WorldWideScience

Sample records for magneto rotational turbulence

  1. Magnetic Helicities and Dynamo Action in Magneto-rotational Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Bodo, G.; Rossi, P. [INAF/Osservatorio Astrofisico di Torino, Strada Osservatorio 20, I-10025 Pino Torinese (Italy); Cattaneo, F. [Department of Astronomy and Astrophysics, The University of Chicago, 5640 S. Ellis Avenue, Chicago IL 60637 (United States); Mignone, A., E-mail: bodo@oato.inaf.it [Dipartimento di Fisica, Università degli Studi di Torino, Via Pietro Giuria 1, 10125 Torino (Italy)

    2017-07-10

    We examine the relationship between magnetic flux generation, taken as an indicator of large-scale dynamo action, and magnetic helicity, computed as an integral over the dynamo volume, in a simple dynamo. We consider dynamo action driven by magneto-rotational turbulence (MRT) within the shearing-box approximation. We consider magnetically open boundary conditions that allow a flux of helicity in or out of the computational domain. We circumvent the problem of the lack of gauge invariance in open domains by choosing a particular gauge—the winding gauge—that provides a natural interpretation in terms of the average winding number of pairwise field lines. We use this gauge precisely to define and measure the helicity and the helicity flux for several realizations of dynamo action. We find in these cases that the system as a whole does not break reflectional symmetry and that the total helicity remains small even in cases when substantial magnetic flux is generated. We find no particular connection between the generation of magnetic flux and the helicity or the helicity flux through the boundaries. We suggest that this result may be due to the essentially nonlinear nature of the dynamo processes in MRT.

  2. Enhanced Faraday rotation in one dimensional magneto-plasmonic structure due to Fano resonance

    Science.gov (United States)

    Sadeghi, S.; Hamidi, S. M.

    2018-04-01

    Enhanced Faraday rotation in a new type of magneto-plasmonic structure with the capability of Fano resonance, has been reported theoretically. A magneto-plasmonic structure composed of a gold corrugated layer deposited on a magneto-optically active layer was studied by means of Lumerical software based on finite-difference time-domain. In our proposed structure, plasmonic Fano resonance and localized surface plasmon have induced enhancement in magneto-optical Faraday rotation. It is shown that the influence of geometrical parameters in gold layer offers a desirable platform for engineering spectral position of Fano resonance and enhancement of Faraday rotation.

  3. Magneto-rotational instability in differentially rotating liquid metals

    International Nuclear Information System (INIS)

    Velikhov, E.P.; Ivanov, A.A.; Lakhin, V.P.; Serebrennikov, K.S.

    2006-01-01

    We study the stability of Couette flow between two cylinders in the presence of axial magnetic field in local WKB approximation. We find the analytical expression of the critical angular velocity minimized over the wave number and the imposed magnetic field as a function of the measure of deviation of the rotation law from the Rayleigh line. The result found is in a good agreement with the previously known numerical results based on the global analysis. We perform a minimization of the critical Reynolds number over the wave number at fixed magnetic field both analytically and numerically. We show that a compromise between resistive suppression of magneto-rotational instability at weak magnetic field and the increase of the critical Reynolds number with the increase of magnetic field is possible. It takes place at moderate values of magnetic field of order 3x10 2 gauss giving the critical Reynolds number of order 4x10 4

  4. Magneto-elastic dynamics and bifurcation of rotating annular plate*

    International Nuclear Information System (INIS)

    Hu Yu-Da; Piao Jiang-Min; Li Wen-Qiang

    2017-01-01

    In this paper, magneto-elastic dynamic behavior, bifurcation, and chaos of a rotating annular thin plate with various boundary conditions are investigated. Based on the thin plate theory and the Maxwell equations, the magneto-elastic dynamic equations of rotating annular plate are derived by means of Hamilton’s principle. Bessel function as a mode shape function and the Galerkin method are used to achieve the transverse vibration differential equation of the rotating annular plate with different boundary conditions. By numerical analysis, the bifurcation diagrams with magnetic induction, amplitude and frequency of transverse excitation force as the control parameters are respectively plotted under different boundary conditions such as clamped supported sides, simply supported sides, and clamped-one-side combined with simply-anotherside. Poincaré maps, time history charts, power spectrum charts, and phase diagrams are obtained under certain conditions, and the influence of the bifurcation parameters on the bifurcation and chaos of the system is discussed. The results show that the motion of the system is a complicated and repeated process from multi-periodic motion to quasi-period motion to chaotic motion, which is accompanied by intermittent chaos, when the bifurcation parameters change. If the amplitude of transverse excitation force is bigger or magnetic induction intensity is smaller or boundary constraints level is lower, the system can be more prone to chaos. (paper)

  5. Faraday rotation and magneto-optical figure of merit for the magnetite magnetic fluids

    Directory of Open Access Journals (Sweden)

    Kalandadze L.

    2011-05-01

    Full Text Available In the present paper, using magnetite magnetic fluids as examples, we consider the optical and magneto-optical properties of magnetic fluids based on particles of magnetic oxides, for the optical constants of the material of which, n and k , the relation k2 ≺≺ n2 holds. In this work the Faraday rotation is represented within the theoretical Maxwell-Garnett model. A theoretical analysis has shown that Faraday rotation for magnetic fluids is related to the Faraday rotation on the material of particles by the simple relation. According to this result  in specific experimental conditions the values of the Faraday rotation prorate to q , which is the occupancy of the volume of the magnetic fluid with magnetic particles and spectral dependences of effect in magnetic fluid and in the proper bulk magnetic are similar. We also show that the values of the magneto-optical figure of merit for ultrafine medium and for the bulk material are equal.

  6. Direct numerical simulation of homogeneous stratified rotating turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Iida, O.; Tsujimura, S.; Nagano, Y. [Nagoya Institute of Technology, Department of Mech. Eng., Nagoya (Japan)

    2005-12-01

    The effects of the Prandtl number on stratified rotating turbulence have been studied in homogeneous turbulence by using direct numerical simulations and a rapid distortion theory. Fluctuations under strong stable-density stratification can be theoretically divided into the WAVE and the potential vorticity (PV) modes. In low-Prandtl-number fluids, the WAVE mode deteriorates, while the PV mode remains. Imposing rotation on a low-Prandtl-number fluid makes turbulence two-dimensional as well as geostrophic; it is found from the instantaneous turbulent structure that the vortices merge to form a few vertically-elongated vortex columns. During the period toward two-dimensionalization, the vertical vortices become asymmetric in the sense of rotation. (orig.)

  7. Homogeneous turbulence dynamics

    CERN Document Server

    Sagaut, Pierre

    2018-01-01

    This book provides state-of-the-art results and theories in homogeneous turbulence, including anisotropy and compressibility effects with extension to quantum turbulence, magneto-hydodynamic turbulence  and turbulence in non-newtonian fluids. Each chapter is devoted to a given type of interaction (strain, rotation, shear, etc.), and presents and compares experimental data, numerical results, analysis of the Reynolds stress budget equations and advanced multipoint spectral theories. The role of both linear and non-linear mechanisms is emphasized. The link between the statistical properties and the dynamics of coherent structures is also addressed. Despite its restriction to homogeneous turbulence, the book is of interest to all people working in turbulence, since the basic physical mechanisms which are present in all turbulent flows are explained. The reader will find a unified presentation of the results and a clear presentation of existing controversies. Special attention is given to bridge the results obta...

  8. Magneto-Rayleigh-Taylor instability driven by a rotating magnetic field

    Science.gov (United States)

    Duan, Shuchao; Xie, Weiping; Cao, Jintao; Li, Ding

    2018-04-01

    In this paper, we analyze theoretically the magneto-Rayleigh-Taylor instability driven by a rotating magnetic field. Slab configurations of finite thickness are treated both with and without using the Wenzel-Kramers-Brillouin approximation. Regardless of the slab thickness, the directional rotation of the driving magnetic field contributes to suppressing these instabilities. The two factors of the finite thickness and directional rotation of the magnetic field cooperate to enhance suppression, with the finite thickness playing a role only when the orientation of the magnetic field is time varying. The suppression becomes stronger as the driving magnetic field rotates faster, and all modes are suppressed, in contrast to the case of a non-rotating magnetic field, for which the vertical mode cannot be suppressed. This implies that the dynamically alternate configuration of a Theta-pinch and a Z-pinch may be applicable to the concept of Theta-Z liner inertial fusion.

  9. Mean-field theory of differential rotation in density stratified turbulent convection

    Science.gov (United States)

    Rogachevskii, I.

    2018-04-01

    A mean-field theory of differential rotation in a density stratified turbulent convection has been developed. This theory is based on the combined effects of the turbulent heat flux and anisotropy of turbulent convection on the Reynolds stress. A coupled system of dynamical budget equations consisting in the equations for the Reynolds stress, the entropy fluctuations and the turbulent heat flux has been solved. To close the system of these equations, the spectral approach, which is valid for large Reynolds and Péclet numbers, has been applied. The adopted model of the background turbulent convection takes into account an increase of the turbulence anisotropy and a decrease of the turbulent correlation time with the rotation rate. This theory yields the radial profile of the differential rotation which is in agreement with that for the solar differential rotation.

  10. PLANETESIMAL AND PROTOPLANET DYNAMICS IN A TURBULENT PROTOPLANETARY DISK: IDEAL STRATIFIED DISKS

    International Nuclear Information System (INIS)

    Yang, Chao-Chin; Mac Low, Mordecai-Mark; Menou, Kristen

    2012-01-01

    Due to the gravitational influence of density fluctuations driven by magneto-rotational instability in the gas disk, planetesimals and protoplanets undergo diffusive radial migration as well as changes in other orbital properties. The magnitude of the effect on particle orbits can have important consequences for planet formation scenarios. We use the local-shearing-box approximation to simulate an ideal, isothermal, magnetized gas disk with vertical density stratification and simultaneously evolve numerous massless particles moving under the gravitational field of the gas and the host star. We measure the evolution of the particle orbital properties, including mean radius, eccentricity, inclination, and velocity dispersion, and its dependence on the disk properties and the particle initial conditions. Although the results converge with resolution for fixed box dimensions, we find the response of the particles to the gravity of the turbulent gas correlates with the horizontal box size, up to 16 disk scale heights. This correlation indicates that caution should be exercised when interpreting local-shearing-box models involving gravitational physics of magneto-rotational turbulence. Based on heuristic arguments, nevertheless, the criterion L h /R ∼ O(1), where L h is the horizontal box size and R is the distance to the host star, is proposed to possibly circumvent this conundrum. If this criterion holds, we can still conclude that magneto-rotational turbulence seems likely to be ineffective at driving either diffusive migration or collisional erosion under most circumstances.

  11. LES of turbulent flow in a concentric annulus with rotating outer wall

    International Nuclear Information System (INIS)

    Hadžiabdić, M.; Hanjalić, K.; Mullyadzhanov, R.

    2013-01-01

    Highlights: • High rotation up to N = 2 dampens progressively the turbulence near the rotating outer wall. • At 2 2.8, while tending to laminarize, the flow exhibits distinct Taylor-Couette vortical rolls. -- Abstract: Fully-developed turbulent flow in a concentric annulus, r 1 /r 2 = 0.5, Re h = 12,500, with the outer wall rotating at a range of rotation rates N = U θ,wall /U b from 0.5 up to 4 is studied by large-eddy simulations. The focus is on the effects of moderate to very high rotation rates on the mean flow, turbulence statistics and eddy structure. For N up to ∼2, an increase in the rotation rate dampens progressively the turbulence near the rotating outer wall, while affecting only mildly the inner-wall region. At higher rotation rates this trend is reversed: for N = 2.8 close to the inner wall turbulence is dramatically reduced while the outer wall region remains turbulent with discernible helical vortices as the dominant turbulent structure. The turbulence parameters and eddy structures differ significantly for N = 2 and 2.8. This switch is attributed to the centrifuged turbulence (generated near the inner wall) prevailing over the axial inertial force as well as over the counteracting laminarizing effects of the rotating outer wall. At still higher rotation, N = 4, the flow gets laminarized but with distinct spiralling vortices akin to the Taylor–Couette rolls found between the two counter-rotating cylinders without axial flow, which is the limiting case when N approaches to infinity. The ratio of the centrifugal to axial inertial forces, Ta/Re 2 ∝ N 2 (where Ta is the Taylor number) is considered as a possible criterion for defining the conditions for the above regime change

  12. Periodic reversal of magneto-optic Faraday rotation on uniaxial birefringence crystal with ultrathin magnetic films

    Directory of Open Access Journals (Sweden)

    C. W. Su

    2013-07-01

    Full Text Available An experimental approach of inclined incidence magneto-optic Faraday effect observed in the polar plane is applied. Three samples containing ferromagnetic cobalt ultrathin films on a semiconductor zinc oxide (0001 single crystal substrate with in-plane and out-of-plane anisotropy are evaluated. Through the fine adjustment of crossed polarizers in the magneto-optic effect measurement completely recorded the detail optical and magneto-optical responses from the birefringent crystal substrate and the magnetic film, especially for the signal induced from the substrate with uniaxial optical axis. The angle dependency of interference phenomena periodically from the optical and magneto-optical responses is attributed to the birefringence even in the absence of a magnetic field. The new type of observation finds that the transmission Faraday intensity in the oblique incidence includes a combination of polarization rotations, which results from optical compensation from the substrate and magneto-optical Faraday effects from the film. The samples grown at different rates and examined by this method exhibit magnetic structure discriminations. This result can be applied in the advanced polarized-light technologies to enhance the spatial resolution of magnetic surfaces with microstructural information under various magnetic field direction.

  13. Nonlocal strain gradient based wave dispersion behavior of smart rotating magneto-electro-elastic nanoplates

    Science.gov (United States)

    Ebrahimi, Farzad; Dabbagh, Ali

    2017-02-01

    Main object of the present research is an exact investigation of wave propagation responses of smart rotating magneto-electro-elastic (MEE) graded nanoscale plates. In addition, effective material properties of functionally graded (FG) nanoplate are presumed to be calculated using the power-law formulations. Also, it has been tried to cover both softening and stiffness-hardening behaviors of nanostructures by the means of employing nonlocal strain gradient theory (NSGT). Due to increasing the accuracy of the presented model in predicting shear deformation effects, a refined higher-order plate theory is introduced. In order to cover the most enormous circumstances, maximum amount of load generated by plate’s rotation is considered. Furthermore, utilizing a developed form of Hamilton’s principle, containing magneto-electric effects, the nonlocal governing equations of MEE-FG rotating nanoplates are derived. An analytical solution is obtained to solve the governing equations and validity of the solution method is proven by comparing results from present method with those of former attempts. At last, outcomes are plotted in the framework of some figures to show the influences of various parameters such as wave number, nonlocality, length scale parameter, magnetic potential, electric voltage, gradient index and angular velocity on wave frequency, phase velocity and escape frequency of the examined nanoplate.

  14. Subgrid-scale models for large-eddy simulation of rotating turbulent channel flows

    Science.gov (United States)

    Silvis, Maurits H.; Bae, Hyunji Jane; Trias, F. Xavier; Abkar, Mahdi; Moin, Parviz; Verstappen, Roel

    2017-11-01

    We aim to design subgrid-scale models for large-eddy simulation of rotating turbulent flows. Rotating turbulent flows form a challenging test case for large-eddy simulation due to the presence of the Coriolis force. The Coriolis force conserves the total kinetic energy while transporting it from small to large scales of motion, leading to the formation of large-scale anisotropic flow structures. The Coriolis force may also cause partial flow laminarization and the occurrence of turbulent bursts. Many subgrid-scale models for large-eddy simulation are, however, primarily designed to parametrize the dissipative nature of turbulent flows, ignoring the specific characteristics of transport processes. We, therefore, propose a new subgrid-scale model that, in addition to the usual dissipative eddy viscosity term, contains a nondissipative nonlinear model term designed to capture transport processes, such as those due to rotation. We show that the addition of this nonlinear model term leads to improved predictions of the energy spectra of rotating homogeneous isotropic turbulence as well as of the Reynolds stress anisotropy in spanwise-rotating plane-channel flows. This work is financed by the Netherlands Organisation for Scientific Research (NWO) under Project Number 613.001.212.

  15. Turbulent convection in liquid metal with and without rotation.

    Science.gov (United States)

    King, Eric M; Aurnou, Jonathan M

    2013-04-23

    The magnetic fields of Earth and other planets are generated by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more readily than momentum, quantified by their small Prandtl numbers, Pr rotating Rayleigh-Bénard convection experiments in the liquid metal gallium (Pr = 0.025) over a range of nondimensional buoyancy forcing (Ra) and rotation periods (E). Our primary diagnostic is the efficiency of convective heat transfer (Nu). In general, we find that the convective behavior of liquid metal differs substantially from that of moderate Pr fluids, such as water. In particular, a transition between rotationally constrained and weakly rotating turbulent states is identified, and this transition differs substantially from that observed in moderate Pr fluids. This difference, we hypothesize, may explain the different classes of magnetic fields observed on the Gas and Ice Giant planets, whose dynamo regions consist of Pr 1 fluids, respectively.

  16. Near-Wall Turbulence Modelling of Rotating and Curved Shear Flows

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Bjoern Anders

    1997-12-31

    This thesis deals with verification and refinement of turbulence models within the framework of the Reynolds-averaged approach. It pays special attention to modelling the near-wall region, where the turbulence is strongly non-homogeneous and anisotropic. It also studies in detail the effects associated with an imposed rotation of the reference frame or streamline curvature. The objective with near-wall turbulence closure modelling is to formulate a set of equations governing single point turbulence statistics, which can be solved in the region of the flow which extends to the wall. This is in contrast to the commonly adopted wall-function approach in which the wall-boundary conditions are replaced by matching conditions in the logarithmic region. The near-wall models allow more flexibility by not requiring any such universal behaviour. Assessment of the novel elliptic relaxation approach to model the proximity of a solid boundary reveals an encouraging potential used in conjunction with second-moment and eddy-viscosity closures. The most natural level of closure modelling to predict flows affected by streamline curvatures or an imposed rotation of the reference frame is at the second-moment closure (SMC) level. Although SMCs naturally accounts for the effects of system rotation, the usual application of a scalar dissipation rate equation is shown to require ad hoc corrections in some cases in order to give good results. The elliptic relaxation approach is also used in conjunction with non-linear pressure-strain models and very encouraging results are obtained for rotating flows. Rotational induced secondary motions are vital to predicting the effects of system rotation. Some severe weaknesses of non-linear pressure-strain models are also indicated. Finally, a modelling methodology for anisotropic dissipation in nearly homogeneous turbulence are proposed. 84 refs., 56 figs., 16 tabs.

  17. Compressibility and rotation effects on transport suppression in magnetohydrodynamic turbulence

    International Nuclear Information System (INIS)

    Yoshizawa, A.

    1996-01-01

    Compressibility and rotation effects on turbulent transports in magnetohydrodynamic (MHD) flows under arbitrary mean field are investigated using a Markovianized two-scale statistical approach. Some new aspects of MHD turbulence are pointed out in close relation to plasma compressibility. Special attention is paid to the turbulent electromotive force, which plays a central role in the generation of magnetic and velocity fluctuations. In addition to plasma rotation, the interaction between compressibility and magnetic fields is shown to bring a few factors suppressing MHD fluctuations and, eventually, density and temperature transports, even in the presence of steep mean density and temperature gradients. This finding is discussed in the context of the turbulence-suppression mechanism in the tokamak close-quote s high-confinement modes. copyright 1996 American Institute of Physics

  18. Tokamak turbulence in self-regulated differentially rotating flow and L-H transition dynamics

    International Nuclear Information System (INIS)

    Terry, P.W.; Carreras, B.A.; Sidikman, K.

    1992-01-01

    An analytical study of turbulence in the presence of turbulently generated differentially rotating flow is presented as a paradigm for fluctuation dynamics in L- and H-mode plasmas. Using a drift wave model, the role of both flow shear and flow curvature (second radial derivative of the poloidal ExB flow) is detailed in linear and saturated turbulence phases. In the strong turbulence saturated state, finite amplitude-induced modification of the fluctuation structure near low order rational surfaces strongly inhibits flow shear suppression. Suppression by curvature is not diminished, but it occurs through a frequency shift. A description of L-H mode transition dynamics based on the self-consistent linking of turbulence suppression by differentially rotating flow and generation of flow by turbulent momentum transport is presented. In this model, rising edge temperature triggers a transition characterized by spontaneous generation of differentially rotating flow and decreasing turbulence intensity

  19. Vortex statistics in turbulent rotating convection

    NARCIS (Netherlands)

    Kunnen, R.P.J.; Clercx, H.J.H.; Geurts, B.J.

    2010-01-01

    The vortices emerging in rotating turbulent Rayleigh-Bénard convection in water at Rayleigh number Ra=6.0×108 are investigated using stereoscopic particle image velocimetry and by direct numerical simulation. The so-called Q criterion is used to detect the vortices from velocity fields. This

  20. Investigation of intrinsic toroidal rotation scaling in KSTAR

    Science.gov (United States)

    Yoo, J. W.; Lee, S. G.; Ko, S. H.; Seol, J.; Lee, H. H.; Kim, J. H.

    2017-07-01

    The behaviors of an intrinsic toroidal rotation without any external momentum sources are investigated in KSTAR. In these experiments, pure ohmic discharges with a wide range of plasma parameters are carefully selected and analyzed to speculate an unrevealed origin of toroidal rotation excluding any unnecessary heating sources, magnetic perturbations, and strong magneto-hydrodynamic activities. The measured core toroidal rotation in KSTAR is mostly in the counter-current direction and its magnitude strongly depends on the ion temperature divided by plasma current (Ti/IP). Especially the core toroidal rotation in the steady-state is well fitted by Ti/IP scaling with a slope of ˜-23, and the possible explanation of the scaling is compared with various candidates. As a result, the calculated offset rotation could not explain the measured core toroidal rotation since KSTAR has an extremely low intrinsic error field. For the stability conditions for ion and electron turbulences, it is hard to determine a dominant turbulence mode in this study. In addition, the intrinsic toroidal rotation level in ITER is estimated based on the KSTAR scaling since the intrinsic rotation plays an important role in stabilizing resistive wall modes for future reference.

  1. Breakdown of large-scale circulation in turbulent rotating convection

    NARCIS (Netherlands)

    Kunnen, R.P.J.; Clercx, H.J.H.; Geurts, Bernardus J.

    2008-01-01

    Turbulent rotating convection in a cylinder is investigated both numerically and experimentally at Rayleigh number Ra = $10^9$ and Prandtl number $\\sigma$ = 6.4. In this Letter we discuss two topics: the breakdown under rotation of the domain-filling large-scale circulation (LSC) typical for

  2. PLANETESIMAL AND PROTOPLANET DYNAMICS IN A TURBULENT PROTOPLANETARY DISK: IDEAL UNSTRATIFIED DISKS

    International Nuclear Information System (INIS)

    Yang, Chao-Chin; Mac Low, Mordecai-Mark; Menou, Kristen

    2009-01-01

    The dynamics of planetesimals and planetary cores may be strongly influenced by density perturbations driven by magneto-rotational turbulence in their natal protoplanetary gas disks. Using the local shearing box approximation, we perform numerical simulations of planetesimals moving as massless particles in a turbulent, magnetized, unstratified gas disk. Our fiducial disk model shows turbulent accretion characterized by a Shakura-Sunyaev viscosity parameter of α ∼ 10 -2 , with rms density perturbations of ∼10%. We measure the statistical evolution of particle orbital properties in our simulations including mean radius, eccentricity, and velocity dispersion. We confirm random walk growth in time of all three properties, the first time that this has been done with direct orbital integration in a local model. We find that the growth rate increases with the box size used at least up to boxes of eight scale heights in horizontal size. However, even our largest boxes show velocity dispersions sufficiently low that collisional destruction of planetesimals should be unimportant in the inner disk throughout its lifetime. Our direct integrations agree with earlier torque measurements showing that type I migration dominates over diffusive migration by stochastic torques for most objects in the planetary core and terrestrial planet mass range. Diffusive migration remains important for objects in the mass range of kilometer-sized planetesimals. Discrepancies in the derived magnitude of turbulence between local and global simulations of magneto-rotationally unstable disks remains an open issue, with important consequences for planet formation scenarios.

  3. Formation of protostars in collapsing, rotating, turbulent clouds

    International Nuclear Information System (INIS)

    Regev, O.; Shaviv, G.

    1981-01-01

    Collapse and star formation processes in rotating turbulent interstellar gas clouds have been studied. For this purpose numerical collapse calculations have been performed for a number of representative cases. These calculations have been carried out by a two-dimensional hydrodynamical computer code, which solves the equations of hydrodynamics explicitly, coupled to the Poisson equation. The computer code has been written especially for this work and has been thoroughly tested. The calculations in this work have been performed with an effort to obtain physically reliable results (by repeating the same calculations with different numerical spatial resolutions). A physical mechanism for angular momentum transport by turbulent viscosity has been proposed and incorporated in new collapse calculations. The main results can be summerized as follows: When there is no physical mechanism for angular momentum transport, the result of the collaps is a ringlike structure. The turbulent viscosity affects the nature of the collaps. For the two cases studied, the mass of the central object is a major fraction (30%) of the total mass of the system. The exact form of the central object and its ultimate fate depend on the parameters, especially rotational energy/gravitational energy and Re. The present calculations cannot predict the future evolution of the central object. In the new theoretical model proposed, a central protostar forms as a result of the collaps of a protostellar rotating cloud

  4. Large Eddy Simulation of turbulence induced secondary flows in stationary and rotating straight square ducts

    Science.gov (United States)

    Sudjai, W.; Juntasaro, V.; Juttijudata, V.

    2018-01-01

    The accuracy of predicting turbulence induced secondary flows is crucially important in many industrial applications such as turbine blade internal cooling passages in a gas turbine and fuel rod bundles in a nuclear reactor. A straight square duct is popularly used to reveal the characteristic of turbulence induced secondary flows which consists of two counter rotating vortices distributed in each corner of the duct. For a rotating duct, the flow can be divided into the pressure side and the suction side. The turbulence induced secondary flows are converted to the Coriolis force driven two large circulations with a pair of additional vortices on the pressure wall due to the rotational effect. In this paper, the Large Eddy Simulation (LES) of turbulence induced secondary flows in a straight square duct is performed using the ANSYS FLUENT CFD software. A dynamic kinetic energy subgrid-scale model is used to describe the three-dimensional incompressible turbulent flows in the stationary and the rotating straight square ducts. The Reynolds number based on the friction velocity and the hydraulic diameter is 300 with the various rotation numbers for the rotating cases. The flow is assumed fully developed by imposing the constant pressure gradient in the streamwise direction. For the rotating cases, the rotational axis is placed perpendicular to the streamwise direction. The simulation results on the secondary flows and the turbulent statistics are found to be in good agreement with the available Direct Numerical Simulation (DNS) data. Finally, the details of the Coriolis effects are discussed.

  5. Pump-probe nonlinear magneto-optical rotation with frequency-modulated light

    International Nuclear Information System (INIS)

    Pustelny, S.; Gawlik, W.; Jackson Kimball, D. F.; Rochester, S. M.; Yashchuk, V. V.; Budker, D.

    2006-01-01

    Specific types of atomic coherences between Zeeman sublevels can be generated and detected using a method based on nonlinear magneto-optical rotation with frequency-modulated light. Linearly polarized, frequency-modulated light is employed to selectively generate ground-state coherences between Zeeman sublevels for which Δm=2 and Δm=4 in 85 Rb and 87 Rb atoms, and additionally Δm=6 in 85 Rb. The atomic coherences are detected with a separate, unmodulated probe light beam. Separation of the pump and probe beams enables independent investigation of the processes of creation and detection of the atomic coherences. With the present technique the transfer of the Zeeman coherences, including high-order coherences, from excited to ground state by spontaneous emission has been observed

  6. Competition of Faraday rotation and birefringence in femtosecond laser direct written waveguides in magneto-optical glass.

    Science.gov (United States)

    Liu, Qiang; Gross, S; Dekker, P; Withford, M J; Steel, M J

    2014-11-17

    We consider the process of Faraday rotation in femtosecond laser direct-write waveguides. The birefringence commonly associated with such waveguides may be expected to impact the observable Faraday rotation. Here, we theoretically calculate and experimentally verify the competition between Faraday rotation and birefringence in two waveguides created by laser writing in a commercial magneto-optic glass. The magnetic field applied to induce Faraday rotation is nonuniform, and as a result, we find that the two effects can be clearly separated and used to accurately determine even weak birefringence. The birefringence in the waveguides was determined to be on the scale of Δn = 10(-6) to 10(-5). The reduction in Faraday rotation caused by birefringence of order Δn = 10(-6) was moderate and we obtained approximately 9° rotation in an 11 mm waveguide. In contrast, for birefringence of order 10(-5), a significant reduction in the polarization azimuth change was found and only 6° rotation was observed.

  7. On the phase lag of turbulent dissipation in rotating tidal flows

    Science.gov (United States)

    Zhang, Qianjiang; Wu, Jiaxue

    2018-03-01

    Field observations of rotating tidal flows in a shallow tidally swept sea reveal that a notable phase lag of both shear production and turbulent dissipation increases with height above the seafloor. These vertical delays of turbulent quantities are approximately equivalent in magnitude to that of squared mean shear. The shear production approximately equals turbulent dissipation over the phase-lag column, and thus a main mechanism of phase lag of dissipation is mean shear, rather than vertical diffusion of turbulent kinetic energy. By relating the phase lag of dissipation to that of the mean shear, a simple formulation with constant eddy viscosity is developed to describe the phase lag in rotating tidal flows. An analytical solution indicates that the phase lag increases linearly with height subjected to a combined effect of tidal frequency, Coriolis parameter and eddy viscosity. The vertical diffusion of momentum associated with eddy viscosity produces the phase lag of squared mean shear, and resultant delay of turbulent quantities. Its magnitude is inhibited by Earth's rotation. Furthermore, a theoretical formulation of the phase lag with a parabolic eddy viscosity profile can be constructed. A first-order approximation of this formulation is still a linear function of height, and its magnitude is approximately 0.8 times that with constant viscosity. Finally, the theoretical solutions of phase lag with realistic viscosity can be satisfactorily justified by realistic phase lags of dissipation.

  8. Transitions in turbulent rotating convection: A Lagrangian perspective : A Lagrangian perspective

    NARCIS (Netherlands)

    Rajaei, H.; Joshi, P.R.; Alards, K.M.J.; Kunnen, R.P.J.; Toschi, F.; Clercx, H.J.H.

    2016-01-01

    Using measurements of Lagrangian acceleration in turbulent rotating convection and accompanying direct numerical simulations, we show that the transition between turbulent states reported earlier [e.g., S. Weiss et al., Phys. Rev. Lett. 105, 224501 (2010)] is a boundary-layer transition between the

  9. Propagation of rotational Risley-prism-array-based Gaussian beams in turbulent atmosphere

    Science.gov (United States)

    Chen, Feng; Ma, Haotong; Dong, Li; Ren, Ge; Qi, Bo; Tan, Yufeng

    2018-03-01

    Limited by the size and weight of prism and optical assembling, Rotational Risley-prism-array system is a simple but effective way to realize high power and superior beam quality of deflecting laser output. In this paper, the propagation of the rotational Risley-prism-array-based Gaussian beam array in atmospheric turbulence is studied in detail. An analytical expression for the average intensity distribution at the receiving plane is derived based on nonparaxial ray tracing method and extended Huygens-Fresnel principle. Power in the diffraction-limited bucket is chosen to evaluate beam quality. The effect of deviation angle, propagation distance and intensity of turbulence on beam quality is studied in detail by quantitative simulation. It reveals that with the propagation distance increasing, the intensity distribution gradually evolves from multiple-petal-like shape into the pattern that contains one main-lobe in the center with multiple side-lobes in weak turbulence. The beam quality of rotational Risley-prism-array-based Gaussian beam array with lower deviation angle is better than its counterpart with higher deviation angle when propagating in weak and medium turbulent (i.e. Cn2 beam quality of higher deviation angle arrays degrades faster as the intensity of turbulence gets stronger. In the case of propagating in strong turbulence, the long propagation distance (i.e. z > 10km ) and deviation angle have no influence on beam quality.

  10. Sustained turbulence and magnetic energy in non-rotating shear flows

    DEFF Research Database (Denmark)

    Nauman, Farrukh; Blackman, Eric G.

    2017-01-01

    From numerical simulations, we show that non-rotating magnetohydrodynamic shear flows are unstable to finite amplitude velocity perturbations and become turbulent, leading to the growth and sustenance of magnetic energy, including large scale fields. This supports the concept that sustained...... magnetic energy from turbulence is independent of the driving mechanism for large enough magnetic Reynolds numbers....

  11. Generation of large-scale vorticity in rotating stratified turbulence with inhomogeneous helicity: mean-field theory

    Science.gov (United States)

    Kleeorin, N.

    2018-06-01

    We discuss a mean-field theory of the generation of large-scale vorticity in a rotating density stratified developed turbulence with inhomogeneous kinetic helicity. We show that the large-scale non-uniform flow is produced due to either a combined action of a density stratified rotating turbulence and uniform kinetic helicity or a combined effect of a rotating incompressible turbulence and inhomogeneous kinetic helicity. These effects result in the formation of a large-scale shear, and in turn its interaction with the small-scale turbulence causes an excitation of the large-scale instability (known as a vorticity dynamo) due to a combined effect of the large-scale shear and Reynolds stress-induced generation of the mean vorticity. The latter is due to the effect of large-scale shear on the Reynolds stress. A fast rotation suppresses this large-scale instability.

  12. THE FORMATION OF ROTATIONAL DISCONTINUITIES IN COMPRESSIVE THREE-DIMENSIONAL MHD TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liping; Feng, Xueshang [SIGMA Weather Group, State Key Laboratory for Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, 100190, Beijing (China); Zhang, Lei; He, Jiansen; Tu, Chuanyi; Wang, Linghua; Wang, Xin [School of Earth and Space Sciences, Peking University, 100871 Beijing (China); Marsch, Eckart [Institute for Experimental and Applied Physics, Christian Albrechts University at Kiel, D-24118 Kiel (Germany); Zhang, Shaohua, E-mail: jshept@gmail.com [Center of Spacecraft Assembly Integration and Test, China Academy of Space Technology, Beijing 100094 (China)

    2015-08-20

    Measurements of solar wind turbulence reveal the ubiquity of discontinuities. In this study we investigate how the discontinuities, especially rotational discontinuities (RDs), are formed in MHD turbulence. In a simulation of the decaying compressive three-dimensional (3D) MHD turbulence with an imposed uniform background magnetic field, we detect RDs with sharp field rotations and little variations of magnetic field intensity, as well as mass density. At the same time, in the de Hoffman–Teller frame, the plasma velocity is nearly in agreement with the Alfvén speed, and is field-aligned on both sides of the discontinuity. We take one of the identified RDs to analyze its 3D structure and temporal evolution in detail. By checking the magnetic field and plasma parameters, we find that the identified RD evolves from the steepening of the Alfvén wave with moderate amplitude, and that steepening is caused by the nonuniformity of the Alfvén speed in the ambient turbulence.

  13. Magneto-optical response in bimetallic metamaterials

    Science.gov (United States)

    Atmatzakis, Evangelos; Papasimakis, Nikitas; Fedotov, Vassili; Vienne, Guillaume; Zheludev, Nikolay I.

    2018-01-01

    We demonstrate resonant Faraday polarization rotation in plasmonic arrays of bimetallic nano-ring resonators consisting of Au and Ni sections. This metamaterial design allows the optimization of the trade-off between the enhancement of magneto-optical effects and plasmonic dissipation. Nickel sections corresponding to as little as 6% of the total surface of the metamaterial result in magneto-optically induced polarization rotation equal to that of a continuous nickel film. Such bimetallic metamaterials can be used in compact magnetic sensors, active plasmonic components, and integrated photonic circuits.

  14. Large eddy simulation of rotating turbulent flows and heat transfer by the lattice Boltzmann method

    Science.gov (United States)

    Liou, Tong-Miin; Wang, Chun-Sheng

    2018-01-01

    Due to its advantage in parallel efficiency and wall treatment over conventional Navier-Stokes equation-based methods, the lattice Boltzmann method (LBM) has emerged as an efficient tool in simulating turbulent heat and fluid flows. To properly simulate the rotating turbulent flow and heat transfer, which plays a pivotal role in tremendous engineering devices such as gas turbines, wind turbines, centrifugal compressors, and rotary machines, the lattice Boltzmann equations must be reformulated in a rotating coordinate. In this study, a single-rotating reference frame (SRF) formulation of the Boltzmann equations is newly proposed combined with a subgrid scale model for the large eddy simulation of rotating turbulent flows and heat transfer. The subgrid scale closure is modeled by a shear-improved Smagorinsky model. Since the strain rates are also locally determined by the non-equilibrium part of the distribution function, the calculation process is entirely local. The pressure-driven turbulent channel flow with spanwise rotation and heat transfer is used for validating the approach. The Reynolds number characterized by the friction velocity and channel half height is fixed at 194, whereas the rotation number in terms of the friction velocity and channel height ranges from 0 to 3.0. A working fluid of air is chosen, which corresponds to a Prandtl number of 0.71. Calculated results are demonstrated in terms of mean velocity, Reynolds stress, root mean square (RMS) velocity fluctuations, mean temperature, RMS temperature fluctuations, and turbulent heat flux. Good agreement is found between the present LBM predictions and previous direct numerical simulation data obtained by solving the conventional Navier-Stokes equations, which confirms the capability of the proposed SRF LBM and subgrid scale relaxation time formulation for the computation of rotating turbulent flows and heat transfer.

  15. Turbulent convection in liquid metal with and without rotation

    OpenAIRE

    King, Eric M.; Aurnou, Jonathan M.

    2013-01-01

    The magnetic fields of Earth and other planets are generated by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more readily than momentum, quantified by their small Prandtl numbers, . Most analog models of planetary dynamos, however, use moderate fluids, and the systematic influence of reducing is not well understood. We perform rotating Rayleigh–Bénard convection experiments in the liquid metal gallium over a range of nondimensional bu...

  16. NONLINEAR DYNAMO IN A ROTATING ELECTRICALLY CONDUCTING FLUID

    Directory of Open Access Journals (Sweden)

    M. I. Kopp

    2017-05-01

    Full Text Available We found a new large-scale instability, which arises in the rotating conductive fluid with small-scale turbulence. Turbulence is generated by small-scale external force with a low Reynolds number. The theory is built simply by the method of multiscale asymptotic expansions. Nonlinear equations for vortex and magnetic perturbations obtained in the third order for small Reynolds number. It is shown that the combined effects of the Coriolis force and the small external forces in a rotating conducting fluid possible large-scale instability. The large-scale increments of the instability, correspond to generation as the vortex and magnetic disturbances. This type of instability is classified as hydrodynamic and MHD alpha-effect. We studied the stationary regimes of nonlinear equations of magneto-vortex dynamo. In the limit of weakly conducting fluid found stationary solutions in the form of helical kinks. In the limit of high conductivity fluid was obtained stationary solutions in the form of nonlinear periodic waves and kinks.

  17. Investigation of microwave transitions and nonlinear magneto-optical rotation in anti-relaxation-coated cells

    International Nuclear Information System (INIS)

    Budker, D.; Hollberg, L.; Kimball, D.F.; Kitching, J.; Pustclny, S.; Robinson, H.G.; Yashchuk, V.V.

    2004-01-01

    Using laser optical pumping, widths and frequency shifts are determined for microwave transitions between the components of the ground-state hyperfine structure for 85 Rb and 87 Rb atoms contained in vapor cells with alkane anti-relaxation coatings. The results are compared with data on Zeeman relaxation obtained in nonlinear magneto-optical rotation (NMOR) experiments, a comparison important for quantitative understanding of spin-relaxation mechanisms in coated cells. By comparing cells manufactured over a forty-year period we demonstrate the long-term stability of coated cells, which may be useful for atomic clocks and magnetometers

  18. Investigation of microwave transitions and nonlinear magneto-optical rotation in anti-relaxation-coated cells

    International Nuclear Information System (INIS)

    Budker, Dmitry; Hollberg, Leo; Kimball, Derek F.; Kitching, J.; Pustelny, Szymon; Yashchuk, Valeriy V.

    2004-01-01

    Using laser optical pumping, widths and frequency shifts are determined for microwave transitions between ground-state hyperfine components of 85 Rb and 87 Rb atoms contained in vapor cells with alkane anti-relaxation coatings. The results are compared with data on Zeeman relaxation obtained in nonlinear magneto-optical rotation (NMOR) experiments, a comparison important for quantitative understanding of spin-relaxation mechanisms in coated cells. By comparing cells manufactured over a forty-year period we demonstrate the long-term stability of coated cells, an important property for atomic clocks and magnetometers

  19. TURBULENT DISKS ARE NEVER STABLE: FRAGMENTATION AND TURBULENCE-PROMOTED PLANET FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Philip F. [TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Christiansen, Jessie L., E-mail: phopkins@caltech.edu [SETI Institute/NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States)

    2013-10-10

    A fundamental assumption in our understanding of disks is that when the Toomre Q >> 1, the disk is stable against fragmentation into self-gravitating objects (and so cannot form planets via direct collapse). But if disks are turbulent, this neglects a spectrum of stochastic density fluctuations that can produce rare, high-density mass concentrations. Here, we use a recently developed analytic framework to predict the statistics of these fluctuations, i.e., the rate of fragmentation and mass spectrum of fragments formed in a turbulent Keplerian disk. Turbulent disks are never completely stable: we calculate the (always finite) probability of forming self-gravitating structures via stochastic turbulent density fluctuations in such disks. Modest sub-sonic turbulence above Mach number M∼0.1 can produce a few stochastic fragmentation or 'direct collapse' events over ∼Myr timescales, even if Q >> 1 and cooling is slow (t{sub cool} >> t{sub orbit}). In transsonic turbulence this extends to Q ∼ 100. We derive the true Q-criterion needed to suppress such events, which scales exponentially with Mach number. We specify to turbulence driven by magneto-rotational instability, convection, or spiral waves and derive equivalent criteria in terms of Q and the cooling time. Cooling times ∼> 50 t{sub dyn} may be required to completely suppress fragmentation. These gravo-turbulent events produce mass spectra peaked near ∼(Q M{sub disk}/M{sub *}){sup 2} M{sub disk} (rocky-to-giant planet masses, increasing with distance from the star). We apply this to protoplanetary disk models and show that even minimum-mass solar nebulae could experience stochastic collapse events, provided a source of turbulence.

  20. TURBULENT DISKS ARE NEVER STABLE: FRAGMENTATION AND TURBULENCE-PROMOTED PLANET FORMATION

    International Nuclear Information System (INIS)

    Hopkins, Philip F.; Christiansen, Jessie L.

    2013-01-01

    A fundamental assumption in our understanding of disks is that when the Toomre Q >> 1, the disk is stable against fragmentation into self-gravitating objects (and so cannot form planets via direct collapse). But if disks are turbulent, this neglects a spectrum of stochastic density fluctuations that can produce rare, high-density mass concentrations. Here, we use a recently developed analytic framework to predict the statistics of these fluctuations, i.e., the rate of fragmentation and mass spectrum of fragments formed in a turbulent Keplerian disk. Turbulent disks are never completely stable: we calculate the (always finite) probability of forming self-gravitating structures via stochastic turbulent density fluctuations in such disks. Modest sub-sonic turbulence above Mach number M∼0.1 can produce a few stochastic fragmentation or 'direct collapse' events over ∼Myr timescales, even if Q >> 1 and cooling is slow (t cool >> t orbit ). In transsonic turbulence this extends to Q ∼ 100. We derive the true Q-criterion needed to suppress such events, which scales exponentially with Mach number. We specify to turbulence driven by magneto-rotational instability, convection, or spiral waves and derive equivalent criteria in terms of Q and the cooling time. Cooling times ∼> 50 t dyn may be required to completely suppress fragmentation. These gravo-turbulent events produce mass spectra peaked near ∼(Q M disk /M * ) 2 M disk (rocky-to-giant planet masses, increasing with distance from the star). We apply this to protoplanetary disk models and show that even minimum-mass solar nebulae could experience stochastic collapse events, provided a source of turbulence

  1. Energy transfer in turbulence under rotation

    Science.gov (United States)

    Buzzicotti, Michele; Aluie, Hussein; Biferale, Luca; Linkmann, Moritz

    2018-03-01

    It is known that rapidly rotating turbulent flows are characterized by the emergence of simultaneous upscale and downscale energy transfer. Indeed, both numerics and experiments show the formation of large-scale anisotropic vortices together with the development of small-scale dissipative structures. However the organization of interactions leading to this complex dynamics remains unclear. Two different mechanisms are known to be able to transfer energy upscale in a turbulent flow. The first is characterized by two-dimensional interactions among triads lying on the two-dimensional, three-component (2D3C)/slow manifold, namely on the Fourier plane perpendicular to the rotation axis. The second mechanism is three-dimensional and consists of interactions between triads with the same sign of helicity (homochiral). Here, we present a detailed numerical study of rotating flows using a suite of high-Reynolds-number direct numerical simulations (DNS) within different parameter regimes to analyze both upscale and downscale cascade ranges. We find that the upscale cascade at wave numbers close to the forcing scale is generated by increasingly dominant homochiral interactions which couple the three-dimensional bulk and the 2D3C plane. This coupling produces an accumulation of energy in the 2D3C plane, which then transfers energy to smaller wave numbers thanks to the two-dimensional mechanism. In the forward cascade range, we find that the energy transfer is dominated by heterochiral triads and is dominated primarily by interaction within the fast manifold where kz≠0 . We further analyze the energy transfer in different regions in the real-space domain. In particular, we distinguish high-strain from high-vorticity regions and we uncover that while the mean transfer is produced inside regions of strain, the rare but extreme events of energy transfer occur primarily inside the large-scale column vortices.

  2. Trapped Electron Mode Turbulence Driven Intrinsic Rotation in Tokamak Plasmas

    International Nuclear Information System (INIS)

    Wang, W.X.; Hahm, T.S.; Ethier, S.; Zakharov, L.E.

    2011-01-01

    Recent progress from global gyrokinetic simulations in understanding the origin of intrinsic rotation in toroidal plasmas is reported with emphasis on electron thermal transport dominated regimes. The turbulence driven intrinsic torque associated with nonlinear residual stress generation by the fluctuation intensity and the intensity gradient in the presence of zonal flow shear induced asymmetry in the parallel wavenumber spectrum is shown to scale close to linearly with plasma gradients and the inverse of the plasma current. These results qualitatively reproduce empirical scalings of intrinsic rotation observed in various experiments. The origin of current scaling is found to be due to enhanced kll symmetry breaking induced by the increased radial variation of the safety factor as the current decreases. The physics origin for the linear dependence of intrinsic torque on pressure gradient is that both turbulence intensity and the zonal flow shear, which are two key ingredients for driving residual stress, increase with the strength of turbulence drive, which is R0/LTe and R0/Lne for the trapped electron mode.

  3. Mode conversion in magneto photonic crystal fibre

    International Nuclear Information System (INIS)

    Otmani, Hamza; Bouchemat, Mohamed; Hocini, Abdesselam; Boumaza, Touraya; Benmerkhi, Ahlem

    2017-01-01

    The first concept of an integrated isolator was based on nonreciprocal TE–TM mode conversion, the nonreciprocal coupling between these modes is caused by the Faraday rotation if the magnetization is aligned along the z–axis, parallel to mode propagation. We propose to study this magneto-optical phenomenon, by the simulation of magneto photonic crystal fibre (MPCF), it consists of a periodic triangular lattice of air-holes filled with magnetic fluid which consists of magnetic nanoparticles into a BIG (Bismuth Iron Garnet) fibre. We simulated the influence of gyrotropy and the wavelength, and calculated Faraday rotation and modal birefringence. In this fibre the light is guided by internal total reflection, like classical fibres. However it was shown that they could function on a mode conversion much stronger than conventional fibres. - Highlights: • We propose to study mode conversion TE–TM, by the simulation of magneto photonic crystal fibre (MPCF). • We simulated the influence of gyrotropy. • We simulated the wavelength. • We calculated Faraday rotation. • We calculated modal birefringence.

  4. Rotating turbulent Rayleigh-Bénard convection subject to harmonically forced flow reversals

    NARCIS (Netherlands)

    Geurts, B.J.; Kunnen, R.P.J.

    2014-01-01

    The characteristics of turbulent flow in a cylindrical Rayleigh–B´enard convection cell which can be modified considerably in case rotation is included in the dynamics. By incorporating the additional effects of an Euler force, i.e., effects induced by nonconstant rotation rates, a remarkably strong

  5. Rotating turbulent Rayleigh–Bénard convection subject to harmonically forced flow reversals

    NARCIS (Netherlands)

    Geurts, Bernardus J.; Kunnen, Rudie P.J.

    2014-01-01

    The characteristics of turbulent flow in a cylindrical Rayleigh–Bénard convection cell which can be modified considerably in case rotation is included in the dynamics. By incorporating the additional effects of an Euler force, i.e., effects induced by non-constant rotation rates, a remarkably strong

  6. Instabilities responsible for magnetic turbulence in laboratory rotating plasma

    International Nuclear Information System (INIS)

    Mikhailovskii, A.B.; Lominadze, J.G.; Churikov, A.P.; Erokhin, N.N.; Pustovitov, V.D.; Konovalov, S.V.

    2008-01-01

    Instabilities responsible for magnetic turbulence in laboratory rotating plasma are investigated. It is shown that the plasma compressibility gives a new driving mechanism in addition to the known Velikhov effect due to the negative rotation frequency gradient. This new mechanism is related to the perpendicular plasma pressure gradient, while the density gradient gives an additional drive depending also on the pressure gradient. It is shown that these new effects can manifest themselves even in the absence of the equilibrium magnetic field, which corresponds to nonmagnetic instabilities

  7. Nonlinear magneto-optical rotation with modulated light in tilted magnetic fields

    International Nuclear Information System (INIS)

    Pustelny, S.; Gawlik, W.; Rochester, S. M.; Kimball, D. F. Jackson; Yashchuk, V. V.; Budker, D.

    2006-01-01

    Larmor precession of laser-polarized atoms contained in antirelaxation-coated cells, detected via nonlinear magneto-optical rotation (NMOR), is a promising technique for a new generation of ultrasensitive atomic magnetometers. For magnetic fields directed along the light propagation direction, resonances in NMOR appear when linearly polarized light is frequency or amplitude modulated at twice the Larmor frequency. Because the frequency of these resonances depends on the magnitude but not the direction of the field, they are useful for scalar magnetometry. Additional NMOR resonances at the Larmor frequency appear when the magnetic field is tilted away from the light propagation direction in the plane defined by the light propagation and polarization vectors. These resonances, studied both experimentally and with a density matrix calculation in the present work, offer a convenient method of achieving additional information about a direction of the magnetic field

  8. Effects of curvature and rotation on turbulence in the NASA low-speed centrifugal compressor impeller

    Science.gov (United States)

    Moore, Joan G.; Moore, John

    1992-01-01

    The flow in the NASA Low-Speed Impeller is affected by both curvature and rotation. The flow curves due to the following: (1) geometric curvature, e.g. the curvature of the hub and shroud profiles in the meridional plane and the curvature of the backswept impeller blades; and (2) secondary flow vortices, e.g. the tip leakage vortex. Changes in the turbulence and effective turbulent viscosity in the impeller are investigated. The effects of these changes on three-dimensional flow development are discussed. Two predictions of the flow in the impeller, one with, and one without modification to the turbulent viscosity due to rotation and curvature, are compared. Some experimental and theoretical background for the modified mixing length model of turbulent viscosity will also be presented.

  9. Kinetic theory of instabilities responsible for magnetic turbulence in laboratory rotating plasma

    International Nuclear Information System (INIS)

    Mikhailovskii, A.B.; Lominadze, J.G.; Churikov, A.P.; Pustovitov, V.D.; Erokhin, N.N.; Konovalov, S.V.

    2008-01-01

    The problem of instabilities responsible for magnetic turbulence in collisionless laboratory rotating plasma is investigated. It is shown that the standard mechanism of driving the magnetorotational instability (MRI), due to negative rotation frequency gradient, disappears in such a plasma. Instead of it, a new driving mechanism due to plasma pressure gradient is predicted

  10. Effects of anisotropic turbulent thermal diffusion on spherical magnetoconvection in the Earth's core

    Science.gov (United States)

    Ivers, D. J.; Phillips, C. G.

    2018-03-01

    We re-consider the plate-like model of turbulence in the Earth's core, proposed by Braginsky and Meytlis (1990), and show that it is plausible for core parameters not only in polar regions but extends to mid- and low-latitudes where rotation and gravity are not parallel, except in a very thin equatorial layer. In this model the turbulence is highly anisotropic with preferred directions imposed by the Earth's rotation and the magnetic field. Current geodynamo computations effectively model sub-grid scale turbulence by using isotropic viscous and thermal diffusion values significantly greater than the molecular values of the Earth's core. We consider a local turbulent dynamo model for the Earth's core in which the mean magnetic field, velocity and temperature satisfy the Boussinesq induction, momentum and heat equations with an isotropic turbulent Ekman number and Roberts number. The anisotropy is modelled only in the thermal diffusion tensor with the Earth's rotation and magnetic field as preferred directions. Nonlocal organising effects of gravity and rotation (but not aspect ratio in the Earth's core) such as an inverse cascade and nonlocal transport are assumed to occur at longer length scales, which computations may accurately capture with sufficient resolution. To investigate the implications of this anisotropy for the proposed turbulent dynamo model we investigate the linear instability of turbulent magnetoconvection on length scales longer than the background turbulence in a rotating sphere with electrically insulating exterior for no-slip and isothermal boundary conditions. The equations are linearised about an axisymmetric basic state with a conductive temperature, azimuthal magnetic field and differential rotation. The basic state temperature is a function of the anisotropy and the spherical radius. Elsasser numbers in the range 1-20 and turbulent Roberts numbers 0.01-1 are considered for both equatorial symmetries of the magnetic basic state. It is found

  11. Faraday effect in hybrid magneto-plasmonic photonic crystals.

    Science.gov (United States)

    Caballero, B; García-Martín, A; Cuevas, J C

    2015-08-24

    We present a theoretical study of the Faraday effect in hybrid magneto-plasmonic crystals that consist of Au-Co-Au perforated membranes with a periodic array of sub-wavelength holes. We show that in these hybrid systems the interplay between the extraordinary optical transmission and the magneto-optical activity leads to a resonant enhancement of the Faraday rotation, as compared to purely ferromagnetic membranes. In particular, we determine the geometrical parameters for which this enhancement is optimized and show that the inclusion of a noble metal like Au dramatically increases the Faraday rotation over a broad bandwidth. Moreover, we show that the analysis of the Faraday rotation in these periodically perforated membranes provides a further insight into the origin of the extraordinary optical transmission.

  12. Dependence of the L- to H-mode Power Threshold on Toroidal Rotation and the Link to Edge Turbulence Dynamics

    International Nuclear Information System (INIS)

    McKee, G.; Gohil, P.; Schlossberg, D.; Boedo, J.; Burrell, K.; deGrassie, J.; Groebner, R.; Makowski, M.; Moyer, R.; Petty, C.; Rhodes, T.; Schmitz, L.; Shafer, M.; Solomon, W.; Umansky, M.; Wang, G.; White, A.; Xu, X.

    2008-01-01

    The injected power required to induce a transition from L-mode to H-mode plasmas is found to depend strongly on the injected neutral beam torque and consequent plasma toroidal rotation. Edge turbulence and flows, measured near the outboard midplane of the plasma (0.85 < r/a < 1.0) on DIII-D with the high-sensitivity 2D beam emission spectroscopy (BES) system, likewise vary with rotation and suggest a causative connection. The L-H power threshold in plasmas with the ion (del)B drift away from the X-point decreases from 4-6 MW with co-current beam injection, to 2-3 MW with near zero net injected torque, and to <2 MW with counter injection. Plasmas with the ion (del)B drift towards the X-point exhibit a qualitatively similar though less pronounced power threshold dependence on rotation. 2D edge turbulence measurements with BES show an increasing poloidal flow shear as the L-H transition is approached in all conditions. At low rotation, the poloidal flow of turbulent eddies near the edge reverses prior to the L-H transition, generating a significant poloidal flow shear that exceeds the measured turbulence decorrelation rate. This increased poloidal turbulence velocity shear may facilitate the L-H transition. No such reversal is observed in high rotation plasmas. The poloidal turbulence velocity spectrum exhibits a transition from a Geodesic Acoustic Mode zonal flow to a higher-power, lower frequency, zero-mean-frequency zonal flow as rotation varies from co-current to balanced during a torque scan at constant injected neutral beam power, perhaps also facilitating the L-H transition. This reduced power threshold at lower toroidal rotation may benefit inherently low-rotation plasmas such as ITER

  13. Bursting and large-scale intermittency in turbulent convection with differential rotation

    DEFF Research Database (Denmark)

    Garcia, O.E.; Bian, N.H.

    2003-01-01

    The tilting mechanism, which generates differential rotation in two-dimensional turbulent convection, is shown to produce relaxation oscillations in the mean flow energy integral and bursts in the global fluctuation level, akin to Lotka-Volterra oscillations. The basic reason for such behavior...

  14. Turbulence statistics and energy budget in rotating Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Kunnen, R.P.J.; Geurts, Bernardus J.; Clercx, H.J.H.

    The strongly-modified turbulence statistics of Rayleigh–Bénard convection subject to various rotation rates is addressed by numerical investigations. The flow is simulated in a domain with periodic boundary conditions in the horizontal directions, and confined vertically by parallel no-slip

  15. Nonlinear magneto-optical rotation produced by atoms near a J=1→J=0 transition

    International Nuclear Information System (INIS)

    Roscinski, Vitalij; Czub, Janusz; Miklaszewski, Wieslaw

    2004-01-01

    The nonlinear magneto-optical rotation in a medium consisting of J=1→J=0 atoms placed in a static magnetic field is studied. The density matrix approach and irreducible atomic basis are used to describe the state of the atomic system. The stationary propagation equations for two collinear laser beams with perpendicular circular polarizations are derived and analyzed in the case of the magnetic field perpendicular to the light propagation direction. The effect of the linear polarization rotation toward the direction parallel or perpendicular to the magnetic field vector and lossless propagation of the resulting light are predicted. The conversion of the circularly polarized beam into linearly polarized one is shown. The propagation of the leading edges of switched on cw-laser beams and their stationary propagation are analyzed numerically. The dependence of the considered effects on the light detuning and on the additional magnetic field component parallel to the light propagation direction is discussed. The destructive role of the collisional relaxation is demonstrated

  16. Enhanced magneto-plasmonic effect in Au/Co/Au multilayers caused by exciton–plasmon strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hamidi, S.M., E-mail: m_hamidi@sbu.ac.ir; Ghaebi, O.

    2016-09-15

    In this paper, we have investigated magneto optical Kerr rotation using the strong coupling of exciton–plasmon. For this purpose, we have demonstrated strong coupling phenomenon using reflectometry measurements. These measurements revealed the formation of two split polaritonic extrema in reflectometry as a function of wavelength. Then we have shown exciton–plasmon coupling in dispersion diagram which presented an anti-crossing between the polaritonic branches. To assure the readers of strong coupling, we have shown an enhanced magneto-optical Kerr rotation by comparing the reflectometry results of strong coupling of surface Plasmon polariton of Au/Co/Au multilayer and R6G excitons with surface Plasmon polariton magneto-optical kerr effect experimental setup. - Highlights: • The magneto optical Kerr rotation has been investigated by using the strong coupling of exciton–plasmon. • We have shown exciton–plasmon coupling in dispersion diagram which presented an anti-crossing between the polaritonic branches. • Strong coupling of surface plasmon polariton and exciton have been yielded to the enhanced magneto-optical Kerr effect. • Plasmons in Au/Co/Au multilayer and exciton in R6G have been coupled to enhance magneto-optical activity.

  17. Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation.

    Science.gov (United States)

    Chin, Jessie Yao; Steinle, Tobias; Wehlus, Thomas; Dregely, Daniel; Weiss, Thomas; Belotelov, Vladimir I; Stritzker, Bernd; Giessen, Harald

    2013-01-01

    Light propagation is usually reciprocal. However, a static magnetic field along the propagation direction can break the time-reversal symmetry in the presence of magneto-optical materials. The Faraday effect in magneto-optical materials rotates the polarization plane of light, and when light travels backward the polarization is further rotated. This is applied in optical isolators, which are of crucial importance in optical systems. Faraday isolators are typically bulky due to the weak Faraday effect of available magneto-optical materials. The growing research endeavour in integrated optics demands thin-film Faraday rotators and enhancement of the Faraday effect. Here, we report significant enhancement of Faraday rotation by hybridizing plasmonics with magneto-optics. By fabricating plasmonic nanostructures on laser-deposited magneto-optical thin films, Faraday rotation is enhanced by one order of magnitude in our experiment, while high transparency is maintained. We elucidate the enhanced Faraday effect by the interplay between plasmons and different photonic waveguide modes in our system.

  18. Validation of the kinetic-turbulent-neoclassical theory for edge intrinsic rotation in DIII-D

    Science.gov (United States)

    Ashourvan, Arash; Grierson, B. A.; Battaglia, D. J.; Haskey, S. R.; Stoltzfus-Dueck, T.

    2018-05-01

    In a recent kinetic model of edge main-ion (deuterium) toroidal velocity, intrinsic rotation results from neoclassical orbits in an inhomogeneous turbulent field [T. Stoltzfus-Dueck, Phys. Rev. Lett. 108, 065002 (2012)]. This model predicts a value for the toroidal velocity that is co-current for a typical inboard X-point plasma at the core-edge boundary (ρ ˜ 0.9). Using this model, the velocity prediction is tested on the DIII-D tokamak for a database of L-mode and H-mode plasmas with nominally low neutral beam torque, including both signs of plasma current. Values for the flux-surface-averaged main-ion rotation velocity in the database are obtained from the impurity carbon rotation by analytically calculating the main-ion—impurity neoclassical offset. The deuterium rotation obtained in this manner has been validated by direct main-ion measurements for a limited number of cases. Key theoretical parameters of ion temperature and turbulent scale length are varied across a wide range in an experimental database of discharges. Using a characteristic electron temperature scale length as a proxy for a turbulent scale length, the predicted main-ion rotation velocity has a general agreement with the experimental measurements for neutral beam injection (NBI) powers in the range PNBI balanced—but high powered—NBI, the net injected torque through the edge can exceed 1 Nm in the counter-current direction. The theory model has been extended to compute the rotation degradation from this counter-current NBI torque by solving a reduced momentum evolution equation for the edge and found the revised velocity prediction to be in agreement with experiment. Using the theory modeled—and now tested—velocity to predict the bulk plasma rotation opens up a path to more confidently projecting the confinement and stability in ITER.

  19. Random forcing of geostrophic motion in rotating stratified turbulence

    Science.gov (United States)

    Waite, Michael L.

    2017-12-01

    Random forcing of geostrophic motion is a common approach in idealized simulations of rotating stratified turbulence. Such forcing represents the injection of energy into large-scale balanced motion, and the resulting breakdown of quasi-geostrophic turbulence into inertia-gravity waves and stratified turbulence can shed light on the turbulent cascade processes of the atmospheric mesoscale. White noise forcing is commonly employed, which excites all frequencies equally, including frequencies much higher than the natural frequencies of large-scale vortices. In this paper, the effects of these high frequencies in the forcing are investigated. Geostrophic motion is randomly forced with red noise over a range of decorrelation time scales τ, from a few time steps to twice the large-scale vortex time scale. It is found that short τ (i.e., nearly white noise) results in about 46% more gravity wave energy than longer τ, despite the fact that waves are not directly forced. We argue that this effect is due to wave-vortex interactions, through which the high frequencies in the forcing are able to excite waves at their natural frequencies. It is concluded that white noise forcing should be avoided, even if it is only applied to the geostrophic motion, when a careful investigation of spontaneous wave generation is needed.

  20. Turbulent structures in cylindrical density currents in a rotating frame of reference

    Science.gov (United States)

    Salinas, Jorge S.; Cantero, Mariano I.; Dari, Enzo A.; Bonometti, Thomas

    2018-06-01

    Gravity currents are flows generated by the action of gravity on fluids with different densities. In some geophysical applications, modeling such flows makes it necessary to account for rotating effects, modifying the dynamics of the flow. While previous works on rotating stratified flows focused on currents of large Coriolis number, the present work focuses on flows with small Coriolis numbers (i.e. moderate-to-large Rossby numbers). In this work, cylindrical rotating gravity currents are investigated by means of highly resolved simulations. A brief analysis of the mean flow evolution to the final state is presented to provide a complete picture of the flow dynamics. The numerical results, showing the well-known oscillatory behavior of the flow (inertial waves) and a final state lens shape (geostrophic adjustment), are in good agreement with experimental observations and theoretical models. The turbulent structures in the flow are visualized and described using, among others, a stereoscopic visualization and videos as supplementary material. In particular, the structure of the lobes and clefts at the front of the current is presented in association to local turbulent structures. In rotating gravity currents, the vortices observed at the lobes front are not of hairpin type but are rather of Kelvin-Helmholtz type.

  1. Testing neoclassical and turbulent effects on poloidal rotation in the core of DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Chrystal, C. [University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Burrell, K. H.; Staebler, G. M.; Kinsey, J. E.; Lao, L. L.; Grassie, J. S. de [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Grierson, B. A.; Solomon, W. M.; Wang, W. X. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Rhodes, T. L.; Schmitz, L. [University of California Los Angeles, P.O. Box 957099, Los Angeles, California 90095-7099 (United States); Mordijck, S. [College of William and Mary, P.O. Box 8795, Williamsburg, Virginia 23187-8795 (United States); Meneghini, O. [Oak Ridge Associated Universities, 1299 Bethel Valley Rd, Bldg SC-200, Oak Ridge, Tennessee 37830 (United States)

    2014-07-15

    Experimental tests of ion poloidal rotation theories have been performed on DIII-D using a novel impurity poloidal rotation diagnostic. These tests show significant disagreements with theoretical predictions in various conditions, including L-mode plasmas with internal transport barriers (ITB), H-mode plasmas, and QH-mode plasmas. The theories tested include standard neoclassical theory, turbulence driven Reynolds stress, and fast-ion friction on the thermal ions. Poloidal rotation is observed to spin up at the formation of an ITB and makes a significant contribution to the measurement of the E{sup →}×B{sup →} shear that forms the ITB. In ITB cases, neoclassical theory agrees quantitatively with the experimental measurements only in the steep gradient region. Significant quantitative disagreement with neoclassical predictions is seen in the cores of ITB, QH-, and H-mode plasmas, demonstrating that neoclassical theory is an incomplete description of poloidal rotation. The addition of turbulence driven Reynolds stress does not remedy this disagreement; linear stability calculations and Doppler backscattering measurements show that disagreement increases as turbulence levels decline. Furthermore, the effect of fast-ion friction, by itself, does not lead to improved agreement; in QH-mode plasmas, neoclassical predictions are closest to experimental results in plasmas with the largest fast ion friction. Predictions from a new model that combines all three effects show somewhat better agreement in the H-mode case, but discrepancies well outside the experimental error bars remain.

  2. Testing neoclassical and turbulent effects on poloidal rotation in the core of DIII-D

    International Nuclear Information System (INIS)

    Chrystal, C.; Burrell, K. H.; Staebler, G. M.; Kinsey, J. E.; Lao, L. L.; Grassie, J. S. de; Grierson, B. A.; Solomon, W. M.; Wang, W. X.; Rhodes, T. L.; Schmitz, L.; Mordijck, S.; Meneghini, O.

    2014-01-01

    Experimental tests of ion poloidal rotation theories have been performed on DIII-D using a novel impurity poloidal rotation diagnostic. These tests show significant disagreements with theoretical predictions in various conditions, including L-mode plasmas with internal transport barriers (ITB), H-mode plasmas, and QH-mode plasmas. The theories tested include standard neoclassical theory, turbulence driven Reynolds stress, and fast-ion friction on the thermal ions. Poloidal rotation is observed to spin up at the formation of an ITB and makes a significant contribution to the measurement of the E → ×B → shear that forms the ITB. In ITB cases, neoclassical theory agrees quantitatively with the experimental measurements only in the steep gradient region. Significant quantitative disagreement with neoclassical predictions is seen in the cores of ITB, QH-, and H-mode plasmas, demonstrating that neoclassical theory is an incomplete description of poloidal rotation. The addition of turbulence driven Reynolds stress does not remedy this disagreement; linear stability calculations and Doppler backscattering measurements show that disagreement increases as turbulence levels decline. Furthermore, the effect of fast-ion friction, by itself, does not lead to improved agreement; in QH-mode plasmas, neoclassical predictions are closest to experimental results in plasmas with the largest fast ion friction. Predictions from a new model that combines all three effects show somewhat better agreement in the H-mode case, but discrepancies well outside the experimental error bars remain

  3. Semi-analytical solution for electro-magneto-thermoelastic creep response of functionally graded piezoelectric rotating disk

    International Nuclear Information System (INIS)

    Loghman, A.; Abdollahian, M.; Jafarzadeh Jazi, A.; Ghorbanpour Arani, A.

