WorldWideScience

Sample records for magnetohydrodynamic augmented propulsion

  1. Magnetohydrodynamic Augmented Propulsion Experiment

    Science.gov (United States)

    Litchford, Ron J.; Cole, John; Lineberry, John; Chapman, Jim; Schmidt, Harold; Cook, Stephen (Technical Monitor)

    2002-01-01

    A fundamental obstacle to routine space access is the specific energy limitations associated with chemical fuels. In the case of vertical take-off, the high thrust needed for vertical liftoff and acceleration to orbit translates into power levels in the 10 GW range. Furthermore, useful payload mass fractions are possible only if the exhaust particle energy (i.e., exhaust velocity) is much greater than that available with traditional chemical propulsion. The electronic binding energy released by the best chemical reactions (e.g., LOX/LH2 for example, is less than 2 eV per product molecule (approx. 1.8 eV per H2O molecule), which translates into particle velocities less than 5 km/s. Useful payload fractions, however, will require exhaust velocities exceeding 15 km/s (i.e., particle energies greater than 20 eV). As an added challenge, the envisioned hypothetical RLV (reusable launch vehicle) should accomplish these amazing performance feats while providing relatively low acceleration levels to orbit (2-3g maximum). From such fundamental considerations, it is painfully obvious that planned and current RLV solutions based on chemical fuels alone represent only a temporary solution and can only result in minor gains, at best. What is truly needed is a revolutionary approach that will dramatically reduce the amount of fuel and size of the launch vehicle. This implies the need for new compact high-power energy sources as well as advanced accelerator technologies for increasing engine exhaust velocity. Electromagnetic acceleration techniques are of immense interest since they can be used to circumvent the thermal limits associated with conventional propulsion systems. This paper describes the Magnetohydrodynamic Augmented Propulsion Experiment (MAPX) being undertaken at NASA Marshall Space Flight Center (MSFC). In this experiment, a 1-MW arc heater is being used as a feeder for a 1-MW magnetohydrodynamic (MHD) accelerator. The purpose of the experiment is to demonstrate

  2. Computational Analysis of Powered Lift Augmentation for the LEAPTech Distributed Electric Propulsion Wing

    Science.gov (United States)

    Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Wiese, Michael R.; Farr, Norma L.

    2017-01-01

    A computational study of a distributed electric propulsion wing with a 40deg flap deflection has been completed using FUN3D. Two lift-augmentation power conditions were compared with the power-off configuration on the high-lift wing (40deg flap) at a 73 mph freestream flow and for a range of angles of attack from -5 degrees to 14 degrees. The computational study also included investigating the benefit of corotating versus counter-rotating propeller spin direction to powered-lift performance. The results indicate a large benefit in lift coefficient, over the entire range of angle of attack studied, by using corotating propellers that all spin counter to the wingtip vortex. For the landing condition, 73 mph, the unpowered 40deg flap configuration achieved a maximum lift coefficient of 2.3. With high-lift blowing the maximum lift coefficient increased to 5.61. Therefore, the lift augmentation is a factor of 2.4. Taking advantage of the fullspan lift augmentation at similar performance means that a wing powered with the distributed electric propulsion system requires only 42 percent of the wing area of the unpowered wing. This technology will allow wings to be 'cruise optimized', meaning that they will be able to fly closer to maximum lift over drag conditions at the design cruise speed of the aircraft.

  3. A revolutionary lunar space transportation system architecture using extraterrestrial LOX-augmented NTR propulsion

    Science.gov (United States)

    Borowski, Stanley K.; Corban, Robert R.; Culver, Donald W.; Bulman, Melvin J.; McIlwain, Mel C.

    1994-08-01

    The concept of a liquid oxygen (LOX)-augmented nuclear thermal rocket (NTR) engine is introduced, and its potential for revolutionizing lunar space transportation system (LTS) performance using extraterrestrial 'lunar-derived' liquid oxygen (LUNOX) is outlined. The LOX-augmented NTR (LANTR) represents the marriage of conventional liquid hydrogen (LH2)-cooled NTR and airbreathing engine technologies. The large divergent section of the NTR nozzle functions as an 'afterburner' into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the NTR's choked sonic throat: 'scramjet propulsion in reverse.' By varying the oxygen-to-fuel mixture ratio (MR), the LANTR concept can provide variable thrust and specific impulse (Isp) capability with a LH2-cooled NTR operating at relatively constant power output. For example, at a MR = 3, the thrust per engine can be increased by a factor of 2.75 while the Isp decreases by only 30 percent. With this thrust augmentation option, smaller, 'easier to develop' NTR's become more acceptable from a mission performance standpoint (e.g., earth escape gravity losses are reduced and perigee propulsion requirements are eliminated). Hydrogen mass and volume is also reduced resulting in smaller space vehicles. An evolutionary NTR-based lunar architecture requiring only Shuttle C and/or 'in-line' shuttle-derived launch vehicles (SDV's) would operate initially in an 'expandable mode' with NTR lunar transfer vehicles (LTV's) delivering 80 percent more payload on piloted missions than their LOX/LH2 chemical propulsion counterparts. With the establishment of LUNOX production facilities on the lunar surface and 'fuel/oxidizer' depot in low lunar orbit (LLO), monopropellant NTR's would be outfitted with an oxygen propellant module, feed system, and afterburner nozzle for 'bipropellant' operation. The LANTR cislunar LTV now transitions to a reusable mode with smaller vehicle and payload doubling benefits on

  4. Human exploration and settlement of the Moon using LUNOX-augmented NTR propulsion

    Science.gov (United States)

    Borowski, Stanley K.; Culver, Donald W.; Bulman, Melvin J.

    1995-10-01

    An innovative trimodal nuclear thermal rocket (NTR) concept is described which combines conventional liquid hydrogen (LH2)-cooled NTR, Brayton cycle power generation and supersonic combustion ramjet (scramjet) technologies. Known as the liquid oxygen (LOX) augmented NTR (LANTR), this concept utilizes the large divergent section of the NTR nozzle as an 'afterburner' into which LOX is injected and supersonically combusted with nuclear preheated hydrogen emerging from the LANTR's choked sonic throat--'scramjet propulsion in reverse.' By varying the oxygen-to-hydrogen mixture ratio (MR), the LANTR can operate over a wide range of thrust and specific impulse (Isp) values while the reactor core power level remains relatively constant. As the MR varies from zero to seven, the thrust-to-weight ratio for a 15 thousand pound force (klbf) NTR increases by approximately 440%--from 3 to 13--while the Isp decreases by only approximately 45%--from 940 to 515 seconds. This thrust augmentation feature of the LANTR means that 'big engine' performance can be obtained using smaller more affordable, easier to test NTR engines. 'Reoxidizing' the bipropellant LANTR system in low lunar orbit (LLO) with high density 'lunar-derived' LOX (LUNOX) enables a reusable, reduced size and mass lunar transfer vehicle (LTV) which can be deployed and resupplied using two 66 t-class Shuttle-derived launch vehicles. The reusable LANTR can also transport 200 to 300% more payload on each piloted round trip mission than an expendable 'all LH2' NTR system. As initial outposts grow to eventual lunar settlements and LUNOX production capacity increases, the LANTR concept can also enable a rapid 'commuter' shuttle capable of 36 to 24 hour 'one way' trips to the Moon and back with reasonable size vehicles and initial mass in low Earth orbit (IMLEO) requirements.

  5. Solar System Exploration Augmented by In-Situ Resource Utilization: Mercury and Saturn Propulsion Investigations

    Science.gov (United States)

    Palaszewski, Bryan

    2016-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed. In-situ resource utilization was found to be critical in making Mercury missions more amenable for human visits. At Saturn, refueling using local atmospheric mining was found to be difficult to impractical, while refueling the Saturn missions from Uranus was more practical and less complex.

  6. Solar magnetohydrodynamics

    International Nuclear Information System (INIS)

    Priest, E.R.

    1982-01-01

    The book serves several purposes. First set of chapters gives a concise general introduction to solar physics. In a second set the basic methods of magnetohydrodynamics are developed. A third set of chapters is an account of current theories for observed phenomena. The book is suitable for a course in solar physics and it also provides a comprehensive review of present magnetohydrodynamical models in solar physics. (SC)

  7. Magnetohydrodynamic cosmologies

    International Nuclear Information System (INIS)

    Portugal, R.; Soares, I.D.

    1991-01-01

    We analyse a class of cosmological models in magnetohydrodynamic regime extending and completing the results of a previous paper. The material content of the models is a perfect fluid plus electromagnetic fields. The fluid is neutral in average but admits an electrical current which satisfies Ohm's law. All models fulfil the physical requirements of near equilibrium thermodynamics and can be favourably used as a more realistic description of the interior of a collapsing star in a magnetohydrodynamic regime with or without a magnetic field. (author)

  8. Magnetohydrodynamic electrode

    International Nuclear Information System (INIS)

    1980-01-01

    The object of the invention is the provision of a material capable of withstanding a high-temperature, corrosive and erosive environment for use as a ceramic-metal composite electrode current collector in the channel of a magnetohydrodynamic generator. (U.K.)

  9. Relativistic magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Juan; Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,Victoria, BC, V8P 5C2 (Canada)

    2017-05-02

    We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the “conventional” magnetohydrodynamics (formulated using Maxwell’s equations in matter) to those in the “dual” version of magnetohydrodynamics (formulated using the conserved magnetic flux).

  10. Feasibility of a responsive, hybrid propulsion augmented, Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit launch system

    Science.gov (United States)

    Pelaccio, Dennis G.

    1996-03-01

    A novel, reusable, Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit (VTOL/SSTO) launch system concept, named HYP-SSTO, is presented in this paper. This launch vehicle system concept uses a highly coupled, main high performance liquid oxygen/liquid hydrogen (LOX/LH2) propulsion system, that is used only for launch, with a hybrid auxiliary propulsion system which is used during final orbit insertion, major orbit maneuvering, and landing propulsive burn phases of flight. By using a hybrid propulsion system for major orbit maneuver burns and landing, this launch system concept has many advantages over conventional VTOL/SSTO concepts that use LOX/LH2 propulsion system(s) burns for all phases of flight. Because hybrid propulsion systems are relatively simple and inert by their nature, this concept has the potential to support short turnaround times between launches, be economical to develop, and be competitive in terms of overall system life-cycle cost. This paper provides a technical description of the novel, reusable HYP-SSTO launch system concept. Launch capability performance, as well as major design and operational system attributes, are identified and discussed.

  11. Magnetohydrodynamic turbulence

    CERN Document Server

    Biskamp, Dieter

    2003-01-01

    This book presents an introduction to, and modern account of, magnetohydrodynamic (MHD) turbulence, an active field both in general turbulence theory and in various areas of astrophysics. The book starts by introducing the MHD equations, certain useful approximations and the transition to turbulence. The second part of the book covers incompressible MHD turbulence, the macroscopic aspects connected with the different self-organization processes, the phenomenology of the turbulence spectra, two-point closure theory, and intermittency. The third considers two-dimensional turbulence and compressi

  12. Magnetohydrodynamic Turbulence

    Science.gov (United States)

    Montgomery, David C.

    2004-01-01

    Magnetohydrodynamic (MHD) turbulence theory is modeled on neutral fluid (Navier-Stokes) turbulence theory, but with some important differences. There have been essentially no repeatable laboratory MHD experiments wherein the boundary conditions could be controlled or varied and a full set of diagnostics implemented. The equations of MHD are convincingly derivable only in the limit of small ratio of collision mean-free-paths to macroscopic length scales, an inequality that often goes the other way for magnetofluids of interest. Finally, accurate information on the MHD transport coefficients-and thus, the Reynolds-like numbers that order magnetofluid behavior-is largely lacking; indeed, the algebraic expressions used for such ingredients as the viscous stress tensor are often little more than wishful borrowing from fluid mechanics. The one accurate thing that has been done extensively and well is to solve the (strongly nonlinear) MHD equations numerically, usually in the presence of rectangular periodic boundary conditions, and then hope for the best when drawing inferences from the computations for those astrophysical and geophysical MHD systems for which some indisputably turbulent detailed data are available, such as the solar wind or solar prominences. This has led to what is perhaps the first field of physics for which computer simulations are regarded as more central to validating conclusions than is any kind of measurement. Things have evolved in this way due to a mixture of the inevitable and the bureaucratic, but that is the way it is, and those of us who want to work on the subject have to live with it. It is the only game in town, and theories that have promised more-often on the basis of some alleged ``instability''-have turned out to be illusory.

  13. Magnetohydrodynamic cellular automata

    Science.gov (United States)

    Montgomery, David; Doolen, Gary D.

    1987-01-01

    A generalization of the hexagonal lattice gas model of Frisch, Hasslacher and Pomeau is shown to lead to two-dimensional magnetohydrodynamics. The method relies on the ideal point-wise conservation law for vector potential.

  14. Review of magnetohydrodynamic pump applications

    Directory of Open Access Journals (Sweden)

    O.M. Al-Habahbeh

    2016-06-01

    Full Text Available Magneto-hydrodynamic (MHD principle is an important interdisciplinary field. One of the most important applications of this effect is pumping of materials that are hard to pump using conventional pumps. In this work, the progress achieved in this field is surveyed and organized according to the type of application. The literature of the past 27 years is searched for the major developments of MHD applications. MHD seawater thrusters are promising for a variety of applications requiring high flow rates and velocity. MHD molten metal pump is important replacement to conventional pumps because their moving parts cannot stand the molten metal temperature. MHD molten salt pump is used for nuclear reactor coolants due to its no-moving-parts feature. Nanofluid MHD pumping is a promising technology especially for bioapplications. Advantages of MHD include silence due to no-moving-parts propulsion. Much progress has been made, but with MHD pump still not suitable for wider applications, this remains a fertile area for future research.

  15. Propulsion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Propulsion Lab simulates field test conditions in a controlled environment, using standardized or customized test procedures. The Propulsion Lab's 11 cells can...

  16. Magnetohydrodynamics in rectangular ducts

    International Nuclear Information System (INIS)

    Lenhart, L.

    1994-04-01

    Magnetohydrodynamic flow in straight ducts or bends is a key issue, which has to be investigated for developing self-cooled liquid metal blankets of fusion reactors. The code presented solves the full set of governing equations and simulates all phenomena of such flows, including inertial effects. The range of application is limited by computer storage only. (orig./WL)

  17. Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines

    Science.gov (United States)

    Cole, Lord Kahil

    A number of promising alternative rocket propulsion concepts have been developed over the past two decades that take advantage of unsteady combustion waves in order to produce thrust. These concepts include the Pulse Detonation Rocket Engine (PDRE), in which repetitive ignition, propagation, and reflection of detonations and shocks can create a high pressure chamber from which gases may be exhausted in a controlled manner. The Pulse Detonation Rocket Induced Magnetohydrodynamic Ejector (PDRIME) is a modification of the basic PDRE concept, developed by Cambier (1998), which has the potential for performance improvements based on magnetohydrodynamic (MHD) thrust augmentation. The PDRIME has the advantage of both low combustion chamber seeding pressure, per the PDRE concept, and efficient energy distribution in the system, per the rocket-induced MHD ejector (RIME) concept of Cole, et al. (1995). In the initial part of this thesis, we explore flow and performance characteristics of different configurations of the PDRIME, assuming quasi-one-dimensional transient flow and global representations of the effects of MHD phenomena on the gas dynamics. By utilizing high-order accurate solvers, we thus are able to investigate the fundamental physical processes associated with the PDRIME and PDRE concepts and identify potentially promising operating regimes. In the second part of this investigation, the detailed coupling of detonations and electric and magnetic fields are explored. First, a one-dimensional spark-ignited detonation with complex reaction kinetics is fully evaluated and the mechanisms for the different instabilities are analyzed. It is found that complex kinetics in addition to sufficient spatial resolution are required to be able to quantify high frequency as well as low frequency detonation instability modes. Armed with this quantitative understanding, we then examine the interaction of a propagating detonation and the applied MHD, both in one-dimensional and two

  18. Liquid metal magnetohydrodynamic convertor

    International Nuclear Information System (INIS)

    Aladiev, I.T.; Dzhamardzhashvili, V.A.

    1981-01-01

    This invention relates to the generation of electrical energy by direct conversion from thermal or electrical energy and notably to liquid metal magnetohydrodynamic convertors. The convertor described in this invention can be successfully used as a source of electrical energy for space vessels, for underwater vessels, for aeronautics and for the generation of electrical energy in thermal or atomic power plants. This liquid metal convertor consists of a heat source, a two phase nozzle, a separator, a steam diffuser and a condenser. These elements are connected together hydraulically in series. The condenser is connected hydraulically to a heat source, a liquid diffuser and a magnetohydrodynamic generator. These elements are interconnected hydraulically to the separator and heat source [fr

  19. Magnetohydrodynamics cellular automata

    International Nuclear Information System (INIS)

    Hatori, Tadatsugu.

    1990-02-01

    There has been a renewal of interest in cellular automata, partly because they give an architecture for a special purpose computer with parallel processing optimized to solve a particular problem. The lattice gas cellular automata are briefly surveyed, which are recently developed to solve partial differential equations such as hydrodynamics or magnetohydrodynamics. A new model is given in the present paper to implement the magnetic Lorentz force in a more deterministic and local procedure than the previous one. (author)

  20. Magnetohydrodynamics and Plasma Cosmology

    Science.gov (United States)

    Kleidis, Kostas; Kuiroukidis, Apostolos; Papadopoulos, Demetrios; Vlahos, Loukas

    2007-09-01

    We study the linear magnetohydrodynamic (MHD) equations, both in the Newtonian and the general-relativistic limit, as regards a viscous magnetized fluid of finite conductivity and discuss instability criteria. In addition, we explore the excitation of cosmological perturbations in anisotropic spacetimes, in the presence of an ambient magnetic field. Acoustic, electromagnetic (e/m) and fast-magnetosonic modes, propagating normal to the magnetic field, can be excited, resulting in several implications of cosmological significance.

  1. Magnetohydrodynamic cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    Hatori, Tadatsugu [National Inst. for Fusion Science, Nagoya (Japan)

    1990-03-01

    There has been a renewal of interest in cellular automata, partly because they give an architecture for a special purpose computer with parallel processing optimized to solve a particular problem. The lattice gas cellular automata are briefly surveyed, which are recently developed to solve partial differential equations such as hydrodynamics or magnetohydrodynamics. A new model is given in the present paper to implement the magnetic Lorentz force in a more deterministic and local procedure than the previous one. (author).

  2. Magnetohydrodynamic cellular automata

    International Nuclear Information System (INIS)

    Hatori, Tadatsugu

    1990-01-01

    There has been a renewal of interest in cellular automata, partly because they give an architecture for a special purpose computer with parallel processing optimized to solve a particular problem. The lattice gas cellular automata are briefly surveyed, which are recently developed to solve partial differential equations such as hydrodynamics or magnetohydrodynamics. A new model is given in the present paper to implement the magnetic Lorentz force in a more deterministic and local procedure than the previous one. (author)

  3. Magnetohydrodynamical processes near compact objects

    International Nuclear Information System (INIS)

    Bisnovatyi Kogan, G.S.

    1979-01-01

    Magnetohydrodynamical processes near compact objects are reviewed in this paper. First the accretion of the magnetized matter into a single black hole and spectra of radiation are considered. Then the magnetic-field phenomena in the disk accretion, when the black hole is in a pair are discussed. Furthermore, the magnetohydrodynamics phenomena during supernova explosion are considered. Finally the magnetohydrodynamics in the accretion of a neutron star is considered in connection With x-ray sources

  4. Magnetic levitation and MHD propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Tixador, P [CNRS/CRTBT-LEG, 38 - Grenoble (France)

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried our in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ..) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. (orig.).

  5. Magnetic levitation and MHD propulsion

    International Nuclear Information System (INIS)

    Tixador, P.

    1994-01-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried our in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ..) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. (orig.)

  6. Magnetohydrodynamic flow phenomena

    International Nuclear Information System (INIS)

    Gerbeth, G.; Mutschke, G.; Eckert, S.

    1995-01-01

    The MHD group of the Institute of Safety Research performs basic studies on fluid dynamics and heat/mass transfer in fluids, particularly for electrically conducting fluids (liquid metals) exposed to external magnetic fields (Magnetohydrodynamics - MHD). Such a contactless influence on transport phenomena is of principal importance for a variety of applied problems including safety and design aspects in liquid metal cooled fusion reactors, fast reactors, and chemical systems. Any electrically conducting flow can be influenced without any contact by means of an external electromagnetic field. This, of course, can change the known hydromechanically flow patterns considerably. In the following two examples of such magnetic field influence are presented. (orig.)

  7. Magnetohydrodynamic energy conversion

    International Nuclear Information System (INIS)

    Rosa, R.J.

    1987-01-01

    The object of this book is to present a review of the basic principles and practical aspects of magnetohydrodynamic (MHD) energy conversion. The author has tried to give qualitative semiphysical arguments where possible for the benefit of the reader who is unfamiliar with plasma physics. The aim of MHD energy conversion is to apply to a specific practical goal a part of what has become a vast area of science called plasma physics. The author has attempted to note in the text where a broader view might be fruitful and to give appropriate references

  8. Elements of magnetohydrodynamic stability theory

    International Nuclear Information System (INIS)

    Spies, G.O.

    1976-11-01

    The nonlinear equations of ideal magnetohydrodynamics are discussed along with the following topics: (1) static equilibrium, (2) strict linear theory, (3) stability of a system with one degree of freedom, (4) spectrum and variational principles in magnetohydrodynamics, (5) elementary proof of the modified energy principle, (6) sufficient stability criteria, (7) local stability, and (8) normal modes

  9. Magnetohydrodynamic process in solar activity

    Directory of Open Access Journals (Sweden)

    Jingxiu Wang

    2014-01-01

    Full Text Available Magnetohydrodynamics is one of the major disciplines in solar physics. Vigorous magnetohydrodynamic process is taking place in the solar convection zone and atmosphere. It controls the generating and structuring of the solar magnetic fields, causes the accumulation of magnetic non-potential energy in the solar atmosphere and triggers the explosive magnetic energy release, manifested as violent solar flares and coronal mass ejections. Nowadays detailed observations in solar astrophysics from space and on the ground urge a great need for the studies of magnetohydrodynamics and plasma physics to achieve better understanding of the mechanism or mechanisms of solar activity. On the other hand, the spectacular solar activity always serves as a great laboratory of magnetohydrodynamics. In this article, we reviewed a few key unresolved problems in solar activity studies and discussed the relevant issues in solar magnetohydrodynamics.

  10. Magnetohydrodynamic generation method

    International Nuclear Information System (INIS)

    Masai, Tadahisa; Ishibashi, Eiichi; Kojima, Akihiro.

    1967-01-01

    The present invention relates to a magneto-hydrodynamic generation method which increases the conductivity of active gas and the generated energy. In the conventional method of open-cycle magnetohydrodynamic generation, the working fluid does not possess a favorable electric conductivity since the collision cross section is large when the combustion is carried out in a condition of excess oxygen. Furthermore, combustion under a condition of oxygen shortage is uncapable of completely converting the generated energy. The air preheater or boiler is not sufficient to collect the waste gas resulting in damage and other economic disadvantages. In the present invention, the combustion gas caused by excess fuel in the combuster is supplied to the generator as the working gas, to which air or fully oxidized air is added to be reheated. While incomplete gas used for heat collection is not adequate, the unburned damage may be eliminated by combusting again and increasing the gas temperature and heat collection rate. Furthermore, a diffuser is mounted at the rear side of the generator to decrease the gas combustion rate. Thus, even when directly absorbing the preheated fully oxidized air or the ordinary air, the boiler is free from damage caused by combustion delay or impulsive force. (M. Ishida)

  11. A novel nuclear-powered propulsion system for ship

    International Nuclear Information System (INIS)

    Liu Tao; Han Weishi

    2003-01-01

    A novel nuclear-powered propulsion system for ship is presented in this paper. In this system, a minitype liquid sodium-cooled reactor is used as power; alkali-metal thermal-to-electric conversion (AMTEC) cells are utilized to transform the heat energy to electric energy and superconducting magneto-hydrodynamic (MHD) work as propulsion. This nuclear-powered propulsion system has great advantages in low noise, high speed, long survivability and simple manipulation. It has great significance for the development of propulsion system. (author)

  12. Introduction to modern magnetohydrodynamics

    CERN Document Server

    Galtier, Sébastien

    2016-01-01

    Ninety-nine percent of ordinary matter in the Universe is in the form of ionized fluids, or plasmas. The study of the magnetic properties of such electrically conducting fluids, magnetohydrodynamics (MHD), has become a central theory in astrophysics, as well as in areas such as engineering and geophysics. This textbook offers a comprehensive introduction to MHD and its recent applications, in nature and in laboratory plasmas; from the machinery of the Sun and galaxies, to the cooling of nuclear reactors and the geodynamo. It exposes advanced undergraduate and graduate students to both classical and modern concepts, making them aware of current research and the ever-widening scope of MHD. Rigorous derivations within the text, supplemented by over 100 illustrations and followed by exercises and worked solutions at the end of each chapter, provide an engaging and practical introduction to the subject and an accessible route into this wide-ranging field.

  13. Introduction to magnetohydrodynamics

    CERN Document Server

    Thompson, Ian

    2016-01-01

    Magnetohydrodynamics (MHD) plays a crucial role in astrophysics, planetary magnetism, engineering and controlled nuclear fusion. This comprehensive textbook emphasizes physical ideas, rather than mathematical detail, making it accessible to a broad audience. Starting from elementary chapters on fluid mechanics and electromagnetism, it takes the reader all the way through to the latest ideas in more advanced topics, including planetary dynamos, stellar magnetism, fusion plasmas and engineering applications. With the new edition, readers will benefit from additional material on MHD instabilities, planetary dynamos and applications in astrophysics, as well as a whole new chapter on fusion plasma MHD. The development of the material from first principles and its pedagogical style makes this an ideal companion for both undergraduate students and postgraduate students in physics, applied mathematics and engineering. Elementary knowledge of vector calculus is the only prerequisite.

  14. Solitary magnetohydrodynamic vortices

    International Nuclear Information System (INIS)

    Silaev, I.I.; Skvortsov, A.T.

    1990-01-01

    This paper reports on the analytical description of fluid flow by means of localized vortices which is traditional for hydrodynamics, oceanology, plasma physics. Recently it has been widely applied to different structure turbulence models. Considerable results involved have been presented where it was shown that in magnetohydrodynamics alongside with the well-known kinds of localized vortices (e.g. Hill's vortex), which are characterized by quite a weak decrease of disturbed velocity or magnetic field (as a power of the inverse distance from vortex center), the vortices with screening (or solitary vortices) may exist. All disturbed parameters either exponentially vanish or become identically zero in outer region in the latter case. (In a number of papers numerical simulations of such the vortices are presented). Solutions in a form of solitary vortices are of particular interest due to their uniformity and solitonlike behavior. On the basis of these properties one can believe for such structures to occur in real turbulent flows

  15. Thermoacoustic magnetohydrodynamic electrical generator

    International Nuclear Information System (INIS)

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1986-01-01

    A thermoacoustic magnetohydrodynamic electrical generator is described comprising a magnet having a magnetic field, an elongate hollow housing containing an electrically conductive liquid and a thermoacoustic structure positioned in the liquid, heat exchange means thermally connected to the thermoacoustic structure for inducing the liquid to oscillate at an acoustic resonant frequency within the housing. The housing is positioned in the magnetic field and oriented such that the direction of the magnetic field and the direction of oscillatory motion of the liquid are substantially orthogonal to one another, first and second electrical conductor means connected to the liquid on opposite sides of the housing along an axis which is substantially orthogonal to both the direction of the magnetic field and the direction of oscillatory motion of the liquid, an alternating current output signal is generated in the conductor means at a frequency corresponding to the frequency of the oscillatory motion of the liquid

  16. Magnetohydrodynamic calculations on pulsar magnetospheres

    International Nuclear Information System (INIS)

    Brinkmann, W.

    1976-01-01

    In this paper, the relativistic magnetohydrodynamic is presented in covariant form and applied to some problems in the field of pulsar magnetospheres. In addition, numerical methods to solve the resulting equations of motion are investigated. The theory of relativistic magnetohydrodynamic presented here is valid in the framework of the theory of general relativity, describing the interaction of electromagnetic fields with an ideal fluid. In the two-dimensional case, a Lax-Wendroff method is studied which should be optimally stable with the operator splitting of Strang. In the framework of relativistic magnetohydrodynamic also the model of a stationary aequatorial stellar pulsar wind as well as the parallel rotator is investigated. (orig.) [de

  17. Magnetohydrodynamics of accretion disks

    International Nuclear Information System (INIS)

    Torkelsson, U.

    1994-04-01

    The thesis consists of an introduction and summary, and five research papers. The introduction and summary provides the background in accretion disk physics and magnetohydrodynamics. The research papers describe numerical studies of magnetohydrodynamical processes in accretion disks. Paper 1 is a one-dimensional study of the effect of magnetic buoyancy on a flux tube in an accretion disk. The stabilizing influence of an accretion disk corona on the flux tube is demonstrated. Paper 2-4 present numerical simulations of mean-field dynamos in accretion disks. Paper 11 verifies the correctness of the numerical code by comparing linear models to previous work by other groups. The results are also extended to somewhat modified disk models. A transition from an oscillatory mode of negative parity for thick disks to a steady mode of even parity for thin disks is found. Preliminary results for nonlinear dynamos at very high dynamo numbers are also presented. Paper 3 describes the bifurcation behaviour of the nonlinear dynamos. For positive dynamo numbers it is found that the initial steady solution is replaced by an oscillatory solution of odd parity. For negative dynamo numbers the solution becomes chaotic at sufficiently high dynamo numbers. Paper 4 continues the studies of nonlinear dynamos, and it is demonstrated that a chaotic solution appears even for positive dynamo numbers, but that it returns to a steady solution of mixed parity at very high dynamo numbers. Paper 5 describes a first attempt at simulating the small-scale turbulence of an accretion disk in three dimensions. There is only find cases of decaying turbulence, but this is rather due to limitations of the simulations than that turbulence is really absent in accretion disks

  18. Filamentary magnetohydrodynamic plasmas

    International Nuclear Information System (INIS)

    Kinney, R.; Tajima, T.; McWilliams, J.C.; Petviashvili, N.

    1994-01-01

    A filamentary construct of magnetohydrodynamical plasma dynamics based on the Elsaesser variables is developed. This approach is modeled after discrete vortex models of hydrodynamical turbulence, which cannot be expected in general to produce results identical to those based on a Fourier decomposition of the fields. In a highly intermittent plasma, the induction force is small compared to the convective motion, and when this force is neglected, the plasma vortex system is described by a Hamiltonian. A statistical treatment of a collection of discrete current-vorticity concentrations is given. Canonical and microcanonical statistical calculations show that both the vorticity and the current spectra are peaked at long wavelengths, and the expected states revert to known hydrodynamical states as the magnetic field vanishes. These results differ from previous Fourier-based statistical theories, but it is found that when the filament calculation is expanded to include the inductive force, the results approach the Fourier equilibria in the low-temperature limit, and the previous Hamiltonian plasma vortex results in the high-temperature limit. Numerical simulations of a large number of filaments are carried out and support the theory. A three-dimensional vortex model is presented as well, which is also Hamiltonian when the inductive force is neglected. A statistical calculation in the canonical ensemble and numerical simulations show that a nonzero large-scale magnetic field is statistically favored, and that the preferred shape of this field is a long, thin tube of flux. Possible applications to a variety of physical phenomena are suggested

  19. Generalized reduced magnetohydrodynamic equations

    International Nuclear Information System (INIS)

    Kruger, S.E.

    1999-01-01

    A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-Alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson. The equations have been programmed into a spectral initial value code and run with shear flow that is consistent with the equilibrium input into the code. Linear results of tearing modes with shear flow are presented which differentiate the effects of shear flow gradients in the layer with the effects of the shear flow decoupling multiple harmonics

  20. Magnetohydrodynamic power generation

    International Nuclear Information System (INIS)

    Sheindlin, A.E.; Jackson, W.D.; Brzozowski, W.S.; Rietjens, L.H.Th.

    1979-01-01

    The paper describes research and development in the field of magnetohydrodynamic power generation technology, based on discussions held in the Joint IAEA/UNESCO International Liaison Group on MHD electrical power generation. Research and development programmes on open cycle, closed cycle plasma and liquid-metal MHD are described. Open cycle MHD has now entered the engineering development stage. The paper reviews the results of cycle analyses and economic and environmental evaluations: substantial agreement has been reached on the expected overall performance and necessary component specifications. The achievement in the Soviet Union on the U-25 MHD pilot plant in obtaining full rated electrical power of 20.4 MW is described, as well as long duration testing of the integrated operation of MHD components. Work in the United States on coal-fired MHD generators has shown that, with slagging of the walls, a run time of about one hundred hours at the current density and electric field of a commercial MHD generator has been achieved. Progress obtained in closed cycle plasma and liquid metal MHD is reviewed. Electrical power densities of up to 140 MWe/m 3 and an enthalpy extraction as high as 24 per cent have been achieved in noble gas MHD generator experiments. (Auth.)

  1. Adventures in magnetohydrodynamics

    International Nuclear Information System (INIS)

    Johnson, J.L.

    1988-03-01

    This material was presented in a set of three lectures on October 29 and 30, 1987 at Nagoya University. It was attempted to give an elementary survey of magnetohydrodynamic theory as it applies to toroidal confinement, emphasizing the concept and avoiding the detailed derivation, in hopes that the ideas will be useful for students and researchers just entering the field. In some places, the actual development should be described, so it was decided that it would be worthwhile to give some exact results. Thus the notes are uneven. The author hopes that everyone who looks at this will find something of interest. By a proper breakdown, this lecture consists of four sections: the section on the derivation and justification of the MHD equations, that on the equilibrium problem, that on linearized stability and some comments on nonlinear evolution, magnetic islands and transport. There is still the work to be done with these simple models. The move into some branch of plasma simulation or drift orbit formulation may be done, but this area is worth to spend a professional life, as the tasks are challenging, and the results are satisfying. (Kako, I.) 61 refs

  2. MULTIFLUID MAGNETOHYDRODYNAMIC TURBULENT DECAY

    International Nuclear Information System (INIS)

    Downes, T. P.; O'Sullivan, S.

    2011-01-01

    It is generally believed that turbulence has a significant impact on the dynamics and evolution of molecular clouds and the star formation that occurs within them. Non-ideal magnetohydrodynamic (MHD) effects are known to influence the nature of this turbulence. We present the results of a suite of 512 3 resolution simulations of the decay of initially super-Alfvenic and supersonic fully multifluid MHD turbulence. We find that ambipolar diffusion increases the rate of decay of the turbulence while the Hall effect has virtually no impact. The decay of the kinetic energy can be fitted as a power law in time and the exponent is found to be -1.34 for fully multifluid MHD turbulence. The power spectra of density, velocity, and magnetic field are all steepened significantly by the inclusion of non-ideal terms. The dominant reason for this steepening is ambipolar diffusion with the Hall effect again playing a minimal role except at short length scales where it creates extra structure in the magnetic field. Interestingly we find that, at least at these resolutions, the majority of the physics of multifluid turbulence can be captured by simply introducing fixed (in time and space) resistive terms into the induction equation without the need for a full multifluid MHD treatment. The velocity dispersion is also examined and, in common with previously published results, it is found not to be power law in nature.

  3. Forced underwater laminar flows with active magnetohydrodynamic metamaterials

    Science.gov (United States)

    Culver, Dean; Urzhumov, Yaroslav

    2017-12-01

    Theory and practical implementations for wake-free propulsion systems are proposed and proven with computational fluid dynamic modeling. Introduced earlier, the concept of active hydrodynamic metamaterials is advanced by introducing magnetohydrodynamic metamaterials, structures with custom-designed volumetric distribution of Lorentz forces acting on a conducting fluid. Distributions of volume forces leading to wake-free, laminar flows are designed using multivariate optimization. Theoretical indications are presented that such flows can be sustained at arbitrarily high Reynolds numbers. Moreover, it is shown that in the limit Re ≫102 , a fixed volume force distribution may lead to a forced laminar flow across a wide range of Re numbers, without the need to reconfigure the force-generating metamaterial. Power requirements for such a device are studied as a function of the fluid conductivity. Implications to the design of distributed propulsion systems underwater and in space are discussed.

  4. Solar Flares: Magnetohydrodynamic Processes

    Directory of Open Access Journals (Sweden)

    Kazunari Shibata

    2011-12-01

    Full Text Available This paper outlines the current understanding of solar flares, mainly focused on magnetohydrodynamic (MHD processes responsible for producing a flare. Observations show that flares are one of the most explosive phenomena in the atmosphere of the Sun, releasing a huge amount of energy up to about 10^32 erg on the timescale of hours. Flares involve the heating of plasma, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes for producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence, local enhancement of electric current in the corona (formation of a current sheet, and rapid dissipation of electric current (magnetic reconnection that causes shock heating, mass ejection, and particle acceleration. The evolution toward the onset of a flare is rather quasi-static when free energy is accumulated in the form of coronal electric current (field-aligned current, more precisely, while the dissipation of coronal current proceeds rapidly, producing various dynamic events that affect lower atmospheres such as the chromosphere and photosphere. Flares manifest such rapid dissipation of coronal current, and their theoretical modeling has been developed in accordance with observations, in which numerical simulations proved to be a strong tool reproducing the time-dependent, nonlinear evolution of a flare. We review the models proposed to explain the physical mechanism of flares, giving an comprehensive explanation of the key processes mentioned above. We start with basic properties of flares, then go into the details of energy build-up, release and transport in flares where magnetic reconnection works as the central engine to produce a flare.

  5. MAGNETOHYDRODYNAMIC EQUATIONS (MHD GENERATION CODE

    Directory of Open Access Journals (Sweden)

    Francisco Frutos Alfaro

    2017-04-01

    Full Text Available A program to generate codes in Fortran and C of the full magnetohydrodynamic equations is shown. The program uses the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the magnetohydrodynamic equations to obtain a code that can be used as a seed for a magnetohydrodynamic code for numerical applications. As an example, we present part of the output of our programs for Cartesian coordinates and how to do the discretization.

  6. Kinetic effects on magnetohydrodynamic phenomena

    International Nuclear Information System (INIS)

    Naito, Hiroshi; Matsumoto, Taro

    2001-01-01

    Resistive and ideal magnetohydrodynamic (MHD) theories are insufficient to adequately explain MHD phenomena in the high-temperature plasma. Recent progress in numerical simulations concerning kinetic effects on magnetohydrodynamic phenomena is summarized. The following three topics are studied using various models treating extended-MHD phenomena. (1) Kinetic modifications of internal kink modes in tokamaks with normal and reversed magnetic shear configurations. (2) Temporal evolution of the toroidal Alfven eigenmode and fishbone mode in tokamaks with energetic ions. (3) Kinetic stabilization of a title mode in field-reversed configurations by means of anchoring ions and beam ions. (author)

  7. Magnetohydrodynamics of neutron star interiors

    International Nuclear Information System (INIS)

    Easson, I.; Pethick, C.J.

    1979-01-01

    Magnetohydrodynamic equations for the charged particles in the fluid interior of a neutron star are derived from the Landau-Boltzmann kinetic equations. It is assumed that the protons are normal and the neutrons are superfluid. The dissipative processes associated with the weak interactions are shown to be negligible except in very hot neutron stars; we neglect them here. Among the topics discussed are: the influence of the neutron-proton nuclear force (Fermi liquid corrections) on the magnetohydrodynamics; the effects of the magnetic field on the pressure, viscosity, and heat conductivity tensors; the plasma equation of state; and the form of the generalized Ohm's law

  8. Final report. [Nonlinear magnetohydrodynamics

    International Nuclear Information System (INIS)

    Montgomery, D.C.

    1998-01-01

    This is a final report on the research activities carried out under the above grant at Dartmouth. During the period considered, the grant was identified as being for nonlinear magnetohydrodynamics, considered as the most tractable theoretical framework in which the plasma problems associated with magnetic confinement of fusion plasmas could be studied. During the first part of the grant's lifetime, the author was associated with Los Alamos National Laboratory as a consultant and the work was motivated by the reversed-field pinch. Later, when that program was killed at Los Alamos, the problems became ones that could be motivated by their relation to tokamaks. Throughout the work, the interest was always on questions that were as fundamental as possible, compatible with those motivations. The intent was always to contribute to plasma physics as a science, as well as to the understanding of mission-oriented confined fusion plasmas. Twelve Ph.D. theses were supervised during this period and a comparable number of postdoctoral research associates were temporarily supported. Many of these have gone on to distinguished careers, though few have done so in the context of the controlled fusion program. Their work was a combination of theory and numerical computation, in gradually less and less idealized settings, moving from rectangular periodic boundary conditions in two dimensions, through periodic straight cylinders and eventually, before the grant was withdrawn, to toroids, with a gradually more prominent role for electrical and mechanical boundary conditions. The author never had access to a situation where he could initiate experiments and relate directly to the laboratory data he wanted. Computers were the laboratory. Most of the work was reported in referred publications in the open literature, copies of which were transmitted one by one to DOE at the time they appeared. The Appendix to this report is a bibliography of published work which was carried out under the

  9. Pulsar Magnetohydrodynamic Winds

    Science.gov (United States)

    Okamoto, Isao; Sigalo, Friday B.

    2006-12-01

    The acceleration and collimation/decollimation of relativistic magnetocentrifugal winds are discussed concerning a cold plasma from a strongly magnetized, rapidly rotating neutron star in a steady axisymmetric state based on ideal magnetohydrodynamics. There exist unipolar inductors associated with the field line angular frequency, α, at the magnetospheric base surface, SB, with a huge potential difference between the poles and the equator, which drive electric current through the pulsar magnetosphere. Any ``current line'' must emanate from one terminal of the unipolar inductor and return to the other, converting the Poynting flux to the kinetic flux of the wind at finite distances. In a plausible field structure satisfying the transfield force-balance equation, the fast surface, SF, must exist somewhere between the subasymptotic and asymptotic domains, i.e., at the innermost point along each field line of the asymptotic domain of \\varpaA2/\\varpi2 ≪ 1, where \\varpiA is the Alfvénic axial distance. The criticality condition at SF yields the Lorentz factor, γF = μ\\varepsilon1/3, and the angular momentum flux, β, as the eigenvalues in terms of the field line angular velocity, α, the mass flux per unit flux tube, η, and one of the Bernoulli integrals, μδ, which are assumed to be specifiable as the boundary conditions at SB. The other Bernoulli integral, μɛ, is related to μδ as μɛ = μδ[1-(α2\\varpiA2/c2)]-1, and both μɛ and \\varpiA2 are eigenvalues to be determined by the criticality condition at SF. Ongoing MHD acceleration is possible in the superfast domain. This fact may be helpful in resolving a discrepancy between the wind theory and the Crab-nebula model. It is argued that the ``anti-collimation theorem'' holds for relativistic winds, based on the curvature of field streamlines determined by the transfield force balance. The ``theorem'' combines with the ``current-closure condition'' as a global condition in the wind zone to produce a

  10. Augmented postcard

    OpenAIRE

    Bernik , Aleš

    2012-01-01

    The aim of this thesis is the examination of augmented reality technology, which allows us mixing real and virtual elements. Augmented reality is a relatively new technology which is becoming more widespread, thanks to a fairly reasonable price of smart phones. Here we presents the types of augmented reality, the necessary technology and their advantages and disadvantages, its current use in applications, and software for building augmented reality applications. The thesis is mainly focuse...

  11. BOOK REVIEW: Nonlinear Magnetohydrodynamics

    Science.gov (United States)

    Shafranov, V.

    1998-08-01

    Nonlinear magnetohydrodynamics by Dieter Biskamp is a thorough introduction to the physics of the most impressive non-linear phenomena that occur in conducting magnetoplasmas. The basic systems, in which non-trivial dynamic processes are observed, accompanied by changes of geometry of the magnetic field and the effects of energy transformation (magnetic energy into kinetic energy or the opposite effect in magnetic dynamos), are the plasma magnetic confinement systems for nuclear fusion and space plasmas, mainly the solar plasma. A significant number of the examples of the dynamic processes considered are taken from laboratory plasmas, for which an experimental check of the theory is possible. Therefore, though the book is intended for researchers and students interested in both laboratory, including nuclear fusion, and astrophysical plasmas, it is most probably closer to the first category of reader. In the Introduction the author notes that unlike the hydrodynamics of non-conducting fluids, where the phenomena caused by rapid fluid motions are the most interesting, for plasmas in a strong magnetic field the quasi-static configurations inside which the local dynamic processes occur are often the most important. Therefore, the reader will also find in this book rather traditional material on the theory of plasma equilibrium and stability in magnetic fields. In addition, it is notable that, as opposed to a linear theory, the non-linear theory, as a rule, cannot give quite definite explanations or predictions of phenomena, and consequently there are in the book many results obtained by consideration of numerical models with the use of supercomputers. The treatment of non-linear dynamics is preceded by Chapters 2 to 4, in which the basics of MHD theory are presented with an emphasis on the role of integral invariants of the magnetic helicity type, a derivation of the reduced MHD equations is given, together with examples of the exact solutions of the equilibrium

  12. Magnetohydrodynamics and the thermonuclear problem

    Energy Technology Data Exchange (ETDEWEB)

    Alfven, H [Department of Electronics, Royal Institute of Technology, Stockholm (Sweden)

    1958-07-01

    The importance of magnetohydrodynamics and plasma physics for the solution of thermonuclear problem is presented in the paper. Methods for capture of a plasma by a magnetic field are discussed. From the study it is concluded that in principle it is possible to shoot heated plasma into a magnetic field and capture it there. A possible method of capturing plasma which is shot into a magnetic field is illustrated. Magnetohydrodynamic research performed during the last decade in Stockholm is presented. Following a long series of investigations of relatively cool plasmas, it has been started a series of experimental investigations on hot plasmas, concentrating on the fundamental properties of the plasma. New ways of the approach to the thermonuclear problem are analysed. Experiments have been with discharges of a few hundred kiloamps to produce fast-moving magnetized plasmas, in order to investigate whether they could be captured by magnetic fields in the discussed way.

  13. Distributed propulsion.

    OpenAIRE

    Lindström, Robin; Rosvall, Tobias

    2013-01-01

    En prestandaanalys utfördes på en SAAB 2000 som referensobjekt. Olika metoder för att driva flygplan på ett miljövänligare sätt utvärderades tillsammans med distributed propulsion. Efter undersökningar valdes elmotorer tillsammans med Zink-luft batterier för att driva SAAB 2000 med distributed propulsion. En prestandaanalys utfördes på detta plan på samma sätt som för den ursprungliga SAAB 2000. Resultaten jämfördes och slutsatsen blev att räckvidden var för kort för att konfigurationen skull...

  14. Propulsion materials

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Edward J. [U.S. Dept. of Energy, Washington, D.C. (United States); Sullivan, Rogelio A. [U.S. Dept. of Energy, Washington, D.C. (United States); Gibbs, Jerry L. [U.S. Dept. of Energy, Washington, D.C. (United States)

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  15. The Propulsive-Only Flight Control Problem

    Science.gov (United States)

    Blezad, Daniel J.

    1996-01-01

    Attitude control of aircraft using only the throttles is investigated. The long time constants of both the engines and of the aircraft dynamics, together with the coupling between longitudinal and lateral aircraft modes make piloted flight with failed control surfaces hazardous, especially when attempting to land. This research documents the results of in-flight operation using simulated failed flight controls and ground simulations of piloted propulsive-only control to touchdown. Augmentation control laws to assist the pilot are described using both optimal control and classical feedback methods. Piloted simulation using augmentation shows that simple and effective augmented control can be achieved in a wide variety of failed configurations.

  16. Application of magnetohydrodynamic actuation to continuous flow chemistry.

    Science.gov (United States)

    West, Jonathan; Karamata, Boris; Lillis, Brian; Gleeson, James P; Alderman, John; Collins, John K; Lane, William; Mathewson, Alan; Berney, Helen

    2002-11-01

    Continuous flow microreactors with an annular microchannel for cyclical chemical reactions were fabricated by either bulk micromachining in silicon or by rapid prototyping using EPON SU-8. Fluid propulsion in these unusual microchannels was achieved using AC magnetohydrodynamic (MHD) actuation. This integrated micropumping mechanism obviates the use of moving parts by acting locally on the electrolyte, exploiting its inherent conductive nature. Both silicon and SU-8 microreactors were capable of MHD actuation, attaining fluid velocities of the order of 300 microm s(-1) when using a 500 mM KCl electrolyte. The polymerase chain reaction (PCR), a thermocycling process, was chosen as an illustrative example of a cyclical chemistry. Accordingly, temperature zones were provided to enable a thermal cycle during each revolution. With this approach, fluid velocity determines cycle duration. Here, we report device fabrication and performance, a model to accurately describe fluid circulation by MHD actuation, and compatibility issues relating to this approach to chemistry.

  17. Control-Volume Analysis Of Thrust-Augmenting Ejectors

    Science.gov (United States)

    Drummond, Colin K.

    1990-01-01

    New method of analysis of transient flow in thrust-augmenting ejector based on control-volume formulation of governing equations. Considered as potential elements of propulsion subsystems of short-takeoff/vertical-landing airplanes.

  18. Magnetic levitation and MHD propulsion

    Science.gov (United States)

    Tixador, P.

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des d

  19. AUGMENTED REALITY

    DEFF Research Database (Denmark)

    Skov, Kirsten; Bahn, Anne Louise

    2017-01-01

    Projektets grundlæggende idé er udvikling af visuel, æstetisk læring med Augmented Reality, hvor intentionen er at bidrage med konkrete undersøgelser og udforskning af begrebet Augmented Reality – herunder koblingen mellem det analoge og digitale i forhold til læring, multimodalitet og it...

  20. The Magnetohydrodynamic Generator A Physics Olympiad Problem

    Indian Academy of Sciences (India)

    The Magnetohydrodynamic Generator A Physics Olympiad Problem (2001). Vijay A Singh ... Magnetohydrodynamics; generator; power; efficiency; Faraday's law; Physics Olympiad . Author Affiliations. Vijay A Singh1 Manish Kapoor2. Physics Department Indian Institute of Technology Kanpur 208016, India. MPE College ...

  1. Propulsion Systems Panel deliberations

    Science.gov (United States)

    Bianca, Carmelo J.; Miner, Robert; Johnston, Lawrence M.; Bruce, R.; Dennies, Daniel P.; Dickenson, W.; Dreshfield, Robert; Karakulko, Walt; Mcgaw, Mike; Munafo, Paul M.

    1993-01-01

    The Propulsion Systems Panel was established because of the specialized nature of many of the materials and structures technology issues related to propulsion systems. This panel was co-chaired by Carmelo Bianca, MSFC, and Bob Miner, LeRC. Because of the diverse range of missions anticipated for the Space Transportation program, three distinct propulsion system types were identified in the workshop planning process: liquid propulsion systems, solid propulsion systems and nuclear electric/nuclear thermal propulsion systems.

  2. Variational integrators for reduced magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Michael, E-mail: michael.kraus@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Technische Universität München, Zentrum Mathematik, Boltzmannstraße 3, 85748 Garching (Germany); Tassi, Emanuele, E-mail: tassi@cpt.univ-mrs.fr [Aix-Marseille Université, Université de Toulon, CNRS, CPT, UMR 7332, 163 avenue de Luminy, case 907, 13288 cedex 9 Marseille (France); Grasso, Daniela, E-mail: daniela.grasso@infm.polito.it [ISC-CNR and Politecnico di Torino, Dipartimento Energia, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)

    2016-09-15

    Reduced magnetohydrodynamics is a simplified set of magnetohydrodynamics equations with applications to both fusion and astrophysical plasmas, possessing a noncanonical Hamiltonian structure and consequently a number of conserved functionals. We propose a new discretisation strategy for these equations based on a discrete variational principle applied to a formal Lagrangian. The resulting integrator preserves important quantities like the total energy, magnetic helicity and cross helicity exactly (up to machine precision). As the integrator is free of numerical resistivity, spurious reconnection along current sheets is absent in the ideal case. If effects of electron inertia are added, reconnection of magnetic field lines is allowed, although the resulting model still possesses a noncanonical Hamiltonian structure. After reviewing the conservation laws of the model equations, the adopted variational principle with the related conservation laws is described both at the continuous and discrete level. We verify the favourable properties of the variational integrator in particular with respect to the preservation of the invariants of the models under consideration and compare with results from the literature and those of a pseudo-spectral code.

