative approach to parallel computing for scientific simulations. In this paper we present, to the authors' knowledge, the first implementation to accelerate computation of MHD simulations on GPUs. Numerical tests have been performed to validate the correctness of our GPU MHD code. Performance measurements show that our GPU-based implementation achieves speedups of 2 (1D problem with 2048 grids), 106 (2D problem with 1024^2 grids), and 43 (3D problem with 128^3 grids), respec...
Classes of hydrodynamic and magnetohydrodynamic turbulent decay
Brandenburg, Axel
2016-01-01
We perform numerical simulations of decaying hydrodynamic and magnetohydrodynamic turbulence. We classify our time-dependent solutions by their evolutionary tracks in parametric plots between instantaneous scaling exponents. We find distinct classes of solutions evolving along specific trajectories toward points on a line of self-similar solutions. These trajectories are determined by the underlying physics governing individual cases, and not by the initial conditions, as is widely assumed. In the helical case, even for a scale-invariant initial spectrum (inversely proportional to wavenumber k), the solution evolves along the same trajectory as for a Batchelor spectrum (proportional to k^4). All of our self-similar solutions have an intrinsic subinertial range close to k^4$.
Aharonov–Bohm effects in magnetohydrodynamics
Yahalom, Asher, E-mail: asya@ariel.ac.il [Isaac Newton Institute for Mathematical Sciences, 20 Clarkson Road, Cambridge CB3 0EH (United Kingdom); Ariel University, Ariel 40700 (Israel)
2013-10-30
It is shown that an Aharonov–Bohm (AB) effect exists in magnetohydrodynamics (MHD). This effect is best described in terms of the MHD variational variables (Kats, 2004; Yahalom and Lynden-Bell, 2008; Yahalom, 2010) [1,10,12]. If a MHD flow has a non-trivial topology some of the functions appearing in the MHD Lagrangian are non-single-valued. These functions have properties similar to the phases in the AB celebrated effect (Aharonov and Bohm, 1959; van Oudenaarden et al., 1998) [2,3]. While the manifestation of the quantum AB effect is in interference fringe patterns (Tonomura et al., 1982) [4], the manifestation of the MHD Aharonov–Bohm effects are through new dynamical conservation laws.
Action principles for extended magnetohydrodynamic models
Keramidas Charidakos, I.; Lingam, M.; Morrison, P. J.; White, R. L. [Institute for Fusion Studies and Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States); Wurm, A. [Department of Physical and Biological Sciences, Western New England University, Springfield, Massachusetts 01119 (United States)
2014-09-15
The general, non-dissipative, two-fluid model in plasma physics is Hamiltonian, but this property is sometimes lost or obscured in the process of deriving simplified (or reduced) two-fluid or one-fluid models from the two-fluid equations of motion. To ensure that the reduced models are Hamiltonian, we start with the general two-fluid action functional, and make all the approximations, changes of variables, and expansions directly within the action context. The resulting equations are then mapped to the Eulerian fluid variables using a novel nonlocal Lagrange-Euler map. Using this method, we recover Lüst's general two-fluid model, extended magnetohydrodynamic (MHD), Hall MHD, and electron MHD from a unified framework. The variational formulation allows us to use Noether's theorem to derive conserved quantities for each symmetry of the action.
Acceleration of particles in imbalanced magnetohydrodynamic turbulence.
Teaca, Bogdan; Weidl, Martin S; Jenko, Frank; Schlickeiser, Reinhard
2014-08-01
The present work investigates the acceleration of test particles, relevant to the solar-wind problem, in balanced and imbalanced magnetohydrodynamic turbulence (terms referring here to turbulent states possessing zero and nonzero cross helicity, respectively). These turbulent states, obtained numerically by prescribing the injection rates for the ideal invariants, are evolved dynamically with the particles. While the energy spectrum for balanced and imbalanced states is known, the impact made on particle heating is a matter of debate, with different considerations giving different results. By performing direct numerical simulations, resonant and nonresonant particle accelerations are automatically considered and the correct turbulent phases are taken into account. For imbalanced turbulence, it is found that the acceleration rate of charged particles is reduced and the heating rate diminished. This behavior is independent of the particle gyroradius, although particles that have a stronger adiabatic motion (smaller gyroradius) tend to experience a larger heating.
Magnetohydrodynamic Simulation Code CANS+: Assessments and Applications
Matsumoto, Yosuke; Kudoh, Yuki; Kawashima, Tomohisa; Matsumoto, Jin; Takahashi, Hiroyuki R; Minoshima, Takashi; Zenitani, Seiji; Miyoshi, Takahiro; Matsumoto, Ryoji
2016-01-01
We present a new magnetohydrodynamic (MHD) simulation code with the aim of providing accurate numerical solutions to astrophysical phenomena where discontinuities, shock waves, and turbulence are inherently important. The code implements the HLLD approximate Riemann solver, the fifth-order-monotonicity-preserving interpolation scheme, and the hyperbolic divergence cleaning method for a magnetic field. This choice of schemes significantly improved numerical accuracy and stability, and saved computational costs in multidimensional problems. Numerical tests of one- and two-dimensional problems showed the advantages of using the high-order scheme by comparing with results from a standard second-order TVD scheme. The present code enabled us to explore long-term evolution of a three-dimensional global accretion disk, in which compressible MHD turbulence saturated at much higher levels via the magneto-rotational instability than that given by the second-order scheme owing to the adoption of the high-resolution, nume...
Magnetohydrodynamic stability of broad line region clouds
Krause, Martin; Burkert, Andreas
2012-01-01
Hydrodynamic stability has been a longstanding issue for the cloud model of the broad line region in active galactic nuclei. We argue that the clouds may be gravitationally bound to the supermassive black hole. If true, stabilisation by thermal pressure alone becomes even more difficult. We further argue that if magnetic fields should be present in such clouds at a level that could affect the stability properties, they need to be strong enough to compete with the radiation pressure on the cloud. This would imply magnetic field values of a few Gauss for a sample of Active Galactic Nuclei we draw from the literature. We then investigate the effect of several magnetic configurations on cloud stability in axi-symmetric magnetohydrodynamic simulations. For a purely azimuthal magnetic field which provides the dominant pressure support, the cloud first gets compressed by the opposing radiative and gravitational forces. The pressure inside the cloud then increases, and it expands vertically. Kelvin-Helmholtz and colu...
Magnetohydrodynamic Origin of Jets from Accretion Disks
Lovelace, R V E; Koldoba, A V
1999-01-01
A review is made of recent magnetohydrodynamic (MHD) theory and simulations of origin of jets from accretion disks. Many compact astrophysical objects emit powerful, highly-collimated, oppositely directed jets. Included are the extra galactic radio jets of active galaxies and quasars, and old compact stars in binaries, and emission line jets in young stellar objects. It is widely thought that these different jets arise from rotating, conducting accretion disks threaded by an ordered magnetic field. The twisting of the magnetic field by the rotation of the disk drives the jets by magnetically extracting matter, angular momentum, and energy from the accretion disk. Two main regimes have been discussed theoretically, hydromagnetic winds which have a significant mass flux, and Poynting flux jets where the mass flux is negligible. Over the past several years, exciting new developments on models of jets have come from progress in MHD simulations which now allow the study of the origin - the acceleration and collima...
Lattice Boltzmann model for resistive relativistic magnetohydrodynamics
Mohseni, F; Succi, S; Herrmann, H J
2015-01-01
In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfv\\'en waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to $\\sigma^{-\\frac{1}{2}}$, $\\sigma$ being the conductivity, w...
Extended inertial range phenomenology of magnetohydrodynamic turbulence
Matthaeus, William H.; Zhou, YE
1989-01-01
A phenomenological treatment of the inertial range of isotropic statistically steady magnetohydrodynamic turbulence is presented, extending the theory of Kraichnan (1965). The role of Alfven wave propagation is treated on equal footing with nonlinear convection, leading to a simple generalization of the relations between the times characteristic of wave propagation, convection, energy transfer, and decay of triple correlations. The theory leads to a closed-form steady inertial range spectral law that reduces to the Kraichnan and Kolmogorov laws in appropriate limits. The Kraichnan constant is found to be related in a simple way to the Kolmogorov constant; for typical values of the latter constant, the former has values in the range 1.22-1.87. Estimates of the time scale associated with spectral transfer of energy also emerge from the new approach, generalizing previously presented 'golden rules' for relating the spectral transfer time scale to the Alfven and eddy-turnover time scales.
Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection
Zenitani, Seiji; Klimas, Alex
2010-01-01
Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten--Lan--van Leer (HLL) method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv\\'{e}nic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond--chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet--Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.
Anomalous magnetohydrodynamics in the extreme relativistic domain
Giovannini, Massimo
2016-01-01
The evolution equations of anomalous magnetohydrodynamics are derived in the extreme relativistic regime and contrasted with the treatment of hydromagnetic nonlinearities pioneered by Lichnerowicz in the absence of anomalous currents. In particular we explore the situation where the conventional vector currents are complemented by the axial-vector currents arising either from the pseudo Nambu-Goldstone bosons of a spontaneously broken symmetry or because of finite fermionic density effects. After expanding the generally covariant equations in inverse powers of the conductivity, the relativistic analog of the magnetic diffusivity equation is derived in the presence of vortical and magnetic currents. While the anomalous contributions are generally suppressed by the diffusivity, they are shown to disappear in the perfectly conducting limit. When the flow is irrotational, boost-invariant and with vanishing four-acceleration the corresponding evolution equations are explicitly integrated so that the various physic...
Computer simulation of a magnetohydrodynamic dynamo. II
Kageyama, Akira; Sato, Tetsuya; Complexity Simulation Group
1995-05-01
A computer simulation of a magnetohydrodynamic dynamo in a rapidly rotating spherical shell is performed. Extensive parameter runs are carried out changing electrical resistivity. When resistivity is sufficiently small, total magnetic energy can grow more than ten times larger than total kinetic energy of convection motion which is driven by an unlimited external energy source. When resistivity is relatively large and magnetic energy is comparable or smaller than kinetic energy, the convection motion maintains its well-organized structure. However, when resistivity is small and magnetic energy becomes larger than kinetic energy, the well-organized convection motion is highly irregular. The magnetic field is organized in two ways. One is the concentration of component parallel to the rotation axis and the other is the concentration of perpendicular component. The parallel component tends to be confined inside anticyclonic columnar convection cells, while the perpendicular component is confined outside convection cells.
Exploring Astrophysical Magnetohydrodynamics in the Laboratory
Manuel, Mario
2014-10-01
Plasma evolution in many astrophysical systems is dominated by magnetohydrodynamics. Specifically of interest to this talk are collimated outflows from accretion systems. Away from the central object, the Euler equations can represent the plasma dynamics well and may be scaled to a laboratory system. We have performed experiments to investigate the effects of a background magnetic field on an otherwise hydrodynamically collimated plasma. Laser-irradiated, cone targets produce hydrodynamically collimated plasma jets and a pulse-powered solenoid provides a constant background magnetic field. The application of this field is shown to completely disrupt the original flow and a new magnetically-collimated, hollow envelope is produced. Results from these experiments and potential implications for their astrophysical analogs will be discussed.
Rarefaction wave in relativistic steady magnetohydrodynamic flows
Sapountzis, Konstantinos, E-mail: ksapountzis@phys.uoa.gr; Vlahakis, Nektarios, E-mail: vlahakis@phys.uoa.gr [Faculty of Physics, University of Athens, 15784 Zografos, Athens (Greece)
2014-07-15
We construct and analyze a model of the relativistic steady-state magnetohydrodynamic rarefaction that is induced when a planar symmetric flow (with one ignorable Cartesian coordinate) propagates under a steep drop of the external pressure profile. Using the method of self-similarity, we derive a system of ordinary differential equations that describe the flow dynamics. In the specific limit of an initially homogeneous flow, we also provide analytical results and accurate scaling laws. We consider that limit as a generalization of the previous Newtonian and hydrodynamic solutions already present in the literature. The model includes magnetic field and bulk flow speed having all components, whose role is explored with a parametric study.
Anisotropy in Quasi-Static Magnetohydrodynamic Turbulence
Verma, Mahendra K.
2017-08-01
In this review we summarise the current status of the quasi-static magnetohydrodynamic turbulence. The energy spectrum is steeper than Kolmogorov’s k -5/3 spectrum due to the decrease of the kinetic energy flux with wavenumber k as a result of Joule dissipation. The spectral index decreases with the increase of interaction parameter. The flow is quasi two-dimensional with strong {{\\mathbf{U}}\\bot} at small k and weak {{U}\\parallel} at large k, where {{\\mathbf{U}}\\bot} and {{U}\\parallel} are the perpendicular and parallel components of velocity relative to the external magnetic field. For small k, the energy flux of {{\\mathbf{U}}\\bot} is negative, but for large k, the energy flux of {{U}\\parallel} is positive. Pressure mediates the energy transfer from {{\\mathbf{U}}\\bot} to {{U}\\parallel} .
Magnetohydrodynamic Modeling of the Jovian Magnetosphere
Walker, Raymond
2005-01-01
Under this grant we have undertaken a series of magnetohydrodynamic (MHD) simulation and data analysis studies to help better understand the configuration and dynamics of Jupiter's magnetosphere. We approached our studies of Jupiter's magnetosphere in two ways. First we carried out a number of studies using our existing MHD code. We carried out simulation studies of Jupiter s magnetospheric boundaries and their dependence on solar wind parameters, we studied the current systems which give the Jovian magnetosphere its unique configuration and we modeled the dynamics of Jupiter s magnetosphere following a northward turning of the interplanetary magnetic field (IMF). Second we worked to develop a new simulation code for studies of outer planet magnetospheres.
On stability and instability criteria for magnetohydrodynamics.
Friedlander, Susan; Vishik, Misha M.
1995-06-01
It is shown that for most, but not all, three-dimensional magnetohydrodynamic (MHD) equilibria the second variation of the energy is indefinite. Thus the class of such equilibria whose stability might be determined by the so-called Arnold criterion is very restricted. The converse question, namely conditions under which MHD equilibria will be unstable is considered in this paper. The following sufficient condition for linear instability in the Eulerian representation is presented: The maximal real part of the spectrum of the MHD equations linearized about an equilibrium state is bounded from below by the growth rate of an operator defined by a system of local partial differential equations (PDE). This instability criterion is applied to the case of axisymmetric toroidal equilibria. Sufficient conditions for instability, stronger than those previously known, are obtained for rotating MHD. (c) 1995 American Institute of Physics.
Symmetry transforms for ideal magnetohydrodynamics equilibria.
Bogoyavlenskij, Oleg I
2002-11-01
A method for constructing ideal magnetohydrodynamics (MHD) equilibria is introduced. The method consists of the application of symmetry transforms to any known MHD equilibrium [ O. I. Bogoyavlenskij, Phys. Rev. E. 62, 8616, (2000)]. The transforms break the geometrical symmetries of the field-aligned solutions and produce continuous families of the nonsymmetric MHD equilibria. The method of symmetry transforms also allows to obtain MHD equilibria with current sheets and exact solutions with noncollinear vector fields B and V. A model of the nonsymmetric astrophysical jets outside of their accretion disks is developed. The total magnetic and kinetic energy of the jet is finite in any layer c(1)
Lattice kinetic simulation of nonisothermal magnetohydrodynamics.
Chatterjee, Dipankar; Amiroudine, Sakir
2010-06-01
In this paper, a lattice kinetic algorithm is presented to simulate nonisothermal magnetohydrodynamics in the low-Mach number incompressible limit. The flow and thermal fields are described by two separate distribution functions through respective scalar kinetic equations and the magnetic field is governed by a vector distribution function through a vector kinetic equation. The distribution functions are only coupled via the macroscopic density, momentum, magnetic field, and temperature computed at the lattice points. The novelty of the work is the computation of the thermal field in conjunction with the hydromagnetic fields in the lattice Boltzmann framework. A 9-bit two-dimensional (2D) lattice scheme is used for the numerical computation of the hydrodynamic and thermal fields, whereas the magnetic field is simulated in a 5-bit 2D lattice. Simulation of Hartmann flow in a channel provides excellent agreement with corresponding analytical results.
Integrable version of Burgers equation in magnetohydrodynamics.
Olesen, P
2003-07-01
It is pointed out that for the case of (compressible) magnetohydrodynamics (MHD) with the fields v(y)(y,t) and Bx(y,t), one can have equations of the Burgers type which are integrable. We discuss the solutions. It turns out that the propagation of the nonlinear effects is governed by the initial velocity (as in Burgers case) as well as by the initial Alfvén velocity. Many results previously obtained for the Burgers equation can be transferred to the MHD case. We also discuss equipartition v(y)=+/-Bx. It is shown that an initial localized small scale magnetic field will end up in fields moving to the left and the right, thus transporting energy from smaller to larger distances.
Energy interactions in homogeneously sheared magnetohydrodynamic flows
Collard, Diane; Praturi, Divya Sri; Girimaji, Sharath
2016-11-01
We investigate the behavior of homogeneously sheared magnetohydrodynamic (MHD) flows subject to perturbations in various directions. We perform rapid distortion theory (RDT) analysis and direct numerical simulations (DNS) to examine the interplay between magnetic, kinetic, and internal energies. For perturbation wavevectors oriented along the spanwise direction, RDT analysis shows that the magnetic and velocity fields are decoupled. In the case of streamwise wavevectors, the magnetic and velocity fields are tightly coupled. The coupling is "harmonic" in nature. DNS is then used to confirm the RDT findings. Computations of spanwise perturbations indeed exhibit behavior that is impervious to the magnetic field. Computed streamwise perturbations exhibit oscillatory evolution of kinetic and magnetic energies for low magnetic field strength. As the strength of magnetic field increases, the oscillatory behavior intensifies even as the energy magnitude decays, indicating strong stabilization.
Numerical Methods for Radiation Magnetohydrodynamics in Astrophysics
Klein, R I; Stone, J M
2007-11-20
We describe numerical methods for solving the equations of radiation magnetohydrodynamics (MHD) for astrophysical fluid flow. Such methods are essential for the investigation of the time-dependent and multidimensional dynamics of a variety of astrophysical systems, although our particular interest is motivated by problems in star formation. Over the past few years, the authors have been members of two parallel code development efforts, and this review reflects that organization. In particular, we discuss numerical methods for MHD as implemented in the Athena code, and numerical methods for radiation hydrodynamics as implemented in the Orion code. We discuss the challenges introduced by the use of adaptive mesh refinement in both codes, as well as the most promising directions for future developments.
A Multidimensional Code For Isothermal Magnetohydrodynamic Flows
Kim, J; Jones, T W; Hong, S S; Kim, Jongsoo; Ryu, Dongsu
1999-01-01
We present a multi-dimensional numerical code to solve isothermal magnetohydrodynamic (IMHD) equations for use in modeling astrophysical flows. First, we have built a one-dimensional code which is based on an explicit finite-difference method on an Eulerian grid, called the total variation diminishing (TVD) scheme. Recipes for building the one-dimensional IMHD code, including the normalized right and left eigenvectors of the IMHD Jacobian matrix, are presented. Then, we have extended the one-dimensional code to a multi-dimensional IMHD code through a Strang-type dimensional splitting. In the multi-dimensional code, an explicit cleaning step has been included to eliminate non-zero $\
Global Linear Stability Analysis of the Spoke Oscillation in Hall Effect Thrusters
2014-07-15
characterize the spoke in a wide range of HETs, including both conventional and non-conventional designs (the H6 thruster, the NASA 173Mv1, the Busek BHT -600...near plume of the thruster[126]. Similarly, Liu [127, 128] also finds azimuthal oscillations in the BHT -200 and BHT -600 thrusters via high speed-imaging
Structures in magnetohydrodynamic turbulence: detection and scaling.
Uritsky, V M; Pouquet, A; Rosenberg, D; Mininni, P D; Donovan, E F
2010-11-01
We present a systematic analysis of statistical properties of turbulent current and vorticity structures at a given time using cluster analysis. The data stem from numerical simulations of decaying three-dimensional magnetohydrodynamic turbulence in the absence of an imposed uniform magnetic field; the magnetic Prandtl number is taken equal to unity, and we use a periodic box with grids of up to 1536³ points and with Taylor Reynolds numbers up to 1100. The initial conditions are either an X -point configuration embedded in three dimensions, the so-called Orszag-Tang vortex, or an Arn'old-Beltrami-Childress configuration with a fully helical velocity and magnetic field. In each case two snapshots are analyzed, separated by one turn-over time, starting just after the peak of dissipation. We show that the algorithm is able to select a large number of structures (in excess of 8000) for each snapshot and that the statistical properties of these clusters are remarkably similar for the two snapshots as well as for the two flows under study in terms of scaling laws for the cluster characteristics, with the structures in the vorticity and in the current behaving in the same way. We also study the effect of Reynolds number on cluster statistics, and we finally analyze the properties of these clusters in terms of their velocity-magnetic-field correlation. Self-organized criticality features have been identified in the dissipative range of scales. A different scaling arises in the inertial range, which cannot be identified for the moment with a known self-organized criticality class consistent with magnetohydrodynamics. We suggest that this range can be governed by turbulence dynamics as opposed to criticality and propose an interpretation of intermittency in terms of propagation of local instabilities.
Magnetic Field Tailored Annular Hall Thruster with Anode Layer
Lee, Seunghun; Kim, Holak; Kim, Junbum; Lim, Youbong; Choe, Wonho; Korea Institute of Materials Science Collaboration
2016-09-01
Plasma propulsion system is one of the key components for advanced missions of satellites as well as deep space exploration. A typical plasma propulsion system is Hall effect thruster that uses crossed electric and magnetic fields to ionize a propellant gas and to accelerate the ionized gas to generate momentum. In Hall thruster plasmas, magnetic field configuration is important due to the fact that electron confinement in the electromagnetic fields affects both plasma and ion beam characteristics as well as thruster performance parameters including thrust, specific impulse, power efficiency, and life time. In this work, development of an anode layer Hall thruster (TAL) with magnetic field tailoring has been attempted. The TAL is possible to keep discharge in 1 to 2 kilovolts of anode voltage, which is useful to obtain high specific impulse. The magnetic field tailoring is used to minimize undesirable heat dissipation and secondary electron emission from the wall surrounding the plasma. We will report 3 W and 200 W thrusters performances measured by a pendulum thrust stand according to the magnetic field configuration. Also, the measured result will be compared with the plasma diagnostics conducted by an angular Faraday probe, a retarding potential analyzer, and a ExB probe.
20-mN Variable Specific Impulse (Isp) Colloid Thruster
Demmons, Nathaniel
2015-01-01
Busek Company, Inc., has designed and manufactured an electrospray emitter capable of generating 20 mN in a compact package (7x7x1.7 in). The thruster consists of nine porous-surface emitters operating in parallel from a common propellant supply. Each emitter is capable of supporting over 70,000 electrospray emission sites with the plume from each emitter being accelerated through a single aperture, eliminating the need for individual emission site alignment to an extraction grid. The total number of emission sites during operation is expected to approach 700,000. This Phase II project optimized and characterized the thruster fabricated during the Phase I effort. Additional porous emitters also were fabricated for full-scale testing. Propellant is supplied to the thruster via existing feed-system and microvalve technology previously developed by Busek, under the NASA Space Technology 7's Disturbance Reduction System (ST7-DRS) mission and via follow-on electric propulsion programs. This project investigated methods for extending thruster life beyond the previously demonstrated 450 hours. The life-extending capabilities will be demonstrated on a subscale version of the thruster.
Evaluation of externally heated pulsed MPD thruster cathodes
Myers, Roger M.; Domonkos, Matthew; Gallimore, Alec D.
1993-01-01
Recent interest in solar electric orbit transfer vehicles (SEOTV's) has prompted a reevaluation of pulsed magnetoplasmadynamic (MPD) thruster systems due to their ease of power scaling and reduced test facility requirements. In this work the use of externally heated cathodes was examined in order to extend the lifetime of these thrusters to the 1000 to 3000 hours required for SEOTV missions. A pulsed MPD thruster test facility was assembled, including a pulse-forming network (PFN), ignitor supply and propellant feed system. Results of cold cathode tests used to validate the facility, PFN, and propellant feed system design are presented, as well as a preliminary evaluation of externally heated impregnated tungsten cathodes. The cold cathode thruster was operated on both argon and nitrogen propellants at peak discharge power levels up to 300 kW. The results confirmed proper operation of the pulsed thruster test facility, and indicated that large amounts of gas were evolved from the BaO-CaO-Al2O3 cathodes during activation. Comparison of the expected space charge limited current with the measured vacuum current when using the heated cathode indicate that either that a large temperature difference existed between the heater and the cathode or that the surface work function was higher than expected.
Thrust Stand Measurements of a Conical Pulsed Inductive Plasma Thruster
Hallock, Ashley K.; Polzin, Kurt A.; Emsellem, Gregory D.