    2013-01-01

    Time-dependent electro-magneto-thermoelastic creep response of rotating disk made of functionally graded piezoelectric materials (FGPM) is studied. The disk is placed in a uniform magnetic and a distributed temperature field and is subjected to an induced electric potential and a centrifugal body force. The material thermal, mechanical, magnetic and electric properties are represented by power-law distributions in radial direction. The creep constitutive model is Norton's law in which the creep parameters are also power functions of radius. Using equations of equilibrium, strain-displacement and stress-strain relations in conjunction with the potential-displacement equation a non-homogeneous differential equation containing time-dependent creep strains for displacement is derived. A semi-analytical solution followed by a numerical procedure has been developed to obtain history of stresses, strains, electric potential and creep-strain rates by using Prandtl-Reuss relations. History of electric potential, Radial, circumferential and effective stresses and strains as well as the creep stress rates and effective creep strain rate histories are presented. It has been found that tensile radial stress distribution decreases during the life of the FGPM rotating disk which is associated with major electric potential redistributions which can be used as a sensor for condition monitoring of the FGPM rotating disk. (authors)

  4. Nonlinear dynamics and anisotropic structure of rotating sheared turbulence.

    Science.gov (United States)

    Salhi, A; Jacobitz, F G; Schneider, K; Cambon, C

    2014-01-01

    Homogeneous turbulence in rotating shear flows is studied by means of pseudospectral direct numerical simulation and analytical spectral linear theory (SLT). The ratio of the Coriolis parameter to shear rate is varied over a wide range by changing the rotation strength, while a constant moderate shear rate is used to enable significant contributions to the nonlinear interscale energy transfer and to the nonlinear intercomponental redistribution terms. In the destabilized and neutral cases, in the sense of kinetic energy evolution, nonlinearity cannot saturate the growth of the largest scales. It permits the smallest scale to stabilize by a scale-by-scale quasibalance between the nonlinear energy transfer and the dissipation spectrum. In the stabilized cases, the role of rotation is mainly nonlinear, and interacting inertial waves can affect almost all scales as in purely rotating flows. In order to isolate the nonlinear effect of rotation, the two-dimensional manifold with vanishing spanwise wave number is revisited and both two-component spectra and single-point two-dimensional energy components exhibit an important effect of rotation, whereas the SLT as well as the purely two-dimensional nonlinear analysis are unaffected by rotation as stated by the Proudman theorem. The other two-dimensional manifold with vanishing streamwise wave number is analyzed with similar tools because it is essential for any shear flow. Finally, the spectral approach is used to disentangle, in an analytical way, the linear and nonlinear terms in the dynamical equations.

  5. Turbulent heat transfer studies in annulus with inner cylinder rotation

    International Nuclear Information System (INIS)

    Kuzay, T.M.; Scott, C.J.

    1977-01-01

    Experimental investigations of turbulent heat transfer are made in a large-gap annulus with both rotating and nonrotating inner cylinder. The vertical annular channel has an electrically heated outer wall; the inner wall i thermally and electrically insulated. The axial air flow is allowed to develop before rotation and heating are imparted. The resulting temperature fields are investigated using thermocouple probes located near the channel exit. The wall heat flux, wall axial temperature development, and radial temperature profiles are measured. For each axial Reynolds number, three heat flux rates are used. Excellent correlation is established between rotational and nonrotational Nusselt number. The proper correlation parameter is a physical quantity characterizing the flow helix. This parameter is the inverse of the ratio of axial travel of the flow helix in terms of hydraulic diameter, per half revolution of the spinning wall

  6. Physics of non-diffusive turbulent transport of momentum and the origins of spontaneous rotation in tokamaks

    DEFF Research Database (Denmark)

    Diamond, P.H.; McDevitt, C.J.; Güran, Ö.D.

    2009-01-01

    Recent results in the theory of turbulent momentum transport and the origins of intrinsic rotation are summarized. Special attention is focused on aspects of momentum transport critical to intrinsic rotation, namely the residual stress and the edge toroidal flow velocity pinch. Novel results...

  7. Suppression of turbulent resistivity in turbulent Couette flow

    Science.gov (United States)

    Si, Jiahe; Colgate, Stirling A.; Sonnenfeld, Richard G.; Nornberg, Mark D.; Li, Hui; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe

    2015-07-01

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.

  8. Suppression of turbulent resistivity in turbulent Couette flow

    Energy Technology Data Exchange (ETDEWEB)

    Si, Jiahe, E-mail: jsi@nmt.edu; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe [New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 (United States); Colgate, Stirling A.; Li, Hui [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Nornberg, Mark D. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2015-07-15

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.

  9. Suppression of turbulent resistivity in turbulent Couette flow

    International Nuclear Information System (INIS)

    Si, Jiahe; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe; Colgate, Stirling A.; Li, Hui; Nornberg, Mark D.

    2015-01-01

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations

  10. Magneto-optical effect in Mn-Sb thin films

    International Nuclear Information System (INIS)

    Attaran, E.; Sadabadi, M.

    2003-01-01

    The magneto-optic Kerr and Faraday effect of Mn-Sb thin films have been studied. The single and multilayer of this film have grown on glass substrate by evaporation. The optical rotation of linear polarized light has been measured by an optical hysteresis plotter in a I/O converter amplifier circuit. Our results indicate a polar Kerr rotation up to 0.5 degree and in a double Mn S b this rotation research to maximum

  11. Magneto-Optical Properties of Paramagnetic Superrotors

    Science.gov (United States)

    Milner, A. A.; Korobenko, A.; Floß, J.; Averbukh, I. Sh.; Milner, V.

    2015-07-01

    We study the dynamics of paramagnetic molecular superrotors in an external magnetic field. An optical centrifuge is used to create dense ensembles of oxygen molecules in ultrahigh rotational states. In is shown, for the first time, that the gas of rotating molecules becomes optically birefringent in the presence of a magnetic field. The discovered effect of "magneto-rotational birefringence" indicates the preferential alignment of molecular axes along the field direction. We provide an intuitive qualitative model, in which the influence of the applied magnetic field on the molecular orientation is mediated by the spin-rotation coupling. This model is supported by the direct imaging of the distribution of molecular axes, the demonstration of the magnetic reversal of the rotational Raman signal, and by numerical calculations.

  12. On soft stability loss in rotating turbulent MHD flows

    International Nuclear Information System (INIS)

    Kapusta, Arkady; Mikhailovich, Boris

    2014-01-01

    The problem of the stability of turbulent flows of liquid metal in a cylindrical cavity against small velocity disturbances under the action of a rotating magnetic field (RMF) has been studied. The flow is considered in the induction-free approximation using the ‘external’ friction model. A system of dimensionless equations is examined in cylindrical coordinates. The results of computations performed on the basis of this mathematical model using the exchange of stabilities principle have shown a good consistency between the critical values of computed and experimental Reynolds numbers. (paper)

  13. Magneto-optic properties and optical parameter of thin MnCo films

    Directory of Open Access Journals (Sweden)

    E Attaran Kakhki

    2009-09-01

    Full Text Available Having precise hysterics loop of thin ferroelectric and ferromagnetic layers for optical switching and optical storages are important. A hysterieses loop can be achieved from a phenomenon call the magneto-optic effect. The magneto-optic effect is the rotation of a linear polarized electromagnetic wave propagated through a ferromagnetic medium. When light is transmitted through a layer of magnetic material the result is called the Faraday effects and in the reflection mode Kerr effect. In the present work we prepared a thin layer of MnxCo3-xO4 (0≤ x ≤ 1 and a binary form of MnO/Co3O4 by the spray pyrolysis method. The films have been characterized by a special set up of magneto-optic hysterics loop plotter containing a polarized He- Ne laser beam and a special electronic circuit. Faraday rotation were measured for these films by hysterics loop plotter and their optical properties were also obtained by spatial software designed for this purpose according to Swane Poel theoretical method. The measurements show that the samples at diluted Mn study has are ferromagnetic and the magneto-optic rotation show a good enhance respect to the single Co layers. Also, the study has shown that the MnCo oxide layer have two different energy gaps and by increasing of Mn this energy decreases and fall to 0.13 eV.

  14. Analytical theory and method for longitudinal magneto-optical Kerr effect of optically anisotropic magnetic film

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao, E-mail: sps_wangx@ujn.edu.cn [School of Physics and Technology, University of Jinan, Jinan 250022 (China); School of Material Science and Engineering, University of Jinan, Jinan 250022 (China); Lian, Jie [School of Information Science and Engineering, Shandong University, Jinan 250100 (China); Li, Ping; Xu, XiJin [School of Physics and Technology, University of Jinan, Jinan 250022 (China); Li, MengMeng [School of Information Science and Engineering, Shandong University, Jinan 250100 (China)

    2017-01-15

    The Fresnel equations are solved to analyze the reflection and propagation properties of the ordinary and extraordinary light of the optically anisotropic magnetic film. Using the boundary and propagation matrix, the longitudinal magneto-optical Kerr rotation expression is derived. After that, simulations are performed on optically anisotropic and isotropic Co/SiO{sub 2} film. Results show that for Co material in the thin-film limit, the anisotropic Co can provide larger max rotations than the isotropic Co in the visible region. This is because that the refractive index discrepancy of optically anisotropic Co film reduces the Fresnel reflective coefficient r{sub pp,} which improves the Kerr rotation. This makes the optically anisotropic Co film more effective in magneto optical sensor design and device fabrication. - Highlights: • In this work, using the boundary matrix and media propagation matrix developed by Zak and S.D.Bader,we get the analytical solution of the magneto-optical Kerr rotation of the optical anisotropic magnetic film. • Results show that for film in the thin-film limit, the anisotropic Co can provide larger maximum rotations than the isotropic Co. • The improvement of Kerr rotation can be attributed to the refractive index discrepancy of optically anisotropic Co film which reduce the Fresnel reflective coefficient rpp.

  15. Turbulent transport stabilization by ICRH minority fast ions in low rotating JET ILW L-mode plasmas

    Science.gov (United States)

    Bonanomi, N.; Mantica, P.; Di Siena, A.; Delabie, E.; Giroud, C.; Johnson, T.; Lerche, E.; Menmuir, S.; Tsalas, M.; Van Eester, D.; Contributors, JET

    2018-05-01

    The first experimental demonstration that fast ion induced stabilization of thermal turbulent transport takes place also at low values of plasma toroidal rotation has been obtained in JET ILW (ITER-like wall) L-mode plasmas with high (3He)-D ICRH (ion cyclotron resonance heating) power. A reduction of the gyro-Bohm normalized ion heat flux and higher values of the normalized ion temperature gradient have been observed at high ICRH power and low NBI (neutral beam injection) power and plasma rotation. Gyrokinetic simulations indicate that ITG (ion temperature gradient) turbulence stabilization induced by the presence of high-energetic 3He ions is the key mechanism in order to explain the experimental observations. Two main mechanisms have been identified to be responsible for the turbulence stabilization: a linear electrostatic wave-fast particle resonance mechanism and a nonlinear electromagnetic mechanism. The dependence of the stabilization on the 3He distribution function has also been studied.

  16. Large eddy simulation of spanwise rotating turbulent channel flow with dynamic variants of eddy viscosity model

    Science.gov (United States)

    Jiang, Zhou; Xia, Zhenhua; Shi, Yipeng; Chen, Shiyi

    2018-04-01

    A fully developed spanwise rotating turbulent channel flow has been numerically investigated utilizing large-eddy simulation. Our focus is to assess the performances of the dynamic variants of eddy viscosity models, including dynamic Vreman's model (DVM), dynamic wall adapting local eddy viscosity (DWALE) model, dynamic σ (Dσ ) model, and the dynamic volumetric strain-stretching (DVSS) model, in this canonical flow. The results with dynamic Smagorinsky model (DSM) and direct numerical simulations (DNS) are used as references. Our results show that the DVM has a wrong asymptotic behavior in the near wall region, while the other three models can correctly predict it. In the high rotation case, the DWALE can get reliable mean velocity profile, but the turbulence intensities in the wall-normal and spanwise directions show clear deviations from DNS data. DVSS exhibits poor predictions on both the mean velocity profile and turbulence intensities. In all three cases, Dσ performs the best.

  17. Magneto-optical properties of InSb for terahertz applications

    Directory of Open Access Journals (Sweden)

    Jan Chochol

    2016-11-01

    Full Text Available Magneto-optical permittivity tensor spectra of undoped InSb, n-doped and p-doped InSb crystals were determined using the terahertz time-domain spectroscopy (THz-TDS and the Fourier transform far-infrared spectroscopy (far-FTIR. A Huge polar magneto-optical (MO Kerr-effect (up to 20 degrees in rotation and a simultaneous plasmonic behavior observed at low magnetic field (0.4 T and room temperature are promising for terahertz nonreciprocal applications. We demonstrate the possibility of adjusting the the spectral rage with huge MO by increase in n-doping of InSb. Spectral response is modeled using generalized magneto-optical Drude-Lorentz theory, giving us precise values of free carrier mobility, density and effective mass consistent with electric Hall effect measurement.

  18. Dynamical and statistical phenomena of circulation and heat transfer in periodically forced rotating turbulent Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Sterl, S.H.; Li, H.M.; Zhong, J.Q.

    2016-01-01

    In this paper, we present results from an experimental study into turbulent Rayleigh-Bénard convection forced externally by periodically modulated unidirectional rotation rates. We find that the azimuthal rotation velocity θ(t) and thermal amplitude δ(t) of the large-scale circulation (LSC) are

  19. Preferential states of rotating turbulent flows in a square container with a step topography

    NARCIS (Netherlands)

    Tenreiro, M.; Trieling, R.R.; Zavala Sansón, L.; Heijst, van G.J.F.

    2013-01-01

    The self-organization of confined, quasi-two-dimensional turbulent flows in a rotating square container with a step-like topography is investigated by means of laboratory experiments and numerical simulations based on a rigid lid, shallow-water formulation. The domain is divided by a bottom

  20. Convection causes enhanced magnetic turbulence in accretion disks in outburst

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Shigenobu [Department of Mathematical Science and Advanced Technology, JAMSTEC, Yokohama, Kanagawa 236-0001 (Japan); Blaes, Omer; Coleman, Matthew S. B. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Krolik, Julian H. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Sano, Takayoshi, E-mail: shirose@jamstec.go.jp [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871 (Japan)

    2014-05-20

    We present the results of local, vertically stratified, radiation magnetohydrodynamic (MHD) shearing box simulations of magneto-rotational instability (MRI) turbulence appropriate for the hydrogen ionizing regime of dwarf nova and soft X-ray transient outbursts. We incorporate the frequency-integrated opacities and equation of state for this regime, but neglect non-ideal MHD effects and surface irradiation, and do not impose net vertical magnetic flux. We find two stable thermal equilibrium tracks in the effective temperature versus surface mass density plane, in qualitative agreement with the S-curve picture of the standard disk instability model. We find that the large opacity at temperatures near 10{sup 4} K, a corollary of the hydrogen ionization transition, triggers strong, intermittent thermal convection on the upper stable branch. This convection strengthens the magnetic turbulent dynamo and greatly enhances the time-averaged value of the stress to thermal pressure ratio α, possibly by generating vertical magnetic field that may seed the axisymmetric MRI, and by increasing cooling so that the pressure does not rise in proportion to the turbulent dissipation. These enhanced stress to pressure ratios may alleviate the order of magnitude discrepancy between the α-values observationally inferred in the outburst state and those that have been measured from previous local numerical simulations of magnetorotational turbulence that lack net vertical magnetic flux.

  1. Bursting and large-scale intermittency in turbulent convection with differential rotation

    International Nuclear Information System (INIS)

    Garcia, O.E.; Bian, N.H.

    2003-01-01

    The tilting mechanism, which generates differential rotation in two-dimensional turbulent convection, is shown to produce relaxation oscillations in the mean flow energy integral and bursts in the global fluctuation level, akin to Lotka-Volterra oscillations. The basic reason for such behavior is the unidirectional and conservative transfer of kinetic energy from the fluctuating motions to the mean component of the flows, and its dissipation at large scales. Results from numerical simulations further demonstrate the intimate relation between these low-frequency modulations and the large-scale intermittency of convective turbulence, as manifested by exponential tails in single-point probability distribution functions. Moreover, the spatio-temporal evolution of convective structures illustrates the mechanism triggering avalanche events in the transport process. The latter involves the overlap of delocalized mixing regions when the barrier to transport, produced by the mean component of the flow, transiently disappears

  2. Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators.

    Science.gov (United States)

    Tse, Wang-Kong; MacDonald, A H

    2010-07-30

    Topological insulators can exhibit strong magneto-electric effects when their time-reversal symmetry is broken. In this Letter we consider the magneto-optical Kerr and Faraday effects of a topological insulator thin film weakly exchange coupled to a ferromagnet. We find that its Faraday rotation has a universal value at low frequencies θF=tan(-1)α, where α is the vacuum fine structure constant, and that it has a giant Kerr rotation θK=π/2. These properties follow from a delicate interplay between thin-film cavity confinement and the surface Hall conductivity of a topological insulator's helical quasiparticles.

  3. Enhancement of magneto-optical Faraday effects and extraordinary optical transmission in a tri-layer structure with rectangular annular arrays.

    Science.gov (United States)

    Lei, Chengxin; Chen, Leyi; Tang, Zhixiong; Li, Daoyong; Cheng, Zhenzhi; Tang, Shaolong; Du, Youwei

    2016-02-15

    The properties of optics and magneto-optical Faraday effects in a metal-dielectric tri-layer structure with subwavelength rectangular annular arrays are investigated. It is noteworthy that we obtained the strongly enhanced Faraday rotation of the desired sign along with high transmittance by optimizing the parameters of the nanostructure in the visible spectral ranges. In this system, we obtained two extraordinary optical transmission (EOT) resonant peaks with enhanced Faraday rotations, whose signs are opposite, which may provide the possibility of designing multi-channel magneto-optical devices. Study results show that the maximum of the figure of merit (FOM) of the structure can be obtained between two EOT resonant peaks accompanied by an enhanced Faraday rotation. The positions of the maximum value of the FOM and resonant peaks of transmission along with a large Faraday rotation can be tailored by simply adjusting the geometric parameters of our models. These research findings are of great importance for future applications of magneto-optical devices.

  4. Quantitative magneto-optical investigation of superconductor/ferromagnet hybrid structures.

    Science.gov (United States)

    Shaw, G; Brisbois, J; Pinheiro, L B G L; Müller, J; Blanco Alvarez, S; Devillers, T; Dempsey, N M; Scheerder, J E; Van de Vondel, J; Melinte, S; Vanderbemden, P; Motta, M; Ortiz, W A; Hasselbach, K; Kramer, R B G; Silhanek, A V

    2018-02-01

    We present a detailed quantitative magneto-optical imaging study of several superconductor/ferromagnet hybrid structures, including Nb deposited on top of thermomagnetically patterned NdFeB and permalloy/niobium with erasable and tailored magnetic landscapes imprinted in the permalloy layer. The magneto-optical imaging data are complemented with and compared to scanning Hall probe microscopy measurements. Comprehensive protocols have been developed for calibrating, testing, and converting Faraday rotation data to magnetic field maps. Applied to the acquired data, they reveal the comparatively weaker magnetic response of the superconductor from the background of larger fields and field gradients generated by the magnetic layer.

  5. Quantitative magneto-optical investigation of superconductor/ferromagnet hybrid structures

    Science.gov (United States)

    Shaw, G.; Brisbois, J.; Pinheiro, L. B. G. L.; Müller, J.; Blanco Alvarez, S.; Devillers, T.; Dempsey, N. M.; Scheerder, J. E.; Van de Vondel, J.; Melinte, S.; Vanderbemden, P.; Motta, M.; Ortiz, W. A.; Hasselbach, K.; Kramer, R. B. G.; Silhanek, A. V.

    2018-02-01

    We present a detailed quantitative magneto-optical imaging study of several superconductor/ferromagnet hybrid structures, including Nb deposited on top of thermomagnetically patterned NdFeB and permalloy/niobium with erasable and tailored magnetic landscapes imprinted in the permalloy layer. The magneto-optical imaging data are complemented with and compared to scanning Hall probe microscopy measurements. Comprehensive protocols have been developed for calibrating, testing, and converting Faraday rotation data to magnetic field maps. Applied to the acquired data, they reveal the comparatively weaker magnetic response of the superconductor from the background of larger fields and field gradients generated by the magnetic layer.

  6. Magneto-optic and electro-optic modulators

    International Nuclear Information System (INIS)

    Hutchinson, D.P.; Ma, C.H.; Price, T.R.; Staats, P.A.; Vander Sluis, K.L.

    1982-01-01

    An important aspect of the Faraday rotation diagnostic for tokamak plasma measurements has been the development of suitable polarization modulators for submillimeter wavelengths. The problems are to obtain high optical transmission and fast modulation frequencies. At ORNL we have developed both a magneto-optic and an electro-optic submillimeter-wave modulators. These devices have been operated at modulation frequencies of approximately 100 kHz and both have high transmission

  7. Genetic optimization of magneto-optic Kerr effect in lossy cavity-type magnetophotonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ghanaatshoar, M., E-mail: m-ghanaat@cc.sbu.ac.i [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Evin 1983963113, Tehran (Iran, Islamic Republic of); Alisafaee, H. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Evin 1983963113, Tehran (Iran, Islamic Republic of)

    2011-07-15

    We have demonstrated an optimization approach in order to obtain desired magnetophotonic crystals (MPCs) composed of a lossy magnetic layer (TbFeCo) placed within a multilayer structure. The approach is an amalgamation between a 4x4 transfer matrix method and a genetic algorithm. Our objective is to enhance the magneto-optic Kerr effect of TbFeCo at short visible wavelength of 405 nm. Through the optimization approach, MPC structures are found meeting definite criteria on the amount of reflectivity and Kerr rotation. The resulting structures are fitted more than 99.9% to optimization criteria. Computation of the internal electric field distribution shows energy localization in the vicinity of the magnetic layer, which is responsible for increased light-matter interaction and consequent enhanced magneto-optic Kerr effect. Versatility of our approach is also exhibited by examining and optimizing several MPC structures. - Research highlights: Structures comprising a highly absorptive TbFeCo layer are designed to work for data storage applications at 405 nm. Optimization algorithm resulted in structures fitted 99.9% to design criteria. More than 10 structures are found exhibiting magneto-optical response of about 1{sup o} rotation and 20% reflection. The ratio of the Kerr rotation to the Kerr ellipticity is enhanced by a factor of 30.

  8. Numerical Simulation of Turbulent Fluid Flow and Heat Transfer in a Ribbed Rotating Two-Pass Square Duct

    Directory of Open Access Journals (Sweden)

    Liou Tong-Miin

    2005-01-01

    Full Text Available The local turbulent fluid flow and heat transfer in a rotating two-pass square duct with 19 pairs of in-line 90 ∘ ribs have been investigated computationally. A Reynolds-averaged Navier-Stokes equation (RANS with a two-layer k − ϵ turbulence model was solved. The in-line 90 ∘ ribs were arranged on the leading and trailing walls with rib height-to-hydraulic diameter ratio and pitch-to-height ratio of 0.136 and 10, respectively. The Reynolds number, based on duct hydraulic diameter and bulk mean velocity, was fixed at 1.0 × 10 4 whereas the rotational number varied from 0 to 0.2 . Results are validated with previous measured velocity field and heat transfer coefficient distributions. The validation shows that the effect of rotation on the passage-averaged Nusselt number ratio can be predicted reasonably well; nevertheless, the transverse mean velocity and, in turn, the distribution of regional-averaged Nusselt number ratio are markedly underpredicted in the regions toward which the Coriolis force is directed. Further CFD studies are needed.

  9. PREFACE: Turbulent Mixing and Beyond Turbulent Mixing and Beyond

    Science.gov (United States)

    Abarzhi, Snezhana I.; Gauthier, Serge; Rosner, Robert

    2008-10-01

    presentations were published in the Book of Abstracts, International Conference `Turbulent Mixing and Beyond', August 18-26, 2007, Copyright 2007 Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, ISBN 92-95003-36-5. This Topical Issue consists of nearly 60 articles accepted for publication in the Conference Proceedings and reflects a substantial part of the Conference contributions. The articles cover a broad variety of TMB-2007 themes and are sorted alphabetically by the last name of the first author within each of the following topics: Canonical Turbulence and Turbulent Mixing (invariant, scaling, spectral properties, scalar transports) Wall-bounded Flows (structure and fundamentals, unsteady boundary layers, super-sonic flows, shock - boundary layer interaction) Interfacial Dynamics (Rayleigh-Taylor, Richtmyer-Meshkov and Kelvin-Helmholtz instabilities) Unsteady Turbulent Processes (turbulence and turbulent mixing in unsteady, multiphase and anisotropic flows) High Energy Density Physics (laser-material interaction, Z-pinches, laser-driven, heavy-ion and magnetic fusion) Astrophysics (supernovae, interstellar medium, star formation, stellar interiors, early Universe, cosmic micro-wave background) Magneto-hydrodynamics (magneto-convection, magneto-rotational instability, accretion disks, dynamo) Plasmas in Ionosphere (coupled plasmas, anomalous resistance, ionosphere) Physics of Atmosphere (environmental fluid dynamics, forecasting, data analysis, error estimate) Geophysics (turbulent convection in stratified, rotating and active flows) Combustion (dynamics of flames, fires, blast waves and explosions) Mathematical Aspects of Multi-Scale Dynamics (vortex dynamics, singularities, discontinuities, asymptotic dynamics, weak solutions, well- and ill-posedness) Statistical Approaches, Stochastic Processes and Probabilistic Description (uncertainty quantification, anomalous diffusion, long-tail distributions, wavelets) Advanced Numerical Simulations

  10. Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices.

    Science.gov (United States)

    Bi, Lei; Hu, Juejun; Jiang, Peng; Kim, Hyun Suk; Kim, Dong Hun; Onbasli, Mehmet Cengiz; Dionne, Gerald F; Ross, Caroline A

    2013-11-08

    Achieving monolithic integration of nonreciprocal photonic devices on semiconductor substrates has been long sought by the photonics research society. One way to achieve this goal is to deposit high quality magneto-optical oxide thin films on a semiconductor substrate. In this paper, we review our recent research activity on magneto-optical oxide thin films toward the goal of monolithic integration of nonreciprocal photonic devices on silicon. We demonstrate high Faraday rotation at telecommunication wavelengths in several novel magnetooptical oxide thin films including Co substituted CeO₂ -δ , Co- or Fe-substituted SrTiO 3- δ , as well as polycrystalline garnets on silicon. Figures of merit of 3~4 deg/dB and 21 deg/dB are achieved in epitaxial Sr(Ti 0.2 Ga 0.4 Fe 0.4 )O 3- δ and polycrystalline (CeY₂)Fe₅O 12 films, respectively. We also demonstrate an optical isolator on silicon, based on a racetrack resonator using polycrystalline (CeY₂)Fe₅O 12 /silicon strip-loaded waveguides. Our work demonstrates that physical vapor deposited magneto-optical oxide thin films on silicon can achieve high Faraday rotation, low optical loss and high magneto-optical figure of merit, therefore enabling novel high-performance non-reciprocal photonic devices monolithically integrated on semiconductor substrates.

  11. Soft-x-ray magneto-optical Kerr effect and element-specific hysteresis measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J.B.; Rice, M. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Interest in the utilization of x-ray magneto-optical properties to provide element-specific magnetic information, combined with recent development of tunable linear polarizers for spectroscopic polarization measurement, have led the authors to the study of magneto-optical rotation (MOR) near core levels of magnetic atoms in magnetic multilayer and alloy films. Their initial observation of Faraday rotation (in transmission) demonstrated that for Fe MOR is easily measured and is larger at its L{sub 3} resonance than in the near-visible spectral regions. This work also demonstrated that the spectroscopic behavior of the MOR signal in transmission, resulting from the differential reaction of left- and right-circular components of a linearly polarized beam, is related to the magnetic circular dichroism (MCD), or differential absorption, as expected by a Kramers-Kronig transformation. Thus MCD measurements using circular polarization and MOR measurements using linear polarization can provide complementary, and in some cases equivalent, information. On beamline 6.3.2 the authors have begun to investigate soft x-ray MOR in the reflection geometry, the x-ray magneto-optic Kerr effect (XMOKE). Early measurements have demonstrated the ability to measure element-specific hysteresis loops and large rotations compared to analogous near-visible measurements. The authors are investigating the spectral dependence of the XMOKE signal, and have initiated systematic materials studies of sputter-deposited films of Fe, Fe{sub x}Cr{sub 1{minus}x} alloys, and Fe/Cr multilayers.

  12. Generation and evolution of turbulence in an annulus between two concentric rotating cylinders

    International Nuclear Information System (INIS)

    Kataoka, K.; Deguchi, T.

    1987-01-01

    The objective of the present work is to observe the generation and spectral evolution of time-dependent wavy disturbances in the Taylor-Couette flow. It is well known that as the Reynolds number Re = R/sub i/Ω d/ν, based on the rotation speed (Ω: angular velocity) of the inner cylinder, is gradually increased, the following five dynamical transitions occur stepwise in sequence: laminar Couette flow → laminar Taylor vortex flow → wavy vortex flow → quasi-periodic wavy vortex flow → weakly turbulent wavy vortex flow → turbulent vortex flow. Time-dependent wavy disturbances appear when the transition to wavy vortex flow occurs as a result of instability of the laminar Taylor vortex flow. The disturbances are regularly periodic because it results from the azimuthally traveling waves. The next transition to the quasi-periodic wavy vortex flow is accompanied by the amplitude modulation of the wave motion. The first fundamental frequency f/sub 1/ comes from the passing frequency of the azimuthally traveling waves and the second fundamental frequency f/sub 2/ from the modulation frequency. When the transition to the weakly turbulent wavy vortex flow occurs, chaotic turbulence first appears, A spectral analysis is made to analyze the temporal variation in the local velocity gradient measured on both the inner and outer cylinder walls by using an electrochemical technique

  13. Estimation of the center of rotation using wearable magneto-inertial sensors.

    Science.gov (United States)

    Crabolu, M; Pani, D; Raffo, L; Cereatti, A

    2016-12-08

    Determining the center of rotation (CoR) of joints is fundamental to the field of human movement analysis. CoR can be determined using a magneto-inertial measurement unit (MIMU) using a functional approach requiring a calibration exercise. We systematically investigated the influence of different experimental conditions that can affect precision and accuracy while estimating the CoR, such as (a) angular joint velocity, (b) distance between the MIMU and the CoR, (c) type of the joint motion implemented, (d) amplitude of the angular range of motion, (e) model of the MIMU used for data recording, (f) amplitude of additive noise on inertial signals, and (g) amplitude of the errors in the MIMU orientation. The evaluation process was articulated at three levels: assessment through experiments using a mechanical device, mathematical simulation, and an analytical propagation model of the noise. The results reveal that joint angular velocity significantly impacted CoR identification, and hence, slow joint movement should be avoided. An accurate estimation of the MIMU orientation is also fundamental for accurately subtracting the contribution owing to gravity to obtain the coordinate acceleration. The unit should be preferably attached close to the CoR, but both type and range of motion do not appear to be critical. When the proposed methodology is correctly implemented, error in the CoR estimates is expected to be <3mm (best estimates=2±0.5mm). The findings of the present study foster the need to further investigate this methodology for application in human subjects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Linear astrophysical dynamos in rotating spheres: Differential rotation, anisotropic turbulent magnetic diffusivity, and solar-stellar cycle magnetic parity

    International Nuclear Information System (INIS)

    Yoshimura, H.; Wang, Z.; Wu, F.

    1984-01-01

    Differential rotation dependence of the selection mechanism for magnetic parity of solar and stellar cycles is studied by assuming various differential rotation profiles inn the dynamo equation. The parity selection depends on propagation direction of oscillating magnetic fields in the form of dynamo waves which propagate along isorotation surfaces. When there is any radial gradient in the differential rotation, dynamo waves propagate either equatorward or poleward. In the former case, field systems of the two hemispheres approach each other and collide at the equator. Then, odd parity is selected. In the latter case, field systems of the two hemispheres recede from each other and do not collide at the equator, an even parity is selected. Thus the equatorial migration of wings of the butterfly iagram of the solar cycle and its odd parity are intrinsically related. In the case of purely latitudibnal differential rotation, dynamo waves propagate purely radially and growth rates of odd and even modes are nearly the same even when dynamo strength is weak when the parity selection mechanism should work most efficiently. In this case, anisotropy of turbulent diffusivity is a decisive factor to separate odd and even modes. Unlike in the case of radial-gradient-dominated differential rotation in which any difference between diffusivities for poloidal and toroidal fields enhancess the parity selection without changing the parity, the parity selection in the case of latitudinal-gradient-dominated differential rotation depends on the difference of diffusivities for poloidal and toroidal fields. When diffusivity for poloidal fields iss larger than that for toroidal fields, odd parity is selected; and when diffusivity for toroidal fields is larger, even parity is selected

  15. Physics of Intrinsic Rotation in Flux-Driven ITG Turbulence

    International Nuclear Information System (INIS)

    Ku, S.; Abiteboul, J.; Dimond, P.H.; Dif-Pradalier, G.; Kwon, J.M.; Sarazin, Y.; Hahm, T.S.; Garbet, X.; Chang, C.S.; Latu, G.; Yoon, E.S.; Ghendrih, Ph.; Yi, S.; Strugarek, A.; Solomon, W.; Grandgirard, V.

    2012-01-01

    Global, heat flux-driven ITG gyrokinetic simulations which manifest the formation of macroscopic, mean toroidal flow profiles with peak thermal Mach number 0.05, are reported. Both a particle-in-cell (XGC1p) and a semi-Lagrangian (GYSELA) approach are utilized without a priori assumptions of scale-separation between turbulence and mean fields. Flux-driven ITG simulations with different edge flow boundary conditions show in both approaches the development of net unidirectional intrinsic rotation in the co-current direction. Intrinsic torque is shown to scale approximately linearly with the inverse scale length of the ion temperature gradient. External momentum input is shown to effectively cancel the intrinsic rotation profile, thus confirming the existence of a local residual stress and intrinsic torque. Fluctuation intensity, intrinsic torque and mean flow are demonstrated to develop inwards from the boundary. The measured correlations between residual stress and two fluctuation spectrum symmetry breakers, namely E x B shear and intensity gradient, are similar. Avalanches of (positive) heat flux, which propagate either outwards or inwards, are correlated with avalanches of (negative) parallel momentum flux, so that outward transport of heat and inward transport of parallel momentum are correlated and mediated by avalanches. The probability distribution functions of the outward heat flux and the inward momentum flux show strong structural similarity

  16. Effect of time step size and turbulence model on the open water hydrodynamic performance prediction of contra-rotating propellers

    Science.gov (United States)

    Wang, Zhan-zhi; Xiong, Ying

    2013-04-01

    A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibration. Compared with the single-screw system, it is more difficult for the open water performance prediction because forward and aft propellers interact with each other and generate a more complicated flow field around the CRPs system. The current work focuses on the open water performance prediction of contra-rotating propellers by RANS and sliding mesh method considering the effect of computational time step size and turbulence model. The validation study has been performed on two sets of contra-rotating propellers developed by David W Taylor Naval Ship R & D center. Compared with the experimental data, it shows that RANS with sliding mesh method and SST k-ω turbulence model has a good precision in the open water performance prediction of contra-rotating propellers, and small time step size can improve the level of accuracy for CRPs with the same blade number of forward and aft propellers, while a relatively large time step size is a better choice for CRPs with different blade numbers.

  17. Counter-rotating standing spin waves: A magneto-optical illusion

    Science.gov (United States)

    Shihab, S.; Thevenard, L.; Lemaître, A.; Gourdon, C.

    2017-04-01

    We excite perpendicular standing spin waves by a laser pulse in a GaMnAsP ferromagnetic layer and detect them using time-resolved magneto-optical effects. Quite counterintuitively, we find the first two excited modes to be of opposite chirality. We show that this can only be explained by taking into account absorption and optical phase shift inside the layer. This optical illusion is particularly strong in weakly absorbing layers. These results provide a correct identification of spin waves modes, enabling a trustworthy estimation of their respective weight as well as an unambiguous determination of the spin stiffness parameter.

  18. Fabrication of Continuous Microfibers Containing Magnetic Nanoparticles by a Facile Magneto-Mechanical Drawing

    Science.gov (United States)

    Li, Jin-Tao; Jia, Xian-Sheng; Yu, Gui-Feng; Yan, Xu; He, Xiao-Xiao; Yu, Miao; Gong, Mao-Gang; Ning, Xin; Long, Yun-Ze

    2016-09-01

    A facile method termed magneto-mechanical drawing is used to produce polymer composite microfibers. Compared with electrospinning and other fiber spinning methods, magneto-mechanical drawing uses magnetic force generated by a permanent magnet to draw droplets of polymer/magnetic nanoparticle suspensions, leading to fabrication of composite microfibers. In addition, because of the rotating collector, it is easy to control the fiber assembly such as fibrous array in parallel or crossed fibrous structure. The general applicability of this method has also been proved by spinning different polymers and magnetic nanoparticles. The resultant fibers exhibit good superparamagnetic behavior at room temperature and ultrahigh stretchability (~443.8 %). The results indicate that magneto-mechanical drawing is a promising technique to fabricate magnetic and stretchable microfibers and devices.

  19. Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices

    Directory of Open Access Journals (Sweden)

    Mehmet Cengiz Onbasli

    2013-11-01

    Full Text Available Achieving monolithic integration of nonreciprocal photonic devices on semiconductor substrates has been long sought by the photonics research society. One way to achieve this goal is to deposit high quality magneto-optical oxide thin films on a semiconductor substrate. In this paper, we review our recent research activity on magneto-optical oxide thin films toward the goal of monolithic integration of nonreciprocal photonic devices on silicon. We demonstrate high Faraday rotation at telecommunication wavelengths in several novel magnetooptical oxide thin films including Co substituted CeO2−δ, Co- or Fe-substituted SrTiO3−δ, as well as polycrystalline garnets on silicon. Figures of merit of 3~4 deg/dB and 21 deg/dB are achieved in epitaxial Sr(Ti0.2Ga0.4Fe0.4O3−δ and polycrystalline (CeY2Fe5O12 films, respectively. We also demonstrate an optical isolator on silicon, based on a racetrack resonator using polycrystalline (CeY2Fe5O12/silicon strip-loaded waveguides. Our work demonstrates that physical vapor deposited magneto-optical oxide thin films on silicon can achieve high Faraday rotation, low optical loss and high magneto-optical figure of merit, therefore enabling novel high-performance non-reciprocal photonic devices monolithically integrated on semiconductor substrates.

  20. Advanced magneto-optical microscopy: Imaging from picoseconds to centimeters - imaging spin waves and temperature distributions (invited

    Directory of Open Access Journals (Sweden)

    Necdet Onur Urs

    2016-05-01

    Full Text Available Recent developments in the observation of magnetic domains and domain walls by wide-field optical microscopy based on the magneto-optical Kerr, Faraday, Voigt, and Gradient effect are reviewed. Emphasis is given to the existence of higher order magneto-optical effects for advanced magnetic imaging. Fundamental concepts and advances in methodology are discussed that allow for imaging of magnetic domains on various length and time scales. Time-resolved imaging of electric field induced domain wall rotation is shown. Visualization of magnetization dynamics down to picosecond temporal resolution for the imaging of spin-waves and magneto-optical multi-effect domain imaging techniques for obtaining vectorial information are demonstrated. Beyond conventional domain imaging, the use of a magneto-optical indicator technique for local temperature sensing is shown.

  1. Magneto-optic and electro-optic modulators

    International Nuclear Information System (INIS)

    Hutchinson, D.P.; Ma, C.H.; Price, T.R.; Staats, P.A.; Sluis, K.L.V.

    1982-01-01

    An important aspect of the Faraday rotation diagnostic for tokamak plasma measurement has been the development of suitable polarization modulators for submillimeter wavelength. The problems are to obtain high optical transmission and fast modulation frequencies. In ORNL, the authors have developed both a magneto-optic and an electro-optic submillimeter-wave modulators. These devices have been operated at modulation frequency of approximately 100 kHz, and both have high transmission. The original magneto-optic modulator consists of a 3 mm thick by 1.4 cm diameter 2-111 ferrite disk mounted at the center of an air core coil. Recently, a new ferrite modulator has been tested, which allows a much higher modulation frequency than the original device. A laboratory set-up designed to simulate a plasma heterodyne interferometer/polarimeter experiment has been used to determine the modulator characteristics. A mechanical polarization rotor was used to simulate the rotation by plasma. The transmission of the ferrite disk was 80 % at a wavelength of 0.447 mm. The authors have also performed preliminary measurement on an electro-optic modulator first demonstrated by Fetterman at Lincoln Laboratory, U.S. This device is a classical electro-optic modulator using a cryogenically cooled (4.2 K) LiTaO 3 crystal. Experiments are underway to determine the electro-optic properties of the crystal over the temperature range from 4.2 K to 77 K and over the range of wavelength from 0.118 mm to 0.447 mm. (Wakatsuki, Y.)

  2. On the relative rotational motion between rigid fibers and fluid in turbulent channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Marchioli, C. [Department of Electrical, Management and Mechanical Engineering, University of Udine, 33100 Udine (Italy); Zhao, L., E-mail: lihao.zhao@ntnu.no [Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Andersson, H. I. [Department of Electrical, Management and Mechanical Engineering, University of Udine, 33100 Udine (Italy); Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim (Norway)

    2016-01-15

    In this study, the rotation of small rigid fibers relative to the surrounding fluid in wall-bounded turbulence is examined by means of direct numerical simulations coupled with Lagrangian tracking. Statistics of the relative (fiber-to-fluid) angular velocity, referred to as slip spin in the present study, are evaluated by modelling fibers as prolate spheroidal particles with Stokes number, St, ranging from 1 to 100 and aspect ratio, λ, ranging from 3 to 50. Results are compared one-to-one with those obtained for spherical particles (λ = 1) to highlight effects due to fiber length. The statistical moments of the slip spin show that differences in the rotation rate of fibers and fluid are influenced by inertia, but depend strongly also on fiber length: Departures from the spherical shape, even when small, are associated with an increase of rotational inertia and prevent fibers from passively following the surrounding fluid. An increase of fiber length, in addition, decouples the rotational dynamics of a fiber from its translational dynamics suggesting that the two motions can be modelled independently only for long enough fibers (e.g., for aspect ratios of order ten or higher in the present simulations)

  3. Magneto-optical and transport studies of ZnO-based dilute magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Behan, A.J. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Neal, J.R. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom)]. E-mail: J.R.Neal@Sheffield.ac.uk; Ibrahim, R.M. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Mokhtari, A. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Ziese, M. [Universitaet Leipzig, Fakultaet fuer Physik und Geowissenschaften, Abteilung Supra leitung und Magnetismus, Linnestrasse 5, 04103 Leipzig (Germany); Blythe, H.J. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Fox, A.M. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Gehring, G.A. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom)

    2007-03-15

    Thin film samples of ZnO doped with V were grown on sapphire substrates by pulsed laser deposition (PLD). The magnetization was measured by SQUID magnetometry and the films were found to be ferromagnetic at room temperature. The transmission, Faraday rotation and magnetic circular dichroism were measured as a function of frequency at room temperature over an energy range of 1.5-4.0 eV and carrier concentrations were determined from Hall effect measurements. Clear magneto-optical signals that are ferromagnetic in origin were observed at the ZnO band edge and the optimal conditions for observing large ferromagnetic magneto-optic signals are discussed.

  4. Rayleigh- and Prandtl-number dependence of the large-scale flow-structure in weakly-rotating turbulent thermal convection

    Science.gov (United States)

    Weiss, Stephan; Wei, Ping; Ahlers, Guenter

    2015-11-01

    Turbulent thermal convection under rotation shows a remarkable variety of different flow states. The Nusselt number (Nu) at slow rotation rates (expressed as the dimensionless inverse Rossby number 1/Ro), for example, is not a monotonic function of 1/Ro. Different 1/Ro-ranges can be observed with different slopes ∂Nu / ∂ (1 / Ro) . Some of these ranges are connected by sharp transitions where ∂Nu / ∂ (1 / Ro) changes discontinuously. We investigate different regimes in cylindrical samples of aspect ratio Γ = 1 by measuring temperatures at the sidewall of the sample for various Prandtl numbers in the range 3 Deutsche Forschungsgemeinschaft.

  5. Plasma turbulence measured by fast sweep reflectometry on Tore Supra

    International Nuclear Information System (INIS)

    Clairet, F.; Vermare, L.; Leclert, G.

    2004-01-01

    Traditionally devoted to electron density profile measurement we show that fast frequency sweeping reflectometry technique can bring valuable and innovative measurements onto plasma turbulence. While fast frequency sweeping technique is traditionally devoted to electron density radial profile measurements we show in this paper how we can handle the fluctuations of the reflected signal to recover plasma density fluctuation measurements with a high spatial and temporal resolution. Large size turbulence related to magneto-hydrodynamic (MHD) activity and the associated magnetic islands can be detected. The radial profile of the micro-turbulence, which is responsible for plasma anomalous transport processes, is experimentally determined through the fluctuation of the reflected phase signal. (authors)

  6. Plasma turbulence measured by fast sweep reflectometry on Tore Supra

    International Nuclear Information System (INIS)

    Clairet, F.; Vermare, L.; Heuraux, S.; Leclert, G.

    2004-01-01

    Traditionally devoted to electron density profile measurement we show that fast frequency sweeping reflectometry technique can bring valuable and innovative measurements onto plasma turbulence. While fast frequency sweeping technique is traditionally devoted to electron density radial profile measurements we show in this paper how we can handle the fluctuations of the reflected signal to recover plasma density fluctuation measurements with a high spatial and temporal resolution. Large size turbulence related to magneto-hydrodynamic (MHD) activity and the associated magnetic islands can be detected. The radial profile of the micro-turbulence, which is responsible for plasma anomalous transport processes, is experimentally determined through the fluctuation of the reflected phase signal

  7. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state.

    Science.gov (United States)

    Okada, Ken N; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-07-20

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit.

  8. Faraday rotation in multiple quantum wells of GaAs/AlGaAs

    International Nuclear Information System (INIS)

    Dudziak, E.; Bozym, J.; Prochnik, D.; Wasilewski, Z.R.

    1996-01-01

    We report on the results of first measurements on the Faraday rotation of modulated n-doped multiple quantum wells of GaAs/Al x Ga 1-x As (x = 0.312). The measurements have been performed in the magnetic fields up to 13 T at the temperature of 2 K, in the spectral region of interband transitions. A rich structure of magneto-excitons has been found in the measured spectra. Faraday rotation (phase) measurements are proposed as an alternative method to the photoluminescence excitation for investigations of magneto-excitons in quantum wells. The dependence of measured Faraday rotation on magnetic field and hypothetical connections with quantum Hall effect are also discussed. (author)

  9. Magnetic and magneto-optical properties of CdS:Mn quantum dots in PVA matrix

    International Nuclear Information System (INIS)

    Fediv, V I; Savchuk, A I; Frasunyak, V M; Makoviy, V V; Savchuk, O A

    2010-01-01

    We have studied the magnetic and magneto-optical properties of CdS:Mn quantum dots in polyvinyl alcohol matrix synthesized by co-precipitation method. The size of quantum dots was estimated by means of absorption spectroscopy. The results of measurements of magnetic susceptibility as a function of temperature and spectral dependence of the Faraday rotation of CdS:Mn quantum dots / polyvinyl alcohol composites are presented. In this work magnetic susceptibility was investigated by Faraday's method at the temperatures of (78-300) K in magnetic fields of (0.05-0.8) T. The inverse magnetic susceptibility as a function of temperature follows a Curie Weiss law. Formation of ferromagnetic coupling between magnetic ions is supposed. Magneto-optical Faraday rotation has been investigated in the wavelength region (400-700) nm at temperature 300 K in a magnetic field up to 5 T. Sign of the Verdet constant is found to be negative.

  10. Design and analysis of magneto rheological fluid brake for an all terrain vehicle

    Science.gov (United States)

    George, Luckachan K.; Tamilarasan, N.; Thirumalini, S.

    2018-02-01

    This work presents an optimised design for a magneto rheological fluid brake for all terrain vehicles. The actuator consists of a disk which is immersed in the magneto rheological fluid surrounded by an electromagnet. The braking torque is controlled by varying the DC current applied to the electromagnet. In the presence of a magnetic field, the magneto rheological fluid particle aligns in a chain like structure, thus increasing the viscosity. The shear stress generated causes friction in the surfaces of the rotating disk. Electromagnetic analysis of the proposed system is carried out using finite element based COMSOL multi-physics software and the amount of magnetic field generated is calculated with the help of COMSOL. The geometry is optimised and performance of the system in terms of braking torque is carried out. Proposed design reveals better performance in terms of braking torque from the existing literature.

  11. A Novel Defect Inspection Method for Semiconductor Wafer Based on Magneto-Optic Imaging

    Science.gov (United States)

    Pan, Z.; Chen, L.; Li, W.; Zhang, G.; Wu, P.

    2013-03-01

    The defects of semiconductor wafer may be generated from the manufacturing processes. A novel defect inspection method of semiconductor wafer is presented in this paper. The method is based on magneto-optic imaging, which involves inducing eddy current into the wafer under test, and detecting the magnetic flux associated with eddy current distribution in the wafer by exploiting the Faraday rotation effect. The magneto-optic image being generated may contain some noises that degrade the overall image quality, therefore, in this paper, in order to remove the unwanted noise present in the magneto-optic image, the image enhancement approach using multi-scale wavelet is presented, and the image segmentation approach based on the integration of watershed algorithm and clustering strategy is given. The experimental results show that many types of defects in wafer such as hole and scratch etc. can be detected by the method proposed in this paper.

  12. Design and Development of a Magneto-Optic Sensor for Magnetic Field Measurements

    Directory of Open Access Journals (Sweden)

    Sarbani CHAKRABORTY

    2015-01-01

    Full Text Available A magneto-optic sensor is developed using a Terbium Doped Glass (TDG element as a Faraday rotation sensor and optical fiber as light transmitting and receiving medium. Online LabView based application software is developed to process the sensor output. The system is used to sense the magnetic field of a DC motor field winding in industrial environment. The sensor output is compared with the magnetic flux density variation obtained with a calibrated Hall Magnetic sensor (Gauss Meter. A linear variation of sensor output over wide range of current passing through the field winding is obtained. Further the results show an improved sensitivity of magneto-optic sensor over the Hall sensor.

  13. TWO-DIMENSIONAL STELLAR EVOLUTION CODE INCLUDING ARBITRARY MAGNETIC FIELDS. II. PRECISION IMPROVEMENT AND INCLUSION OF TURBULENCE AND ROTATION

    International Nuclear Information System (INIS)

    Li Linghuai; Sofia, Sabatino; Basu, Sarbani; Demarque, Pierre; Ventura, Paolo; Penza, Valentina; Bi Shaolan

    2009-01-01

    In the second paper of this series we pursue two objectives. First, in order to make the code more sensitive to small effects, we remove many approximations made in Paper I. Second, we include turbulence and rotation in the two-dimensional framework. The stellar equilibrium is described by means of a set of five differential equations, with the introduction of a new dependent variable, namely the perturbation to the radial gravity, that is found when the nonradial effects are considered in the solution of the Poisson equation. Following the scheme of the first paper, we write the equations in such a way that the two-dimensional effects can be easily disentangled. The key concept introduced in this series is the equipotential surface. We use the underlying cause-effect relation to develop a recurrence relation to calculate the equipotential surface functions for uniform rotation, differential rotation, rotation-like toroidal magnetic fields, and turbulence. We also develop a more precise code to numerically solve the two-dimensional stellar structure and evolution equations based on the equipotential surface calculations. We have shown that with this formulation we can achieve the precision required by observations by appropriately selecting the convergence criterion. Several examples are presented to show that the method works well. Since we are interested in modeling the effects of a dynamo-type field on the detailed envelope structure and global properties of the Sun, the code has been optimized for short timescales phenomena (down to 1 yr). The time dependence of the code has so far been tested exclusively to address such problems.

  14. THE ROLE OF TURBULENT MAGNETIC RECONNECTION IN THE FORMATION OF ROTATIONALLY SUPPORTED PROTOSTELLAR DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Lima, R.; De Gouveia Dal Pino, E. M. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, R. do Matao, 1226, Sao Paulo, SP 05508-090 (Brazil); Lazarian, A. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States)

    2012-03-01

    The formation of protostellar disks out of molecular cloud cores is still not fully understood. Under ideal MHD conditions, the removal of angular momentum from the disk progenitor by the typically embedded magnetic field may prevent the formation of a rotationally supported disk during the main protostellar accretion phase of low-mass stars. This has been known as the magnetic braking problem and the most investigated mechanism to alleviate this problem and help remove the excess of magnetic flux during the star formation process, the so-called ambipolar diffusion (AD), has been shown to be not sufficient to weaken the magnetic braking at least at this stage of the disk formation. In this work, motivated by recent progress in the understanding of magnetic reconnection in turbulent environments, we appeal to the diffusion of magnetic field mediated by magnetic reconnection as an alternative mechanism for removing magnetic flux. We investigate numerically this mechanism during the later phases of the protostellar disk formation and show its high efficiency. By means of fully three-dimensional MHD simulations, we show that the diffusivity arising from turbulent magnetic reconnection is able to transport magnetic flux to the outskirts of the disk progenitor at timescales compatible with the collapse, allowing the formation of a rotationally supported disk around the protostar of dimensions {approx}100 AU, with a nearly Keplerian profile in the early accretion phase. Since MHD turbulence is expected to be present in protostellar disks, this is a natural mechanism for removing magnetic flux excess and allowing the formation of these disks. This mechanism dismisses the necessity of postulating a hypothetical increase of the ohmic resistivity as discussed in the literature. Together with our earlier work which showed that magnetic flux removal from molecular cloud cores is very efficient, this work calls for reconsidering the relative role of AD in the processes of star

  15. Hall MHD Stability and Turbulence in Magnetically Accelerated Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    H. R. Strauss

    2012-11-27

    The object of the research was to develop theory and carry out simulations of the Z pinch and plasma opening switch (POS), and compare with experimental results. In the case of the Z pinch, there was experimental evidence of ion kinetic energy greatly in excess of the ion thermal energy. It was thought that this was perhaps due to fine scale turbulence. The simulations showed that the ion energy was predominantly laminar, not turbulent. Preliminary studies of a new Z pinch experiment with an axial magnetic field were carried out. The axial magnetic is relevant to magneto - inertial fusion. These studies indicate the axial magnetic field makes the Z pinch more turbulent. Results were also obtained on Hall magnetohydrodynamic instability of the POS.

  16. The Statistical Mechanics of Ideal MHD Turbulence

    Science.gov (United States)

    Shebalin, John V.

    2003-01-01

    Turbulence is a universal, nonlinear phenomenon found in all energetic fluid and plasma motion. In particular. understanding magneto hydrodynamic (MHD) turbulence and incorporating its effects in the computation and prediction of the flow of ionized gases in space, for example, are great challenges that must be met if such computations and predictions are to be meaningful. Although a general solution to the "problem of turbulence" does not exist in closed form, numerical integrations allow us to explore the phase space of solutions for both ideal and dissipative flows. For homogeneous, incompressible turbulence, Fourier methods are appropriate, and phase space is defined by the Fourier coefficients of the physical fields. In the case of ideal MHD flows, a fairly robust statistical mechanics has been developed, in which the symmetry and ergodic properties of phase space is understood. A discussion of these properties will illuminate our principal discovery: Coherent structure and randomness co-exist in ideal MHD turbulence. For dissipative flows, as opposed to ideal flows, progress beyond the dimensional analysis of Kolmogorov has been difficult. Here, some possible future directions that draw on the ideal results will also be discussed. Our conclusion will be that while ideal turbulence is now well understood, real turbulence still presents great challenges.

  17. Ab-initio study of the magneto-optical properties of the ultrathin films of Fe{sub n}/Au(001)

    Energy Technology Data Exchange (ETDEWEB)

    Boukelkoul, Mebarek, E-mail: boukelkoul_mebarek@yahoo.fr [Laboratoire de Physique Quantique et Systèmes Dynamiques, Faculté des sciences, Université Sétif1, Sétif, 19000 Algeria (Algeria); Haroun, Mohamed Fahim [Laboratoire de Physique Quantique et Systèmes Dynamiques, Faculté des sciences, Université Sétif1, Sétif, 19000 Algeria (Algeria); Haroun, Abdelhalim [Laboratoire de Physique Quantique et Systèmes Dynamiques, Faculté des sciences, Université Sétif1, Sétif, 19000 Algeria (Algeria); IPCMS, UMR 7504 CNRS-UNISTRA, 23 Rue du Loess, Strasbourg, 67034 France (France)

    2016-12-15

    With the aim of understand the microscopic origin of the magneto-optical response in the Fe ultrathin films, we used the first principle full-relativistic Spin-Polarized Relativistic Linear Muffin-Tin Orbitals with Atomic Sphere Approximation. We performed an ab-initio study of the structural, magnetic and magneto-optical properties of Fe deposited on semi-infinite Au(001). The structure and growth of the film leads to a pseudomorphic body centered tetragonal structure with tetragonality ratio c/a=1.62, and the pseudomorphic growth is found to be larger than 3 monolayers. The magnetic study revealed a ferromagnetic phase with a large magnetic moment compared to the bulk one. The magneto-optical response is calculated via the polar magneto-optical Kerr effect over a photon energy range up to 10 eV. The most important features of the Kerr rotation spectra are interpreted trough the interband transitions between localized states.

  18. MHD from a Microscopic Concept and Onset of Turbulence in Hartmann Flow

    International Nuclear Information System (INIS)

    Jirkovsky, L.; Bo-ot, L. Ma.; Chiang, C. M.

    2010-01-01

    We derive higher order magneto-hydrodynamic (MHD) equations from a microscopic picture using projection and perturbation formalism. In an application to Hartmann flow we find velocity profiles flattening towards the center at the onset of turbulence in hydrodynamic limit. Comparison with the system under the effect of a uniform magnetic field yields difference in the onset of turbulence consistent with observations, showing that the presence of magnetic field inhibits onset of instability or turbulence. The laminar-turbulent transition is demonstrated in a phase transition plot of the development in time of the relative average velocities vs. Reynolds number showing a sharp increase of the relative average velocity at the transition point as determined by the critical Reynolds number. (physics of gases, plasmas, and electric discharges)

  19. Electromagnetically Induced Absorption (EIA) and a ``Twist'' on Nonlinear Magneto-optical Rotation (NMOR) with Cold Atoms

    Science.gov (United States)

    Kunz, Paul; Meyer, David; Quraishi, Qudsia

    2015-05-01

    Within the class of nonlinear optical effects that exhibit sub-natural linewidth features, electromagnetically induced transparency (EIT) and nonlinear magneto-optical rotation (NMOR) stand out as having made dramatic impacts on various applications including atomic clocks, magnetometry, and single photon storage. A related effect, known as electromagnetically induced absorption (EIA), has received less attention in the literature. Here, we report on the first observation of EIA in cold atoms using the Hanle configuration, where a single laser beam is used to both pump and probe the atoms while sweeping a magnetic field through zero along the beam direction. We find that, associated with the EIA peak, a ``twist'' appears in the corresponding NMOR signal. A similar twist has been previously noted by Budker et al., in the context of warm vapor optical magnetometry, and was ascribed to optical pumping through nearby hyperfine levels. By studying this feature through numerical simulations and cold atom experiments, thus rendering the hyperfine levels well resolved, we enhance the understanding of the optical pumping mechanism behind it, and elucidate its relation to EIA. Finally, we demonstrate a useful application of these studies through a simple and rapid method for nulling background magnetic fields within our atom chip apparatus.

  20. Magneto-optics of nanoscale Bi:YIG films.

    Science.gov (United States)

    Berzhansky, Vladimir; Mikhailova, Tatyana; Shaposhnikov, Alexander; Prokopov, Anatoly; Karavainikov, Andrey; Kotov, Viacheslav; Balabanov, Dmitry; Burkov, Vladimir

    2013-09-10

    Magnetic circular dichroism in the spectral region from 270 to 850 nm and Faraday rotation at the wavelength of 655 nm in ultrathin (1.5-92.8 nm) films prepared by reactive ion beam sputtering of target of nominal composition Bi2.8Y0.2Fe5O12 were studied. The observed effects of the "blue shift," inversion of the signs and change in the intensity of magneto-optical transitions, are discussed. It is demonstrated that all studied nanoscale films reveal magnetic properties-and their composition depends on the method of substrate surface pretreatment.

  1. A novel magneto-optical crystal Yb:TbVO4

    Science.gov (United States)

    Zhu, Xianchao; Tu, Heng; Hu, Zhanggui

    2018-04-01

    Highly transparent Yb:TbVO4 single crystal with dimensions of Ø27 × 41 mm3 alomost without scattering defects has been successfully grown by Czochralski technique. The spectra, thermal properties and laser-induced damage threshold were investigated in detailed. The Faraday rotation (FR) measurement was carried out by means of extinction method. The Verdet constant comes up to 80 rad m-1 T-1 at 1064 nm, significantly larger than TbVO4 (58 rad m-1 T-1) and TGG (40 rad m-1 T-1) reported. Meanwhile, the as-grown crystal presents lower absorption coefficient and higher magneto-optical figure of merit at measured wavelength in comparison with TGG. Moreover, the crystal exhibits a substantially improved extinction ratio (42 dB) in contrast with TbVO4 (29 dB), and exceeds the highest value of TGG (40 dB). These advantages make Yb:TbVO4 a highly promising magneto-optical material candidate for optical isolators in the visible-near infrared region.

  2. Enhancement of the transverse magneto-optical Kerr effect via resonant tunneling in trilayers containing magneto-optical metals

    Energy Technology Data Exchange (ETDEWEB)

    Girón-Sedas, J. A. [Departamento de Física, Universidad del Valle, AA 25360, Cali (Colombia); Centro de Investigación e Innovación en Bioinformática y Fotónica - CIBioFI, AA 25360 Cali (Colombia); Mejía-Salazar, J. R., E-mail: jrmejia3146@gmail.com [Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, SP (Brazil); Moncada-Villa, E.; Porras-Montenegro, N. [Departamento de Física, Universidad del Valle, AA 25360, Cali (Colombia)

    2016-07-18

    We propose a way to enhance the transverse magneto-optical Kerr effect, by the excitation of resonant tunneling modes, in subwavelength trilayer structures featuring a dielectric slab sandwiched between two magneto-optical metallic layers. Depending on the magneto-optical layer widths, the proposed system may exhibit an extraordinary transverse magneto-optical Kerr effect, which makes it very attractive for the design and engineering of thin-film magneto-optical-based devices for future photonic circuits or fiber optical-communication systems.

  3. X-ray magneto-optic KERR effect studies of spring magnet heterostructures.

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J. B.; Kim, S.-K.; Fullerton, E. E.; Jiang, J. S.; Bader, S. D.

    2000-11-01

    The complex 3-dimensional magnetization reversal behavior of Sin-Co/Fe exchange spring films is used to test the sensitivity of different resonant soft x-ray magneto-optical Kerr effect (MOKE) measurements to changes in longitudinal and transverse moments within the SOIIFe layer and to changes in these moments in depth within the Fe layer. As in the visible MOKE, changes in longitudinal and net transverse moments are resolved by measuring both Kerr rotation and intensity loops in the near the Fe 2p core resonance. These x-ray MOKE signals measured using linear incident polarization are more directly interpreted in terms of longitudinal and transverse moments than are the same signals measured using elliptical polarization. Varying photon energy near the Fe L3line is shown to be an effective means of resolving distinctly different reversal behavior at the top and bottom of the 20 nm thick Fe layer resulting from the strong exchange coupling at the Sin-Co/Fe interface. Measured x-ray MOKE spectra and signals are in qualitative agreement with those calculated using standard magneto-optical formalisms incorporating interference between different layers and measured helicity-dependent magneto-optical constants for Fe.

  4. Effects of resolved boundary layer turbulence on near-ground rotation in simulated quasi-linear convective systems (QLCSs)

    Science.gov (United States)

    Nowotarski, C. J.

    2017-12-01

    Though most strong to violent tornadoes are associated with supercell thunderstorms, quasi-linear convective systems (QLCSs) pose a risk of tornadoes, often at times and locations where supercell tornadoes are less common. Because QLCS low-level mesocyclones and tornado signatures tend to be less coherent, forecasting such tornadoes remains particularly difficult. The majority of simulations of such storms rely on horizontally homogeneous base states lacking resolved boundary layer turbulence and surface fluxes. Previous work has suggested that heterogeneities associated with boundary layer turbulence in the form of horizontal convective rolls can influence the evolution and characteristics of low-level mesocyclones in supercell thunderstorms. This study extends methods for generating boundary layer convection to idealized simulations of QLCSs. QLCS simulations with resolved boundary layer turbulence will be compared against a control simulation with a laminar boundary layer. Effects of turbulence, the resultant heterogeneity in the near-storm environment, and surface friction on bulk storm characteristics and the intensity, morphology, and evolution of low-level rotation will be presented. Although maximum surface vertical vorticity values are similar, when boundary layer turbulence is included, a greater number of miso- and meso-scale vortices develop along the QLCS gust front. The source of this vorticity is analyzed using Eulerian decomposition of vorticity tendency terms and trajectory analysis to delineate the relative importance of surface friction and baroclinicity in generating QLCS vortices. The role of anvil shading in suppressing boundary layer turbulence in the near-storm environment and subsequent effects on QLCS vortices will also be presented. Finally, implications of the results regarding inclusion of more realistic boundary layers in future idealized simulations of deep convection will be discussed.

  5. Prediction of Equilibrium States of Kinematic and Thermal Fields in Homogeneous Turbulence Submitted To the Rotation

    International Nuclear Information System (INIS)

    Chebbi, Besma; Bouzaiane, Mounir; Lili, Taieb

    2009-01-01

    In this work, effects of rotation on the evolution of kinematic and thermal fields in homogeneous sheared turbulence are investigated using second order closure modeling. The Launder-Reece-Ro di models, the Speziale-Sarkar-Gatski model and the Shih-Lumley models are retained for pressure-strain correlation and pressure-temperature correlation. Whereas classic models are retained for time evolution equations of kinematic and thermal dissipation rates. The fourth order Runge-Kutta method is used to resolve three non linear differential systems obtained after modeling. The numerical integration is carried out separately for several values of the dimensionless rotation number R equal to 0, 0.25 and 0.5. The obtained results are compared to the recent results of Direct Numerical Simulations of G.Brethouwer. The results have confirmed the asymptotic equilibrium behaviors of kinematic and thermal dimensionless parameters. Furthermore they have shown that rotation affects not only kinematic field but also thermal field. The coupling between the Speziale-Sarkar-Gatski model and the Launder-Reece-Rodi model is of a big contribution on the prediction of kinematic and thermal fields

  6. Apodised aperture using rotation of plane of polarization

    International Nuclear Information System (INIS)

    Simmons, W.W.; Leppelmeier, G.W.; Johnson, B.C.

    1975-01-01

    An apodised aperture based on the rotation of plane of polarization producing desirable characteristics on a transmitted light beam such as beam profiling in high flux laser amplifier chains is described. The apodised aperture is made with a lossless element by using one or more polarizers and/or analyzers and magneto-optical Faraday means for selectively rotating the plane of polarized radiation over the cross section to effect the desired apodisation

  7. Investigation of optical and magneto-optical constants and their surface-oxide-layer effects of single-crystalline GdCo2

    International Nuclear Information System (INIS)

    Lee, S.J.; Kim, K.J.; Canfield, P.C.; Lynch, D.W.

    2000-01-01

    We investigated the optical and magneto-optical properties of single-crystalline GdCo 2 by spectroscopic ellipsometry (SE) and magneto-optical Kerr spectrometry (MOKS). The diagonal component of the optical conductivity tensor of the compound was obtained by SE in the 1.5-5.5 eV region and the off-diagonal component by using the measured magneto-optical parameters (Kerr rotation and ellipticity) by MOKS and the SE data. The measured spectra were corrected for the surface oxide layer by employing a three-phase model treating the oxide layer as nonmagnetic with constant refractive index. The magnitude of the diagonal component becomes enhanced and the optical transition structures of the off-diagonal component become more pronounced by the oxide correction. The overall optical and magneto-optical data are discussed in terms of the calculated spin-polarized band structure and optical absorption of the compound and the effect of the surface oxide layer

  8. The basic equations for a four-component theory of turbulent magneto-plasmadynamics

    International Nuclear Information System (INIS)

    Kaeppeler, H.J.

    1983-04-01

    In the case of strong electric fields and high currents in magneto-plasmas, it is necessary to use four components in order to consider the acceleration of ions and electrons and the consecutive effects in detail. As the time scales for the microscopic and macroscopic phenomena differ by several orders of magnitude, micro-effects were treated analytically, while macroscopic flows are solved by Reduce/Fortran hybrid code. Microturbulence is considered in a quasi-linear approximation, while the hybrid code permits complete non-linear approach via a macroscopic dispersion relation. The basic equations necessary for this four-component theory are compiled in this report. (orig.)

