WorldWideScience

Sample records for magnetically supported two-temperature

  1. Oblique ion-acoustic cnoidal waves in two temperature superthermal electrons magnetized plasma

    International Nuclear Information System (INIS)

    Panwar, A.; Ryu, C. M.; Bains, A. S.

    2014-01-01

    A study is presented for the oblique propagation of ion acoustic cnoidal waves in a magnetized plasma consisting of cold ions and two temperature superthermal electrons modelled by kappa-type distributions. Using the reductive perturbation method, the nonlinear Korteweg de-Vries equation is derived, which further gives the solutions with a special type of cnoidal elliptical functions. Both compressive and rarefactive structures are found for these cnoidal waves. Nonlinear periodic cnoidal waves are explained in terms of plasma parameters depicting the Sagdeev potential and the phase curves. It is found that the density ratio of hot electrons to ions μ significantly modifies compressive/refractive wave structures. Furthermore, the combined effects of superthermality of cold and hot electrons κ c ,κ h , cold to hot electron temperature ratio σ, angle of propagation and ion cyclotron frequency ω ci have been studied in detail to analyze the height and width of compressive/refractive cnoidal waves. The findings in the present study could have important implications in understanding the physics of electrostatic wave structures in the Saturn's magnetosphere where two temperature superthermal electrons are present

  2. Low frequency solitons and double layers in a magnetized plasma with two temperature electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rufai, O. R. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Bharuthram, R. [Office of the Deputy Vice Chancellor (Academic), University of the Western Cape, Bellville (South Africa); Singh, S. V. [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai-410218 (India); School of Chemistry and Physics, University of Kwa-Zulu Natal, Durban (South Africa); Lakhina, G. S. [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai-410218 (India)

    2012-12-15

    Finite amplitude non-linear ion-acoustic solitary waves and double layers are studied in a magnetized plasma with cold ions fluid and two distinct groups of Boltzmann electrons, using the Sagdeev pseudo-potential technique. The conditions under which the solitary waves and double layers can exist are found both analytically and numerically. We have shown the existence of negative potential solitary waves and double layers for subsonic Mach numbers, whereas in the unmagnetized plasma they can only in the supersonic Mach number regime. For the plasma parameters in the auroral region, the electric field amplitude of the solitary structures comes out to be 49 mV/m which is in agreement of the Viking observations in this region.

  3. Low frequency solitons and double layers in a magnetized plasma with two temperature electrons

    International Nuclear Information System (INIS)

    Rufai, O. R.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.

    2012-01-01

    Finite amplitude non-linear ion-acoustic solitary waves and double layers are studied in a magnetized plasma with cold ions fluid and two distinct groups of Boltzmann electrons, using the Sagdeev pseudo-potential technique. The conditions under which the solitary waves and double layers can exist are found both analytically and numerically. We have shown the existence of negative potential solitary waves and double layers for subsonic Mach numbers, whereas in the unmagnetized plasma they can only in the supersonic Mach number regime. For the plasma parameters in the auroral region, the electric field amplitude of the solitary structures comes out to be 49 mV/m which is in agreement of the Viking observations in this region.

  4. LHC magnet support post

    CERN Multimedia

    1995-01-01

    A prototype magnet support for the Large Hadron Collider (LHC). The magnet supports have to bridge a difference in temperature of 300 degrees. Electrical connections, instrumentation and the posts on which the magnets stand are the only points where heat transfer can happen through conduction. They are all carefully designed to draw off heat progressively. The posts are made of 4 mm thick glass-fibre– epoxy composite material. Each post supports 10 000 kg of magnet and leaks just 0.1 W of heat. This piece required a long development period which started in the early ’90s and continued until the end of the decade. The wires next to the support post are wires from strain gauges, which are employed to measure the stress level in the material when the support is mechanically loaded. These supports are mechanically optimized to withstand a weight of up to 100Kn (10 tons) while being as thin as possible to minimize conduction heat to magnets. This is the reason why the stress measurement was extensively done...

  5. Conservative numerical methods for a two-temperature resistive MHD model with self-generated magnetic field term

    Directory of Open Access Journals (Sweden)

    Imbert-Gérard Lise-Marie

    2011-11-01

    Full Text Available We propose numerical methods on Cartesian meshes for solving the 2-D axisymmetric two-temperature resistivive magnetohydrodynamics equations with self-generated magnetic field and Braginskii’s [1] closures. These rely on a splitting of the complete system in several subsystems according to the nature of the underlying mathematical operator. The hyperbolic part is solved using conservative high-order dimensionally split Lagrange-remap schemes whereas semi-implicit diffusion operators have been developed for the thermal and resistive conduction equations. Source terms are treated explictly. Numerical results on the deceleration phase of an ICF implosion test problem are proposed, a benchmark which was initially proposed in [2]. Nous proposons dans cet article des méthodes numériques pour les équations de la magnétohydrodynamique résistive à deux températures avec champ magnétique auto-généré et relations de fermeture de Braginskii [1] en géométrie 2-D axisymétrique sur maillage cartésien. Celles-ci sont basées sur une décomposition du système complet selon la nature des opérateurs mathématiques sous-jacents. La partie hyperbolique est résolue par des schémas conservatifs Lagrange-projection d’ordre élevé en directions alternées tandis que des opérateurs de diffusion semi-implicites ont été développés pour les équations de conduction thermique et résistive. Les termes sources sont traités de manière explicite. Des résultats numériques sur un cas-test simulant la phase de décélération d’une implosion de capsule FCI sont proposés, ce benchmark ayant été initialement présenté dans [2].

  6. ISABELLE magnet support and adjustment system

    International Nuclear Information System (INIS)

    Buchanan, V.; Kassner, D.; Polk, I.

    1979-01-01

    The ISABELLE superconducting is supported at the quarter points within a carbon steel vacuum vessel by four fiberglass straps. These are positioned at a small angle to the vertical so that contraction of both the magnet core and the suspension straps do not change the position of the magnet centerline. Two smaller fiberglass straps at each support provide horizontal position location. The fiberglass straps are fabricated of uniaxial epoxy fiberglass tape. Creep tests at room temperature and 1.3 times design load show no extension after one year and there was a factor of safety of 5 in breaking strength. An Engineering Test Model was constructed and cycled to 5 0 K. Heat leak for the eight straps was less than 0.5 W and position stability was within +-0.005''. The vacuum vessel is vertically positioned by means of three jack screws with sliding pads and spherical washers between the top of the jacks and the support boxes. Longitudinal and lateral positioning is done by three horizontal screws at each support box. Three shim plates on the top of the support boxes are used to set the magnetic plane and sockets in two of these are used to set the lateral plane

  7. Multicomponent diffusion in two-temperature magnetohydrodynamics

    International Nuclear Information System (INIS)

    Ramshaw, J.D.; Chang, C.H.

    1996-01-01

    A recent hydrodynamic theory of multicomponent diffusion in multitemperature gas mixtures [J. D. Ramshaw, J. Non-Equilib. Thermodyn. 18, 121 (1993)] is generalized to include the velocity-dependent Lorentz force on charged species in a magnetic field B. This generalization is used to extend a previous treatment of ambipolar diffusion in two-temperature multicomponent plasmas [J. D. Ramshaw and C. H. Chang, Plasma Chem. Plasma Process. 13, 489 (1993)] to situations in which B and the electrical current density are nonzero. General expressions are thereby derived for the species diffusion fluxes, including thermal diffusion, in both single- and two-temperature multicomponent magnetohydrodynamics (MHD). It is shown that the usual zero-field form of the Stefan-Maxwell equations can be preserved in the presence of B by introducing generalized binary diffusion tensors dependent on B. A self-consistent effective binary diffusion approximation is presented that provides explicit approximate expressions for the diffusion fluxes. Simplifications due to the small electron mass are exploited to obtain an ideal MHD description in which the electron diffusion coefficients drop out, resistive effects vanish, and the electric field reduces to a particularly simple form. This description should be well suited for numerical calculations. copyright 1996 The American Physical Society

  8. Arrangement of magnets for magnetic support or guide system. Magnetanordnung fuer ein magnetisches Trag- oder Fuehrungssystem

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, G; Schwaerzler, P

    1978-01-26

    The invention refers to an arrangement of magnets for a magnetic support or guide system, particularly for a levitation vehicle. A magnetic tape which can be moved without touching along a fixed armature rail is provided, having an additional magnet at its ends. The pole surfaces of each additional magnet increase their spacing from the armature rail with increasing distance from the end of the magnetic tape concerned. The purpose of the invention is to improve such an arrangement of magnets so that the extra expense of additional magnets is avoided. According to the invention, this is achieved by the pole surfaces of the outer electromagnets of the magnetic tape, instead of the additional magnets, having an increased spacing from the armature rail with increasing approach to the end of the core free of connected electromagnets. The part of the pole faces remote from the armature rail is made curved in order to produce great leakage of the magnetic field.

  9. Structural support system for a superconducting magnet coil

    International Nuclear Information System (INIS)

    Meuser, R.B.

    1977-01-01

    The purpose of the ESCAR (Experimental Superconducting Accelerator Ring) project, now under way at the Lawrence Berkeley Laboratory, is to gather data and experience in the design and operation of a relatively small synchrotron employing superconducting magnets. Such data are essential to ensure that the design of future large accelerators may proceed in a knowledgeable and responsible manner. One of the many engineering problems associated with a superconducting magnet is the design of the coil suspension system. The coil, maintained at the temperature of liquid helium, must be held rigidly by a structure that does not conduct too much heat into the liquid helium system. The suspension system used on the ESCAR magnets is described. Topics covered include the coil support system requirements, ESCAR magnet support system, and operating experience

  10. A filament supported by different magnetic field configurations

    Science.gov (United States)

    Guo, Y.; Schmieder, B.; Démoulin, P.; Wiegelmann, T.; Aulanier, G.; Török, T.; Bommier, V.

    2011-08-01

    A nonlinear force-free magnetic field extrapolation of vector magnetogram data obtained by THEMIS/MTR on 2005 May 27 suggests the simultaneous existence of different magnetic configurations within one active region filament: one part of the filament is supported by field line dips within a flux rope, while the other part is located in dips within an arcade structure. Although the axial field chirality (dextral) and the magnetic helicity (negative) are the same along the whole filament, the chiralities of the filament barbs at different sections are opposite, i.e., right-bearing in the flux rope part and left-bearing in the arcade part. This argues against past suggestions that different barb chiralities imply different signs of helicity of the underlying magnetic field. This new finding about the chirality of filaments will be useful to associate eruptive filaments and magnetic cloud using the helicity parameter in the Space Weather Science.

  11. DC Control Effort Minimized for Magnetic-Bearing-Supported Shaft

    Science.gov (United States)

    Brown, Gerald V.

    2001-01-01

    A magnetic-bearing-supported shaft may have a number of concentricity and alignment problems. One of these involves the relationship of the position sensors, the centerline of the backup bearings, and the magnetic center of the magnetic bearings. For magnetic bearings with permanent magnet biasing, the average control current for a given control axis that is not bearing the shaft weight will be minimized if the shaft is centered, on average over a revolution, at the magnetic center of the bearings. That position may not yield zero sensor output or center the shaft in the backup bearing clearance. The desired shaft position that gives zero average current can be achieved if a simple additional term is added to the control law. Suppose that the instantaneous control currents from each bearing are available from measurements and can be input into the control computer. If each control current is integrated with a very small rate of accumulation and the result is added to the control output, the shaft will gradually move to a position where the control current averages to zero over many revolutions. This will occur regardless of any offsets of the position sensor inputs. At that position, the average control effort is minimized in comparison to other possible locations of the shaft. Nonlinearities of the magnetic bearing are minimized at that location as well.

  12. Structural analysis of Wendelstein 7-X magnet weight supports

    International Nuclear Information System (INIS)

    Egorov, Konstantin; Bykov, Victor; Schauer, Felix; van Eeten, Paul

    2009-01-01

    The Wendelstein 7-X (W7-X) optimized stellarator is presently under construction at the Max-Planck-Institut fuer Plasmaphysik in Greifswald. The goal of W7-X is to verify that the advanced stellarator magnetic confinement concept is a viable option for a fusion reactor. The W7-X coil system consisting of 70 superconducting coils of seven different types is supported by a massive central support structure (CSS), and thermally protected by the cryostat. The magnet system's weight is borne by supports (cryo-legs) which are bolted to the cold CSS. They reach down through the cryostat wall to the warm machine base which means that a small thermal conductivity is important to keep thermal losses at an acceptable level. Therefore, the design of the cryo-legs incorporates glass-reinforced plastic (GRP) tubes which are shrink-fitted into stainless steel flanges at the ends. In order to ensure free thermal shrinkage of the magnet system and to reduce stresses in the cryo-legs, sliding and rotating bearings are used as interfaces to the machine base. Tie rods between the machine base and the warm ends of the cryo-legs prevent toroidal movements of the magnet system with respect to the torus axis. Nevertheless, significant deformation of the CSS during operation results in tilting of the cryo-legs in such a way that toroidal movements of the whole magnet system take place. The number of cryo-legs and their stiffness are chosen such that the toroidal movement is kept within an acceptable range. All these restrictions, as well as requirements concerning simplicity and ease of assembly, make the cryo-leg design and structural analysis quite a complex and challenging task. The paper presents an overview of structural analyses of the W7-X magnet system with cryo-legs, local analyses of a cryo-leg under design loads, and FE simulation of the cryo-leg mechanical test.

  13. Magnetic Modulation of the Transport of Organophilic Solutes through Supported Magnetic Ionic Liquid Membranes.

    Czech Academy of Sciences Publication Activity Database

    Daniel, C.L.; Rubio, A.M.; Sebastião, P.J.; Afonso, C.A.M.; Storch, Jan; Izák, Pavel; Portugal, C.A.M.; Crespo, J.G.

    2016-01-01

    Roč. 505, MAY 1 (2016), s. 36-43 ISSN 0376-7388 R&D Projects: GA ČR(CZ) GAP106/12/0569 Grant - others:ERANET(PT) ERA-CHEM/0001/2008; EUI(ES) 2008- 03857; FCT-MCTES(PT) SFRH/BD/81552/2011 Institutional support: RVO:67985858 Keywords : magnetic ionic liquids (MILs) * solute transport modulation * magnetic field Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 6.035, year: 2016

  14. Superconducting magnetic energy storage apparatus structural support system

    Science.gov (United States)

    Withers, Gregory J.; Meier, Stephen W.; Walter, Robert J.; Child, Michael D.; DeGraaf, Douglas W.

    1992-01-01

    A superconducting magnetic energy storage apparatus comprising a cylindrical superconducting coil; a cylindrical coil containment vessel enclosing the coil and adapted to hold a liquid, such as liquefied helium; and a cylindrical vacuum vessel enclosing the coil containment vessel and located in a restraining structure having inner and outer circumferential walls and a floor; the apparatus being provided with horizontal compression members between (1) the coil and the coil containment vessel and (2) between the coil containment vessel and the vacuum vessel, compression bearing members between the vacuum vessel and the restraining structure inner and outer walls, vertical support members (1) between the coil bottom and the coil containment vessel bottom and (2) between the coil containment vessel bottom and the vacuum vessel bottom, and external supports between the vacuum vessel bottom and the restraining structure floor, whereby the loads developed by thermal and magnetic energy changes in the apparatus can be accommodated and the structural integrity of the apparatus be maintained.

  15. A novel superconducting magnetic levitation method to support the laser fusion capsule by using permanent magnets

    Directory of Open Access Journals (Sweden)

    Xiaojia Li

    2018-05-01

    Full Text Available A novel magnetic levitation support method is proposed, which can relieve the perturbation caused by traditional support methods and provide more accurate position control of the capsule. This method can keep the perfect symmetry of the octahedral spherical hohlraum and has the characteristics in stability, tunability and simplicity. It is also favorable that all the results, such as supporting forces acting on the superconducting capsule, are calculated analytically, and numerical simulations are performed to verify these results. A typical realistic design is proposed and discussed in detail. The superconducting coating material is suggested, and the required superconducting properties are listed. Damped oscillation of the floating capsule in thin helium gas is discussed, and the restoring time is estimated. Keywords: ICF capsule support, Magnetic levitation, Symmetry, PACS Codes: 52.57.Fg, 74.70.Ad, 74.78.-W

  16. Two-temperature accretion disks in pair equilibrium

    International Nuclear Information System (INIS)

    Kusunose, Masaaki; Takahara, Fumio.

    1989-01-01

    We investigate two-temperature accretion disks with electron-positron pair production, taking account of the bremsstrahlung and Comptonization of soft photons produced by the cyclotron higher harmonics. The properties of the disks are qualitatively the same as those of disks in which bremsstrahlung is the only photon source. For an accretion rate higher than a critical value, M cr , no steady solutions exist for a certain range of radial distance from a central black hole. The critical value increases only slightly with the input of soft photons; the increment is 45%, i.e., M cr ∼ 0.43 M Edd , for the viscosity parameter α = 0.1, where M Edd ≡ L Edd /c 2 = 4πGM BH m p /(σ T c) with M BH being the mass of the central black hole. Furthermore, the disks are unstable against perturbations of the proton temperature. For α ∼ 0.1, the equipartition magnetic field, and a range of accretion rates, emission spectra obey the power law with a spectral index of -0.7 to -0.6, which coincides with the observed universal X-ray spectra of Seyfert galaxies. Brief comments on the model of the γ-ray flare of Cyg X-1 are also given. (author)

  17. Radial Distribution Functions of Strongly Coupled Two-Temperature Plasmas

    Science.gov (United States)

    Shaffer, Nathaniel R.; Tiwari, Sanat Kumar; Baalrud, Scott D.

    2017-10-01

    We present tests of three theoretical models for the radial distribution functions (RDFs) in two-temperature strongly coupled plasmas. RDFs are useful in extending plasma thermodynamics and kinetic theory to strong coupling, but they are usually known only for thermal equilibrium or for approximate one-component model plasmas. Accurate two-component modeling is necessary to understand the impact of strong coupling on inter-species transport, e.g., ambipolar diffusion and electron-ion temperature relaxation. We demonstrate that the Seuferling-Vogel-Toeppfer (SVT) extension of the hypernetted chain equations not only gives accurate RDFs (as compared with classical molecular dynamics simulations), but also has a simple connection with the Yukawa OCP model. This connection gives a practical means to recover the structure of the electron background from knowledge of the ion-ion RDF alone. Using the model RDFs in Effective Potential Theory, we report the first predictions of inter-species transport coefficients of strongly coupled plasmas far from equilibrium. This work is supported by NSF Grant No. PHY-1453736, AFSOR Award No. FA9550-16-1-0221, and used XSEDE computational resources.

  18. Characteristics of motorized spindle supported by active magnetic bearings

    Directory of Open Access Journals (Sweden)

    Xie Zhenyu

    2014-12-01

    Full Text Available A motorized spindle supported by active magnetic bearings (AMBs is generally used for ultra-high-speed machining. Iron loss of radial AMB is very great owing to high rotation speed, and it will cause severe thermal deformation. The problem is particularly serious on the occasion of large power application, such as all electric aero-engine. In this study, a prototype motorized spindle supported by five degree-of-freedom AMBs is developed. Homopolar and heteropolar AMBs are independently adopted as radial bearings. The influences of the two types of radial AMBs on the dynamic characteristics of the motorized spindle are comparatively investigated by theoretical analysis, test modal analysis and actual operation of the system. The iron loss of the two types of radial AMBs is analyzed by finite element software and verified through run-down experiments of the system. The results show that the structures of AMB have less influence on the dynamic characteristics of the motorized spindle. However, the homopolar structure can effectively reduce the iron loss of the radial AMB and it is useful for improving the overall performance of the motorized spindle.

  19. Dynamical analysis of a flywheel-superconducting bearing with a moving magnet support

    International Nuclear Information System (INIS)

    Sivrioglu, Selim; Nonami, Kenzo

    2003-01-01

    A lateral stiffness improvement approach based on a moving magnet support is developed to reduce the vibration of a flywheel rotor-high temperature superconductor (HTS) bearing. A flywheel rotor levitated with an HTS bearing is modelled and then analysed with a moving stator magnet placed above the rotor. A dynamic support principle is introduced based on moving the stator magnet in anti-phase with the rotor displacement for small variations. A complete dynamical equation of the flywheel rotor is derived including gyroscopic and imbalance effects. The simulation results showed that the dynamic support of the flywheel rotor with additional stator magnet movements decreases the vibration of the flywheel rotor considerably

  20. A new support structure for high field magnets

    International Nuclear Information System (INIS)

    Bish, P.S.; Caspi, S.; Dietderich, D.R.; Gourlay, S.A.; Hafalia, R.R.; Hannaford, R.; Lietzke, A.F.; Liggins, N.; McInturff, A.D.; Sabbi, G.L.; Scanlan, R.M.; O'Neill, J.; Swanson, J.H

    2001-01-01

    Pre-stress of superconducting magnets can be applied directly through the magnet yoke structure. We have replaced the collar functionality in our 14 Tesla R and D Nb 3 Sn dipole magnets with an assembly procedure based on an aluminum shell and bladders. Bladders, placed between the coil pack and surrounding yoke inside the shell, are pressurized up to 10 ksi [70 MPa] to create an interference gap. Keys placed into the interference gap replace the bladder functionality. Following the assembly, the bladders are deflated and removed. Strain gauges mounted directly on the shell are used to monitor the stress of the entire magnet structure, thereby providing a high degree of pre-stress control without the need for high tolerances. During assembly, a force of 8.2 x 10 5 lbs/ft [12 MN/m] is generated by the bladders and the stress in the 1.57 inch [40mm] aluminum shell reaches 20.3 ksi [140 MPa]. During cool-down the thermal expansion difference between shell and yoke generates an additional compressive force of 6.85 x 10 5 lbs/ft [10 MN/m], corresponding to a final stress in the shell of 39.2 ksi [270 MPa]. Pre-stress conditions are sufficient for 16 T before the coils separate at the bore. Bladders have now been used in the assembly and disassembly of two 14 T magnets. This paper describes the magnet structure, assembly procedure and test results

  1. Deflection analysis for an SSC [Superconducting Super Collider] dipole magnet with two external supports

    International Nuclear Information System (INIS)

    Nicol, T.H.

    1987-01-01

    SSC dipole magnets are presently supported at five mounting locations coincident with the internal cold mass supports. There is growing interest in reducing the number of external supports from five to two for reasons of simplified installation and alignment and as a cost reduction measure. This reports examines the placement of two external supports required to minimize the deflection of the cold mass assembly

  2. Generalized two-temperature model for coupled phonon-magnon diffusion.

    Science.gov (United States)

    Liao, Bolin; Zhou, Jiawei; Chen, Gang

    2014-07-11

    We generalize the two-temperature model [Sanders and Walton, Phys. Rev. B 15, 1489 (1977)] for coupled phonon-magnon diffusion to include the effect of the concurrent magnetization flow, with a particular emphasis on the thermal consequence of the magnon flow driven by a nonuniform magnetic field. Working within the framework of the Boltzmann transport equation, we derive the constitutive equations for coupled phonon-magnon transport driven by gradients of both temperature and external magnetic fields, and the corresponding conservation laws. Our equations reduce to the original Sanders-Walton two-temperature model under a uniform external field, but predict a new magnon cooling effect driven by a nonuniform magnetic field in a homogeneous single-domain ferromagnet. We estimate the magnitude of the cooling effect in an yttrium iron garnet, and show it is within current experimental reach. With properly optimized materials, the predicted cooling effect can potentially supplement the conventional magnetocaloric effect in cryogenic applications in the future.

  3. Two Models of Magnetic Support for Photoevaporated Molecular Clouds

    International Nuclear Information System (INIS)

    Ryutov, D; Kane, J; Mizuta, A; Pound, M; Remington, B

    2004-01-01

    The thermal pressure inside molecular clouds is insufficient for maintaining the pressure balance at an ablation front at the cloud surface illuminated by nearby UV stars. Most probably, the required stiffness is provided by the magnetic pressure. After surveying existing models of this type, we concentrate on two of them: the model of a quasi-homogeneous magnetic field and the recently proposed model of a ''magnetostatic turbulence''. We discuss observational consequences of the two models, in particular, the structure and the strength of the magnetic field inside the cloud and in the ionized outflow. We comment on the possible role of reconnection events and their observational signatures. We mention laboratory experiments where the most significant features of the models can be tested

  4. Cryomdoule Test Stand Reduced-Magnetic Support Design at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, Mike [Fermilab; Chandrasekaran, Saravan Kumar [Fermilab; Crawford, Anthony [Fermilab; Harms, Elvin [Fermilab; Leibfritz, Jerry [Fermilab; Wu, Genfa [Fermilab

    2016-06-01

    In a partnership with SLAC National Accelerator Laboratory (SLAC) and Jefferson Lab, Fermilab will assemble and test 17 of the 35 total 1.3 GHz cryomodules for the Linac Coherent Light Source II (LCLS-II) Project. These devices will be tested at Fermilab's Cryomodule Test Facility (CMTF) within the Cryomodule Test Stand (CMTS-1) cave. The problem of magnetic pollution became one of major issues during design stage of the LCLS-II cryomodule as the average quality factor of the accelerating cavities is specified to be 2.7 x 10¹⁰. One of the possible ways to mitigate the effect of stray magnetic fields and to keep it below the goal of 5 mGauss involves the application of low permeable materials. Initial permeability and magnetic measurement studies regarding the use of 316L stainless steel material indicated that cold work (machining) and heat affected zones from welding would be acceptable.

  5. Use of magnetic compression to support turbine engine rotors

    Science.gov (United States)

    Pomfret, Chris J.

    1994-01-01

    Ever since the advent of gas turbine engines, their rotating disks have been designed with sufficient size and weight to withstand the centrifugal forces generated when the engine is operating. Unfortunately, this requirement has always been a life and performance limiting feature of gas turbine engines and, as manufacturers strive to meet operator demands for more performance without increasing weight, the need for innovative technology has become more important. This has prompted engineers to consider a fundamental and radical breakaway from the traditional design of turbine and compressor disks which have been in use since the first jet engine was flown 50 years ago. Magnetic compression aims to counteract, by direct opposition rather than restraint, the centrifugal forces generated within the engine. A magnetic coupling is created between a rotating disk and a stationary superconducting coil to create a massive inwardly-directed magnetic force. With the centrifugal forces opposed by an equal and opposite magnetic force, the large heavy disks could be dispensed with and replaced with a torque tube to hold the blades. The proof of this concept has been demonstrated and the thermal management of such a system studied in detail; this aspect, especially in the hot end of a gas turbine engine, remains a stiff but not impossible challenge. The potential payoffs in both military and commercial aviation and in the power generation industry are sufficient to warrant further serious studies for its application and optimization.

  6. A new support structure for high field magnets

    CERN Document Server

    Hafalia, R R; Caspi, S; Dietderich, D R; Gourlay, S A; Hannaford, R; Lietzke, A F; Liggins, N; McInturff, A D; Sabbi, G L; Scanlan, R M; O'Neill, J; Swanson, J H

    2002-01-01

    Pre-stress of superconducting magnets can be applied directly through the magnet yoke structure. We have replaced the collar functionality in our 14 Tesla R&D Nb//3Sn dipole magnets with an assembly procedure based on an aluminum shell and bladders. Bladders, placed between the coil pack and surrounding yoke inside the shell, are pressurized up to 10 ksi left bracket 70 MPa right bracket to create an interference gap. Keys placed into the interference gap replace the bladder functionality. Following the assembly, the bladders are deflated and removed. Strain gauges mounted directly on the shell are used to monitor the stress of the entire magnet structure, thereby providing a high degree of pre-stress control without the need for high tolerances. During assembly, a force of 8.2 multiplied by 10**5 lbs /ft left bracket 12 MN/m right bracket is generated by the bladders and the stress in the 1.57 double prime left bracket 40 mm right bracket aluminum shell reaches 20.3 ksi left bracket 140 MPa right bracket...

  7. Investigating unexpected magnetism of mesoporous silica-supported Pd and PdO nanoparticles

    KAUST Repository

    Song, Hyon Min

    2015-01-13

    The synthesis and magnetic behavior of matrix-supported Pd and PdO nanoparticles (NPs) are described. Mesoporous silica with hexagonal columnal packing is selected as a template, and the impregnation method with thermal annealing is used to obtain supported Pd and PdO NPs. The heating rate and the annealing conditions determine the particle size and the phase of the NPs, with a fast heating rate of 30 °C/min producing the largest supported Pd NPs. Unusual magnetic behaviors are observed. (1) Contrary to the general belief that smaller Pd NPs or cluster size particles have higher magnetization, matrix-supported Pd NPs in this study maintain the highest magnetization with room temperature ferromagnetism when the size is the largest. (2) Twin boundaries along with stacking faults are more pronounced in these large Pd NPs and are believed to be the reason for this high magnetization. Similarly, supported PdO NPs were prepared under air conditions with different heating rates. Their phase is tetragonal (P42/mmc) with cell parameters of a = 3.050 Å and c = 5.344 Å, which are slightly larger than in the bulk phase (a = 3.03 Å, c = 5.33 Å). Faster heating rate of 30 °C/min also produces larger particles and larger magnetic hysteresis loop, although magnetization is smaller and few twin boundaries are observed compared to the supported metallic Pd NPs.