2012-01-01
Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters can su er from both high pulse energy requirements imposed by the voltage demands of inductive propellant ionization, and low propellant utilization efficiencies. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA)[4], shown in Fig. 1 is a pulsed inductive plasma thruster that is able to operate at lower pulse energies by partially ionizing propellant with an electron cyclotron resonance (ECR) discharge inside a conical inductive coil whose geometry serves to potentially increase propellant and plasma plume containment relative to at coil geometries. The ECR plasma is created with the use of permanent mag- nets arranged to produce a thin resonance region along the inner surface of the coil, restricting plasma formation and, in turn, current sheet formation to areas of high magnetic coupling to the driving coil.
Time dependent two phase flows in Magnetohydrodynamics: A ...
Journal of the Nigerian Association of Mathematical Physics ... Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Time dependent two phase flows in Magnetohydrodynamics: A Greens function approach. BK Jha, HM Jibril ...
Viscosity and Vorticity in Reduced Magneto-Hydrodynamics
Joseph, Ilon [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-08-12
Magneto-hydrodynamics (MHD) critically relies on viscous forces in order for an accurate determination of the electric eld. For each charged particle species, the Braginskii viscous tensor for a magnetized plasma has the decomposition into matrices with special symmetries.
Dislocations in magnetohydrodynamic waves in a stellar atmosphere.
López Ariste, A; Collados, M; Khomenko, E
2013-08-23
We describe the presence of wave front dislocations in magnetohydrodynamic waves in stratified stellar atmospheres. Scalar dislocations such as edges and vortices can appear in Alfvén waves, as well as in general magnetoacoustic waves. We detect those dislocations in observations of magnetohydrodynamic waves in sunspots in the solar chromosphere. Through the measured charge of all the dislocations observed, we can give for the first time estimates of the modal contribution in the waves propagating along magnetic fields in solar sunspots.
An AC magnetohydrodynamic micropump: towards a true integrated microfluidic system
Lee, A P; Lemoff, A V; McConaghy, C F; Miles, R R
1999-03-01
An AC Magnetohydrodynamic (MHD) micropump has been demonstrated in which the Lorentz force is used to propel an electrolytic solution along a microchannel etched in silicon. This micropump has no moving parts, produces a continuous (not pulsatile) flow, and is compatible with solutions containing biological specimens. micropump, using the Lorentz force as the pumping mechanism for biological analysis. The AC Magnetohydrodynamic (MHD) micropump investigated produces a continuous flow and allows for complex microchannel design.
Dislocations in magnetohydrodynamic waves in a stellar atmosphere
Ariste, A López; Khomenko, E
2013-01-01
We describe the presence of wavefront dislocations in magnetohydrodynamic waves in stratified stellar atmospheres. Scalar dislocations such as edges and vortices can appear in Alfv\\'en waves, as well as in general magneto-acoustic waves. We detect those dislocations in observations of magnetohydrodynamic waves in sunspots in the solar chromosphere. Through the measured charge of all the dislocations observed, we can give for the first time estimates of the modal contribution in the waves propagating along magnetic fields in solar sunspots.
Remarks on the Regularity to 3-D Ideal Magnetohydrodynamic Equations
Quan Sen JIU; Cheng HE
2004-01-01
In this paper we are interested in the sufficient conditions which guarantee the regularity of solutions of 3-D ideal magnetohydrodynamic equations in the arbitrary time interval [0,T]. Five sufficient conditions are given. Our results are motivated by two main ideas: one is to control the accumulation of vorticity alone; the other is to generalize the corresponding geometric conditions of 3-D Euler equations to 3-D ideal magnetohydrodynamic equations.
Attractors of magnetohydrodynamic flows in an Alfvenic state
Nunez, Manuel; Sanz, Javier [Departamento de Analisis Matematico, Universidad de Valladolid, Valladolid (Spain)
1999-08-13
We present a simplified form of the magnetohydrodynamic system which describes the evolution of a plasma where the small-scale velocity and magnetic field are aligned in the form of Alfven waves, such as happens in several turbulent situations. Bounds on the dimension of the global attractor are found, and are shown to be an improvement of the standard ones for the full magnetohydrodynamic equations. (author)
Continuous Wheel Momentum Dumping Using Magnetic Torquers and Thrusters
Oh, Hwa-Suk; Choi, Wan-Sik; Eun, Jong-Won
1996-12-01
Two momentum management schemes using magnetic torquers and thrusters are sug-gested. The stability of the momentum dumping logic is proved at a general attitude equilibrium. Both momentum dumping control laws are implemented with Pulse-Width- Pulse-Frequency Modulated on-off control, and shown working equally well with the original continuous and variable strength control law. Thrusters are assummed to be asymmetrically configured as a contingency case. Each thruster is fired following separated control laws rather than paired thrusting. Null torque thrusting control is added on the thrust control calculated from the momentum control law for the gener-ation of positive thrusting force. Both magnetic and thrusting control laws guarantee the momentum dumping, however, the wheel inner loop control is needed for the "wheel speed" dumping, The control laws are simulated on the KOrea Multi-Purpose SATellite (KOMPSAT) model.
Thermal Environmental Testing of NSTAR Engineering Model Ion Thrusters
Rawlin, Vincent K.; Patterson, Michael J.; Becker, Raymond A.
1999-01-01
NASA's New Millenium program will fly a xenon ion propulsion system on the Deep Space 1 Mission. Tests were conducted under NASA's Solar Electric Propulsion Technology Applications Readiness (NSTAR) Program with 3 different engineering model ion thrusters to determine thruster thermal characteristics over the NSTAR operating range in a variety of thermal environments. A liquid nitrogen-cooled shroud was used to cold-soak the thruster to -120 C. Initial tests were performed prior to a mature spacecraft design. Those results and the final, severe, requirements mandated by the spacecraft led to several changes to the basic thermal design. These changes were incorporated into a final design and tested over a wide range of environmental conditions.
The electrodeless Lorentz force (ELF) thruster experimental facility
Weber, T. E.; Slough, J. T.; Kirtley, D.
2012-11-01
An innovative facility for testing high-power, pulsed plasmoid thrusters has been constructed to develop the electrodeless Lorentz force (ELF) thruster concept. It is equipped with a suite of diagnostics optimized to study the physical processes taking place within ELF and evaluate its propulsive utility including magnetic field, neutral gas, and plasma flux diagnostics, a method to determine energy flow into the plasma from the pulsed power systems, and a new type of ballistic pendulum, which enables thrust to be measured without the need for installing the entire propulsion system on a thrust stand. Variable magnetic fields allow controlled studies of plume expansion in a small-scale experiment and dielectric chamber walls reduce electromagnetic influences on plasma behavior and thruster operation. The unique capabilities of this facility enable novel concept development to take place at greatly reduced cost and increased accessibility compared to testing at large user-facilities.
Experimental characterization of radio frequency microthermal thruster performance
Williams, Shae E.
Microsatellite (cold gas thrusters. Design constraints rule out much of traditional propulsion, requiring new and nonobvious technologies to advance the state of the art and enable longer and more flexible missions. The radio frequency microthermal thruster is shown to be worth thorough study for this application. A basic analytical model is constructed to look at expected performance, and the theory behind that model is explained. Calibration and the challenges in working with extremely low forces and displacements are also examined. The results of extensive testing on this thruster type are presented. Important trends are confirmed and validated, such as a linearity of specific impulse with power, and consistent nonlinearities with frequency and mass flow rate. Additionally, tests indicate a nonlinear relationship between applied frequency and thruster internal geometry that can more than triple the heating occurring in the thruster. Further tests focus on this relationship, and find more information about how these parameters couple are found to be primarily due to induced inefficiencies in stochastic heating and the inability of a vibrating voltage sheath to transfer energy into the flow. Additionally, first steps towards optimizing a design for performance are taken, such as analyzing the effect of adding a converging/diverging nozzle and finding an optimal length of inner electrode to be exposed to plasma. Overall, specific impulses of up to 85 seconds are found with argon as the propellant, doubling cold gas specific impulse, and an error on specific impulse is calculated to be less than 3% in either direction. These results after only slight efforts at design optimization indicate much more improvement is possible with this technology that would make an RF microthermal thruster viable as a commercial product.
Power Electronics Development for the SPT-100 Thruster
Hamley, John A.; Hill, Gerald M.; Sankovic, John M.
1994-01-01
Russian electric propulsion technologies have recently become available on the world market. Of significant interest is the Stationary Plasma Thruster (SPT) which has a significant flight heritage in the former Soviet space program. The SPT has performance levels of up to 1600 seconds of specific impulse at a thrust efficiency of 0.50. Studies have shown that this level of performance is well suited for stationkeeping applications, and the SPT-100, with a 1.35 kW input power level, is presently being evaluated for use on Western commercial satellites. Under a program sponsored by the Innovative Science and Technology Division of the Ballistic Missile Defense Organization, a team of U.S. electric propulsion specialists observed the operation of the SPT-100 in Russia. Under this same program, power electronics were developed to operate the SPT-100 to characterize thruster performance and operation in the U.S. The power electronics consisted of a discharge, cathode heater, and pulse igniter power supplies to operate the thruster with manual flow control. A Russian designed matching network was incorporated in the discharge supply to ensure proper operation with the thruster. The cathode heater power supply and igniter were derived from ongoing development projects. No attempts were made to augment thruster electromagnet current in this effort. The power electronics successfully started and operated the SPT-100 thruster in performance tests at NASA Lewis, with minimal oscillations in the discharge current. The efficiency of the main discharge supply was measured at 0.92, and straightforward modifications were identified which could increase the efficiency to 0.94.
The Geologic History of Seawater
Holland, H. D.
2003-12-01
Aristotle proposed that the saltness of the sea was due to the effect of sunlight on water. Robert Boyle took strong exception to this view and - in the manner of the Royal Society - laid out a program of research in the opening paragraph of his Observations and Experiments about the Saltness of the Sea (1674) (Figure 1): (20K)Figure 1. Title page of Robert Boyle's Tracts consisting of Observations about the Saltness of the Sea and other essays (1674). The Cause of the Saltness of the Sea appears by Aristotle's Writings to have busied the Curiosity of Naturalists before his time; since which, his Authority, perhaps much more than his Reasons, did for divers Ages make the Schools and the generality of Naturalists of his Opinion, till towards the end of the last Century, and the beginning of ours, some Learned Men took the boldness to question the common Opinion; since when the Controversie has been kept on foot, and, for ought I know, will be so, as long as ‘tis argued on both sides but by Dialectical Arguments, which may be probable on both sides, but are not convincing on either. Wherefore I shall here briefly deliver some particulars about the Saltness of the Sea, obtained by my own trials, where I was able; and where I was not, by the best Relations I could procure, especially from Navigators.Boyle measured and compiled a considerable set of data for variations in the saltness of surface seawater. He also designed an improved piece of equipment for sampling seawater at depth, but the depths at which it was used were modest: 30 m with his own instrument, 80 m with another, similar sampler. However, the younger John Winthrop (1606-1676), an early member of the Royal Society, an important Governor of Connecticut, and a benefactor of Harvard College, was asked to collect seawater from the bottom of the Atlantic Ocean during his crossing from England to New England in the spring of 1663. The minutes of the Royal Society's meeting on July 20, 1663, give the
Seawater circulating system in an aquaculture laboratory
Chatterji, A.; Ingole, B.S.; Parulekar, A.H.
The note gives an account, for the first time in India, of an Aquaculture Laboratory with open type seawater circulating system developed at the National Institute of Oceanography, Goa, India. Besides describing the details of the system...
Seawater carbonate chemistry, Kahekili, west Maui
U.S. Geological Survey, Department of the Interior — Time-series of seawater carbonate chemistry variables, including salinity, dissolved inorganic nutrients, pH, total alkalinity, and dissolved inorganic carbon from...
Experimental studies on urea degradation in seawater
Rajendran, A.; Joseph, T.; Reddy, C.V.G.
The rate of urea degradation in seawater was studied under various conditions and the kinetics of urea degradation was evaluated. Urea decomposition experiments showed that the rates and quantity of ammonium oxidation were slower in the relatively...
Synthetic seawater as stress-corrosion test medium
Humphries, T. S.; Nelson, E. E.
1980-01-01
Seawater minimizes pitting corrosion of aluminum-alloy test samples. Of three corrosion-inhibiting methods evaluated using (a) chromate inhibitors in saltwater, (b) surface treating sample via anodizing or alodine treatment, and (c) synthetic seawater, synthetic seawater was most effective test medium, since it is more uniform than fresh seawater.
Plasma Thruster Development: Magnetoplasmadynamic Propulsion, Status and Basic Problems.
1986-02-01
Closed Drift Hall-Ion Thruster Flown on the Russian Satellite Meteor I, 1971, from Reference 13 12 4 Flat Coil Induction Thruster Schematic from...the Russian Satellite Meteor 1, 1971. from Ref. 1-3. 13 COIL Br PLASMA SWITCH0 0 FZ jeBr 0 CAPACITOR 0 Fig.- 4:Fa olInuto huse ceai fromRef-22 40 14 is...minute crater (on the order of 10- 4 cm diameter). High pressures, on the order of 100 bar, and vaporization rates in these craters have been
An approach to the parametric design of ion thrusters
Wilbur, Paul J.; Beattie, John R.; Hyman, Jay, Jr.
1988-01-01
A methodology that can be used to determine which of several physical constraints can limit ion thruster power and thrust, under various design and operating conditions, is presented. The methodology is exercised to demonstrate typical limitations imposed by grid system span-to-gap ratio, intragrid electric field, discharge chamber power per unit beam area, screen grid lifetime and accelerator grid lifetime constraints. Limitations on power and thrust for a thruster defined by typical discharge chamber and grid system parameters when it is operated at maximum thrust-to-power are discussed.
Physics and Dynamics of Current Sheets in Pulsed Plasma Thrusters
2007-11-02
pulsed plasma thruster. A simple experiment would involve measuring the impulse bit of a coaxial gas-fed pulsed plasma thruster operated in both positive...Princeton, NJ, 2002. [2] J. Marshal. Performance of a hydromagnetic plasma gun . The Physics of Fluids, 3(1):134–135, January-February 1960. [3] R.G. Jahn...Jahn and K.E. Clark. A large dielecteic vacuum facility. AIAA Jour- nal, 1966. [16] L.C. Burkhardt and R.H. Lovberg. Current sheet in a coaxial plasma
Optimization of a coaxial electron cyclotron resonance plasma thruster with an analytical model
Cannat, F.; Lafleur, T.; Jarrige, J.; Chabert, P.; Elias, P.-Q.; Packan, D.
2015-05-01
A new cathodeless plasma thruster currently under development at Onera is presented and characterized experimentally and analytically. The coaxial thruster consists of a microwave antenna immersed in a magnetic field, which allows electron heating via cyclotron resonance. The magnetic field diverges at the thruster exit and forms a nozzle that accelerates the quasi-neutral plasma to generate a thrust. Different thruster configurations are tested, and in particular, the influence of the source diameter on the thruster performance is investigated. At microwave powers of about 30 W and a xenon flow rate of 0.1 mg/s (1 SCCM), a mass utilization of 60% and a thrust of 1 mN are estimated based on angular electrostatic probe measurements performed downstream of the thruster in the exhaust plume. Results are found to be in fair agreement with a recent analytical helicon thruster model that has been adapted for the coaxial geometry used here.
Optimization of a coaxial electron cyclotron resonance plasma thruster with an analytical model
Cannat, F., E-mail: felix.cannat@onera.fr, E-mail: felix.cannat@gmail.com; Lafleur, T. [Physics and Instrumentation Department, Onera -The French Aerospace Lab, Palaiseau, Cedex 91123 (France); Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universites, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau (France); Jarrige, J.; Elias, P.-Q.; Packan, D. [Physics and Instrumentation Department, Onera -The French Aerospace Lab, Palaiseau, Cedex 91123 (France); Chabert, P. [Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universites, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau (France)
2015-05-15
A new cathodeless plasma thruster currently under development at Onera is presented and characterized experimentally and analytically. The coaxial thruster consists of a microwave antenna immersed in a magnetic field, which allows electron heating via cyclotron resonance. The magnetic field diverges at the thruster exit and forms a nozzle that accelerates the quasi-neutral plasma to generate a thrust. Different thruster configurations are tested, and in particular, the influence of the source diameter on the thruster performance is investigated. At microwave powers of about 30 W and a xenon flow rate of 0.1 mg/s (1 SCCM), a mass utilization of 60% and a thrust of 1 mN are estimated based on angular electrostatic probe measurements performed downstream of the thruster in the exhaust plume. Results are found to be in fair agreement with a recent analytical helicon thruster model that has been adapted for the coaxial geometry used here.
Fault-Tolerant Region-Based Control of an Underwater Vehicle with Kinematically Redundant Thrusters
Zool H. Ismail
2014-01-01
Full Text Available This paper presents a new control approach for an underwater vehicle with a kinematically redundant thruster system. This control scheme is derived based on a fault-tolerant decomposition for thruster force allocation and a region control scheme for the tracking objective. Given a redundant thruster system, that is, six or more pairs of thrusters are used, the proposed redundancy resolution and region control scheme determine the number of thruster faults, as well as providing the reference thruster forces in order to keep the underwater vehicle within the desired region. The stability of the presented control law is proven in the sense of a Lyapunov function. Numerical simulations are performed with an omnidirectional underwater vehicle and the results of the proposed scheme illustrate the effectiveness in terms of optimizing the thruster forces.
Converging cylindrical shocks in ideal magnetohydrodynamics
Pullin, D. I.
2014-09-01
We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R = √μ0/p0 I/(2π) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then
Converging cylindrical shocks in ideal magnetohydrodynamics
Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.
2014-09-01
We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=sqrt{μ _0/p_0} I/(2 π ) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field
Coaxial microwave electrothermal thruster performance in hydrogen
Richardson, W.; Asmussen, J.; Hawley, M.
1994-01-01
The microwave electro thermal thruster (MET) is an electric propulsion concept that offers the promise of high performance combined with a long lifetime. A unique feature of this electric propulsion concept is its ability to create a microwave plasma discharge separated or floating away from any electrodes or enclosing walls. This allows propellant temperatures that are higher than those in resistojets and reduces electrode and wall erosion. It has been demonstrated that microwave energy is coupled into discharges very efficiently at high input power levels. As a result of these advantages, the MET concept has been identified as a future high power electric propulsion possibility. Recently, two additional improvements have been made to the coaxial MET. The first was concerned with improving the microwave matching. Previous experiments were conducted with 10-30 percent reflected power when incident power was in excess of 600 W(exp 6). Power was reflected back to the generator because the impedance of the MET did not match the 50 ohm impedance of the microwave circuit. To solve this problem, a double stub tuning system has been inserted between the MET and the microwave power supply. The addition of the double stub tuners reduces the reflected power below 1 percent. The other improvement has prepared the coaxial MET for hydrogen experiments. To operate with hydrogen, the vacuum window which separates the coaxial line from the discharge chamber has been changed from teflon to boron nitride. All the microwave energy delivered to the plasma discharge passes through this vacuum window. This material change had caused problems in the past because of the increased microwave reflection coefficients associated with the electrical properties of boron nitride. However, by making the boron nitride window electrically one-half of a wavelength long, power reflection in the window has been eliminated. This technical note summarizes the experimental performance of the improved
Prospects for Nuclear Electric Propulsion Using Closed-Cycle Magnetohydrodynamic Energy Conversion
Litchford, R. J.; Bitteker, L. J.; Jones, J. E.
2001-01-01
Nuclear electric propulsion (NEP) has long been recognized as a major enabling technology for scientific and human exploration of the solar system, and it may conceivably form the basis of a cost-effective space transportation system suitable for space commerce. The chief technical obstacles to realizing this vision are the development of efficient, high-power (megawatt-class) electric thrusters and the development of low specific mass (less than 1 kg/kWe) power plants. Furthermore, comprehensive system analyses of multimegawatt class NEP systems are needed in order to critically assess mission capability and cost attributes. This Technical Publication addresses some of these concerns through a systematic examination of multimegawatt space power installations in which a gas-cooled nuclear reactor is used to drive a magnetohydrodynamic (MHD) generator in a closed-loop Brayton cycle. The primary motivation for considering MHD energy conversion is the ability to transfer energy out of a gas that is simply too hot for contact with any solid material. This has several intrinsic advantages including the ability to achieve high thermal efficiency and power density and the ability to reject heat at elevated temperatures. These attributes lead to a reduction in system specific mass below that obtainable with turbine-based systems, which have definite solid temperature limits for reliable operation. Here, the results of a thermodynamic cycle analysis are placed in context with a preliminary system analysis in order to converge on a design space that optimizes performance while remaining clearly within established bounds of engineering feasibility. MHD technology issues are discussed including the conceptual design of a nonequilibrium disk generator and opportunities for exploiting neutron-induced ionization mechanisms as a means of increasing electrical conductivity and enhancing performance and reliability. The results are then used to make a cursory examination of piloted
Linear wave propagation in relativistic magnetohydrodynamics
Keppens, R
2008-01-01
The properties of linear Alfv\\'en, slow, and fast magnetoacoustic waves for uniform plasmas in relativistic magnetohydrodynamics (MHD) are discussed, augmenting the well-known expressions for their phase speeds with knowledge on the group speed. A 3+1 formalism is purposely adopted to make direct comparison with the Newtonian MHD limits easier and to stress the graphical representation of their anisotropic linear wave properties using the phase and group speed diagrams. By drawing these for both the fluid rest frame and for a laboratory Lorentzian frame which sees the plasma move with a three-velocity having an arbitrary orientation with respect to the magnetic field, a graphical view of the relativistic aberration effects is obtained for all three MHD wave families. Moreover, it is confirmed that the classical Huygens construction relates the phase and group speed diagram in the usual way, even for the lab frame viewpoint. Since the group speed diagrams correspond to exact solutions for initial conditions co...
COUNTER-ROTATION IN RELATIVISTIC MAGNETOHYDRODYNAMIC JETS
Cayatte, V.; Sauty, C. [Laboratoire Univers et Théories, Observatoire de Paris, UMR 8102 du CNRS, Université Paris Diderot, F-92190 Meudon (France); Vlahakis, N.; Tsinganos, K. [Department of Astrophysics, Astronomy and Mechanics, Faculty of Physics, University of Athens, 15784 Zografos, Athens (Greece); Matsakos, T. [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States); Lima, J. J. G., E-mail: veronique.cayatte@obspm.fr [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)
2014-06-10
Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. showed that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Motion signatures that are transverse to the jet axis, in two opposite directions, have recently been measured in M87. One possible interpretation of this motion is that of counter-rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases: if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of a relativistic magnetohydrodynamic jet simulation.
Fast magnetohydrodynamic density waves in spiral galaxies
Lou, Yu-Qing; Han, J. L.; Fan, Zuhui
1999-09-01
The newly observed large-scale structures of a southern grand-design spiral galaxy NGC 2997 in total and polarized radio-continuum emission together with their overall correlations with the known optical spiral structure are physically interpreted in terms of fast magnetohydrodynamic (MHD) density waves in contrast to slow MHD density waves in NGC 6946. The global spiral pattern of such fast MHD density waves extends from the very centre, where the disc rotates almost rigidly within ~0.5arcmin, all the way to the outer disc with a more or less flat rotation curve. To strengthen the case, several known features of spiral galaxies M51 and IC 342 are referred to and their pattern identifications discussed. It is emphasized that the nature of a magnetized spiral galaxy would be much better appreciated by examining large-scale structures in optical, atomic hydrogen Hi, total and polarized radio-continuum and infrared emission together. As various star-formation processes occur concurrently and/or sequentially in spiral arms of high gas concentration, relatively broad and fuzzy Hi arms, roughly coincident with optical arms in the inner disc, are expected to extend from the extremities of fading optical arms further into the outer gas disc. We predict that the south-east `magnetic arm', apparently isolated from any optical features, in total and polarized radio-continuum intensity maps of NGC 2997 should be associated with an Hi gas arm yet to be detected in 21-cm line emission.
NIMROD Resistive Magnetohydrodynamic Simulations of Spheromak Physics
Hooper, E B; Cohen, B I; McLean, H S; Wood, R D; Romero-Talamas, C A; Sovinec, C R
2007-12-11
The physics of spheromak plasmas is addressed by time-dependent, three-dimensional, resistive magneto-hydrodynamic simulations with the NIMROD code. Included in some detail are the formation of a spheromak driven electrostatically by a coaxial plasma gun with a flux-conserver geometry and power systems that accurately model the Sustained Spheromak Physics Experiment (SSPX) (R. D. Wood, et al., Nucl. Fusion 45, 1582 (2005)). The controlled decay of the spheromak plasma over several milliseconds is also modeled as the programmable current and voltage relax, resulting in simulations of entire experimental pulses. Reconnection phenomena and the effects of current profile evolution on the growth of symmetry-breaking toroidal modes are diagnosed; these in turn affect the quality of magnetic surfaces and the energy confinement. The sensitivity of the simulation results address variations in both physical and numerical parameters, including spatial resolution. There are significant points of agreement between the simulations and the observed experimental behavior, e.g., in the evolution of the magnetics and the sensitivity of the energy confinement to the presence of symmetry-breaking magnetic fluctuations.