  3. Electric vehicle propulsion alternatives

    Science.gov (United States)

    Secunde, R. R.; Schuh, R. M.; Beach, R. F.

    1983-01-01

    Propulsion technology development for electric vehicles is summarized. Analytical studies, technology evaluation, and the development of technology for motors, controllers, transmissions, and complete propulsion systems are included.

  4. Breast Augmentation

    African Journals Online (AJOL)

    1974-04-13

    Apr 13, 1974 ... Complications encountered after breast augmentation are dealt with in .... in Phisohex or other suitable preparation for a few days before surgery ... In all cases, the prosthesis causes a fibrous tissue capsule to form around it.

  5. Chin augmentation

    Science.gov (United States)

    ... or bigger compared to the nose. The best candidates for chin augmentation are people with weak or ... www.urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. ...

  6. An analysis of electro-osmotic and magnetohydrodynamic heat pipes

    International Nuclear Information System (INIS)

    Harrison, M.A.

    1988-01-01

    Mechanically simple methods of improving heat transport in heat pipes are investigated. These methods are electro-osmotic and magnetohydrodynamic augmentation. For the electro-osmotic case, a detailed electrokinetic model is used. The electrokinetic model used includes the effects of pore surface curvature and multiple ion diffusivities. The electrokinetic model is extended to approximate the effects of elevated temperature. When the electro-osmotic model is combined with a suitable heat-pipe model, it is found that the electro-osmotic pump should be a thin membrane. Arguments are provided that support the use of a volatile electrolyte. For the magnetohydrodynamic case, a brief investigation is provided. A quasi-one-dimensional hydromagnetic duct flow model is used. This hydromagnetic model is extended to approximate flow effects unique to heat pipes. When combined with a suitable heat pipe model, it is found that there is no performance gain for the case considered. In fact, there are serious pressure-distribution problems that have not been previously recognized. Potential solutions to these pressure-distribution problems are suggested

  7. Chemistry and propulsion; Chimie et propulsions

    Energy Technology Data Exchange (ETDEWEB)

    Potier, P [Maison de la Chimie, 75 - Paris (France); Davenas, A [societe Nationale des Poudres et des Explosifs - SNPE (France); Berman, M [Air Force Office of Scientific Research, Arlington, VA (United States); and others

    2002-07-01

    During the colloquium on chemistry and propulsion, held in march 2002, ten papers have been presented. The proceedings are brought in this document: ramjet, scram-jet and Pulse Detonation Engine; researches and applications on energetic materials and propulsion; advances in poly-nitrogen chemistry; evolution of space propulsion; environmental and technological stakes of aeronautic propulsion; ramjet engines and pulse detonation engines, automobiles thermal engines for 2015, high temperature fuel cells for the propulsion domain, the hydrogen and the fuel cells in the future transports. (A.L.B.)

  8. ANISOTROPIC INTERMITTENCY OF MAGNETOHYDRODYNAMIC TURBULENCE

    International Nuclear Information System (INIS)

    Osman, K. T.; Kiyani, K. H.; Chapman, S. C.; Hnat, B.

    2014-01-01

    A higher-order multiscale analysis of spatial anisotropy in inertial range magnetohydrodynamic turbulence is presented using measurements from the STEREO spacecraft in fast ambient solar wind. We show for the first time that, when measuring parallel to the local magnetic field direction, the full statistical signature of the magnetic and Elsässer field fluctuations is that of a non-Gaussian globally scale-invariant process. This is distinct from the classic multiexponent statistics observed when the local magnetic field is perpendicular to the flow direction. These observations are interpreted as evidence for the weakness, or absence, of a parallel magnetofluid turbulence energy cascade. As such, these results present strong observational constraints on the statistical nature of intermittency in turbulent plasmas

  9. Self-organizing magnetohydrodynamic plasma

    International Nuclear Information System (INIS)

    Sato, T.; Horiuchi, R.; Watanabe, K.; Hayashi, T.; Kusano, K.

    1990-09-01

    In a resistive magnetohydrodynamic (MHD) plasma, both the magnetic energy and the magnetic helicity dissipate with the resistive time scale. When sufficiently large free magnetic energy does exist, however, an ideal current driven instability is excited whereby magnetic reconnection is driven at a converging point of induced plasma flows which does exist in a bounded compressible plasma. At a reconnection point excess free energy (entropy) is rapidly dissipated by ohmic heating and lost by radiation, while magnetic helicity is completely conserved. The magnetic topology is largely changed by reconnection and a new ordered structure with the same helicity is created. It is discussed that magnetic reconnection plays a key role in the MHD self-organization process. (author)

  10. Center for Extended Magnetohydrodynamics Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Jesus [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-02-14

    This researcher participated in the DOE-funded Center for Extended Magnetohydrodynamics Modeling (CEMM), a multi-institutional collaboration led by the Princeton Plasma Physics Laboratory with Dr. Stephen Jardin as the overall Principal Investigator. This project developed advanced simulation tools to study the non-linear macroscopic dynamics of magnetically confined plasmas. The collaborative effort focused on the development of two large numerical simulation codes, M3D-C1 and NIMROD, and their application to a wide variety of problems. Dr. Ramos was responsible for theoretical aspects of the project, deriving consistent sets of model equations applicable to weakly collisional plasmas and devising test problems for verification of the numerical codes. This activity was funded for twelve years.

  11. Magnetohydrodynamic Turbulence and the Geodynamo

    Science.gov (United States)

    Shebalin, John V.

    2014-01-01

    The ARES Directorate at JSC has researched the physical processes that create planetary magnetic fields through dynamo action since 2007. The "dynamo problem" has existed since 1600, when William Gilbert, physician to Queen Elizabeth I, recognized that the Earth was a giant magnet. In 1919, Joseph Larmor proposed that solar (and by implication, planetary) magnetism was due to magnetohydrodynamics (MHD), but full acceptance did not occur until Glatzmaier and Roberts solved the MHD equations numerically and simulated a geomagnetic reversal in 1995. JSC research produced a unique theoretical model in 2012 that provided a novel explanation of these physical observations and computational results as an essential manifestation of broken ergodicity in MHD turbulence. Research is ongoing, and future work is aimed at understanding quantitative details of magnetic dipole alignment in the Earth as well as in Mercury, Jupiter and its moon Ganymede, Saturn, Uranus, Neptune, and the Sun and other stars.

  12. Relativistic conformal magneto-hydrodynamics from holography

    International Nuclear Information System (INIS)

    Buchbinder, Evgeny I.; Buchel, Alex

    2009-01-01

    We use the AdS/CFT correspondence to study first-order relativistic viscous magneto-hydrodynamics of (2+1)-dimensional conformal magnetic fluids. It is shown that the first order magneto-hydrodynamics constructed following Landau and Lifshitz from the positivity of the entropy production is inconsistent. We propose additional contributions to the entropy motivated dissipative current and, correspondingly, new dissipative transport coefficients. We use the strongly coupled M2-brane plasma in external magnetic field to show that the new magneto-hydrodynamics leads to self-consistent results in the shear and sound wave channels.

  13. Magnetohydrodynamic simulations of Gamble I POS with Hall effect

    International Nuclear Information System (INIS)

    Roderick, N.F.; Frese, M.H.; Peterkin, R.E.; Payne, S.S.

    1989-01-01

    Two dimensional single fluid magnetohydrodynamic simulations have been conducted to investigate the effects of the Hall electric field on magnetic field transport in plasma opening switches of the type used on Gamble I. The Hall terms were included in the magnetic field transport equation in the two dimensional simulation code MACH2 through the use of a generalized Ohm's law. Calculations show the Hall terms augment the field transport previously observed to occur through ion fluid motion and diffusion. For modest values of microturbulent collision frequency, board current channels were observed . Results also show the magnetic field transport to be affected by the cathode boundary conditions with the Hall terms included. In all cases center of mass motion was slight

  14. Schlieren Technique Applied to Magnetohydrodynamic Generator Plasma Torch

    Science.gov (United States)

    Chopra, Nirbhav; Pearcy, Jacob; Jaworski, Michael

    2017-10-01

    Magnetohydrodynamic (MHD) generators are a promising augmentation to current hydrocarbon based combustion schemes for creating electrical power. In recent years, interest in MHD generators has been revitalized due to advances in a number of technologies such as superconducting magnets, solid-state power electronics and materials science as well as changing economics associated with carbon capture, utilization, and sequestration. We use a multi-wavelength schlieren imaging system to evaluate electron density independently of gas density in a plasma torch under conditions relevant to MHD generators. The sensitivity and resolution of the optical system are evaluated alongside the development of an automated analysis and calibration program in Python. Preliminary analysis shows spatial resolutions less than 1mm and measures an electron density of ne = 1 ×1016 cm-3 in an atmospheric microwave torch. Work supported by DOE contract DE-AC02-09CH11466.

  15. Axisymmetric magnetohydrodynamic equilibria in local polar coordinates

    International Nuclear Information System (INIS)

    Clemente, R.A.

    1982-01-01

    The Grad--Shafranov equation for an ideal magnetohydrodynamic axisymmetric toroidal configuration is solved analytically in a local polar coordinate system using a novel method which produces solutions valid up to the second order in the inverse aspect ratio expansion

  16. Augmented reality

    Directory of Open Access Journals (Sweden)

    Patrik Pucer

    2011-08-01

    Full Text Available Today we can obtain in a simple and rapid way most of the information that we need. Devices, such as personal computers and mobile phones, enable access to information in different formats (written, pictorial, audio or video whenever and wherever. Daily we use and encounter information that can be seen as virtual objects or objects that are part of the virtual world of computers. Everyone, at least once, wanted to bring these virtual objects from the virtual world of computers into real environments and thus mix virtual and real worlds. In such a mixed reality, real and virtual objects coexist in the same environment. The reality, where users watch and use the real environment upgraded with virtual objects is called augmented reality. In this article we describe the main properties of augmented reality. In addition to the basic properties that define a reality as augmented reality, we present the various building elements (possible hardware and software that provide an insight into such a reality and practical applications of augmented reality. The applications are divided into three groups depending on the information and functions that augmented reality offers, such as help, guide and simulator.

  17. ''Reduced'' magnetohydrodynamics and minimum dissipation rates

    International Nuclear Information System (INIS)

    Montgomery, D.

    1992-01-01

    It is demonstrated that all solutions of the equations of ''reduced'' magnetohydrodynamics approach a uniform-current, zero-flow state for long times, given a constant wall electric field, uniform scalar viscosity and resistivity, and uniform mass density. This state is the state of minimum energy dissipation rate for these boundary conditions. No steady-state turbulence is possible. The result contrasts sharply with results for full three-dimensional magnetohydrodynamics before the reduction occurs

  18. Augmented Reality

    DEFF Research Database (Denmark)

    Kjærgaard, Hanne Wacher; Kjeldsen, Lars Peter Bech; Rahn, Annette

    2015-01-01

    This chapter describes the use of iPad-facilitated application of augmented reality in the teaching of highly complex anatomical and physiological subjects in the training of nurses at undergraduate level. The general aim of the project is to investigate the potentials of this application in terms...... of making the complex content and context of these subjects more approachable to the students through the visualization made possible through the use of this technology. A case study is described in this chapter. Issues and factors required for the sustainable use of the mobile-facilitated application...... of augmented reality are discussed....

  19. The USAF Electric Propulsion Program

    National Research Council Canada - National Science Library

    Spores, Ronald

    1999-01-01

    ...: Propulsion Directorate and Air Force Office of Scientific Research (AFOSR). The Propulsion Directorate conducts electric propulsion efforts in basic research, engineering development, and space experiments...

  20. The Hunt for Red October II: A magnetohydrodynamic boat demonstration for introductory physics

    Science.gov (United States)

    Overduin, James; Polyak, Viktor; Rutah, Anjalee; Sebastian, Thomas; Selway, Jim; Zile, Daniel

    2017-11-01

    The 1990 film "The Hunt for Red October" (based on Tom Clancy's 1984 debut novel of the same name) featured actors like Sean Connery and Alec Baldwin, but the star of the movie for physicists was a revolutionary new magnetohydrodynamic (MHD) marine propulsion system. The so-called "caterpillar drive" worked with no moving parts, allowing a nuclear missile-armed Soviet submarine to approach the U.S. coast undetected. As the submarine captain (played by Connery) said, "Once the world trembled at the sound of our rockets … now they will tremble again—at the sound of our silence.

  1. Augmented Reality

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Brandt, Harald; Radmer, Ole

    2017-01-01

    Artiklen præsenterer resultater fra pilotafprøvning i 7.-klasses fysik/kemi og biologi af to Augmented Reality (AR)-apps til naturfagsundervisning. Muligheder og udfordringer ved lærerens stilladsering af elevernes undersøgende samtale og modelleringskompetence er undersøgt med interview...

  2. Magnetohydrodynamic Models of Molecular Tornadoes

    Science.gov (United States)

    Au, Kelvin; Fiege, Jason D.

    2017-07-01

    Recent observations near the Galactic Center (GC) have found several molecular filaments displaying striking helically wound morphology that are collectively known as molecular tornadoes. We investigate the equilibrium structure of these molecular tornadoes by formulating a magnetohydrodynamic model of a rotating, helically magnetized filament. A special analytical solution is derived where centrifugal forces balance exactly with toroidal magnetic stress. From the physics of torsional Alfvén waves we derive a constraint that links the toroidal flux-to-mass ratio and the pitch angle of the helical field to the rotation laws, which we find to be an important component in describing the molecular tornado structure. The models are compared to the Ostriker solution for isothermal, nonmagnetic, nonrotating filaments. We find that neither the analytic model nor the Alfvén wave model suffer from the unphysical density inversions noted by other authors. A Monte Carlo exploration of our parameter space is constrained by observational measurements of the Pigtail Molecular Cloud, the Double Helix Nebula, and the GC Molecular Tornado. Observable properties such as the velocity dispersion, filament radius, linear mass, and surface pressure can be used to derive three dimensionless constraints for our dimensionless models of these three objects. A virial analysis of these constrained models is studied for these three molecular tornadoes. We find that self-gravity is relatively unimportant, whereas magnetic fields and external pressure play a dominant role in the confinement and equilibrium radial structure of these objects.

  3. Turbulent magnetohydrodynamics in liquid metals

    International Nuclear Information System (INIS)

    Berhanu, Michael

    2008-01-01

    In electrically conducting fluids, the electromagnetic field is coupled with the fluid motion by induction effects. We studied different magnetohydrodynamic phenomena, using two experiments involving turbulent flows of liquid metal. The first mid-sized uses gallium. The second, using sodium, is conducted within the VKS (Von Karman Sodium) collaboration. It has led to the observation of the dynamo effect, namely converting a part of the kinetic energy of the fluid into magnetic energy. We have shown that, depending on forcing conditions, a statistically stationary dynamo, or dynamical regimes of magnetic field can be generated. In particular, polarity reversals similar to those of Earth's magnetic field were observed. Meanwhile, experiment with Gallium has been developed to study the effects of electromagnetic induction by turbulent flows in a more homogeneous and isotropic configuration than in the VKS experiment. Using data from these two experiments, we studied the advection of magnetic field by a turbulent flow and the induced fluctuations. The development of probes measuring electrical potential difference allowed us to further highlight the magnetic braking of a turbulent flow of Gallium by Lorentz force. This mechanism is involved in the saturation of the dynamo instability. (author) [fr

  4. Hamiltonian formulation of reduced magnetohydrodynamics

    International Nuclear Information System (INIS)

    Morrison, P.J.; Hazeltine, R.D.

    1983-07-01

    Reduced magnetohydrodynamics (RMHD) has become a principal tool for understanding nonlinear processes, including disruptions, in tokamak plasmas. Although analytical studies of RMHD turbulence have been useful, the model's impressive ability to simulate tokamak fluid behavior has been revealed primarily by numerical solution. The present work describes a new analytical approach, not restricted to turbulent regimes, based on Hamiltonian field theory. It is shown that the nonlinear (ideal) RMHD system, in both its high-beta and low-beta versions, can be expressed in Hanmiltonian form. Thus a Poisson bracket, [ , ], is constructed such that each RMHD field quantitity, xi/sub i/, evolves according to xi/sub i/ = [xi/sub i/,H], where H is the total field energy. The new formulation makes RMHD accessible to the methodology of Hamiltonian mechanics; it has lead, in particular, to the recognition of new RMHD invariants and even exact, nonlinear RMHD solutions. A canonical version of the Poisson bracket, which requires the introduction of additional fields, leads to a nonlinear variational principle for time-dependent RMHD

  5. Magnetohydrodynamic Models of Molecular Tornadoes

    Energy Technology Data Exchange (ETDEWEB)

    Au, Kelvin; Fiege, Jason D., E-mail: fiege@physics.umanitoba.ca [Department of Physics and Astronomy, University of Manitoba Winnipeg, MB R3T 2N2 (Canada)

    2017-07-10

    Recent observations near the Galactic Center (GC) have found several molecular filaments displaying striking helically wound morphology that are collectively known as molecular tornadoes. We investigate the equilibrium structure of these molecular tornadoes by formulating a magnetohydrodynamic model of a rotating, helically magnetized filament. A special analytical solution is derived where centrifugal forces balance exactly with toroidal magnetic stress. From the physics of torsional Alfvén waves we derive a constraint that links the toroidal flux-to-mass ratio and the pitch angle of the helical field to the rotation laws, which we find to be an important component in describing the molecular tornado structure. The models are compared to the Ostriker solution for isothermal, nonmagnetic, nonrotating filaments. We find that neither the analytic model nor the Alfvén wave model suffer from the unphysical density inversions noted by other authors. A Monte Carlo exploration of our parameter space is constrained by observational measurements of the Pigtail Molecular Cloud, the Double Helix Nebula, and the GC Molecular Tornado. Observable properties such as the velocity dispersion, filament radius, linear mass, and surface pressure can be used to derive three dimensionless constraints for our dimensionless models of these three objects. A virial analysis of these constrained models is studied for these three molecular tornadoes. We find that self-gravity is relatively unimportant, whereas magnetic fields and external pressure play a dominant role in the confinement and equilibrium radial structure of these objects.

  6. Advanced Propulsion Study

    National Research Council Canada - National Science Library

    Davis, Eric

    2004-01-01

    ... that show promise of leading to a major advance in Earth-to-orbit (ETO) propulsion. The study also reviewed and evaluated a select number of credible far-term breakthrough propulsion physics concepts pertaining...

  7. Augmented reality

    OpenAIRE

    Jecha, Jakub

    2011-01-01

    This thesis is focused on a technology called Augmented reality, especially on its use in marketing. The main objective of the thesis is to define why this technology is a suitable tool for marketing and to assess its use in real conditions. This is achieved by defining specific devices and use cases of this technology in practice, whereas evaluation of its use in real enviroment is based on statistics. The contribution of the thesis is objective evaluation of this technology and provision of...

  8. Mean-field magnetohydrodynamics and dynamo theory

    CERN Document Server

    Krause, F

    2013-01-01

    Mean-Field Magnetohydrodynamics and Dynamo Theory provides a systematic introduction to mean-field magnetohydrodynamics and the dynamo theory, along with the results achieved. Topics covered include turbulence and large-scale structures; general properties of the turbulent electromotive force; homogeneity, isotropy, and mirror symmetry of turbulent fields; and turbulent electromotive force in the case of non-vanishing mean flow. The turbulent electromotive force in the case of rotational mean motion is also considered. This book is comprised of 17 chapters and opens with an overview of the gen

  9. Mobile Collaborative Augmented Reality: The Augmented Stroll

    OpenAIRE

    Renevier , Philippe; Nigay , Laurence

    2001-01-01

    International audience; The paper focuses on Augmented Reality systems in which interaction with the real world is augmented by the computer, the task being performed in the real world. We first define what mobile AR systems, collaborative AR systems and finally mobile and collaborative AR systems are. We then present the augmented stroll and its software design as one example of a mobile and collaborative AR system. The augmented stroll is applied to Archaeology in the MAGIC (Mobile Augmente...

  10. Centralized versus distributed propulsion

    Science.gov (United States)

    Clark, J. P.

    1982-01-01

    The functions and requirements of auxiliary propulsion systems are reviewed. None of the three major tasks (attitude control, stationkeeping, and shape control) can be performed by a collection of thrusters at a single central location. If a centralized system is defined as a collection of separated clusters, made up of the minimum number of propulsion units, then such a system can provide attitude control and stationkeeping for most vehicles. A distributed propulsion system is characterized by more numerous propulsion units in a regularly distributed arrangement. Various proposed large space systems are reviewed and it is concluded that centralized auxiliary propulsion is best suited to vehicles with a relatively rigid core. These vehicles may carry a number of flexible or movable appendages. A second group, consisting of one or more large flexible flat plates, may need distributed propulsion for shape control. There is a third group, consisting of vehicles built up from multiple shuttle launches, which may be forced into a distributed system because of the need to add additional propulsion units as the vehicles grow. The effects of distributed propulsion on a beam-like structure were examined. The deflection of the structure under both translational and rotational thrusts is shown as a function of the number of equally spaced thrusters. When two thrusters only are used it is shown that location is an important parameter. The possibility of using distributed propulsion to achieve minimum overall system weight is also examined. Finally, an examination of the active damping by distributed propulsion is described.

  11. Magnetohydrodynamic studies of the strong Focus device

    International Nuclear Information System (INIS)

    Vezin, Robert

    1971-01-01

    The POTTER magnetohydrodynamic code is used. It consists of a two-dimensional fluid model with two temperatures Te, Ti and transverse transport coefficients for a fully ionized plasma. Applied to the FOCUS geometry used at Limeil, it gives temperatures consistent with the BENNETT law but much lower than those evaluated experimentally by the X-ray absorbing foils technique. (author) [fr

  12. Magneto-hydrodynamical model for plasma

    Science.gov (United States)

    Liu, Ruikuan; Yang, Jiayan

    2017-10-01

    Based on the Newton's second law and the Maxwell equations for the electromagnetic field, we establish a new 3-D incompressible magneto-hydrodynamics model for the motion of plasma under the standard Coulomb gauge. By using the Galerkin method, we prove the existence of a global weak solution for this new 3-D model.

  13. PHANTOM: Smoothed particle hydrodynamics and magnetohydrodynamics code

    Science.gov (United States)

    Price, Daniel J.; Wurster, James; Nixon, Chris; Tricco, Terrence S.; Toupin, Stéven; Pettitt, Alex; Chan, Conrad; Laibe, Guillaume; Glover, Simon; Dobbs, Clare; Nealon, Rebecca; Liptai, David; Worpel, Hauke; Bonnerot, Clément; Dipierro, Giovanni; Ragusa, Enrico; Federrath, Christoph; Iaconi, Roberto; Reichardt, Thomas; Forgan, Duncan; Hutchison, Mark; Constantino, Thomas; Ayliffe, Ben; Mentiplay, Daniel; Hirsh, Kieran; Lodato, Giuseppe

    2017-09-01

    Phantom is a smoothed particle hydrodynamics and magnetohydrodynamics code focused on stellar, galactic, planetary, and high energy astrophysics. It is modular, and handles sink particles, self-gravity, two fluid and one fluid dust, ISM chemistry and cooling, physical viscosity, non-ideal MHD, and more. Its modular structure makes it easy to add new physics to the code.

  14. Relativistic magnetohydrodynamics as a Hamiltonian system

    International Nuclear Information System (INIS)

    Holm, D.D.; Kupershmidt, A.

    1985-01-01

    The equations of ideal relativistic magnetohydrodynamics in the laboratory frame form a noncanonical Hamiltonian system with the same Poisson bracket as for the nonrelativistic system, but with dynamical variables and Hamiltonian obtained via a regular deformation of their nonrelativistic counterparts [fr

  15. On energy conservation in extended magnetohydrodynamics

    International Nuclear Information System (INIS)

    Kimura, Keiji; Morrison, P. J.

    2014-01-01

    A systematic study of energy conservation for extended magnetohydrodynamic models that include Hall terms and electron inertia is performed. It is observed that commonly used models do not conserve energy in the ideal limit, i.e., when viscosity and resistivity are neglected. In particular, a term in the momentum equation that is often neglected is seen to be needed for conservation of energy

  16. Nuclear propulsion for orbital transfer

    International Nuclear Information System (INIS)

    Beale, G.A.; Lawrence, T.J.

    1989-01-01

    The state of the art in nuclear propulsion for orbital transfer is discussed. Cryogenic propulsion, electric propulsion, solar-thermal propulsion and direct nuclear propulsion are examined in this context. New technologies with exceptional promise are addressed, emphasizing the particle test bed nuclear engine

  17. ARLearn: augmented reality meets augmented virtuality

    NARCIS (Netherlands)

    Ternier, Stefaan; Klemke, Roland; Kalz, Marco; Van Ulzen, Patricia; Specht, Marcus

    2012-01-01

    Ternier, S., Klemke, R., Kalz, M., Van Ulzen, P., & Specht, M. (2012). ARLearn: augmented reality meets augmented virtuality [Special issue]. Journal of Universal Computer Science - Technology for learning across physical and virtual spaces, 18(15), 2143-2164.

  18. NASA's Propulsion Research Laboratory

    Science.gov (United States)

    2004-01-01

    The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  19. Cold Gas Micro Propulsion

    NARCIS (Netherlands)

    Louwerse, M.C.

    2009-01-01

    This thesis describes the development of a micro propulsion system. The trend of miniaturization of satellites requires small sized propulsion systems. For particular missions it is important to maintain an accurate distance between multiple satellites. Satellites drift apart due to differences in

  20. Gyrokinetic magnetohydrodynamics and the associated equilibria

    Science.gov (United States)

    Lee, W. W.; Hudson, S. R.; Ma, C. H.

    2017-12-01

    The gyrokinetic magnetohydrodynamic (MHD) equations, related to the recent paper by W. W. Lee ["Magnetohydrodynamics for collisionless plasmas from the gyrokinetic perspective," Phys. Plasmas 23, 070705 (2016)], and their associated equilibria properties are discussed. This set of equations consists of the time-dependent gyrokinetic vorticity equation, the gyrokinetic parallel Ohm's law, and the gyrokinetic Ampere's law as well as the equations of state, which are expressed in terms of the electrostatic potential, ϕ, and the vector potential, A , and support both spatially varying perpendicular and parallel pressure gradients and the associated currents. The corresponding gyrokinetic MHD equilibria can be reached when ϕ→0 and A becomes constant in time, which, in turn, gives ∇.(J∥+J⊥)=0 and the associated magnetic islands, if they exist. Examples of simple cylindrical geometry are given. These gyrokinetic MHD equations look quite different from the conventional MHD equations, and their comparisons will be an interesting topic in the future.

  1. Multi-region relaxed magnetohydrodynamics with flow

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, G. R., E-mail: graham.dennis@anu.edu.au; Dewar, R. L.; Hole, M. J. [Research School of Physics and Engineering, Australian National University, ACT 0200 (Australia); Hudson, S. R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)

    2014-04-15

    We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes plasma flow. This new model is a generalization of Woltjer's model of relaxed magnetohydrodynamics equilibria with flow. We prove that as the number of plasma regions becomes infinite, our extension of MRxMHD reduces to ideal MHD with flow. We also prove that some solutions to MRxMHD with flow are not time-independent in the laboratory frame, and instead have 3D structure which rotates in the toroidal direction with fixed angular velocity. This capability gives MRxMHD potential application to describing rotating 3D MHD structures such as 'snakes' and long-lived modes.

  2. Capacitor discharges, magnetohydrodynamics, X-rays, ultrasonics

    CERN Document Server

    Früngel, Frank B A

    1965-01-01

    High Speed Pulse Technology, Volume 1: Capacitor Discharges - Magnetohydrodynamics - X-Rays - Ultrasonics deals with the theoretical and engineering problems that arise in the capacitor discharge technique.This book discusses the characteristics of dielectric material, symmetrical switch tubes with mercury filling, and compensation conductor forms. The transformed discharge for highest current peaks, ignition transformer for internal combustion engines, and X-ray irradiation of subjects in mechanical motion are also elaborated. This text likewise covers the transformed capacitor discharge in w

  3. Relabeling symmetries in hydrodynamics and magnetohydrodynamics

    International Nuclear Information System (INIS)

    Padhye, N.; Morrison, P.J.

    1996-04-01

    Lagrangian symmetries and concomitant generalized Bianchi identities associated with the relabeling of fluid elements are found for hydrodynamics and magnetohydrodynamics (MHD). In hydrodynamics relabeling results in Ertel's theorem of conservation of potential vorticity, while in MHD it yields the conservation of cross helicity. The symmetries of the reduction from Lagrangian (material) to Eulerian variables are used to construct the Casimir invariants of the Hamiltonian formalism

  4. Nambu brackets in fluid mechanics and magnetohydrodynamics

    International Nuclear Information System (INIS)

    Salazar, Roberto; Kurgansky, Michael V

    2010-01-01

    Concrete examples of the construction of Nambu brackets for equations of motion (both 3D and 2D) of Boussinesq stratified fluids and also for magnetohydrodynamical equations are given. It serves a generalization of Hamiltonian formulation for the considered equations of motion. Two alternative Nambu formulations are proposed, first by using fluid dynamical (kinetic) helicity and/or enstrophy as constitutive elements and second, by using the existing conservation laws of the governing equation.

  5. Laser Propulsion - Quo Vadis

    International Nuclear Information System (INIS)

    Bohn, Willy L.

    2008-01-01

    First, an introductory overview of the different types of laser propulsion techniques will be given and illustrated by some historical examples. Second, laser devices available for basic experiments will be reviewed ranging from low power lasers sources to inertial confinement laser facilities. Subsequently, a status of work will show the impasse in which the laser propulsion community is currently engaged. Revisiting the basic relations leads to new avenues in ablative and direct laser propulsion for ground based and space based applications. Hereby, special attention will be devoted to the impact of emerging ultra-short pulse lasers on the coupling coefficient and specific impulse. In particular, laser sources and laser propulsion techniques will be tested in microgravity environment. A novel approach to debris removal will be discussed with respect to the Satellite Laser Ranging (SRL) facilities. Finally, some non technical issues will be raised aimed at the future prospects of laser propulsion in the international community

  6. Linear and nonlinear stability in resistive magnetohydrodynamics

    International Nuclear Information System (INIS)

    Tasso, H.

    1994-01-01

    A sufficient stability condition with respect to purely growing modes is derived for resistive magnetohydrodynamics. Its open-quotes nearnessclose quotes to necessity is analysed. It is found that for physically reasonable approximations the condition is in some sense necessary and sufficient for stability against all modes. This, together with hermiticity makes its analytical and numerical evaluation worthwhile for the optimization of magnetic configurations. Physically motivated test functions are introduced. This leads to simplified versions of the stability functional, which makes its evaluation and minimization more tractable. In the case of special force-free fields the simplified functional reduces to a good approximation of the exact stability functional derived by other means. It turns out that in this case the condition is also sufficient for nonlinear stability. Nonlinear stability in hydrodynamics and magnetohydrodynamics is discussed especially in connection with open-quotes unconditionalclose quotes stability and with severe limitations on the Reynolds number. Two examples in magnetohydrodynamics show that the limitations on the Reynolds numbers can be removed but unconditional stability is preserved. Practical stability needs to be treated for limited levels of perturbations or for conditional stability. This implies some knowledge of the basin of attraction of the unperturbed solution, which is a very difficult problem. Finally, a special inertia-caused Hopf bifurcation is identified and the nature of the resulting attractors is discussed. 23 refs

  7. Distributed Propulsion Vehicles

    Science.gov (United States)

    Kim, Hyun Dae

    2010-01-01

    Since the introduction of large jet-powered transport aircraft, the majority of these vehicles have been designed by placing thrust-generating engines either under the wings or on the fuselage to minimize aerodynamic interactions on the vehicle operation. However, advances in computational and experimental tools along with new technologies in materials, structures, and aircraft controls, etc. are enabling a high degree of integration of the airframe and propulsion system in aircraft design. The National Aeronautics and Space Administration (NASA) has been investigating a number of revolutionary distributed propulsion vehicle concepts to increase aircraft performance. The concept of distributed propulsion is to fully integrate a propulsion system within an airframe such that the aircraft takes full synergistic benefits of coupling of airframe aerodynamics and the propulsion thrust stream by distributing thrust using many propulsors on the airframe. Some of the concepts are based on the use of distributed jet flaps, distributed small multiple engines, gas-driven multi-fans, mechanically driven multifans, cross-flow fans, and electric fans driven by turboelectric generators. This paper describes some early concepts of the distributed propulsion vehicles and the current turboelectric distributed propulsion (TeDP) vehicle concepts being studied under the NASA s Subsonic Fixed Wing (SFW) Project to drastically reduce aircraft-related fuel burn, emissions, and noise by the year 2030 to 2035.

  8. Results from a large-scale MHD propulsion experiment

    International Nuclear Information System (INIS)

    Petrick, M.; Libera, J.; Bouillard, J.X.; Pierson, E.S.; Hill, D.

    1992-01-01

    This paper reports on magnetohydrodynamic (MHD) thrusters which have long been recognized as potentially attractive candidates for ship propulsion because such systems eliminate the conventional rotating drive components. The MHD thruster is essentially an electromagnet (EM) pump operating in seawater. An electrical current is passed directly through the seawater and interacts with an applied magnetic field; the interaction of the magnetic field and the electrode current in the seawater results in a Lorentz force acting on the water, and the reaction to this force propels the vessel forward. The concept of EM propulsion has been examined periodically during the past 35 years as an alternative method of propulsion for surface ships and submersibles. The conclusions reached in early studies were that MHD thrusters restricted to fields of 2T (the state-of-the-art at that time) were impractical and very inefficient. With the evolution of superconducting magnet technology, later studies investigated the performance of MHD thrusters with much higher magnetic field strengths and concluded that at higher fields (>6 T) practical MHD propulsion systems appear possible

  9. Advanced Chemical Propulsion

    Science.gov (United States)

    Bai, S. Don

    2000-01-01

    Design, propellant selection, and launch assistance for advanced chemical propulsion system is discussed. Topics discussed include: rocket design, advance fuel and high energy density materials, launch assist, and criteria for fuel selection.

  10. Alternative propulsion for automobiles

    CERN Document Server

    Stan, Cornel

    2017-01-01

    The book presents – based on the most recent research and development results worldwide - the perspectives of new propulsion concepts such as electric cars with batteries and fuel cells, and furthermore plug in hybrids with conventional and alternative fuels. The propulsion concepts are evaluated based on specific power, torque characteristic, acceleration behaviour, specific fuel consumption and pollutant emissions. The alternative fuels are discussed in terms of availability, production, technical complexity of the storage on board, costs, safety and infrastructure. The book presents summarized data about vehicles with electric and hybrid propulsion. The propulsion of future cars will be marked by diversity – from compact electric city cars and range extender vehicles for suburban and rural areas up to hybrid or plug in SUV´s, Pick up´s and luxury class automobiles.

  11. Ship propulsion reactors technology

    International Nuclear Information System (INIS)

    Fribourg, Ch.

    2002-01-01

    This paper takes the state of the art on ship propulsion reactors technology. The french research programs with the corresponding technological stakes, the reactors specifications and advantages are detailed. (A.L.B.)

  12. Distributed propulsion for ships

    OpenAIRE

    Nylund, Vilde

    2017-01-01

    It is anticipated that using distributed electric propulsion (DEP) on conventional ships will increase the total propulsive efficiency. This is mainly due to two reasons; firstly, because the total propeller disk area can be increased. Secondly, because each propeller can be optimised for the local wake where it is operating. In this work, the benefits of using DEP has been investigated for a 14 000 TEU container ship. Based on a literary study of the present state of propeller modelling ...

  13. Wheelchairs propulsion analysis: review

    Directory of Open Access Journals (Sweden)

    Yoshimasa Sagawa Júnior

    Full Text Available OBJECTIVES: To analyze aspects related with wheelchair propulsion. MATERIALS AND METHODS: In order to delineate this review the search for information was carried out within electronics databases, using the following descriptors: "wheelchair propulsion", "wheelchair biomechanics" e "wheelchair users". Full papers published in English and French were included in the study. RESULTS: The wheelchair propulsion is a complex movement that requires the execution of repeated bi manual forces applications during a short time period. In this movement high levels of force must be produced due to the bad mechanical performance of the wheelchair. Could be characterized that wheelchair users are not satisfied with their wheelchair, the places are not adapted to their presence and lack of specific criteria for the adjustment of this equipment. The main points to look at are the seat height in relation to elbow flexion (100-120 degrees with his hand in the propulsion rim and tire pressure. The semicircular mode of technique propulsion seems to be more appropriate; in this pattern the wheelchair user returns his hand under the rim after propulsion. Efforts in wheelchairs are high and the incidence of injuries in wheelchair users is high. CONCLUSION: One can conclude that in spite of researchers’ efforts there are still many divergences between topics and methods of evaluation, what makes difficult to apply the experimental results to the wheelchairs users’ daily life.

  14. Fuel Effective Photonic Propulsion

    Science.gov (United States)

    Rajalakshmi, N.; Srivarshini, S.

    2017-09-01

    With the entry of miniaturization in electronics and ultra-small light-weight materials, energy efficient propulsion techniques for space travel can soon be possible. We need to go for such high speeds so that the generation’s time long interstellar missions can be done in incredibly short time. Also renewable energy like sunlight, nuclear energy can be used for propulsion instead of fuel. These propulsion techniques are being worked on currently. The recently proposed photon propulsion concepts are reviewed, that utilize momentum of photons generated by sunlight or onboard photon generators, such as blackbody radiation or lasers, powered by nuclear or solar power. With the understanding of nuclear photonic propulsion, in this paper, a rough estimate of nuclear fuel required to achieve the escape velocity of Earth is done. An overview of the IKAROS space mission for interplanetary travel by JAXA, that was successful in demonstrating that photonic propulsion works and also generated additional solar power on board, is provided; which can be used as a case study. An extension of this idea for interstellar travel, termed as ‘Star Shot’, aims to send a nanocraft to an exoplanet in the nearest star system, which could be potentially habitable. A brief overview of the idea is presented.

  15. Ion Beam Propulsion Study

    Science.gov (United States)

    2008-01-01

    The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.

  16. Nonideal, helical, vortical magnetohydrodynamic steady states

    International Nuclear Information System (INIS)

    Agim, Y.Z.; Montgomery, D.

    1991-01-01

    The helically-deformed profiles of driven, dissipative magnetohydrodynamic equilibria are constructed through second order in helical amplitude. The resultant plasma configurations are presented in terms of contour plots of magnetic flux function, pressure, current flux function and the mass flux function, along with the stability boundary at which they are expected to appear. For the Wisconsin Phaedrus-T Tokamak, plasma profiles with significant m = 3, n = 1 perturbation seem feasible; for these, the plasma pressure peaks off-axis. For the smaller aspect ratio case, the configuration with m 1,n =1 is thought to be relevant to the density perturbation observed in JET after a pellet injection. (author)

  17. Notes on the eigensystem of magnetohydrodynamics

    International Nuclear Information System (INIS)

    Roe, P.L.; Balsara, D.S.

    1996-01-01

    The eigenstructure of the equations governing one-dimensional ideal magnetohydrodynamics is examined, motivated by the wish to exploit it for construction of high-resolution computational algorithms. The results are given in simple forms that avoid indeterminacy or degeneracy whenever possible. The unavoidable indeterminacy near the magnetosonic (or triple umbilic) state is analyzed and shown to cause no difficulty in evaluating a numerical flux function. The structure of wave paths close to this singularity is obtained, and simple expressions are presented for the structure coefficients that govern wave steepening

  18. Landau fluid models of collisionless magnetohydrodynamics

    International Nuclear Information System (INIS)

    Snyder, P.B.; Hammett, G.W.; Dorland, W.

    1997-01-01

    A closed set of fluid moment equations including models of kinetic Landau damping is developed which describes the evolution of collisionless plasmas in the magnetohydrodynamic parameter regime. The model is fully electromagnetic and describes the dynamics of both compressional and shear Alfven waves, as well as ion acoustic waves. The model allows for separate parallel and perpendicular pressures p parallel and p perpendicular , and, unlike previous models such as Chew-Goldberger-Low theory, correctly predicts the instability threshold for the mirror instability. Both a simple 3 + 1 moment model and a more accurate 4 + 2 moment model are developed, and both could be useful for numerical simulations of astrophysical and fusion plasmas

  19. Ideal magnetohydrodynamic stability of axisymmetric mirrors

    International Nuclear Information System (INIS)

    D'Ippolito, D.A.; Hafizi, B.; Myra, J.R.

    1982-01-01

    The governing partial differential equation for general mode-number pressure-driven ballooning modes in a long-thin, axisymmetric plasma is derived within the context of ideal magnetohydrodynamics. It is shown that the equation reduces in special limits to the Hain--Luest equation, the high-m diffuse p(psi) ballooning equation, and the low-m sharp-boundary equation. A low-β analytic solution of the full partial differential equation is presented for quasiflute modes in an idealized tandem mirror model to elucidate the relationship of the various limiting cases

  20. Ideal Magnetohydrodynamic Stability of the NCSX

    International Nuclear Information System (INIS)

    Fu, Guo Yong; Isaev, Maxim Yu; Ku, Long-Poe; Mikhailov, M.; Redi, M.H; Sanchez, Raul; Subbotin, A; Hirshman, Steven Paul; Cooper, W. Anthony; Monticello, D.; Reiman, A.H.; Zarnstorff, M.C.

    2007-01-01

    The ideal magnetohydrodynamic (MHD) stability of the National Compact Stellarator Experiment (NCSX) is extensively analyzed using the most advanced three-dimensional MHD codes. It is shown that the NCSX is stable to finite-n MHD modes, including the vertical mode, external kink modes and ballooning modes. However, high-n external kink modes that peak near the plasma edge are found to be weakly unstable. A global calculation shows that finite-n ballooning modes are significantly more stable than the local infinite-n modes

  1. The infinite interface limit of multiple-region relaxed magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, G. R.; Dewar, R. L.; Hole, M. J. [Research School of Physics and Engineering, Australian National University, ACT 0200 (Australia); Hudson, S. R. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States)

    2013-03-15

    We show the stepped-pressure equilibria that are obtained from a generalization of Taylor relaxation known as multi-region, relaxed magnetohydrodynamics (MRXMHD) are also generalizations of ideal magnetohydrodynamics (ideal MHD). We show this by proving that as the number of plasma regions becomes infinite, MRXMHD reduces to ideal MHD. Numerical convergence studies illustrating this limit are presented.

  2. Second law analysis of an infinitely segmented magnetohydrodynamic generator

    Energy Technology Data Exchange (ETDEWEB)

    Arash, Ardeshir [Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Saidi, Mohammad Hassan [Center of Excellence in Energy Conversion (CEEC), School of Mechanical Engineering, Sharif University of Technology, P.O. Box 11155-9567, Tehran (Iran, Islamic Republic of); Najafi, Mohammad [Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2017-03-15

    The performance of an infinitely segmented magnetohydrodynamic generator is analyzed using the second law of thermodynamics entropy generation criterion. The exact analytical solution of the velocity and temperature fields are provided by applying the modified Hartmann flow model, taking into account the occurrence of the Hall effect in the considered generator. Contributions of heat transfer, fluid friction, and ohmic dissipation to the destruction of useful available work are found, and the nature of irreversibilities in the considered generator is determined. In addition, the electrical isotropic efficiency scheme is used to evaluate the generator performance. Finally, the implication of the Hall parameter, Hartmann number, and load factor for the entropy generation and the generator performance are studied and the optimal operating conditions are determined. The results show that the heat transfer has the smallest contribution to the entropy generation compared to that of the friction and ohmic dissipation. The application of the Hall effect on the system showed an appreciable augmentation of entropy generation rate which is along with what the logic implies. A parametric study is conducted and its results provide the generated entropy and also efficiency diagrams which show the influence of the Hall effect on the considered generator. - Highlights: • The modified Hartmann flow in a segmented MHD generator has been analyzed. • Heat transfer has the smallest contribution to the entropy generation. • The optimum working conditions of the generator are discussed. • The significant adverse effect of taking into account the Hall effect is discussed. • The entropy generation increases while implementing modified Hartmann model.

  3. Preliminary Assessment of Using Gelled and Hybrid Propellant Propulsion for VTOL/SSTO Launch Systems

    Science.gov (United States)

    Palaszewski, Bryan; OLeary, Robert; Pelaccio, Dennis G.

    1998-01-01

    A novel, reusable, Vertical-Takeoff-and-Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit (VTOL/SSTO) launch system concept, named AUGMENT-SSTO, is presented in this paper to help quantify the advantages of employing gelled and hybrid propellant propulsion system options for such applications. The launch vehicle system concept considered uses a highly coupled, main high performance liquid oxygen/liquid hydrogen (LO2/LH2) propulsion system, that is used only for launch, while a gelled or hybrid propellant propulsion system auxiliary propulsion system is used during final orbit insertion, major orbit maneuvering, and landing propulsive burn phases of flight. Using a gelled or hybrid propellant propulsion system for major orbit maneuver burns and landing has many advantages over conventional VTOL/SSTO concepts that use LO2/LH2 propulsion system(s) burns for all phases of flight. The applicability of three gelled propellant systems, O2/H2/Al, O2/RP-1/Al, and NTO/MMH/Al, and a state-of-the-art (SOA) hybrid propulsion system are examined in this study. Additionally, this paper addresses the applicability of a high performance gelled O2/H2 propulsion system to perform the primary, as well as the auxiliary propulsion system functions of the vehicle.

  4. Advanced Chemical Propulsion Study

    Science.gov (United States)

    Woodcock, Gordon; Byers, Dave; Alexander, Leslie A.; Krebsbach, Al

    2004-01-01

    A study was performed of advanced chemical propulsion technology application to space science (Code S) missions. The purpose was to begin the process of selecting chemical propulsion technology advancement activities that would provide greatest benefits to Code S missions. Several missions were selected from Code S planning data, and a range of advanced chemical propulsion options was analyzed to assess capabilities and benefits re these missions. Selected beneficial applications were found for higher-performing bipropellants, gelled propellants, and cryogenic propellants. Technology advancement recommendations included cryocoolers and small turbopump engines for cryogenic propellants; space storable propellants such as LOX-hydrazine; and advanced monopropellants. It was noted that fluorine-bearing oxidizers offer performance gains over more benign oxidizers. Potential benefits were observed for gelled propellants that could be allowed to freeze, then thawed for use.

  5. Space transportation propulsion USSR launcher technology, 1990

    Science.gov (United States)

    1991-01-01

    Space transportation propulsion U.S.S.R. launcher technology is discussed. The following subject areas are covered: Energia background (launch vehicle summary, Soviet launcher family) and Energia propulsion characteristics (booster propulsion, core propulsion, and growth capability).

  6. Propulsion controlled aircraft computer

    Science.gov (United States)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  7. Airbreathing Propulsion An Introduction

    CERN Document Server

    Bose, Tarit

    2012-01-01

    Airbreathing Propulsion covers the physics of combustion, fluid and thermo-dynamics, and structural mechanics of airbreathing engines, including piston, turboprop, turbojet, turbofan, and ramjet engines. End-of-chapter exercises allow the reader to practice the fundamental concepts behind airbreathing propulsion, and the included PAGIC computer code will help the reader to examine the relationships between the performance parameters of different engines. Large amounts of data on many different piston, turbojet, and turboprop engines have been compiled for this book and are included as an appendix. This textbook is ideal for senior undergraduate and graduate students studying aeronautical engineering, aerospace engineering, and mechanical engineering.

  8. Anomalous magnetohydrodynamics in the extreme relativistic domain

    CERN Document Server

    Giovannini, Massimo

    2016-01-01

    The evolution equations of anomalous magnetohydrodynamics are derived in the extreme relativistic regime and contrasted with the treatment of hydromagnetic nonlinearities pioneered by Lichnerowicz in the absence of anomalous currents. In particular we explore the situation where the conventional vector currents are complemented by the axial-vector currents arising either from the pseudo Nambu-Goldstone bosons of a spontaneously broken symmetry or because of finite fermionic density effects. After expanding the generally covariant equations in inverse powers of the conductivity, the relativistic analog of the magnetic diffusivity equation is derived in the presence of vortical and magnetic currents. While the anomalous contributions are generally suppressed by the diffusivity, they are shown to disappear in the perfectly conducting limit. When the flow is irrotational, boost-invariant and with vanishing four-acceleration the corresponding evolution equations are explicitly integrated so that the various physic...

  9. Nonideal magnetohydrodynamic instabilities and toroidal magnetic confinement

    International Nuclear Information System (INIS)

    Furth, H.P.

    1985-05-01

    The marked divergence of experimentally observed plasma instability phenomena from the predictions of ideal magnetohydrodynamics led in the early 1960s to the formulations of finite-resistivity stability theory. Beginning in the 1970s, advanced plasma diagnostics have served to establish a detailed correspondence between the predictions of the finite-resistivity theory and experimental plasma behavior - particularly in the case of the resistive kink mode and the tokamak plasma. Nonlinear resistive-kink phenomena have been found to govern the transport of magnetic flux and plasma energy in the reversed-field pinch. The other predicted finite-resistivity instability modes have been more difficult to identify directly and their implications for toroidal magnetic confinement are still unresolved

  10. Magnetohydrodynamic stability of tokamak edge plasmas

    International Nuclear Information System (INIS)

    Connor, J.W.; Hastie, R.J.; Wilson, H.R.; Miller, R.L.

    1998-01-01

    A new formalism for analyzing the magnetohydrodynamic stability of a limiter tokamak edge plasma is developed. Two radially localized, high toroidal mode number n instabilities are studied in detail: a peeling mode and an edge ballooning mode. The peeling mode, driven by edge current density and stabilized by edge pressure gradient, has features which are consistent with several properties of tokamak behavior in the high confinement open-quotes Hclose quotes-mode of operation, and edge localized modes (or ELMs) in particular. The edge ballooning mode, driven by the pressure gradient, is identified; this penetrates ∼n 1/3 rational surfaces into the plasma (rather than ∼n 1/2 , expected from conventional ballooning mode theory). Furthermore, there exists a coupling between these two modes and this coupling provides a picture of the ELM cycle

  11. Numerical models for high beta magnetohydrodynamic flow

    International Nuclear Information System (INIS)

    Brackbill, J.U.

    1987-01-01

    The fundamentals of numerical magnetohydrodynamics for highly conducting, high-beta plasmas are outlined. The discussions emphasize the physical properties of the flow, and how elementary concepts in numerical analysis can be applied to the construction of finite difference approximations that capture these features. The linear and nonlinear stability of explicit and implicit differencing in time is examined, the origin and effect of numerical diffusion in the calculation of convective transport is described, and a technique for maintaining solenoidality in the magnetic field is developed. Many of the points are illustrated by numerical examples. The techniques described are applicable to the time-dependent, high-beta flows normally encountered in magnetically confined plasmas, plasma switches, and space and astrophysical plasmas. 40 refs

  12. Magnetohydrodynamic Stability of a Toroidal Plasma's Separatrix

    International Nuclear Information System (INIS)

    Webster, A. J.; Gimblett, C. G.

    2009-01-01

    Large tokamaks capable of fusion power production such as ITER, should avoid large edge localized modes (ELMs), thought to be triggered by an ideal magnetohydrodynamic instability due to current at the plasma's separatrix boundary. Unlike analytical work in a cylindrical approximation, numerical work finds the modes are stable. The plasma's separatrix might stabilize modes, but makes analytical and numerical work difficult. We generalize a cylindrical model to toroidal separatrix geometry, finding one parameter Δ ' determines stability. The conformal transformation method is generalized to allow nonzero derivatives of a function on a boundary, and calculation of the equilibrium vacuum field allows Δ ' to be found analytically. As a boundary more closely approximates a separatrix, we find the energy principle indicates instability, but the growth rate asymptotes to zero

  13. Nuclear magnetohydrodynamic EMP, solar storms, and substorms

    International Nuclear Information System (INIS)

    Rabinowitz, M.; Meliopoulous, A.P.S.; Glytsis, E.N.