  8. Vibration study of the APS magnet support assemblies

    International Nuclear Information System (INIS)

    Wambsganss, M.W.; Jendrzejczyk, J.A.; Chen, S.S.

    1990-11-01

    Stability of the positron closed orbit is a requirement for successful operation of the Advanced Photon Source. The fact that vibration of the storage ring quadrupole magnets can lead to distortion of the positron closed orbit and to potentially unacceptable beam emittance growth provides the motivation for the subject studies. Low frequency vibrations can be controlled with steering magnets using feedback systems, provided the vibration amplitudes are within the dynamic range of the controllers. High frequency vibration amplitudes, on the other hand, are out of the range of the controller and, therefore must be limited to ensure the emittance growth will not exceed a prescribed value. Vibration criteria were developed based on the requirement that emittance growth be limited to 10 percent. Recognizing that the quadrupole magnets have the most significant effect, three different scenarios were considered: vibration of a single quadrupole within the storage ring, random vibration of all the quadrupoles in the ring, and the hypothetical case of a plane wave sweeping across the site and the quadrupoles following the motion of the plane wave. The maximum allowable peak vibration amplitudes corresponding to these three vibration scenarios are given. The criteria associated with the passage of a plane wave is dependent on wavelength, or, alternatively, on frequency given the wave speed. The wave speed used is that measured as a part of the geotechnical investigation at the APS site

  9. Magnetic Carbon Supported Palladium Nanoparticles: An Efficient and Sustainable Catalyst for Hydrogenation Reactions

    Science.gov (United States)

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; the catalyst can be used for the hydrogenation of alkenes and reduction of aryl nitro compounds.

  10. Centralized supercomputer support for magnetic fusion energy research

    International Nuclear Information System (INIS)

    Fuss, D.; Tull, G.G.

    1984-01-01

    High-speed computers with large memories are vital to magnetic fusion energy research. Magnetohydrodynamic (MHD), transport, equilibrium, Vlasov, particle, and Fokker-Planck codes that model plasma behavior play an important role in designing experimental hardware and interpreting the resulting data, as well as in advancing plasma theory itself. The size, architecture, and software of supercomputers to run these codes are often the crucial constraints on the benefits such computational modeling can provide. Hence, vector computers such as the CRAY-1 offer a valuable research resource. To meet the computational needs of the fusion program, the National Magnetic Fusion Energy Computer Center (NMFECC) was established in 1974 at the Lawrence Livermore National Laboratory. Supercomputers at the central computing facility are linked to smaller computer centers at each of the major fusion laboratories by a satellite communication network. In addition to providing large-scale computing, the NMFECC environment stimulates collaboration and the sharing of computer codes and data among the many fusion researchers in a cost-effective manner

  11. Properties of two-temperature dissipative accretion flow around black holes

    Science.gov (United States)

    Dihingia, Indu K.; Das, Santabrata; Mandal, Samir

    2018-04-01

    We study the properties of two-temperature accretion flow around a non-rotating black hole in presence of various dissipative processes where pseudo-Newtonian potential is adopted to mimic the effect of general relativity. The flow encounters energy loss by means of radiative processes acted on the electrons and at the same time, flow heats up as a consequence of viscous heating effective on ions. We assumed that the flow is exposed with the stochastic magnetic fields that leads to Synchrotron emission of electrons and these emissions are further strengthen by Compton scattering. We obtain the two-temperature global accretion solutions in terms of dissipation parameters, namely, viscosity (α) and accretion rate ({\\dot{m}}), and find for the first time in the literature that such solutions may contain standing shock waves. Solutions of this kind are multitransonic in nature, as they simultaneously pass through both inner critical point (xin) and outer critical point (xout) before crossing the black hole horizon. We calculate the properties of shock-induced global accretion solutions in terms of the flow parameters. We further show that two-temperature shocked accretion flow is not a discrete solution, instead such solution exists for wide range of flow parameters. We identify the effective domain of the parameter space for standing shock and observe that parameter space shrinks as the dissipation is increased. Since the post-shock region is hotter due to the effect of shock compression, it naturally emits hard X-rays, and therefore, the two-temperature shocked accretion solution has the potential to explain the spectral properties of the black hole sources.

  12. THE ROLE OF TURBULENT MAGNETIC RECONNECTION IN THE FORMATION OF ROTATIONALLY SUPPORTED PROTOSTELLAR DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Lima, R.; De Gouveia Dal Pino, E. M. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, R. do Matao, 1226, Sao Paulo, SP 05508-090 (Brazil); Lazarian, A. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States)

    2012-03-01

    The formation of protostellar disks out of molecular cloud cores is still not fully understood. Under ideal MHD conditions, the removal of angular momentum from the disk progenitor by the typically embedded magnetic field may prevent the formation of a rotationally supported disk during the main protostellar accretion phase of low-mass stars. This has been known as the magnetic braking problem and the most investigated mechanism to alleviate this problem and help remove the excess of magnetic flux during the star formation process, the so-called ambipolar diffusion (AD), has been shown to be not sufficient to weaken the magnetic braking at least at this stage of the disk formation. In this work, motivated by recent progress in the understanding of magnetic reconnection in turbulent environments, we appeal to the diffusion of magnetic field mediated by magnetic reconnection as an alternative mechanism for removing magnetic flux. We investigate numerically this mechanism during the later phases of the protostellar disk formation and show its high efficiency. By means of fully three-dimensional MHD simulations, we show that the diffusivity arising from turbulent magnetic reconnection is able to transport magnetic flux to the outskirts of the disk progenitor at timescales compatible with the collapse, allowing the formation of a rotationally supported disk around the protostar of dimensions {approx}100 AU, with a nearly Keplerian profile in the early accretion phase. Since MHD turbulence is expected to be present in protostellar disks, this is a natural mechanism for removing magnetic flux excess and allowing the formation of these disks. This mechanism dismisses the necessity of postulating a hypothetical increase of the ohmic resistivity as discussed in the literature. Together with our earlier work which showed that magnetic flux removal from molecular cloud cores is very efficient, this work calls for reconsidering the relative role of AD in the processes of star

  13. Extremely long-lived magnetic excitations in supported Fe chains

    Science.gov (United States)

    Gauyacq, J. P.; Lorente, N.

    2016-07-01

    We report on a theoretical study of the lifetime of the first excited state of spin chains made of an odd number of Fe atoms on C u2N /Cu (100 ) . Yan, Choi, Burgess, Rolf-Pissarczyk, and Loth [Nat. Nanotech. 10, 40 (2015), 10.1038/nnano.2014.281] recently observed very long lifetimes in the case of F e3 chains. We consider the decay of the first excited state induced by electron-hole pair creation in the substrate. For a finite magnetic field, the two lowest-lying states in the chain have a quasi-Néel state structure. Decay from one state to the other strongly depends on the degree of entanglement of the local spins in the chain. The weak entanglement in the chain accounts for the long lifetimes that increase exponentially with chain length. Despite their apparently very different properties, the behavior of odd and even chains is governed by the same kind of phenomena, in particular entanglement effects. The present results account quite well for the lifetimes recently measured by Yan et al. on F e3 .

  14. Investigating unexpected magnetism of mesoporous silica-supported Pd and PdO nanoparticles

    KAUST Repository

    Song, Hyon Min; Zink, Jeffrey I.; Khashab, Niveen M.

    2015-01-01

    supported Pd and PdO NPs. The heating rate and the annealing conditions determine the particle size and the phase of the NPs, with a fast heating rate of 30 °C/min producing the largest supported Pd NPs. Unusual magnetic behaviors are observed. (1) Contrary

  15. Design and heat load analysis of support structure of CR superconducting dipole magnet for FAIR

    International Nuclear Information System (INIS)

    Zhu Yinfeng; Wu Songtao; Wu Weiyue; Xu Houchang; Liu Changle

    2008-01-01

    In order to meet the requirement of the Collector ring (CR) dipole superconducting magnet of FAIR in the process of operation, meanwhile, and to ensure the heat loads coming from the support structures to be lower than the design demands, the 3D models of support structures have been constructed with CATIA, then the calculation of low-temperature heat-load and the structure analysis have been done with ANSYS, the support structure material, 316LN+G10, is decided according to the heat-load calculation and the structure optimization, these results are necessary for manufacturing the formal magnet. (authors)

  16. Kinetic theory of two-temperature polyatomic plasmas

    Science.gov (United States)

    Orlac'h, Jean-Maxime; Giovangigli, Vincent; Novikova, Tatiana; Roca i Cabarrocas, Pere

    2018-03-01

    We investigate the kinetic theory of two-temperature plasmas for reactive polyatomic gas mixtures. The Knudsen number is taken proportional to the square root of the mass ratio between electrons and heavy-species, and thermal non-equilibrium between electrons and heavy species is allowed. The kinetic non-equilibrium framework also requires a weak coupling between electrons and internal energy modes of heavy species. The zeroth-order and first-order fluid equations are derived by using a generalized Chapman-Enskog method. Expressions for transport fluxes are obtained in terms of macroscopic variable gradients and the corresponding transport coefficients are expressed as bracket products of species perturbed distribution functions. The theory derived in this paper provides a consistent fluid model for non-thermal multicomponent plasmas.

  17. Multiple collinear magnetic arrangements in thin Mn films supported on Fe(001). Antiferromagnetic versus ferromagnetic behavior

    International Nuclear Information System (INIS)

    Martinez, E.; Vega, A.; Robles, R.; Vazquez de Parga, A.L.

    2005-01-01

    We present a theoretical study of the magnetic properties of thin Mn films of 6 and 7 monolayers supported on Fe(001). The ab-initio tight binding linear muffin tin orbital (TB-LMTO) method was used to investigate the competition between ferromagnetic (F) and antiferromagnetic (AF) couplings within the system. We found several collinear magnetic solutions that may coexist at room temperature. The most stable configurations are characterized by AF coupling between the surface and subsurface Mn layers together with F coupling between Mn and Fe at the interface. The ground state arrangements for the 6 and 7 Mn films display opposite sign of the surface magnetic moment relative to the Fe substrate. The implications of these results in the possible onset of non-collinear magnetism when a step is present at the interface are discussed in comparison with Cr/Fe systems where non-collinear magnetism has been recently reported

  18. Two-temperature LATE-PCR endpoint genotyping

    Directory of Open Access Journals (Sweden)

    Reis Arthur H

    2006-12-01

    Full Text Available Abstract Background In conventional PCR, total amplicon yield becomes independent of starting template number as amplification reaches plateau and varies significantly among replicate reactions. This paper describes a strategy for reconfiguring PCR so that the signal intensity of a single fluorescent detection probe after PCR thermal cycling reflects genomic composition. The resulting method corrects for product yield variations among replicate amplification reactions, permits resolution of homozygous and heterozygous genotypes based on endpoint fluorescence signal intensities, and readily identifies imbalanced allele ratios equivalent to those arising from gene/chromosomal duplications. Furthermore, the use of only a single colored probe for genotyping enhances the multiplex detection capacity of the assay. Results Two-Temperature LATE-PCR endpoint genotyping combines Linear-After-The-Exponential (LATE-PCR (an advanced form of asymmetric PCR that efficiently generates single-stranded DNA and mismatch-tolerant probes capable of detecting allele-specific targets at high temperature and total single-stranded amplicons at a lower temperature in the same reaction. The method is demonstrated here for genotyping single-nucleotide alleles of the human HEXA gene responsible for Tay-Sachs disease and for genotyping SNP alleles near the human p53 tumor suppressor gene. In each case, the final probe signals were normalized against total single-stranded DNA generated in the same reaction. Normalization reduces the coefficient of variation among replicates from 17.22% to as little as 2.78% and permits endpoint genotyping with >99.7% accuracy. These assays are robust because they are consistent over a wide range of input DNA concentrations and give the same results regardless of how many cycles of linear amplification have elapsed. The method is also sufficiently powerful to distinguish between samples with a 1:1 ratio of two alleles from samples comprised of

  19. Nanoparticle-supported and magnetically recoverable palladium (Pd) catalyst: a selective and sustainable oxidation protocol with high turnover number

    Science.gov (United States)

    A magnetic nanoparticle-supported ruthenium hydroxide catalyst was readily prepared from inexpensive starting materials and shown to catalyze hydration of nitriles with excellent yield in benign aqueous medium. Catalyst recovery using an external magnetic field, superior activity...

  20. Instabilities of bellows: Dependence on internal pressure, end supports, and interactions in accelerator magnet systems

    International Nuclear Information System (INIS)

    Shutt, R.P.; Rehak, M.L.

    1990-01-01

    For superconducting magnets, one needs many bellows for connection of various helium cooling transfer lines in addition to beam tube bellows. There could be approximately 10,000 magnet interconnection bellows in the SSC exposed to an internal pressure. When axially compressed or internally pressurized, bellows can become unstable, leading to gross distortion or complete failure. If several bellows are contained in an assembly, failure modes might interact. If designed properly, large bellows can be a very feasible possibility for connecting the large tubular shells that support the magnet iron yokes and superconducting coils and contain supercritical helium for magnet cooling. We present here (1) a spring-supported bellows model, in order to develop necessary design features for bellows and end supports so that instabilities will not occur in the bellows pressure operating region, including some margin, (2) a model of three superconducting accelerator magnets connected by two large bellows, in order to ascertain that support requirements are satisfied and in order to study interaction effects between the two bellows. Reliability of bellows for our application will be stressed. 3 refs., 4 figs

  1. Magnet-retained implant-supported overdentures: review and 1-year clinical report.

    Science.gov (United States)

    Ceruti, Paola; Bryant, S Ross; Lee, Jun-Ho; MacEntee, Michael I

    2010-01-01

    Open-field aluminum-nickle-cobalt magnets have been used in prosthodontics for many years, but success has been limited because these magnets are susceptible to corrosion by the saliva and because their retentive force is weak relative to the initial retention offered by mechanical attachments. More recently, magnets have been made from alloys of the rare earth elements samarium and neodymium, which provide stronger magnetic force per unit size. In addition, a new generation of laser-welded containers has improved protection from salivary corrosion. The current resurgence of interest in this type of attachment appears justified because, unlike mechanical attachments, magnets have potential for unlimited durability and might therefore be superior to mechanical ball or bar attachments for the retention of removable prostheses on implants. To date, no long-term prospective trials have been conducted to confirm the clinical durability of this new generation of magnets for retaining dentures on either teeth or implants. The aim of this study was to document initial clinical experiences and levels of satisfaction among edentulous patients treated with mandibular implant-supported overdentures retained using a new generation of rare-earth magnetic attachments. At the outset, all but one of the 17 patients had had several years of experience with implant-supported overdentures. During the first year, the mean overall satisfaction among these 17 patients increased from less than 70 to over 90 out of 100 (standardized visual analogue scale). No unusual difficulties were encountered in rendering the treatment or maintaining the attachments. This report offers preliminary evidence of the excellent potential of these magnets for retaining mandibular implant-supported overdentures.

  2. Effect of two-temperature electrons distribution on an electrostatic plasma sheath

    International Nuclear Information System (INIS)

    Ou, Jing; Xiang, Nong; Gan, Chunyun; Yang, Jinhong

    2013-01-01

    A magnetized collisionless plasma sheath containing two-temperature electrons is studied using a one-dimensional model in which the low-temperature electrons are described by Maxwellian distribution (MD) and high-temperature electrons are described by truncated Maxwellian distribution (TMD). Based on the ion wave approach, a modified sheath criterion including effect of TMD caused by high-temperature electrons energy above the sheath potential energy is established theoretically. The model is also used to investigate numerically the sheath structure and energy flux to the wall for plasmas parameters of an open divertor tokamak-like. Our results show that the profiles of the sheath potential, two-temperature electrons and ions densities, high-temperature electrons and ions velocities as well as the energy flux to the wall depend on the high-temperature electrons concentration, temperature, and velocity distribution function associated with sheath potential. In addition, the results obtained in the high-temperature electrons with TMD as well as with MD sheaths are compared for the different sheath potential

  3. Reel support for wind the magnet of the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Ling, R.C.; Chang, Y.; Hunt, L.D.

    1977-01-01

    The reel support has three main functions. It must support the reel, which is 134 in. in diameter, 40 in. wide, and stores up to 8,600 ft of superconductor weighing 8,600 lb. It also must serve as a tensioning device for the superconductor, exerting a force of up to 600 lb. Further, the support must move the reel vertically and laterally to facilitate the winding of the magnets. The support has been designed and is now being fabricated. This paper describes the performance requirements of this device and the evolution of design from concept to completion

  4. Data in support of covalent attachment of tyrosinase onto cyanuric chloride crosslinked magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Kourosh Abdollahi

    2016-12-01

    Full Text Available Preparation and characterization of cross linked amine-functionalized magnetic nanoparticles as an appropriate support for covalent immobilization on tyrosinase was presented in the study "Covalent immobilization of tyrosinase onto cyanuric chloride crosslinked amine-functionalized superparamagnetic nanoparticles: synthesis and characterization of the recyclable nanobiocatalyst" (Abdollahi et al., 2016 [1]. Herein, complementary data regarding X-ray powder diffraction (XRD to characterize the synthesized magnetic nanoparticles, and transmission electron microscopy (TEM to determine the size and morphology of tyrosinase immobilized magnetic nanoparticles (tyrosinase-MNPs were reported. The purification results of the extracted tyrosinase from mushroom Agaricus bisporus were provided in a purification table. The covalent immobilization of tyrosinase onto cyanuric chloride functionalized magnetic nanoparticles was proved by performing thermo-gravimetric and energy-dispersive X-ray spectroscopy analyses. The operational stability of immobilized tyrosinase was investigated by incubating tyrosinase-MNPs at different pH and temperatures.

  5. Ion acoustic solitons in a plasma with two-temperature kappa-distributed electrons

    International Nuclear Information System (INIS)

    Baluku, T. K.; Hellberg, M. A.

    2012-01-01

    Existence domains and characteristics of ion acoustic solitons are studied in a two-temperature electron plasma with both electron components being kappa-distributed, as found in Saturn's magnetosphere. As is the case for double-Boltzmann electrons, solitons of both polarities can exist over restricted ranges of fractional hot electron density ratio for this plasma model. Low κ values, which indicate increased suprathermal particles in the tail of the distribution, yield a smaller domain in the parameter space of hot density fraction and normalized soliton velocity (f, M), over which both soliton polarities are supported for a given plasma composition (the coexistence region). For some density ratios that support coexistence, solitons occur even at the lowest (critical) Mach number (i.e., at the acoustic speed), as found recently for a number of other plasma models. Like Maxwellians, low-κ distributions also support positive potential double layers over a narrow range of low fractional cool electron density (<10%).

  6. Nearly finished LHC particle smasher breaks at support point to magnets

    CERN Multimedia

    Atkins, William

    2007-01-01

    "The proton-proton Large Hadron Collider (LHC) particle accelerator is being built at Geneva, Switzerland's CERN - the world's largest particle physics laboratory. However, a support assembly structure for critical magnets failed while being tested on March 27, 2007." (1/2 page)

  7. Magnetically Recoverable Supported Ruthenium Catalyst for Hydrogenation of Alkynes and Transfer Hydrogenation of Carbonyl Compounds

    Science.gov (United States)

    A ruthenium (Ru) catalyst supported on magnetic nanoparticles (NiFe2O4) has been successfully synthesized and used for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The cata...

  8. Structural Magnetic Resonance Imaging Data Do Not Help Support DSM-5 Autism Spectrum Disorder Category

    Science.gov (United States)

    Pina-Camacho, Laura; Villero, Sonia; Boada, Leticia; Fraguas, David; Janssen, Joost; Mayoral, Maria; Llorente, Cloe; Arango, Celso; Parellada, Mara

    2013-01-01

    This systematic review aims to determine whether or not structural magnetic resonance imaging (sMRI) data support the DSM-5 proposal of an autism spectrum disorder (ASD) diagnostic category, and whether or not classical DSM-IV autistic disorder (AD) and Asperger syndrome (AS) categories should be subsumed into it. The most replicated sMRI findings…

  9. Structures Of Magnetically-Supported Filaments And Their Appearance In The Linear Polarization

    Science.gov (United States)

    Tomisaka, Kohji

    2017-10-01

    Dust thermal emissions observed with Herschel have revealed that interstellar molecular clouds consist of many filaments. Polarization observation of interstellar extinctions in the optical and near IR wavelengths shows that the dense filaments are extending perpendicular to the interstellar magnetic field. Magnetohydrostatic structures of such filaments are studied. It is well known that a hydrostatic filament without magnetic field has a maximum line mass of ¥lambda_max=2c_s^2/G (c_s:the isothermal sound speed and G: the gravitational constant). On the other hand, the magnetically-supported maximum line mass increases in proportion to the magnetic flux per unit length threading the filament (¥phi), as ¥lambda_max 2c_s^2/G + ¥phi/(2¥pi G^1/2). Comparison is made with 3D clouds. Stability of these magnetized filaments is studied using time-dependent 3D MHD simulations to discuss star formation in the filaments. Polarization pattern expected for the magnetically subcritical filaments is calculated. The distribution function of the angle between B-field and the axis of the filament, which is obtained with Planck Satellite, is compared with this mock observation.

  10. Transverse magnetic field penetration through the JET toroidal coil and support structure

    International Nuclear Information System (INIS)

    Core, W.G.F.; Noll, P.

    1988-01-01

    This report contains the results of a study of transverse magnetic field penetration through the JET magnetic field coil systems and supporting structures. The studies were carried out during the initial JET design phase (1973-78) and were part of a major radius compression plasma heating feasibility study. In view of the interest in this problem the authors have decided to re-issue the original work as a JET report. The material basically remains unchanged although better estimates of the penetration times have been obtained and typographical errors which occurred in the original have been corrected. (author)

  11. Electronic structure of surface-supported bis(phthalocyaninato) terbium(III) single molecular magnets.

    Science.gov (United States)

    Vitali, Lucia; Fabris, Stefano; Conte, Adriano Mosca; Brink, Susan; Ruben, Mario; Baroni, Stefano; Kern, Klaus

    2008-10-01

    The electronic structure of isolated bis(phthalocyaninato) terbium(III) molecules, a novel single-molecular-magnet (SMM), supported on the Cu(111) surface has been characterized by density functional theory and scanning tunneling spectroscopy. These studies reveal that the interaction with the metal surface preserves both the molecular structure and the large spin magnetic moment of the metal center. The 4f electron states are not perturbed by the adsorption while a strong molecular/metal interaction can induce the suppression of the minor spin contribution delocalized over the molecular ligands. The calculations show that the inherent spin magnetic moment of the molecule is only weakly affected by the interaction with the surface and suggest that the SMM character might be preserved.

  12. R and D of the key components for ITER magnet supports

    Energy Technology Data Exchange (ETDEWEB)

    Lee, P.Y., E-mail: lipy@swip.ac.cn [Department of Material and Fusion Engineering, Southwestern Institute of Physics (SWIP), P.O. Box 432, Chengdu 610041 (China); Hou, B.L.; Pan, C.J. [Department of Material and Fusion Engineering, Southwestern Institute of Physics (SWIP), P.O. Box 432, Chengdu 610041 (China); Cheng, Z.Q.; Huai, K.W. [Stainless Steel Institute, Baoshan Iron and Steel Co., Ltd, 580 Changjiang Road, Baoshan District, Shanghai 200431 (China); Savary, F.; Fu, Y.K.; Gallix, R. [Tokamak Department, ITER Organization, Cadarache, 13108 St. Paul-Lez-Durance (France)

    2010-12-15

    In this article, we report the recent progress of the R and D work for ITER magnet supports, including 316LN raw material development, designing and manufacturing, development of gravity supports (GS) and poloidal field (PF) supports. 316LN stainless steel has been developed successfully with nitrogen content up to 0.188 mass%. These materials show very good mechanical properties at both room temperature and low temperature. The GS conceptual design using welded connections is replaced with pre-stressed bolted connections in order to reduce the risk of defects and manufacturing cost. The finite element model (FEM) analysis for this design shows that neither terrible stress concentrations nor large deformations would occur during either normal or abnormal operation. Attaching the thermal anchor to the flexible plate is made possible by a brazing connection and is carried out in the GS manufacturing. For PF supports, the wear resistance of the strut dowel of PF3-4 support improved after ion implantation.

  13. R and D of the key components for ITER magnet supports

    International Nuclear Information System (INIS)

    Lee, P.Y.; Hou, B.L.; Pan, C.J.; Cheng, Z.Q.; Huai, K.W.; Savary, F.; Fu, Y.K.; Gallix, R.

    2010-01-01

    In this article, we report the recent progress of the R and D work for ITER magnet supports, including 316LN raw material development, designing and manufacturing, development of gravity supports (GS) and poloidal field (PF) supports. 316LN stainless steel has been developed successfully with nitrogen content up to 0.188 mass%. These materials show very good mechanical properties at both room temperature and low temperature. The GS conceptual design using welded connections is replaced with pre-stressed bolted connections in order to reduce the risk of defects and manufacturing cost. The finite element model (FEM) analysis for this design shows that neither terrible stress concentrations nor large deformations would occur during either normal or abnormal operation. Attaching the thermal anchor to the flexible plate is made possible by a brazing connection and is carried out in the GS manufacturing. For PF supports, the wear resistance of the strut dowel of PF3-4 support improved after ion implantation.

  14. High-performance fluorescence-encoded magnetic microbeads as microfluidic protein chip supports for AFP detection

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xiaoqun [School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072 (China); Yan, Huan; Yang, Jiumin [Department of Laboratory Medicine, Tianjin Medical University General Hospital, Tianjin, 300052 (China); Wu, Yudong; Zhang, Jian; Yao, Yingyi [School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072 (China); Liu, Ping [Bioscience (Tianjin) Diagnostic Technology CO., LTD, Tianjin, 300300 (China); Wang, Huiquan [Department of Biomedical Engineering, School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin, 300387 (China); Hu, Zhidong, E-mail: huzhidong27@163.com [Department of Laboratory Medicine, Tianjin Medical University General Hospital, Tianjin, 300052 (China); Chang, Jin, E-mail: jinchang@tju.edu.cn [School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2016-10-05

    Fluorescence-encoded magnetic microbeads (FEMMs), with the fluorescence encoding ability of quantum dots (QDs) and magnetic enrichment and separation functions of Fe{sub 3}O{sub 4} nanoparticles, have been widely used for multiple biomolecular detection as microfluidic protein chip supports. However, the preparation of FEMMs with long-term fluorescent encoding and immunodetection stability is still a challenge. In this work, we designed a novel high-temperature chemical swelling strategy. The QDs and Fe{sub 3}O{sub 4} nanoparticles were effectively packaged into microbeads via the thermal motion of the polymer chains and the hydrophobic interaction between the nanoparticles and microbeads. The FEMMs obtained a highly uniform fluorescent property and long-term encoding and immunodetection stability and could be quickly magnetically separated and enriched. Then, the QD-encoded magnetic microbeads were applied to alpha fetoprotein (AFP) detection via sandwich immunoreaction. The properties of the encoded microspheres were characterized using a self-designed detecting apparatus, and the target molecular concentration in the sample was also quantified. The results suggested that the high-performance FEMMs have great potential in the field of biomolecular detection. - Graphical abstract: We designed a novel strategy to prepare a kind of high-performance fluorescence-encoded magnetic microbeads as microfluidic protein chip support with long-time fluorescent encoding and immunodetection stability for AFP detection. - Highlights: • A novel strategy combined the high temperature with chemical swelling technology is designed. • Based on hydrophobic interaction and polymer thermal motion, QDs and Fe{sub 3}O{sub 4} were effectively packaged into microbeads. • The fluorescence-encoded magnetic microbeads show long-term fluorescent encoding and immunodetection stability.

  15. Tests results of Nb$_{3}$Sn quadrupole magnets using a shell-based support structure

    CERN Document Server

    Caspi, S

    2009-01-01

    In support of the development of a 90 mm aperture Nb$_{3}$Sn superconducting quadrupole for the US LHC Accelerator Research Program (LARP), test results of five quadrupole magnets are compared. All five assemblies used key and bladder technology to compress and support the coils within an iron yoke and an aluminium shell. The first three models (TQS01a, b, c) used Nb$_{3}$Sn MJR conductor and segmented bronze poles. The last two models (TQS02a, b) used Nb$_{3}$Sn RRP conductor, and segmented titanium alloy (TiAl6V4) poles, with no axial gaps during reaction. This presentation summarizes the magnets performance during assembly, cool-down and excitation and compares measurements with design expectations.

  16. A tosyl-activated magnetic bead cellulose as solid support for sensitive protein detection

    Czech Academy of Sciences Publication Activity Database

    Yan, J.; Horák, Daniel; Lenfeld, Jiří; Hammond, M.; Kamali-Moghaddam, M.

    2013-01-01

    Roč. 167, č. 3 (2013), s. 235-240 ISSN 0168-1656 R&D Projects: GA ČR GAP503/10/0664; GA MŠk 7E12054 EU Projects: European Commission(XE) 259796 - DIATOOLS Institutional support: RVO:61389013 Keywords : bead cellulose * magnetic * protein detection Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.884, year: 2013

  17. Design summary of the magnet support structures for the proton storage ring injection line upgrade

    International Nuclear Information System (INIS)

    Bernardin, J.D.; Ledford, J.E.; Smith, B.G.