  9. Magnetic and magneto-optical properties of FeRh thin films

    International Nuclear Information System (INIS)

    Inoue, Sho; Nam, Nguyen T.; Phuoc, Nguyen N.; Cao Jiangwei; Yu Ko, Hnin Yu; Suzuki, Takao

    2008-01-01

    The magnetic and magneto-optical properties of FeRh thin films epitaxially deposited onto MgO(1 0 0) substrates by RF sputter-deposition system have been investigated in conjunction with the structure. An intriguing virgin effect has been found in the M-T curves of the as-deposited FeRh thin films, which is presumably interpreted in term of a change in structural phase when heating. Also, a (negative) maximum peak of Kerr rotation at around 3.8 eV has been observed when FeRh thin films are in ferromagnetic state. The polar Kerr rotation angle is found to increase at temperatures above 100 deg. C, which corresponds to the antiferromagnet (AF)-ferromagnet (FM) transition of FeRh thin films

  10. Improvement in spatial frequency characteristics of magneto-optical Kerr microscopy

    Science.gov (United States)

    Ogasawara, Takeshi

    2017-10-01

    The spatial resolution of a conventional magneto-optical Kerr microscope, compared with those of conventional optical microscopes, inevitably deteriorates owing to oblique illumination. An approach to obtaining the maximum spatial resolution using multiple images with different illumination directions is demonstrated here. The method was implemented by rotating the illumination path around the optical axis using a motorized stage. The Fourier transform image of the observed magnetic domain indicates that the spatial frequency component that is lost in the conventional method is restored.

  11. Applying Magneto-rheology to Reduce Blood Viscosity and Suppress Turbulence to Prevent Heart Attacks

    Science.gov (United States)

    Tao, R.

    Heart attacks are the leading causes of death in USA. Research indicates one common thread, high blood viscosity, linking all cardiovascular diseases. Turbulence in blood circulation makes different regions of the vasculature vulnerable to development of atherosclerotic plaque. Turbulence is also responsible for systolic ejection murmurs and places heavier workload on heart, a possible trigger of heart attacks. Presently, neither medicine nor method is available to suppress turbulence. The only method to reduce the blood viscosity is to take medicine, such as aspirin. However, using medicine to reduce the blood viscosity does not help suppressing turbulence. In fact, the turbulence gets worse as the Reynolds number goes up with the viscosity reduction by the medicine. Here we report our new discovery: application of a strong magnetic field to blood along its flow direction, red blood cells are polarized in the magnetic field and aggregated into short chains along the flow direction. The blood viscosity becomes anisotropic: Along the flow direction the viscosity is significantly reduced, but in the directions perpendicular to the flow the viscosity is considerably increased. In this way, the blood flow becomes laminar, turbulence is suppressed, the blood circulation is greatly improved, and the risk for heart attacks is reduced. While these effects are not permanent, they last for about 24 hours after one magnetic therapy treatment.

  12. Reynolds-Stress and Triple-Product Models Applied to a Flow with Rotation and Curvature

    Science.gov (United States)

    Olsen, Michael E.

    2016-01-01

    Turbulence models, with increasing complexity, up to triple product terms, are applied to the flow in a rotating pipe. The rotating pipe is a challenging case for turbulence models as it contains significant rotational and curvature effects. The flow field starts with the classic fully developed pipe flow, with a stationary pipe wall. This well defined condition is then subjected to a section of pipe with a rotating wall. The rotating wall introduces a second velocity scale, and creates Reynolds shear stresses in the radial-circumferential and circumferential-axial planes. Furthermore, the wall rotation introduces a flow stabilization, and actually reduces the turbulent kinetic energy as the flow moves along the rotating wall section. It is shown in the present work that the Reynolds stress models are capable of predicting significant reduction in the turbulent kinetic energy, but triple product improves the predictions of the centerline turbulent kinetic energy, which is governed by convection, dissipation and transport terms, as the production terms vanish on the pipe axis.

  13. Magneto-optical tweezers built around an inverted microscope

    International Nuclear Information System (INIS)

    Claudet, Cyril; Bednar, Jan

    2005-01-01

    We present a simple experimental setup of magneto-optical tweezers built around an inverted microscope. Two pairs of coils placed around the focal point of the objective generate a planar-rotating magnetic field that is perpendicular to the stretching direction. This configuration allows us to control the rotary movement of a paramagnetic bead trapped in the optical tweezers. The mechanical design is universal and can be simply adapted to any inverted microscope and objective. The mechanical configuration permits the use of a rather large experimental cell and the simple assembly and disassembly of the magnetic attachment

  14. Drift wave turbulence in low-β plasmas

    DEFF Research Database (Denmark)

    Mikkelsen, Torben; Larsen, Søren Ejling; Pécseli, Hans

    1983-01-01

    Experimental investigations of strong turbulence associated with the radial density gradient of a rotating magnetized plasma column are reported. The experiment is designed to make Taylor's hypothesis effective, in order to allow a simple interpretation of measured frequency spectra in terms of w...... spectrum is demonstrated. Some aspects of the relative diffusion of a test-cloud of charged particles released in the turbulent field are discussed.......Experimental investigations of strong turbulence associated with the radial density gradient of a rotating magnetized plasma column are reported. The experiment is designed to make Taylor's hypothesis effective, in order to allow a simple interpretation of measured frequency spectra in terms...... of wavenumber spectra. The spectral index of the turbulent potential fluctuations is determined and the variation of the spectral intensity is investigated for varying magnetic fields. The results compare favourably with theoretical predictions. The importance of distinguishing subranges in the turbulent...

  15. Analysis and synthesis of one-dimensional magneto-photonic crystals using coupled mode theory

    Energy Technology Data Exchange (ETDEWEB)

    Saghirzadeh Darki, Behnam, E-mail: b.saghirzadeh@ec.iut.ac.ir; Nezhad, Abolghasem Zeidaabadi; Firouzeh, Zaker Hossein

    2017-03-15

    We utilize our previously developed temporal coupled mode approach to investigate the performance of one-dimensional magneto-photonic crystals (MPCs). We analytically demonstrate that a double-defect MPC provides adequate degrees of freedom to design a structure for arbitrary transmittance and Faraday rotation. By using our developed analytic approach along with the numerical transfer matrix method, we present a procedure for the synthesis of an MPC to generate any desired transmittance and Faraday rotation in possible ranges. However it is seen that only discrete values of transmittance and Faraday rotation are practically obtainable. To remedy this problem along with having short structures, we introduce a class of MPC heterostructures which are combinations of stacks with high and low optical contrast ratios.

  16. Large eddy simulations of an airfoil in turbulent inflow

    DEFF Research Database (Denmark)

    Gilling, Lasse; Sørensen, Niels N.

    2008-01-01

    Wind turbines operate in the turbulent boundary layer of the atmosphere and due to the rotational sampling effect the blades experience a high level of turbulence [1]. In this project the effect of turbulence is investigated by large eddy simulations of the turbulent flow past a NACA 0015 airfoil...

  17. Equilibrium and stability of a rotating plasma

    International Nuclear Information System (INIS)

    Janssen, P.A.E.M.

    1979-01-01

    The author considers the equilibrium and stability of a rotating plasma. The kinetic equations for ions and electrons supplemented with the Maxwell equations and the appropriate boundary conditions are used. Two different models for the rotating plasma are considered: the equilibrium of a 'fast' rotating plasma (Magneto Hydrodynamic ordering) and the stability of a slowly rotating, 'weakly' unstable plasma (Finite Larmor Radius ordering). A striking difference between these orderings is the fact that, regarding the stability of the plasma, for a F.L.R. plasma viscosity effects due to the finite Larmor radius are important, whereas in a M.H.D. plasma they are negligible (at least to the required order). (Auth.)

  18. Structure of sheared and rotating turbulence: Multiscale statistics of Lagrangian and Eulerian accelerations and passive scalar dynamics.

    Science.gov (United States)

    Jacobitz, Frank G; Schneider, Kai; Bos, Wouter J T; Farge, Marie

    2016-01-01

    The acceleration statistics of sheared and rotating homogeneous turbulence are studied using direct numerical simulation results. The statistical properties of Lagrangian and Eulerian accelerations are considered together with the influence of the rotation to shear ratio, as well as the scale dependence of their statistics. The probability density functions (pdfs) of both Lagrangian and Eulerian accelerations show a strong and similar dependence on the rotation to shear ratio. The variance and flatness of both accelerations are analyzed and the extreme values of the Eulerian acceleration are observed to be above those of the Lagrangian acceleration. For strong rotation it is observed that flatness yields values close to three, corresponding to Gaussian-like behavior, and for moderate and vanishing rotation the flatness increases. Furthermore, the Lagrangian and Eulerian accelerations are shown to be strongly correlated for strong rotation due to a reduced nonlinear term in this case. A wavelet-based scale-dependent analysis shows that the flatness of both Eulerian and Lagrangian accelerations increases as scale decreases, which provides evidence for intermittent behavior. For strong rotation the Eulerian acceleration is even more intermittent than the Lagrangian acceleration, while the opposite result is obtained for moderate rotation. Moreover, the dynamics of a passive scalar with gradient production in the direction of the mean velocity gradient is analyzed and the influence of the rotation to shear ratio is studied. Concerning the concentration of a passive scalar spread by the flow, the pdf of its Eulerian time rate of change presents higher extreme values than those of its Lagrangian time rate of change. This suggests that the Eulerian time rate of change of scalar concentration is mainly due to advection, while its Lagrangian counterpart is only due to gradient production and viscous dissipation.

  19. Fabry-Perot enhanced Faraday rotation in graphene.

    Science.gov (United States)

    Ubrig, Nicolas; Crassee, Iris; Levallois, Julien; Nedoliuk, Ievgeniia O; Fromm, Felix; Kaiser, Michl; Seyller, Thomas; Kuzmenko, Alexey B

    2013-10-21

    We demonstrate that giant Faraday rotation in graphene in the terahertz range due to the cyclotron resonance is further increased by constructive Fabry-Perot interference in the supporting substrate. Simultaneously, an enhanced total transmission is achieved, making this effect doubly advantageous for graphene-based magneto-optical applications. As an example, we present far-infrared spectra of epitaxial multilayer graphene grown on the C-face of 6H-SiC, where the interference fringes are spectrally resolved and a Faraday rotation up to 0.15 radians (9°) is attained. Further, we discuss and compare other ways to increase the Faraday rotation using the principle of an optical cavity.

  20. Soft X-Ray Magneto-optical Faraday Effect around Ni M2,3 Edges

    International Nuclear Information System (INIS)

    Kai, Chen; Ming-Qi, Cui; Fen, Yan; Li-Juan, Sun; Lei, Zheng; Chen-Yan, Ma; Shi-Bo, Xi; Yi-Dong, Zhao; Jia, Zhao

    2008-01-01

    We present magneto-optical (MO) Faraday spectra measured around the M 2,3 edges (60–70eV) of Ni films at the Beijing Synchrotron Radiation Facility (BSRF). A polarization analysis of the final state of the transmitted radiation from the Ni film is employed to determine the Faraday rotation at the edges. The MO effect becomes resonantly enhanced at the M 2,3 edges, and accordingly large values for the rotation angle β of 1.85 ± 0.19° for this ferromagnetic Ni film with thickness of 31 nm are measured. Without the magnetic field, the azimuthal angles do not shift; with parallel and antiparallel magnetic field the rotation angles shift in the opposite way and they are symmetrical. The uncertainty of Faraday rotation angles mainly comes from the data fitting and the state change of the beamline when the angles are measured

  1. Magneto-hydro-dynamic simulation of Edge-Localised-Modes in tokamaks

    International Nuclear Information System (INIS)

    Pamela, S.

    2010-01-01

    In order to produce energy from fusion reactions in a tokamak, the plasma must reach temperatures higher than that of our sun. The operation regime called H-mode enables one to acquire a plasma confinement close to fusion conditions. Due to the formation of a transport barrier at the plasma edge, turbulent transport is reduced, and the total plasma pressure increases, resulting in a strong pressure gradient at the edge. If this pressure gradient, localised at the plasma-vacuum boundary, becomes too steep, a magneto-hydro-dynamic instability is triggered and part of the plasma pressure is lost. This instability, hence called Edge-Localised-Mode, provokes large heat fluxes on some of the plasma-facing components of the machine, which could set operational limits for a tokamak the size of ITER. In order to understand this instability, and to determine the non-linear mechanisms behind the ELMs, the JOREK code is used. The work presented in this thesis is based on MHD simulations of ballooning modes (responsible for ELMs) with the JOREK code. At first, simulations are done for standard plasmas, inspired of experimental machines. In particular, the plasma rotation at equilibrium, in the region of the edge pressure gradient, is studied in order to obtain an analysis of the effects that such a rotation can have on the linear stability of ELMs and on their non-linear evolution. Then, as a second step, simulations are applied to plasmas of the experimental tokamaks JET and MAST (England). This permits the direct comparison of simulation results with experimental observations, with the main goal of improving our global understanding of ELMs. Adding to this physics aspect, the confrontation of the JOREK code with diagnostics of JET and MAST brings to a validation of simulations, which should prove that the simulations which were obtained do correspond to ELM instabilities. This first step towards the validation of the code is crucial concerning the simulation of ELMs in ITER

  2. Topics in strong Langmuir turbulence

    International Nuclear Information System (INIS)

    Skoric, M.M.

    1981-01-01

    This thesis discusses certain aspects of the turbulence of a fully ionised non-isothermal plasma dominated by the Langmuir mode. Some of the basic properties of strongly turbulent plasmas are reviewed. In particular, interest is focused on the state of Langmuir turbulence, that is the turbulence of a simple externally unmagnetized plasma. The problem of the existence and dynamics of Langmuir collapse is discussed, often met as a non-linear stage of the modulational instability in the framework of the Zakharov equations (i.e. simple time-averaged dynamical equations). Possible macroscopic consequences of such dynamical turbulent models are investigated. In order to study highly non-linear collapse dynamics in its advanced stage, a set of generalized Zakharov equations are derived. Going beyond the original approximation, the author includes the effects of higher electron non-linearities and a breakdown of slow-timescale quasi-neutrality. He investigates how these corrections may influence the collapse stabilisation. Recently, it has been realised that the modulational instability in a Langmuir plasma will be accompanied by the collisionless-generation of a slow-timescale magnetic field. Accordingly, a novel physical situation has emerged which is investigated in detail. The stability of monochromatic Langmuir waves in a self-magnetized Langmuir plasma, is discussed, and the existence of a novel magneto-modulational instability shown. The wave collapse dynamics is investigated and a physical interpretation of the basic results is given. A problem of the transient analysis of an interaction of time-dependent electromagnetic pulses with linear cold plasma media is investigated. (Auth.)

  3. Curie temperature, exchange integrals, and magneto-optical properties in off-stoichiometric bismuth iron garnet epitaxial films

    Science.gov (United States)

    Vertruyen, B.; Cloots, R.; Abell, J. S.; Jackson, T. J.; da Silva, R. C.; Popova, E.; Keller, N.

    2008-09-01

    We have studied the influence of the stoichiometry on the structural, magnetic, and magneto-optical properties of bismuth iron garnet (Bi3Fe5O12) thin films grown by pulsed laser deposition. Films with different stoichiometries have been obtained by varying the Bi/Fe ratio of the target and the oxygen pressure during deposition. Stoichiometry variations influence the Curie temperature TC by tuning the (Fe)-O-[Fe] geometry: TC increases when the lattice parameter decreases, contrary to what happens in the case of stoichiometric rare-earth iron garnets. The thermal variation of the magnetization, the Faraday rotation, and the Faraday ellipticity have been analyzed in the frame of the Néel two-sublattice magnetization model giving energies of -48K (4.1 meV), -29K (2.5 meV), and 84 K (7.3 meV) for the three magnetic exchange integrals jaa , jdd , and jad , respectively. Magneto-optical spectroscopy linked to compositional analysis by Rutherford backscattering spectroscopy shows that Bi and/or Fe deficiencies also affect the spectral variation (between 1.77 and 3.1 eV). Our results suggest that bismuth deficiency has an effect on the magneto-optical response of the tetrahedral Fe sublattice, whereas small iron deficiencies affect predominantly the magneto-optical response of the octahedral sublattice.

  4. Homogeneous wave turbulence driven by tidal flows

    Science.gov (United States)

    Favier, B.; Le Reun, T.; Barker, A.; Le Bars, M.

    2017-12-01

    When a moon orbits around a planet, the rotation of the induced tidal bulge drives a homogeneous, periodic, large-scale flow. The combination of such an excitation with the rotating motion of the planet has been shown to drive parametric resonance of a pair of inertial waves in a mechanism called the elliptical instability. Geophysical fluid layers can also be stratified: this is the case for instance of the Earth's oceans and, as suggested by several studies, of the upper part of the Earth's liquid Outer Core. We thus investigate the stability of a rotating and stratified layer undergoing tidal distortion in the limit where either rotation or stratification is dominant. We show that the periodic tidal flow drives a parametric subharmonic resonance of inertial (resp. internal) waves in the rotating (resp. stratified) case. The instability saturates into a wave turbulence pervading the whole fluid layer. In such a state, the instability mechanism conveys the tidal energy from the large scale tidal flow to the resonant modes, which then feed a succession of triadic resonances also generating small spatial scales. In the rotating case, we observe a kinetic energy spectrum with a k-2 slope for which the Coriolis force is dominant at all spatial scales. In the stratified case, where the timescale separation is increased between the tidal excitation and the Brunt-Väisälä frequencies, the temporal spectrum decays with a ω-2 power law up to the cut-off frequency beyond which waves do not exist. This result is reminiscent of the Garrett and Munk spectrum measured in the oceans and theoretically described as a manifestation of internal wave turbulence. In addition to revealing an instability driving homogeneous turbulence in geophysical fluid layers, our approach is also an efficient numerical tool to investigate the possibly universal properties of wave turbulence in a geophysical context.

  5. Magneto-plasmonic nanoantennas: Basics and applications

    Directory of Open Access Journals (Sweden)

    Ivan S. Maksymov

    2016-11-01

    Full Text Available Plasmonic nanoantennas are a hot and rapidly expanding research field. Here we overview basic operating principles and applications of novel magneto-plasmonic nanoantennas, which are made of ferromagnetic metals and driven not only by light, but also by external magnetic fields. We demonstrate that magneto-plasmonic nanoantennas enhance the magneto-optical effects, which introduces additional degrees of freedom in the control of light at the nano-scale. This property is used in conceptually new devices such as magneto-plasmonic rulers, ultra-sensitive biosensors, one-way subwavelength waveguides and extraordinary optical transmission structures, as well as in novel biomedical imaging modalities. We also point out that in certain cases ‘non-optical’ ferromagnetic nanostructures may operate as magneto-plasmonic nanoantennas. This undesigned extra functionality capitalises on established optical characterisation techniques of magnetic nanomaterials and it may be useful for the integration of nanophotonics and nanomagnetism on a single chip.

  6. Magneto-Induced ac Electrical Permittivity of Metal-Dielectric Composites with a Two Characteristic Length Scales Periodic Microstructure

    International Nuclear Information System (INIS)

    Strelniker, Y.M.; Bergman, D.J.

    1998-01-01

    with large ρ xy /ρ xx ratio. Then the insulating island in the center of the unit cell serves as an effective obstacle (second characteristic length scale). When the frequency is in the vicinity of one of the sharp resonances, there appears a strong dependence of the real and imaginary parts of all the components of the bulk effective electric permittivity tensor, E(e), on both the magnitude and the direction of the applied static magnetic field, B, which is rotated in the film-plane [3]. The various magneto-optical properties (including Faraday rotation, etc.) of such composites are considered. The possibility of observing these new effects in a suitably synthesized composite film is considered in detail

  7. An Investigation of Magneto-Optical Effects

    Science.gov (United States)

    Adams, Mitzi L.; Hagyard, Mona J.; West, Edward A.

    1998-01-01

    We exhibit the effects of Faraday rotation on the direction of the transverse component of the magnetic field in a simple, symmetric sunspot. A set of 35 polarization filtergrams of NOAA active region 4662 (June 9, 1985) were obtained with the Marshall Space Flight Center (MSFC) vector magnetograph. These filtergrams measured the Stokes I, Q, U, and V intensities averaged over the instrument's filter bandpass (0.0125 nm) for wavelengths from 0.017 nm in the red wing to 0.017 nm in the blue wing of the Lambda525.22 nm spectral line in steps of 0.001 nm. These data were used to derive the azimuth phi of the vector field as a function of wavelength over the field of view of the sunspot. We interpret the observed variations of this azimuth with wavelength as the effects of Faraday rotation and verify this interpretation by comparing these variations with those predicted from magneto-optical theory. In the theoretical calculations we use the line-profile parameters and magnetic field strength derived in previous work by Balasubramaniam and West (Astrophys. J 382, p. 699, 1991).

  8. Large Eddy simulation of turbulence: A subgrid scale model including shear, vorticity, rotation, and buoyancy

    Science.gov (United States)

    Canuto, V. M.

    1994-01-01

    The Reynolds numbers that characterize geophysical and astrophysical turbulence (Re approximately equals 10(exp 8) for the planetary boundary layer and Re approximately equals 10(exp 14) for the Sun's interior) are too large to allow a direct numerical simulation (DNS) of the fundamental Navier-Stokes and temperature equations. In fact, the spatial number of grid points N approximately Re(exp 9/4) exceeds the computational capability of today's supercomputers. Alternative treatments are the ensemble-time average approach, and/or the volume average approach. Since the first method (Reynolds stress approach) is largely analytical, the resulting turbulence equations entail manageable computational requirements and can thus be linked to a stellar evolutionary code or, in the geophysical case, to general circulation models. In the volume average approach, one carries out a large eddy simulation (LES) which resolves numerically the largest scales, while the unresolved scales must be treated theoretically with a subgrid scale model (SGS). Contrary to the ensemble average approach, the LES+SGS approach has considerable computational requirements. Even if this prevents (for the time being) a LES+SGS model to be linked to stellar or geophysical codes, it is still of the greatest relevance as an 'experimental tool' to be used, inter alia, to improve the parameterizations needed in the ensemble average approach. Such a methodology has been successfully adopted in studies of the convective planetary boundary layer. Experienc e with the LES+SGS approach from different fields has shown that its reliability depends on the healthiness of the SGS model for numerical stability as well as for physical completeness. At present, the most widely used SGS model, the Smagorinsky model, accounts for the effect of the shear induced by the large resolved scales on the unresolved scales but does not account for the effects of buoyancy, anisotropy, rotation, and stable stratification. The

  9. A nonlinear magneto-thermo-elastic coupled hysteretic constitutive model for magnetostrictive alloys

    International Nuclear Information System (INIS)

    Jin Ke; Kou Yong; Zheng Xiaojing

    2012-01-01

    This paper presents a general hysteretic constitutive law of nonlinear magneto-thermo-elastic coupling for magnetostrictive alloys. The model considered here is thermodynamically motivated and based on the Gibbs free energy function. A nonlinear part of the elastic strain arising from magnetic domain rotation induced by the pre-stress is taken into account. Furthermore, the movement of the domain walls is incorporated to describe hysteresis based on Jiles–Atherton's model. Then a set of closed and analytical expressions of the constitutive law for the magnetostrictive rods and films are obtained, and the parameters appearing in the model can be determined by those measurable experiments in mechanics and physics. Comparing this model with other existing models in this field, the quantitative results show that the relationships obtained here are more effective to describe the effects of the pre-stress or in-plane residual stress and ambient temperature on the magnetization or the magnetostriction hysteresis loops. - Highlights: ► A general hysteretic constitutive law of nonlinear magneto-thermo-elastic coupling for magnetostrictive materials is proposed. ► Model is thermodynamically motivated and the reversible magnetic domain rotation and irreversible domain wall motion are taken. ► The predictions are in good accordance with the experimental data including both rods and films. ► Magnetostrictive alloys are sensitive to environment temperature and pre-stress or residual stress.

  10. Sensor Applications of Soft Magnetic Materials Based on Magneto-Impedance, Magneto-Elastic Resonance and Magneto-Electricity

    Directory of Open Access Journals (Sweden)

    Alfredo García-Arribas

    2014-04-01

    Full Text Available The outstanding properties of selected soft magnetic materials make them successful candidates for building high performance sensors. In this paper we present our recent work regarding different sensing technologies based on the coupling of the magnetic properties of soft magnetic materials with their electric or elastic properties. In first place we report the influence on the magneto-impedance response of the thickness of Permalloy films in multilayer-sandwiched structures. An impedance change of 270% was found in the best conditions upon the application of magnetic field, with a low field sensitivity of 140%/Oe. Second, the magneto-elastic resonance of amorphous ribbons is used to demonstrate the possibility of sensitively measuring the viscosity of fluids, aimed to develop an on-line and real-time sensor capable of assessing the state of degradation of lubricant oils in machinery. A novel analysis method is shown to sensitively reveal the changes of the damping parameter of the magnetoelastic oscillations at the resonance as a function of the oil viscosity. Finally, the properties and performance of magneto-electric laminated composites of amorphous magnetic ribbons and piezoelectric polymer films are investigated, demonstrating magnetic field detection capabilities below 2.7 nT.

  11. Up-down symmetry of the turbulent transport of toroidal angular momentum in tokamaks

    International Nuclear Information System (INIS)

    Parra, Felix I.; Barnes, Michael; Peeters, Arthur G.

    2011-01-01

    Two symmetries of the local nonlinear δf gyrokinetic system of equations in tokamaks in the high flow regime are presented. The turbulent transport of toroidal angular momentum changes sign under an up-down reflection of the tokamak and a sign change of both the rotation and the rotation shear. Thus, the turbulent transport of toroidal angular momentum must vanish for up-down symmetric tokamaks in the absence of both rotation and rotation shear. This has important implications for the modeling of spontaneous rotation.

  12. On the prediction of turbulent secondary flows

    Science.gov (United States)

    Speziale, C. G.; So, R. M. C.; Younis, B. A.

    1992-01-01

    The prediction of turbulent secondary flows, with Reynolds stress models, in circular pipes and non-circular ducts is reviewed. Turbulence-driven secondary flows in straight non-circular ducts are considered along with turbulent secondary flows in pipes and ducts that arise from curvature or a system rotation. The physical mechanisms that generate these different kinds of secondary flows are outlined and the level of turbulence closure required to properly compute each type is discussed in detail. Illustrative computations of a variety of different secondary flows obtained from two-equation turbulence models and second-order closures are provided to amplify these points.

  13. Gyrokinetic Studies of Turbulence in Steep Gradient Region: Role of Turbulence Spreading and E x B Shear

    Energy Technology Data Exchange (ETDEWEB)

    T.S. Hahm; Z. Lin; P.H. Diamond; G. Rewoldt; W.X. Wang; S. Ethier; O. Gurcan; W.W. Lee; W.M. Tang

    2004-12-21

    An integrated program of gyrokinetic particle simulation and theory has been developed to investigate several outstanding issues in both turbulence and neoclassical physics. Gyrokinetic particle simulations of toroidal ion temperature gradient (ITG) turbulence spreading using the GTC code and its related dynamical model have been extended to the case with radially increasing ion temperature gradient, to study the inward spreading of edge turbulence toward the core. Due to turbulence spreading from the edge, the turbulence intensity in the core region is significantly enhanced over the value obtained from simulations of the core region only. Even when the core gradient is within the Dimits shift regime (i.e., self-generated zonal flows reduce the transport to a negligible value), a significant level of turbulence and transport is observed in the core due to spreading from the edge. The scaling of the turbulent front propagation speed is closer to the prediction from our nonlinear diffusion model than one based on linear toroidal coupling. A calculation of ion poloidal rotation in the presence of sharp density and toroidal angular rotation frequency gradients from the GTC-Neo particle simulation code shows that the results are significantly different from the conventional neoclassical theory predictions. An energy conserving set of a fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to edge turbulence, is being derived via the phase-space action variational Lie perturbation method. Our generalized ordering takes the ion poloidal gyroradius to be on the order of the radial electric field gradient length.

  14. Gyrokinetic studies of turbulence in steep gradient region: Role of turbulence spreading and E x B shear

    International Nuclear Information System (INIS)

    Hahm, T.S.; Lin, Z.; Diamond, P.H.; Gurcan, O.; Rewoldt, G.; Wang, W.X.; Ethier, S.; Lee, W.W.; Lewandowski, J.L.V.; Tang, W.M.

    2005-01-01

    An integrated program of gyrokinetic particle simulation and theory has been developed to investigate several outstanding issues in both turbulence and neoclassical physics. Gyrokinetic particle simulations of toroidal ion temperature gradient (ITG) turbulence spreading using the GTC code and its related dynamical model have been extended to the case with radially increasing ion temperature gradient, to study the inward spreading of edge turbulence toward the core. Due to turbulence spreading from the edge, the turbulence intensity in the core region is significantly enhanced over the value obtained from simulations of the core region only. Even when the core gradient is within the Dimits shift regime (i.e., self-generated zonal flows reduce the transport to a negligible value), a significant level of turbulence and transport is observed in the core due to spreading from the edge. The scaling of the turbulent front propagation speed is closer to the prediction from our nonlinear diffusion model than one based on linear toroidal coupling. A calculation of ion poloidal rotation in the presence of sharp density and toroidal angular rotation frequency gradients from the GTC-Neo particle simulation code shows that the results are significantly different from the conventional neoclassical theory predictions. An energy conserving set of a fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to edge turbulence, is being derived via the phase-space action variational Lie perturbation method. Our generalized ordering takes the ion poloidal gyroradius to be on the order of the radial electric field gradient length. (author)

  15. Modeling of Turbulent Swirling Flows

    Science.gov (United States)

    Shih, Tsan-Hsing; Zhu, Jiang; Liou, William; Chen, Kuo-Huey; Liu, Nan-Suey; Lumley, John L.

    1997-01-01

    Aircraft engine combustors generally involve turbulent swirling flows in order to enhance fuel-air mixing and flame stabilization. It has long been recognized that eddy viscosity turbulence models are unable to appropriately model swirling flows. Therefore, it has been suggested that, for the modeling of these flows, a second order closure scheme should be considered because of its ability in the modeling of rotational and curvature effects. However, this scheme will require solution of many complicated second moment transport equations (six Reynolds stresses plus other scalar fluxes and variances), which is a difficult task for any CFD implementations. Also, this scheme will require a large amount of computer resources for a general combustor swirling flow. This report is devoted to the development of a cubic Reynolds stress-strain model for turbulent swirling flows, and was inspired by the work of Launder's group at UMIST. Using this type of model, one only needs to solve two turbulence equations, one for the turbulent kinetic energy k and the other for the dissipation rate epsilon. The cubic model developed in this report is based on a general Reynolds stress-strain relationship. Two flows have been chosen for model evaluation. One is a fully developed rotating pipe flow, and the other is a more complex flow with swirl and recirculation.

  16. Turbulence induced lift experienced by large particles in a turbulent flow

    International Nuclear Information System (INIS)

    Zimmermann, Robert; Gasteuil, Yoann; Volk, Romain; Pumir, Alain; Pinton, Jean-François; Bourgoin, Mickaël

    2011-01-01

    The translation and rotation of a large, neutrally buoyant, particle, freely advected by a turbulent flow is determined experimentally. We observe that, both, the orientation the angular velocity with respect to the trajectory and the translational acceleration conditioned on the spinning velocity provides evidence of a lift force, F lift ∝ ω × ν rel , acting on the particle. New results of the dynamics of the coupling between the particle's rotation and its translation are presented.

  17. Turbulent and neoclassical toroidal momentum transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Abiteboul, J.

    2012-10-01

    The goal of magnetic confinement devices such as tokamaks is to produce energy from nuclear fusion reactions in plasmas at low densities and high temperatures. Experimentally, toroidal flows have been found to significantly improve the energy confinement, and therefore the performance of the machine. As extrinsic momentum sources will be limited in future fusion devices such as ITER, an understanding of the physics of toroidal momentum transport and the generation of intrinsic toroidal rotation in tokamaks would be an important step in order to predict the rotation profile in experiments. Among the mechanisms expected to contribute to the generation of toroidal rotation is the transport of momentum by electrostatic turbulence, which governs heat transport in tokamaks. Due to the low collisionality of the plasma, kinetic modeling is mandatory for the study of tokamak turbulence. In principle, this implies the modeling of a six-dimensional distribution function representing the density of particles in position and velocity phase-space, which can be reduced to five dimensions when considering only frequencies below the particle cyclotron frequency. This approximation, relevant for the study of turbulence in tokamaks, leads to the so-called gyrokinetic model and brings the computational cost of the model within the presently available numerical resources. In this work, we study the transport of toroidal momentum in tokamaks in the framework of the gyrokinetic model. First, we show that this reduced model is indeed capable of accurately modeling momentum transport by deriving a local conservation equation of toroidal momentum, and verifying it numerically with the gyrokinetic code GYSELA. Secondly, we show how electrostatic turbulence can break the axisymmetry and generate toroidal rotation, while a strong link between turbulent heat and momentum transport is identified, as both exhibit the same large-scale avalanche-like events. The dynamics of turbulent transport are

  18. Analysis of Magneto-Piezoelastic Anisotropic Materials

    Directory of Open Access Journals (Sweden)

    Alexander L. Kalamkarov

    2015-05-01

    Full Text Available The paper is concerned with the analysis of magneto-piezoelastic anistropic materials. Analytical modeling of magneto-piezoelastic materials is essential for the design and applications in the smart composite structures incorporating them as actuating and sensing constituents. It is shown that Green’s function method is applicable to time harmonic magneto-elastic-piezoelectricity problems using the boundary integral technique, and the exact analytical solutions are obtained. As an application, a two-dimensional static plane-strain problem is considered to investigate the effect of magnetic field on piezoelectric materials. The closed-form analytical solutions are obtained for a number of boundary conditions for all components of the magneto-piezoelectric field. As a special case, numerical results are presented for two-dimensional static magneto-electroelastic field of a piezoelectric solid subjected to a concentrated line load and an electric charge. The numerical solutions are obtained for three different piezoelectric materials and they demonstrate a substantial dependence of the stress and electric field distribution on the constitutive properties and magnetic flux.

  19. Magneto-optical Kerr spectroscopy of noble metals

    Science.gov (United States)

    Uba, L.; Uba, S.; Antonov, V. N.

    2017-12-01

    Magneto-optical (MO) response of the noble metals Cu, Ag, and Au in the joint experimental and ab initio theoretical study is reported. The magneto-optical polar Kerr effect (MOKE) spectra of the noble-metal films were measured with the high sensitivity in the applied magnetic field of 1.5 T over the photon energy range 0.74-5.8 eV. Complete set of the optical conductivity tensor elements was determined precisely from the MOKE and the optical spectra measured at the same energy points. The importance of the off-diagonal intraband Drude-type transitions is demonstrated explicitly for each noble metal and found to be a substantial contribution to the observed spectra. It is shown that the first-principles calculations using the spin-polarized fully relativistic Dirac linear-muffin-tin-orbital method with the inclusion of correlation effects by GGA+U approach reproduce well the experimental spectra and allow to explain the microscopic origin of the noble metals' magneto-optical response in terms of interband transitions. Although the energy band structures of Cu, Ag, and Au are very similar, there are some distinctive differences in bandwidths and the energy positions of the bands (especially in X and L symmetry points), mainly due to different spin-orbit splitting and differences in the spatial extent of 3 d , 4 d , and 5 d valence wave functions of noble metals. It was found that the small differences in the band positions lead to significant differences in the MO properties of three noble metals. Although the spin-orbit interaction in Au is about six times larger than in Cu, and approximately two times larger than in Ag, the absolute value of Kerr rotation in Au is of the same magnitude as in Cu and one order of magnitude smaller as compared to Ag. The sharp Kerr effect spectral peak in Ag is not due to the electronic interband transitions, but rather to the plasma-edge splitting. The band-by-band decomposition of the Cu, Ag, and Au MO spectra is presented and the

  20. Optimal design of a magneto-rheological brake absorber for torsional vibration control

    International Nuclear Information System (INIS)

    Nguyen, Q H; Choi, S B

    2012-01-01

    This research presents an optimal design of a magneto-rheological (MR) brake absorber for torsional vibration control of a rotating shaft. Firstly, the configuration of an MR brake absorber for torsional vibration control of a rotating shaft system is proposed. Then, the braking torque of the MR brake is derived based on the Bingham plastic model of the MR fluid. By assuming that the behaviour of the MR brake absorber is similar to that of a dry friction torsional damper, the optimal braking torque to control the torsional vibration is determined and validated by simulation. The optimal design problem of the MR brake absorber is then developed and a procedure to solve the optimal problem is proposed. Based on the proposed optimal design procedure, the optimal design of a specific rotating shaft system is performed. Vibration control performance of the shaft system employing the optimized MR brake absorber is then investigated through simulation and discussion on the results is given. (paper)

  1. Optimal design of a magneto-rheological brake absorber for torsional vibration control

    Science.gov (United States)

    Nguyen, Q. H.; Choi, S. B.

    2012-02-01

    This research presents an optimal design of a magneto-rheological (MR) brake absorber for torsional vibration control of a rotating shaft. Firstly, the configuration of an MR brake absorber for torsional vibration control of a rotating shaft system is proposed. Then, the braking torque of the MR brake is derived based on the Bingham plastic model of the MR fluid. By assuming that the behaviour of the MR brake absorber is similar to that of a dry friction torsional damper, the optimal braking torque to control the torsional vibration is determined and validated by simulation. The optimal design problem of the MR brake absorber is then developed and a procedure to solve the optimal problem is proposed. Based on the proposed optimal design procedure, the optimal design of a specific rotating shaft system is performed. Vibration control performance of the shaft system employing the optimized MR brake absorber is then investigated through simulation and discussion on the results is given.

  2. Study of scattering from turbulence structure generated by propeller with FLUENT

    Science.gov (United States)

    Luo, Gen

    2017-07-01

    In this article, the turbulence structure generated by a propeller is simulated with the computational fluid dynamics (CFD) software FLUENT. With the method of moments, the backscattering radar cross sections (RCS) of the turbulence structure are calculated. The scattering results can reflect the turbulent intensity of the wave profiles. For the wake turbulence with low rotating speed, the scattering intensity of HH polarization is much smaller than VV polarization at large incident angles. When the turbulence becomes stronger with high rotating speed, the scattering intensity of HH polarization also becomes stronger at large incident angles, which is almost the same with VV polarization. And also, the bistatic scattering of the turbulence structure has the similar situation. These scattering results indicate that the turbulence structure can also give rise to an anomaly compared with traditional sea surface. The study of electromagnetic (EM) scattering from turbulence structure generated by the propeller can help in better understanding of the scattering from different kinds of waves and provide more bases to explain the anomalies of EM scattering from sea surfaces.

  3. Equilibrium of current driven rotating liquid metal

    International Nuclear Information System (INIS)

    Velikhov, E.P.; Ivanov, A.A.; Zakharov, S.V.; Zakharov, V.S.; Livadny, A.O.; Serebrennikov, K.S.

    2006-01-01

    In view of great importance of magneto-rotational instability (MRI) as a fundamental mechanism for angular momentum transfer in magnetized stellar accretion disks, several research centers are involved in experimental study of MRI under laboratory conditions. The idea of the experiment is to investigate the rotation dynamics of well conducting liquid (liquid metal) between two cylinders in axial magnetic field. In this Letter, an experimental scheme with immovable cylinders and fluid rotation driven by radial current is considered. The analytical solution of a stationary flow was found taking into account the external current. Results of axially symmetric numerical simulations of current driven fluid dynamics in experimental setup geometry are presented. The analytical solution and numerical simulations show that the current driven fluid rotation in axial magnetic field provides the axially homogeneous velocity profile suitable for MRI study in classical statement

  4. Introducing Magneto-Optical Functions into Soft Materials

    Science.gov (United States)

    2017-05-03

    including organic and bio materials by using magnetic nanomaterials. This final report includes the successful developments of magneto-optical... successful developments of magneto-optical properties in both organic and bio magnetic nanocomposites during the project period of three years...proteins on the photoluminescence of nanodiamond. J. Appl . Phys. 2011, 109 (3), 034704. 7, Xu, H.; Hung, C.E.; Cheng, C.L.; Hu, B., Magneto-electric

  5. PDF turbulence modeling and DNS

    Science.gov (United States)

    Hsu, A. T.

    1992-01-01

    The problem of time discontinuity (or jump condition) in the coalescence/dispersion (C/D) mixing model is addressed in probability density function (pdf). A C/D mixing model continuous in time is introduced. With the continuous mixing model, the process of chemical reaction can be fully coupled with mixing. In the case of homogeneous turbulence decay, the new model predicts a pdf very close to a Gaussian distribution, with finite higher moments also close to that of a Gaussian distribution. Results from the continuous mixing model are compared with both experimental data and numerical results from conventional C/D models. The effect of Coriolis forces on compressible homogeneous turbulence is studied using direct numerical simulation (DNS). The numerical method used in this study is an eight order compact difference scheme. Contrary to the conclusions reached by previous DNS studies on incompressible isotropic turbulence, the present results show that the Coriolis force increases the dissipation rate of turbulent kinetic energy, and that anisotropy develops as the Coriolis force increases. The Taylor-Proudman theory does apply since the derivatives in the direction of the rotation axis vanishes rapidly. A closer analysis reveals that the dissipation rate of the incompressible component of the turbulent kinetic energy indeed decreases with a higher rotation rate, consistent with incompressible flow simulations (Bardina), while the dissipation rate of the compressible part increases; the net gain is positive. Inertial waves are observed in the simulation results.

  6. Relativistic conformal magneto-hydrodynamics from holography

    International Nuclear Information System (INIS)

    Buchbinder, Evgeny I.; Buchel, Alex

    2009-01-01

    We use the AdS/CFT correspondence to study first-order relativistic viscous magneto-hydrodynamics of (2+1)-dimensional conformal magnetic fluids. It is shown that the first order magneto-hydrodynamics constructed following Landau and Lifshitz from the positivity of the entropy production is inconsistent. We propose additional contributions to the entropy motivated dissipative current and, correspondingly, new dissipative transport coefficients. We use the strongly coupled M2-brane plasma in external magnetic field to show that the new magneto-hydrodynamics leads to self-consistent results in the shear and sound wave channels.

  7. Nonlinear Flow Generation By Electrostatic Turbulence In Tokamaks

    International Nuclear Information System (INIS)

    Wang, W.X.; Diamond, P.H.; Hahm, T.S.; Ethier, S.; Rewoldt, G.; Tang, W.M.

    2010-01-01

    Global gyrokinetic simulations have revealed an important nonlinear flow generation process due to the residual stress produced by electrostatic turbulence of ion temperature gradient (ITG) modes and trapped electron modes (TEM). In collisionless TEM (CTEM) turbulence, nonlinear residual stress generation by both the fluctuation intensity and the intensity gradient in the presence of broken symmetry in the parallel wave number spectrum is identified for the first time. Concerning the origin of the symmetry breaking, turbulence self-generated low frequency zonal flow shear has been identified to be a key, universal mechanism in various turbulence regimes. Simulations reported here also indicate the existence of other mechanisms beyond E - B shear. The ITG turbulence driven 'intrinsic' torque associated with residual stress is shown to increase close to linearly with the ion temperature gradient, in qualitative agreement with experimental observations in various devices. In CTEM dominated regimes, a net toroidal rotation is driven in the cocurrent direction by 'intrinsic' torque, consistent with the experimental trend of observed intrinsic rotation. The finding of a 'flow pinch' in CTEM turbulence may offer an interesting new insight into the underlying dynamics governing the radial penetration of modulated flows in perturbation experiments. Finally, simulations also reveal highly distinct phase space structures between CTEM and ITG turbulence driven momentum, energy and particle fluxes, elucidating the roles of resonant and non-resonant particles.

  8. Properties and structure of Faraday rotating glasses for magneto optical current transducer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.; Ma, Q.; Wang, H.; Wang, Q.; Hao, Y.; Chen, Q.

    2017-07-01

    High heavy metal oxides (60–100mol.%) ternary PbO–Bi2O3–B2O3 (PBB) glasses were fabricated and characterized. Using a homemade single lightway DC magnetic setup, Verdet constants of PBB glasses were measured to be 0.0923–0.1664min/G cm at 633nm wavelengths. Glasses with substitution of PbO by Bi2O3 were studied in terms of their Faraday effects. PbO–Bi2O3–B2O3 = 50–40–10mol.% exhibited good thermal stability, high Verdet constant (0.1503min/G cm) and good figure of merit (0.071). Based on this glass, a magneto optical current sensor prototype was constructed and its sensitivity at different currents was evaluated to be 8.31nW/A. © 2. (Author)

  9. Magneto-optical Faraday rotation of semiconductor nanoparticles embedded in dielectric matrices.

    Science.gov (United States)

    Savchuk, Andriy I; Stolyarchuk, Ihor D; Makoviy, Vitaliy V; Savchuk, Oleksandr A

    2014-04-01

    Faraday rotation has been studied for CdS, CdTe, and CdS:Mn semiconductor nanoparticles synthesized by colloidal chemistry methods. Additionally these materials were prepared in a form of semiconductor nanoparticles embedded in polyvinyl alcohol films. Transmission electron microscopy and atomic force microscopy analyses served as confirmation of nanocrystallinity and estimation of the average size of the nanoparticles. Spectral dependence of the Faraday rotation for the studied nanocrystals and nanocomposites is correlated with a blueshift of the absorption edge due to the confinement effect in zero-dimensional structures. Faraday rotation spectra and their temperature behavior in Mn-doped nanocrystals demonstrates peculiarities, which are associated with s, p-d exchange interaction between Mn²⁺ ions and band carriers in diluted magnetic semiconductor nanostructures.

  10. The structure of sidewall boundary layers in conned rotating Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Kunnen, R.P.J.; Clercx, H.J.H.; van Heijst, G.J.F.

    2013-01-01

    Turbulent rotating convection is usually studied in a cylindrical geometry, as this is its most convenient experimental realization. In our previous work (Kunnen et al., J. Fluid Mech., vol. 688, 2011, pp. 422–442) we studied turbulent rotating convection in a cylinder with the emphasis on the

  11. On the inverse transfer of (non-)helical magnetic energy in a decaying magnetohydrodynamic turbulence

    Science.gov (United States)

    Park, Kiwan

    2017-12-01

    In our conventional understanding, large-scale magnetic fields are thought to originate from an inverse cascade in the presence of magnetic helicity, differential rotation or a magneto-rotational instability. However, as recent simulations have given strong indications that an inverse cascade (transfer) may occur even in the absence of magnetic helicity, the physical origin of this inverse cascade is still not fully understood. We here present two simulations of freely decaying helical and non-helical magnetohydrodynamic (MHD) turbulence. We verified the inverse transfer of helical and non-helical magnetic fields in both cases, but we found the underlying physical principles to be fundamentally different. In the former case, the helical magnetic component leads to an inverse cascade of magnetic energy. We derived a semi-analytic formula for the evolution of large-scale magnetic field using α coefficient and compared it with the simulation data. But in the latter case, the α effect, including other conventional dynamo theories, is not suitable to describe the inverse transfer of non-helical magnetic energy. To obtain a better understanding of the physics at work here, we introduced a 'field structure model' based on the magnetic induction equation in the presence of inhomogeneities. This model illustrates how the curl of the electromotive force leads to the build up of a large-scale magnetic field without the requirement of magnetic helicity. And we applied a quasi-normal approximation to the inverse transfer of magnetic energy.

  12. Magnetostrophic Rotating Magnetoconvection

    Science.gov (United States)

    King, Eric; Aurnou, Jonathan

    2016-11-01

    Planetary magnetic fields are generated by turbulent convection within their vast interior liquid metal cores. Although direct observation is not possible, this liquid metal circulation is thought to be dominated by the controlling influences of Coriolis and Lorentz forces. Theory famously predicts that local-scale convection naturally settles into the so-called magnetostrophic state, where the Coriolis and Lorentz forces partially cancel, and convection is optimally efficient. To date, no laboratory experiments have reached the magnetostrophic regime in turbulent liquid metal convection. Furthermore, computational dynamo simulations have as yet failed to produce a globally magnetostrophic dynamo, which has led some to question the existence of the magnetostrophic state. Here, we present results from the first turbulent magnetostrophic rotating magnetoconvection experiments using the liquid metal gallium. We find that turbulent convection in the magnetostrophic regime is, in fact, maximally efficient. The experimental results clarify these previously disparate results, suggesting that the fluid dynamics saturate in magnetostrophic balance within turbulent liquid metal, planetary cores. The authors thank the NSF Geophysics Program for financial support.

  13. RADIO POLARIMETRY SIGNATURES OF STRONG MAGNETIC TURBULENCE IN SUPERNOVA REMNANTS

    International Nuclear Information System (INIS)

    Stroman, Wendy; Pohl, Martin

    2009-01-01

    We discuss the emission and transport of polarized radio-band synchrotron radiation near the forward shocks of young shell-type supernova remnants, for which X-ray data indicate a strong amplification of turbulent magnetic field. Modeling the magnetic turbulence through the superposition of waves, we calculate the degree of polarization and the magnetic polarization direction which is at 90 deg. to the conventional electric polarization direction. We find that isotropic strong turbulence will produce weakly polarized radio emission even in the absence of internal Faraday rotation. If anisotropy is imposed on the magnetic-field structure, the degree of polarization can be significantly increased, provided internal Faraday rotation is inefficient. Both for shock compression and a mixture with a homogeneous field, the increase in polarization degree goes along with a fairly precise alignment of the magnetic-polarization angle with the direction of the dominant magnetic-field component, implying tangential magnetic polarization at the rims in the case of shock compression. We compare our model with high-resolution radio polarimetry data of Tycho's remnant. Using the absence of internal Faraday rotation we find a soft limit for the amplitude of magnetic turbulence, δB ∼ 0 . An alternative viable scenario involves anisotropic turbulence with stronger amplitudes in the radial direction, as was observed in recent Magnetohydrodynamics simulations of shocks propagating through a medium with significant density fluctuations.

  14. CISM Course on Rotating Fluids

    CERN Document Server

    1992-01-01

    The volume presents a comprehensive overview of rotation effects on fluid behavior, emphasizing non-linear processes. The subject is introduced by giving a range of examples of rotating fluids encountered in geophysics and engineering. This is then followed by a discussion of the relevant scales and parameters of rotating flow, and an introduction to geostrophic balance and vorticity concepts. There are few books on rotating fluids and this volume is, therefore, a welcome addition. It is the first volume which contains a unified view of turbulence in rotating fluids, instability and vortex dynamics. Some aspects of wave motions covered here are not found elsewhere.

  15. Turbulent wind at the equatorial segment of an operating Darrieus wind turbine blade

    Science.gov (United States)

    Connell, J. R.; Morris, V. R.

    1989-09-01

    Six turbulent wind time series, measured at equally spaced equator-height locations on a circle 3 m outside a 34-m Darrieus rotor, are analyzed to approximate the wind fluctuations experienced by the rotor. The flatwise lower root-bending stress of one blade was concurrently recorded. The wind data are analyzed in three ways: wind components that are radial and tangential to the rotation of a blade were rotationally sampled; induction and wake effects of the rotor were estimated from the six Eulerian time series; and turbulence spectra of both the measured wind and the modeled wind from the PNL theory of rotationally sampled turbulence. The wind and the rotor response are related by computing the spectral response function of the flatwise lower root-bending stress. Two bands of resonant response that surround the first and second flatwise modal frequencies shift with the rotor rotation rate.

  16. The comparative analysis of the different mechanisms of toroidal rotation in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Sabot, R [Association Euratom-CEA, Centre d` Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Parail, V [Kurchatov Institute, Moscow (Russian Federation)

    1994-07-01

    The toroidal plasma rotation appears as one the possible mechanism for suppression of plasma turbulence. Several mechanisms are believed to contribute to the toroidal plasma rotation. The results of numerical simulation of the toroidal rotation on JET are presented, where are taken into consideration the following effects: the neoclassical viscosity due to banana and ripple trapped particles, the anomalous viscosity due to plasma turbulence, the momentum input by NBI (neutron beam injection) and ion momentum loss near the separatrix due to prompt ion losses. The NBI appeared to be the principal source of toroidal plasma rotation. 6 refs., 2 figs.

  17. Anisotropic Characteristics of Turbulence Dissipation in Swirling Flow: A Direct Numerical Simulation Study

    Directory of Open Access Journals (Sweden)

    Xingtuan Yang

    2015-01-01

    Full Text Available This study investigates the anisotropic characteristics of turbulent energy dissipation rate in a rotating jet flow via direct numerical simulation. The turbulent energy dissipation tensor, including its eigenvalues in the swirling flows with different rotating velocities, is analyzed to investigate the anisotropic characteristics of turbulence and dissipation. In addition, the probability density function of the eigenvalues of turbulence dissipation tensor is presented. The isotropic subrange of PDF always exists in swirling flows relevant to small-scale vortex structure. Thus, with remarkable large-scale vortex breakdown, the isotropic subrange of PDF is reduced in strongly swirling flows, and anisotropic energy dissipation is proven to exist in the core region of the vortex breakdown. More specifically, strong anisotropic turbulence dissipation occurs concentratively in the vortex breakdown region, whereas nearly isotropic turbulence dissipation occurs dispersively in the peripheral region of the strong swirling flows.

  18. On the role of turbulence on momentum redistribution in fusion devices

    International Nuclear Information System (INIS)

    Hidalgo, C.

    2005-01-01

    The mechanisms underlying the generation of plasma flows play a crucial role in understanding key issues on transport in magnetically confined plasmas. It is well known the importance of driving shear in plasma rotation in the development of transport barriers. Rotation can be driven by external forces such as momentum from Neutral Beam Injection (NBI). However, in large scale devices like ITER (where the available NBI power is limited and the energy of injected neutrals must be high to reach the core plasma region) the NBI driven rotation will be limited. Then, it is important to study the possible role of other mechanisms which can drive plasma rotation. The amplitude of parallel flow measured in the scrape-off layer (SOL) is significantly larger than those resulting from simulations. Recent experiments have pointed out the possible influence of turbulence in explaining a component of the anomalous flows observed in the plasma boundary region. In the plasma core region, evidence of anomalous toroidal momentum transport has been reported. Different mechanisms have been proposed to explain these results, including neoclassical effects, turbulence driven models and fast particle effects. The response of toroidal rotation to near-perpendicular NB injection on JT-60U has been interpreted on the basis of the influence of loss of high-energy particles. The flow reversal observed in the CHS stellarator can be explained by the spontaneous flow driven by large radial electric fields. Neoclassical effects can also play an import role. Recent experiments in the TJ-II stellarator have shown that the generation of spontaneous perpendicular sheared flows requires a minimum plasma density. Near this critical density, the level of edge turbulent transport and the turbulent kinetic energy significantly increases in the plasma edge. Experimental results also show significant turbulent parallel forces at plasma densities above the threshold value to trigger perpendicular ExB sheared

  19. Magneto-controlled illumination with opto-fluidics

    International Nuclear Information System (INIS)

    Malynych, Serhiy Z.; Tokarev, Alexander; Hudson, Stephen; Chumanov, George; Ballato, John; Kornev, Konstantin G.

    2010-01-01

    Imaging of micro- and nanofluidics is a challenge since the size of the channels is so small that the installment of additional optical and mechanical switches is very difficult. The size of the device and associated increase in viscous dissipation constitute another constraint. In response to these limitations, this work proposes and demonstrates the manipulation of light by adding a functional lens to control the light on demand. In the present work, this lens is realized by filling a hollow fiber with a colloid of superparamagnetic Fe 3 O 4 nanoparticles. When the propagation of light is perpendicular to the magnetic field, this lens stretches the circular beam into a ribbon yielding a larger visible area. Potentially, one can apply a rotating magnetic field thus illuminating a larger spot size or creating other beam geometries. Such composite fibers might also be of value for Faraday isolation and other magneto-optic effects in optical fibers.

  20. Experimental and Numerical Studies of Mechanically- and Convectively-Driven Turbulence in Planetary Interiors

    Science.gov (United States)

    Grannan, Alexander Michael

    2017-08-01

    The energy for driving turbulent flows in planetary fluid layers comes from a combination of thermocompositional sources and the motion of the boundary in contact with the fluid through mechanisms like precessional, tidal, and librational forcing. Characterizing the resulting turbulent fluid motions are necessary for understanding many aspects of the planet's dynamics and evolution including the generation of magnetic fields in the electrically conducting fluid layers and dissipation in the oceans. Although such flows are strongly inertial they are also strongly influenced by the Coriolis force whose source is in the rotation of the body and tends to constrain the inertial effects and provide support for fluid instabilities that might in-turn generate turbulence. Furthermore, the magnetic fields generated by the electrically conducting fluids act back on the fluid through the Lorentz force that also tends to constrain the flow. The goal of this dissertation is to investigate the characteristics of turbulent flows under the influence of mechanical, convective, rotational and magnetic forcing. In order to investigate the response of the fluid to mechanical forcing, I have modified a unique set of laboratory experiments that allows me to quantify the generation of turbulence driven by the periodic oscillations of the fluid containing boundary through tides and libration. These laboratory experiments replicate the fundamental ingredients found in planetary environments and are necessary for the excitation of instabilities that drive the turbulent fluid motions. For librational forcing, a rigid ellipsoidal container and ellipsoidal shell of isothermal unstratified fluid is made to rotate with a superimposed oscillation while, for tidal forcing, an elastic ellipsoidal container of isothermal unstratified fluid is made to rotate while an independently rotating perturbance also flexes the elastic container. By varying the strength and frequencies of these oscillations the

  1. Experimental investigation of the turbulent axisymmetric wake with rotation generated by a wind turbine

    Science.gov (United States)

    Dufresne, Nathaniel P.

    An experimental investigation of the axial and azimuthal (swirl) velocity field in the wake of a single 3-bladed wind turbine with rotor diameter of 0.91m was conducted, up to 20 diameters downstream. The turbine was positioned in the free stream, near the entrance of the 6m x 2.7m cross section of the University of New Hampshire (UNH) Flow Physics Facility. Velocity measurements were conducted at different rotor loading conditions with blade tip-speed ratios from 2.0 to 2.8. A Pitot-static tube and constant temperature hot-wire anemometer with a multi-wire sensor were used to measure velocity fields. An equilibrium similarity theory for the turbulent axisymmetric wake with rotation was outlined, and first evidence for a new scaling function for the mean swirling velocity component, Wmax ∝ x-1 ∝ U3/2o a was found; where W represents swirl, x represents downstream distance, and Uo, represents the centerline velocity deficit in the wake.

  2. Instantaneous structure of a boundary layer subjected to free-stream turbulence

    Science.gov (United States)

    Hearst, R. Jason; de Silva, Charitha; Dogan, Eda; Ganapathisubramani, Bharathram

    2017-11-01

    A canonical turbulent boundary layer (TBL) has a distinct turbulent/non-turbulent interface (TNTI) separating the rotational wall-bounded fluid from the irrotational free-stream. If an intermittency profile is constructed separating the flow above and below the TNTI, this profile can be described by an error-function. Within the turbulent region, the flow is separated by interfaces that demarcate uniform momentum zones (UMZs). We observe that these characteristics of a TBL change if there is free-stream turbulence (FST). First, the entire flow is rotational, and thus a distinct TNTI does not exist. Nonetheless, it is possible to identify an interface that approximately separates the flow with mean zero vorticity from the distinctly wall-signed vorticity. This turbulent/turbulent interface is shown to be closer to the wall than the traditional TNTI, and the resulting intermittency profile is not an error-function. Also, UMZs appear to be masked by the free-stream perturbations. Despite these differences, a velocity field of a TBL with homogeneous, isotropic turbulence superimposed and weighted with the empirical intermittency profile, qualitatively reproduces the 1st and 2nd-order statistics. These findings suggest that a TBL subjected to FST may be described by a simple model. EPSRC, ERC, NSERC, Zonta International.

  3. Spatial extent of quantum turbulence in non-rotating superfluid 3He-B

    International Nuclear Information System (INIS)

    Bradley, D.I.; Fisher, S.N.; Guenault, A.M.; Lowe, M.R.; Pickett, G.R.; Rahm, A.

    2003-01-01

    Quantum turbulence has been shown to reflect a beam of quasiparticles in the B-phase of superfluid 3 He by Andreev processes. We have investigated the evolution of the turbulence generated by a vibrating wire resonator driven at high velocities and temperatures down to ∼0.1T c . The vibrating wire produces vorticity together with the expected quasiparticle beam whenever the wire velocity exceeds the critical pair breaking velocity. By using an array of detector wires we are able to investigate the development of the turbulence both in space and time. We observe that the turbulence propagates preferentially along the direction of the quasiparticle beam and drops off in a roughly exponential manner with a decay length of the order of 2 mm

  4. Magneto-optical light scattering from ferromagnetic surfaces

    International Nuclear Information System (INIS)

    Gonzalez, M.U.; Armelles, G.; Martinez Boubeta, C.; Cebollada, A.

    2003-01-01

    We have studied the optical and magneto-optical components of the light scattered by the surface of several Fe films with different morphologies. We present a method, based on the ratio between the optical and magneto-optical components of the scattered intensity, to discern the physical origin, either structural or magnetic corrugation, of the light scattered by these ferromagnetic surfaces. Surface versus bulk magnetic information can be separated by magneto-optical light scattering measurements, the scattered light being more sensitive to magnetization differences between surface and bulk than the reflected one

  5. Magneto-optical non-reciprocal devices in silicon photonics

    Directory of Open Access Journals (Sweden)

    Yuya Shoji

    2014-01-01

    Full Text Available Silicon waveguide optical non-reciprocal devices based on the magneto-optical effect are reviewed. The non-reciprocal phase shift caused by the first-order magneto-optical effect is effective in realizing optical non-reciprocal devices in silicon waveguide platforms. In a silicon-on-insulator waveguide, the low refractive index of the buried oxide layer enhances the magneto-optical phase shift, which reduces the device footprints. A surface activated direct bonding technique was developed to integrate a magneto-optical garnet crystal on the silicon waveguides. A silicon waveguide optical isolator based on the magneto-optical phase shift was demonstrated with an optical isolation of 30 dB and insertion loss of 13 dB at a wavelength of 1548 nm. Furthermore, a four port optical circulator was demonstrated with maximum isolations of 15.3 and 9.3 dB in cross and bar ports, respectively, at a wavelength of 1531 nm.

  6. Reynolds Stress Closure for Inertial Frames and Rotating Frames

    Science.gov (United States)

    Petty, Charles; Benard, Andre

    2017-11-01

    In a rotating frame-of-reference, the Coriolis acceleration and the mean vorticity field have a profound impact on the redistribution of kinetic energy among the three components of the fluctuating velocity. Consequently, the normalized Reynolds (NR) stress is not objective. Furthermore, because the Reynolds stress is defined as an ensemble average of a product of fluctuating velocity vector fields, its eigenvalues must be non-negative for all turbulent flows. These fundamental properties (realizability and non-objectivity) of the NR-stress cannot be compromised in computational fluid dynamic (CFD) simulations of turbulent flows in either inertial frames or in rotating frames. The recently developed universal realizable anisotropic prestress (URAPS) closure for the NR-stress depends explicitly on the local mean velocity gradient and the Coriolis operator. The URAPS-closure is a significant paradigm shift from turbulent closure models that assume that dyadic-valued operators associated with turbulent fluctuations are objective.

  7. Ferric oxide quantum dots in stable phosphate glass system and their magneto-optical study

    Energy Technology Data Exchange (ETDEWEB)

    Garaje, Sunil N.; Apte, Sanjay K. [Nanocomposite Group, Centre for Materials for Electronics Technology (C-MET), Department of Electronics and Information Technology (DeitY), Government of India, Panchawati, Off Pashan Road, Pune 411008 (India); Kumar, Ganpathy [Department of Electrical and Computer Engineering, Tennessee Technological University, 1 William L. Jones Drive, Cookeville, TN 38505 (United States); Panmand, Rajendra P.; Naik, Sonali D. [Nanocomposite Group, Centre for Materials for Electronics Technology (C-MET), Department of Electronics and Information Technology (DeitY), Government of India, Panchawati, Off Pashan Road, Pune 411008 (India); Mahajan, Satish M., E-mail: smahajan@tntech.edu [Department of Electrical and Computer Engineering, Tennessee Technological University, 1 William L. Jones Drive, Cookeville, TN 38505 (United States); Chand, Ramesh [Ministry of Communications and Information Technology, Department of Electronics and Information Technology (DeitY), Electronics Niketan, 6, CGO Complex, New Delhi 110003 (India); Kale, Bharat B., E-mail: bbkale@cmet.gov.in [Nanocomposite Group, Centre for Materials for Electronics Technology (C-MET), Department of Electronics and Information Technology (DeitY), Government of India, Panchawati, Off Pashan Road, Pune 411008 (India)

    2013-02-15

    Graphical abstract: We report synthesis of ferric oxide embedded low melting phosphate glass nanocomposite and also the effect of ferric oxide nanoparticles (NCs) content on the optical and magneto-optical properties of the glasses. Faraday rotation of the glass nanocomposites was measured and showed variation in Verdet constant with concentration of ferric oxide. Interestingly, the host glass itself showed fairly good Verdet constant (11.5°/T cm) and there is a threefold enhancement in the Verdet constant of ferric oxide quantum dot-glass nanocomposite. Highlights: ► We synthesize ferric oxide embedded low melting stable phosphate glass nanocomposite. ► Glasses doped with 0.25 and 2% ferric oxide show particle size in the range of 4–12 nm. ► The host phosphate glass itself shows fairly good Verdet constant (11.5°/T cm). ► Glasses doped with 0.25% ferric oxide show high Verdet constant (30.525°/T cm). ► The as synthesis glasses may have potential application in magneto optical devices. -- Abstract: Herein, we report the synthesis of ferric oxide embedded low melting phosphate glass nanocomposite and also the effect of ferric oxide nanoparticles content on the optical and magneto-optical properties of the glasses. The optical study clearly showed red shift in optical cut off with increasing ferric oxide concentration. The band gap of the host glass was observed to be 3.48 eV and it shifted to 3.14 eV after doping with ferric oxide. The glasses doped with 0.25 and 2% ferric oxide showed particle size of 4–6 nm and 8–12 nm, respectively. Faraday rotation of the glass nanocomposites was measured and showed variation in the Verdet constant as per increasing concentration of ferric oxide. Interestingly, the host glass itself showed fairly good Verdet constant (11.5°/T cm) and threefold enhancement was observed in the Verdet constant of ferric oxide quantum dot-glass nanocomposite.

  8. Magneto-Plasmonics and Resonant Interaction of Light with Dynamic Magnetisation in Metallic and All-Magneto-Dielectric Nanostructures.

    Science.gov (United States)

    Maksymov, Ivan S

    2015-04-09

    A significant interest in combining plasmonics and magnetism at the nanoscale gains momentum in both photonics and magnetism sectors that are concerned with the resonant enhancement of light-magnetic-matter interaction in nanostructures. These efforts result in a considerable amount of literature, which is difficult to collect and digest in limited time. Furthermore, there is insufficient exchange of results between the two research sectors. Consequently, the goal of this review paper is to bridge this gap by presenting an overview of recent progress in the field of magneto-plasmonics from two different points of view: magneto-plasmonics, and magnonics and magnetisation dynamics. It is expected that this presentation style will make this review paper of particular interest to both general physical audience and specialists conducting research on photonics, plasmonics, Brillouin light scattering spectroscopy of magnetic nanostructures and magneto-optical Kerr effect magnetometry, as well as ultrafast all-optical and THz-wave excitation of spin waves. Moreover, readers interested in a new, rapidly emerging field of all-dielectric nanophotonics will find a section about all-magneto-dielectric nanostructures.

  9. Magneto-Plasmonics and Resonant Interaction of Light with Dynamic Magnetisation in Metallic and All-Magneto-Dielectric Nanostructures

    Directory of Open Access Journals (Sweden)

    Ivan S. Maksymov

    2015-04-01

    Full Text Available A significant interest in combining plasmonics and magnetism at the nanoscale gains momentum in both photonics and magnetism sectors that are concerned with the resonant enhancement of light-magnetic-matter interaction in nanostructures. These efforts result in a considerable amount of literature, which is difficult to collect and digest in limited time. Furthermore, there is insufficient exchange of results between the two research sectors. Consequently, the goal of this review paper is to bridge this gap by presenting an overview of recent progress in the field of magneto-plasmonics from two different points of view: magneto-plasmonics, and magnonics and magnetisation dynamics. It is expected that this presentation style will make this review paper of particular interest to both general physical audience and specialists conducting research on photonics, plasmonics, Brillouin light scattering spectroscopy of magnetic nanostructures and magneto-optical Kerr effect magnetometry, as well as ultrafast all-optical and THz-wave excitation of spin waves. Moreover, readers interested in a new, rapidly emerging field of all-dielectric nanophotonics will find a section about all-magneto-dielectric nanostructures.

  10. PREFACE Turbulent Mixing and Beyond

    Science.gov (United States)

    Abarzhi, Snezhana I.; Gauthier, Serge; Niemela, Joseph J.