    1992-01-01

    In addition to a fast electromagnetic pulse (EMP), a high altitude nuclear burst produces a relatively slow magnetohydrodynamic EMP (MHD EMP), whose effects are like those from solar storm geomagnetically induced currents (SS-GIC). The MHD EMP electric field E approx-lt 10 - 1 V/m and lasts approx-lt 10 2 sec, whereas for solar storms E approx-gt 10 - 2 V/m and lasts approx-gt 10 3 sec. Although the solar storm electric field is lower than MHD EMP, the solar storm effects are generally greater due to their much longer duration. Substorms produce much smaller effects than SS-GIC, but occur much more frequently. This paper describes the physics of such geomagnetic disturbances and analyzes their effects

  14. COSMOLOGICAL ADAPTIVE MESH REFINEMENT MAGNETOHYDRODYNAMICS WITH ENZO

    International Nuclear Information System (INIS)

    Collins, David C.; Xu Hao; Norman, Michael L.; Li Hui; Li Shengtai

    2010-01-01

    In this work, we present EnzoMHD, the extension of the cosmological code Enzo to include the effects of magnetic fields through the ideal magnetohydrodynamics approximation. We use a higher order Godunov method for the computation of interface fluxes. We use two constrained transport methods to compute the electric field from those interface fluxes, which simultaneously advances the induction equation and maintains the divergence of the magnetic field. A second-order divergence-free reconstruction technique is used to interpolate the magnetic fields in the block-structured adaptive mesh refinement framework already extant in Enzo. This reconstruction also preserves the divergence of the magnetic field to machine precision. We use operator splitting to include gravity and cosmological expansion. We then present a series of cosmological and non-cosmological test problems to demonstrate the quality of solution resulting from this combination of solvers.

  15. Numerical Methods for Radiation Magnetohydrodynamics in Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Klein, R I; Stone, J M

    2007-11-20

    We describe numerical methods for solving the equations of radiation magnetohydrodynamics (MHD) for astrophysical fluid flow. Such methods are essential for the investigation of the time-dependent and multidimensional dynamics of a variety of astrophysical systems, although our particular interest is motivated by problems in star formation. Over the past few years, the authors have been members of two parallel code development efforts, and this review reflects that organization. In particular, we discuss numerical methods for MHD as implemented in the Athena code, and numerical methods for radiation hydrodynamics as implemented in the Orion code. We discuss the challenges introduced by the use of adaptive mesh refinement in both codes, as well as the most promising directions for future developments.

  16. Hall magnetohydrodynamics: Conservation laws and Lyapunov stability

    International Nuclear Information System (INIS)

    Holm, D.D.

    1987-01-01

    Hall electric fields produce circulating mass flow in confined ideal-fluid plasmas. The conservation laws, Hamiltonian structure, equilibrium state relations, and Lyapunov stability conditions are presented here for ideal Hall magnetohydrodynamics (HMHD) in two and three dimensions. The approach here is to use the remarkable array of nonlinear conservation laws for HMHD that follow from its Hamiltonian structure in order to construct explicit Lyapunov functionals for the HMHD equilibrium states. In this way, the Lyapunov stability analysis provides classes of HMHD equilibria that are stable and whose linearized initial-value problems are well posed (in the sense of possessing continuous dependence on initial conditions). Several examples are discussed in both two and three dimensions

  17. Computer simulation of a magnetohydrodynamic dynamo II

    International Nuclear Information System (INIS)

    Kageyama, Akira; Sato, Tetsuya.

    1994-11-01

    We performed a computer simulation of a magnetohydrodynamic dynamo in a rapidly rotating spherical shell. Extensive parameter runs are carried out changing the electrical resistivity. It is found that the total magnetic energy can grow more than ten times larger than the total kinetic energy of the convection motion when the resistivity is sufficiently small. When the resistivity is relatively large and the magnetic energy is comparable or smaller than the kinetic energy, the convection motion maintains its well-organized structure. However, when the resistivity is small and the magnetic energy becomes larger than the kinetic energy, the well-organized convection motion is highly disturbed. The generated magnetic field is organized as a set of flux tubes which can be divided into two categories. The magnetic field component parallel to the rotation axis tends to be confined inside the anticyclonic columnar convection cells. On the other hand, the component perpendicular to the rotation axis is confined outside the convection cells. (author)

  18. Magnetohydrodynamic waves, electrohydrodynamic waves and photons

    International Nuclear Information System (INIS)

    Carstoin, J.

    1984-01-01

    Two new subjects have lately attracted increased attention: the magnetohydrodynamics (m.h.d.) and the theory of lasers. Equally important is the subject of electrohydrodynamics (e.h.d.). Now, clearly, all electromagnetic waves carry photons; it is the merit of Louis de Broglie to have had reconciled the validity of the Maxwell equations with existence of the latter. I have, recently, derived L. de Broglie's equations from the equations C. It seems natural to assume that the m.h.d. waves carry also photons, but how to reconcile the m.h.d axioms with the existence of photons ... a problem which has, so far, escaped the notice of physicists. In the lines which follows, an attempt is made to incorporate the photons in the m.h.d. waves, re e.h.d. waves in a rather simple fashion

  19. Rarefaction wave in relativistic steady magnetohydrodynamic flows

    Energy Technology Data Exchange (ETDEWEB)

    Sapountzis, Konstantinos, E-mail: ksapountzis@phys.uoa.gr; Vlahakis, Nektarios, E-mail: vlahakis@phys.uoa.gr [Faculty of Physics, University of Athens, 15784 Zografos, Athens (Greece)

    2014-07-15

    We construct and analyze a model of the relativistic steady-state magnetohydrodynamic rarefaction that is induced when a planar symmetric flow (with one ignorable Cartesian coordinate) propagates under a steep drop of the external pressure profile. Using the method of self-similarity, we derive a system of ordinary differential equations that describe the flow dynamics. In the specific limit of an initially homogeneous flow, we also provide analytical results and accurate scaling laws. We consider that limit as a generalization of the previous Newtonian and hydrodynamic solutions already present in the literature. The model includes magnetic field and bulk flow speed having all components, whose role is explored with a parametric study.

  20. Exploring Astrophysical Magnetohydrodynamics in the Laboratory

    Science.gov (United States)

    Manuel, Mario

    2014-10-01

    Plasma evolution in many astrophysical systems is dominated by magnetohydrodynamics. Specifically of interest to this talk are collimated outflows from accretion systems. Away from the central object, the Euler equations can represent the plasma dynamics well and may be scaled to a laboratory system. We have performed experiments to investigate the effects of a background magnetic field on an otherwise hydrodynamically collimated plasma. Laser-irradiated, cone targets produce hydrodynamically collimated plasma jets and a pulse-powered solenoid provides a constant background magnetic field. The application of this field is shown to completely disrupt the original flow and a new magnetically-collimated, hollow envelope is produced. Results from these experiments and potential implications for their astrophysical analogs will be discussed.

  1. Generation of electricity using liquid metal magnetohydrodynamics

    International Nuclear Information System (INIS)

    Goodwin, F.E.

    1992-01-01

    With liquid metal magnetohydrodynamics, a column of molten lead is passed through a magnetic field, thereby generating a voltage potential according to Faraday's law. The molten lead is propelled through a closed loop by steam from water injected just above where the lead is heated at the bottom of the loop. This water in turn boils explosively, propelling the lead upward through the loop and past the point where the steam escapes through a separator. Electricity can be generated more efficiently from steam with LMMHD than with conventional turbines. With the DC current generated by LMMHD, industriell cogeneration is seen as the most likely application, where the byproduct steam still has enough pressure to also power other steam-driven machinery. Furthermore, the byproduct steam is essentially lead-free since the operating temperature of the LMMHD generator is well below the temperature where lead could dissolve into the steam. (orig.) [de

  2. Numerical Methods for Radiation Magnetohydrodynamics in Astrophysics

    International Nuclear Information System (INIS)

    Klein, R I; Stone, J M

    2007-01-01

    We describe numerical methods for solving the equations of radiation magnetohydrodynamics (MHD) for astrophysical fluid flow. Such methods are essential for the investigation of the time-dependent and multidimensional dynamics of a variety of astrophysical systems, although our particular interest is motivated by problems in star formation. Over the past few years, the authors have been members of two parallel code development efforts, and this review reflects that organization. In particular, we discuss numerical methods for MHD as implemented in the Athena code, and numerical methods for radiation hydrodynamics as implemented in the Orion code. We discuss the challenges introduced by the use of adaptive mesh refinement in both codes, as well as the most promising directions for future developments

  3. Geometrical influences on neoclassical magnetohydrodynamic tearing modes

    International Nuclear Information System (INIS)

    Kruger, S.E.; Hegna, C.C.; Callen, J.D.

    1997-07-01

    The influence of geometry on the pressure drives of nonideal magnetohydrodynamic tearing modes is presented. In order to study the effects of elongation, triangularity, and aspect ratio, three different machines are considered to provide a range of tokamak configurations: TFTR (circular), DIII-D (D-shaped), and Pegasus (extremely low aspect ratio). For large aspect ratio tokamaks, shaping does very little to influence the pressure gradient drives, while at low aspect ratios, a very strong sensitivity to the profiles is found. In particular, this sensitivity is connected to the strong dependence on the magnetic shear. This suggests that at low aspect ratio it may be possible to stabilize neoclassical tearing modes by flattening the q profile near low order rational surfaces (e.g., q = 2/1) using a combination of shaping and localized current drive, whereas at large aspect ratio it is more difficult

  4. Magnetohydrodynamic Simulations of Black Hole Accretion

    Science.gov (United States)

    Avara, Mark J.

    Black holes embody one of the few, simple, solutions to the Einstein field equations that describe our modern understanding of gravitation. In isolation they are small, dark, and elusive. However, when a gas cloud or star wanders too close, they light up our universe in a way no other cosmic object can. The processes of magnetohydrodynamics which describe the accretion inflow and outflows of plasma around black holes are highly coupled and nonlinear and so require numerical experiments for elucidation. These processes are at the heart of astrophysics since black holes, once they somehow reach super-massive status, influence the evolution of the largest structures in the universe. It has been my goal, with the body of work comprising this thesis, to explore the ways in which the influence of black holes on their surroundings differs from the predictions of standard accretion models. I have especially focused on how magnetization of the greater black hole environment can impact accretion systems.

  5. NASA Electric Propulsion System Studies

    Science.gov (United States)

    Felder, James L.

    2015-01-01

    An overview of NASA efforts in the area of hybrid electric and turboelectric propulsion in large transport. This overview includes a list of reasons why we are looking at transmitting some or all of the propulsive power for the aircraft electrically, a list of the different types of hybrid-turbo electric propulsion systems, and the results of 4 aircraft studies that examined different types of hybrid-turbo electric propulsion systems.

  6. MOA: Magnetic Field Oscillating Amplified Thruster and its Application for Nuclear Electric and Thermal Propulsion

    International Nuclear Information System (INIS)

    Frischauf, Norbert; Hettmer, Manfred; Grassauer, Andreas; Bartusch, Tobias; Koudelka, Otto

    2006-01-01

    More than 60 years after the later Nobel laureate Hannes Alfven had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfven waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfven waves to accelerate ionised matter for propulsive purposes, is MOA - Magnetic field Oscillating Amplified thruster. Alfven waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfven waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. Based on computer simulations, which were conducted to get a first estimate on the performance of the system, MOA is a highly flexible propulsion system, whose performance parameters might easily be adapted, by changing the mass flow and/or the power level. As such the system is capable to deliver a maximum specific impulse of 13116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion, other terrestrial applications can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilisation strategy. (authors)

  7. Modeling of Ship Propulsion Performance

    DEFF Research Database (Denmark)

    Pedersen, Benjamin Pjedsted; Larsen, Jan

    2009-01-01

    Full scale measurements of the propulsion power, ship speed, wind speed and direction, sea and air temperature, from four different loading conditions has been used to train a neural network for prediction of propulsion power. The network was able to predict the propulsion power with accuracy...

  8. Turboprop Propulsion Mechanic.

    Science.gov (United States)

    Chanute AFB Technical Training Center, IL.

    This instructional package consists of a plan of instruction, glossary, and student handouts and exercises for use in training Air Force personnel to become turboprop propulsion mechanics. Addressed in the individual lessons of the course are the following: common hand tools, hardware, measuring devices, and safety wiring; aircraft and engine…

  9. Reactors. Nuclear propulsion ships

    International Nuclear Information System (INIS)

    Fribourg, Ch.

    2001-01-01

    This article has for object the development of nuclear-powered ships and the conception of the nuclear-powered ship. The technology of the naval propulsion P.W.R. type reactor is described in the article B.N.3 141 'Nuclear Boilers ships'. (N.C.)

  10. Nuclear merchant ship propulsion

    International Nuclear Information System (INIS)

    Schroeder, E.; Jager, W.; Schafstall, H.G.

    1977-01-01

    The operation of about 300 nuclear naval vessels has proven the feasibility of nuclear ship propulsion. Until now six non military ships have been built or are under construction. In the Soviet Union two nuclear icebreakers are in operation, and a third one is under construction. In the western world three prototype merchant ships have been built. Of these ships only the NS OTTO HAHN is in operation and provides valuable experience for future large scale use of nuclear merchant ship propulsion. In many countries studies and plans are made for future nuclear merchant ships. Types of vessels investigated are large containerships, tankers and specialized ships like icebreakers or ice-breaking ships. The future of nuclear merchant ship propulsion depends on three interrelated items: (1) nuclear ship technology; (2) economy of nuclear ship propulsion; (3) legal questions. Nuclear merchant ship technology is based until now on standard ship technology and light water reactor technology. Except for special questions due to the non-stationary type of the plant entirely new problems do not arise. This has been proven by the recent conceptual licensing procedure for a large nuclear containership in Germany. The economics of nuclear propulsion will be under discussion until they are proven by the operation of privately owned lead ships. Unsolved legal questions e.g. in connection with port entry permissions are at present another problem for nuclear shipping. Efforts are made to solve these questions on an international basis. The future development of nuclear energy electricity production in large land based plants will stimulate the employment of smaller units. Any future development of long distance sea transport will have to take this opportunity of a reliable and economic energy supply into account

  11. Fusion propulsion systems

    International Nuclear Information System (INIS)

    Haloulakos, V.E.; Bourque, R.F.

    1989-01-01

    The continuing and expanding national efforts in both the military and commercial sectors for exploration and utilization of space will require launch, assembly in space, and orbital transfer of large payloads. The currently available delivery systems, utilizing various forms of chemical propulsion, do not have the payload capacity to fulfill the planned missions. National planning documents such as Air Force Project Forecast II and the National Commission on Space Report to the President contain numerous missions and payload delivery schedules that are beyond the present capabilities of the available systems, such as the Space Shuttle and the Expendable Launch Vehicles (ELVs). The need, therefore, is very pressing to design, develop, and deploy propulsion systems that offer a quantum level increase in delivered performance. One such potential system is fusion propulsion. This paper summarizes the result of an Air Force Astronautics Laboratory (AFAL) sponsored study of fusion propulsion conducted by the McDonnell Douglas Astronautics Company (MDAC), and its subcontractor General Atomics This study explored the potential of fusion propulsion for Air Force missions. Fusion fuels and existing confinement concepts were evaluated according to elaborate criteria. Two fuels, deuterium-tritium and deuterium-helium 3 (D- 3 He) were considered worthy of further consideration. D- 3 He was selected as the most attractive for this Air Force study. The colliding translating compact torus confinement concept was evaluated in depth and found to possibly possess the low mass and compactness required. Another possible concept is inertial confinement with the propellant surrounding the target. 5 refs., 5 figs., 8 tabs

  12. On Equilibria of the Two-fluid Model in Magnetohydrodynamics

    International Nuclear Information System (INIS)

    Frantzeskakis, Dimitri J.; Stratis, Ioannis G.; Yannacopoulos, Athanasios N.

    2004-01-01

    We show how the equilibria of the two-fluid model in magnetohydrodynamics can be described by the double curl equation and through the study of this equation we study some properties of these equilibria

  13. In Situ Magnetohydrodynamic Energy Generation for Planetary Entry Vehicles

    Science.gov (United States)

    Ali, H. K.; Braun, R. D.

    2014-06-01

    This work aims to study the suitability of multi-pass entry trajectories for harnessing of vehicle kinetic energy through magnetohydrodynamic power generation from the high temperature entry plasma. Potential mission configurations are analyzed.

  14. Viscosity and Vorticity in Reduced Magneto-Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Ilon [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-12

    Magneto-hydrodynamics (MHD) critically relies on viscous forces in order for an accurate determination of the electric eld. For each charged particle species, the Braginskii viscous tensor for a magnetized plasma has the decomposition into matrices with special symmetries.

  15. Electron and ion magnetohydrodynamic effects in plasma opening switches

    International Nuclear Information System (INIS)

    Grossmann, J.M.; DeVore, C.R.; Ottinger, P.F.

    1993-01-01

    Preliminary results are presented of a numerical code designed to investigate electron and ion magnetohydrodynamic effects in plasma erosion opening switches. The present model is one-dimensional and resolves effects such as the JxB deformation of the plasma, and the penetration of magnetic field either by anomalous resistivity or electron magnetohydrodynamics (Hall effect). Comparisons with exact analytic results and experiment are made

  16. Attractors of magnetohydrodynamic flows in an Alfvenic state

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel; Sanz, Javier [Departamento de Analisis Matematico, Universidad de Valladolid, Valladolid (Spain)

    1999-08-13

    We present a simplified form of the magnetohydrodynamic system which describes the evolution of a plasma where the small-scale velocity and magnetic field are aligned in the form of Alfven waves, such as happens in several turbulent situations. Bounds on the dimension of the global attractor are found, and are shown to be an improvement of the standard ones for the full magnetohydrodynamic equations. (author)

  17. Secondary Breast Augmentation.

    Science.gov (United States)

    Brown, Mitchell H; Somogyi, Ron B; Aggarwal, Shagun

    2016-07-01

    After studying this article, the participant should be able to: 1. Assess common clinical problems in the secondary breast augmentation patient. 2. Describe a treatment plan to correct the most common complications of breast augmentation. 3. Provide surgical and nonsurgical options for managing complications of breast augmentation. 4. Decrease the incidence of future complications through accurate assessment, preoperative planning, and precise surgical technique. Breast augmentation has been increasing steadily in popularity over the past three decades. Many of these patients present with secondary problems or complications following their primary breast augmentation. Two of the most common complications are capsular contracture and implant malposition. Familiarity and comfort with the assessment and management of these complications is necessary for all plastic surgeons. An up-to-date understanding of current devices and techniques may decrease the need to manage future complications from the current cohort of breast augmentation patients.

  18. Mobile Augmented Reality Applications

    OpenAIRE

    Prochazka, David; Stencl, Michael; Popelka, Ondrej; Stastny, Jiri

    2011-01-01

    Augmented reality have undergone considerable improvement in past years. Many special techniques and hardware devices were developed, but the crucial breakthrough came with the spread of intelligent mobile phones. This enabled mass spread of augmented reality applications. However mobile devices have limited hardware capabilities, which narrows down the methods usable for scene analysis. In this article we propose an augmented reality application which is using cloud computing to enable using...

  19. Center for Extended Magnetohydrodynamic Modeling Cooperative Agreement

    International Nuclear Information System (INIS)

    Sovinec, Carl R.

    2008-01-01

    The Center for Extended Magnetohydrodynamic Modeling (CEMM) is developing computer simulation models for predicting the behavior of magnetically confined plasmas. Over the first phase of support from the Department of Energy's Scientific Discovery through Advanced Computing (SciDAC) initiative, the focus has been on macroscopic dynamics that alter the confinement properties of magnetic field configurations. The ultimate objective is to provide computational capabilities to predict plasma behavior - not unlike computational weather prediction - to optimize performance and to increase the reliability of magnetic confinement for fusion energy. Numerical modeling aids theoretical research by solving complicated mathematical models of plasma behavior including strong nonlinear effects and the influences of geometrical shaping of actual experiments. The numerical modeling itself remains an area of active research, due to challenges associated with simulating multiple temporal and spatial scales. The research summarized in this report spans computational and physical topics associated with state of the art simulation of magnetized plasmas. The tasks performed for this grant are categorized according to whether they are primarily computational, algorithmic, or application-oriented in nature. All involve the development and use of the Non-Ideal Magnetohydrodynamics with Rotation, Open Discussion (NIMROD) code, which is described at http://nimrodteam.org. With respect to computation, we have tested and refined methods for solving the large algebraic systems of equations that result from our numerical approximations of the physical model. Collaboration with the Terascale Optimal PDE Solvers (TOPS) SciDAC center led us to the SuperLU-DIST software library for solving large sparse matrices using direct methods on parallel computers. Switching to this solver library boosted NIMROD's performance by a factor of five in typical large nonlinear simulations, which has been publicized

  20. Converging cylindrical shocks in ideal magnetohydrodynamics

    International Nuclear Information System (INIS)

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.

    2014-01-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ 0 /p 0 ) I/(2 π) where I is the current, μ 0 is the permeability, and p 0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field

  1. Converging cylindrical shocks in ideal magnetohydrodynamics

    KAUST Repository

    Pullin, D. I.

    2014-09-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R = √μ0/p0 I/(2π) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then

  2. Converging cylindrical shocks in ideal magnetohydrodynamics

    KAUST Repository

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, Ravi

    2014-01-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R = √μ0/p0 I/(2π) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then

  3. Converging cylindrical shocks in ideal magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pullin, D. I. [Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California 91125 (United States); Mostert, W.; Wheatley, V. [School of Mechanical and Mining Engineering, University of Queensland, Queensland 4072 (Australia); Samtaney, R. [Mechanical Engineering, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2014-09-15

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ{sub 0}/p{sub 0}) I/(2 π) where I is the current, μ{sub 0} is the permeability, and p{sub 0} is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The

  4. CFD for hypersonic propulsion

    Science.gov (United States)

    Povinelli, Louis A.

    1991-01-01

    An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.

  5. Hydrodynamics of Peristaltic Propulsion

    Science.gov (United States)

    Athanassiadis, Athanasios; Hart, Douglas

    2014-11-01

    A curious class of animals called salps live in marine environments and self-propel by ejecting vortex rings much like jellyfish and squid. However, unlike other jetting creatures that siphon and eject water from one side of their body, salps produce vortex rings by pumping water through siphons on opposite ends of their hollow cylindrical bodies. In the simplest cases, it seems like some species of salp can successfully move by contracting just two siphons connected by an elastic body. When thought of as a chain of timed contractions, salp propulsion is reminiscent of peristaltic pumping applied to marine locomotion. Inspired by salps, we investigate the hydrodynamics of peristaltic propulsion, focusing on the scaling relationships that determine flow rate, thrust production, and energy usage in a model system. We discuss possible actuation methods for a model peristaltic vehicle, considering both the material and geometrical requirements for such a system.

  6. Why Density Dependent Propulsion?

    Science.gov (United States)

    Robertson, Glen A.

    2011-01-01

    In 2004 Khoury and Weltman produced a density dependent cosmology theory they call the Chameleon, as at its nature, it is hidden within known physics. The Chameleon theory has implications to dark matter/energy with universe acceleration properties, which implies a new force mechanism with ties to the far and local density environment. In this paper, the Chameleon Density Model is discussed in terms of propulsion toward new propellant-less engineering methods.

  7. Heat transfer augmentation of magnetohydrodynamics natural convection in L-shaped cavities utilizing nanofluids

    Directory of Open Access Journals (Sweden)

    Sourtiji Ehsan

    2012-01-01

    Full Text Available A numerical study of natural convection heat transfer through an alumina-water nanofluid inside L-shaped cavities in the presence of an external magnetic field is performed. The study has been carried out for a wide range of important parame­ters such as Rayleigh number, Hartmann number, aspect ratio of the cavity and solid volume fraction of the nanofluid. The influence of the nanoparticle, buoyancy force and the magnetic field on the flow and temperature fields have been plotted and discussed. The results show that after a critical Rayleigh number depending on the aspect ratio, the heat transfer in the cavity rises abruptly due to some significant changes in flow field. It is also found that the heat transfer enhances in the presence of the nanoparticles and increases with solid volume fraction of the nanofluid. In addition, the performance of the nanofluid utilization is more effective at high Ray­leigh numbers. The influence of the magnetic field has been also studied and de­duced that it has a remarkable effect on the heat transfer and flow field in the cavity that as the Hartmann number increases the overall Nusselt number is significantly decreased specially at high Rayleigh numbers.

  8. The MOA thruster. A high performance plasma accelerator for nuclear power and propulsion applications

    International Nuclear Information System (INIS)

    Frischauf, Norbert; Hettmer, Manfred; Grassauer, Andreas; Bartusch, Tobias; Koudelka, Otto

    2009-01-01

    More than 60 years after the late Nobel laureate Hannes Alfven had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfven waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfven waves to accelerate ionised matter for propulsive purposes, is MOA - Magnetic field Oscillating Amplified thruster. Alfven waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfven waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion, other, terrestrial applications, like coating, semiconductor implantation and manufacturing as well as steel cutting can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilisation strategy. This paper presents the recent developments of the MOA Thruster R and D activities at QASAR, the company in Vienna, Austria, which has been set up to further develop and test the Alfven wave technology and its applications. (author)

  9. Propulsion for CubeSats

    Science.gov (United States)

    Lemmer, Kristina

    2017-05-01

    At present, very few CubeSats have flown in space featuring propulsion systems. Of those that have, the literature is scattered, published in a variety of formats (conference proceedings, contractor websites, technical notes, and journal articles), and often not available for public release. This paper seeks to collect the relevant publically releasable information in one location. To date, only two missions have featured propulsion systems as part of the technology demonstration. The IMPACT mission from the Aerospace Corporation launched several electrospray thrusters from Massachusetts Institute of Technology, and BricSAT-P from the United States Naval Academy had four micro-Cathode Arc Thrusters from George Washington University. Other than these two missions, propulsion on CubeSats has been used only for attitude control and reaction wheel desaturation via cold gas propulsion systems. As the desired capability of CubeSats increases, and more complex missions are planned, propulsion is required to accomplish the science and engineering objectives. This survey includes propulsion systems that have been designed specifically for the CubeSat platform and systems that fit within CubeSat constraints but were developed for other platforms. Throughout the survey, discussion of flight heritage and results of the mission are included where publicly released information and data have been made available. Major categories of propulsion systems that are in this survey are solar sails, cold gas propulsion, electric propulsion, and chemical propulsion systems. Only systems that have been tested in a laboratory or with some flight history are included.

  10. Orbital Advection with Magnetohydrodynamics and Vector Potential

    International Nuclear Information System (INIS)

    Lyra, Wladimir; McNally, Colin P.; Heinemann, Tobias; Masset, Frédéric

    2017-01-01

    Orbital advection is a significant bottleneck in disk simulations, and a particularly tricky one when used in connection with magnetohydrodynamics. We have developed an orbital advection algorithm suitable for the induction equation with magnetic potential. The electromotive force is split into advection and shear terms, and we find that we do not need an advective gauge since solving the orbital advection implicitly precludes the shear term from canceling the advection term. We prove and demonstrate the third order in time accuracy of the scheme. The algorithm is also suited to non-magnetic problems. Benchmarked results of (hydrodynamical) planet–disk interaction and of the magnetorotational instability are reproduced. We include detailed descriptions of the construction and selection of stabilizing dissipations (or high-frequency filters) needed to generate practical results. The scheme is self-consistent, accurate, and elegant in its simplicity, making it particularly efficient for straightforward finite-difference methods. As a result of the work, the algorithm is incorporated in the public version of the Pencil Code, where it can be used by the community.

  11. Linear waves and stability in ideal magnetohydrodynamics

    International Nuclear Information System (INIS)

    Eckhoff, K.S.

    1987-05-01

    Linear waves superimposed on an arbitrary basic state in ideal magnetohydrodynamics are studied by an asymptotic expansion valid for short wavelenghts. The theory allows for a gravitational potential, and it may therefore be applied both in astrophysics and in problems related to thermonuclear fusion. The linearized equations for the perturbations of the basic state are found in the form of a symmetric hyperbolic system. This symmetric hyperbolic system is shown to possess characteristics of nonuniform multiplicity, which implies that waves of different types may interact. In particular it is shown that the mass waves, the Alf-n waves, and the slow magnetoacoustic waves will persistently interact in the exceptional case where the local wave number vector is perpendicular to the magnetic field. The equations describing this interaction are found in the form of a weakly coupled hyperbolic system. This weakly coupled hyperbloc system is studied in a number of special cases, and detailed analytic results are obtained for some such cases. The results show that the interaction of the waves may be one of the major causes of instability of the basic state. It seems beyond doubt that the interacting waves contain the physically relevant parts of the waves, which often are referred to as ballooning modes, including Suydam modes and Mercier modes

  12. Magnetohydrodynamic instability in annular linear induction pump

    International Nuclear Information System (INIS)

    Araseki, Hideo; Kirillov, Igor R.; Preslitsky, Gennady V.; Ogorodnikov, Anatoly P.

    2006-01-01

    In the previous work, the authors showed some detailed aspects of the magnetohydrodynamic instability arising in an annular linear induction pump: the instability is accompanied with a low frequency pressure pulsation in the range of 0-10 Hz when the magnetic Reynolds number is larger than unity; the low frequency pressure pulsation is produced by the sodium vortices that come from some azimuthal non-uniformity of the applied magnetic field or of the sodium inlet velocity. In the present work, an experiment and a numerical analysis are carried out to verify the pump winding phase shift that is expected as an effective way to suppress the instability. The experimental data shows that the phase shift suppresses the instability unless the slip value is so high, but brings about a decrease of the developed pressure. The numerical results indicate that the phase shift causes a local decrease of the electromagnetic force, which results in the suppression of the instability and the decrease of the developed pressure. In addition, it is exhibited that the intensity of the double-supply-frequency pressure pulsation is in nearly the same level in the case with and without the phase shift

  13. Orbital Advection with Magnetohydrodynamics and Vector Potential

    Energy Technology Data Exchange (ETDEWEB)

    Lyra, Wladimir [Department of Physics and Astronomy, California State University Northrige, 18111 Nordhoff Street, Northridge CA 91130 (United States); McNally, Colin P. [Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Heinemann, Tobias [Niels Bohr International Academy, The Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen Ø (Denmark); Masset, Frédéric, E-mail: wlyra@csun.edu [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, 62210 Cuernavaca, Mor. (Mexico)

    2017-10-01

    Orbital advection is a significant bottleneck in disk simulations, and a particularly tricky one when used in connection with magnetohydrodynamics. We have developed an orbital advection algorithm suitable for the induction equation with magnetic potential. The electromotive force is split into advection and shear terms, and we find that we do not need an advective gauge since solving the orbital advection implicitly precludes the shear term from canceling the advection term. We prove and demonstrate the third order in time accuracy of the scheme. The algorithm is also suited to non-magnetic problems. Benchmarked results of (hydrodynamical) planet–disk interaction and of the magnetorotational instability are reproduced. We include detailed descriptions of the construction and selection of stabilizing dissipations (or high-frequency filters) needed to generate practical results. The scheme is self-consistent, accurate, and elegant in its simplicity, making it particularly efficient for straightforward finite-difference methods. As a result of the work, the algorithm is incorporated in the public version of the Pencil Code, where it can be used by the community.

  14. Magneto-hydrodynamically stable axisymmetric mirrorsa)

    Science.gov (United States)

    Ryutov, D. D.; Berk, H. L.; Cohen, B. I.; Molvik, A. W.; Simonen, T. C.

    2011-09-01

    Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.

  15. Magneto-hydrodynamically stable axisymmetric mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D. D.; Cohen, B. I.; Molvik, A. W. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Berk, H. L. [University of Texas, Austin, Texas 78712 (United States); Simonen, T. C. [University of California, Berkeley, California 94720 (United States)

    2011-09-15

    Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.

  16. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    KAUST Repository

    Mostert, W.; Pullin, D. I.; Samtaney, Ravi; Wheatley, V.

    2016-01-01

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  17. COUNTER-ROTATION IN RELATIVISTIC MAGNETOHYDRODYNAMIC JETS

    Energy Technology Data Exchange (ETDEWEB)

    Cayatte, V.; Sauty, C. [Laboratoire Univers et Théories, Observatoire de Paris, UMR 8102 du CNRS, Université Paris Diderot, F-92190 Meudon (France); Vlahakis, N.; Tsinganos, K. [Department of Astrophysics, Astronomy and Mechanics, Faculty of Physics, University of Athens, 15784 Zografos, Athens (Greece); Matsakos, T. [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States); Lima, J. J. G., E-mail: veronique.cayatte@obspm.fr [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2014-06-10

    Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. showed that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Motion signatures that are transverse to the jet axis, in two opposite directions, have recently been measured in M87. One possible interpretation of this motion is that of counter-rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases: if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of a relativistic magnetohydrodynamic jet simulation.

  18. Analysis of magnetohydrodynamic flow in annular duct

    International Nuclear Information System (INIS)

    Yoo, G.J.; Choi, H.K.; Eun, J.J.

    2004-01-01

    In various types of reactors, fluid is required to be circulated inside the vessel to be an efficient coolant. For flowing metal coolant the electromagnetic pump can be an efficient device for providing the driving force. Numerical analysis is performed for magnetic and magnetohydrodynamic (MHD) flow fields in an electromagnetic pump. A finite volume method is applied to solve governing equations of magnetic field and the Navier-Stokes equations. Vector and scalar potential methods are adopted to obtain the electric and magnetic fields and the resulting Lorentz force in solving Maxwell equations. The magnetic field and velocity distributions are found to be affected by the phase of applied electric current and the magnitude of the Reynolds number. Computational results indicate that the magnetic flux distribution with changing phase of input electric current is characterized by pairs of counter-rotating closed loops. The axial velocity distributions are represented with S-type profiles for the case of the r-direction of Lorentz force dominated flows. (authors)

  19. Non-Taylor magnetohydrodynamic self-organization

    International Nuclear Information System (INIS)

    Zhu, Shao-ping; Horiuchi, Ritoku; Sato, Tetsuya.

    1994-10-01

    A self-organization process in a plasma with a finite pressure is investigated by means of a three-dimensional magnetohydrodynamic simulation. It is demonstrated that a non-Taylor finite β self-organized state is realized in which a perpendicular component of the electric current is generated and the force-free(parallel) current decreases until they reach to almost the same level. The self-organized state is described by an MHD force-balance relation, namely, j perpendicular = B x ∇p/B·B and j parallel = μB where μ is not a constant, and the pressure structure resembles the structure of the toroidal magnetic field intensity. Unless an anomalous perpendicular thermal conduction arises, the plasma cannot relax to a Taylor state but to a non-Taylor (non-force-free) self-organized state. This state becomes more prominent for a weaker resistivity condition. The non-Taylor state has a rather universal property, for example, independence of the initial β value. Another remarkable finding is that the Taylor's conjecture of helicity conservation is, in a strict sense, not valid. The helicity dissipation occurs and its rate slows down critically in accordance with the stepwise relaxation of the magnetic energy. It is confirmed that the driven magnetic reconnection caused by the nonlinearly excited plasma kink flows plays the leading role in all of these key features of the non-Taylor self-organization. (author)

  20. Magnetohydrodynamic (MHD) simulation of solar prominence formation

    International Nuclear Information System (INIS)

    Bao, J.

    1987-01-01

    Formation of Kippenhahn-Schluter type solar prominences by chromospheric mass injection is studied via numerical simulation. The numerical model is based on a two-dimensional, time-dependent magnetohydrodynamic (MHD) theory. In addition, an analysis of gravitational thermal MHD instabilities related to condensation is performed by using the small-perturbation method. The conclusions are: (1) Both quiescent and active-region prominences can be formed by chromospheric mass injection, provided certain optimum conditions are satisfied. (2) Quiescent prominences cannot be formed without condensation, though enough mass is supplied from chromosphere. The mass of a quiescent prominence is composed of both the mass injected from the chromosphere and the mass condensed from the corona. On the other hand, condensation is not important to active region prominence formation. (3) In addition to channeling and supporting effects, the magnetic field plays another important role, i.e. containing the prominence material. (4) In the model cases, prominences are supported by the Lorentz force, the gas-pressure gradient and the mass-injection momentum. (5) Due to gravity, more MHD condensation instability modes appear in addition to the basic condensation mode

  1. INHOMOGENEOUS NEARLY INCOMPRESSIBLE DESCRIPTION OF MAGNETOHYDRODYNAMIC TURBULENCE

    International Nuclear Information System (INIS)

    Hunana, P.; Zank, G. P.

    2010-01-01

    The nearly incompressible theory of magnetohydrodynamics (MHD) is formulated in the presence of a static large-scale inhomogeneous background. The theory is an inhomogeneous generalization of the homogeneous nearly incompressible MHD description of Zank and Matthaeus and a polytropic equation of state is assumed. The theory is primarily developed to describe solar wind turbulence where the assumption of a composition of two-dimensional (2D) and slab turbulence with the dominance of the 2D component has been used for some time. It was however unclear, if in the presence of a large-scale inhomogeneous background, the dominant component will also be mainly 2D and we consider three distinct MHD regimes for the plasma beta β > 1. For regimes appropriate to the solar wind (β 2 s δp is not valid for the leading-order O(M) density fluctuations, and therefore in observational studies, the density fluctuations should not be analyzed through the pressure fluctuations. The pseudosound relation is valid only for higher order O(M 2 ) density fluctuations, and then only for short-length scales and fast timescales. The spectrum of the leading-order density fluctuations should be modeled as k -5/3 in the inertial range, followed by a Bessel function solution K ν (k), where for stationary turbulence ν = 1, in the viscous-convective and diffusion range. Other implications for solar wind turbulence with an emphasis on the evolution of density fluctuations are also discussed.

  2. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    KAUST Repository

    Mostert, W.

    2016-12-12

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  3. Multiple time scale methods in tokamak magnetohydrodynamics

    International Nuclear Information System (INIS)

    Jardin, S.C.

    1984-01-01

    Several methods are discussed for integrating the magnetohydrodynamic (MHD) equations in tokamak systems on other than the fastest time scale. The dynamical grid method for simulating ideal MHD instabilities utilizes a natural nonorthogonal time-dependent coordinate transformation based on the magnetic field lines. The coordinate transformation is chosen to be free of the fast time scale motion itself, and to yield a relatively simple scalar equation for the total pressure, P = p + B 2 /2μ 0 , which can be integrated implicitly to average over the fast time scale oscillations. Two methods are described for the resistive time scale. The zero-mass method uses a reduced set of two-fluid transport equations obtained by expanding in the inverse magnetic Reynolds number, and in the small ratio of perpendicular to parallel mobilities and thermal conductivities. The momentum equation becomes a constraint equation that forces the pressure and magnetic fields and currents to remain in force balance equilibrium as they evolve. The large mass method artificially scales up the ion mass and viscosity, thereby reducing the severe time scale disparity between wavelike and diffusionlike phenomena, but not changing the resistive time scale behavior. Other methods addressing the intermediate time scales are discussed

  4. Multicomponent diffusion in two-temperature magnetohydrodynamics

    International Nuclear Information System (INIS)

    Ramshaw, J.D.; Chang, C.H.

    1996-01-01

    A recent hydrodynamic theory of multicomponent diffusion in multitemperature gas mixtures [J. D. Ramshaw, J. Non-Equilib. Thermodyn. 18, 121 (1993)] is generalized to include the velocity-dependent Lorentz force on charged species in a magnetic field B. This generalization is used to extend a previous treatment of ambipolar diffusion in two-temperature multicomponent plasmas [J. D. Ramshaw and C. H. Chang, Plasma Chem. Plasma Process. 13, 489 (1993)] to situations in which B and the electrical current density are nonzero. General expressions are thereby derived for the species diffusion fluxes, including thermal diffusion, in both single- and two-temperature multicomponent magnetohydrodynamics (MHD). It is shown that the usual zero-field form of the Stefan-Maxwell equations can be preserved in the presence of B by introducing generalized binary diffusion tensors dependent on B. A self-consistent effective binary diffusion approximation is presented that provides explicit approximate expressions for the diffusion fluxes. Simplifications due to the small electron mass are exploited to obtain an ideal MHD description in which the electron diffusion coefficients drop out, resistive effects vanish, and the electric field reduces to a particularly simple form. This description should be well suited for numerical calculations. copyright 1996 The American Physical Society

  5. Collisionless Reconnection in Magnetohydrodynamic and Kinetic Turbulence

    Science.gov (United States)

    Loureiro, Nuno F.; Boldyrev, Stanislav

    2017-12-01

    It has recently been proposed that the inertial interval in magnetohydrodynamic (MHD) turbulence is terminated at small scales not by a Kolmogorov-like dissipation region, but rather by a new sub-inertial interval mediated by tearing instability. However, many astrophysical plasmas are nearly collisionless so the MHD approximation is not applicable to turbulence at small scales. In this paper, we propose an extension of the theory of reconnection-mediated turbulence to plasmas which are so weakly collisional that the reconnection occurring in the turbulent eddies is caused by electron inertia rather than by resistivity. We find that the transition scale to reconnection-mediated turbulence depends on the plasma beta and on the assumptions of the plasma turbulence model. However, in all of the cases analyzed, the energy spectra in the reconnection-mediated interval range from E({k}\\perp ){{dk}}\\perp \\propto {k}\\perp -8/3{{dk}}\\perp to E({k}\\perp ){{dk}}\\perp \\propto {k}\\perp -3{{dk}}\\perp .

  6. Recent Advances in Airframe-Propulsion Concepts with Distributed Propulsion

    OpenAIRE

    Isikveren , A.T.; Seitz , A.; Bijewitz , J.; Hornung , M.; Mirzoyan , A.; Isyanov , A.; Godard , J.L.; Stückl , S.; Van Toor , J.

    2014-01-01

    International audience; This paper discusses design and integration associated with distributed propulsion as a means of providing motive power for future aircraft concepts. The technical work reflects activities performed within a European Commission funded Framework 7 project entitled Distributed Propulsion and Ultra-high By-Pass Rotor Study at Aircraft Level, or, DisPURSAL. In this instance, the approach of distributed propulsion includes one unique solution that integrates the fuselage wi...

  7. Confronting an Augmented Reality

    Science.gov (United States)

    Munnerley, Danny; Bacon, Matt; Wilson, Anna; Steele, James; Hedberg, John; Fitzgerald, Robert

    2012-01-01

    How can educators make use of augmented reality technologies and practices to enhance learning and why would we want to embrace such technologies anyway? How can an augmented reality help a learner confront, interpret and ultimately comprehend reality itself ? In this article, we seek to initiate a discussion that focuses on these questions, and…

  8. Augmented Reality on Android

    OpenAIRE

    Chunghan Li; Chang-Shyh Peng; Daisy F. Sang

    2013-01-01

    Augmented Reality is an application which combines a live view of real-world environment and computer-generated images. This paper studies and demonstrates an efficient Augmented Reality development in the mobile Android environment with the native Java language and Android SDK. Major components include Barcode Reader, File Loader, Marker Detector, Transform Matrix Generator, and a cloud database.

  9. The Nuclear Cryogenic Propulsion Stage

    Science.gov (United States)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.

  10. Electric Propulsion Research Building (EPRB)

    Data.gov (United States)

    Federal Laboratory Consortium — The Electric Propulsion Research Building (EPRB) capability centers on its suite of vacuum chambers, which are configured to meet the unique requirements related to...

  11. Reactors for nuclear electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades.

  12. Reactors for nuclear electric propulsion

    International Nuclear Information System (INIS)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades

  13. Environmental Development Plan (EDP): magnetohydrodynamics program, FY 1977

    International Nuclear Information System (INIS)

    1978-03-01

    This magnetohydrodynamics (MHD) EDP identifies and examines the environmental, health, and safety issues concerning the development of the ERDA Magnetohydrodynamics Program, the environmental activities needed to resolve these issues, applicable ongoing and completed research, and a time-phased action plan for the evaluation and mitigation of environmental impacts. A schedule for environmental research, assessment, and other activities is laid out. The purpose of the EDP is to identify environmental issues and to specify actions to ensure the environmental acceptability of commercial energy technologies being developed by ERDA. The EDP also will assist in coordinating ERDA's environmental activities with those of other government agencies. This document addresses the following technologies associated with ERDA's MHD program: (1) open-cycle magnetohydrodynamics; (2) closed-cycle plasma magnetohydrodynamics; and (3) closed-cycle liquid metal magnetohydrodynamics. The proposed environmental action plan is designed to meet the following objectives: (1) develop methods for monitoring and measuring emissions; (2) characterize air emissions, water effluents, and solid wastes from MHD; (3) determine potential environmental impacts and health hazards associated with MHD; (4) model pollutant transport and transformation; (5) ensure adequate control of pollutant emissions; (6) identify and minimize occupational health and safety hazards; (7) prepare NEPA compliance documents; and (8) assess the environmental, health, and safety impacts of the commercialized industry. This EDP will be updated and revised annually to take into account the progress of technologies toward commercialization, the environmental work accomplished, and the resolution of outstanding environmental issues concerning the technologies

  14. Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity

    Directory of Open Access Journals (Sweden)

    Font José A.

    2008-09-01

    Full Text Available This article presents a comprehensive overview of numerical hydrodynamics and magnetohydrodynamics (MHD in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003, most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable

  15. Electromotive force in strongly compressible magnetohydrodynamic turbulence

    Science.gov (United States)

    Yokoi, N.

    2017-12-01

    Variable density fluid turbulence is ubiquitous in geo-fluids, not to mention in astrophysics. Depending on the source of density variation, variable density fluid turbulence may be divided into two categories: the weak compressible (entropy mode) turbulence for slow flow and the strong compressible (acoustic mode) turbulence for fast flow. In the strong compressible turbulence, the pressure fluctuation induces a strong density fluctuation ρ ', which is represented by the density variance ( denotes the ensemble average). The turbulent effect on the large-scale magnetic-field B induction is represented by the turbulent electromotive force (EMF) (u': velocity fluctuation, b': magnetic-field fluctuation). In the usual treatment in the dynamo theory, the expression for the EMF has been obtained in the framework of incompressible or weak compressible turbulence, where only the variation of the mean density , if any, is taken into account. We see from the equation of the density fluctuation ρ', the density variance is generated by the large mean density variation ∂ coupled with the turbulent mass flux . This means that in the region where the mean density steeply changes, the density variance effect becomes relevant for the magnetic field evolution. This situation is typically the case for phenomena associated with shocks and compositional discontinuities. With the aid of the analytical theory of inhomogeneous compressible magnetohydrodynamic (MHD) turbulence, the expression for the turbulent electromotive force is investigated. It is shown that, among others, an obliqueness (misalignment) between the mean density gradient ∂ and the mean magnetic field B may contribute to the EMF as ≈χ B×∂ with the turbulent transport coefficient χ proportional to the density variance (χ ). This density variance effect is expected to strongly affect the EMF near the interface, and changes the transport properties of turbulence. In the case of an interface under the MHD slow

  16. Development of An Intelligent Flight Propulsion Control System

    Science.gov (United States)

    Calise, A. J.; Rysdyk, R. T.; Leonhardt, B. K.

    1999-01-01

    The initial design and demonstration of an Intelligent Flight Propulsion and Control System (IFPCS) is documented. The design is based on the implementation of a nonlinear adaptive flight control architecture. This initial design of the IFPCS enhances flight safety by using propulsion sources to provide redundancy in flight control. The IFPCS enhances the conventional gain scheduled approach in significant ways: (1) The IFPCS provides a back up flight control system that results in consistent responses over a wide range of unanticipated failures. (2) The IFPCS is applicable to a variety of aircraft models without redesign and,(3) significantly reduces the laborious research and design necessary in a gain scheduled approach. The control augmentation is detailed within an approximate Input-Output Linearization setting. The availability of propulsion only provides two control inputs, symmetric and differential thrust. Earlier Propulsion Control Augmentation (PCA) work performed by NASA provided for a trajectory controller with pilot command input of glidepath and heading. This work is aimed at demonstrating the flexibility of the IFPCS in providing consistency in flying qualities under a variety of failure scenarios. This report documents the initial design phase where propulsion only is used. Results confirm that the engine dynamics and associated hard nonlineaaities result in poor handling qualities at best. However, as demonstrated in simulation, the IFPCS is capable of results similar to the gain scheduled designs of the NASA PCA work. The IFPCS design uses crude estimates of aircraft behaviour. The adaptive control architecture demonstrates robust stability and provides robust performance. In this work, robust stability means that all states, errors, and adaptive parameters remain bounded under a wide class of uncertainties and input and output disturbances. Robust performance is measured in the quality of the tracking. The results demonstrate the flexibility of

  17. Nuclear rocket propulsion

    International Nuclear Information System (INIS)

    Clark, J.S.; Miller, T.J.

    1991-01-01

    NASA has initiated planning for a technology development project for nuclear rocket propulsion systems for Space Exploration Initiative (SEI) human and robotic missions to the Moon and to Mars. An Interagency project is underway that includes the Department of Energy National Laboratories for nuclear technology development. This paper summarizes the activities of the project planning team in FY 1990 and FY 1991, discusses the progress to date, and reviews the project plan. Critical technology issues have been identified and include: nuclear fuel temperature, life, and reliability; nuclear system ground test; safety; autonomous system operation and health monitoring; minimum mass and high specific impulse

  18. Nuclear propulsion systems engineering

    International Nuclear Information System (INIS)

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-01-01

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960's and early 1970's was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts

  19. Augmented reality: a review.

    Science.gov (United States)

    Berryman, Donna R

    2012-01-01

    Augmented reality is a technology that overlays digital information on objects or places in the real world for the purpose of enhancing the user experience. It is not virtual reality, that is, the technology that creates a totally digital or computer created environment. Augmented reality, with its ability to combine reality and digital information, is being studied and implemented in medicine, marketing, museums, fashion, and numerous other areas. This article presents an overview of augmented reality, discussing what it is, how it works, its current implementations, and its potential impact on libraries.

  20. Additive Manufacturing of Aerospace Propulsion Components

    Science.gov (United States)

    Misra, Ajay K.; Grady, Joseph E.; Carter, Robert

    2015-01-01

    The presentation will provide an overview of ongoing activities on additive manufacturing of aerospace propulsion components, which included rocket propulsion and gas turbine engines. Future opportunities on additive manufacturing of hybrid electric propulsion components will be discussed.

  1. Variational formulation of relaxed and multi-region relaxed magnetohydrodynamics

    Science.gov (United States)

    Dewar, R. L.; Yoshida, Z.; Bhattacharjee, A.; Hudson, S. R.

    2015-12-01

    > Ideal magnetohydrodynamics (IMHD) is strongly constrained by an infinite number of microscopic constraints expressing mass, entropy and magnetic flux conservation in each infinitesimal fluid element, the latter preventing magnetic reconnection. By contrast, in the Taylor relaxation model for formation of macroscopically self-organized plasma equilibrium states, all these constraints are relaxed save for the global magnetic fluxes and helicity. A Lagrangian variational principle is presented that leads to a new, fully dynamical, relaxed magnetohydrodynamics (RxMHD), such that all static solutions are Taylor states but also allows state with flow. By postulating that some long-lived macroscopic current sheets can act as barriers to relaxation, separating the plasma into multiple relaxation regions, a further generalization, multi-region relaxed magnetohydrodynamics (MRxMHD) is developed.

  2. Radiation-magnetohydrodynamics of fusion plasmas on parallel supercomputers

    International Nuclear Information System (INIS)

    Yasar, O.; Moses, G.A.; Tautges, T.J.