    1997-05-01

    This report summarizes the technical engineering and design issues associated with the Proton Storage Ring (PSR) Injection Line upgrade of the Los Alamos Neutron Science Center (LANSCE). The main focus is on the engineering design calculations of several magnet support structures. The general procedure based upon a set number of design criteria is outlined, followed by a case-by-case summary of the engineering design analyses, reutilization or fabrication callouts and design safety factors

  18. Recovery of Terephthalic Acid by employing magnetic nanoparticles as a solid support

    Directory of Open Access Journals (Sweden)

    Elmira Ghamary

    2018-03-01

    Full Text Available Abstract The aim of this research work is focused on the improvement of Terephthalic acid recovery from PET wastes by using organically modified nano-Fe3O4@Cyanuric Chloride as the solid support. The performance of organically modified nano magnetic was examined in detail and the obtained results were compared with the unsupported reaction data. Required reaction time for complete glycolysis of the wastes, consumption of the solvent as well as catalyst decreases up 99%, 37.5% and 40% respectively. Result showed that nano-Fe 3O4@Cyanuric Chloride delivered good performance as solid support in depolymerizing of PET to the terephthalic acid.

  19. Automated Modular Magnetic Resonance Imaging Clinical Decision Support System (MIROR): An Application in Pediatric Cancer Diagnosis.

    Science.gov (United States)

    Zarinabad, Niloufar; Meeus, Emma M; Manias, Karen; Foster, Katharine; Peet, Andrew

    2018-05-02

    Advances in magnetic resonance imaging and the introduction of clinical decision support systems has underlined the need for an analysis tool to extract and analyze relevant information from magnetic resonance imaging data to aid decision making, prevent errors, and enhance health care. The aim of this study was to design and develop a modular medical image region of interest analysis tool and repository (MIROR) for automatic processing, classification, evaluation, and representation of advanced magnetic resonance imaging data. The clinical decision support system was developed and evaluated for diffusion-weighted imaging of body tumors in children (cohort of 48 children, with 37 malignant and 11 benign tumors). Mevislab software and Python have been used for the development of MIROR. Regions of interests were drawn around benign and malignant body tumors on different diffusion parametric maps, and extracted information was used to discriminate the malignant tumors from benign tumors. Using MIROR, the various histogram parameters derived for each tumor case when compared with the information in the repository provided additional information for tumor characterization and facilitated the discrimination between benign and malignant tumors. Clinical decision support system cross-validation showed high sensitivity and specificity in discriminating between these tumor groups using histogram parameters. MIROR, as a diagnostic tool and repository, allowed the interpretation and analysis of magnetic resonance imaging images to be more accessible and comprehensive for clinicians. It aims to increase clinicians' skillset by introducing newer techniques and up-to-date findings to their repertoire and make information from previous cases available to aid decision making. The modular-based format of the tool allows integration of analyses that are not readily available clinically and streamlines the future developments. ©Niloufar Zarinabad, Emma M Meeus, Karen Manias

  20. Magnetic nanoparticle supported phosphotungstic acid: An efficient catalyst for the synthesis of xanthene derivatives

    Science.gov (United States)

    Patel, Nipun; Katheriya, Deepak; Dadhania, Harsh; Dadhania, Abhishek

    2018-05-01

    Magnetic nanoparticle supported phosphotungstic acid (Fe3O4@SiO2-HPW) was applied as a highly efficient catalyst for the synthesis of 14H-dibenzoxanthene derivatives via condensation reaction of 2-naphthol and aryl aldehydes. The catalyst was found highly efficient for the synthesis of xanthene derivatives under solvent free condition. The catalyst showed high activity and stability during the reaction and provided excellent yield of the corresponding products in short reaction time. All the synthesized compounds were characterized through FT-IR, 1H-NMR and 13C-NMR spectroscopic techniques. Furthermore, the catalyst is magnetically recoverable and can be reused several times without significant loss of its catalytic activity.

  1. Ion acoustic solitons in a plasma with two-temperature kappa-distributed electrons

    Energy Technology Data Exchange (ETDEWEB)

    Baluku, T. K.; Hellberg, M. A. [School of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000 (South Africa)

    2012-01-15

    Existence domains and characteristics of ion acoustic solitons are studied in a two-temperature electron plasma with both electron components being kappa-distributed, as found in Saturn's magnetosphere. As is the case for double-Boltzmann electrons, solitons of both polarities can exist over restricted ranges of fractional hot electron density ratio for this plasma model. Low {kappa} values, which indicate increased suprathermal particles in the tail of the distribution, yield a smaller domain in the parameter space of hot density fraction and normalized soliton velocity (f, M), over which both soliton polarities are supported for a given plasma composition (the coexistence region). For some density ratios that support coexistence, solitons occur even at the lowest (critical) Mach number (i.e., at the acoustic speed), as found recently for a number of other plasma models. Like Maxwellians, low-{kappa} distributions also support positive potential double layers over a narrow range of low fractional cool electron density (<10%).

  2. Radiative, two-temperature simulations of low-luminosity black hole accretion flows in general relativity

    Science.gov (United States)

    Sądowski, Aleksander; Wielgus, Maciek; Narayan, Ramesh; Abarca, David; McKinney, Jonathan C.; Chael, Andrew

    2017-04-01

    We present a numerical method that evolves a two-temperature, magnetized, radiative, accretion flow around a black hole, within the framework of general relativistic radiation magnetohydrodynamics. As implemented in the code KORAL, the gas consists of two sub-components - ions and electrons - which share the same dynamics but experience independent, relativistically consistent, thermodynamical evolution. The electrons and ions are heated independently according to a prescription from the literature for magnetohydrodynamical turbulent dissipation. Energy exchange between the particle species via Coulomb collisions is included. In addition, electrons gain and lose energy and momentum by absorbing and emitting synchrotron and bremsstrahlung radiation and through Compton scattering. All evolution equations are handled within a fully covariant framework in the relativistic fixed-metric space-time of the black hole. Numerical results are presented for five models of low-luminosity black hole accretion. In the case of a model with a mass accretion rate dot{M}˜ 4× 10^{-8} dot{M}_Edd, we find that radiation has a negligible effect on either the dynamics or the thermodynamics of the accreting gas. In contrast, a model with a larger dot{M}˜ 4× 10^{-4} dot{M}_Edd behaves very differently. The accreting gas is much cooler and the flow is geometrically less thick, though it is not quite a thin accretion disc.

  3. Two-temperature chemically non-equilibrium modelling of transferred arcs

    International Nuclear Information System (INIS)

    Baeva, M; Kozakov, R; Gorchakov, S; Uhrlandt, D

    2012-01-01

    A two-temperature chemically non-equilibrium model describing in a self-consistent manner the heat transfer, the plasma chemistry, the electric and magnetic field in a high-current free-burning arc in argon has been developed. The model is aimed at unifying the description of a thermionic tungsten cathode, a flat copper anode, and the arc plasma including the electrode sheath regions. The heat transfer in the electrodes is coupled to the plasma heat transfer considering the energy fluxes onto the electrode boundaries with the plasma. The results of the non-equilibrium model for an arc current of 200 A and an argon flow rate of 12 slpm are presented along with results obtained from a model based on the assumption of local thermodynamic equilibrium (LTE) and from optical emission spectroscopy. The plasma shows a near-LTE behaviour along the arc axis and in a region surrounding the axis which becomes wider towards the anode. In the near-electrode regions, a large deviation from LTE is observed. The results are in good agreement with experimental findings from optical emission spectroscopy. (paper)

  4. Enhanced magnetic separation and photocatalytic activity of nitrogen doped titania photocatalyst supported on strontium ferrite.

    Science.gov (United States)

    Abd Aziz, Azrina; Yong, Kok Soon; Ibrahim, Shaliza; Pichiah, Saravanan

    2012-01-15

    An enhanced ferromagnetic property, visible light active TiO(2) photocatalyst was successfully synthesized by supporting strontium ferrite (SrFe(12)O(19)) onto TiO(2) doped with nitrogen (N) and compared with N-doped TiO(2). The synthesized catalysts were further characterized with X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDS), BET surface area analysis, vibrating sample magnetometer (VSM), X-ray photon spectroscopy (XPS) and visible light spectroscopy analysis for their respective properties. The XRD and EDS revealed the structural and inorganic composition of N-TiO(2) supported on SrFe(12)O(19). The supported N-TiO(2) exhibited a strong ferromagnetic property with tremendous stability against magnetic property losses. It also resulted in reduced band gap (2.8 eV) and better visible light absorption between 400 and 800 nm compared to N-doped TiO(2). The photocatalytic activity was investigated with a recalcitrant phenolic compound namely 2,4-dichlorophenol (2,4-DCP) as a model pollutant under direct bright and diffuse sunlight exposure. A complete degradation of 2,4-DCP was achieved with an initial concentration of 50mg/L for both photocatalysts in 180 min and 270 min respectively under bright sunlight. Similarly the diffuse sunlight study resulted in complete degradation for supported N-TiO(2) and >85% degradation N-TiO(2), respectively. Finally the supported photocatalyst was separated under permanent magnetic field with a mass recovery ≈ 98% for further reuse. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Magnetic bimetallic nanoparticles supported reduced graphene oxide nanocomposite: Fabrication, characterization and catalytic capability

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei; Wu, Tao; Xu, Xiaoyang; Xia, Fengling; Na, Heya [School of Science, Tianjin University, Tianjin 300072 (China); Liu, Yu, E-mail: liuyuls@163.com [School of Science, Tianjin University, Tianjin 300072 (China); Qiu, Haixia [School of Science, Tianjin University, Tianjin 300072 (China); Wang, Wei [School of Chemical Engineering, Tianjin University, Tianjin 300072 (China); Gao, Jianping, E-mail: jianpinggao2012@126.com [School of Science, Tianjin University, Tianjin 300072 (China)

    2015-04-15

    Highlights: • Ni and Ag nanoparticles loaded on RGO (Ni–Ag@RGO) were fabricated in a one-pot reaction. • The Ni–Ag@RGO were excellent catalysts for the reduction of 4-nitrophenol. • The Ni–Ag@RGO showed superior catalytic activity for photodegradation of methyl orange. • The Ni–Ag@RGO exhibit good reusability in a magnetic field. - Abstract: A facile method for preparing Ni–Ag bimetallic nanoparticles supported on reduced graphene oxide (Ni–Ag@RGO hybrid) has been established. Hydrazine hydrate was used as the reducing agent to reduce the graphene oxide, Ni{sup 2+} and Ag{sup +} to form Ni–Ag@RGO hybrid. The prepared hybrid was further characterized by X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, and transmission electron microscopy. Interestingly, the prepared material shown good magnetic properties, which were determined by vibrating sample magnetometer. In addition, the Ni–Ag@RGO hybrid exhibited excellent catalytic activity for the reduction of 4-nitrophenol and the photodegradation of methyl orange. The catalytic process was monitored by determining the change in the concentration of the reactants with time using ultraviolet–visible absorption spectroscopy. After completion of the reaction, the catalyst can be separated from the reaction system simply under a magnet field and shows good recyclability.

  6. Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow.

    Science.gov (United States)

    Peyman, Sally A; Iles, Alexander; Pamme, Nicole

    2009-11-07

    An extremely versatile microfluidic device is demonstrated in which multi-step (bio)chemical procedures can be performed in continuous flow. The system operates by generating several co-laminar flow streams, which contain reagents for specific (bio)reactions across a rectangular reaction chamber. Functionalized magnetic microparticles are employed as mobile solid-supports and are pulled from one side of the reaction chamber to the other by use of an external magnetic field. As the particles traverse the co-laminar reagent streams, binding and washing steps are performed on their surface in one operation in continuous flow. The applicability of the platform was first demonstrated by performing a proof-of-principle binding assay between streptavidin coated magnetic particles and biotin in free solution with a limit of detection of 20 ng mL(-1) of free biotin. The system was then applied to a mouse IgG sandwich immunoassay as a first example of a process involving two binding steps and two washing steps, all performed within 60 s, a fraction of the time required for conventional testing.

  7. Synthesis and magnetic property of T4 virus-supported gold-coated iron ternary nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Xu Ziming; Sun Hongjing; Gao Faming, E-mail: fmgao@ysu.edu.cn; Hou Li; Li Na [Yanshan University, Key Laboratory of Applied Chemistry (China)

    2012-12-15

    Herein, we present a novel method based on the use of the symmetrical T4 bacteriophage capsid as a scaffold for preparing the gold-coated iron ternary core/shell nanostructure. Results showed that the thick gold shell was obtained to effectively protect Fe core from oxidation. Magnetic measurements showed that the nanocomposites were superparamagnetic at room temperature with a blocking temperature of about 35 K. At 3 K, its coercivity of 1142.86 Oe was larger than the existing experimental values. The magnetic property of Au/T4 was also tested, demonstrating the source of the magnetic sample arising from the Fe core only. The absorption spectrum of the Fe-Au/T4 complex was measured and compared with gold/virus. Different thickness gold shells were controlled in the synthesis by tuning the Au salt addition. On the basis of results and discussion, we further speculated the general growing mechanism of the template-supported Fe-Au process.

  8. Synthesis and magnetic property of T4 virus-supported gold-coated iron ternary nanocomposite

    Science.gov (United States)

    Xu, Ziming; Sun, Hongjing; Gao, Faming; Hou, Li; Li, Na

    2012-12-01

    Herein, we present a novel method based on the use of the symmetrical T4 bacteriophage capsid as a scaffold for preparing the gold-coated iron ternary core/shell nanostructure. Results showed that the thick gold shell was obtained to effectively protect Fe core from oxidation. Magnetic measurements showed that the nanocomposites were superparamagnetic at room temperature with a blocking temperature of about 35 K. At 3 K, its coercivity of 1142.86 Oe was larger than the existing experimental values. The magnetic property of Au/T4 was also tested, demonstrating the source of the magnetic sample arising from the Fe core only. The absorption spectrum of the Fe@Au/T4 complex was measured and compared with gold/virus. Different thickness gold shells were controlled in the synthesis by tuning the Au salt addition. On the basis of results and discussion, we further speculated the general growing mechanism of the template-supported Fe@Au process.

  9. MAGNET

    CERN Multimedia

    Benoit Curé.

    The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...

  10. Sensorimotor plasticity after music-supported therapy in chronic stroke patients revealed by transcranial magnetic stimulation.

    Directory of Open Access Journals (Sweden)

    Julià L Amengual

    Full Text Available BACKGROUND: Several recently developed therapies targeting motor disabilities in stroke sufferers have shown to be more effective than standard neurorehabilitation approaches. In this context, several basic studies demonstrated that music training produces rapid neuroplastic changes in motor-related brain areas. Music-supported therapy has been recently developed as a new motor rehabilitation intervention. METHODS AND RESULTS: In order to explore the plasticity effects of music-supported therapy, this therapeutic intervention was applied to twenty chronic stroke patients. Before and after the music-supported therapy, transcranial magnetic stimulation was applied for the assessment of excitability changes in the motor cortex and a 3D movement analyzer was used for the assessment of motor performance parameters such as velocity, acceleration and smoothness in a set of diadochokinetic movement tasks. Our results suggest that the music-supported therapy produces changes in cortical plasticity leading the improvement of the subjects' motor performance. CONCLUSION: Our findings represent the first evidence of the neurophysiological changes induced by this therapy in chronic stroke patients, and their link with the amelioration of motor performance. Further studies are needed to confirm our observations.

  11. Sensorimotor plasticity after music-supported therapy in chronic stroke patients revealed by transcranial magnetic stimulation.

    Science.gov (United States)

    Amengual, Julià L; Rojo, Nuria; Veciana de Las Heras, Misericordia; Marco-Pallarés, Josep; Grau-Sánchez, Jennifer; Schneider, Sabine; Vaquero, Lucía; Juncadella, Montserrat; Montero, Jordi; Mohammadi, Bahram; Rubio, Francisco; Rueda, Nohora; Duarte, Esther; Grau, Carles; Altenmüller, Eckart; Münte, Thomas F; Rodríguez-Fornells, Antoni

    2013-01-01

    Several recently developed therapies targeting motor disabilities in stroke sufferers have shown to be more effective than standard neurorehabilitation approaches. In this context, several basic studies demonstrated that music training produces rapid neuroplastic changes in motor-related brain areas. Music-supported therapy has been recently developed as a new motor rehabilitation intervention. In order to explore the plasticity effects of music-supported therapy, this therapeutic intervention was applied to twenty chronic stroke patients. Before and after the music-supported therapy, transcranial magnetic stimulation was applied for the assessment of excitability changes in the motor cortex and a 3D movement analyzer was used for the assessment of motor performance parameters such as velocity, acceleration and smoothness in a set of diadochokinetic movement tasks. Our results suggest that the music-supported therapy produces changes in cortical plasticity leading the improvement of the subjects' motor performance. Our findings represent the first evidence of the neurophysiological changes induced by this therapy in chronic stroke patients, and their link with the amelioration of motor performance. Further studies are needed to confirm our observations.

  12. Sensorimotor Plasticity after Music-Supported Therapy in Chronic Stroke Patients Revealed by Transcranial Magnetic Stimulation

    Science.gov (United States)

    Amengual, Julià L.; Rojo, Nuria; Veciana de las Heras, Misericordia; Marco-Pallarés, Josep; Grau-Sánchez, Jennifer; Schneider, Sabine; Vaquero, Lucía; Juncadella, Montserrat; Montero, Jordi; Mohammadi, Bahram; Rubio, Francisco; Rueda, Nohora; Duarte, Esther; Grau, Carles; Altenmüller, Eckart; Münte, Thomas F.; Rodríguez-Fornells, Antoni

    2013-01-01

    Background Several recently developed therapies targeting motor disabilities in stroke sufferers have shown to be more effective than standard neurorehabilitation approaches. In this context, several basic studies demonstrated that music training produces rapid neuroplastic changes in motor-related brain areas. Music-supported therapy has been recently developed as a new motor rehabilitation intervention. Methods and Results In order to explore the plasticity effects of music-supported therapy, this therapeutic intervention was applied to twenty chronic stroke patients. Before and after the music-supported therapy, transcranial magnetic stimulation was applied for the assessment of excitability changes in the motor cortex and a 3D movement analyzer was used for the assessment of motor performance parameters such as velocity, acceleration and smoothness in a set of diadochokinetic movement tasks. Our results suggest that the music-supported therapy produces changes in cortical plasticity leading the improvement of the subjects' motor performance. Conclusion Our findings represent the first evidence of the neurophysiological changes induced by this therapy in chronic stroke patients, and their link with the amelioration of motor performance. Further studies are needed to confirm our observations. PMID:23613966

  13. A GLOBAL TWO-TEMPERATURE CORONA AND INNER HELIOSPHERE MODEL: A COMPREHENSIVE VALIDATION STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Jin, M.; Manchester, W. B.; Van der Holst, B.; Gruesbeck, J. R.; Frazin, R. A.; Landi, E.; Toth, G.; Gombosi, T. I. [Atmospheric Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Vasquez, A. M. [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and FCEN (UBA), CC 67, Suc 28, Ciudad de Buenos Aires (Argentina); Lamy, P. L.; Llebaria, A.; Fedorov, A., E-mail: jinmeng@umich.edu [Laboratoire d' Astrophysique de Marseille, Universite de Provence, Marseille (France)

    2012-01-20

    The recent solar minimum with very low activity provides us a unique opportunity for validating solar wind models. During CR2077 (2008 November 20 through December 17), the number of sunspots was near the absolute minimum of solar cycle 23. For this solar rotation, we perform a multi-spacecraft validation study for the recently developed three-dimensional, two-temperature, Alfven-wave-driven global solar wind model (a component within the Space Weather Modeling Framework). By using in situ observations from the Solar Terrestrial Relations Observatory (STEREO) A and B, Advanced Composition Explorer (ACE), and Venus Express, we compare the observed proton state (density, temperature, and velocity) and magnetic field of the heliosphere with that predicted by the model. Near the Sun, we validate the numerical model with the electron density obtained from the solar rotational tomography of Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph C2 data in the range of 2.4 to 6 solar radii. Electron temperature and density are determined from differential emission measure tomography (DEMT) of STEREO A and B Extreme Ultraviolet Imager data in the range of 1.035 to 1.225 solar radii. The electron density and temperature derived from the Hinode/Extreme Ultraviolet Imaging Spectrometer data are also used to compare with the DEMT as well as the model output. Moreover, for the first time, we compare ionic charge states of carbon, oxygen, silicon, and iron observed in situ with the ACE/Solar Wind Ion Composition Spectrometer with those predicted by our model. The validation results suggest that most of the model outputs for CR2077 can fit the observations very well. Based on this encouraging result, we therefore expect great improvement for the future modeling of coronal mass ejections (CMEs) and CME-driven shocks.

  14. A stability analysis of electron-positron pair equilibria of a two-temperature plasma cloud

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, M [Colorado Univ., Boulder, CO (USA); Zbyszewska, M [Polska Akademia Nauk, Warsaw (Poland). Centrum Astronomiczne

    1986-01-01

    The stability of a two-temperature homogeneous static plasma cloud against pair density perturbations is examined. We assumed that the electrons and positrons, cooled via radiation process, are reheated via Coulomb interactions with much hotter protons. Pair equilibrium plasma states are shown to be unstable if deltan{sub e}/deltan{sub p}<0 and deltan{sub e}/deltaT{sub p}<0 on the equilibrium surface n{sub e}{sup eq}(n{sub p},T{sub p}), where n{sub e}=n{sub +}+n{sub -}, n{sub p} and T{sub p} denote electron plus positron density, proton density and proton temperature, respectively. The minimum proton temperature and maximum proton density for which unstable states can appear are: (kT{sub p}){sub min} approx few x m{sub e}c{sup 2} and (n{sub p}){sub max} approx few/Rsigma{sub T}, where R is the plasma cloud radius. We discuss our results in the context of an accreting black hole model assuming that the proton temperature is close to its virial value, kT{sub p}{sup vir} approx GMm{sub p}/R and that subsonic accretion flow is realized at R < tens Schwarzschild radii. The unstable states then correspond to the luminosity range 0.01 L{sub Edd}magnetic fields are much weaker than their equipartition value. 28 refs., 10 figs. (author).

  15. Sensitive parameters' optimization of the permanent magnet supporting mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yongguang; Gao, Xiaohui; Wang, Yixuan; Yang, Xiaowei [Beihang University, Beijing (China)

    2014-07-15

    The fast development of the ultra-high speed vertical rotor promotes the study and exploration for the supporting mechanism. It has become the focus of research that how to improve the speed and overcome the vibration when the rotors pass through the low-order critical frequencies. This paper introduces a kind of permanent magnet (PM) supporting mechanism and describes an optimization method of its sensitive parameters, which can make the vertical rotor system reach 80000 r/min smoothly. Firstly we find the sensitive parameters through analyzing the rotor's features in the process of achieving high-speed, then, study these sensitive parameters and summarize the regularities with the method of combining the experiment and the finite element method (FEM), at last, achieve the optimization method of these parameters. That will not only get a stable effect of raising speed and shorten the debugging time greatly, but also promote the extensive application of the PM supporting mechanism in the ultra-high speed vertical rotors.

  16. ARE TORNADO-LIKE MAGNETIC STRUCTURES ABLE TO SUPPORT SOLAR PROMINENCE PLASMA?

    International Nuclear Information System (INIS)

    Luna, M.; Moreno-Insertis, F.; Priest, E.

    2015-01-01

    Recent high-resolution and high-cadence observations have surprisingly suggested that prominence barbs exhibit apparent rotating motions suggestive of a tornado-like structure. Additional evidence has been provided by Doppler measurements. The observations reveal opposite velocities for both hot and cool plasma on the two sides of a prominence barb. This motion is persistent for several hours and has been interpreted in terms of rotational motion of prominence feet. Several authors suggest that such barb motions are rotating helical structures around a vertical axis similar to tornadoes on Earth. One of the difficulties of such a proposal is how to support cool prominence plasma in almost-vertical structures against gravity. In this work we model analytically a tornado-like structure and try to determine possible mechanisms to support the prominence plasma. We have found that the Lorentz force can indeed support the barb plasma provided the magnetic structure is sufficiently twisted and/or significant poloidal flows are present

  17. Are Tornado-Like Magnetic Structures Able to Support Solar Prominence Plasma?

    Science.gov (United States)

    Ogunjo, S. T.; Luna Bennasar, M.; Moreno-Insertis, F.; Priest, E. R.

    2015-12-01

    Recent high-resolution and high-cadence observations have surprisingly suggested that prominence barbs exhibit apparent rotating motions suggestive of a tornado-like structure. Additional evidence has been provided by Doppler measurements. The observations reveal opposite velocities for both hot and cool plasma on the two sides of a prominence barb. This motion is persistent for several hours and has been interpreted in terms of rotational motion of prominence feet. Several authors suggest that such barb motions are rotating helical structures around a vertical axis similar to tornadoes on Earth. One of the difficulties of such a proposal is how to support cool prominence plasma in almost-vertical structures against gravity. In this work we model analytically a tornado-like structure and try to determine possible mechanisms to support the prominence plasma. We have found that the Lorentz force can indeed support the barb plasma provided the magnetic structure is sufficiently twisted and/or significant poloidal flows are present.

  18. ARE TORNADO-LIKE MAGNETIC STRUCTURES ABLE TO SUPPORT SOLAR PROMINENCE PLASMA?

    Energy Technology Data Exchange (ETDEWEB)

    Luna, M.; Moreno-Insertis, F. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Priest, E. [Mathematics Institute, University of St Andrews, St Andrews KY16 9SS (United Kingdom)

    2015-07-20

    Recent high-resolution and high-cadence observations have surprisingly suggested that prominence barbs exhibit apparent rotating motions suggestive of a tornado-like structure. Additional evidence has been provided by Doppler measurements. The observations reveal opposite velocities for both hot and cool plasma on the two sides of a prominence barb. This motion is persistent for several hours and has been interpreted in terms of rotational motion of prominence feet. Several authors suggest that such barb motions are rotating helical structures around a vertical axis similar to tornadoes on Earth. One of the difficulties of such a proposal is how to support cool prominence plasma in almost-vertical structures against gravity. In this work we model analytically a tornado-like structure and try to determine possible mechanisms to support the prominence plasma. We have found that the Lorentz force can indeed support the barb plasma provided the magnetic structure is sufficiently twisted and/or significant poloidal flows are present.

  19. A low cost support post for SSC quadrupole magnets and other cryogenic applications

    International Nuclear Information System (INIS)

    Hiller, M.W.; Kunz, R.J.; Lehmann, G.A.; Nilles, M.J.

    1994-01-01

    An injection molded support post has been designed and tested for use in the cryostat of the 5.4 meter long SSC Collider Quadrupole Magnet (CQM). This glass reinforced thermoplastic support is less costly than the complex alternative post designs that consist of filament wound tubes with thermal shrink fit metallic end pieces. The near net shape injection molding process delivers customized components at production rates suitable for present and proposed large scale cryogenic projects such as large accelerators, SMES, and Maglev. In addition, standard shapes (plates, tubes, threaded rods, and fasteners) comprised of this composite are available as catalog items. This paper presents the design considerations, material testing, and validation of predicted structural performance through component testing. Test results reported herein include compressive strength validations as well as previously unreported creep, thermal conductivity, and thermal contraction data. A delineated reliability method is discussed for verifying compliance with apportioned reliability targets using a synthesis of the FEA and test data. Also the design approach and data presented here can be extended toward the design of low cost mass produced supports for other cryogenic applications

  20. Iterative Development of an Application to Support Nuclear Magnetic Resonance Data Analysis of Proteins.

    Science.gov (United States)

    Ellis, Heidi J C; Nowling, Ronald J; Vyas, Jay; Martyn, Timothy O; Gryk, Michael R

    2011-04-11

    The CONNecticut Joint University Research (CONNJUR) team is a group of biochemical and software engineering researchers at multiple institutions. The vision of the team is to develop a comprehensive application that integrates a variety of existing analysis tools with workflow and data management to support the process of protein structure determination using Nuclear Magnetic Resonance (NMR). The use of multiple disparate tools and lack of data management, currently the norm in NMR data processing, provides strong motivation for such an integrated environment. This manuscript briefly describes the domain of NMR as used for protein structure determination and explains the formation of the CONNJUR team and its operation in developing the CONNJUR application. The manuscript also describes the evolution of the CONNJUR application through four prototypes and describes the challenges faced while developing the CONNJUR application and how those challenges were met.

  1. Design, construction, and performance of superconducting magnet support posts for the Large Hadron Collider

    International Nuclear Information System (INIS)

    Blin, M.; Danielsson, H.; Evans, B.; Mathieu, M.