    2010-12-01

    confined plasmas, magneto-convection, magneto-rotational instability, dynamo; Canonical plasmas: coupled plasmas, anomalous resistance, ionosphere; Physics of atmosphere: environmental fluid dynamics, weather forecasting, turbulent flows in stratified media and atmosphere, non-Boussinesq convection; Geophysics and Earth science: mantle-lithosphere tectonics, oceanography, turbulent convection under rotation, planetary interiors; Combustion: dynamics of flames and fires, deflagration-to-detonation transition, blast waves and explosions, flows with chemical reactions, flows in jet engines; Mathematical aspects of non-equilibrium dynamics: vortex dynamics, singularities, discontinuities, asymptotic dynamics, weak solutions, well- and ill-posedness, continuous transports out of thermodynamic equilibrium; Stochastic processes and probabilistic description: long-tail distributions and anomalous diffusion, data assimilation and processing methodologies, error estimate and uncertainty quantification, statistically unsteady processes; Advanced numerical simulations: continuous DNS/LES/RANS, molecular dynamics, Monte-Carlo, predictive modeling, validation and verification of numerical models; Experimental diagnostics: model experiments in high energy density and low energy density regimes, plasma diagnostics, fluid flow visualizations and control, opto-fluidics, novel optical methods, holography, advanced technologies. TMB-2009 was organized by the following members of the Organizing Committee: Snezhana I Abarzhi (chairperson, Chicago, USA) Malcolm J Andrews (Los Alamos National Laboratory, USA) Sergei I Anisimov (Landau Institute for Theoretical Physics, Russia) Hiroshi Azechi (Institute of Laser Engineering, Osaka, Japan) Serge Gauthier (Commissariat à l'Energie Atomique, France) Christopher J Keane (Lawrence Livermore National Laboratory, USA) Robert Rosner (Argonne National Laboratory, USA) Katepalli R Sreenivasan (International Centre for Theoretical Physics, Italy) Alexander

  11. The generation of resonant turbulence for a premixed burner

    NARCIS (Netherlands)

    Verbeek, Antonie Alex; Pos, R.C.; Stoffels, Genie G.M.; Geurts, Bernardus J.; van der Meer, Theodorus H.

    2012-01-01

    Is it possible to optimize the turbulent combustion of a low swirl burner by using resonance in turbulence? To that end an active grid is constructed that consists of two perforated disks of which one is rotating, creating a system of pulsating jets, which in the end can be used as a central

  12. Turbulent Helicity in the Atmospheric Boundary Layer

    Science.gov (United States)

    Chkhetiani, Otto G.; Kurgansky, Michael V.; Vazaeva, Natalia V.

    2018-05-01

    We consider the assumption postulated by Deusebio and Lindborg (J Fluid Mech 755:654-671, 2014) that the helicity injected into the Ekman boundary layer undergoes a cascade, with preservation of its sign (right- or alternatively left-handedness), which is a signature of the system rotation, from large to small scales, down to the Kolmogorov microscale of turbulence. At the same time, recent direct field measurements of turbulent helicity in the steppe region of southern Russia near Tsimlyansk Reservoir show the opposite sign of helicity from that expected. A possible explanation for this phenomenon may be the joint action of different scales of atmospheric flows within the boundary layer, including the sea-breeze circulation over the test site. In this regard, we consider a superposition of the classic Ekman spiral solution and Prandtl's jet-like slope-wind profile to describe the planetary boundary-layer wind structure. The latter solution mimics a hydrostatic shallow breeze circulation over a non-uniformly heated surface. A 180°-wide sector on the hodograph plane exists, within which the relative orientation of the Ekman and Prandtl velocity profiles favours the left rotation with height of the resulting wind velocity vector in the lowermost part of the boundary layer. This explains the negative (left-handed) helicity cascade toward small-scale turbulent motions, which agrees with the direct field measurements of turbulent helicity in Tsimlyansk. A simple turbulent relaxation model is proposed that explains the measured positive values of the relatively minor contribution to turbulent helicity from the vertical components of velocity and vorticity.

  13. The calculation of turbulence phenomena in plasma focus dynamics using REDUCE

    International Nuclear Information System (INIS)

    Hayd, A.; Maurer, M.; Meinke, P.; Kaeppeler, H.J.

    1982-05-01

    Based on previous calculations of the development of highly turbulent plasma states resulting from m=0 instabilities and the application to the turbulent development in the late stage of a plasma focus experiment, using REDUE, the treatment of plasma focus dynamics is extended to the compression stage and 'intermediate' stage between maximum density and m = o onset. For this, a two-fluid model of the magneto-fluid dynamic equations is employed. The non-linear development is again treated in ω, k-space and transformed back into r, t-space to obtain local dynamic variables as functions of time. The calculation is applied to the Stuttgart plasma focus experiment POSEIDON. It is shown that for relatively high pinch currents, neutron production also appears in the 'intermediate' phase, the life-time of which increases with increasing pinch current. (orig.)

  14. Turbulent momentum transport due to neoclassical flows

    International Nuclear Information System (INIS)

    Lee, Jungpyo; Barnes, Michael; Parra, Felix I; Belli, Emily; Candy, Jeff

    2015-01-01

    Intrinsic toroidal rotation in a tokamak can be driven by turbulent momentum transport due to neoclassical flow effects breaking a symmetry of turbulence. In this paper we categorize the contributions due to neoclassical effects to the turbulent momentum transport, and evaluate each contribution using gyrokinetic simulations. We find that the relative importance of each contribution changes with collisionality. For low collisionality, the dominant contributions come from neoclassical particle and parallel flows. For moderate collisionality, there are non-negligible contributions due to neoclassical poloidal electric field and poloidal gradients of density and temperature, which are not important for low collisionality. (paper)

  15. Giant Faraday Rotation of High-Order Plasmonic Modes in Graphene-Covered Nanowires.

    Science.gov (United States)

    Kuzmin, Dmitry A; Bychkov, Igor V; Shavrov, Vladimir G; Temnov, Vasily V

    2016-07-13

    Plasmonic Faraday rotation in nanowires manifests itself in the rotation of the spatial intensity distribution of high-order surface plasmon polariton (SPP) modes around the nanowire axis. Here we predict theoretically the giant Faraday rotation for SPPs propagating on graphene-coated magneto-optically active nanowires. Upon the reversal of the external magnetic field pointing along the nanowire axis some high-order plasmonic modes may be rotated by up to ∼100° on the length scale of about 500 nm at mid-infrared frequencies. Tuning the carrier concentration in graphene by chemical doping or gate voltage allows for controlling SPP-properties and notably the rotation angle of high-order azimuthal modes. Our results open the door to novel plasmonic applications ranging from nanowire-based Faraday isolators to the magnetic control in quantum-optical applications.

  16. Rotation, Stability and Transport

    Energy Technology Data Exchange (ETDEWEB)

    Connor, J. W.

    2007-07-01

    Tokamak plasmas can frequently exhibit high levels of rotation and rotation shear. This can usually be attributed to various sources: injection of momentum, e.g. through neutral beams, flows driven by plasma gradients or torques resulting from non-ambipolar particle loss; however, the source sometimes remains a mystery, such as the spontaneous rotation observed in Ohmic plasmas. The equilibrium rotation profile is given by the balance of these sources with transport and other losses; the edge boundary conditions can play an important role in determining this profile . Such plasma rotation, particularly sheared rotation, is predicted theoretically to have a significant influence on plasma behaviour. In the first place, sonic flows can significantly affect tokamak equilibria and neoclassical transport losses. However, the influence of rotation on plasma stability and turbulence is more profound. At the macroscopic level it affects the behaviour of the gross MHD modes that influence plasma operational limits. This includes sawteeth, the seeding of neoclassical tearing modes, resistive wall modes and the onset of disruptions through error fields, mode locking and reconnection. At the microscopic level it has a major effect on the stability of ballooning modes, both ideal MHD and drift wave instabilities such as ion temperature gradient (ITG) modes. In the non-linear state, as unstable drift waves evolve into turbulent structures, sheared rotation also tears apart eddies, thereby reducing the resulting transport. There is considerable experimental evidence for these effects on both MHD stability and plasma confinement. In particular, the appearance of improved confinement modes with transport barriers, such as edge H-mode barriers and internal transport barriers (ITBs) appears to correlate well with the presence of sheared plasma rotation. This talk will describe the theory underlying some of these phenomena involving plasma rotation, on both macroscopic and microscopic

  17. Turbulence and turbulent drag reduction in swirling flow: Inertial versus viscous forcing.

    Science.gov (United States)

    Burnishev, Yuri; Steinberg, Victor

    2015-08-01

    We report unexpected results of a drastic difference in the transition to fully developed turbulent and turbulent drag reduction (TDR) regimes and in their properties in a von Karman swirling flow with counter-rotating disks of water-based polymer solutions for viscous (by smooth disks) as well as inertial (by bladed disks) forcing and by tracking just torque Γ(t) and pressure p(t) . For the viscous forcing, just a single TDR regime is found with the transition values of the Reynolds number (Re) Re turb c =Re TDR c ≃(4.8±0.2)×10(5) independent of ϕ , whereas for the inertial forcing two turbulent regimes are revealed. The first transition is to fully developed turbulence, and the second one is to the TDR regime with both Re turb c and Re TDR c depending on polymer concentration ϕ . Both regimes differ by the values of C f and C p , by the scaling exponents of the fundamental turbulent characteristics, by the nonmonotonic dependencies of skewness and flatness of the pressure PDFs on Re, and by the different frequency power spectra of p with the different dependencies of the main vortex peak frequency in the p power spectra on ϕ and Re. Thus our experimental results show the transition to the TDR regime in a von Karman swirling flow for the viscous and inertial forcings in a sharp contrast to the recent experiments [Phys. Fluids 10, 426 (1998); Phys. Rev. E 47, R28(R) (1993); and J. Phys.: Condens. Matter 17, S1195 (2005)] where the transition to TDR is observed in the same swirling flow with counter-rotating disks only for the viscous forcing. The latter result has led its authors to the wrong conclusion that TDR is a solely boundary effect contrary to the inertial forcing associated with the bulk effect, and this conception is currently rather widely accepted in literature.

  18. 2D turbulence structure observed by a fast framing camera system in linear magnetized device PANTA

    International Nuclear Information System (INIS)

    Ohdachi, Satoshi; Inagaki, S.; Kobayashi, T.; Goto, M.

    2015-01-01

    Mesoscale structure, such as the zonal flow and the streamer plays important role in the drift-wave turbulence. The interaction of the mesoscale structure and the turbulence is not only interesting phenomena but also a key to understand the turbulence driven transport in the magnetically confined plasmas. In the cylindrical magnetized device, PANTA, the interaction of the streamer and the drift wave has been found by the bi-spectrum analysis of the turbulence. In order to study the mesoscale physics directly, the 2D turbulence is studied by a fast-framing visible camera system view from a window located at the end plate of the device. The parameters of the plasma is the following; Te∼3eV, n ∼ 1x10 19 m -3 , Ti∼0.3eV, B=900G, Neutral pressure P n =0.8 mTorr, a∼ 6cm, L=4m, Helicon source (7MHz, 3kW). Fluctuating component of the visible image is decomposed by the Fourier-Bessel expansion method. Several rotating mode is observed simultaneously. From the images, m = 1 (f∼0.7 kHz) and m = 2, 3 (f∼-3.4 kHz) components which rotate in the opposite direction can be easily distinguished. Though the modes rotate constantly in most time, there appear periods where the radially complicated node structure is formed (for example, m=3 component, t = 142.5∼6 in the figure) and coherent mode structures are disturbed. Then, a new rotating period is started again with different phase of the initial rotation until the next event happens. The typical time interval of the event is 0.5 to 1.0 times of the one rotation of the slow m = 1 mode. The wave-wave interaction might be interrupted occasionally. Detailed analysis of the turbulence using imaging technique will be discussed. (author)

  19. Frequency dependent magneto-transport in charge transfer Co(II) complex

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Bikash Kumar; Saha, Shyamal K., E-mail: cnssks@iacs.res.in

    2014-09-01

    A charge transfer chelated system containing ferromagnetic metal centers is the ideal system to investigate the magneto-transport and magneto-dielectric effects due to the presence of both electronic as well as magnetic properties and their coupling. Magneto-transport properties in materials are usually studied through dc charge transport under magnetic field. As frequency dependent conductivity is an essential tool to understand the nature of carrier wave, its spatial extension and their mutual interaction, in the present work, we have investigated frequency dependent magneto-transport along with magnetization behavior in [Co{sub 2}(II)-(5-(4-PhMe)-1,3,4-oxadiazole-H{sup +}-2-thiolate){sub 5}](OAc){sub 4} metal complex to elucidate the nature of above quantities and their response under magnetic field in the transport property. We have used the existing model for ac conduction incorporating the field dependence to explain the frequency dependent magneto-transport. It is seen that the frequency dependent magneto-transport could be well explained using the existing model for ac conduction. -Highlights: • Chelated Co(II) complex is synthesized for magneto-transport applications. • Frequency dependent magneto-transport and magnetization behavior are studied. • Nature of carrier wave, its spatial extension is investigated under magnetic field. • Existing model for ac conduction is used with magnetic field dependence.

  20. Measurements of plasma rotation in an axially magnetized MPD arc-jet

    Energy Technology Data Exchange (ETDEWEB)

    Tobari, Hiroyuki; Ashino, Masashi; Yoshino, Kyohei; Sagi, Yukiko; Yoshinuma, Mikirou; Hattori, Kunihiko; Ando, Akira; Inutake, Masaaki [Department of Electrical Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi (Japan)

    2001-01-24

    Characteristics of an axially magnetized MPD (magneto-plasma-dynamic) arcjet plasma are investigated by spectroscopy on the HITOP (High density of Tohoku Plasma) device in Tohoku University. Plasma flow and rotational velocity and temperature of He ion and atom near the muzzle region of MPD arcjet are measured by Doppler shift and broadening of the HeI ({lambda}=578.56 nm) and HeII ({lambda}=468.58 nm) lines. From the measured radial profile of rotational velocity and temperature of He ion, the radial profiles of electrical field and space potential are calculated and it has been found that the potential profile in the core region is parabolic, which shows the plasma rotates as a rigid body. (author)

  1. Enhanced tunability of magneto-impedance and magneto-capacitance in annealed Metglas/PZT magnetoelectric composites

    Science.gov (United States)

    Leung, Chung Ming; Zhuang, Xin; Xu, Junran; Li, Jiefang; Zhang, Jitao; Srinivasan, G.; Viehland, D.

    2018-05-01

    This report is on a new class of magnetostatically tunable magneto-impedance and magneto-capacitance devices based on a composite of ferromagnetic Metglas and ferroelectric lead zirconate titanate (PZT). Layered magneto-electric (ME) composites with annealed Metglas and PZT were studied in a longitudinal in-plane magnetic field-transverse electric field (L-T) mode. It was found that the degree of tunability was dependent on the annealing temperature of Metglas. An impedance tunability (ΔZ/Z0) of ≥400% was obtained at the electromechanical resonance (EMR) frequency (fr) for a sample with Metglas layers annealed at Ta = 500oC. This tunability is a factor of two higher than for composites with Metglas annealed at 350oC. The tunability of the capacitance, (ΔC/C0), was found to be 290% and -135k% at resonance and antiresonance, respectively, for Ta = 500oC. These results provide clear evidence for improvement in static magnetic field tunability of impedance and capacitance of ME composites with the use of annealed Metglas and are of importance for their potential use in tunable electronic applications.

  2. Tunable magneto-conductance and magneto-electroluminescence in polymer light-emitting electrochemical planar devices

    Energy Technology Data Exchange (ETDEWEB)

    Geng, R.; Mayhew, N. T.; Nguyen, T. D., E-mail: ngtho@uga.edu [Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602 (United States)

    2013-12-09

    We report studies of magneto-conductance (MC) and magneto-electroluminescence (MEL) in polymer light-emitting electrochemical planar devices using “super-yellow” poly-(phenylene vinylene). We observed consistent negative MC while MEL becomes positive when electroluminescence quantum efficiency (ELQE) increases. At an optimal ELQE, the MC has a much narrower width than the MEL, indicating that the MC and MEL do not share a common origin. However, MC reverses and has the same width as MEL when exposed to a threshold laser power. We show that the e-h pair model can explain the positive MEL and MC while the negative MC can be explained by the bipolaron model.

  3. Tunable magneto-conductance and magneto-electroluminescence in polymer light-emitting electrochemical planar devices

    International Nuclear Information System (INIS)

    Geng, R.; Mayhew, N. T.; Nguyen, T. D.

    2013-01-01

    We report studies of magneto-conductance (MC) and magneto-electroluminescence (MEL) in polymer light-emitting electrochemical planar devices using “super-yellow” poly-(phenylene vinylene). We observed consistent negative MC while MEL becomes positive when electroluminescence quantum efficiency (ELQE) increases. At an optimal ELQE, the MC has a much narrower width than the MEL, indicating that the MC and MEL do not share a common origin. However, MC reverses and has the same width as MEL when exposed to a threshold laser power. We show that the e-h pair model can explain the positive MEL and MC while the negative MC can be explained by the bipolaron model

  4. Diffraction studies on the origin of giant magneto-electric effects in multiferroics

    International Nuclear Information System (INIS)

    Arima, Taka-hisa

    2009-01-01

    Magnetic ferroelectrics termed multiferroics often exhibit a giant magneto-electric response such as an appearance, disappearance, and rotation of ferroelectric polarization by the application of a magnetic field. In most multiferroics, long-wavelength spiral magnetic order arises from the competition among some magnetic exchange interactions. Spin-polarized neutron diffraction studies reveal that the ferroelectric polarization direction corresponds to the helicity of spiral magnetism. A change in magnetic order with the application of a magnetic field has been investigated for various multiferroics by means of synchrotron x-ray diffraction, because it can provide us some information about the periodicity and type of magnetic order. (author)

  5. Fabrication and characterization of Bismuth-Cerium composite iron garnet epitaxial films for magneto optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Chandra Sekhar, M.; Singh, Mahi R. [Department of Physics and Astronomy, 1151, Richmond Street, Western University, London, Ontario N6A 3K7 (Canada)

    2012-10-15

    The Bi{sub x}Ce{sub 3-x}Fe{sub 5}O{sub 12} (x = 0.8) epitaxial films of high quality were grown by means of pulsed laser deposition on paramagnetic substrates of Gadolinium Gallium Garnet. We study the modifications of substitutions in the parent garnet Y{sub 3}Fe{sub 5}O{sub 12} that produces a higher magneto-optical response at communication wavelengths. These films displayed a strong in plane textures which are treated in argon as well as reduced atmosphere conditions. The elemental constituents of these films were confirmed by energy dispersive-X ray analysis, elastic recoil detection system, Rutherford backscattering spectroscopy, and X-ray photoelectron spectroscopy measurements. The transmittance spectra were measured and found these films exhibit good transmittance values. The transmittance-spectra were fitted with the theoretical model and the optical constants such as refractive index and absorption edge were evaluated. The highest (negative) Faraday rotation was found for these films treated in the environment of Ar + H{sub 2}. A density matrix theory has been developed for the Faraday rotation and a good agreement between the theory and experiment is found. These epitaxial garnet films can be used in a wide range of frequencies from visible to infrared spectra making them ideal for many magneto optical applications. Therefore, these films may overcome many issues in fabricating all optical isolators which is the viable solution for integrated photonics.

  6. Magneto-induced large deformation and high-damping performance of a magnetorheological plastomer

    International Nuclear Information System (INIS)

    Liu, Taixiang; Gong, Xinglong; Xu, Yangguang; Pang, Haoming; Xuan, Shouhu

    2014-01-01

    A magnetorheological plastomer (MRP) is a new kind of soft magneto-sensitive polymeric composite. This work reports on the large magneto-deforming effect and high magneto-damping performance of MRPs under a quasi-statical shearing condition. We demonstrate that an MRP possesses a magnetically sensitive malleability, and its magneto-mechanical behavior can be analytically described by the magneto-enhanced Bingham fluid-like model. The magneto-induced axial stress, which drives the deformation of the MRP with 70 wt % carbonyl iron powder, can be tuned in a large range from nearly 0.0 kPa to 55.4 kPa by an external 662.6 kA m −1 magnetic field. The damping performance of an MRP has a significant correlation with the magnetic strength, shear rate, carbonyl iron content and shear strain amplitude. For an MRP with 60 wt % carbonyl iron powder, the relative magneto-enhanced damping effect can reach as high as 716.2% under a quasi-statically shearing condition. Furthermore, the related physical mechanism is proposed, and we reveal that the magneto-induced, particle-assembled microstructure directs the magneto-mechanical behavior of the MRP. (paper)

  7. Circularly polarized light to study linear magneto-optics for ferrofluids: θ-scan technique

    Science.gov (United States)

    Meng, Xiangshen; Huang, Yan; He, Zhenghong; Lin, Yueqiang; Liu, Xiaodong; Li, Decai; Li, Jian; Qiu, Xiaoyan

    2018-06-01

    Circularly polarized light can be divided into two vertically linearly polarized light beams with  ±π/2 phase differences. In the presence of an external magnetic field, when circularly polarized light travels through a ferrofluid film, whose thickness is no more than that of λ/4 plate, magneto-optical, magnetic birefringence and dichroism effects cause the transmitted light to behave as elliptically polarized light. Using angular scan by a continuously rotating polarizer as analyzer, the angular (θ) distribution curve of relative intensity (T) corresponding to elliptically polarized light can be measured. From the T  ‑  θ curve having ellipsometry, the parameters such as the ratio of short to long axis, and angular orientation of the long axis to the vertical field direction can be obtained. Thus, magnetic birefringence and dichroism can be probed simultaneously by measuring magneto-optical, positive or negative birefringence and dichroism features from the transmission mode. The proposed method is called θ-scan technique, and can accurately determine sample stability, magnetic field direction, and cancel intrinsic light source ellipticity. This study may be helpful to further research done to ferrofluids and other similar colloidal samples with anisotropic optics.

  8. Optimizing magneto-optical effects in the ferromagnetic semiconductor GaMnAs

    International Nuclear Information System (INIS)

    Riahi, H.; Thevenard, L.; Maaref, M.A.; Gallas, B.; Lemaître, A.; Gourdon, C

    2015-01-01

    A trilayer of the ferromagnetic semiconductor GaMnAs, a SiO 2 buffer layer and a piezoelectric ZnO layer, is investigated in view of its use in device implementation to study surface acoustic wave-assisted magnetization switching. The magneto-optical properties: Kerr rotation and ellipticity and magnetic contrast in Kerr microscopy images are investigated as a function of temperature. While the ZnO layer prevents any good quality imaging of magnetic domains, we show that with the SiO 2 layer only the polar Kerr rotation and the magnetic contrast are increased by a factor of 2. This result is in good quantitative agreement with calculations using an optical interference model and could be further improved. The detrimental effects of the dielectric layers capping on the Curie temperature and coercive field of the GaMnAs layer can be kept to a reasonable level. - Highlights: • GaMnAs/SiO 2 /ZnO studied for surface acoustic wave assisted magnetization switching. • The Kerr rotation and magneticcontrast increase by a factor 2 with SiO 2 on GaMnAs. • Good quantitative agreement with an optical interference model. • Little detrimental effect of SiO 2 and ZnO on the ferromagnetic properties of GaMnAs

  9. Diffusive separation of particles by diffusion in swirled turbulent flows

    International Nuclear Information System (INIS)

    Arbuzov, V.N.; Shiliaev, M.I.

    1984-01-01

    An analysis of the dynamics of turbulent flow and diffusive separation of solid particles in a centrifugal air separator (consisting of two flat disks rotating at the same angular velocity) is presented. A closed set of balances for all the components of the tensor of turbulent stresses, extended to the entire flow region, is employed in the numerical analysis of transition and turbulent air flows between the rotating disks. The analytical relationships obtained for the case of the mixed flow for the various components of the average velocity, energy of fluctuations, and turbulence level in the circumferential direction agreed well with the theoretical and experimental distributions of Bakke, et al. (1973). It is shown that at high Reynolds numbers the flow is isotropic, the dependence of the circumferential component of the average velocity obeys a power law, and the generation of the radial component is controlled by the local centrifugal field. The sharpness of particle separation was calculated by the eddy diffusion equation and was found to depend on the geometry and the operating conditions. 8 references

  10. Table-top rotating turbulence : an experimental insight through Particle Tracking

    NARCIS (Netherlands)

    Castello, Del L.

    2010-01-01

    The influence of the Earth background rotation on oceanic and atmospheric currents, as well as the effects of a rapid rotation on the flow inside industrial machineries like mixers, turbines, and compressors, are only the most typical examples of fluid flows affected by rotation. Despite the

  11. Effects of rotation on flow in an asymmetric rib-roughened duct: LES study

    International Nuclear Information System (INIS)

    Borello, D.; Salvagni, A.; Hanjalić, K.

    2015-01-01

    Highlights: • Ribbed duct reproduces most of the phenomena occurring in internal cooling channels of blade turbines (rotor and stator). • LES analysis of the flow in a ribbed duct was carried out aiming at detecting the influence of rotation on the turbulence. • In destabilizing conditions, rotation enhances turbulence close to the ribbed duct thus enhancing removal of fluid from the wall and improving mixing. • In stabilizing conditions, turbulence is suppressed by rotation close to the ribbed wall. - Abstract: We report on large-eddy simulations (LES) of fully-developed asymmetric flow in a duct of a rectangular cross-section in which square-sectioned, equally-spaced ribs oriented perpendicular to the flow direction, were mounted on one of the walls. The configuration mimics a passage of internal cooling of a gas-turbine blade. The duct flow at a Reynolds number Re = 15,000 (based on hydraulic diameter D_h and bulk flow velocity U_0) was subjected to clock-wise (stabilising) and anti-clock-wise (destabilising) orthogonal rotation at a moderate rotational number Ro = ΩD_h/U_0 = 0.3, where Ω is the angular velocity. The LES results reproduced well the available experimental results of Coletti et al. (2011) (in the mid-plane adjacent to the ribbed wall) and provided insight into the whole duct complementing the reference PIV measurement. We analyzed the effects of stabilising and destabilising rotation on the flow, vortical structures and turbulence statistics by comparison with the non-rotating case. The analysis includes the identification of depth of penetration of the rib-effects into the bulk flow, influence of flow three-dimensionality and the role of secondary motions, all shown to be strongly affected by the rotation and its direction.

  12. A Comuputerized DRBEM model for generalized magneto-thermo-visco-elastic stress waves in functionally graded anisotropic thin film/substrate structures

    Directory of Open Access Journals (Sweden)

    Mohamed Abdelsabour Fahmy

    Full Text Available A numerical computer model, based on the dual reciprocity boundary element method (DRBEM for studying the generalized magneto-thermo-visco-elastic stress waves in a rotating functionally graded anisotropic thin film/substrate structure under pulsed laser irradiation is established. An implicit-implicit staggered algorithm was proposed and implemented for use with the DRBEM to get the solution for the temperature, displacement components and thermal stress components through the structure thickness. A comparison of the results for different theories is presented in the presence and absence of rotation. Some numerical results that demonstrate the validity of the proposed method are also presented.

  13. On two-dimensionalization of three-dimensional turbulence in shell models

    DEFF Research Database (Denmark)

    Chakraborty, Sagar; Jensen, Mogens Høgh; Sarkar, A.

    2010-01-01

    Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell m......-similar PDFs for longitudinal velocity differences are also presented for the rotating 3D turbulence case....

  14. The effect of acceleration on turbulent entrainment

    International Nuclear Information System (INIS)

    Breidenthal, Robert E

    2008-01-01

    A new class of self-similar turbulent flows is proposed, which exhibits dramatically reduced entrainment rates. Under strong acceleration, the rotation period of the large-scale vortices is forced to decrease linearly in time. In ordinary unforced turbulence, the rotation period always increases linearly with time, at least in the mean. However, by imposing an exponential acceleration on the flow, the vortex rotation period is forced to become the e-folding timescale of the acceleration. If the e-folding timescale itself decreases linearly in time, the forcing is 'super-exponential', characterized by an acceleration parameter α. Based on dimensional and heuristic arguments, a model suggests that the dissipation rate is an exponential function of α and the dimensions of the conserved quantity of the flow. Acceleration decreases the dissipation and entrainment rates in all canonical laboratory flows except for Rayleigh-Taylor. Experiments of exponential jets and super-exponential transverse jets are in accord with the model. As noted by Johari, acceleration is the only known means of affecting the entrainment rate of the far-field jet. Numerical simulations of Rayleigh-Taylor flow by Cook and Greenough are also consistent. In the limit of large acceleration, vortices do not move far before their rotation period changes substantially. In this sense, extreme acceleration corresponds to stationary vortices.

  15. Temporal coupled mode analysis of one-dimensional magneto-photonic crystals with cavity structures

    Energy Technology Data Exchange (ETDEWEB)

    Saghirzadeh Darki, Behnam, E-mail: b.saghirzadeh@ec.iut.ac.ir; Zeidaabadi Nezhad, Abolghasem; Firouzeh, Zaker Hossein

    2016-12-01

    In this paper, we propose the time-dependent coupled mode analysis of one-dimensional magneto-photonic crystals including one, two or multiple defect layers. The performance of the structures, namely the total transmission, Faraday rotation and ellipticity, is obtained using the proposed method. The results of the developed analytic approach are verified by comparing them to the results of the exact numerical transfer matrix method. Unlike the widely used numerical method, our proposed analytic method seems promising for the synthesis as well as the analysis purposes. Moreover, the proposed method has not the restrictions of the previously examined analytic methods. - Highlights: • A time-dependent coupled mode analysis is proposed for the cavity-type 1D MPCs. • Analytical formalism is presented for the single, double and multiple-defect MPCs. • Transmission, Faraday rotation and ellipticity are gained using the proposed method. • The proposed analytic method has advantages over the previously examined methods.

  16. Magneto-radiotherapy: using magnetic fields to guide dose deposition

    International Nuclear Information System (INIS)

    Nettelbeck, H.; Lerch, M.; Takacs, G.; Rosenfeld, A.

    2006-01-01

    Full text: Magneto-radiotherapy is the application of magnetic fields during radiotherapy procedures. It aims to improve the quality of cancer treatment by using magnetic fields to 1 g uide the dose-deposition of electrons in tissue. Monte Carlo (MC) studies have investigated magneto-radiotherapy applied to conventional photon and electron linac beams. In this study, a combination of MC PENELOPE simulations and physical experiments were done to investigate magneto-radiotherapy applied to MRT (Microbeam Radiation Therapy) and conventional linac radiotherapy.

  17. High-frequency magneto-impedance in metastable metallic materials: An overview

    International Nuclear Information System (INIS)

    Vinai, F.; Coisson, M.; Tiberto, P.

    2006-01-01

    The giant magneto-impedance effect (GMI) is a common feature of a wide class of metastable ferromagnetic alloys. This effect can be enhanced by submitting the as-prepared materials to suitable thermal treatments. Recently, a remarkably high magneto-impedance response has been observed in the GHz region for several systems. The increase in miniaturization of telecommunication devices dramatically increases the working frequencies; as a consequence, the interest in studying magneto-impedance effect leads to microwave region. In this paper, analogies and differences among the magneto-transport effect observed in ferromagnetic metastable alloys will be highlighted and discussed from the experimental point of view in a wide range of frequencies

  18. Density Effects on Post-shock Turbulence Structure

    Science.gov (United States)

    Tian, Yifeng; Jaberi, Farhad; Livescu, Daniel; Li, Zhaorui; Michigan State University Collaboration; Los Alamos National Laboratory Collaboration; Texas A&M University-Corpus Christi Collaboration

    2017-11-01

    The effects of density variations due to mixture composition on post-shock turbulence structure are studied using turbulence-resolving shock-capturing simulations. This work extends the canonical Shock-Turbulence Interaction (STI) problem to involve significant variable density effects. The numerical method has been verified using a series of grid and LIA convergence tests, and is used to generate accurate post-shock turbulence data for a detailed flow study. Density effects on post-shock turbulent statistics are shown to be significant, leading to an increased amplification of turbulent kinetic energy (TKE). Eulerian and Lagrangian analyses show that the increase in the post-shock correlation between rotation and strain is weakened in the case with significant density variations (referred to as the ``multi-fluid'' case). Similar to previous single-fluid results and LIA predictions, the shock wave significantly changes the topology of the turbulent structures, exhibiting a symmetrization of the joint PDF of second and third invariant of the deviatoric part of velocity gradient tensor. In the multi-fluid case, this trend is more significant and mainly manifested in the heavy fluid regions. Lagrangian data are also used to study the evolution of turbulence structure away from the shock wave and assess the accuracy of Lagrangian dynamical models.

  19. THE TURBULENT ORIGIN OF OUTFLOW AND SPIN MISALIGNMENT IN MULTIPLE STAR SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Offner, Stella S. R.; Lee, Katherine I.; Arce, Héctor G.; Fielding, Drummond B. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Dunham, Michael M., E-mail: soffner@astro.umass.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2016-08-10

    The protostellar outflows of wide-separation forming binaries frequently appear misaligned. We use magneto-hydrodynamic simulations to investigate the alignment of protostellar spin and molecular outflows for forming binary pairs. We show that the protostellar pairs, which form from turbulent fragmentation within a single parent core, have randomly oriented angular momentum. Although the pairs migrate to closer separations, their spins remain partially misaligned. We produce {sup 12}CO(2-1) synthetic observations of the simulations and characterize the outflow orientation in the emission maps. The CO-identified outflows exhibit a similar random distribution and are also statistically consistent with the observed distribution of molecular outflows. We conclude that the observed misalignment provides a clear signature of binary formation via turbulent fragmentation. The persistence of misaligned outflows and stellar spins following dynamical evolution may provide a signature of binary origins for more evolved multiple star systems.

  20. THE TURBULENT ORIGIN OF OUTFLOW AND SPIN MISALIGNMENT IN MULTIPLE STAR SYSTEMS

    International Nuclear Information System (INIS)

    Offner, Stella S. R.; Lee, Katherine I.; Arce, Héctor G.; Fielding, Drummond B.; Dunham, Michael M.

    2016-01-01

    The protostellar outflows of wide-separation forming binaries frequently appear misaligned. We use magneto-hydrodynamic simulations to investigate the alignment of protostellar spin and molecular outflows for forming binary pairs. We show that the protostellar pairs, which form from turbulent fragmentation within a single parent core, have randomly oriented angular momentum. Although the pairs migrate to closer separations, their spins remain partially misaligned. We produce 12 CO(2-1) synthetic observations of the simulations and characterize the outflow orientation in the emission maps. The CO-identified outflows exhibit a similar random distribution and are also statistically consistent with the observed distribution of molecular outflows. We conclude that the observed misalignment provides a clear signature of binary formation via turbulent fragmentation. The persistence of misaligned outflows and stellar spins following dynamical evolution may provide a signature of binary origins for more evolved multiple star systems.

  1. Turbulence closure for mixing length theories

    Science.gov (United States)

    Jermyn, Adam S.; Lesaffre, Pierre; Tout, Christopher A.; Chitre, Shashikumar M.

    2018-05-01

    We present an approach to turbulence closure based on mixing length theory with three-dimensional fluctuations against a two-dimensional background. This model is intended to be rapidly computable for implementation in stellar evolution software and to capture a wide range of relevant phenomena with just a single free parameter, namely the mixing length. We incorporate magnetic, rotational, baroclinic, and buoyancy effects exactly within the formalism of linear growth theories with non-linear decay. We treat differential rotation effects perturbatively in the corotating frame using a novel controlled approximation, which matches the time evolution of the reference frame to arbitrary order. We then implement this model in an efficient open source code and discuss the resulting turbulent stresses and transport coefficients. We demonstrate that this model exhibits convective, baroclinic, and shear instabilities as well as the magnetorotational instability. It also exhibits non-linear saturation behaviour, and we use this to extract the asymptotic scaling of various transport coefficients in physically interesting limits.

  2. Scrape-off layer tokamak plasma turbulence

    Science.gov (United States)

    Bisai, N.; Singh, R.; Kaw, P. K.

    2012-05-01

    Two-dimensional (2D) interchange turbulence in the scrape-off layer of tokamak plasmas and their subsequent contribution to anomalous plasma transport has been studied in recent years using electron continuity, current balance, and electron energy equations. In this paper, numerically it is demonstrated that the inclusion of ion energy equation in the simulation changes the nature of plasma turbulence. Finite ion temperature reduces floating potential by about 15% compared with the cold ion temperature approximation and also reduces the radial electric field. Rotation of plasma blobs at an angular velocity about 1.5×105 rad/s has been observed. It is found that blob rotation keeps plasma blob charge separation at an angular position with respect to the vertical direction that gives a generation of radial electric field. Plasma blobs with high electron temperature gradients can align the charge separation almost in the radial direction. Influence of high ion temperature and its gradient has been presented.

  3. Wall roughness induces asymptotic ultimate turbulence

    Science.gov (United States)

    Zhu, Xiaojue; Verschoof, Ruben A.; Bakhuis, Dennis; Huisman, Sander G.; Verzicco, Roberto; Sun, Chao; Lohse, Detlef

    2018-04-01

    Turbulence governs the transport of heat, mass and momentum on multiple scales. In real-world applications, wall-bounded turbulence typically involves surfaces that are rough; however, characterizing and understanding the effects of wall roughness on turbulence remains a challenge. Here, by combining extensive experiments and numerical simulations, we examine the paradigmatic Taylor-Couette system, which describes the closed flow between two independently rotating coaxial cylinders. We show how wall roughness greatly enhances the overall transport properties and the corresponding scaling exponents associated with wall-bounded turbulence. We reveal that if only one of the walls is rough, the bulk velocity is slaved to the rough side, due to the much stronger coupling to that wall by the detaching flow structures. If both walls are rough, the viscosity dependence is eliminated, giving rise to asymptotic ultimate turbulence—the upper limit of transport—the existence of which was predicted more than 50 years ago. In this limit, the scaling laws can be extrapolated to arbitrarily large Reynolds numbers.

  4. Dynamical and statistical phenomena of circulation and heat transfer in periodically forced rotating turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Sterl, Sebastian; Li, Hui-Min; Zhong, Jin-Qiang

    2016-12-01

    In this paper, we present results from an experimental study into turbulent Rayleigh-Bénard convection forced externally by periodically modulated unidirectional rotation rates. We find that the azimuthal rotation velocity θ ˙(t ) and thermal amplitude δ (t ) of the large-scale circulation (LSC) are modulated by the forcing, exhibiting a variety of dynamics including increasing phase delays and a resonant peak in the amplitude of θ ˙(t ) . We also focus on the influence of modulated rotation rates on the frequency of occurrence η of stochastic cessation or reorientation events, and on the interplay between such events and the periodically modulated response of θ ˙(t ) . Here we identify a mechanism by which η can be amplified by the modulated response, and these normally stochastic events can occur with high regularity. We provide a modeling framework that explains the observed amplitude and phase responses, and we extend this approach to make predictions for the occurrence of cessation events and the probability distributions of θ ˙(t ) and δ (t ) during different phases of a modulation cycle, based on an adiabatic approach that treats each phase separately. Last, we show that such periodic forcing has consequences beyond influencing LSC dynamics, by investigating how it can modify the heat transport even under conditions where the Ekman pumping effect is predominant and strong enhancement of heat transport occurs. We identify phase and amplitude responses of the heat transport, and we show how increased modulations influence the average Nusselt number.

  5. Polycrystalline magnetic garnet films comprising weakly coupled crystallites for piezoelectrically-driven magneto-optic spatial light modulators

    Energy Technology Data Exchange (ETDEWEB)

    Mito, S.; Sakurai, H.; Takagi, H.; Inoue, M. [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Baryshev, A. V. [Electronics-Inspired Interdisciplinary Research Institute Toyohashi, Aichi 441-8580 (Japan); Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation)

    2012-04-01

    We have investigated the magnetization process of the polycrystalline magnetic garnet films in order to determine the most suitable composition of garnet films for piezoelectrically-driven magneto-optic spatial light modulators (MOSLMs). For experiment, the bismuth-dysprosium-aluminum-substituted yttrium iron (Bi{sub 1.3}Dy{sub 0.7}Y{sub 1.0}Fe{sub 3.1}Al{sub 1.9}O{sub 12}) garnet films were deposited by an RF magnetron sputter and annealed at 700 deg. C in air. The annealing time was varied in a range of several minutes to control the grain size. The saturation magnetization, the remanent magnetization and the composition of the fabricated garnet films slightly changed versus the annealing time. Experiments showed that the coercivity and the grain size increased at longer annealing; the coercivity was larger for films with bigger grains. This work shows that garnet films with smaller coercivity are most suitable for controlling the magnetization of garnet and, correspondingly, the magneto-optical rotation of MOSLM pixels driven by piezoelectrics.

  6. Magneto-photoconductivity of three dimensional topological insulator bismuth telluride

    Science.gov (United States)

    Cao, Bingchen; Eginligil, Mustafa; Yu, Ting

    2018-03-01

    Magnetic field dependence of the photocurrent in a 3D topological insulator is studied. Among the 3D topological insulators bismuth telluride has unique hexagonal warping and spin texture which has been studied by photoemission, scanning tunnelling microscopy and transport. Here, we report on low temperature magneto-photoconductivity, up to 7 T, of two metallic bismuth telluride topological insulator samples with 68 and 110 nm thicknesses excited by 2.33 eV photon energy along the magnetic field perpendicular to the sample plane. At 4 K, both samples exhibit negative magneto-photoconductance below 4 T, which is as a result of weak-antilocalization of Dirac fermions similar to the previous observations in electrical transport. However the thinner sample shows positive magneto-photoconductance above 4 T. This can be attributed to the coupling of surface states. On the other hand, the thicker sample shows no positive magneto-photoconductance up to 7 T since there is only one surface state at play. By fitting the magneto-photoconductivity data of the thicker sample to the localization formula, we obtain weak antilocalization behaviour at 4, 10, and 20 K, as expected; however, weak localization behaviour at 30 K, which is a sign of surface states masked by bulk states. Also, from the temperature dependence of phase coherence length bulk carrier-carrier interaction is identified separately from the surface states. Therefore, it is possible to distinguish surface states by magneto-photoconductivity at low temperature, even in metallic samples.

  7. Magneto-optical studies of low-dimensional organic conductors

    Directory of Open Access Journals (Sweden)

    Hitoshi Ohta, Motoi Kimata and Yugo Oshima

    2009-01-01

    Full Text Available Our periodic orbit resonance (POR results on quasi-two-dimensional (q2D, highly anisotropic q2D and quasi-one-dimensional (q1D organic conductors are reviewed together with our rotational cavity magneto-optical measurement system. Higher order POR up to seventh order has been observed in the q2D system (BEDT-TTF2Br(DIA, and the experimental conditions to observe POR and the cyclotron resonance (CR are discussed. Highly anisotropic q2D Fermi surface (FS in β''-(BEDT-TTF(TCNQ, which was considered to have q1D FS previously, is proposed by our POR measurements, and the possible interpretations of other experimental results of β''-(BEDT-TTF(TCNQ are discussed assuming the highly anisotropic q2D FS. Finally, detailed q1D FS of (DMET2I3, obtained from our POR results, is discussed in connection with the typical q1D system (TMTSF2ClO4.

  8. Half-metallicity and giant magneto-optical Kerr effect in N-doped NaTaO3

    KAUST Repository

    Saeed, Yasir

    2012-09-01

    We use density functional theory and the modified Becke-Johnson (mBJ) approach to analyze the electronic and magneto-optical properties of N-doped NaTaO 3. The mBJ results show a half-metallic nature of NaTaO 2N, in contrast to the generalized gradient approximation. We find a giant polar Kerr rotation of 2.16°at 725 nm wave length (visible region), much higher than in other half-metallic perovskites and the prototypical half-metal PtMnSb. We explain the physical origin of this unexpected property. © 2012 Elsevier B.V. All rights reserved.

  9. Turbulence spectra, transport, and E × B flows in helical plasmas

    International Nuclear Information System (INIS)

    Watanabe, T.-H.; Nunami, M.; Sugama, H.; Satake, S.; Matsuoka, S.; Ishizawa, A.; Tanaka, K.; Maeyama, Shinya

    2012-11-01

    Gyrokinetic simulation of ion temperature gradient turbulence and zonal flows for helical plasmas has been validated against the Large Helical Device experiments with high ion temperature, where a reduced modeling of ion heat transport is also considered. It is confirmed by the entropy transfer analysis that the turbulence spectrum elongated in the radial wavenumber space is associated with successive interactions with zonal flows. A novel multi-scale simulation for turbulence and zonal flows in poloidally-rotating helical plasmas has demonstrated strong zonal flow generation by turbulence, which implies that turbulent transport processes in non-axisymmetric systems are coupled to neoclassical transport through the macroscopic E × B flows determined by the ambipolarty condition for neoclassical particle fluxes. (author)

  10. Controlling the anisotropy and domain structure with oblique deposition and substrate rotation

    Directory of Open Access Journals (Sweden)

    N. Chowdhury

    2014-02-01

    Full Text Available Effect of substrate rotation on anisotropy and domain structure for a thin ferromagnetic film has been investigated in this work. For this purpose Co films with 10 nm thickness have been prepared by sputtering with oblique angle of incidence for various substrate rotations. This method of preparation induces a uniaxial anisotropy due to shadow deposition effect. The magnetization reversal is studied by magneto-optic Kerr effect (MOKE based microscope in the longitudinal geometry. The Co films prepared by rotating the substrate with 10 and 20 rpm weakens the anisotropy but does not completely give isotropic films. But this leads to high dispersion in local grain anisotropy resulting in ripple and labyrinth domains. It is observed that the substrate rotation has moderate effect on uniaxial anisotropy but has significant effect on the magnetization reversal process and the domain structure.

  11. Understanding and Predicting Profile Structure and Parametric Scaling of Intrinsic Rotation

    Science.gov (United States)

    Wang, Weixing

    2016-10-01

    It is shown for the first time that turbulence-driven residual Reynolds stress can account for both the shape and magnitude of the observed intrinsic toroidal rotation profile. Nonlinear, global gyrokinetic simulations using GTS of DIII-D ECH plasmas indicate a substantial ITG fluctuation-induced non-diffusive momentum flux generated around a mid-radius-peaked intrinsic toroidal rotation profile. The non-diffusive momentum flux is dominated by the residual stress with a negligible contribution from the momentum pinch. The residual stress profile shows a robust anti-gradient, dipole structure in a set of ECH discharges with varying ECH power. Such interesting features of non-diffusive momentum fluxes, in connection with edge momentum sources and sinks, are found to be critical to drive the non-monotonic core rotation profiles in the experiments. Both turbulence intensity gradient and zonal flow ExB shear are identified as major contributors to the generation of the k∥-asymmetry needed for the residual stress generation. By balancing the residual stress and the momentum diffusion, a self-organized, steady-state rotation profile is calculated. The predicted core rotation profiles agree well with the experimentally measured main-ion toroidal rotation. The validated model is further used to investigate the characteristic dependence of global rotation profile structure in the multi-dimensional parametric space covering turbulence type, q-profile structure and collisionality with the goal of developing physics understanding needed for rotation profile control and optimization. Interesting results obtained include intrinsic rotation reversal induced by ITG-TEM transition in flat-q profile regime and by change in q-profile from weak to normal shear.. Fluctuation-generated poloidal Reynolds stress is also shown to significantly modify the neoclassical poloidal rotation in a way consistent with experimental observations. Finally, the first-principles-based model is applied

  12. Morphing continuum analysis of energy transfer in compressible turbulence

    Science.gov (United States)

    Cheikh, Mohamad Ibrahim; Wonnell, Louis B.; Chen, James

    2018-02-01

    A shock-preserving finite volume solver with the generalized Lax-Friedrichs splitting flux for morphing continuum theory (MCT) is presented and verified. The numerical MCT solver is showcased in a supersonic turbulent flow with Mach 2.93 over an 8∘ compression ramp. The simulation results validated MCT with experiments as an alternative for modeling compressible turbulence. The required size of the smallest mesh cell for the MCT simulation is shown to be almost an order larger than that in a similar direct numerical simulation study. The comparison shows MCT is a much more computationally friendly theory than the classical Navier-Stokes equations. The dynamics of energy cascade at the length scale of individual eddies is illuminated through the subscale rotation introduced by MCT. In this regard, MCT provides a statistical averaging procedure for capturing energy transfer in compressible turbulence, not found in classical fluid theories. Analysis of the MCT results show the existence of a statistical coupling of the internal and translational kinetic energy fluctuations with the corresponding eddy rotational energy fluctuations, indicating a multiscale transfer of energy. In conclusion, MCT gives a new characterization of the energy cascade within compressible turbulence without the use of excessive computational resources.

  13. Optimizing magneto-optical effects in the ferromagnetic semiconductor GaMnAs

    Energy Technology Data Exchange (ETDEWEB)

    Riahi, H., E-mail: hassenriahi1987@gmail.com [Laboratoire Matériaux Molécules et Applications, IPEST, Université de Carthage, La Marsa (Tunisia); Thevenard, L. [CNRS, UMR7588, Institut des Nanosciences de Paris, 4 place Jussieu, 75005 Paris (France); Sorbonne Universités, UPMC Université Paris 06, UMR7588, 4 place Jussieu, 75005 Paris (France); Maaref, M.A. [Laboratoire Matériaux Molécules et Applications, IPEST, Université de Carthage, La Marsa (Tunisia); Gallas, B. [CNRS, UMR7588, Institut des Nanosciences de Paris, 4 place Jussieu, 75005 Paris (France); Sorbonne Universités, UPMC Université Paris 06, UMR7588, 4 place Jussieu, 75005 Paris (France); Lemaître, A. [Laboratoire de Photonique et de Nanostructures – CNRS, Route de Nozay, 91460 Marcoussis (France); Gourdon, C [CNRS, UMR7588, Institut des Nanosciences de Paris, 4 place Jussieu, 75005 Paris (France); Sorbonne Universités, UPMC Université Paris 06, UMR7588, 4 place Jussieu, 75005 Paris (France)

    2015-12-01

    A trilayer of the ferromagnetic semiconductor GaMnAs, a SiO{sub 2} buffer layer and a piezoelectric ZnO layer, is investigated in view of its use in device implementation to study surface acoustic wave-assisted magnetization switching. The magneto-optical properties: Kerr rotation and ellipticity and magnetic contrast in Kerr microscopy images are investigated as a function of temperature. While the ZnO layer prevents any good quality imaging of magnetic domains, we show that with the SiO{sub 2} layer only the polar Kerr rotation and the magnetic contrast are increased by a factor of 2. This result is in good quantitative agreement with calculations using an optical interference model and could be further improved. The detrimental effects of the dielectric layers capping on the Curie temperature and coercive field of the GaMnAs layer can be kept to a reasonable level. - Highlights: • GaMnAs/SiO{sub 2}/ZnO studied for surface acoustic wave assisted magnetization switching. • The Kerr rotation and magneticcontrast increase by a factor 2 with SiO{sub 2} on GaMnAs. • Good quantitative agreement with an optical interference model. • Little detrimental effect of SiO{sub 2} and ZnO on the ferromagnetic properties of GaMnAs.

  14. Theory of inertial waves in rotating fluids

    Science.gov (United States)

    Gelash, Andrey; L'vov, Victor; Zakharov, Vladimir

    2017-04-01

    The inertial waves emerge in the geophysical and astrophysical flows as a result of Earth rotation [1]. The linear theory of inertial waves is known well [2] while the influence of nonlinear effects of wave interactions are subject of many recent theoretical and experimental studies. The three-wave interactions which are allowed by inertial waves dispersion law (frequency is proportional to cosine of the angle between wave direction and axes of rotation) play an exceptional role. The recent studies on similar type of waves - internal waves, have demonstrated the possibility of formation of natural wave attractors in the ocean (see [3] and references herein). This wave focusing leads to the emergence of strong three-wave interactions and subsequent flows mixing. We believe that similar phenomena can take place for inertial waves in rotating flows. In this work we present theoretical study of three-wave and four-wave interactions for inertial waves. As the main theoretical tool we suggest the complete Hamiltonian formalism for inertial waves in rotating incompressible fluids [4]. We study three-wave decay instability and then present statistical description of inertial waves in the frame of Hamiltonian formalism. We obtain kinetic equation, anisotropic wave turbulence spectra and study the problem of parametric wave turbulence. These spectra were previously found in [5] by helicity decomposition method. Taking this into account we discuss the advantages of suggested Hamiltonian formalism and its future applications. Andrey Gelash thanks support of the RFBR (Grant No.16-31-60086 mol_a_dk) and Dr. E. Ermanyuk, Dr. I. Sibgatullin for the fruitful discussions. [1] Le Gal, P. Waves and instabilities in rotating and stratified flows, Fluid Dynamics in Physics, Engineering and Environmental Applications. Springer Berlin Heidelberg, 25-40, 2013. [2] Greenspan, H. P. The theory of rotating fluids. CUP Archive, 1968. [3] Brouzet, C., Sibgatullin, I. N., Scolan, H., Ermanyuk, E

  15. Dynamic Characteristics of Magneto-Fluid Supports

    Directory of Open Access Journals (Sweden)

    V. A. Chernobai

    2008-01-01

    Full Text Available The paper considers a vibro-protective magneto-fluid support that uses elastic properties of magnetic fluid with a free surface in magnetic field.The paper has experimentally revealed that the analyzed structure is characterized by better noise absorbing characteristics.The conducted experiments have made it possible to conclude that there is a possibility to use vibro-protective magneto-fluid supports within the frequency range from 0 to 300 Hz, amplitudes up to 2 mm and unit load up to 2,5 · 10 4 Н/м².

  16. A Comparative Assessment of Spalart-Shur Rotation/Curvature Correction in RANS Simulations in a Centrifugal Pump Impeller

    Directory of Open Access Journals (Sweden)

    Ran Tao

    2014-01-01

    Full Text Available RANS simulation is widely used in the flow prediction of centrifugal pumps. Influenced by impeller rotation and streamline curvature, the eddy viscosity models with turbulence isotropy assumption are not accurate enough. In this study, Spalart-Shur rotation/curvature correction was applied on the SST k-ω turbulence model. The comparative assessment of the correction was proceeded in the simulations of a centrifugal pump impeller. CFD results were compared with existing PIV and LDV data under the design and low flow rate off-design conditions. Results show the improvements of the simulation especially in the situation that turbulence strongly produced due to undesirable flow structures. Under the design condition, more reasonable turbulence kinetic energy contour was captured after correction. Under the low flow rate off-design condition, the prediction of turbulence kinetic energy and velocity distributions became much more accurate when using the corrected model. So, the rotation/curvature correction was proved effective in this study. And, it is also proved acceptable and recommended to use in the engineering simulations of centrifugal pump impellers.

  17. Reynolds-Stress and Triple-Product Models Applied to Flows with Rotation and Curvature

    Science.gov (United States)

    Olsen, Michael E.

    2016-01-01

    Predictions for Reynolds-stress and triple product turbulence models are compared for flows with significant rotational effects. Driver spinning cylinder flowfield and Zaets rotating pipe case are to be investigated at a minimum.

  18. Magneto-dependent stress relaxation of magnetorheological gels

    KAUST Repository

    Xu, Yangguang; Liu, Taixiang; Liao, G J; Lubineau, Gilles

    2017-01-01

    The stress relaxation behaviors of magnetorheological (MR) gels under stepwise shear loading are systematically investigated. The particle-enhanced effect, the magneto-induced effect, and the temperature-enhanced effect on the stress relaxation of MR gels are discussed. For further analysis of the magneto-induced stress relaxation mechanism in MR gels, a phenomenological model is established to describe the stress relaxation behavior of the matrix and the magnetic particle chains. All characteristic parameters introduced in the model, i.e. relaxation time, instantaneous modulus, and stable modulus, have well-defined physical meanings and are fitted based on the experimental results. The influence of each parameter on the macroscopic response is discussed and it is found that the relaxation stress induced by the magneto-mechanical coupling effect plays an important role in the stress relaxation process of MR gels.

  19. Magneto-dependent stress relaxation of magnetorheological gels

    KAUST Repository

    Xu, Yangguang

    2017-09-01

    The stress relaxation behaviors of magnetorheological (MR) gels under stepwise shear loading are systematically investigated. The particle-enhanced effect, the magneto-induced effect, and the temperature-enhanced effect on the stress relaxation of MR gels are discussed. For further analysis of the magneto-induced stress relaxation mechanism in MR gels, a phenomenological model is established to describe the stress relaxation behavior of the matrix and the magnetic particle chains. All characteristic parameters introduced in the model, i.e. relaxation time, instantaneous modulus, and stable modulus, have well-defined physical meanings and are fitted based on the experimental results. The influence of each parameter on the macroscopic response is discussed and it is found that the relaxation stress induced by the magneto-mechanical coupling effect plays an important role in the stress relaxation process of MR gels.

  20. [Magneto-laser therapy of chronic gastritis in children and adolescents].

    Science.gov (United States)

    Zviagin, A A; Nikolaenko, E A

    2008-01-01

    The efficiency of transcutaneous magneto-laser treatment as a component of combined therapy of chronic gastritis in children and adolescents (aged 5-17 years) was compared with that of pharmacotherapy and low-intensity laser therapy. The patients were allocated to three groups of 25 persons each. Patients of group 1 were given only drug therapy, those in group 2 were treated with pharmaceuticals and low-intensity laser therapy. The patients comprising group 3 were subjected to the action of magneto-laser radiation. Magneto-laser therapy was shown to result in a significantly more expressed improvement of clinical and morphological characteristics of the patients compared with pharmacotherapy alone. There was no significant difference between effects of magneto-laser and low-intensity laser radiation.

  1. Role of Turbulent Damping in Cosmic Ray Galactic Winds

    Science.gov (United States)

    Holguin, Francisco; Ruszkowski, Mateusz; Lazarian, Alex; Yang, H. Y. Karen

    2018-06-01

    Large-scale galactic winds driven by stellar feedback are one phenomenon that influences the dynamical and chemical evolution of a galaxy, pushing and redistributing material throughout the interstellar medium (ISM) and galactic halo. A detailed understanding of the exact physical mechanisms responsible for these winds is lacking. Non-thermal feedback from galactic cosmic rays (CR), high-energy charged particles accelerated in supernovae and young stars, can impact the efficiency in accelerating the wind. In the self-confinement model, CR stream along magnetic field lines at the Alfven speed due to scattering off self-excited Aflv{é}n waves. However, magneto-hydrodynamic (MHD) turbulence stirred up by stellar feedback dissipates these confining waves, allowing CR to be super Aflvenic. Previous simulations relying on a simplified model of transport have shown that super-Alfv{é}nic streaming of CRs can launch a stronger wind. We perform three-dimensional MHD simulations of a section of a galactic disk, including CR streaming dependent on the local environment, using a realistic model of turbulent dissipation of Alfven waves presented in Lazarian (2016). In this implementation, the CR streaming speed can be super Alfv{é}nic depending on local conditions. We compare results for Alfv{é}nic and locally determined streaming, and find that gas/CR distributions and instantaneous mass loading factor of the wind are different depending on the level of turbulence.Lazarian, A. “Damping of Alfven waves by turbulence and its consequences: from cosmic-ray streaming to launching winds.” ApJ. Vol. 833, Num. 2. (2016).

  2. Description of group-theoretical model of developed turbulence

    International Nuclear Information System (INIS)

    Saveliev, V L; Gorokhovski, M A

    2008-01-01

    We propose to associate the phenomenon of stationary turbulence with the special self-similar solutions of the Euler equations. These solutions represent the linear superposition of eigenfields of spatial symmetry subgroup generators and imply their dependence on time through the parameter of the symmetry transformation only. From this model, it follows that for developed turbulent process, changing the scale of averaging (filtering) of the velocity field is equivalent to composition of scaling, translation and rotation transformations. We call this property a renormalization-group invariance of filtered turbulent fields. The renormalization group invariance provides an opportunity to transform the averaged Navier-Stokes equation over a small scale (inner threshold of the turbulence) to larger scales by simple scaling. From the methodological point of view, it is significant to note that the turbulent viscosity term appeared not as a result of averaging of the nonlinear term in the Navier-Stokes equation, but from the molecular viscosity term with the help of renormalization group transformation.

  3. Faraday Rotation Due to Surface States in the Topological Insulator (Bi1-xSbx)2Te3.

    Science.gov (United States)

    Shao, Yinming; Post, Kirk W; Wu, Jhih-Sheng; Dai, Siyuan; Frenzel, Alex J; Richardella, Anthony R; Lee, Joon Sue; Samarth, Nitin; Fogler, Michael M; Balatsky, Alexander V; Kharzeev, Dmitri E; Basov, D N

    2017-02-08

    Using magneto-infrared spectroscopy, we have explored the charge dynamics of (Bi,Sb) 2 Te 3 thin films on InP substrates. From the magneto-transmission data we extracted three distinct cyclotron resonance (CR) energies that are all apparent in the broad band Faraday rotation (FR) spectra. This comprehensive FR-CR data set has allowed us to isolate the response of the bulk states from the intrinsic surface states associated with both the top and bottom surfaces of the film. The FR data uncovered that electron- and hole-type Dirac Fermions reside on opposite surfaces of our films, which paves the way for observing many exotic quantum phenomena in topological insulators.

  4. A self-consistent turbulence generated scenario for L-H transition

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Mahajan, S.M.

    1992-10-01

    The turbulence-induced ion banana polarization current associated with steep ion temperature gradients is explored as a possible mechanism for generating poloidal momentum at the tokamak edge. In the light of a recently developed two-dimensional turbulence theory, one can obtain a simple closed expression relating this current (determined by turbulence levels) to the derivatives of the poloidal rotation speed. A self-consistent system, then, emerges, if we balance the turbulence-induced poloidal momentum with that dissipated by viscosity. Under suitable conditions this system may show a bifurcation controlled by a parameter dependent on temperature gradients. Both the bifurcation point, and the shear layer width are predicted for a prescribed flow in terms of a scale characterizing the nonlinearity of viscosity. The crucial relevance of the flow parity with the turbulence scenario is analyzed

  5. Gyrokinetic Simulation of Global Turbulent Transport Properties in Tokamak Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.X.; Lin, Z.; Tang, W.M.; Lee, W.W.; Ethier, S.; Lewandowski, J.L.V.; Rewoldt, G.; Hahm, T.S.; Manickam, J.

    2006-01-01

    A general geometry gyro-kinetic model for particle simulation of plasma turbulence in tokamak experiments is described. It incorporates the comprehensive influence of noncircular cross section, realistic plasma profiles, plasma rotation, neoclassical (equilibrium) electric fields, and Coulomb collisions. An interesting result of global turbulence development in a shaped tokamak plasma is presented with regard to nonlinear turbulence spreading into the linearly stable region. The mutual interaction between turbulence and zonal flows in collisionless plasmas is studied with a focus on identifying possible nonlinear saturation mechanisms for zonal flows. A bursting temporal behavior with a period longer than the geodesic acoustic oscillation period is observed even in a collisionless system. Our simulation results suggest that the zonal flows can drive turbulence. However, this process is too weak to be an effective zonal flow saturation mechanism.

  6. Synthesis of immunotargeted magneto-plasmonic nanoclusters.

    Science.gov (United States)

    Wu, Chun-Hsien; Sokolov, Konstantin

    2014-08-22

    Magnetic and plasmonic properties combined in a single nanoparticle provide a synergy that is advantageous in a number of biomedical applications including contrast enhancement in novel magnetomotive imaging modalities, simultaneous capture and detection of circulating tumor cells (CTCs), and multimodal molecular imaging combined with photothermal therapy of cancer cells. These applications have stimulated significant interest in development of protocols for synthesis of magneto-plasmonic nanoparticles with optical absorbance in the near-infrared (NIR) region and a strong magnetic moment. Here, we present a novel protocol for synthesis of such hybrid nanoparticles that is based on an oil-in-water microemulsion method. The unique feature of the protocol described herein is synthesis of magneto-plasmonic nanoparticles of various sizes from primary blocks which also have magneto-plasmonic characteristics. This approach yields nanoparticles with a high density of magnetic and plasmonic functionalities which are uniformly distributed throughout the nanoparticle volume. The hybrid nanoparticles can be easily functionalized by attaching antibodies through the Fc moiety leaving the Fab portion that is responsible for antigen binding available for targeting.

  7. Decoding of digital magnetic recording with longitudinal magnetization of a tape from a magneto-optical image of stray fields

    Science.gov (United States)

    Lisovskii, F. V.; Mansvetova, E. G.

    2017-05-01

    For digital magnetic recording of encoded information with longitudinal magnetization of the tape, the connection between the domain structure of a storage medium and magneto-optical image of its stray fields obtained using a magnetic film with a perpendicular anisotropy and a large Faraday rotation has been studied. For two-frequency binary code without returning to zero, an algorithm is developed, that allows uniquely decoding of the information recorded on the tape based on analysis of an image of stray fields.

  8. Transparent EuTiO3 films: a possible two-dimensional magneto-optical device

    Science.gov (United States)

    Bussmann-Holder, Annette; Roleder, Krystian; Stuhlhofer, Benjamin; Logvenov, Gennady; Lazar, Iwona; Soszyński, Andrzej; Koperski, Janusz; Simon, Arndt; Köhler, Jürgen

    2017-01-01

    The magneto-optical activity of high quality transparent thin films of insulating EuTiO3 (ETO) deposited on a thin SrTiO3 (STO) substrate, both being non-magnetic materials, are demonstrated to be a versatile tool for light modulation. The operating temperature is close to room temperature and allows for multiple device engineering. By using small magnetic fields birefringence of the samples can be switched off and on. Similarly, rotation of the sample in the field can modify its birefringence Δn. In addition, Δn can be increased by a factor of 4 in very modest fields with simultaneously enhancing the operating temperature by almost 100 K.

  9. From Newton's bucket to rotating polygons

    DEFF Research Database (Denmark)

    Bach, B.; Linnartz, E. C.; Vested, Malene Louise Hovgaard

    2014-01-01

    We present an experimental study of 'polygons' forming on the free surface of a swirling water flow in a partially filled cylindrical container. In our set-up, we rotate the bottom plate and the cylinder wall with separate motors. We thereby vary rotation rate and shear strength independently...... and move from a rigidly rotating 'Newton's bucket' flow to one where bottom and cylinder wall are rotating oppositely and the surface is strongly turbulent but flat on average. Between those two extremes, we find polygonal states for which the rotational symmetry is spontaneously broken. We investigate...... the phase diagram spanned by the two rotational frequencies at a given water filling height and find polygons in a regime, where the two frequencies are sufficiently different and, predominantly, when they have opposite signs. In addition to the extension of the family of polygons found with the stationary...

  10. Faraday rotation due to excitation of magnetoplasmons in graphene microribbons.

    Science.gov (United States)

    Tymchenko, Mykhailo; Nikitin, Alexey Yu; Martín-Moreno, Luis

    2013-11-26

    A single graphene sheet, when subjected to a perpendicular static magnetic field, provides a Faraday rotation that, per atomic layer, greatly surpasses that of any other known material. In continuous graphene, Faraday rotation originates from the cyclotron resonance of massless carriers, which allows dynamical tuning through either external electrostatic or magneto-static setting. Furthermore, the rotation direction can be controlled by changing the sign of the carriers in graphene, which can be done by means of an external electric field. However, despite these tuning possibilities, the requirement of large magnetic fields hinders the application of the Faraday effect in real devices, especially for frequencies higher than a few terahertz. In this work we demonstrate that large Faraday rotation can be achieved in arrays of graphene microribbons, through the excitation of the magnetoplasmons of individual ribbons, at larger frequencies than those dictated by the cyclotron resonance. In this way, for a given magnetic field and chemical potential, structuring graphene periodically can produce large Faraday rotation at larger frequencies than what would occur in a continuous graphene sheet. Alternatively, at a given frequency, graphene ribbons produce large Faraday rotation at much smaller magnetic fields than in continuous graphene.

  11. Anisotropic turbulence and zonal jets in rotating flows with a β-effect

    Directory of Open Access Journals (Sweden)

    B. Galperin

    2006-01-01

    Full Text Available Numerical studies of small-scale forced, two-dimensional turbulent flows on the surface of a rotating sphere have revealed strong large-scale anisotropization that culminates in the emergence of quasi-steady sets of alternating zonal jets, or zonation. The kinetic energy spectrum of such flows also becomes strongly anisotropic. For the zonal modes, a steep spectral distribution, E(n=CZ (Ω/R2 n-5, is established, where CZ=O(1 is a non-dimensional coefficient, Ω is the angular velocity, and R is the radius of the sphere, respectively. For other, non-zonal modes, the classical, Kolmogorov-Batchelor-Kraichnan, spectral law is preserved. This flow regime, referred to as a zonostrophic regime, appears to have wide applicability to large-scale planetary and terrestrial circulations as long as those are characterized by strong rotation, vertically stable stratification and small Burger numbers. The well-known manifestations of this regime are the banded disks of the outer planets of our Solar System. Relatively less known examples are systems of narrow, subsurface, alternating zonal jets throughout all major oceans discovered in state-of-the-art, eddy-permitting simulations of the general oceanic circulation. Furthermore, laboratory experiments recently conducted using the Coriolis turntable have basically confirmed that the lateral gradient of ''planetary vorticity'' (emulated via the topographic β-effect is the primary cause of the zonation and that the latter is entwined with the development of the strongly anisotropic kinetic energy spectrum that tends to attain the same zonal and non-zonal distributions, −5 and , respectively, in both the slope and the magnitude, as the corresponding spectra in other environmental conditions. The non-dimensional coefficient CZ in the −5 spectral law appears to be invariant, , in a variety of simulated and natural flows. This paper provides a brief review of the zonostrophic regime. The review includes the

  12. Magneto-Seebeck effect in magnetic tunnel junctions with perpendicular anisotropy

    Directory of Open Access Journals (Sweden)

    Keyu Ning

    2017-01-01

    Full Text Available As one invigorated filed of spin caloritronics combining with spin, charge and heat current, the magneto-Seebeck effect has been experimentally and theoretically studied in spin tunneling thin films and nanostructures. Here we analyze the tunnel magneto-Seebeck effect in magnetic tunnel junctions with perpendicular anisotropy (p-MTJs under various measurement temperatures. The large tunnel magneto-Seebeck (TMS ratio up to −838.8% for p-MTJs at 200 K is achieved, with Seebeck coefficient S in parallel and antiparallel states of 6.7 mV/K and 62.9 mV/K, respectively. The temperature dependence of the tunnel magneto-Seebeck can be attributed to the contributing transmission function and electron states at the interface between CoFeB electrode and MgO barrier.