    1993-01-01

    A parallel computational model to simulate fusion plasmas in the radiation-magnetohydrodynamics (R-MHD) framework is presented. Plasmas are often treated in a fluid dynamics context (magnetohydrodynamics, MHD), but when the flow field is coupled with the radiation field it falls into a more complex category, radiation magnetohydrodynamics (R-MHD), where the interaction between the flow field and the radiation field is nonlinear. The solution for the radiation field usually dominates the R-MHD computation. To solve for the radiation field, one usually chooses the S N discrete ordinates method (a deterministic method) rather than the Monte Carlo method if the geometry is not complex. The discrete ordinates method on a massively parallel processor (Intel iPSC/860) is implemented. The speedup is 14 for a run on 16 processors and the performance is 3.7 times better than a single CRAY YMP processor implementation. (orig./DG)

  3. Augmented Reality, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Augmented Reality systems come with many benefits derived by co-locating information with a user's environment through the use of one or more output modalities such...

  4. Chin augmentation - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100009.htm Chin augmentation - series—Normal anatomy To use the sharing features ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated: ...

  5. Augmenting Clozapine With Sertindole

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Emborg, Charlotte; Gydesen, Susanne

    2012-01-01

    Clozapine augmentation with antipsychotic drugs is widely used despite sparse evidence supporting this strategy. Sertindole is a nonsedating atypical antipsychotic drug with low affinity for cholinergic receptors, which makes it potentially suitable for augmentation of clozapine. The study design...... glucose, lipids, and electrocardiogram. Clozapine augmentation with sertindole was not superior to placebo regarding total score or subscale score of the Positive and Negative Syndrome Scale, Clinical Global Impression, World Health Organization Quality of Life Brief, or Drug Attitude Inventory....... No increased adverse effects compared with placebo were found. Four patients randomized to sertindole experienced a significant worsening of psychosis, and 2 of them required psychiatric admission. Metabolic parameters were unchanged during the study, but augmentation of clozapine with sertindole...

  6. Breast augmentation - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100205.htm Breast augmentation - series—Normal anatomy To use the sharing features ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated: ...

  7. Augmented reality in neurosurgery.

    Science.gov (United States)

    Tagaytayan, Raniel; Kelemen, Arpad; Sik-Lanyi, Cecilia

    2018-04-01

    Neurosurgery is a medical specialty that relies heavily on imaging. The use of computed tomography and magnetic resonance images during preoperative planning and intraoperative surgical navigation is vital to the success of the surgery and positive patient outcome. Augmented reality application in neurosurgery has the potential to revolutionize and change the way neurosurgeons plan and perform surgical procedures in the future. Augmented reality technology is currently commercially available for neurosurgery for simulation and training. However, the use of augmented reality in the clinical setting is still in its infancy. Researchers are now testing augmented reality system prototypes to determine and address the barriers and limitations of the technology before it can be widely accepted and used in the clinical setting.

  8. Exploration Augmentation Module Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Exploration Augmentation Module (EAM) project goal is to design and deliver a flight module that is to be deployed to Earth-Lunar Distant Retrograde Orbit (DRO)....

  9. Exotic power and propulsion concepts

    International Nuclear Information System (INIS)

    Forward, R.L.

    1990-01-01

    The status of some exotic physical phenomena and unconventional spacecraft concepts that might produce breakthroughs in power and propulsion in the 21st Century are reviewed. The subjects covered include: electric, nuclear fission, nuclear fusion, antimatter, high energy density materials, metallic hydrogen, laser thermal, solar thermal, solar sail, magnetic sail, and tether propulsion

  10. Multi-region relaxed magnetohydrodynamics with anisotropy and flow

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, G. R., E-mail: graham.dennis@anu.edu.au; Dewar, R. L.; Hole, M. J. [Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia); Hudson, S. R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)

    2014-07-15

    We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes pressure anisotropy and general plasma flows. This anisotropic extension to our previous isotropic model is motivated by Sun and Finn's model of relaxed anisotropic magnetohydrodynamic equilibria. We prove that as the number of plasma regions becomes infinite, our anisotropic extension of MRxMHD reduces to anisotropic ideal MHD with flow. The continuously nested flux surface limit of our MRxMHD model is the first variational principle for anisotropic plasma equilibria with general flow fields.

  11. Marketing and Augmented Reality

    OpenAIRE

    Zelený, Martin

    2010-01-01

    The main goal of this diploma thesis is to identify the usage of augmented reality in contemporary marketing practice and the expectations of marketers for the future use. This will be achieved by conducting a quantitative and qualitative research among existing creative and advertising companies. Secondary goal is introducing the concept of augmented reality from the theoretical point of view and also description of potential utilization based on known examples. The tools for the practical p...

  12. INFORMATION VIA AUGMENTED

    OpenAIRE

    Tetteh, Sampson

    2015-01-01

    The vast majority of mobile technology today has developed over the past dec-ades. The thirst for information and communication has brought about high data transfer speed on modern mobile handset devices. This makes it possible for Augmented Reality to be used on mobile phones. Vaasa University of Applied Science, Technobothnia science resource center and Lumivaara Museum saw the importance of information and decided to embark on a pilot project where Augmented Reality will not be only us...

  13. In-Space Propulsion (346620) Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Technologies include, but are not limited to, electric and advanced chemical propulsion, propellantless propulsion such as aerocapture and solar sails, sample return...

  14. Monofilament Vaporization Propulsion (MVP) System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Monofilament Vaporization Propulsion (MVP) is a new propulsion technology targeted at secondary payload applications. It does not compromise on performance while...

  15. Nuclear-microwave-electric propulsion

    International Nuclear Information System (INIS)

    Nordley, G.D.; Brown, W.C.

    1986-01-01

    Electric propulsion can move more mass through space than chemical propulsion by virtue of the higher exhaust velocities achieved by electric propulsion devices. This performance is achieved at the expense of very heavy power sources or very long trip times, which in turn create technical and economic penalties of varying severity. These penalties include: higher operations costs, delayed availability of the payload, and increased exposure to Van Allen Belt radiation. It is proposed to reduce these penalties by physically separating the power source from the propulsion and use microwave energy beaming technology, recently explored and partially developed/tested for Solar Power Satellite concept studies, as an extension cord. This paper summarizes the state of the art of the technology needed for space based beam microwave power cost/performance trades involved with the use beamed microwave/electric propulsion for some typical orbit transfer missions and offers some suggestions for additional work

  16. Confronting an augmented reality

    Directory of Open Access Journals (Sweden)

    John Hedberg

    2012-08-01

    Full Text Available How can educators make use of augmented reality technologies and practices to enhance learning and why would we want to embrace such technologies anyway? How can an augmented reality help a learner confront, interpret and ultimately comprehend reality itself? In this article, we seek to initiate a discussion that focuses on these questions, and suggest that they be used as drivers for research into effective educational applications of augmented reality. We discuss how multi-modal, sensorial augmentation of reality links to existing theories of education and learning, focusing on ideas of cognitive dissonance and the confrontation of new realities implied by exposure to new and varied perspectives. We also discuss connections with broader debates brought on by the social and cultural changes wrought by the increased digitalisation of our lives, especially the concept of the extended mind. Rather than offer a prescription for augmentation, our intention is to throw open debate and to provoke deep thinking about what interacting with and creating an augmented reality might mean for both teacher and learner.

  17. Asymptotic study of a magneto-hydro-dynamic system

    International Nuclear Information System (INIS)

    Benameur, J.; Ibrahim, S.; Majdoub, M.

    2003-01-01

    In this paper, we study the convergence of solutions of a Magneto-Hydro-Dynamic system. On the torus T 3 , the proof is based on Schochet's methods, whereas in the case of the whole space R 3 , we use Strichartz's type estimates. (author)

  18. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, Alexandra; Koster, Sander; Hogen-Koster, S.; Eijkel, Jan C.T.; van den Berg, Albert; Lucklum, F.; Verpoorte, E.; de Rooij, Nico F.

    2005-01-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-µm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined

  19. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, A; Koster, Sander; Eijkel, JCT; van den Berg, A; Lucklum, F; Verpoorte, E; de Rooij, NF

    2005-01-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-mu m-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a

  20. Magnetohydrodynamic free convection in a strong cross field

    NARCIS (Netherlands)

    Kuiken, H.K.

    1970-01-01

    The problem of magnetohydrodynamic free convection of an electrically conducting fluid in a strong cross field is investigated. It is solved by using a singular perturbation technique. The solutions presented cover the range of Prandtl numbers from zero to order one. This includes both the important

  1. Spectral calculations in magnetohydrodynamics using the Jacobi-Davidson method

    NARCIS (Netherlands)

    Belien, A. J. C.; van der Holst, B.; Nool, M.; van der Ploeg, A.; Goedbloed, J. P.

    2001-01-01

    For the solution of the generalized complex non-Hermitian eigenvalue problems Ax = lambda Bx occurring in the spectral study of linearized resistive magnetohydrodynamics (MHD) a new parallel solver based on the recently developed Jacobi-Davidson [SIAM J. Matrix Anal. Appl. 17 (1996) 401] method has

  2. Asymptotic study of a magneto-hydro-dynamic system

    Energy Technology Data Exchange (ETDEWEB)

    Benameur, J [Institut Preparatoire aux Etudes d' Ingenieurs de Monastir (Tunisia); Ibrahim, S [Faculte des Sciences de Bizerte, Departement de Mathematiques, Bizerte (TN); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)]. E-mail: slim.ibrahim@fsb.rnu.tn; Majdoub, M [Faculte des Sciences de Tunis, Departement de Mathematiques, Tunis (Tunisia)

    2003-01-01

    In this paper, we study the convergence of solutions of a Magneto-Hydro-Dynamic system. On the torus T{sup 3}, the proof is based on Schochet's methods, whereas in the case of the whole space R{sup 3}, we use Strichartz's type estimates. (author)

  3. Large eddy simulations of compressible magnetohydrodynamic turbulence

    International Nuclear Information System (INIS)

    Grete, Philipp

    2016-01-01

    Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the

  4. Large eddy simulations of compressible magnetohydrodynamic turbulence

    Science.gov (United States)

    Grete, Philipp

    2017-02-01

    Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the

  5. Large eddy simulations of compressible magnetohydrodynamic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Grete, Philipp

    2016-09-09

    Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the

  6. Enabling Electric Propulsion for Flight

    Science.gov (United States)

    Ginn, Starr Renee

    2015-01-01

    Team Seedling project AFRC and LaRC 31ft distributed electric propulsion wing on truck bed up 75 miles per hour for coefficient of lift validation. Convergent Aeronautic Solutions project, sub-project Convergent Electric Propulsion Technologies AFRC, LaRC and GRC, re-winging a 4 passenger Tecnam aircraft with a 31ft distributed electric propulsion wing. Advanced Air Transport Technologies (Fixed Wing), Hybrid Electric Research Theme, developing a series hybrid ironbird and flight sim to study integration and performance challenges in preparation for a 1-2 MW flight project.

  7. NASA's Nuclear Thermal Propulsion Project

    Science.gov (United States)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.; hide

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC- 3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP).

  8. Augmented marked graphs

    CERN Document Server

    Cheung, King Sing

    2014-01-01

    Petri nets are a formal and theoretically rich model for the modelling and analysis of systems. A subclass of Petri nets, augmented marked graphs possess a structure that is especially desirable for the modelling and analysis of systems with concurrent processes and shared resources.This monograph consists of three parts: Part I provides the conceptual background for readers who have no prior knowledge on Petri nets; Part II elaborates the theory of augmented marked graphs; finally, Part III discusses the application to system integration. The book is suitable as a first self-contained volume

  9. Augmented reality som wearable

    DEFF Research Database (Denmark)

    Buhl, Mie; Rahn, Annette

    2015-01-01

    Artiklen omhandler design og implementering af Augmented Reality (AR) i form af en wearable i sygeplejerskeuddannelsens anatomiundervisning, mere specifikt undervisning i lungeanatomi og respiration, med fokus på potentialer for visuel læring. Projektet undersøger, hvordan en udviklet AR-applikat......Artiklen omhandler design og implementering af Augmented Reality (AR) i form af en wearable i sygeplejerskeuddannelsens anatomiundervisning, mere specifikt undervisning i lungeanatomi og respiration, med fokus på potentialer for visuel læring. Projektet undersøger, hvordan en udviklet AR...

  10. Prototyping Augmented Reality

    CERN Document Server

    Mullen, Tony

    2011-01-01

    Learn to create augmented reality apps using Processing open-source programming language Augmented reality (AR) is used all over, and you may not even realize it. Smartphones overlay data onto live camera views to show homes for sale, restaurants, or historical sites. American football broadcasts use AR to show the invisible first-down line on the field to TV viewers. Nike and Budweiser, among others, have used AR in ads. Now, you can learn to create AR prototypes using 3D data, Processing open-source programming language, and other languages. This unique book is an easy-to-follow guide on how

  11. Development of Cubesat Propulsion Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this IRAD will be to develop a propulsion system that can be cheaply and reliably used for NASA GSFC cubesat missions. Reliability will be...

  12. Propulsion Systems Laboratory, Bldg. 125

    Data.gov (United States)

    Federal Laboratory Consortium — The Propulsion Systems Laboratory (PSL) is NASAs only ground test facility capable of providing true altitude and flight speed simulation for testing full scale gas...

  13. Lunar Robotic Precursor Missions Using Electric Propulsion

    OpenAIRE

    Winski, Richard G.

    2006-01-01

    A trade study is carried out for the design of electric propulsion based lunar robotic precursor missions. The focus is to understand the relationships between payload mass delivered, electric propulsion power, and trip time. The results are compared against a baseline system using chemical propulsion with LOX/H2. The major differences between the chemical propulsion based and electric propulsion based systems are presented in terms of the payload mass and trip time. It is shown that solar e...

  14. Electric Motors for Vehicle Propulsion

    OpenAIRE

    Larsson, Martin

    2014-01-01

    This work is intended to contribute with knowledge to the area of electic motorsfor propulsion in the vehicle industry. This is done by first studying the differentelectric motors available, the motors suitable for vehicle propulsion are then dividedinto four different types to be studied separately. These four types are thedirect current, induction, permanent magnet and switched reluctance motors. Thedesign and construction are then studied to understand how the different typesdiffer from ea...

  15. Relaxation model for extended magnetohydrodynamics: Comparison to magnetohydrodynamics for dense Z-pinches

    International Nuclear Information System (INIS)

    Seyler, C. E.; Martin, M. R.

    2011-01-01

    It is shown that the two-fluid model under a generalized Ohm's law formulation and the resistive magnetohydrodynamics (MHD) can both be described as relaxation systems. In the relaxation model, the under-resolved stiff source terms constrain the dynamics of a set of hyperbolic equations to give the correct asymptotic solution. When applied to the collisional two-fluid model, the relaxation of fast time scales associated with displacement current and finite electron mass allows for a natural transition from a system where Ohm's law determines the current density to a system where Ohm's law determines the electric field. This result is used to derive novel algorithms, which allow for multiscale simulation of low and high frequency extended-MHD physics. This relaxation formulation offers an efficient way to implicitly advance the Hall term and naturally simulate a plasma-vacuum interface without invoking phenomenological models. The relaxation model is implemented as an extended-MHD code, which is used to analyze pulsed power loads such as wire arrays and ablating foils. Two-dimensional simulations of pulsed power loads are compared for extended-MHD and MHD. For these simulations, it is also shown that the relaxation model properly recovers the resistive-MHD limit.

  16. Towards Pervasive Augmented Reality: Context-Awareness in Augmented Reality.

    Science.gov (United States)

    Grubert, Jens; Langlotz, Tobias; Zollmann, Stefanie; Regenbrecht, Holger

    2017-06-01

    Augmented Reality is a technique that enables users to interact with their physical environment through the overlay of digital information. While being researched for decades, more recently, Augmented Reality moved out of the research labs and into the field. While most of the applications are used sporadically and for one particular task only, current and future scenarios will provide a continuous and multi-purpose user experience. Therefore, in this paper, we present the concept of Pervasive Augmented Reality, aiming to provide such an experience by sensing the user's current context and adapting the AR system based on the changing requirements and constraints. We present a taxonomy for Pervasive Augmented Reality and context-aware Augmented Reality, which classifies context sources and context targets relevant for implementing such a context-aware, continuous Augmented Reality experience. We further summarize existing approaches that contribute towards Pervasive Augmented Reality. Based our taxonomy and survey, we identify challenges for future research directions in Pervasive Augmented Reality.

  17. Maxillary Sinus Floor Augmentation

    DEFF Research Database (Denmark)

    Starch-Jensen, Thomas; Jensen, Janek Dalsgaard

    2017-01-01

    , radiological and histomorphometric outcome as well as complications are presented after maxillary sinus floor augmentation applying the lateral window technique with a graft material, maxillary sinus membrane elevation without a graft material and osteotome-mediated sinus floor elevation with or without...

  18. Augmented Reality og kulturarv

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Kirkedahl Lysholm

    2013-01-01

    Museerne står overfor at skulle omfavne den digitale kultur i håndteringen af den store mængde viden, institutionerne repræsenterer. Augmented Reality-systemer forbinder ved hjælp af moderne teknologi det virtuelle med det virkelige, og kan derfor synes som en oplagt anvendelsesmulighed i...

  19. Augmented Reality i naturfagsundervisningen

    DEFF Research Database (Denmark)

    Radmer, Ole; Surland, Mogens; Nielsen, Birgitte Lund

    Augmented Reality (AR) giver ny mulighed for, at elever kan lave undersøgelser i naturfag med enkel teknologi, hvor animationer og simulationer kobles med det virkelige fænomen. I workshoppen kan I afprøve AR eksempler, udviklet i et internationalt EU projekt. Der vil være noget, der direkte kan...

  20. Collaboration in Augmented Reality

    NARCIS (Netherlands)

    Lukosch, S.; Billinghurst, M.; Alem, L.; Kiyokawa, K.

    2015-01-01

    Augmented Reality (AR) is a technology that allows users to view and interact in real time with virtual images seamlessly superimposed over the real world. AR systems can be used to create unique collaborative experiences. For example, co-located users can see shared 3D virtual objects that they

  1. Capillary Refill using Augmented Reality

    OpenAIRE

    Clausen, Christoffer

    2017-01-01

    Master's thesis in Computer science The opportunities within augmented reality is growing. Augmented reality is a combination of the real and the virtual world in real time, and large companies like Microsoft and Google is now investing heavily in the technology. This thesis presents a solution for simulating a medical test called capillary refill, by using augmented reality. The simulation is performed with an augmented reality headset called HoloLens. The HoloLens will recognise a mark...

  2. Microwave Thermal Propulsion

    Science.gov (United States)

    Parkin, Kevin L. G.; Lambot, Thomas

    2017-01-01

    We have conducted research in microwave thermal propulsion as part of the space exploration access technologies (SEAT) research program, a cooperative agreement (NNX09AF52A) between NASA and Carnegie Mellon University. The SEAT program commenced on the 19th of February 2009 and concluded on the 30th of September 2015. The DARPA/NASA Millimeter-wave Thermal Launch System (MTLS) project subsumed the SEAT program from May 2012 to March 2014 and one of us (Parkin) served as its principal investigator and chief engineer. The MTLS project had no final report of its own, so we have included the MTLS work in this report and incorporate its conclusions here. In the six years from 2009 until 2015 there has been significant progress in millimeter-wave thermal rocketry (a subset of microwave thermal rocketry), most of which has been made under the auspices of the SEAT and MTLS programs. This final report is intended for multiple audiences. For researchers, we present techniques that we have developed to simplify and quantify the performance of thermal rockets and their constituent technologies. For program managers, we detail the facilities that we have built and the outcomes of experiments that were conducted using them. We also include incomplete and unfruitful lines of research. For decision-makers, we introduce the millimeter-wave thermal rocket in historical context. Considering the economic significance of space launch, we present a brief but significant cost-benefit analysis, for the first time showing that there is a compelling economic case for replacing conventional rockets with millimeter-wave thermal rockets.

  3. Numerical evaluation of high energy particle effects in magnetohydrodynamics

    International Nuclear Information System (INIS)

    White, R.B.; Wu, Y.

    1994-03-01

    The interaction of high energy ions with magnetohydrodynamic modes is analyzed. A numerical code is developed which evaluates the contribution of the high energy particles to mode stability using orbit averaging of motion in either analytic or numerically generated equilibria through Hamiltonian guiding center equations. A dispersion relation is then used to evaluate the effect of the particles on the linear mode. Generic behavior of the solutions of the dispersion relation is discussed and dominant contributions of different components of the particle distribution function are identified. Numerical convergence of Monte-Carlo simulations is analyzed. The resulting code ORBIT provides an accurate means of comparing experimental results with the predictions of kinetic magnetohydrodynamics. The method can be extended to include self consistent modification of the particle orbits by the mode, and hence the full nonlinear dynamics of the coupled system

  4. Waves and discontinuities in relativistic and anisotropic magnetohydrodynamics

    International Nuclear Information System (INIS)

    Cissoko, Mahdy

    1975-01-01

    This work is devoted to the relativistic study of a non-dissipative anisotropic fluid diagram of infinite conductivity. Such a fluid diagram is constructed in part one. Starting from a macroscopic viewpoint a hydrothermodynamic study of the fluid diagram considered is carried out and the fundamental differential system of anisotropic magnetohydrodynamics is deduced. Part two concerns the study of characteristic varieties and propagation of waves for a polytropic anisotropic fluid diagram. Three types of characteristic varieties are revealed: entropy waves (or material waves), magnetosonic waves and Alfven waves. The propagation rates of Alfven and magnetosonic waves are situated with respect to each other. The study of wave cones showed up on the one hand certain special features of wave propagation in anisotropic magnetohydrodynamics and on the other hand the hyperbolic nature of differential operators associated with the various waves [fr

  5. Intermittency in Hall-magnetohydrodynamics with a strong guide field

    International Nuclear Information System (INIS)

    Rodriguez Imazio, P.; Martin, L. N.; Dmitruk, P.; Mininni, P. D.

    2013-01-01

    We present a detailed study of intermittency in the velocity and magnetic field fluctuations of compressible Hall-magnetohydrodynamic turbulence with an external guide field. To solve the equations numerically, a reduced model valid when a strong guide field is present is used. Different values for the ion skin depth are considered in the simulations. The resulting data are analyzed computing field increments in several directions perpendicular to the guide field, and building structure functions and probability density functions. In the magnetohydrodynamic limit, we recover the usual results with the magnetic field being more intermittent than the velocity field. In the presence of the Hall effect, field fluctuations at scales smaller than the ion skin depth show a substantial decrease in the level of intermittency, with close to monofractal scaling

  6. Theory of magnetohydrodynamic waves: The WKB approximation revisited

    International Nuclear Information System (INIS)

    Barnes, A.

    1992-01-01

    Past treatments of the eikonal or WKB theory of the propagation of magnetohydrodynamics waves have assumed a strictly isentropic background. IF in fact there is a gradient in the background entropy, then in second order in the WKB ordering, adiabatic fluctuations (in the Lagrangian sense) are not strictly isentropic in the Eulerian sense. This means that in the second order of the WKB expansion, which determines the variation of wave amplitude along rays, the violation of isentropy must be accounted for. The present paper revisits the derivation of the WKB approximation for small-amplitude magnetohydrodynamic waves, allowing for possible spatial variation of the background entropy. The equation of variation of wave amplitude is rederived; it is a bilinear equation which, it turns out, can be recast in the action conservation form. It is shown that this action conservation equation is in fact equivalent to the action conservation law obtained from Lagrangian treatments

  7. Edge localized linear ideal magnetohydrodynamic instability studies in an extended-magnetohydrodynamic code

    International Nuclear Information System (INIS)

    Burke, B. J.; Kruger, S. E.; Hegna, C. C.; Zhu, P.; Snyder, P. B.; Sovinec, C. R.; Howell, E. C.

    2010-01-01

    A linear benchmark between the linear ideal MHD stability codes ELITE [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)], GATO [L. Bernard et al., Comput. Phys. Commun. 24, 377 (1981)], and the extended nonlinear magnetohydrodynamic (MHD) code, NIMROD [C. R. Sovinec et al.., J. Comput. Phys. 195, 355 (2004)] is undertaken for edge-localized (MHD) instabilities. Two ballooning-unstable, shifted-circle tokamak equilibria are compared where the stability characteristics are varied by changing the equilibrium plasma profiles. The equilibria model an H-mode plasma with a pedestal pressure profile and parallel edge currents. For both equilibria, NIMROD accurately reproduces the transition to instability (the marginally unstable mode), as well as the ideal growth spectrum for a large range of toroidal modes (n=1-20). The results use the compressible MHD model and depend on a precise representation of 'ideal-like' and 'vacuumlike' or 'halo' regions within the code. The halo region is modeled by the introduction of a Lundquist-value profile that transitions from a large to a small value at a flux surface location outside of the pedestal region. To model an ideal-like MHD response in the core and a vacuumlike response outside the transition, separate criteria on the plasma and halo Lundquist values are required. For the benchmarked equilibria the critical Lundquist values are 10 8 and 10 3 for the ideal-like and halo regions, respectively. Notably, this gives a ratio on the order of 10 5 , which is much larger than experimentally measured values using T e values associated with the top of the pedestal and separatrix. Excellent agreement with ELITE and GATO calculations are made when sharp boundary transitions in the resistivity are used and a small amount of physical dissipation is added for conditions very near and below marginal ideal stability.

  8. AR DOC: Augmented reality documentaries

    DEFF Research Database (Denmark)

    Vistisen, Peter

    2014-01-01

    Augmented Reality Documentaries (AR DOC) er et ’lille’ Shareplay projekt (ansøgte midler augmented reality cross media løsninger, til at skabe engagerende publikumsformidling...... indenfor oplevelsesindustrien. Projektet har genereret ny viden omkring, hvordan fysisk og digital formidling kan understøttes via Augmented Reality som formidlingsformat....

  9. Reduced magnetohydrodynamics and the Hasegawa-Mima equation

    International Nuclear Information System (INIS)

    Hazeltine, R.D.

    1983-04-01

    Reduced magnetohydrodynamics consists of a set of simplified fluid equations which has become a principal tool in the interpretation of plasma fluid motions in tokamak experiments. The Hasegawa-Mima equation is applied to the study of electrostatic fluctuations in turbulent plasmas. The relation between thee two nonlinear models is elucidated. It is shown tht both models can be obtained from appropriate limits of a third, inclusive, nonlinear system. The inclusive system is remarkably simple

  10. Magnetohydrodynamic cosmologies with a Bertotti-Robinson limit

    International Nuclear Information System (INIS)

    Portugal, R.; Soares, I.D.

    1986-01-01

    A class of cosmological solutions of Einstein-Maxwell equations, which have the Bertotti-Robinson model as an asymptotic configuration is presented. The novel feature of the models is the presence of a conductivity current in Maxwell equations characterizing a regime of magnetohydrodynamics. Exact analytical solutions are exhibited and the solutions may be used as the interior model for the collapse of a self-gravitating bounded fluid with electric conductivity. (Author) [pt

  11. Numerical solution of the resistive magnetohydrodynamic boundary-layer equations

    International Nuclear Information System (INIS)

    Glasser, A.H.; Jardin, S.C.; Tesauro, G.

    1983-10-01

    Three different techniques are presented for numerical solution of the equations governing the boundary layer of resistive magnetohydrodynamic tearing and interchange instabilities in toroidal geometry. Excellent agreement among these methods and with analytical results provides confidence in the correctness of the results. Solutions obtained in regimes where analytical medthods fail indicate a new scaling for the tearing mode as well as the existence of a new regime of stability

  12. Vanishing Shear Viscosity Limit in the Magnetohydrodynamic Equations

    Science.gov (United States)

    Fan, Jishan; Jiang, Song; Nakamura, Gen

    2007-03-01

    We study an initial boundary value problem for the equations of plane magnetohydrodynamic compressible flows, and prove that as the shear viscosity goes to zero, global weak solutions converge to a solution of the original equations with zero shear viscosity. As a by-product, this paper improves the related results obtained by Frid and Shelukhin for the case when the magnetic effect is neglected.

  13. Thermal shocks and magnetohydrodynamics in high power mercury jet targets

    CERN Document Server

    Lettry, Jacques; Gilardoni, S S; Benedikt, Michael; Farhat, M; Robert, E

    2003-01-01

    The response of mercury samples submitted to a pulsed proton beam and the magnetohydrodynamic (MHD) effects of a mercury jet injected into a 20 T magnetic field are reported. The experimental conditions differ from those of proposed neutrino factories and the purpose of these measurements is to provide benchmarks for simulation tools of a realistic free mercury jet target. These measurements were completed in June 2002. Analysis is ongoing and the presented results are preliminary. (12 refs).

  14. Magnetohydrodynamic Kelvin-Helmholtz instability; Magnetohydrodynamische Kelvin-Helmholtz-Instabilitaet

    Energy Technology Data Exchange (ETDEWEB)

    Brett, Walter

    2014-07-21

    In the presented work the Kelvin-Helmholtz-Instability in magnetohydrodynamic flows is analyzed with the methods of Multiple Scales. The concerned fluids are incompressible or have a varying density perpendicular to the vortex sheet, which is taken into account using a Boussinesq-Approximation and constant Brunt-Vaeisaelae-Frequencies. The Multiple Scale Analysis leads to nonlinear evolution equations for the amplitude of the perturbations. Special solutions to these equations are presented and the effects of the magnetic fields are discussed.

  15. Intermittency in Hall-magnetohydrodynamics with a strong guide field

    OpenAIRE

    Imazio, P. Rodriguez; Martin, L. N.; Dmitruk, P.; Mininni, P. D.

    2013-01-01

    We present a detailed study of intermittency in the velocity and magnetic field fluctuations of compressible Hall-magnetohydrodynamic turbulence with an external guide field. To solve the equations numerically, a reduced model valid when a strong guide field is present is used. Different values for the ion skin depth are considered in the simulations. The resulting data are analyzed computing field increments in several directions perpendicular to the guide field, and building structure funct...

  16. Research Opportunities in Space Propulsion

    Science.gov (United States)

    Rodgers, Stephen L.

    2007-01-01

    Rocket propulsion determines the primary characteristics of any space vehicle; how fast and far it can go, its lifetime, and its capabilities. It is the primary factor in safety and reliability and the biggest cost driver. The extremes of heat and pressure produced by propulsion systems push the limits of materials used for manufacturing. Space travel is very unforgiving with little room for errors, and so many things can go wrong with these very complex systems. So we have to plan for failure and that makes it costly. But what is more exciting than the roar of a rocket blasting into space? By its nature the propulsion world is conservative. The stakes are so high at every launch, in terms of payload value or in human life, that to introduce new components to a working, qualified system is extremely difficult and costly. Every launch counts and no risks are tolerated, which leads to the space world's version of Catch-22:"You can't fly till you flown." The last big 'game changer' in propulsion was the use of liquid hydrogen as a fuel. No new breakthrough, low cost access to space system will be developed without new efficient propulsion systems. Because there is no large commercial market driving investment in propulsion, what propulsion research is done is sponsored by government funding agencies. A further difficulty in propulsion technology development is that there are so few new systems flying. There is little opportunity to evolve propulsion technologies and to update existing systems with results coming out of research as there is in, for example, the auto industry. The biggest hurdle to space exploration is getting off the ground. The launch phase will consume most of the energy required for any foreseeable space exploration mission. The fundamental physical energy requirements of escaping earth's gravity make it difficult. It takes 60,000 kJ to put a kilogram into an escape orbit. The vast majority (-97%) of the energy produced by a launch vehicle is used

  17. Transaxillary Endoscopic Breast Augmentation

    Directory of Open Access Journals (Sweden)

    Hyung-Bo Sim

    2014-09-01

    Full Text Available The axillary technique is the most popular approach to breast augmentation among Korean women. Transaxillary breast augmentation is now conducted with sharp electrocautery dissection under direct endoscopic vision throughout the entire process. The aims of this method are clear: both a bloodless pocket and a sharp non-traumatic dissection. Round textured or anatomical cohesive gel implants have been used to make predictable well-defined inframammary creases because textured surface implants demonstrated a better stability attributable to tissue adherence compared with smooth surface implants. The axillary endoscopic technique has greatly evolved, and now the surgical results are comparable to those with the inframammary approach. The author feels that this technique is an excellent choice for young patients with an indistinct or absent inframammary fold, who do not want a scar in the aesthetic unit of their chest.

  18. Augmented reality in surgery.

    Science.gov (United States)

    Shuhaiber, Jeffrey H

    2004-02-01

    To evaluate the history and current knowledge of computer-augmented reality in the field of surgery and its potential goals in education, surgeon training, and patient treatment. National Library of Medicine's database and additional library searches. Only articles suited to surgical sciences with a well-defined aim of study, methodology, and precise description of outcome were included. Augmented reality is an effective tool in executing surgical procedures requiring low-performance surgical dexterity; it remains a science determined mainly by stereotactic registration and ergonomics. Strong evidence was found that it is an effective teaching tool for training residents. Weaker evidence was found to suggest a significant influence on surgical outcome, both morbidity and mortality. No evidence of cost-effectiveness was found. Augmented reality is a new approach in executing detailed surgical operations. Although its application is in a preliminary stage, further research is needed to evaluate its long-term clinical impact on patients, surgeons, and hospital administrators. Its widespread use and the universal transfer of such technology remains limited until there is a better understanding of registration and ergonomics.

  19. Augmented reality services

    Directory of Open Access Journals (Sweden)

    Tomáš Koubek

    2013-01-01

    Full Text Available We assume that one of the key reasons is in the difference between a standalone application and a web service. Both architectures have some advantages and disadvantages. The Standalone application (e.g. Nokia/OVI Maps provides the required functionality. From the user point of view, main asset of this “offline” approach is network connectivity independence. However, this kind of applications must be upgraded manually. Moreover, it is hard to get any data about the application usage because it requires additional actions from the user – data are usually acquired through conventional ways, such as email or web forms.The online service such as Google Maps (including its mobile application can offer the same functionality as the offline application. Nevertheless, a permanent connection to provider servers is necessary. This can be taken as a drawback. On the other hand, usage data collection is easier and can be done without the user intervention. The data collection provides a valuable analysis basis of the user habits and needs. This analysis is necessary for design of a complex “user” based solutions such as Google Now.Augmented reality applications are usually based on the first mentioned approach. In this article, we describe our model of augmented reality as a service and compare its features with standalone solutions. Further, other important key aspects for large emergence of augmented reality services in a mainstream market are discussed.

  20. Main Propulsion Test Article (MPTA)

    Science.gov (United States)

    Snoddy, Cynthia

    2010-01-01

    Scope: The Main Propulsion Test Article integrated the main propulsion subsystem with the clustered Space Shuttle Main Engines, the External Tank and associated GSE. The test program consisted of cryogenic tanking tests and short- and long duration static firings including gimbaling and throttling. The test program was conducted on the S1-C test stand (Position B-2) at the National Space Technology Laboratories (NSTL)/Stennis Space Center. 3 tanking tests and 20 hot fire tests conducted between December 21 1 1977 and December 17, 1980 Configuration: The main propulsion test article consisted of the three space shuttle main engines, flightweight external tank, flightweight aft fuselage, interface section and a boilerplate mid/fwd fuselage truss structure.

  1. Nuclear thermal propulsion workshop overview

    International Nuclear Information System (INIS)

    Clark, J.S.

    1991-01-01

    NASA is planning an Exploration Technology Program as part of the Space Exploration Initiative to return U.S. astronauts to the moon, conduct intensive robotic exploration of the moon and Mars, and to conduct a piloted mission to Mars by 2019. Nuclear Propulsion is one of the key technology thrust for the human mission to Mars. The workshop addresses NTP (Nuclear Thermal Rocket) technologies with purpose to: assess the state-of-the-art of nuclear propulsion concepts; assess the potential benefits of the concepts for the mission to Mars; identify critical, enabling technologies; lay-out (first order) technology development plans including facility requirements; and estimate the cost of developing these technologies to flight-ready status. The output from the workshop will serve as a data base for nuclear propulsion project planning

  2. Materials Advance Chemical Propulsion Technology

    Science.gov (United States)

    2012-01-01

    In the future, the Planetary Science Division of NASA's Science Mission Directorate hopes to use better-performing and lower-cost propulsion systems to send rovers, probes, and observers to places like Mars, Jupiter, and Saturn. For such purposes, a new propulsion technology called the Advanced Materials Bipropellant Rocket (AMBR) was developed under NASA's In-Space Propulsion Technology (ISPT) project, located at Glenn Research Center. As an advanced chemical propulsion system, AMBR uses nitrogen tetroxide oxidizer and hydrazine fuel to propel a spacecraft. Based on current research and development efforts, the technology shows great promise for increasing engine operation and engine lifespan, as well as lowering manufacturing costs. In developing AMBR, ISPT has several goals: to decrease the time it takes for a spacecraft to travel to its destination, reduce the cost of making the propulsion system, and lessen the weight of the propulsion system. If goals like these are met, it could result in greater capabilities for in-space science investigations. For example, if the amount (and weight) of propellant required on a spacecraft is reduced, more scientific instruments (and weight) could be added to the spacecraft. To achieve AMBR s maximum potential performance, the engine needed to be capable of operating at extremely high temperatures and pressure. To this end, ISPT required engine chambers made of iridium-coated rhenium (strong, high-temperature metallic elements) that allowed operation at temperatures close to 4,000 F. In addition, ISPT needed an advanced manufacturing technique for better coating methods to increase the strength of the engine chamber without increasing the costs of fabricating the chamber.

  3. Center for Advanced Space Propulsion Second Annual Technical Symposium Proceedings

    Science.gov (United States)

    1990-01-01

    The proceedings for the Center for Advanced Space Propulsion Second Annual Technical Symposium are divided as follows: Chemical Propulsion, CFD; Space Propulsion; Electric Propulsion; Artificial Intelligence; Low-G Fluid Management; and Rocket Engine Materials.

  4. Propulsion of magnetically levitated trains

    Energy Technology Data Exchange (ETDEWEB)

    Wipf, S L

    1976-05-01

    A propulsion system for magnetically levitated trains is proposed. A method of periodically energizing magnetic loops on a train moving over a periodically undulating track allows the net repulsive magnetic force to tilt forward or backward for either propulsion or braking. The principle is explained and a specific example discussed. Approximate calculations show feasibility. Problems requiring technical solutions which cannot be considered present state-of-the-art are AC losses at frequencies up to 20 Hz and mechanical fatigue properties at low temperatures. Suitable primary power could be derived from hydrogen-fueled turbines yet to be developed.

  5. Aeronautic propulsion systems; Propulseurs aeronautiques

    Energy Technology Data Exchange (ETDEWEB)

    Lepourry, P; Ciryci, R

    1992-12-31

    This book is devoted to airplane pilots having a private licence and who would like to take up a professional rank. It comprises 8 chapters dealing with: the different type of propulsion systems, turbojet, turbofan and piston engines; the propeller (characteristics, different types, functioning, protection systems..); the piston engines (4-stroke cycle, power and efficiency, description, characteristics); the gas generator and its limitations (air intake, combustion chamber, turbines, nozzles, fuel systems..); the performances of propulsion systems; the drive, control and instruments; and the use of engines. The last chapter is a self-evaluation questionnaire about the notions developed in the book. (J.S.)

  6. Antimatter Propulsion Developed by NASA

    Science.gov (United States)

    1999-01-01

    This Quick Time movie shows possible forms of an antimatter propulsion system being developed by NASA. Antimatter annihilation offers the highest possible physical energy density of any known reaction substance. It is about 10 billion times more powerful than that of chemical energy such as hydrogen and oxygen combustion. Antimatter would be the perfect rocket fuel, but the problem is that the basic component of antimatter, antiprotons, doesn't exist in nature and has to manufactured. The process of antimatter development is ongoing and making some strides, but production of this as a propulsion system is far into the future.

  7. An Analysis of Rocket Propulsion Testing Costs

    Science.gov (United States)

    Ramirez-Pagan, Carmen P.; Rahman, Shamim A.

    2009-01-01

    The primary mission at NASA Stennis Space Center (SSC) is rocket propulsion testing. Such testing is generally performed within two arenas: (1) Production testing for certification and acceptance, and (2) Developmental testing for prototype or experimental purposes. The customer base consists of NASA programs, DOD programs, and commercial programs. Resources in place to perform on-site testing include both civil servants and contractor personnel, hardware and software including data acquisition and control, and 6 test stands with a total of 14 test positions/cells. For several business reasons there is the need to augment understanding of the test costs for all the various types of test campaigns. Historical propulsion test data was evaluated and analyzed in many different ways with the intent to find any correlation or statistics that could help produce more reliable and accurate cost estimates and projections. The analytical efforts included timeline trends, statistical curve fitting, average cost per test, cost per test second, test cost timeline, and test cost envelopes. Further, the analytical effort includes examining the test cost from the perspective of thrust level and test article characteristics. Some of the analytical approaches did not produce evidence strong enough for further analysis. Some other analytical approaches yield promising results and are candidates for further development and focused study. Information was organized for into its elements: a Project Profile, Test Cost Timeline, and Cost Envelope. The Project Profile is a snap shot of the project life cycle on a timeline fashion, which includes various statistical analyses. The Test Cost Timeline shows the cumulative average test cost, for each project, at each month where there was test activity. The Test Cost Envelope shows a range of cost for a given number of test(s). The supporting information upon which this study was performed came from diverse sources and thus it was necessary to

  8. Selection of combined water electrolysis and resistojet propulsion for Space Station Freedom

    Science.gov (United States)

    Schmidt, George R.

    1988-01-01

    An analytical rationale is presented for the configuration of the NASA Space Station's two-element propulsion system, and attention is given to the cost benefits accruing to this system over the Space Station's service life. The principal system element uses gaseous oxygen and hydrogen obtained through water electrolysis to furnish attitude control, backup attitude control, and contingency maneuvering. The secondary element uses resistojets to augment Space Station reboost through the acceleration of waste gases in the direction opposite the Station's flight path.

  9. In-Space Propulsion Technology Program Solar Electric Propulsion Technologies

    Science.gov (United States)

    Dankanich, John W.

    2006-01-01

    NASA's In-space Propulsion (ISP) Technology Project is developing new propulsion technologies that can enable or enhance near and mid-term NASA science missions. The Solar Electric Propulsion (SEP) technology area has been investing in NASA s Evolutionary Xenon Thruster (NEXT), the High Voltage Hall Accelerator (HiVHAC), lightweight reliable feed systems, wear testing, and thruster modeling. These investments are specifically targeted to increase planetary science payload capability, expand the envelope of planetary science destinations, and significantly reduce the travel times, risk, and cost of NASA planetary science missions. Status and expected capabilities of the SEP technologies are reviewed in this presentation. The SEP technology area supports numerous mission studies and architecture analyses to determine which investments will give the greatest benefit to science missions. Both the NEXT and HiVHAC thrusters have modified their nominal throttle tables to better utilize diminished solar array power on outbound missions. A new life extension mechanism has been implemented on HiVHAC to increase the throughput capability on low-power systems to meet the needs of cost-capped missions. Lower complexity, more reliable feed system components common to all electric propulsion (EP) systems are being developed. ISP has also leveraged commercial investments to further validate new ion and hall thruster technologies and to potentially lower EP mission costs.

  10. Brief review on pulse laser propulsion

    Science.gov (United States)

    Yu, Haichao; Li, Hanyang; Wang, Yan; Cui, Lugui; Liu, Shuangqiang; Yang, Jun

    2018-03-01

    Pulse laser propulsion (PLP) is an advanced propulsion concept can be used across a variety of fields with a wide range of applications. PLP reflects superior payload as well as decreased launch costs in comparison with other conventional methods of producing thrust, such as chemical propulsion or electric propulsion. Numerous researchers have attempted to exploit the potential applications of PLP. This paper first reviews concepts relevant to PLP, including the propulsion modes, breakdown regimes, and propulsion efficiency; the propulsion targets for different materials with the pulse laser are then discussed in detail, including the propulsion of solid and liquid microspheres. PLP applications such as the driven microsatellite, target surface particle removal, and orbital debris removal are also discussed. Although the PLP has been applied to a variety of fields, further research is yet warranted to establish its application in the aerospace field.

  11. THE FUTURE OF SPACECRAFT NUCLEAR PROPULSION

    OpenAIRE

    Jansen, Frank

    2014-01-01

    This paper summarizes the advantages of space nuclear power and propulsion systems. It describes the actual status of international power level dependent spacecraft nuclear propulsion missions, especially the high power EU-Russian MEGAHIT study including the Russian Megawatt-Class Nuclear Power Propulsion System, the NASA GRC project and the low and medium power EU DiPoP study. Space nuclear propulsion based mission scenarios of these studies are sketched as well.

  12. Vehicle with inclinable caterpillar propulsion units

    International Nuclear Information System (INIS)

    Clar, G.

    1991-01-01

    This vehicle usable in hostile environment such nuclear industry has four propulsion units with a caterpillar track and two integrated motors: one for advancing the caterpillar track and the other for inclining the propulsion unit when overcoming obstacles. Each propulsion unit is easily replaceable because there are no mechanical parts in the body of the vehicle [fr

  13. Distributed propulsion and future aerospace technologies

    OpenAIRE

    Ameyugo, Gregorio

    2007-01-01

    This thesis describes an Engineering Doctorate project in Distributed Propulsion carried out from 2004 to 2007 at Cranfield University. Distributed propulsion is a propulsion system arrangement that consists in spreading the engine thrust along the aircraft span. This can be accomplished by distributing a series of driven fans or the engines themselves. The aim of this project is to determine the feasibility of ...

  14. Ultrasonic propulsion of kidney stones.

    Science.gov (United States)

    May, Philip C; Bailey, Michael R; Harper, Jonathan D

    2016-05-01

    Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the ureteropelvic junction with relief of pain, and differentiating large stones from a collection of small fragments. Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing ureteropelvic junction stones into the kidney to alleviate acute renal colic.

  15. On the Energy Spectrum of Strong Magnetohydrodynamic Turbulence

    Directory of Open Access Journals (Sweden)

    Jean Carlos Perez

    2012-10-01

    Full Text Available The energy spectrum of magnetohydrodynamic turbulence attracts interest due to its fundamental importance and its relevance for interpreting astrophysical data. Here we present measurements of the energy spectra from a series of high-resolution direct numerical simulations of magnetohydrodynamics turbulence with a strong guide field and for increasing Reynolds number. The presented simulations, with numerical resolutions up to 2048^{3} mesh points and statistics accumulated over 30 to 150 eddy turnover times, constitute, to the best of our knowledge, the largest statistical sample of steady state magnetohydrodynamics turbulence to date. We study both the balanced case, where the energies associated with Alfvén modes propagating in opposite directions along the guide field, E^{+}(k_{⊥} and E^{-}(k_{⊥}, are equal, and the imbalanced case where the energies are different. In the balanced case, we find that the energy spectrum converges to a power law with exponent -3/2 as the Reynolds number is increased, which is consistent with phenomenological models that include scale-dependent dynamic alignment. For the imbalanced case, with E^{+}>E^{-}, the simulations show that E^{-}∝k_{⊥}^{-3/2} for all Reynolds numbers considered, while E^{+} has a slightly steeper spectrum at small Re. As the Reynolds number increases, E^{+} flattens. Since E^{±} are pinned at the dissipation scale and anchored at the driving scales, we postulate that at sufficiently high Re the spectra will become parallel in the inertial range and scale as E^{+}∝E^{-}∝k_{⊥}^{-3/2}. Questions regarding the universality of the spectrum and the value of the “Kolmogorov constant” are discussed.

  16. AMI: Augmented Michelson Interferometer

    Science.gov (United States)

    Furió, David; Hachet, Martin; Guillet, Jean-Paul; Bousquet, Bruno; Fleck, Stéphanie; Reuter, Patrick; Canioni, Lionel

    2015-10-01

    Experiments in optics are essential for learning and understanding physical phenomena. The problem with these experiments is that they are generally time consuming for both their construction and their maintenance, potentially dangerous through the use of laser sources, and often expensive due to high technology optical components. We propose to simulate such experiments by way of hybrid systems that exploit both spatial augmented reality and tangible interaction. In particular, we focus on one of the most popular optical experiments: the Michelson interferometer. In our approach, we target a highly interactive system where students are able to interact in real time with the Augmented Michelson Interferometer (AMI) to observe, test hypotheses and then to enhance their comprehension. Compared to a fully digital simulation, we are investigating an approach that benefits from both physical and virtual elements, and where the students experiment by manipulating 3D-printed physical replicas of optical components (e.g. lenses and mirrors). Our objective is twofold. First, we want to ensure that the students will learn with our simulator the same concepts and skills that they learn with traditional methods. Second, we hypothesis that such a system opens new opportunities to teach optics in a way that was not possible before, by manipulating concepts beyond the limits of observable physical phenomena. To reach this goal, we have built a complementary team composed of experts in the field of optics, human-computer interaction, computer graphics, sensors and actuators, and education science.

  17. Augmented Reality for Science Education

    DEFF Research Database (Denmark)

    Brandt, Harald; Nielsen, Birgitte Lund; Georgsen, Marianne

    Augmented reality (AR) holds great promise as a learning tool. So far, however, most research has looked at the technology itself – and AR has been used primarily for commercial purposes. As a learning tool, AR supports an inquiry-based approach to science education with a high level of student...... involvement. The AR-sci-project (Augmented Reality for SCIence education) addresses the issue of applying augmented reality in developing innovative science education and enhancing the quality of science teaching and learning....

  18. Software To Secure Distributed Propulsion Simulations

    Science.gov (United States)

    Blaser, Tammy M.

    2003-01-01

    Distributed-object computing systems are presented with many security threats, including network eavesdropping, message tampering, and communications middleware masquerading. NASA Glenn Research Center, and its industry partners, has taken an active role in mitigating the security threats associated with developing and operating their proprietary aerospace propulsion simulations. In particular, they are developing a collaborative Common Object Request Broker Architecture (CORBA) Security (CORBASec) test bed to secure their distributed aerospace propulsion simulations. Glenn has been working with its aerospace propulsion industry partners to deploy the Numerical Propulsion System Simulation (NPSS) object-based technology. NPSS is a program focused on reducing the cost and time in developing aerospace propulsion engines

  19. Computation of multi-region relaxed magnetohydrodynamic equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, S. R.; Lazerson, S. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Dewar, R. L.; Dennis, G.; Hole, M. J.; McGann, M.; Nessi, G. von [Plasma Research Laboratory, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2012-11-15

    We describe the construction of stepped-pressure equilibria as extrema of a multi-region, relaxed magnetohydrodynamic (MHD) energy functional that combines elements of ideal MHD and Taylor relaxation, and which we call MRXMHD. The model is compatible with Hamiltonian chaos theory and allows the three-dimensional MHD equilibrium problem to be formulated in a well-posed manner suitable for computation. The energy-functional is discretized using a mixed finite-element, Fourier representation for the magnetic vector potential and the equilibrium geometry; and numerical solutions are constructed using the stepped-pressure equilibrium code, SPEC. Convergence studies with respect to radial and Fourier resolution are presented.

  20. Measuring the equations of state in a relaxed magnetohydrodynamic plasma

    Science.gov (United States)

    Kaur, M.; Barbano, L. J.; Suen-Lewis, E. M.; Shrock, J. E.; Light, A. D.; Brown, M. R.; Schaffner, D. A.

    2018-01-01

    We report measurements of the equations of state of a fully relaxed magnetohydrodynamic (MHD) laboratory plasma. Parcels of magnetized plasma, called Taylor states, are formed in a coaxial magnetized plasma gun, and are allowed to relax and drift into a closed flux conserving volume. Density, ion temperature, and magnetic field are measured as a function of time as the Taylor states compress and heat. The theoretically predicted MHD and double adiabatic equations of state are compared to experimental measurements. We find that the MHD equation of state is inconsistent with our data.

  1. Field theory modelling of vortex tube entanglement in turbulent magnetohydrodynamics

    International Nuclear Information System (INIS)

    Moriconi, L.; Nobre, F.A. S.