    1994-01-01

    Different support posts for the Large Hadron Collider (LHC) prototype superconducting magnets have been designed and manufactured. They have been evaluated both mechanically and thermally. The posts are made of a tubular section in composite materials, i.e. glass- or carbon-fibre and epoxy resin, with glued metallic heat intercepts and connections. Mechanical tests have been carried out with both radial and axial loads, before and after cooldown to working temperature. The design considerations and future developments concerning dimensions and other materials are also discussed in this paper. Thermal performance has been evaluated at 1.8 K, 5 K and 80 K in a precision heat leak measuring bench. The measurements have been carried out using calibrated thermal conductances (open-quotes heatmetersclose quotes) and boil-off methods. The measured performances of the posts have been compared with analytical predictions

  2. Magnets

    International Nuclear Information System (INIS)

    Young, I.R.

    1984-01-01

    A magnet pole piece for an NMR imaging magnet is made of a plurality of magnetic wires with one end of each wire held in a non-magnetic spacer, the other ends of the wires being brought to a pinch, and connected to a magnetic core. The wires may be embedded in a synthetic resin and the magnetisation and uniformity thereof can be varied by adjusting the density of the wires at the spacer which forms the pole piece. (author)

  3. New vector/scalar Overhauser DNP magnetometers POS-4 for magnetic observatories and directional oil drilling support

    Directory of Open Access Journals (Sweden)

    Sapunov V.A., Denisov A.Y., Saveliev D.V., Soloviev A.A., Khomutov S.Y., Borodin P.B., Narkhov E.D., Sergeev A.V., Shirokov A.N.

    2016-12-01

    Full Text Available This paper covers same results of the research directed at developing an absolute vector proton magnetometer POS-4 based on the switching bias magnetic fields methods. Due to the high absolute precision and stability magnetometer POS-4 found application not only for observatories and to directional drilling support of oi and gas well. Also we discuss the some basic errors of measurements and discuss the long-term experience in the testing of magnetic observatories ART and PARATUNKA.

  4. How Energy Metabolism Supports Cerebral Function: Insights from 13C Magnetic Resonance Studies In vivo

    Directory of Open Access Journals (Sweden)

    Sarah Sonnay

    2017-05-01

    Full Text Available Cerebral function is associated with exceptionally high metabolic activity, and requires continuous supply of oxygen and nutrients from the blood stream. Since the mid-twentieth century the idea that brain energy metabolism is coupled to neuronal activity has emerged, and a number of studies supported this hypothesis. Moreover, brain energy metabolism was demonstrated to be compartmentalized in neurons and astrocytes, and astrocytic glycolysis was proposed to serve the energetic demands of glutamatergic activity. Shedding light on the role of astrocytes in brain metabolism, the earlier picture of astrocytes being restricted to a scaffold-associated function in the brain is now out of date. With the development and optimization of non-invasive techniques, such as nuclear magnetic resonance spectroscopy (MRS, several groups have worked on assessing cerebral metabolism in vivo. In this context, 1H MRS has allowed the measurements of energy metabolism-related compounds, whose concentrations can vary under different brain activation states. 1H-[13C] MRS, i.e., indirect detection of signals from 13C-coupled 1H, together with infusion of 13C-enriched glucose has provided insights into the coupling between neurotransmission and glucose oxidation. Although these techniques tackle the coupling between neuronal activity and metabolism, they lack chemical specificity and fail in providing information on neuronal and glial metabolic pathways underlying those processes. Currently, the improvement of detection modalities (i.e., direct detection of 13C isotopomers, the progress in building adequate mathematical models along with the increase in magnetic field strength now available render possible detailed compartmentalized metabolic flux characterization. In particular, direct 13C MRS offers more detailed dataset acquisitions and provides information on metabolic interactions between neurons and astrocytes, and their role in supporting neurotransmission. Here

  5. Nonlinear vibration analysis of a rotor supported by magnetic bearings using homotopy perturbation method

    Directory of Open Access Journals (Sweden)

    Aboozar Heydari

    2017-09-01

    Full Text Available In this paper, the effects of nonlinear forces due to the electromagnetic field of bearing and the unbalancing force on nonlinear vibration behavior of a rotor is investigated. The rotor is modeled as a rigid body that is supported by two magnetic bearings with eight-polar structures. The governing dynamics equations of the system that are coupled nonlinear second order ordinary differential equations (ODEs are derived, and for solving these equations, the homotopy perturbation method (HPM is used. By applying HPM, the possibility of presenting a harmonic semi-analytical solution, is provided. In fact, with equality the coefficient of auxiliary parameter (p, the system of coupled nonlinear second order and non-homogenous differential equations are obtained so that consists of unbalancing effects. By considering some initial condition for displacement and velocity in the horizontal and vertical directions, free vibration analysis is done and next, the forced vibration analysis under the effect of harmonic forces also is investigated. Likewise, various parameters on the vibration behavior of rotor are studied. Changes in amplitude and response phase per excitation frequency are investigated. Results show that by increasing excitation frequency, the motion amplitude is also increases and by passing the critical speed, it decreases. Also it shows that the magnetic bearing system performance is in stable maintenance of rotor. The parameters affecting on vibration behavior, has been studied and by comparison the results with the other references, which have a good precision up to 2nd order of embedding parameter, it implies the accuracy of this method in current research.

  6. Design, Development & Functional Validation of Magnets system in support of 42 GHz Gyrotron in India

    Directory of Open Access Journals (Sweden)

    Pradhan S.

    2017-01-01

    Full Text Available A multi institutional initiative is underway towards the development of 42 GHz, 200 kW gyrotron system in India under the frame work of Department of Science and Technology, Government of India. Indigenous realization comprising of design, fabrication, prototypes and functional validations of an appropriate Magnet System is one of the primary technological objective of these initiatives. The 42 GHz gyrotron magnet system comprises of a warm gun magnet, a NbTi/Cu based high homogenous superconducting cavity magnet and three warm collector magnets. The superconducting cavity magnet has been housed inside a low loss cryostat. The magnet system has been designed in accordance with gyrotron physics and engineering considerations respecting highly homogenous spatial field profile as well as maintaining steep gradient as per the compression and velocity ratios between the emission and resonator regions. The designed magnet system further ensures the co-linearity of the magnetic axis with that of the beam axis with custom winding techniques apart from a smooth collection of beam with the collector magnet profiles. The designed magnets have been wound after several R & D validations. The superconducting magnet has been housed inside a low loss designed cryostat with in-built radial and axial alignment flexibilities to certain extent. The cryostat further houses liquid helium port, liquid nitrogen ports, current communication ports, ports for monitoring helium level and other instrumentations apart from over-pressure safety intensive burst disks etc. The entire magnet system comprising of warm and superconducting magnets has been installed and integrated in the Gyrotron test set-up. The magnet system has been aligned in both warm and when the superconducting cavity magnet is cold. The integrated geometric axes have been experimentally ensured as well as the field profiles have been measured with the magnets being charged. Under experimental conditions

  7. Recent Advances in the Application of Magnetic Nanoparticles as a Support for Homogeneous Catalysts

    Science.gov (United States)

    Govan, Joseph; Gun’ko, Yurii K.

    2014-01-01

    Magnetic nanoparticles are a highly valuable substrate for the attachment of homogeneous inorganic and organic containing catalysts. This review deals with the very recent main advances in the development of various nanocatalytic systems by the immobilisation of homogeneous catalysts onto magnetic nanoparticles. We discuss magnetic core shell nanostructures (e.g., silica or polymer coated magnetic nanoparticles) as substrates for catalyst immobilisation. Then we consider magnetic nanoparticles bound to inorganic catalytic mesoporous structures as well as metal organic frameworks. Binding of catalytically active small organic molecules and polymers are also reviewed. After that we briefly deliberate on the binding of enzymes to magnetic nanocomposites and the corresponding enzymatic catalysis. Finally, we draw conclusions and present a future outlook for the further development of new catalytic systems which are immobilised onto magnetic nanoparticles. PMID:28344220

  8. ASA conference on radiation and health: Health effects of electric and magnetic fields: Statistical support for research strategies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-01

    This report is a collection of papers documenting presentations made at the VIII ASA (American Statistical Association) Conference on Radiation and Health entitled Health Effects of Electric and Magnetic Fields: Statistical Support for Research Strategies. Individual papers are abstracted and indexed for the database.

  9. Streptavidin-modified monodispersed magnetic poly(2-hydroxyethyl methacrylate) microspheres as solid support in DNA-based molecular protocols

    Czech Academy of Sciences Publication Activity Database

    Salih, T.; Ahlford, A.; Nilsson, M.; Plichta, Zdeněk; Horák, Daniel

    2016-01-01

    Roč. 61, 1 April (2016), s. 362-367 ISSN 0928-4931 R&D Projects: GA MŠk 7E12054 EU Projects: European Commission(XE) 259796 - DIATOOLS Institutional support: RVO:61389013 Keywords : rolling circle amplification * DNA * magnetic microspheres Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.164, year: 2016

  10. Ruthenium supported on magnetic nanoparticles: An efficient and recoverable catalyst for hydrogenation of alkynes and transfer hydrogenation of carbonyl compounds

    Science.gov (United States)

    Ruthenium supported on surface modified magnetic nanoparticles (NiFe2O4) has been successfully synthesized and applied for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The ...

  11. Biochemical Support for the “Threshold” Theory of Creativity: A Magnetic Resonance Spectroscopy Study

    Science.gov (United States)

    Jung, Rex E.; Gasparovic, Charles; Chavez, Robert S.; Flores, Ranee A.; Smith, Shirley M.; Caprihan, Arvind; Yeo, Ronald A.

    2009-01-01

    A broadly accepted definition of creativity refers to the production of something both novel and useful within a given social context. Studies of patients with neurological and psychiatric disorders and neuroimaging studies of healthy controls have each drawn attention to frontal and temporal lobe contributions to creativity. Based on previous magnetic resonance (MR) spectroscopy studies demonstrating relationships between cognitive ability and concentrations of N-acetyl-aspartate (NAA), a common neurometabolite, we hypothesized that NAA assessed in gray and white matter (from a supraventricular slab) would relate to laboratory measures of creativity. MR imaging and divergent thinking measures were obtained in a cohort of 56 healthy controls. Independent judges ranked the creative products of each participant, from which a “Composite Creativity Index” (CCI) was created. Different patterns of correlations between NAA and CCI were found in higher verbal ability versus lower verbal ability participants, providing neurobiological support for a critical “threshold” regarding the relationship between intelligence and creativity. To our knowledge, this is the first report assessing the relationship between brain chemistry and creative cognition, as measured with divergent thinking, in a cohort comprised exclusively of normal, healthy participants. PMID:19386928

  12. MAGNET

    CERN Multimedia

    Benoit Curé

    2013-01-01

    Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...

  13. Magnetic anisotropy of heteronuclear dimers in the gas phase and supported on graphene: relativistic density-functional calculations.

    Science.gov (United States)

    Błoński, Piotr; Hafner, Jürgen

    2014-04-09

    The structural and magnetic properties of mixed PtCo, PtFe, and IrCo dimers in the gas phase and supported on a free-standing graphene layer have been calculated using density-functional theory, both in the scalar-relativistic limit and self-consistently including spin-orbit coupling. The influence of the strong magnetic moments of the 3d atoms on the spin and orbital moments of the 5d atoms, and the influence of the strong spin-orbit coupling contributed by the 5d atom on the orbital moments of the 3d atoms have been studied in detail. The magnetic anisotropy energy is found to depend very sensitively on the nature of the eigenstates in the vicinity of the Fermi level, as determined by band filling, exchange splitting and spin-orbit coupling. The large magnetic anisotropy energy of free PtCo and IrCo dimers relative to the easy direction parallel to the dimer axis is coupled to a strong anisotropy of the orbital magnetic moments of the Co atom for both dimers, and also on the Ir atom in IrCo. In contrast the PtFe dimer shows a weak perpendicular anisotropy and only small spin and orbital anisotropies of opposite sign on the two atoms. For dimers supported on graphene, the strong binding within the dimer and the stronger interaction of the 3d atom with the substrate stabilizes an upright geometry. Spin and orbital moments on the 3d atom are strongly quenched, but due to the weaker binding within the dimer the properties of the 5d atom are more free-atom-like with increased spin and orbital moments. The changes in the magnetic moment are reflected in the structure of the electronic eigenstates near the Fermi level, for all three dimers the easy magnetic direction is now parallel to the dimer axis and perpendicular to the graphene layer. The already very large magnetic anisotropy energy (MAE) of IrCo is further enhanced by the interaction with the support, the MAE of PtFe changes sign, and that of the PtCo dimer is reduced. These changes are discussed in relation to

  14. Electrodynamic support and/or guide device for a magnetic levitation train. Elektrodynamische Trag- und/oder Fuehrungsvorrichtung fuer eine Magnetschwebebahn

    Energy Technology Data Exchange (ETDEWEB)

    Lichtenberg, A

    1979-02-15

    The invention refers to an electrodynamic support and/or guide device for a magnetic levitation train, in which magnets, particularly superconducting magnets are situated on a vehicle, which has rail-like electrically conducting plates or loops on the track. The purpose of the invention is to describe such an electrodynamic support and/or guide device, which can achieve contactless support or guidance of an electrodynamic levitation vehicle when stopped. According to the invention, the problem is solved by the magnetic fields of the support and/or guide magnets acting on the electrically conducting plates or loops of the track being controlled so that moving magnetic fields relative to the vehicle are produced. In this way it is possible to support and/or to guide the vehicle electro-dynamically from standstill to the maximum speed and to drive or brake it.

  15. 293 K - 1.9 K supporting systems for the Large Hadron Collider (LHC) cryo-magnets

    CERN Document Server

    Mathieu, M; Renaglia, T; Rohmig, P; Williams, L R

    1998-01-01

    The LHC machine will incorporate some 2000 main ring super-conducting magnets cooled at 1.9 K by super-fluid pressurized helium, mainly 15m-long dipoles with their cryostats and 6m-long quadrupoles housed in the Short Straight Section (SSS) units. This paper presents the design of the support system of the LHC arc cryo-magnets between 1.9 K at the cold mass and 293 K at the cryostat vacuum vessel. The stringent positioning precision for magnet alignment and the high thermal performance for cryogenic efficiency are the main conflicting requirements, which have lead to a trade-off design. The systems retained for LHC are based on column-type supports positioned in the vertical plane of the magnets inside the cryostats. An ad-hoc design has been achieved both for cryo-dipoles and SSS. Each column is composed of a main tubular thin-walled structure in composite material (glass-fibre/epoxy resin, for its low thermal conductivity properties), interfaced to both magnet and cryostat via stainless steel flanges. The t...

  16. Covalent Immobilization of Cellulase Using Magnetic Poly(ionic liquid) Support: Improvement of the Enzyme Activity and Stability.

    Science.gov (United States)

    Hosseini, Seyed Hassan; Hosseini, Seyedeh Ameneh; Zohreh, Nasrin; Yaghoubi, Mahshid; Pourjavadi, Ali

    2018-01-31

    A magnetic nanocomposite was prepared by entrapment of Fe 3 O 4 nanoparticles into the cross-linked ionic liquid/epoxy type polymer. The resulting support was used for covalent immobilization of cellulase through the reaction with epoxy groups. The ionic surface of the support improved the adsorption of enzyme, and a large amount of enzyme (106.1 mg/g) was loaded onto the support surface. The effect of the presence of ionic monomer and covalent binding of enzyme was also investigated. The structure of support was characterized by various instruments such as FT-IR, TGA, VSM, XRD, TEM, SEM, and DLS. The activity and stability of immobilized cellulase were investigated in the prepared support. The results showed that the ionic surface and covalent binding of enzyme onto the support improved the activity, thermal stability, and reusability of cellulase compared to free cellulase.

  17. Long-term ETR/INTOR magnet testing in support of the demonstration fusion reactor

    International Nuclear Information System (INIS)

    Herring, J.S.; Shah, V.N.; Rouhani, S.Z.

    1983-01-01

    This study considers ways that the proposed Engineering Test Reactor (ETR), or the proposed International Tokamak Reactor (INTOR), can be used for magnet performance tests that would be useful for the design and operation of the Demonstration Tokamak Power Plant (DEMO). Such testing must not interfere with the main function of the ETR/INTOR as an integrated fusion reactor. A performance test plan for the ETR/INTOR magnets is proposed and appropriate tests on the magnets is proposed and appropriate tests on the magnets for each phase of the ETR/INTOR operation are described. The suggested tests would verify design requirements and monitor long-term changes due to radiation. This paper also summarizes the design and operational performance of existing superconducting magnets and identifies the known failures and their predominant causes

  18. System frequency support of permanent magnet synchronous generator-based wind power plant

    Science.gov (United States)

    Wu, Ziping

    With ever-increasing penetration of wind power into modern electric grids all over the world, a trending replacement of conventional synchronous generators by large wind power plants will likely result in the poor overall frequency regulation performance. On the other hand, permanent magnet synchronous generator wind Turbine System (PMSG-WTG) with full power back to back converters tends to become one of the most promising wind turbine technologies thanks to various advantages. It possesses a significant amount of kinetic energy stored in the rotating mass of turbine blades, which can be utilized to enhance the total inertia of power system. Additionally, the deloaded operation and decoupled control of active and reactive power make it possible for PMSG-WTG to provide a fast frequency regulation through full-power converter. First of all, a comprehensive and in-depth survey is conducted to analyze the motivations for incorporating the inertial response and frequency regulation of VSWT into the system frequency regulation. Besides, control classifications, fundamental control concepts and advanced control schemes implemented for auxiliary frequency support of individual WT or wind power plant are elaborated along with a comparison of the potential frequency regulation capabilities of four major types of WTs. Secondly, a Controls Advanced Research Turbine2-Permanent Magnet Synchronous Generator wind turbine (CART2-PMSG) integrated model representing the typical configuration and operation characteristics of PMSG-WT is established in Matlab/Simulink,. Meanwhile, two different rotor-side converter control schemes, including rotor speed-based control and active power-based control, are integrated into this CART2-PMSG integrated model to perform Maximum Power Point Tracking (MPPT) operation over a wide range of wind speeds, respectively. Thirdly, a novel comprehensive frequency regulation (CFR) control scheme is developed and implemented into the CART2-PMSG model based

  19. MAGNET

    CERN Multimedia

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  20. Current-supported domain wall movement to the target spot with a magnetic field

    International Nuclear Information System (INIS)

    Nam, Chunghee; Jang, Y.M.; Lee, K.S.; Lee, S.K.; Kim, T.W.; Cho, B.K.

    2007-01-01

    Current-driven domain wall (DW) motion in a submicron-size magnetic strip, which consists of Cu/IrMn/NiFe/Cu/NiFe/Cu pseudo-spin-valve with natural defects, was investigated by measuring the giant-magnetoresistance signal. The magnetic DW movement was induced by the injection of a high current density of 4x10 7 A/cm 2 . It was also found that a DW can be manipulated in more convenient way by the application of both current and magnetic field at the same time

  1. Concurrent use of magnetic bearings for rotor support and force sensing for the nondestructive evaluation of manufacturing processes

    Science.gov (United States)

    Kasarda, Mary; Imlach, Joseph; Balaji, P. A.; Marshall, Jeremy T.

    2000-06-01

    Active magnetic bearings are a proven technology in turbomachinery applications and they offer considerable promise for improving the performance of manufacturing processes. The Active Magnetic Bearing (AMB) is a feedback mechanism that supports a spinning shaft by levitating it in a magnetic field. AMBs have significantly higher surface speed capability than rolling element bearings and they eliminate the potential for product contamination by eliminating the requirement for bearing lubrication. In addition, one of the most promising capabilities for manufacturing applications is the ability of the AMB to act concurrently as both a support bearing and non-invasive force sensor. The feedback nature of the AMB allows for its use as a load cell to continuously measure shaft forces necessary for levitation based on information about the magnetic flux density in the air gaps. This measurement capability may be exploited to improve the process control of such products as textile fibers and photographic films where changes in shaft loads may indicate changes in product quality. This paper discusses the operation of AMBs and their potential benefits in manufacturing equipment along with results from research addressing accurate AMB force sensing performance in field applications. Specifically, results from the development of enhanced AMB measurement algorithms to better account for magnetic fringing and leakage effects to improve the accuracy of this technique are presented. Results from the development of a new on-line calibration procedure for robust in-situ calibration of AMBs in a field application such as a manufacturing plant scenario are also presented including results of Magnetic Finite Element Analysis (MFEA) verification of the procedure.

  2. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...

  3. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...

  4. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...

  5. Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system

    International Nuclear Information System (INIS)

    Zhang, C; Man, B Y; Yang, C; Jiang, S Z; Liu, M; Chen, C S; Xu, S C; Sun, Z C; Gao, X G; Chen, X J

    2013-01-01

    Direct deposition of graphene on a dielectric substrate is demonstrated using a chemical vapor deposition system with a two-temperature reactor. The two-temperature reactor is utilized to offer sufficient, well-proportioned floating Cu atoms and to provide a temperature gradient for facile synthesis of graphene on dielectric surfaces. The evaporated Cu atoms catalyze the reaction in the presented method. C atoms and Cu atoms respectively act as the nuclei for forming graphene film in the low-temperature zone and the zones close to the high-temperature zones. A uniform and high-quality graphene film is formed in an atmosphere of sufficient and well-proportioned floating Cu atoms. Raman spectroscopy, scanning electron microscopy and atomic force microscopy confirm the presence of uniform and high-quality graphene. (paper)

  6. Nonuniqueness of the two-temperature Saha equation and related considerations

    International Nuclear Information System (INIS)

    Giordano, D.; Capitelli, M.

    2002-01-01

    The present paper contains considerations relative to the long debated thermodynamic derivation of two-temperature Saha equations. The main focus of our discourse is on the dependence of the multitemperature equilibrium conditions on the constraints imposed on the thermodynamic system. We also examine the following key issues related to that dependence: correspondence between constraints and equilibrium-equation forms that have appeared in the literature; presumed dominance of the free-electron translational temperature in the two-temperature expression of the equilibrium constant of the ionization reaction A A + +e - ; disagreement between the derivation methods based on, respectively, the extended second law of classical thermodynamics and axiomatic thermodynamics; and plausibility of the existence of entropic constraints

  7. Numerical analysis of laser ablation using the axisymmetric two-temperature model

    Science.gov (United States)

    Dziatkiewicz, Jolanta; Majchrzak, Ewa

    2018-01-01

    Laser ablation of the axisymmetric micro-domain is analyzed. To describe the thermal processes occurring in the micro-domain the two-temperature hyperbolic model supplemented by the boundary and initial conditions is used. This model takes into account the phase changes of material (solid-liquid and liquid-vapour) and the ablation process. At the stage of numerical computations the finite difference method with staggered grid is used. In the final part the results of computations are shown.

  8. A two-temperature model for selective photothermolysis laser treatment of port wine stains

    International Nuclear Information System (INIS)

    Li, D.; Wang, G.X.; He, Y.L.; Kelly, K.M.; Wu, W.J.; Wang, Y.X.; Ying, Z.X.

    2013-01-01

    Selective photothermolysis is the basic principle for laser treatment of vascular malformations such as port wine stain birthmarks (PWS). During cutaneous laser surgery, blood inside blood vessels is heated due to selective absorption of laser energy, while the surrounding normal tissue is spared. As a result, the blood and the surrounding tissue experience a local thermodynamic non-equilibrium condition. Traditionally, the PWS laser treatment process was simulated by a discrete-blood-vessel model that simplifies blood vessels into parallel cylinders buried in a multi-layer skin model. In this paper, PWS skin is treated as a porous medium made of tissue matrix and blood in the dermis. A two-temperature model is constructed following the local thermal non-equilibrium theory of porous media. Both transient and steady heat conduction problems are solved in a unit cell for the interfacial heat transfer between blood vessels and the surrounding tissue to close the present two-temperature model. The present two-temperature model is validated by good agreement with those from the discrete-blood-vessel model. The characteristics of the present two-temperature model are further illustrated through a comparison with the previously-used homogenous model, in which a local thermodynamic equilibrium assumption between the blood and the surrounding tissue is employed. -- Highlights: • Local thermal non-equilibrium theory was adapted in field of laser dermatology. • Transient interfacial heat transfer coefficient between two phases is presented. • Less PWS blood vessel micro-structure information is required in present model. • Good agreement between present model and classical discrete-blood-vessel model

  9. Numerical simulation of heat fluxes in a two-temperature plasma at shock tube walls

    International Nuclear Information System (INIS)

    Kuznetsov, E A; Poniaev, S A

    2015-01-01

    Numerical simulation of a two-temperature three-component Xenon plasma flow is presented. A solver based on the OpenFOAM CFD software package is developed. The heat flux at the shock tube end wall is calculated and compared with experimental data. It is shown that the heat flux due to electrons can be as high as 14% of the total heat flux. (paper)

  10. Numerical simulation of heat fluxes in a two-temperature plasma at shock tube walls

    Science.gov (United States)

    Kuznetsov, E. A.; Poniaev, S. A.

    2015-12-01

    Numerical simulation of a two-temperature three-component Xenon plasma flow is presented. A solver based on the OpenFOAM CFD software package is developed. The heat flux at the shock tube end wall is calculated and compared with experimental data. It is shown that the heat flux due to electrons can be as high as 14% of the total heat flux.

  11. Thermal and structural performance of a single tube support post for the Superconducting Super Collider dipole magnet cryostat

    International Nuclear Information System (INIS)

    Boroski, W.N.; Nicol, T.H.; Ruschman, M.K.; Schoo, C.J.

    1993-07-01

    The reentrant support post currently incorporated in the Superconducting Super Collider (SSC) dipole cryostat has been shown to meet the structural and thermal requirements of the cryostat, both in prototype magnet assemblies and through component testing. However, the reentrant post design has two major drawbacks: tight dimensional control on all components, and cost driven by these tolerance constraints and a complex assembly procedure. A single tube support post has been developed as an alternative to the reentrant post design. Several prototype assemblies have been fabricated and subjected to structural testing. Compressive, tensile, and bending forces were applied to each assembly with deflection measured at several locations. A prototype support post has also been thermally evaluated in a heat leak measurement facility. Heat load to 4.2 K was measured with the intermediate post intercept operating at various temperatures while thermometers positioned along the conductive path of the post mapped thermal gradients. Results from these measurements indicate the single tube support post meets the design criteria for the SSC dipole magnet cryostat support system

  12. Nuclear-Thermal Analysis of Fully Ceramic Microencapsulated Fuel via Two-Temperature Homogenized Model

    International Nuclear Information System (INIS)

    Lee, Yoon Hee; Cho, Nam Zin

    2013-01-01

    The FCM fuel is based on a proven safety philosophy that has been utilized operationally in very high temperature reactors (VHTRs). However, the FCM fuel consists of TRISO particles randomly dispersed in SiC matrix. The high heterogeneity in composition leads to difficulty in explicit thermal calculation of such a fuel. Therefore, an appropriate homogenization model becomes essential. In this paper, we apply the two-temperature homogenized model to thermal analysis of an FCM fuel. The model was recently proposed in order to provide more realistic temperature profiles in the fuel element in VHTRs. We applied the two-temperature homogenized model to FCM fuel. The two-temperature homogenized model was obtained by particle transport Monte Carlo calculation applied to the pellet region consisting of many coated particles uniformly dispersed in SiC matrix. Since this model gives realistic temperature profiles in the pellet (providing fuel-kernel temperature and SiC matrix temperature distinctly), it can be used for more accurate neutronics evaluation such as Doppler temperature feedback. The transient thermal calculation may be performed also more realistically with temperature-dependent homogenized parameters in various scenarios

  13. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  14. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  15. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...

  16. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...

  17. A corrugated perfect magnetic conductor surface supporting spoof surface magnon polaritons.

    Science.gov (United States)

    Liu, Liang-liang; Li, Zhuo; Gu, Chang-qing; Ning, Ping-ping; Xu, Bing-zheng; Niu, Zhen-yi; Zhao, Yong-jiu

    2014-05-05

    In this paper, we demonstrate that spoof surface magnon polaritons (SSMPs) can propagate along a corrugated perfect magnetic conductor (PMC) surface. From duality theorem, the existence of surface electromagnetic modes on corrugated PMC surfaces are manifest to be transverse electric (TE) mode compared with the transverse magnetic (TM) mode of spoof surface plasmon plaritons (SSPPs) excited on corrugated perfect electric conductor surfaces. Theoretical deduction through modal expansion method and simulation results clearly verify that SSMPs share the same dispersion relationship with the SSPPs. It is worth noting that this metamaterial will have more similar properties and potential applications as the SSPPs in large number of areas.

  18. Effect of substrate interface on the magnetism of supported iron nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Balan, A. [Swiss Light Source, Paul Scherrer Institut (PSI), Villigen CH-5232 (Switzerland); Fraile Rodríguez, A. [Departament de Física Fonamental and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08028 Barcelona (Spain); Vaz, C.A.F.; Kleibert, A.; Nolting, F. [Swiss Light Source, Paul Scherrer Institut (PSI), Villigen CH-5232 (Switzerland)

    2015-12-15

    In situ X-ray photo-emission electron microscopy is used to investigate the magnetic properties of iron nanoparticles deposited on different single crystalline substrates, including Si(001), Cu(001), W(110), and NiO(001). We find that, in our room temperature experiments, Fe nanoparticles deposited on Si(001) and Cu(001) show both superparamagnetic and magnetically stable (blocked) ferromagnetic states, while Fe nanoparticles deposited on W(110) and NiO(001) show only superparamagnetic behaviour. The dependence of the magnetic behaviour of the Fe nanoparticles on the contact surface is ascribed to the different interfacial bonding energies, higher for W and NiO, and to a possible relaxation of point defects within the core of the nanoparticles on these substrates, that have been suggested to stabilise the ferromagnetic state at room temperature when deposited on more inert surfaces such as Si and Cu. - Highlights: • In situ X-ray photo-emission electron microscopy study on iron nanoparticles. • Magnetically blocked particles are found on Si(001) and Cu(001). • Superparamagnetic particles are found on W(110) and Ni0(001). • The substrate dependent behavior is ascribed to the different bonding energies.