  13. Turbulent Liquid Metal Dynamo Experiments

    International Nuclear Information System (INIS)

    Forest, Cary

    2007-01-01

    The self-generation of magnetic fields in planets and stars--the dynamo effect--is a long-standing problem of magnetohydrodynamics and plasma physics. Until recently, research on the self-excitation process has been primarily theoretical. In this talk, I will begin with a tutorial on how magnetic fields are generated in planets and stars, describing the 'Standard Model' of self-excitation known as the alpha-omega dynamo. In this model, axisymmetric differential rotation can produce the majority of the magnetic field, but some non-axisymmetric, turbulence driven currents are also necessary. Understanding the conversion of turbulent kinetic energy in the fluid motion into electrical currents and thus magnetic fields, is a major challenge for both experiments and theory at this time. I will then report on recent results from a 1 meter diameter, spherical, liquid sodium dynamo experiment at the University of Wisconsin, in which the first clear evidence for these turbulence driven currents has been observed.

  14. Effect of substrate rotation on domain structure and magnetic relaxation in magnetic antidot lattice arrays

    International Nuclear Information System (INIS)

    Mallick, Sougata; Mallik, Srijani; Bedanta, Subhankar

    2015-01-01

    Microdimensional triangular magnetic antidot lattice arrays were prepared by varying the speed of substrate rotation. The pre-deposition patterning has been performed using photolithography technique followed by a post-deposition lift-off. Surface morphology taken by atomic force microscopy depicted that the growth mechanism of the grains changes from chain like formation to island structures due to the substrate rotation. Study of magnetization reversal via magneto optic Kerr effect based microscopy revealed reduction of uniaxial anisotropy and increase in domain size with substrate rotation. The relaxation measured under constant magnetic field becomes faster with rotation of the substrate during deposition. The nature of relaxation for the non-rotating sample can be described by a double exponential decay. However, the relaxation for the sample with substrate rotation is well described either by a double exponential or a Fatuzzo-Labrune like single exponential decay, which increases in applied field

  15. Large magneto-conductance and magneto-electroluminescence in exciplex-based organic light-emitting diodes at room temperature

    Science.gov (United States)

    Ling, Yongzhou; Lei, Yanlian; Zhang, Qiaoming; Chen, Lixiang; Song, Qunliang; Xiong, Zuhong

    2015-11-01

    In this work, we report on large magneto-conductance (MC) over 60% and magneto-electroluminescence (MEL) as high as 112% at room temperature in an exciplex-based organic light-emitting diode (OLED) with efficient reverse intersystem crossing (ISC). The large MC and MEL are individually confirmed by the current density-voltage characteristics and the electroluminescence spectra under various magnetic fields. We proposed that this type of magnetic field effect (MFE) is governed by the field-modulated reverse ISC between the singlet and triplet exciplex. The temperature-dependent MFEs reveal that the small activation energy of reverse ISC accounts for the large MFEs in the present exciplex-based OLEDs.

  16. Surface effects on anti-plane shear waves propagating in magneto-electro-elastic nanoplates

    International Nuclear Information System (INIS)

    Wu, Bin; Zhang, Chunli; Chen, Weiqiu; Zhang, Chuanzeng

    2015-01-01

    Material surfaces may have a remarkable effect on the mechanical behavior of magneto-electro-elastic (or multiferroic) structures at nanoscale. In this paper, a surface magneto-electro-elasticity theory (or effective boundary condition formulation), which governs the motion of the material surface of magneto-electro-elastic nanoplates, is established by employing the state-space formalism. The properties of anti-plane shear (SH) waves propagating in a transversely isotropic magneto-electro-elastic plate with nanothickness are investigated by taking surface effects into account. The size-dependent dispersion relations of both antisymmetric and symmetric SH waves are presented. The thickness-shear frequencies and the asymptotic characteristics of the dispersion relations considering surface effects are determined analytically as well. Numerical results show that surface effects play a very pronounced role in elastic wave propagation in magneto-electro-elastic nanoplates, and the dispersion properties depend strongly on the chosen surface material parameters of magneto-electro-elastic nanoplates. As a consequence, it is possible to modulate the waves in magneto-electro-elastic nanoplates through surface engineering. (paper)

  17. Tuning Coler Magnetic Current Apparatus with Magneto-Acoustic Resonance

    Science.gov (United States)

    Ludwig, Thorsten

    An attempt was made to tune the Coler magnetic current apparatus with the magneto acoustic resonance of the magnetic rods. Measurements with a replica of the famous Coler "Magnetstromapparat" were conducted. In order to tune the acoustic, magnetic and electric resonance circuits of the Coler device the magneto-acoustic resonance was measured with a frequency scan through a function generator and a lock-in amplifier. The frequency generator was powering a driving coil, while the lock-in was connected to a pickup coil. Both coils were placed on a magnetic rod. Resonances were observed up to the 17th harmonic. The quality Q of the observed resonances was 270. To study the magneto-acoustic resonance in the time domain a pair of Permendur rods were employed. The magneto-acoustic resonances of the Permendur rods were observed with an oscilloscope. Spectra of the magneto acoustic resonance were measured for the Permendur rods and for a Coler replica magnet in the frequency range from 25 kHz to 380 kHz. The next step was to bring the resonances of the Permendur rods close together so that they overlap. The 10thharmonic was chosen because it was close to the 180 kHz that Hans Coler related to ferromagnetism. Further more magneto-acoustic coupling between the Permendur rods was studied. Finally the question was explored if Hans Coler converted vacuum fluctuations via magnetic and acoustic resonance into electricity. There is a strong connection between magnetism and quantum field zero point energy (ZPE). An outlook is given on next steps in the experiments to unveil the working mechanism of the Coler magnetic current apparatus.

  18. Rotating magnetic shallow water waves and instabilities in a sphere

    Science.gov (United States)

    Márquez-Artavia, X.; Jones, C. A.; Tobias, S. M.

    2017-07-01

    Waves in a thin layer on a rotating sphere are studied. The effect of a toroidal magnetic field is considered, using the shallow water ideal MHD equations. The work is motivated by suggestions that there is a stably stratified layer below the Earth's core mantle boundary, and the existence of stable layers in stellar tachoclines. With an azimuthal background field known as the Malkus field, ?, ? being the co-latitude, a non-diffusive instability is found with azimuthal wavenumber ?. A necessary condition for instability is that the Alfvén speed exceeds ? where ? is the rotation rate and ? the sphere radius. Magneto-inertial gravity waves propagating westward and eastward occur, and become equatorially trapped when the field is strong. Magneto-Kelvin waves propagate eastward at low field strength, but a new westward propagating Kelvin wave is found when the field is strong. Fast magnetic Rossby waves travel westward, whilst the slow magnetic Rossby waves generally travel eastward, except for some ? modes at large field strength. An exceptional very slow westward ? magnetic Rossby wave mode occurs at all field strengths. The current-driven instability occurs for ? when the slow and fast magnetic Rossby waves interact. With strong field the magnetic Rossby waves become trapped at the pole. An asymptotic analysis giving the wave speed and wave form in terms of elementary functions is possible both in polar trapped and equatorially trapped cases.

  19. Hairpin vortices in turbulent boundary layers

    International Nuclear Information System (INIS)

    Eitel-Amor, G; Schlatter, P; Flores, O

    2014-01-01

    The present work addresses the question whether hairpin vortices are a dominant feature of near-wall turbulence and which role they play during transition. First, the parent-offspring mechanism is investigated in temporal simulations of a single hairpin vortex introduced in a mean shear flow corresponding to turbulent channels and boundary layers up to Re τ = 590. Using an eddy viscosity computed from resolved simulations, the effect of a turbulent background is also considered. Tracking the vortical structure downstream, it is found that secondary hairpins are created shortly after initialization. Thereafter, all rotational structures decay, whereas this effect is enforced in the presence of an eddy viscosity. In a second approach, a laminar boundary layer is tripped to transition by insertion of a regular pattern of hairpins by means of defined volumetric forces representing an ejection event. The idea is to create a synthetic turbulent boundary layer dominated by hairpin-like vortices. The flow for Re τ < 250 is analysed with respect to the lifetime of individual hairpin-like vortices. Both the temporal and spatial simulations demonstrate that the regeneration process is rather short-lived and may not sustain once a turbulent background has formed. From the transitional flow simulations, it is conjectured that the forest of hairpins reported in former DNS studies is an outer layer phenomenon not being connected to the onset of near-wall turbulence.

  20. Performance of magneto-optical glass in optical current transducer application

    International Nuclear Information System (INIS)

    Shen, Yan; Lu, Yunhe; Liu, Zhao; Yu, Xueliang; Zhang, Guoqing; Yu, Wenbin

    2015-01-01

    First, a theoretical analysis was performed on the effect of temperature on the performance of the sensing element of paramagnetic rare earth-doped magneto-optical glass material that can be used in an optical current transducer application. The effect comprises two aspects: the linear birefringence and the Verdet constant. On this basis, rare earth-doped glass temperature characteristics were studied, and the experimental results indicated that the linear birefringence of rare earth-doped glass increased with increasing temperature, while its magneto-optical sensitivity decreased. Comparative experiments performed for various concentrations of rare earth dopant in the glass revealed that changes in the dopant concentration had no significant effect on the performance of magneto-optical glass. At last, a comparison between rare earth-doped magneto-optical and diamagnetic dense flint glass showed that the sensitivity of the former was six times that of the latter, although the temperature stability of the former was poorer. - Highlights: • Theoretical analysis on the effects of temperature on RE glass. • Rare earth doping leads to higher magneto-optical sensitivity. • The sensitivity of the RE glass is six times that of the dense flint glass

  1. Comparison of the magneto-Peltier and magneto-Seebeck effects in magnetic tunnel junctions

    NARCIS (Netherlands)

    Shan, J.; Dejene, F. K.; Leutenantsmeyer, J. C.; Flipse, J.; Munzenberg, M.; van Wees, B. J.

    2015-01-01

    Understanding heat generation and transport processes in a magnetic tunnel junction (MTJ) is a significant step towards improving its application in current memory devices. Recent work has experimentally demonstrated the magneto-Seebeck effect in MTJs, where the Seebeck coefficient of the junction

  2. Inertial modes and their transition to turbulence in a differentially rotating spherical gap flow

    Science.gov (United States)

    Hoff, Michael; Harlander, Uwe; Andrés Triana, Santiago; Egbers, Christoph

    2016-04-01

    dominant mode (l,m,ˆω) = (3,2,˜ 0.71) is increasing with increasing |Ro| until a critical Rossby number Rocrit. Accompanying with this is an increase of the zonal mean flow outside the tangent cylinder, leading to enhanced angular momentum transport. At the particular Rocrit, the wave mode, and the entire flow, breaks up into smaller-scale turbulence [6], together with a strong increase of the zonal mean flow inside the tangent cylinder. We found that the critical Rossby number scales approximately with E1/5. References [1] Aldridge, K. D.; Lumb, L. I. (1987): Inertial waves identified in the Earth's fluid outer core. Nature 325 (6103), S. 421-423. DOI: 10.1038/325421a0. [2] Greenspan, H. P. (1968): The theory of rotating fluids. London: Cambridge U.P. (Cambridge monographs on mechanics and applied mathematics). [3] Kelley, D. H.; Triana, S. A.; Zimmerman, D. S.; Lathrop, D. P. (2010): Selection of inertial modes in spherical Couette flow. Phys. Rev. E 81 (2), 26311. DOI: 10.1103/PhysRevE.81.026311. [4] Rieutord, M.; Triana, S. A.; Zimmerman, D. S.; Lathrop, D. P. (2012): Excitation of inertial modes in an experimental spherical Couette flow. Phys. Rev. E 86 (2), 026304. DOI: 10.1103/PhysRevE.86.026304. [5] Hoff, M., Harlander, U., Egbers, C. (2016): Experimental survey of linear and nonlinear inertial waves and wave instabilities in a spherical shell. J. Fluid Mech., (in print) [6] Kerswell, R. R. (1999): Secondary instabilities in rapidly rotating fluids: inertial wave breakdown. Journal of Fluid Mechanics 382, S. 283-306. DOI: 10.1017/S0022112098003954.

  3. Holes in magneto electrostatic traps

    International Nuclear Information System (INIS)

    Jones, R.

    1996-01-01

    We observe that in magneto electrostatic confinement (MEC) devices the magnetic surfaces are not always equipotentials. The lack of symmetry in the equipotential surfaces can result in holes in MEC plasma traps. (author)

  4. Waveguide-Plasmon Polaritons Enhance Transverse Magneto-Optical Kerr Effect

    Directory of Open Access Journals (Sweden)

    Lars E. Kreilkamp

    2013-11-01

    Full Text Available Magneto-optical effects in ferrimagnetic or ferromagnetic materials are usually too weak for potential applications. The transverse magneto-optical Kerr effect (TMOKE in ferromagnetic films is typically on the order of 0.1%. Here, we demonstrate experimentally the enhancement of TMOKE due to the interaction of particle plasmons in gold nanowires with a photonic waveguide consisting of magneto-optical material, where hybrid waveguide-plasmon polaritons are excited. We achieve a large TMOKE that modulates the transmitted light intensity by 1.5%, accompanied by high transparency of the system. Our concept may lead to novel devices of miniaturized photonic circuits and switches, which are controllable by an external magnetic field.

  5. Enhanced magneto-optical Kerr effect in rare earth substituted nanostructured cobalt ferrite thin film prepared by sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Avazpour, L.; Toroghinejad, M.R. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shokrollahi, H., E-mail: Shokrollahi@sutech.ac.ir [Electroceramics Group, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 13876-71557 (Iran, Islamic Republic of)

    2016-11-30

    Highlights: • The nanostructured rare earth doped Co-ferrite thin film was synthesized by the sol–gel method. • The coercivity of as high as 1.8 kOe is achieved for 20% substituted cobalt ferrite. • The average particle diameter of particulate film is decreasing by increasing substitute content. • Kerr spectra of films shifted to higher energies. • Kerr rotation angle increased to 1.65° for 0.1 Eu doped thin film. - Abstract: A series of rare-earth (RE)-doped nanocrystalline Co{sub x} RE{sub (1−x)} Fe{sub 2}O{sub 4} (x = 0, 0.1, 0.2 and RE: Nd, Eu) thin films were prepared on silicon substrates by a sol–gel process, and the influences of different RE{sup 3+} ions on the microstructure, magnetism and polar magneto-optical Kerr effect of the deposited films were investigated. Also this research presents the optimization process of cobalt ferrite thin films deposited via spin coating, by studying their structural and morphological properties at different thicknesses (200, 350 nm) and various heat treatment temperatures 300–850 °C. Nanoparticulate polycrystalline thin film were formed with heat treatment above 400 °C but proper magnetic properties due to well crystallization of the film were achieved at about 650 °C. AFM results indicated that the deposited thin films were crack-free exhibiting a dense nanogranular structure. The root-mean square (RMS) roughness of the thin films was in the range of 0.2–3.2 nm. The results revealed that both of the magnetism and magneto optical Kerr (MOKE) spectra of Co{sub x} RE{sub (1−x)} Fe{sub 2}O{sub 4} films could be mediated by doping with various RE ions. The Curie temperature of substituted samples was lower than pristine cobalt ferrite thin films. In MOKE spectra both dominant peaks were blue shifted with addition of RE ions. For low concentration dopant the inter-valence charge transfer related rotation was enhanced and for higher concentration dopant the crystal field rotation peak was enhanced

  6. Development of magneto-plasmonic nanoparticles for multimodal image-guided therapy to the brain.

    Science.gov (United States)

    Tomitaka, Asahi; Arami, Hamed; Raymond, Andrea; Yndart, Adriana; Kaushik, Ajeet; Jayant, Rahul Dev; Takemura, Yasushi; Cai, Yong; Toborek, Michal; Nair, Madhavan

    2017-01-05

    Magneto-plasmonic nanoparticles are one of the emerging multi-functional materials in the field of nanomedicine. Their potential for targeting and multi-modal imaging is highly attractive. In this study, magnetic core/gold shell (MNP@Au) magneto-plasmonic nanoparticles were synthesized by citrate reduction of Au ions on magnetic nanoparticle seeds. Hydrodynamic size and optical properties of magneto-plasmonic nanoparticles synthesized with the variation of Au ions and reducing agent concentrations were evaluated. The synthesized magneto-plasmonic nanoparticles exhibited superparamagnetic properties, and their magnetic properties contributed to the concentration-dependent contrast in magnetic resonance imaging (MRI). The imaging contrast from the gold shell part of the magneto-plasmonic nanoparticles was also confirmed by X-ray computed tomography (CT). The transmigration study of the magneto-plasmonic nanoparticles using an in vitro blood-brain barrier (BBB) model proved enhanced transmigration efficiency without disrupting the integrity of the BBB, and showed potential to be used for brain diseases and neurological disorders.

  7. Stabilization of spiral wave and turbulence in the excitable media using parameter perturbation scheme

    International Nuclear Information System (INIS)

    Ma Jun; Wang Chunni; Li Yanlong; Pu Zhongsheng; Jin Wuyin

    2008-01-01

    This paper proposes a scheme of parameter perturbation to suppress the stable rotating spiral wave, meandering spiral wave and turbulence in the excitable media, which is described by the modified Fitzhugh–Nagumo (MFHN) model. The controllable parameter in the MFHN model is perturbed with a weak pulse and the pulse period is decided by the rotating period of the spiral wave approximatively. It is confirmed that the spiral wave and spiral turbulence can be suppressed greatly. Drift and instability of spiral wave can be observed in the numerical simulation tests before the whole media become homogeneous finally. (general)

  8. Bi-substituted iron garnet films for one-dimensional magneto-photonic crystals: Synthesis and properties

    International Nuclear Information System (INIS)

    Shaposhnikov, A.N.; Karavainikov, A.V.; Prokopov, A.R.; Berzhansky, V.N.; Salyuk, O.Y.

    2012-01-01

    Graphical abstract: Faraday hysteresis loops for Bi 1.0 Y 0.5 Gd 1.5 Fe 4.2 Al 0.8 O 12 film on glass-ceramic substrate (a), Bi 2.8 Y 0.2 Fe 5 O 12 film on gallium–gadolinium garnet (b) and for glass-ceramic/SiO 2 /Bi 1.0 Y 0.5 Gd 1.5 Fe 4.2 Al 0.8 O 12 /Bi 2.8 Y 0.2 Fe 5 O 12 structure (c). Highlights: ► Bismuth-substituted iron garnet films as magneto-optical layers in magneto-photonic crystals. ► It is impossible to crystallize the films with high Bi content on amorphous substrates. ► The crystallization of the films can be achieved by their deposition on buffer layer with low bismuth content. -- Abstract: The crystallization processes in Bi 2.8 Y 0.2 Fe 5 O 12 , Bi 2.5 Gd 0.5 Fe 3.8 Al 1.2 O 12 , Bi 1.5 Gd 1.5 Fe 4.5 Al 0.5 O 12 and Bi 1.0 Y 0.5 Gd 1.5 Fe 4.2 Al 0.8 O 12 garnet films deposited by reactive ion beam sputtering on (1 1 1) gadolinium–gallium garnet substrates, optical glass-ceramic and SiO 2 films have been studied. Films were annealed at low pressure in oxygen atmosphere and in the air. The possibility of preparation of crystalline garnet films with high concentration of bismuth on the SiO 2 films using a buffer layer with low concentration of Bi has been shown. This allows to produce one-dimensional magneto-photonic crystals with high effective Faraday rotation (several tens of°/μm for the visible optical spectrum).

  9. Hexapole-compensated magneto-optical trap on a mesoscopic atom chip

    DEFF Research Database (Denmark)

    Jöllenbeck, S.; Mahnke, J.; Randoll, R.

    2011-01-01

    Magneto-optical traps on atom chips are usually restricted to small atomic samples due to a limited capture volume caused primarily by distorted field configurations. Here we present a magneto-optical trap based on a millimeter-sized wire structure which generates a magnetic field with minimized...... distortions. Together with the loading from a high-flux two-dimensional magneto-optical trap, we achieve a loading rate of 8.4×1010 atoms/s and maximum number of 8.7×109 captured atoms. The wire structure is placed outside of the vacuum to enable a further adaptation to new scientific objectives. Since all...

  10. Combined photothermal therapy and magneto-motive ultrasound imaging using multifunctional nanoparticles

    Science.gov (United States)

    Mehrmohammadi, Mohammad; Ma, Li L.; Chen, Yun-Sheng; Qu, Min; Joshi, Pratixa; Chen, Raeanna M.; Johnston, Keith P.; Emelianov, Stanislav

    2010-02-01

    Photothermal therapy is a laser-based non-invasive technique for cancer treatment. Photothermal therapy can be enhanced by employing metal nanoparticles that absorb the radiant energy from the laser leading to localized thermal damages. Targeting of nanoparticles leads to more efficient uptake and localization of photoabsorbers thus increasing the effectiveness of the treatment. Moreover, efficient targeting can reduce the required dosage of photoabsorbers; thereby reducing the side effects associated with general systematic administration of nanoparticles. Magnetic nanoparticles, due to their small size and response to an external magnetic field gradient have been proposed for targeted drug delivery. In this study, we investigate the applicability of multifunctional nanoparticles (e.g., magneto-plasmonic nanoparticles) and magneto-motive ultrasound imaging for image-guided photothermal therapy. Magneto-motive ultrasound imaging is an ultrasound based imaging technique capable of detecting magnetic nanoparticles indirectly by utilizing a high strength magnetic field to induce motion within the magnetically labeled tissue. The ultrasound imaging is used to detect the internal tissue motion. Due to presence of the magnetic component, the proposed multifunctional nanoparticles along with magneto-motive ultrasound imaging can be used to detect the presence of the photo absorbers. Clearly the higher concentration of magnetic carriers leads to a monotonic increase in magneto-motive ultrasound signal. Thus, magnetomotive ultrasound can determine the presence of the hybrid agents and provide information about their location and concentration. Furthermore, the magneto-motive ultrasound signal can indicate the change in tissue elasticity - a parameter that is expected to change significantly during the photothermal therapy. Therefore, a comprehensive guidance and assessment of the photothermal therapy may be feasible through magneto-motive ultrasound imaging and

  11. Laminar-Turbulent transition on Wind Turbines

    DEFF Research Database (Denmark)

    Martinez Hernandez, Gabriel Gerardo

    The present thesis deals with the study of the rotational effects on the laminar-turbulent transition on wind turbine blades. Linear stability theory is used to formulate the stability equations that include the effect of rotation. The mean flow required as an input to stability computations...... parametrized and adapted to an wind turbine rotor geometry. The blade is resolved in radial sections along which calculations are performed. The obtained mean flow is classified according to the parameters used on the rotating configuration, geometry and operational conditions. The stability diagrams have been...... to define the resultant wave magnitude and direction. The propagation of disturbances in the boundary layers in three dimensional flows is relatively a complicated phenomena. The report discusses the available methods and techniques used to predict the transition location. Some common wind turbine airfoils...

  12. Transition from Spirals to Defect-Mediated Turbulence Driven by a Doppler Instability

    International Nuclear Information System (INIS)

    Ouyang, Qi; Swinney, Harry L.; Li, Ge

    2000-01-01

    A transition from rotating chemical spirals to turbulence is observed in experiments on the Belousov-Zhabotinsky reaction. The transition occurs when the waves near the spiral tip spontaneously break, generating defects. Measurements reveal that this defect-mediated turbulence is caused by the Doppler effect on the traveling waves. The observations are in good accord with numerical simulations and theory. (c) 2000 The American Physical Society

  13. Universal equations and constants of turbulent motion

    International Nuclear Information System (INIS)

    Baumert, H Z

    2013-01-01

    This paper presents a parameter-free theory of shear-generated turbulence at asymptotically high Reynolds numbers in incompressible fluids. It is based on a two-fluids concept. Both components are materially identical and inviscid. The first component is an ensemble of quasi-rigid dipole-vortex tubes (vortex filaments, excitations) as quasi-particles in chaotic motion. The second is a superfluid performing evasive motions between the tubes. The local dipole motions follow Helmholtz' law. The vortex radii scale with the energy-containing length scale. Collisions between quasi-particles lead either to annihilation (likewise rotation, turbulent dissipation) or to scattering (counterrotation, turbulent diffusion). There are analogies with birth and death processes of population dynamics and their master equations and with Landau's two-fluid theory of liquid helium. For free homogeneous decay the theory predicts the turbulent kinetic energy to follow t −1 . With an adiabatic wall condition it predicts the logarithmic law with von Kármán's constant as 1/√(2 π)= 0.399. Likewise rotating couples form localized dissipative patches almost at rest (→ intermittency) wherein under local quasi-steady conditions the spectrum evolves into an ‘Apollonian gear’ as discussed first by Herrmann (1990 Correlation and Connectivity (Dordrecht: Kluwer) pp 108–20). Dissipation happens exclusively at scale zero and at finite scales this system is frictionless and reminds of Prigogine's (1947 Etude Thermodynamique des Phenomenes Irreversibles (Liege: Desoer) p 143) law of minimum (here: zero) entropy production. The theory predicts further the prefactor of the 3D-wavenumber spectrum (a Kolmogorov constant) as 1/3 (4 π) 2/3 =1.802, well within the scatter range of observational, experimental and direct numerical simulation results. (paper)

  14. Universal equations and constants of turbulent motion

    Science.gov (United States)

    Baumert, H. Z.

    2013-07-01

    This paper presents a parameter-free theory of shear-generated turbulence at asymptotically high Reynolds numbers in incompressible fluids. It is based on a two-fluids concept. Both components are materially identical and inviscid. The first component is an ensemble of quasi-rigid dipole-vortex tubes (vortex filaments, excitations) as quasi-particles in chaotic motion. The second is a superfluid performing evasive motions between the tubes. The local dipole motions follow Helmholtz' law. The vortex radii scale with the energy-containing length scale. Collisions between quasi-particles lead either to annihilation (likewise rotation, turbulent dissipation) or to scattering (counterrotation, turbulent diffusion). There are analogies with birth and death processes of population dynamics and their master equations and with Landau's two-fluid theory of liquid helium. For free homogeneous decay the theory predicts the turbulent kinetic energy to follow t-1. With an adiabatic wall condition it predicts the logarithmic law with von Kármán's constant as 1/\\sqrt {2\\,\\pi }= 0.399 . Likewise rotating couples form localized dissipative patches almost at rest (→ intermittency) wherein under local quasi-steady conditions the spectrum evolves into an ‘Apollonian gear’ as discussed first by Herrmann (1990 Correlation and Connectivity (Dordrecht: Kluwer) pp 108-20). Dissipation happens exclusively at scale zero and at finite scales this system is frictionless and reminds of Prigogine's (1947 Etude Thermodynamique des Phenomenes Irreversibles (Liege: Desoer) p 143) law of minimum (here: zero) entropy production. The theory predicts further the prefactor of the 3D-wavenumber spectrum (a Kolmogorov constant) as \\frac {1}{3}(4\\,\\pi )^{2/3}=1.802 , well within the scatter range of observational, experimental and direct numerical simulation results.

  15. Energy transfer in compressible magnetohydrodynamic turbulence for isothermal self-gravitating fluids

    Science.gov (United States)

    Banerjee, Supratik; Kritsuk, Alexei G.

    2018-02-01

    Three-dimensional, compressible, magnetohydrodynamic turbulence of an isothermal, self-gravitating fluid is analyzed using two-point statistics in the asymptotic limit of large Reynolds numbers (both kinetic and magnetic). Following an alternative formulation proposed by Banerjee and Galtier [Phys. Rev. E 93, 033120 (2016), 10.1103/PhysRevE.93.033120; J. Phys. A: Math. Theor. 50, 015501 (2017), 10.1088/1751-8113/50/1/015501], an exact relation has been derived for the total energy transfer. This approach results in a simpler relation expressed entirely in terms of mixed second-order structure functions. The kinetic, thermodynamic, magnetic, and gravitational contributions to the energy transfer rate can be easily separated in the present form. By construction, the new formalism includes such additional effects as global rotation, the Hall term in the induction equation, etc. The analysis shows that solid-body rotation cannot alter the energy flux rate of compressible turbulence. However, the contribution of a uniform background magnetic field to the flux is shown to be nontrivial unlike in the incompressible case. Finally, the compressible, turbulent energy flux rate does not vanish completely due to simple alignments, which leads to a zero turbulent energy flux rate in the incompressible case.

  16. Faraday rotation influence factors in tellurite-based glass and fibers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiuling; Wang, Qingwei [Henan University of Technology, School of Materials Science and Engineering, Zhengzhou, Henan (China); Wang, Hui; Chen, Qiuping [Politecnico di Torino, Department of Applied Science and Technology, Turin (Italy)

    2015-09-15

    The Faraday rotation influence factors in tellurite-based glass and fibers were studied by experiments and simulations. TeO{sub 2}-ZnO-Na{sub 2}O-BaO glass family was fabricated and characterized in terms of the thermal and magneto-optical properties. Two core-cladding pairs for two fibers were selected from fabricated glasses. The Verdet constants of the glasses and fibers were measured at different wavelengths using a homemade optical bench, and the Verdet constant of fiber was close to that of the bulk glass. The influence from external factors (wavelength, laser power and magnetic field) and internal factors (thermal expansion coefficient difference, refractive index and Verdet constant of core and cladding) on Faraday rotation in fibers was investigated and discussed, and the purpose of this study is to improve the Faraday rotation in tellurite fibers for MO device applications both from internal material property match and external parameter configuration in measurement. (orig.)

  17. Faraday rotation influence factors in tellurite-based glass and fibers

    International Nuclear Information System (INIS)

    Chen, Qiuling; Wang, Qingwei; Wang, Hui; Chen, Qiuping

    2015-01-01

    The Faraday rotation influence factors in tellurite-based glass and fibers were studied by experiments and simulations. TeO 2 -ZnO-Na 2 O-BaO glass family was fabricated and characterized in terms of the thermal and magneto-optical properties. Two core-cladding pairs for two fibers were selected from fabricated glasses. The Verdet constants of the glasses and fibers were measured at different wavelengths using a homemade optical bench, and the Verdet constant of fiber was close to that of the bulk glass. The influence from external factors (wavelength, laser power and magnetic field) and internal factors (thermal expansion coefficient difference, refractive index and Verdet constant of core and cladding) on Faraday rotation in fibers was investigated and discussed, and the purpose of this study is to improve the Faraday rotation in tellurite fibers for MO device applications both from internal material property match and external parameter configuration in measurement. (orig.)

  18. Intrinsic Ambipolarity and Rotation in Stellarators

    International Nuclear Information System (INIS)

    Helander, P.; Simakov, A. N.

    2008-01-01

    It is shown that collisional plasma transport is intrinsically ambipolar only in quasiaxisymmetric or quasihelically symmetric magnetic configurations. Only in such fields can the plasma rotate freely, and then only in the direction of quasisymmetry. In a non-quasi-symmetric magnetic field, the average radial electric field is determined by parallel viscosity, which in turn is usually governed by collisional processes. Locally, the radial electric field may be affected by turbulent Reynolds stress producing zonal flows, but on a radial average taken over several ion gyroradii, it is determined by parallel viscosity, at least if the turbulence is electrostatic and obeys the conventional gyrokinetic orderings. This differs from the situation in a tokamak, where there is no flow damping by parallel viscosity in the symmetry direction and the turbulent Reynolds stress may affect the global radial electric field

  19. Turbulence assessment at potential turbine sites

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, A. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-12-31

    As opposed to a fixed anemometer, the Tala kite is free to move in the air. The motion of the kite is not random, it moves with or against the speed gradient towards the center of passing turbulence events of higher or lower speeds thus allowing the kite to measure event maximum or minimum speed rather than the speed at some unknown distance from the event center like a fixed anemometer. This behavior is confirmed both by a theoretical aerodynamics analysis of the kite motion and by data from a field study where kite and hot film anemometer (HFA) events, defined by the rain flow count method, were compared with flap events on a rotating turbine blade. The HFAs simulated too few events lasting too long while the kites reproduced both the number of events and event periods remarkably close. It is concluded that the kite is the optimal tool for measuring turbulence at potential turbine sites. Kite turbulence can form the bases for economic return estimates and an example is given where less windy sites could be more economical than other more turbulent higher speed sites. 13 refs., 8 figs.

  20. Precession of a rapidly rotating cylinder flow: traverse through resonance

    Science.gov (United States)

    Lopez, Juan; Marques, Francisco

    2014-11-01

    The flow in a rapidly rotating cylinder that is titled and also rotating around another axis can undergo sudden transitions to turbulence. Experimental observations of this have been associated with triadic resonances. The experimental and theoretical results are well-established in the literature, but there remains a lack of understanding of the physical mechanisms at play in the sudden transition from laminar to turbulent flow with very small variations in the governing parameters. Here, we present direct numerical simulations of a traverse in parameter space through an isolated resonance, and describe in detail the bifurcations involved in the sudden transition. U.S. National Science Foundation Grant CBET-1336410 and Spanish Ministry of Education and Science Grant (with FEDER funds) FIS2013-40880.

  1. On the mechanism of elasto-inertial turbulence.

    Science.gov (United States)

    Dubief, Yves; Terrapon, Vincent E; Soria, Julio

    2013-11-01

    Elasto-inertial turbulence (EIT) is a new state of turbulence found in inertial flows with polymer additives. The dynamics of turbulence generated and controlled by such additives is investigated from the perspective of the coupling between polymer dynamics and flow structures. Direct numerical simulations of channel flow with Reynolds numbers ranging from 1000 to 6000 (based on the bulk and the channel height) are used to study the formation and dynamics of elastic instabilities and their effects on the flow. The flow topology of EIT is found to differ significantly from Newtonian wall-turbulence. Structures identified by positive (rotational flow topology) and negative (extensional/compressional flow topology) second invariant Q a isosurfaces of the velocity gradient are cylindrical and aligned in the spanwise direction. Polymers are significantly stretched in sheet-like regions that extend in the streamwise direction with a small upward tilt. The Q a cylindrical structures emerge from the sheets of high polymer extension, in a mechanism of energy transfer from the fluctuations of the polymer stress work to the turbulent kinetic energy. At subcritical Reynolds numbers, EIT is observed at modest Weissenberg number ( Wi , ratio polymer relaxation time to viscous time scale). For supercritical Reynolds numbers, flows approach EIT at large Wi . EIT provides new insights on the nature of the asymptotic state of polymer drag reduction (maximum drag reduction), and explains the phenomenon of early turbulence, or onset of turbulence at lower Reynolds numbers than for Newtonian flows observed in some polymeric flows.

  2. Strange attractors in weakly turbulent Couette-Taylor flow

    Science.gov (United States)

    Brandstater, A.; Swinney, Harry L.

    1987-01-01

    An experiment is conducted on the transition from quasi-periodic to weakly turbulent flow of a fluid contained between concentric cylinders with the inner cylinder rotating and the outer cylinder at rest. Power spectra, phase-space portraits, and circle maps obtained from velocity time-series data indicate that the nonperiodic behavior observed is deterministic, that is, it is described by strange attractors. Various problems that arise in computing the dimension of strange attractors constructed from experimental data are discussed and it is shown that these problems impose severe requirements on the quantity and accuracy of data necessary for determining dimensions greater than about 5. In the present experiment the attractor dimension increases from 2 at the onset of turbulence to about 4 at a Reynolds number 50-percent above the onset of turbulence.

  3. The residual zonal dynamics in a toroidally rotating tokamak

    International Nuclear Information System (INIS)

    Zhou Deng

    2015-01-01

    Zonal flows, initially driven by ion-temperature-gradient turbulence, may evolve due to the neoclassic polarization in a collisionless tokamak plasma. In this presentation, the form of the residual zonal flow is presented for tokamak plasmas rotating toroidally at arbitrary velocity. The gyro-kinetic equation is analytically solved to give the expression of residual zonal flows with arbitrary rotating velocity. The zonal flow level decreases as the rotating velocity increases. The numerical evaluation is in good agreement with the previous simulation result for high aspect ratio tokamaks. (author)

  4. Sensible Heat Flux Related to Variations in Atmospheric Turbulence Kinetic Energy on a Sandy Beach

    Science.gov (United States)

    2017-06-01

    production, turbulent transport by pressure fluctuations, dissipation and flux divergence . The TKE budget as explained by Srivastava and Sarthi (2002...generation of turbulence. Term 3 is flux divergence , which describes the differential transport of TKE by turbulent eddies. Term 4, dissipation, is a sink...the time series data to align all signals to the same time base. Winds were rotated into a shore-normal frame of reference. All data outside of T

  5. Hydrodynamical and magnetohydrodynamic global bifurcations in a highly turbulent von Karman flow; Bifurcations globales hydrodynamiques et magnetohydrodynamiques dans un ecoulement de von Karman turbulent

    Energy Technology Data Exchange (ETDEWEB)

    Ravelet, F

    2005-09-15

    We report experimental studies of the turbulent von Karman flow, inertially stirred between counter-rotating impellers. We first study the flow and its transition from laminar to turbulent regime. We highlight the role of slowly varying large scales, due to the presence of an azimuthal mixing layer. The large scales of this flow can be unstable in turbulent regime. We study the statistics of the transitions between the different mean states. The second part is dedicated to an experiment in liquid sodium, called VKS2. We optimize the time-averaged flow in order to allow kinematic dynamo action. We report the very first results of the experiment, and discuss the role of the large scales temporal non-stationariness. (author)

  6. Rapid determination of Faraday rotation in optical glasses by means of secondary Faraday modulator.

    Science.gov (United States)

    Sofronie, M; Elisa, M; Sava, B A; Boroica, L; Valeanu, M; Kuncser, V

    2015-05-01

    A rapid high sensitive method for determining the Faraday rotation of optical glasses is proposed. Starting from an experimental setup based on a Faraday rod coupled to a lock-in amplifier in the detection chain, two methodologies were developed for providing reliable results on samples presenting low and large Faraday rotations. The proposed methodologies were critically discussed and compared, via results obtained in transmission geometry, on a new series of aluminophosphate glasses with or without rare-earth doping ions. An example on how the method can be used for a rapid examination of the optical homogeneity of the sample with respect to magneto-optical effects is also provided.

  7. Chaotic cold accretion on to black holes in rotating atmospheres

    Science.gov (United States)

    Gaspari, M.; Brighenti, F.; Temi, P.

    2015-07-01

    The fueling of black holes is one key problem in the evolution of baryons in the universe. Chaotic cold accretion (CCA) profoundly differs from classic accretion models, as Bondi and thin disc theories. Using 3D high-resolution hydrodynamic simulations, we now probe the impact of rotation on the hot and cold accretion flow in a typical massive galaxy. In the hot mode, with or without turbulence, the pressure-dominated flow forms a geometrically thick rotational barrier, suppressing the black hole accretion rate to ~1/3 of the spherical case value. When radiative cooling is dominant, the gas loses pressure support and quickly circularizes in a cold thin disk; the accretion rate is decoupled from the cooling rate, although it is higher than that of the hot mode. In the more common state of a turbulent and heated atmosphere, CCA drives the dynamics if the gas velocity dispersion exceeds the rotational velocity, i.e., turbulent Taylor number Tat 1), the broadening of the distribution and the efficiency of collisions diminish, damping the accretion rate ∝ Tat-1, until the cold disk drives the dynamics. This is exacerbated by the increased difficulty to grow TI in a rotating halo. The simulated sub-Eddington accretion rates cover the range inferred from AGN cavity observations. CCA predicts inner flat X-ray temperature and r-1 density profiles, as recently discovered in M 87 and NGC 3115. The synthetic Hα images reproduce the main features of cold gas observations in massive ellipticals, as the line fluxes and the filaments versus disk morphology. Such dichotomy is key for the long-term AGN feedback cycle. As gas cools, filamentary CCA develops and boosts AGN heating; the cold mode is thus reduced and the rotating disk remains the sole cold structure. Its consumption leaves the atmosphere in hot mode with suppressed accretion and feedback, reloading the cycle.

  8. Magneto-paper electrophoresis in the separation of inorganic ions

    International Nuclear Information System (INIS)

    Mukherjee, H.G.; Datta, S.K.

    1983-01-01

    A comparative study of the separation of lanthanide ions by paper electrophoresis and magneto-paper electrophoresis is reported. The separation of La(III)-Gd(III), La(III)-Dy(III), Lu(III)-Gd(III), Lu(III)-Ho(III) etc. was achieved by magneto paper electrophoresis using 0.1M KCl as carrier electrolyte. Separation of different oxidation states of the same element like Cu(I)-Cu(II), Ce(III)-Ce(IV), Mn(CN) 6 3 - -Mn(CN) 6 4 - , Co(C 2 O 4 ) 2 2 - -Co(C 2 O 4 ) 3 3 - , V(CN) 6 3 - -VO(CN) 5 3 - , W(CN) 8 4 - -W(CN) 8 3 - and Ru(CN) 6 3 - Ru(CN) 6 4 - was also achieved by magneto paper electrophoretic technique using different carrier electrolytes. (Author)

  9. Influence of the linear magneto-electric effect on the lateral shift of light reflected from a magneto-electric film

    International Nuclear Information System (INIS)

    Dadoenkova, Yu S; Petrov, R V; Bichurin, M I; Bentivegna, F F L; Dadoenkova, N N; Lyubchanskii, I L

    2016-01-01

    We present a theoretical investigation of the lateral shift of an infrared light beam reflected from a magnetic film deposited on a non-magnetic dielectric substrate, taking into account the linear magneto-electric interaction in the magnetic film. We use the stationary phase method to evaluate the lateral shift. It is shown that the magneto-electric coupling leads to a six-fold enhancement of the lateral shift amplitude of a p-(s-) polarized incident beam reflected into a s-(p-) polarized beam. A reversal of the magnetization in the film leads to a nonreciprocal sign change of the lateral shift. (paper)

  10. The influence of streamwise vortices on turbulent heat transfer in rectangular ducts with various aspect ratios

    International Nuclear Information System (INIS)

    Choi, Hang Seok; Park, Tae Seon

    2013-01-01

    Highlights: ► With changing aspect ratio, the effect of secondary flows on the turbulent heat transfer is scrutinized by a LES. ► The conditional sampling technique of instantaneous near-wall streamwise vortices is developed. ► Clockwise and counter-clockwise rotating streamwise vortices are sampled and discussed with the wall heat transfer. ► The hot-sweep motions of CW and CCW vortices clearly appear with increasing aspect ratio. -- Abstract: The effect of aspect ratio of rectangular duct on the turbulent flow and heat transfer is very important for its engineering applications. But the turbulent thermal fields have not been fundamentally scrutinized in spite of its engineering significance especially for cooling device. Hence, in the present study, large eddy simulation is applied to the turbulent flow and heat transfer in rectangular ducts with varying aspect ratio. The turbulent statistics of the flow and thermal quantities are calculated and the characteristics of wall Nusselt number are investigated for each rectangular duct. Especially, to scrutinize near-wall streamwise vortices, a conditional sampling technique is developed and adopted. Clockwise and counter-clockwise rotating streamwise vortices are sampled and the probability density function of the vortex circulation Reynolds number and wall Nusselt number are calculated. From the results, the time-averaged secondary flow caused by instantaneous vortical motions has a great effect on the heat and momentum transport of the flow in the rectangular ducts. Hence, the wall Nusselt number is enhanced near the downwash flow region of the secondary flow. However, with increasing the aspect ratio, the effects of the hot-sweep flow of the clockwise and counter-clockwise rotating vortices become equally dominant near the wall normal bisector of the ducts. During time averaging process, these two counter-rotating vortices are canceled out each other diminishing a secondary flow but they still enhance the

  11. Angular momentum transfer in primordial discs and the rotation of the first stars

    Science.gov (United States)

    Hirano, Shingo; Bromm, Volker

    2018-05-01

    We investigate the rotation velocity of the first stars by modelling the angular momentum transfer in the primordial accretion disc. Assessing the impact of magnetic braking, we consider the transition in angular momentum transport mode at the Alfvén radius, from the dynamically dominated free-fall accretion to the magnetically dominated solid-body one. The accreting protostar at the centre of the primordial star-forming cloud rotates with close to breakup speed in the case without magnetic fields. Considering a physically motivated model for small-scale turbulent dynamo amplification, we find that stellar rotation speed quickly declines if a large fraction of the initial turbulent energy is converted to magnetic energy (≳ 0.14). Alternatively, if the dynamo process were inefficient, for amplification due to flux freezing, stars would become slow rotators if the pre-galactic magnetic field strength is above a critical value, ≃10-8.2 G, evaluated at a scale of nH = 1 cm-3, which is significantly higher than plausible cosmological seed values (˜10-15 G). Because of the rapid decline of the stellar rotational speed over a narrow range in model parameters, the first stars encounter a bimodal fate: rapid rotation at almost the breakup level, or the near absence of any rotation.

  12. Toroidal rotation studies in KSTAR

    Science.gov (United States)

    Lee, S. G.; Lee, H. H.; Yoo, J. W.; Kim, Y. S.; Ko, W. H.; Terzolo, L.; Bitter, M.; Hill, K.; KSTAR Team

    2014-10-01

    Investigation of the toroidal rotation is one of the most important topics for the magnetically confined fusion plasma researches since it is essential for the stabilization of resistive wall modes and its shear plays an important role to improve plasma confinement by suppressing turbulent transport. The most advantage of KSTAR tokamak for toroidal rotation studies is that it equips two main diagnostics including the high-resolution X-ray imaging crystal spectrometer (XICS) and charge exchange spectroscopy (CES). Simultaneous core toroidal rotation and ion temperature measurements of different impurity species from the XICS and CES have shown in reasonable agreement with various plasma discharges in KSTAR. It has been observed that the toroidal rotation in KSTAR is faster than that of other tokamak devices with similar machine size and momentum input. This may due to an intrinsically low toroidal field ripple and error field of the KSTAR device. A strong braking of the toroidal rotation by the n = 1 non-resonant magnetic perturbations (NRMPs) also indicates these low toroidal field ripple and error field. Recently, it has been found that n = 2 NRMPs can also damp the toroidal rotation in KSTAR. The detail toroidal rotation studies will be presented. Work supported by the Korea Ministry of Science, ICT and Future Planning under the KSTAR project.

  13. Noncontact speckle-based optical sensor for detection of glucose concentration using magneto-optic effect

    Science.gov (United States)

    Ozana, Nisan; Beiderman, Yevgeny; Anand, Arun; Javidi, Baharam; Polani, Sagi; Schwarz, Ariel; Shemer, Amir; Garcia, Javier; Zalevsky, Zeev

    2016-06-01

    We experimentally verify a speckle-based technique for noncontact measurement of glucose concentration in the bloodstream. The final device is intended to be a single wristwatch-style device containing a laser, a camera, and an alternating current (ac) electromagnet generated by a solenoid. The experiments presented are performed in vitro as proof of the concept. When a glucose substance is inserted into a solenoid generating an ac magnetic field, it exhibits Faraday rotation, which affects the temporal changes of the secondary speckle pattern distributions. The temporal frequency resulting from the ac magnetic field was found to have a lock-in amplification role, which increased the observability of the relatively small magneto-optic effect. Experimental results to support the proposed concept are presented.

  14. Magneto-optic studies of magnetic oxides

    International Nuclear Information System (INIS)

    Gehring, Gillian A.; Alshammari, Marzook S.; Score, David S.; Neal, James R.; Mokhtari, Abbas; Fox, A. Mark

    2012-01-01

    A brief review of the use of magneto-optic methods to study magnetic oxides is given. A simple method to obtain the magnetic circular dichroism (MCD) of a thin film on a transparent substrate is described. The method takes full account of multiple reflections in the film and substrate. Examples of the magneto-optic spectra of Co-doped ZnO, Fe 3 O 4 , and GdMnO 3 are given. The Maxwell–Garnett method is used to describe the effects of metallic cobalt inclusions in Co:ZnO samples, and the change of the MCD spectra of Fe 3 O 4 at the Verwey temperature is discussed. Data showing different MCD signals at different energies is presented for GdMnO 3 .

  15. Rotationally induced fragmentation in the prestellar core L1544

    Energy Technology Data Exchange (ETDEWEB)

    Klapp, Jaime; Zavala, Miguel [Departamento de Física, Instituto Nacional de Investigaciones Nucleares (ININ), Km. 36.5, Carretera México-Toluca, La Marquesa 52750, Estado de México (Mexico); Sigalotti, Leonardo Di G.; Peña-Polo, Franklin; Troconis, Jorge [Centro de Física, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado Postal 20632, Caracas 1020A (Venezuela, Bolivarian Republic of)

    2014-01-10

    Recent observations indicate that there is no correlation between the level of turbulence and fragmentation in detected protostellar cores, suggesting that turbulence works mainly before gravitationally bound prestellar cores form and that their inner parts are likely to be velocity coherent. Based on this evidence, we simulate the collapse and fragmentation of an isolated, initially centrally condensed, uniformly rotating core of total mass M = 5.4 M {sub ☉}, using the smoothed particle hydrodynamics code GADGET-2 modified with the inclusion of sink particles, in order to compare the statistical properties of the resulting stellar ensembles with previous gravoturbulent fragmentation models. The initial conditions are intended to fit the observed properties of the prestellar core L1544. We find that for ratios of the rotational to the gravitational energy β ≥ 0.05, a massive disk is formed at the core center from which a central primary condenses after ∼50 kyr. Soon thereafter the disk fragments into secondary protostars, consistent with an intermediate mode of star formation in which groups of 10-100 stars form from a single core. The models predict peak accretion rates between ∼10{sup –5} and 10{sup –4} M {sub ☉} yr{sup –1} for all stars and reproduce many of the statistical properties predicted from gravoturbulent fragmentation, suggesting that on the small scales of low-mass, dense cores these are independent of whether the contracting gas is turbulent or purely rotating.

  16. Dynamic viscous behavior of magneto-rheological fluid in coupled mode operation

    International Nuclear Information System (INIS)

    Kaluvan, Suresh; Park, JinHyuk; Choi, Seung-Hyun; Kim, Pyunghwa; Choi, Seung-Bok

    2015-01-01

    A new method of measuring the coupled mode viscosity behavior of magneto-rheological (MR) fluid using the resonance concept is proposed. The coupled mode viscosity measurement device is designed as a resonant system using a cantilever beam probing with the rotating shaft mechanism. The ‘C’ shaped iron core of an electromagnetic coil, mounted in a resonating cantilever beam is used as a probing tip. The MR fluid between the probing tip and the rotating shaft mechanism experiences both squeeze and shear force. The vibration induced by the resonating cantilever beam creates only squeeze force on the MR fluid when the shaft is stationary. When the cantilever beam is vibrating at resonance and the shaft is rotating, the MR fluid experiences coupled (shear and squeeze) force. The cantilever beam is vibrated at its resonant frequency using the piezoelectric actuation technique and the resonance is maintained using simple closed loop resonator electronics. The input current to the probing coil is varied to produce a variable magnetic field which causes the viscosity change of the MR fluid. The viscosity change of the MR fluid produces a coupled force, which induces an additional stiffness on the resonating cantilever beam and alters its initial resonant frequency. The shift in resonant frequency due to the change in viscosity of the MR fluid is measured with the help of a resonator electronics circuit and its viscosity is related to the field dependent coupled mode yield stress of the MR fluid. The proposed measurement device is analytically derived and experimentally evaluated. (technical note)

  17. Turbulence modeling needs of commercial CFD codes: Complex flows in the aerospace and automotive industries

    Science.gov (United States)

    Befrui, Bizhan A.

    1995-01-01

    This viewgraph presentation discusses the following: STAR-CD computational features; STAR-CD turbulence models; common features of industrial complex flows; industry-specific CFD development requirements; applications and experiences of industrial complex flows, including flow in rotating disc cavities, diffusion hole film cooling, internal blade cooling, and external car aerodynamics; and conclusions on turbulence modeling needs.

  18. Helicity--vorticity turbulent pumping of magnetic fields in the solar dynamo

    OpenAIRE

    Pipin, V. V.

    2012-01-01

    The interaction of helical convective motions and differential rotation in the solar convection zone results in turbulent drift of a large-scale magnetic field. We discuss the pumping mechanism and its impact on the solar dynamo.

  19. Secondary Flow Phenomena in Rotating Radial Straight Pipes

    OpenAIRE

    Cheng, K. C.; Wang, Liqiu

    1995-01-01

    Flow visualization results for secondary flow phenomena near the exit of a rotating radial-axis straight pipe (length ࡁ = 82 cm, inside diameter d = 3.81 cm, ࡁ/d 21.52) are presented to study the stabilizing (relaminarization) and destabilizing (early transition from laminar to turbulent flow) effects of Coriolis forces for Reynolds numbers Re = 500 ∼ 4,500 and rotating speeds n = 0 ∼ 200 rpm. The flow visualization was realised by smoke injection method. The main features of the trans...

  20. Introduction to turbulent dynamical systems in complex systems

    CERN Document Server

    Majda, Andrew J

    2016-01-01

    This volume is a research expository article on the applied mathematics of turbulent dynamical systems through the paradigm of modern applied mathematics. It involves the blending of rigorous mathematical theory, qualitative and quantitative modeling, and novel numerical procedures driven by the goal of understanding physical phenomena which are of central importance to the field. The contents cover general framework, concrete examples, and instructive qualitative models. Accessible open problems are mentioned throughout. Topics covered include: · Geophysical flows with rotation, topography, deterministic and random forcing · New statistical energy principles for general turbulent dynamical systems, with applications · Linear statistical response theory combined with information theory to cope with model errors · Reduced low order models · Recent mathematical strategies for online data assimilation of turbulent dynamical systems as well as rigorous results for finite ensemble Kalman filters The volume wi...

  1. Analysis of macroscopic and microscopic rotating motions in rotating jets: A direct numerical simulation

    Directory of Open Access Journals (Sweden)

    Xingtuan Yang

    2015-05-01

    Full Text Available A direct numerical simulation study of the characteristics of macroscopic and microscopic rotating motions in swirling jets confined in a rectangular flow domain is carried out. The different structures of vortex cores for different swirl levels are illustrated. It is found that the vortex cores of low swirl flows are of regular cylindrical-helix patterns, whereas those of the high swirl flows are characterized by the formation of the bubble-type vortex breakdown followed by the radiant processing vortex cores. The results of mean velocity fields show the general procedures of vortex origination. Moreover, the effects of macroscopic and microscopic rotating motions with respect to the mean and fluctuation fields of the swirling flows are evaluated. The microscopic rotating effects, especially the effects with respect to the turbulent fluctuation motion, are increasingly intermittent with the increase in the swirl levels. In contrast, the maximum value of the probability density functions with respect to the macroscopic rotating effects of the fluctuation motion occurs at moderate swirl levels since the macroscopic rotating effects are attenuated by the formation of the bubble vortex breakdown with a region of stagnant fluids at supercritical swirl levels.

  2. Anomalous diffusion in geophysical and laboratory turbulence

    Directory of Open Access Journals (Sweden)

    A. Tsinober

    1994-01-01

    Full Text Available We present an overview and some new results on anomalous diffusion of passive scalar in turbulent flows (including those used by Richardson in his famous paper in 1926. The obtained results are based on the analysis of the properties of invariant quantities (energy, enstrophy, dissipation, enstrophy generation, helicity density, etc. - i.e. independent of the choice of the system of reference as the most appropriate to describe physical processes - in three different turbulent laboratory flows (grid-flow, jet and boundary layer, see Tsinober et al. (1992 and Kit et al. (1993. The emphasis is made on the relations between the asymptotic properties of the intermittency exponents of higher order moments of different turbulent fields (energy, dissipation, helicity, spontaneous breaking of isotropy and reflexional symmetry and the variability of turbulent diffusion in the atmospheric boundary layer, in the troposphere and in the stratosphere. It is argued that local spontaneous breaking of isotropy of turbulent flow results in anomalous scaling laws for turbulent diffusion (as compared to the scaling law of Richardson which are observed, as a rule, in different atmospheric layers from the atmospheric boundary layer (ABL to the stratosphere. Breaking of rotational symmetry is important in the ABL, whereas reflexional symmetry breaking is dominating in the troposphere locally and in the stratosphere globally. The results are of speculative nature and further analysis is necessary to validate or disprove the claims made, since the correspondence with the experimental results may occur for the wrong reasons as happens from time to time in the field of turbulence.

  3. Development of magneto-plasmonic nanoparticles for multimodal image-guided therapy to the brain

    OpenAIRE

    Tomitaka, Asahi; Arami, Hamed; Raymond, Andrea; Yndart, Adriana; Kaushik, Ajeet; Jayant, Rahul Dev; Takemura, Yasushi; Cai, Yong; Toborek, Michal; Nair, Madhavan

    2017-01-01

    Magneto-plasmonic nanoparticles are one of the emerging multi-functional materials in the field of nanomedicine. Their potential for targeting and multi-modal imaging is highly attractive. In this study, magnetic core / gold shell (MNP@Au) magneto-plasmonic nanoparticles were synthesized by citrate reduction of Au ion on magnetic nanoparticle seeds. Hydrodynamic size and optical property of magneto-plasmonic nanoparticles synthesized with the variation of Au ion and reducing agent concentrati...

  4. Application of the Proper Orthogonal Decomposition to Turbulent Czochralski Convective Flows

    International Nuclear Information System (INIS)

    Rahal, S; Cerisier, P; Azuma, H

    2007-01-01

    The aim of this work is to study the general aspects of the convective flow instabilities in a simulated Czochralski system. We considered the influence of the buoyancy and crystal rotation. Velocity fields, obtained by an ultrasonic technique, the corresponding 2D Fourier spectra and a correlation function, have been used. Steady, quasi-periodic and turbulent flows, are successively recognized, as the Reynolds number was increased, for a fixed Rayleigh number. The orthogonal decomposition method was applied and the numbers of modes, involved in the dynamics of turbulent flows, calculated. As far as we know, this method has been used for the first time to study the Czochralski convective flows. This method provides also information on the most important modes and allows simple theoretical models to be established. The large rotation rates of the crystal were found to stabilize the flow, and conversely the temperature gradients destabilize the flow. Indeed, the increase of the rotation effects reduces the number of involved modes and oscillations, and conversely, as expected, the increase of the buoyancy effects induces more modes to be involved in the dynamics. Thus, the flow oscillations can be reduced either by increasing the crystal rotation rate to the adequate value, as shown in this study or by imposing a magnetic field

  5. Turbulent convection in an anelastic rotating sphere: A model for the circulation on the giant planets

    Science.gov (United States)

    Kaspi, Yohai

    This thesis studies the dynamics of a rotating compressible gas sphere, driven by internal convection, as a model for the dynamics on the giant planets. We develop a new general circulation model for the Jovian atmosphere, based on the MITgcm dynamical core augmenting the nonhydrostatic model. The grid extends deep into the planet's interior allowing the model to compute the dynamics of a whole sphere of gas rather than a spherical shell (including the strong variations in gravity and the equation of state). Different from most previous 3D convection models, this model is anelastic rather than Boussinesq and thereby incorporates the full density variation of the planet. We show that the density gradients caused by convection drive the system away from an isentropic and therefore barotropic state as previously assumed, leading to significant baroclinic shear. This shear is concentrated mainly in the upper levels and associated with baroclinic compressibility effects. The interior flow organizes in large cyclonically rotating columnar eddies parallel to the rotation axis, which drive upgradient angular momentum eddy fluxes, generating the observed equatorial superrotation. Heat fluxes align with the axis of rotation, contributing to the observed flat meridional emission. We show the transition from weak convection cases with symmetric spiraling columnar modes similar to those found in previous analytic linear theory, to more turbulent cases which exhibit similar, though less regular and solely cyclonic, convection columns which manifest on the surface in the form of waves embedded within the superrotation. We develop a mechanical understanding of this system and scaling laws by studying simpler configurations and the dependence on physical properties such as the rotation period, bottom boundary location and forcing structure. These columnar cyclonic structures propagate eastward, driven by dynamics similar to that of a Rossby wave except that the restoring planetary

  6. Magneto-optic studies of magnetic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Gehring, Gillian A., E-mail: g.gehring@shef.ac.uk [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Alshammari, Marzook S.; Score, David S.; Neal, James R.; Mokhtari, Abbas; Fox, A. Mark [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom)

    2012-10-15

    A brief review of the use of magneto-optic methods to study magnetic oxides is given. A simple method to obtain the magnetic circular dichroism (MCD) of a thin film on a transparent substrate is described. The method takes full account of multiple reflections in the film and substrate. Examples of the magneto-optic spectra of Co-doped ZnO, Fe{sub 3}O{sub 4}, and GdMnO{sub 3} are given. The Maxwell-Garnett method is used to describe the effects of metallic cobalt inclusions in Co:ZnO samples, and the change of the MCD spectra of Fe{sub 3}O{sub 4} at the Verwey temperature is discussed. Data showing different MCD signals at different energies is presented for GdMnO{sub 3}.

  7. Transitional-turbulent spots and turbulent-turbulent spots in boundary layers.

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz; Wallace, James M; Skarda, Jinhie; Lozano-Durán, Adrián; Hickey, Jean-Pierre

    2017-07-03

    Two observations drawn from a thoroughly validated direct numerical simulation of the canonical spatially developing, zero-pressure gradient, smooth, flat-plate boundary layer are presented here. The first is that, for bypass transition in the narrow sense defined herein, we found that the transitional-turbulent spot inception mechanism is analogous to the secondary instability of boundary-layer natural transition, namely a spanwise vortex filament becomes a [Formula: see text] vortex and then, a hairpin packet. Long streak meandering does occur but usually when a streak is infected by a nearby existing transitional-turbulent spot. Streak waviness and breakdown are, therefore, not the mechanisms for the inception of transitional-turbulent spots found here. Rather, they only facilitate the growth and spreading of existing transitional-turbulent spots. The second observation is the discovery, in the inner layer of the developed turbulent boundary layer, of what we call turbulent-turbulent spots. These turbulent-turbulent spots are dense concentrations of small-scale vortices with high swirling strength originating from hairpin packets. Although structurally quite similar to the transitional-turbulent spots, these turbulent-turbulent spots are generated locally in the fully turbulent environment, and they are persistent with a systematic variation of detection threshold level. They exert indentation, segmentation, and termination on the viscous sublayer streaks, and they coincide with local concentrations of high levels of Reynolds shear stress, enstrophy, and temperature fluctuations. The sublayer streaks seem to be passive and are often simply the rims of the indentation pockets arising from the turbulent-turbulent spots.

  8. Novel design of a self powered and self sensing magneto-rheological damper

    International Nuclear Information System (INIS)

    Ferdaus, Mohammad Meftahul; Rashid, M M; Bhuiyan, M M I; Muthalif, Asan Gani Bin Abdul; Hasan, M R

    2013-01-01

    Magneto-rheological (MR) dampers are semi-active control devices and use MR fluids. Magneto-rheological dampers have successful applications in mechatronics engineering, civil engineering and numerous areas of engineering. At present, traditional MR damper systems, require a isolated power supply and dynamic sensor. This paper presents the achievability and accuracy of a self- powered and self-sensing magneto-rheological damper using harvested energy from the vibration and shock environment in which it is deployed and another important part of this paper is the increased yield stress of the Magneto rheological Fluids. Magneto rheological fluids using replacement of glass beads for Magnetic Particles to surge yield stress is implemented here. Clearly this shows better result on yield stress, viscosity, and settling rate. Also permanent magnet generator (PMG) is designed and attached to a MR damper. For evaluating the self-powered MR damper's vibration mitigating capacity, an Engine Mount System using the MR damper is simulated. The ideal stiffness of the PMG for the Engine Mount System (EMS) is calculated by numerical study. The vibration mitigating performance of the EMS employing the self-powered and self sensing MR damper is theoretically calculated and evaluated in the frequency domain

  9. Novel design of a self powered and self sensing magneto-rheological damper

    Science.gov (United States)

    Meftahul Ferdaus, Mohammad; Rashid, M. M.; Bhuiyan, M. M. I.; Muthalif, Asan Gani Bin Abdul; Hasan, M. R.

    2013-12-01

    Magneto-rheological (MR) dampers are semi-active control devices and use MR fluids. Magneto-rheological dampers have successful applications in mechatronics engineering, civil engineering and numerous areas of engineering. At present, traditional MR damper systems, require a isolated power supply and dynamic sensor. This paper presents the achievability and accuracy of a self- powered and self-sensing magneto-rheological damper using harvested energy from the vibration and shock environment in which it is deployed and another important part of this paper is the increased yield stress of the Magneto rheological Fluids. Magneto rheological fluids using replacement of glass beads for Magnetic Particles to surge yield stress is implemented here. Clearly this shows better result on yield stress, viscosity, and settling rate. Also permanent magnet generator (PMG) is designed and attached to a MR damper. For evaluating the self-powered MR damper's vibration mitigating capacity, an Engine Mount System using the MR damper is simulated. The ideal stiffness of the PMG for the Engine Mount System (EMS) is calculated by numerical study. The vibration mitigating performance of the EMS employing the self-powered & self sensing MR damper is theoretically calculated and evaluated in the frequency domain.

  10. Giant magneto-impedance effect on nanocrystalline microwires with conductive layer deposit

    International Nuclear Information System (INIS)

    Wang, R.L.; Zhao, Z.J.; Liu, L.P.; Yuan, W.Z.; Yang, X.L.

    2005-01-01

    In this study, the giant magneto-impedance effect on Fe-based glass-coated nanocrystalline microwires with and without an additional outer copper layer was investigated. Experiment results showed that the magneto-impedance ratio of the wires with a layer of deposited copper is higher at low frequencies and lower at high frequencies (above 50 MHz), as compared to that of the microwires without an outer copper layer. The peak MI magnetic field, corresponding to the maximum of the magneto-impedance ratio shifts towards higher field values with increasing coating thickness of copper layer. The results are explained in terms of electro-magnetic interactions between the conductive layer and the ferromagnetic core

  11. A turbulence-induced switch in phytoplankton swimming behavior

    Science.gov (United States)

    Carrara, Francesco; Sengupta, Anupam; Stocker, Roman

    2015-11-01

    Phytoplankton, unicellular photosynthetic organisms that form the basis of life in aquatic environments, are frequently exposed to turbulence, which has long been known to affect phytoplankton fitness and species succession. Yet, mechanisms by which phytoplankton may adapt to turbulence have remained unknown. Here we present a striking behavioral response of a motile species - the red-tide-producing raphidophyte Heterosigma akashiwo - to hydrodynamic cues mimicking those experienced in ocean turbulence. In the absence of turbulence, H. akashiwo exhibits preferential upwards swimming (`negative gravitaxis'), observable as a strong accumulation of cells at the top of an experimental container. When cells were exposed to overturning in an automated chamber - representing a minimum experimental model of rotation by Kolmogorov-scale turbulent eddies - the population robustly split in two nearly equi-abundant subpopulations, one swimming upward and one swimming downward. Microscopic observations at the single-cell level showed that the behavioral switch was accompanied by a rapid morphological change. A mechanistic model that takes into account cell shape confirms that modulation of morphology can alter the hydrodynamic stress distribution over the cell body, which, in turn, triggers the observed switch in phytoplankton migration direction. This active response to fluid flow, whereby microscale morphological changes influence ocean-scale migration dynamics, could be part of a bet-hedging strategy to maximize the chances of at least a fraction of the population evading high-turbulence microzones.

  12. Breakdown of the large-scale circulation in $\\Gamma = 1/2$ rotating Rayleigh-Bénard flow

    NARCIS (Netherlands)

    Stevens, Richard Johannes Antonius Maria; Clercx, H.J.H.; Lohse, Detlef

    2012-01-01

    Experiments and simulations of rotating Rayleigh-Bénard convection in cylindrical samples have revealed an increase in heat transport with increasing rotation rate. This heat transport enhancement is intimately related to a transition in the turbulent flow structure from a regime dominated by a

  13. Regularity criteria for the 3D magneto-micropolar fluid equations via ...

    Indian Academy of Sciences (India)

    3D magneto-micropolar fluid equations. It involves only the direction of the velocity and the magnetic field. Our result extends to the cases of Navier–Stokes and MHD equations. Keywords. Magneto-micropolar fluid equations; regularity criteria; direction of velocity. 2010 Mathematics Subject Classification. 35Q35, 76W05 ...