    2000-01-01

    Full text follows: We study the dynamics of interacting closed vortex tubes in magnetohydrodynamics, in terms of a (1+1)-dimensional field theory derived within the context of the Martin-Siggia-Rose formalism. The fluid is stirred by large scale stochastic forces which affect smaller scales through foldings of the velocity and magnetic vortex tubes. Numerical computations are done by means of a length-preserving scheme, motivated by the usual self-induction approximation. In order to understand the origin of intermittency effects, we investigate the multifractal exponents for the equilibrium vortex tube configurations, as well as correlations developed between different tubes. (author)

  2. Mode coupling trigger of neoclassical magnetohydrodynamic tearing modes in tokamaks

    International Nuclear Information System (INIS)

    Gianakon, T.A.; Hegna, C.C.; Callen, J.D.

    1997-05-01

    Numerical studies of the nonlinear evolution of coupled magnetohydrodynamic - type tearing modes in three-dimensional toroidal geometry with neoclassical effects are presented. The inclusion of neoclassical physics introduces an additional free-energy source for the nonlinear formation of magnetic islands through the effects of a bootstrap current in Ohm's law. The neoclassical tearing mode is demonstrated to be destabilized in plasmas which are otherwise Δ' stable, albeit once a threshold island width is exceeded. A possible mechanism for exceeding or eliminating this threshold condition is demonstrated based on mode coupling due to toroidicity with a pre-existing instability at the q = 1 surface

  3. Magnetohydrodynamics and the earth's core selected works by Paul Roberts

    CERN Document Server

    Soward, Andrew M

    2003-01-01

    Paul Roberts'' research contributions are remarkable in their diversity, depth and international appeal. Papers from the Paul Roberts'' Anniversary meeting at the University of Exeter are presented in this volume. Topics include geomagnetism and dynamos, fluid mechanics and MHD, superfluidity, mixed phase regions, mean field electrodynamics and the Earth''s inner core. An incisive commentary of the papers puts the work of Paul Roberts into historical context. Magnetohydrodynamics and the Earth''s Core provides a valuable source of reference for graduates and researchers working in this area of geoscience.

  4. Magnetohydrodynamic instability of a cylindrical liquid-metal brush

    International Nuclear Information System (INIS)

    Hong, S.H.; Wilhelm, H.E.

    1976-01-01

    The stability of a homopolar generator brush, consisting of a liquid-metal-filled cavity between rotating (rotor) and fixed (stator) cylinder electrodes, is analyzed in the presence of radial current transport and an axial homogeneous magnetic field. Within the frame of linear magnetohydrodynamics, it is shown that the liquid-metal flow in the brush is always unstable if the brush transports current. In the absence of current flow (infinite load) the axial magnetic field stabilizes the liquid-metal flow in the brush if the magnetic energy density is larger than a certain fraction of the energy density of the rotating fluid

  5. Energy Decay Laws in Strongly Anisotropic Magnetohydrodynamic Turbulence

    International Nuclear Information System (INIS)

    Bigot, Barbara; Galtier, Sebastien; Politano, Helene

    2008-01-01

    We investigate the influence of a uniform magnetic field B 0 =B 0 e parallel on energy decay laws in incompressible magnetohydrodynamic (MHD) turbulence. The nonlinear transfer reduction along B 0 is included in a model that distinguishes parallel and perpendicular directions, following a phenomenology of Kraichnan. We predict a slowing down of the energy decay due to anisotropy in the limit of strong B 0 , with distinct power laws for energy decay of shear- and pseudo-Alfven waves. Numerical results from the kinetic equations of Alfven wave turbulence recover these predictions, and MHD numerical results clearly tend to follow them in the lowest perpendicular planes

  6. Magnetohydrodynamic equilibrium with spheroidal plasma-vacuum interface

    International Nuclear Information System (INIS)

    Kaneko, Shobu; Chiyoda, Katsuji; Hirota, Isao.

    1983-01-01

    The Grad-Shafranov equations for an oblate and a prolate spheroidal plasmas are solved analytically under the assumptions, Bsub(phi) = 0 and dp/dpsi = constant. Here Bsub(phi) is the toroidal magnetic field, p is the kinetic pressure, and psi is the magnetic flux function. The plasmas in magnetohydrodynamic equilibrium are shown to be toroidal. The equilibrium magnetic-field configurations outside the spheroidal plasmas are considerably different from that of a spherical plasma. A line cusp or two point cusps appear outside the oblate or the prolate spheroidal plasma, respectively. (author)

  7. Magnetohydrodynamic Ekman layers with field-aligned flow

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel, E-mail: mnjmhd@am.uva.es [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)

    2011-05-01

    The Ekman layer in a conducting fluid with constant angular velocity, provided with a magnetic field aligned with the flow, is studied here. The existence of solutions to the magnetohydrodynamic linearized equations depends on the balance between viscosity and resistivity, on the one hand, and the angular and Alfven velocities, on the other. In most cases, exponentially decreasing solutions exist, although their longitudinal oscillations do not need to be periodic. One of the instances without a solution is explained by the presence of Alfven waves traveling backwards along the streamlines.

  8. Performance measurements in 3D ideal magnetohydrodynamic stability computations

    International Nuclear Information System (INIS)

    Anderson, D.V.; Cooper, W.A.; Gruber, R.; Schwenn, U.

    1989-10-01

    The 3D ideal magnetohydrodynamic stability code TERPSICHORE has been designed to take advantage of vector and microtasking capabilities of the latest CRAY computers. To keep the number of operations small most efficient algorithms have been applied in each computational step. The program investigates the stability properties of fusion reactor relevant plasma configurations confined by magnetic fields. For a typical 3D HELIAS configuration that has been considered we obtain an overall performance in excess of 1 Gflops on an eight processor CRAY-YMP machine. (author) 3 figs., 1 tab., 11 refs

  9. Magnetohydrodynamic research in fusion blanket engineering and metallurgical processing

    International Nuclear Information System (INIS)

    Tokuhiro, A.

    1991-11-01

    A review of recent research activities in liquid metal magnetohydrodynamics (LM-MHDs) is presented in this article. Two major reserach areas are discussed. The first topic involves the thermomechanical design issues in a proposed tokamak fusion reactor. The primary concerns are in the magneto-thermal-hydraulic performance of a self-cooled liquid metal blanket. The second topic involves the application of MHD in material processing in the metallurgical and semiconductor industries. The two representative applications are electromagnetic stirring (EMS) of continuously cast steel and the Czochralski (CZ) method of crystal growth in the presence of a magnetic field. (author) 24 figs., 10 tabs., 136 refs

  10. Nonneutralized charge effects on tokamak edge magnetohydrodynamic stability

    International Nuclear Information System (INIS)

    Zheng, Linjin; Horton, W.; Miura, H.; Shi, T.H.; Wang, H.Q.

    2016-01-01

    Owing to the large ion orbits, excessive electrons can accumulate at tokamak edge. We find that the nonneutralized electrons at tokamak edge can contribute an electric compressive stress in the direction parallel to magnetic field by their mutual repulsive force. By extending the Chew–Goldburger–Low theory (Chew et al., 1956 [13]), it is shown that this newly recognized compressive stress can significantly change the plasma average magnetic well, so that a stabilization of magnetohydrodynamic modes in the pedestal can result. This linear stability regime helps to explain why in certain parameter regimes the tokamak high confinement can be rather quiet as observed experimentally.

  11. Evolution system study of a generalized scheme of relativistic magnetohydrodynamic

    International Nuclear Information System (INIS)

    Mahjoub, Bechir.

    1977-01-01

    A generalized scheme of relativistic magnetohydrodynamics is studied with a thermodynamical differential relation proposed by Fokker; this scheme takes account of interaction between the fluid and the magnetic field. Taking account of an integrability condition of this relation, the evolution system corresponding to this scheme is identical to the one corresponding to the usual scheme; it has the same characteristics; it is non-strictly hyperbolic with the same hypothesis of compressibility and it has, with respect to the Cauchy problem, an unique solution in a Gevrey class of index α=3/2 [fr

  12. Crime Scenes as Augmented Reality

    DEFF Research Database (Denmark)

    Sandvik, Kjetil

    2010-01-01

    Using the concept of augmented reality, this article will investigate how places in various ways have become augmented by means of different mediatization strategies. Augmentation of reality implies an enhancement of the places' emotional character: a certain mood, atmosphere or narrative surplus......, physical damage: they are all readable and interpretable signs. As augmented reality the crime scene carries a narrative which at first is hidden and must be revealed. Due to the process of investigation and the detective's ability to reason and deduce, the crime scene as place is reconstructed as virtual...

  13. Development of ultrasonic electrostatic microjets for distributed propulsion and microflight

    Science.gov (United States)

    Amirparviz, Babak

    This dissertation details the first attempt to design and fabricate a distributed micro propulsion system based on acoustic streaming. A novel micro propulsion method is suggested by combining Helmholtz resonance, acoustic streaming and flow entrainment and thrust augmentation. In this method, oscillatory motion of an electrostatically actuated diaphragm creates a high frequency acoustic field inside the cavity of a Helmholtz resonator. The initial fluid motion velocity is amplified by the Helmholtz resonator structure and creates a jet flow at the exit nozzle. Acoustic streaming is the phenomenon responsible for primary jet stream creation. Primary jets produced by a few resonators can be combined in an ejector configuration to induce flow entrainment and thrust augmentation. Basic governing equations for the electrostatic actuator, deformation of the diaphragm and the fluid flow inside the resonator are derived. These equations are linearized and used to derive an equivalent electrical circuit model for the operation of the device. Numerical solution of the governing equations and simulation of the circuit model are used to predict the performance of the experimental systems. Thrust values as high as 30.3muN are expected per resonator. A micro machined electrostatically-driven high frequency Helmholtz resonator prototype is designed and fabricated. A new micro fabrication technique is developed for bulk micromachining and in particular fabrication of the resonator. Geometric stops for wet anisotropic etching of silicon are introduced for the fist time for structure formation. Arrays of high frequency (>60kHz) micro Helmholtz resonators are fabricated. In one sample more than 1000 resonators cover the surface of a four-inch silicon wafer and in effect convert it to a distributed propulsion system. A high yield (>85%) micro fabrication process is presented for realization of this propulsion system taking advantage of newly developed deep glass micromachining and

  14. Optimization of extended propulsion time nuclear-electric propulsion trajectories

    Science.gov (United States)

    Sauer, C. G., Jr.

    1981-01-01

    This paper presents the methodology used in optimizing extended propulsion time NEP missions considering realistic thruster lifetime constraints. These missions consist of a powered spiral escape from a 700-km circular orbit at the earth, followed by a powered heliocentric transfer with an optimized coast phase, and terminating in a spiral capture phase at the target planet. This analysis is most applicable to those missions with very high energy requirements such as outer planet orbiter missions or sample return missions where the total propulsion time could greatly exceed the expected lifetime of an individual thruster. This methodology has been applied to the investigation of NEP missions to the outer planets where examples are presented of both constrained and optimized trajectories.

  15. Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm

    Science.gov (United States)

    Robinson, John W.; McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Joyner, Claude R., III; Levack, Daniel J. H.

    2013-01-01

    This paper describes Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm. It builds on the work of the previous paper "Approach to an Affordable and Productive Space Transportation System". The scope includes both flight and ground system elements, and focuses on their compatibility and capability to achieve a technical solution that is operationally productive and also affordable. A clear and revolutionary approach, including advanced propulsion systems (advanced LOX rich booster engine concept having independent LOX and fuel cooling systems, thrust augmentation with LOX rich boost and fuel rich operation at altitude), improved vehicle concepts (autogeneous pressurization, turbo alternator for electric power during ascent, hot gases to purge system and keep moisture out), and ground delivery systems, was examined. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper continues the previous work by exploring the propulsion technology aspects in more depth and how they may enable the vehicle designs from the previous paper. Subsequent papers will explore the vehicle design, the ground support system, and the operations aspects of the new delivery paradigm in greater detail.

  16. NASA Communications Augmentation network

    Science.gov (United States)

    Omidyar, Guy C.; Butler, Thomas E.; Laios, Straton C.

    1990-01-01

    The NASA Communications (Nascom) Division of the Mission Operations and Data Systems Directorate (MO&DSD) is to undertake a major initiative to develop the Nascom Augmentation (NAUG) network to achieve its long-range service objectives for operational data transport to support the Space Station Freedom Program, the Earth Observing System (EOS), and other projects. The NAUG is the Nascom ground communications network being developed to accommodate the operational traffic of the mid-1990s and beyond. The NAUG network development will be based on the Open Systems Interconnection Reference Model (OSI-RM). This paper describes the NAUG network architecture, subsystems, topology, and services; addresses issues of internetworking the Nascom network with other elements of the Space Station Information System (SSIS); discusses the operations environment. This paper also notes the areas of related research and presents the current conception of how the network will provide broadband services in 1998.

  17. Augmented fish health monitoring

    International Nuclear Information System (INIS)

    Michak, P.; Rogers, R.; Amos, K.

    1991-05-01

    The Bonneville Power Administration (BPA) initiated the Augmented Fish Health Monitoring project in 1986. This project was a five year interagency project involving fish rearing agencies in the Columbia Basin. Historically, all agencies involved with fish health in the Columbia Basin were conducting various levels of fish health monitoring, pathogen screening and collection. The goals of this project were; to identify, develop and implement a standardized level of fish health methodologies, develop a common data collection and reporting format in the area of artificial production, evaluate and monitor water quality, improve communications between agencies and provide annual evaluation of fish health information for production of healthier smolts. This completion report will contain a project evaluation, review of the goals of the project, evaluation of the specific fish health analyses, an overview of highlights of the project and concluding remarks. 8 refs., 1 fig., 4 tabs

  18. Augmented Virtual Reality Laboratory

    Science.gov (United States)

    Tully-Hanson, Benjamin

    2015-01-01

    Real time motion tracking hardware has for the most part been cost prohibitive for research to regularly take place until recently. With the release of the Microsoft Kinect in November 2010, researchers now have access to a device that for a few hundred dollars is capable of providing redgreenblue (RGB), depth, and skeleton data. It is also capable of tracking multiple people in real time. For its original intended purposes, i.e. gaming, being used with the Xbox 360 and eventually Xbox One, it performs quite well. However, researchers soon found that although the sensor is versatile, it has limitations in real world applications. I was brought aboard this summer by William Little in the Augmented Virtual Reality (AVR) Lab at Kennedy Space Center to find solutions to these limitations.

  19. Augmented reality system

    Science.gov (United States)

    Lin, Chien-Liang; Su, Yu-Zheng; Hung, Min-Wei; Huang, Kuo-Cheng

    2010-08-01

    In recent years, Augmented Reality (AR)[1][2][3] is very popular in universities and research organizations. The AR technology has been widely used in Virtual Reality (VR) fields, such as sophisticated weapons, flight vehicle development, data model visualization, virtual training, entertainment and arts. AR has characteristics to enhance the display output as a real environment with specific user interactive functions or specific object recognitions. It can be use in medical treatment, anatomy training, precision instrument casting, warplane guidance, engineering and distance robot control. AR has a lot of vantages than VR. This system developed combines sensors, software and imaging algorithms to make users feel real, actual and existing. Imaging algorithms include gray level method, image binarization method, and white balance method in order to make accurate image recognition and overcome the effects of light.

  20. The transverse field Richtmyer-Meshkov instability in magnetohydrodynamics

    KAUST Repository

    Wheatley, V.; Samtaney, Ravi; Pullin, D. I.; Gehre, R. M.

    2014-01-01

    The magnetohydrodynamic Richtmyer-Meshkov instability is investigated for the case where the initial magnetic field is unperturbed and aligned with the mean interface location. For this initial condition, the magnetic field lines penetrate the perturbed density interface, forbidding a tangential velocity jump and therefore the presence of a vortex sheet. Through simulation, we find that the vorticity distribution present on the interface immediately after the shock acceleration breaks up into waves traveling parallel and anti-parallel to the magnetic field, which transport the vorticity. The interference of these waves as they propagate causes the perturbation amplitude of the interface to oscillate in time. This interface behavior is accurately predicted over a broad range of parameters by an incompressible linearized model derived presently by solving the corresponding impulse driven, linearized initial value problem. Our use of an equilibrium initial condition results in interface motion produced solely by the impulsive acceleration. Nonlinear compressible simulations are used to investigate the behavior of the transverse field magnetohydrodynamic Richtmyer-Meshkov instability, and the performance of the incompressible model, over a range of shock strengths, magnetic field strengths, perturbation amplitudes and Atwood numbers.

  1. Non-ideal magnetohydrodynamics on a moving mesh

    Science.gov (United States)

    Marinacci, Federico; Vogelsberger, Mark; Kannan, Rahul; Mocz, Philip; Pakmor, Rüdiger; Springel, Volker

    2018-05-01

    In certain astrophysical systems, the commonly employed ideal magnetohydrodynamics (MHD) approximation breaks down. Here, we introduce novel explicit and implicit numerical schemes of ohmic resistivity terms in the moving-mesh code AREPO. We include these non-ideal terms for two MHD techniques: the Powell 8-wave formalism and a constrained transport scheme, which evolves the cell-centred magnetic vector potential. We test our implementation against problems of increasing complexity, such as one- and two-dimensional diffusion problems, and the evolution of progressive and stationary Alfvén waves. On these test problems, our implementation recovers the analytic solutions to second-order accuracy. As first applications, we investigate the tearing instability in magnetized plasmas and the gravitational collapse of a rotating magnetized gas cloud. In both systems, resistivity plays a key role. In the former case, it allows for the development of the tearing instability through reconnection of the magnetic field lines. In the latter, the adopted (constant) value of ohmic resistivity has an impact on both the gas distribution around the emerging protostar and the mass loading of magnetically driven outflows. Our new non-ideal MHD implementation opens up the possibility to study magneto-hydrodynamical systems on a moving mesh beyond the ideal MHD approximation.

  2. Eigenmode analysis of coupled magnetohydrodynamic oscillations in the magnetosphere

    International Nuclear Information System (INIS)

    Fujita, S.; Patel, V.L.

    1992-01-01

    The authors have performed an eigenmode analysis of the coupled magnetohydrodynamic oscillations in the magnetosphere with a dipole magnetic field. To understand the behavior of the spatial structure of the field perturbations with a great accuracy, they use the finite element method. The azimuthal and radial electric field perturbations are assumed to vanish at the ionosphere, and the azimuthal electric field is assumed to be zero on the outer boundary. The global structures of the electromagnetic field perturbations associated with the coupled magnetohydrodynamic oscillations are presented. In addition, the three-dimensional current system associated with the coupled oscillations is numerically calculated and the following characteristics are found: (1) A strong field-aligned current flows along a resonant field line. The current is particularly strong near the ionosphere. (2) The radial current changes its direction on the opposite sides of the resonant L shell. Unlike the field-aligned current, the radial currents exist in the entire magnetosphere. (3) Although the azimuthal and radial currents are intense on the resonant field line, these currents do not form a loop in the plane perpendicular to the ambient magnetic field. Therefore the field-aligned component of the perturbed magnetic field does not have a maximum at the resonant L shell

  3. Energy spectrum, dissipation, and spatial structures in reduced Hall magnetohydrodynamic

    Energy Technology Data Exchange (ETDEWEB)

    Martin, L. N.; Dmitruk, P. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Gomez, D. O. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio, CONICET, Buenos Aires (Argentina)

    2012-05-15

    We analyze the effect of the Hall term in the magnetohydrodynamic turbulence under a strong externally supported magnetic field, seeing how this changes the energy cascade, the characteristic scales of the flow, and the dynamics of global magnitudes, with particular interest in the dissipation. Numerical simulations of freely evolving three-dimensional reduced magnetohydrodynamics are performed, for different values of the Hall parameter (the ratio of the ion skin depth to the macroscopic scale of the turbulence) controlling the impact of the Hall term. The Hall effect modifies the transfer of energy across scales, slowing down the transfer of energy from the large scales up to the Hall scale (ion skin depth) and carrying faster the energy from the Hall scale to smaller scales. The final outcome is an effective shift of the dissipation scale to larger scales but also a development of smaller scales. Current sheets (fundamental structures for energy dissipation) are affected in two ways by increasing the Hall effect, with a widening but at the same time generating an internal structure within them. In the case where the Hall term is sufficiently intense, the current sheet is fully delocalized. The effect appears to reduce impulsive effects in the flow, making it less intermittent.

  4. Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization

    Science.gov (United States)

    Pu, Shi; Roy, Victor; Rezzolla, Luciano; Rischke, Dirk H.

    2016-04-01

    We study the one-dimensional, longitudinally boost-invariant motion of an ideal fluid with infinite conductivity in the presence of a transverse magnetic field, i.e., in the ideal transverse magnetohydrodynamical limit. In an extension of our previous work Roy et al., [Phys. Lett. B 750, 45 (2015)], we consider the fluid to have a nonzero magnetization. First, we assume a constant magnetic susceptibility χm and consider an ultrarelativistic ideal gas equation of state. For a paramagnetic fluid (i.e., with χm>0 ), the decay of the energy density slows down since the fluid gains energy from the magnetic field. For a diamagnetic fluid (i.e., with χmlaw ˜τ-a, two distinct solutions can be found depending on the values of a and χm. Finally, we also solve the ideal magnetohydrodynamical equations for one-dimensional Bjorken flow with a temperature-dependent magnetic susceptibility and a realistic equation of state given by lattice-QCD data. We find that the temperature and energy density decay more slowly because of the nonvanishing magnetization. For values of the magnetic field typical for heavy-ion collisions, this effect is, however, rather small. It is only for magnetic fields about an order of magnitude larger than expected for heavy-ion collisions that the system is substantially reheated and the lifetime of the quark phase might be extended.

  5. Results of investigation of magnetohydrodynamic flow round the magnetosphere

    International Nuclear Information System (INIS)

    Erkaev, N.V.

    1988-01-01

    Review of the main results of the study on the Earth magnetosphere quasi-stationary magnetohydrodynamic flow-around by the solar wind is given. The principle attenuation is paid to the problem of magnetic and electric fields calculation in the transition layer and at the magnetosphere boundary. Analysis of kinematic approximation and linear diffusion model is conducted. Existence condition for the magnetic barrier region, where kinematic approximation is inapplicable, is determined. Main properties of the solution - gasokinetic pressure decrease and magnetic pressure increase up to maximum at the numerical integration results of magnetohydrodynamic equations within the magnetic barrier range. Calculation problem of reconnection field at the magnetic barrier background is considered as the next step. It is shown, that the introduction of Petchek reconnection model into the problem solution general diagram allows to obtain at the magnetosphere boundary the values of electric and magnetic fields, compatible with the experiment. Problems, linked with choice of reconnection line direction and Petchek condition generalization for the case of the crossed field reconnection, are considered

  6. Magnetohydrodynamic dynamos in the presence of fossil magnetic fields

    International Nuclear Information System (INIS)

    Boyer, D.W.

    1982-01-01

    A fossil magnetic field embedded in the radiative core of the Sun has been thought possible for some time now. However, such a fossil magnetic field has, a priori, not been considered a visible phenomenon due to the effects of turbulence in the solar convection zone. Since a well developed theory (referred to herein as magnetohydrodynamic dynamo theory) exists for describing the regeneration of magnetic fields in astrophysical objects like the Sun, it is possible to quantitatively evaluate the interaction of a fossil magnetic field with the magnetohydrodynamic dynamo operating in the solar convection zone. In this work, after a brief description of the basic dynamo equations, a spherical model calculation of the solar dynamo is introduced. First, the interaction of a fossil magnetic field with a dynamo in which the regeneration mechanisms of cyclonic convection and large-scale, nonuniform rotation are confined to spherical shells is calculated. It is argued that the amount of amplification or suppression of a fossil magnetic field will be smallest for a uniform distribution of cyclonic convection and nonuniform rotation, as expected in the Sun. Secondly, the interaction of a fossil magnetic field with a dynamo having a uniform distribution of cyclonic convection and large-scale, nonuniform rotation is calculated. It is found that the dipole or quadrupole moments of a fossil magnetic field are suppressed by factors of -0.35 and -0.37, respectively

  7. The transverse field Richtmyer-Meshkov instability in magnetohydrodynamics

    KAUST Repository

    Wheatley, V.

    2014-01-10

    The magnetohydrodynamic Richtmyer-Meshkov instability is investigated for the case where the initial magnetic field is unperturbed and aligned with the mean interface location. For this initial condition, the magnetic field lines penetrate the perturbed density interface, forbidding a tangential velocity jump and therefore the presence of a vortex sheet. Through simulation, we find that the vorticity distribution present on the interface immediately after the shock acceleration breaks up into waves traveling parallel and anti-parallel to the magnetic field, which transport the vorticity. The interference of these waves as they propagate causes the perturbation amplitude of the interface to oscillate in time. This interface behavior is accurately predicted over a broad range of parameters by an incompressible linearized model derived presently by solving the corresponding impulse driven, linearized initial value problem. Our use of an equilibrium initial condition results in interface motion produced solely by the impulsive acceleration. Nonlinear compressible simulations are used to investigate the behavior of the transverse field magnetohydrodynamic Richtmyer-Meshkov instability, and the performance of the incompressible model, over a range of shock strengths, magnetic field strengths, perturbation amplitudes and Atwood numbers.

  8. Maxillary sinus augmentation

    Directory of Open Access Journals (Sweden)

    A B Tarun Kumar

    2015-01-01

    Full Text Available Placing dental implants in the maxillary posterior region can be both challenging and un-nerving for a regular implant dentist who is not well versed with advanced surgical procedures. It is vital for a general dentist to understand the fundamentals of bone grafting the maxillary sinus if he/she is really committed to providing the best health care for their patients. The dental practice is seeing an increasing group of patients who are living longer, and this group of older baby boomers often has an edentulous posterior maxilla either unilateral or bilateral. When edentulous, the posterior maxilla more likely has diminished bone height, which does not allow for the placement of dental implants without creating additional bone. Through grafting the maxillary sinus, bone of ideal quality can be created (allowing for placement of dental implants, which offer many advantages over other tooth replacement modalities. The sinus graft offers the dental patient a predictable procedure of regenerating lost osseous structure in the posterior maxilla. This offers the patient many advantages for long-term success. If dentists understand these concepts, they can better educate their patients and guide them to have the procedure performed. This article outlines bone grafting of the maxillary sinus for the purpose of placing dental implants. This review will help the readers to understand the intricacies of sinus augmentation. They can relate their patient's condition with the available literature and chalk out the best treatment plan for the patient, especially by using indirect sinus augmentation procedures which are less invasive and highly successful if done using prescribed technique.

  9. Planetary explorer liquid propulsion study

    Science.gov (United States)

    Mckevitt, F. X.; Eggers, R. F.; Bolz, C. W.

    1971-01-01

    An analytical evaluation of several candidate monopropellant hydrazine propulsion system approaches is conducted in order to define the most suitable configuration for the combined velocity and attitude control system for the Planetary Explorer spacecraft. Both orbiter and probe-type missions to the planet Venus are considered. The spacecraft concept is that of a Delta launched spin-stabilized vehicle. Velocity control is obtained through preprogrammed pulse-mode firing of the thrusters in synchronism with the spacecraft spin rate. Configuration selection is found to be strongly influenced by the possible error torques induced by uncertainties in thruster operation and installation. The propulsion systems defined are based on maximum use of existing, qualified components. Ground support equipment requirements are defined and system development testing outlined.

  10. Advanced Intellect-Augmentation Techniques.

    Science.gov (United States)

    Engelbart, D. C.

    This progress report covers a two-year project which is part of a program that is exploring the value of computer aids in augmenting human intellectual capability. The background and nature of the program, its resources, and the activities it has undertaken are outlined. User experience in applying augmentation tools and techniques to various…

  11. Augmented Reality Comes to Physics

    Science.gov (United States)

    Buesing, Mark; Cook, Michael

    2013-01-01

    Augmented reality (AR) is a technology used on computing devices where processor-generated graphics are rendered over real objects to enhance the sensory experience in real time. In other words, what you are really seeing is augmented by the computer. Many AR games already exist for systems such as Kinect and Nintendo 3DS and mobile apps, such as…

  12. Augmented reality som wearable technology

    DEFF Research Database (Denmark)

    Rahn, Annette

    “How Augmented reality can facilitate learning in visualizing human anatomy “ At this station I demonstrate how Augmented reality can be used to visualize the human lungs in situ and as a wearable technology which establish connection between body, image and technology in education. I will show...

  13. Assessing Hypothetical Gravity Control Propulsion

    OpenAIRE

    Millis, Marc G.

    2006-01-01

    Gauging the benefits of hypothetical gravity control propulsion is difficult, but addressable. The major challenge is that such breakthroughs are still only notional concepts rather than being specific methods from which performance can be rigorously quantified. A recent assessment by Tajmar and Bertolami used the rocket equation to correct naive misconceptions, but a more fundamental analysis requires the use of energy as the basis for comparison. The energy of a rocket is compared to an ide...

  14. Turboelectric Distributed Propulsion System Modelling

    OpenAIRE

    Liu, Chengyuan

    2013-01-01

    The Blended-Wing-Body is a conceptual aircraft design with rear-mounted, over wing engines. Turboelectric distributed propulsion system with boundary layer ingestion has been considered for this aircraft. It uses electricity to transmit power from the core turbine to the fans, therefore dramatically increases bypass ratio to reduce fuel consumption and noise. This dissertation presents methods on designing the TeDP system, evaluating effects of boundary layer ingestion, modelling engine perfo...

  15. Nuclear Thermal Propulsion Development Risks

    Science.gov (United States)

    Kim, Tony

    2015-01-01

    There are clear advantages of development of a Nuclear Thermal Propulsion (NTP) for a crewed mission to Mars. NTP for in-space propulsion enables more ambitious space missions by providing high thrust at high specific impulse ((is) approximately 900 sec) that is 2 times the best theoretical performance possible for chemical rockets. Missions can be optimized for maximum payload capability to take more payload with reduced total mass to orbit; saving cost on reduction of the number of launch vehicles needed. Or missions can be optimized to minimize trip time significantly to reduce the deep space radiation exposure to the crew. NTR propulsion technology is a game changer for space exploration to Mars and beyond. However, 'NUCLEAR' is a word that is feared and vilified by some groups and the hostility towards development of any nuclear systems can meet great opposition by the public as well as from national leaders and people in authority. The public often associates the 'nuclear' word with weapons of mass destruction. The development NTP is at risk due to unwarranted public fears and clear honest communication of nuclear safety will be critical to the success of the development of the NTP technology. Reducing cost to NTP development is critical to its acceptance and funding. In the past, highly inflated cost estimates of a full-scale development nuclear engine due to Category I nuclear security requirements and costly regulatory requirements have put the NTP technology as a low priority. Innovative approaches utilizing low enriched uranium (LEU). Even though NTP can be a small source of radiation to the crew, NTP can facilitate significant reduction of crew exposure to solar and cosmic radiation by reducing trip times by 3-4 months. Current Human Mars Mission (HMM) trajectories with conventional propulsion systems and fuel-efficient transfer orbits exceed astronaut radiation exposure limits. Utilizing extra propellant from one additional SLS launch and available

  16. Propulsion Systems in Water Tunnel

    Directory of Open Access Journals (Sweden)

    Nobuyuki Fujisawa

    1995-01-01

    agreement with the field experiment with prototype craft. Measurements are also made for the losses in the intake and the nozzle. The optimization study of the water jet systems is conducted by simulating the change of the nozzle outlet diameter with the variable nozzle arrangement. It is suggested that the nozzle outlet diameter should be decreased as the craft velocity increases to obtain an optimum propulsive efficiency in a wide range of craft velocity.

  17. Space station propulsion requirements study

    Science.gov (United States)

    Wilkinson, C. L.; Brennan, S. M.

    1985-01-01

    Propulsion system requirements to support Low Earth Orbit (LEO) manned space station development and evolution over a wide range of potential capabilities and for a variety of STS servicing and space station operating strategies are described. The term space station and the overall space station configuration refers, for the purpose of this report, to a group of potential LEO spacecraft that support the overall space station mission. The group consisted of the central space station at 28.5 deg or 90 deg inclinations, unmanned free-flying spacecraft that are both tethered and untethered, a short-range servicing vehicle, and a longer range servicing vehicle capable of GEO payload transfer. The time phasing for preferred propulsion technology approaches is also investigated, as well as the high-leverage, state-of-the-art advancements needed, and the qualitative and quantitative benefits of these advancements on STS/space station operations. The time frame of propulsion technologies applicable to this study is the early 1990's to approximately the year 2000.

  18. Antimatter propulsion, status and prospects

    Science.gov (United States)

    Howe, Steven D.; Hynes, Michael V.

    1986-01-01

    The use of advanced propulsion techniques must be considered if the currently envisioned launch date of the manned Mars mission were delayed until 2020 or later. Within the next thirty years, technological advances may allow such methods as beaming power to the ship, inertial-confinement fusion, or mass-conversion of antiprotons to become feasible. A propulsion system with an ISP of around 5000 s would allow the currently envisioned mission module to fly to Mars in 3 months and would require about one million pounds to be assembled in Earth orbit. Of the possible methods to achieve this, the antiproton mass-conversion reaction offers the highest potential, the greatest problems, and the most fascination. Increasing the production rates of antiprotons is a high priority task at facilities around the world. The application of antiprotons to propulsion requires the coupling of the energy released in the mass-conversion reaction to thrust-producing mechanisms. Recent proposals entail using the antiprotons to produce inertial confinement fusion or to produce negative muons which can catalyze fusion. By increasing the energy released per antiproton, the effective cost, (dollars/joule) can be reduced. These proposals and other areas of research can be investigated now. These short term results will be important in assessing the long range feasibility of an antiproton powered engine.

  19. Analytical and numerical study of validation test-cases for multi-physic problems: application to magneto-hydro-dynamic

    Directory of Open Access Journals (Sweden)

    D Cébron

    2016-04-01

    Full Text Available The present paper is concerned with the numerical simulation of Magneto-Hydro-Dynamic (MHD problems with industrial tools. MHD has receivedattention some twenty to thirty years ago as a possible alternative inpropulsion applications; MHD propelled ships have even been designed forthat purpose. However, such propulsion systems have been proved of lowefficiency and fundamental researches in the area have progressivelyreceived much less attention over the past decades. Numerical simulationof MHD problem could however provide interesting solutions in the field ofturbulent flow control. The development of recent efficient numericaltechniques for multi-physic applications provide promising tool for theengineer for that purpose. In the present paper, some elementary testcases in laminar flow with magnetic forcing terms are analysed; equationsof the coupled problem are exposed, analytical solutions are derived ineach case and are compared to numerical solutions obtained with anumerical tool for multi-physic applications. The present work can be seenas a validation of numerical tools (based on the finite element method foracademic as well as industrial application purposes.

  20. Hall effect in a strong magnetic field: Direct comparisons of compressible magnetohydrodynamics and the reduced Hall magnetohydrodynamic equations

    International Nuclear Information System (INIS)

    Martin, L. N.; Dmitruk, P.; Gomez, D. O.

    2010-01-01

    In this work we numerically test a model of Hall magnetohydrodynamics in the presence of a strong mean magnetic field: the reduced Hall magnetohydrodynamic model (RHMHD) derived by [Gomez et al., Phys. Plasmas 15, 102303 (2008)] with the addition of weak compressible effects. The main advantage of this model lies in the reduction of computational cost. Nevertheless, up until now the degree of agreement with the original Hall MHD system and the range of validity in a regime of turbulence were not established. In this work direct numerical simulations of three-dimensional Hall MHD turbulence in the presence of a strong mean magnetic field are compared with simulations of the weak compressible RHMHD model. The results show that the degree of agreement is very high (when the different assumptions of RHMHD, such as spectral anisotropy, are satisfied). Nevertheless, when the initial conditions are isotropic but the mean magnetic field is maintained strong, the results differ at the beginning but asymptotically reach a good agreement at relatively short times. We also found evidence that the compressibility still plays a role in the dynamics of these systems, and the weak compressible RHMHD model is able to capture these effects. In conclusion the weak compressible RHMHD model is a valid approximation of the Hall MHD turbulence in the relevant physical context.

  1. Recent developments of the MOA thruster, a high performance plasma accelerator for nuclear power and propulsion applications

    International Nuclear Information System (INIS)

    Frischauf, N.; Hettmer, M.; Grassauer, A.; Bartusch, T.; Koudelka, O.

    2008-01-01

    More than 60 years after the late Nobel laureate Hannes Alfven had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfven waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfven waves to accelerate ionised matter for propulsive purposes, is MOA -Magnetic field Oscillating Amplified thruster. Alfven waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfven waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. Based on computer simulations, which were conducted to get a first estimate on the performance of the system, MOA is a highly flexible propulsion system, whose performance parameters might easily be adapted, by changing the mass flow and/or the power level. As such the system is capable to deliver a maximum specific impulse of 13116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion, other terrestrial applications can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilization strategy. This paper presents the recent developments of the MOA Thruster R and D activities at QASAR, the company in

  2. Powered Flight The Engineering of Aerospace Propulsion

    CERN Document Server

    Greatrix, David R

    2012-01-01

    Whilst most contemporary books in the aerospace propulsion field are dedicated primarily to gas turbine engines, there is often little or no coverage of other propulsion systems and devices such as propeller and helicopter rotors or detailed attention to rocket engines. By taking a wider viewpoint, Powered Flight - The Engineering of Aerospace Propulsion aims to provide a broader context, allowing observations and comparisons to be made across systems that are overlooked by focusing on a single aspect alone. The physics and history of aerospace propulsion are built on step-by-step, coupled with the development of an appreciation for the mathematics involved in the science and engineering of propulsion. Combining the author’s experience as a researcher, an industry professional and a lecturer in graduate and undergraduate aerospace engineering, Powered Flight - The Engineering of Aerospace Propulsion covers its subject matter both theoretically and with an awareness of the practicalities of the industry. To ...

  3. In-Space Propulsion (ISP) Solar Sail Propulsion Technology Development

    Science.gov (United States)

    Montgomery, Edward E., IV

    2004-01-01

    An overview of the rationale and content for Solar Sail Propulsion (SSP), the on-going project to advance solar technology from technology readiness level 3 to 6 will be provided. A descriptive summary of the major and minor component efforts underway will include identification of the technology providers and a listing of anticipated products Recent important results from major system ground demonstrators will be provided. Finally, a current status of all activities will provided along with the most recent roadmap for the SSP technology development program.

  4. Solar Electric Propulsion Technology Development for Electric Propulsion

    Science.gov (United States)

    Mercer, Carolyn R.; Kerslake, Thomas W.; Scheidegger, Robert J.; Woodworth, Andrew A.; Lauenstein, Jean-Marie

    2015-01-01

    NASA is developing technologies to prepare for human exploration missions to Mars. Solar electric propulsion (SEP) systems are expected to enable a new cost effective means to deliver cargo to the Mars surface. Nearer term missions to Mars moons or near-Earth asteroids can be used to both develop and demonstrate the needed technology for these future Mars missions while demonstrating new capabilities in their own right. This presentation discusses recent technology development accomplishments for high power, high voltage solar arrays and power management that enable a new class of SEP missions.

  5. Propulsion of liposomes using bacterial motors

    International Nuclear Information System (INIS)

    Zhang Zhenhai; Li Kejie; Li Zhifei; Yu Wei; Xie Zhihong; Shi Zhiguo

    2013-01-01

    Here we describe the utilization of flagellated bacteria as actuators to propel spherical liposomes by attaching bacteria to the liposome surface. Bacteria were stably attached to liposomes using a cross-linking antibody. The effect of the number of attached bacteria on propulsion speed was experimentally determined. The effects of bacterial propulsion on the bacteria–antibody–liposome complex were stochastic. We demonstrated that liposomal mobility increased when bacteria were attached, and the propulsion speed correlated with the number of bacteria. (paper)

  6. A Conceptual Tree of Laser Propulsion

    International Nuclear Information System (INIS)

    Pakhomov, Andrew V.; Sinko, John E.

    2008-01-01

    An original attempt to develop a conceptual tree for laser propulsion is offered. The tree provides a systematic view for practically all possible laser propulsion concepts and all inter-conceptual links, based on propellant phases and phase transfers. It also helps to see which fields of laser propulsion have been already thoroughly explored, where the next effort must be applied, and which paths should be taken with proper care or avoided entirely

  7. Phenobarbital Augments Hypothermic Neuroprotection

    Science.gov (United States)

    Barks, John D.; Liu, Yi-Qing; Shangguan, Yu; Silverstein, Faye S.

    2010-01-01

    Seizures are associated with adverse outcome in infants with hypoxic-ischemic encephalopathy. We hypothesized that early administration of the anticonvulsant phenobarbital after cerebral hypoxia-ischemia could enhance the neuroprotective efficacy of delayed-onset hypothermia. We tested this hypothesis in a neonatal rodent model. Seven-day-old rats (n=104) underwent right carotid ligation, followed by 90 min 8%O2 exposure; 15 min later, they received injections of phenobarbital (40 mg/kg) or saline. One or 3h later, all were treated with hypothermia (30°C, 3h). Function and neuropathology were evaluated after 7 days (“early outcomes”) or 1 month (“late outcomes”). Early outcome assessment demonstrated better sensorimotor performance and less cortical damage in phenobarbital-treated groups; there were no differences between groups in which the hypothermia delay was shortened from 3h to 1h. Late outcome assessment confirmed sustained benefits of phenobarbital+hypothermia treatment; sensorimotor performance was better (persistent attenuation of contralateral forepaw placing deficits and absence of contralateral forepaw neglect); neuropathology scores were lower (medians, phenobarbital 2, saline 8.5, pphenobarbital may augment the neuroprotective efficacy of therapeutic hypothermia. PMID:20098339

  8. Understanding augmented reality concepts and applications

    CERN Document Server

    Craig, Alan B

    2013-01-01

    Augmented reality is not a technology. Augmented reality is a medium. Likewise, a book on augmented reality that only addresses the technology that is required to support the medium of augmented reality falls far short of providing the background that is needed to produce, or critically consume augmented reality applications. One reads a book. One watches a movie. One experiences augmented reality. Understanding Augmented Reality addresses the elements that are required to create compelling augmented reality experiences. The technology that supports

  9. Aeroelastic Wing Shaping Using Distributed Propulsion

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor); Reynolds, Kevin Wayne (Inventor); Ting, Eric B. (Inventor)

    2017-01-01

    An aircraft has wings configured to twist during flight. Inboard and outboard propulsion devices, such as turbofans or other propulsors, are connected to each wing, and are spaced along the wing span. A flight controller independently controls thrust of the inboard and outboard propulsion devices to significantly change flight dynamics, including changing thrust of outboard propulsion devices to twist the wing, and to differentially apply thrust on each wing to change yaw and other aspects of the aircraft during various stages of a flight mission. One or more generators can be positioned upon the wing to provide power for propulsion devices on the same wing, and on an opposite wing.

  10. Electrospray Propulsion Engineering Toolkit (ESPET), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — To accelerate the development of scaled-up Electrospray Propulsion emitter array systems with practical thrust levels, Spectral Sciences, Inc. (SSI), in...

  11. Augmented Mirror: Interactive Augmented Reality System Based on Kinect

    OpenAIRE

    Vera , Lucía; Gimeno , Jesús; Coma , Inmaculada; Fernández , Marcos

    2011-01-01

    Part 1: Long and Short Papers; International audience; In this paper we present a virtual character controlled by an actor in real time, who talks with an audience through an augmented mirror. The application, which integrates video images, the avatar and other virtual objects within an Augmented Reality system, has been implemented using a mixture of technologies: two kinect systems for motion capture, depth map and real images, a gyroscope to detect head movements, and control algorithms to...

  12. Multi-region relaxed Hall magnetohydrodynamics with flow

    Energy Technology Data Exchange (ETDEWEB)

    Lingam, Manasvi, E-mail: mlingam@princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States); Abdelhamid, Hamdi M., E-mail: hamdi@ppl.k.u-tokyo.ac.jp [Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Physics Department, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt); Hudson, Stuart R., E-mail: shudson@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)

    2016-08-15

    The recent formulations of multi-region relaxed magnetohydrodynamics (MRxMHD) have generalized the famous Woltjer-Taylor states by incorporating a collection of “ideal barriers” that prevent global relaxation and flow. In this paper, we generalize MRxMHD with flow to include Hall effects, and thereby obtain the partially relaxed counterparts of the famous double Beltrami states as a special subset. The physical and mathematical consequences arising from the introduction of the Hall term are also presented. We demonstrate that our results (in the ideal MHD limit) constitute an important subset of ideal MHD equilibria, and we compare our approach against other variational principles proposed for deriving the partially relaxed states.

  13. Disk Emission from Magnetohydrodynamic Simulations of Spinning Black Holes

    Science.gov (United States)

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.

    2016-01-01

    We present the results of a new series of global, three-dimensional, relativistic magnetohydrodynamic (MHD) simulations of thin accretion disks around spinning black holes. The disks have aspect ratios of H/R approx. 0.05 and spin parameters of a/M = 0, 0.5, 0.9, and 0.99. Using the ray-tracing code Pandurata, we generate broadband thermal spectra and polarization signatures from the MHD simulations. We find that the simulated spectra can be well fit with a simple, universal emissivity profile that better reproduces the behavior of the emission from the inner disk, compared to traditional analyses carried out using a Novikov-Thorne thin disk model. Finally, we show how spectropolarization observations can be used to convincingly break the spin-inclination degeneracy well known to the continuum-fitting method of measuring black hole spin.

  14. Extended generalized Lagrangian multipliers for magnetohydrodynamics using adaptive multiresolution methods

    Directory of Open Access Journals (Sweden)

    Domingues M. O.

    2013-12-01

    Full Text Available We present a new adaptive multiresoltion method for the numerical simulation of ideal magnetohydrodynamics. The governing equations, i.e., the compressible Euler equations coupled with the Maxwell equations are discretized using a finite volume scheme on a two-dimensional Cartesian mesh. Adaptivity in space is obtained via Harten’s cell average multiresolution analysis, which allows the reliable introduction of a locally refined mesh while controlling the error. The explicit time discretization uses a compact Runge–Kutta method for local time stepping and an embedded Runge-Kutta scheme for automatic time step control. An extended generalized Lagrangian multiplier approach with the mixed hyperbolic-parabolic correction type is used to control the incompressibility of the magnetic field. Applications to a two-dimensional problem illustrate the properties of the method. Memory savings and numerical divergences of magnetic field are reported and the accuracy of the adaptive computations is assessed by comparing with the available exact solution.

  15. WOMBAT: A Scalable and High-performance Astrophysical Magnetohydrodynamics Code

    Energy Technology Data Exchange (ETDEWEB)

    Mendygral, P. J.; Radcliffe, N.; Kandalla, K. [Cray Inc., St. Paul, MN 55101 (United States); Porter, D. [Minnesota Supercomputing Institute for Advanced Computational Research, Minneapolis, MN USA (United States); O’Neill, B. J.; Nolting, C.; Donnert, J. M. F.; Jones, T. W. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Edmon, P., E-mail: pjm@cray.com, E-mail: nradclif@cray.com, E-mail: kkandalla@cray.com, E-mail: oneill@astro.umn.edu, E-mail: nolt0040@umn.edu, E-mail: donnert@ira.inaf.it, E-mail: twj@umn.edu, E-mail: dhp@umn.edu, E-mail: pedmon@cfa.harvard.edu [Institute for Theory and Computation, Center for Astrophysics, Harvard University, Cambridge, MA 02138 (United States)

    2017-02-01

    We present a new code for astrophysical magnetohydrodynamics specifically designed and optimized for high performance and scaling on modern and future supercomputers. We describe a novel hybrid OpenMP/MPI programming model that emerged from a collaboration between Cray, Inc. and the University of Minnesota. This design utilizes MPI-RMA optimized for thread scaling, which allows the code to run extremely efficiently at very high thread counts ideal for the latest generation of multi-core and many-core architectures. Such performance characteristics are needed in the era of “exascale” computing. We describe and demonstrate our high-performance design in detail with the intent that it may be used as a model for other, future astrophysical codes intended for applications demanding exceptional performance.

  16. Linearized analysis of one-dimensional magnetohydrodynamic flows

    CERN Document Server

    Gundersen, Roy M

    1964-01-01

    Magnetohydrodynamics is concerned with the motion of electrically conducting fluids in the presence of electric or magnetic fields. Un­ fortunately, the subject has a rather poorly developed experimental basis and because of the difficulties inherent in carrying out controlled laboratory experiments, the theoretical developments, in large measure, have been concerned with finding solutions to rather idealized problems. This lack of experimental basis need not become, however, a multi­ megohm impedance in the line of progress in the development of a satisfactory scientific theory. While it is true that ultimately a scientific theory must agree with and, in actuality, predict physical phenomena with a reasonable degree of accuracy, such a theory must be sanctioned by its mathematical validity and consistency. Physical phenomena may be expressed precisely and quite comprehensively through the use of differential equations, and the equations formulated by LUNDQUIST and discussed by FRIEDRICHS belong to a class ...

  17. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    International Nuclear Information System (INIS)

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2013-01-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations so-called textbook multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.

  18. WOMBAT: A Scalable and High-performance Astrophysical Magnetohydrodynamics Code

    International Nuclear Information System (INIS)

    Mendygral, P. J.; Radcliffe, N.; Kandalla, K.; Porter, D.; O’Neill, B. J.; Nolting, C.; Donnert, J. M. F.; Jones, T. W.; Edmon, P.

    2017-01-01

    We present a new code for astrophysical magnetohydrodynamics specifically designed and optimized for high performance and scaling on modern and future supercomputers. We describe a novel hybrid OpenMP/MPI programming model that emerged from a collaboration between Cray, Inc. and the University of Minnesota. This design utilizes MPI-RMA optimized for thread scaling, which allows the code to run extremely efficiently at very high thread counts ideal for the latest generation of multi-core and many-core architectures. Such performance characteristics are needed in the era of “exascale” computing. We describe and demonstrate our high-performance design in detail with the intent that it may be used as a model for other, future astrophysical codes intended for applications demanding exceptional performance.

  19. bhlight: GENERAL RELATIVISTIC RADIATION MAGNETOHYDRODYNAMICS WITH MONTE CARLO TRANSPORT

    International Nuclear Information System (INIS)

    Ryan, B. R.; Gammie, C. F.; Dolence, J. C.

    2015-01-01

    We present bhlight, a numerical scheme for solving the equations of general relativistic radiation magnetohydrodynamics using a direct Monte Carlo solution of the frequency-dependent radiative transport equation. bhlight is designed to evolve black hole accretion flows at intermediate accretion rate, in the regime between the classical radiatively efficient disk and the radiatively inefficient accretion flow (RIAF), in which global radiative effects play a sub-dominant but non-negligible role in disk dynamics. We describe the governing equations, numerical method, idiosyncrasies of our implementation, and a suite of test and convergence results. We also describe example applications to radiative Bondi accretion and to a slowly accreting Kerr black hole in axisymmetry

  20. Magnetohydrodynamics and fluid dynamics action principles and conservation laws

    CERN Document Server

    Webb, Gary

    2018-01-01

    This text focuses on conservation laws in magnetohydrodynamics, gasdynamics and hydrodynamics. A grasp of new conservation laws is essential in fusion and space plasmas, as well as in geophysical fluid dynamics; they can be used to test numerical codes, or to reveal new aspects of the underlying physics, e.g., by identifying the time history of the fluid elements as an important key to understanding fluid vorticity or in investigating the stability of steady flows. The ten Galilean Lie point symmetries of the fundamental action discussed in this book give rise to the conservation of energy, momentum, angular momentum and center of mass conservation laws via Noether’s first theorem. The advected invariants are related to fluid relabeling symmetries – so-called diffeomorphisms associated with the Lagrangian map – and are obtained by applying the Euler-Poincare approach to Noether’s second theorem. The book discusses several variants of helicity including kinetic helicity, cross helicity, magnetic helici...

  1. Analysis of magnetohydrodynamic flow in linear induction EM pump

    International Nuclear Information System (INIS)

    Geun Jong Yoo; Choi, H.K.; Eun, J.J.; Bae, Y.S.