  19. Giant magnetic anisotropy of heavy p-elements on high-symmetry substrates: a new paradigm for supported nanostructures

    Science.gov (United States)

    Pang, Rui; Deng, Bei; Shi, Xingqiang; Zheng, Xiaohong

    2018-04-01

    Nanostructures with giant magnetic anisotropy energies (MAEs) are desired in designing miniaturized magnetic storage and quantum computing devices. Previous works focused mainly on materials or elements with d electrons. Here, by taking Bi–X(X = In, Tl, Ge, Sn, Pb) adsorbed on nitrogenized divacancy of graphene and Bi atoms adsorbed on MgO(100) as examples, through ab initio and model calculations, we propose that special p-element dimers and single-adatoms on symmetry-matched substrates possess giant atomic MAEs of 72–200 meV, and has room temperature structural stability. The huge MAEs originate from the p-orbital degeneracy around the Fermi level in a symmetry-matched surface ligand field and the lifting of this degeneracy when spin–orbit interaction (SOI) is taken into account. Especially, we developed a simplified quantum mechanical model for the design principles of giant MAEs of supported magnetic adatoms and dimers. Thus, our discoveries and mechanisms provide a new paradigm to design giant atomic MAE of p electrons in supported nanostructures.

  20. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....

  1. Two-temperature theory in magneto-thermoelasticity with fractional order dual-phase-lag heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ezzat, Magdy A., E-mail: maezzat2000@yahoo.com [Department of Mathematics, Faculty of Sciences and Letters in Al Bukayriyyah, Al-Qassim University, Al-Qassim (Saudi Arabia); El-Karamany, Ahmed S., E-mail: qaramani@gmail.com [Department of Mathematical and Physical Sciences, Nizwa University, P.O. Box 1357, Nizwa 611 (Oman); Ezzat, Shereen M. [Department of Mathematics, Faculty of Sciences and Letters in Al Bukayriyyah, Al-Qassim University, Al-Qassim (Saudi Arabia)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer We model fractional order dual-phase-lag heat conduction law. Black-Right-Pointing-Pointer We applied the model on a perfect conducting half-space of elastic material. Black-Right-Pointing-Pointer Some theories of generalized thermoelasticity follow as limit cases. Black-Right-Pointing-Pointer State space approach is adopted for the solution of one-dimensional problems. Black-Right-Pointing-Pointer The model will improve the efficiency of thermoelectric material. - Abstract: A new mathematical model of two-temperature magneto-thermoelasticity is constructed where the fractional order dual-phase-lag heat conduction law is considered. The state space approach developed in Ezzat (2008) is adopted for the solution of one-dimensional application for a perfect conducting half-space of elastic material, which is thermally shocked in the presence of a transverse magnetic field. The Laplace transform technique is used. A numerical method is employed for the inversion of the Laplace transforms. According to the numerical results and its graphs, conclusion about the new theory has been constructed. Some theories of generalized thermoelasticity follow as limit cases. Some comparisons have been shown in figures to estimate effects of temperature discrepancy and fractional order parameter on all the studied fields.

  2. Application of an Activated Carbon-Based Support for Magnetic Solid Phase Extraction Followed by Spectrophotometric Determination of Tartrazine in Commercial Beverages

    OpenAIRE

    Rodr?guez, Jos? A.; Escamilla-Lara, Karen A.; Guevara-Lara, Alfredo; Miranda, Jose M.; P?ez-Hern?ndez, Ma. Elena

    2015-01-01

    A method is presented for magnetic solid phase extraction of tartrazine from nonalcoholic beverages. The method involves the extraction and clean-up by activated carbon covered with magnetite dispersed in the sample, followed by the magnetic isolation and desorption of the analyte by basified methanol. The tartrazine eluted from the magnetic support was determined by spectrophotometry. Under optimal conditions, the linear range of the calibration curve ranges from 3 to 30?mg?L?1, with a limit...

  3. On subcooler design for integrated two-temperature supermarket refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liang [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Zhang, Chun-Lu [College of Mechanical Engineering, Tongji University, No. 4800, Cao An Highway, Shanghai 201804 (China)

    2011-01-15

    The energy saving opportunity of supermarket refrigeration systems using subcooler between the medium-temperature (MT) refrigeration system and the low-temperature (LT) refrigeration system has been identified in the previous work. This paper presents a model-based comprehensive analysis on the subcooler design. The optimal subcooling control is discussed as well. With optimal subcooler size and subcooling control, the maximum energy savings of integrated two-temperature supermarket refrigeration system using R404A or R134a as working fluid can achieve 27% or 20%, respectively. The load ratio of MT to LT system and the operating conditions have considerable impact on the energy savings. (author)

  4. Two-temperature accretion disks with electron-positron pairs - Effects of Comptonized external soft photons

    Science.gov (United States)

    Kusunose, Masaaki; Takahara, Fumio

    1990-01-01

    The present account of the effects of soft photons from external sources on two-temperature accretion disks in electron-positron pair equilibrium solves the energy-balance equation for a given radial distribution of the input rate of soft photons, taking into account their bremsstrahlung and Comptonization. Critical rate behavior is investigated as a function of the ratio of the energy flux of incident soft photons and the energy-generation rate. As in a previous study, the existence of a critical accretion rate is established.

  5. Memory-dependent derivatives theory of thermo-viscoelasticity involving two-temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ezzat, M. A. [Alexandria University, Alexandria (Egypt); El-Bary, A. A. [Arab Academy for Science and Technology, Alexandria (Egypt)

    2015-10-15

    A new model of two-temperature generalized thermo-viscoelasticity theory based on memory-dependent derivative is constructed. The equations of the new model are applied to one-dimensional problem of a half-space. The bounding surface is taken to be traction free and subjected to a time dependent thermal shock. Laplace transforms technique is used. A direct approach is applied to obtain the exact formulas of heat flux, temperature, stresses, displacement and strain in the Laplace transform domain. Application is employed to our problem to get the solution in the complete form. The considered variables are presented graphically and discussions are made.

  6. Electrical resistivity and thermal conductivity of liquid aluminum in the two-temperature state

    Science.gov (United States)

    Petrov, Yu V.; Inogamov, N. A.; Mokshin, A. V.; Galimzyanov, B. N.

    2018-01-01

    The electrical resistivity and thermal conductivity of liquid aluminum in the two-temperature state is calculated by using the relaxation time approach and structural factor of ions obtained by molecular dynamics simulation. Resistivity witin the Ziman-Evans approach is also considered to be higher than in the approach with previously calculated conductivity via the relaxation time. Calculations based on the construction of the ion structural factor through the classical molecular dynamics and kinetic equation for electrons are more economical in terms of computing resources and give results close to the Kubo-Greenwood with the quantum molecular dynamics calculations.

  7. A two-temperature chemical non-equilibrium modeling of DC arc plasma

    International Nuclear Information System (INIS)

    Qian Haiyang; Wu Bin

    2011-01-01

    To a better understanding of non-equilibrium characteristics of DC arc plasma,a two-dimensional axisymmetric two-temperature chemical non-equilibrium (2T-NCE) model is applied for direct current arc argon plasma generator with water-cooled constrictor at atmospheric pressure. The results show that the electron temperature and heavy particle temperature has a relationship under different working parameters, indicating that DC arc plasma has a strong non-equilibrium characteristic, and the variation is obvious. (authors)

  8. The experimental study on efficiency improvement of turbo machinery supported with magnetic bearings

    International Nuclear Information System (INIS)

    Park, In Hwang; Park, Young Ho; Han, Dong Chul

    2007-01-01

    To implement a conventional electromagnetic bearing in small turbo machinery, it has problems such as load capacity and size. Therefore, in this paper, these problems are resolved by using a permanent magnet biased electromagnetic bearing as a thrust bearing of small turbo machinery. Because the flux path of the bearing is designed by reluctance path modulation using an electromagnet and a permanent magnet, the bearing improves upon non-linearity, power consumption, size and load capacity of a conventional electromagnetic bearing. Test rotating the shaft over 500,000DN were carried out to verify the performance of the proposed small turbo machinery. In addition, the relationships between mass flow rate and pressure rise were measured as changing the tip clearance to verify the feasibility of efficiency improvement and active surge control and these results were compared with theoretical results

  9. Evidence-based architectural and space design supports Magnet® empirical outcomes.

    Science.gov (United States)

    Ecoff, Laurie; Brown, Caroline E

    2010-12-01

    This department expands nursing leaders' knowledge and competencies in health facility design. The editor of this department, Dr Jaynelle Stichler, asked guest authors, Drs Ecoff and Brown, to describe the process of using the conceptual models of a nursing evidence-based practice model and the Magnet Recognition Program® as a structured process to lead decision making in the planning and design processes and to achieve desired outcomes in hospital design.

  10. Morphology and magnetism of Fe monolayers and small Fen clusters (n 2-19) supported on the Ni(111) surface

    International Nuclear Information System (INIS)

    Longo, R C; MartInez, E; Dieguez, O; Vega, A; Gallego, L J

    2007-01-01

    Using the modified embedded atom model in conjunction with a self-consistent tight-binding method, we investigated the lowest-energy structures of Fe monolayers and isolated Fe n clusters (n = 2-19) supported on the Ni(111) surface. In keeping with experimental findings, our calculations predict that the atoms of the monolayer occupy face-centred cubic (fcc) rather than hexagonal close-packed (hcp) sites. Likewise in agreement with experiment we found that Fe layers stack with a pseudomorphic fcc structure up to two monolayers, beyond which they stack as bcc(110). The structures of supported Fe clusters are predicted to be two-dimensional islands maximizing the number of nearest-neighbour bonds among the adsorbed Fe atoms, and their average magnetic moments per atom decrease towards that of the supported Fe monolayer almost monotonically as n increases. Finally, a pair of Fe 3 clusters on Ni(111) were found to exhibit virtually no interaction with each other even when separated by only one atomic row, i.e. so long as they do not coalesce they retain their individual magnetic properties

  11. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...

  12. MAGNET

    CERN Multimedia

    B. Curé

    MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...

  13. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

    The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...

  14. Thermodynamic and transport properties of two-temperature SF6 plasmas

    International Nuclear Information System (INIS)

    Wang Weizong; Rong Mingzhe; Wu Yi; Spencer, Joseph W.; Yan, Joseph D.; Mei, DanHua

    2012-01-01

    This paper deals with thermodynamic and transport properties of SF 6 plasmas in a two-temperature model for both thermal equilibrium and non-equilibrium conditions. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and Guldberg-Waage equation according to deviation of van de Sanden et al. Transport properties including diffusion coefficient, viscosity, thermal conductivity, and electrical conductivity are calculated with most recent collision interaction potentials by adopting Devoto’s electron and heavy particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of Chapman–Enskog method. The results are computed for various values of pressures from 0.1 atm to 10 atm and ratios of the electron temperature to the heavy particle temperature from 1 to 20 with electron temperature range from 300 to 40 000 K. In the local thermodynamic equilibrium regime, results are compared with available results of previously published studies.

  15. Metal viscoplasticity with two-temperature thermodynamics and two dislocation densities

    Science.gov (United States)

    Roy Chowdhury, Shubhankar; Kar, Gurudas; Roy, Debasish; Reddy, J. N.

    2018-03-01

    Posed within the two-temperature theory of non-equilibrium thermodynamics, we propose a model for thermoviscoplastic deformation in metals. We incorporate the dynamics of dislocation densities-mobile and forest—that play the role of internal state variables in the formulation. The description based on two temperatures appears naturally when one recognizes that the thermodynamic system undergoing viscoplastic deformation is composed of two weakly interacting subsystems, viz. a kinetic-vibrational subsystem of the vibrating atomic lattices and a configurational subsystem of the slower degrees of freedom relating to defect motion, each with its own temperature. Starting with a basic model that involves only homogeneous deformation, a three-dimensional model for inhomogeneous viscoplasticity applicable to finite deformation is charted out in an overstress driven viscoplastic deformation framework. The model shows how the coupled evolutions of mobile and forest dislocation densities, which are critically influenced by the dynamics of configurational temperature, govern the strength and ductility of the metal. Unlike most contemporary models, the current proposal also affords a prediction of certain finer details as observed in the experimental data on stress-strain behaviour of metals and this in turn enhances the understanding of the evolving and interacting dislocation densities.

  16. Two-temperature equilibration in warm dense hydrogen measured with x-ray scattering from the LCLS

    Science.gov (United States)

    Fletcher, Luke; High Energy Density Sciences Collaboration

    2017-10-01

    Understanding the properties of warm dense hydrogen plasmas is critical for modeling stellar and planetary interiors, as well as for inertial confinement fusion (ICF) experiments. Of central importance are the electron-ion collision and equilibration times that determine the microscopic properties in a high energy density state. Spectrally and angularly resolved x-ray scattering measurements from fs-laser heated hydrogen have resolved the picosecond evolution and energy relaxation from a two-temperature plasma towards thermodynamic equilibrium in the warm dense matter regime. The interaction of rapidly heated cryogenic hydrogen irradiated by a 400 nm, 5x1017 W/cm2 , 70 fs-laser is visualized with ultra-bright 5.5 kev x-ray pulses from the Linac Coherent Light (LCLS) source in 1 Hz repetition rate pump-probe setting. We demonstrate that the energy relaxation is faster than many classical binary collision theories that use ad hoc cutoff parameters used in the Landau-Spitzer determination of the Coulomb logarithm. This work was supported by the DOE Office of Science, Fusion Energy Science under contract No. SF00515 and supported under FWP 100182 and DOE Office of Basic Energy Sciences, Materials Sciences and Engineering Division, contract DE-AC02-76SF00515.

  17. Alternate design concept for the SSC dipole magnet cryogenic support post

    International Nuclear Information System (INIS)

    Lipski, A.; Nicol, T.H.; Richardson, R.

    1991-03-01

    New materials and developments in the field of advanced composites have created the opportunity to take a fresh look into the design of the cryogenic supports for SSC collider dipole cryostats. Although the present reentrant post design meets the structural and thermal requirements, its assembly requires precision and proficiency. The objective of the proposed alternate concept is to reduce the overall cost of the support post by means of simplifying and optimizing its component design and assembly process. The present shrink fitted tube assembly may potentially be replaced by injection molded parts. New resin systems with lower thermal conductivity and high strength properties enable the utilization of automated production techniques such as injection molding and filament winding. This paper will provide analysis and design information for the alternate support post concept and compare its test performance and cost to the present support post. 3 refs., 12 figs., 4 tabs

  18. Sensorimotor Plasticity after Music-Supported Therapy in Chronic Stroke Patients Revealed by Transcranial Magnetic Stimulation

    OpenAIRE

    Amengual, J. L.; Rojo, N.; Veciana De Las Heras, Misericordia; Marco-Pallarés, J.; Grau-Sánchez, J.; Schneider, S.; Vaquero, L.; Juncadella Puig, Montserrat; Montero Homs, Jordi; Mohammadi, B.; Rubio, F.; Rueda, N.; Duarte, E.; Grau Fonollosa, Carles; Altenmuller, E.

    2014-01-01

    BACKGROUND: Several recently developed therapies targeting motor disabilities in stroke sufferers have shown to be more effective than standard neurorehabilitation approaches. In this context, several basic studies demonstrated that music training produces rapid neuroplastic changes in motor-related brain areas. Music-supported therapy has been recently developed as a new motor rehabilitation intervention. METHODS AND RESULTS: In order to explore the plasticity effects of music-supported ther...

  19. Magnetostatic analysis of a rotor system supported by radial active magnetic bearings

    Directory of Open Access Journals (Sweden)

    Ferfecki P.

    2009-06-01

    Full Text Available The development and the design of a radial active magnetic bearing (AMB reflects a complex process of the multidisciplinary rotor dynamics, electromagnetism and automatic control analysis. Modelling is performed by application of the physical laws from different areas, e.g. Newton's laws of motion and Maxwell's equations. The new approach in the numerical modelling of radial AMB and design methodology allowing automatic generation of primary dimensions of the radial AMB is proposed. Instead of the common way of computation of electromagnetic forces by linearizing at the centre position of the rotor with respect to rotor displacement and coil current, the finite element computation of electromagnetic forces is used. The heteropolar radial AMB consisting of eight pole shoes was designed by means of the built up algorithms for rotor system with two discs fixed on the cantilever shaft. A study of the influence of the nonlinear magnetization characteristics of a rotor and stator material on the equilibrium position of a rotor system is carried out. The performed numerical study shows that results obtained from the analytical nonlinear relation for electromagnetic forces can be considerably different from forces computed with magnetostatic finite element analysis.

  20. Multi-pole permanent magnet synchronous generator wind turbines' grid support capability in uninterrupted operation during grid faults

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Michalke, G.

    2009-01-01

    Emphasis in this paper is on the fault ride-through and grid support capabilities of multi-pole permanent magnet synchronous generator (PMSG) wind turbines with a full-scale frequency converter. These wind turbines are announced to be very attractive, especially for large offshore wind farms...... and discussed by means of simulations with the use of a transmission power system generic model developed and delivered by the Danish Transmission System Operator Energinet.dk. The simulation results show how a PMSG wind farm equipped with an additional voltage control can help a nearby active stall wind farm....... A control strategy is presented, which enhances the fault ride-through and voltage support capability of such wind turbines during grid faults. Its design has special focus on power converters' protection and voltage control aspects. The performance of the presented control strategy is assessed...

  1. MAGNET

    CERN Multimedia

    Benoit Curé

    The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...

  2. MAGNET

    CERN Multimedia

    B. Curé

    During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...

  3. Model of two temperatures of the laser evaporation of solid targets

    International Nuclear Information System (INIS)

    Tolentino E, P.; Gutierrez T, C.; Camps C, E.

    2007-01-01

    The energy transmission in the evaporation process of a solid target by a laser pulse by means of the model of two temperatures which consists on two equations of heat conduction coupled by means of an electron-phonon coupling factor that means the energy transfer rate between the electrons and the net is described. This electron-phonon coupling factor is calculated for the particular case of the graphite, the obtaining of the analytic solutions in a space dimension of the system of non linear partial differential equations is shown considering two forms of the laser pulse (gaussian and delta function) and the electron temperature distributions of temperature and of the net are analyzed. (Author)

  4. Verification of two-temperature method for heat transfer process within a pebble fuel

    International Nuclear Information System (INIS)

    Yu Dali; Peng Minjun

    2014-01-01

    A typical pebble fuel that used in high temperature reactor (HTR), mainly consists of a graphite matrix with numerous dispersed tristructural-isotropic (TRISO) fuel particles and a surrounding thin non-fueled graphite shell. These high heterogeneities lead to difficulty in explicit thermal calculation of a pebble fuel. We proposed a two-temperature method (TTM) to calculate the temperature distribution within a pebble fuel. The method is not only convenient to perform but also gives more realistic results since particles and graphite matrix are considered separately while the traditional ways are considering the fuel zone as average heat generation source. The method is validated both by Computational Fluid Dynamics (CFD) method and Wiener bounds. Results show that TTM has a stable performance and high accuracy. (author)

  5. Memory-dependent derivatives for photothermal semiconducting medium in generalized thermoelasticity with two-temperature

    Science.gov (United States)

    Lotfy, K.; Sarkar, N.

    2017-11-01

    In this work, a novel generalized model of photothermal theory with two-temperature thermoelasticity theory based on memory-dependent derivative (MDD) theory is performed. A one-dimensional problem for an elastic semiconductor material with isotropic and homogeneous properties has been considered. The problem is solved with a new model (MDD) under the influence of a mechanical force with a photothermal excitation. The Laplace transform technique is used to remove the time-dependent terms in the governing equations. Moreover, the general solutions of some physical fields are obtained. The surface taken into consideration is free of traction and subjected to a time-dependent thermal shock. The numerical Laplace inversion is used to obtain the numerical results of the physical quantities of the problem. Finally, the obtained results are presented and discussed graphically.

  6. Fast magnetic reconnection supported by sporadic small-scale Petschek-type shocks

    International Nuclear Information System (INIS)

    Shibayama, Takuya; Nakabou, Takashi; Kusano, Kanya; Miyoshi, Takahiro; Vekstein, Grigory

    2015-01-01

    Standard magnetohydrodynamic (MHD) theory predicts reconnection rate that is far too slow to account for a wide variety of reconnection events observed in space and laboratory plasmas. Therefore, it was commonly accepted that some non-MHD (kinetic) effects play a crucial role in fast reconnection. A recently renewed interest in simple MHD models is associated with the so-called plasmoid instability of reconnecting current sheets. Although it is now evident that this effect can significantly enhance the rate of reconnection, many details of the underlying multiple-plasmoid process still remain controversial. Here, we report results of a high-resolution computer simulation which demonstrate that fast albeit intermittent magnetic reconnection is sustained by numerous small-scale Petschek-type shocks spontaneously formed in the current sheet due to its plasmoid instability

  7. Fast magnetic reconnection supported by sporadic small-scale Petschek-type shocks

    Energy Technology Data Exchange (ETDEWEB)

    Shibayama, Takuya, E-mail: shibayama@stelab.nagoya-u.ac.jp; Nakabou, Takashi [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Kusano, Kanya [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanazawa-ku, Yokohama, Kanagawa 236-0001 (Japan); Miyoshi, Takahiro [Department of Physical Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Vekstein, Grigory [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL (United Kingdom)

    2015-10-15

    Standard magnetohydrodynamic (MHD) theory predicts reconnection rate that is far too slow to account for a wide variety of reconnection events observed in space and laboratory plasmas. Therefore, it was commonly accepted that some non-MHD (kinetic) effects play a crucial role in fast reconnection. A recently renewed interest in simple MHD models is associated with the so-called plasmoid instability of reconnecting current sheets. Although it is now evident that this effect can significantly enhance the rate of reconnection, many details of the underlying multiple-plasmoid process still remain controversial. Here, we report results of a high-resolution computer simulation which demonstrate that fast albeit intermittent magnetic reconnection is sustained by numerous small-scale Petschek-type shocks spontaneously formed in the current sheet due to its plasmoid instability.

  8. Structural support of a yin-yang magnet for a tandem mirror reactor with thermal barriers

    International Nuclear Information System (INIS)

    Erickson, J.L.; Ojalvo, I.U.; Myall, J.O.

    1980-01-01

    This report contains a comprehensive summary covering work performed by Grumman Aerospace Corporation, in conjunction with the Lawrence Livermore National Laboratory, on the TMP yin-yang coils. The yin-yang coil pair used for our analysis has a major arc radius of 2.7 m and a minor arc radius of 1.18 m, compared with 2.5 m and 0.75 m for the MFTF. The maximum field on the present conductor is 9.05 Tesla. This magnetic field is created by, and interacts with, a conductor current which produces a 360 million Newton total force, tending to separate the parallel lobes of the major arcs

  9. Nonlinear Force-free Field Extrapolation of a Coronal Magnetic Flux Rope Supporting a Large-scale Solar Filament from a Photospheric Vector Magnetogram

    Science.gov (United States)

    Jiang, Chaowei; Wu, S. T.; Feng, Xueshang; Hu, Qiang

    2014-05-01

    Solar filaments are commonly thought to be supported in magnetic dips, in particular, in those of magnetic flux ropes (FRs). In this Letter, based on the observed photospheric vector magnetogram, we implement a nonlinear force-free field (NLFFF) extrapolation of a coronal magnetic FR that supports a large-scale intermediate filament between an active region and a weak polarity region. This result is a first, in the sense that current NLFFF extrapolations including the presence of FRs are limited to relatively small-scale filaments that are close to sunspots and along main polarity inversion lines (PILs) with strong transverse field and magnetic shear, and the existence of an FR is usually predictable. In contrast, the present filament lies along the weak-field region (photospheric field strength barbs very well, which strongly supports the FR-dip model for filaments. The filament is stably sustained because the FR is weakly twisted and strongly confined by the overlying closed arcades.

  10. Fault ride-through and voltage support of permanent magnet synchronous generator wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Michalke, G.; Hartkopf, T. [Darmstadt Technical Univ., Dept. of Renewable Energies (Germany); Hansen, A.D. [Risoe National Lab., DTU, Wind Energy Dept. (Denmark)

    2007-11-15

    This paper presents a control strategy of direct driven multipole PMSG wind turbines, which enhances the fault ride-through and voltage support capability of such wind turbines during grid faults. A dynamic simulation model of the turbine is implemented in the simulation software DIgSILENT. Simulation results approve the effectiveness of the developed control strategy. It is shown that PMSG wind turbines equipped with such control even enable nearby connected conventional wind turbines to ride-through grid faults. (au)

  11. Magnetic

    Science.gov (United States)

    Aboud, Essam; El-Masry, Nabil; Qaddah, Atef; Alqahtani, Faisal; Moufti, Mohammed R. H.

    2015-06-01

    The Rahat volcanic field represents one of the widely distributed Cenozoic volcanic fields across the western regions of the Arabian Peninsula. Its human significance stems from the fact that its northern fringes, where the historical eruption of 1256 A.D. took place, are very close to the holy city of Al-Madinah Al-Monawarah. In the present work, we analyzed aeromagnetic data from the northern part of Rahat volcanic field as well as carried out a ground gravity survey. A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth to basement using various geophysical methods, such as Tilt Derivative, Euler Deconvolution and 2D modeling inversion. Results indicated that the thickness of the lava flows in the study area ranges between 100 m (above Sea Level) at the eastern and western boundaries of Rahat Volcanic field and getting deeper at the middle as 300-500 m. It also showed that, major structural trend is in the NW direction (Red Sea trend) with some minor trends in EW direction.

  12. MAGNET

    CERN Multimedia

    Benoit Curé

    The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...

  13. MAGNET

    CERN Document Server

    B. Curé

    The first phase of the commissioning ended in August by a triggered fast dump at 3T. All parameters were nominal, and the temperature recovery down to 4.5K was carried out in two days by the cryogenics. In September, series of ramps were achieved up to 3 and finally 3.8T, while checking thoroughly the detectors in the forward region, measuring any movement of and around the HF. After the incident of the LHC accelerator on September 19th, corrective actions could be undertaken in the forward region. When all these displacements were fully characterized and repetitive, with no sign of increments in displacement at each field ramp, it was possible to start the CRAFT, Cosmic Run at Four Tesla (which was in fact at 3.8T). The magnet was ramped up to 18.16kA and the 3 week run went smoothly, with only 4 interruptions: due to the VIP visits on 21st October during the LHC inauguration day; a water leak on the cooling demineralized water circuit, about 1 l/min, that triggered a stop of the cooling pumps, and resulte...