Ambipolar diffusion in smoothed particle magnetohydrodynamics
Wurster, James; Ayliffe, Ben A
2014-01-01
In partially ionised plasmas, the magnetic field can become decoupled from the neutral gas and diffuse through it in a process known as ambipolar diffusion. Although ambipolar diffusion has been implemented in several grid codes, we here provide an implementation in smoothed particle magnetohydrodynamics (SPMHD). We use the strong coupling approximation in which the ion density is negligible, allowing a single fluid approach. The equations are derived to conserve energy, and to provide a positive definite contribution to the entropy. We test the implementation in both a simple 1D SPMHD code and the fully 3D code PHANTOM. The wave damping test yields agreement within 0.03-2 per cent of the analytical result, depending on the value of the collisional coupling constant. The oblique C-shocks test yields results that typically agree within 4 per cent of the semi-analytical result. Our algorithm is therefore suitable for exploring the effect ambipolar diffusion has on physical processes, such as the formation of st...
Magnetohydrodynamic Waves in an Asymmetric Magnetic Slab
Allcock, Matthew; Erdélyi, Robert
2017-02-01
Analytical models of solar atmospheric magnetic structures have been crucial for our understanding of magnetohydrodynamic (MHD) wave behaviour and in the development of the field of solar magneto-seismology. Here, an analytical approach is used to derive the dispersion relation for MHD waves in a magnetic slab of homogeneous plasma enclosed on its two sides by non-magnetic, semi-infinite plasma with different densities and temperatures. This generalises the classic magnetic slab model, which is symmetric about the slab. The dispersion relation, unlike that governing a symmetric slab, cannot be decoupled into the well-known sausage and kink modes, i.e. the modes have mixed properties. The eigenmodes of an asymmetric magnetic slab are better labelled as quasi-sausage and quasi-kink modes. Given that the solar atmosphere is highly inhomogeneous, this has implications for MHD mode identification in a range of solar structures. A parametric analysis of how the mode properties (in particular the phase speed, eigenfrequencies, and amplitudes) vary in terms of the introduced asymmetry is conducted. In particular, avoided crossings occur between quasi-sausage and quasi-kink surface modes, allowing modes to adopt different properties for different parameters in the external region.
Lack of universality in decaying magnetohydrodynamic turbulence.
Lee, E; Brachet, M E; Pouquet, A; Mininni, P D; Rosenberg, D
2010-01-01
Using computations of three-dimensional magnetohydrodynamic (MHD) turbulence with a Taylor-Green flow, whose inherent time-independent symmetries are implemented numerically, and in the absence of either a forcing function or an imposed uniform magnetic field, we show that three different inertial ranges for the energy spectrum may emerge for three different initial magnetic fields, the selecting parameter being the ratio of nonlinear eddy to Alfvén time. Equivalent computational grids range from 128(3) to 2048(3) points with a unit magnetic Prandtl number and a Taylor Reynolds number of up to 1500 at the peak of dissipation. We also show a convergence of our results with Reynolds number. Our study is consistent with previous findings of a variety of energy spectra in MHD turbulence by studies performed in the presence of both a forcing term with a given correlation time and a strong, uniform magnetic field. However, in contrast to the previous studies, here the ratio of characteristic time scales can only be ascribed to the intrinsic nonlinear dynamics of the paradigmatic flows under study.
Large-Scale Quasi-geostrophic Magnetohydrodynamics
Balk, Alexander M.
2014-12-01
We consider the ideal magnetohydrodynamics (MHD) of a shallow fluid layer on a rapidly rotating planet or star. The presence of a background toroidal magnetic field is assumed, and the "shallow water" beta-plane approximation is used. We derive a single equation for the slow large length scale dynamics. The range of validity of this equation fits the MHD of the lighter fluid at the top of Earth's outer core. The form of this equation is similar to the quasi-geostrophic (Q-G) equation (for usual ocean or atmosphere), but the parameters are essentially different. Our equation also implies the inverse cascade; but contrary to the usual Q-G situation, the energy cascades to smaller length scales, while the enstrophy cascades to the larger scales. We find the Kolmogorov-type spectrum for the inverse cascade. The spectrum indicates the energy accumulation in larger scales. In addition to the energy and enstrophy, the obtained equation possesses an extra (adiabatic-type) invariant. Its presence implies energy accumulation in the 30° sector around zonal direction. With some special energy input, the extra invariant can lead to the accumulation of energy in zonal magnetic field; this happens if the input of the extra invariant is small, while the energy input is considerable.
Large Scale Quasi-geostrophic Magnetohydrodynamics
Balk, Alexander M
2014-01-01
We consider the ideal magnetohydrodynamics (MHD) of a shallow fluid layer on a rapidly rotating planet or star. The presence of a background toroidal magnetic field is assumed, and the "shallow water" beta-plane approximation is used. We derive a single equation for the slow large length scale dynamics. The range of validity of this equation fits the MHD of the lighter fluid at the top of Earth's outer core. The form of this equation is similar to the quasi-geostrophic (Q-G) equation (for usual ocean or atmosphere), but the parameters are essentially different. Our equation also implies the inverse cascade; but contrary to the usual Q-G situation, the energy cascades to smaller length scales, while the enstrophy cascades to the larger scales. We find the Kolmogorov-type spectrum for the inverse cascade. The spectrum indicates the energy accumulation in larger scales. In addition to the energy and enstrophy, the obtained equation possesses an extra invariant. Its presence is shown to imply energy accumulation ...
Multicomponent diffusion in two-temperature magnetohydrodynamics
Ramshaw, J. D.; Chang, C. H.
1996-06-01
A recent hydrodynamic theory of multicomponent diffusion in multitemperature gas mixtures [J. D. Ramshaw, J. Non-Equilib. Thermodyn. 18, 121 (1993)] is generalized to include the velocity-dependent Lorentz force on charged species in a magnetic field B. This generalization is used to extend a previous treatment of ambipolar diffusion in two-temperature multicomponent plasmas [J. D. Ramshaw and C. H. Chang, Plasma Chem. Plasma Process. 13, 489 (1993)] to situations in which B and the electrical current density are nonzero. General expressions are thereby derived for the species diffusion fluxes, including thermal diffusion, in both single- and two-temperature multicomponent magnetohydrodynamics (MHD). It is shown that the usual zero-field form of the Stefan-Maxwell equations can be preserved in the presence of B by introducing generalized binary diffusion tensors dependent on B. A self-consistent effective binary diffusion approximation is presented that provides explicit approximate expressions for the diffusion fluxes. Simplifications due to the small electron mass are exploited to obtain an ideal MHD description in which the electron diffusion coefficients drop out, resistive effects vanish, and the electric field reduces to a particularly simple form. This description should be well suited for numerical calculations.
Magnetohydrodynamics on an unstructured moving grid
Pakmor, Ruediger; Springel, Volker
2011-01-01
Magnetic fields play an important role in astrophysics on a wide variety of scales, ranging from the Sun and compact objects to galaxies and galaxy clusters. Here we discuss a novel implementation of ideal magnetohydrodynamics (MHD) in the moving mesh code AREPO which combines many of the advantages of Eulerian and Lagrangian methods in a single computational technique. The employed grid is defined as the Voronoi tessellation of a set of mesh-generating points which can move along with the flow, yielding an automatic adaptivity of the mesh and a substantial reduction of advection errors. Our scheme solves the MHD Riemann problem in the rest frame of the Voronoi interfaces using the HLLD Riemann solver. To satisfy the divergence constraint of the magnetic field in multiple dimensions, the Dedner divergence cleaning method is applied. In a set of standard test problems we show that the new code produces accurate results, and that the divergence of the magnetic field is kept sufficiently small to closely preserv...
Accurate, Meshless Methods for Magneto-Hydrodynamics
Hopkins, Philip F
2016-01-01
Recently, we developed a pair of meshless finite-volume Lagrangian methods for hydrodynamics: the 'meshless finite mass' (MFM) and 'meshless finite volume' (MFV) methods. These capture advantages of both smoothed-particle hydrodynamics (SPH) and adaptive mesh-refinement (AMR) schemes. Here, we extend these to include ideal magneto-hydrodynamics (MHD). The MHD equations are second-order consistent and conservative. We augment these with a divergence-cleaning scheme, which maintains div*B~0 to high accuracy. We implement these in the code GIZMO, together with a state-of-the-art implementation of SPH MHD. In every one of a large suite of test problems, the new methods are competitive with moving-mesh and AMR schemes using constrained transport (CT) to ensure div*B=0. They are able to correctly capture the growth and structure of the magneto-rotational instability (MRI), MHD turbulence, and the launching of magnetic jets, in some cases converging more rapidly than AMR codes. Compared to SPH, the MFM/MFV methods e...
Imbalanced Relativistic Force-Free Magnetohydrodynamic Turbulence
Cho, Jungyeon
2013-01-01
When magnetic energy density is much larger than that of matter, as in pulsar/black hole magnetospheres, the medium becomes force-free and we need relativity to describe it. As in non-relativistic magnetohydrodynamics (MHD), Alfv\\'enic MHD turbulence in the relativistic limit can be described by interactions of counter-traveling wave packets. In this paper we numerically study strong imbalanced MHD turbulence in such environments. Here, imbalanced turbulence means the waves traveling in one direction (dominant waves) have higher amplitudes than the opposite-traveling waves (sub-dominant waves). We find that (1) spectrum of the dominant waves is steeper than that of sub-dominant waves, (2) the anisotropy of the dominant waves is weaker than that of sub-dominant waves, and (3) the dependence of the ratio of magnetic energy densities of dominant and sub-dominant waves on the ratio of energy injection rates is steeper than quadratic (i.e., \\$b_+^2/b_-^2 \\propto (\\epsilon_+/\\epsilon_-)^n \\$ with n>2). These result...
Structures in magnetohydrodynamic turbulence: detection and scaling
Uritsky, Vadim M; Rosenberg, Duane; Mininni, Pablo D; Donovan, Eric
2010-01-01
We present a systematic analysis of statistical properties of turbulent current and vorticity structures at a given time using cluster analysis. The data stems from numerical simulations of decaying three-dimensional (3D) magnetohydrodynamic turbulence in the absence of an imposed uniform magnetic field; the magnetic Prandtl number is taken equal to unity, and we use a periodic box with grids of up to 1536^3 points, and with Taylor Reynolds numbers up to 1100. The initial conditions are either an X-point configuration embedded in 3D, the so-called Orszag-Tang vortex, or an Arn'old-Beltrami-Childress configuration with a fully helical velocity and magnetic field. In each case two snapshots are analyzed, separated by one turn-over time, starting just after the peak of dissipation. We show that the algorithm is able to select a large number of structures (in excess of 8,000) for each snapshot and that the statistical properties of these clusters are remarkably similar for the two snapshots as well as for the two...
A Magnetohydrodynamic Boost for Relativistic Jets
Mizuno, Yosuke; Hardee, Philip; Hartmann, Dieter H.; Nishikawa, Ken-Ichi; Zhang, Bing
2007-01-01
We performed relativistic magnetohydrodynamic simulations of the hydrodynamic boosting mechanism for relativistic jets explored by Aloy & Rezzolla (2006) using the RAISHIN code. Simulation results show that the presence of a magnetic field changes the properties of the shock interface between the tenuous, overpressured jet (V^z j) flowing tangentially to a dense external medium. We find that magnetic fields can lead to more efficient acceleration of the jet, in comparison to the pure-hydrodynamic case. A "poloidal" magnetic field (B^z), tangent to the interface and parallel to the jet flow, produces both a stronger outward moving shock and a stronger inward moving rarefaction wave. This leads to a large velocity component normal to the interface in addition to acceleration tangent to the interface, and the jet is thus accelerated to larger Lorentz factors than those obtained in the pure-hydrodynamic case. Likewise, a strong "toroidal" magnetic field (B^y), tangent to the interface but perpendicular to the jet flow, also leads to stronger acceleration tangent to the shock interface relative to the pure-hydrodynamic case. Thus. the presence and relative orientation of a magnetic field in relativistic jets can significant modify the hydrodynamic boost mechanism studied by Aloy & Rezzolla (2006).
Anodic stripping voltammetry enhancement by redox magnetohydrodynamics.
Clark, Emily A; Fritsch, Ingrid
2004-04-15
The effect of an external magnetic field on linear scan anodic stripping voltammetry (ASV) in solutions of 10(-6)-10(-7) M concentrations of lead, cadmium, and copper at mercury films on glassy carbon electrodes has been investigated. A high concentration of Hg(2+) was added to the analyte solution to induce a large cathodic current during the deposition step. Therefore, a large Lorentz force from the net flux of charge through the magnetic field resulted in convection due to magnetohydrodynamics. The faster delivery of analytes to the mercury film electrode during deposition caused an increase in the anodic stripping peaks. The effect of varying Hg(2+) concentrations (0-60 mM) and magnetic field strengths (0-1.77 T) on the enhancement of the stripping peaks was investigated. Enhancements as large as 129% for peak currents and 167% for peak areas were observed. An enhancement of approximately 100% was observed when 60 mM Fe(3+) replaced high concentrations of Hg(2+). This method of convection exhibits promise for small-volume ASV analysis with possible improved limits of detection and decreased preconcentration times.
Lattice Boltzmann model for resistive relativistic magnetohydrodynamics.
Mohseni, F; Mendoza, M; Succi, S; Herrmann, H J
2015-08-01
In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfvén waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has a negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to σ-1/2, σ being the conductivity, which is in agreement with the scaling law of the Sweet-Parker model. Finally, the numerical model is used to study the magnetic reconnection in a stellar flare. Three-dimensional simulation suggests that the reconnection between the background and flux rope magnetic lines in a stellar flare can take place as a result of a shear velocity in the photosphere.
Finite dissipation and intermittency in magnetohydrodynamics.
Mininni, P D; Pouquet, A
2009-08-01
We present an analysis of data stemming from numerical simulations of decaying magnetohydrodynamic (MHD) turbulence up to grid resolution of 1536(3) points and up to Taylor Reynolds number of approximately 1200 . The initial conditions are such that the initial velocity and magnetic fields are helical and in equipartition, while their correlation is negligible. Analyzing the data at the peak of dissipation, we show that the dissipation in MHD seems to asymptote to a constant as the Reynolds number increases, thereby strengthening the possibility of fast reconnection events in the solar environment for very large Reynolds numbers. Furthermore, intermittency of MHD flows, as determined by the spectrum of anomalous exponents of structure functions of the velocity and the magnetic field, is stronger than that of fluids, confirming earlier results; however, we also find that there is a measurable difference between the exponents of the velocity and those of the magnetic field, reminiscent of recent solar wind observations. Finally, we discuss the spectral scaling laws that arise in this flow.
Magnetohydrodynamic waves in fusion and astrophysical plasmas.
Goedbloed, J. P.
Macroscopic plasma dynamics in both controlled thermonuclear confinement machines and in the atmospheres of X-ray emitting stars is described by the equations of magnetohydrodynamics. This provides a vast area of overlapping research activities which is presently actively pursued. In this lecture the author concentrates on some important differences in the dynamics of the two confined plasma systems related to the very different geometries that are encountered and, thus, the role of the different boundary conditions that have to be posed. As a result, the basic MHD waves in a tokamak are quite different from those found in a solar magnetic flux tube. The result is that, whereas the three well-known MHD waves can be traced stepwise in the curved geometry of a tokamak, their separate existence is eliminated right from the start in a line-tied coronal loop because line-tying in general conflicts with the phase relationships between the vector components of the three velocity fields. The consequences are far-reaching, viz. completely different resonant frequencies and continuous spectra, absence of rational magnetic surfaces, and irrelevance of local marginal stability theory for coronal magnetic loops.
Geometrical shock dynamics for magnetohydrodynamic fast shocks
Mostert, W.
2016-12-12
We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press
Cenozoic seawater Sr/Ca evolution
Sosdian, Sindia M.; Lear, Caroline H.; Tao, Kai; Grossman, Ethan L.; O'Dea, Aaron; Rosenthal, Yair
2012-10-01
Records of seawater chemistry help constrain temporal variations in geochemical processes that impact the global carbon cycle and climate through Earth's history. Here we reconstruct Cenozoic seawater Sr/Ca (Sr/Casw) using fossil Conus and turritellid gastropod Sr/Ca. Combined with an oxygen isotope paleotemperature record from the same samples, the gastropod record suggests that Sr/Caswwas slightly higher in the Eocene (˜11.4 ± 3 mmol/mol) than today (˜8.54 mmol/mol) and remained relatively stable from the mid- to late Cenozoic. We compare our gastropod Cenozoic Sr/Casw record with a published turritellid gastropod Sr/Casw record and other published biogenic (benthic foraminifera, fossil fish teeth) and inorganic precipitate (calcite veins) Sr/Caswrecords. Once the uncertainties with our gastropod-derived Sr/Casw are taken into account the Sr/Casw record agrees reasonably well with biogenic Sr/Caswrecords. Assuming a seawater [Ca] history derived from marine evaporite inclusions, all biogenic-based Sr/Casw reconstructions imply decreasing seawater [Sr] through the Cenozoic, whereas the calcite vein Sr/Casw reconstruction implies increasing [Sr] through the Cenozoic. We apply a simple geochemical model to examine the implications of divergence among these seawater [Sr] reconstructions and suggest that the interpretation and uncertainties associated with the gastropod and calcite vein proxies need to be revisited. Used in conjunction with records of carbonate depositional fluxes, our favored seawater Sr/Ca scenarios point to a significant increase in the proportion of aragonite versus calcite deposition in shelf sediments from the Middle Miocene, coincident with the proliferation of coral reefs. We propose that this occurred at least 10 million years after the seawater Mg/Ca threshold was passed, and was instead aided by declining levels of atmospheric carbon dioxide.
NASA's Evolutionary Xenon Thruster (NEXT) Ion Propulsion System Information Summary
Pencil, Eirc S.; Benson, Scott W.
2008-01-01
This document is a guide to New Frontiers mission proposal teams. The document describes the development and status of the NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system (IPS) technology, its application to planetary missions, and the process anticipated to transition NEXT to the first flight mission.
Mission and System Advantages of Iodine Hall Thrusters
Dankanich, John W.; Szabo, James; Pote, Bruce; Oleson, Steve; Kamhawi, Hani
2014-01-01
The exploration of alternative propellants for Hall thrusters continues to be of interest to the community. Investments have been made and continue for the maturation of iodine based Hall thrusters. Iodine testing has shown comparable performance to xenon. However, iodine has a higher storage density and resulting higher ?V capability for volume constrained systems. Iodine's vapor pressure is low enough to permit low-pressure storage, but high enough to minimize potential adverse spacecraft-thruster interactions. The low vapor pressure also means that iodine does not condense inside the thruster at ordinary operating temperatures. Iodine is safe, it stores at sub-atmospheric pressure, and can be stored unregulated for years on end; whether on the ground or on orbit. Iodine fills a niche for both low power (10kW) electric propulsion regimes. A range of missions have been evaluated for direct comparison of Iodine and Xenon options. The results show advantages of iodine Hall systems for both small and microsatellite application and for very large exploration class missions.
Experimental results of an iodine plasma in PEGASES gridded thruster
Grondein, Pascaline; Aanesland, Ane
2015-09-01
In the electric gridded thruster PEGASES, both positive and negative ions are expelled after extraction from an ion-ion plasma. This ion-ion plasma is formed downstream a localized magnetic field placed a few centimeters from the ionization region, trapping and cooling down the electron to allow a better attachment to an electronegative gas. For this thruster concept, iodine has emerged as the most attractive option. Heavy, under diatomic form and therefore good for high thrust, its low ionization threshold and high electronegativity lead to high ion-ion densities and low RF power. After the proof-of-concept of PEGASES using SF6 as propellant, we present here experimental results of an iodine plasma studied inside PEGASES thruster. At solid state at standard temperature and pressure, iodine is heated to sublimate, then injected inside the chamber where the neutral gas is heated and ionized. The whole injection system is heated to avoid deposition on surfaces and a mass flow controller allows a fine control on the neutral gas mass flow. A 3D translation stage inside the vacuum chamber allows volumetric plasma studies using electrostatic probes. The results are also compared with the global model dedicated to iodine as propellant for electric gridded thrusters. This work has been done within the LABEX Plas@par project, and received financial state aid managed by the Agence Nationale de la Recherche, as part of the programme ``Investissements d'avenir.''
Thruster direction controlling of assembled spacecraft based on gimbal suspension
Hongliang Xu; Hai Huang
2016-01-01
The attitude control system design and its control effect are affected considerably by the mass-property pa-rameters of the spacecraft. In the mission of on-orbit servicing, as fuel is expended, or the payloads are added or removed, the center of mass wil be changed in certain axe; conse-quently, some thrusters' directions are deviated from the center of mass (CM) in certain plane. The CM of assembled spacecraft estimation and thruster direction control are studied. Firstly, the attitude dynamics of the assembled spacecraft is established based on the Newton-Euler method. Secondly, the estimation can be identified by the least recursive squares algorithm. Then, a scheme to control the thrusters’ directions is proposed. By using the gimbal instaled at the end of the boom, the angle of the thruster is controled by driving the gimbal; therefore, thrusters can be directed to the CM again. Finaly, numerical simulations are used to verify this scheme. Results of the numerical simulations clearly show that this control scheme is rational and feasible.
Rapid evaluation of ion thruster lifetime using optical emission spectroscopy
Rock, B. A.; Parsons, M. L.; Mantenieks, M. A.
1985-01-01
A major life-limiting phenomenon of electric thrusters is the sputter erosion of discharge chamber components. Thrusters for space propulsion are required to operate for extended periods of time, usually in excess of 10,000 hr. Lengthy and very costly life-tests in high-vacuum facilities have been required in the past to determine the erosion rates of thruster components. Alternative methods for determining erosion rates which can be performed in relatively short periods of time at considerably lower costs are studied. An attempt to relate optical emission intensity from an ion bombarded surface (screen grid) to the sputtering rate of that surface is made. The model used a kinetic steady-state (KSS) approach, balancing the rates of population and depopulation of ten low-lying excited states of the sputtered molybdenum atom (MoI) with those of the ground state to relate the spectral intensities of the various transitions of the MoI to the population densities. Once this is accomplished, the population density can be related to the sputting rate of the target. Radiative and collisional modes of excitation and decay are considered. Since actual data has not been published for MoI excitation rate and decay constants, semiempirical equations are used. The calculated sputtering rate and intensity is compared to the measured intensity and sputtering rates of the 8 and 30 cm ion thrusters.
Mode Transitions in Magnetically Shielded Hall Effect Thrusters
Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Huang, Wensheng; Kamhawi, Hani; Hofer, Richard R.; Jorns, Benjamin A.; Polk, James E.
2014-01-01
A mode transition study is conducted in magnetically shielded thrusters where the magnetic field magnitude is varied to induce mode transitions. Three different oscillatory modes are identified with the 20-kW NASA-300MS-2 and the 6-kW H6MS: Mode 1) global mode similar to unshielded thrusters at low magnetic fields, Mode 2) cathode oscillations at nominal magnetic fields, and Mode 3) combined spoke, cathode and breathing mode oscillations at high magnetic fields. Mode 1 exhibits large amplitude, low frequency (1-10 kHz), breathing mode type oscillations where discharge current mean value and oscillation amplitude peak. The mean discharge current is minimized while thrust-to-power and anode efficiency are maximized in Mode 2, where higher frequency (50-90 kHz), low amplitude, cathode oscillations dominate. Thrust is maximized in Mode 3 and decreases by 5-6% with decreasing magnetic field strength. The presence or absence of spokes and strong cathode oscillations do not affect each other or discharge current. Similar to unshielded thrusters, mode transitions and plasma oscillations affect magnetically shielded thruster performance and should be characterized during system development.
STS-39: OMS Pod Thruster Removal/Replace
1991-01-01
Shown is the removal and replacement of the Discovery's orbital maneuvering systems (OMS) pod thruster. The OMS engine will be used to propel Discovery north, off of its previous orbital groundtrack, without changing the spacecraft's altitude. A burn with this lateral effect is known as "out-of-plane."
Thermal stability of the krypton Hall effect thruster
Szelecka Agnieszka
2017-03-01
Full Text Available The Krypton Large IMpulse Thruster (KLIMT ESA/PECS project, which has been implemented in the Institute of Plasma Physics and Laser Microfusion (IPPLM and now is approaching its final phase, was aimed at incremental development of a ~500 W class Hall effect thruster (HET. Xenon, predominantly used as a propellant in the state-of-the-art HETs, is extremely expensive. Krypton has been considered as a cheaper alternative since more than fifteen years; however, to the best knowledge of the authors, there has not been a HET model especially designed for this noble gas. To address this issue, KLIMT has been geared towards operation primarily with krypton. During the project, three subsequent prototype versions of the thruster were designed, manufactured and tested, aimed at gradual improvement of each next exemplar. In the current paper, the heat loads in new engine have been discussed. It has been shown that thermal equilibrium of the thruster is gained within the safety limits of the materials used. Extensive testing with both gases was performed to compare KLIMT’s thermal behaviour when supplied with krypton and xenon propellants.