  14. The transverse shear deformation behaviour of magneto-electro-elastic shell

    International Nuclear Information System (INIS)

    Albarody, Thar M. Badri; Al-Kayiem, Hussain H.; Faris, Waleed

    2016-01-01

    Compared to the large number of possible magneto-electro-elastic shell theories, very few exact solutions determining the in-plane stresses, electric displacements and magnetic inductions are possible. While, solving the magneto-electro-elastic shell equations in terms of thermo-magneto-electro-elastic generalized field functions on arbitrary domains and for general conditions exactly are not always possible. In the present work, a linear version of magneto-electro-elastic shell with simply supported boundary conditions, solved exactly, provided that the lamination scheme is cross-ply or anti-symmetric angle-ply laminates. The exact solution that introduced herein can measure the in-plane stresses, electric displacements and magnetic inductions. It also allow for an accurate and usually elegant and conclusive investigation of the various sensations in a shell structure. However, it is important for micro-electro-mechanical shell applications to have an approach available that gives the transverse shear deformation Behaviour for cases that cannot examine experimentally. An investigated examples were accompanied and noteworthy conclusions were drawn which highlight the issues of the implementation of the exact solution, implication of the effects of the material properties, lay-ups of the constituent layers, and shell parameters on the static Behaviour

  15. The transverse shear deformation behaviour of magneto-electro-elastic shell

    Energy Technology Data Exchange (ETDEWEB)

    Albarody, Thar M. Badri; Al-Kayiem, Hussain H. [UniversitiTeknologi PETRONAS, Perak (Malaysia); Faris, Waleed [International Islamic University Malaysia, Perak (Malaysia)

    2016-01-15

    Compared to the large number of possible magneto-electro-elastic shell theories, very few exact solutions determining the in-plane stresses, electric displacements and magnetic inductions are possible. While, solving the magneto-electro-elastic shell equations in terms of thermo-magneto-electro-elastic generalized field functions on arbitrary domains and for general conditions exactly are not always possible. In the present work, a linear version of magneto-electro-elastic shell with simply supported boundary conditions, solved exactly, provided that the lamination scheme is cross-ply or anti-symmetric angle-ply laminates. The exact solution that introduced herein can measure the in-plane stresses, electric displacements and magnetic inductions. It also allow for an accurate and usually elegant and conclusive investigation of the various sensations in a shell structure. However, it is important for micro-electro-mechanical shell applications to have an approach available that gives the transverse shear deformation Behaviour for cases that cannot examine experimentally. An investigated examples were accompanied and noteworthy conclusions were drawn which highlight the issues of the implementation of the exact solution, implication of the effects of the material properties, lay-ups of the constituent layers, and shell parameters on the static Behaviour.

  16. Numerical Investigation of Turbulence Models for a Superlaminar Journal Bearing

    Directory of Open Access Journals (Sweden)

    Aoshuang Ding

    2018-01-01

    Full Text Available With rotating machineries working at high speeds, oil flow in bearings becomes superlaminar. Under superlaminar conditions, flow exhibits between laminar and fully developed turbulence. In this study, superlaminar oil flow in an oil-lubricated tilting-pad journal bearing is analyzed through computational fluid dynamics (CFD. A three-dimensional bearing model is established. CFD results from the laminar model and 14 turbulence models are compared with experimental findings. The laminar simulation results of pad-side pressure are inconsistent with the experimental data. Thus, the turbulence effects on superlaminar flow should be considered. The simulated temperature and pressure distributions from the classical fully developed turbulence models cannot correctly fit the experimental data. As such, turbulence models should be corrected for superlaminar flow. However, several corrections, such as transition correction, are unsuitable. Among all the flow models, the SST model with low-Re correction exhibits the best pressure distribution and turbulence viscosity ratio. Velocity profile analysis confirms that a buffer layer plays an important role in the superlaminar boundary layer. Classical fully developed turbulence models cannot accurately predict the buffer layer, but this problem can be resolved by initiating an appropriate low-Re correction. Therefore, the SST model with low-Re correction yields suitable results for superlaminar flows in bearings.

  17. Intrinsic non-inductive current driven by ETG turbulence in tokamaks

    Science.gov (United States)

    Singh, Rameswar; Kaw, P. K.; Singh, R.; Gürcan, Ã.-. D.

    2017-10-01

    Motivated by observations and physics understanding of the phenomenon of intrinsic rotation, it is suggested that similar considerations for electron dynamics may result in intrinsic current in tokamaks. We have investigated the possibility of intrinsic non-inductive current in the turbulent plasma of tokamaks. Ohm's law is generalized to include the effect of turbulent fluctuations in the mean field approach. This clearly leads to the identification of sources and the mechanisms of non-inductive current drive by electron temperature gradient turbulence. It is found that a mean parallel electro-motive force and hence a mean parallel current can be generated by (1) the divergence of residual current flux density and (2) a non-flux like turbulent source from the density and parallel electric field correlations. Both residual flux and the non-flux source require parallel wave-number k∥ symmetry breaking for their survival which can be supplied by various means like mean E × B shear, turbulence intensity gradient, etc. Estimates of turbulence driven current are compared with the background bootstrap current in the pedestal region. It is found that turbulence driven current is nearly 10% of the bootstrap current and hence can have a significant influence on the equilibrium current density profiles and current shear driven modes.

  18. Magneto-optical Faraday spectroscopy of completely bismuth-substituted Bi3Fe5O12 garnet thin films

    International Nuclear Information System (INIS)

    Deb, M; Popova, E; Fouchet, A; Keller, N

    2012-01-01

    We performed a magneto-optical (MO) Faraday spectroscopy study of bismuth iron garnet Bi 3 Fe 5 O 12 thin single-crystalline films with thickness from 5 to 220 nm. The Faraday rotation and ellipticity spectra were measured for photon energies ranging from 1.7 to 4.2 eV. Using a model based on two electric dipole transitions associated with tetrahedral and octahedral iron sites, we successfully reproduce the observed rotation and ellipticity spectra. The sign of both site contributions to the Faraday rotation and ellipticity spectra has been used to interpret the complex thermal dependence of the Faraday rotation and ellipticity. For a Faraday ellipticity, anomalous hysteresis loops have been observed around specific photon energies. To explain the surprising shape of hysteresis loop, a model based on the superposition of two hysteresis loops with opposite sign associated with both sites is proposed. The modelling of these hysteresis loops allows accessing the magnetic properties of each individual sublattice. Finally, we have studied the dependence of the energy level parameters on bismuth content in Yi 3-x Bi x Fe 5 O 12 garnet and on the thickness of bismuth iron garnet. Based on this analysis, we show that MO spectroscopy is a fast and non-destructive technique to determine the bi-deficiency of BIG films.

  19. Airflows and turbulent flux measurements in mountainous terrain: Part 1. Canopy and local effects

    Science.gov (United States)

    Turnipseed, Andrew A.; Anderson, Dean E.; Blanken, Peter D.; Baugh, William M.; Monson, Russell K.

    2003-01-01

    We have studied the effects of local topography and canopy structure on turbulent flux measurements at a site located in mountainous terrain within a subalpine, coniferous forest. Our primary aim was to determine whether the complex terrain of the site affects the accuracy of eddy flux measurements from a practical perspective. We observed displacement heights, roughness lengths, spectral peaks, turbulent length scales, and profiles of turbulent intensities that were comparable in magnitude and pattern to those reported for forest canopies in simpler terrain. We conclude that in many of these statistical measures, the local canopy exerts considerably more influence than does topographical complexity. Lack of vertical flux divergence and modeling suggests that the flux footprints for the site are within the standards acceptable for the application of flux statistics. We investigated three different methods of coordinate rotation: double rotation (DR), triple rotation (TR), and planar-fit rotation (PF). Significant variability in rotation angles at low wind speeds was encountered with the commonly used DR and TR methods, as opposed to the PF method, causing some overestimation of the fluxes. However, these differences in fluxes were small when applied to large datasets involving sensible heat and CO2 fluxes. We observed evidence of frequent drainage flows near the ground during stable, stratified conditions at night. Concurrent with the appearance of these flows, we observed a positive bias in the mean vertical wind speed, presumably due to subtle topographic variations inducing a flow convergence below the measurement sensors. In the presence of such drainage flows, advection of scalars and non-zero bias in the mean vertical wind speed can complicate closure of the mass conservation budget at the site.

  20. Effective-mass model and magneto-optical properties in hybrid perovskites

    OpenAIRE

    Yu, Z. G.

    2016-01-01

    Hybrid inorganic-organic perovskites have proven to be a revolutionary material for low-cost photovoltaic applications. They also exhibit many other interesting properties, including giant Rashba splitting, large-radius Wannier excitons, and novel magneto-optical effects. Understanding these properties as well as the detailed mechanism of photovoltaics requires a reliable and accessible electronic structure, on which models of transport, excitonic, and magneto-optical properties can be effici...

  1. Surface roughness effects on turbulent Couette flow

    Science.gov (United States)

    Lee, Young Mo; Lee, Jae Hwa

    2017-11-01

    Direct numerical simulation of a turbulent Couette flow with two-dimensional (2-D) rod roughness is performed to examine the effects of the surface roughness. The Reynolds number based on the channel centerline laminar velocity (Uco) and channel half height (h) is Re =7200. The 2-D rods are periodically arranged with a streamwise pitch of λ = 8 k on the bottom wall, and the roughness height is k = 0.12 h. It is shown that the wall-normal extent for the logarithmic layer is significantly shortened in the rough-wall turbulent Couette flow, compared to a turbulent Couette flow with smooth wall. Although the Reynolds stresses are increased in a turbulent channel flow with surface roughness in the outer layer due to large-scale ejection motions produced by the 2-D rods, those of the rough-wall Couette flow are decreased. Isosurfaces of the u-structures averaged in time suggest that the decrease of the turbulent activity near the centerline is associated with weakened large-scale counter-rotating roll modes by the surface roughness. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).

  2. Experimental study of the anisotropic magneto-Seebeck effect in (Ga,Mn)As thin films

    Energy Technology Data Exchange (ETDEWEB)

    Althammer, Matthias; Krupp, Alexander T.; Brenninger, Thomas; Venkateshvaran, Deepak; Opel, Matthias; Gross, Rudolf; Goennenwein, Sebastian T.B. [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Dreher, Lukas [Walter Schottky Institut, Technische Universitaet Muenchen, Garching (Germany); Schoch, Wladimir; Limmer, Wolfgang [Abteilung Halbleiterphysik, Universitaet Ulm, Ulm (Germany)

    2011-07-01

    In analogy to anisotropic magnetoresistance (AMR), the thermopower of ferromagnetic materials also characteristically depends on the orientation of the magnetization vector. This anisotropic magneto-thermopower - or anisotropic magneto-Seebeck effect (AMS) - has only scarcely been studied to date. Taking the ferromagnetic semiconductor (Ga,Mn)As with its large magneto-resistive effects as a prototype example, we have measured the evolution of both the AMR and the AMS effects at liquid He temperatures as a function of the orientation of a magnetic field applied in the (Ga,Mn)As film plane, for different, fixed magnetic field magnitudes. Our data show that the AMS effect can be adequately modeled only if the symmetry of the (Ga,Mn)As crystal is explicitly taken into account. We quantitatively compare our AMR and AMS measurements with corresponding model calculations, and address the validity of the Mott relations linking the magneto-resistance and the magneto-Seebeck coefficients.

  3. Turbulence modeling of the Von Karman flow: Viscous and inertial stirrings

    International Nuclear Information System (INIS)

    Poncet, Sebastien; Schiestel, Roland; Monchaux, Romain

    2008-01-01

    The present work considers the turbulent Von Karman flow generated by two counter-rotating smooth flat (viscous stirring) or bladed (inertial stirring) disks. Numerical predictions based on one-point statistical modeling using a low-Reynolds number second-order full stress transport closure (RSM model) are compared to velocity measurements performed at CEA (Commissariat a l'Energie Atomique, France). The main and significant novelty of this paper is the use of a drag force in the momentum equations to reproduce the effects of inertial stirring instead of modeling the blades themselves. The influences of the rotational Reynolds number, the aspect ratio of the cavity, the rotating disk speed ratio and of the presence or not of impellers are investigated to get a precise knowledge of both the dynamics and the turbulence properties in the Von Karman configuration. In particular, we highlighted the transition between the merged and separated boundary layer regimes and the one between the Batchelor [Batchelor, G.K., 1951. Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow. Quat. J. Mech. Appl. Math. 4 (1), 29-41] and the Stewartson [Stewartson, K., 1953. On the flow between two rotating coaxial disks. Proc. Camb. Philos. Soc. 49, 333-341] flow structures in the smooth disk case. We determined also the transition between the one cell and the two cell regimes for both viscous and inertial stirrings

  4. Magnetostrophic balance as the optimal state for turbulent magnetoconvection.

    Science.gov (United States)

    King, Eric M; Aurnou, Jonathan M

    2015-01-27

    The magnetic fields of Earth and other planets are generated by turbulent convection in the vast oceans of liquid metal within them. Although direct observation is not possible, this liquid metal circulation is thought to be dominated by the controlling influences of planetary rotation and magnetic fields through the Coriolis and Lorentz forces. Theory famously predicts that planetary dynamo systems naturally settle into the so-called magnetostrophic state, where the Coriolis and Lorentz forces partially cancel, and convection is optimally efficient. Although this magnetostrophic theory correctly predicts the strength of Earth's magnetic field, no laboratory experiments have reached the magnetostrophic regime in turbulent liquid metal convection. Furthermore, computational dynamo simulations have as yet failed to produce a magnetostrophic dynamo, which has led some to question the existence of the magnetostrophic state. Here, we present results from the first, to our knowledge, turbulent, magnetostrophic convection experiments using the liquid metal gallium. We find that turbulent convection in the magnetostrophic regime is, in fact, maximally efficient. The experimental results clarify these previously disparate results, suggesting that the dynamically optimal magnetostrophic state is the natural expression of turbulent planetary dynamo systems.

  5. An analytical solution for the magneto-electro-elastic bimorph beam forced vibrations problem

    International Nuclear Information System (INIS)

    Milazzo, A; Orlando, C; Alaimo, A

    2009-01-01

    Based on the Timoshenko beam theory and on the assumption that the electric and magnetic fields can be treated as steady, since elastic waves propagate very slowly with respect to electromagnetic ones, a general analytical solution for the transient analysis of a magneto-electro-elastic bimorph beam is obtained. General magneto-electric boundary conditions can be applied on the top and bottom surfaces of the beam, allowing us to study the response of the bilayer structure to electromagnetic stimuli. The model reveals that the magneto-electric loads enter the solution as an equivalent external bending moment per unit length and as time-dependent mechanical boundary conditions through the definition of the bending moment. Moreover, the influences of the electro-mechanic, magneto-mechanic and electromagnetic coupling on the stiffness of the bimorph stem from the computation of the beam equivalent stiffness constants. Free and forced vibration analyses of both multiphase and laminated magneto-electro-elastic composite beams are carried out to check the effectiveness and reliability of the proposed analytic solution

  6. Order out of Randomness: Self-Organization Processes in Astrophysics

    Science.gov (United States)

    Aschwanden, Markus J.; Scholkmann, Felix; Béthune, William; Schmutz, Werner; Abramenko, Valentina; Cheung, Mark C. M.; Müller, Daniel; Benz, Arnold; Chernov, Guennadi; Kritsuk, Alexei G.; Scargle, Jeffrey D.; Melatos, Andrew; Wagoner, Robert V.; Trimble, Virginia; Green, William H.

    2018-03-01

    Self-organization is a property of dissipative nonlinear processes that are governed by a global driving force and a local positive feedback mechanism, which creates regular geometric and/or temporal patterns, and decreases the entropy locally, in contrast to random processes. Here we investigate for the first time a comprehensive number of (17) self-organization processes that operate in planetary physics, solar physics, stellar physics, galactic physics, and cosmology. Self-organizing systems create spontaneous " order out of randomness", during the evolution from an initially disordered system to an ordered quasi-stationary system, mostly by quasi-periodic limit-cycle dynamics, but also by harmonic (mechanical or gyromagnetic) resonances. The global driving force can be due to gravity, electromagnetic forces, mechanical forces (e.g., rotation or differential rotation), thermal pressure, or acceleration of nonthermal particles, while the positive feedback mechanism is often an instability, such as the magneto-rotational (Balbus-Hawley) instability, the convective (Rayleigh-Bénard) instability, turbulence, vortex attraction, magnetic reconnection, plasma condensation, or a loss-cone instability. Physical models of astrophysical self-organization processes require hydrodynamic, magneto-hydrodynamic (MHD), plasma, or N-body simulations. Analytical formulations of self-organizing systems generally involve coupled differential equations with limit-cycle solutions of the Lotka-Volterra or Hopf-bifurcation type.

  7. Bi-substituted iron garnet films for one-dimensional magneto-photonic crystals: Synthesis and properties

    Energy Technology Data Exchange (ETDEWEB)

    Shaposhnikov, A.N.; Karavainikov, A.V.; Prokopov, A.R.; Berzhansky, V.N. [Taurida National V.I. Vernadsky University, Vernadsky Av., 4, 95007 Simferopol (Ukraine); Salyuk, O.Y., E-mail: olga-saliuk@yandex.ru [Institute of Magnetizm NASU and MESU, 36-B Vernadsky Blvd., 03142 Kiev (Ukraine)

    2012-06-15

    Graphical abstract: Faraday hysteresis loops for Bi{sub 1.0}Y{sub 0.5}Gd{sub 1.5}Fe{sub 4.2}Al{sub 0.8}O{sub 12} film on glass-ceramic substrate (a), Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12} film on gallium–gadolinium garnet (b) and for glass-ceramic/SiO{sub 2}/Bi{sub 1.0}Y{sub 0.5}Gd{sub 1.5}Fe{sub 4.2}Al{sub 0.8}O{sub 12}/Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12} structure (c). Highlights: ► Bismuth-substituted iron garnet films as magneto-optical layers in magneto-photonic crystals. ► It is impossible to crystallize the films with high Bi content on amorphous substrates. ► The crystallization of the films can be achieved by their deposition on buffer layer with low bismuth content. -- Abstract: The crystallization processes in Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12}, Bi{sub 2.5}Gd{sub 0.5}Fe{sub 3.8}Al{sub 1.2}O{sub 12}, Bi{sub 1.5}Gd{sub 1.5}Fe{sub 4.5}Al{sub 0.5}O{sub 12} and Bi{sub 1.0}Y{sub 0.5}Gd{sub 1.5}Fe{sub 4.2}Al{sub 0.8}O{sub 12} garnet films deposited by reactive ion beam sputtering on (1 1 1) gadolinium–gallium garnet substrates, optical glass-ceramic and SiO{sub 2} films have been studied. Films were annealed at low pressure in oxygen atmosphere and in the air. The possibility of preparation of crystalline garnet films with high concentration of bismuth on the SiO{sub 2} films using a buffer layer with low concentration of Bi has been shown. This allows to produce one-dimensional magneto-photonic crystals with high effective Faraday rotation (several tens of°/μm for the visible optical spectrum).

  8. Magneto-optical enhancement of TbFeCo/Al films at short wavelength

    International Nuclear Information System (INIS)

    Song, K.; Ito, H.; Naoe, M.

    1992-01-01

    In this paper, the bilayered films composed of magneto-optical (MO) amorphous Tb-Te-Co alloy and reflective Al layers were deposited successively on glass slide substrates without plasma exposure by using the facing targets sputtering system. The specimen films with the thickness of MO layer t MO below 5 nm showed apparent perpendicular magnetic anisotropy constant Ku of 2 to 3 x 10 6 erg/cm3 and rectangular Kerr loop. The specimen film with t MO of 14 nm took the Kerr rotation angle θ k as large as about 0.36 degree, at the wavelength λ as short as about 400 nm. These values of θ k is considerably larger than those of the bilayered films in the conventional MO media. Normally, the bilayered films with t MO above 50 nm took θ k of about 0.25 degree at θ k of 400 nm

  9. Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations, transport and energy flows.

    Science.gov (United States)

    Abel, I G; Plunk, G G; Wang, E; Barnes, M; Cowley, S C; Dorland, W; Schekochihin, A A

    2013-11-01

    This paper presents a complete theoretical framework for studying turbulence and transport in rapidly rotating tokamak plasmas. The fundamental scale separations present in plasma turbulence are codified as an asymptotic expansion in the ratio ε = ρi/α of the gyroradius to the equilibrium scale length. Proceeding order by order in this expansion, a set of coupled multiscale equations is developed. They describe an instantaneous equilibrium, the fluctuations driven by gradients in the equilibrium quantities, and the transport-timescale evolution of mean profiles of these quantities driven by the interplay between the equilibrium and the fluctuations. The equilibrium distribution functions are local Maxwellians with each flux surface rotating toroidally as a rigid body. The magnetic equilibrium is obtained from the generalized Grad-Shafranov equation for a rotating plasma, determining the magnetic flux function from the mean pressure and velocity profiles of the plasma. The slow (resistive-timescale) evolution of the magnetic field is given by an evolution equation for the safety factor q. Large-scale deviations of the distribution function from a Maxwellian are given by neoclassical theory. The fluctuations are determined by the 'high-flow' gyrokinetic equation, from which we derive the governing principle for gyrokinetic turbulence in tokamaks: the conservation and local (in space) cascade of the free energy of the fluctuations (i.e. there is no turbulence spreading). Transport equations for the evolution of the mean density, temperature and flow velocity profiles are derived. These transport equations show how the neoclassical and fluctuating corrections to the equilibrium Maxwellian act back upon the mean profiles through fluxes and heating. The energy and entropy conservation laws for the mean profiles are derived from the transport equations. Total energy, thermal, kinetic and magnetic, is conserved and there is no net turbulent heating. Entropy is produced

  10. Broadbanding of circularly polarized patch antenna by waveguided magneto-dielectric metamaterial

    Directory of Open Access Journals (Sweden)

    Xin Mi Yang

    2015-12-01

    Full Text Available Design of bandwidth-enhanced circularly polarized (CP patch antenna using artificial magneto-dielectric substrate was investigated. The artificial magneto-dielectric material adopted here takes the form of waveguided metamaterial (WG-MTM. In particular, the embedded meander line (EML structure was employed as the building element of the WG-MTM. As verified by the retrieved effective medium parameters, the EML-based waveguided magneto-dielectric metamaterial (WG-MDM exhibits two-dimensionally isotropic magneto-dielectric property with respect to TEM wave excitations applied in two orthogonal directions. A CP patch antenna loaded with the EML-based WG-MDM (WG-MDM antenna has been proposed and its design procedure is described in detail. Simulation results show that the impedance and axial ratio bandwidths of the WG-MDM antenna have increased by 125% and 133%, respectively, compared with those obtained with pure dielectric substrate offering the same patch size. The design of the novel WG-MDM antenna was also validated by measurement results, which show good agreement with their simulated counterparts.

  11. Rich magneto-absorption spectra of AAB-stacked trilayer graphene.

    Science.gov (United States)

    Do, Thi-Nga; Shih, Po-Hsin; Chang, Cheng-Peng; Lin, Chiun-Yan; Lin, Ming-Fa

    2016-06-29

    A generalized tight-binding model is developed to investigate the feature-rich magneto-optical properties of AAB-stacked trilayer graphene. Three intragroup and six intergroup inter-Landau-level (inter-LL) optical excitations largely enrich magneto-absorption peaks. In general, the former are much higher than the latter, depending on the phases and amplitudes of LL wavefunctions. The absorption spectra exhibit single- or twin-peak structures which are determined by quantum modes, LL energy spectra and Fermion distribution. The splitting LLs, with different localization centers (2/6 and 4/6 positions in a unit cell), can generate very distinct absorption spectra. There exist extra single peaks because of LL anti-crossings. AAB, AAA, ABA, and ABC stackings considerably differ from one another in terms of the inter-LL category, frequency, intensity, and structure of absorption peaks. The main characteristics of LL wavefunctions and energy spectra and the Fermi-Dirac function are responsible for the configuration-enriched magneto-optical spectra.

  12. Behaviour of turbulence models near a turbulent/non-turbulent interface revisited

    International Nuclear Information System (INIS)

    Ferrey, P.; Aupoix, B.

    2006-01-01

    The behaviour of turbulence models near a turbulent/non-turbulent interface is investigated. The analysis holds as well for two-equation as for Reynolds stress turbulence models using Daly and Harlow diffusion model. The behaviour near the interface is shown not to be a power law, as usually considered, but a more complex parametric solution. Why previous works seemed to numerically confirm the power law solution is explained. Constraints for turbulence modelling, i.e., for ensuring that models have a good behaviour near a turbulent/non-turbulent interface so that the solution is not sensitive to small turbulence levels imposed in the irrotational flow, are drawn

  13. Magneto-acoustic resonance in a non-uniform current carrying plasma column

    OpenAIRE

    Vaclavik, J.

    2017-01-01

    The forced radial magneto-acoustic oscillations in a plasma column with nonuniform mass density and temperature are investigated. It turns out that the oscillations have a resonant character similar to that of the magneto-acoustic oscillations in a uniform plasma column. The properties of the axial and azimuthal components of the oscillating magnetic field are discussed in detail

  14. Momentum transport in gyrokinetic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Rico

    2016-07-01

    In this thesis, the gyrokinetic-Vlasov code GKW is used to study turbulent transport, with a focus on radial transport of toroidal momentum. To support the studies on turbulent transport an eigenvalue solver has been implemented into GKW. This allows to find, not only the most unstable mode, but also subdominant modes. Furthermore it is possible to follow the modes in parameter scans. Furthermore, two fundamental mechanisms that can generate an intrinsic rotation have been investigated: profile shearing and the velocity nonlinearity. The study of toroidal momentum transport in a tokamak due to profile shearing reveals that the momentum flux can not be accurately described by the gradient in the turbulent intensity. Consequently, a description using the profile variation is used. A linear model has been developed that is able to reproduce the variations in the momentum flux as the profiles of density and temperature vary, reasonably well. It uses, not only the gradient length of density and temperature profile, but also their derivative, i.e. the second derivative of the logarithm of the temperature and the density profile. It is shown that both first as well as second derivatives contribute to the generation of a momentum flux. A difference between the linear and nonlinear simulations has been found with respect to the behaviour of the momentum flux. In linear simulations the momentum flux is independent of the normalized Larmor radius ρ{sub *}, whereas it is linear in ρ{sub *} for nonlinear simulations, provided ρ{sub *} is small enough (≤4.10{sup -3}). Nonlinear simulations reveal that the profile shearing can generate an intrinsic rotation comparable to that of current experiments. Under reactor conditions, however, the intrinsic rotation from the profile shearing is expected to be small due to the small normalized Larmor radius ρ{sub *}

  15. Image correction in magneto-optical microscopy

    DEFF Research Database (Denmark)

    Paturi, P.; Larsen, B.H.; Jacobsen, B.A.

    2003-01-01

    An image-processing procedure that assures correct determination of the magnetic field distribution of magneto-optical images is presented. The method remedies image faults resulting from sources that are proportional to the incident light intensity, such as different types of defects...

  16. Rotating Rayleigh-Bénard convection at low Prandtl number

    Science.gov (United States)

    Aguirre Guzman, Andres; Ostilla-Monico, Rodolfo; Clercx, Herman; Kunnen, Rudie

    2017-11-01

    Most geo- and astrophysical convective flows are too remote or too complex for direct measurements of the physical quantities involved, and thus a reduced framework with the main physical constituents is beneficial. This approach is given by the problem of rotating Rayleigh-Bénard convection (RRBC). For large-scale systems, the governing parameters of RRBC take extreme values, leading to the geostrophic turbulent regime. We perform Direct Numerical Simulations to investigate the transition to this regime at low Prandtl number (Pr). In low- Pr fluids, thermal diffusivity dominates over momentum diffusivity; we use Pr = 0.1 , relevant to liquid metals. In particular, we study the convective heat transfer (Nusselt number Nu) as a function of rotation (assessed by the Ekman number Ek). The strength of the buoyant forcing (Rayleigh number Ra) is Ra = 1 ×1010 to ensure turbulent convection. Varying Ek , we observe a change of the power-law scaling Nu Ekβ that suggests a transition to geostrophic turbulence, which is likely to occur at Ek = 9 ×10-7 . The thermal boundary layer thickness, however, may suggest a transition at lower Ekman numbers, indicating that perhaps not all statistical quantities show a transitional behaviour at the same Ek .

  17. Boundary Layer Transition Detection on a Rotor Blade Using Rotating Mirror Thermography

    Science.gov (United States)

    Heineck, James T.; Schuelein, Erich; Raffel, Markus

    2014-01-01

    Laminar-to-turbulent transition on a rotor blade in hover has been imaged using an area-scan infrared camera. A new method for tracking a blade using a rotating mirror was employed. The mirror axis of rotation roughly corresponded to the rotor axis of rotation and the mirror rotational frequency is 1/2 that of the rotor. This permitted the use of cameras whose integration time was too long to prevent image blur due to the motion of the blade. This article will show the use of this method for a rotor blade at different collective pitch angles.

  18. Effect of turbulence on the disintegration rate of flushable consumer products.

    Science.gov (United States)

    Karadagli, Fatih; Rittmann, Bruce E; McAvoy, Drew C; Richardson, John E

    2012-05-01

    A previously developed model for the physical disintegration of flushable consumer products is expanded by investigating the effects of turbulence on the rate of physical disintegration. Disintegration experiments were conducted with cardboard tampon applicators at 100, 150, and 200 rotations per minute, corresponding to Reynold's numbers of 25,900, 39,400, and 52,900, respectively, which were estimated by using computational fluid dynamics modeling. The experiments were simulated with the disintegration model to obtain best-fit values of the kinetic and distribution parameters. Computed rate coefficients (ki) for all solid sizes (i.e., greater than 8, 4 to 8, 2 to 4, and 1 to 2 mm) increased strongly with Reynold's number or rotational speed. Thus, turbulence strongly affected the disintegration rate of flushable products, and the relationship of the ki values to Reynold's number can be included in mathematical representations of physical disintegration.

  19. Statistical mechanics and correlation properties of a rotating two-dimensional flow of like-sign vortices

    International Nuclear Information System (INIS)

    Viecelli, J.A.

    1993-01-01

    The Hamiltonian flow of a set of point vortices of like sign and strength has a low-temperature phase consisting of a rotating triangular lattice of vortices, and a normal temperature turbulent phase consisting of random clusters of vorticity that orbit about a common center along random tracks. The mean-field flow in the normal temperature phase has similarities with turbulent quasi-two-dimensional rotating laboratory and geophysical flows, whereas the low-temperature phase displays effects associated with quantum fluids. In the normal temperature phase the vortices follow power-law clustering distributions, while in the time domain random interval modulation of the vortex orbit radii fluctuations produces singular fractional exponent power-law low-frequency spectra corresponding to time autocorrelation functions with fractional exponent power-law tails. Enhanced diffusion is present in the turbulent state, whereas in the solid-body rotation state vortices thermally diffuse across the lattice. Over the entire temperature range the interaction energy of a single vortex in the field of the rest of the vortices follows positive temperature Fermi--Dirac statistics, with the zero temperature limit corresponding to the rotating crystal phase, and the infinite temperature limit corresponding to a Maxwellian distribution. Analyses of weather records dependent on the large-scale quasi-two-dimensional atmospheric circulation suggest the presence of singular fractional exponent power-law spectra and fractional exponent power-law autocorrelation tails, consistent with the theory

  20. Life stages of wall-bounded decay of Taylor-Couette turbulence

    NARCIS (Netherlands)

    Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Arza, Vamsi Spandan; Verzicco, Roberto; Lohse, Detlef

    2017-01-01

    The decay of Taylor-Couette turbulence, i.e., the flow between two coaxial and independently rotating cylinders, is numerically studied by instantaneously stopping the forcing from an initially statistically stationary flow field at a Reynolds number of Re=3.5×104. The effect of wall friction is

  1. Strained spiral vortex model for turbulent fine structure

    Science.gov (United States)

    Lundgren, T. S.

    1982-01-01

    A model for the intermittent fine structure of high Reynolds number turbulence is proposed. The model consists of slender axially strained spiral vortex solutions of the Navier-Stokes equation. The tightening of the spiral turns by the differential rotation of the induced swirling velocity produces a cascade of velocity fluctuations to smaller scale. The Kolmogorov energy spectrum is a result of this model.

  2. Magneto-hydrodynamical model for plasma

    Science.gov (United States)

    Liu, Ruikuan; Yang, Jiayan

    2017-10-01

    Based on the Newton's second law and the Maxwell equations for the electromagnetic field, we establish a new 3-D incompressible magneto-hydrodynamics model for the motion of plasma under the standard Coulomb gauge. By using the Galerkin method, we prove the existence of a global weak solution for this new 3-D model.

  3. Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, P.H.; Lin, Z.; Wang, W.; Horton, W.; Klasky, S.; Decyk, V.; Ma, K.-L.; Chames, J.; Adams, M.

    2011-09-21

    The three-year project GPS-TTBP resulted in over 152 publications and 135 presentations. This summary focuses on the scientific progress made by the project team. A major focus of the project was on the physics intrinsic rotation in tokamaks. Progress included the first ever flux driven study of net intrinsic spin-up, mediated by boundary effects (in collaboration with CPES), detailed studies of the microphysics origins of the Rice scaling, comparative studies of symmetry breaking mechanisms, a pioneering study of intrinsic torque driven by trapped electron modes, and studies of intrinsic rotation generation as a thermodynamic engine. Validation studies were performed with C-Mod, DIII-D and CSDX. This work resulted in very successful completion of the FY2010 Theory Milestone Activity for OFES, and several prominent papers of the 2008 and 2010 IAEA Conferences. A second major focus was on the relation between zonal flow formation and transport non-locality. This culminated in the discovery of the ExB staircase - a conceptually new phenomenon. This also makes useful interdisciplinary contact with the physics of the PV staircase, well-known in oceans and atmospheres. A third topic where progress was made was in the simulation and theory of turbulence spreading. This work, now well cited, is important for understanding the dynamics of non-locality in turbulent transport. Progress was made in studies of conjectured non-diffusive transport in trapped electron turbulence. Pioneering studies of ITB formation, coupling to intrinsic rotation and hysteresis were completed. These results may be especially significant for future ITER operation. All told, the physics per dollar performance of this project was quite good. The intense focus was beneficial and SciDAC resources were essential to its success.

  4. Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas

    International Nuclear Information System (INIS)

    Diamond, P.H.; Lin, Z.; Wang, W.; Horton, W.; Klasky, S.; Decyk, V.; Ma, K.-L.; Chames, J.; Adams, M.

    2011-01-01

    The three-year project GPS-TTBP resulted in over 152 publications and 135 presentations. This summary focuses on the scientific progress made by the project team. A major focus of the project was on the physics intrinsic rotation in tokamaks. Progress included the first ever flux driven study of net intrinsic spin-up, mediated by boundary effects (in collaboration with CPES), detailed studies of the microphysics origins of the Rice scaling, comparative studies of symmetry breaking mechanisms, a pioneering study of intrinsic torque driven by trapped electron modes, and studies of intrinsic rotation generation as a thermodynamic engine. Validation studies were performed with C-Mod, DIII-D and CSDX. This work resulted in very successful completion of the FY2010 Theory Milestone Activity for OFES, and several prominent papers of the 2008 and 2010 IAEA Conferences. A second major focus was on the relation between zonal flow formation and transport non-locality. This culminated in the discovery of the ExB staircase - a conceptually new phenomenon. This also makes useful interdisciplinary contact with the physics of the PV staircase, well-known in oceans and atmospheres. A third topic where progress was made was in the simulation and theory of turbulence spreading. This work, now well cited, is important for understanding the dynamics of non-locality in turbulent transport. Progress was made in studies of conjectured non-diffusive transport in trapped electron turbulence. Pioneering studies of ITB formation, coupling to intrinsic rotation and hysteresis were completed. These results may be especially significant for future ITER operation. All told, the physics per dollar performance of this project was quite good. The intense focus was beneficial and SciDAC resources were essential to its success.

  5. Faraday rotation signatures of fluctuation dynamos in young galaxies

    Science.gov (United States)

    Sur, Sharanya; Bhat, Pallavi; Subramanian, Kandaswamy

    2018-03-01

    Observations of Faraday rotation through high-redshift galaxies have revealed that they host coherent magnetic fields that are of comparable strengths to those observed in nearby galaxies. These fields could be generated by fluctuation dynamos. We use idealized numerical simulations of such dynamos in forced compressible turbulence up to rms Mach number of 2.4 to probe the resulting rotation measure (RM) and the degree of coherence of the magnetic field. We obtain rms values of RM at dynamo saturation of the order of 45-55 per cent of the value expected in a model where fields are assumed to be coherent on the forcing scale of turbulence. We show that the dominant contribution to the RM in subsonic and transonic cases comes from the general sea of volume filling fields, rather than from the rarer structures. However, in the supersonic case, strong field regions as well as moderately overdense regions contribute significantly. Our results can account for the observed RMs in young galaxies.

  6. The generation of resonant turbulence for a premixed burner

    NARCIS (Netherlands)

    Verbeek, Antonie Alex; Pos, R.C.; Stoffels, Genie G.M.; Geurts, Bernardus J.; van der Meer, Th.H.

    Is it possible to optimize the turbulent combustion of a low swirl burner by using resonance in turbu- lence? To that end an active grid is constructed that consists of two perforated disks of which one is rotat- ing, creating a system of pulsating jets, which in the end can be used as a central

  7. Magneto-optical properties of yttrium iron garnet (YIG) thin films elaborated by radio frequency sputtering

    International Nuclear Information System (INIS)

    Boudiar, T.; Payet-Gervy, B.; Blanc-Mignon, M.-F.; Rousseau, J.-J.; Le Berre, M.; Joisten, H.

    2004-01-01

    Thin films of yttrium iron garnet (YIG) are grown by radio frequency magnetron non reactive sputtering system. Thin films are crystallised by heat-treatment to obtain magneto-optical properties. On quartz substrate, the network of cracks observed on the annealed samples can be explained by the difference between the thermal expansion coefficient of substrate and YIG. Physico-chemical analysis shown that the obtained material has a correct stoichiometry and is crystallised as FCC. The Faraday rotation of thin films is measured with a classical ellipsometric system based on transmission which allows us to obtained an accuracy of 0.01 deg. The variation of Faraday rotation is studied on the one hand versus radio frequency power applied to the cathode during the deposition and on the other hand versus the applied magnetic field. The results are compared with those obtained by vibrating sample magnetometer analysis in perpendicular configuration. A maximum Faraday rotation is observed to be 1900 deg./cm at the wavelength of 594nm for a YIG thin film formed on quartz substrate and annealed at 740 deg. C. The values of the Faraday rotation coefficients obtained in the study versus the wavelength are comparable to those of the literature for the bulk material. In order to eliminate the stress due to the heat-treatment, we made some films on single crystals of gadolinium gallium garnet (111) substrates for which thermal expansion coefficient is near than the YIG one. The material crystallises with no crackles and the Faraday effect is equivalent

  8. Bursting reconnection of the two co-rotating current loops

    Science.gov (United States)

    Bulanov, Sergei; Sokolov, Igor; Sakai, Jun-Ichi

    2000-10-01

    Two parallel plasma filaments carrying electric current (current loops) are considered. The Ampere force induces the filaments' coalescence, which is accompanied by the reconnection of the poloidal magnetic field. Initially the loops rotate along the axii of symmetry. Each of the two loops would be in equilibrium in the absence of the other one. The dynamics of the reconnection is numerically simulated using high-resolution numerical scheme for low-resistive magneto-hydrodynamics. The results of numerical simulation are presented in the form of computer movies. The results show that the rotation strongly modifies the reconnection process, resulting in quasi-periodic (bursting) appearance and disappearance of a current sheet. Fast sliding motion of the plasma along the current sheet is a significant element of the complicated structure of reconnection (current-vortex sheet). The magnetic surfaces in the overal flow are strongly rippled by slow magnetosonic perturbations, so that the specific spiral structures form. This should result in the particle transport enhancement.

  9. Hydrodynamical and magnetohydrodynamic global bifurcations in a highly turbulent von Karman flow

    International Nuclear Information System (INIS)

    Ravelet, F.

    2005-09-01

    We report experimental studies of the turbulent von Karman flow, inertially stirred between counter-rotating impellers. We first study the flow and its transition from laminar to turbulent regime. We highlight the role of slowly varying large scales, due to the presence of an azimuthal mixing layer. The large scales of this flow can be unstable in turbulent regime. We study the statistics of the transitions between the different mean states. The second part is dedicated to an experiment in liquid sodium, called VKS2. We optimize the time-averaged flow in order to allow kinematic dynamo action. We report the very first results of the experiment, and discuss the role of the large scales temporal non-stationariness. (author)

  10. Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Adam M.; Driscoll, James F. [University of Michigan, Department of Aerospace Engineering, Ann Arbor, MI (United States); Ceccio, Steven L. [University of Michigan, Department of Mechanical Engineering, Ann Arbor, MI (United States)

    2008-06-15

    A new experimental method is described that provides high-speed movies of turbulent premixed flame wrinkling dynamics and the associated vorticity fields. This method employs cinema stereoscopic particle image velocimetry and has been applied to a turbulent slot Bunsen flame. Three-component velocity fields were measured with high temporal and spatial resolutions of 0.9 ms and 140{mu}m, respectively. The flame-front location was determined using a new multi-step method based on particle image gradients, which is described. Comparisons are made between flame fronts found with this method and simultaneous CH-PLIF images. These show that the flame contour determined corresponds well to the true location of maximum gas density gradient. Time histories of typical eddy-flame interactions are reported and several important phenomena identified. Outwardly rotating eddy pairs wrinkle the flame and are attenuated at they pass through the flamelet. Significant flame-generated vorticity is produced downstream of the wrinkled tip. Similar wrinkles are caused by larger groups of outwardly rotating eddies. Inwardly rotating pairs cause significant convex wrinkles that grow as the flame propagates. These wrinkles encounter other eddies that alter their behavior. The effects of the hydrodynamic and diffusive instabilities are observed and found to be significant contributors to the formation and propagation of wrinkles. (orig.)

  11. Magneto-optical system for high speed real time imaging

    Science.gov (United States)

    Baziljevich, M.; Barness, D.; Sinvani, M.; Perel, E.; Shaulov, A.; Yeshurun, Y.

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  12. An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102

    Science.gov (United States)

    Michilli, D.; Seymour, A.; Hessels, J. W. T.; Spitler, L. G.; Gajjar, V.; Archibald, A. M.; Bower, G. C.; Chatterjee, S.; Cordes, J. M.; Gourdji, K.; Heald, G. H.; Kaspi, V. M.; Law, C. J.; Sobey, C.; Adams, E. A. K.; Bassa, C. G.; Bogdanov, S.; Brinkman, C.; Demorest, P.; Fernandez, F.; Hellbourg, G.; Lazio, T. J. W.; Lynch, R. S.; Maddox, N.; Marcote, B.; McLaughlin, M. A.; Paragi, Z.; Ransom, S. M.; Scholz, P.; Siemion, A. P. V.; Tendulkar, S. P.; van Rooy, P.; Wharton, R. S.; Whitlow, D.

    2018-01-01

    Fast radio bursts are millisecond-duration, extragalactic radio flashes of unknown physical origin. The only known repeating fast radio burst source—FRB 121102—has been localized to a star-forming region in a dwarf galaxy at redshift 0.193 and is spatially coincident with a compact, persistent radio source. The origin of the bursts, the nature of the persistent source and the properties of the local environment are still unclear. Here we report observations of FRB 121102 that show almost 100 per cent linearly polarized emission at a very high and variable Faraday rotation measure in the source frame (varying from +1.46 × 105 radians per square metre to +1.33 × 105 radians per square metre at epochs separated by seven months) and narrow (below 30 microseconds) temporal structure. The large and variable rotation measure demonstrates that FRB 121102 is in an extreme and dynamic magneto-ionic environment, and the short durations of the bursts suggest a neutron star origin. Such large rotation measures have hitherto been observed only in the vicinities of massive black holes (larger than about 10,000 solar masses). Indeed, the properties of the persistent radio source are compatible with those of a low-luminosity, accreting massive black hole. The bursts may therefore come from a neutron star in such an environment or could be explained by other models, such as a highly magnetized wind nebula or supernova remnant surrounding a young neutron star.

  13. Transport modelling including radial electric field and plasma rotation

    International Nuclear Information System (INIS)

    Fukuyama, A.; Fuji, Y.; Itoh, S.-I.

    1994-01-01

    Using a simple turbulent transport model with a constant diffusion coefficient and a fixed temperature profile, the density profile in a steady state and the transient behaviour during the co and counter neutral beam injection are studied. More consistent analysis has been initiated with a turbulent transport model based on the current diffusive high-n ballooning mode. The enhancement of the radial electric field due to ion orbit losses and the reduction of the transport due to the poloidal rotation shear are demonstrated. The preliminary calculation indicates a sensitive temperature dependence of the density profile. (author)

  14. Temperature dependence of the Faraday rotation for CdMnCoTe films

    International Nuclear Information System (INIS)

    Ahn, J. Y.; Tanaka, M.; Imamura, M.

    2001-01-01

    The temperature dependence of magneto-optical property in the visible wavelength region has been studied on four-element semimagnetic semiconductor CdMnCoTe films deposited on quartz glass substrates by using MBE equipment. A large dispersion of Faraday rotation was observed, and the peak of the Faraday rotation was shifted to the higher photon energies with increasing Mn concentration at low temperatures. At 180 K, the value of the Faraday rotation observed for the Cd 0.647 Mn 0.34 Co 0.013 Te film on quartz glass was -0.36 deg/cmG at 630 nm. It is equivalent to the value of -0.36 deg/cmG observed at 77 K for the Cd 0.52 Mn 0.48 Te film on quartz glass. At 77 K, the Faraday rotation observed for the Cd 0.647 Mn 0.34 Co 0.013 Te film on quartz glass was -0.49 deg/cmG at 610 nm. The value is approximately two times larger than that of the Cd 0.52 Mn 0.48 Te film deposited on the same quartz glass substrate. The origin of the enhancement of Faraday rotation in CdMnCoTe films has been discussed in terms of the magnetic susceptibility χ. [copyright] 2001 American Institute of Physics

  15. Turbulent structure of three-dimensional flow behind a model car: 1. Exposed to uniform approach flow

    Science.gov (United States)

    Kozaka, Orçun E.; Özkan, Gökhan; Özdemir, Bedii I.

    2004-01-01

    Turbulent structure of flow behind a model car is investigated with local velocity measurements with emphasis on large structures and their relevance to aerodynamic forces. Results show that two counter-rotating helical vortices, which are formed within the inner wake region, play a key role in determining the flux of kinetic energy. The turbulence is generated within the outermost shear layers due to the instabilities, which also seem to be the basic drive for these relatively organized structures. The measured terms of the turbulent kinetic energy production, which are only part of the full expression, indicate that vortex centres act similar to the manifolds draining the energy in the streamwise direction. As the approach velocity increases, the streamwise convection becomes the dominant means of turbulent transport and, thus, the acquisition of turbulence by relatively non-turbulent flow around the wake region is suppressed.

  16. Non-contact optical sensor for detection of glucose concentration using a magneto-optic effect

    Science.gov (United States)

    Ozana, Nisan; Beiderman, Yevgeny; Anand, Arun; Javidi, Baharam; Polani, Sagi; Schwarz, Ariel; Shemer, Amir; García, Javier; Zalevsky, Zeev

    2016-03-01

    In this paper we aim to experimentally verify a speckle based technique for non-contact measurement of glucose concentration in blood stream while the vision for the final device aims to contain a single wristwatch-style device containing an AC (alternating) electro-magnet generated by a solenoid, a laser and a camera. The experiments presented in work are performed in-vitro in order to verify the effects that are responsible for the operation principle. When a glucose substance is inserted into a solenoid generating an alternating magnetic field it exhibits Faraday rotation which affects the temporal changes of the secondary speckle patterns distribution. The temporal frequency resulting from the AC magnetic field was found to have a lock-in amplification role which increased the observability of the relatively small magneto-optic effect. Experimental results to support the proposed concept are presented.

  17. A complex-polarization-propagator protocol for magneto-chiral axial dichroism and birefringence dispersion

    DEFF Research Database (Denmark)

    Cukras, Janusz; Kauczor, Joanna; Norman, Patrick

    2016-01-01

    A computational protocol for magneto-chiral dichroism and magneto-chiral birefringence dispersion is presented within the framework of damped response theory, also known as complex polarization propagator theory, at the level of time-dependent Hartree–Fock and time-dependent density functional th...

  18. Turbulence evaluation at PSI-2 by fast visible imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hubeny, Michael; Reinhart, Michael; Huber, Alexander; Unterberg, Bernhard [Institute for Energy and Climate Research - Plasma Physics, Forschungszentrum Juelich GmbH, EURATOM Association (Germany)

    2014-07-01

    Turbulent transport in the plasma edge poses a critical challenge for fusion reactors due to the high heat and particle fluxes on plasma facing components. Various chemical and physical processes lead to a deterioration of the surface morphology as well as the inner structure of wall materials. These processes depend strongly on the temperature and density of particles in their onset-threshold region. The turbulent, intermittent structures found in the edge of toroidal machines are also present in linear plasma devices, which running steady state, makes them ideal for studying properties of turbulence. A fast CMOS camera with a typical time resolution of several 100.000 fps can resolve short turbulent events (blobs) in the linear plasma device PSI-2. Movies of the plasma were taken perpendicular from a side port and axial through the hollow plasma source. Properties of the intermittent transport are evaluated by conditional averaging and other statistical methods to investigate the dependence of turbulence on discharge parameters and working gases. Intermittent transport events show a strong correlation to the global plasma rotation, thus they might be triggered by an m=1 instability, which appears as a 4 and 8 kHz Fourier component. The profile of the skewness supports the presence of blobs just outside of the density maximum.

  19. Simulations of Tokamak Edge Turbulence Including Self-Consistent Zonal Flows

    Science.gov (United States)

    Cohen, Bruce; Umansky, Maxim

    2013-10-01

    Progress on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge is summarized in this mini-conference talk. A more detailed report on this work is presented in a poster at this conference. This work extends our previous work to include self-consistent zonal flows and their effects. The previous work addressed the simulation of L-mode tokamak edge turbulence using the turbulence code BOUT. The calculations used realistic single-null geometry and plasma parameters of the DIII-D tokamak and produced fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the US Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.

  20. Vectorial magnetometry with the magneto-optic Kerr effect applied to Co/Cu/Co trilayer structures

    Science.gov (United States)

    Daboo, C.; Bland, J. A. C.; Hicken, R. J.; Ives, A. J. R.; Baird, M. J.; Walker, M. J.

    1993-05-01

    We describe an arrangement in which the magnetization components parallel and perpendicular to the applied field are both determined from longitudinal magneto-optic Kerr effect measurements. This arrangement differs from the usual procedures in that the same optical geometry is used but the magnet geometry altered. This leads to two magneto-optic signals which are directly comparable in magnitude thereby giving the in-plane magnetization vector directly. We show that it is of great value to study both in-plane magnetization vector components when studying coupled structures where significant anisotropies are also present. We discuss simulations which show that it is possible to accurately determine the coupling strength in such structures by examining the behavior of the component of magnetization perpendicular to the applied field in the vicinity of the hard in-plane anisotropy axis. We illustrate this technique by examining the magnetization and magnetic anisotropy behavior of ultrathin Co/Cu(111)/Co (dCu=20 Å and 27 Å) trilayer structures prepared by molecular beam epitaxy, in which coherent rotation of the magnetization vector is observed when the magnetic field B is applied along the hard in-plane anisotropy axis, with the magnitude of the magnetization vector constant and close to its bulk value. Results of micromagnetic calculations closely reproduce the observed parallel and perpendicular magnetization loops, and yield strong uniaxial magnetic anisotropies in both layers, while the interlayer coupling appears to be absent or negligible in comparison with the anisotropy strengths.

  1. Symposium on Turbulent Shear Flows, 7th, Stanford University, CA, Aug. 21-23, 1989, Proceedings. Volumes 1 ampersand 2

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Papers on turbulent shear flows are presented, covering topics such as the structure of pressure fluctuations, fossil two-dimensional turbulence in the ocean, turbulence production and eddy structure in wall turbulence, bypass transition in a heated boundary layer, a turbulent spot in plane Poiseuille flow, the evolution of an axisymmetric jet, plane mixing layer development, vortex models of a pseudoturbulent shear flow, numerical techniques for turbulence studies, Reynolds stress in the wall region of turbulent pipe flow, the turbulent structure of a momentumless wake, the near field of the transverse jet. Additional topics include a turbulent boundary layer disturbed by a cylinder, evolving mixing layers, flow analysis in a vortex flowmeter, ejections and bursts in pulsatile turbulent wall flow measurements, a flat plate oscillating in pitch, turbulent buoyant flows, isothermal lobed mixer flows, flow distortion on a turbulent scalar field, two phase flows. In addition, papers on the applications of turbulent shear flow studies are given, including air pollutant deposition, closures, oceanography, instrumentation, heat transfer, rotating flows, combustion, coherent structures, turbulence control, and scalar transport modeling

  2. HoYbBIG epitaxial thick films used for Faraday rotator in the 1.55μm band

    International Nuclear Information System (INIS)

    Zhong, Z.W.; Xu, X.W.; Chong, T.C.; Yuan, S.N.; Li, M.H.; Zhang, G.Y.; Freeman, B.

    2005-01-01

    Ho 3-x-y Yb y Bi x Fe 5 O 12 (HoYbBIG) garnet thick films with Bi content of x=0.9-1.5 were prepared by the liquid phase epitaxy (LPE) method. Optical properties and magneto-optical properties were characterized. The LPE-grown HoYbBIG thick films exhibited large Faraday rotation coefficients up to 1540 o /cm at 1.55μm, and good wavelength and temperature stability

  3. Magneto-optic gradient effect in domain-wall images: at the crossroads of magneto-optics and micromagnetics

    Czech Academy of Sciences Publication Activity Database

    Kamberský, Vladimír; Schäfer, R.

    2011-01-01

    Roč. 84, č. 1 (2011), 013815/1-013815/6 ISSN 1050-2947 Institutional research plan: CEZ:AV0Z10100521 Keywords : edge and boundary effects * reflection and refraction * diffraction and scattering * magneto-optical effects * theory * models * numerical simulation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.878, year: 2011

  4. Parallel direct numerical simulation of turbulent flows in rotor-stator cavities. Comparison with k-{epsilon} modeling; Simulation numerique directe parallele d`ecoulements turbulents en cavites rotor-stator comparaisons avec les modilisations k-{epsilon}

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, R.; Le Quere, P.; Daube, O. [Centre National de la Recherche Scientifique (CNRS), 91 - Orsay (France)

    1997-12-31

    Turbulent flows between a fixed disc and a rotating disc are encountered in various applications like turbo-machineries or torque converters of automatic gear boxes. These flows are characterised by particular physical phenomena mainly due to the effects of rotation (Coriolis and inertia forces) and thus, classical k-{epsilon}-type modeling gives approximative results. The aim of this work is to study these flows using direct numerical simulation in order to provide precise information about the statistical turbulent quantities and to improve the k-{epsilon} modeling in the industrial MATHILDA code of the ONERA and used by SNECMA company (aerospace industry). The results presented are restricted to the comparison between results obtained with direct simulation and results obtained with the MATHILDA code in the same configuration. (J.S.) 8 refs.

  5. Enhancement of Faraday effect in one-dimensional magneto-optical photonic crystal including a magnetic layer with wavelength dependent off-diagonal elements of dielectric constant tensor

    International Nuclear Information System (INIS)

    Inui, Chie; Ozaki, Shinsuke; Kura, Hiroaki; Sato, Tetsuya

    2011-01-01

    Optical and magneto-optical properties of one-dimensional magneto-optical photonic crystal (1-D MPC) prepared by the sol-gel dip-coating method, including a magnetic defect layer composed of mixture of CoFe 2 O 4 and SiO 2 , are investigated from both the experimental and theoretical standpoints. The resonant transmission of light was observed around 570 nm in the photonic band gap. The Faraday rotation angle θ F showed two maxima at 490 and 640 nm, and the wavelength dependence of θ F above 760 nm was similar to that of the CoFe 2 O 4 +SiO 2 single-layer film. The two maxima of θ F are attributed to the enhanced Faraday rotation of nonmagnetic TiO 2 layers in the cavity structure and that in magnetic CoFe 2 O 4 +SiO 2 layer through the light localization in MPC. The maximum value of θ F due to the magnetic CoFe 2 O 4 +SiO 2 layer in the MPC was 22-times larger than that in the single-layer film. The simulation study of MPC with CoFe 2 O 4 +SiO 2 magnetic defect layer, based on the matrix approach method, showed that the resonant light transmission was accompanied by the localization of electric field, and large enhancement of θ F appeared at different wavelengths so as to agree with the experimental features. This can be explained in terms of the wavelength dependent off-diagonal components of the dielectric constant tensor in addition to the large extinction coefficient in the CoFe 2 O 4 +SiO 2 magnetic defect layer. - Highlights: → 1-D magnetic photonic crystal (MPC) prepared by sol-gel method. → Enhancement of Faraday rotation due to the magnetic defect layer of CoFe 2 O 4 . → Shift of wavelength of Faraday rotation maximum from resonant light transmission.

  6. Electrical and magneto transport properties of

    Indian Academy of Sciences (India)

    samples. The morphology of crystal grains shows that the grains are nearly uniform in size and spherical. Electrical .... 1.5406 Å) in angular steps of 0.02 .... table to scattering by impurities, defects, grain boundaries .... because of different orientations of opposite spins, an energy ... 2000 Colossal magneto resistance oxides.

  7. The influence of turbulence on the aero-elastic instability of wind turbines

    DEFF Research Database (Denmark)

    Zhang, Zili; Nielsen, Søren R.K.

    2014-01-01

    Modern multi-megawatt wind turbines are designed with longer and slender blades using new composite materials and advanced fabrication methods. The trend towards lighter and more flexible blades may lead to aeroelastic instability of wind turbines under certain circumstances, thus resulting...... calibrated to the NREL 5 MW baseline wind turbine. Aeroelastic stability of the wind turbine system has been evaluated for various values of the rated generator torque, the rated rotational speed of the rotor, the mean wind speed and the turbulence intensity. Critical turbulence intensity, at which the wind...

  8. Structure measurements in a synthetic turbulent boundary layer

    Science.gov (United States)

    Arakeri, Jaywant H.

    1987-09-01

    Extensive hot-wire measurements have been made to determine the structure of the large eddy in a synthejc turbulent boundary layer on a flat-plate model. The experiments were carried out in a wind tunnel at a nominal free-stream velocity of 12 m/s. The synthetic turbulent boundary layer had a hexagonal pattern of eddies and a ratio of streamwise scale to spanwise scale of 3.2:1. The measured celerity of the large eddy was 84.2 percent of the free-stream velocity. There was some loss of coherence, but very little distortion, as the eddies moved downstream. Several mean properties of the synthetic boundary layer were found to agree quite well with the mean properties of a natural turbulent boundary layer at the same Reynolds number. The large eddy is composed of a pair of primary counter-rotating vortices about five [...] long in the streamwise direction and about one [...] apart in the spanwise direction, where [...] is the mean boundary-layer thickness. The sense of the primary pair is such as to pump fluid away from the wall in the region between the vortices. A secondary pair of counter-rotating streamwise vortices, having a sense opposite to that of the primary pair, is observed outside of and slightly downstream from the primary vortices. Both pairs of vortices extend across the full thickness of the boundary layer and are inclined at a shallow angle to the surface of the flat plate. The data show that the mean vorticity vectors are not tangential to the large-eddy vortices. In fact, the streamwise and normal vorticity components that signal the presence of the eddy are of the same order of magnitude. Definite signatures are obtained in terms of the mean skin-friction coefficient and the mean wake parameter averaged at constant phase. Velocities induced by the vortices are partly responsible for entrainment of irrotational fluid, for transport of momentum, for generation of Reynolds stresses, and for maintenance of streamwise and normal vorticity in the outer

  9. Turbulence characteristics of the Bödewadt layer in a large enclosed rotor-stator system

    Science.gov (United States)

    Randriamampianina, Anthony; Poncet, Sébastien

    2006-05-01

    A three-dimensional (3D) direct numerical simulation is combined with a laboratory study to describe the turbulent flow in an enclosed annular rotor-stator cavity characterized by a large aspect ratio G =(b-a)/h=18.32 and a small radius ratio a /b=0.152, where a and b are the inner and outer radii of the rotating disk and h is the interdisk spacing. The rotation rate Ω under consideration is equivalent to the rotational Reynolds number Re =Ωb2/ν=9.5×104, where ν is the kinematic viscosity of the fluid. This corresponds to a value at which an experiment carried out at the laboratory has shown that the stator boundary layer is turbulent, whereas the rotor boundary layer is still laminar. Comparisons of the 3D computed solution with velocity measurements have given good agreement for the mean and turbulent fields. The results enhance evidence of weak turbulence at this Reynolds number, by comparing the turbulence properties with available data in the literature [M. Lygren and H. I. Andersson, J. Fluid Mech. 426, 297 (2001)]. An approximately self-similar boundary layer behavior is observed along the stator side. The reduction of the structural parameter a1 under the typical value 0.15 and the variation in the wall-normal direction of the different characteristic angles show that this boundary layer is three-dimensional. A quadrant analysis [H. S. Kang, H. Choi, and J. Y. Yoo, Phys. Fluids 10, 2315 (1998)] of conditionally averaged velocities is performed to identify the contributions of different events (ejections and sweeps) on the Reynolds shear stress producing vortical structures. The asymmetries observed in the conditionally averaged quadrant analysis are dominated by Reynolds stress-producing events in this Bödewadt layer. Moreover, case 1 vortices (with a positive wall induced velocity) are found to be the major source of generation of special strong events, in agreement with the conclusions of Lygren and Andersson [J. Fluid Mech. 426, 297 (2001)].

  10. Comparison of MHD-induced rotation damping with NTV predictions on MAST

    International Nuclear Information System (INIS)

    Hua, M-D; Chapman, I T; Field, A R; Hastie, R J; Pinches, S D

    2010-01-01

    Plasma rotation in tokamaks is of special interest for its potential stabilizing effect on micro- and macro-instabilities, leading to increased confinement. In MAST, the torque from neutral beam injection can spin the plasma to a core velocity ∼300 km s -1 (Alfven Mach number ∼0.3). Low density plasmas often exhibit a weakly non-monotonic safety factor profile just above unity. Theory predicts that such equilibria are prone to magneto-hydro-dynamic (MHD) instabilities, which was confirmed by recent observations. The appearance of the mode is accompanied by strong damping of core rotation on a timescale much faster than the momentum confinement time. The mode's saturated structure is estimated using the CASTOR code together with soft x-ray measurements, enabling the calculation of the plasma braking by the MHD mode according to neoclassical toroidal viscosity (NTV) theory. The latter exhibits strong similarities with the torque measured experimentally.

  11. Jeans instability of magnetized quantum plasma: Effect of viscosity, rotation and finite Larmor radius corrections

    International Nuclear Information System (INIS)

    Jain, Shweta; Sharma, Prerana; Chhajlani, R. K.

    2015-01-01

    The Jeans instability of self-gravitating quantum plasma is examined considering the effects of viscosity, finite Larmor radius (FLR) corrections and rotation. The analysis is done by normal mode analysis theory with the help of relevant linearized perturbation equations of the problem. The general dispersion relation is obtained using the quantum magneto hydrodynamic model. The modified condition of Jeans instability is obtained and the numerical calculations have been performed to show the effects of various parameters on the growth rate of Jeans instability

  12. Broadband radio spectro-polarimetric observations of high-Faraday-rotation-measure AGN

    Science.gov (United States)

    Pasetto, Alice; Carrasco-González, Carlos; O'Sullivan, Shane; Basu, Aritra; Bruni, Gabriele; Kraus, Alex; Curiel, Salvador; Mack, Karl-Heinz

    2018-06-01

    We present broadband polarimetric observations of a sample of high-Faraday-rotation-measure (high-RM) active galactic nuclei (AGN) using the Karl. G. Jansky Very Large Array (JVLA) telescope from 1 to 2 GHz, and 4 to 12 GHz. The sample (14 sources) consists of very compact sources (linear resolution smaller than ≈5 kpc) that are unpolarized at 1.4 GHz in the NRAO VLA Sky Survey (NVSS). Total intensity data have been modeled using a combination of synchrotron components, revealing complex structure in their radio spectra. Depolarization modeling, through the so-called qu-fitting (the modeling of the fractional quantities of the Stokes Q and U parameters), has been performed on the polarized data using an equation that attempts to simplify the process of fitting many different depolarization models. These models can be divided into two major categories: external depolarization (ED) and internal depolarization (ID) models. Understanding which of the two mechanisms is the most representative would help the qualitative understanding of the AGN jet environment and whether it is embedded in a dense external magneto-ionic medium or if it is the jet-wind that causes the high RM and strong depolarization. This could help to probe the jet magnetic field geometry (e.g., helical or otherwise). This new high-sensitivity data shows a complicated behavior in the total intensity and polarization radio spectrum of individual sources. We observed the presence of several synchrotron components and Faraday components in their total intensity and polarized spectra. For the majority of our targets (12 sources), the depolarization seems to be caused by a turbulent magnetic field. Thus, our main selection criteria (lack of polarization at 1.4 GHz in the NVSS) result in a sample of sources with very large RMs and depolarization due to turbulent magnetic fields local to the source. These broadband JVLA data reveal the complexity of the polarization properties of this class of radio sources

  13. Gyrofluid Simulations of Intrinsic Rotation Generation in Reversed Shear Plasmas with Internal Transport Barriers

    Science.gov (United States)

    Jhang, Hogun; Kim, S. S.; Kwon, J. M.; Terzolo, L.; Kim, J. Y.; Diamond, P. H.

    2010-11-01

    It is accepted that the intrinsic rotation is generated via the residual stress, which is non-diffusive components of the turbulent Reynolds stress, without external momentum input. The physics leading to the onset of intrinsic rotation in L- and H- mode plasmas have been elucidated elsewhere. However, the physics responsible for the generation and transport of the intrinsic rotation and its relationship to the formation of internal transport barriers (ITBs) in reversed shear (RS) plasmas have not been explored in detail, which is the main subject in the present work. The revised version of the global gyrofluid code TRB is used for this study. It is found that the large intrinsic rotation (˜10-30% of the ion sound speed depending on ITB characteristics) is generated near the ITB region and propagates into the core. The intrinsic rotation increases linearly as the temperature gradient at ITB position increases, albeit not indefinitely. Key parameters related to the symmetry breaking, such as turbulent intensity and its gradient, the flux surface averaged parallel wavenumber are evaluated dynamically during the ITB formation. In particular, the role of reversed shear and the q-profile curvature is presented in relation to the symmetry breaking in RS plasmas.

  14. Mathematical modeling of turbulent stratified flows. Application of liquid metal fast breeders

    Energy Technology Data Exchange (ETDEWEB)

    Villand, M; Grand, D [CEA-Service des Transferts Thermiques, Grenoble (France)

    1983-07-01

    Mathematical model of turbulent stratified flow was proposed under the following assumptions: Newtonian fluid; incompressible fluid; coupling between temperature and momentum fields according to Boussinesq approximation; two-dimensional invariance for translation or rotation; coordinates cartesian or curvilinear. Solutions obtained by the proposed method are presented.

  15. Hydromagnetic waves, turbulence, and collisionless processes in the interplanetary medium

    International Nuclear Information System (INIS)

    Barnes, A.

    1983-01-01

    The solar wind does not flow quietly. It seethes and undulates, fluctuating on time scales that range from the solar rotation period down to fractions of milliseconds. Most of the power in interplanetary waves and turbulence lies at hydromagnetic scales. These fluctuations are normally of large amplitude, containing enough energy to affect solar and galactic cosmic rays, and may be the remnants of a coronal turbulence field powerful enough to play a major role in accelerating the solar wind itself. The origin and evolution of interplanetary hydromagnetic waves and turbulence, and their influence on the large-scale dynamics of the solar wind are among the most fundamental questions of solar-terrestrial physics. First hydrodynamic waves and turbulences in the interplanetary medium are discussed in two sections, respectively. Because the length and time scales for hydromagnetic fluctuations are very much smaller than the corresponding Coulomb collision scales of the plasma ions and electrons, the interplanetary variations are modelled as fluctuations in a magnetohydrodynamic fluid. In the last section, collisionless phenomena are discussed. They are of qualitative significance. (Auth.)

  16. Investigation of particle lift off in a turbulent boundary layer

    Science.gov (United States)

    Barros, Diogo; Tee, Yi Hui; Morse, Nicholas; Hiltbrand, Ben; Longmire, Ellen

    2017-11-01

    Entrainment and suspension of particles within turbulent flows occur widely in environmental and industrial processes. Three-dimensional particle tracking experiments are thus conducted in a water channel to understand the interaction of finite-size particles with a turbulent boundary layer. A neutrally buoyant sphere made of wax and iron oxide is first held in place on the bounding surface by a magnet before being released and tracked. The sphere is marked with dots to monitor rotation as well as translation. By setting up two pairs of cameras in a stereoscopic configuration, the trajectories of the sphere are reconstructed and tracked over a distance of 4 to 6 δ. Sphere diameters ranging from 40 to 130 wall units, initial particle Reynolds numbers of 600 to 2000 and friction Reynolds numbers of 500 to 1800 are considered. For this parameter set, the particle typically lifts off from the wall after release before falling back toward the wall. Aspects of both particle rotation and translation will be discussed. Supported by NSF (CBET-1510154).