    2005-01-01

    Numerical analysis is performed for magnetic and magnetohydrodynamic (MHD) flow fields in linear induction type electromagnetic (EM) pump. A finite volume method is applied to solve magnetic field governing equations and the Navier-Stokes equations. Vector and scalar potential methods are adopted to obtain the electric and magnetic fields and the resulting Lorentz force in solving Maxwell equations. The magnetic field and velocity distributions are found to be influenced by the phase of applied electric current. Computational results indicate that the magnetic flux distribution with changing phase of input electric current is characterized by pairs of counter-rotating closed loops. The velocity distributions are affected by the intensity of Lorentz force. The governing equations for the magnetic and flow fields are only semi-coupled in this study, therefore, further study with fully-coupled governing equations are required. (authors)

  2. Active control of magneto-hydrodynamic instabilities in hot plasmas

    CERN Document Server

    2015-01-01

    During the past century, world-wide energy consumption has risen dramatically, which leads to a quest for new energy sources. Fusion of hydrogen atoms in hot plasmas is an attractive approach to solve the energy problem, with abundant fuel, inherent safety and no long-lived radioactivity.  However, one of the limits on plasma performance is due to the various classes of magneto-hydrodynamic instabilities that may occur. The physics and control of these instabilities in modern magnetic confinement fusion devices is the subject of this book. Written by foremost experts, the contributions will provide valuable reference and up-to-date research reviews for "old hands" and newcomers alike.

  3. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    KAUST Repository

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2010-01-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations so-called "textbook" multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations. (C) 2010 Elsevier Inc. All rights reserved.

  4. Magnetohydrodynamic equilibrium of axisymmetric systems with toroidal rotation

    International Nuclear Information System (INIS)

    Mansur, N.L.P.

    1986-01-01

    A model for studying magnetohydrodynamic equilibrium of axisymetrically confined plasma with toroidal rotation, extended to the Grad. Shafranov equation is presented. The expression used for the scalar pressure is modifiec, and the influence of toroidal magnetic field is included, The equation for general motion of axisymetrically confined plasma, particularizing for rotation movements is described. Two cases are compared: one supposes the entropy as a function of poloidal magnetic flux and other supposes the temperature as a function of flux. The equations for these two cases obtaining a simplified expression by others approximations are established. The proposed model is compared with Shibata model, which uses density as function of flux, and with the ideal spheromak model. A set of cases taking in account experimental data is studied. (M.C.K.) [pt

  5. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    KAUST Repository

    Adams, Mark F.

    2010-09-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations so-called "textbook" multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations. (C) 2010 Elsevier Inc. All rights reserved.

  6. MAGNETOHYDRODYNAMIC MODELING OF SOLAR SYSTEM PROCESSES ON GEODESIC GRIDS

    International Nuclear Information System (INIS)

    Florinski, V.; Guo, X.; Balsara, D. S.; Meyer, C.

    2013-01-01

    This report describes a new magnetohydrodynamic numerical model based on a hexagonal spherical geodesic grid. The model is designed to simulate astrophysical flows of partially ionized plasmas around a central compact object, such as a star or a planet with a magnetic field. The geodesic grid, produced by a recursive subdivision of a base platonic solid (an icosahedron), is free from control volume singularities inherent in spherical polar grids. Multiple populations of plasma and neutral particles, coupled via charge-exchange interactions, can be simulated simultaneously with this model. Our numerical scheme uses piecewise linear reconstruction on a surface of a sphere in a local two-dimensional 'Cartesian' frame. The code employs Haarten-Lax-van-Leer-type approximate Riemann solvers and includes facilities to control the divergence of the magnetic field and maintain pressure positivity. Several test solutions are discussed, including a problem of an interaction between the solar wind and the local interstellar medium, and a simulation of Earth's magnetosphere.

  7. Compressibility and rotation effects on transport suppression in magnetohydrodynamic turbulence

    International Nuclear Information System (INIS)

    Yoshizawa, A.

    1996-01-01

    Compressibility and rotation effects on turbulent transports in magnetohydrodynamic (MHD) flows under arbitrary mean field are investigated using a Markovianized two-scale statistical approach. Some new aspects of MHD turbulence are pointed out in close relation to plasma compressibility. Special attention is paid to the turbulent electromotive force, which plays a central role in the generation of magnetic and velocity fluctuations. In addition to plasma rotation, the interaction between compressibility and magnetic fields is shown to bring a few factors suppressing MHD fluctuations and, eventually, density and temperature transports, even in the presence of steep mean density and temperature gradients. This finding is discussed in the context of the turbulence-suppression mechanism in the tokamak close-quote s high-confinement modes. copyright 1996 American Institute of Physics

  8. Implicit Methods for the Magnetohydrodynamic Description of Magnetically Confined Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jardin, S C

    2010-09-28

    Implicit algorithms are essential for predicting the slow growth and saturation of global instabilities in today’s magnetically confined fusion plasma experiments. Present day algorithms for obtaining implicit solutions to the magnetohydrodynamic (MHD) equations for highly magnetized plasma have their roots in algorithms used in the 1960s and 1970s. However, today’s computers and modern linear and non-linear solver techniques make practical much more comprehensive implicit algorithms than were previously possible. Combining these advanced implicit algorithms with highly accurate spatial representations of the vector fields describing the plasma flow and magnetic fields and with improved methods of calculating anisotropic thermal conduction now makes possible simulations of fusion experiments using realistic values of plasma parameters and actual configuration geometry.

  9. Growth of the magnetic field in Hall magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)

    2004-10-01

    While the Hall magnetohydrodynamics (MHD) model has been explored in depth in connection with the dispersive waves relevant in magnetic reconnection, a theoretical study of the mathematical features of this system is lacking. We consider here the boundedness of the solutions of the Hall MHD equations. With Dirichlet boundary conditions the total energy of the system is maintained, and dissipated by diffusion, but the behaviour of the higher moments of the magnetic field is more complicated. It is found that certain unusual geometries of the initial condition may lead to a blow-up of the L{sup 3}-norm of the field. Nevertheless, reasonable assumptions upon the correlation between the size of the magnetic field and the curvature of field lines imply that the magnetic field remains uniformly bounded.

  10. Implicit Methods for the Magnetohydrodynamic Description of Magnetically Confined Plasmas

    International Nuclear Information System (INIS)

    Jardin, S.C.

    2010-01-01

    Implicit algorithms are essential for predicting the slow growth and saturation of global instabilities in today's magnetically confined fusion plasma experiments. Present day algorithms for obtaining implicit solutions to the magnetohydrodynamic (MHD) equations for highly magnetized plasma have their roots in algorithms used in the 1960s and 1970s. However, today's computers and modern linear and non-linear solver techniques make practical much more comprehensive implicit algorithms than were previously possible. Combining these advanced implicit algorithms with highly accurate spatial representations of the vector fields describing the plasma flow and magnetic fields and with improved methods of calculating anisotropic thermal conduction now makes possible simulations of fusion experiments using realistic values of plasma parameters and actual configuration geometry.

  11. Compression of magnetohydrodynamic simulation data using singular value decomposition

    International Nuclear Information System (INIS)

    Castillo Negrete, D. del; Hirshman, S.P.; Spong, D.A.; D'Azevedo, E.F.

    2007-01-01

    Numerical calculations of magnetic and flow fields in magnetohydrodynamic (MHD) simulations can result in extensive data sets. Particle-based calculations in these MHD fields, needed to provide closure relations for the MHD equations, will require communication of this data to multiple processors and rapid interpolation at numerous particle orbit positions. To facilitate this analysis it is advantageous to compress the data using singular value decomposition (SVD, or principal orthogonal decomposition, POD) methods. As an example of the compression technique, SVD is applied to magnetic field data arising from a dynamic nonlinear MHD code. The performance of the SVD compression algorithm is analyzed by calculating Poincare plots for electron orbits in a three-dimensional magnetic field and comparing the results with uncompressed data

  12. A Liquid Metal Flume for Free Surface Magnetohydrodynamic Experiments

    International Nuclear Information System (INIS)

    Nornberg, M.D.; Ji, H.; Peterson, J.L.; Rhoads, J.R.

    2008-01-01

    We present an experiment designed to study magnetohydrodynamic effects in free-surface channel flow. The wide aspect ratio channel (the width to height ratio is about 15) is completely enclosed in an inert atmosphere to prevent oxidization of the liquid metal. A custom-designed pump reduces entrainment of oxygen, which was found to be a problem with standard centrifugal and gear pumps. Laser Doppler Velocimetry experiments characterize velocity profiles of the flow. Various flow constraints mitigate secondary circulation and end effects on the flow. Measurements of the wave propagation characteristics in the liquid metal demonstrate the surfactant effect of surface oxides and the damping of fluctuations by a cross-channel magnetic field

  13. Derivation of the Hall and extended magnetohydrodynamics brackets

    Energy Technology Data Exchange (ETDEWEB)

    D' Avignon, Eric C., E-mail: cavell@physics.utexas.edu; Morrison, Philip J., E-mail: morrison@physics.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States); Lingam, Manasvi, E-mail: mlingam@princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States)

    2016-06-15

    There are several plasma models intermediate in complexity between ideal magnetohydrodynamics (MHD) and two-fluid theory, with Hall and Extended MHD being two important examples. In this paper, we investigate several aspects of these theories, with the ultimate goal of deriving the noncanonical Poisson brackets used in their Hamiltonian formulations. We present fully Lagrangian actions for each, as opposed to the fully Eulerian, or mixed Eulerian-Lagrangian, actions that have appeared previously. As an important step in this process, we exhibit each theory's two advected fluxes (in analogy to ideal MHD's advected magnetic flux), discovering also that with the correct choice of gauge they have corresponding Lie-dragged potentials resembling the electromagnetic vector potential, and associated conserved helicities. Finally, using the Euler-Lagrange map, we show how to derive the noncanonical Eulerian brackets from canonical Lagrangian ones.

  14. Diagnostic development and support of MHD (magnetohydrodynamics) test facilities

    Energy Technology Data Exchange (ETDEWEB)

    1989-07-01

    Mississippi State University (MSU) is developing diagnostic instruments for Magnetohydrodynamics (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for HRSR support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with MHD Energy Center computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. MSU personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs.

  15. Numerical simulation of magnetohydrodynamic processes in a tokamak

    International Nuclear Information System (INIS)

    Danilov, A.F.; Kostomarov, D.P.; Popov, A.M.

    The nonlinear motion of plasma in a Tokamak is studied by means of numerically solving two-dimensional [2D] and three-dimensional [3D] systems of magnetohydrodynamic (MHD) equations. The 2D model is a simplified system of Kadomtsev equations which describes helical movements in incompressible plasma with finite conductivity and a large longitudinal magnetic field. For the helical mode m = 1, the dynamics of internal stripping are studied, and for mode m = 2 the formation and evolution of magnetic islands are studied. The 3D model is a more complete system of MHD equations with allowance for compressibility. The motion of the individual modes in cylindrical and toroidal plasma is studied. Preliminary results have been obtained on the mutual effects of helical modes

  16. Amplification of large-scale magnetic field in nonhelical magnetohydrodynamics

    KAUST Repository

    Kumar, Rohit

    2017-08-11

    It is typically assumed that the kinetic and magnetic helicities play a crucial role in the growth of large-scale dynamo. In this paper, we demonstrate that helicity is not essential for the amplification of large-scale magnetic field. For this purpose, we perform nonhelical magnetohydrodynamic (MHD) simulation, and show that the large-scale magnetic field can grow in nonhelical MHD when random external forcing is employed at scale 1/10 the box size. The energy fluxes and shell-to-shell transfer rates computed using the numerical data show that the large-scale magnetic energy grows due to the energy transfers from the velocity field at the forcing scales.

  17. Magnetic flux pumping in 3D nonlinear magnetohydrodynamic simulations

    Science.gov (United States)

    Krebs, I.; Jardin, S. C.; Günter, S.; Lackner, K.; Hoelzl, M.; Strumberger, E.; Ferraro, N.

    2017-10-01

    A self-regulating magnetic flux pumping mechanism in tokamaks that maintains the core safety factor at q ≈1 , thus preventing sawteeth, is analyzed in nonlinear 3D magnetohydrodynamic simulations using the M3D-C1 code. In these simulations, the most important mechanism responsible for the flux pumping is that a saturated (m =1 ,n =1 ) quasi-interchange instability generates an effective negative loop voltage in the plasma center via a dynamo effect. It is shown that sawtoothing is prevented in the simulations if β is sufficiently high to provide the necessary drive for the (m =1 ,n =1 ) instability that generates the dynamo loop voltage. The necessary amount of dynamo loop voltage is determined by the tendency of the current density profile to centrally peak which, in our simulations, is controlled by the peakedness of the applied heat source profile.

  18. Magnetohydrodynamic spin waves in degenerate electron-positron-ion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mushtaq, A. [TPPD, PINSTECH Nilore, 44000 Islamabad (Pakistan); National Center for Physics, Shahdrah Valley Road, 44000 Islamabad (Pakistan); Maroof, R.; Ahmad, Zulfiaqr [Institute of Physics and Electronics, University of Peshawar, 25000 Peshawar (Pakistan); Qamar, A. [National Center for Physics, Shahdrah Valley Road, 44000 Islamabad (Pakistan); Institute of Physics and Electronics, University of Peshawar, 25000 Peshawar (Pakistan)

    2012-05-15

    Low frequency magnetosonic waves are studied in magnetized degenerate electron-positron-ion plasmas with spin effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, and spin magnetization energy, a generalized dispersion relation for oblique magnetosonic waves is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. For three different values of angle {theta}, the generalized dispersion relation is reduced to three different relations under the low frequency magnetohydrodynamic assumptions. It is found that the effect of quantum corrections in the presence of positron concentration significantly modifies the dispersive properties of these modes. The importance of the work relevant to compact astrophysical bodies is pointed out.

  19. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    International Nuclear Information System (INIS)

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2010-01-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations - so-called 'textbook' multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.

  20. Magnetohydrodynamic pressure drop in a quickly changing magnetic field

    International Nuclear Information System (INIS)

    Xu, Z.Y.; Chen, J.M.; Qian, J.P.; Jiang, W.H.; Pan, C.J.; Li, W.Z.

    1995-01-01

    The magnetohydrodynamic (MHD) pressure drop of 22 Na 78 K flow in a circular duct was measured under a quickly changing magnetic field. The MHD pressure drop reduced with time as the magnetic field strength decreased. However, the dimensionless pressure drop gradient varied with the interaction parameter and had a higher value in the middle of the range of values of the interaction parameter. Therefore, a quickly changing magnetic field is harmful to the structural material in a liquid metal self-cooled blanket of a fusion reactor, since the greater pressure drop gradient may cause a larger stress in the blanket. This is even more harmful if the magnetic field strength decreases very quickly or its distribution in space is greatly non-uniform. (orig.)

  1. Large-Eddy-Simulation of turbulent magnetohydrodynamic flows

    Directory of Open Access Journals (Sweden)

    Woelck Johannes

    2017-01-01

    Full Text Available A magnetohydrodynamic turbulent channel flow under the influence of a wallnormal magnetic field is investigated using the Large-Eddy-Simulation technique and k-equation subgrid-scale-model. Therefore, the new solver MHDpisoFoam is implemented in the OpenFOAM CFD-Code. The temporal decay of an initial turbulent field for different magnetic parameters is investigated. The rms values of the averaged velocity fluctuations show a similar, trend for each coordinate direction. 80% of the fluctuations are damped out in the range between 0 < Ha < < 75 at Re = 6675. The trend can be approximated via an exponential of the form exp(−a·Ha, where a is a scaling parameter. At higher Hartmann numbers the fluctuations decrease in an almost linear way. Therefore, the results of this study show that it may be possible to construct a general law for the turbulence damping due to action of magnetic fields.

  2. Ideal, steady-state, axisymmetric magnetohydrodynamic equations with flow

    International Nuclear Information System (INIS)

    Baransky, Y.A.

    1987-01-01

    The motivation of this study is to gain additional understanding of the effect of rotation on the equilibrium of a plasma. The axisymmetric equilibria of ideal magnetohydrodynamics (MHD) with flow have been studied numerically and analytically. A general discussion is provided of previous work on plasmas with flow and comparisons are made to the static model. A variational principle has been derived for the two dimensional problem with comments as to appropriate boundary conditions. An inverse aspect ratio expansion has been used for a study of the toroidal flow equation for both low- and high-β. The inverse aspect ratio expansion has also been used for a study of equations with both poloidal and toroidal flow. An overview is provided of the adaptive finite-difference code which was developed to solve the full equations. (FI)

  3. A fast, user-friendly code for calculating magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Haney, S.W.; Freidberg, J.P.; Solomon, C.J.

    1995-01-01

    Using variational techniques, we have developed a fast, user-friendly code for computing approximate, but highly accurate fixed boundary magnetohydrodynamic equilibria for tokamak plasmas. The variational procedure simplifies the problem---a two-dimensional nonlinear partial differential equation---to a set of nonlinear algebraic equations. The reduced problem can be readily solved on workstations or personal computers. This allows us to exploit sophisticated graphical user interfaces that make supplying calculation data and viewing results easy. This ease-of-use, along with the semianalytic nature of our calculation, allows researchers to routinely incorporate equilibrium information into their work. It also provides a tool for educators teaching fusion theory. We describe the variational formulation, the speed and accuracy of the computer implementation, and the design and operation of a user-friendly graphical interface

  4. Global magnetohydrodynamic instabilities in the L-2M stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailov, M. I., E-mail: mikhaylov-mi@nrcki.ru [National Research Centre Kurchatov Institute (Russian Federation); Shchepetov, S. V., E-mail: shch@fpl.gpi.ru [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Nührenberg, C.; Nührenberg, J. [Max-Planck-Institut für Plasmaphysik (Germany)

    2015-12-15

    Analysis of global magnetohydrodynamic (MHD) instabilities in the L-2M stellarator (Prokhorov General Physics Institute, Russian Academy of Sciences) is presented. The properties of free-boundary equilibria states are outlined, the stability conditions for small-scale modes are briefly discussed, and the number of trapped particles is estimated. All the magnetic configurations under study are stable against ballooning modes. It is shown that global ideal internal MHD modes can be found reliably only in Mercier unstable plasmas. In plasma that is stable with respect to the Mercier criterion, global unstable modes that are localized in the vicinity of the free plasma boundary and are not associated with any rational magnetic surface inside the plasma (the so-called peeling modes) can be found. The radial structure of all perturbations under study is almost entirely determined by the poloidal coupling of harmonics. The results of calculations are compared with the available experimental data.

  5. Magnetohydrodynamic simulations of density-limit disruptions in tokamaks

    International Nuclear Information System (INIS)

    Kleva, R.G.; Drake, J.F.; Denton, R.E.

    1990-01-01

    Magnetohydrodynamic simulations are presented which demonstrate that density limit disruptions can be triggered by edge radiation which destabilizes a q = 1 kink followed by a q = 2 tearing mode. A bubble of cold plasma is injected from the edge into the center by the q = 1 kink. The q = 2 mode then broadens the current profile and throws the hot plasma to the wall. The MHD simulations presented are the first to successfully reproduce several key features of density limit disruptions including (1) the rapid drop in the central temperature, (2) the rapid expansion of the current profile, (3) the m = 1 cold bubble which is seen to be injected from the edge into the center during density limit disruptions on JET, and (4) disruptions in sawtoothing discharges. (author)

  6. The SMPR for the naval propulsion; Les RPMP pour la propulsion navale

    Energy Technology Data Exchange (ETDEWEB)

    Gauducheau, B. [Technicatome, Centre d' Etudes Nucleaires de Saclay, 91 - Gif sur Yvette (France)

    2002-07-01

    The first controlled application of the fissile energy was the american nuclear reactor for the ship propulsion. Since the sixties, the France begun researches to secure the independence of its nuclear propulsion program. The historical aspects, the french program management and the perspectives of the ship nuclear propulsion, are discussed in this paper. (A.L.B.)

  7. Advanced Chemical Propulsion System Study

    Science.gov (United States)

    Portz, Ron; Alexander, Leslie; Chapman, Jack; England, Chris; Henderson, Scott; Krismer, David; Lu, Frank; Wilson, Kim; Miller, Scott

    2007-01-01

    A detailed; mission-level systems study has been performed to show the benefit resulting from engine performance gains that will result from NASA's In-Space Propulsion ROSS Cycle 3A NRA, Advanced Chemical Technology sub-topic. The technology development roadmap to accomplish the NRA goals are also detailed in this paper. NASA-Marshall and NASA-JPL have conducted mission-level studies to define engine requirements, operating conditions, and interfaces. Five reference missions have been chosen for this analysis based on scientific interest, current launch vehicle capability and trends in space craft size: a) GTO to GEO, 4800 kg, delta-V for GEO insertion only approx.1830 m/s; b) Titan Orbiter with aerocapture, 6620 kg, total delta V approx.210 m/s, mostly for periapsis raise after aerocapture; c) Enceladus Orbiter (Titan aerocapture) 6620 kg, delta V approx.2400 m/s; d) Europa Orbiter, 2170 kg, total delta V approx.2600 m/s; and e) Mars Orbiter, 2250 kg, total delta V approx.1860 m/s. The figures of merit used to define the benefit of increased propulsion efficiency at the spacecraft level include propulsion subsystem wet mass, volume and overall cost. The objective of the NRA is to increase the specific impulse of pressure-fed earth storable bipropellant rocket engines to greater than 330 seconds with nitrogen tetroxide and monomothylhydrazine propellants and greater than 335 , seconds with nitrogen tetroxide and hydrazine. Achievement of the NRA goals will significantly benefit NASA interplanetary missions and other government and commercial opportunities by enabling reduced launch weight and/or increased payload. The study also constitutes a crucial stepping stone to future development, such as pump-fed storable engines.

  8. Stirling engine electric hybrid vehicle propulsion system conceptual design study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dochat, G; Artiles, A; Killough, J; Ray, A; Chen, H S

    1978-08-01

    Results of a six-month study to characterize a series Stirling engine electric hybrid vehicle propulsion system are presented. The Stirling engine was selected as the heat conversion element to exploit the high efficiency (> .36), low pollution, multi-fuel and quiet operation of this machine. A free-piston Stirling engine driving a linear alternator in a hermatically sealed enclosure was chosen to gain the reliability, long life, and maintenance free characteristics of a sealed unit. The study performs trade off evaluations, selection of engine, battery, motor and inverter size, optimization of components, and develops a conceptual design and characterization of the total propulsion system. The conclusion of the study is that a Stirling engine electric hybrid propulsion system can be used successfully to augment the battery storage of a passenger vehicle and will result in significant savings of petroleum energy over present passenger vehicles. The performance and range augmentation of the hybrid design results in significant improvements over an all electric vehicle. The hybrid will be capable of performing 99% of the passenger vehicle annual trip distribution requirements with extremely low fuel usage. (TFD)

  9. Propulsion at low Reynolds number

    International Nuclear Information System (INIS)

    Najafi, Ali; Golestanian, Ramin

    2005-01-01

    We study the propulsion of two model swimmers at low Reynolds number. Inspired by Purcell's model, we propose a very simple one-dimensional swimmer consisting of three spheres that are connected by two arms whose lengths can change between two values. The proposed swimmer can swim with a special type of motion, which breaks the time-reversal symmetry. We also show that an ellipsoidal membrane with tangential travelling wave on it can also propel itself in the direction preferred by the travelling wave. This system resembles the realistic biological animals like Paramecium

  10. Propulsion at low Reynolds number

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, Ali [Institute for Advanced Studies in Basic Sciences, Zanjan 45195-159 (Iran, Islamic Republic of); Faculty of Science, Zanjan University, Zanjan 313 (Iran, Islamic Republic of); Golestanian, Ramin [Institute for Advanced Studies in Basic Sciences, Zanjan 45195-159 (Iran, Islamic Republic of)

    2005-04-13

    We study the propulsion of two model swimmers at low Reynolds number. Inspired by Purcell's model, we propose a very simple one-dimensional swimmer consisting of three spheres that are connected by two arms whose lengths can change between two values. The proposed swimmer can swim with a special type of motion, which breaks the time-reversal symmetry. We also show that an ellipsoidal membrane with tangential travelling wave on it can also propel itself in the direction preferred by the travelling wave. This system resembles the realistic biological animals like Paramecium.

  11. Space storable propulsion components development

    Science.gov (United States)

    Hagler, R., Jr.

    1982-01-01

    The current development status of components to control the flow of propellants (liquid fluorine and hydrazine) in a demonstration space storable propulsion system is discussed. The criteria which determined the designs for the pressure regulator, explosive-actuated valves, propellant shutoff valve, latching solenoid-actuated valve and propellant filter are presented. The test philosophy that was followed during component development is outlined. The results from compatibility demonstrations for reusable connectors, flange seals, and CRES/Ti-6Al4V transition tubes and the evaluations of processes for welding (hand-held TIG, automated TIG, and EB), cleaning for fluorine service, and decontamination after fluorine exposure are described.

  12. Laser Diagnostics for Spacecraft Propulsion

    Science.gov (United States)

    2015-10-13

    for public release; distribution unlimited.  AFTC/PA Clearance No.  XXXX 3 Motivation • Many satellite propulsion technologies were developed in the...distribution unlimited.  AFTC/PA Clearance No.  XXXX Propellant Catalyst Bed Decomposition Chamber Thrust Chamber 5 Diode Laser Absorption Spectroscopy Beer...Hydrazine Thruster NH3 Iν(L)Iν0 Ramp t I L DISTRIBUTION A:  Approved for public release; distribution unlimited.  AFTC/PA Clearance No.  XXXX 6 Wavelength

  13. Mersiline mesh in premaxillary augmentation.

    Science.gov (United States)

    Foda, Hossam M T

    2005-01-01

    Premaxillary retrusion may distort the aesthetic appearance of the columella, lip, and nasal tip. This defect is characteristically seen in, but not limited to, patients with cleft lip nasal deformity. This study investigated 60 patients presenting with premaxillary deficiencies in which Mersiline mesh was used to augment the premaxilla. All the cases had surgery using the external rhinoplasty technique. Two methods of augmentation with Mersiline mesh were used: the Mersiline roll technique, for the cases with central symmetric deficiencies, and the Mersiline packing technique, for the cases with asymmetric deficiencies. Premaxillary augmentation with Mersiline mesh proved to be simple technically, easy to perform, and not associated with any complications. Periodic follow-up evaluation for a mean period of 32 months (range, 12-98 months) showed that an adequate degree of premaxillary augmentation was maintained with no clinically detectable resorption of the mesh implant.

  14. The Augmented REality Sandtable (ARES)

    Science.gov (United States)

    2015-10-01

    Introduction The US Army Research Laboratory (ARL) Human Sciences Campaign calls out the topic of Virtual /Mixed and Augmented Reality as one of the...type of virtual environment. In virtual reality (VR), the totality of the environment is computer generated. In AR, the real world is augmented by...tangible user interfaces; and the effectiveness of virtual sand tables and similar systems. A market survey was also done to discover the state of

  15. Mechanism of transient force augmentation varying with two distinct timescales for interacting vortex rings

    Science.gov (United States)

    Fu, Zhidong; Qin, Suyang; Liu, Hong

    2014-01-01

    The dynamics of dual vortex ring flows is studied experimentally and numerically in a model system that consists of a piston-cylinder apparatus. The flows are generated by double identical strokes which have the velocity profile characterized by the sinusoidal function of half the period. By calculating the total wake impulse in two strokes in the experiments, it is found that the average propulsive force increases by 50% in the second stroke for the sufficiently small stroke length, compared with the first stroke. In the numerical simulations, two types of transient force augmentation are revealed, there being the transient force augmentation for the small stroke lengths and the absolute transient force augmentation for the large stroke lengths. The relative transient force augmentation increases to 78% for L/D = 1, while the absolute transient force augmentation for L/D = 4 is twice as much as that for L/D = 1. Further investigation demonstrates that the force augmentation is attributed to the interaction between vortex rings, which induces transport of vortex impulse and more evident fluid entrainment. The critical situation of vortex ring separation is defined and indicated, with vortex spacing falling in a narrow gap when the stroke lengths vary. A new model is proposed concerning the limiting process of impulse, further suggesting that apart from vortex formation timescale, vortex spacing should be interpreted as an independent timescale to reflect the dynamics of vortex interaction.

  16. Power processing for electric propulsion

    Science.gov (United States)

    Finke, R. C.; Herron, B. G.; Gant, G. D.

    1975-01-01

    The potential of achieving up to 30 per cent more spacecraft payload or 50 per cent more useful operating life by the use of electric propulsion in place of conventional cold gas or hydrazine systems in science, communications, and earth applications spacecraft is a compelling reason to consider the inclusion of electric thruster systems in new spacecraft design. The propulsion requirements of such spacecraft dictate a wide range of thruster power levels and operational lifetimes, which must be matched by lightweight, efficient, and reliable thruster power processing systems. This paper will present electron bombardment ion thruster requirements; review the performance characteristics of present power processing systems; discuss design philosophies and alternatives in areas such as inverter type, arc protection, and control methods; and project future performance potentials for meeting goals in the areas of power processor weight (10 kg/kW), efficiency (approaching 92 per cent), reliability (0.96 for 15,000 hr), and thermal control capability (0.3 to 5 AU).

  17. Gasdynamic Mirror Fusion Propulsion Experiment

    Science.gov (United States)

    Emrich, Bill; Rodgers, Stephen L. (Technical Monitor)

    2000-01-01

    A gasdynamic mirror (GDM) fusion propulsion experiment is currently being constructed at the NASA Marshall Space Flight Center (MSFC) to test the feasibility of this particular type of fusion device. Because of the open magnetic field line configuration of mirror fusion devices, they are particularly well suited for propulsion system applications since they allow for the easy ejection of thrust producing plasma. Currently, the MSFC GDM is constructed in three segments. The vacuum chamber mirror segment, the plasma injector mirror segment, and the main plasma chamber segment. Enough magnets are currently available to construct up to three main plasma chamber segments. The mirror segments are also segmented such that they can be expanded to accommodate new end plugging strategies with out requiring the disassembly of the entire mirror segment. The plasma for the experiment is generated in a microwave cavity located between the main magnets and the mirror magnets. Ion heating is accomplished through ambipolar diffusion. The objective of the experiment is to investigate the stability characteristics of the gasdynamic mirror and to map a region of parameter space within which the plasma can be confined in a stable steady state configuration. The mirror ratio, plasma density, and plasma "b" will be varied over a range of values and measurements subsequently taken to determine the degree of plasma stability.

  18. Converging cylindrical magnetohydrodynamic shock collapse onto a power-law-varying line current

    KAUST Repository

    Mostert, W.; Pullin, D. I.; Samtaney, Ravi; Wheatley, V.

    2016-01-01

    We investigate the convergence behaviour of a cylindrical, fast magnetohydrodynamic (MHD) shock wave in a neutrally ionized gas collapsing onto an axial line current that generates a power law in time, azimuthal magnetic field. The analysis is done

  19. Magnetohydrodynamic Electromagnetic Pulse (MHD-EMP) Interaction with Power Transmission and Distribution Systems

    National Research Council Canada - National Science Library

    Tesche, F. M; Barnes, P. R; Meliopoulos, A. P

    1992-01-01

    .... This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP , is a very slowly varying electric field induced in the earth's surface, similar to the field induced by a geomagnetic storm...

  20. Kinetic-magnetohydrodynamic simulation study of fast ions and toroidal Alfven eigenmodes

    International Nuclear Information System (INIS)

    Todo, Y.; Sato, T.

    2001-01-01

    Particle-magnetohydrodynamic and Fokker-Planck-magnetohydrodynamic simulations of fast ions and toroidicity-induced Alfven eigenmodes (TAE modes) have been carried out. Alpha particle losses induced by TAE mode are investigated with particle-magnetohydrodynamic simulations. Trapped particles near the passing-trapped boundary in the phase space are also lost appreciably in addition to the counter-passing particles. In Fokker-Planck-magnetohydrodynamic simulation source and slowing-down of fast ions are considered. A coherent pulsating behavior of multiple TAE modes, which occurs in neutral beam injection experiments, is observed when the slowing-down time is much longer than the damping time of the TAE modes and the fast-ion pressure is sufficiently high. For a slowing-down time comparable to the damping time, the TAE modes reach steady saturation levels. (author)

  1. Kinetic-magnetohydrodynamic simulation study of fast ions and toroidal Alfven eigenmodes

    International Nuclear Information System (INIS)

    Todo, Y.; Sato, T.

    1999-01-01

    Particle-magnetohydrodynamic and Fokker-Planck-magnetohydrodynamic simulations of fast ions and toroidicity-induced Alfven eigenmodes (TAE modes) have been carried out. Alpha particle losses induced by TAE mode are investigated with particle-magnetohydrodynamic simulations. Trapped particles near the passing-trapped boundary in the phase space are also lost appreciably in addition to the counter-passing particles. In Fokker-Planck-magnetohydrodynamic simulation source and slowing-down of fast ions are considered. A coherent pulsating behavior of multiple TAE modes, which occurs in neutral beam injection experiments, is observed when the slowing-down time is much longer than the damping time of the TAE modes and the fast-ion pressure is sufficiently high. For a slowing-down time comparable to the damping time, the TAE modes reach steady saturation levels. (author)

  2. Development of superconducting ship propulsion system

    International Nuclear Information System (INIS)

    Sakuraba, Junji; Mori, Hiroyuki; Hata, Fumiaki; Sotooka, Koukichi

    1991-01-01

    When we plan displacement-type monohull high speed vessels, it is difficult to get the hull form with the wave-making resistance minimum, because the stern shape is restricted by arrangement of propulsive machines and shafts. A small-sized and light-weight propulsive machines will reduce the limit to full form design. Superconducting technology will have capability of realizing the small-sized and light-weight propulsion motor. The superconducting electric propulsion system which is composed of superconducting propulsion motors and generators, seems to be an ideal propulsion system for future vehicles. We have constructed a 480 kW superconducting DC homopolar laboratory test motor for developing this propulsion system. The characteristic of this motor is that it has a superconducting field winding and a segmented armature drum. The superconducting field winding which operates in the persistent current mode, is cooled by a condensation heat exchanger and helium refigerating system built into the cryostat of the superconducting field winding. The operating parameters of this motor agreed well with the design parameters. Using the design concepts of this motor, we have conceptually designed a 150,000-200,000 PS superconducting electric propulsive system for a displacement-type monohull high speed ship. (author)

  3. Integrated Propulsion Data System Public Web Site

    Science.gov (United States)

    Hamilton, Kimberly

    2001-01-01

    The Integrated Propulsion Data System's (IPDS) focus is to provide technologically-advanced philosophies of doing business at SSC that will enhance the existing operations, engineering and management strategies and provide insight and metrics to assess their daily impacts, especially as related to the Propulsion Test Directorate testing scenarios for the 21st Century.

  4. 46 CFR 109.555 - Propulsion boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge shall...

  5. Research Activities on Special Propulsion in BUAA

    International Nuclear Information System (INIS)

    Tang Haibin; Wang Haixing; Liu Chang; Xiang Min; Yao Jie; Liu Yu

    2007-01-01

    An overview is presented of special propulsion research carried out in Beijing University of Aeronautics and Astronautics of China. The research activities are supported by NSFC (National Natural Science Foundation of China), other governmental agencies and industrial partners, which include experimental, analytical and numerical work related to arcjet thrusters, ion thrusters, plasma sail and other new concept propulsions

  6. Propulsive efficiency and non- expert swimmers performance

    Directory of Open Access Journals (Sweden)

    Tiago Barbosa

    2009-12-01

    Full Text Available Propulsive efficiency is one of the most interesting issues for competitive swimming researchers, has it presents significant relationships with the swimmer’s biophysical behavior and his/her performance. Although propulsive efficiency is a variable that has been quite studied in elite swimmers, there is no research on this issue in young and non-expert swimmers. Thus, the aim of this study was to: (i estimate the propulsive efficiency on non-expert swimmers; (ii identify biomechanical and anthropometrical parameters that are associated with propulsive efficiency; (iii identify the association between the propulsive efficiency and swim performance. Twenty-eight non-expert swimmers participated on this study. It was assessed the propulsive efficiency, biomechanical and anthropometrical parameters, as well as, the swim performance. The propulsive efficiency of non-expert swimmers is lower than data reported in the literature to higher competitive levels swimmers and there are no significant differences between boys and girls. It was also noted that several biomechanical and anthropometrical parameters, as well as, the swim performance are associated with the propulsive efficiency.

  7. Powersail High Power Propulsion System Design Study

    Science.gov (United States)

    Gulczinski, Frank S., III

    2000-11-01

    A desire by the United States Air Force to exploit the space environment has led to a need for increased on-orbit electrical power availability. To enable this, the Air Force Research Laboratory Space Vehicles Directorate (AFRL/ VS) is developing Powersail: a two-phased program to demonstrate high power (100 kW to 1 MW) capability in space using a deployable, flexible solar array connected to the host spacecraft using a slack umbilical. The first phase will be a proof-of-concept demonstration at 50 kW, followed by the second phase, an operational system at full power. In support of this program, the AFRL propulsion Directorate's Spacecraft Propulsion Branch (AFRL/PRS ) at Edwards AFB has commissioned a design study of the Powersail High Power Propulsion System. The purpose of this study, the results of which are summarized in this paper, is to perform mission and design trades to identify potential full-power applications (both near-Earth and interplanetary) and the corresponding propulsion system requirements and design. The design study shall farther identify a suitable low power demonstration flight that maximizes risk reduction for the fully operational system. This propulsion system is expected to be threefold: (1) primary propulsion for moving the entire vehicle, (2) a propulsion unit that maintains the solar array position relative to the host spacecraft, and (3) control propulsion for maintaining proper orientation for the flexible solar array.

  8. 46 CFR 130.120 - Propulsion control.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion control. 130.120 Section 130.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS VESSEL CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Vessel Control § 130.120 Propulsion control. (a) Each vessel must have— (1...

  9. Ablative Laser Propulsion: An Update, Part I

    International Nuclear Information System (INIS)

    Pakhomov, Andrew V.; Cohen, Timothy; Lin Jun; Thompson, M. Shane; Herren, Kenneth A.

    2004-01-01

    This paper presents an updated review of studies on Ablative Laser Propulsion conducted by the Laser Propulsion Group (LPG) at the University of Alabama in Huntsville. In particular, we describe the newest results of our experimental study of specific impulses and coupling coefficients achieved by double-pulsed ablation of graphite, aluminum, copper and lead targets

  10. Magnetohydrodynamic duct and channel flows at finite magnetic Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Bandaru, Vinodh Kumar

    2015-11-27

    Magnetohydrodynamic duct flows have so far been studied only in the limit of negligible magnetic Reynolds numbers (R{sub m}). When R{sub m} is finite, the secondary magnetic field becomes significant, leading to a fully coupled evolution of the magnetic field and the conducting flow. Characterization of such flows is essential in understanding wall-bounded magnetohydrodynamic turbulence at finite R{sub m} as well as in industrial applications like the design of electromagnetic pumps and measurement of transient flows using techniques such as Lorentz force velocimetry. This thesis presents the development of a numerical framework for direct numerical simulations (DNS) of magnetohydrodynamic flows in straight rectangular ducts at finite R{sub m}, which is subsequently used to study three specific problems. The thesis opens with a brief overview of MHD and a review of the existing state of art in duct and channel MHD flows. This is followed by a description of the physical model governing the problem of MHD duct flow with insulating walls and streamwise periodicity. In the main part of the thesis, a hybrid finite difference-boundary element computational procedure is developed that is used to solve the magnetic induction equation with boundary conditions that satisfy interior-exterior matching of the magnetic field at the domain wall boundaries. The numerical procedure is implemented into a code and a detailed verification of the same is performed in the limit of low R{sub m} by comparing with the results obtained using a quasistatic approach that has no coupling with the exterior. Following this, the effect of R{sub m} on the transient response of Lorentz force is studied using the problem of a strongly accelerated solid conducting bar in the presence of an imposed localized magnetic field. The response time of Lorentz force depends linearly on R{sub m} and shows a good agreement with the existing experiments. For sufficiently large values of R{sub m}, the peak

  11. Bayesian Alternation During Tactile Augmentation

    Directory of Open Access Journals (Sweden)

    Caspar Mathias Goeke

    2016-10-01

    Full Text Available A large number of studies suggest that the integration of multisensory signals by humans is well described by Bayesian principles. However, there are very few reports about cue combination between a native and an augmented sense. In particular, we asked the question whether adult participants are able to integrate an augmented sensory cue with existing native sensory information. Hence for the purpose of this study we build a tactile augmentation device. Consequently, we compared different hypotheses of how untrained adult participants combine information from a native and an augmented sense. In a two-interval forced choice (2 IFC task, while subjects were blindfolded and seated on a rotating platform, our sensory augmentation device translated information on whole body yaw rotation to tactile stimulation. Three conditions were realized: tactile stimulation only (augmented condition, rotation only (native condition, and both augmented and native information (bimodal condition. Participants had to choose one out of two consecutive rotations with higher angular rotation. For the analysis, we fitted the participants’ responses with a probit model and calculated the just notable difference (JND. Then we compared several models for predicting bimodal from unimodal responses. An objective Bayesian alternation model yielded a better prediction (χred2 = 1.67 than the Bayesian integration model (χred2= 4.34. Slightly higher accuracy showed a non-Bayesian winner takes all model (χred2= 1.64, which either used only native or only augmented values per subject for prediction. However the performance of the Bayesian alternation model could be substantially improved (χred2= 1.09 utilizing subjective weights obtained by a questionnaire. As a result, the subjective Bayesian alternation model predicted bimodal performance most accurately among all tested models. These results suggest that information from augmented and existing sensory modalities in

  12. Augmented reality for breast imaging.

    Science.gov (United States)

    Rancati, Alberto; Angrigiani, Claudio; Nava, Maurizio B; Catanuto, Giuseppe; Rocco, Nicola; Ventrice, Fernando; Dorr, Julio

    2018-02-21

    Augmented reality (AR) enables the superimposition of virtual reality reconstructions onto clinical images of a real patient, in real time. This allows visualization of internal structures through overlying tissues, thereby providing a virtual transparency vision of surgical anatomy. AR has been applied to neurosurgery, which utilizes a relatively fixed space, frames, and bony references; the application of AR facilitates the relationship between virtual and real data. Augmented Breast imaging (ABI) is described. Breast MRI studies for breast implant patients with seroma were performed using a Siemens 3T system with a body coil and a four-channel bilateral phased-array breast coil as the transmitter and receiver, respectively. The contrast agent used was (CA) gadolinium (Gd) injection (0.1 mmol/kg at 2 ml/s) by a programmable power injector. Dicom formated images data from 10 MRI cases of breast implant seroma and 10 MRI cases with T1-2 N0 M0 breast cancer, were imported and transformed into Augmented reality images. Augmented breast imaging (ABI) demonstrated stereoscopic depth perception, focal point convergence, 3D cursor use, and joystick fly-through. Augmented breast imaging (ABI) to the breast can improve clinical outcomes, giving an enhanced view of the structures to work on. It should be further studied to determine its utility in clinical practice.

  13. Philosophy for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Buden, D.; Madsen, W.; Redd, L.

    1993-01-01

    The philosophy used for development of nuclear thermal propulsion will determine the cost, schedule and risk associated with the activities. As important is the impression of the decision makers. If the development cost is higher than the product value, it is doubtful that funding will ever be available. On the other hand, if the development supports the economic welfare of the country with a high rate of return, the probability of funding greatly increases. The philosophy is divided into: realism, design, operations and qualification. ''Realism'' addresses such items as political acceptability, potential customers, robustness-flexibility, public acceptance, decisions as needed, concurrent engineering, and the possible role of the CIS. ''Design'' addresses ''minimum requirement,'' built in safety and reliability redundancy, emphasize on eliminating risk at lowest levels, and the possible inclusion of electric generation. ''Operations'' addresses sately, environment, operations, design margins and degradation modes. ''Qualification'' addresses testing needs and test facilities

  14. Augmented Reality Tower Technology Assessment

    Science.gov (United States)

    Reisman, Ronald J.; Brown, David M.

    2009-01-01

    Augmented Reality technology may help improve Air Traffic Control Tower efficiency and safety during low-visibility conditions. This paper presents the assessments of five off-duty controllers who shadow-controlled' with an augmented reality prototype in their own facility. Initial studies indicated unanimous agreement that this technology is potentially beneficial, though the prototype used in the study was not adequate for operational use. Some controllers agreed that augmented reality technology improved situational awareness, had potential to benefit clearance, control, and coordination tasks and duties and could be very useful for acquiring aircraft and weather information, particularly aircraft location, heading, and identification. The strongest objections to the prototype used in this study were directed at aircraft registration errors, unacceptable optical transparency, insufficient display performance in sunlight, inadequate representation of the static environment and insufficient symbology.

  15. Therapeutic options for lip augmentation.

    Science.gov (United States)

    Segall, Lorne; Ellis, David A F

    2007-11-01

    Aesthetic ideals vary with emerging fashion trends and within different cultures. However, over the past few decades, fuller lips have been considered a desirable trait. Many younger patients are presenting for lip augmentation to achieve the sought-after look commonly seen in many fashion magazines. In addition, as individuals age, they lose lip volume, with a thinning of the red lip, some effacement of the vermillion border, and elongation and flattening of the white portion of the lip. Rejuvenation of the lips plays a key role in restoring a more youthful appearance. As a result, lip augmentation appeals to a wide spectrum of patients who present with various different aesthetic goals and expectations. Numerous therapeutic options exist for aesthetic lip augmentation, ranging from temporary and permanent injectable fillers to implants and other surgical techniques.

  16. A Review of Laser Ablation Propulsion

    International Nuclear Information System (INIS)

    Phipps, Claude; Bohn, Willy; Lippert, Thomas; Sasoh, Akihiro; Schall, Wolfgang; Sinko, John

    2010-01-01

    Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Saenger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing 'Lightcraft' and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important role in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser that is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.

  17. Planetary mission requirements, technology and design considerations for a solar electric propulsion stage

    Science.gov (United States)

    Cork, M. J.; Hastrup, R. C.; Menard, W. A.; Olson, R. N.

    1979-01-01

    High energy planetary missions such as comet rendezvous, Saturn orbiter and asteroid rendezvous require development of a Solar Electric Propulsion Stage (SEPS) for augmentation of the Shuttle-IUS. Performance and functional requirements placed on the SEPS are presented. These requirements will be used in evolution of the SEPS design, which must be highly interactive with both the spacecraft and the mission design. Previous design studies have identified critical SEPS technology areas and some specific design solutions which are also presented in the paper.

  18. CONSTRAINED-TRANSPORT MAGNETOHYDRODYNAMICS WITH ADAPTIVE MESH REFINEMENT IN CHARM

    International Nuclear Information System (INIS)

    Miniati, Francesco; Martin, Daniel F.

    2011-01-01

    We present the implementation of a three-dimensional, second-order accurate Godunov-type algorithm for magnetohydrodynamics (MHD) in the adaptive-mesh-refinement (AMR) cosmological code CHARM. The algorithm is based on the full 12-solve spatially unsplit corner-transport-upwind (CTU) scheme. The fluid quantities are cell-centered and are updated using the piecewise-parabolic method (PPM), while the magnetic field variables are face-centered and are evolved through application of the Stokes theorem on cell edges via a constrained-transport (CT) method. The so-called multidimensional MHD source terms required in the predictor step for high-order accuracy are applied in a simplified form which reduces their complexity in three dimensions without loss of accuracy or robustness. The algorithm is implemented on an AMR framework which requires specific synchronization steps across refinement levels. These include face-centered restriction and prolongation operations and a reflux-curl operation, which maintains a solenoidal magnetic field across refinement boundaries. The code is tested against a large suite of test problems, including convergence tests in smooth flows, shock-tube tests, classical two- and three-dimensional MHD tests, a three-dimensional shock-cloud interaction problem, and the formation of a cluster of galaxies in a fully cosmological context. The magnetic field divergence is shown to remain negligible throughout.

  19. Magnetic field generation device for magnetohydrodynamic electric power generation

    International Nuclear Information System (INIS)

    Kuriyama, Yoshihiko.

    1993-01-01

    An existent magnetic field generation device for magnetohydrodynamic electric power generation comprises at least a pair of permanent magnets disposed to an inner circumferential surface of a yoke having such a cross sectional area that two pairs of parallel sides are present, in which different magnetic poles are opposed while interposing a flow channel for a conductive fluid therebetween. Then, first permanent magnets which generate main magnetic fields are disposed each at a gap sandwiching a plane surface including a center axis of a flow channel for the conductive fluid. Second permanent magnets which generate auxiliary magnetic fields are disposed to an inner circumferential surface of a yoke intersecting the yoke to which the first permanent magnets are disposed. The magnetic poles on the side of the flow channel for the second permanent magnets have identical polarity with that of the magnetic poles of the adjacent first permanent magnets. As a result, a magnetic flux density in the flow channel for the conductive fluid can be kept homogeneous and at a high level from a position of the axial line of the flow channel to the outer circumference, thereby enabling to remarkably improve a power generation efficiency. (N.H.)

  20. MAGNETOHYDRODYNAMIC MODELING OF SOLAR SYSTEM PROCESSES ON GEODESIC GRIDS

    Energy Technology Data Exchange (ETDEWEB)

    Florinski, V. [Department of Physics, University of Alabama, Huntsville, AL 35899 (United States); Guo, X. [Center for Space Plasma and Aeronomic Research, University of Alabama, Huntsville, AL 35899 (United States); Balsara, D. S.; Meyer, C. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2013-04-01

    This report describes a new magnetohydrodynamic numerical model based on a hexagonal spherical geodesic grid. The model is designed to simulate astrophysical flows of partially ionized plasmas around a central compact object, such as a star or a planet with a magnetic field. The geodesic grid, produced by a recursive subdivision of a base platonic solid (an icosahedron), is free from control volume singularities inherent in spherical polar grids. Multiple populations of plasma and neutral particles, coupled via charge-exchange interactions, can be simulated simultaneously with this model. Our numerical scheme uses piecewise linear reconstruction on a surface of a sphere in a local two-dimensional 'Cartesian' frame. The code employs Haarten-Lax-van-Leer-type approximate Riemann solvers and includes facilities to control the divergence of the magnetic field and maintain pressure positivity. Several test solutions are discussed, including a problem of an interaction between the solar wind and the local interstellar medium, and a simulation of Earth's magnetosphere.

  1. Dynamical instabilities in magnetohydrodynamic wind-cloud interactions

    Science.gov (United States)

    Banda-Barragan, Wladimir Eduardo; Parkin, Elliot Ross; Crocker, Roland M.; Federrath, Christoph; Bicknell, Geoffrey Vincent

    2015-08-01

    We report the results from a comprehensive numerical study that investigates the role of dynamical instabilities in magnetohydrodynamic interactions between winds and spherical clouds in the interstellar medium. The growth of Kelvin-Helmholtz (KH) and Rayleigh-Taylor (RT) instabilities at interfaces between wind and cloud material is responsible for the disruption of clouds and the formation of filamentary tails. We show how different strengths and orientations of the initial magnetic field affect the development of unstable modes and the ultimate morphology of these filaments. In the weak field limit, for example, KH instabilities developing at the flanks of clouds are dominant, whilst they are suppressed when stronger fields are considered. On the other hand, perturbations that originate RT instabilities at the leading edge of clouds are enhanced when fields are locally stronger. The orientation of the field lines also plays an important role in the structure of filaments. Magnetic ropes are key features of systems in which fields are aligned with the wind velocity, whilst current sheets are favoured when the initial field is preferentially transverse to the wind velocity. We compare our findings with analytical predictions obtained from the linear theory of hydromagnetic stability and provide a classification of filamentary tails based on their morphology.

  2. MAGNETOHYDRODYNAMIC WAVES IN A PARTIALLY IONIZED FILAMENT THREAD

    International Nuclear Information System (INIS)

    Soler, R.; Oliver, R.; Ballester, J. L.