Simulations of a Plasma Thruster Utilizing the FRC Configuration
Rognlien, T. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cohen, B. I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-10-10
This report describes work performed by LLNL to model the behavior and performance of a reverse-field configuration (FRC) type of plasma device as a plasma thruster as summarized by Razin et al. [1], which also describes the MNX device at PPPL used to study this concept.
Chinese Primary Standard Seawater: Stability checks and comparisons with IAPSO Standard Seawater
Li, Yanan; Luo, Yan; Kang, Ying; Yu, Tao; Wang, Aijun; Zhang, Chuan
2016-07-01
The authors give a brief introduction to the Chinese Primary Standard Seawater, with a description of its preparation procedures. IAPSO Standard Seawater (IAPSO SSW), was taken as a stable reference in the stability check of Chinese Primary Standard Seawater (CP SSW), and linear regression model as well as hypothesis testing were introduced into the analysis of check results; a demonstration check of CP SSW (batch number P8) achieved a positive conclusion. In comparisons of several batches of these two kinds of standard seawater on Practical Salinity, identical seawater samples from a homogeneous source were measured repeatedly. To evaluate the comparison results, performance criteria referred to as En numbers were adopted, the maximum of which was 0.42, indicating that no significant differences lay between these two kinds of SSWs when used to determine Practical Salinity. Measures taken to assure the reliability of measurement results are presented.
RAPID DETERMINATION OF RADIOSTRONTIUM IN SEAWATER SAMPLES
Maxwell, S.
2013-01-16
A new method for the determination of radiostrontium in seawater samples has been developed at the Savannah River National Laboratory (SRNL) that allows rapid preconcentration and separation of strontium and yttrium isotopes in seawater samples for measurement. The new SRNL method employs a novel and effective pre-concentration step that utilizes a blend of calcium phosphate with iron hydroxide to collect both strontium and yttrium rapidly from the seawater matrix with enhanced chemical yields. The pre-concentration steps, in combination with rapid Sr Resin and DGA Resin cartridge separation options using vacuum box technology, allow seawater samples up to 10 liters to be analyzed. The total {sup 89}Sr + {sup 90}Sr activity may be determined by gas flow proportional counting and recounted after ingrowth of {sup 90}Y to differentiate {sup 89}Sr from {sup 90}Sr. Gas flow proportional counting provides a lower method detection limit than liquid scintillation or Cerenkov counting and allows simultaneous counting of samples. Simultaneous counting allows for longer count times and lower method detection limits without handling very large aliquots of seawater. Seawater samples up to 6 liters may be analyzed using Sr Resin for {sup 89}Sr and {sup 90}Sr with a Minimum Detectable Activity (MDA) of 1-10 mBq/L, depending on count times. Seawater samples up to 10 liters may be analyzed for {sup 90}Sr using a DGA Resin method via collection and purification of {sup 90}Y only. If {sup 89}Sr and other fission products are present, then {sup 91}Y (beta energy 1.55 MeV, 58.5 day half-life) is also likely to be present. {sup 91}Y interferes with attempts to collect {sup 90}Y directly from the seawater sample without initial purification of Sr isotopes first and {sup 90}Y ingrowth. The DGA Resin option can be used to determine {sup 90}Sr, and if {sup 91}Y is also present, an ingrowth option with using DGA Resin again to collect {sup 90}Y can be performed. An MDA for {sup 90}Sr of <1 m
Magnetoplasmadynamic electric propulsion thruster behavior at the hundred megawatt level
Marriott, Darin William
Characteristic measurements were made of a hundred megawatt modified helium inverse pinch switch and compared against numerical modeling and theoretically expected behavior. Thruster voltage was measured for currents between three and three hundred kilo amps and for mass flow rates between 0.96 and 40 grams per second. From that, characteristic voltage, power, and resistance curves were generated. Electron temperature measurements made inside the plasma flow using triple Langmuir probes were found to be between three and thirty electron volts. General expected MPD thruster behavior, such as decreasing resistance with increasing mass flow rate, were confirmed. The quasi steady assumption was studied between 1.5 and 1.7 milliseconds and found to be appropriate. A theoretical model, based on integrating the magnetic field to determine thrust, as for an MPD thruster, was used to estimate fall voltages, pumping coefficients, and specific impulse. An empirical model for thruster voltage was then created to estimate the behavior of voltage as a function of the similarity parameter. The two models were then put together and found to be self consistent with the experimental data. Three sources of power loss were estimated given the experimental and theoretical model. The power lost due to fall voltage mechanisms was calculated from the theoretical model and the input current as a function of time. The ionization losses were estimated using a worst case scenario of complete double ionization of the input helium mass flow rate as a function of time. Thermal losses were calculated from the electron temperature and the input mass flow rate. Total temperature, specific impulse, and efficiency measurements were all presented as a function of a similarity parameter in line with MPD theory. Basic MPD thruster behavior was confirmed. Suggestions were made for future continuation of the project.
Carbon Back Sputter Modeling for Hall Thruster Testing
Gilland, James H.; Williams, George J.; Burt, Jonathan M.; Yim, John Tamin
2016-01-01
Lifetime requirements for electric propulsion devices, including Hall Effect thrusters, are continually increasing, driven in part by NASA's inclusion of this technology in it's exploration architecture. NASA will demonstrate high-power electric propulsion system on the Solar Electric Propulsion Technology Demonstration Mission (SEP TDM). The Asteroid Redirect Robotic mission is one candidate SEP TDM, which is projected to require tens of thousands of thruster life. As thruster life is increased, for example through the use of improved magnetic field designs, the relative influence of facility effects increases. One such effect is the sputtering and redeposition, or back sputter, of facility materials by the high energy thruster plumes. In support of wear testing for the Hall Effect Rocket with Magnetic Shielding (HERMeS) project, the back sputter from a Hall effect thruster plume has been modeled for the NASA Glenn Research Center's Vacuum Facility 5. The predicted wear at a near-worst case condition of 600 V, 12.5 kW was found to be on the order of 1 micron/kh in a fully carbon-lined chamber. A more detailed numerical Monte Carlo code was also modified to estimate back sputter for a detailed facility and pumping configuration. This code demonstrated similar back sputter rate distributions, but is not yet accurately modeling the magnitudes. The modeling has been benchmarked to recent HERMeS wear testing, using multiple microbalance measurements. These recent measurements have yielded values on the order of 1.5 - 2 micron/kh at 600 V and 12.5 kW.
Comparisons in Performance of Electromagnet and Permanent-Magnet Cylindrical Hall-Effect Thrusters
Polzin, K. A.; Raitses, Y.; Gayoso, J. C.; Fisch, N. J.
2010-01-01
Three different low-power cylindrical Hall thrusters, which more readily lend themselves to miniaturization and low-power operation than a conventional (annular) Hall thruster, are compared to evaluate the propulsive performance of each. One thruster uses electromagnet coils to produce the magnetic field within the discharge channel while the others use permanent magnets, promising power reduction relative to the electromagnet thruster. A magnetic screen is added to the permanent magnet thruster to improve performance by keeping the magnetic field from expanding into space beyond the exit of the thruster. The combined dataset spans a power range from 50-350 W. The thrust levels over this range were 1.3-7.3 mN, with thruster efficiencies and specific impulses spanning 3.5-28.7% and 400-1940 s, respectively. The efficiency is generally higher for the permanent magnet thruster with the magnetic screen, while That thruster s specific impulse as a function of discharge voltage is comparable to the electromagnet thruster.
Improve seawater cooling with titanium finned tubes
O' Donnell J. (High Performance Tube, Inc., Warren, NJ (United States))
1992-10-01
Seawater offers an endless supply of cooling water for these coastal processing facilities. But users must address seawater's corrosive nature in selecting construction materials for heat exchangers. Copper-nickel or carbon steel tubing fails continually under seawater service. This paper reports that titanium tubes, once thought to be too expensive a material for heat exchanger tubing, offer a unique combination of high material strength, excellent resistance to corrosion, and endurance to erosion by seawater. Titanium's superior physical properties in combination with enhanced surface area of low finned tubing perform the same heat duty with half the lineal footage of traditional heat exchanger tubes. High density low finned tubes multiply heat transfer capacity by a factor of two compared to plain tube. The technology applies in retrofit and original equipment manufacture (OEM) situations. It works best when the ratio of heat transfer coefficients is 2:1 or higher between the seawater coolant and shellside flow being cooled.
Magnetic moment nonconservation in magnetohydrodynamic turbulence models.
Dalena, S; Greco, A; Rappazzo, A F; Mace, R L; Matthaeus, W H
2012-07-01
The fundamental assumptions of the adiabatic theory do not apply in the presence of sharp field gradients or in the presence of well-developed magnetohydrodynamic turbulence. For this reason, in such conditions the magnetic moment μ is no longer expected to be constant. This can influence particle acceleration and have considerable implications in many astrophysical problems. Starting with the resonant interaction between ions and a single parallel propagating electromagnetic wave, we derive expressions for the magnetic moment trapping width Δμ (defined as the half peak-to-peak difference in the particle magnetic moments) and the bounce frequency ω(b). We perform test-particle simulations to investigate magnetic moment behavior when resonance overlapping occurs and during the interaction of a ring-beam particle distribution with a broadband slab spectrum. We find that the changes of magnetic moment and changes of pitch angle are related when the level of magnetic fluctuations is low, δB/B(0) = (10(-3),10(-2)), where B(0) is the constant and uniform background magnetic field. Stochasticity arises for intermediate fluctuation values and its effect on pitch angle is the isotropization of the distribution function f(α). This is a transient regime during which magnetic moment distribution f(μ) exhibits a characteristic one-sided long tail and starts to be influenced by the onset of spatial parallel diffusion, i.e., the variance grows linearly in time as in normal diffusion. With strong fluctuations f(α) becomes completely isotropic, spatial diffusion sets in, and the f(μ) behavior is closely related to the sampling of the varying magnetic field associated with that spatial diffusion.
Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity
Font José A.
2008-09-01
Full Text Available This article presents a comprehensive overview of numerical hydrodynamics and magnetohydrodynamics (MHD in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003, most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable
On stability criteria for kinetic magnetohydrodynamics
Ramos, J. J.
2016-12-01
The existence of a potential energy functional in the zero-Larmor-radius collisionless plasma theory of Kruskal & Oberman (Phys. Fluids, vol. 1, 1958 p. 275), Rosenbluth & Rostoker (Phys. Fluids, vol. 2, 1959, p. 23) allows us to derive easily sufficient conditions for linear stability. However, this kinetic magnetohydrodynamics (KMHD) theory does not have a self-adjointness property, making it difficult to derive necessary conditions. In particular, the standard methods to prove that an instability follows if some trial perturbation makes the incremental potential energy negative, which rely on the self-adjointness of the force operator or on the existence of a complete basis of normal modes, are not applicable to KMHD. This paper investigates KMHD linear stability criteria based on the time evolution of initial-value solutions, without recourse to the classic bounds or comparison theorems of Kruskal-Oberman and Rosenbluth-Rostoker for the KMHD potential energy. The adopted approach does not solve the kinetic equations by integration along characteristics and does not require that the particle orbits be periodic or nearly periodic. Most importantly, the investigation of a necessary condition for stability does not require the self-adjointness of the force operator or the existence of a complete basis of normal modes. It is thereby shown that stability in isothermal ideal-MHD is a sufficient condition for stability in KMHD and that, with a proviso on the long-time behaviour of oscillations about stable equilibria, stability in the double-adiabatic fluid theory, including the variation of the parallel fluid displacement, would be a necessary condition for stability in KMHD.
Center for Extended Magnetohydrodynamic Modeling Cooperative Agreement
Carl R. Sovinec
2008-02-15
The Center for Extended Magnetohydrodynamic Modeling (CEMM) is developing computer simulation models for predicting the behavior of magnetically confined plasmas. Over the first phase of support from the Department of Energy’s Scientific Discovery through Advanced Computing (SciDAC) initiative, the focus has been on macroscopic dynamics that alter the confinement properties of magnetic field configurations. The ultimate objective is to provide computational capabilities to predict plasma behavior—not unlike computational weather prediction—to optimize performance and to increase the reliability of magnetic confinement for fusion energy. Numerical modeling aids theoretical research by solving complicated mathematical models of plasma behavior including strong nonlinear effects and the influences of geometrical shaping of actual experiments. The numerical modeling itself remains an area of active research, due to challenges associated with simulating multiple temporal and spatial scales. The research summarized in this report spans computational and physical topics associated with state of the art simulation of magnetized plasmas. The tasks performed for this grant are categorized according to whether they are primarily computational, algorithmic, or application-oriented in nature. All involve the development and use of the Non-Ideal Magnetohydrodynamics with Rotation, Open Discussion (NIMROD) code, which is described at http://nimrodteam.org. With respect to computation, we have tested and refined methods for solving the large algebraic systems of equations that result from our numerical approximations of the physical model. Collaboration with the Terascale Optimal PDE Solvers (TOPS) SciDAC center led us to the SuperLU_DIST software library [http://crd.lbl.gov/~xiaoye/SuperLU/] for solving large sparse matrices using direct methods on parallel computers. Switching to this solver library boosted NIMROD’s performance by a factor of five in typical large
Seawater chemistry and the advent of biocalcification
Brennan, S.T.; Lowenstein, T.K.; Horita, J.
2004-01-01
Major ion compositions of primary fluid inclusions from terminal Proterozoic (ca. 544 Ma) and Early Cambrian (ca. 515 Ma) marine halites indicate that seawater Ca2+ concentrations increased approximately threefold during the Early Cambrian. The timing of this shift in seawater chemistry broadly coincides with the "Cambrian explosion," a brief drop in marine 87Sr/86Sr values, and an increase in tectonic activity, suggesting a link between the advent of biocalcification, hydrothermal mid-ocean-ridge brine production, and the composition of seawater. The Early Cambrian surge in oceanic [Ca2+] was likely the first such increase following the rise of metazoans and may have spurred evolutionary changes in marine biota. ?? 2004 Geological Society of America.
Seawater chemistry and the advent of biocalcification
Brennan, Sean T.; Lowenstein, Tim K.; Horita, Juske
2004-06-01
Major ion compositions of primary fluid inclusions from terminal Proterozoic (ca. 544 Ma) and Early Cambrian (ca. 515 Ma) marine halites indicate that seawater Ca2+ concentrations increased approximately threefold during the Early Cambrian. The timing of this shift in seawater chemistry broadly coincides with the “Cambrian explosion,” a brief drop in marine 87Sr/86Sr values, and an increase in tectonic activity, suggesting a link between the advent of biocalcification, hydrothermal mid-ocean-ridge brine production, and the composition of seawater. The Early Cambrian surge in oceanic [Ca2+] was likely the first such increase following the rise of metazoans and may have spurred evolutionary changes in marine biota.
Seawater Chemistry and the Advent of Biocalcification
Brennan, S. T. [U.S. Geological Survey, Menlo Park, CA; Lowenstein, T K. [State University of New York, Binghamton; Horita, Juske [ORNL
2004-01-01
Major ion compositions of primary fluid inclusions from terminal Proterozoic (ca. 544 Ma) and Early Cambrian (ca. 515 Ma) marine halites indicate that seawater Ca{sup 2+} concentrations increased approximately threefold during the Early Cambrian. The timing of this shift in seawater chemistry broadly coincides with the 'Cambrian explosion,' a brief drop in marine {sup 87}Sr/{sup 86}Sr values, and an increase in tectonic activity, suggesting a link between the advent of biocalcification, hydrothermal mid-ocean-ridge brine production, and the composition of seawater. The Early Cambrian surge in oceanic [Ca{sup 2+}] was likely the first such increase following the rise of metazoans and may have spurred evolutionary changes in marine biota.
Flue gas desulphurization (FGD) by seawater
Arce Arce, A.; Baalina Insua, A.; Rodriguez Suarez, E.; Santaballa Lopez, J.A. [Universidad de Santiago de Compostela, Santiago de Compostela (Spain). Dept. de Ingenieria Quimica
1995-12-31
Emission of large sulphur dioxide quantities proceeding from combustion processes is one of the most important sources of environmental pollution. These emissions may be controlled and reduced by means of the flue gases treatment before releasing them into the atmosphere. In this sense, seawater scrubbing process applied in the flue gas desulphurization (FGD) have a great industrial application and constitute an interesting method for atmospheric pollution control. In the seawater scrubbing, SO{sub 2} is absorbed and returned to the sea in the original form of sulphate salts. This paper presents an experimental research on sulphur dioxide scrubbing processes in a packed tower that uses seawater as absorbent agent, with the aim of studying the absorption conditions with different packing and effluent characteristics, in order to understand the real conditions in which FGD occurs. 5 refs., 5 figs., 3 tabs.
Extracting Minerals from Seawater: An Energy Analysis
Ugo Bardi
2010-04-01
Full Text Available The concept of recovering minerals from seawater has been proposed as a way of counteracting the gradual depletion of conventional mineral ores. Seawater contains large amounts of dissolved ions and the four most concentrated metal ones (Na, Mg, Ca, K are being commercially extracted today. However, all the other metal ions exist at much lower concentrations. This paper reports an estimate of the feasibility of the extraction of these metal ions on the basis of the energy needed. In most cases, the result is that extraction in amounts comparable to the present production from land mines would be impossible because of the very large amount of energy needed. This conclusion holds also for uranium as fuel for the present generation of nuclear fission plants. Nevertheless, in a few cases, mainly lithium, extraction from seawater could provide amounts of metals sufficient for closing the cycle of metal use in the economy, provided that an increased level of recycling can be attained.
Nijm, Grace M; Swiryn, Steven; Larson, Andrew C; Sahakian, Alan V
2008-07-01
The magnetohydrodynamic effect generates voltages related to blood flow, which are superimposed on the electrocardiogram (ECG) used for gating during cardiac magnetic resonance imaging (MRI). A method is presented for extracting the magnetohydrodynamic signal from the ECG. The extracted magnetohydrodynamic blood flow potential may be physiologically meaningful due to its relationship to blood flow. Removal of the magnetohydrodynamic voltages from the ECG can potentially lead to improved gating and diagnostically useful ECGs.
Thermal-environmental testing of a 30-cm engineering model thruster
Mirtich, M. J.
1976-01-01
An experimental test program was carried out to document all 30-cm electron bombardment Hg ion bombardment thruster functions and characteristics over the thermal environment of several proposed missions. An engineering model thruster was placed in a thermal test facility equipped with -196 C walls and solar simulation. The thruster was cold soaked and exposed to simulated eclipses lasting in duration from 17 to 72 minutes. The thruster was operated at quarter, to full beam power in various thermal configurations which simulated multiple thruster operation, and was also exposed to 1 and 2 suns solar simulation. Thruster control characteristics and constraints; performance, including thrust magnitude and direction; and structural integrity were evaluated over the range of thermal environments tested.
Thermal-environment testing of a 30-cm engineering model thruster
Mirtich, M. J.
1976-01-01
An experimental test program was carried out to document all 30-cm electron bombardment Hg ion bombardment thruster functions and characteristics over the thermal environment of several proposed missions. An engineering model thruster was placed in a thermal test facility equipped with -196 C walls and solar simulation. The thruster was cold soaked and exposed to simulated eclipses lasting in duration from 17 to 72 minutes. The thruster was operated at quarter, to full beam power in various thermal configurations which simulated multiple thruster operation, and was also exposed to 1 and 2 suns solar simulation. Thruster control characteristics and constraints; performance, including thrust magnitude and direction; and structural integrity were evaluated over the range of thermal environments tested.
Microwave ECR Ion Thruster Development Activities at NASA Glenn Research Center
Foster, John E.; Patterson, Michael J.
2002-01-01
Outer solar system missions will have propulsion system lifetime requirements well in excess of that which can be satisfied by ion thrusters utilizing conventional hollow cathode technology. To satisfy such mission requirements, other technologies must be investigated. One possible approach is to utilize electrodeless plasma production schemes. Such an approach has seen low power application less than 1 kW on earth-space spacecraft such as ARTEMIS which uses the rf thruster the RIT 10 and deep space missions such as MUSES-C which will use a microwave ion thruster. Microwave and rf thruster technologies are compared. A microwave-based ion thruster is investigated for potential high power ion thruster systems requiring very long lifetimes.
Gas-Kinetic BGK Scheme for Three Dimensional Magnetohydrodynamics
Huazhong
2010-01-01
The gas-kinetic theory based flux splitting method has been successfully proposed for solving one- and two-dimensional ideal magnetohydrodynamics by Xu et al.[J. Comput. Phys., 1999; 2000], respectively. This paper extends the kinetic method to solve three-dimensional ideal magnetohydrodynamics equations, where an adaptive parameter η is used to control the numerical dissipation in the flux splitting method.Several numerical examples are given to demonstrate that the proposed method can achieve high numerical accuracy and resolve strong discontinuous waves in three dimensional ideal MHD problems.
Current-sheet formation in incompressible electron magnetohydrodynamics
Ruban, Victor P.
2002-01-01
The nonlinear dynamics of axisymmetric, as well as helical, frozen-in vortex structures is investigated by the Hamiltonian method in the framework of ideal incompressible electron magnetohydrodynamics. For description of current-sheet formation from a smooth initial magnetic field, local and nonl......The nonlinear dynamics of axisymmetric, as well as helical, frozen-in vortex structures is investigated by the Hamiltonian method in the framework of ideal incompressible electron magnetohydrodynamics. For description of current-sheet formation from a smooth initial magnetic field, local...
The hydrodynamic instability of powerful cylindrical magnetohydrodynamic pumps
Valdmane, R.A.; Ulmanis, L.Ya.; Valdamanis, Ya.Ya.
1984-01-01
A numerical calculation is the basis for analyzing the issues of stability of the speed profile in channels of powerful cylindrical magnetohydrodynamic (MGD) pumps. A one dimensional hydraulic model is used in the calculations. The questions about stability of movement relative to transverse perturbations in speed are discussed. It is shown that at high values of the parameter epsilon and the radius of the channel the movement is unstable with respect to the transverse shifts. The results are of interest for studies of liquid metal magnetohydrodynamic generators.
Cathode-less gridded ion thrusters for small satellites
Aanesland, Ane
2016-10-01
Electric space propulsion is now a mature technology for commercial satellites and space missions that requires thrust in the order of hundreds of mN, and with available electric power in the order of kW. Developing electric propulsion for SmallSats (1 to 500 kg satellites) are challenging due to the small space and limited available electric power (in the worst case close to 10 W). One of the challenges in downscaling ion and Hall thrusters is the need to neutralize the positive ion beam to prevent beam stalling. This neutralization is achieved by feeding electrons into the downstream space. In most cases hollow cathodes are used for this purpose, but they are fragile and difficult to implement, and in particular for small systems they are difficult to downscale, both in size and electron current. We describe here a new alternative ion thruster that can provide thrust and specific impulse suitable for mission control of satellites as small as 3 kg. The originality of our thruster lies in the acceleration principles and propellant handling. Continuous ion acceleration is achieved by biasing a set of grids with Radio Frequency voltages (RF) via a blocking capacitor. Due to the different mobility of ions and electrons, the blocking capacitor charges up and rectifies the RF voltage. Thus, the ions are accelerated by the self-bias DC voltage. Moreover, due to the RF oscillations, the electrons escape the thruster across the grids during brief instants in the RF period ensuring a full space charge neutralization of the positive ion beam. Due to the RF nature of this system, the space charge limited current increases by almost a factor of 2 compared to classical DC biased grids, which translates into a specific thrust two times higher than for a similar DC system. This new thruster is called Neptune and operates with only one RF power supply for plasma generation, ion acceleration and electron neutralization. We will present the downscaling of this thruster to a 3cm
2015-04-01
Field (RMF) to produce large plasma currents inside a conical thruster creating a field-reversed configuration (FRC) plasmoid that is magnetically...in turn charges a high-Q capacitor. Connected in series with the thruster antenna, the resonant RLC circuit oscillates at high frequency with a...Field (RMF) to produce large plasma currents inside a conical thruster creating a field-reversed configuration (FRC) plasmoid that is magnetically
Magneto-hydrodynamics Simulation in Astrophysics
Pang, Bijia
2011-08-01
Magnetohydrodynamics (MHD) studies the dynamics of an electrically conducting fluid under the influence of a magnetic field. Many astrophysical phenomena are related to MHD, and computer simulations are used to model these dynamics. In this thesis, we conduct MHD simulations of non-radiative black hole accretion as well as fast magnetic reconnection. By performing large scale three dimensional parallel MHD simulations on supercomputers and using a deformed-mesh algorithm, we were able to conduct very high dynamical range simulations of black hole accretion of Sgr A* at the Galactic Center. We find a generic set of solutions, and make specific predictions for currently feasible observations of rotation measure (RM). The magnetized accretion flow is subsonic and lacks outward convection flux, making the accretion rate very small and having a density slope of around -1. There is no tendency for the flows to become rotationally supported, and the slow time variability of th! e RM is a key quantitative signature of this accretion flow. We also provide a constructive numerical example of fast magnetic reconnection in a three-dimensional periodic box. Reconnection is initiated by a strong, localized perturbation to the field lines and the solution is intrinsically three-dimensional. Approximately 30% of the magnetic energy is released in an event which lasts about one Alfvén time, but only after a delay during which the field lines evolve into a critical configuration. In the co-moving frame of the reconnection regions, reconnection occurs through an X-like point, analogous to the Petschek reconnection. The dynamics appear to be driven by global flows rather than local processes. In addition to issues pertaining to physics, we present results on the acceleration of MHD simulations using heterogeneous computing systems te{shan2006heterogeneous}. We have implemented the MHD code on a variety of heterogeneous and multi-core architectures (multi-core x86, Cell, Nvidia and
Summary of seawater chemistry taken from the beach pump intakes
National Oceanic and Atmospheric Administration, Department of Commerce — The database contains recorded parameters of seawater quality from samples taken in sea turtle rearing tanks and also a daily sample of the incoming seawater from...