  17. Viscosity and Vorticity in Reduced Magneto-Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Ilon [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-12

    Magneto-hydrodynamics (MHD) critically relies on viscous forces in order for an accurate determination of the electric eld. For each charged particle species, the Braginskii viscous tensor for a magnetized plasma has the decomposition into matrices with special symmetries.

  18. Magneto-structural correlations in exchange coupled systems

    International Nuclear Information System (INIS)

    Willett, R.D.; Gatteschi, D.; Kahn, O.

    1985-01-01

    This book contains 19 chapters. Some of the chapter titles are: Optical Spectroscophy; The Basis of Spin-Hamiltonian Theory; Inelastic Neutorn Scattering From Clusters; Magneto-structural Correlations in Bioinorganic Chemistry; and Magnetic Exchange Interactions Propagated by Multi-Atom Bridges

  19. An analytical study of non-linear behaviour of coupled 2+2x0.5 DOF electro-magneto-mechanical system by a method of multiple scales

    DEFF Research Database (Denmark)

    Darula, Radoslav; Sorokin, Sergey

    2013-01-01

    An electro-magneto-mechanical system combines three physical domains - a mechanical structure, a magnetic field and an electric circuit. The interaction between these domains is analysed for a structure with two degrees of freedom (translational and rotational) and two electrical circuits. Each...... electrical circuit is described by a differential equation of the 1st order, which is considered to contribute to the coupled system by 0.5 DOF. The electrical and mechanical systems are coupled via a magnetic circuit, which is inherently non-linear, due to a non-linear nature of the electro-magnetic force...

  20. Some Recent Developments in Turbulence Closure Modeling

    Science.gov (United States)

    Durbin, Paul A.

    2018-01-01

    Turbulence closure models are central to a good deal of applied computational fluid dynamical analysis. Closure modeling endures as a productive area of research. This review covers recent developments in elliptic relaxation and elliptic blending models, unified rotation and curvature corrections, transition prediction, hybrid simulation, and data-driven methods. The focus is on closure models in which transport equations are solved for scalar variables, such as the turbulent kinetic energy, a timescale, or a measure of anisotropy. Algebraic constitutive representations are reviewed for their role in relating scalar closures to the Reynolds stress tensor. Seamless and nonzonal methods, which invoke a single closure model, are reviewed, especially detached eddy simulation (DES) and adaptive DES. Other topics surveyed include data-driven modeling and intermittency and laminar fluctuation models for transition prediction. The review concludes with an outlook.

  1. Hydrangea-like magneto-fluorescent nanoparticles through thiol-inducing assembly

    Science.gov (United States)

    Chen, Shun; Zhang, Junjun; Song, Shaokun; Xiong, Chuanxi; Dong, Lijie

    2017-01-01

    Magneto-fluorescent nanoparticles (NPs), recognized as an emerging class of materials, have drawn much attention because of their potential applications. Due to surface functionalization and thiol-metal bonds, a simple method has been put forward for fabricating hydrangea-like magneto-fluorescent Fe3O4-SH@QD NPs, through assembling thiol-modified Fe3O4 NPs with sub-size multi-layer core/shell CdSe/CdS/ZnS QDs. After a refined but controllable silane hydrolysis process, thiol-modified Fe3O4 was fabricated, resulting in Fe3O4-SH@QD NPs with QDs, while preventing the quenching of the QDs. As a result, the core Fe3O4 NPs were 18 nm in diameter, while the scattered CdSe/CdS/ZnS QDs were 7 nm in diameter. The resultant magneto-fluorescent Fe3O4-SH@QD NPs exhibit efficient fluorescence, superparamagnetism at room temperature, and rapid response to the external field, which make them ideal candidates for difunctional probes in MRI and bio-labels, targeting and photodynamic therapy, and cell tracking and separation.

  2. Key issues review: numerical studies of turbulence in stars

    Science.gov (United States)

    Arnett, W. David; Meakin, Casey

    2016-10-01

    Three major problems of single-star astrophysics are convection, magnetic fields and rotation. Numerical simulations of convection in stars now have sufficient resolution to be truly turbulent, with effective Reynolds numbers of \\text{Re}>{{10}4} , and some turbulent boundary layers have been resolved. Implications of these developments are discussed for stellar structure, evolution and explosion as supernovae. Methods for three-dimensional (3D) simulations of stars are compared and discussed for 3D atmospheres, solar rotation, core-collapse and stellar boundary layers. Reynolds-averaged Navier-Stokes (RANS) analysis of the numerical simulations has been shown to provide a novel and quantitative estimate of resolution errors. Present treatments of stellar boundaries require revision, even for early burning stages (e.g. for mixing regions during He-burning). As stellar core-collapse is approached, asymmetry and fluctuations grow, rendering spherically symmetric models of progenitors more unrealistic. Numerical resolution of several different types of three-dimensional (3D) stellar simulations are compared; it is suggested that core-collapse simulations may be under-resolved. The Rayleigh-Taylor instability in explosions has a deep connection to convection, for which the abundance structure in supernova remnants may provide evidence.

  3. Turbulence modelling for incompressible flows

    International Nuclear Information System (INIS)

    Rodi, W.

    1985-12-01

    EUROMECH colloquium 180 was held at Karlsruhe from 4-6 July, 1984, with the aim of bringing together specialists working in the area of turbulence modelling and of reviewing the state-of-the-art in this field. 44 scientists from 12 countries participated and 28 papers were presented. The meeting started with a review of the performance of two-equation turbulence models employing transport equations for both the velocity and the length scale of turbulence. These models are now generally well established, but it was found that their application to certain flow situations remains problematic. The modelling assumptions involved in Reynolds stress-equation models were reviewed next, and new assumptions were proposed. It was generally agreed that, as computing power increases, these more complex models will become more popular also for practical applications. The increase in computing power also allows more and more to resolve the viscous sublayer with low Reynolds numbers models, and the capabilities and problems of these models were discussed. In this connection, special aspects of boundary layer calculations were also discussed, namely those associated with 3D boundary layers, converging and diverging flow and slightly detached boundary layers. The complex physical phenomena prevalent in situations under the influence of buoyancy and rotation were reviewed, and several papers were presented on models for simulating these effects. (orig./HP) [de

  4. Asymmetry of edge plasma turbulence in biasing experiments on tokamak TF-2

    International Nuclear Information System (INIS)

    Budaev, V.P.

    1994-01-01

    It was observed in tokamaks the suppression of edge turbulence causes by setting a radial electric field at the plasma edge. The poloidal plasma rotation governed by this electric field is likely to result in changes in edge convention and poloidal asymmetry, however there is no experimental evidence about that of the experimental database concerning the biasing and conditions of edge plasma electrostatic turbulence excitation is not still complete. Also a relation between macroscopic convection and small-scale electrostatic turbulence have not yet revealed both in biasing and non biasing plasmas. In this paper results from biasing experiments carried on on ohmically heated tokamak TF-2 are presented. Changes in both equilibrium and fluctuated edge plasma parameters also convection and turbulence driven particle flux were demonstrated in probe measurements with biasing of electrode immersed within Last Closed Flux Surface (LCFS). Poloidal edge plasma structure and charge in asymmetry have demonstrated in the biasing experiments. (author). 6 refs, 4 figs

  5. ''Turbulent Equipartition'' Theory of Toroidal Momentum Pinch

    International Nuclear Information System (INIS)

    Hahm, T.S.; Diamond, P.H.; Gurcan, O.D.; Rewaldt, G.

    2008-01-01

    The mode-independent part of magnetic curvature driven turbulent convective (TuroCo) pinch of the angular momentum density (Hahm et al., Phys. Plasmas 14,072302 (2007)) which was originally derived from the gyrokinetic equation, can be interpreted in terms of the turbulent equipartition (TEP) theory. It is shown that the previous results can be obtained from the local conservation of 'magnetically weighted angular momentum density', nm i U # parallel# R/B 2 , and its homogenization due to turbulent flows. It is also demonstrated that the magnetic curvature modification of the parallel acceleration in the nonlinear gyrokinetic equation in the laboratory frame, which was shown to be responsible for the TEP part of the TurCo pinch of angular momentum density in the previous work, is closely related to the Coriolis drift coupling to the perturbed electric field. In addition, the origin of the diffusive flux in the rotating frame is highlighted. Finally, it is illustrated that there should be a difference in scalings between the momentum pinch originated from inherently toroidal effects and that coming from other mechanisms which exist in a simpler geometry.

  6. Powerful Swirl Generation of Flow-driven Rotating Mixing Vane for Enhancing CHF

    International Nuclear Information System (INIS)

    Seo, Han; Seo, Seok Bin; Heo, Hyo; Bang, In Cheol

    2014-01-01

    Mixing vanes are utilized to improve CHF and heat transfer performance in the rod bundle during normal operation. Experimental measurement of the swirling flow from a split vane pair was conducted using particle image velocimetry (PIV) and boroscope. The lateral velocity fields show that the swirling flow was initially centered in the subchannel and the computational fluid dynamics (CFD) analysis was performed based on the experiment. To visualize flow patterns in the 5Χ5 subchannel using PIV, matching the refraction between the working fluid and the structure was considered and the experiment aimed to develop the experimental data for providing fundamental information of the CFD analysis. The fixed split vane is the main mixing inducer in the fuel assembly. In a heat exchanger research, propeller type swirl generates at several pitch ratios and different blades angles were used to enhance heat transfer rate. Significant improvements of the heat transfer rate using the propellers were confirmed due to creation of tangential flow. In the present study, the mixing effect of rotation vane which has a shape of propeller was studied using PIV. A split vane was considered in the experiment to show the effect of rotation vane. Vertical and horizontal flow analyses were conducted to show the possible use of rotation vane in a subchannel. In the present work, the study of flow visualization using three types of vanes is conducted to show the mixing effect. The vertical flow and the horizontal flow distributions were analyzed in the two experimental facilities. For the vertical flow facility, flow distributions, flow profiles, and the turbulence kinetic energy are analyzed at the centerline of the channel. The results show that the rotation vane has the highest flow and turbulence kinetic intensity at the centerline of the channel. For the horizontal flow facility, the results indicate that lateral flow of the rotation vane is generated and maintained along with the flow

  7. The generation and amplification of intergalactic magnetic fields in analogue laboratory experiments with high power lasers

    Science.gov (United States)

    Gregori, G.; Reville, B.; Miniati, F.

    2015-11-01

    The advent of high-power laser facilities has, in the past two decades, opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, while preserving the essential physics. This is due to the invariance of the equations of magneto-hydrodynamics to a class of similarity transformations. Here we review the relevant scaling relations and their application in laboratory astrophysics experiments with a focus on the generation and amplification of magnetic fields in cosmic environment. The standard model for the origin of magnetic fields is a multi stage process whereby a vanishing magnetic seed is first generated by a rotational electric field and is then amplified by turbulent dynamo action to the characteristic values observed in astronomical bodies. We thus discuss the relevant seed generation mechanisms in cosmic environment including resistive mechanism, collision-less and fluid instabilities, as well as novel laboratory experiments using high power laser systems aimed at investigating the amplification of magnetic energy by magneto-hydrodynamic (MHD) turbulence. Future directions, including efforts to model in the laboratory the process of diffusive shock acceleration are also discussed, with an emphasis on the potential of laboratory experiments to further our understanding of plasma physics on cosmic scales.

  8. Solar Observations on Magneto-Convection

    Science.gov (United States)

    1989-05-31

    Technical Library National Solar Observatory Sunspot, NM 88349 Karl - Schwarzschild -Strasse 1 8046 Garching bei Mundhen Solar Observations On Magneto...Schmidt, Hermann-Ulrich Schmidt, Hans-Christoph Thomas (eds.) Max-Planck-Institut fir Physik und Astrophysik Institut fiur Astrophysik Karl ... Schwarzschild -St-. 1 D-8046 Garching, FklG 14TIS CRiA.&l DTIC TA. U~Jar,iou8:ed B ......... ... Distribution I -- Availability COcý----- Avail and or Dist special

  9. Magneto-Electric Dipole Antenna Arrays

    OpenAIRE

    Gupta, Shulabh; Jiang, Li Jun; Caloz, Christophe

    2014-01-01

    A planar magneto-electric (ME) dipole antenna array is proposed and demonstrated by both full-wave analysis and experiments. The proposed structure leverages the infinite wavelength propagation characteristic of composite right/left-handed (CRLH) transmission lines to form high-gain magnetic radiators combined with radial conventional electric radiators, where the overall structure is excited by a single differential feed. The traveling-wave type nature of the proposed ME-dipole antenna enabl...

  10. Turbulence simulations of blob formation and radial propagation in toroidally magnetized plasmas

    DEFF Research Database (Denmark)

    Garcia, O.E.; Naulin, V.; Nielsen, A.H.

    2006-01-01

    the presence of long- range correlations in the particle density fluctuations. Finally, conditional statistics of the particle flux demonstrates the intermittency of the turbulent plasma transport and the quasi-periodic apparency of blob structures due to bursting in the global turbulence level....... of particles and heat, which is coupled to a scrape-off layer with linear damping terms for all dependent variables corresponding to transport along open magnetic field lines. The formation of blob structures is related to profile variations caused by bursting in the global turbulence level, which is due...... to a dynamical regulation by self- sustained differential rotation of the plasma layer. Radial propagation of the blob structures follows from a vertical charge polarization due to magnetic guiding centre drifts in the toroidally magnetized plasma. Statistical analysis of the particle density, radial electric...

  11. Intermittency and emergence of coherent structures in wave turbulence of a vibrating plate

    Science.gov (United States)

    Mordant, Nicolas; Miquel, Benjamin

    2017-10-01

    We report numerical investigations of wave turbulence in a vibrating plate. The possibility to implement advanced measurement techniques and long-time numerical simulations makes this system extremely valuable for wave turbulence studies. The purely 2D character of dynamics of the elastic plate makes it much simpler to handle compared to much more complex 3D physical systems that are typical of geo- and astrophysical issues (ocean surface or internal waves, magnetized plasmas or strongly rotating and/or stratified flows). When the forcing is small the observed wave turbulence is consistent with the predictions of the weak turbulent theory. Here we focus on the case of stronger forcing for which coherent structures can be observed. These structures look similar to the folds and D-cones that are commonly observed for strongly deformed static thin elastic sheets (crumpled paper) except that they evolve dynamically in our forced system. We describe their evolution and show that their emergence is associated with statistical intermittency (lack of self similarity) of strongly nonlinear wave turbulence. This behavior is reminiscent of intermittency in Navier-Stokes turbulence. Experimental data show hints of the weak to strong turbulence transition. However, due to technical limitations and dissipation, the strong nonlinear regime remains out of reach of experiments and therefore has been explored numerically.

  12. Development of Pre-set Counter-rotating Streamwise Vortices in Wavy Channel

    KAUST Repository

    Budiman, A.C.

    2015-10-23

    Development of counter-rotating streamwise vortices in a rectangular channel with one-sided wavy surface has been experimentally quantified using hot-wire anemometry. The wavy surface has fixed amplitude of 3.75 mm. The counter-rotating vortices are pre-set by means of a sawtooth pattern cut at the leading edge of the wavy surface. Variations of the central streamwise velocity Uc with a channel gap H = 35 mm and 50 mm (corresponding to a Reynolds number from 1600 to 4400) change the instability of the flow which can be distinguished from the velocity contours at a certain spanwise plane. The streamwise velocity contours and turbulence intensity for Reynolds number Re = 3100 and H = 35 mm show the disappearance of the mushroom-like vortices prior to turbulence near the second peak of the wavy surface, while for higher Re, this phenomenon occurs earlier. Under certain conditions, for example, for Re = 4400 and H = 50 mm, the splitting of the vortices can also be observed.

  13. Development of Pre-set Counter-rotating Streamwise Vortices in Wavy Channel

    KAUST Repository

    Budiman, A.C.; Mitsudharmadi, Hatsari; Bouremel, Y.; Winoto, S.H.; Low, H.T.

    2015-01-01

    Development of counter-rotating streamwise vortices in a rectangular channel with one-sided wavy surface has been experimentally quantified using hot-wire anemometry. The wavy surface has fixed amplitude of 3.75 mm. The counter-rotating vortices are pre-set by means of a sawtooth pattern cut at the leading edge of the wavy surface. Variations of the central streamwise velocity Uc with a channel gap H = 35 mm and 50 mm (corresponding to a Reynolds number from 1600 to 4400) change the instability of the flow which can be distinguished from the velocity contours at a certain spanwise plane. The streamwise velocity contours and turbulence intensity for Reynolds number Re = 3100 and H = 35 mm show the disappearance of the mushroom-like vortices prior to turbulence near the second peak of the wavy surface, while for higher Re, this phenomenon occurs earlier. Under certain conditions, for example, for Re = 4400 and H = 50 mm, the splitting of the vortices can also be observed.

  14. Numerical study of turbulence-influence mechanism on arc characteristics in an air direct current circuit breaker

    Science.gov (United States)

    Wu, Mingliang; Yang, Fei; Rong, Mingzhe; Wu, Yi; Qi, Yang; Cui, Yufei; Liu, Zirui; Guo, Anxiang

    2016-04-01

    This paper focuses on the numerical investigation of arc characteristics in an air direct current circuit breaker (air DCCB). Using magneto-hydrodynamics (MHD) theory, 3D laminar model and turbulence model are constructed and calculated. The standard k-epsilon model is utilized to consider the turbulence effect in the arc chamber of the DCCB. Several important phenomena are found: the arc column in the turbulence-model case is more extensive, moves much more slowly than the counterpart in the laminar-model case, and shows stagnation at the entrance of the chamber, unlike in the laminar-model case. Moreover, the arc voltage in the turbulence-model case is much lower than in the laminar-model case. However, the results in the turbulence-model case show a much better agreement with the results of the breaking experiments under DC condition than in the laminar-model case, which is contradictory to the previous conclusions from the arc researches of both the low-voltage circuit breaker and the sulfur hexafluoride (SF6) nozzle. First, in the previous air-arc research of the low-voltage circuit breaker, it is assumed that the air plasma inside the chamber is in the state of laminar, and the laminar-model application gives quite satisfactory results compared with the experiments, while in this paper, the laminar-model application works badly. Second, the turbulence-model application in the arc research of the SF6-nozzle performs much better and gives higher arc voltage than the laminar-model application does, whereas in this paper, the turbulence-model application predicts lower arc voltage than the laminar-model application does. Based on the analysis of simulation results in detail, the mechanism of the above phenomena is revealed. The transport coefficients are strongly changed by turbulence, which will enhance the arc diffusion and make the arc volume much larger. Consequently, the arc appearance and the distribution of Lorentz force in the turbulence-model case

  15. Numerical study of turbulence-influence mechanism on arc characteristics in an air direct current circuit breaker

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Mingliang; Yang, Fei, E-mail: yfei2007@mail.xjtu.edu.cn; Rong, Mingzhe; Wu, Yi; Qi, Yang; Cui, Yufei [State Key Lab of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi' an Jiaotong University, Xi' an Shaanxi 710049 (China); Liu, Zirui [State Grid Shaanxi Electric Power Company, Xi' an, Shaanxi (China); Guo, Anxiang [Electric Power Research Institute of State Grid Shaanxi Electric Power Company, Xi' an, Shaanxi (China)

    2016-04-15

    This paper focuses on the numerical investigation of arc characteristics in an air direct current circuit breaker (air DCCB). Using magneto-hydrodynamics (MHD) theory, 3D laminar model and turbulence model are constructed and calculated. The standard k-epsilon model is utilized to consider the turbulence effect in the arc chamber of the DCCB. Several important phenomena are found: the arc column in the turbulence-model case is more extensive, moves much more slowly than the counterpart in the laminar-model case, and shows stagnation at the entrance of the chamber, unlike in the laminar-model case. Moreover, the arc voltage in the turbulence-model case is much lower than in the laminar-model case. However, the results in the turbulence-model case show a much better agreement with the results of the breaking experiments under DC condition than in the laminar-model case, which is contradictory to the previous conclusions from the arc researches of both the low-voltage circuit breaker and the sulfur hexafluoride (SF6) nozzle. First, in the previous air-arc research of the low-voltage circuit breaker, it is assumed that the air plasma inside the chamber is in the state of laminar, and the laminar-model application gives quite satisfactory results compared with the experiments, while in this paper, the laminar-model application works badly. Second, the turbulence-model application in the arc research of the SF6-nozzle performs much better and gives higher arc voltage than the laminar-model application does, whereas in this paper, the turbulence-model application predicts lower arc voltage than the laminar-model application does. Based on the analysis of simulation results in detail, the mechanism of the above phenomena is revealed. The transport coefficients are strongly changed by turbulence, which will enhance the arc diffusion and make the arc volume much larger. Consequently, the arc appearance and the distribution of Lorentz force in the turbulence-model case

  16. Ultraviolet-visible optical isolators based on CeF3 Faraday rotator

    International Nuclear Information System (INIS)

    Víllora, Encarnación G.; Shimamura, Kiyoshi; Plaza, Gustavo R.

    2015-01-01

    The first ultraviolet (UV) and visible optical isolators based on CeF 3 are demonstrated. CeF 3 possesses unique properties as Faraday rotator for the UV-visible wavelength region: a wide transparency range (wavelength of >300 nm) and an outstanding Verdet constant. In contrast, currently used terbium-gallium garnets and magneto-optical glasses possess a low transparency in the visible and a small Verdet constant in the UV, respectively. The optical isolator prototypes consist of a CeF 3 rod, a single ring magnet, and a couple of beam splitters. The ring magnets have been designed to guarantee a homogeneous magnetic field; for it, numerical simulations have been carried out. The two prototypes are very compact and operate in the UV at 355 and in the visible at 405 nm, respectively. The performance of these devices indicates the high potential of CeF 3 as a new UV-visible Faraday rotator, specially for shorter wavelengths where at present there are no optical isolators available

  17. Enstrophy generation in a shock-dominated turbulence

    International Nuclear Information System (INIS)

    Miura, Hideaki.

    1995-09-01

    A mechanism of enstrophy generation is investigated numerically in a shock-dominated turbulence driven by a random external force which has only the compressible component. Enstrophy is generated, especially on collision of shock, as a pair of vortex tube of opposite sense of rotation behind curved shocks. The roles of various terms in enstrophy equation are clarified in enstrophy generation process. Generation of enstrophy is enhanced by strong alignment of each term of the enstrophy equation with the vorticity vector. (author)

  18. Simulations of Turbulence in Tokamak Edge and Effects of Self-Consistent Zonal Flows

    Science.gov (United States)

    Cohen, Bruce; Umansky, Maxim

    2013-10-01

    Progress is reported on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge. This extends previous work to include self-consistent zonal flows and their effects. The previous work addressed simulation of L-mode tokamak edge turbulence using the turbulence code BOUT that solves Braginskii-based plasma fluid equations in tokamak edge domain. The calculations use realistic single-null geometry and plasma parameters of the DIII-D tokamak and produce fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.

  19. Modelling the turbulent transport of angular momentum in tokamak plasmas - A quasi-linear gyrokinetic approach

    International Nuclear Information System (INIS)

    Cottier, Pierre

    2013-01-01

    The magnetic confinement in tokamaks is for now the most advanced way towards energy production by nuclear fusion. Both theoretical and experimental studies showed that rotation generation can increase its performance by reducing the turbulent transport in tokamak plasmas. The rotation influence on the heat and particle fluxes is studied along with the angular momentum transport with the quasi-linear gyro-kinetic eigenvalue code QuaLiKiz. For this purpose, the QuaLiKiz code is modified in order to take the plasma rotation into account and compute the angular momentum flux. It is shown that QuaLiKiz framework is able to correctly predict the angular momentum flux including the E*B shear induced residual stress as well as the influence of rotation on the heat and particle fluxes. The major approximations of QuaLiKiz formalisms are reviewed, in particular the ballooning representation at its lowest order and the eigenfunctions calculated in the hydrodynamic limit. The construction of the quasi-linear fluxes is also reviewed in details and the quasi-linear angular momentum flux is derived. The different contributions to the turbulent momentum flux are studied and successfully compared both against non-linear gyro-kinetic simulations and experimental data. (author) [fr

  20. Magneto-caloric and magneto-resistive properties of La0.67Ca0.33-xSrxMnO3

    International Nuclear Information System (INIS)

    Reves Dinesen, Anders

    2004-08-01

    This thesis presents results of an experimental investigation of magneto-caloric and magneto-resistive properties of a series of polycrystalline Ca- and Sr-doped lanthanum manganites, La 0.67 Ca 0.33-x Sr x MnO 3 (0≤ x ≤ 0.33), with the perovskite structure. The samples consisted of sintered oxide powders prepared the glycine-nitrate combustion technique. The compounds were ferromagnetic and showed a Curie transition in the temperature range 267370 K (T C increased with increasing x). An analysis of the structural properties was carried out by means of x-ray diffraction and the Rietveld technique. The variation of the Ca/Sr ratio was found to cause a transition from orthorhombic to rhombohedral symmetry in the composition range 0.110 0.67 Ca 0.33-x Sr x MnO 3 samples was measured directly and indirectly (by means of magnetization measurements). All the samples showed a magnetocaloric effect in the vicinity of T C . A model for the mag-netocaloric effect based on Weiss mean field theory and classical theories for heat capacities was developed. The model provided reasonable predictions of the magneto-caloric properties of the samples. The compounds with low Sr content showed a magnetocaloric effect comparable to that of Gadolinium, the prototypical working material for magnetic refrigeration at room temperature. A less comprehensive part of the investigation regarded the magneto-resistive properties of the La 0.67 Ca 0.33-x Sr x MnO 3 system. It was found that th polycrystalline nature of the compounds played a decisive role for the magnetotransport properties. Characteristic grain boundary effects, such as a low-field magnetoresistance, which is absent in single-crystalline perovskites, were observed. The low-field effect is usually ascribed to spin-dependent scattering in grain boundaries. Qualitatively the results obtained for the La 0.67 Ca 0.33-x Sr x MnO 3 samples were consistent with this model. The resistivity contribution arising from the presence of

  1. A non-commutative formula for the isotropic magneto-electric response

    International Nuclear Information System (INIS)

    Leung, Bryan; Prodan, Emil

    2013-01-01

    A non-commutative formula for the isotropic magneto-electric response of disordered insulators under magnetic fields is derived using the methods of non-commutative geometry. Our result follows from an explicit evaluation of the Ito derivative with respect to the magnetic field of the non-commutative formula for the electric polarization reported in Schulz-Baldes and Teufel (2012 arXiv:1201.4812v1). The quantization, topological invariance and connection to a second Chern number of the magneto-electric response are discussed in the context of three-dimensional, disordered, time-reversal or inversion symmetric topological insulators. (paper)

  2. Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams

    Science.gov (United States)

    Ebrahimi, Farzad; Reza Barati, Mohammad

    2016-09-01

    In this work, a size-dependent curved beam model is developed to take into account the effects of nonlocal stresses on the buckling behavior of curved magneto-electro-elastic FG nanobeams for the first time. The governing differential equations are derived based on the principle of virtual work and Euler-Bernoulli beam theory. The power-law function is employed to describe the spatially graded magneto-electro-elastic properties. By extending the radius of the curved nanobeam to infinity, the results of straight nonlocal FG beams can be rendered. The effects of magnetic potential, electric voltage, opening angle, nonlocal parameter, power-law index and slenderness ratio on buckling loads of curved MEE-FG nanobeams are studied.

  3. Measurement of mean rotation and strain-rate tensors by using stereoscopic PIV

    DEFF Research Database (Denmark)

    Özcan, Oktay; Meyer, Knud Erik; Larsen, Poul Scheel

    2005-01-01

    A technique is described for measuring the mean velocity gradient (rate-of-displacement) tensor by using a conventional stereoscopic particle image velocimetry (SPIV) system. Planar measurement of the mean vorticity vector, rate-of-rotation and rate-of-strain tensors and the production of turbule...

  4. Suitable combination of noble/ferromagnetic metal multilayers for enhanced magneto-plasmonic biosensing.

    Science.gov (United States)

    Regatos, David; Sepúlveda, Borja; Fariña, David; Carrascosa, Laura G; Lechuga, Laura M

    2011-04-25

    We present a theoretical and experimental study on the biosensing sensitivity of Au/Co/Au multilayers as transducers of the magneto-optic surface-plasmon-resonance (MOSPR) sensor. We demonstrate that the sensing response of these magneto-plasmonic (MP) transducers is a trade-off between the optical absorption and the magneto-optical activity, observing that the MP multilayer with larger MO effect does not provide the best sensing response. We show that it is possible to design highly-sensitive MP transducers able to largely surpass the limit of detection of the conventional surface-plasmon-resonance (SPR) sensor. This was proved comparing the biosensing performance of both sensors for the label-free detection of short DNA chains hybridization. For this purpose, we used and tested a novel label-free biofunctionalization protocol based on polyelectrolytes, which increases the resistance of MP transducers in aqueous environments.

  5. Design and analysis of a magneto-rheological damper for an all terrain vehicle

    Science.gov (United States)

    Krishnan Unni, R.; Tamilarasan, N.

    2018-02-01

    A shock absorber design intended to replace the existing conventional shock absorber with a controllable system using a Magneto-rheological damper is introduced for an All Terrain Vehicle (ATV) that was designed for Baja SAE competitions. Suspensions are a vital part of an All Terrain Vehicles as it endures various surfaces and requires utmost attention while designing. COMSOL multi-physics software is used for applications that have coupled physics problems and is a unique tool that is used for the designing and analysis phase of the Magneto-rheological damper for the considered application and the model is optimized based on Taguchi using DOE software. The magneto-rheological damper is designed to maximize the damping force with the measured geometric constraints for the All Terrain Vehicle.

  6. The boundary element method applied to 3D magneto-electro-elastic dynamic problems

    Science.gov (United States)

    Igumnov, L. A.; Markov, I. P.; Kuznetsov, Iu A.

    2017-11-01

    Due to the coupling properties, the magneto-electro-elastic materials possess a wide number of applications. They exhibit general anisotropic behaviour. Three-dimensional transient analyses of magneto-electro-elastic solids can hardly be found in the literature. 3D direct boundary element formulation based on the weakly-singular boundary integral equations in Laplace domain is presented in this work for solving dynamic linear magneto-electro-elastic problems. Integral expressions of the three-dimensional fundamental solutions are employed. Spatial discretization is based on a collocation method with mixed boundary elements. Convolution quadrature method is used as a numerical inverse Laplace transform scheme to obtain time domain solutions. Numerical examples are provided to illustrate the capability of the proposed approach to treat highly dynamic problems.

  7. Turbulence modifications in a turbulent boundary layer over a rough wall with spanwise-alternating roughness strips

    Science.gov (United States)

    Bai, H. L.; Kevin, Hutchins, N.; Monty, J. P.

    2018-05-01

    Turbulence modifications over a rough wall with spanwise-varying roughness are investigated at a moderate Reynolds number Reτ ≈ 2000 (or Reθ ≈ 6400), using particle image velocimetry (PIV) and hotwire anemometry. The rough wall is comprised of spanwise-alternating longitudinal sandpaper strips of two different roughness heights. The ratio of high- and low-roughness heights is 8, and the ratio of high- and low-roughness strip width is 0.5. PIV measurements are conducted in a wall-parallel plane located in the logarithmic region, while hotwire measurements are made throughout the entire boundary layer in a cross-stream plane. In a time-average sense, large-scale counter-rotating roll-modes are observed in the cross-stream plane over the rough wall, with downwash and upwash common-flows displayed over the high- and low-roughness strips, respectively. Meanwhile, elevated and reduced streamwise velocities occur over the high- and low-roughness strips, respectively. Significant modifications in the distributions of mean vorticities and Reynolds stresses are observed, exhibiting features of spatial preference. Furthermore, spatial correlations and conditional average analyses are performed to examine the alterations of turbulence structures over the rough wall, revealing that the time-invariant structures observed are resultant from the time-average process of instantaneous turbulent events that occur mostly and preferentially in space.

  8. X-ray Pulse Length Characterization using the Surface Magneto Optic Kerr Effect

    International Nuclear Information System (INIS)

    Krejcik, P.; SLAC

    2006-01-01

    It will be challenging to measure the temporal profile of the hard X-ray SASE beam independently from the electron beam in the LCLS and other 4th generation light sources. A fast interaction mechanism is needed that can be probed by an ultrafast laser pulse in a pump-probe experiment. It is proposed to exploit the rotation in polarization of light reflected from a thin magnetized film, known as the surface magneto optic Kerr effect (SMOKE), to witness the absorption of the x-ray pulse in the thin film. The change in spin orbit coupling induced by the x-ray pulse occurs on the subfemtosecond time scale and changes the polarization of the probe beam. The limitation to the technique lies with the bandwidth of the probe laser pulse and how short the optical pulse can be made. The SMOKE mechanism will be described and the choices of materials for use with 1.5 (angstrom) x-rays. A schematic description of the pump-probe geometry for x-ray diagnosis is also described

  9. Optimization of magnetic amplification by flow constraints in turbulent liquid sodium

    International Nuclear Information System (INIS)

    Nornberg, M. D.; Taylor, N. Z.; Forest, C. B.; Rahbarnia, K.; Kaplan, E.

    2014-01-01

    Direct measurements of the vector turbulent emf in a driven two-vortex flow of liquid sodium were performed in the Madison Dynamo Experiment [K. Rahbarnia et al., Astrophys. J. 759, 80 (2012)]. The measured turbulent emf is anti-parallel with the mean current and is almost entirely described by an enhanced resistivity, which increases the threshold for a kinematic dynamo. We have demonstrated that this enhanced resistivity can be mitigated by eliminating the largest-scale eddies through the introduction of baffles. By tailoring the flow to reduce large-scale components and control the helical pitch, we have reduced the power required to drive the impellers, doubled the magnetic flux generated by differential rotation, and increased the decay time of externally applied magnetic fields. Despite these improvements, the flows remain sub-critical to the dynamo instability due to the reemergence of turbulent fluctuations at high flow speeds

  10. Homogeneous internal wave turbulence driven by tidal flows

    Science.gov (United States)

    Le Reun, Thomas; Favier, Benjamin; Le Bars, Michael; Erc Fludyco Team

    2017-11-01

    We propose a novel investigation of the stability of strongly stratified planetary fluid layers undergoing periodic tidal distortion in the limit where rotational effects are negligible compared to buoyancy. With the help of a local model focusing on a small fluid area compared to the global layer, we find that periodic tidal distortion drives a parametric subharmonic resonance of internal. This instability saturates into an homogeneous internal wave turbulence pervading the whole fluid interior: the energy is injected in the unstable waves which then feed a succession of triadic resonances also generating small spatial scales. As the timescale separation between the forcing and Brunt-Väisälä is increased, the temporal spectrum of this turbulence displays a -2 power law reminiscent of the Garrett and Munk spectrum measured in the oceans (Garett & Munk 1979). Moreover, in this state consisting of a superposition of waves in weak non-linear interaction, the mixing efficiency is increased compared to classical, Kolmogorov-like stratified turbulence. This study is of wide interest in geophysical fluid dynamics ranging from oceanic turbulence and tidal heating in icy satellites to dynamo action in partially stratified planetary cores as it could be the case in the Earth. We acknowledge support from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 681835-FLUDYCO-ERC-2015-CoG).

  11. A magneto-optically modulated CH3OH laser for Faraday rotation measurements in tokamaks

    International Nuclear Information System (INIS)

    Mansfield, D.K.; Johnson, L.C.

    1981-01-01

    Distortion-free intracavity polarization modulation of an optically pumped CH3OH laser is shown to be viable. The possible use of this modulation technique to make a multichannel Faraday rotation measurement on a tokamak device is discussed. In addition, the CdTe Faraday modulator employed in this study is shown to have an anomalously large Verdet constant

  12. Non-equilibrium thermodynamics, heat transport and thermal waves in laminar and turbulent superfluid helium

    Science.gov (United States)

    Mongiovì, Maria Stella; Jou, David; Sciacca, Michele

    2018-01-01

    This review paper puts together some results concerning non equilibrium thermodynamics and heat transport properties of superfluid He II. A one-fluid extended model of superfluid helium, which considers heat flux as an additional independent variable, is presented, its microscopic bases are analyzed, and compared with the well known two-fluid model. In laminar situations, the fundamental fields are density, velocity, absolute temperature, and heat flux. Such a theory is able to describe the thermomechanical phenomena, the propagation of two sounds in liquid helium, and of fourth sound in superleak. It also leads in a natural way to a two-fluid model on purely macroscopical grounds and allows a small amount of entropy associated with the superfluid component. Other important features of liquid He II arise in rotating situations and in superfluid turbulence, both characterized by the presence of quantized vortices (thin vortex lines whose circulation is restricted by a quantum condition). Such vortices have a deep influence on the transport properties of superfluid helium, as they increase very much its thermal resistance. Thus, heat flux influences the vortices which, in turn, modify the heat flux. The dynamics of vortex lines is the central topic in turbulent superfluid helium. The model is generalized to take into account the vortices in different cases of physical interest: rotating superfluids, counterflow superfluid turbulence, combined counterflow and rotation, and mass flow in addition to heat flow. To do this, the averaged vortex line density per unit volume L, is introduced and its dynamical equations are considered. Linear and non-linear evolution equations for L are written for homogeneous and inhomogeneous, isotropic and anisotropic situations. Several physical experiments are analyzed and the influence of vortices on the effective thermal conductivity of turbulent superfluid helium is found. Transitions from laminar to turbulent flows, from diffusive to

  13. Turbulence

    CERN Document Server

    Bailly, Christophe

    2015-01-01

    This book covers the major problems of turbulence and turbulent processes, including  physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...

  14. A Rotating-Bears Optical Dipole Trap for Cold Aatoms

    International Nuclear Information System (INIS)

    Friedman, N.; Ozeri, R.; Khaykovich, L.; Davidson, N.

    1999-01-01

    In the last few years, several optical dipole traps for cold atoms were demonstrated and used to study cold atomic collisions, long atomic coherence times and quantum collective effects. Blue-detuned dipole traps, where repulsive light forces confines atoms mostly in dark, offer long storage, and photon-scattering times, combined with strong confinement forces. Unfortunately, such blue-detuned dipole traps involve complicated light intensity distributions that require either multiple laser beams or complicated phase elements. Here, we propose and demonstrate a novel configuration for a single-beam blue-detuned dipole trap, which enables larger trapping volume, and fast temporal changes in the trap size and shape. Our trap consists of a tightly-focused laser beam which is rapidly rotated (with rotation frequency up to 400 khz) with two orthogonal acousto optical scanners. For very high rotation frequencies the atoms feel a time-averaged static dipole potential. Therefore, when the radius of rotation is larger than the beam size, a dark volume which is completely surrounded by light is obtained around the focal region. By changing the rotation radius and the trapping laser intensity and detuning, the trap dimensions and oscillation frequency could be changed over a large parameter range. In particular trap diameters were changed between 50 to 220 microns and trap length was changed between 3.5 to 16 mm. ∼10 6 atoms were loaded into the rotating-beam dipole trap from a magneto optical trap. The density of the trapped atoms was 4x10 10 atoms/cm 3 ,their temperature was -6 pK. and the trap (1/e) lifetime was 0.65 sec, limited by collisions with background atoms. When the rotation frequency was decreased below the oscillation frequency of the atoms in the trap, the trap became unstable, and a sharp reduction of the trap lifetime was observed, in agreement with our theoretical analysis. Finally, we demonstrated adiabatic compression of atoms in the trap by decreasing

  15. Bioinspired fabrication of magneto-optic hierarchical architecture by hydrothermal process from butterfly wing

    International Nuclear Information System (INIS)

    Peng Wenhong; Hu Xiaobin; Zhang Di

    2011-01-01

    We developed a green solution to incorporate nano-Fe 3 O 4 into the hierarchical architecture of a natural butterfly wing, thus obtaining unique magneto-optic nanocomposites with otherwise unavailable photonic features. Morphological characterization and Fourier Transform Infrared-Raman Spectroscope measurements indicate the assembly of Fe 3 O 4 nanocrystallites. The magnetic and optical responses of Fe 3 O 4 /wing show a coupling effect between the biological structure and magnetic material. The saturation magnetization and coercivity values of the as-prepared magneto-optic architecture varied with change of subtle structure. Such a combination of nano-Fe 3 O 4 and natural butterfly wing might create novel magneto-optic properties, and the relevant ideas could inspire the investigation of magneto-optical devices. - Highlights: → We develop a green, easy controlled hydrothermal process to synthesize magnetite hierarchical architecture. → The optical response of Fe 3 O 4 /wing exhibits a coupling effect between the structure and material. → The saturation magnetization value is mediated by shape anisotropy and the stress of different subtle structure, which has provided unique insights into studying the mysterious magnetic property of magnetite.

  16. A general one-dimension nonlinear magneto-elastic coupled constitutive model for magnetostrictive materials

    International Nuclear Information System (INIS)

    Zhang, Da-Guang; Li, Meng-Han; Zhou, Hao-Miao

    2015-01-01

    For magnetostrictive rods under combined axial pre-stress and magnetic field, a general one-dimension nonlinear magneto-elastic coupled constitutive model was built in this paper. First, the elastic Gibbs free energy was expanded into polynomial, and the relationship between stress and strain and the relationship between magnetization and magnetic field with the polynomial form were obtained with the help of thermodynamic relations. Then according to microscopic magneto-elastic coupling mechanism and some physical facts of magnetostrictive materials, a nonlinear magneto-elastic constitutive with concise form was obtained when the relations of nonlinear strain and magnetization in the polynomial constitutive were instead with transcendental functions. The comparisons between the prediction and the experimental data of different magnetostrictive materials, such as Terfenol-D, Metglas and Ni showed that the predicted magnetostrictive strain and magnetization curves were consistent with experimental results under different pre-stresses whether in the region of low and moderate field or high field. Moreover, the model can fully reflect the nonlinear magneto-mechanical coupling characteristics between magnetic, magnetostriction and elasticity, and it can effectively predict the changes of material parameters with pre-stress and bias field, which is useful in practical applications

  17. Effective-medium theory for nonlinear magneto-optics in magnetic granular alloys: cubic nonlinearity

    International Nuclear Information System (INIS)

    Granovsky, Alexander B.; Kuzmichov, Michail V.; Clerc, J.-P.; Inoue, Mitsuteru

    2003-01-01

    We propose a simple effective-medium approach for calculating the effective dielectric function of a magnetic metal-insulator granular alloy in which there is a weakly nonlinear relation between electric displacement D and electric field E for both constituent materials of the form D i =ε i (0) E i +χ i (3) |E i | 2 E i . We assume that linear ε i (0) and cubic nonlinear χ i (3) dielectric functions are diagonal and linear with magnetization non-diagonal components. For such metal-insulator composite magneto-optical effects depend on a light intensity and the effective cubic dielectric function χ eff (3) can be significantly greater (up to 10 3 times) than that for constituent materials. The calculation scheme is based on the Bergman and Stroud-Hui theory of nonlinear optical properties of granular matter. The giant cubic magneto-optical nonlinearity is found for composites with metallic volume fraction close to the percolation threshold and at a resonance of optical conductivity. It is shown that a composite may exhibit nonlinear magneto-optics even when both constituent materials have no cubic magneto-optical nonlinearity

  18. Magneto-optical extinction trend inversion in ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Shulyma, S.I., E-mail: kiw_88@mail.ru; Tanygin, B.M., E-mail: b.m.tanygin@gmail.com; Kovalenko, V.F.; Petrychuk, M.V.

    2016-10-15

    Effects of pulse magnetic field on the optical transmission properties of thin ferrofluid (FF) layers were experimentally investigated. It was observed that, under an influence of an external uniform magnetic field, pulses applied to the samples surfaces in normal direction decrease the optical transmission with further returning it to its original state, even before the end of the field pulse. The dependencies of the observed effects on the magnetic pulse magnitude and the samples thickness were investigated. The experimental results are explained using FF columnar aggregates growth and lateral coalescence under influence of a magnetic field, leading to a light scattering type Rayleigh-to-Mie transition. Further evolution of this process comes to a geometrical optics scale and respective macroscopic observable opaque FF columnar aggregates emergence. These changes of optical transmission are non-monotonic during the magnetic field pulse duration with minimal value in the case of Mie scattering, which is known as a magneto-optical extinction trend inversion. The residual inversion was detected after the external magnetic field pulse falling edge. Using molecular dynamics simulation, we showed that a homogeneous external magnetic field is enough for the formation of columnar aggregates and their fusion. The results clarify the known Li theory (Li et al., 2004, 2007), implying an inhomogeneous field as a required prerequisite for the magneto-optical extinction trend inversion phenomenon. - Highlights: • Ferrofluid columnar aggregates have been observed in a homogeneous magnetic field. • Magneto-optical extinction trend inversion is related to the Mie light scattering. • Crucial role of columnar aggregates growth and lateral coalescence has been revealed. • Residual extinction trend inversion was observed after the field switch off.

  19. Magneto-optical extinction trend inversion in ferrofluids

    International Nuclear Information System (INIS)

    Shulyma, S.I.; Tanygin, B.M.; Kovalenko, V.F.; Petrychuk, M.V.

    2016-01-01

    Effects of pulse magnetic field on the optical transmission properties of thin ferrofluid (FF) layers were experimentally investigated. It was observed that, under an influence of an external uniform magnetic field, pulses applied to the samples surfaces in normal direction decrease the optical transmission with further returning it to its original state, even before the end of the field pulse. The dependencies of the observed effects on the magnetic pulse magnitude and the samples thickness were investigated. The experimental results are explained using FF columnar aggregates growth and lateral coalescence under influence of a magnetic field, leading to a light scattering type Rayleigh-to-Mie transition. Further evolution of this process comes to a geometrical optics scale and respective macroscopic observable opaque FF columnar aggregates emergence. These changes of optical transmission are non-monotonic during the magnetic field pulse duration with minimal value in the case of Mie scattering, which is known as a magneto-optical extinction trend inversion. The residual inversion was detected after the external magnetic field pulse falling edge. Using molecular dynamics simulation, we showed that a homogeneous external magnetic field is enough for the formation of columnar aggregates and their fusion. The results clarify the known Li theory (Li et al., 2004, 2007), implying an inhomogeneous field as a required prerequisite for the magneto-optical extinction trend inversion phenomenon. - Highlights: • Ferrofluid columnar aggregates have been observed in a homogeneous magnetic field. • Magneto-optical extinction trend inversion is related to the Mie light scattering. • Crucial role of columnar aggregates growth and lateral coalescence has been revealed. • Residual extinction trend inversion was observed after the field switch off.

  20. Magneto Transport of CVD Carbon in Artificial Opals

    Science.gov (United States)

    Wang, Lei; Yin, Ming; Arammash, Fauzi; Datta, Timir

    2014-03-01

    Magneto-transport of carbon inverse opal structures were investigated in the 2.5 to 300 K temperatures and magnetic fields in the 0-10T regime. Qualitatively, our observations lie between those reported by previous researchers. Over this temperature range, transport (in zero magnetic field) is non-metallic; the resistance decreased with rising temperature however the temperature dependent behavior is not activated, as observed with variable range hopping. In three-dimensions, such behavior can also be the result of weak localization and electron-electron interactions; in particular the change in conductivity is a polynomial in fractional powers of absolute temperature. At sub-helium temperature regimes the relative magneto resistance is measured to be ~ 0.1 percent per Tesla. Results of data analysis for several different scenarios will be reported. DOD award #60177-RT-H from the ARO.

  1. Turbulent/non-turbulent interfaces detected in DNS of incompressible turbulent boundary layers

    Science.gov (United States)

    Watanabe, T.; Zhang, X.; Nagata, K.

    2018-03-01

    The turbulent/non-turbulent interface (TNTI) detected in direct numerical simulations is studied for incompressible, temporally developing turbulent boundary layers at momentum thickness Reynolds number Reθ ≈ 2000. The outer edge of the TNTI layer is detected as an isosurface of the vorticity magnitude with the threshold determined with the dependence of the turbulent volume on a threshold level. The spanwise vorticity magnitude and passive scalar are shown to be good markers of turbulent fluids, where the conditional statistics on a distance from the outer edge of the TNTI layer are almost identical to the ones obtained with the vorticity magnitude. Significant differences are observed for the conditional statistics between the TNTI detected by the kinetic energy and vorticity magnitude. A widely used grid setting determined solely from the wall unit results in an insufficient resolution in a streamwise direction in the outer region, whose influence is found for the geometry of the TNTI and vorticity jump across the TNTI layer. The present results suggest that the grid spacing should be similar for the streamwise and spanwise directions. Comparison of the TNTI layer among different flows requires appropriate normalization of the conditional statistics. Reference quantities of the turbulence near the TNTI layer are obtained with the average of turbulent fluids in the intermittent region. The conditional statistics normalized by the reference turbulence characteristics show good quantitative agreement for the turbulent boundary layer and planar jet when they are plotted against the distance from the outer edge of the TNTI layer divided by the Kolmogorov scale defined for turbulent fluids in the intermittent region.

  2. PROPERTIES OF INTERSTELLAR TURBULENCE FROM GRADIENTS OF LINEAR POLARIZATION MAPS

    International Nuclear Information System (INIS)

    Burkhart, Blakesley; Lazarian, A.; Gaensler, B. M.

    2012-01-01

    Faraday rotation of linearly polarized radio signals provides a very sensitive probe of fluctuations in the interstellar magnetic field and ionized gas density resulting from magnetohydrodynamic (MHD) turbulence. We used a set of statistical tools to analyze images of the spatial gradient of linearly polarized radio emission (|∇P|) for both observational data from a test image of the Southern Galactic Plane Survey (SGPS) and isothermal three-dimensional simulations of MHD turbulence. Visually, in both observations and simulations, a complex network of filamentary structures is seen. Our analysis shows that the filaments in |∇P| can be produced both by interacting shocks and random fluctuations characterizing the non-differentiable field of MHD turbulence. The latter dominates for subsonic turbulence, while the former is only present in supersonic turbulence. We show that supersonic and subsonic turbulence exhibit different distributions as well as different morphologies in the maps of |∇P|. Particularly, filaments produced by shocks show a characteristic 'double jump' profile at the sites of shock fronts resulting from delta function-like increases in the density and/or magnetic field, while those produced by subsonic turbulence show a single jump profile. In order to quantitatively characterize these differences, we use the topology tool known as the genus curve as well as the probability distribution function moments of the image distribution. We find that higher values for the moments correspond to cases of |∇P| with larger sonic Mach numbers. The genus analysis of the supersonic simulations of |∇P| reveals a 'swiss cheese' topology, while the subsonic cases have characteristics of a 'clump' topology. Based on the analysis of the genus and the higher order moments, the SGPS test region data have a distribution and morphology that match subsonic- to transonic-type turbulence, which confirms what is now expected for the warm ionized medium.

  3. PROPERTIES OF INTERSTELLAR TURBULENCE FROM GRADIENTS OF LINEAR POLARIZATION MAPS

    Energy Technology Data Exchange (ETDEWEB)

    Burkhart, Blakesley; Lazarian, A. [Astronomy Department, University of Wisconsin, Madison, 475 N. Charter St., WI 53711 (United States); Gaensler, B. M. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia)

    2012-04-20

    Faraday rotation of linearly polarized radio signals provides a very sensitive probe of fluctuations in the interstellar magnetic field and ionized gas density resulting from magnetohydrodynamic (MHD) turbulence. We used a set of statistical tools to analyze images of the spatial gradient of linearly polarized radio emission (|{nabla}P|) for both observational data from a test image of the Southern Galactic Plane Survey (SGPS) and isothermal three-dimensional simulations of MHD turbulence. Visually, in both observations and simulations, a complex network of filamentary structures is seen. Our analysis shows that the filaments in |{nabla}P| can be produced both by interacting shocks and random fluctuations characterizing the non-differentiable field of MHD turbulence. The latter dominates for subsonic turbulence, while the former is only present in supersonic turbulence. We show that supersonic and subsonic turbulence exhibit different distributions as well as different morphologies in the maps of |{nabla}P|. Particularly, filaments produced by shocks show a characteristic 'double jump' profile at the sites of shock fronts resulting from delta function-like increases in the density and/or magnetic field, while those produced by subsonic turbulence show a single jump profile. In order to quantitatively characterize these differences, we use the topology tool known as the genus curve as well as the probability distribution function moments of the image distribution. We find that higher values for the moments correspond to cases of |{nabla}P| with larger sonic Mach numbers. The genus analysis of the supersonic simulations of |{nabla}P| reveals a 'swiss cheese' topology, while the subsonic cases have characteristics of a 'clump' topology. Based on the analysis of the genus and the higher order moments, the SGPS test region data have a distribution and morphology that match subsonic- to transonic-type turbulence, which confirms what is now

  4. Boundary Layer Control of Rotating Convection Systems

    Science.gov (United States)

    King, E. M.; Stellmach, S.; Noir, J.; Hansen, U.; Aurnou, J. M.

    2008-12-01

    Rotating convection is ubiquitous in the natural universe, and is likely responsible for planetary processes such magnetic field generation. Rapidly rotating convection is typically organized by the Coriolis force into tall, thin, coherent convection columns which are aligned with the axis of rotation. This organizational effect of rotation is thought to be responsible for the strength and structure of magnetic fields generated by convecting planetary interiors. As thermal forcing is increased, the relative influence of rotation weakens, and fully three-dimensional convection can exist. It has long been assumed that rotational effects will dominate convection dynamics when the ratio of buoyancy to the Coriolis force, the convective Rossby number, Roc, is less than unity. We investigate the influence of rotation on turbulent Rayleigh-Benard convection via a suite of coupled laboratory and numerical experiments over a broad parameter range: Rayleigh number, 10310; Ekman number, 10-6≤ E ≤ ∞; and Prandtl number, 1≤ Pr ≤ 100. In particular, we measure heat transfer (as characterized by the Nusselt number, Nu) as a function of the Rayleigh number for several different Ekman and Prandtl numbers. Two distinct heat transfer scaling regimes are identified: non-rotating style heat transfer, Nu ~ Ra2/7, and quasigeostrophic style heat transfer, Nu~ Ra6/5. The transition between the non-rotating regime and the rotationally dominant regime is described as a function of the Ekman number, E. We show that the regime transition depends not on the global force balance Roc, but on the relative thicknesses of the thermal and Ekman boundary layers. The transition scaling provides a predictive criterion for the applicability of convection models to natural systems such as Earth's core.

  5. Magnetic field induced augmented thermal conduction phenomenon in magneto-nanocolloids

    International Nuclear Information System (INIS)

    Katiyar, Ajay; Dhar, Purbarun; Nandi, Tandra; Das, Sarit K.

    2016-01-01

    Magnetic field induced augmented thermal conductivity of magneto-nanocolloids involving nanoparticles, viz. Fe_2O_3, Fe_3O_4, NiO and Co_3O_4 dispersed in different base fluids have been reported. Experiments reveal the augmented thermal transport under external applied magnetic field. A maximum thermal conductivity enhancement ∼114% is attained at 7.0 vol% concentration and 0.1 T magnetic flux density for Fe_3O_4/EG magneto-nanocolloid. However, a maximum ∼82% thermal conductivity enhancement is observed for Fe_3O_4/kerosene magneto-nanocolloid for the same concentration but relatively at low magnetic flux density (∼0.06 T). Thereby, a strong effect of fluid as well as particle physical properties on the chain formation propensity, leading to enhanced conduction, in such systems is observed. Co_3O_4 nanoparticles show insignificant effect on the thermal conductivity enhancement of MNCs due to their minimal magnetic moment. A semi-empirical approach has been proposed to understand the mechanism and physics behind the thermal conductivity enhancement under external applied magnetic field, in tune with near field magnetostatic interactions as well as Neel relaxivity of the magnetic nanoparticles. Furthermore, the model is able to predict the phenomenon of enhanced thermal conductivity as a function of physical parameters and shows good agreement with the experimental observations. - Highlights: • Heat conduction in magneto-nanocolloids augments tremendously under magnetic field. • Oxide nanoparticles of Fe, Ni and Co dispersed in variant base fluids are used. • Enhancement in heat conduction is due to the formation of thermally conductive chains. • Proposed semi-empirical model shows good agreement with the experimental results.

  6. Magneto x-ray study of a gadolinium-iron amorphous alloy

    International Nuclear Information System (INIS)

    Keller, E.N.

    1985-01-01

    This work reports the measurement of the magnetic x-ray absorption of an amorphous Gd-Fe ferrimagnetic thin film. The Gd to Fe concentration in the sample was 1:4. The magnetic x-ray effect is the x-ray analog of magneto-optic absorption effects. Magneto x-ray effects arise when a solid has different indices of refraction for right and left circularly polarized x-rays. The difference in absorption of left and right circularly polarized x-rays is called the magneto x-ray absorption. This absorption is proportional to the net spin of the final state density of states. At the L3 edge, the main x-ray transition is from initial Gd(2p) core states to final Gd(5d) unoccupied states. Since the 5d states have a net spin polarization in ferromagnetic Gd, this experiment hoped to directly observe how that polarization changes for Gd in the alloy. The magneto x-ray absorption at the Gd L3 edge will be proportional to the sign and amount of the net spin polarization of the 5d electrons. The magnetic x-ray absorption coefficient was found to be at least 0.0005 smaller than the linear absorption coefficient at the Gd white line energy. This was measured for the amorphous alloy at room temperature. Lock-in techniques were used to obtain the small limit to the absorption. A simple model for the size of the magnetic x-ray absorption coefficient in Gd suggests that the Gd(5d) net spin polarization is less than 0.01 Bohr magnetons per atom

  7. Turbulent mass transfer in electrochemical systems: Turbulence for electrochemistry, electrochemistry for turbulence

    International Nuclear Information System (INIS)

    Vorotyntsev, M.A.

    1991-01-01

    Key problems of turbulent mass transfer at a solid wall are reviewed: closure problem for the concentration field, information on wall turbulence, applications of microelectrodes to study the structure of turbulence, correlation properties of current fluctuations. (author). 26 refs

  8. Faraday rotation measure variations in the Cygnus region and the spectrum of interstellar plasma turbulence

    Science.gov (United States)

    Lazio, T. Joseph; Spangler, Steven R.; Cordes, James M.

    1990-01-01

    Linear polarization observations were made of eight double-lobed radio galaxies viewed through the galactic plane in the Cygnus region. These observations have been used to determine intra- and intersource rotation measure differences; in some cases, unambiguous rotation measures have been extracted. The rotation measures are dominated by foreground magnetoionic material. The differences in rotation measure between pairs of sources correlate with angular separation for separations from 10 arcsec to 1.5 deg. These rotation measure fluctuations are consistent with a model in which the electron density varies on roughly 0.1-200 pc scales. The amplitudes of these variations are, in turn, consistent with those electron density variations that cause diffractive interstellar scattering on scales less than 10 to the 11th cm.

  9. Development of Magneto-Resistive Angular Position Sensors for Space Applications

    Science.gov (United States)

    Hahn, Robert; Langendorf, Sven; Seifart, Klaus; Slatter, Rolf; Olberts, Bastian; Romera, Fernando

    2015-09-01

    Magnetic microsystems in the form of magneto- resistive (MR) sensors are firmly established in automobiles and industrial applications. They measure path, angle, electrical current, or magnetic fields. MR technology opens up new sensor possibilities in space applications and can be an enabling technology for optimal performance, high robustness and long lifetime at reasonable costs. In a recent assessment study performed by HTS GmbH and Sensitec GmbH under ESA Contract a market survey has confirmed that space industry has a very high interest in novel, contactless position sensors based on MR technology. Now, a detailed development stage is pursued, to advance the sensor design up to Engineering Qualification Model (EQM) level and to perform qualification testing for a representative pilot space application.The paper briefly reviews the basics of magneto- resistive effects and possible sensor applications and describes the key benefits of MR angular sensors with reference to currently operational industrial and space applications. The results of the assessment study are presented and potential applications and uses of contactless magneto-resistive angular sensors for spacecraft are identified. The baseline mechanical and electrical sensor design will be discussed. An outlook on the EQM development and qualification tests is provided.

  10. Asymmetric core collapse of rapidly rotating massive star

    Science.gov (United States)

    Gilkis, Avishai

    2018-02-01

    Non-axisymmetric features are found in the core collapse of a rapidly rotating massive star, which might have important implications for magnetic field amplification and production of a bipolar outflow that can explode the star, as well as for r-process nucleosynthesis and natal kicks. The collapse of an evolved rapidly rotating MZAMS = 54 M⊙ star is followed in three-dimensional hydrodynamic simulations using the FLASH code with neutrino leakage. A rotating proto-neutron star (PNS) forms with a non-zero linear velocity. This can contribute to the natal kick of the remnant compact object. The PNS is surrounded by a turbulent medium, where high shearing is likely to amplify magnetic fields, which in turn can drive a bipolar outflow. Neutron-rich material in the PNS vicinity might induce strong r-process nucleosynthesis. The rapidly rotating PNS possesses a rotational energy of E_rot ≳ 10^{52} erg. Magnetar formation proceeding in a similar fashion will be able to deposit a portion of this energy later on in the supernova ejecta through a spin-down mechanism. These processes can be important for rare supernovae generated by rapidly rotating progenitors, even though a complete explosion is not simulated in the present study.

  11. Finite elements for the calculation of turbulent flows in three-dimensional complex geometries

    Science.gov (United States)

    Ruprecht, A.

    A finite element program for the calculation of incompressible turbulent flows is presented. In order to reduce the required storage an iterative algorithm is used which solves the necessary equations sequentially. The state of turbulence is defined by the k-epsilon model. In addition to the standard k-epsilon model, the modification of Bardina et al., taking into account the rotation of the mean flow, is investigated. With this program, the flow in the draft tube of a Kaplan turbine is examined. Calculations are carried out for swirling and nonswirling entrance flow. The results are compared with measurements.

  12. Far-Infrared Magneto-Optical Studies in Germanium and Indium-Antimonide at High Intensities

    Science.gov (United States)

    Leung, Michael

    Observations of nonlinear magneto-optical phenomena occurring in p-type Germanium and n-type Indium Antimonide are reported. These include multi-photon ionization of impurity states, and a new observation, the magneto-photon ionization of impurity states, and a new observation, the magneto-photon drag effect. A novel source of far-infrared radiation has been used. This source uses a pulsed CO(,2) LASER to optically pump a super-radiant cell, generating light with intensities up to 100 KW/cm('2) and wavelengths from 66 (mu)m to 496 (mu)m in a pulse of 150 nanoseconds duration. The Germanium samples were doped with Gallium, which is a shallow acceptor with an ionization potential of 11 meV. At liquid Helium temperature virtually all charge carriers are bound to acceptor sites. However, the high intensity radiation unexpectedly ionizes the acceptors. This is demonstrated through measurements of photoconductivity, transmission and the photo-Hall Effect. This observation is unexpected because the photon energy is one-fourth the ionization potential. Rate equations describing sequential multiphoton excitations are in agreement with the experimental results. The intermediate states are postulated to be acceptor exciton band states. Studies of the photoexcited mobility at 496 (mu)m suggest that at non-saturating levels of photoexcitation, the primary scattering mechanism of hot holes in Germanium is by neutral impurities. A new magneto-optical effect, the magneto-photon drag effect, has been studied in both Germanium and Indium Antimonide. This is simply the absorption of momentum by free carriers, from an incident photon field. It has been found that the mechanism for this effect is different in the two materials. In Germanium, the effect occurs when carriers make optical transitions from the heavy hole band to the light hole band. Thus, the magneto-optical behavior depends heavily upon the band structure. On the other hand, a modified Drude model (independent electron

  13. Properties of Exchange Coupled All-garnet Magneto-Optic Thin Film Multilayer Structures

    Science.gov (United States)

    Nur-E-Alam, Mohammad; Vasiliev, Mikhail; Kotov, Viacheslav A.; Balabanov, Dmitry; Akimov, Ilya; Alameh, Kamal

    2015-01-01

    The effects of exchange coupling on magnetic switching properties of all-garnet multilayer thin film structures are investigated. All-garnet structures are fabricated by sandwiching a magneto-soft material of composition type Bi1.8Lu1.2Fe3.6Al1.4O12 or Bi3Fe5O12:Dy2O3 in between two magneto-hard garnet material layers of composition type Bi2Dy1Fe4Ga1O12 or Bi2Dy1Fe4Ga1O12:Bi2O3. The fabricated RF magnetron sputtered exchange-coupled all-garnet multilayers demonstrate a very attractive combination of magnetic properties, and are of interest for emerging applications in optical sensors and isolators, ultrafast nanophotonics and magneto-plasmonics. An unconventional type of magnetic hysteresis behavior not observed previously in magnetic garnet thin films is reported and discussed. PMID:28788043

  14. Properties of Exchange Coupled All-garnet Magneto-Optic Thin Film Multilayer Structures

    Directory of Open Access Journals (Sweden)

    Mohammad Nur-E-Alam

    2015-04-01

    Full Text Available The effects of exchange coupling on magnetic switching properties of all-garnet multilayer thin film structures are investigated. All-garnet structures are fabricated by sandwiching a magneto-soft material of composition type Bi1.8Lu1.2Fe3.6Al1.4O12 or Bi3Fe5O12:Dy2O3 in between two magneto-hard garnet material layers of composition type Bi2Dy1Fe4Ga1O12 or Bi2Dy1Fe4Ga1O12:Bi2O3. The fabricated RF magnetron sputtered exchange-coupled all-garnet multilayers demonstrate a very attractive combination of magnetic properties, and are of interest for emerging applications in optical sensors and isolators, ultrafast nanophotonics and magneto-plasmonics. An unconventional type of magnetic hysteresis behavior not observed previously in magnetic garnet thin films is reported and discussed.

  15. Ground-state magneto-optical resonances in cesium vapor confined in an extremely thin cell

    International Nuclear Information System (INIS)

    Andreeva, C.; Cartaleva, S.; Petrov, L.; Slavov, D.; Atvars, A.; Auzinsh, M.; Blush, K.

    2007-01-01

    Experimental and theoretical studies are presented related to the ground-state magneto-optical resonance observed in cesium vapor confined in an extremely thin cell (ETC), with thickness equal to the wavelength of the irradiating light. It is shown that utilization of the ETC allows one to examine the formation of a magneto-optical resonance on the individual hyperfine transitions, thus distinguishing processes resulting in dark (reduced absorption) or bright (enhanced absorption) resonance formation. We report experimental evidence of bright magneto-optical resonance sign reversal in Cs atoms confined in an ETC. A theoretical model is proposed based on the optical Bloch equations that involves the elastic interaction processes of atoms in the ETC with its walls, resulting in depolarization of the Cs excited state, which is polarized by the exciting radiation. This depolarization leads to the sign reversal of the bright resonance. Using the proposed model, the magneto-optical resonance amplitude and width as a function of laser power are calculated and compared with the experimental ones. The numerical results are in good agreement with those of experiment

  16. Magneto-optically modulated CH/sub 3/OH laser For faraday rotation measurements in tokamaks

    International Nuclear Information System (INIS)

    Mansfield, D.K.; Johnson, L.C.

    1981-01-01

    Distortion-free intracavity polarization modulation of an optically pumped CH/sub 3/OH laser is shown to be viable. The possible use of this modulation technique to make a multichannel Faraday rotation measurement on a Tokamak device is discussed. In addition, the CdTe Faraday modulator employed in this study is shown to have an anomalously large Verdet constant. 12 refs

  17. Exchange bias and bistable magneto-resistance states in amorphous TbFeCo thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaopu, E-mail: xl6ba@virginia.edu; Ma, Chung T.; Poon, S. Joseph, E-mail: sjp9x@virginia.edu [Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Lu, Jiwei [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Devaraj, Arun [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Spurgeon, Steven R.; Comes, Ryan B. [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2016-01-04

    Amorphous TbFeCo thin films sputter deposited at room temperature on thermally oxidized Si substrate are found to exhibit strong perpendicular magnetic anisotropy. Atom probe tomography, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy mapping have revealed two nanoscale amorphous phases with different Tb atomic percentages distributed within the amorphous film. Exchange bias accompanied by bistable magneto-resistance states has been uncovered near room temperature by magnetization and magneto-transport measurements. The exchange anisotropy originates from the exchange interaction between the ferrimagnetic and ferromagnetic components corresponding to the two amorphous phases. This study provides a platform for exchange bias and magneto-resistance switching using single-layer amorphous ferrimagnetic thin films that require no epitaxial growth.

  18. Microstructural effects on the magnetic and magneto-transport properties of electrodeposited Ni nanowire arrays

    International Nuclear Information System (INIS)

    Chen, Shu-Fang; Wei, Hao Han; Liu, Chuan-Pu; Hsu, C Y; Huang, J C A

    2010-01-01

    The magnetic and magneto-transport properties of Ni nanowire (NW) arrays, fabricated by electrodeposition in anodic-aluminum-oxide (AAO) templates, have been investigated. The AAO pores have diameters ranging from 35 to 75 nm, and the crystallinity of the Ni NW arrays could change from poly-crystalline to single-crystalline with the [111] and [110] orientations based on the electrodeposition potential. Notably, double switching magnetization loops and double-peaked magnetoresistance curves were observed in [110]-oriented NWs. The crystalline orientation of the Ni NW arrays is found to influence the corresponding magnetic and magneto-transport properties significantly. These magnetic behaviors are dominated by the competition between the magneto-crystalline and shape anisotropy.