    2009-01-01

    Oscillations and propagating waves are commonly seen in high-resolution observations of filament threads, i.e., the fine-structures of solar filaments/prominences. Since the temperature of prominences is typically of the order of 10 4 K, the prominence plasma is only partially ionized. In this paper, we study the effect of neutrals on the wave propagation in a filament thread modeled as a partially ionized homogeneous magnetic flux tube embedded in an homogeneous and fully ionized coronal plasma. Ohmic and ambipolar magnetic diffusion are considered in the basic resistive magnetohydrodynamic (MHD) equations. We numerically compute the eigenfrequencies of kink, slow, and Alfven linear MHD modes and obtain analytical approximations in some cases. We find that the existence of propagating modes is constrained by the presence of critical values of the longitudinal wavenumber. In particular, the lower and upper frequency cutoffs of kink and Alfven waves owe their existence to magnetic diffusion parallel and perpendicular to magnetic field lines, respectively. The slow mode only has a lower frequency cutoff, which is caused by perpendicular magnetic diffusion and is significantly affected by the ionization degree. In addition, ion-neutral collision is the most efficient damping mechanism for short wavelengths, while ohmic diffusion dominates in the long-wavelength regime.

  3. Regularity criteria for incompressible magnetohydrodynamics equations in three dimensions

    International Nuclear Information System (INIS)

    Lin, Hongxia; Du, Lili

    2013-01-01

    In this paper, we give some new global regularity criteria for three-dimensional incompressible magnetohydrodynamics (MHD) equations. More precisely, we provide some sufficient conditions in terms of the derivatives of the velocity or pressure, for the global regularity of strong solutions to 3D incompressible MHD equations in the whole space, as well as for periodic boundary conditions. Moreover, the regularity criterion involving three of the nine components of the velocity gradient tensor is also obtained. The main results generalize the recent work by Cao and Wu (2010 Two regularity criteria for the 3D MHD equations J. Diff. Eqns 248 2263–74) and the analysis in part is based on the works by Cao C and Titi E (2008 Regularity criteria for the three-dimensional Navier–Stokes equations Indiana Univ. Math. J. 57 2643–61; 2011 Gobal regularity criterion for the 3D Navier–Stokes equations involving one entry of the velocity gradient tensor Arch. Rational Mech. Anal. 202 919–32) for 3D incompressible Navier–Stokes equations. (paper)

  4. Stabilization of numerical interchange in spectral-element magnetohydrodynamics

    Science.gov (United States)

    Sovinec, C. R.

    2016-08-01

    Auxiliary numerical projections of the divergence of flow velocity and vorticity parallel to magnetic field are developed and tested for the purpose of suppressing unphysical interchange instability in magnetohydrodynamic simulations. The numerical instability arises with equal-order C0 finite- and spectral-element expansions of the flow velocity, magnetic field, and pressure and is sensitive to behavior at the limit of resolution. The auxiliary projections are motivated by physical field-line bending, and coercive responses to the projections are added to the flow-velocity equation. Their incomplete expansions are limited to the highest-order orthogonal polynomial in at least one coordinate of the spectral elements. Cylindrical eigenmode computations show that the projections induce convergence from the stable side with first-order ideal-MHD equations during h-refinement and p-refinement. Hyperbolic and parabolic projections and responses are compared, together with different methods for avoiding magnetic divergence error. The projections are also shown to be effective in linear and nonlinear time-dependent computations with the NIMROD code Sovinec et al. [17], provided that the projections introduce numerical dissipation.

  5. Cosmos++: relativistic magnetohydrodynamics on unstructured grids with local adaptive refinement

    International Nuclear Information System (INIS)

    Salmonson, Jay D; Anninos, Peter; Fragile, P Chris; Camarda, Karen

    2007-01-01

    A code and methodology are introduced for solving the fully general relativistic magnetohydrodynamic (GRMHD) equations using time-explicit, finite-volume discretization. The code has options for solving the GRMHD equations using traditional artificial-viscosity (AV) or non-oscillatory central difference (NOCD) methods, or a new extended AV (eAV) scheme using artificial-viscosity together with a dual energy-flux-conserving formulation. The dual energy approach allows for accurate modeling of highly relativistic flows at boost factors well beyond what has been achieved to date by standard artificial viscosity methods. It provides the benefit of Godunov methods in capturing high Lorentz boosted flows but without complicated Riemann solvers, and the advantages of traditional artificial viscosity methods in their speed and flexibility. Additionally, the GRMHD equations are solved on an unstructured grid that supports local adaptive mesh refinement using a fully threaded oct-tree (in three dimensions) network to traverse the grid hierarchy across levels and immediate neighbors. Some recent studies will be summarized

  6. Numerical magneto-hydrodynamics for relativistic nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Inghirami, Gabriele [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Goethe-Universitaet, Institute for Theoretical Physics, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Forschungszentrum Juelich, John von Neumann Institute for Computing, Juelich (Germany); Del Zanna, Luca [Universita di Firenze, Dipartimento di Fisica e Astronomia, Firenze (Italy); INAF - Osservatorio Astrofisico di Arcetri, Firenze (Italy); INFN - Sezione di Firenze, Firenze (Italy); Beraudo, Andrea [INFN - Sezione di Torino, Torino (Italy); Moghaddam, Mohsen Haddadi [INFN - Sezione di Torino, Torino (Italy); Hakim Sabzevari University, Department of Physics, P. O. Box 397, Sabzevar (Iran, Islamic Republic of); Becattini, Francesco [Universita di Firenze, Dipartimento di Fisica e Astronomia, Firenze (Italy); INFN - Sezione di Firenze, Firenze (Italy); Bleicher, Marcus [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Goethe-Universitaet, Institute for Theoretical Physics, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Forschungszentrum Juelich, John von Neumann Institute for Computing, Juelich (Germany)

    2016-12-15

    We present an improved version of the ECHO-QGP numerical code, which self-consistently includes for the first time the effects of electromagnetic fields within the framework of relativistic magneto-hydrodynamics (RMHD). We discuss results of its application in relativistic heavy-ion collisions in the limit of infinite electrical conductivity of the plasma. After reviewing the relevant covariant 3 + 1 formalisms, we illustrate the implementation of the evolution equations in the code and show the results of several tests aimed at assessing the accuracy and robustness of the implementation. After providing some estimates of the magnetic fields arising in non-central high-energy nuclear collisions, we perform full RMHD simulations of the evolution of the quark-gluon plasma in the presence of electromagnetic fields and discuss the results. In our ideal RMHD setup we find that the magnetic field developing in non-central collisions does not significantly modify the elliptic flow of the final hadrons. However, since there are uncertainties in the description of the pre-equilibrium phase and also in the properties of the medium, a more extensive survey of the possible initial conditions as well as the inclusion of dissipative effects are indeed necessary to validate this preliminary result. (orig.)

  7. MAGNETOHYDRODYNAMIC SIMULATIONS OF THE ATMOSPHERE OF HD 209458b

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, T. M.; Showman, A. P., E-mail: tami@lpl.arizona.edu, E-mail: showman@lpl.arizona.edu [Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721 (United States)

    2014-02-10

    We present the first three-dimensional magnetohydrodynamic (MHD) simulations of the atmosphere of HD 209458b which self-consistently include reduction of winds due to the Lorentz force and Ohmic heating. We find overall wind structures similar to that seen in previous models of hot Jupiter atmospheres, with strong equatorial jets and meridional flows poleward near the day side and equatorward near the night side. Inclusion of magnetic fields slows those winds and leads to Ohmic dissipation. We find wind slowing ranging from 10%-40% for reasonable field strengths. We find Ohmic dissipation rates ∼10{sup 17} W at 100 bar, orders of magnitude too small to explain the inflated radius of this planet. Faster wind speeds, not achievable in these anelastic calculations, may be able to increase this value somewhat, but likely will not be able to close the gap necessary to explain the inflated radius. We demonstrate that the discrepancy between the simulations presented here and previous models is due to inadequate treatment of magnetic field geometry and evolution. Induced poloidal fields become much larger than those imposed, highlighting the need for a self-consistent MHD treatment of these hot atmospheres.

  8. Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. II. Simulations

    Science.gov (United States)

    Schober, Jennifer; Rogachevskii, Igor; Brandenburg, Axel; Boyarsky, Alexey; Fröhlich, Jürg; Ruchayskiy, Oleg; Kleeorin, Nathan

    2018-05-01

    Using direct numerical simulations (DNS), we study laminar and turbulent dynamos in chiral magnetohydrodynamics with an extended set of equations that accounts for an additional contribution to the electric current due to the chiral magnetic effect (CME). This quantum phenomenon originates from an asymmetry between left- and right-handed relativistic fermions in the presence of a magnetic field and gives rise to a chiral dynamo. We show that the magnetic field evolution proceeds in three stages: (1) a small-scale chiral dynamo instability, (2) production of chiral magnetically driven turbulence and excitation of a large-scale dynamo instability due to a new chiral effect (α μ effect), and (3) saturation of magnetic helicity and magnetic field growth controlled by a conservation law for the total chirality. The α μ effect becomes dominant at large fluid and magnetic Reynolds numbers and is not related to kinetic helicity. The growth rate of the large-scale magnetic field and its characteristic scale measured in the numerical simulations agree well with theoretical predictions based on mean-field theory. The previously discussed two-stage chiral magnetic scenario did not include stage (2), during which the characteristic scale of magnetic field variations can increase by many orders of magnitude. Based on the findings from numerical simulations, the relevance of the CME and the chiral effects revealed in the relativistic plasma of the early universe and of proto-neutron stars are discussed.

  9. Contribution to the resolution of magnetohydrodynamic and magnetostatic equations

    International Nuclear Information System (INIS)

    Boulbe, C.

    2007-10-01

    Interaction between a plasma and a magnetic field appears and has an important role in various domains such as thermonuclear fusion by magnetic confinement or astrophysical plasmas for example. In evolution, these interactions are described by the equations of magnetohydrodynamics (MHD). At equilibrium, the MHD equations result in the magnetostatic equations involving the magnetic field and the kinetic pressure of the plasma. The magnetostatic equations form a system of 3-dimensional non linear partial differential equations involving a magnetic field and a kinetic plasma pressure. When the pressure is supposed negligible, the magnetic field is known as Beltrami field. In a first time, we propose to solve numerically the Beltrami field problem using a fixed point iterative algorithm associated with finite element methods. This iterative strategy is extended in a second time to the computation of magnetostatic configurations with pressure. In the sequel, we interest in the approximation of ideal MHD equations. This system forms a nonlinear hyperbolic conservation law. We propose to use a finite volume approach, in which fluxes are calculated by a Roe's method on a tetrahedral mesh. Fluxes of the magnetic field are modified in order to satisfy the constraint of divergence free imposed on it. The proposed methods have been implemented in two new 3-dimensional codes called TETRAFFF for equilibrium, and TETRAMHD for MHD. The obtained numerical results confirm the high performance of these methods. (author)

  10. ADER discontinuous Galerkin schemes for general-relativistic ideal magnetohydrodynamics

    Science.gov (United States)

    Fambri, F.; Dumbser, M.; Köppel, S.; Rezzolla, L.; Zanotti, O.

    2018-03-01

    We present a new class of high-order accurate numerical algorithms for solving the equations of general-relativistic ideal magnetohydrodynamics in curved spacetimes. In this paper we assume the background spacetime to be given and static, i.e. we make use of the Cowling approximation. The governing partial differential equations are solved via a new family of fully-discrete and arbitrary high-order accurate path-conservative discontinuous Galerkin (DG) finite-element methods combined with adaptive mesh refinement and time accurate local timestepping. In order to deal with shock waves and other discontinuities, the high-order DG schemes are supplemented with a novel a-posteriori subcell finite-volume limiter, which makes the new algorithms as robust as classical second-order total-variation diminishing finite-volume methods at shocks and discontinuities, but also as accurate as unlimited high-order DG schemes in smooth regions of the flow. We show the advantages of this new approach by means of various classical two- and three-dimensional benchmark problems on fixed spacetimes. Finally, we present a performance and accuracy comparisons between Runge-Kutta DG schemes and ADER high-order finite-volume schemes, showing the higher efficiency of DG schemes.

  11. Plasma tubes becoming collimated as a result of magnetohydrodynamic pumping

    International Nuclear Information System (INIS)

    Yun, Gunsu S.; Bellan, Paul M.

    2010-01-01

    Collimated magnetized plasma structures are commonly observed on galactic, stellar, and laboratory scales. The Caltech plasma gun produces magnetically driven plasma jets bearing a striking resemblance to astrophysical jets and solar coronal loops by imposing boundary conditions analogous to those plasmas. This paper presents experimental observations of gun-produced plasma jets that support a previously proposed magnetohydrodynamic (MHD) pumping model [P. M. Bellan, Phys. Plasmas 10, 1999 (2003)] as a universal collimation mechanism. For any initially flared, magnetized plasma tube with a finite axial current, the model predicts (i) magnetic pumping of plasma particles from a constricted region into a bulged region and (ii) tube collimation if the flow slows down at the bulged region leading to accumulation of mass and thus concentrating the azimuthal magnetic flux frozen in the mass flow (i.e., increasing the pinch force). Time- and space-resolved spectroscopic measurements of gun-produced plasmas have confirmed the highly dynamic nature of the process leading to a collimated state, namely, (i) suprathermal Alfvenic flow (30-50 km/s), (ii) large density amplification from ∼10 17 to ∼10 22 m -3 in an Alfvenic time scale (5-10 μs), and (iii) flow slowing down and mass accumulation at the flow front, the place where the tube collimation occurs according to high-speed camera imaging. These observations are consistent with the predictions of the MHD pumping model, and offer valuable insight into the formation mechanism of laboratory, solar, and astrophysical plasma structures.

  12. SPECTRA OF STRONG MAGNETOHYDRODYNAMIC TURBULENCE FROM HIGH-RESOLUTION SIMULATIONS

    International Nuclear Information System (INIS)

    Beresnyak, Andrey

    2014-01-01

    Magnetohydrodynamic (MHD) turbulence is present in a variety of solar and astrophysical environments. Solar wind fluctuations with frequencies lower than 0.1 Hz are believed to be mostly governed by Alfvénic turbulence with particle transport depending on the power spectrum and the anisotropy of such turbulence. Recently, conflicting spectral slopes for the inertial range of MHD turbulence have been reported by different groups. Spectral shapes from earlier simulations showed that MHD turbulence is less scale-local compared with hydrodynamic turbulence. This is why higher-resolution simulations, and careful and rigorous numerical analysis is especially needed for the MHD case. In this Letter, we present two groups of simulations with resolution up to 4096 3 , which are numerically well-resolved and have been analyzed with an exact and well-tested method of scaling study. Our results from both simulation groups indicate that the asymptotic power spectral slope for all energy-related quantities, such as total energy and residual energy, is around –1.7, close to Kolmogorov's –5/3. This suggests that residual energy is a constant fraction of the total energy and that in the asymptotic regime of Alfvénic turbulence magnetic and kinetic spectra have the same scaling. The –1.5 slope for energy and the –2 slope for residual energy, which have been suggested earlier, are incompatible with our numerics

  13. Multiwavelength Observations of Relativistic Jets from General Relativistic Magnetohydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Richard Anantua

    2018-03-01

    Full Text Available This work summarizes a program intended to unify three burgeoning branches of the high-energy astrophysics of relativistic jets: general relativistic magnetohydrodynamic (GRMHD simulations of ever-increasing dynamical range, the microphysical theory of particle acceleration under relativistic conditions, and multiwavelength observations resolving ever-decreasing spatiotemporal scales. The process, which involves converting simulation output into time series of images and polarization maps that can be directly compared to observations, is performed by (1 self-consistently prescribing models for emission, absorption, and particle acceleration and (2 performing time-dependent polarized radiative transfer. M87 serves as an exemplary prototype for this investigation due to its prominent and well-studied jet and the imminent prospect of learning much more from Event Horizon Telescope (EHT observations this year. Synthetic observations can be directly compared with real observations for observational signatures such as jet instabilities, collimation, relativistic beaming, and polarization. The simplest models described adopt the standard equipartition hypothesis; other models calculate emission by relating it to current density or shear. These models are intended for application to the radio jet instead of the higher frequency emission, the disk and the wind, which will be subjects of future investigations.

  14. Sparse Jacobian construction for mapped grid visco-resistive magnetohydrodynamics

    KAUST Repository

    Reynolds, Daniel R.

    2012-01-01

    We apply the automatic differentiation tool OpenAD toward constructing a preconditioner for fully implicit simulations of mapped grid visco-resistive magnetohydrodynamics (MHD), used in modeling tokamak fusion devices. Our simulation framework employs a fully implicit formulation in time, and a mapped finite volume spatial discretization. We solve this model using inexact Newton-Krylov methods. Of critical importance in these iterative solvers is the development of an effective preconditioner, which typically requires knowledge of the Jacobian of the nonlinear residual function. However, due to significant nonlinearity within our PDE system, our mapped spatial discretization, and stencil adaptivity at physical boundaries, analytical derivation of these Jacobian entries is highly nontrivial. This paper therefore focuses on Jacobian construction using automatic differentiation. In particular, we discuss applying OpenAD to the case of a spatially-adaptive stencil patch that automatically handles differences between the domain interior and boundary, and configuring AD for reduced stencil approximations to the Jacobian. We investigate both scalar and vector tangent mode differentiation, along with simple finite difference approaches, to compare the resulting accuracy and efficiency of Jacobian construction in this application. © 2012 Springer-Verlag.

  15. Magnetohydrodynamic Simulations for Studying Solar Flare Trigger Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Muhamad, J.; Kusano, K.; Inoue, S.; Shiota, D. [Institute for Space-Earth Environmental Research, Nagoya University, Furocho, Chikusa-ku, Nagoya, Aichi, 464-8601 (Japan)

    2017-06-20

    In order to understand the flare trigger mechanism, we conduct three-dimensional magnetohydrodynamic simulations using a coronal magnetic field model derived from data observed by the Hinode satellite. Several types of magnetic bipoles are imposed into the photospheric boundary of the Nonlinear Force-free Field model of Active Region (AR) NOAA 10930 on 2006 December 13, to investigate what kind of magnetic disturbance may trigger the flare. As a result, we confirm that certain small bipole fields, which emerge into the highly sheared global magnetic field of an AR, can effectively trigger a flare. These bipole fields can be classified into two groups based on their orientation relative to the polarity inversion line: the so-called opposite polarity, and reversed shear structures, as suggested by Kusano et al. We also investigate the structure of the footpoints of reconnected field lines. By comparing the distribution of reconstructed field lines and observed flare ribbons, the trigger structure of the flare can be inferred. Our simulation suggests that the data-constrained simulation, taking into account both the large-scale magnetic structure and small-scale magnetic disturbance (such as emerging fluxes), is a good way to discover a flare-producing AR, which can be applied to space weather prediction.

  16. Nonlinear magnetohydrodynamics simulation using high-order finite elements

    International Nuclear Information System (INIS)

    Plimpton, Steven James; Schnack, D.D.; Tarditi, A.; Chu, M.S.; Gianakon, T.A.; Kruger, S.E.; Nebel, R.A.; Barnes, D.C.; Sovinec, C.R.; Glasser, A.H.

    2005-01-01

    A conforming representation composed of 2D finite elements and finite Fourier series is applied to 3D nonlinear non-ideal magnetohydrodynamics using a semi-implicit time-advance. The self-adjoint semi-implicit operator and variational approach to spatial discretization are synergistic and enable simulation in the extremely stiff conditions found in high temperature plasmas without sacrificing the geometric flexibility needed for modeling laboratory experiments. Growth rates for resistive tearing modes with experimentally relevant Lundquist number are computed accurately with time-steps that are large with respect to the global Alfven time and moderate spatial resolution when the finite elements have basis functions of polynomial degree (p) two or larger. An error diffusion method controls the generation of magnetic divergence error. Convergence studies show that this approach is effective for continuous basis functions with p (ge) 2, where the number of test functions for the divergence control terms is less than the number of degrees of freedom in the expansion for vector fields. Anisotropic thermal conduction at realistic ratios of parallel to perpendicular conductivity (x(parallel)/x(perpendicular)) is computed accurately with p (ge) 3 without mesh alignment. A simulation of tearing-mode evolution for a shaped toroidal tokamak equilibrium demonstrates the effectiveness of the algorithm in nonlinear conditions, and its results are used to verify the accuracy of the numerical anisotropic thermal conduction in 3D magnetic topologies.

  17. Magnetohydrodynamic flow in ducts with discontinuous electrical insulation

    International Nuclear Information System (INIS)

    Mistrangelo, C.; Bühler, L.

    2015-01-01

    Highlights: • Liquid metal MHD flows in ducts with flow channel inserts. • Study of the influence of local interruption of electrical insulation. • 3D numerical simulations. - Abstract: In liquid metal blankets the interaction of the moving breeder with the intense magnetic field that confines the fusion plasma results in significant modifications of the velocity distribution and increased pressure drop compared to hydrodynamic flows. Those changes are due to the occurrence of electromagnetic forces that slow down the core flow and which are balanced by large driving pressure heads. The resulting magnetohydrodynamic (MHD) pressure losses are proportional to the electric current density induced in the fluid and they can be reduced by electrically decoupling the wall from the liquid metal. For applications to dual coolant blankets it is foreseen to loosely insert electrically insulating liners into the ducts. In long channels the insulation could consist of a number of shorter inserts, which implies a possible local interruption of the insulation. Three dimensional numerical simulations have been performed to investigate MHD flows in electrically well-conducting channels with internal discontinuous insulating inserts. The local jump in the electric conductivity of the duct wall results in induced 3D electric currents and related electromagnetic forces yielding additional pressure losses and increased velocity in boundary layers parallel to the magnetic field.

  18. Magnetohydrodynamic equilibria and local stability of axisymmetric tokamak plasmas

    International Nuclear Information System (INIS)

    Peng, Y.K.M.; Dory, R.A.; Nelson, D.B.; Sayer, R.O.

    1976-07-01

    Axisymmetric magnetohydrodynamic equilibria are evaluated in terms of the Mercier Stability Criterion. The parameters of interest include poloidal beta (β/sub p/), current and pressure profile widths, D-shaped and doublet plasmas with elongation (sigma) and triangularity (delta), and the aspect ratio (A). For marginal local stability, the critical values of β, plasma current, and the safety factor q with fixed toroidal field at the geometric center of the plasma are obtained. It is shown that for a wide range of profiles in a D-shaped plasma with A = 3, the highest critical β occurs at β/sub p/ = 2.4, sigma = 1.65, and delta = 0.5. If the toroidal field at the coil surface is fixed, the highest critical pressure occurs near A approximately 3 to 4, given reasonable distance between the coils and the plasma edge. Calculations for a Doublet II-A plasma with sigma = 3 show that with similar pressure profile the highest critical β occurs at β/sub p/ = 1 and is 84 percent of the highest critical β for the D-shaped plasmas. Critical values of ohmic heating power density are also found to be comparable for the two plasma shapes. A D-shaped plasma with the above parameters is suggested for use in future high-β tokamak devices

  19. Variational-moment method for computing magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Lao, L.L.

    1983-08-01

    A fast yet accurate method to compute magnetohydrodynamic equilibria is provided by the variational-moment method, which is similar to the classical Rayleigh-Ritz-Galerkin approximation. The equilibrium solution sought is decomposed into a spectral representation. The partial differential equations describing the equilibrium are then recast into their equivalent variational form and systematically reduced to an optimum finite set of coupled ordinary differential equations. An appropriate spectral decomposition can make the series representing the solution coverge rapidly and hence substantially reduces the amount of computational time involved. The moment method was developed first to compute fixed-boundary inverse equilibria in axisymmetric toroidal geometry, and was demonstrated to be both efficient and accurate. The method since has been generalized to calculate free-boundary axisymmetric equilibria, to include toroidal plasma rotation and pressure anisotropy, and to treat three-dimensional toroidal geometry. In all these formulations, the flux surfaces are assumed to be smooth and nested so that the solutions can be decomposed in Fourier series in inverse coordinates. These recent developments and the advantages and limitations of the moment method are reviewed. The use of alternate coordinates for decomposition is discussed

  20. Experimental and theoretical study of magnetohydrodynamic ship models.

    Directory of Open Access Journals (Sweden)

    David Cébron

    Full Text Available Magnetohydrodynamic (MHD ships represent a clear demonstration of the Lorentz force in fluids, which explains the number of students practicals or exercises described on the web. However, the related literature is rather specific and no complete comparison between theory and typical small scale experiments is currently available. This work provides, in a self-consistent framework, a detailed presentation of the relevant theoretical equations for small MHD ships and experimental measurements for future benchmarks. Theoretical results of the literature are adapted to these simple battery/magnets powered ships moving on salt water. Comparison between theory and experiments are performed to validate each theoretical step such as the Tafel and the Kohlrausch laws, or the predicted ship speed. A successful agreement is obtained without any adjustable parameter. Finally, based on these results, an optimal design is then deduced from the theory. Therefore this work provides a solid theoretical and experimental ground for small scale MHD ships, by presenting in detail several approximations and how they affect the boat efficiency. Moreover, the theory is general enough to be adapted to other contexts, such as large scale ships or industrial flow measurement techniques.

  1. Magnetohydrodynamic motion of a two-fluid plasma

    Science.gov (United States)

    Burby, J. W.

    2017-08-01

    The two-fluid Maxwell system couples frictionless electrons and ion fluids via Maxwell's equations. When the frequencies of light waves, Langmuir waves, and single-particle cyclotron motion are scaled to be asymptotically large, the two-fluid Maxwell system becomes a fast-slow dynamical system. This fast-slow system admits a formally exact single-fluid closure that may be computed systematically with any desired order of accuracy through the use of a functional partial differential equation. In the leading order approximation, the closure reproduces magnetohydrodynamics (MHD). Higher order truncations of the closure give an infinite hierarchy of extended MHD models that allow for arbitrary mass ratio, as well as perturbative deviations from charge neutrality. The closure is interpreted geometrically as an invariant slow manifold in the infinite-dimensional two-fluid phase space, on which two-fluid motions are free of high-frequency oscillations. This perspective shows that the full closure inherits a Hamiltonian structure from the two-fluid theory. By employing infinite-dimensional Lie transforms, the Poisson bracket for the all-order closure may be obtained in the closed form. Thus, conservative truncations of the single-fluid closure may be obtained by simply truncating the single-fluid Hamiltonian. Moreover, the closed-form expression for the all-order bracket gives explicit expressions for a number of the full closure's conservation laws. Notably, the full closure, as well as any of its Hamiltonian truncations, admits a pair of independent circulation invariants.

  2. Experimental and theoretical study of magnetohydrodynamic ship models.

    Science.gov (United States)

    Cébron, David; Viroulet, Sylvain; Vidal, Jérémie; Masson, Jean-Paul; Viroulet, Philippe

    2017-01-01

    Magnetohydrodynamic (MHD) ships represent a clear demonstration of the Lorentz force in fluids, which explains the number of students practicals or exercises described on the web. However, the related literature is rather specific and no complete comparison between theory and typical small scale experiments is currently available. This work provides, in a self-consistent framework, a detailed presentation of the relevant theoretical equations for small MHD ships and experimental measurements for future benchmarks. Theoretical results of the literature are adapted to these simple battery/magnets powered ships moving on salt water. Comparison between theory and experiments are performed to validate each theoretical step such as the Tafel and the Kohlrausch laws, or the predicted ship speed. A successful agreement is obtained without any adjustable parameter. Finally, based on these results, an optimal design is then deduced from the theory. Therefore this work provides a solid theoretical and experimental ground for small scale MHD ships, by presenting in detail several approximations and how they affect the boat efficiency. Moreover, the theory is general enough to be adapted to other contexts, such as large scale ships or industrial flow measurement techniques.

  3. MAGNETOHYDRODYNAMIC SIMULATIONS OF THE ATMOSPHERE OF HD 209458b

    International Nuclear Information System (INIS)

    Rogers, T. M.; Showman, A. P.

    2014-01-01

    We present the first three-dimensional magnetohydrodynamic (MHD) simulations of the atmosphere of HD 209458b which self-consistently include reduction of winds due to the Lorentz force and Ohmic heating. We find overall wind structures similar to that seen in previous models of hot Jupiter atmospheres, with strong equatorial jets and meridional flows poleward near the day side and equatorward near the night side. Inclusion of magnetic fields slows those winds and leads to Ohmic dissipation. We find wind slowing ranging from 10%-40% for reasonable field strengths. We find Ohmic dissipation rates ∼10 17  W at 100 bar, orders of magnitude too small to explain the inflated radius of this planet. Faster wind speeds, not achievable in these anelastic calculations, may be able to increase this value somewhat, but likely will not be able to close the gap necessary to explain the inflated radius. We demonstrate that the discrepancy between the simulations presented here and previous models is due to inadequate treatment of magnetic field geometry and evolution. Induced poloidal fields become much larger than those imposed, highlighting the need for a self-consistent MHD treatment of these hot atmospheres

  4. The effect of magnetohydrodynamic nano fluid flow through porous cylinder

    Science.gov (United States)

    Widodo, Basuki; Arif, Didik Khusnul; Aryany, Deviana; Asiyah, Nur; Widjajati, Farida Agustini; Kamiran

    2017-08-01

    This paper concerns about the analysis of the effect of magnetohydrodynamic nano fluid flow through horizontal porous cylinder on steady and incompressible condition. Fluid flow is assumed opposite gravity and induced by magnet field. Porous cylinder is assumed had the same depth of porous and was not absorptive. The First thing to do in this research is to build the model of fluid flow to obtain dimentional governing equations. The dimentional governing equations are consist of continuity equation, momentum equation, and energy equation. Furthermore, the dimensional governing equations are converted to non-dimensional governing equation by using non-dimensional parameters and variables. Then, the non-dimensional governing equations are transformed into similarity equations using stream function and solved using Keller-Box method. The result of numerical solution further is obtained by taking variation of magnetic parameter, Prandtl number, porosity parameter, and volume fraction. The numerical results show that velocity profiles increase and temperature profiles decrease when both of the magnetic and the porosity parameter increase. However, the velocity profiles decrease and the temperature profiles increase when both of the magnetic and the porosity parameter increase.

  5. Stationary magnetohydrodynamic equilibrium of toroidal plasma in rotation

    International Nuclear Information System (INIS)

    Missiato, O.

    1986-01-01

    The stationary equations of classical magnetohydrodynamics are utilized to study the toroidal motion of a thermonuclear magnetically - confined plasma with toroidal symmetry (Tokamak). In the present work, we considered a purely toroidal stationary rotation and te problem is reduced to studing a second order partial differencial equation of eliptic type Maschke-Perrin. Assuming that the temperature remains constant on the magnetic surfaces, an analitic solution, valid for low Mach numbers (M ≤ 0 .4), was obtained for the above-mentioned equation by means of a technique developed by Pantuso Sudano. From the solution found, we traced graphs for the quantities which described the equilibrium state of the plasma, namely: mass density, pressure, temperature, electric current density and toroidal magnetic field. Finally we compare this analitical model with others works which utilized differents analitical models and numerical simulations. We conclude that the solutions obtained are in good agreement with the previos results. In addition, however, our model contains the results of Sudano-Goes with the additional advantage of employing much simple analitical expressions. (author) [pt

  6. Interactions between two magnetohydrodynamic Kelvin-Helmholtz instabilities

    International Nuclear Information System (INIS)

    Lai, S. H.; Ip, W.-H.

    2011-01-01

    Kelvin-Helmholtz instability (KHI) driven by velocity shear is a generator of waves found away from the vicinity of the velocity-shear layers since the fast-mode waves radiated from the surface perturbation can propagate away from the transition layer. Thus the nonlinear evolution associated with KHI is not confined near the velocity-shear layer. To understand the physical processes in multiple velocity-shear layers, the interactions between two KHIs at a pair of tangential discontinuities are studied by two-dimensional magnetohydrodynamic simulations. It is shown that the interactions between two neighboring velocity-shear layers are dominated by the propagation of the fast-mode waves radiated from KHIs in a nonuniform medium. That is, the fast-mode Mach number of the surface waves M Fy , a key factor of the nonlinear evolution of KHI, will vary with the nonuniform background plasma velocity due to the existence of two neighboring velocity-shear layers. As long as the M Fy observed in the plasma rest frame across the neighboring velocity-shear layer is larger than one, newly formed fast-mode Mach-cone-like (MCL) plane waves generated by the fast-mode waves can be found in this region. As results of the interactions of two KHIs, reflection and distortion of the MCL plane waves generate the turbulence and increase the plasma temperature, which provide possible mechanisms of heating and accelerating local plasma between two neighboring velocity-shear layers.

  7. Concomitant Hamiltonian and topological structures of extended magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lingam, Manasvi, E-mail: mlingam@princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Miloshevich, George, E-mail: gmilosh@physics.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Morrison, Philip J., E-mail: morrison@physics.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States)

    2016-07-15

    Highlights: • Common Hamiltonian structure of the extended MHD models presented. • The generalized helicities of extended MHD shown to be topological invariants analogous to fluid/magnetic helicity. • Generalized helicities can be studied through powerful topological and knot-theoretic methods such as the Jones polynomial. • Each extended MHD model shown to possess two Lie-dragged 2-forms, which are interpreted as the generalized vorticity fluxes. - Abstract: The paper describes the unique geometric properties of ideal magnetohydrodynamics (MHD), and demonstrates how such features are inherited by extended MHD, viz. models that incorporate two-fluid effects (the Hall term and electron inertia). The generalized helicities, and other geometric expressions for these models are presented in a topological context, emphasizing their universal facets. Some of the results presented include: the generalized Kelvin circulation theorems; the existence of two Lie-dragged 2-forms; and two concomitant helicities that can be studied via the Jones polynomial, which is widely utilized in Chern–Simons theory. The ensuing commonality is traced to the existence of an underlying Hamiltonian structure for all the extended MHD models, exemplified by the presence of a unique noncanonical Poisson bracket, and its associated energy.

  8. Theory and Transport of Nearly Incompressible Magnetohydrodynamic Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Zank, G. P.; Adhikari, L.; Hunana, P. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Shiota, D. [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Bruno, R. [INAF-IAPS Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Telloni, D. [INAF—Astrophysical Observatory of Torino, Via Osservatorio 20, I-10025 Pino Torinese (Italy)

    2017-02-01

    The theory of nearly incompressible magnetohydrodynamics (NI MHD) was developed largely in the early 1990s, together with an important extension to inhomogeneous flows in 2010. Much of the focus in the earlier work was to understand the apparent incompressibility of the solar wind and other plasma environments, and the relationship of density fluctuations to apparently incompressible manifestations of turbulence in the solar wind and interstellar medium. Further important predictions about the “dimensionality” of solar wind turbulence and its relationship to the plasma beta were made and subsequently confirmed observationally. However, despite the initial success of NI MHD in describing fluctuations in the solar wind, a detailed application to solar wind turbulence has not been undertaken. Here, we use the equations of NI MHD to describe solar wind turbulence, rewriting the NI MHD system in terms of Elsässer variables. Distinct descriptions of 2D and slab turbulence emerge naturally from the Elsässer formulation, as do the nonlinear couplings between 2D and slab components. For plasma beta order 1 or less regions, predictions for 2D and slab spectra result from the NI MHD description, and predictions for the spectral characteristics of density fluctuations can be made. We conclude by presenting a NI MHD formulation describing the transport of majority 2D and minority slab turbulence throughout the solar wind. A preliminary comparison of theory and observations is presented.

  9. Conditions for sustainment of magnetohydrodynamic turbulence driven by Alfven waves

    International Nuclear Information System (INIS)

    Dmitruk, P.; Matthaeus, W.H.; Milano, L.J.; Oughton, S.

    2001-01-01

    In a number of space and astrophysical plasmas, turbulence is driven by the supply of wave energy. In the context of incompressible magnetohydrodynamics (MHD) there are basic physical reasons, associated with conservation of cross helicity, why this kind of driving may be ineffective in sustaining turbulence. Here an investigation is made into some basic requirements for sustaining steady turbulence and dissipation in the context of incompressible MHD in a weakly inhomogeneous open field line region, driven by the supply of unidirectionally propagating waves at a boundary. While such wave driving cannot alone sustain turbulence, the addition of reflection permits sustainment. Another sustainment issue is the action of the nonpropagating or quasi-two dimensional part of the spectrum; this is particularly important in setting up a steady cascade. Thus, details of the wave boundary conditions also affect the ease of sustaining a cascade. Supply of a broadband spectrum of waves can overcome the latter difficulty but not the former, that is, the need for reflections. Implications for coronal heating and other astrophysical applications, as well as simulations, are suggested

  10. On spectral scaling laws for incompressible anisotropic magnetohydrodynamic turbulence

    International Nuclear Information System (INIS)

    Galtier, Sebastien; Pouquet, Annick; Mangeney, Andre

    2005-01-01

    A heuristic model is given for anisotropic magnetohydrodynamics turbulence in the presence of a uniform external magnetic field B 0 e parallel . The model is valid for both moderate and strong B 0 and is able to describe both the strong and weak wave turbulence regimes as well as the transition between them. The main ingredient of the model is the assumption of constant ratio at all scales between the linear wave period and the nonlinear turnover time scale. Contrary to the model of critical balance introduced by Goldreich and Sridhar [Astrophys. J. 438, 763 (1995)], it is not assumed, in addition, that this ratio be equal to unity at all scales. This allows us to make use of the Iroshnikov-Kraichnan phenomenology; it is then possible to recover the widely observed anisotropic scaling law k parallel ∝k perpendicular 2/3 between parallel and perpendicular wave numbers (with reference to B 0 e parallel and to obtain for the total-energy spectrum E(k perpendicular ,k parallel )∼k perpendicular -α k parallel -β the universal prediction, 3α+2β=7. In particular, with such a prediction, the weak Alfven wave turbulence constant-flux solution is recovered and, for the first time, a possible explanation to its precursor found numerically by Galtier et al. [J. Plasma Phys. 63, 447 (2000)] is given.

  11. Toroidal visco-resistive magnetohydrodynamic steady states contain vortices

    International Nuclear Information System (INIS)

    Bates, J.W.; Montgomery, D.C.

    1998-01-01

    Poloidal velocity fields seem to be a fundamental feature of resistive toroidal magnetohydrodynamic (MHD) steady states. They are a consequence of force balance in toroidal geometry, do not require any kind of instability, and disappear in the open-quotes straight cylinderclose quotes (infinite aspect ratio) limit. If a current density j results from an axisymmetric toroidal electric field that is irrotational inside a torus, it leads to a magnetic field B such that ∇x(jxB) is nonvanishing, so that the Lorentz force cannot be balanced by the gradient of any scalar pressure in the equation of motion. In a steady state, finite poloidal velocity fields and toroidal vorticity must exist. Their calculation is difficult, but explicit solutions can be found in the limit of low Reynolds number. Here, existing calculations are generalized to the more realistic case of no-slip boundary conditions on the velocity field and a circular toroidal cross section. The results of this paper strongly suggest that discussions of confined steady states in toroidal MHD must include flows from the outset. copyright 1998 American Institute of Physics

  12. Flux canceling in three-dimensional radiative magnetohydrodynamic simulations

    Science.gov (United States)

    Thaler, Irina; Spruit, H. C.

    2017-05-01

    We aim to study the processes involved in the disappearance of magnetic flux between regions of opposite polarity on the solar surface using realistic three-dimensional (3D) magnetohydrodynamic (MHD) simulations. "Retraction" below the surface driven by magnetic forces is found to be a very effective mechanism of flux canceling of opposite polarities. The speed at which flux disappears increases strongly with initial mean flux density. In agreement with existing inferences from observations we suggest that this is a key process of flux disappearance within active complexes. Intrinsic kG strength concentrations connect the surface to deeper layers by magnetic forces, and therefore the influence of deeper layers on the flux canceling process is studied. We do this by comparing simulations extending to different depths. For average flux densities of 50 G, and on length scales on the order of 3 Mm in the horizontal and 10 Mm in depth, deeper layers appear to have only a mild influence on the effective rate of diffusion.

  13. Numerical and adaptive grid methods for ideal magnetohydrodynamics

    Science.gov (United States)

    Loring, Burlen

    2008-02-01

    In this thesis numerical finite difference methods for ideal magnetohydrodynamics(MHD) are investigated. A review of the relevant physics, essential for interpreting the results of numerical solutions and constructing validation cases, is presented. This review includes a discusion of the propagation of small amplitude waves in the MHD system as well as a thorough discussion of MHD shocks, contacts and rarefactions and how they can be piece together to obtain a solutions to the MHD Riemann problem. Numerical issues relevant to the MHD system such as: the loss of nonlinear numerical stability in the presence of discontinuous solutions, the introduction of spurious forces due to the growth of the divergence of the magnetic flux density, the loss of pressure positivity, and the effects of non-conservative numerical methods are discussed, along with the practical approaches which can be used to remedy or minimize the negative consequences of each. The use of block structured adaptive mesh refinement is investigated in the context of a divergence free MHD code. A new method for conserving magnetic flux across AMR grid interfaces is developed and a detailed discussion of our implementation of this method using the CHOMBO AMR framework is given. A preliminary validation of the new method for conserving magnetic flux density across AMR grid interfaces illustrates that the method works. Finally a number of code validation cases are examined spurring a discussion of the strengths and weaknesses of the numerics employed.

  14. Steepest descent moment method for three-dimensional magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Hirshman, S.P.; Whitson, J.C.

    1983-11-01

    An energy principle is used to obtain the solution of the magnetohydrodynamic (MHD) equilibrium equation J Vector x B Vector - del p = 0 for nested magnetic flux surfaces that are expressed in the inverse coordinate representation x Vector = x Vector(rho, theta, zeta). Here, theta and zeta are poloidal and toroidal flux coordinate angles, respectively, and p = p(rho) labels a magnetic surface. Ordinary differential equations in rho are obtained for the Fourier amplitudes (moments) in the doubly periodic spectral decomposition of x Vector. A steepest descent iteration is developed for efficiently solving these nonlinear, coupled moment equations. The existence of a positive-definite energy functional guarantees the monotonic convergence of this iteration toward an equilibrium solution (in the absence of magnetic island formation). A renormalization parameter lambda is introduced to ensure the rapid convergence of the Fourier series for x Vector, while simultaneously satisfying the MHD requirement that magnetic field lines are straight in flux coordinates. A descent iteration is also developed for determining the self-consistent value for lambda

  15. Self-organization in three-dimensional compressible magnetohydrodynamic flow

    International Nuclear Information System (INIS)

    Horiuchi, Ritoku; Sato, Tetsuya.

    1987-07-01

    A three-dimensional self-organization process of a compressible dissipative plasma with a velocity-magnetic field correlation is investigated in detail by means of a variational method and a magnetohydrodynamic simulation. There are two types of relaxation, i.e., fast relaxation in which the cross helicity is not conserved, and slow relaxation in which the cross helicity is approximately conserved. In the slow relaxation case the cross helicity consists of two components with opposite sign which have almost the same amplitude in the large wavenumber region. In both cases the system approaches a high correlation state, dependent on the initial condition. These results are consistent with an observational data of the solar wind. Selective dissipation of magnetic energy, normal cascade of magnetic energy spectrum and inverse cascade of magnetic helicity spectrum are observed for the sub-Alfvenic flow case as was previously observed for the zero flow case. When the flow velocity is super-Alfvenic, the relaxation process is significantly altered from the zero flow case. (author)

  16. Broken ergodicity in two-dimensional homogeneous magnetohydrodynamic turbulence

    International Nuclear Information System (INIS)

    Shebalin, John V.

    2010-01-01

    Two-dimensional (2D) homogeneous magnetohydrodynamic (MHD) turbulence has many of the same qualitative features as three-dimensional (3D) homogeneous MHD turbulence. These features include several ideal (i.e., nondissipative) invariants along with the phenomenon of broken ergodicity (defined as nonergodic behavior over a very long time). Broken ergodicity appears when certain modes act like random variables with mean values that are large compared to their standard deviations, indicating a coherent structure or dynamo. Recently, the origin of broken ergodicity in 3D MHD turbulence that is manifest in the lowest wavenumbers was found. Here, we study the origin of broken ergodicity in 2D MHD turbulence. It will be seen that broken ergodicity in ideal 2D MHD turbulence can be manifest in the lowest wavenumbers of a finite numerical model for certain initial conditions or in the highest wavenumbers for another set of initial conditions. The origins of broken ergodicity in an ideal 2D homogeneous MHD turbulence are found through an eigenanalysis of the covariance matrices of the probability density function and by an examination of the associated entropy functional. When the values of ideal invariants are kept fixed and grid size increases, it will be shown that the energy in a few large modes remains constant, while the energy in any other mode is inversely proportional to grid size. Also, as grid size increases, we find that broken ergodicity becomes manifest at more and more wavenumbers.

  17. Coal-fired magnetohydrodynamic (MHD) electric power generation

    International Nuclear Information System (INIS)

    Sens, P.F.

    1992-01-01

    Since 1986 Directorate-General XII 'Science, Research and Development' of the Commission of the European Communities has kept a watching brief on the development of coal-fired magnetohydrodynamic (MHD) electric power generation from the 'solid fuels' section of its non-nuclear energy R and D programme. It established, in 1987, the Faraday Working Group (FWG) to assess the development status of coal-fired MHD and to evaluate its potential contribution to the future electricity production in the Community. The FWG expressed as its opinion, at the end of 1987, that in sufficient data were available to justify a final answer to the question about MHD's potential contribution to future electricity production and recommended that studies be undertaken in three areas; (i) the lifetime of the generator, (ii) cost and performance of direct air preheating, (iii) cost and efficiency of seed recovery/reprocessing. These studies were contracted and results were presented in the extended FWG meeting on 15 November 1990, for an audience of about 70 people. The present volume contains the proceedings of this meeting. The introduction describes the reasons for establishing the FWG, its activities and the content of its extended meeting followed by the summary of the discussions and the concluding remarks of this meeting. The main part of the volume consists of the text either of the oral presentations during the meeting or of the final reports resulting from the studies under contract

  18. Magnetohydrodynamic stability regimes for steady state and pulsed reactors

    International Nuclear Information System (INIS)

    Jardin, S.C.; Kessel, C.E.; Pomphrey, N.

    1994-01-01

    A tokamak reactor will operate at the maximum value of β≡2μ 0 left angle p right angle /B 2 that is compatible with magnetohydrodynamic (MHD) stability. This value depends on the plasma current and pressure profiles, the plasma shape and aspect ratio, and the location of nearby conducting structures. In addition, a steady state reactor will minimize its external current drive requirements and thus achieve its maximum economic benefit with a bootstrap fraction near unity, I BS /I P ∼1, which constrains the product of the inverse aspect ratio and the plasma poloidal β to be near unity, arepsilonβ P ∼1. An inductively driven pulsed reactor has different constraints set by the steady-state Ohm's law which relates the plasma temperature and density profiles to the parallel current density. We present the results obtained during ARIES I, II/IV, and III and PULSAR reactor studies where these quantities were optimized subject to different design philosophies. The ARIES-II/IV and ARIES-III designs are both in the second stability regime, but differ in requirements in the form of the profiles at the plasma edge, and in the location of the conducting wall. The relation between these, as well as new attractive MHD regimes not utilized in the ARIES or PULSAR studies, is also discussed. ((orig.))

  19. Godbillon Vey Helicity and Magnetic Helicity in Magnetohydrodynamics

    Science.gov (United States)

    Webb, G. M.; Hu, Q.; Anco, S.; Zank, G. P.

    2017-12-01

    The Godbillon-Vey invariant arises in homology theory, and algebraic topology, where conditions for a layered family of 2D surfaces forms a 3D manifold were elucidated. The magnetic Godbillon-Vey helicity invariant in magnetohydrodynamics (MHD) is a helicity invariant that occurs for flows, in which the magnetic helicity density hm= A\\cdotB=0 where A is the magnetic vector potential and B is the magnetic induction. Our purpose is to elucidate the evolution of the magnetic Godbillon-Vey field η =A×B/|A|2 and the Godbillon-Vey helicity hgv}= η \\cdot∇ × η in general MHD flows in which the magnetic helicity hm≠q 0. It is shown that hm acts as a source term in the Godbillon-Vey helicity transport equation, in which hm is coupled to hgv via the shear tensor of the background flow. The transport equation for hgv depends on the electric field potential ψ , which is related to the gauge for A, which takes its simplest form for the advected A gauge in which ψ =A\\cdot u where u is the fluid velocity.

  20. AUGMENTATION-RELATED BRAIN PLASTICITY

    Directory of Open Access Journals (Sweden)

    Giovanni eDi Pino

    2014-06-01

    Full Text Available Today, the anthropomorphism of the tools and the development of neural interfaces require reconsidering the concept of human-tools interaction in the framework of human augmentation. This review analyzes the plastic process that the brain undergoes when it comes into contact with augmenting artificial sensors and effectors and, on the other hand, the changes that the use of external augmenting devices produces in the brain.Hitherto, few studies investigated the neural correlates of augmentation, but clues on it can be borrowed from logically-related paradigms: sensorimotor training, cognitive enhancement, cross-modal plasticity, sensorimotor functional substitution, use and embodiment of tools.Augmentation modifies function and structure of a number of areas, i.e. primary sensory cortices shape their receptive fields to become sensitive to novel inputs. Motor areas adapt the neuroprosthesis representation firing-rate to refine kinematics. As for normal motor outputs, the learning process recruits motor and premotor cortices and the acquisition of proficiency decreases attentional recruitment, focuses the activity on sensorimotor areas and increases the basal ganglia drive on the cortex. Augmentation deeply relies on the frontoparietal network. In particular, premotor cortex is involved in learning the control of an external effector and owns the tool motor representation, while the intraparietal sulcus extracts its visual features. In these areas, multisensory integration neurons enlarge their receptive fields to embody supernumerary limbs. For operating an anthropomorphic neuroprosthesis, the mirror system is required to understand the meaning of the action, the cerebellum for the formation of its internal model and the insula for its interoception. In conclusion, anthropomorphic sensorized devices can provide the critical sensory afferences to evolve the exploitation of tools through their embodiment, reshaping the body representation and the

  1. Superconducting augmented rail gun (SARG)

    International Nuclear Information System (INIS)

    Homan, C.G.; Cummings, C.E.; Fowler, C.M.

    1986-01-01

    Superconducting augmentation consists of a superconducting coil operating in the persistent mode closely coupled magnetically with a normally conducting rail gun. A theoretical investigation of the effect of this system on a rail gun has shown that two benefits occur. Projectile velocities and launch efficiencies increase significantly depending on the magnetic coupling between the rail and augmentation circuits. Previous work evaluated an idealized system by neglecting energy dissipation effects. In this paper, the authors extend the analysis to include the neglected terms and show improved actual launch efficiencies for the SARG configuration. In this paper, the authors discuss details of projectile design in depth and present preliminary results of rail gun performance

  2. NASA program planning on nuclear electric propulsion

    International Nuclear Information System (INIS)

    Bennett, G.L.; Miller, T.J.

    1992-03-01

    As part of the focused technology planning for future NASA space science and exploration missions, NASA has initiated a focused technology program to develop the technologies for nuclear electric propulsion and nuclear thermal propulsion. Beginning in 1990, NASA began a series of interagency planning workshops and meetings to identify key technologies and program priorities for nuclear propulsion. The high-priority, near-term technologies that must be developed to make NEP operational for space exploration include scaling thrusters to higher power, developing high-temperature power processing units, and developing high power, low-mass, long-lived nuclear reactors. 28 refs

  3. Fitting aerodynamics and propulsion into the puzzle

    Science.gov (United States)

    Johnston, Patrick J.; Whitehead, Allen H., Jr.; Chapman, Gary T.

    1987-01-01

    The development of an airbreathing single-stage-to-orbit vehicle, in particular the problems of aerodynamics and propulsion integration, is examined. The boundary layer transition on constant pressure surfaces at hypersonic velocities, and the effects of noise on the transition are investigated. The importance of viscosity, real-gas effects, and drag at hypersonic speeds is discussed. A propulsion system with sufficient propulsive lift to enhance the performance of the vehicle is being developed. The difficulties of engine-airframe integration are analyzed.