Biologically mediated dissolution of volcanic glass in seawater
Staudigel, H; Yayanos, A; Chastain, R; Davies, G.T.; Verdurmen, E.A Th; Schiffmann, P; Bourcier, R; de Baar, H.J.W.
1998-01-01
We studied the effects of biological mediation on the dissolution of basaltic glass in seawater. Experiments with typical seawater microbial populations were contrasted with a sterile control, and reactions were monitored chemically and isotopically. Biologically mediated experiments produce twice
Colloid Thruster for Attitude Control Systems (ACS) and Tip-off Control Applications Project
National Aeronautics and Space Administration — Busek proposes to develop and deliver a complete engineering model colloid thruster system, capable of thrust levels and lifetimes required for spacecraft...
Low-Cost High-Performance Hall Thruster Support System Project
National Aeronautics and Space Administration — Colorado Power Electronics (CPE) has built an innovative modular power processing unit (PPU) for Hall Thrusters, including discharge, magnet, heater and keeper...
Carbon Nanotube Based Electric Propulsion Thruster with Low Power Consumption Project
National Aeronautics and Space Administration — Field emission electric propulsion (FEEP) thrusters have gained considerable attention for spacecrafts disturbance compensation because of excellent characteristics....
Plasma Characterization of Hall Thruster with Active and Passive Segmented Electrodes
Raitses, Y.; Staack, D.; Fisch, N.J.
2002-09-04
Non-emissive electrodes and ceramic spacers placed along the Hall thruster channel are shown to affect the plasma potential distribution and the thruster operation. These effects are associated with physical properties of the electrode material and depend on the electrode configuration, geometry and the magnetic field distribution. An emissive segmented electrode was able to maintain thruster operation by supplying an additional electron flux to sustain the plasma discharge between the anode and cathode neutralizer. These results indicate the possibility of new configurations for segmented electrode Hall thruster.
Low Frequency Plasma Oscillations in a 6-kW Magnetically Shielded Hall Thruster
Jorns, Benjamin A.; Hofery, Richard R.
2013-01-01
The oscillations from 0-100 kHz in a 6-kW magnetically shielded thruster are experimen- tally characterized. Changes in plasma parameters that result from the magnetic shielding of Hall thrusters have the potential to significantly alter thruster transients. A detailed investigation of the resulting oscillations is necessary both for the purpose of determin- ing the underlying physical processes governing time-dependent behavior in magnetically shielded thrusters as well as for improving thruster models. In this investigation, a high speed camera and a translating ion saturation probe are employed to examine the spatial extent and nature of oscillations from 0-100 kHz in the H6MS thruster. Two modes are identified at 8 kHz and 75-90 kHz. The low frequency mode is azimuthally uniform across the thruster face while the high frequency oscillation is concentrated close to the thruster centerline with an m = 1 azimuthal dependence. These experimental results are discussed in the context of wave theory as well as published observations from an unshielded variant of the H6MS thruster.
Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.
2011-01-01
In a proof-of-principle effort to demonstrate the feasibility of magnetically shielded (MS) Hall thrusters, an existing laboratory thruster has been modified with the guidance of physics-based numerical simulation. When operated at a discharge power of 6-kilowatts the modified thruster has been designed to reduce the total energy and flux of ions to the channel insulators by greater than 1 and greater than 3 orders of magnitude, respectively. The erosion rates in this MS thruster configuration are predicted to be at least 2-4 orders of magnitude lower than those in the baseline (BL) configuration. At such rates no detectable erosion is expected to occur.
Photochemical oxidation of dimethylsulfide in seawater
无
2007-01-01
Dimethylsulfide (DMS) is generally thought to be lost from the surface oceans by evasion into the atmosphere as well as consumption by microbe. However, photochemical process might be important in the removal of DMS in the oceanic photic zone. A kinetic investigation into the photochemical oxidation of DMS in seawater was performed. The photo-oxidation rates of DMS were influenced by various factors including the medium, dissolved oxygen, photosensitizers, and heavy metal ions. The photo-oxidation rates of DMS were higher in seawater than in distilled water, presumably due to the effect of salinity existing in seawater. Three usual photosensitizers (humic acid, fulvic acid and anthroquinone), especially in the presence of oxygen, were able to enhance the photo-oxidation rate of DMS, with the fastest rate observed with anthroquinone. Photo-oxidation of DMS followed first order reaction kinetics with the rate constant ranging from 2.5×10-5 to 34.3×10-5 s-1. Quantitative analysis showed that approximately 32% of the photochemically removed DMS was converted to dimethylsulfoxide. One of the important findings was that the presence of Hg2+ could markedly accelerate the photo-oxidation rate of DMS in seawater. The mechanism of mercuric catalysis for DMS photolysis was suggested according to the way of CTTM (charge transfer to metal) of DMS-Hg2+ complex.
Stability of phosphorus species in seawater
DileepKumar, M.; Somasundar, K.; Rajendran, A.
couples in acidic and basic solutions, respectively, in anoxic conditions. H sub(3) PO sub(4)/H sub(4) P sub(2) O sub(6) and H sub(3) PO sub(2)/P super(0) are the important reducing couples in seawater. HPO and H PO are the stable ones in oxic and anoxic...
Geometrical characterization and performance optimization of monopropellant thruster injector
T.R. Nada
2012-12-01
Full Text Available The function of the injector in a monopropellant thruster is to atomize the liquid hydrazine and to distribute it over the catalyst bed as uniformly as possible. A second objective is to place the maximum amount of catalyst in contact with the propellant in as short time as possible to minimize the starting transient time. Coverage by the spray is controlled mainly by cone angle and diameter of the catalyst bed, while atomization quality is measured by the Sauter Mean Diameter, SMD. These parameters are evaluated using empirical formulae. In this paper, two main types of injectors are investigated; plain orifice and full cone pressure swirl injectors. The performance of these two types is examined for use with blow down monopropellant propulsion system. A comprehensive characterization is given and design charts are introduced to facilitate optimizing the performance of the injector. Full-cone injector is a more suitable choice for monopropellant thruster and it might be available commercially.
Convective heat flux in a laser-heated thruster
Wu, P. K. S.
1978-01-01
An analysis is performed to estimate the convective heating to the wall in a laser-heated thruster on the basis of a solution of the laminar boundary-layer equations with variable transport properties. A local similiarity approximation is used, and it is assumed that the gas phase is in equilibrium. For the thruster described by Wu (1976), the temperature and pressure distributions along the nozzle are obtained from the core calculation. The similarity solutions and heat flux are obtained from the freestream conditions of the boundary layer, in order to determine if it is necessary to couple the boundary losses directly to the core calculation. In addition, the effects of mass injection on the convective heat transfer across the boundary layer with large density-viscosity product gradient are examined.
Controllability of an underactuated spacecraft with one thruster under disturbance
Dong-Xia Wang; Ying-Hong Jia; Lei Jin; Hai-Chao Gui; Shi-Jie Xu
2012-01-01
For an underactuated spacecraft using only one thruster,the attitude controllability with respect to the orbit frame is studied in the presence of periodical oscillation disturbance,which provides a preconditional guide on designing control law for underactuated attitude control system.Firstly,attitude dynamic model was established for an underactuated spacecraft,and attitude motion was described using the special orthogonal group (SO (3)).Secondly,Liouville theorem was used to confirm that the flow generated by the drift vector of the underactuated attitude control system is volume-preserving.Furthermore,according to Poincaré's recurrence theorem,we draw conclusions that this drift field is weakly positively poisson stable (WPPS).Thirdly,the sufficient and necessary condition of controllability was obtained on the basis of lie algebra rank condition (LARC).Finally,the controllable conditions were analyzed and simulated in different cases of inertia matrix with the installed position of thruster.
The BMDO Thruster-on-a-Pallet Program
Caveny, Leonard H.; Curran, Francis M.; Sankovic, John M.; Allen, Douglas M.; Brophy, John R.; Garner, Charles
1995-01-01
The Ballistic Missile Defense Organization sponsors an aggressive program to develop and demonstrate electric propulsion and space power technologies for future missions. This program supports a focused effort to design, fabricate, and space qualify a Russian Hall thruster system-on-a-pallet ready to take advantage of a near-term flight opportunity. The Russian Hall Effect Thruster Technology (RHETT) program will demonstrate an integrated pallet design in late FY95. The program also includes a parallel effort to develop advanced Solar Concentrator Arrays with Refractive Linear Element Technology (SCARLET). This synergistic technology will be demonstrated in a flight experiment this summer on the Comet satellite. This paper provides an overview of the RHETT and SCARLET programs with an emphasis on electric propulsion, recent progress, and near-term program plans.
Secular decline of seawater calcium increases seawater buffering and pH
Hain, M.; Sigman, D. M.; Higgins, J. A.; Haug, G. H.
2015-12-01
Reconstructed changes in seawater calcium and magnesium concentration ([Ca2+], [Mg2+]) predictably affect the ocean's acid/base and carbon chemistry. Yet inaccurate formulations of chemical equilibrium "constants" are currently in use to account for these changes. Here we develop an efficient implementation of the MIAMI Ionic Interaction Model (Millero and Pierrot, 1998) to predict all chemical equilibrium constants required for carbon chemistry calculations under variable [Ca2+] and [Mg2+] (Hain et al., 2015). We investigate the impact of [Ca2+] and [Mg2+] on the relationships among the ocean's pH, CO2, dissolved inorganic carbon (DIC), saturation state of CaCO3 (Ω), and buffer capacity. Increasing [Ca2+] and/or [Mg2+] enhances "ion pairing," which increases seawater buffering by increasing the concentration ratio of total to "free" (uncomplexed) carbonate ion. An increase in [Ca2+], however, also causes a decline in carbonate ion to maintain a given Ω, thereby overwhelming the ion pairing effect and decreasing seawater buffering. Given the reconstructions of Eocene [Ca2+] and [Mg2+] ([Ca2+]~20mM; [Mg2+]~30 mM), Eocene seawater would have required essentially the same DIC as today to simultaneously explain a similar-to-modern Ω and the estimated Eocene atmospheric CO2 of ~1000 ppm. During the Cretaceous, at ~4 times modern [Ca2+], ocean buffering would have been at a minimum. Overall, during times of high seawater [Ca2+], CaCO3 saturation, pH, and atmospheric CO2 were more susceptible to perturbations of the global carbon cycle. For example, given both Eocene and Cretaceous seawater [Ca2+] and [Mg2+], a doubling of atmospheric CO2 would require less carbon addition to the ocean/atmosphere system than under modern seawater composition. Moreover, increase in seawater buffering since the Cretaceous may have been a driver of evolution by raising energetic demands of biologically controlled calcification and CO2 concentration mechanisms that aid photosynthesis.
Thrusters Pairing Guidelines for Trajectory Corrections of Projectiles
2011-01-12
Gill, J., “Experimental Investigation of Super- and Hypersonic Jet Interaction on Missile Configurations,” Journal of Spacecraft and Rockets, Vol. 35...Thrusters Pairing Guidelines for Trajectory Corrections of Projectiles Daniel Corriveau∗ Canadian Department of National Defence , Quebec City, Quebec...course correction process for a 30-mm fin-stabilized air- defense projectile and a standard 105-mm spin-stabilized artillery shell are presented
Investigation of Hall Effect Thruster Channel Wall Erosion Mechanisms
2016-08-01
mentorship, humor, and amazing barbecue parties. I would also like to thank my thesis committee, Dr. Yim, Prof Simon, and Dr. Ready for taking the...indicate that BN is depleted relative to silica in the highly eroded region of the thruster. This surprising result mirrors that obtained by Garnier...predict the decrease in BN in the HE region. Grain ejection provides a plausible mechanism that could explain this surprising observation. 3.6. Summary
Hall Effect Thruster Plume Contamination and Erosion Study
Jaworske, Donald A.
2000-01-01
The objective of the Hall effect thruster plume contamination and erosion study was to evaluate the impact of a xenon ion plume on various samples placed in the vicinity of a Hall effect thruster for a continuous 100 hour exposure. NASA Glenn Research Center was responsible for the pre- and post-test evaluation of three sample types placed around the thruster: solar cell cover glass, RTV silicone, and Kapton(R). Mass and profilometer), were used to identify the degree of deposition and/or erosion on the solar cell cover glass, RTV silicone, and Kapton@ samples. Transmittance, reflectance, solar absorptance, and room temperature emittance were used to identify the degree of performance degradation of the solar cell cover glass samples alone. Auger spectroscopy was used to identify the chemical constituents found on the surface of the exposed solar cell cover glass samples. Chemical analysis indicated some boron nitride contamination on the samples, from boron nitride insulators used in the body of the thruster. However, erosion outweighted contamination. All samples exhibited some degree of erosion. with the most erosion occurring near the centerline of the plume and the least occurring at the +/- 90 deg positions. For the solar cell cover glass samples, erosion progressed through the antireflective coating and into the microsheet glass itself. Erosion occurred in the solar cell cover glass, RTV silicone and Kapton(R) at different rates. All optical properties changed with the degree of erosion, with solar absorptance and room temperature emittance increasing with erosion. The transmittance of some samples decreased while the reflectance of some samples increased and others decreased. All results are consistent with an energetic plume of xenon ions serving as a source for erosion.
Vacuum arc plasma thrusters with inductive energy storage driver
Krishnan, Mahadevan (Inventor)
2009-01-01
A plasma thruster with a cylindrical inner and cylindrical outer electrode generates plasma particles from the application of energy stored in an inductor to a surface suitable for the formation of a plasma and expansion of plasma particles. The plasma production results in the generation of charged particles suitable for generating a reaction force, and the charged particles are guided by a magnetic field produced by the same inductor used to store the energy used to form the plasma.
Iodine Plasma Species Measurements in a Hall Effect Thruster Plume
2013-05-01
60 90 0 2 4 6 8 Current (mA/cm^2) A n g l e ( d e g ) Xenon Iodine 500 V, 2 A, I2 Presented at 2012 JPC 33 Distribution A: Approved for public...Over 1 hour of operation on iodine – Additional 1/2 hour with thruster flowing Xe – Current up to ~50 A into anode Presented at 2012 JPC
Decay rates of the magnetohydrodynamic model for quantum plasmas
Pu, Xueke; Xu, Xiuli
2017-02-01
In this paper, we consider the quantum magnetohydrodynamic model for quantum plasmas. We prove the optimal decay rates for the solution to the constant state in the whole space in the Lp-norm with 2≤ p≤ 6 and its first derivatives in L2-norm. The proof is based on the optimal decay of the linearized equation and nonlinear energy estimates.
Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics
Keppens, R.; Meliani, Z.; van Marle, A. J.; Delmont, P.; Vlasis, A.; van der Holst, B.
2012-01-01
Relativistic hydro and magnetohydrodynamics provide continuum fluid descriptions for gas and plasma dynamics throughout the visible universe. We present an overview of state-of-the-art modeling in special relativistic regimes, targeting strong shock-dominated flows with speeds approaching the speed
A high current density DC magnetohydrodynamic (MHD) micropump
Homsy, Alexandra; Koster, Sander; Eijkel, Jan C.T.; Berg, van den Albert; Lucklum, F.; Verpoorte, E.; Rooij, de Nico F.
2005-01-01
This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-µm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined
A high current density DC magnetohydrodynamic (MHD) micropump
Homsy, A; Koster, Sander; Eijkel, JCT; van den Berg, A; Lucklum, F; Verpoorte, E; de Rooij, NF
2005-01-01
This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-mu m-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachin
Parallel magnetohydrodynamics on the Cray T3D
Meijer, P. M.; Poedts, S.; Goedbloed, J. P.
1996-01-01
The equations of magnetohydrodynamics (MHD) are discussed in the framework of parallel computing. Both linear and nonlinear MHD models are addressed. Special attention is given to the parallellisation of the kernels of the existing sequential MHD codes. These kernels involve matrix-vector multiplica
Fast magnetic and turbulent-wave dynamos in electron magnetohydrodynamics
Lakhin, V. P.; Moiseev, S. S.; Schep, T. J.
2000-01-01
The influence of inertia on the spontaneous amplification of large-scale perturbations by electron magnetohydrodynamic (EMHD) turbulence is studied in a 2 1/2 -dimensional(2 1/2 -D) model. It is shown that electron inertia results in the modification of ct-like effects, which are due to the helicity
Instability of the magnetohydrodynamics system at vanishing Reynolds number
Bouya, Ismaël
2013-12-01
The aim of this note is to study the dynamo properties of the magnetohydrodynamics system at vanishing R m . Improving the analysis in Gérard-Varet (SIAM J Math Anal 37(3):815-840, 2006), we shall establish a generic Lyapunov instability result.
On the continua in two-dimensional nonadiabatic magnetohydrodynamic spectra
De Ploey, A.; Van der Linden, R. A. M.; Belien, A. J. C.
2000-01-01
The equations for the continuous subspectra of the linear magnetohydrodynamic (MHD) normal modes spectrum of two-dimensional (2D) plasmas are derived in general curvilinear coordinates, taking nonadiabatic effects in the energy equation into account. Previously published derivations of continuous sp
THE FORMATION OF SHOCK WAVES OF THE EQUATIONS OF MAGNETOHYDRODYNAMICS
董黎明; 史一蓬
2001-01-01
The property of fluid field of one- dimensional magnetohydrodynamics (MHD)transverse flow after the appearance of singularity is discussed. By the method of iteration,the strong discontinuity (shock wave) and entropy solution are constructed and the estimations on the singularity of the solution near the point of blow- up are obtained.
High—Order Gas—Kinetic Methods for Ideal Magnetohydrodynamics
HuazhongTANG
1999-01-01
This article is to study extension of gas-kinetic theory based flux splitting methods to ideal magnetohydrodynamics(MHD) equations,Uniform high-order gas-kinetic methods are presented,based on TVD type RUnge-Kutta time discretization and technique of the initial reconstruction.The numerical results have been given to show robustness of our schemes.
Estimating Thruster Impulses From IMU and Doppler Data
Lisano, Michael E.; Kruizinga, Gerhard L.
2009-01-01
A computer program implements a thrust impulse measurement (TIM) filter, which processes data on changes in velocity and attitude of a spacecraft to estimate the small impulsive forces and torques exerted by the thrusters of the spacecraft reaction control system (RCS). The velocity-change data are obtained from line-of-sight-velocity data from Doppler measurements made from the Earth. The attitude-change data are the telemetered from an inertial measurement unit (IMU) aboard the spacecraft. The TIM filter estimates the threeaxis thrust vector for each RCS thruster, thereby enabling reduction of cumulative navigation error attributable to inaccurate prediction of thrust vectors. The filter has been augmented with a simple mathematical model to compensate for large temperature fluctuations in the spacecraft thruster catalyst bed in order to estimate thrust more accurately at deadbanding cold-firing levels. Also, rigorous consider-covariance estimation is applied in the TIM to account for the expected uncertainty in the moment of inertia and the location of the center of gravity of the spacecraft. The TIM filter was built with, and depends upon, a sigma-point consider-filter algorithm implemented in a Python-language computer program.
Performance characterization of a permanent-magnet helicon plasma thruster
Takahashi, Kazunori; Charles, Christine; Boswell, Rod
2012-10-01
Helicon plasma thrusters operated at a few kWs of rf power is an active area of an international research. Recent experiments have clarified part of the thrust-generation mechanisms. Thrust components which have been identified include an electron pressure inside the source region and a Lorentz force due to an electron diamagnetic drift current and a radial component of the applied magnetic field. The use of permanent magnets (PMs) instead of solenoids is one of the solutions for improving the thruster efficiency because it does not require electricity for the magnetic nozzle formation. Here the thrust imparted from a permanent-magnet helicon plasma thruster is directly measured using a pendulum thrust balance. The source consists of permanent magnet (PM) arrays, a double turn rf loop antenna powered by a 13.56 MHz rf generator and a glass source tube. The PM arrays provide a magnetic nozzle near the open exit of the source and two configurations, which have maximum field strengths of about 100 and 270 G, are tested. A thrust of 15 mN, specific impulse of 2000 sec and a thrust efficiency of 8 percent are presently obtained for 2 kW of input power, 24 sccm flow rate of argon and the stronger magnetic field configuration.
Two-dimensional model of stationary plasma thruster
Pitchford, L.C.; Boeuf, J.P. [Universite Paul Sabatier, Toulouse (France)
1995-12-31
A stationary plasma thruster, SPT, (also called closed-drift thrusters or Hall thrusters) is an electromagnetic propulseur design which has been developed over the past thirty years in the former USSR. SPT`s are small devices with a thrust greater than 1000 s{sup -1}, and a lifetime of several 1000 hours or more. These properties make the SPT of interest for applications such as satellite station-keeping or orbit transfer. The geometry of the SPT is shown; it consists of a hollow, cylindrical dielectric (typically of several centimeters length and diameter) with a central dielectric rod. A voltage on the order of several 100`s of V is applied at the anode (at one end of the cylinder). The cathode is an externally powered hollow cathode or a hot filament positioned slightly past the exit of the dielectric cylinder. Gas, typically xenon, flows in from around the anode and is ionized by the electrons which are emitted from the cathode. A magnetic field is applied which is mainly in the radial direction. The magnetic strength is such that the electrons tend to be trapped along the magnetic field lines, but the ion trajectories are not significantly influenced by the magnetic field. For these conditions, the current at the anode is several amps. At the exit plane, the xenon is almost fully ionized. The ion flux at the exhaust provides the thrust.
High-Efficiency Hall Thruster Discharge Power Converter
Jaquish, Thomas
2015-01-01
Busek Company, Inc., is designing, building, and testing a new printed circuit board converter. The new converter consists of two series or parallel boards (slices) intended to power a high-voltage Hall accelerator (HiVHAC) thruster or other similarly sized electric propulsion devices. The converter accepts 80- to 160-V input and generates 200- to 700-V isolated output while delivering continually adjustable 300-W to 3.5-kW power. Busek built and demonstrated one board that achieved nearly 94 percent efficiency the first time it was turned on, with projected efficiency exceeding 97 percent following timing software optimization. The board has a projected specific mass of 1.2 kg/kW, achieved through high-frequency switching. In Phase II, Busek optimized to exceed 97 percent efficiency and built a second prototype in a form factor more appropriate for flight. This converter then was integrated with a set of upgraded existing boards for powering magnets and the cathode. The program culminated with integrating the entire power processing unit and testing it on a Busek thruster and on NASA's HiVHAC thruster.
A novel laser ablation plasma thruster with electromagnetic acceleration
Zhang, Yu; Zhang, Daixian; Wu, Jianjun; He, Zhen; Zhang, Hua
2016-10-01
A novel laser ablation plasma thruster accelerated by electromagnetic means was proposed and investigated. The discharge characteristics and thrust performance were tested with different charged energy, structural parameters and propellants. The thrust performance was proven to be improved by electromagnetic acceleration. In contrast with the pure laser propulsion mode, the thrust performance in electromagnetic acceleration modes was much better. The effects of electrodes distance and the off-axis distance between ceramic tube and cathode were tested, and it's found that there were optimal structural parameters for achieving optimal thrust performance. It's indicated that the impulse bit and specific impulse increased with increasing charged energy. In our experiments, the thrust performance of the thruster was optimal in large charged energy modes. With the charged energy 25 J and the use of metal aluminum, a maximal impulse bit of 600 μNs, a specific impulse of approximate 8000 s and thrust efficiency of about 90% were obtained. For the PTFE propellant, a maximal impulse bit of about 350 μNs, a specific impulse of about 2400 s, and thrust efficiency of about 16% were obtained. Besides, the metal aluminum was proven to be the better propellant than PTFE for the thruster.
Experimental studies of anode sheath phenomena in a hall thruster.
Dorf, L. A. (Leonid A.); Fisch, N. J.; Raitses, Yevgeny F.