  14. Magnetic cellulose as support for β-galactosidase immobilization: Matrix characterization and application on galacto -oligosaccharides production

    International Nuclear Information System (INIS)

    Xavier, Mariana Rodrigues; Cabrera, Mariana Paola; Vidal, Esteban Espinosa; Neri, David Fernando de Morais

    2016-01-01

    Full text: Galacto oligosaccharides (GOS) offer positive health effects if are introduce in the diet, associated with the reduction of cholesterol level, anticarcinogenic properties and vitamins production [1]. Cellulose is an abundant renewable organic resource, biodegradable, eco-friendly [2] and is actually considered as adequate to be used as enzymatic non-toxic support. Cellulose when magnetized offers some advantages: rapid separation, reduce operational costs, absence or diminution of contaminants and easy removal of the reaction medium [3]. In this work, magnetic cellulose particles (MCP) functionalized with 3- aminopropyltriethoxysilane (APTES) were successfully developed and used for covalent immobilization of β-galactosidase Aspergillus oryzae, via glutaraldehyde. The MCP was characterized by FTIR, SEM, XRD, DSC and TGA and BET. The XRD possible to verify and guarantee the presence of the magnetic particles in the composite. Furthermore, the TGA curve showed decomposition range referring to cellulose, suggesting that the material is free of other substances. This enzymatic derivative was capable of acting on lactose and to produce GOS. An experimental design 2 4 was proposed to observe the influence of temperature (40 to 60 °C), the concentration of lactose (300 to 500 g/L), pH (4.0 to 5.0), and the reaction time (0.5 to 1 hour). The best responses obtained were: 79.8 g/L for the amount of GOS; 99.8 g/L/h for GOS productivity; and 66.6% for GOS yield. High temperatures and concentration of lactose were favorable for transgalactosylation mechanism. The reuse of the enzyme showed that after 10 cycles of use retained 84.6% of the initial activity. The results showed that the MCP appears as a promising matrix for the immobilization of other biomolecules. Reference: [1] Osman et al, J Biotech. 150 (2010);[2] Kang et al, Polymer 70 (2015);[3] CAO et al, J Phys.: Condens. Matter 28 (2016). (author)

  15. Magnetic cellulose as support for β-galactosidase immobilization: Matrix characterization and application on galacto -oligosaccharides production

    Energy Technology Data Exchange (ETDEWEB)

    Xavier, Mariana Rodrigues; Cabrera, Mariana Paola, E-mail: marii_rxavier@hotmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Vidal, Esteban Espinosa [Centro de Tecnologias Estrategicas do Nordeste (CETENE), Recife, PE (Brazil); Neri, David Fernando de Morais [Fundacao Universidade Federal do Vale do Sao Francisco (UNIVASF), Petrolina, PE (Brazil)

    2016-07-01

    Full text: Galacto oligosaccharides (GOS) offer positive health effects if are introduce in the diet, associated with the reduction of cholesterol level, anticarcinogenic properties and vitamins production [1]. Cellulose is an abundant renewable organic resource, biodegradable, eco-friendly [2] and is actually considered as adequate to be used as enzymatic non-toxic support. Cellulose when magnetized offers some advantages: rapid separation, reduce operational costs, absence or diminution of contaminants and easy removal of the reaction medium [3]. In this work, magnetic cellulose particles (MCP) functionalized with 3- aminopropyltriethoxysilane (APTES) were successfully developed and used for covalent immobilization of β-galactosidase Aspergillus oryzae, via glutaraldehyde. The MCP was characterized by FTIR, SEM, XRD, DSC and TGA and BET. The XRD possible to verify and guarantee the presence of the magnetic particles in the composite. Furthermore, the TGA curve showed decomposition range referring to cellulose, suggesting that the material is free of other substances. This enzymatic derivative was capable of acting on lactose and to produce GOS. An experimental design 2{sup 4} was proposed to observe the influence of temperature (40 to 60 °C), the concentration of lactose (300 to 500 g/L), pH (4.0 to 5.0), and the reaction time (0.5 to 1 hour). The best responses obtained were: 79.8 g/L for the amount of GOS; 99.8 g/L/h for GOS productivity; and 66.6% for GOS yield. High temperatures and concentration of lactose were favorable for transgalactosylation mechanism. The reuse of the enzyme showed that after 10 cycles of use retained 84.6% of the initial activity. The results showed that the MCP appears as a promising matrix for the immobilization of other biomolecules. Reference: [1] Osman et al, J Biotech. 150 (2010);[2] Kang et al, Polymer 70 (2015);[3] CAO et al, J Phys.: Condens. Matter 28 (2016). (author)

  16. Hybrid RGSA and Support Vector Machine Framework for Three-Dimensional Magnetic Resonance Brain Tumor Classification

    Directory of Open Access Journals (Sweden)

    R. Rajesh Sharma

    2015-01-01

    algorithm (RGSA. Support vector machines, over backpropagation network, and k-nearest neighbor are used to evaluate the goodness of classifier approach. The preliminary evaluation of the system is performed using 320 real-time brain MRI images. The system is trained and tested by using a leave-one-case-out method. The performance of the classifier is tested using the receiver operating characteristic curve of 0.986 (±002. The experimental results demonstrate the systematic and efficient feature extraction and feature selection algorithm to the performance of state-of-the-art feature classification methods.

  17. Repaired tetralogy of Fallot: the roles of cardiovascular magnetic resonance in evaluating pathophysiology and for pulmonary valve replacement decision support

    Science.gov (United States)

    2011-01-01

    Surgical management of tetralogy of Fallot (TOF) results in anatomic and functional abnormalities in the majority of patients. Although right ventricular volume load due to severe pulmonary regurgitation can be tolerated for many years, there is now evidence that the compensatory mechanisms of the right ventricular myocardium ultimately fail and that if the volume load is not eliminated or reduced by pulmonary valve replacement the dysfunction might be irreversible. Cardiovascular magnetic resonance (CMR) has evolved during the last 2 decades as the reference standard imaging modality to assess the anatomic and functional sequelae in patients with repaired TOF. This article reviews the pathophysiology of chronic right ventricular volume load after TOF repair and the risks and benefits of pulmonary valve replacement. The CMR techniques used to comprehensively evaluate the patient with repaired TOF are reviewed and the role of CMR in supporting clinical decisions regarding pulmonary valve replacement is discussed. PMID:21251297

  18. Role of atom--atom inelastic collisions in two-temperature nonequilibrium plasmas

    International Nuclear Information System (INIS)

    Kunc, J.A.

    1987-01-01

    The contribution of inelastic atom--atom collisions to the production of electrons and excited atoms in two-temperature (with electron temperature T/sub e/, atomic temperature T/sub a/, and atomic density N/sub a/), steady-state, nonequilibrium atomic hydrogen plasma is investigated. The results are valid for plasmas having large amounts of atomic hydrogen as one of the plasma components, so that e--H and H--H inelastic collisions and interaction of these atoms with radiation dominate the production of electrons and excited hydrogen atoms. Densities of electrons and excited atoms are calculated in low-temperature plasma, with T/sub e/ and T/sub a/≤8000 K and 10 16 cm -3 ≤N/sub a/≤10 18 cm -3 , and with different degrees of the reabsorption of radiation. The results indicate that inelastic atom--atom collisions are important for production of electrons and excited atoms in partially ionized plasmas with medium and high atomic density and temperatures below 8000 K

  19. On the evolution of a two component, two temperature, fully ionised plasma in electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Oeien, A H

    1975-01-01

    When inhomogenities and fields are not too strong, transients of distribution function, correlation functions and fields which may appear when the plasma evolves from an initial state out of equilibrium are derived, applying the multiple time scale method to the BBGKY and field equations. It is also shown that, at the end of an initial stage, kinetic equations and sets of approximate field equations will govern the evolution further on. In part II a study of the evolution further on is performed when conditions are such that distribution functions to lowest order may reach local Maxwellians with different temperatures for electrons and ions. Using the same method as above, the transient behaviour into a state where macroscopic and field equations take over the leadership in the evolution is derived, and the governing equations further on, together with correcting kinetic equations, are obtained up to an order of approximation higher than before. In part III a set of lower order and a set of higher order correcting kinetic equations from part II, which correspond partly to equations for the Chapman-Enskog and the Burnett levels of approximations, are solved qualitatively. New results for various transports of a two temperature plasma are obtained.

  20. Production of biogas from organic waste in microreactors operated at two temperatures

    International Nuclear Information System (INIS)

    Murillo Roos, Mariana

    2014-01-01

    The process and the product of anaerobic digestion are evaluated for different proportions of organic substrates, in microreactors operated at thermophilic and mesophilic temperatures with interest to find alternatives that will generate energy from biomass. Small-scale tests are conducted to ensure the proper functioning of biodigesters and optimize operating conditions. The anaerobic digestion process is characterized in three manure mixing ratios: mix of leftovers (100:0,90:10 and 80:20) and two temperatures of work (35 degrees Celsius and 50 degrees Celsius), using a factorial arrangement with 2 replicates per treatment. The mixture is composed of manure, cow dung and scraps of fresh food (fruits and vegetables) and prepared food. The proportions were diluted to 5% total solids. Bottles are the experimental unit used consisting culture medium bottles of 1 liter with 500 mL of mixture. The test has run for 5 hydraulic retention times (HRT) of twenty days each. At this time the pH was evaluated, the daily production of biogas, biogas composition, total solids, volatile and fixed and the content of volatile fatty acids. The values obtained biogas productivity and CH 4 content have been similar to those reported in the literature and indicate that the systems have been successful [es

  1. Non-grey benchmark results for two temperature non-equilibrium radiative transfer

    International Nuclear Information System (INIS)

    Su, B.; Olson, G.L.

    1999-01-01

    Benchmark solutions to time-dependent radiative transfer problems involving non-equilibrium coupling to the material temperature field are crucial for validating time-dependent radiation transport codes. Previous efforts on generating analytical solutions to non-equilibrium radiative transfer problems were all restricted to the one-group grey model. In this paper, a non-grey model, namely the picket-fence model, is considered for a two temperature non-equilibrium radiative transfer problem in an infinite medium. The analytical solutions, as functions of space and time, are constructed in the form of infinite integrals for both the diffusion description and transport description. These expressions are evaluated numerically and the benchmark results are generated. The asymptotic solutions for large and small times are also derived in terms of elementary functions and are compared with the exact results. Comparisons are given between the transport and diffusion solutions and between the grey and non-grey solutions. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. Two-temperature hydrodynamics of laser-generated ultrashort shock waves in elasto-plastic solids

    International Nuclear Information System (INIS)

    Ilnitsky, Denis K; Migdal, Kirill P; Khokhlov, Viktor A; Inogamov, Nail A; Petrov, Yurii V; Anisimov, Sergey I; Zhakhovsky, Vasily V; Khishchenko, Konstantin V

    2014-01-01

    Shock-wave generation by ultrashort laser pulses opens new doors for study of hidden processes in materials happened at an atomic-scale spatiotemporal scales. The poorly explored mechanism of shock generation is started from a short-living two-temperature (2T) state of solid in a thin surface layer where laser energy is deposited. Such 2T state represents a highly non-equilibrium warm dense matter having cold ions and hot electrons with temperatures of 1-2 orders of magnitude higher than the melting point. Here for the first time we present results obtained by our new hybrid hydrodynamics code combining detailed description of 2T states with a model of elasticity together with a wide-range equation of state of solid. New hydro-code has higher accuracy in the 2T stage than molecular dynamics method, because it includes electron related phenomena including thermal conduction, electron-ion collisions and energy transfer, and electron pressure. From the other hand the new code significantly improves our previous version of 2T hydrodynamics model, because now it is capable of reproducing the elastic compression waves, which may have an imprint of supersonic melting like as in MD simulations. With help of the new code we have solved a difficult problem of thermal and dynamic coupling of a molten layer with an uniaxially compressed elastic solid. This approach allows us to describe the recent femtosecond laser experiments.

  3. Enhanced UV luminescence from InAlN quantum well structures using two temperature growth

    International Nuclear Information System (INIS)

    Zubialevich, Vitaly Z.; Sadler, Thomas C.; Dinh, Duc V.; Alam, Shahab N.; Li, Haoning; Pampili, Pietro; Parbrook, Peter J.

    2014-01-01

    InAlN/AlGaN multiple quantum wells (MQWs) emitting between 300 and 350 nm have been prepared by metalorganic chemical vapor deposition on planar AlN templates. To obtain strong room temperature luminescence from InAlN QWs a two temperature approach was required. The intensity decayed weakly as the temperature was increased to 300 K, with ratios I PL (300 K)/I PL (T) max up to 70%. This high apparent internal quantum efficiency is attributed to the exceptionally strong carrier localization in this material, which is also manifested by a high Stokes shift (0.52 eV) of the luminescence. Based on these results InAlN is proposed as a robust alternative to AlGaN for ultraviolet emitting devices. - Highlights: • InAlN quantum wells with AlGaN barriers emitting in near UV successfully grown using quasi-2T approach. • 1 nm AlGaN capping of InAlN quantum wells used to avoid In desorption during temperature ramp to barrier growth conditions. • Strong, thermally resilient luminescence obtained as a result of growth optimization. • Promise of InAlN as an alternative active region for UV emitters demonstrated

  4. Dynamics and stability of rigid rotors levitated by passive cylinder-magnet bearings and driven/supported axially by pointwise contact clutch

    DEFF Research Database (Denmark)

    Andersen, Søren Bøgh; Enemark, Søren; Santos, Ilmar

    2013-01-01

    A stable rotor—supported laterally by passive magnetic bearings and longitudinally by magnetic forces and a clutch—loses suddenly its contact to the clutch and executes abruptly longitudinal movements away from its original equilibrium position as a result of small increases in angular velocity...... by MCMB using several configurations of magnet distribution are described based on an accurate nonlinear model able to reliably reproduce the rotor-bearing dynamic behaviour. Such investigations lead to: (a) clear physical explanation about the reasons for the rotor's unstable behaviour, losing its...

  5. Coral energy reserves and calcification in a high-CO2 world at two temperatures.

    Directory of Open Access Journals (Sweden)

    Verena Schoepf

    Full Text Available Rising atmospheric CO2 concentrations threaten coral reefs globally by causing ocean acidification (OA and warming. Yet, the combined effects of elevated pCO2 and temperature on coral physiology and resilience remain poorly understood. While coral calcification and energy reserves are important health indicators, no studies to date have measured energy reserve pools (i.e., lipid, protein, and carbohydrate together with calcification under OA conditions under different temperature scenarios. Four coral species, Acropora millepora, Montipora monasteriata, Pocillopora damicornis, Turbinaria reniformis, were reared under a total of six conditions for 3.5 weeks, representing three pCO2 levels (382, 607, 741 µatm, and two temperature regimes (26.5, 29.0 °C within each pCO2 level. After one month under experimental conditions, only A. millepora decreased calcification (-53% in response to seawater pCO2 expected by the end of this century, whereas the other three species maintained calcification rates even when both pCO2 and temperature were elevated. Coral energy reserves showed mixed responses to elevated pCO2 and temperature, and were either unaffected or displayed nonlinear responses with both the lowest and highest concentrations often observed at the mid-pCO2 level of 607 µatm. Biweekly feeding may have helped corals maintain calcification rates and energy reserves under these conditions. Temperature often modulated the response of many aspects of coral physiology to OA, and both mitigated and worsened pCO2 effects. This demonstrates for the first time that coral energy reserves are generally not metabolized to sustain calcification under OA, which has important implications for coral health and bleaching resilience in a high-CO2 world. Overall, these findings suggest that some corals could be more resistant to simultaneously warming and acidifying oceans than previously expected.

  6. Two-temperature thermodynamic and transport properties of SF6–Cu plasmas

    International Nuclear Information System (INIS)

    Wu, Yi; Chen, Zhexin; Yang, Fei; Rong, Mingzhe; Sun, Hao; Cressault, Yann; Murphy, Anthony B; Guo, Anxiang; Liu, Zirui

    2015-01-01

    SF 6 and Cu are widely adopted in electrical equipment as a dielectric medium and for conductive components, respectively. SF 6 –Cu plasmas are frequently formed, particularly in high-voltage circuit breaker arcs and fault current arcs, due to erosion of the Cu components. In this paper, calculated values of the thermodynamic and transport properties of plasmas in SF 6 –Cu mixtures are presented for both thermal equilibrium and non-equilibrium conditions. The composition is determined by the two-temperature Saha equation and Guldberg–Waage equation in the form derived by van de Sanden. The composition and the thermodynamic properties are evaluated through a classical statistical mechanics approach. For the transport coefficients, the simplified Chapman–Enskog method developed by Devoto, which decouples the electrons and heavy species, has been applied using the most recent collision integrals. The thermodynamic and transport properties are calculated for different electron temperatures (300–40 000 K), ratios of electron to heavy-species temperature (1–10), pressures (0.1–10 atm) and copper molar proportions (0–50%). It is found that deviations from thermal equilibrium strongly affect the thermodynamic and transport properties of the SF 6 –Cu plasmas. Further, the presence of copper has different effects on some of the properties for plasmas in and out of thermal equilibrium. The main reason for these changes is that dissociation reactions are delayed for non-thermal equilibrium plasmas, which in turn influences the ionization reactions that occur. (paper)

  7. Magnetic Resonance and Ultrasound Image Fusion Supported Transperineal Prostate Biopsy Using the Ginsburg Protocol: Technique, Learning Points, and Biopsy Results.

    Science.gov (United States)

    Hansen, Nienke; Patruno, Giulio; Wadhwa, Karan; Gaziev, Gabriele; Miano, Roberto; Barrett, Tristan; Gnanapragasam, Vincent; Doble, Andrew; Warren, Anne; Bratt, Ola; Kastner, Christof

    2016-08-01

    Prostate biopsy supported by transperineal image fusion has recently been developed as a new method to the improve accuracy of prostate cancer detection. To describe the Ginsburg protocol for transperineal prostate biopsy supported by multiparametric magnetic resonance imaging (mpMRI) and transrectal ultrasound (TRUS) image fusion, provide learning points for its application, and report biopsy results. The article is supplemented by a Surgery in Motion video. This single-centre retrospective outcome study included 534 patients from March 2012 to October 2015. A total of 107 had no previous prostate biopsy, 295 had benign TRUS-guided biopsies, and 159 were on active surveillance for low-risk cancer. A Likert scale reported mpMRI for suspicion of cancer from 1 (no suspicion) to 5 (cancer highly likely). Transperineal biopsies were obtained under general anaesthesia using BiopSee fusion software (Medcom, Darmstadt, Germany). All patients had systematic biopsies, two cores from each of 12 anatomic sectors. Likert 3-5 lesions were targeted with a further two cores per lesion. Any cancer and Gleason score 7-10 cancer on biopsy were noted. Descriptive statistics and positive predictive values (PPVs) and negative predictive values (NPVs) were calculated. The detection rate of Gleason score 7-10 cancer was similar across clinical groups. Likert scale 3-5 MRI lesions were reported in 378 (71%) of the patients. Cancer was detected in 249 (66%) and Gleason score 7-10 cancer was noted in 157 (42%) of these patients. PPV for detecting 7-10 cancer was 0.15 for Likert score 3, 0.43 for score 4, and 0.63 for score 5. NPV of Likert 1-2 findings was 0.87 for Gleason score 7-10 and 0.97 for Gleason score ≥4+3=7 cancer. Limitations include lack of data on complications. Transperineal prostate biopsy supported by MRI/TRUS image fusion using the Ginsburg protocol yielded high detection rates of Gleason score 7-10 cancer. Because the NPV for excluding Gleason score 7-10 cancer was very

  8. NONLINEAR FORCE-FREE FIELD EXTRAPOLATION OF A CORONAL MAGNETIC FLUX ROPE SUPPORTING A LARGE-SCALE SOLAR FILAMENT FROM A PHOTOSPHERIC VECTOR MAGNETOGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Chaowei; Wu, S. T.; Hu, Qiang [Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Feng, Xueshang, E-mail: cwjiang@spaceweather.ac.cn, E-mail: wus@uah.edu, E-mail: qh0001@uah.edu, E-mail: fengx@spaceweather.ac.cn [SIGMA Weather Group, State Key Laboratory for Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-05-10

    Solar filaments are commonly thought to be supported in magnetic dips, in particular, in those of magnetic flux ropes (FRs). In this Letter, based on the observed photospheric vector magnetogram, we implement a nonlinear force-free field (NLFFF) extrapolation of a coronal magnetic FR that supports a large-scale intermediate filament between an active region and a weak polarity region. This result is a first, in the sense that current NLFFF extrapolations including the presence of FRs are limited to relatively small-scale filaments that are close to sunspots and along main polarity inversion lines (PILs) with strong transverse field and magnetic shear, and the existence of an FR is usually predictable. In contrast, the present filament lies along the weak-field region (photospheric field strength ≲ 100 G), where the PIL is very fragmented due to small parasitic polarities on both sides of the PIL and the transverse field has a low signal-to-noise ratio. Thus, extrapolating a large-scale FR in such a case represents a far more difficult challenge. We demonstrate that our CESE-MHD-NLFFF code is sufficient for the challenge. The numerically reproduced magnetic dips of the extrapolated FR match observations of the filament and its barbs very well, which strongly supports the FR-dip model for filaments. The filament is stably sustained because the FR is weakly twisted and strongly confined by the overlying closed arcades.

  9. A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part One: Zero-Dimensional Analysis

    OpenAIRE

    Vincent Casseau; Rodrigo C. Palharini; Thomas J. Scanlon; Richard E. Brown

    2016-01-01

    A two-temperature CFD (computational fluid dynamics) solver is a prerequisite to any spacecraft re-entry numerical study that aims at producing results with a satisfactory level of accuracy within realistic timescales. In this respect, a new two-temperature CFD solver, hy2Foam, has been developed within the framework of the open-source CFD platform OpenFOAM for the prediction of hypersonic reacting flows. This solver makes the distinct juncture between the trans-rotational and multiple vibrat...

  10. Autism Spectrum Disorder: Does Neuroimaging Support the DSM-5 Proposal for a Symptom Dyad? A Systematic Review of Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging Studies

    Science.gov (United States)

    Pina-Camacho, Laura; Villero, Sonia; Fraguas, David; Boada, Leticia; Janssen, Joost; Navas-Sanchez, Francisco J.; Mayoral, Maria; Llorente, Cloe; Arango, Celso; Parellada, Mara

    2012-01-01

    A systematic review of 208 studies comprising functional magnetic resonance imaging and diffusion tensor imaging data in patients with "autism spectrum disorder" (ASD) was conducted, in order to determine whether these data support the forthcoming DSM-5 proposal of a social communication and behavioral symptom dyad. Studies consistently reported…

  11. Finite-Size Scaling in a Two-Temperature Lattice Gas: a Monte Carlo Study of Critical Properties

    DEFF Research Database (Denmark)

    Larsen, Heine; Præstgaard, Eigil; Zia, R.K.P.

    1994-01-01

    We present computer studies of the critical properties of an Ising lattice gas driven to a non-equilibrium steady state by coupling to two temperature baths. Anisotropic scaling, a dominant feature near criticality, is used as a tool to extract the values of the critical temperature and some expo...

  12. Facile Fabrication of Highly Active Magnetic Aminoclay Supported Palladium Nanoparticles for the Room Temperature Catalytic Reduction of Nitrophenol and Nitroanilines

    Directory of Open Access Journals (Sweden)

    Lei Jia

    2018-06-01

    Full Text Available Magnetically recyclable nanocatalysts with excellent performance are urgent need in heterogeneous catalysis, due to their magnetic nature, which allows for convenient and efficient separation with the help of an external magnetic field. In this research, we developed a simple and rapid method to fabricate a magnetic aminoclay (AC based an AC@Fe3O4@Pd nanocatalyst by depositing palladium nanoparticles (Pd NPs on the surface of the magnetic aminoclay nanocomposite. The microstructure and the magnetic properties of as-prepared AC@Fe3O4@Pd were tested using transmission electron microscopy (TEM, energy-dispersive X-ray spectroscopy (EDS, X-ray diffraction (XRD, and vibrating sample magnetometry (VSM analyses. The resultant AC@Fe3O4@Pd nanocatalyst with the magnetic Fe-based inner shell, catalytically activate the outer noble metal shell, which when combined with ultrafine Pd NPs, synergistically enhanced the catalytic activity and recyclability in organocatalysis. As the aminoclay displayed good water dispersibility, the nanocatalyst indicated satisfactory catalytic performance in the reaction of reducing nitrophenol and nitroanilines to the corresponding aminobenzene derivatives. Meanwhile, the AC@Fe3O4@Pd nanocatalyst exhibited excellent reusability, while still maintaining good activity after several catalytic cycles.

  13. Application of an Activated Carbon-Based Support for Magnetic Solid Phase Extraction Followed by Spectrophotometric Determination of Tartrazine in Commercial Beverages

    Directory of Open Access Journals (Sweden)

    José A. Rodríguez

    2015-01-01

    Full Text Available A method is presented for magnetic solid phase extraction of tartrazine from nonalcoholic beverages. The method involves the extraction and clean-up by activated carbon covered with magnetite dispersed in the sample, followed by the magnetic isolation and desorption of the analyte by basified methanol. The tartrazine eluted from the magnetic support was determined by spectrophotometry. Under optimal conditions, the linear range of the calibration curve ranges from 3 to 30 mg L−1, with a limit of detection of 1 mg L−1. The method was validated by comparing the results with those obtained by HPLC. A precision of <5.0% was obtained in all cases and no significant differences were observed (P<0.05.

  14. Application of an activated carbon-based support for magnetic solid phase extraction followed by spectrophotometric determination of tartrazine in commercial beverages.

    Science.gov (United States)

    Rodríguez, José A; Escamilla-Lara, Karen A; Guevara-Lara, Alfredo; Miranda, Jose M; Páez-Hernández, Ma Elena

    2015-01-01

    A method is presented for magnetic solid phase extraction of tartrazine from nonalcoholic beverages. The method involves the extraction and clean-up by activated carbon covered with magnetite dispersed in the sample, followed by the magnetic isolation and desorption of the analyte by basified methanol. The tartrazine eluted from the magnetic support was determined by spectrophotometry. Under optimal conditions, the linear range of the calibration curve ranges from 3 to 30 mg L(-1), with a limit of detection of 1 mg L(-1). The method was validated by comparing the results with those obtained by HPLC. A precision of <5.0% was obtained in all cases and no significant differences were observed (P < 0.05).

  15. Hamilton-Jacobi theory for continuation of magnetic field across a toroidal surface supporting a plasma pressure discontinuity

    International Nuclear Information System (INIS)

    McGann, M.; Hudson, S.R.; Dewar, R.L.; Nessi, G. von

    2010-01-01

    The vanishing of the divergence of the total stress tensor (magnetic plus kinetic) in a neighborhood of an equilibrium plasma containing a toroidal surface of discontinuity gives boundary and jump conditions that strongly constrain allowable continuations of the magnetic field across the surface. The boundary conditions allow the magnetic fields on either side of the discontinuity surface to be described by surface magnetic potentials, reducing the continuation problem to that of solving a Hamilton-Jacobi equation. The characteristics of this equation obey Hamiltonian equations of motion, and a necessary condition for the existence of a continued field across a general toroidal surface is that there exist invariant tori in the phase space of this Hamiltonian system. It is argued from the Birkhoff theorem that existence of such an invariant torus is also, in general, sufficient for continuation to be possible. An important corollary is that the rotational transform of the continued field on a surface of discontinuity must, generically, be irrational.

  16. Extended two-temperature model for ultrafast thermal response of band gap materials upon impulsive optical excitation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Taeho [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Samsung Advanced Institute of Technology, Suwon 443-803 (Korea, Republic of); Teitelbaum, Samuel W.; Wolfson, Johanna; Nelson, Keith A., E-mail: kanelson@mit.edu [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Kandyla, Maria [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens 116-35 (Greece)

    2015-11-21

    Thermal modeling and numerical simulations have been performed to describe the ultrafast thermal response of band gap materials upon optical excitation. A model was established by extending the conventional two-temperature model that is adequate for metals, but not for semiconductors. It considers the time- and space-dependent density of electrons photoexcited to the conduction band and accordingly allows a more accurate description of the transient thermal equilibration between the hot electrons and lattice. Ultrafast thermal behaviors of bismuth, as a model system, were demonstrated using the extended two-temperature model with a view to elucidating the thermal effects of excitation laser pulse fluence, electron diffusivity, electron-hole recombination kinetics, and electron-phonon interactions, focusing on high-density excitation.

  17. Axi-symmetric generalized thermoelastic diffusion problem with two-temperature and initial stress under fractional order heat conduction

    International Nuclear Information System (INIS)

    Deswal, Sunita; Kalkal, Kapil Kumar; Sheoran, Sandeep Singh

    2016-01-01

    A mathematical model of fractional order two-temperature generalized thermoelasticity with diffusion and initial stress is proposed to analyze the transient wave phenomenon in an infinite thermoelastic half-space. The governing equations are derived in cylindrical coordinates for a two dimensional axi-symmetric problem. The analytical solution is procured by employing the Laplace and Hankel transforms for time and space variables respectively. The solutions are investigated in detail for a time dependent heat source. By using numerical inversion method of integral transforms, we obtain the solutions for displacement, stress, temperature and diffusion fields in physical domain. Computations are carried out for copper material and displayed graphically. The effect of fractional order parameter, two-temperature parameter, diffusion, initial stress and time on the different thermoelastic and diffusion fields is analyzed on the basis of analytical and numerical results. Some special cases have also been deduced from the present investigation.

  18. Thermodynamic properties and transport coefficients of a two-temperature polytetrafluoroethylene vapor plasma for ablation-controlled discharge applications

    Science.gov (United States)

    Wang, Haiyan; Wang, Weizong; Yan, Joseph D.; Qi, Haiyang; Geng, Jinyue; Wu, Yaowu

    2017-10-01

    Ablation-controlled plasmas have been used in a range of technical applications where local thermodynamic equilibrium (LTE) is often violated near the wall due to the strong cooling effect caused by the ablation of wall materials. The thermodynamic and transport properties of ablated polytetrafluoroethylene (PTFE) vapor, which determine the flowing plasma behavior in such applications, are calculated based on a two-temperature model at atmospheric pressure. To our knowledge, no data for PTFE have been reported in the literature. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and the Guldberg-Waage equation according to van de Sanden et al’s derivation. The transport coefficients, including viscosity, thermal conductivity and electrical conductivity, are calculated with the most recent collision interaction potentials using Devoto’s electron and heavy-particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of the Chapman-Enskog method. Results are computed for different degrees of thermal non-equilibrium, i.e. the ratio of electron to heavy-particle temperatures, from 1 to 10, with electron temperature ranging from 300 to 40 000 K. Plasma transport properties in the LTE state obtained from the present work are compared with existing published results and the causes for the discrepancy analyzed. The two-temperature plasma properties calculated in the present work enable the modeling of wall ablation-controlled plasma processes.

  19. Ion-ion dynamic structure factor, acoustic modes, and equation of state of two-temperature warm dense aluminum

    Science.gov (United States)

    Harbour, L.; Förster, G. D.; Dharma-wardana, M. W. C.; Lewis, Laurent J.