  19. Anomalous scaling of passive scalars in rotating flows.

    Science.gov (United States)

    Rodriguez Imazio, P; Mininni, P D

    2011-06-01

    We present results of direct numerical simulations of passive scalar advection and diffusion in turbulent rotating flows. Scaling laws and the development of anisotropy are studied in spectral space, and in real space using an axisymmetric decomposition of velocity and passive scalar structure functions. The passive scalar is more anisotropic than the velocity field, and its power spectrum follows a spectral law consistent with ~ k[Please see text](-3/2). This scaling is explained with phenomenological arguments that consider the effect of rotation. Intermittency is characterized using scaling exponents and probability density functions of velocity and passive scalar increments. In the presence of rotation, intermittency in the velocity field decreases more noticeably than in the passive scalar. The scaling exponents show good agreement with Kraichnan's prediction for passive scalar intermittency in two dimensions, after correcting for the observed scaling of the second-order exponent.

  20. Magneto-plasmonics as a tool for magnetic field sensing

    Czech Academy of Sciences Publication Activity Database

    Vlček, J.; Lesňák, M.; Pištora, J.; Otipka, P.; Sobota, Jaroslav

    2013-01-01

    Roč. 58, č. 9 (2013), s. 260-264 ISSN 0447-6441 Institutional support: RVO:68081731 Keywords : plasmon resonance * magneto-optics * sensors * response factors Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  1. Comparison of Turbulence Models in Simulation of Flow in Small-Size Centrifugal Compressor

    Directory of Open Access Journals (Sweden)

    B. B. Novickii

    2015-01-01

    Full Text Available The aim of the work is the choice of turbulence model for the closure of the Reynoldsaveraged Navier-Stokes equations for calculation of the characteristics of small-size centrifugal compressor. To this were built three-dimensional sectors (as the compressor axisymmetric blade impeller and the diffuser of the centrifugal compressor on the basis of which they were created two grid models. The dimension of the grid model for the calculation models of turbulence komega and SST was 1.4 million. Elements and the dimensionless parameter y + does not exceed 2. turbulence model family k-epsilon model grid was also 1.4 million. Elements, and the dimensionless parameter y + was greater than 20, which corresponds to recommended values. The next part of the work was the task of boundary conditions required for the correct ca lculation. When the impeller inlet pawned pressure working fluid and the total temperature at the outlet and the gas flow rate through the stage. On the side faces sectors pawned boundary cond ition «Periodic», allowing everything except the wheel, but only axisymmetric part, which significantly reduces the required computational time and resources. Accounting clearance in addition to the meridional geometry construction additionally taken into account boundary condition «Counter Rotating Wall», which allows you to leave the domain in the rotating disc fixed coa ting.The next step was to analyze the results of these calculations, which showed that the turbulence model k-epsilon and RNG does not show the velocity vectors in the boundary layer, and "pushes" the flow from the blade using wall functions. At the core of the flow turbulence model k-omega shown for the undisturbed flow, which is not typical for the compressor working on predpompazhnom mode. For viscous gas diffuser vane for turbulence models SST, k-omega, RNG k-epsilon and has a similar character.The paper compares the characteristics of pressure centrifugal compressor

  2. Synthesis of Immunotargeted Magneto-plasmonic Nanoclusters

    OpenAIRE

    Wu, Chun-Hsien; Sokolov, Konstantin

    2014-01-01

    Magnetic and plasmonic properties combined in a single nanoparticle provide a synergy that is advantageous in a number of biomedical applications including contrast enhancement in novel magnetomotive imaging modalities, simultaneous capture and detection of circulating tumor cells (CTCs), and multimodal molecular imaging combined with photothermal therapy of cancer cells. These applications have stimulated significant interest in development of protocols for synthesis of magneto-plasmonic nan...

  3. Giant magneto-resistance devices

    CERN Document Server

    Hirota, Eiichi; Inomata, Koichiro

    2002-01-01

    This book deals with the application of giant magneto-resistance (GMR) effects to electronic devices. It will appeal to engineers and graduate students in the fields of electronic devices and materials. The main subjects are magnetic sensors with high resolution and magnetic read heads with high sensitivity, required for hard-disk drives with recording densities of several gigabytes. Another important subject is novel magnetic random-access memories (MRAM) with non-volatile non-destructive and radiation-resistant characteristics. Other topics include future GMR devices based on bipolar spin transistors, spin field-effect transistors (FETs) and double-tunnel junctions.

  4. Modification of the turbulence in the plasma boundary of the Wendelstein 7-AS stellarator using electric probes

    International Nuclear Information System (INIS)

    Thomsen, H.; Endler, M.; Schubert, M.

    2001-01-01

    The fluctuations in the edge plasmas of magnetic fusion experiments are thought to play an important role in terms of anomalous energy and particle transport. Experiments on Wendelstein 7-AS were conducted with the primary goal to investigate the performance of influencing and modifying the turbulence in the plasma boundary using electrical probes. Two movable poloidal probe arrays were used for the experiments, one located on the inboard side of the vessel and the other on the outboard side. A subset of probe tips was used for actively driving the plasma by different control signals, the remaining probes collected fluctuation data in the plasma boundary. Poloidally, we find a significant cross-correlation between active and passive probes. From analysis of the coherency and phases of the passive probe tips, it can clearly be seen that the background ExB-rotation of the plasma plays a crucial role for the applied signals. In the case of externally driven waves by several phase-locked active probes, the direction of the wave propagation with respect to the plasma rotation (co- or counter-rotating) is essential for a proper coupling to the turbulence. In toroidal direction we find that the propagation of the signals along the magnetic field lines depends on co- or counter-rotation with respect to the background plasma rotation. (author)

  5. AB INITIO calculations of magneto-optical effects

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jan; Oppeneer, P. M.

    2002-01-01

    Roč. 2, - (2002), s. 141-146 ISSN 1346-7948 R&D Projects: GA AV ČR IAA1010214 Institutional research plan: CEZ:AV0Z1010914 Keywords : electronic structure * ab initio calculation * polar magneto-optical Kerr effect * transitiom metal * uranium intermetallics * CrO 2 Subject RIV: BM - Solid Matter Physics ; Magnetism

  6. Effect of magneto rheological damper on tool vibration during hard turning

    Science.gov (United States)

    Paul, P. Sam; Varadarajan, A. S.

    2012-12-01

    Recently, the concept of hard turning has gained considerable attention in metal cutting as it can apparently replace the traditional process cycle of turning, heat treating, and finish grinding for assembly of hard wear resistant steel parts. The present investigation aims at developing a magneto rheological (MR) fluid damper for suppressing tool vibration and promoting better cutting performance during hard turning. The magneto rheological Fluid acts as a viscoelastic spring with non-linear vibration characteristics that are controlled by the composition of the magneto rheological fluid, the shape of the plunger and the electric parameters of the magnetizing field. Cutting experiments were conducted to arrive at a set of electrical, compositional and shape parameters that can suppress tool vibration and promote better cutting performance during turning of AISI 4340 steel of 46 HRC with minimal fluid application using hard metal insert with sculptured rake face. It was observed that the use of MR fluid damper reduces tool vibration and improves the cutting performance effectively. Also commercialization of this idea holds promise to the metal cutting industry.

  7. Differential rotation and the solar dynamo

    International Nuclear Information System (INIS)

    Stix, M.

    1976-01-01

    A number of numerical models for the generation of mean magnetic fields is examined and the fields are compared with the mean field of the Sun. In particular, αω-dynamos, which are based on differential rotation and cyclonic turbulence, are studied in the case of cylindrical surfaces of isorotation. Such dynamos have an oscillatory antisymmetric field as the most easily excited mode. Only models with an angular velocity which increases with increasing depth appear to be compatible with observations. A search for oscillatory ω x j-dynamos, where the α-effect is replaced by a different mean electric field perpendicular to the rotation vector ω and the mean current density j is also made. Oscillatory modes do exist for models with radial shear. Their migration is equatorwards for inwards increasing angular velocity. (orig./BJ) [de

  8. A Simulation Model for Drift Resistive Ballooning Turbulence Examining the Influence of Self-consistent Zonal Flows

    Science.gov (United States)

    Cohen, Bruce; Umansky, Maxim; Joseph, Ilon

    2015-11-01

    Progress is reported on including self-consistent zonal flows in simulations of drift-resistive ballooning turbulence using the BOUT + + framework. Previous published work addressed the simulation of L-mode edge turbulence in realistic single-null tokamak geometry using the BOUT three-dimensional fluid code that solves Braginskii-based fluid equations. The effects of imposed sheared ExB poloidal rotation were included, with a static radial electric field fitted to experimental data. In new work our goal is to include the self-consistent effects on the radial electric field driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We describe a model for including self-consistent zonal flows and an algorithm for maintaining underlying plasma profiles to enable the simulation of steady-state turbulence. We examine the role of Braginskii viscous forces in providing necessary dissipation when including axisymmetric perturbations. We also report on some of the numerical difficulties associated with including the axisymmetric component of the fluctuating fields. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory (LLNL-ABS-674950).

  9. Polycrystalline La1-xSrxMnO3 films on silicon: Influence of post-Deposition annealing on structural, (Magneto-)Optical, and (Magneto-)Electrical properties

    Science.gov (United States)

    Thoma, Patrick; Monecke, Manuel; Buja, Oana-Maria; Solonenko, Dmytro; Dudric, Roxana; Ciubotariu, Oana-Tereza; Albrecht, Manfred; Deac, Iosif G.; Tetean, Romulus; Zahn, Dietrich R. T.; Salvan, Georgeta

    2018-01-01

    The integration of La1-xSrxMnO3 (LSMO) thin film technology into established industrial silicon processes is regarded as challenging due to lattice mismatch, thermal expansion, and chemical reactions at the interface of LSMO and silicon. In this work, we investigated the physical properties of thin La0.73Sr0.27MnO3 films deposited by magnetron sputtering on silicon without a lattice matching buffer layer. The influence of a post-deposition annealing treatment on the structural, (magneto-)optical, and (magneto-)electrical properties was investigated by a variety of techniques. Using Rutherford backscattering spectroscopy, atomic force microscopy, Raman spectroscopy, and X-ray diffraction we could show that the thin films exhibit a polycrystalline, rhombohedral structure after a post-deposition annealing of at least 700 °C. The dielectric tensor in the spectral range from 1.7 eV to 5 eV determined from spectroscopic ellipsometry in combination with magneto-optical Kerr effect spectroscopy was found to be comparable to that of lattice matched films on single crystal substrates reported in literature [1]. The values of the metal-isolator transition temperature and temperature-dependent resistivities also reflect a high degree of crystalline quality of the thermally treated films.

  10. Prediction of Heat Transfer For Turbulent Flow in Rotating Radial Duct

    Directory of Open Access Journals (Sweden)

    P. Tekriwal

    1995-01-01

    in the case of low-Re model, the computation time is relatively high and the convergence is rather slow, thus rendering the low-Re model as an unattractive choice for rotating flows at high Reynolds number.

  11. The magneto-optical properties of non-uniform graphene nanoribbons

    Science.gov (United States)

    Chung, Hsien-Ching; Lin, Ming-Fa

    2015-03-01

    When synthesizing few-layer graphene nanoribbons (GNRs), non-uniform GNRs would be made simultaneously. Recently, the non-uniform GNRs, which is a stack of two GNRs with unequal widths, have been fabricated by mechanically exfoliated from bulk graphite. Some theoretical predictions have been reported, such as gap opening and transport properties. Under the influence of magnetic fields, magnetic quantization takes place and drastically changes the electronic properties. By tuning the geometric configuration, four categories of magneto-electronic spectra are exhibited. (1) The spectrum is mostly contributed by quasi-Landau levels (QLLs) of monolayer GNRs. (2) The spectrum displays two groups of QLLs, and the non-uniform GNR behaves like a bilayer one. (3) An intermediate category, the spectrum is composite disordered. (4) The spectrum presents the coexistence of monolayer and bilayer spectra. In this work, the magneto-electronic and optical properties for different geometric configurations are given, such as energy dispersions, density of states, wave functions, and magneto-absorption spectra are presented. Furthermore, the transformation between monolayer and bilayer spectra as well as the coexistence of monolayer and bilayer spectra are discussed in detail. One of us (Hsien-Ching Chung) thanks Ming-Hui Chung and Su-Ming Chen for financial support. This work was supported in part by the National Science Council of Taiwan under Grant Number 98-2112-M-006-013-MY4.

  12. Magnetohydrodynamic turbulence

    CERN Document Server

    Biskamp, Dieter

    2003-01-01

    This book presents an introduction to, and modern account of, magnetohydrodynamic (MHD) turbulence, an active field both in general turbulence theory and in various areas of astrophysics. The book starts by introducing the MHD equations, certain useful approximations and the transition to turbulence. The second part of the book covers incompressible MHD turbulence, the macroscopic aspects connected with the different self-organization processes, the phenomenology of the turbulence spectra, two-point closure theory, and intermittency. The third considers two-dimensional turbulence and compressi

  13. Asymptotic study of a magneto-hydro-dynamic system

    International Nuclear Information System (INIS)

    Benameur, J.; Ibrahim, S.; Majdoub, M.

    2003-01-01

    In this paper, we study the convergence of solutions of a Magneto-Hydro-Dynamic system. On the torus T 3 , the proof is based on Schochet's methods, whereas in the case of the whole space R 3 , we use Strichartz's type estimates. (author)

  14. Heuristic Enhancement of Magneto-Optical Images for NDE

    Science.gov (United States)

    Cacciola, Matteo; Megali, Giuseppe; Pellicanò, Diego; Calcagno, Salvatore; Versaci, Mario; Morabito, FrancescoCarlo

    2010-12-01

    The quality of measurements in nondestructive testing and evaluation plays a key role in assessing the reliability of different inspection techniques. Each different technique, like the magneto-optic imaging here treated, is affected by some special types of noise which are related to the specific device used for their acquisition. Therefore, the design of even more accurate image processing is often required by relevant applications, for instance, in implementing integrated solutions for flaw detection and characterization. The aim of this paper is to propose a preprocessing procedure based on independent component analysis (ICA) to ease the detection of rivets and/or flaws in the specimens under test. A comparison of the proposed approach with some other advanced image processing methodologies used for denoising magneto-optic images (MOIs) is carried out, in order to show advantages and weakness of ICA in improving the accuracy and performance of the rivets/flaw detection.

  15. Development of a NDI system using the magneto-optical method. 2. Remote sensing using the novel magneto-optical inspection system

    International Nuclear Information System (INIS)

    Lee, Jinyi; Shoji, Tetsuo

    1999-01-01

    A new remote sensing system using the magneto-optical method is developed for inspection of flaws introduced during service operation where routine inspection is difficult because of difficult inaccessibility to the components. Among the advantages of non-destructive inspection (NDI) based on the magneto-optical sensor are: real time inspection, elimination of electrical noise and high spatial resolution. Remote sensing of flaws is achieved using the basic principles of Faraday effect, optical permeability, and diffraction of a laser by the domain walls. This paper describes a novel remote NDI system using the principles of optics and LMF. The main characteristic of the system is that image data and LMF information can be obtained simultaneously. It is possible to carry out remote and high speed inspection of cracks from the intensity of reflected light, and to estimate the size of a crack effectively with their diverse data. The advantages of this NDI system are demonstrated using two specimens. (author)

  16. Ultracold molecules for the masses: Evaporative cooling and magneto-optical trapping

    Science.gov (United States)

    Stuhl, B. K.

    While cold molecule experiments are rapidly moving towards their promised benefits of precision spectroscopy, controllable chemistry, and novel condensed phases, heretofore the field has been greatly limited by a lack of methods to cool and compress chemically diverse species to temperatures below ten millikelvin. While in atomic physics these needs are fulfilled by laser cooling, magneto-optical trapping, and evaporative cooling, until now none of these techniques have been applicable to molecules. In this thesis, two major breakthroughs are reported. The first is the observation of evaporative cooling in magnetically trapped hydroxyl (OH) radicals, which potentially opens a path all the way to Bose-Einstein condensation of dipolar radicals, as well as allowing cold- and ultracold-chemistry studies of fundamental reaction mechanisms. Through the combination of an extremely high gradient magnetic quadrupole trap and the use of the OH Λ-doublet transition to enable highly selective forced evaporation, cooling by an order of magnitude in temperature was achieved and yielded a final temperature no higher than 5mK. The second breakthrough is the successful application of laser cooling and magneto-optical trapping to molecules. Motivated by a proposal in this thesis, laser cooling of molecules is now known to be technically feasible in a select but substantial pool of diatomic molecules. The demonstration of not only Doppler cooling but also two-dimensional magneto-optical trapping in yttrium (II) oxide, YO, is expected to enable rapid growth in the availability of ultracold molecules—just as the invention of the atomic magneto-optical trap stimulated atomic physics twenty-five years ago.

  17. Structural organization of the quiescent core region in a turbulent channel flow

    International Nuclear Information System (INIS)

    Yang, Jongmin; Hwang, Jinyul; Sung, Hyung Jin

    2016-01-01

    Highlights: • The structural organization of the quiescent core region in a turbulent channel flow is explored. • The quiescent core region is the uniform momentum zone located at the center of the channel. • The boundary of the quiescent core region can be identified from the probability density function of the streamwise modal velocity. • The prograde and retrograde vortices form a counter-rotating vortex pair at the boundary of the core region. - Abstract: The structural organization of the quiescent core region in a turbulent channel flow was explored using direct numerical simulation data at Re_τ = 930. The quiescent core region is the uniform momentum zone located at the center of the channel, and contains the highest momentum with a low level of turbulence. The boundary of the quiescent core region can be identified from the probability density function of the streamwise modal velocity. The streamwise velocity changes abruptly near the boundary of the core region. The abrupt jump leads the increase of the velocity gradient, which is similar to the vorticity thickness of the laminar superlayer at the turbulent/non-turbulent interface. The strong shear induced from the abrupt change is originated from the vortical structure lying on the boundary of the core region. The spanwise population densities of the prograde and retrograde vortices have a local maximum near the boundary of the core region. The prograde vortex dominantly contributes to the total mean shear near the core boundary and the contribution to the total mean shear rapidly decreases within the core region. The prograde and retrograde vortices form a counter-rotating vortex pair at the boundary of the core region associated with the nibbling mechanism. The boundary of the core region contains large-scale concave and convex features. The concave (convex) core interface is organized by the negative-u (positive-u) regions which induce the ejections (sweeps) around the core boundary.

  18. A New Calibration Methodology for Thorax and Upper Limbs Motion Capture in Children Using Magneto and Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Luca Ricci

    2014-01-01

    Full Text Available Recent advances in wearable sensor technologies for motion capture have produced devices, mainly based on magneto and inertial measurement units (M-IMU, that are now suitable for out-of-the-lab use with children. In fact, the reduced size, weight and the wireless connectivity meet the requirement of minimum obtrusivity and give scientists the possibility to analyze children’s motion in daily life contexts. Typical use of magneto and inertial measurement units (M-IMU motion capture systems is based on attaching a sensing unit to each body segment of interest. The correct use of this setup requires a specific calibration methodology that allows mapping measurements from the sensors’ frames of reference into useful kinematic information in the human limbs’ frames of reference. The present work addresses this specific issue, presenting a calibration protocol to capture the kinematics of the upper limbs and thorax in typically developing (TD children. The proposed method allows the construction, on each body segment, of a meaningful system of coordinates that are representative of real physiological motions and that are referred to as functional frames (FFs. We will also present a novel cost function for the Levenberg–Marquardt algorithm, to retrieve the rotation matrices between each sensor frame (SF and the corresponding FF. Reported results on a group of 40 children suggest that the method is repeatable and reliable, opening the way to the extensive use of this technology for out-of-the-lab motion capture in children.

  19. Effective-medium theory for nonlinear magneto-optics in magnetic granular alloys: cubic nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, Alexander B. E-mail: granov@magn.ru; Kuzmichov, Michail V.; Clerc, J.-P.; Inoue, Mitsuteru

    2003-03-01

    We propose a simple effective-medium approach for calculating the effective dielectric function of a magnetic metal-insulator granular alloy in which there is a weakly nonlinear relation between electric displacement D and electric field E for both constituent materials of the form D{sub i}={epsilon}{sub i}{sup (0)}E{sub i} +{chi}{sub i}{sup (3)}|E{sub i}|{sup 2}E{sub i}. We assume that linear {epsilon}{sub i}{sup (0)} and cubic nonlinear {chi}{sub i}{sup (3)} dielectric functions are diagonal and linear with magnetization non-diagonal components. For such metal-insulator composite magneto-optical effects depend on a light intensity and the effective cubic dielectric function {chi}{sub eff}{sup (3)} can be significantly greater (up to 10{sup 3} times) than that for constituent materials. The calculation scheme is based on the Bergman and Stroud-Hui theory of nonlinear optical properties of granular matter. The giant cubic magneto-optical nonlinearity is found for composites with metallic volume fraction close to the percolation threshold and at a resonance of optical conductivity. It is shown that a composite may exhibit nonlinear magneto-optics even when both constituent materials have no cubic magneto-optical nonlinearity.

  20. Magnetic field induced augmented thermal conduction phenomenon in magneto-nanocolloids

    Energy Technology Data Exchange (ETDEWEB)

    Katiyar, Ajay, E-mail: ajay_cim@rediffmail.com [Research and Innovation Centre (DRDO), Indian Institute of Technology Madras Research Park, Chennai 600 113 (India); Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Dhar, Purbarun, E-mail: purbarun@iitrpr.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Nandi, Tandra, E-mail: tandra_n@rediffmail.com [Defence Materials and Stores Research and Development Establishment (DRDO), G.T. Road, Kanpur 208 013 (India); Das, Sarit K., E-mail: skdas@iitrpr.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India)

    2016-12-01

    Magnetic field induced augmented thermal conductivity of magneto-nanocolloids involving nanoparticles, viz. Fe{sub 2}O{sub 3}, Fe{sub 3}O{sub 4}, NiO and Co{sub 3}O{sub 4} dispersed in different base fluids have been reported. Experiments reveal the augmented thermal transport under external applied magnetic field. A maximum thermal conductivity enhancement ∼114% is attained at 7.0 vol% concentration and 0.1 T magnetic flux density for Fe{sub 3}O{sub 4}/EG magneto-nanocolloid. However, a maximum ∼82% thermal conductivity enhancement is observed for Fe{sub 3}O{sub 4}/kerosene magneto-nanocolloid for the same concentration but relatively at low magnetic flux density (∼0.06 T). Thereby, a strong effect of fluid as well as particle physical properties on the chain formation propensity, leading to enhanced conduction, in such systems is observed. Co{sub 3}O{sub 4} nanoparticles show insignificant effect on the thermal conductivity enhancement of MNCs due to their minimal magnetic moment. A semi-empirical approach has been proposed to understand the mechanism and physics behind the thermal conductivity enhancement under external applied magnetic field, in tune with near field magnetostatic interactions as well as Neel relaxivity of the magnetic nanoparticles. Furthermore, the model is able to predict the phenomenon of enhanced thermal conductivity as a function of physical parameters and shows good agreement with the experimental observations. - Highlights: • Heat conduction in magneto-nanocolloids augments tremendously under magnetic field. • Oxide nanoparticles of Fe, Ni and Co dispersed in variant base fluids are used. • Enhancement in heat conduction is due to the formation of thermally conductive chains. • Proposed semi-empirical model shows good agreement with the experimental results.

  1. Magneto-optic Doppler analyzer: a new instrument to measure mesopause winds

    Science.gov (United States)

    Williams, Bifford P.; Tomczyk, Steven

    1996-11-01

    The magneto-optic Doppler analyzer (MODA) is a new type of passive optical instrument that one can use to measure the Doppler shift of the sodium nightglow emitted at approximately 91 km near the mesopause. From this measurement, horizontal wind signatures are inferred. The MODA is based on a sodium vapor magneto-optic filter that provides inherent wavelength stability at a low cost. The instrument has been used to take nightly zonal and meridional wind measurements since October 1994 at Niwot Ridge, Colorado (40 N, 105 W). We obtained an internally consistent wind signal and measured the semidiurnal tide for several seasons.

  2. Rotating Square-Ended U-Bend Using Low-Reynolds-Number Models

    Directory of Open Access Journals (Sweden)

    Konstantinos-Stephen P. Nikas

    2005-01-01

    bend is better reproduced by the low-Re models. Turbulence levels within the rotating U-bend are underpredicted, but DSM models produce a more realistic distribution. Along the leading side, all models overpredict heat transfer levels just after the bend. Along the trailing side, the heat transfer predictions of the low-Re DSM with the NYap, are close to the measurements.

  3. Asymptotic study of a magneto-hydro-dynamic system

    Energy Technology Data Exchange (ETDEWEB)

    Benameur, J [Institut Preparatoire aux Etudes d' Ingenieurs de Monastir (Tunisia); Ibrahim, S [Faculte des Sciences de Bizerte, Departement de Mathematiques, Bizerte (TN); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)]. E-mail: slim.ibrahim@fsb.rnu.tn; Majdoub, M [Faculte des Sciences de Tunis, Departement de Mathematiques, Tunis (Tunisia)

    2003-01-01

    In this paper, we study the convergence of solutions of a Magneto-Hydro-Dynamic system. On the torus T{sup 3}, the proof is based on Schochet's methods, whereas in the case of the whole space R{sup 3}, we use Strichartz's type estimates. (author)

  4. Experimental investigation of torsional vibration isolation using Magneto Rheological Elastomer

    Directory of Open Access Journals (Sweden)

    Praveen Shenoy K

    2018-01-01

    Full Text Available Rotating systems suffer from lateral and torsional vibrations which have detrimental effect on the roto-dynamic performance. Many available technologies such as vibration isolators and vibration absorbers deal with the torsional vibrations to a certain extent, however passive isolators and absorbers find less application when the input conditions are dynamic. The present work discusses use of a smart material called as Magneto Rheological Elastomer (MRE, whose properties can be changed based on magnetic field input, as a potential isolator for torsional vibrations under dynamic loading conditions. Carbonyl Iron Particles (CIP of average size 5 μm were mixed with RTV Silicone rubber to form the MRE. The effect of magnetic field on the system parameters was comprehended under impulse loading conditions using a custom built in-house system. Series arrangement of accelerometers were used to differentiate between the torsional and the bending modes of vibration of the system. Impact hammer tests were carried out on the torsional system to study its response, in the presence and absence of magnetic field. The tests revealed a shift in torsional frequency in the presence of magnetic field which elucidates the ability of MRE to work as a potential vibration isolator for torsional systems.

  5. Sub-nanosecond time-resolved near-field scanning magneto-optical microscope.

    Science.gov (United States)

    Rudge, J; Xu, H; Kolthammer, J; Hong, Y K; Choi, B C

    2015-02-01

    We report on the development of a new magnetic microscope, time-resolved near-field scanning magneto-optical microscope, which combines a near-field scanning optical microscope and magneto-optical contrast. By taking advantage of the high temporal resolution of time-resolved Kerr microscope and the sub-wavelength spatial resolution of a near-field microscope, we achieved a temporal resolution of ∼50 ps and a spatial resolution of microscope, the magnetic field pulse induced gyrotropic vortex dynamics occurring in 1 μm diameter, 20 nm thick CoFeB circular disks has been investigated. The microscope provides sub-wavelength resolution magnetic images of the gyrotropic motion of the vortex core at a resonance frequency of ∼240 MHz.

  6. Magneto-Rheological Damper - An Experimental Study

    OpenAIRE

    Lozoya-Santos , Jorge De-Jesus; Morales-Menéndez , Rubén; Ramirez-Mendoza , Ricardo; Tudon-Martınez , Juan ,; Sename , Olivier; Dugard , Luc

    2012-01-01

    International audience; A Magneto-Rheological (MR) damper is evaluated under exhaustive experimental scenarios, generating a complete database. The obtained database includes classical tests and new proposals emphasizing the frequency contents. It also includes the impact of the electric current fluctuations. The variety of the performed experiments allows to study the MR damper force dynamics. A brief description of the damper behavior and a categorization of experiments based on driving con...

  7. Optical and magneto-optical properties of spin coated films of novel trinuclear bis(oxamato) and bis(oxamidato) type complexes

    Energy Technology Data Exchange (ETDEWEB)

    Abdulmalic, Mohammad A. [Technische Universität Chemnitz, Fakultät für Naturwissenschaften, Institut für Chemie, Straße der Nationen 62, D-09111 Chemnitz (Germany); Fronk, Michael [Technische Universität Chemnitz, Fakultät für Naturwissenschaften, Institut für Physik, Reichenhainer Straße 70, D-09107 Chemnitz (Germany); Bräuer, Björn [Stanford Institute of Materials and Energy Science, Stanford University, Stanford, CA 94025 (United States); Zahn, Dietrich R.T. [Technische Universität Chemnitz, Fakultät für Naturwissenschaften, Institut für Physik, Reichenhainer Straße 70, D-09107 Chemnitz (Germany); Salvan, Georgeta, E-mail: salvan@physik.tu-chemnitz.de [Technische Universität Chemnitz, Fakultät für Naturwissenschaften, Institut für Physik, Reichenhainer Straße 70, D-09107 Chemnitz (Germany); Eya' ane Meva, Francois [Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, BP 2701 (Cameroon); and others

    2016-12-01

    This work reports the first example of the spectroscopic measurements of the Magneto-Optical Kerr Effect (MOKE) of films being composed of trinuclear transition metal complexes on a non-transparent substrate at room temperature. The thin films of the tailor-made trinuclear bis(oxamidato) type complex 5 ([Cu{sub 3}(opbo{sup n}Pr{sub 2})(tmcd){sub 2}(NO{sub 3}){sub 2}], opbo{sup n}Pr{sub 2} = o-phenylenebis(N’-{sup n}propyloxamido, tmcd=trans-(1 R,2 R)-N,N,N′,N′-tetramethyl-cyclohexanediamine) and of the bis(oxamato) type complexes 11 ([Cu{sub 2}Ni(opbaCF{sub 3})(pmdta){sub 2}(NO{sub 3}){sub 2}], opbaCF{sub 3} = 4-trifluoromethyl-o-phenylenebis(oxamato), pmdta = N,N,N,′N″,N″-pentamethyldiethylenetriamine) and 12 ([Cu{sub 3}(opba)(bppe){sub 2}(NO{sub 3}){sub 2}] (opba = o-phenylenebis(oxamato), bppe = S-N,N-bis(2-picolyl)−1-phenylethylamine) were fabricated by spin-coating and their thicknesses in the range between 0.5 µm and 2 µm was determined by spectroscopic ellipsometry. Based on the spectroscopic ellipsometry results it was also possible to determine the optical constants of the film and compare them with the absorption of the complexes in solution in order to confirm the complex integrity after the film deposition. The fabrication of high-quality films which exhibit Kerr rotation up to 0.2 mrad (11.5 mdeg) was only possible due to tailor-made synthesis, which allows circumventing intermolecular interactions of the trinuclear complexes during the film formation. - Highlights: • Tailor-made trinuclear bis(oxamidato) and bis(oxamato) type complexes were synthesized. • Thin films (between 0.5 µm and 2 µm) were fabricated by spin-coating. • The film optical constants indicate the complex integrity after the deposition. • Film quality enabled first spectroscopic MOKE measurements of multi-nuclear complexes. • Magneto-optical Kerr rotation up to 11.5 mdeg was observed at RT (in 1.7 T).

  8. Stirring turbulence with turbulence

    NARCIS (Netherlands)

    Cekli, H.E.; Joosten, R.; van de Water, W.

    2015-01-01

    We stir wind-tunnel turbulence with an active grid that consists of rods with attached vanes. The time-varying angle of these rods is controlled by random numbers. We study the response of turbulence on the statistical properties of these random numbers. The random numbers are generated by the

  9. Experimental investigation of torque scaling and coherent structures in turbulent Taylor–Couette flow

    International Nuclear Information System (INIS)

    Tokgoz, S; Elsinga, G E; Delfos, R; Westerweel, J

    2011-01-01

    The effect of flow structures to the torque values of fully turbulent Taylor-Couette flow was experimentally studied using tomographic PIV. The measurements were performed for various relative cylinder rotation speeds and Reynolds numbers, based on a study of Ravelet et al. (2010). We confirmed that the flow structures are strongly influenced by the rotation number. Our analyses using time-averaged mean flow showed the presence of Taylor vortices for the two smallest rotation numbers that were studied. Increasing the rotation number initially resulted in the shape deformation of the Taylor vortices. Further increment towards only outer cylinder rotation, showed transition to the dominance of the small scale vortices and absence of Taylor vortex-like structures. We compared the transition of the flow structures with the curves of dimensionless torque. Sudden changes of the flow structures confirmed the presence of transition points on the torque curve, where the dominance of small and large scale vortical structures on the mean flow interchanges.

  10. Temperature dependence of the domain wall magneto-Seebeck effect: avoiding artifacts of lead contributions

    Science.gov (United States)

    Fernández Scarioni, Alexander; Krzysteczko, Patryk; Sievers, Sibylle; Hu, Xiukun; Schumacher, Hans W.

    2018-06-01

    We study the resistive and thermopower signatures of a single domain wall in a magnetic nanowire in the temperature range from 4 K to 204 K. The results are compared to the anisotropic magnetoresistance (AMR) and anisotropic magneto-Seebeck (AMS) data of the whole permalloy nanowire. The AMS ratio of the nanowire reveals a sign change at a temperature of 98 K, while the AMR ratio is positive over the complete temperature range. This behavior is also observed for the domain wall, allowing an attribution of the measured signatures to the domain wall magneto-Seebeck and domain wall magnetoresistive contributions. However, the observed zero crossing of the AMS ratio, in both types of measurements is not expected for permalloy, since the Mott formula predicts a temperature dependency of the AMS identical to the AMR. We discuss the origin of this behavior and can attribute it to the contributions of the lead and the protective platinum layer used in our devices. A correction scheme is presented and applied. Such contributions could also play a role in the analysis of magneto-Seebeck effects in other nanoscale devices, such as the tunnel magneto-Seebeck effect of magnetic tunnel junctions.

  11. Strong interband Faraday rotation in 3D topological insulator Bi2Se3.

    Science.gov (United States)

    Ohnoutek, L; Hakl, M; Veis, M; Piot, B A; Faugeras, C; Martinez, G; Yakushev, M V; Martin, R W; Drašar, Č; Materna, A; Strzelecka, G; Hruban, A; Potemski, M; Orlita, M

    2016-01-11

    The Faraday effect is a representative magneto-optical phenomenon, resulting from the transfer of angular momentum between interacting light and matter in which time-reversal symmetry has been broken by an externally applied magnetic field. Here we report on the Faraday rotation induced in the prominent 3D topological insulator Bi2Se3 due to bulk interband excitations. The origin of this non-resonant effect, extraordinarily strong among other non-magnetic materials, is traced back to the specific Dirac-type Hamiltonian for Bi2Se3, which implies that electrons and holes in this material closely resemble relativistic particles with a non-zero rest mass.

  12. COMPREHENSIVE GYROKINETIC SIMULATION OF TOKAMAK TURBULENCE AT FINITE RELATIVE GYRORADIUS

    International Nuclear Information System (INIS)

    WALTZ, R.E.; CANDY, J.; ROSENBLUTH, M.N.

    2002-01-01

    OAK B202 COMPREHENSIVE GYROKINETIC SIMULATION OF TOKAMAK TURBULENCE AT FINITE RELATIVE GYRORADIUS. A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate turbulent transport in actual experimental profiles and allow direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite beta, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius (ρ*) so as to treat the profile shear stabilization effects which break gyroBohm scaling. The code operates in a cyclic flux tube limit which allows only gyroBohm scaling and a noncyclic radial annulus with physical profile variation. The later requires an adaptive source to maintain equilibrium profiles. Simple ITG simulations demonstrate the broken gyroBohm scaling depends on the actual rotational velocity shear rates competing with mode growth rates, direct comprehensive simulations of the DIII-D ρ*-scaled L-mode experiments are presented as a quantitative test of gyrokinetics and the paradigm

  13. Intrinsic torque reversals induced by magnetic shear effects on the turbulence spectrum in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z. X.; Tynan, G. [Center for Energy Research and Department of Mechanical and Aerospace Engineering, University of California at San Diego, San Diego, California 92093 (United States); Center for Momentum Transport and Flow Organization and Center for Astrophysics and Space Science, University of California, San Diego, California 92093 (United States); Wang, W. X.; Ethier, S. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Diamond, P. H. [Center for Momentum Transport and Flow Organization and Center for Astrophysics and Space Science, University of California, San Diego, California 92093 (United States); Gao, C.; Rice, J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-05-15

    Intrinsic torque, which can be generated by turbulent stresses, can induce toroidal rotation in a tokamak plasma at rest without direct momentum injection. Reversals in intrinsic torque have been inferred from the observation of toroidal velocity changes in recent lower hybrid current drive (LHCD) experiments. This work focuses on understanding the cause of LHCD-induced intrinsic torque reversal using gyrokinetic simulations and theoretical analyses. A new mechanism for the intrinsic torque reversal linked to magnetic shear (s{sup ^}) effects on the turbulence spectrum is identified. This reversal is a consequence of the ballooning structure at weak s{sup ^}. Based on realistic profiles from the Alcator C-Mod LHCD experiments, simulations demonstrate that the intrinsic torque reverses for weak s{sup ^} discharges and that the value of s{sup ^}{sub crit} is consistent with the experimental results s{sup ^}{sub crit}{sup exp}≈0.2∼0.3 [Rice et al., Phys. Rev. Lett. 111, 125003 (2013)]. The consideration of this intrinsic torque feature in our work is important for the understanding of rotation profile generation at weak s{sup ^} and its consequent impact on macro-instability stabilization and micro-turbulence reduction, which is crucial for ITER. It is also relevant to internal transport barrier formation at negative or weakly positive s{sup ^}.

  14. Simulación del comportamiento de diversos modelos de amortiguadores magneto-reológicos mediante Modelica

    OpenAIRE

    Arranz Iglesias, Javier

    2011-01-01

    El presente proyecto fin de carrera consta de 8 capítulos, siendo el primero de ellos la introducción. En el capítulo 2: Se introduce el sistema de suspensión, así como los elementos de los que consta y los tipos de sistemas atendiendo a diversas clasificaciones. En el capítulo 3: Se trata el amortiguador magneto-reológico, los fluidos magneto-reológicos y sus aplicaciones. En el capítulo 4: Se exponen los diferentes modelos de caracterización del comportamiento de los amortiguadores magneto-...

  15. Magneto-optical polarization rotation in a ladder-type atomic system for tunable offset locking

    Energy Technology Data Exchange (ETDEWEB)

    Parniak, Michał, E-mail: michal.parniak@fuw.edu.pl; Leszczyński, Adam; Wasilewski, Wojciech [Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland)

    2016-04-18

    We demonstrate an easily tunable locking scheme for stabilizing frequency-sum of two lasers on a two-photon ladder transition based on polarization rotation in warm rubidium vapors induced by magnetic field and circularly polarized drive field. Unprecedented tunability of the two-photon offset frequency is due to strong splitting and shifting of magnetic states in external field. In our experimental setup, we achieve two-photon detuning of up to 700 MHz.

  16. Superfluid turbulence

    International Nuclear Information System (INIS)

    Donnelly, R.J.

    1988-01-01

    Most flows of fluids, in nature and in technology, are turbulent. Since much of the energy expended by machines and devices that involve fluid flows is spent in overcoming drag caused by turbulence, there is a strong motivation to understand the phenomena. Surprisingly, the peculiar, quantum-mechanical form of turbulence that can form in superfluid helium may turn out to be much simpler to understand that the classical turbulence that forms in normal fluids. It now seems that the study of superfluid turbulence may provide simplified model systems for studying some forms of classical turbulence. There are also practical motivations for studying superfluid turbulence. For example, superfuid helium is often used as a coolant in superconducting machinery. Superfluid turbulence is the primary impediment to the transfer of heat by superfluid helium; an understanding of the phenomena may make it possible to design more efficient methods of refrigeration for superconducting devices. 8 figs

  17. New Magneto-Inductive DC Magnetometer for Space Missions

    Science.gov (United States)

    Moldwin, M.; Bronner, B.; Regoli, L.; Thoma, J.; Shen, A.; Jenkins, G.; Cutler, J.

    2017-12-01

    A new magneto-inductive DC magnetometer is being developed at the University of Michigan that provides fluxgate quality measurements in a low mass, volume, power and cost package. The magnetometer enables constellation-class missions not only due to its low-resource requirements, but also its potential for commercial integrated circuit fabrication. The magneto-inductive operating principle is based on a simple resistance-inductor (RL) circuit and involves measurement of the time it takes to charge and discharge the inductor between an upper and lower threshold by means of a Schmitt trigger oscillator. This time is proportional to the inductance that in turn is proportional to the field strength. We have modeled the operating principle in the circuit simulator SPICE and have built a proto-type using modified commercial sensors. The performance specifications include a dynamic range over the full-Earth's field, sampling rates up to 80 Hz, sensor and electronics mass of about 30 g, circuit board and sensor housing volume of magnetometer.

  18. Suppression of spiral wave and turbulence by using amplitude restriction of variable in a local square area

    International Nuclear Information System (INIS)

    Ma Jun; Jia Ya; Yi Ming; Tang Jun; Xia Yafeng

    2009-01-01

    In this paper, a new scheme is proposed to eliminate the useless spiral wave and turbulence in the excitable media. The activator amplitudes of few sites in the media are sampled and restricted within the appropriate thresholds. At first, the local control is imposed on the center of the media, and then the local control is introduced into the left border in the media. The numerical simulation results confirm that the whole media can reach homogeneous within few time units even if the spatiotemporal noise is imposed on the whole media. To check the model independence of this scheme, the scheme is used to remove the spiral wave in the Fitzhugh-Nagumo model firstly. In our numerical simulation, the whole system is discretized into 400 x 400 sites. Then the scheme is used to eliminate the stable rotating spiral wave, meandering spiral and spiral turbulence in the modified Fitzhugh-Nagumo model, respectively. Finally, this scheme is used to remove the stable rotating spiral wave in the Belousov-Zhabotinsky (BZ) reaction. All the results just confirm its effectiveness to eliminate the spiral wave and turbulence. The criterion for thresholds selection is also discussed in the end of this paper.

  19. Turbulent premixed flames on fractal-grid-generated turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Soulopoulos, N; Kerl, J; Sponfeldner, T; Beyrau, F; Hardalupas, Y; Taylor, A M K P [Mechanical Engineering Department, Imperial College London, London SW7 2AZ (United Kingdom); Vassilicos, J C, E-mail: ns6@ic.ac.uk [Department of Aeronautics, Imperial College London, London SW7 2AZ (United Kingdom)

    2013-12-15

    A space-filling, low blockage fractal grid is used as a novel turbulence generator in a premixed turbulent flame stabilized by a rod. The study compares the flame behaviour with a fractal grid to the behaviour when a standard square mesh grid with the same effective mesh size and solidity as the fractal grid is used. The isothermal gas flow turbulence characteristics, including mean flow velocity and rms of velocity fluctuations and Taylor length, were evaluated from hot-wire measurements. The behaviour of the flames was assessed with direct chemiluminescence emission from the flame and high-speed OH-laser-induced fluorescence. The characteristics of the two flames are considered in terms of turbulent flame thickness, local flame curvature and turbulent flame speed. It is found that, for the same flow rate and stoichiometry and at the same distance downstream of the location of the grid, fractal-grid-generated turbulence leads to a more turbulent flame with enhanced burning rate and increased flame surface area. (paper)

  20. Negative Magnus lift on a rotating sphere at around the critical Reynolds number

    Science.gov (United States)

    Muto, Masaya; Tsubokura, Makoto; Oshima, Nobuyuki

    2012-01-01

    Negative Magnus lift acting on a sphere rotating about the axis perpendicular to an incoming flow was investigated using large-eddy simulation at three Reynolds numbers of 1.0 × 104, 2.0 × 105, and 1.14 × 106. The numerical methods used were first validated on a non-rotating sphere, and the spatial resolution around the sphere was determined so as to reproduce the laminar separation, reattachment, and turbulent transition of the boundary layer observed in the vicinity of the critical Reynolds number. The rotating sphere exhibited a positive or negative Magnus effect depending on the Reynolds number and the imposed rotating speed. At Reynolds numbers in the subcritical or supercritical regimes, the direction of the Magnus lift force was independent of the rotational speed. In contrast, the lift force was negative in the critical regime when particular rotating speeds were imposed. This negative Magnus effect was investigated in the context of suppression or promotion of boundary layer transition around the separation point.

  1. Design and testing of a MRF rotational damper for vehicle applications

    International Nuclear Information System (INIS)

    Giorgetti, A; Baldanzini, N; Citti, P; Biasiotto, M

    2010-01-01

    Adaptive dampers are an interesting solution for conjugating the necessity of controllable devices and low power consumption. Magneto-rheological fluids (MRF) can be profitably employed in adaptive dampers because of the significant variation of fluid parameters with magnetic field properties. This paper focuses on the design process of an innovative rotational MR damper specifically created to be placed in the front-wheel suspension of a compact car. The advantages of the rotational damper and the definition of the optimal design are described. The proposed damper significantly reduces several key problems associated with MR devices: the quantity of fluid required, the sedimentation of ferromagnetic particles in the suspension and the abrasion of the seals. In fact, with this solution, low average working pressure, low flow velocity through valves, a wide range of variable damping characteristics, and high durability of the damper can be achieved. Thanks to this innovative component, different new architectures for adaptive suspension systems can be developed to have a planar distribution of the suspension components with a consequent space optimization and size reduction in the vertical direction

  2. Cold pulse and rotation reversals with turbulence spreading and residual stress

    DEFF Research Database (Denmark)

    Hariri, F.; Naulin, Volker; Rasmussen, Jens Juul

    2016-01-01

    and the corresponding residual stress is absent. Our simulations are in qualitative agreement with measurements from ohmically heated plasmas. Rotation reversal at a finite radius is found in situations not displaying saturated confinement, which we identify as situations where the plasma is nearly everywhere unstable...

  3. SQUID magnetometry and magneto-optics of epitaxial EuS

    International Nuclear Information System (INIS)

    Rumpf, K.; Granitzer, P.; Krenn, H.; Kellner, W.; Pascher, H.; Kirchschlager, R.; Janecek, S.

    2004-01-01

    The complicated (H,T)-magnetic phase diagram of EuS is caused by the critical balance between nearest and next nearest neighbour exchange interaction (J NN = 0.119 K and J NNN =-0.1209 K) and leads to various spin arrangements NNSS..., NSN..., NNS, NNN... [NS denotes opposite ferromagnetic order in adjacent (111) planes]. Beside the subtle local exchange of 5d-t 2g electrons and localized holes with neighbouring Eu-4f spins, obviously also the strain status influences the occurrence of these different phases. We investigate the magnetic ordering phenomenon in a strained 2.5 μm EuS film on BaF 2 substrate by SQUID magnetometry and magneto-optics like spectral Faraday- and Kerr-effect measurements for temperatures from 2 K up to 200 K and for magnetic field up to 5 T. The magneto-optical probe monitors the local environment of the photoexcited electron-hole pair, called magnetic exciton, located within a ferromagnetic surrounding (photoinduced magnetic polaron), whereas the integral magnetization measured by SQUID is most sensitive to long-range magnetic ordering. In spite of the dissimilarity of measurement techniques we find an influence of the long-range magnetic order (e.g. of the NNS- or NNN-matrix) on the non-resonant Kerr reflection. The complementarity of SQUID and magneto-optical methods is stringent only in the (resonant) spectral range, where magnetic polarons are formed. (author)

  4. Intrinsic momentum generation by a combined neoclassical and turbulence mechanism in diverted DIII-D plasma edge

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Janghoon; Choe, W. [Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Chang, C. S.; Ku, S. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Kwon, J. M. [National Fusion Research institute, Daejeon 305-806 (Korea, Republic of); Müller, Stefan H. [Max Planck Institute for Plasma Physics, Garching 85748 (Germany); Center for Energy Research, University of California San Diego, La Jolla, California 92093 (United States)

    2014-09-15

    Fluid Reynolds stress from turbulence has usually been considered to be responsible for the anomalous toroidal momentum transport in tokamak plasma. Experiment by Müller et al. [Phys. Rev. Lett. 106, 115001 (2011)], however, reported that neither the observed edge rotation profile nor the inward momentum transport phenomenon at the edge region of an H-mode plasma could be explained by the fluid Reynolds stress measured with reciprocating Langmuir-probe. The full-function gyrokinetic code XGC1 is used to explain, for the first time, Müller et al.'s experimental observations. It is discovered that, unlike in the plasma core, the fluid Reynolds stress from turbulence is not sufficient for momentum transport physics in plasma edge. The “turbulent neoclassical” physics arising from the interaction between kinetic neoclassical orbit dynamics and plasma turbulence is key in the tokamak edge region across the plasma pedestal into core.

  5. Jumping magneto-electric states of electrons in semiconductor multiple quantum wells

    International Nuclear Information System (INIS)

    Pfeffer, Pawel; Zawadzki, Wlodek

    2011-01-01

    Orbital and spin electron states in semiconductor multiple quantum wells in the presence of an external magnetic field transverse to the growth direction are considered. Rectangular wells of GaAs/GaAlAs and InAs/AlSb are taken as examples. It is shown that, in addition to magneto-electric states known from one-well systems, there appear magneto-electric states having a much stronger dependence of energies on a magnetic field and exhibiting an interesting anti-crossing behavior. The origin of these states is investigated and it is shown that the strong field dependence of the energies is related to an unusual 'jumping' behavior of their wavefunctions between quantum wells as the field increases. The ways of investigating the jumping states by means of interband magneto-luminescence transitions or intraband cyclotron-like transitions are considered and it is demonstrated that the jumping states can be observed. The spin g factors of electrons in the jumping states are calculated using the real values of the spin–orbit interaction and bands' nonparabolicity for the semiconductors in question. It is demonstrated that the jumping states offer a wide variety of the spin g factors

  6. Magnetoexcitons and Faraday rotation in single-walled carbon nanotubes and graphene nanoribbons

    Science.gov (United States)

    Have, Jonas; Pedersen, Thomas G.

    2018-03-01

    The magneto-optical response of single-walled carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) is studied theoretically, including excitonic effects. Both diagonal and nondiagonal response functions are obtained and employed to compute Faraday rotation spectra. For single-walled CNTs in a parallel field, the results show field-dependent splitting of the exciton absorption peaks caused by brightening a dark exciton state. Similarly, for GNRs in a perpendicular magnetic field, we observe a field-dependent shift of the exciton peaks and the emergence of an absorption peak above the energy gap. Results show that excitonic effects play a significant role in the optical response of both materials, particularly for the off-diagonal tensor elements.

  7. Performance of wireless optical communication systems under polarization effects over atmospheric turbulence

    Science.gov (United States)

    Zhang, Jiankun; Li, Ziyang; Dang, Anhong

    2018-06-01

    It has been recntly shown that polarization state of propagation beam would suffer from polarization fluctuations due to the detrimental effects of atmospheric turbulence. This paper studies the performance of wireless optical communication (WOC) systems in the presence of polarization effect of atmosphere. We categorize the atmospheric polarization effect into polarization rotation, polarization-dependent power loss, and phase shift effect, with each effect described and modeled with the help of polarization-coherence theory and the extended Huygens-Fresnelprinciple. The channel matrices are derived to measure the cross-polarization interference of the system. Signal-to-noise ratio and bit error rate for polarization multiplexing system and polarization modulation system are obtained to assess the viability using the approach of M turbulence model. Monte Carlo simulation results show the performance of polarization based WOC systems to be degraded by atmospheric polarization effect, which could be evaluated precisely using the proposed model with given turbulent strengths.

  8. 3D Realistic Radiative Hydrodynamic Modeling of a Moderate-Mass Star: Effects of Rotation

    Science.gov (United States)

    Kitiashvili, Irina; Kosovichev, Alexander G.; Mansour, Nagi N.; Wray, Alan A.

    2018-01-01

    Recent progress in stellar observations opens new perspectives in understanding stellar evolution and structure. However, complex interactions in the turbulent radiating plasma together with effects of magnetic fields and rotation make inferences of stellar properties uncertain. The standard 1D mixing-length-based evolutionary models are not able to capture many physical processes of stellar interior dynamics, but they provide an initial approximation of the stellar structure that can be used to initialize 3D time-dependent radiative hydrodynamics simulations, based on first physical principles, that take into account the effects of turbulence, radiation, and others. In this presentation we will show simulation results from a 3D realistic modeling of an F-type main-sequence star with mass 1.47 Msun, in which the computational domain includes the upper layers of the radiation zone, the entire convection zone, and the photosphere. The simulation results provide new insight into the formation and properties of the convective overshoot region, the dynamics of the near-surface, highly turbulent layer, the structure and dynamics of granulation, and the excitation of acoustic and gravity oscillations. We will discuss the thermodynamic structure, oscillations, and effects of rotation on the dynamics of the star across these layers.

  9. Turbulent skin-friction drag on a slender body of revolution and Gray's Paradox

    International Nuclear Information System (INIS)

    Nesteruk, Igor; Cartwright, Julyan H E

    2011-01-01

    The boundary layer on a slender body of revolution differs considerably from that on a flat plate, but these two cases can be connected by the Mangler-Stepanov transformations. The presented analysis shows that turbulent frictional drag on a slender rotationally symmetric body is much smaller than the flat-plate concept gives and the flow can remain laminar at larger Reynolds numbers. Both facts are valid for an unseparated flow pattern and enable us to revise the turbulent drag estimation of a dolphin, presented by Gray 74 years ago, and to resolve his paradox, since experimental data testify that dolphins can achieve flow without separation. The small values of turbulent skin-friction drag on slender bodies of revolution have additional interest for further experimental investigations and for applications of shapes without boundary-layer separation to diminish the total drag and noise of air- and hydrodynamic hulls.

  10. Computational manipulation of a radiative MHD flow with Hall current and chemical reaction in the presence of rotating fluid

    Science.gov (United States)

    Alias Suba, Subbu; Muthucumaraswamy, R.

    2018-04-01

    A numerical analysis of transient radiative MHD(MagnetoHydroDynamic) natural convective flow of a viscous, incompressible, electrically conducting and rotating fluid along a semi-infinite isothermal vertical plate is carried out taking into consideration Hall current, rotation and first order chemical reaction.The coupled non-linear partial differential equations are expressed in difference form using implicit finite difference scheme. The difference equations are then reduced to a system of linear algebraic equations with a tri-diagonal structure which is solved by Thomas Algorithm. The primary and secondary velocity profiles, temperature profile, concentration profile, skin friction, Nusselt number and Sherwood Number are depicted graphically for a range of values of rotation parameter, Hall parameter,magnetic parameter, chemical reaction parameter, radiation parameter, Prandtl number and Schmidt number.It is recognized that rate of heat transfer and rate of mass transfer decrease with increase in time but they increase with increasing values of radiation parameter and Schmidt number respectively.

  11. Fracture Toughness Evaluation of a Ni2MnGa Alloy Through Micro Indentation Under Magneto-Mechanical Loading

    Science.gov (United States)

    Goanţă, Viorel; Ciocanel, Constantin

    2017-12-01

    Ni2MnGa is a ferromagnetic alloy that exhibits the shape memory effect either induced by an externally applied magnetic field or mechanical stress. Due to the former, the alloy is commonly called magnetic shape memory alloy or MSMA. The microstructure of the MSMA consists of tetragonal martensite variants (three in the most general case) that are characterized by a magnetization vector which is aligned with the short side of the tetragonal unit cell. Exposing the MSMA to a magnetic field causes the magnetization vector to rotate and align with the external field, eventually leading to variant reorientation. The variant reorientation is observed macroscopically in the form of recoverable strain of up to 6% [1, 2]. As the magnetic field induced reorientation happens instantaneously [1, 3], MSMAs are suitable for fast actuation, sensing, or power harvesting applications. However, actuation applications are limited by the maximum actuation stress of the material that is about 3.5MPa at approximately 2 to 3% reorientation strain. During MSMA fatigue magneto-mechanical characterization studies [4, 5] it was observed that cracks nucleate and grow on the surface of material samples, after a relatively small number of cycles, leading to loss in material performance. This triggered the need for understanding the mechanisms that govern crack nucleation and growth in MSMAs, as well as the nature of the material, i.e. ductile or brittle. The experimental study reported in this paper was carried out to determine material's fracture toughness, the predominant crack growth directions, and the orientation of the cracks relative to the mechanical loading direction and to the material's microstructure. A fixture has been developed to allow Vickers micro indentation of 3mm by 3mm by 20mm Ni2MnGa samples exposed to different levels of magnetic field and/or mechanical stress. Using the measured characteristics of the impression generated during micro indentation, the lengths of

  12. Calibration of NASA Turbulent Air Motion Measurement System

    Science.gov (United States)

    Barrick, John D. W.; Ritter, John A.; Watson, Catherine E.; Wynkoop, Mark W.; Quinn, John K.; Norfolk, Daniel R.

    1996-01-01

    A turbulent air motion measurement system (TAMMS) was integrated onboard the Lockheed 188 Electra airplane (designated NASA 429) based at the Wallops Flight Facility in support of the NASA role in global tropospheric research. The system provides air motion and turbulence measurements from an airborne platform which is capable of sampling tropospheric and planetary boundary-layer conditions. TAMMS consists of a gust probe with free-rotating vanes mounted on a 3.7-m epoxy-graphite composite nose boom, a high-resolution inertial navigation system (INS), and data acquisition system. A variation of the tower flyby method augmented with radar tracking was implemented for the calibration of static pressure position error and air temperature probe. Additional flight calibration maneuvers were performed remote from the tower in homogeneous atmospheric conditions. System hardware and instrumentation are described and the calibration procedures discussed. Calibration and flight results are presented to illustrate the overall ability of the system to determine the three-component ambient wind fields during straight and level flight conditions.

  13. A priori study of subgrid-scale features in turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Dabbagh, F.; Trias, F. X.; Gorobets, A.; Oliva, A.

    2017-10-01

    At the crossroad between flow topology analysis and turbulence modeling, a priori studies are a reliable tool to understand the underlying physics of the subgrid-scale (SGS) motions in turbulent flows. In this paper, properties of the SGS features in the framework of a large-eddy simulation are studied for a turbulent Rayleigh-Bénard convection (RBC). To do so, data from direct numerical simulation (DNS) of a turbulent air-filled RBC in a rectangular cavity of aspect ratio unity and π spanwise open-ended distance are used at two Rayleigh numbers R a ∈{1 08,1 010 } [Dabbagh et al., "On the evolution of flow topology in turbulent Rayleigh-Bénard convection," Phys. Fluids 28, 115105 (2016)]. First, DNS at Ra = 108 is used to assess the performance of eddy-viscosity models such as QR, Wall-Adapting Local Eddy-viscosity (WALE), and the recent S3PQR-models proposed by Trias et al. ["Building proper invariants for eddy-viscosity subgrid-scale models," Phys. Fluids 27, 065103 (2015)]. The outcomes imply that the eddy-viscosity modeling smoothes the coarse-grained viscous straining and retrieves fairly well the effect of the kinetic unfiltered scales in order to reproduce the coherent large scales. However, these models fail to approach the exact evolution of the SGS heat flux and are incapable to reproduce well the further dominant rotational enstrophy pertaining to the buoyant production. Afterwards, the key ingredients of eddy-viscosity, νt, and eddy-diffusivity, κt, are calculated a priori and revealed positive prevalent values to maintain a turbulent wind essentially driven by the mean buoyant force at the sidewalls. The topological analysis suggests that the effective turbulent diffusion paradigm and the hypothesis of a constant turbulent Prandtl number are only applicable in the large-scale strain-dominated areas in the bulk. It is shown that the bulk-dominated rotational structures of vortex-stretching (and its synchronous viscous dissipative structures) hold

  14. Dipolar vortex structures in magnetized rotating plasma

    International Nuclear Information System (INIS)

    Liu Jixing

    1990-01-01

    Dipolar solitary vortices of both electrostatic and electromagnetic character in low-β, in homogeneous rotating plasma confined in a constant external magnetic field were systematically presented. The main stimulus to this investigation is the expectation to apply this coherent structure as a candidate constituent of plasma turbulance to understand the anomalous transport phenomena in confined plasma. The electrostatic vortices have similar structure and properties as the Rossby vortices in rotating fluids, the electromagnetic vortices obtained here have no analogy in hydrodynamics and hence are intrinsic to magnetized plasma. It is valuably remarked that the intrinsic electromagnetic vortices presented here have no discontinuity of perturbed magnetic field δB and parallel current j(parallel) on the border of vortex core. The existence region of the new type of vortex is found much narrower than the Rossby type one. (M.T.)

  15. Turbulence closure: turbulence, waves and the wave-turbulence transition – Part 1: Vanishing mean shear

    Directory of Open Access Journals (Sweden)

    H. Z. Baumert

    2009-03-01

    Full Text Available This paper extends a turbulence closure-like model for stably stratified flows into a new dynamic domain in which turbulence is generated by internal gravity waves rather than mean shear. The model turbulent kinetic energy (TKE, K balance, its first equation, incorporates a term for the energy transfer from internal waves to turbulence. This energy source is in addition to the traditional shear production. The second variable of the new two-equation model is the turbulent enstrophy (Ω. Compared to the traditional shear-only case, the Ω-equation is modified to account for the effect of the waves on the turbulence time and space scales. This modification is based on the assumption of a non-zero constant flux Richardson number in the limit of vanishing mean shear when turbulence is produced exclusively by internal waves. This paper is part 1 of a continuing theoretical development. It accounts for mean shear- and internal wave-driven mixing only in the two limits of mean shear and no waves and waves but no mean shear, respectively.

    The new model reproduces the wave-turbulence transition analyzed by D'Asaro and Lien (2000b. At small energy density E of the internal wave field, the turbulent dissipation rate (ε scales like ε~E2. This is what is observed in the deep sea. With increasing E, after the wave-turbulence transition has been passed, the scaling changes to ε~E1. This is observed, for example, in the highly energetic tidal flow near a sill in Knight Inlet. The new model further exhibits a turbulent length scale proportional to the Ozmidov scale, as observed in the ocean, and predicts the ratio between the turbulent Thorpe and Ozmidov length scales well within the range observed in the ocean.

  16. Dynamics of Small Inertia-Free Spheroidal Particles in a Turbulent Channel Flow

    Science.gov (United States)

    Challabotla, Niranjan Reddy; Zhao, Lihao; Andersson, Helge I.; Department of Energy; Process Engineering Team

    2015-11-01

    The study of small non-spherical particles suspended in turbulent fluid flows is of interest in view of the potential applications in industry and the environment. In the present work, we investigated the dynamics of inertia-free spheroidal particles suspended in fully-developed turbulent channel flow at Re τ = 180 by using the direct numerical simulations (DNS) for the Eulerian fluid phase coupled with the Lagrangian point-particle tracking. We considered inertia-free spheroidal particles with a wide range of aspect ratios from 0.01 to 50, i.e. from flat disks to long rods. Although the spheroids passively translate along with the fluid, the particle orientation and rotation strongly depend on the particle shape. The flattest disks were preferentially aligned with their symmetry axis normal to the wall, whereas the longest rods aligned parallel to the wall. Strong mean rotational spin was observed for spherical particles and this has been damped with increasing asphericity both for rod-like and disk-like spheroids. The anisotropic mean and fluctuating fluid vorticity resulted in particle spin anisotropies which exhibited a complex dependence on the particle asphericty. The Research Council of Norway, Notur and COST Action FP1005 are gratefully acknowledged.

  17. Optical and magneto-optical characterization of TbFeCo thin films in trilayer structures

    International Nuclear Information System (INIS)

    McGahan, W.A.; He, P.; Chen, L.; Bonafede, S.; Woollam, J.A.; Sequeda, F.; McDaniel, T.; Do, H.

    1991-01-01

    A series of TbFeCo films ranging in thickness from 100 to 800 A have been deposited in trilayer structures on silicon wafer substrates, with Si 3 N 4 being employed as the dielectric material. These films have been characterized both optically and magneto-optically by variable angle of incidence spectroscopic ellipsometry, normal angle of incidence reflectometry, and normal angle of incidence Kerr spectroscopy. From these measurements, the optical constants n and k have been determined for the TbFeCo films, as well as the magneto-optical constants Q1 and Q2. Results are presented that demonstrate the lack of dependence of these constants on the thickness of the TbFeCo film, and which can be used for calculating the expected optical and magneto-optical response of any multilayer structure containing similar TbFeCo films

  18. Turbulence modulation induced by interaction between a bubble swarm and decaying turbulence in oscillating-grid turbulence

    International Nuclear Information System (INIS)

    Imaizumi, Ryota; Morikawa, Koichi; Higuchi, Masamori; Saito, Takayuki

    2009-01-01

    In this study, the interaction between a bubble swarm and homogeneous isotropic turbulence was experimentally investigated. The objective is to clarify the turbulence modulation induced by interaction between the bubble swarm and the homogeneous isotropic turbulence without mean flow. In order to generate simultaneously ideally homogeneous isotropic turbulence and a sufficiently controlled bubble swarm, we employed both oscillating grid and bubble generators equipped with audio speakers. First, the homogeneous isotropic turbulence was formed by operating the oscillating grid cylindrical acrylic pipe (height: 600 mm, inner diameter: 149 mm) filled with ion-exchanged and degassed water. Second, we stopped the oscillating-grid in arbitrary time after the homogeneous isotropic turbulence was achieved. A few moments later, the controlled bubble swarm (number of bubbles: 3, average equivalent diameter of bubble: 3 mm, bubble Reynolds number: 859, Weber number: 3.48) was launched into the decaying turbulence described above, using the bubble generators. The bubble formation, bubble size and bubble-launch timing are controlled arbitrarily and precisely by this device. In this study, we conducted the following experiments: 1) measurement of the motion of bubbles in rest water and oscillating grid turbulence via high-speed visualization, 2) measurement of the liquid phase motion around the bubbles in rest water via PIV system with LIF method, 3) measurement of the liquid phase motion around the bubbles in oscillating-grid turbulence via PIV system with LIF method. In the vitalization of the liquid-phase motion of both experiments, two high speed video cameras were employed in order to simultaneously film large- and small-scale interrogation areas. The liquid-phase ambient turbulence hastened the change of the bubble motion from zigzag mode to spiral mode. The interaction between the bubble swarm and liquid-phase turbulence increased decay-rate of the turbulence. (author)

  19. Canonical Models of Geophysical and Astrophysical Flows: Turbulent Convection Experiments in Liquid Metals

    Directory of Open Access Journals (Sweden)

    Adolfo Ribeiro

    2015-03-01

    Full Text Available Planets and stars are often capable of generating their own magnetic fields. This occurs through dynamo processes occurring via turbulent convective stirring of their respective molten metal-rich cores and plasma-based convection zones. Present-day numerical models of planetary and stellar dynamo action are not carried out using fluids properties that mimic the essential properties of liquid metals and plasmas (e.g., using fluids with thermal Prandtl numbers Pr < 1 and magnetic Prandtl numbers Pm ≪ 1. Metal dynamo simulations should become possible, though, within the next decade. In order then to understand the turbulent convection phenomena occurring in geophysical or astrophysical fluids and next-generation numerical models thereof, we present here canonical, end-member examples of thermally-driven convection in liquid gallium, first with no magnetic field or rotation present, then with the inclusion of a background magnetic field and then in a rotating system (without an imposed magnetic field. In doing so, we demonstrate the essential behaviors of convecting liquid metals that are necessary for building, as well as benchmarking, accurate, robust models of magnetohydrodynamic processes in Pm ≪  Pr < 1 geophysical and astrophysical systems. Our study results also show strong agreement between laboratory and numerical experiments, demonstrating that high resolution numerical simulations can be made capable of modeling the liquid metal convective turbulence needed in accurate next-generation dynamo models.

  20. Observation of Cocurrent Toroidal Rotation in the EAST Tokamak with Lower-Hybrid Current Drive

    International Nuclear Information System (INIS)

    Shi Yuejiang; Xu Guosheng; Wang Fudi; Wang Mao; Fu Jia; Li Yingying; Zhang Wei; Zhang Wei; Chang Jiafeng; Lv Bo; Qian Jinping; Shan Jiafang; Liu Fukun; Ding Siye; Wan Baonian; Lee, Sang-Gon; Bitter, Manfred; Hill, Kenneth

    2011-01-01

    Lower-hybrid waves have been shown to induce a cocurrent change in toroidal rotation of up to 40 km/s in the L-mode plasma core region and 20 km/s in the edge of the EAST tokamak. This modification of toroidal rotation develops on different time scales. For the edge, the time scale is no more than 100 ms, but for the core the time scale is around 1 s. A simple model based on turbulent equipartition and thermoelectric pinch predicts the experimental results.