2004-01-01
Both electron-repelling (negative anode fall) and electron-attracting (positive anode fall) anode sheaths in a Hall thruster were identified experimentally by performing accurate, non-disturbing near-anode measurements with biased and emissive probes. An interesting new phenomenon revealed by the probe measurements is that the anode fall changes from positive to negative upon removal of the dielectric coating, which appears on the anode surface during the course of Hall thruster operation. Probe measurements in a Hall thruster with three different magnetic field configurations show that an anode fall at the clean anode is a function of the radial magnetic field profile inside the channel. A positive anode fall formation mechanism suggested in this work is that: (1) when the anode front surface is coated with dielectric, a discharge current closes to the anode at the surfaces that remain conductive, (2) a total thermal electron current toward the conductive area is significantly smaller than the discharge current, therefore an additional electron flux needs to be attracted toward the conductive surfaces by the electronattracting sheath that appears at these surfaces.
Colletti, E A; Geffner, D; Schlanger, P
1976-02-01
30 children, i.e., 10 children per group, 8 yr. of age, were given an oral stereognostic test. This test of 10 geometric forms varying in shape were developed by NIDR. 47 stimuli pairs were used and 10 pairs were repeated to measure test reliability. Subjects were blindfolded and asked to respond whether Items 1 and 2, presented consecutively, were the same or different. Results indicated that both groups of tongue thrusters with and without interdental lisp scored significantly more poorly than did normal children (t = 4.68, P less than .001; t = 5.00, P less than .001), respectively. There were no significant differences, however, between tongue thrusters with and without interdental lisp (t = .33, P greater than .05). Observations indicated that normal children used the tongue tip more frequently and accurately when discriminating the geometric forms than did the other groups.
Performance of a Permanent-Magnet Cylindrical Hall-Effect Thruster
Polzin, K. A.; Sooby, E. S.; Kimberlin, A. C.; Raites, Y.; Merino, E.; Fisch, N. J.
2009-01-01
The performance of a low-power cylindrical Hall thruster, which more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster, was measured using a planar plasma probe and a thrust stand. The field in the cylindrical thruster was produced using permanent magnets, promising a power reduction over previous cylindrical thruster iterations that employed electromagnets to generate the required magnetic field topology. Two sets of ring-shaped permanent magnets are used, and two different field configurations can be produced by reorienting the poles of one magnet relative to the other. A plasma probe measuring ion flux in the plume is used to estimate the current utilization for the two magnetic topologies. The measurements indicate that electron transport is impeded much more effectively in one configuration, implying higher thrust efficiency. Thruster performance measurements on this configuration were obtained over a power range of 70-350 W and with the cathode orifice located at three different axial positions relative to the thruster exit plane. The thrust levels over this power range were 1.25-6.5 mN, with anode efficiencies and specific impulses spanning 4-21% and 400-1950 s, respectively. The anode efficiency of the permanent-magnet thruster compares favorable with the efficiency of the electromagnet thruster when the power consumed by the electromagnets is taken into account.
DESIGN AND DEVELOPMENT OF AUTO DEPTH CONTROL OF REMOTELY OPERATED VEHICLE USING THRUSTER SYSTEM
F.A. Ali
2014-12-01
Full Text Available Remotely Operated Vehicles are underwater robots designed specifically for surveillance, monitoring and collecting data for underwater activities. In the underwater vehicle industries, the thruster is an important part in controlling the direction, depth and speed of the ROV. However, there are some ROVs that cannot be maintained at the specified depth for a long time because of disturbance. This paper proposes an auto depth control using a thruster system. A prototype of a thruster with an auto depth control is developed and attached to the previously fabricated UTeM ROV. This paper presents the operation of auto depth control as well as thrusters for submerging and emerging purposes and maintaining the specified depth. The thruster system utilizes a microcontroller as its brain, a piezoresistive strain gauge pressure sensor and a DC brushless motor to run the propeller. Performance analysis of the auto depth control system is conducted to identify the sensitivity of the pressure sensor, and the accuracy and stability of the system. The results show that the thruster system performs well in maintaining a specified depth as well as stabilizing itself when a disturbanceoccurs even with a simple proportional controller used to control the thruster, where the thruster is an important component of the ROV.
Investigation of Low Discharge Voltage Hall Thruster Operating Modes and Ionization Processes
2009-08-14
a null-type, inverted pendulum thrust stand based on the NASA GRC design.11 The thruster is shown mounted to the thrust stand in Figure 3... cloud of neutral propellant. This thruster operation was studied in detail using the far-field diagnostics and characterized with variations in
A Robust Digital Autopilot for Spacecraft Equipped with Pulse-Operated Thrusters
Thurman, S. W.; Flashner, H.
1996-01-01
The analysis and design of attitude control systems for spacecraft employing pulse-operated (on-off) thrusters is usually accomplished through a combination of modeling approximations and empirical techniques. In this paper a new thruster pulse-modulation scheme for pointing and tracking applications is developed from nonlinear control theory.
Ion behavior in low-power magnetically shielded and unshielded Hall thrusters
Grimaud, L.; Mazouffre, S.
2017-05-01
Magnetically shielded Hall thrusters achieve a longer lifespan than traditional Hall thrusters by reducing wall erosion. The lower erosion rate is attributed to a reduction of the high energy ion population impacting the walls. To investigate this phenomenon, the ion velocity distribution functions are measured with laser induced fluorescence at several points of interest in the magnetically shielded ISCT200-MS and the unshielded ISCT200-US Hall thrusters. The center of the discharge channel is probed to highlight the difference in plasma positioning between the shielded and unshielded thrusters. Erosion phenomena are investigated by taking measurements of the ion velocity distribution near the inner and outer wall as well as above the magnetic poles where some erosion is observed. The resulting distribution functions show a displacement of the acceleration region from inside the channel in the unshielded thruster to downstream of the exit plane in the ISCT200-MS. Near the walls, the unshielded thruster displays both a higher relative ion density as well as a significant fraction of the ions with velocities toward the walls compared to the shielded thruster. Higher proportions of high velocity ions are also observed. Those results are in accordance with the reduced erosion observed. Both shielded and unshielded thrusters have large populations of ions impacting the magnetic poles. The mechanism through which those ions are accelerated toward the magnetic poles has so far not been explained.
Effect of Greenhouse Gases Dissolved in Seawater.
Matsunaga, Shigeki
2015-12-30
A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region.
Effect of Greenhouse Gases Dissolved in Seawater
Shigeki Matsunaga
2015-01-01
A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence o...
Projected world market for seawater desalination equipment
1984-10-01
A forecast is presented of the market for seawater desalination plants. The conclusions presented herein are based on a number of sources of information, of which the most important are: responses to questionnaires mailed to 300 cognizant water agencies in 61 countries; the published market growth trend over the period 1971 to 1983; and an analysis of the geography, rainfall, population, industrial growth, and energy availability in the respective countries. Analysis suggests the possibility that financing, although currently a major stumbling block to the purchase of desalting plants, may be effected by an exchange program in which the purchaser of plants will offer some exportable product(s) in exchange. The forecast suggests the likelihood that the seawater desalination market is becoming saturated. A plateau is expected to develop in new plant sales of additional capacity in the immediate future, followed by a downturn by the end of the century. This report, however, emphasizes the importance of the replacement market, which will involve substantial sales to replace worn-out and obsolescent equipment. The combined new-plus-replacement annual sales can be expected to reach 1.25 million m/sup 3//d (330 Mgd) by the year 2000. Seawater reverse osmosis (SWRO) is expected to represent 270,000 m/sup 3//d (70 Mgd) by the end of the century because of technological improvements in membrane systems and components.
Lithium in Brachiopods - proxy for seawater evolution?
Gaspers, Natalie; Magna, Tomas; Tomasovych, Adam; Henkel, Daniela
2017-04-01
Marine biogenic carbonates have the potential to serve as a proxy for evolution of seawater chemistry. In order to compile a record of the past and recent δ7Li in the oceans, foraminifera shells, scleractinian corals and belemnites have been used. However, only a foraminifera-based record appears to more accurately reflect the Li isotope composition of ocean water. At present, this record is available for the Cenozoic with implications for major events during this period of time, including K/T event [1]. A record for the entire Phanerozoic has not yet been obtained. In order to extend this record to the more distant past, Li elemental/isotope systematics of brachiopods were investigated because these marine animals were already present in Early Cambrian oceans and because they are less sensitive to diagenesis-induced modifications due to their shell mineralogy (low-Mg calcite). The preliminary data indicates a species-, temperature- and salinity-independent behavior of Li isotopes in brachiopod shells. Also, no vital effects have been observed for different shell parts. The consistent offset of -4‰ relative to modern seawater is in accordance with experimental data [2]. Further data are now being collected for Cenozoic specimens to more rigorously test brachiopods as possible archives of past seawater in comparison to the existing foraminiferal records. [1] Misra & Froelich (2012) Science 335, 818-823 [2] Marriott et al. (2004) Chem Geol 212, 5-15
Mimicking Seawater For Culturing Marine Bacteria
Rygaard, Anita Mac; Sonnenschein, Eva; Gram, Lone
2015-01-01
Only about 1% of marine bacteria have been brought into culture using traditional techniques. The purpose of this study was to investigate if mimicking the natural bacterial environment can increase culturability.We used marine substrates containing defined algal polymers or gellan gum as solidif......Only about 1% of marine bacteria have been brought into culture using traditional techniques. The purpose of this study was to investigate if mimicking the natural bacterial environment can increase culturability.We used marine substrates containing defined algal polymers or gellan gum...... as solidifying agents, and enumerated bacteria from seawater and algal exudates. We tested if culturability could be influenced by addition of quorum sensing signals (AHLs). All plates were incubated at 15°C. Bacterial counts (CFU/g) from algal exudates from brown algae were highest on media containing algal...... polymers. In general, bacteria isolated from algal exudates preferred more rich media than bacteria isolated from seawater. Overall, culturability ranged from 0.01 to 0.8% as compared to total cell count. Substitution of agar with gellan gum increased the culturability of seawater bacteria approximately...
Operation of a Segmented Hall Thruster with Low-sputtering Carbon-velvet Electrodes
Raitses, Y.; Staack, D.; Dunaevsky, A.; Fisch, N.J.
2005-12-01
Carbon fiber velvet material provides exceptional sputtering resistance properties exceeding those for graphite and carbon composite materials. A 2 kW Hall thruster with segmented electrodes made of this material was operated in the discharge voltage range of 200–700 V. The arcing between the floating velvet electrodes and the plasma was visually observed, especially, during the initial conditioning time, which lasted for about 1 h. The comparison of voltage versus current and plume characteristics of the Hall thruster with and without segmented electrodes indicates that the magnetic insulation of the segmented thruster improves with the discharge voltage at a fixed magnetic field. The observations reported here also extend the regimes wherein the segmented Hall thruster can have a narrower plume than that of the conventional nonsegmented thruster.
Electron Cross-field Transport in a Low Power Cylindrical Hall Thruster
A. Smirnov; Y. Raitses; N.J. Fisch
2004-06-24
Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are therefore more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. Electron cross-field transport in a 2.6 cm miniaturized cylindrical Hall thruster (100 W power level) has been studied through the analysis of experimental data and Monte Carlo simulations of electron dynamics in the thruster channel. The numerical model takes into account elastic and inelastic electron collisions with atoms, electron-wall collisions, including secondary electron emission, and Bohm diffusion. We show that in order to explain the observed discharge current, the electron anomalous collision frequency {nu}{sub B} has to be on the order of the Bohm value, {nu}{sub B} {approx} {omega}{sub c}/16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant.
Performance Evaluation of an Expanded Range XIPS Ion Thruster System for NASA Science Missions
Oh, David Y.; Goebel, Dan M.
2006-01-01
This paper examines the benefit that a solar electric propulsion (SEP) system based on the 5 kW Xenon Ion Propulsion System (XIPS) could have for NASA's Discovery class deep space missions. The relative cost and performance of the commercial heritage XIPS system is compared to NSTAR ion thruster based systems on three Discovery class reference missions: 1) a Near Earth Asteroid Sample Return, 2) a Comet Rendezvous and 3) a Main Belt Asteroid Rendezvous. It is found that systems utilizing a single operating XIPS thruster provides significant performance advantages over a single operating NSTAR thruster. In fact, XIPS performs as well as systems utilizing two operating NSTAR thrusters, and still costs less than the NSTAR system with a single operating thruster. This makes XIPS based SEP a competitive and attractive candidate for Discovery class science missions.
Buffer capacity, ecosystem feedbacks, and seawater chemistry under global change
Jury, C. P.; Thomas, F. I.; Atkinson, M. J.; Jokiel, P. L.; Onuma, M. A.; Kaku, N.; Toonen, R. J.
2013-12-01
Ocean acidification (OA) results in reduced seawater pH and aragonite saturation state (Ωarag), but also reduced seawater buffer capacity. As buffer capacity decreases, diel variation in seawater chemistry increases. However, a variety of ecosystem feedbacks can modulate changes in both average seawater chemistry and diel seawater chemistry variation. Here we model these effects for a coastal, reef flat ecosystem. We show that an increase in offshore pCO2 and temperature (to 900 μatm and +3°C) can increase diel pH variation by as much as a factor of 2.5 and can increase diel pCO2 variation by a factor of 4.6, depending on ecosystem feedbacks and seawater residence time. Importantly, these effects are different between day and night. With increasing seawater residence time and increasing feedback intensity, daytime seawater chemistry becomes more similar to present-day conditions while nighttime seawater chemistry becomes less similar to present-day conditions. Better constraining ecosystem feedbacks under global change will improve projections of coastal water chemistry, but this study shows the importance of considering changes in both average carbonate chemistry and diel chemistry variation for organisms and ecosystems. Further, we will discuss our recent work examining the effects of diel seawater chemistry variation on coral calcification rates.
Resistive relativistic magnetohydrodynamics from a charged multi-fluids perspective
Andersson, N
2012-01-01
We consider general relativistic magnetohydrodynamics from a charged multifluids point-of-view, taking a variational approach as our starting point. We develop the case of two charged components in detail, accounting for a phenomenological resistivity, providing specific examples for pair plasmas and proton-electron systems. We discuss both cold, low velocity, plasmas and hot systems where we account for a dynamical entropy component. The results for the cold case (which accord with recent work in the literature) provide a complete model for resistive relativistic magnetohydrodynamics, clarifying the assumptions that lead to various models that have been used in astrophysical applications. The analysis of the hot case is (as far as we are aware) novel, accounting for the relaxation times that are required to ensure causality and demonstrating the explicit coupling between fluxes of heat and charge.
Anomalous k⊥(-8/3) spectrum in electron magnetohydrodynamic turbulence.
Meyrand, Romain; Galtier, Sébastien
2013-12-27
Electron magnetohydrodynamic turbulence is investigated under the presence of a relatively strong external magnetic field b0e∥ and through three-dimensional direct numerical simulations. Our study reveals the emergence of a k⊥(-8/3) scaling for the magnetic energy spectrum at scales k∥(D)≤k⊥≤k⊥(D), where k∥(D) and k⊥(D) are, respectively, the typical largest dissipative scales along and transverse to the b0 direction. Unlike standard magnetohydrodynamic, this turbulence regime is characterized by filaments of electric currents parallel to b0. The anomalous scaling is in agreement with a heuristic model in which the transfer in the parallel direction is negligible. Implications for solar wind turbulence are discussed.
Smoothed Particle Magnetohydrodynamics: A State of the Union
Lewis, Benjamin T; Tricco, Terrence S
2016-01-01
Obtaining a stable magnetohydrodynamical (MHD) formalism in SPH - i.e. smoothed particle magnetohydrodynamics (SPMHD) - has proven remarkably difficult. To implement MHD requires two steps: a modification to the momentum equation and an induction equation, and both present challenges. We first provide an overview of how SPMHD is implemented, and then discuss how this implementation fails and the limitation of various corrective methods - with particular reference to the effects of particle disorder. Although there are many problems for which, with careful choice of corrective measures, good results can be obtained, we then show that, at the very limits of the state of the art, the ability to perform stable MHD calculations in SPH is curtailed by numerical issues.
Morrison, Philip J; Tronko, Natalia
2013-01-01
Stability analyses for equilibria of the compressible reduced magnetohydrodynamics (CRMHD) model are carried out by means of the Energy-Casimir (EC) method. Stability results are compared with those obtained for ideal magnetohydrodynamics (MHD) from the classical {\\delta}W criterion. An identification of the terms in the second variation of the free energy functional for CRMHD with those of {\\delta}W is made: two destabilizing effects present for CRMHD turn out to correspond to the kink and interchange instabilities in usual MHD, while the stabilizing roles of field line bending and compressibility are also identified in the reduced model. Also, using the EC method, stability conditions in the presence of toroidal flow are obtained. A formal analogy between CRMHD and a reduced incompressible model for magnetized rotating disks, due to Julien and Knobloch [EAS Pub. Series, 21, 81 (2006)], is discovered. In light of this analogy, energy stability analysis shows that the condition for magnetorotational instabili...
Intermittency in Hall-magnetohydrodynamics with a strong guide field
Imazio, P Rodriguez; Dmitruk, P; Mininni, P D
2013-01-01
We present a detailed study of intermittency in the velocity and magnetic field fluctuations of compressible Hall-magnetohydrodynamic turbulence with an external guide field. To solve the equations numerically, a reduced model valid when a strong guide field is present is used. Different values for the ion skin depth are considered in the simulations. The resulting data is analyzed computing field increments in several directions perpendicular to the guide field, and building structure functions and probability density functions. In the magnetohydrodynamic limit we recover the usual results with the magnetic field being more intermittent than the velocity field. In the presence of the Hall effect, field fluctuations at scales smaller than the ion skin depth show a substantial decrease in the level of intermittency, with close to monofractal scaling.
Lattice kinetic simulations in three-dimensional magnetohydrodynamics.
Breyiannis, G; Valougeorgis, D
2004-06-01
A lattice kinetic algorithm to simulate three-dimensional (3D) incompressible magnetohydrodynamics is presented. The fluid is monitored by a distribution function, which obeys a scalar kinetic equation, subject to an external force due to the imposed magnetic field. Following the work of J. Comput. Phys. 179, 95 (2002)], the magnetic field is represented by a different three-component vector distribution function, which obeys a corresponding vector kinetic equation. Discretization of the 3D phase space is based on a 19-bit scheme for the hydrodynamic part and on a 7-bit scheme for the magnetic part. Numerical results for magnetohydrodynamic (MHD) flow in a rectangular duct with insulating and conducting walls provide excellent agreement with corresponding analytical solutions. The scheme maintains in all cases tested the MHD constraint inverted Delta.B=0 within machine round-off error.
Optimal modes of operation of two idealized magnetohydrodynamic devices
Okulov, N.A.
1984-01-01
A conduction channel and a conduction cylinder, idealized devices, which model the operation of conduction magnetohydrodynamic (MGD) generators (pump) and magnetohydrodynamic propulsion devices, are examined. It is shown that it is sufficient to know the operational characteristics in the idle (kh.kh.) and short circuiting (KZ) modes alone in order to determine the operational characteristics of a conduction channel in the optimal mode, that is, in a mode of most complete energy conversion. The mode with which the required speed of movement is supported with minimal expenditures of energy is called the optimal mode of operation of a conduction cylinder. It is established that the characteristics of the corresponding optimal movement are expressed through the characteristics of the so called basis movements, whose number is one less than the number of electrodes.
Relativistic Radiation Magnetohydrodynamics in Dynamical Spacetimes: Numerical Methods and Tests
2008-01-01
Many systems of current interest in relativistic astrophysics require a knowledge of radiative transfer in a magnetized gas flowing in a strongly-curved, dynamical spacetime. Such systems include coalescing compact binaries containing neutron stars or white dwarfs, disks around merging black holes, core collapse supernovae, collapsars, and gamma-ray burst sources. To model these phenomena, all of which involve general relativity, radiation (photon and/or neutrino), and magnetohydrodynamics, w...
Brett, Walter
2014-07-21
In the presented work the Kelvin-Helmholtz-Instability in magnetohydrodynamic flows is analyzed with the methods of Multiple Scales. The concerned fluids are incompressible or have a varying density perpendicular to the vortex sheet, which is taken into account using a Boussinesq-Approximation and constant Brunt-Vaeisaelae-Frequencies. The Multiple Scale Analysis leads to nonlinear evolution equations for the amplitude of the perturbations. Special solutions to these equations are presented and the effects of the magnetic fields are discussed.
Forward and inverse problems in fundamental and applied magnetohydrodynamics
2012-01-01
This Minireview summarizes the recent efforts to solve forward and inverse problems as they occur in different branches of fundamental and applied magnetohydrodynamics. As for the forward problem, the main focus is on the numerical treatment of induction processes, including self-excitation of magnetic fields in non-spherical domains and/or under the influence of non-homogeneous material parameters. As an important application of the developed numerical schemes, the functioning of the von-K\\'...
Experimental Magnetohydrodynamic Energy Extraction from a Pulsed Detonation
2015-03-01
specific heat capacity, that would result in a 24% loss in energy for ionization. Second, the water and aqueous NaCl were added prior to detonation . This...Experimental Magnetohydrodynamic Energy Extraction from a Pulsed Detonation THESIS Kaz I. Teope, Captain, USAF AFIT-ENY-MS-15-M-224 DEPARTMENT OF THE... DETONATION THESIS Presented to the Faculty Department of Aeronautics and Astronautics Graduate School of Engineering and Management Air Force
Two Special Solutions of the Non-ideal Magnetohydrodynamics
FENG Xue-Shang; LIU Yong; WEI Feng-Si; YE Zhan-Yin
2000-01-01
A special transformation is found to solve the Magnetohydrodynamic equations, by which two classes of exact analytic time-dependent solutions of magnetic annihilation for incompressible magnetic fluid have been obtained.The solutions derived here possesses scaling property with time t as the scale factor. We find that the current can perform the soliton-like behaviour in the case of asymmetric inflow. The relevant evolution characteristics in the process of magnetic annihilation are also revealed.
Magnetic reversals in a simple model of magnetohydrodynamics.
Benzi, Roberto; Pinton, Jean-François
2010-07-09
We study a simple magnetohydrodynamical approach in which hydrodynamics and MHD turbulence are coupled in a shell model, with given dynamo constraints in the large scales. We consider the case of a low Prandtl number fluid for which the inertial range of the velocity field is much wider than that of the magnetic field. Random reversals of the magnetic field are observed and it shown that the magnetic field has a nontrivial evolution--linked to the nature of the hydrodynamics turbulence.
A new lattice Boltzmann model for incompressible magnetohydrodynamics
Chen Xing-Wang; Shi Bao-Chang
2005-01-01
Most of the existing lattice Boltzmann magnetohydrodynamics (MHD) models can be viewed as compressible schemes to simulate incompressible MHD flows. The compressible effect might lead to some undesired errors in numerical simulations. In this paper a new incompressible lattice Boltzmann MHD model without compressible effect is presented for simulating incompressible MHD flows. Numerical simulations of the Hartmann flow are performed. We do numerous tests and make comparison with Dellar's model in detail. The numerical results are in good agreement with the analytical error.
Regularity of large solutions for the compressible magnetohydrodynamic equations
Qin Yuming
2011-01-01
Full Text Available Abstract In this paper, we consider the initial-boundary value problem of one-dimensional compressible magnetohydrodynamics flows. The existence and continuous dependence of global solutions in H 1 have been established in Chen and Wang (Z Angew Math Phys 54, 608-632, 2003. We will obtain the regularity of global solutions under certain assumptions on the initial data by deriving some new a priori estimates.
Slip Magnetohydrodynamic Viscous Flow over a Permeable Shrinking Sheet
FANG Tie-Gang; ZHANG Ji; YAO Shan-shan
2010-01-01
@@ The magnetohydrodynamic(MHD)flow under slip conditions over a shrinMng sheet js solved analytically.The solution is given in a closed form equation and is an exact solution of the full governing Navier-Stokes equations.Interesting solution behavior is observed with muiriple solution branches for certain parameter domain.The effects of the mass transfer,slip,andmagnetic parameters are discussed.
Magnetohydrodynamic channel flows with weak transverse magnetic fields.
Rothmayer, A P
2014-07-28
Magnetohydrodynamic flow of an incompressible fluid through a plane channel with slowly varying walls and a magnetic field applied transverse to the channel is investigated in the high Reynolds number limit. It is found that the magnetic field can first influence the hydrodynamic flow when the Hartmann number reaches a sufficiently large value. The magnetic field is found to suppress the steady and unsteady viscous flow near the channel walls unless the wall shapes become large.
Current-sheet formation in 3D ideal incompressible magnetohydrodynamics
Grauer; Marliani
2000-05-22
The evolution of current density and vorticity in the ideal, inviscid incompressible magnetohydrodynamic equations in three dimensions is studied numerically. Highly effective resolutions are obtained by adaptive structured mesh refinement techniques. We report on results for three different initial conditions showing similar behavior: in the early stage of the evolution a fast increase in vorticity and current density is observed. Thereafter, the evolution towards nearly two-dimensional current sheets results in a depletion of nonlinearity.