    2018-04-01

    The ion-ion dynamical structure factor and the equation of state of warm dense aluminum in a two-temperature quasiequilibrium state, with the electron temperature higher than the ion temperature, are investigated using molecular-dynamics simulations based on ion-ion pair potentials constructed from a neutral pseudoatom model. Such pair potentials based on density functional theory are parameter-free and depend directly on the electron temperature and indirectly on the ion temperature, enabling efficient computation of two-temperature properties. Comparison with ab initio simulations and with other average-atom calculations for equilibrium aluminum shows good agreement, justifying a study of quasiequilibrium situations. Analyzing the van Hove function, we find that ion-ion correlations vanish in a time significantly smaller than the electron-ion relaxation time so that dynamical properties have a physical meaning for the quasiequilibrium state. A significant increase in the speed of sound is predicted from the modification of the dispersion relation of the ion acoustic mode as the electron temperature is increased. The two-temperature equation of state including the free energy, internal energy, and pressure is also presented.

  20. Thermodynamic properties and transport coefficients of a two-temperature polytetrafluoroethylene vapor plasma for ablation-controlled discharge applications

    International Nuclear Information System (INIS)

    Wang, Haiyan; Qi, Haiyang; Wang, Weizong; Yan, Joseph D; Geng, Jinyue; Wu, Yaowu

    2017-01-01

    Ablation-controlled plasmas have been used in a range of technical applications where local thermodynamic equilibrium (LTE) is often violated near the wall due to the strong cooling effect caused by the ablation of wall materials. The thermodynamic and transport properties of ablated polytetrafluoroethylene (PTFE) vapor, which determine the flowing plasma behavior in such applications, are calculated based on a two-temperature model at atmospheric pressure. To our knowledge, no data for PTFE have been reported in the literature. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and the Guldberg–Waage equation according to van de Sanden et al ’s derivation. The transport coefficients, including viscosity, thermal conductivity and electrical conductivity, are calculated with the most recent collision interaction potentials using Devoto’s electron and heavy-particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of the Chapman–Enskog method. Results are computed for different degrees of thermal non-equilibrium, i.e. the ratio of electron to heavy-particle temperatures, from 1 to 10, with electron temperature ranging from 300 to 40 000 K. Plasma transport properties in the LTE state obtained from the present work are compared with existing published results and the causes for the discrepancy analyzed. The two-temperature plasma properties calculated in the present work enable the modeling of wall ablation-controlled plasma processes. (paper)

  1. Development of a Support Vector Machine - Based Image Analysis System for Focal Liver Lesions Classification in Magnetic Resonance Images

    International Nuclear Information System (INIS)

    Gatos, I; Tsantis, S; Kagadis, G; Karamesini, M; Skouroliakou, A

    2015-01-01

    Purpose: The design and implementation of a computer-based image analysis system employing the support vector machine (SVM) classifier system for the classification of Focal Liver Lesions (FLLs) on routine non-enhanced, T2-weighted Magnetic Resonance (MR) images. Materials and Methods: The study comprised 92 patients; each one of them has undergone MRI performed on a Magnetom Concerto (Siemens). Typical signs on dynamic contrast-enhanced MRI and biopsies were employed towards a three class categorization of the 92 cases: 40-benign FLLs, 25-Hepatocellular Carcinomas (HCC) within Cirrhotic liver parenchyma and 27-liver metastases from Non-Cirrhotic liver. Prior to FLLs classification an automated lesion segmentation algorithm based on Marcov Random Fields was employed in order to acquire each FLL Region of Interest. 42 texture features derived from the gray-level histogram, co-occurrence and run-length matrices and 12 morphological features were obtained from each lesion. Stepwise multi-linear regression analysis was utilized to avoid feature redundancy leading to a feature subset that fed the multiclass SVM classifier designed for lesion classification. SVM System evaluation was performed by means of leave-one-out method and ROC analysis. Results: Maximum accuracy for all three classes (90.0%) was obtained by means of the Radial Basis Kernel Function and three textural features (Inverse- Different-Moment, Sum-Variance and Long-Run-Emphasis) that describe lesion's contrast, variability and shape complexity. Sensitivity values for the three classes were 92.5%, 81.5% and 96.2% respectively, whereas specificity values were 94.2%, 95.3% and 95.5%. The AUC value achieved for the selected subset was 0.89 with 0.81 - 0.94 confidence interval. Conclusion: The proposed SVM system exhibit promising results that could be utilized as a second opinion tool to the radiologist in order to decrease the time/cost of diagnosis and the need for patients to undergo invasive

  2. Three-dimensional single-channel thermal analysis of fully ceramic microencapsulated fuel via two-temperature homogenized model

    International Nuclear Information System (INIS)

    Lee, Yoonhee; Cho, Nam Zin

    2014-01-01

    Highlights: • Two-temperature homogenized model is applied to thermal analysis of fully ceramic microencapsulated (FCM) fuel. • Based on the results of Monte Carlo calculation, homogenized parameters are obtained. • 2-D FEM/1-D FDM hybrid method for the model is used to obtain 3-D temperature profiles. • The model provides the fuel-kernel and SiC matrix temperatures separately. • Compared to UO 2 fuel, the FCM fuel shows ∼560 K lower maximum temperatures at steady- and transient states. - Abstract: The fully ceramic microencapsulated (FCM) fuel, one of the accident tolerant fuel (ATF) concepts, consists of TRISO particles randomly dispersed in SiC matrix. This high heterogeneity in compositions leads to difficulty in explicit thermal calculation of such a fuel. For thermal analysis of a fuel element of very high temperature reactors (VHTRs) which has a similar configuration to FCM fuel, two-temperature homogenized model was recently proposed by the authors. The model was developed using particle transport Monte Carlo method for heat conduction problems. It gives more realistic temperature profiles, and provides the fuel-kernel and graphite temperatures separately. In this paper, we apply the two-temperature homogenized model to three-dimensional single-channel thermal analysis of the FCM fuel element for steady- and transient-states using 2-D FEM/1-D FDM hybrid method. In the analyses, we assume that the power distribution is uniform in radial direction at steady-state and that in axial direction it is in the form of cosine function for simplicity. As transient scenarios, we consider (i) coolant inlet temperature transient, (ii) inlet mass flow rate transient, and (iii) power transient. The results of analyses are compared to those of conventional UO 2 fuel having the same geometric dimension and operating conditions

  3. An improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum

    International Nuclear Information System (INIS)

    Zhang, Jinping; Chen, Yuping; Hu, Mengning; Chen, Xianfeng

    2015-01-01

    In this paper, an improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum was proposed and proved in our experiment. Aiming to achieve hole-drilling with a high ratio of depth/entrance diameter in vacuum, this model can predict the depth and radius of the drilled holes precisely when employing different laser parameters. Additionally, for multi-pulse laser ablation, we found that the laser fluence and number of pulses are the dominant parameters and the multi-pulse ablation threshold is much lower than the single-pulse one, which will help to obtain high-quality holes

  4. An improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinping; Chen, Yuping, E-mail: ypchen@sjtu.edu.cn; Hu, Mengning; Chen, Xianfeng [State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-02-14

    In this paper, an improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum was proposed and proved in our experiment. Aiming to achieve hole-drilling with a high ratio of depth/entrance diameter in vacuum, this model can predict the depth and radius of the drilled holes precisely when employing different laser parameters. Additionally, for multi-pulse laser ablation, we found that the laser fluence and number of pulses are the dominant parameters and the multi-pulse ablation threshold is much lower than the single-pulse one, which will help to obtain high-quality holes.

  5. A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part Two: Multi-Dimensional Analysis †

    OpenAIRE

    Vincent Casseau; Daniel E. R. Espinoza; Thomas J. Scanlon; Richard E. Brown

    2016-01-01

    hy2Foam is a newly-coded open-source two-temperature computational fluid dynamics (CFD) solver that has previously been validated for zero-dimensional test cases. It aims at (1) giving open-source access to a state-of-the-art hypersonic CFD solver to students and researchers; and (2) providing a foundation for a future hybrid CFD-DSMC (direct simulation Monte Carlo) code within the OpenFOAM framework. This paper focuses on the multi-dimensional verification of hy2Foam and firstly describes th...

  6. Nonuniqueness of two-temperature Guldberg-Waage and Saha equations: Influence on thermophysical properties of SF6 plasmas

    International Nuclear Information System (INIS)

    Wang, Weizong; Rong, Mingzhe; Spencer, Joseph W.

    2013-01-01

    This paper focuses to study how the choice of Guldberg-Waage and Saha equations affects the thermodynamic properties and transport coefficients of SF 6 plasmas under both thermal equilibrium and non-equilibrium conditions. The species composition is numerically determined using two typical forms of two-temperature Saha equations and Guldberg-Waage equations that have appeared in the literature. The great influence of the choice of the excitation temperature on the plasma composition and hence the thermodynamic properties and transport coefficients is discussed as well. Transport coefficients are calculated with most recent collision interaction potentials by adopting Devoto's electron and heavy particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) within the framework of Chapman-Enskog method. Furthermore, an analysis of the effect of different definitions of Debye length on the properties values was performed as well. The results are computed for various values of pressures from 0.10 atm to 10 atm and non-equilibrium parameter, i.e., ratio of the electron temperature to the heavy particle temperature from 1 to 5 with electron temperature range from 300 to 40 000 K. Both forms of Guldberg-Waage and Saha equations used here can give completely the same value when the two-temperature model reaches the special case of local thermodynamic equilibrium. It has been observed that all above mentioned factors can significantly modify the plasma species composition and consequently affect the thermodynamic and transport properties

  7. A plasma model combined with an improved two-temperature equation for ultrafast laser ablation of dielectrics

    International Nuclear Information System (INIS)

    Jiang Lan; Tsai, H.-L.

    2008-01-01

    It remains a big challenge to theoretically predict the material removal mechanism in femtosecond laser ablation. To bypass this unresolved problem, many calculations of femtosecond laser ablation of nonmetals have been based on the free electron density distribution without the actual consideration of the phase change mechanism. However, this widely used key assumption needs further theoretical and experimental confirmation. By combining the plasma model and improved two-temperature model developed by the authors, this study focuses on investigating ablation threshold fluence, depth, and shape during femtosecond laser ablation of dielectrics through nonthermal processes (the Coulomb explosion and electrostatic ablation). The predicted ablation depths and shapes in fused silica, by using (1) the plasma model only and (2) the plasma model plus the two-temperature equation, are both in agreement with published experimental data. The widely used assumptions for threshold fluence, ablation depth, and shape in the plasma model based on free electron density are validated by the comparison study and experimental data

  8. Effect of Rotation for Two-Temperature Generalized Thermoelasticity of Two-Dimensional under Thermal Shock Problem

    Directory of Open Access Journals (Sweden)

    Kh. Lotfy

    2013-01-01

    Full Text Available The theory of two-temperature generalized thermoelasticity based on the theory of Youssef is used to solve boundary value problems of two-dimensional half-space. The governing equations are solved using normal mode method under the purview of the Lord-Şhulman (LS and the classical dynamical coupled theory (CD. The general solution obtained is applied to a specific problem of a half-space subjected to one type of heating, the thermal shock type. We study the influence of rotation on the total deformation of thermoelastic half-space and the interaction with each other under the influence of two temperature theory. The material is homogeneous isotropic elastic half-space. The methodology applied here is use of the normal mode analysis techniques that are used to solve the resulting nondimensional coupled field equations for the two theories. Numerical results for the displacement components, force stresses, and temperature distribution are presented graphically and discussed. The conductive temperature, the dynamical temperature, the stress, and the strain distributions are shown graphically with some comparisons.

  9. A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part One: Zero-Dimensional Analysis

    Directory of Open Access Journals (Sweden)

    Vincent Casseau

    2016-10-01

    Full Text Available A two-temperature CFD (computational fluid dynamics solver is a prerequisite to any spacecraft re-entry numerical study that aims at producing results with a satisfactory level of accuracy within realistic timescales. In this respect, a new two-temperature CFD solver, hy2Foam, has been developed within the framework of the open-source CFD platform OpenFOAM for the prediction of hypersonic reacting flows. This solver makes the distinct juncture between the trans-rotational and multiple vibrational-electronic temperatures. hy2Foam has the capability to model vibrational-translational and vibrational-vibrational energy exchanges in an eleven-species air mixture. It makes use of either the Park TTv model or the coupled vibration-dissociation-vibration (CVDV model to handle chemistry-vibration coupling and it can simulate flows with or without electronic energy. Verification of the code for various zero-dimensional adiabatic heat baths of progressive complexity has been carried out. hy2Foam has been shown to produce results in good agreement with those given by the CFD code LeMANS (The Michigan Aerothermodynamic Navier-Stokes solver and previously published data. A comparison is also performed with the open-source DSMC (direct simulation Monte Carlo code dsmcFoam. It has been demonstrated that the use of the CVDV model and rates derived from Quantum-Kinetic theory promote a satisfactory consistency between the CFD and DSMC chemistry modules.

  10. Graphene supported silver@silver chloride & ferroferric oxide hybrid, a magnetically separable photocatalyst with high performance under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Suting; Jiang, Wei, E-mail: superfine_jw@126.com; Han, Mei; Liu, Gongzong; Zhang, Na; Lu, Yue

    2015-08-30

    Graphical abstract: - Highlights: • The composites were synthesized via a facile and effective process. • Plenty of Fe{sub 3}O{sub 4} and Ag@AgCl nanoparticles are deposited on the reduced graphene oxide nanosheets. • The catalyst exhibited an enhanced photocatalytic performance and magnetic property. • The catalyst is stable under the visible light irradiation. - Abstract: A stable magnetic separable plasmonic photocatalyst was successfully fabricated by grafting silver@silver chloride (Ag@AgCl) and ferroferric oxide (Fe{sub 3}O{sub 4}) nanoparticles on graphene sheets. The composite exhibited high activity degrading methylene blue (MB) and rhodamine B (RB) under visible light irradiation: decomposition 97.4% of MB in 100 min and 97.9% of RB in 120 min. The enhanced photocatalytic activities can be attributed to synergistic effect between Ag@AgCl and graphene: the effective charge transfer from Ag@AgCl to graphene thus promotes the separation of electron–hole pairs. Moreover, the excellent magnetic property gives a more convenient way to recycle the photocatalysts.

  11. Fault ride-through and grid support of permanent magnet synchronous generator-based wind farms with HVAC and VSC-HVDC transmission systems

    DEFF Research Database (Denmark)

    Liu, Hongzhi; Chen, Zhe

    2012-01-01

    This paper describes fault ride-through and grid support of offshore wind farms based on permanent magnet synchronous generator (PMSG) wind turbines connected to the onshore AC network through two alternative transmission systems: high voltage AC (HVAC) or high voltage DC (HVDC) based on voltage...... source converters (VSC). The proposed configurations of the PMSG-based offshore wind farm and VSC-based HVDC are given as well as their control strategies under both steady state and fault state. The PMSG-based offshore wind farm is integrated into a test power transmission system via either HVAC or VSC...

  12. Two-temperature hydrodynamic expansion and coupling of strong elastic shock with supersonic melting front produced by ultrashort laser pulse

    International Nuclear Information System (INIS)

    Inogamov, Nail A; Khokhlov, Viktor A; Zhakhovsky, Vasily V; Khishchenko, Konstantin V; Demaske, Brian J; Oleynik, Ivan I

    2014-01-01

    Ultrafast processes, including nonmonotonic expansion of material into vacuum, supersonic melting and generation of super-elastic shock wave, in a surface layer of metal irradiated by an ultrashort laser pulse are discussed. In addition to the well-established two-temperature (2T) evolution of heated layer a new effect of electron pressure gradient on early stage of material expansion is studied. It is shown that the expanding material experiences an unexpected jump in flow velocity in a place where stress exceeds the effective tensile strength provided by used EoS of material. Another 2T effect is that supersonic propagation of homogeneous melting front results in distortion of spatial profile of ion temperature, which later imprints on ion pressure profile transforming in a super-elastic shock wave with time.

  13. Synthesis and characterization of magnetic silica-supported Mn(II)-substituted polyoxophosphotungstate as catalyst in sulfoxidation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Moradi-Shoeili, Zeinab, E-mail: zmoradi@guilan.ac.ir [University of Guilan, Department of Chemistry, Faculty of Sciences (Iran, Islamic Republic of); Zare, Maryam [Golpayegan University of Technology, Department of Basic Sciences (Iran, Islamic Republic of); Bagherzadeh, Mojtaba [Sharif University of Technology, Department of Chemistry (Iran, Islamic Republic of)

    2016-10-15

    Polyoxometalate-functionalized magnetic nanoparticles (Fe{sub 3}O{sub 4}@SiO{sub 2}–MnPOW) were successfully synthesized via covalent anchoring of Mn(II)-substituted phosphotungstate on ammonium-modified Fe{sub 3}O{sub 4}@SiO{sub 2} nanoparticles. The complete characterization of nanoparticles has been carried out by scanning electron microscope, energy-dispersive X-ray, X-ray diffraction, Fourier transform infrared and elemental analysis. The resulting nanocomposites were efficient catalysts for the selective oxidation of sulfides with different green oxidants in good to excellent yields and also high selectivity. Leaching and recycling tests showed that the nanocatalyst can be reused several times without significant loss of efficiency.Graphical Abstract.

  14. 1-GWh diurnal load-leveling superconducting magnetic energy storage system reference design. Appendix C: dewar and structural support

    International Nuclear Information System (INIS)

    Bennett, J.G.; Ju, F.D.

    1979-09-01

    The mechanical aspects of the dewar to contain a 1-GWh superconducting coil in a 1.8 K helium bath and the means for supporting the coil and dewar against the rock of an underground excavation created for just that purpose are presented

  15. A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part Two: Multi-Dimensional Analysis †

    Directory of Open Access Journals (Sweden)

    Vincent Casseau

    2016-12-01

    Full Text Available hy2Foam is a newly-coded open-source two-temperature computational fluid dynamics (CFD solver that has previously been validated for zero-dimensional test cases. It aims at (1 giving open-source access to a state-of-the-art hypersonic CFD solver to students and researchers; and (2 providing a foundation for a future hybrid CFD-DSMC (direct simulation Monte Carlo code within the OpenFOAM framework. This paper focuses on the multi-dimensional verification of hy2Foam and firstly describes the different models implemented. In conjunction with employing the coupled vibration-dissociation-vibration (CVDV chemistry–vibration model, novel use is made of the quantum-kinetic (QK rates in a CFD solver. hy2Foam has been shown to produce results in good agreement with previously published data for a Mach 11 nitrogen flow over a blunted cone and with the dsmcFoam code for a Mach 20 cylinder flow for a binary reacting mixture. This latter case scenario provides a useful basis for other codes to compare against.

  16. Vibration due to non-circularity of a rotating ring having discrete radial supports - With application to thin-walled rotor/magnetic bearing systems

    Science.gov (United States)

    Fakkaew, Wichaphon; Cole, Matthew O. T.

    2018-06-01

    This paper investigates the vibration arising in a thin-walled cylindrical rotor subject to small non-circularity and coupled to discrete space-fixed radial bearing supports. A Fourier series description of rotor non-circularity is incorporated within a mathematical model for vibration of a rotating annulus. This model predicts the multi-harmonic excitation of the rotor wall due to bearing interactions. For each non-circularity harmonic there is a set of distinct critical speeds at which resonance can potentially arise due to flexural mode excitation within the rotor wall. It is shown that whether each potential resonance occurs depends on the multiplicity and symmetry of the bearing supports. Also, a sufficient number of evenly spaced identical supports will eliminate low order resonances. The considered problem is pertinent to the design and operation of thin-walled rotors with active magnetic bearing (AMB) supports, for which small clearances exist between the rotor and bearing and so vibration excitation must be limited to avoid contacts. With this motivation, the mathematical model is further developed for the case of a distributed array of electromagnetic actuators controlled by feedback of measured rotor wall displacements. A case study involving an experimental system with short cylindrical rotor and a single radial AMB support is presented. The results show that flexural mode resonance is largely avoided for the considered design topology. Moreover, numerical predictions based on measured non-circularity show good agreement with measurements of rotor wall vibration, thereby confirming the validity and utility of the theoretical model.

  17. Prosthetic outcome, patient complaints, and nutritional effects on elderly patients with magnet-retained, implant-supported overdentures--a 1-year report.

    Science.gov (United States)

    Khoo, Huan Ding; Chai, John; Chow, Tak Wah

    2013-01-01

    To study the changes in treatment outcomes of complete dentures and magnet-retained, implant-supported overdentures in a group of elderly patients. In this nonrandomized trial, 43 edentulous patients (14 men and 29 women) were fitted with complete dentures followed by implant-supported mandibular overdenture in a sequential model. Treatment outcomes used for analysis included objective assessment of denture quality (Woelfel's index), patient satisfaction, nutritional status, body mass index (BMI), and serum albumin level. The McNemar test was used to determine if significant differences in the Woelfel's index and nutritional status existed at different treatment phases. Repeated measures ANOVA and multiple pairwise comparison tests were used to analyze patient satisfaction. BMI status and serum albumin level at different treatment phases were analyzed with one-way ANOVA and Tukey post hoc test. At the 1-year follow-up, significant improvements were recorded for the objective assessment of denture quality and patient complaints (P .05) CONCLUSIONS: The present study demonstrated that in elderly patients with stable health and nutritional status, complete dentures made in a university clinic brought about overall improvement in denture quality and reduction in denture complaint score. Insertion of mandibular implant-supported overdentures further improved the mandibular denture quality and reduced the mandibular denture complaint score. In this group of patients, no improvement in BMI, serum albumin value, and nutritional status were documented.

  18. TiO2 nanoparticles supported on the Fe3O4@SiO2 nanocomposites: a novel magnetic nanocatalyst for the synthesis of 2-aminothiazoles

    International Nuclear Information System (INIS)

    Safari, Javad; Abedi-Jazini, Zahra; Zarnegar, Zohre; Sadeghi, Masoud

    2015-01-01

    Nano TiO 2 supported on the Fe 3 O 4 @SiO 2 nanocomposites is introduced as a novel catalyst for the environmental synthesis of 2-aminothiazoles in PEG-200 as a green medium at room temperature. In this reaction, thiourea and N-bromosuccinimide were reacted with various ketones affording the desired 2-aminothiazole compounds. This green protocol has promising features for the reaction response such as simple procedure, high yields, and the ease of separation of pure product, short reaction time, and convenient manipulation. This catalyst was easily separated by an external magnet, and the recovered catalyst was reused several times without any significant loss of activity.Graphical abstract

  19. Theoretical investigation of the decay of an SF6 gas-blast arc using a two-temperature hydrodynamic model

    International Nuclear Information System (INIS)

    Wang Weizong; Rong Mingzhe; Yan, Joseph D; Spencer, Joseph W; Murphy, Anthony B

    2013-01-01

    The behaviour of a decaying SF 6 arc, which is representative of the approach to the final current-zero state of switching arcs in a high-voltage circuit breaker, is theoretically investigated by a two-temperature hydrodynamic model, taking into account the possible departure of the plasma state from local thermodynamic equilibrium (LTE). The model couples the plasma flow with electromagnetic fields in a self-consistent manner. The electrons and heavy species are assumed to have different temperatures. The species composition, thermodynamic properties and transport coefficients of the plasma under non-LTE conditions are calculated from fundamental theory. The model is then applied to a two-dimensional axisymmetric SF 6 arc burning in a supersonic nozzle under well-controlled conditions; for this configuration, experimental results are available for comparison. The effect of turbulence is considered using the Prandtl mixing-length model. The edge absorption of the radiation emitted by the arc core is taken into account by a modified net emission coefficient approach. The complete set of conservation equations is discretized and solved using the finite volume method. The evolution of electron and heavy-particle temperatures and the total arc resistance, along with other physical quantities, is carefully analysed and compared with those of the LTE case. It is demonstrated that the electron and heavy-particle temperature diverge at all times in the plasma-cold-flow interaction region, in which strong gas flow exists, and further in the transient current-zero period, in which case the collision energy exchange is ineffective. This study quantitatively analyses the energy exchange mechanisms between electrons and heavy particles in the high-pressure supersonic SF 6 arcs and provides the foundation for further theoretical investigation of transient SF 6 arc behaviour as the current ramps down to zero in gas-blast circuit breakers.

  20. Modelling tree ring cellulose δ18O variations in two temperature-sensitive tree species from North and South America

    Directory of Open Access Journals (Sweden)

    A. Lavergne

    2017-11-01

    Full Text Available Oxygen isotopes in tree rings (δ18OTR are widely used to reconstruct past climates. However, the complexity of climatic and biological processes controlling isotopic fractionation is not yet fully understood. Here, we use the MAIDENiso model to decipher the variability in δ18OTR of two temperature-sensitive species of relevant palaeoclimatological interest (Picea mariana and Nothofagus pumilio and growing at cold high latitudes in North and South America. In this first modelling study on δ18OTR values in both northeastern Canada (53.86° N and western Argentina (41.10° S, we specifically aim at (1 evaluating the predictive skill of MAIDENiso to simulate δ18OTR values, (2 identifying the physical processes controlling δ18OTR by mechanistic modelling and (3 defining the origin of the temperature signal recorded in the two species. Although the linear regression models used here to predict daily δ18O of precipitation (δ18OP may need to be improved in the future, the resulting daily δ18OP values adequately reproduce observed (from weather stations and simulated (by global circulation model δ18OP series. The δ18OTR values of the two species are correctly simulated using the δ18OP estimation as MAIDENiso input, although some offset in mean δ18OTR levels is observed for the South American site. For both species, the variability in δ18OTR series is primarily linked to the effect of temperature on isotopic enrichment of the leaf water. We show that MAIDENiso is a powerful tool for investigating isotopic fractionation processes but that the lack of a denser isotope-enabled monitoring network recording oxygen fractionation in the soil–vegetation–atmosphere compartments limits our capacity to decipher the processes at play. This study proves that the eco-physiological modelling of δ18OTR values is necessary to interpret the recorded climate signal more reliably.

  1. A novel transient rotor current control scheme of a doubly-fed induction generator equipped with superconducting magnetic energy storage for voltage and frequency support

    Science.gov (United States)

    Shen, Yang-Wu; Ke, De-Ping; Sun, Yuan-Zhang; Daniel, Kirschen; Wang, Yi-Shen; Hu, Yuan-Chao

    2015-07-01

    A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator (DFIG) equipped with a superconducting magnetic energy storage (SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter (GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter (RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive (priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method. Project supported by the National Natural Science Foundation of China (Grant No. 51307124) and the Major Program of the National Natural Science Foundation of China (Grant No. 51190105).

  2. Magnetic Barkhausen noise at different magnetization conditions

    Czech Academy of Sciences Publication Activity Database

    Stupakov, Alexandr; Perevertov, Oleksiy; Neslušan, M.

    2015-01-01

    Roč. 66, č. 7 (2015), s. 10-13 ISSN 1335-3632 R&D Projects: GA ČR GA13-18993S Institutional support: RVO:68378271 Keywords : Barkhausen noise * surface magnetic field * magnetization control * magnetic hysteresis * digital feedback loop Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 0.407, year: 2015

  3. Effects of two-temperature parameter and thermal nonlocal parameter on transient responses of a half-space subjected to ramp-type heating

    Science.gov (United States)

    Xue, Zhang-Na; Yu, Ya-Jun; Tian, Xiao-Geng

    2017-07-01

    Based upon the coupled thermoelasticity and Green and Lindsay theory, the new governing equations of two-temperature thermoelastic theory with thermal nonlocal parameter is formulated. To more realistically model thermal loading of a half-space surface, a linear temperature ramping function is adopted. Laplace transform techniques are used to get the general analytical solutions in Laplace domain, and the inverse Laplace transforms based on Fourier expansion techniques are numerically implemented to obtain the numerical solutions in time domain. Specific attention is paid to study the effect of thermal nonlocal parameter, ramping time, and two-temperature parameter on the distributions of temperature, displacement and stress distribution.

  4. Polyphosphoric acid supported on Ni0.5Zn0.5Fe2O4 nanoparticles as a magnetically-recoverable green catalyst for the synthesis of pyranopyrazoles

    Directory of Open Access Journals (Sweden)

    Farid Moeinpour

    2017-05-01

    Full Text Available Polyphosphoric acid supported on silica coated Ni0.5Zn0.5Fe2O4 nanoparticles was found to be magnetically separable, highly efficient, eco-friendly, green and recyclable heterogeneous catalyst. This new catalyst at first was fully characterized by TEM, SEM, FTIR and XRD techniques and then catalytic activity of this catalyst was investigated in the synthesis of 5-cyano-1,4-dihydropyrano[2,3-c]pyrazoles. Also the Ni0.5Zn0.5Fe2O4 magnetic nanoparticle-supported polyphosphoric acid could be reused at least six times without significant loss of activity. It could be recovered easily by applying an external magnet.