  4. Is effective force application in handrim wheelchair propulsion also efficient?

    NARCIS (Netherlands)

    Bregman, D.J.J.; van Drongelen, S.V.; Veeger, H.E.J.

    2009-01-01

    Background: Efficiency in manual wheelchair propulsion is low, as is the fraction of the propulsion force that is attributed to the moment of propulsion of the wheelchair. In this study we tested the hypothesis that a tangential propulsion force direction leads to an increase in physiological cost,

  5. Development of sensor augmented robotic weld systems for aerospace propulsion system fabrication

    Science.gov (United States)

    Jones, C. S.; Gangl, K. J.

    1986-01-01

    In order to meet stringent performance goals for power and reuseability, the Space Shuttle Main Engine was designed with many complex, difficult welded joints that provide maximum strength and minimum weight. To this end, the SSME requires 370 meters of welded joints. Automation of some welds has improved welding productivity significantly over manual welding. Application has previously been limited by accessibility constraints, requirements for complex process control, low production volumes, high part variability, and stringent quality requirements. Development of robots for welding in this application requires that a unique set of constraints be addressed. This paper shows how robotic welding can enhance production of aerospace components by addressing their specific requirements. A development program at the Marshall Space Flight Center combining industrial robots with state-of-the-art sensor systems and computer simulation is providing technology for the automation of welds in Space Shuttle Main Engine production.

  6. High Temperature Latent Heat Thermal Energy Storage to Augment Solar Thermal Propulsion for Microsatellites

    Science.gov (United States)

    2015-08-30

    radiosity calculations into the finite difference solutions at the boundary. 7.2.1 Radiation Shielding Integration Radiation shielding was included in the...exterior nodes 1 through n, the radiosity per unit area Bn is calculated as Bn = nσn(T 4 n − T 4amb) + ρnHn (7.1) where is the emissivity, σ is the

  7. Augmentation of Solar Thermal Propulsion Systems Via Phase Change Thermal Energy Storage and Thermal Electric Conversion

    Science.gov (United States)

    2012-04-01

    liquid rocket engines (LRE) requires an ability to predict the coupling between the transient features, acoustics , vortex/shear layer dynamics and...with thermo- acoustic instabilities. Results will be reported on the flame structure, liquid core length and spreading rate, and comparison with data...infrared, emissivity sensing pyrometer measuring the front surface of the crucible during cooling. Graphite crucibles loaded with copper at a approximately

  8. Tokamak m = 1 magnetohydrodynamic calculations in toroidal geometry using a full set of nonlinear resistive magnetohydrodynamic equations

    International Nuclear Information System (INIS)

    Charlton, L.A.; Carreras, B.A.; Holmes, J.A.; Lynch, V.E.

    1988-01-01

    The linear stability and nonlinear evolution of the resistive m = 1 mode in tokamaks is studied using a full set of resistive magnetohydrodynamic (MHD) equations in toroidal geometry. The modification of the linear and nonlinear properties of the mode by a combination of strong toroidal effects and low resistivity is the focus of this work. Linearly there is a transition from resistive kink to resistive tearing behavior as the aspect ratio and resistivity are reduced, and there is a corresponding modification of the nonlinear behavior, including a slowing of the island growth and development of a Rutherford regime, as the tearing regime is approached. In order to study the sensitivity of the stability and evolution to assumptions concerning the equation of state, two sets of full nonlinear resistive MHD equations (a pressure convection set and an incompressible set) are used. Both sets give more stable nonlinear behavior as the aspect ratio is reduced. The pressure convection set shows a transition from a Kadomtsev reconnection at large aspect ratio to a saturation at small aspect ratio. The incompressible set yields Kadomtsev reconnection for all aspect ratios, but with a significant lengthening of the reconnection time and development of a Rutherford regime at an aspect ratio approaching the transition from a resistive kink mode to a tearing mode. The pressure convection set gives an incomplete reconnection similar to that sometimes seen experimentally. The pressure convection set is, however, strictly justified only at high beta

  9. Computer Augmented Learning; A Survey.

    Science.gov (United States)

    Kindred, J.

    The report contains a description and summary of computer augmented learning devices and systems. The devices are of two general types programed instruction systems based on the teaching machines pioneered by Pressey and developed by Skinner, and the so-called "docile" systems that permit greater user-direction with the computer under student…

  10. Aplikasi Web Augmented Reality Villa

    Directory of Open Access Journals (Sweden)

    Gede Yudha Prema Pangestu

    2017-07-01

    Full Text Available Bali is one of the highly developed tourist destination in Indonesia. The arrival of tourists having holiday in Bali led to increase residential needs with complete amenities. The occupancy rate of hotel and villa in Bali is increase significantlly during the long vacation. The emergence of new villa and hotel occupancy raises the level of competition in business, so it needs a correct use good marketing communication strategy in marketing the product in order to attract the attention of consumers. Web Application Augmented Reality Villa can help visualize the residential villa in three-dimensional shapes that look more attractive and practical. The use of brochures as written information and the application of augmented reality technology on the Web Application Augmented Reality Villa aims to develop an application that can provide information about the villa to visitors. Web Application uses Augmented Reality Villa designed by FlarToolkit library. Based on the test results show the application can display 3-dimensional objects by scanning marker villa in a brochure which already contain marker.

  11. Data Augmentation for Plant Classification

    NARCIS (Netherlands)

    Pawara, Pornntiwa; Okafor, Emmanuel; Schomaker, Lambertus; Wiering, Marco

    2017-01-01

    Data augmentation plays a crucial role in increasing the number of training images, which often aids to improve classification performances of deep learning techniques for computer vision problems. In this paper, we employ the deep learning framework and determine the effects of several

  12. Propulsion Wheel Motor for an Electric Vehicle

    Science.gov (United States)

    Figuered, Joshua M. (Inventor); Herrera, Eduardo (Inventor); Waligora, Thomas M. (Inventor); Bluethmann, William J. (Inventor); Farrell, Logan Christopher (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Winn, Ross Briant (Inventor); Eggleston, IV, Raymond Edward (Inventor); Guo, Raymond (Inventor); hide

    2016-01-01

    A wheel assembly for an electric vehicle includes a wheel rim that is concentrically disposed about a central axis. A propulsion-braking module is disposed within an interior region of the wheel rim. The propulsion-braking module rotatably supports the wheel rim for rotation about the central axis. The propulsion-braking module includes a liquid cooled electric motor having a rotor rotatable about the central axis, and a stator disposed radially inside the rotor relative to the central axis. A motor-wheel interface hub is fixedly attached to the wheel rim, and is directly attached to the rotor for rotation with the rotor. The motor-wheel interface hub directly transmits torque from the electric motor to the wheel rim at a 1:1 ratio. The propulsion-braking module includes a drum brake system having an electric motor that rotates a cam device, which actuates the brake shoes.

  13. Advanced Chemical Propulsion for Science Missions

    Science.gov (United States)

    Liou, Larry

    2008-01-01

    The advanced chemical propulsion technology area of NASA's In-Space Technology Project is investing in systems and components for increased performance and reduced cost of chemical propulsion technologies applicable to near-term science missions. Presently the primary investment in the advanced chemical propulsion technology area is in the AMBR high temperature storable bipropellant rocket engine. Scheduled to be available for flight development starting in year 2008, AMBR engine shows a 60 kg payload gain in an analysis for the Titan-Enceladus orbiter mission and a 33 percent manufacturing cost reduction over its baseline, state-of-the-art counterpart. Other technologies invested include the reliable lightweight tanks for propellant and the precision propellant management and mixture ratio control. Both technologies show significant mission benefit, can be applied to any liquid propulsion system, and upon completion of the efforts described in this paper, are at least in parts ready for flight infusion. Details of the technologies are discussed.

  14. Reusable Orbit Transfer Vehicle Propulsion Technology Considerations

    National Research Council Canada - National Science Library

    Perkins, Dave

    1998-01-01

    .... ROTV propulsion technologies to consider chemical rockets have limited mission capture, solar thermal rockets capture most missions but LH2 issues, and electric has highest PL without volume constraint...

  15. Hybrid Electric Propulsion Technologies for Commercial Transports

    Science.gov (United States)

    Bowman, Cheryl; Jansen, Ralph; Jankovsky, Amy

    2016-01-01

    NASA Aeronautics Research Mission Directorate has set strategic research thrusts to address the major drivers of aviation such as growth in demand for high-speed mobility, addressing global climate and capitalizing in the convergence of technological advances. Transitioning aviation to low carbon propulsion is one of the key strategic research thrust and drives the search for alternative and greener propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The Hybrid Gas-Electric Subproject in the Advanced Air Transportation Project is energizing the transport class landscape by accepting the technical challenge of identifying and validating a transport class aircraft with net benefit from hybrid propulsion. This highly integrated aircraft of the future will only happen if airframe expertise from NASA Langley, modeling and simulation expertise from NASA Ames, propulsion expertise from NASA Glenn, and the flight research capabilities from NASA Armstrong are brought together to leverage the rich capabilities of U.S. Industry and Academia.

  16. Magnetic propulsion for magnetically levitated trains

    Energy Technology Data Exchange (ETDEWEB)

    Melville, P H

    1973-12-01

    One of the main problems associated with magnetically levitated trains is the means of propulsion. A system is described whereby the repulsion from the superconducting magnets, in addition to levitating the train, can also be used to propel it.

  17. Authentication for Propulsion Test Streaming Video

    Data.gov (United States)

    National Aeronautics and Space Administration — A streaming video system was developed and implemented at SSC to support various propulsion projects at SSC. These projects included J-2X and AJ-26 rocket engine...

  18. Cycloidal Propulsion for UAV VTOL Applications

    National Research Council Canada - National Science Library

    Boschma, James

    1998-01-01

    .... This propulsion concept holds significant promise for adaptation to UAV VTOL operations. Thrust levels demonstrated were substantially higher than achievable by the best screw type propellers, and approximately equal to those of high end helicopters...

  19. Test report : alternative fuels propulsion durability evaluation

    Science.gov (United States)

    2012-08-28

    This document, prepared by Honeywell Aerospace, Phoenix, AZ (Honeywell), contains the final : test report (public version) for the U.S. Department of Transportation/Federal Aviation : Administration (USDOT/FAA) Alternative Fuels Propulsion Engine Dur...

  20. 'Bimodal' NTR and LANTR propulsion for human missions to Mars/Phobos

    International Nuclear Information System (INIS)

    Borowski, Stanley K.; Dudzinski, Leonard A.; McGuire, Melissa L.

    1999-01-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human missions to Mars due to its high specific impulse (Isp ∼850-1000 s) and attractive engine thrust-to-weight ratio (∼3-10). Because only a miniscule amount of enriched uranium-235 fuel is consumed in a NTR during the primary propulsion maneuvers of a typical Mars mission, engines configured for both propulsive thrust and modest power generation (referred to as 'bimodal' operation) provide the basis for a robust, 'power-rich' stage enabling propulsive Mars capture and reuse capability. A family of modular 'bimodal' NTR (BNTR) vehicles are described which utilize a common 'core' stage powered by three 66.7 kN (∼15 klbf) BNTRs that produce 50 kWe of total electrical power for crew life support, an active refrigeration/reliquification system for long term, 'zero-boiloff' liquid hydrogen (LH 2 ) storage, and high data rate communications. Compared to other propulsion options, a Mars mission architecture using BNTR transfer vehicles requires fewer transportation system elements which reduces mission mass, cost and risk because of simplified space operations. For difficult Mars options, such as a Phobos rendezvous and sample return mission, volume (not mass) constraints limit the performance of the 'all LH 2 ' BNTR stage. The use of ''LOX-augmented' NTR (LANTR) engines, operating at a modest oxygen-to-hydrogen (O/H) mixture ratio (MR) of 0.5, helps to increase 'bulk' propellant density and total thrust during the trans-Mars injection (TMI) burn. On all subsequent burns, the bimodal LANTR engines operate on LH 2 only (MR=0) to maximize vehicle performance while staying within the mass limits of two ∼80 t 'Magnum' heavy lift launch vehicles (HLLVs)

  1. Visions of the Future: Hybrid Electric Aircraft Propulsion

    Science.gov (United States)

    Bowman, Cheryl L.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is investing continually in improving civil aviation. Hybridization of aircraft propulsion is one aspect of a technology suite which will transform future aircraft. In this context, hybrid propulsion is considered a combination of traditional gas turbine propulsion and electric drive enabled propulsion. This technology suite includes elements of propulsion and airframe integration, parallel hybrid shaft power, turbo-electric generation, electric drive systems, component development, materials development and system integration at multiple levels.

  2. Solar electric propulsion for Mars transport vehicles

    Science.gov (United States)

    Hickman, J. M.; Curtis, H. B.; Alexander, S. W.; Gilland, J. H.; Hack, K. J.; Lawrence, C.; Swartz, C. K.

    1990-01-01

    Solar electric propulsion (SEP) is an alternative to chemical and nuclear powered propulsion systems for both piloted and unpiloted Mars transport vehicles. Photovoltaic solar cell and array technologies were evaluated as components of SEP power systems. Of the systems considered, the SEP power system composed of multijunction solar cells in an ENTECH domed fresnel concentrator array had the least array mass and area. Trip times to Mars optimized for minimum propellant mass were calculated. Additionally, a preliminary vehicle concept was designed.

  3. Institute for Computational Mechanics in Propulsion (ICOMP)

    Science.gov (United States)

    Keith, Theo G., Jr. (Editor); Balog, Karen (Editor); Povinelli, Louis A. (Editor)

    2001-01-01

    The Institute for Computational Mechanics in Propulsion (ICOMP) was formed to develop techniques to improve problem-solving capabilities in all aspects of computational mechanics related to propulsion. ICOMP is operated by the Ohio Aerospace Institute (OAI) and funded via numerous cooperative agreements by the NASA Glenn Research Center in Cleveland, Ohio. This report describes the activities at ICOMP during 1999, the Institute's fourteenth year of operation.

  4. A Meshless Method for Magnetohydrodynamics and Applications to Protoplanetary Disks

    Science.gov (United States)

    McNally, Colin P.

    2012-08-01

    This thesis presents an algorithm for simulating the equations of ideal magnetohydrodynamics and other systems of differential equations on an unstructured set of points represented by sample particles. Local, third-order, least-squares, polynomial interpolations (Moving Least Squares interpolations) are calculated from the field values of neighboring particles to obtain field values and spatial derivatives at the particle position. Field values and particle positions are advanced in time with a second order predictor-corrector scheme. The particles move with the fluid, so the time step is not limited by the Eulerian Courant-Friedrichs-Lewy condition. Full spatial adaptivity is implemented to ensure the particles fill the computational volume, which gives the algorithm substantial flexibility and power. A target resolution is specified for each point in space, with particles being added and deleted as needed to meet this target. Particle addition and deletion is based on a local void and clump detection algorithm. Dynamic artificial viscosity fields provide stability to the integration. The resulting algorithm provides a robust solution for modeling flows that require Lagrangian or adaptive discretizations to resolve. The code has been parallelized by adapting the framework provided by Gadget-2. A set of standard test problems, including one part in a million amplitude linear MHD waves, magnetized shock tubes, and Kelvin-Helmholtz instabilities are presented. Finally we demonstrate good agreement with analytic predictions of linear growth rates for magnetorotational instability in a cylindrical geometry. We provide a rigorous methodology for verifying a numerical method on two dimensional Kelvin-Helmholtz instability. The test problem was run in the Pencil Code, Athena, Enzo, NDSPHMHD, and Phurbas. A strict comparison, judgment, or ranking, between codes is beyond the scope of this work, although this work provides the mathematical framewor! k needed for such a

  5. Breakthrough Propulsion Physics Project: Project Management Methods

    Science.gov (United States)

    Millis, Marc G.

    2004-01-01

    To leap past the limitations of existing propulsion, the NASA Breakthrough Propulsion Physics (BPP) Project seeks further advancements in physics from which new propulsion methods can eventually be derived. Three visionary breakthroughs are sought: (1) propulsion that requires no propellant, (2) propulsion that circumvents existing speed limits, and (3) breakthrough methods of energy production to power such devices. Because these propulsion goals are presumably far from fruition, a special emphasis is to identify credible research that will make measurable progress toward these goals in the near-term. The management techniques to address this challenge are presented, with a special emphasis on the process used to review, prioritize, and select research tasks. This selection process includes these key features: (a) research tasks are constrained to only address the immediate unknowns, curious effects or critical issues, (b) reliability of assertions is more important than the implications of the assertions, which includes the practice where the reviewers judge credibility rather than feasibility, and (c) total scores are obtained by multiplying the criteria scores rather than by adding. Lessons learned and revisions planned are discussed.

  6. Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. I. Theory

    Energy Technology Data Exchange (ETDEWEB)

    Rogachevskii, Igor; Kleeorin, Nathan [Department of Mechanical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Ruchayskiy, Oleg [Discovery Center, Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Boyarsky, Alexey [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Fröhlich, Jürg [Institute of Theoretical Physics, ETH Hönggerberg, CH-8093 Zurich (Switzerland); Brandenburg, Axel; Schober, Jennifer, E-mail: gary@bgu.ac.il [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)

    2017-09-10

    The magnetohydrodynamic (MHD) description of plasmas with relativistic particles necessarily includes an additional new field, the chiral chemical potential associated with the axial charge (i.e., the number difference between right- and left-handed relativistic fermions). This chiral chemical potential gives rise to a contribution to the electric current density of the plasma ( chiral magnetic effect ). We present a self-consistent treatment of the chiral MHD equations , which include the back-reaction of the magnetic field on a chiral chemical potential and its interaction with the plasma velocity field. A number of novel phenomena are exhibited. First, we show that the chiral magnetic effect decreases the frequency of the Alfvén wave for incompressible flows, increases the frequencies of the Alfvén wave and of the fast magnetosonic wave for compressible flows, and decreases the frequency of the slow magnetosonic wave. Second, we show that, in addition to the well-known laminar chiral dynamo effect, which is not related to fluid motions, there is a dynamo caused by the joint action of velocity shear and chiral magnetic effect. In the presence of turbulence with vanishing mean kinetic helicity, the derived mean-field chiral MHD equations describe turbulent large-scale dynamos caused by the chiral alpha effect, which is dominant for large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an interaction of the chiral magnetic effect and fluctuations of the small-scale current produced by tangling magnetic fluctuations (which are generated by tangling of the large-scale magnetic field by sheared velocity fluctuations). These dynamo effects may have interesting consequences in the dynamics of the early universe, neutron stars, and the quark–gluon plasma.

  7. Magnetohydrodynamic modeling of the solar eruption on 2010 April 8

    International Nuclear Information System (INIS)

    Kliem, B.; Su, Y. N.; Van Ballegooijen, A. A.; DeLuca, E. E.

    2013-01-01

    The structure of the coronal magnetic field prior to eruptive processes and the conditions for the onset of eruption are important issues that can be addressed through studying the magnetohydrodynamic (MHD) stability and evolution of nonlinear force-free field (NLFFF) models. This paper uses data-constrained NLFFF models of a solar active region (AR) that erupted on 2010 April 8 as initial conditions in MHD simulations. These models, constructed with the techniques of flux rope insertion and magnetofrictional relaxation (MFR), include a stable, an approximately marginally stable, and an unstable configuration. The simulations confirm previous related results of MFR runs, particularly that stable flux rope equilibria represent key features of the observed pre-eruption coronal structure very well, and that there is a limiting value of the axial flux in the rope for the existence of stable NLFFF equilibria. The specific limiting value is located within a tighter range, due to the sharper discrimination between stability and instability by the MHD description. The MHD treatment of the eruptive configuration yields a very good agreement with a number of observed features, like the strongly inclined initial rise path and the close temporal association between the coronal mass ejection and the onset of flare reconnection. Minor differences occur in the velocity of flare ribbon expansion and in the further evolution of the inclination; these can be eliminated through refined simulations. We suggest that the slingshot effect of horizontally bent flux in the source region of eruptions can contribute significantly to the inclination of the rise direction. Finally, we demonstrate that the onset criterion, formulated in terms of a threshold value for the axial flux in the rope, corresponds very well to the threshold of the torus instability in the considered AR.

  8. A self-similar magnetohydrodynamic model for ball lightnings

    International Nuclear Information System (INIS)

    Tsui, K. H.

    2006-01-01

    Ball lightning is modeled by magnetohydrodynamic (MHD) equations in two-dimensional spherical geometry with azimuthal symmetry. Dynamic evolutions in the radial direction are described by the self-similar evolution function y(t). The plasma pressure, mass density, and magnetic fields are solved in terms of the radial label η. This model gives spherical MHD plasmoids with axisymmetric force-free magnetic field, and spherically symmetric plasma pressure and mass density, which self-consistently determine the polytropic index γ. The spatially oscillating nature of the radial and meridional field structures indicate embedded regions of closed field lines. These regions are named secondary plasmoids, whereas the overall self-similar spherical structure is named the primary plasmoid. According to this model, the time evolution function allows the primary plasmoid expand outward in two modes. The corresponding ejection of the embedded secondary plasmoids results in ball lightning offering an answer as how they come into being. The first is an accelerated expanding mode. This mode appears to fit plasmoids ejected from thundercloud tops with acceleration to ionosphere seen in high altitude atmospheric observations of sprites and blue jets. It also appears to account for midair high-speed ball lightning overtaking airplanes, and ground level high-speed energetic ball lightning. The second is a decelerated expanding mode, and it appears to be compatible to slowly moving ball lightning seen near ground level. The inverse of this second mode corresponds to an accelerated inward collapse, which could bring ball lightning to an end sometimes with a cracking sound

  9. Resonant magnetohydrodynamic waves in high-beta plasmas

    International Nuclear Information System (INIS)

    Ruderman, M. S.

    2009-01-01

    When a global magnetohydrodynamic (MHD) wave propagates in a weakly dissipative inhomogeneous plasma, the resonant interaction of this wave with either local Alfven or slow MHD waves is possible. This interaction occurs at the resonant position where the phase velocity of the global wave coincides with the phase velocity of either Alfven or slow MHD waves. As a result of this interaction a dissipative layer embracing the resonant position is formed, its thickness being proportional to R -1/3 , where R>>1 is the Reynolds number. The wave motion in the resonant layer is characterized by large amplitudes and large gradients. The presence of large gradients causes strong dissipation of the global wave even in very weakly dissipative plasmas. Very often the global wave motion is characterized by the presence of both Alfven and slow resonances. In plasmas with small or moderate plasma beta β, the resonance positions corresponding to the Alfven and slow resonances are well separated, so that the wave motion in the Alfven and slow dissipative layers embracing the Alfven and slow resonant positions, respectively, can be studied separately. However, when β > or approx. R 1/3 , the two resonance positions are so close that the two dissipative layers overlap. In this case, instead of two dissipative layers, there is one mixed Alfven-slow dissipative layer. In this paper the wave motion in such a mixed dissipative layer is studied. It is shown that this motion is a linear superposition of two motions, one corresponding to the Alfven and the other to the slow dissipative layer. The jump of normal velocity across the mixed dissipative layer related to the energy dissipation rate is equal to the sum of two jumps, one that occurs across the Alfven dissipative layer and the other across the slow dissipative layer.

  10. Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. I. Theory

    International Nuclear Information System (INIS)

    Rogachevskii, Igor; Kleeorin, Nathan; Ruchayskiy, Oleg; Boyarsky, Alexey; Fröhlich, Jürg; Brandenburg, Axel; Schober, Jennifer

    2017-01-01

    The magnetohydrodynamic (MHD) description of plasmas with relativistic particles necessarily includes an additional new field, the chiral chemical potential associated with the axial charge (i.e., the number difference between right- and left-handed relativistic fermions). This chiral chemical potential gives rise to a contribution to the electric current density of the plasma ( chiral magnetic effect ). We present a self-consistent treatment of the chiral MHD equations , which include the back-reaction of the magnetic field on a chiral chemical potential and its interaction with the plasma velocity field. A number of novel phenomena are exhibited. First, we show that the chiral magnetic effect decreases the frequency of the Alfvén wave for incompressible flows, increases the frequencies of the Alfvén wave and of the fast magnetosonic wave for compressible flows, and decreases the frequency of the slow magnetosonic wave. Second, we show that, in addition to the well-known laminar chiral dynamo effect, which is not related to fluid motions, there is a dynamo caused by the joint action of velocity shear and chiral magnetic effect. In the presence of turbulence with vanishing mean kinetic helicity, the derived mean-field chiral MHD equations describe turbulent large-scale dynamos caused by the chiral alpha effect, which is dominant for large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an interaction of the chiral magnetic effect and fluctuations of the small-scale current produced by tangling magnetic fluctuations (which are generated by tangling of the large-scale magnetic field by sheared velocity fluctuations). These dynamo effects may have interesting consequences in the dynamics of the early universe, neutron stars, and the quark–gluon plasma.

  11. CIRCUMBINARY MAGNETOHYDRODYNAMIC ACCRETION INTO INSPIRALING BINARY BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Scott C.; Mundim, Bruno C.; Nakano, Hiroyuki; Campanelli, Manuela; Zlochower, Yosef [Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States); Krolik, Julian H. [Physics and Astronomy Department, Johns Hopkins University, Baltimore, MD 21218 (United States); Yunes, Nicolas, E-mail: scn@astro.rit.edu [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2012-08-10

    We have simulated the magnetohydrodynamic evolution of a circumbinary disk surrounding an equal-mass binary comprising two non-spinning black holes during the period in which the disk inflow time is comparable to the binary evolution time due to gravitational radiation. Both the changing spacetime and the binary orbital evolution are described by an innovative technique utilizing high-order post-Newtonian approximations. Prior to the beginning of the inspiral, the structure of the circumbinary disk is predicted well by extrapolation from Newtonian results: a gap of roughly two binary separation radii is cleared, and matter piles up at the outer edge of this gap as inflow is retarded by torques exerted by the binary; the accretion rate is roughly half its value at large radius. During inspiral, the inner edge of the disk initially moves inward in coordination with the shrinking binary, but-as the orbital evolution accelerates-the inward motion of the disk edge falls behind the rate of binary compression. In this stage, the binary torque falls substantially, but the accretion rate decreases by only 10%-20%. When the binary separation is tens of gravitational radii, the rest-mass efficiency of disk radiation is a few percent, suggesting that supermassive binary black holes could be very luminous at this stage of their evolution. Inner disk heating is modulated at a beat frequency comparable to the binary orbital frequency. However, a disk with sufficient surface density to be luminous may be optically thick, suppressing periodic modulation of the luminosity.

  12. Study of Magnetohydrodynamic Surface Waves on Liquid Gallium

    Energy Technology Data Exchange (ETDEWEB)

    Hantao Ji; William Fox; David Pace; H.L. Rappaport

    2004-05-13

    Magnetohydrodynamic (MHD) surface waves on liquid gallium are studied theoretically and experimentally in the small magnetic Reynolds number limit. A linear dispersion relation is derived when a horizontal magnetic field and a horizontal electric current is imposed. No wave damping is found in the shallow liquid limit while waves always damp in the deep liquid limit with a magnetic field parallel to the propagation direction. When the magnetic field is weak, waves are weakly damped and the real part of the dispersion is unaffected, while in the opposite limit waves are strongly damped with shortened wavelengths. In a table-top experiment, planar MHD surface waves on liquid gallium are studied in detail in the regime of weak magnetic field and deep liquid. A non-invasive diagnostic accurately measures surface waves at multiple locations by reflecting an array of lasers off the surface onto a screen, which is recorded by an Intensified-CCD camera. The measured dispersion relation is consistent with the linear theory with a reduced surface tension likely due to surface oxidation. In excellent agreement with linear theory, it is observed that surface waves are damped only when a horizontal magnetic field is imposed parallel to the propagation direction. No damping is observed under a perpendicular magnetic field. The existence of strong wave damping even without magnetic field suggests the importance of the surface oxide layer. Implications to the liquid metal wall concept in fusion reactors, especially on the wave damping and a Rayleigh-Taylor instability when the Lorentz force is used to support liquid metal layer against gravity, are discussed.

  13. Study of Magnetohydrodynamic Surface Waves on Liquid Gallium

    International Nuclear Information System (INIS)

    Hantao Ji; William Fox; David Pace; Rappaport, H.L.

    2004-01-01

    Magnetohydrodynamic (MHD) surface waves on liquid gallium are studied theoretically and experimentally in the small magnetic Reynolds number limit. A linear dispersion relation is derived when a horizontal magnetic field and a horizontal electric current is imposed. No wave damping is found in the shallow liquid limit while waves always damp in the deep liquid limit with a magnetic field parallel to the propagation direction. When the magnetic field is weak, waves are weakly damped and the real part of the dispersion is unaffected, while in the opposite limit waves are strongly damped with shortened wavelengths. In a table-top experiment, planar MHD surface waves on liquid gallium are studied in detail in the regime of weak magnetic field and deep liquid. A non-invasive diagnostic accurately measures surface waves at multiple locations by reflecting an array of lasers off the surface onto a screen, which is recorded by an Intensified-CCD camera. The measured dispersion relation is consistent with the linear theory with a reduced surface tension likely due to surface oxidation. In excellent agreement with linear theory, it is observed that surface waves are damped only when a horizontal magnetic field is imposed parallel to the propagation direction. No damping is observed under a perpendicular magnetic field. The existence of strong wave damping even without magnetic field suggests the importance of the surface oxide layer. Implications to the liquid metal wall concept in fusion reactors, especially on the wave damping and a Rayleigh-Taylor instability when the Lorentz force is used to support liquid metal layer against gravity, are discussed

  14. Landau fluid model for weakly nonlinear dispersive magnetohydrodynamics

    International Nuclear Information System (INIS)

    Passot, T.; Sulem, P. L.

    2005-01-01

    In may astrophysical plasmas such as the solar wind, the terrestrial magnetosphere, or in the interstellar medium at small enough scales, collisions are negligible. When interested in the large-scale dynamics, a hydrodynamic approach is advantageous not only because its numerical simulations is easier than of the full Vlasov-Maxwell equations, but also because it provides a deep understanding of cross-scale nonlinear couplings. It is thus of great interest to construct fluid models that extended the classical magnetohydrodynamic (MHD) equations to collisionless situations. Two ingredients need to be included in such a model to capture the main kinetic effects: finite Larmor radius (FLR) corrections and Landau damping, the only fluid-particle resonance that can affect large scales and can be modeled in a relatively simple way. The Modelization of Landau damping in a fluid formalism is hardly possible in the framework of a systematic asymptotic expansion and was addressed mainly by means of parameter fitting in a linearized setting. We introduced a similar Landau fluid model but, that has the advantage of taking dispersive effects into account. This model properly describes dispersive MHD waves in quasi-parallel propagation. Since, by construction, the system correctly reproduces their linear dynamics, appropriate tests should address the nonlinear regime. In a first case, we show analytically that the weakly nonlinear modulational dynamics of quasi-parallel propagating Alfven waves is well captured. As a second test we consider the parametric decay instability of parallel Alfven waves and show that numerical simulations of the dispersive Landau fluid model lead to results that closely match the outcome of hybrid simulations. (Author)

  15. On acceleration of plasmoids in magnetohydrodynamic simulations of magnetotail reconnection

    International Nuclear Information System (INIS)

    Scholer, M.; Hautz, R.

    1991-01-01

    The formation and acceleration of plasmoids is investigated by two-dimensional magnetohydrodynamic simulations. The initial equilibrium contains a plasma sheet with a northward magnetic field (B z ) component and a tailward pressure gradient. Reconnection is initiated by three different methods: Case A, a constant resistivity is applied everywhere and a tearing mode evolves, case B, a spatially localized resistivity is fixed in the near-Earth region, and case C, the resistivity is allowed to depend on the electrical current density. In case A, the authors obtain the same results as have been presented by Otto et al. (1990): the tearing instability releases the tension of the closed field lines so that the inherent pressure gradient of the two-dimensional system is not balanced anymore. The pressure gradient then sets the plasmoid into motion. Any sling-shot effect of open magnetic field lines is of minor importance. A completely different behavior has been found in cases B and C. In these cases the high-speed flow in the wedge-shaped region tailward of the near-Earth neutral line pushes against the detached plasmoid and drives it tailward. The ideal terms contributing to the acceleration are still only the pressure and the magnetic field term. However, in these cases the pressure is due to the dynamic pressure of the fast outflow from the reconnection region. The outflow in the wedge-shaped region on both sides of the neutral line is due to acceleration of plasma by tangential magnetic stresses at the slow mode shocks extending form the X line

  16. Solar energetic particles: observational studies and magnetohydrodynamic simulation

    International Nuclear Information System (INIS)

    Masson, S.

    2010-10-01

    Solar activity manifests itself through highly dynamical events, such as flares and coronal mass ejections, which result in energy release by magnetic reconnection. This thesis focuses on two manifestations of this energy release: solar energetic particles and dynamics of magnetic reconnection. The first part of my work consists in the detailed temporal analysis of several electromagnetic signatures, produced by energetic particles in the solar atmosphere, with respect to the energetic particle flux at Earth. Using multi-instrument observations, I highlighted that particles can be accelerated by the flare to relativistic energies during a specific episode of acceleration in the impulsive phase. This showed that particles traveled a longer path length than the theoretical length generally assumed. Using in-situ measurements of magnetic field and plasma, I identified the interplanetary magnetic field for 10 particle events, and performing a velocity dispersion analysis I obtained the interplanetary length traveled by particles. I showed that the magnetic structure of the interplanetary medium play a crucial role in the association of the particle flux at Earth and the acceleration signatures of particles at the Sun. The second part of my work focuses on the dynamics of magnetic reconnection. Observationally, the best evidence for magnetic reconnection is the appearance of brightnesses at the solar surface. Performing the first data-driven 3 dimensional magneto-hydrodynamic (MHD) simulation of an observed event, I discovered that the evolution of brightnesses can be explained by the succession of two different reconnection regimes, induced by a new topological association where null-point separatrix lines are embedded in quasi-separatrix layers. This new topological association induces a change of field line connectivity, but also a continuous reconnection process, leading to an apparent slipping motion of reconnected field lines. From a MHD simulation I showed that

  17. Passive propulsion in vortex wakes

    Science.gov (United States)

    Beal, D. N.; Hover, F. S.; Triantafyllou, M. S.; Liao, J. C.; Lauder, G. V.

    A dead fish is propelled upstream when its flexible body resonates with oncoming vortices formed in the wake of a bluff cylinder, despite being well outside the suction region of the cylinder. Within this passive propulsion mode, the body of the fish extracts sufficient energy from the oncoming vortices to develop thrust to overcome its own drag. In a similar turbulent wake and at roughly the same distance behind a bluff cylinder, a passively mounted high-aspect-ratio foil is also shown to propel itself upstream employing a similar flow energy extraction mechanism. In this case, mechanical energy is extracted from the flow at the same time that thrust is produced. These results prove experimentally that, under proper conditions, a body can follow at a distance or even catch up to another upstream body without expending any energy of its own. This observation is also significant in the development of low-drag energy harvesting devices, and in the energetics of fish dwelling in flowing water and swimming behind wake-forming obstacles.

  18. Augmented reality and its practical application

    OpenAIRE

    ZÍTKOVÁ, Helena

    2011-01-01

    This thesis combines topic of augmented reality with tourism. For analyzing the state of the use of augmented reality was composed case studies. It was created product, which is called Guide to mobile phone.

  19. Augmented assessment as a means to augmented reality.

    Science.gov (United States)

    Bergeron, Bryan

    2006-01-01

    Rigorous scientific assessment of educational technologies typically lags behind the availability of the technologies by years because of the lack of validated instruments and benchmarks. Even when the appropriate assessment instruments are available, they may not be applied because of time and monetary constraints. Work in augmented reality, instrumented mannequins, serious gaming, and similar promising educational technologies that haven't undergone timely, rigorous evaluation, highlights the need for assessment methodologies that address the limitations of traditional approaches. The most promising augmented assessment solutions incorporate elements of rapid prototyping used in the software industry, simulation-based assessment techniques modeled after methods used in bioinformatics, and object-oriented analysis methods borrowed from object oriented programming.

  20. Use of Augmented Reality in Education

    OpenAIRE

    Jeřábek, Tomáš

    2014-01-01

    This thesis deals with phenomena of augmented reality in context of didactics. The thesis aims to define augmented reality in conceptual and content area and focuses on augmented reality in the structure of educational tools and identification of its functions and use from the didactical standpoint. The thesis characterizes augmented reality as a specific technological-perceptual concept and establishes a system of perceptual, technological and resulting aspects that reflect important paramet...

  1. Affordances in Mobile Augmented Reality Applications

    OpenAIRE

    Gjøsæter, Tor

    2014-01-01

    This paper explores the affordances of augmented reality content in a mobile augmented reality application. A user study was conducted by performing a multi-camera video recording of seven think aloud sessions. The think aloud sessions consisted of individual users performing tasks, exploring and experiencing a mobile augmented reality (MAR) application we developed for the iOS platform named ARad. We discuss the instrumental affordances we observed when users interacted with augmented realit...

  2. New Augmented Reality Taxonomy: Technologies and Features of Augmented Environment.

    OpenAIRE

    Hugues , Olivier; Fuchs , Philippe; Nannipieri , Olivier

    2011-01-01

    978-1-4614-0063-9; This article has a dual aim: firstly to define augmented reality (AR) en- vironments and secondly, based on our definition, a new taxonomy enabling these environments to be classified. After briefly reviewing existing classifica- tions, we define AR by its purpose, ie. to enable someone to create sensory- motor and cognitive activities in a new space combining the real environment and a virtual environment. Below we present our functional taxonomy of AR environments. We div...

  3. [Augmentation technique on the proximal humerus].

    Science.gov (United States)

    Scola, A; Gebhard, F; Röderer, G

    2015-09-01

    The treatment of osteoporotic fractures is still a challenge. The advantages of augmentation with respect to primary in vitro stability and the clinical use for the proximal humerus are presented in this article. In this study six paired human humeri were randomized into an augmented and a non-augmented group. Osteosynthesis was performed with a PHILOS plate (Synthes®). In the augmented group the two screws finding purchase in the weakest cancellous bone were augmented. The specimens were tested in a 3-part fracture model in a varus bending test. The augmented PHILOS plates withstood significantly more load cycles until failure. The correlation to bone mineral density (BMD) showed that augmentation could partially compensate for low BMD. The augmentation of the screws in locked plating in a proximal humerus fracture model is effective in improving the primary stability in a cyclic varus bending test. The targeted augmentation of two particular screws in a region of low bone quality within the humeral head was almost as effective as four screws with twice the amount of bone cement. Screw augmentation combined with a knowledge of the local bone quality could be more effective in enhancing the primary stability of a proximal humerus locking plate because the effect of augmentation can be exploited more effectively limiting it to the degree required. The technique of augmentation is simple and can be applied in open and minimally invasive procedures. When the correct procedure is used, complications (cement leakage into the joint) can be avoided.

  4. Augmented Reality for Multi-disciplinary Collaboration

    OpenAIRE

    Wang, Xiangyu; Rui,

    2010-01-01

    This chapter presents a framework for multi-disciplinary collaboration. Tangible Augmented Reality has been raised as one of suitable systems for design collaboration. Furthermore, it emphasizes the advantages of Tangible Augmented Reality to illustrate the needs for integrating the Tangible User Interfaces and Augmented Reality Systems.

  5. Stability of the thermodynamic equilibrium - A test of the validity of dynamic models as applied to gyroviscous perpendicular magnetohydrodynamics

    Science.gov (United States)

    Faghihi, Mustafa; Scheffel, Jan; Spies, Guenther O.

    1988-05-01

    Stability of the thermodynamic equilibrium is put forward as a simple test of the validity of dynamic equations, and is applied to perpendicular gyroviscous magnetohydrodynamics (i.e., perpendicular magnetohydrodynamics with gyroviscosity added). This model turns out to be invalid because it predicts exponentially growing Alfven waves in a spatially homogeneous static equilibrium with scalar pressure.

  6. Stability of the thermodynamic equilibrium: A test of the validity of dynamic models as applied to gyroviscous perpendicular magnetohydrodynamics

    International Nuclear Information System (INIS)

    Faghihi, M.; Scheffel, J.; Spies, G.O.

    1988-01-01

    Stability of the thermodynamic equilibrium is put forward as a simple test of the validity of dynamic equations, and is applied to perpendicular gyroviscous magnetohydrodynamics (i.e., perpendicular magnetohydrodynamics with gyroviscosity added). This model turns out to be invalid because it predicts exponentially growing Alfven waves in a spatially homogeneous static equilibrium with scalar pressure

  7. The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission

    Science.gov (United States)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Parker, J. Morgan

    2015-01-01

    The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. The ion propulsion system must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned-exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system being co-developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding (HERMeS0 thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, the status of the NASA in-house thruster and power processing activity, and an update on flight hardware.

  8. Optimum cycle frequencies in hand-rim wheelchair propulsion. Wheelchair propulsion technique

    NARCIS (Netherlands)

    van der Woude, L H; Veeger, DirkJan (H. E. J.); Rozendal, R H; Sargeant, A J

    1989-01-01

    To study the effect of different cycle frequencies on cardio-respiratory responses and propulsion technique in hand-rim wheelchair propulsion, experienced wheelchair sportsmen (WS group; n = 6) and non-wheelchair users (NW group; n = 6) performed wheelchair exercise tests on a motor-driven

  9. Effect of workload setting on propulsion technique in handrim wheelchair propulsion

    NARCIS (Netherlands)

    van Drongelen, Stefan; Arnet, Ursina; Veeger, DirkJan (H E. J); van der Woude, Lucas H. V.

    Objective: To investigate the influence of workload setting (speed at constant power, method to impose power) on the propulsion technique (i.e. force and timing characteristics) in handrim wheelchair propulsion. Method: Twelve able-bodied men participated in this study. External forces were measured

  10. Coordination and propulsion and non-propulsion phases in 100 meter breaststroke swimming.

    Science.gov (United States)

    Strzała, Marek; Krężałek, Piotr; Kucia-Czyszczoń, Katarzyna; Ostrowski, Andrzej; Stanula, Arkadiusz; Tyka, Anna K; Sagalara, Andrzej

    2014-01-01

    The main purpose of this study was to analyze the coordination, propulsion and non-propulsion phases in the 100 meter breaststroke race. Twenty-seven male swimmers (15.7 ± 1.98 years old) with the total body length (TBL) of 247.0 ± 10.60 [cm] performed an all-out 100 m breaststroke bout. The bouts were recorded with an underwater camera installed on a portable trolley. The swimming kinematic parameters, stroke rate (SR) and stroke length (SL), as well as the coordination indices based on propulsive or non-propulsive movement phases of the arms and legs were distinguished. Swimming speed (V100surface breast) was associated with SL (R = 0.41, p study were measured using partial correlations with controlled age. SL interplayed negatively with the limbs propulsive phase Overlap indicator (R = -0.46, p propulsion Glide indicator. The propulsion in-sweep (AP3) phase of arms and their non-propulsion partial air recovery (ARair) phase interplayed with V100surface breast (R = 0.51, p < 0.05 and 0.48 p < 0.05) respectively, displaying the importance of proper execution of this phase (AP3) and in reducing the resistance recovery phases in consecutive ones.

  11. Modifications in Wheelchair Propulsion Technique with Speed.

    Science.gov (United States)

    Russell, Ian M; Raina, Shashank; Requejo, Philip S; Wilcox, Rand R; Mulroy, Sara; McNitt-Gray, Jill L

    2015-01-01

    Repetitive loading of the upper limb joints during manual wheelchair (WC) propulsion (WCP) has been identified as a factor that contributes to shoulder pain, leading to loss of independence and decreased quality of life. The purpose of this study was to determine how individual manual WC users with paraplegia modify propulsion mechanics to accommodate expected increases in reaction forces (RFs) generated at the pushrim with self-selected increases in WCP speed. Upper extremity kinematics and pushrim RFs were measured for 40 experienced manual WC users with paraplegia while propelling on a stationary ergometer at self-selected free and fast propulsion speeds. Upper extremity kinematics and kinetics were compared within subject between propulsion speeds. Between group and within-subject differences were determined (α = 0.05). Increased propulsion speed was accompanied by increases in RF magnitude (22 of 40, >10 N) and shoulder net joint moment (NJM, 15 of 40, >10 Nm) and decreases in pushrim contact duration. Within-subject comparison indicated that 27% of participants modified their WCP mechanics with increases in speed by regulating RF orientation relative to the upper extremity segments. Reorientation of the RF relative to the upper extremity segments can be used as an effective strategy for mitigating rotational demands (NJM) imposed on the shoulder at increased propulsion speeds. Identification of propulsion strategies that individuals can use to effectively accommodate for increases in RFs is an important step toward preserving musculoskeletal health of the shoulder and improving health-related quality of life.

  12. Augmented reality building operations tool

    Science.gov (United States)

    Brackney, Larry J.

    2014-09-09

    A method (700) for providing an augmented reality operations tool to a mobile client (642) positioned in a building (604). The method (700) includes, with a server (660), receiving (720) from the client (642) an augmented reality request for building system equipment (612) managed by an energy management system (EMS) (620). The method (700) includes transmitting (740) a data request for the equipment (612) to the EMS (620) and receiving (750) building management data (634) for the equipment (612). The method (700) includes generating (760) an overlay (656) with an object created based on the building management data (634), which may be sensor data, diagnostic procedures, or the like. The overlay (656) is configured for concurrent display on a display screen (652) of the client (642) with a real-time image of the building equipment (612). The method (700) includes transmitting (770) the overlay (656) to the client (642).

  13. Augmented Reality 2.0

    Science.gov (United States)

    Schmalstieg, Dieter; Langlotz, Tobias; Billinghurst, Mark

    Augmented Reality (AR) was first demonstrated in the 1960s, but only recently have technologies emerged that can be used to easily deploy AR applications to many users. Camera-equipped cell phones with significant processing power and graphics abilities provide an inexpensive and versatile platform for AR applications, while the social networking technology of Web 2.0 provides a large-scale infrastructure for collaboratively producing and distributing geo-referenced AR content. This combination of widely used mobile hardware and Web 2.0 software allows the development of a new type of AR platform that can be used on a global scale. In this paper we describe the Augmented Reality 2.0 concept and present existing work on mobile AR and web technologies that could be used to create AR 2.0 applications.

  14. Augmented Reality in Science Education

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Brandt, Harald; Swensen, Hakon

    Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits and chall......Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits...... and challenges related to AR enhancing student learning in science in lower secondary school were identified by expert science teachers, ICT designers and science education researchers from four countries in a Delphi survey. Findings were condensed in a framework to categorize educational AR designs....

  15. Nuclear electric propulsion: An integral part of NASA's nuclear propulsion project

    International Nuclear Information System (INIS)

    Stone, J.R.

    1992-01-01

    NASA has initiated a technology program to establish the readiness of nuclear propulsion technology for the Space Exploration Initiative (SEI). This program was initiated with a very modest effort identified with nuclear thermal propulsion (NTP); however, nuclear electric propulsion (NEP) is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. Although the Synthesis Group On America's SEI has identified NEP only as an option for cargo missions, recent studies conducted by NASA-Lewis show that NEP offers the potential for early manned Mars missions as well. Lower power NEP is also of current interest for outer planetary robotic missions. Current plans are reviewed for the overall nuclear propulsion project, with emphasis on NEP and those elements of NTP program which have synergism with NEP

  16. Effect of workload setting on propulsion technique in handrim wheelchair propulsion.

    Science.gov (United States)

    van Drongelen, Stefan; Arnet, Ursina; Veeger, Dirkjan H E J; van der Woude, Lucas H V

    2013-03-01

    To investigate the influence of workload setting (speed at constant power, method to impose power) on the propulsion technique (i.e. force and timing characteristics) in handrim wheelchair propulsion. Twelve able-bodied men participated in this study. External forces were measured during handrim wheelchair propulsion on a motor driven treadmill at different velocities and constant power output (to test the forced effect of speed) and at power outputs imposed by incline vs. pulley system (to test the effect of method to impose power). Outcome measures were the force and timing variables of the propulsion technique. FEF and timing variables showed significant differences between the speed conditions when propelling at the same power output (p propulsion technique parameters despite an overall constant power output. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Media-Augmented Exercise Machines

    Science.gov (United States)

    Krueger, T.

    2002-01-01

    Cardio-vascular exercise has been used to mitigate the muscle and cardiac atrophy associated with adaptation to micro-gravity environments. Several hours per day may be required. In confined spaces and long duration missions this kind of exercise is inevitably repetitive and rapidly becomes uninteresting. At the same time, there are pressures to accomplish as much as possible given the cost- per-hour for humans occupying orbiting or interplanetary. Media augmentation provides a the means to overlap activities in time by supplementing the exercise with social, recreational, training or collaborative activities and thereby reducing time pressures. In addition, the machine functions as an interface to a wide range of digital environments allowing for spatial variety in an otherwise confined environment. We hypothesize that the adoption of media augmented exercise machines will have a positive effect on psycho-social well-being on long duration missions. By organizing and supplementing exercise machines, data acquisition hardware, computers and displays into an interacting system this proposal increases functionality with limited additional mass. This paper reviews preliminary work on a project to augment exercise equipment in a manner that addresses these issues and at the same time opens possibilities for additional benefits. A testbed augmented exercise machine uses a specialty built cycle trainer as both input to a virtual environment and as an output device from it using spatialized sound, and visual displays, vibration transducers and variable resistance. The resulting interactivity increases a sense of engagement in the exercise, provides a rich experience of the digital environments. Activities in the virtual environment and accompanying physiological and psychological indicators may be correlated to track and evaluate the health of the crew.

  18. Derivation of Inviscid Quasi-geostrophic Equation from Rotational Compressible Magnetohydrodynamic Flows

    Science.gov (United States)

    Kwon, Young-Sam; Lin, Ying-Chieh; Su, Cheng-Fang

    2018-04-01

    In this paper, we consider the compressible models of magnetohydrodynamic flows giving rise to a variety of mathematical problems in many areas. We derive a rigorous quasi-geostrophic equation governed by magnetic field from the rotational compressible magnetohydrodynamic flows with the well-prepared initial data. It is a first derivation of quasi-geostrophic equation governed by the magnetic field, and the tool is based on the relative entropy method. This paper covers two results: the existence of the unique local strong solution of quasi-geostrophic equation with the good regularity and the derivation of a quasi-geostrophic equation.

  19. Analysis of the magnetohydrodynamic equations and study of the nonlinear solution bifurcations

    International Nuclear Information System (INIS)

    Morros Tosas, J.

    1989-01-01

    The nonlinear problems related to the plasma magnetohydrodynamic instabilities are studied. A bifurcation theory is applied and a general magnetohydrodynamic equation is proposed. Scalar functions, a steady magnetic field and a new equation for the velocity field are taken into account. A method allowing the obtention of suitable reduced equations for the instabilities study is described. Toroidal and cylindrical configuration plasmas are studied. In the cylindrical configuration case, analytical calculations are performed and two steady bifurcated solutions are found. In the toroidal configuration case, a suitable reduced equation system is obtained; a qualitative approach of a steady solution bifurcation on a toroidal Kink type geometry is carried out [fr

  20. Effect of Magnetohydrodynamic Couple Stresses on Dynamic Characteristics of Exponential Slider Bearing

    Directory of Open Access Journals (Sweden)

    N.B. Naduvinamani

    2017-05-01

    Full Text Available The effect of couple stresses on static and dynamic characteristics of exponential slider bearing in the presence of magnetic field considering squeeze action is theoretically analyzed in this paper. The modified magnetohydrodynamic couple stress Reynolds type equation is derived on the basis of Stokes couple stress model and closed form expressions are obtained for static and dynamic character coefficients. Comparing with bearing lubricated with non-conducting Newtonian lubricants, the magnetohydrodynamic couple stress lubrication provides the higher steady load carrying capacity, dynamic stiffness and damping coefficient. The exponential bearing shows higher efficiency for small film thickness at higher value of couple stress parameter and Hartmann number.