Current-sheet formation in incompressible electron magnetohydrodynamics.
Ruban, V P
2002-04-01
The nonlinear dynamics of axisymmetric, as well as helical, frozen-in vortex structures is investigated by the Hamiltonian method in the framework of ideal incompressible electron magnetohydrodynamics. For description of current-sheet formation from a smooth initial magnetic field, local and nonlocal nonlinear approximations are introduced and partially analyzed that are generalizations of the previously known exactly solvable local model neglecting electron inertia.
Human Outer Solar System Exploration via Q-Thruster Technology
Joosten, B. Kent; White, Harold G.
2014-01-01
Propulsion technology development efforts at the NASA Johnson Space Center continue to advance the understanding of the quantum vacuum plasma thruster (QThruster), a form of electric propulsion. Through the use of electric and magnetic fields, a Q-thruster pushes quantum particles (electrons/positrons) in one direction, while the Qthruster recoils to conserve momentum. This principle is similar to how a submarine uses its propeller to push water in one direction, while the submarine recoils to conserve momentum. Based on laboratory results, it appears that continuous specific thrust levels of 0.4 - 4.0 N/kWe are achievable with essentially no onboard propellant consumption. To evaluate the potential of this technology, a mission analysis tool was developed utilizing the Generalized Reduced Gradient non-linear parameter optimization engine contained in the Microsoft Excel® platform. This tool allowed very rapid assessments of "Q-Ship" minimum time transfers from earth to the outer planets and back utilizing parametric variations in thrust acceleration while enforcing constraints on planetary phase angles and minimum heliocentric distances. A conservative Q-Thruster specific thrust assumption (0.4 N/kWe) combined with "moderate" levels of space nuclear power (1 - 2 MWe) and vehicle specific mass (45 - 55 kg/kWe) results in continuous milli-g thrust acceleration, opening up realms of human spaceflight performance completely unattainable by any current systems or near-term proposed technologies. Minimum flight times to Mars are predicted to be as low as 75 days, but perhaps more importantly new "retro-phase" and "gravity-augmented" trajectory shaping techniques were revealed which overcome adverse planetary phasing and allow virtually unrestricted departure and return opportunities. Even more impressively, the Jovian and Saturnian systems would be opened up to human exploration with round-trip times of 21 and 32 months respectively including 6 to 12 months of
Calculations of two-fluid magnetohydrodynamic axisymmetric steady-states
Ferraro, N. M.; Jardin, S. C.
2009-11-01
M3D- C1 is an implicit, high-order finite element code for the solution of the time-dependent nonlinear two-fluid magnetohydrodynamic equations [S.C. Jardin, J. Breslau, N. Ferraro, A high-order implicit finite element method for integrating the two-fluid magnetohydrodynamic equations in two dimensions, J. Comp. Phys. 226 (2) (2007) 2146-2174]. This code has now been extended to allow computations in toroidal geometry. Improvements to the spatial integration and time-stepping algorithms are discussed. Steady-states of a resistive two-fluid model, self-consistently including flows, anisotropic viscosity (including gyroviscosity) and heat flux, are calculated for diverted plasmas in geometries typical of the National Spherical Torus Experiment (NSTX) [M. Ono et al., Exploration of spherical torus physics in the NSTX device, Nucl. Fusion 40 (3Y) (2000) 557-561]. These states are found by time-integrating the dynamical equations until the steady-state is reached, and are therefore stationary or statistically steady on both magnetohydrodynamic and transport time-scales. Resistively driven cross-surface flows are found to be in close agreement with Pfirsch-Schlüter theory. Poloidally varying toroidal flows are in agreement with comparable calculations [A.Y. Aydemir, Shear flows at the tokamak edge and their interaction with edge-localized modes, Phys. Plasmas 14]. New effects on core toroidal rotation due to gyroviscosity and a local particle source are observed.
Background Pressure Effects on Krypton Hall Effect Thruster Internal Acceleration
2013-08-01
krypton operation of the BHT -600 at the conditions in Table 2 yields a thrust of 22.4 mN corresponding to an anode efficiency of approximately 31...measurement volume is ap- proximately 500 µm diameter by 1 mm length. Measurement Domain Figure 3 shows a cross-section of the BHT -600 Hall effect...of the BHT -600 Hall effect thruster with measurement volume shown in red. All dimensions are given in mm. tion of the transition
Design of automatic thruster assisted mooring systems for ships
Jan P. Strand
1998-04-01
Full Text Available This paper addresses the mathematical modelling and controller design of an automatic thruster assisted position mooring system. Such control systems are applied to anchored floating production offloading and storage vessels and semi-subs. The controller is designed using model based control with a LQG feedback controller in conjunction with a Kalman filter. The controller design is in addition to the environmental loads accounting for the mooring forces acting on the vessel. This is reflected in the model structure and in the inclusion of new functionality.
Boron isotope method for study of seawater intrusion
肖应凯; 尹德忠; 刘卫国; 王庆忠; 魏海珍
2001-01-01
A distinct difference in boron isotopes between seawater and terrestrial water is emphasized by δ11B values reported for seawater and groundwater, with an average of 38.8‰ and in the range of -8.9‰ to 9.8‰, respectively. The isotopic composition of boron in groundwater can be used to quantify seawater intrusion and identify intrusion types, e.g. seawater or brine intrusions with different chemical and isotopic characteristics, by using the relation of δ11B and chloride concentration. The feasibility of utilizing boron isotope in groundwater for studying seawater intrusion in Laizhou Bay Region, China, is reported in this study, which shows that boron isotope is a useful and excellent tool for the study of seawater intrusion.
Magnetohydrodynamic-based Laboratories on a Chip for Analysis of Biomolecules Project
National Aeronautics and Space Administration — A laboratory-on-a-chip design based on magnetohydrodynamic (MHD) microfluidics and integrated microelectrochemical detection is proposed. The proposed device is...
Seawater Immersion Aggravates Burn Injury Causing Severe Blood Coagulation Dysfunction
2016-01-01
This study aimed to investigate the endothelial function in a canine model of burn injury combined with seawater immersion. The model of burn injury was established. The dogs were randomly divided into four groups including dogs with burn injury (B group), or burn injury combined with seawater immersion (BI group), or only immersion in seawater (I group), or control animals with no injury or immersion (C group). The circulating endothelial cell (CEC) count and coagulation-fibrinolysis paramet...
Nanoporous Carbon Nitride: A High Efficient Filter for Seawater Desalination
Weifeng LI; Yang, Yanmei; Zhou, Hongcai; Zhang, Xiaoming; Zhao, Mingwen
2015-01-01
The low efficiency of commercially-used reverse osmosis (RO) membranes has been the main obstacle in seawater desalination application. Here, we report the auspicious performance, through molecular dynamics simulations, of a seawater desalination filter based on the recently-synthesized graphene-like carbon nitride (g-C2N) [Nat. Commun., 2015, 6, 6486]. Taking advantage of the inherent nanopores and excellent mechanical properties of g-C2N filter, highly efficient seawater desalination can be...
Hallock, Ashley K.; Polzin, Kurt A.; Kimberlin, Adam C.; Perdue, Kevin A.
2012-01-01
Operational characteristics of two separate inductive thrusters with conical theta pinch coils of different cone angles are explored through thrust stand measurements and time- integrated, unfiltered photography. Trends in impulse bit measurements indicate that, in the present experimental configuration, the thruster with the inductive coil possessing a smaller cone angle produced larger values of thrust, in apparent contradiction to results of a previous thruster acceleration model. Areas of greater light intensity in photographs of thruster operation are assumed to qualitatively represent locations of increased current density. Light intensity is generally greater in images of the thruster with the smaller cone angle when compared to those of the thruster with the larger half cone angle for the same operating conditions. The intensity generally decreases in both thrusters for decreasing mass flow rate and capacitor voltage. The location of brightest light intensity shifts upstream for decreasing mass flow rate of propellant and downstream for decreasing applied voltage. Recognizing that there typically exists an optimum ratio of applied electric field to gas pressure with respect to breakdown efficiency, this result may indicate that the optimum ratio was not achieved uniformly over the coil face, leading to non-uniform and incomplete current sheet formation in violation of the model assumption of immediate formation where all the injected propellant is contained in a magnetically-impermeable current sheet.
Space Shuttle reaction control system thruster metal nitrate removal and characterization
Saulsberry, R. L.; Mccartney, P. A.
1993-01-01
The Space Shuttle hypergolic primary reaction control system (PRCS) thrusters continue to fail-leak or fail-off at a rate of approximately 1.5 per flight, attributed primarily to metal nitrate formation in the nitrogen tetroxide (N2O4) pilot operated valves (POV's). The failures have continued despite ground support equipment (GSE) and subsystem operational improvements. As a result, the Johnson Space Center (JSC) White Sands Test Facility (WSTF) performed a study to characterize the contamination in the N204 valves. This study prompted the development and implementation of a highly successful flushing technique using deionized (DI) water and gaseous nitrogen (GN2) to remove the contamination while minimizing Teflon seat damage. Following flushing a comprehensive acceptance test is performed before the thruster is deemed recovered. Between the time WSTF was certified to process flight thrusters (March 1992) and September 1993, a 68 percent thruster recovery rate was achieved. The contamination flushed from these thrusters was analyzed and has provided insight into the corrosion process, which is reported in this publication. Additionally, the long-term performance of 24 flushed thrusters installed in the WSTF Fleet Leader Shuttle reaction control subsystem (RCS) test articles is being assessed. WSTF continues to flush flight and test article thrusters and compile data to investigate metal nitrate formation characteristics in leaking and nonleaking valves.
Elementary scaling laws for the design of low and high power hall effect thrusters
Dannenmayer, K.; Mazouffre, S.
2011-10-01
An advanced set of scaling laws for Hall effect thrusters running with Xenon as propellant is established on the basis of the existence of an optimum atom number density that warrants a high efficiency thruster operation. A set of general relationships between macroscopic quantities, like thrust and input power, dimensions, including the channel length, the channel width and the channel mean diameter, and magnetic field strength are inferred from the main physical processes at work in a Hall thruster discharge. The "atom density constraint" of which the nature is here critically interpreted allows simplifying those relationships as it leads to a linear dependency between the channel length and mean diameter. Scaling laws which represent an essential tool for sizing up and down Hall thrusters are eventually obtained after proportionnality coefficients are determined. This last step is realized by means of a vast database that presently encompasses 33 single-stage Hall thrusters. In order to illustrate the usefulness of this new set of scaling laws, two practical applications are given and discussed. The scaling laws are first employed to calculate the dimensions and the operating parameters for a 20-kilowatt Hall thruster capable of producing 1 N of thrust. Such an electrical engine would permit orbit transfer of large communication satellites. Finally, the geometry of a Hall thruster is determined for tolerating 100 kW, an interesting power level for interplanetary trips.
Design of a cusped field thruster for drag-free flight
Liu, H.; Chen, P. B.; Sun, Q. Q.; Hu, P.; Meng, Y. C.; Mao, W.; Yu, D. R.
2016-09-01
Drag-free flight has played a more and more important role in many space missions. The thrust control system is the key unit to achieve drag-free flight by providing a precise compensation for the disturbing force except gravity. The cusped field thruster has shown a significant potential to be capable of the function due to its long life, high efficiency, and simplicity. This paper demonstrates a cusped field thruster's feasibility in drag-free flight based on its instinctive characteristics and describes a detailed design of a cusped field thruster made by Harbin Institute of Technology (HIT). Furthermore, the performance test is conducted, which shows that the cusped field thruster can achieve a continuously variable thrust from 1 to 20 mN with a low noise and high resolution below 650 W, and the specific impulse can achieve 1800 s under a thrust of 18 mN and discharge voltage of 1000 V. The thruster's overall performance indicates that the cusped field thruster is quite capable of achieving drag-free flight. With the further optimization, the cusped field thruster will exhibit a more extensive application value.
Enhancement of Extraction of Uranium from Seawater
Al-Sheikhly, Mohamad [Univ. of Maryland, College Park, MD (United States); Dietz, Travis [Univ. of Maryland, College Park, MD (United States); Tsinas, Zois [Univ. of Maryland, College Park, MD (United States); Tomaszewski, Claire [Univ. of Maryland, College Park, MD (United States); Pazos, Ileana M. [Univ. of Maryland, College Park, MD (United States); Nigliazzo, Olga [The Catholic Univ. of America, Washington, DC (United States); Li, Weixing [The Catholic Univ. of America, Washington, DC (United States); Adel-Hadadi, Mohamad [Univ. of Maryland, College Park, MD (United States); Barkatt, Aaron [Univ. of Palermo (Italy)
2016-04-01
Even at a concentration of 3 μg/L, the world’s oceans contain a thousand times more uranium than currently know terrestrial sources. In order to take advantage of this stockpile, methods and materials must be developed to extract it efficiently, a difficult task considering the very low concentration of the element and the competition for extraction by other atoms in seawater such as sodium, calcium, and vanadium. The majority of current research on methods to extract uranium from seawater are vertical explorations of the grafting of amidoxime ligand, which was originally discovered and promoted by Japanese studies in the late 1980s. Our study expands on this research horizontally by exploring the effectiveness of novel uranium extraction ligands grafted to the surface of polymer substrates using radiation. Through this expansion, a greater understanding of uranium binding chemistry and radiation grafting effects on polymers has been obtained. While amidoxime-functionalized fabrics have been shown to have the greatest extraction efficiency so far, they suffer from an extensive chemical processing step which involves treatment with powerful basic solutions. Not only does this add to the chemical waste produced in the extraction process and add to the method’s complexity, but it also significantly impacts the regenerability of the amidoxime fabric. The approach of this project has been to utilize alternative, commercially available monomers capable of extracting uranium and containing a carbon-carbon double bond to allow it to be grafted using radiation, specifically phosphate, oxalate, and azo monomers. The use of commercially available monomers and radiation grafting with electron beam or gamma irradiation will allow for an easily scalable fabrication process once the technology has been optimized. The need to develop a cheap and reliable method for extracting uranium from seawater is extremely valuable to energy independence and will extend the quantity of
Effect of Greenhouse Gases Dissolved in Seawater
Shigeki Matsunaga
2015-12-01
Full Text Available A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region.
Enhancement of Extraction of Uranium from Seawater
Al-Sheikhly, Mohamad [Univ. of Maryland, College Park, MD (United States); Dietz, Travis [Univ. of Maryland, College Park, MD (United States); Tsinas, Zois [Univ. of Maryland, College Park, MD (United States); Tomaszewski, Claire [Univ. of Maryland, College Park, MD (United States); Pazos, Ileana M. [Univ. of Maryland, College Park, MD (United States); Nigliazzo, Olga [The Catholic Univ. of America, Washington, DC (United States); Li, Weixing [The Catholic Univ. of America, Washington, DC (United States); Adel-Hadadi, Mohamad [Univ. of Maryland, College Park, MD (United States); Barkatt, Aaron [Univ. of Palermo (Italy)
2016-04-01
Even at a concentration of 3 μg/L, the world’s oceans contain a thousand times more uranium than currently know terrestrial sources. In order to take advantage of this stockpile, methods and materials must be developed to extract it efficiently, a difficult task considering the very low concentration of the element and the competition for extraction by other atoms in seawater such as sodium, calcium, and vanadium. The majority of current research on methods to extract uranium from seawater are vertical explorations of the grafting of amidoxime ligand which was originally discovered and promoted by Japanese studies in the late 1980s. Our study expands on this research horizontally by exploring the effectiveness of novel uranium extraction ligands grafted to the surface of polymer substrates using radiation. Through this expansion, a greater understanding of uranium binding chemistry and radiation grafting effects on polymers has been obtained. While amidoxime-functionalized fabrics have been shown to have the greatest extraction efficiency so far, they suffer from an extensive chemical processing step which involves treatment with powerful basic solutions. Not only does this add to the chemical waste produced in the extraction process and add to the method’s complexity, but it also significantly impacts the regenerability of the amidoxime fabric. The approach of this project has been to utilize alternative, commercially available monomers capable of extracting uranium and containing a carbon-carbon double bond to allow it to be grafted using radiation, specifically phosphate, oxalate, and azo monomers. The use of commercially available monomers and radiation grafting with electron beam or gamma irradiation will allow for an easily scalable fabrication process once the technology has been optimized. The need to develop a cheap and reliable method for extracting uranium from seawater is extremely valuable to energy independence and will extend the quantity of
Experimental testbed for seawater channel characterization
Mena, Pablo; Quintana, Gara; Pérez-Álvarez, Iván; Jiménez, Eugenio; Zazo, Santiago; Pérez, Marina; Cardona, Laura; Hernández, J Joaquin
2016-01-01
Shallow seawaters are problematic for acoustic and optical communications. Sensor networks based on electromagnetic (EM) communications are evaluated in this environment. In order to characterize the subaquatic channel, several measurement systems have been designed, built and tested in the sea obtaining very reliable results. Experiments carried out with dipoles and loop antennas showed serious disagreement with the state of the art, especially when dipole antennas are used. Dipoles performance was poor while magnetic loops showed relevant results. Measurement system is described in detail and real attenuation of the subaquatic channel is obtained for several distances and antennas. Finally, measured and simulated results are compared with good agreement.
The Index of Refraction of Seawater
1976-01-01
SEAWATER Roswell W. Austin and George Halika!5 TECHNICAL REPORT Approved for public release; distribution unlimited SIO Ref. No. 76-1 I ;January 1976 P...PERFORMING ONG. REPORT NUMBER 7. AUTHOR(*) S. CONTRACT OR GRANT NUMSFRg’o) Roswell W. Austin and George Hlikas N 66857-73-C-01 46 9. PER~FORMING...slopes over sompe interval, namely, 10 nm for An/AX, 20C for An/AT, 50 kg/cm2 for An/Ap. In the caso of salinity the interval is immaterial since the
Buffer Capacity, Ecosystem Feedbacks, and Seawater Chemistry under Global Change
Robert J. Toonen
2013-09-01
Full Text Available Ocean acidification (OA results in reduced seawater pH and aragonite saturation state (Ωarag, but also reduced seawater buffer capacity. As buffer capacity decreases, diel variation in seawater chemistry increases. However, a variety of ecosystem feedbacks can modulate changes in both average seawater chemistry and diel seawater chemistry variation. Here we model these effects for a coastal, reef flat ecosystem. We show that an increase in offshore pCO2 and temperature (to 900 µatm and + 3 °C can increase diel pH variation by as much as a factor of 2.5 and can increase diel pCO2 variation by a factor of 4.6, depending on ecosystem feedbacks and seawater residence time. Importantly, these effects are different between day and night. With increasing seawater residence time and increasing feedback intensity, daytime seawater chemistry becomes more similar to present-day conditions while nighttime seawater chemistry becomes less similar to present-day conditions. Recent studies suggest that carbonate chemistry variation itself, independent of the average chemistry conditions, can have important effects on marine organisms and ecosystem processes. Better constraining ecosystem feedbacks under global change will improve projections of coastal water chemistry, but this study shows the importance of considering changes in both average carbonate chemistry and diel chemistry variation for organisms and ecosystems.
Ion angular distribution simulation of the HEMP Thruster
Duras, Julia; Koch, Norbert; Kahnfeld, Daniel; Bandelow, Gunnar; Matthias, Paul; Lüskow, Karl Felix; Schneider, Ralf; Kemnitz, Stefan
2016-10-01
Ion angular current and energy distributions are important parameters for ion thrusters, which are typically measured at a few tens of centimetres to a few meters distance from thruster exit. However, fully kinetic Particle-in-Cell simulations are not able to simulate such domain sizes, due to high computational costs. Therefore, a parallelisation strategy of the code is presented to reduce computational time. To map diagnostics information from the domain boundary of the calculational domain to the positions of experimental diagnostics the concept of transfer functions is introduced. The calculated ion beam angular distributions in the plume region are quite sensitive to boundary conditions of the potential, possible additional source contributions, e.g. from secondary electron emission at vessel walls, and charge exchange collisions. This work was supported by the Bavarian State Ministry of Education Science and the Arts and the German Space Agency DLR. We also like to thank R. Heidemann from THALES Electron Devices GmbH, for interesting and stimulating discussions.
Assessment of Pole Erosion in a Magnetically Shielded Hall Thruster
Mikellides, Ioannis G.; Ortega, Alejandro L.
2014-01-01
Numerical simulations of a 6-kW laboratory Hall thruster called H6 have been performed to quantify the erosion rate at the inner pole. The assessments have been made in two versions of the thruster, namely the unshielded (H6US) and magnetically shielded (H6MS) configurations. The simulations have been performed with the 2-D axisymmetric code Hall2De which employs a new multi-fluid ion algorithm to capture the presence of low-energy ions in the vicinity of the poles. It is found that the maximum computed erosion rate at the inner pole of the H6MS exceeds the measured rate of back-sputtered deposits by 4.5 times. This explains only part of the surface roughening that was observed after a 150-h wear test, which covered most of the pole area exposed to the plasma. For the majority of the pole surface the computed erosion rates are found to be below the back-sputter rate and comparable to those in the H6US which exhibited little to no sputtering in previous tests. Possible explanations for the discrepancy are discussed.
Engineering Risk Assessment of Space Thruster Challenge Problem
Mathias, Donovan L.; Mattenberger, Christopher J.; Go, Susie
2014-01-01
The Engineering Risk Assessment (ERA) team at NASA Ames Research Center utilizes dynamic models with linked physics-of-failure analyses to produce quantitative risk assessments of space exploration missions. This paper applies the ERA approach to the baseline and extended versions of the PSAM Space Thruster Challenge Problem, which investigates mission risk for a deep space ion propulsion system with time-varying thruster requirements and operations schedules. The dynamic mission is modeled using a combination of discrete and continuous-time reliability elements within the commercially available GoldSim software. Loss-of-mission (LOM) probability results are generated via Monte Carlo sampling performed by the integrated model. Model convergence studies are presented to illustrate the sensitivity of integrated LOM results to the number of Monte Carlo trials. A deterministic risk model was also built for the three baseline and extended missions using the Ames Reliability Tool (ART), and results are compared to the simulation results to evaluate the relative importance of mission dynamics. The ART model did a reasonable job of matching the simulation models for the baseline case, while a hybrid approach using offline dynamic models was required for the extended missions. This study highlighted that state-of-the-art techniques can adequately adapt to a range of dynamic problems.
Experimental Study of the Microdischarge Plasma Thruster (MDPT)
Kc, Utsav; Varghese, Philip; Raja, Laxminarayan
2008-10-01
Small satellite propulsion requirements dictate the need for a scaled down propulsion device capable of providing low thrust with small impulse bits. We have designed and studied a simple miniaturized thruster called Microdischarge Plasma Thruster (MDPT). It comprises a tri-layer sandwich structure with a dielectric layer sandwiched between two electrode layers, and a contoured through hollow drilled into the structure. Each layer is 100's microns in thickness and the hole diameter of the same order. Argon is used as the propellant gas with flow rates of ˜ 1 SCCM. The pressure is adequate to produce a stable microdischarge between the electrodes even with modest voltages (˜1000 V). The microdischarge adds heat to the supersonic portion of the flowing gas which is shown to produce additional thrust over the baseline cold gas flow. The studies have also demonstrated that the MDPT exhaust plume is composed of ions albeit at low concentrations, suggesting possibility of MDPT to be operated in a mixed electrothermal/electrostatic mode. We present discussion of multiple discharge operating modes and electrical characteristics of the MDPT. Spectral measurements of the plume are used to determine its composition and calculate its temperature. The momentum thrust of the MDPT is measured with a torsion balance.
Assessment of Pole Erosion in a Magnetically Shielded Hall Thruster
Mikellides, Ioannis G.; Ortega, Alejandro L.
2014-01-01
Numerical simulations of a 6-kW laboratory Hall thruster called H6 have been performed to quantify the erosion rate at the inner pole. The assessments have been made in two versions of the thruster, namely the unshielded (H6US) and magnetically shielded (H6MS) configurations. The simulations have been performed with the 2-D axisymmetric code Hall2De which employs a new multi-fluid ion algorithm to capture the presence of low-energy ions in the vicinity of the poles. It is found that the maximum computed erosion rate at the inner pole of the H6MS exceeds the measured rate of back-sputtered deposits by 4.5 times. This explains only part of the surface roughening that was observed after a 150-h wear test, which covered most of the pole area exposed to the plasma. For the majority of the pole surface the computed erosion rates are found to be below the back-sputter rate and comparable to those in the H6US which exhibited little to no sputtering in previous tests. Possible explanations for the discrepancy are discussed.
Space Shuttle vernier thruster long-life chamber development
Krohn, Douglas D.
1990-01-01
The Space Shuttle Reaction Control Subsystem (RCS) vernier thruster is a pressure fed engine that utilizes storable propellants to provide precise attitude control for the Orbiter. The current vernier thruster is life limited due to its chamber material. By developing an iridium-lined rhenium chamber for the vernier, substantial gains could be achieved in the operational life of the chamber. The present RCS vernier, its requirements, operating characteristics, and life limitations are described. The current technology status of iridium-lined rhenium is presented along with a description of the operational life capabilities to be gained from implementing this material into the design of a long life vernier chamber. Discussion of the proposed demonstration program to be performed by the NASA Lyndon B. Johnson Space Center to attain additional insight into the application of this technology to the RCS vernier, includes the technical objectives, approach, and program schedule. The plans for further development and integration with the Orbiter and the Shuttle system are also presented.
MEMS-Based Solid Propellant Rocket Array Thruster
Tanaka, Shuji; Hosokawa, Ryuichiro; Tokudome, Shin-Ichiro; Hori, Keiichi; Saito, Hirobumi; Watanabe, Masashi; Esashi, Masayoshi
The prototype of a solid propellant rocket array thruster for simple attitude control of a 10 kg class micro-spacecraft was completed and tested. The prototype has 10×10 φ0.8 mm solid propellant micro-rockets arrayed at a pitch of 1.2 mm on a 20×22 mm substrate. To realize such a dense array of micro-rockets, each ignition heater is powered from the backside of the thruster through an electrical feedthrough which passes along a propellant cylinder wall. Boron/potassium nitrate propellant (NAB) is used with/without lead rhodanide/potassium chlorate/nitrocellulose ignition aid (RK). Impulse thrust was measured by a pendulum method in air. Ignition required electric power of at least 3 4 W with RK and 4 6 W without RK. Measured impulse thrusts were from 2×10-5 Ns to 3×10-4 Ns after the calculation of compensation for air dumping.
Optimization of energy transfer in microwave electrothermal thrusters
Sullivan, D. J.; Micci, M. M.
1993-01-01
Results are presented from preliminary tests conducted to evaluate the performance of a prototype microwave electrothermal thruster. The primary component of the device is a microwave resonant cavity. The device produces stable axial plasmas within a pressurized section of the cavity with the plasma positioned in the inlet region of the nozzle. Plasma stability is enhanced by axial power coupling, an optimal distribution of electric power density within the cavity, and a propellant gas flow which has a large vortical velocity component. The thruster has been operated with a number of propellant gases: helium, nitrogen, ammonia, and hydrogen. Plasmas can be formed in a reliable manner at cavity pressures of 1 kPa and incident power levels ranging from 50 W to 350 W, depending on the gas used, and can be operated at pressures up to 300 kPa at power levels up to 2200 W. Ideal performance results of vacuum Isp and thermal efficiency vs. specific power are presented for each gas. Representative results of this preliminary work are: He - Isp = 625 s, eta-thermal = 90 percent; N2 - Isp = 270 s, eta-thermal = 41 percent; NH3 - Isp = 475 s, eta-thermal= 55 percent; H2 - Isp = 1040 s, eta-thermal = 53 percent.
Erosion Measurements in a Diverging Cusped-Field Thruster (Pre Print)
2012-02-01
3,000 3,000∗ BHT -200 [15] 200 43.5% 1,287-1,519 >1,700 HT-100 [16] 175 25% [4] 300 [17] 1,500 [17]∗∗ SPT-30 [18] 150 26% [19] 600∗ - SPT-20M [20] ...provide longer lifetimes to low-power thrusters with performance capabilities similar to Hall thrusters. Performance similar to the BHT -200, a...only the DCF and BHT -200 thrusters have the reported capability of operating past 1000 h without exposing components of their magnetic circuit. The
Comparison of Numerical and Experimental Time-Resolved Near-Field Hall Thruster Plasma Properties
2014-03-06
RESOLVED NEAR-FIELD HALL THRUSTER PLASMA PROPERTIES 807 TABLE I BHT -600 HALL THRUSTER AT NOMINAL XENON OPERATING CONDITIONS AND PERFORMANCE [21] 1.2-m...is a 600 W BHT -600 with a 3.2-mm hollow cathode manufactured by the Busek Company (Natick, MA). This thruster has been studied previously using both...electrostatic probes and various opti- cal diagnostics [17]–[20]. The BHT -600 has an acceleration channel outer radius of 32 mm, inner radius of 24 mm
PAN Wen-Xia; LI Teng; WU Cheng-Kang
2009-01-01
An arc-heated thruster of 130-800 W input power is tested in a vacuum chamber at pressures lower than 20 Pa with argon or H_2-N_2 gas mixture as propellant.The time-dependent arc voltage-current curve,outside-surface temperature of the anode nozzle and the produced thrust of the firing arcjet thruster are measured in situ simultaneously,in order to analyze and evaluate the dependence of thruster working characteristics and output properties,such as specific impulse and thrust efficiency,on nozzle temperature.
Satellite Microwave Communication Signal Degradation Due To Hall Thruster Plasma Plumes
Wiley, J. C.; Hallock, G. A.; Spencer, E. A.; Meyer, J. W.; Loane, J. T.
2001-10-01
We have developed a geometric optics vector ray-tracing code, BeamServer, for analyzing the effects of Hall thruster plasma plumes on satellite microwave communication signals. The possible effects include main beam attenuation and squinting, side lobe degradation, and induced cross-polarization. We report on a study of Hall current thruster (HCT) mounting positions on a realistic satellite configuration and a study with a highly shaped reflector. Results indicate HCT signal degradation can occur and should be considered in the satellite design process. Initial results of antenna pattern perturbations due to low frequency plume oscillations driven by thruster instabilities are also given.
Dazhang Yang; Jianhua Liu; Xiaoxue E; Linlin Jiang
2016-01-01
A kinetic model was proposed to predict the seawater fouling process in the seawater heat exchangers. The new model adopted an expression combining depositional and removal behaviors for seawater fouling based on the Kern–Seaton model. The present model parameters include the integrated kinetic rate of deposition (kd) and the integrated kinetic rate of removal (kr), which have clear physical significance. A seawater-fouling monitoring de-vice was established to validate the model. The experimental data were wel fitted to the model, and the param-eters were obtained in different conditions. SEM and EDX analyses were performed after the experiments, and the results show that the main components of seawater fouling are magnesium hydroxide and aluminum hy-droxide. The effects of surface temperature, flow velocity and surface free energy were assessed by the model and the experimental data. The results indicate that the seawater fouling becomes aggravated as the surface tem-perature increased in a certain range, and the seawater fouling resistance reduced as the flow velocity of seawater increased. Furthermore, the effect of the surface free energy of metals was analyzed, showing that the lower sur-face free energy mitigates the seawater fouling accumulation.
Microbial control of seawater by microfiltration
Wilmer Soler T
2010-08-01
Full Text Available Recent scientific literature presents seawater as a potential aid to solve a variety of health diseases in animals and human beings because by means of its mineral and trace elements content. In Colombia, Nicaragua and Spain it is collected in a natural way from de shore and drunk; however, this can represent a health risk because of the problems related to chemical and microbiological contamination. Microbial control of seawater allows the improvement of its microbiological quality. Objective: to compare the efficiency of three microbial control methods: microfiltration, solar exposition and quarantine. Methodology: 30 samples were collected in 20-liter high density polyethylene containers in three different places in the Colombian Atlantic coast. Results: 15 samples out of 30 showed the presence of bacteria such as E. coli and halophiles bacteria like Vibrio and Aeromonas. Microfiltration through ceramic filters of 0.5 µm produces disinfection in 100% of the samples but the quarantine for five months and solar disinfection are effective in 66 and 21% respectively. The latter requires certain weather conditions to achieve disinfection and it only allows managing small quantities of water. Dicussion: Considering chemical contamination in some places which cannot be controlled through disinfection methods, the collection of water offshore in clean places is suggested and then microfiltration treatment should be performed.
On the Energy Spectrum of Strong Magnetohydrodynamic Turbulence
Jean Carlos Perez
2012-10-01
Full Text Available The energy spectrum of magnetohydrodynamic turbulence attracts interest due to its fundamental importance and its relevance for interpreting astrophysical data. Here we present measurements of the energy spectra from a series of high-resolution direct numerical simulations of magnetohydrodynamics turbulence with a strong guide field and for increasing Reynolds number. The presented simulations, with numerical resolutions up to 2048^{3} mesh points and statistics accumulated over 30 to 150 eddy turnover times, constitute, to the best of our knowledge, the largest statistical sample of steady state magnetohydrodynamics turbulence to date. We study both the balanced case, where the energies associated with Alfvén modes propagating in opposite directions along the guide field, E^{+}(k_{⊥} and E^{-}(k_{⊥}, are equal, and the imbalanced case where the energies are different. In the balanced case, we find that the energy spectrum converges to a power law with exponent -3/2 as the Reynolds number is increased, which is consistent with phenomenological models that include scale-dependent dynamic alignment. For the imbalanced case, with E^{+}>E^{-}, the simulations show that E^{-}∝k_{⊥}^{-3/2} for all Reynolds numbers considered, while E^{+} has a slightly steeper spectrum at small Re. As the Reynolds number increases, E^{+} flattens. Since E^{±} are pinned at the dissipation scale and anchored at the driving scales, we postulate that at sufficiently high Re the spectra will become parallel in the inertial range and scale as E^{+}∝E^{-}∝k_{⊥}^{-3/2}. Questions regarding the universality of the spectrum and the value of the “Kolmogorov constant” are discussed.
Modelling of a transmembrane evaporation module for desalination of seawater
Guijt, Caroliene M.; Rácz, Imre G.; Heuven, van Jan Willem; Reith, Tom; Haan, de André B.
1999-01-01
Transmembrane evaporation (often called membrane distillation) carried out in a countercurrent flow module, in which incoming cold seawater is heated by the condensing product water flow, is a promising technology for low-cost seawater desalination. This paper presents a model for preliminary design
Ultrasonic waves induce rapid zeolite synthesis in a seawater solution.
Belviso, Claudia; Cavalcante, Francesco; Fiore, Saverio
2013-01-01
The synthesis of zeolites from fly ash was performed through a low-temperature hydrothermal process with seawater. Compared with the results obtained using the same hydrothermal method but in the absence of sonication, the application of an ultrasonic pre-treatment to the conventional hydrothermal process with seawater reduces the crystallization temperature below that observed when hydrothermal synthesis is performed using distilled water.
Design and Testing of a Small Inductive Pulsed Plasma Thruster
Martin, Adam K.; Eskridge, Richard H.; Dominguez, Alexandra; Polzin, Kurt A.; Riley, Daniel P.; Kimberlin, Adam C.
2015-01-01
The design and testing of a small inductive pulsed plasma thruster (IPPT), shown in Fig. 1 with all the major subsystems required for a thruster of this kind are described. Thrust measurements and imaging of the device operated in rep-rated mode are presented to quantify the performance envelope of the device. The small IPPT described in this paper was designed to serve as a test-bed for the pulsed gas-valves and solid-state switches required for a IPPTs. A modular design approach was used to permit future modifications and upgrades. The thruster consists of the following sub-systems: a) a multi-turn, spiral-wound acceleration coil (27 cm o.d., 10 cm i.d.) driven by a 10 microFarad capacitor and switched with a high-voltage thyristor, b) a fast pulsed gas-valve, and c.) a glow-discharge pre-ionizer (PI) circuit. The acceleration-coil circuit may be operated at voltages up to 4 kV (the thyristor limit is 4.5 kV). The device may be operated at rep-rates up to 30 Hz with the present gas-valve. Thrust measurements and imaging of the device operated in rep-rated mode will be presented. The pre-ionizer consists of a 0.3 microFarad capacitor charged to 4 kV and connected to two annular stainless-steel electrodes bounding the area of the coil-face. The 4 kV potential is held across them and when the gas is puffed in over the coil, the PI circuit is completed, and a plasma is formed. Even at the less than optimal base-pressure in the chamber (approximately 5 × 10(exp -4) torr), the PI held-off the applied voltage, and only discharged upon command. For a capacitor charge of 2 kV the peak coil current is 4.1 kA, and during this pulse a very bright discharge (much brighter than from the PI alone) was observed (see Fig. 2). Interestingly, for discharges at this charge voltage the PI was not required as the current rise rate, dI/dt, of the coil itself was sufficient to ionize the gas.
The role of magnetohydrodynamics in heliospheric space plasma physics research
Dryer, Murray; Smith, Zdenka Kopal; Wu, Shi Tsan
1988-01-01
Magnetohydrodynamics (MHD) is a fairly recent extension of the field of fluid mechanics. While much remains to be done, it has successfully been applied to the contemporary field of heliospheric space plasma research to evaluate the 'macroscopic picture' of some vital topics via the use of conducting fluid equations and numerical modeling and simulations. Some representative examples from solar and interplanetary physics are described to demonstrate that the continuum approach to global problems (while keeping in mind the assumptions and limitations therein) can be very successful in providing insight and large scale interpretations of otherwise intractable problems in space physics.
Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence.
Servidio, S; Matthaeus, W H; Shay, M A; Cassak, P A; Dmitruk, P
2009-03-20
Systematic analysis of numerical simulations of two-dimensional magnetohydrodynamic turbulence reveals the presence of a large number of X-type neutral points where magnetic reconnection occurs. We examine the statistical properties of this ensemble of reconnection events that are spontaneously generated by turbulence. The associated reconnection rates are distributed over a wide range of values and scales with the geometry of the diffusion region. Locally, these events can be described through a variant of the Sweet-Parker model, in which the parameters are externally controlled by turbulence. This new perspective on reconnection is relevant in space and astrophysical contexts, where plasma is generally in a fully turbulent regime.
Magnetohydrodynamics and the earth's core selected works by Paul Roberts
Soward, Andrew M
2003-01-01
Paul Roberts'' research contributions are remarkable in their diversity, depth and international appeal. Papers from the Paul Roberts'' Anniversary meeting at the University of Exeter are presented in this volume. Topics include geomagnetism and dynamos, fluid mechanics and MHD, superfluidity, mixed phase regions, mean field electrodynamics and the Earth''s inner core. An incisive commentary of the papers puts the work of Paul Roberts into historical context. Magnetohydrodynamics and the Earth''s Core provides a valuable source of reference for graduates and researchers working in this area of geoscience.
Numerical Simulations and Diagnostics in Astrophysics:. a Few Magnetohydrodynamics Examples
Peres, Giovanni; Bonito, Rosaria; Orlando, Salvatore; Reale, Fabio
2007-12-01
We discuss some issues related to numerical simulations in Astrophysics and, in particular, to their use both as a theoretical tool and as a diagnostic tool, to gain insight into the physical phenomena at work. We make our point presenting some examples of Magneto-hydro-dynamic (MHD) simulations of astrophysical plasmas and illustrating their use. In particular we show the need for appropriate tools to interpret, visualize and present results in an adequate form, and the importance of spectral synthesis for a direct comparison with observations.
Generalized similarity in finite range solar wind magnetohydrodynamic turbulence.
Chapman, S C; Nicol, R M
2009-12-11
Extended or generalized similarity is a ubiquitous but not well understood feature of turbulence that is realized over a finite range of scales. The ULYSSES spacecraft solar polar passes at solar minimum provide in situ observations of evolving anisotropic magnetohydrodynamic turbulence in the solar wind under ideal conditions of fast quiet flow. We find a single generalized scaling function characterizes this finite range turbulence and is insensitive to plasma conditions. The recent unusually inactive solar minimum--with turbulent fluctuations down by a factor of approximately 2 in power--provides a test of this invariance.
Long-range correlations and coherent structures in magnetohydrodynamic equilibria.
Weichman, Peter B
2012-12-01
The equilibrium theory of the 2D magnetohydrodynamic equations is derived, accounting for the full infinite hierarchies of conserved integrals. An exact description in terms of two coupled elastic membranes emerges, producing long-ranged correlations between the magnetic and velocity fields. This is quite different from the results of previous variational treatments, which relied on a local product ansatz for the thermodynamic Gibbs distribution. The equilibria display the same type of coherent structures, such as compact eddies and zonal jets, previously found in pure fluid equilibria. Possible consequences of this for recent simulations of the solar tachocline are discussed.
Magnetohydrodynamic waves and coronal seismology: an overview of recent results.
De Moortel, Ineke; Nakariakov, Valery M
2012-07-13
Recent observations have revealed that magnetohydrodynamic (MHD) waves and oscillations are ubiquitous in the solar atmosphere, with a wide range of periods. We give a brief review of some aspects of MHD waves and coronal seismology that have recently been the focus of intense debate or are newly emerging. In particular, we focus on four topics: (i) the current controversy surrounding propagating intensity perturbations along coronal loops, (ii) the interpretation of propagating transverse loop oscillations, (iii) the ongoing search for coronal (torsional) Alfvén waves, and (iv) the rapidly developing topic of quasi-periodic pulsations in solar flares.
HARM A Numerical Scheme for General Relativistic Magnetohydrodynamics
Gammie, C F; Tóth, G; Gammie, Charles F.; Kinney, Jonathan C. Mc
2003-01-01
We describe a conservative, shock-capturing scheme for evolving the equations of general relativistic magnetohydrodynamics. The fluxes are calculated using the Harten, Lax, and van Leer scheme. A variant of constrained transport, proposed earlier by T\\'oth, is used to maintain a divergence free magnetic field. Only the covariant form of the metric in a coordinate basis is required to specify the geometry. We describe code performance on a full suite of test problems in both special and general relativity. On smooth flows we show that it converges at second order. We conclude by showing some results from the evolution of a magnetized torus near a rotating black hole.
Magnetohydrodynamic Ekman layers with field-aligned flow
Nunez, Manuel, E-mail: mnjmhd@am.uva.es [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)
2011-05-01
The Ekman layer in a conducting fluid with constant angular velocity, provided with a magnetic field aligned with the flow, is studied here. The existence of solutions to the magnetohydrodynamic linearized equations depends on the balance between viscosity and resistivity, on the one hand, and the angular and Alfven velocities, on the other. In most cases, exponentially decreasing solutions exist, although their longitudinal oscillations do not need to be periodic. One of the instances without a solution is explained by the presence of Alfven waves traveling backwards along the streamlines.
Simakov, Andrei N; Chacón, L
2008-09-05
Dissipation-independent, or "fast", magnetic reconnection has been observed computationally in Hall magnetohydrodynamics (MHD) and predicted analytically in electron MHD. However, a quantitative analytical theory of reconnection valid for arbitrary ion inertial lengths, d{i}, has been lacking and is proposed here for the first time. The theory describes a two-dimensional reconnection diffusion region, provides expressions for reconnection rates, and derives a formal criterion for fast reconnection in terms of dissipation parameters and d{i}. It also confirms the electron MHD prediction that both open and elongated diffusion regions allow fast reconnection, and reveals strong dependence of the reconnection rates on d{i}.
Magnetohydrodynamic dynamo: global flow generation in plasma turbulence
Yokoi, Nobumitsu; Yoshizawa, Akira [Tokyo Univ. (Japan). Inst. of Industrial Science; Itoh, Kimitaka; Itoh, Sanae-I.
1999-07-01
Generation mechanism of the spontaneous plasma rotation observed in an improved confinement mode in tokamak's is examined from the viewpoint of the turbulent magnetohydrodynamic (MHD) dynamo. A dynamo model, where the concept of cross helicity (velocity/magnetic-field correlation) plays a key role, is applied to the reversed shear (RS) modes. The concave electric-current profile occurred in the RS modes is shown to be a cause of the global plasma rotation through a numerical simulation of the cross-helicity turbulence model. (author)
Consistent theory of turbulent transport in two-dimensional magnetohydrodynamics.
Kim, Eun-jin
2006-03-03
A theory of turbulent transport is presented in two-dimensional magnetohydrodynamics with background shear and magnetic fields. We provide theoretical predictions for the transport of magnetic flux, momentum, and particles and turbulent intensities, which show stronger reduction compared with the hydrodynamic case, with different dependences on shearing rate, magnetic field, and values of viscosity, Ohmic diffusion, and particle diffusivity. In particular, particle transport is more severely suppressed than momentum transport, effectively leading to a more efficient momentum transport. The role of magnetic fields in quenching transport without altering the amplitude of flow velocity and in inhibiting the generation of shear flows is elucidated. Implications of the results are discussed.
Propagation of linear waves in relativistic anisotropic magnetohydrodynamics.
Gebretsadkan, W B; Kalra, G L
2002-11-01
Gedalin [Phys. Rev. E 47, 4354 (1993)] derived a dispersion relation for linear waves in relativistic anisotropic Magnetohydrodynamics (MHD). This dispersion relation is used to point out the regions where the relativistic anisotropic MHD leads to new results that cannot be obtained using usual collisional relativistic MHD. This is highlighted by plotting a Fresnal ray surface. Conditions for the onset of firehose and mirror instabilities are also indicated. Such a study can be applied to astrophysical features such as pulsar winds, propagation of cosmic rays, etc.
Energy transfers in shell models for magnetohydrodynamics turbulence.
Lessinnes, Thomas; Carati, Daniele; Verma, Mahendra K
2009-06-01
A systematic procedure to derive shell models for magnetohydrodynamic turbulence is proposed. It takes into account the conservation of ideal quadratic invariants such as the total energy, the cross helicity, and the magnetic helicity, as well as the conservation of the magnetic energy by the advection term in the induction equation. This approach also leads to simple expressions for the energy exchanges as well as to unambiguous definitions for the energy fluxes. When applied to the existing shell models with nonlinear interactions limited to the nearest-neighbor shells, this procedure reproduces well-known models but suggests a reinterpretation of the energy fluxes.
Dissipation and reconnection in boundary-driven reduced magnetohydrodynamics
Wan, Minping; Rappazzo, Antonio Franco; Matthaeus, William H. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Servidio, Sergio [Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza (Italy); Oughton, Sean [Department of Mathematics, University of Waikato, Hamilton 3240 (New Zealand)
2014-12-10
We study the statistics of coherent current sheets, the population of X-type critical points, and reconnection rates in a coronal loop geometry, via numerical simulations of reduced magnetohydrodynamic turbulence. Current sheets and sites of reconnection (magnetic X-points) are identified in two-dimensional planes of the three-dimensional simulation domain. The geometry of the identified current sheets—including area, length, and width—and the magnetic dissipation occurring in the current sheets are statistically characterized. We also examine the role of magnetic reconnection, by computing the reconnection rates at the identified X-points and investigating their association with current sheets.
HIGH ENERGY REPLACEMENT FOR TEFLON PROPELLANT IN PULSED PLASMA THRUSTERS Project
National Aeronautics and Space Administration — This program will utilize a well-characterized Pulsed Plasma Thruster (PPT) to test experimental high-energy extinguishable solid propellants (HE), instead of...
Colloid Thruster for Attitude Control Systems (ACS) and Tip-off Control Applications Project
National Aeronautics and Space Administration — We propose to develop and test key technologies needed for an integrated, high thrust colloid thruster system with no moving parts, for spacecraft attitude control...
Feasibility of a 5mN Laser-Driven Mini-Thruster Project
National Aeronautics and Space Administration — We have developed a next-generation thruster under a Phase II SBIR which we believe can meet NASA requirements after some modifications and improvements. It is the...
Kinetic Molecular Dynamic Model of Hall Thruster Channel Wall Erosion Project
National Aeronautics and Space Administration — Hall thrusters are being considered for many space missions because their high specific impulse delivers a larger payload mass fraction than chemical rockets. With a...
Modelling and Simulation of Variable Speed Thruster Drives with Full-Scale Verification
Jan F. Hansen
2001-10-01
Full Text Available In this paper considerations about modelling and simulation of variable speed thruster drives are made with comparison to full scale measurements from Varg FPSO. For special purpose vessels with electric propulsion operating in DP (Dynamic Positioning mode the thruster drives are essential for the vessel operation. Different model strategies of thruster drives are discussed. An advanced thruster drive model with a dynamic motor model and field vector control principle is shown. Simulations are performed with both the advanced model and a simplified model. These are compared with full-scale measurements from Varg FPSO. The simulation results correspond well with the measurements, for both the simplified model and the advanced model.
On the microscopic mechanism of ion-extraction of a gridded ion propulsion thruster
Kirmse, Danny
2013-01-01
The following paper includes a physical microscopic particle-description of the phenomena and mechanisms that lead to the extraction of ions with the aim to generate thrust. This theoretical treatise arose from the intention to visualize the behavior of the involved particles under effect of the involved electrical fields. By this way, an underlying basis for experimental investigations of the work of an ion thruster should be formed. So a foundation was created, which explains the ion extracting and so thrust generating function of an ion thruster. The theoretical work was related to the Radio-frequency Ion Thruster (RIT). But the model worked out can be generalized for all thruster types that use electrostatic fields to extract positively charged ions.
Hall Effect Thruster for High Power Solar Electric Propulsion Technology Demonstration Project
National Aeronautics and Space Administration — In Phase I Busek matured the design of an existing 15-kW laboratory thruster. Magnetic modeling was performed to generate a circuit incorporating magnetic shielding....