  5. OH-stretch overtone of methanol: empirical assignment using a two temperature technique in a supersonic jet

    Czech Academy of Sciences Publication Activity Database

    Svoboda, V.; Horká-Zelenková, Veronika; Rakovský, Jozef; Pracna, Petr; Votava, Ondřej

    2015-01-01

    Roč. 17, č. 24 (2015), s. 15710-15717 ISSN 1463-9076 R&D Projects: GA ČR GA13-11635S Institutional support: RVO:61388955 Keywords : VIBRATIONALLY EXCITED METHANOL * INTRAMOLECULAR ENERGY-TRANSFER * MU-M Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.449, year: 2015

  6. The Use of Visual Decision Support Tools in an Interactive Stakeholder Analysis—Old Ports as New Magnets for Creative Urban Development

    Directory of Open Access Journals (Sweden)

    Peter Nijkamp

    2013-10-01

    Full Text Available Port cities are historically important breeding places of civilization and wealth, and act as attractive high-quality and sustainable places to live and work. They are core places for sustainable development for the entire spatial system as a result of their dynamism, which has in recent years reinforced their position as magnets in a spatial-economic force field. To understand and exploit this potential, the present study presents an analytical framework that links the opportunities provided by traditional port areas/cities to creative, resilient and sustainable urban development. Using evidence-based research, findings are presented from a case study by employing a stakeholder-based model—with interactive visual support tools as novel analysis methods—in a backcasting and forecasting exercise for sustainable development. The empirical study is carried out in and around the NDSM-area, a former dockyard in Amsterdam, the Netherlands. Various future images were used—in an interactive assessment incorporating classes of important stakeholders—as strategic vehicles to identify important policy challenges, and to evaluate options for converting historical-cultural urban port landscapes into sustainable and creative hotspots, starting by reusing, recovering, and regenerating such areas. This approach helps to identify successful policy strategies, and to bring together different forms of expertise in order to resolve conflicts between the interests (or values of a multiplicity of stakeholders, with a view to stimulating economic vitality in combination with meeting social needs and ensuring the conservation of eco-systems in redesigning old port areas. The results indicate that the interactive policy support tools developed for the case study are fit for purpose, and are instrumental in designing sustainable urban port areas.

  7. Iron Oxide-Supported Copper Oxide Nanoparticles (Nanocat-Fe-CuO): Magnetically Recyclable Catalysts for the Synthesis of Pyrazole Derivatives, 4-Methoxyaniline, and Ullmann-type Condensation Reactions

    Science.gov (United States)

    An efficient and benign protocol is reported for the synthesis of 4-methoxyaniline, medicinally important pyrazole derivatives, and Ullmann-type condensation reaction using magnetically separable and reusable magnetite-supported copper (nanocat-Fe-CuO) nanoparticles under mild co...

  8. Electrochemical enzyme sensor arrays for the detection of the biogenic amines histamine, putrescine and cadaverine using magnetic beads as immobilisation supports

    International Nuclear Information System (INIS)

    Leonardo, Sandra; Campàs, Mònica

    2016-01-01

    Electrochemical biosensors based on diamine oxidase (DAO) conjugated to magnetic beads (MBs) were developed for the detection of histamine (Hist), putrescine (Put) and cadaverine (Cad), the most relevant biogenic amines (BAs) related to food safety and quality. DAO-MBs were immobilised on Co(II)-phthalocyanine/carbon and Prussian Blue/carbon electrodes to obtain mono-enzymatic biosensors, and on Os-wired HRP-modified carbon electrodes to obtain bi-enzymatic biosensors. The three sensor have low working potentials (+0.4 V, −0.1 V and −0.05 V vs Ag/AgCl, respectively), a linear range of two orders of magnitude (from 0.01 to 1 mM BA), good reproducibility (variability lower than 10 %), high repeatability (up to 8 consecutive measurements), limits of detection in the µM concentration range for Hist and in the sub-µM concentration range for Put and Cad, and no response from possible interfering compounds. The DAO-MB conjugates display excellent long-term stability (at least 3 months). The biosensor has been applied to the determination of BAs in spiked and naturally-spoiled fish, demonstrating its suitability both as screening tool and for BAs quantification. The use of MBs as supports for enzyme immobilisation is advantageous because the resulting biosensors are simple, fast, stable, affordable, and can be integrated into array platforms. This makes them suitable for high-throughput analysis of BAs in the food industry. (author)

  9. Photothermal waves for two temperature with a semiconducting medium under using a dual-phase-lag model and hydrostatic initial stress

    Science.gov (United States)

    Lotfy, Kh.

    2017-07-01

    The dual-phase-lag (DPL) model with two different time translations and Lord-Shulman (LS) theory with one relaxation time are applied to study the effect of hydrostatic initial stress on medium under the influence of two temperature parameter(a new model will be introduced using two temperature theory) and photothermal theory. We solved the thermal loading at the free surface in the semi-infinite semiconducting medium-coupled plasma waves with the effect of mechanical force during a photothermal process. The exact expressions of the considered variables are obtained using normal mode analysis also the two temperature coefficient ratios were obtained analytically. Numerical results for the field quantities are given in the physical domain and illustrated graphically under the effects of several parameters. Comparisons are made between the results of the two different models with and without two temperature parameter, and for two different values of the hydrostatic initial stress. A comparison is carried out between the considered variables as calculated from the generalized thermoelasticity based on the DPL model and the LS theory in the absence and presence of the thermoelastic and thermoelectric coupling parameters.

  10. Solitary waves of the Kadomstev-Petviashvili equation in warm dusty plasma with variable dust charge, two temperature ion and nonthermal electron

    International Nuclear Information System (INIS)

    Pakzad, Hamid Reza

    2009-01-01

    The propagation of nonlinear waves in warm dusty plasmas with variable dust charge, two temperature ion and nonthermal electron is studied. By using the reductive perturbation theory, the Kadomstev-Petviashivili (KP) equation is derived. Existence of rarefactive and compressive solitons is analyzed.

  11. Freely oriented portable superconducting magnet

    Science.gov (United States)

    Schmierer, Eric N [Los Alamos, NM; Prenger, F Coyne [Los Alamos, NM; Hill, Dallas D [Los Alamos, NM

    2010-01-12

    A freely oriented portable superconducting magnet is disclosed. Coolant is supplied to the superconducting magnet from a repository separate from the magnet, enabling portability of the magnet. A plurality of support assemblies structurally anchor and thermally isolate the magnet within a thermal shield. A plurality of support assemblies structurally anchor and thermally isolate the thermal shield within a vacuum vessel. The support assemblies restrain movement of the magnet resulting from energizing and cooldown, as well as from changes in orientation, enabling the magnet to be freely orientable.

  12. Permanent magnet based dipole magnets for next generation light sources

    Directory of Open Access Journals (Sweden)

    Takahiro Watanabe

    2017-07-01

    Full Text Available We have developed permanent magnet based dipole magnets for the next generation light sources. Permanent magnets are advantageous over electromagnets in that they consume less power, are physically more compact, and there is a less risk of power supply failure. However, experience with electromagnets and permanent magnets in the field of accelerators shows that there are still challenges to replacing main magnets of accelerators for light sources with permanent magnets. These include the adjustability of the magnetic field, the temperature dependence of permanent magnets, and the issue of demagnetization. In this paper, we present a design for magnets for future light sources, supported by experimental and numerical results.

  13. Magnetically responsive enzyme powders

    Czech Academy of Sciences Publication Activity Database

    Pospišková, K.; Šafařík, Ivo

    2015-01-01

    Roč. 380, APR 2015 (2015), s. 197-200 ISSN 0304-8853 R&D Projects: GA MŠk(CZ) LD13021 Institutional support: RVO:67179843 Keywords : enzyme powders * cross-linking * magnetic modification * magnetic separation * magnetic iron oxides particles * microwave-assisted synthesis Subject RIV: CE - Biochemistry Impact factor: 2.357, year: 2015

  14. Support Vector Machine Analysis of Functional Magnetic Resonance Imaging of Interoception Does Not Reliably Predict Individual Outcomes of Cognitive Behavioral Therapy in Panic Disorder with Agoraphobia

    Directory of Open Access Journals (Sweden)

    Benedikt Sundermann

    2017-06-01

    Full Text Available BackgroundThe approach to apply multivariate pattern analyses based on neuro imaging data for outcome prediction holds out the prospect to improve therapeutic decisions in mental disorders. Patients suffering from panic disorder with agoraphobia (PD/AG often exhibit an increased perception of bodily sensations. The purpose of this investigation was to assess whether multivariate classification applied to a functional magnetic resonance imaging (fMRI interoception paradigm can predict individual responses to cognitive behavioral therapy (CBT in PD/AG.MethodsThis analysis is based on pretreatment fMRI data during an interoceptive challenge from a multicenter trial of the German PANIC-NET. Patients with DSM-IV PD/AG were dichotomized as responders (n = 30 or non-responders (n = 29 based on the primary outcome (Hamilton Anxiety Scale Reduction ≥50% after 6 weeks of CBT (2 h/week. fMRI parametric maps were used as features for response classification with linear support vector machines (SVM with or without automated feature selection. Predictive accuracies were assessed using cross validation and permutation testing. The influence of methodological parameters and the predictive ability for specific interoception-related symptom reduction were further evaluated.ResultsSVM did not reach sufficient overall predictive accuracies (38.0–54.2% for anxiety reduction in the primary outcome. In the exploratory analyses, better accuracies (66.7% were achieved for predicting interoception-specific symptom relief as an alternative outcome domain. Subtle information regarding this alternative response criterion but not the primary outcome was revealed by post hoc univariate comparisons.ConclusionIn contrast to reports on other neurofunctional probes, SVM based on an interoception paradigm was not able to reliably predict individual response to CBT. Results speak against the clinical applicability of this technique.

  15. The INTERPRET Decision-Support System version 3.0 for evaluation of Magnetic Resonance Spectroscopy data from human brain tumours and other abnormal brain masses

    Directory of Open Access Journals (Sweden)

    Mercadal Guillem

    2010-11-01

    Full Text Available Abstract Background Proton Magnetic Resonance (MR Spectroscopy (MRS is a widely available technique for those clinical centres equipped with MR scanners. Unlike the rest of MR-based techniques, MRS yields not images but spectra of metabolites in the tissues. In pathological situations, the MRS profile changes and this has been particularly described for brain tumours. However, radiologists are frequently not familiar to the interpretation of MRS data and for this reason, the usefulness of decision-support systems (DSS in MRS data analysis has been explored. Results This work presents the INTERPRET DSS version 3.0, analysing the improvements made from its first release in 2002. Version 3.0 is aimed to be a program that 1st, can be easily used with any new case from any MR scanner manufacturer and 2nd, improves the initial analysis capabilities of the first version. The main improvements are an embedded database, user accounts, more diagnostic discrimination capabilities and the possibility to analyse data acquired under additional data acquisition conditions. Other improvements include a customisable graphical user interface (GUI. Most diagnostic problems included have been addressed through a pattern-recognition based approach, in which classifiers based on linear discriminant analysis (LDA were trained and tested. Conclusions The INTERPRET DSS 3.0 allows radiologists, medical physicists, biochemists or, generally speaking, any person with a minimum knowledge of what an MR spectrum is, to enter their own SV raw data, acquired at 1.5 T, and to analyse them. The system is expected to help in the categorisation of MR Spectra from abnormal brain masses.

  16. Magnetization effects in superconducting dipole magnets

    International Nuclear Information System (INIS)

    Ishimoto, H.; Peters, R.E.; Price, M.E.; Yamada, R.

    1977-01-01

    Magnetization effect of superconductors on the field quality was investigated for some of the typical Energy Doubler bending magnets. Calculations were made using the computor program GFUN2D and compared with some measured results. Agreement between them is good. The field quality at low excitation is mainly determined by the magnetization effect. A similar effect due to a stainless collar mechanical support was also calculated, although it is not as big as the first one

  17. Two-temperature model of the energy balance for the plasma of a high-frequency induction discharge near the plasmoid axis

    International Nuclear Information System (INIS)

    Gerasimov, A.V.; Kirpichnikov, A.P.

    2000-01-01

    On the basis of analysis of the equation system for energy balance within near-the-axis range of HF-plasmatron inductor in terms of a two-temperature model one derived the analytical dependences to calculate temperature fields within that range in a two-dimensional definition of the problem. Paper presents the results of calculations carried out for various cross sections of HF-discharge plasmoid. The calculations were carried out for the air plasma under the atmospheric pressure. The derived formulae describe rather accurately distribution of temperature fields near the plasmoid axis and may be applied to tackle rather wide scope of problems dealing with heat transfer [ru

  18. Steady- and transient-state analyses of fully ceramic microencapsulated fuel loaded reactor core via two-temperature homogenized thermal-conductivity model

    International Nuclear Information System (INIS)

    Lee, Yoonhee; Cho, Nam Zin

    2015-01-01

    Highlights: • Fully ceramic microencapsulated fuel-loaded core is analyzed via a two-temperature homogenized thermal-conductivity model. • The model is compared to harmonic- and volumetric-average thermal conductivity models. • The three thermal analysis models show ∼100 pcm differences in the k eff eigenvalue. • The three thermal analysis models show more than 70 K differences in the maximum temperature. • There occur more than 3 times differences in the maximum power for a control rod ejection accident. - Abstract: Fully ceramic microencapsulated (FCM) fuel, a type of accident-tolerant fuel (ATF), consists of TRISO particles randomly dispersed in a SiC matrix. In this study, for a thermal analysis of the FCM fuel with such a high heterogeneity, a two-temperature homogenized thermal-conductivity model was applied by the authors. This model provides separate temperatures for the fuel-kernels and the SiC matrix. It also provides more realistic temperature profiles than those of harmonic- and volumetric-average thermal conductivity models, which are used for thermal analysis of a fuel element in VHTRs having a composition similar to the FCM fuel, because such models are unable to provide the fuel-kernel and graphite matrix temperatures separately. In this study, coupled with a neutron diffusion model, a FCM fuel-loaded reactor core is analyzed via a two-temperature homogenized thermal-conductivity model at steady- and transient-states. The results are compared to those from harmonic- and volumetric-average thermal conductivity models, i.e., we compare k eff eigenvalues, power distributions, and temperature profiles in the hottest single-channel at steady-state. At transient-state, we compare total powers, reactivity, and maximum temperatures in the hottest single-channel obtained by the different thermal analysis models. The different thermal analysis models and the availability of fuel-kernel temperatures in the two-temperature homogenized thermal

  19. Well-posed two-temperature constitutive equations for stable dense fluid shock waves using molecular dynamics and generalizations of Navier-Stokes-Fourier continuum mechanics.

    Science.gov (United States)

    Hoover, Wm G; Hoover, Carol G

    2010-04-01

    Guided by molecular dynamics simulations, we generalize the Navier-Stokes-Fourier constitutive equations and the continuum motion equations to include both transverse and longitudinal temperatures. To do so we partition the contributions of the heat transfer, the work done, and the heat flux vector between the longitudinal and transverse temperatures. With shockwave boundary conditions time-dependent solutions of these equations converge to give stationary shockwave profiles. The profiles include anisotropic temperature and can be fitted to molecular dynamics results, demonstrating the utility and simplicity of a two-temperature description of far-from-equilibrium states.

  20. SMARTer for magnetic structure studies

    Indian Academy of Sciences (India)

    Small angle neutron scattering; magnetic structure; Cu(NiFe); CuCo; ... micromagnetism, magnetic clusters embedded in a solid nonmagnetic matrix, mag- .... project. E G R Putra acknowledges the support from IAEA through the ISNS2008.

  1. Determination of the ground state of an Au-supported FePc film based on the interpretation of Fe K - and L -edge x-ray magnetic circular dichroism measurements

    Science.gov (United States)

    Natoli, Calogero R.; Krüger, Peter; Bartolomé, Juan; Bartolomé, Fernando

    2018-04-01

    We determine the magnetic ground state of the FePc molecule on Au-supported thin films based on the observed values of orbital anisotropy and spectroscopic x-ray magnetic circular dichroism (XMCD) measurements at the Fe K and L edges. Starting from ab initio molecular orbital multiplet calculations for the isolated molecule, we diagonalize the spin-orbit interaction in the subspace spanned by the three lowest spin triplet states of 3A2 g and 3Eg symmetry in the presence of a saturating magnetic field at a polar angle θ with respect to the normal to the plane of the film, plus an external perturbation representing the effect of the molecules in the stack on the FePc molecule under consideration. We find that the orbital moment of the ground state strongly depends on the magnetic field direction in agreement with the sum rule analysis of the L23-edge XMCD data. We calculate integrals over the XMCD spectra at the Fe K and L23 edges as used in the sum rules and explicitly show that they agree with the expectation values of the orbital moment and effective spin moment of the ground state. On the basis of this analysis, we can rule out alternative candidates proposed in the literature.

  2. Magnets and magnetic materials

    International Nuclear Information System (INIS)

    Meuris, Ch.; Rifflet, J.M.

    2007-01-01

    The Large Hadron Collider (LHC), the world's largest highest-energy particle collider that the CERN plans to commission in 2008, gets a double boost from superconducting magnet technology. Superconducting magnets are first used to guide the particles scheduled for collision through the accelerator, and then to observe the events triggered by the collision inside giant detectors in a known magnetic field. Despite the installation's massive dimensions, all this is done with minimal expenditure of energy. (author)

  3. "If I write like a scientist, then soy un cientifico": Differentiated Writing Supports and the Effects on Fourth-Grade English Proficient Students' and English Language Learners' Science Content Knowledge and Explanatory Writing About Magnetism and Electricity

    Science.gov (United States)

    Lichon, Kathryn A.

    The purpose of this pre-post quasi-experimental dissertation was to investigate the effects of differentiated writing supports on English Proficient Students' (EPSs) and English Language Learners' (ELLs) science content knowledge and explanatory writing about magnetism and electricity. Eighty-seven fourth-grade students (EPSs = 35; ELLs = 52) were randomly assigned to two groups based on two differentiated writing: guided questions ( n = 43) or targeted writing frames (n = 44). In the guided questions condition, students completed four question sets after a science investigation, and in the targeted writing frames condition, students completed the same four question sets, but with explicit support for vocabulary, transitions, and relational language in the form of if-then statements. Over the course of the four week intervention, students completed a total of nine writing tasks, and were pretested and posttested on six variables: magnetism and electricity content knowledge test, explanatory writing task, total number of words written, total number of sentences written, number of if-then statements, and number of content-based vocabulary words. Results indicate that EPSs and ELLs in both writing conditions improved significantly from pretest to posttest on six content and explanatory writing variables, with statistically significant gain scores occurring for the magnetism and electricity content knowledge test in which the targeted writing frames condition had a larger rate of gain. ANCOVA results indicated that in comparing writing conditions, a statistically significant difference was found for magnetism and electricity content knowledge posttests, when controlling for pretests. No statistically significant effects for language classification on the six variables were found when controlling for pretest scores. Interaction effects between writing condition and language classification were statistically significantly different for the interaction effect found on if

  4. Temperature-dependent tensile strength, surface roughness diagnostics, and magnetic support and positioning of polymer ICF shells. Final report, October 1, 1993--April 30, 1995

    International Nuclear Information System (INIS)

    Honig, A.

    1995-01-01

    During the course of this grant, we perfected emissivity and accommodation coefficient measurements on polymer ICF shells in the temperature range 250 to 350 K. Values for polystyrene shells are generally between 10 -2 and 10 -3 , which are very advantageous for ICF at cryogenic temperatures. Preliminary results on Br doped target shells indicate an accommodation coefficient, presumably associated with surface roughness on an atomic scale, about an order of magnitude larger than for ordinary polystyrene target shells. We also constructed apparatus with optical access for low temperature tensile strength and emissivity measurements, and made preliminary tests on this system. Magnetic shells were obtained both from GDP coating and from doping styrene with 10 manometer size ferromagnetic particles. The magnetic properties were measured through electron spin resonance (ESR). These experiments confirm the applicability of the Curie law, and establish the validity of using ESR measurements to determine shell temperature in the low temperature regime from 4K to 250K, thus complementing our presently accessible range. The high electron spin densities (> 10 20 /CM 3 ) suggest magnetic levitation should be feasible at cryogenic temperatures. This work has resulted in two conference presentations, a Technical Report, a paper to be published in Fusion Technology, and a Master's Thesis

  5. Use of Aloe vera shell ash supported Ni0.5Zn0.5Fe2O4 magnetic nanoparticles for removal of Pb (II from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Samira Namavari

    2016-03-01

    Full Text Available Background: Lead (Pb is a heavy metal that is widely utilized in industries. It contaminates soil and groundwater. Its non-biodegradability, severe toxicity, carcinogenicity, ability to accumulate in nature and contaminate groundwater and surface water make this toxic heavy metal extremely dangerous to living beings and the environment. Therefore, technical and economic methods of removing Pb are of great importance. This study evaluated the efficiency of Ni0.5Zn0.5Fe2O4 magnetic nanoparticles supported by Aloe vera shell ash in removing Pb from aqueous environments. Methods: The adsorbent was characterized by several methods, including x-ray diffraction (XRD, scanning electron microscopy (SEM, and Fourier transform infrared spectroscopy (FT-IR. Then, the potential of Aloe vera shell ash-supported Ni0.5Zn0.5Fe2O4 magnetic nanoparticles to adsorb Pb (II was investigated. To determine the amount of lead absorbed by this adsorbent, different pHs (2, 4, 5, and 6, adsorbent doses (0.01-0.40 g, Pb concentrations (5, 10, 20, 30, 40, 50, 60, 80, 100, 200, 300, and 600 mg/L, and exposure times (0, 5, 10, 15, 20, 30, 40, 50, and 60 minutes until reaching equilibrium were tested using an atomic absorption spectrometer (Varian-AA240FS. Residual concentrations of Pb were read. Results: The results show that a time of 15 minutes, pH value of 9, and adsorbent dose of 0.2 g are the optimum conditions for Pb (II removal by this adsorption process. Increasing the initial concentration of Pb (II from 5 to 600 mg/L decreased removal efficiency from 98.8% to 73%. The experimental data fit well into the Freundlich isotherm model (R2 = 0.989. Conclusion: Ni0.5Zn0.5Fe2O4 magnetic nanoparticles supported by Aloe vera shell ash comprise a low-cost, simple, and environmentally benign procedure. The maximum monolayer adsorption capacity based on the Langmuir isotherm (R2 = 0.884 is 47.2 mg g-1. The prepared magnetic adsorbent can be well dispersed in aqueous solutions and

  6. Magnetism and magnetic materials

    International Nuclear Information System (INIS)

    1990-01-01

    It describes the actual status of physics in Brazil concerning the study of magnetism and magnetic materials. It gives an overview of different research groups in Brazil, their needs, as well as the investments needed to improve the area. (A.C.A.S.)

  7. Magnetically leviated superconducting bearing

    Science.gov (United States)

    Weinberger, Bernard R.; Lynds, Jr., Lahmer

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  8. Effective magnetic Hamiltonians

    Czech Academy of Sciences Publication Activity Database

    Drchal, Václav; Kudrnovský, Josef; Turek, I.

    2013-01-01

    Roč. 26, č. 5 (2013), s. 1997-2000 ISSN 1557-1939 R&D Projects: GA ČR GA202/09/0775 Institutional support: RVO:68378271 Keywords : effective magnetic Hamiltonian * ab initio * magnetic structure Subject RIV: BE - Theoretical Physics Impact factor: 0.930, year: 2013

  9. TMX magnets: mechanical design

    International Nuclear Information System (INIS)

    Hinkle, R.E.; Harvey, A.R.; Calderon, M.O.; Chargin, A.K.; Chen, F.F.K.; Denhoy, B.S.; Horvath, J.A.; Reed, J.R.; Waugh, A.F.

    1977-01-01

    The Tandem Mirror Experiment (TMX) system, part of the Lawrence Livermore Laboratory magnetic mirror program incorporates in its design various types of coils or magnets. This paper describes the physical construction of each coil within the system as well as the structural design required for their support and installation

  10. On the basic substances used in the separation process by isotope exchange H2S - H2O, at two temperatures, in view of producing heavy water

    International Nuclear Information System (INIS)

    Popescu, V.

    1977-01-01

    In view of producing heavy water, the influence of the deuterium proportion in the basic substances, on the efficiency of the isotope exchange process H 2 S - H 2 O for two temperatures was studied. Heavy water is extracted from ordinary water and concentrated from 0.014 per cent to 5-15 per cent D 2 O by isotope bithermal exchange with the hydrogen sulphite. Theoretical and experimental research was carried out in laboratories and then applied on a pilot plant by designing and testing a drying equipment for hydrogen sulphite. The maximum H 2 S concentration rose to 99.84 per cent. The purity of the hydrogen sulphite resulting from the pilot plant, as well as the optimization of the installation for producing H 2 S depending on the deuterium distribution, make sure that the two methods for the preparation of sodium sulphite and hydrogen sulphite can be applied in industry. (author)

  11. Propagation of waves in micropolar generalized thermoelastic materials with two temperatures bordered with layers or half-spaces of inviscid liquid

    Directory of Open Access Journals (Sweden)

    Rajneesh Kumar

    Full Text Available The aim of the present paper is to study the propagation of Lamb waves in micropolar generalized thermoelastic solids with two temperatures bordered with layers or half-spaces of inviscid liquid subjected to stress-free boundary conditions in the context of Green and Lindsay (G-L theory. The secular equations for governing the symmetric and skew-symmetric leaky and nonleaky Lamb wave modes of propagation are derived. The computer simulated results with respect to phase velocity, attenuation coefficient, amplitudes of dilatation, microrotation vector and heat flux in case of symmetric and skew-symmetric modes have been depicted graphically. Moreover, some particular cases of interest have also been discussed.

  12. Model of two temperatures of the laser evaporation of solid targets; Modelo de dos temperaturas de la evaporacion laser de blancos solidos

    Energy Technology Data Exchange (ETDEWEB)

    Tolentino E, P. [Facultad de Ciencias Fisico Matematicas, BUAP, Puebla (Mexico); Gutierrez T, C.; Camps C, E. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2007-07-01

    The energy transmission in the evaporation process of a solid target by a laser pulse by means of the model of two temperatures which consists on two equations of heat conduction coupled by means of an electron-phonon coupling factor that means the energy transfer rate between the electrons and the net is described. This electron-phonon coupling factor is calculated for the particular case of the graphite, the obtaining of the analytic solutions in a space dimension of the system of non linear partial differential equations is shown considering two forms of the laser pulse (gaussian and delta function) and the electron temperature distributions of temperature and of the net are analyzed. (Author)

  13. Photons and magnetization

    Czech Academy of Sciences Publication Activity Database

    Pile, P.; Němec, P.; Jungwirth, Tomáš

    2013-01-01

    Roč. 7, č. 6 (2013), s. 500 ISSN 1749-4885 Institutional support: RVO:68378271 Keywords : spintronics * photonics * magneto-optics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 29.958, year: 2013

  14. Metal/dielectric thermal interfacial transport considering cross-interface electron-phonon coupling: Theory, two-temperature molecular dynamics, and thermal circuit

    Science.gov (United States)

    Lu, Zexi; Wang, Yan; Ruan, Xiulin

    2016-02-01

    The standard two-temperature equations for electron-phonon coupled thermal transport across metal/nonmetal interfaces are modified to include the possible coupling between metal electrons with substrate phonons. The previous two-temperature molecular dynamics (TT-MD) approach is then extended to solve these equations numerically at the atomic scale, and the method is demonstrated using Cu/Si interface as an example. A key parameter in TT-MD is the nonlocal coupling distance of metal electrons and nonmetal phonons, and here we use two different approximations. The first is based on Overhauser's "joint-modes" concept, while we use an interfacial reconstruction region as the length scale of joint region rather than the phonon mean-free path as in Overhauser's original model. In this region, the metal electrons can couple to the joint phonon modes. The second approximation is the "phonon wavelength" concept where electrons couple to phonons nonlocally within the range of one phonon wavelength. Compared with the original TT-MD, including the cross-interface electron-phonon coupling can slightly reduce the total thermal boundary resistance. Whether the electron-phonon coupling within the metal block is nonlocal or not does not make an obvious difference in the heat transfer process. Based on the temperature profiles from TT-MD, we construct a new mixed series-parallel thermal circuit. We show that such a thermal circuit is essential for understanding metal/nonmetal interfacial transport, while calculating a single resistance without solving temperature profiles as done in most previous studies is generally incomplete. As a comparison, the simple series circuit that neglects the cross-interface electron-phonon coupling could overestimate the interfacial resistance, while the simple parallel circuit in the original Overhauser's model underestimates the total interfacial resistance.

  15. Active Magnetic Bearings – Magnetic Forces

    DEFF Research Database (Denmark)

    Kjølhede, Klaus

    2006-01-01

    Parameter identification procedures and model validation are major steps towards intelligent machines supported by active magnetic bearings (AMB). The ability of measuring the electromagnetic bearing forces, or deriving them from measuring the magnetic flux, strongly contributes to the model...... of the work is the characterization of magnetic forces by using two experimental different experimental approaches. Such approaches are investigated and described in details. A special test rig is designed where the 4 poles - AMB is able to generate forces up to 1900 N. The high precision characterization...... of the magnetic forces are led by using different experimental tests: (I) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor; (II) by measuring the input current and bearing...

  16. Out-of-phase magnetic susceptibility and environmental magnetism

    Czech Academy of Sciences Publication Activity Database

    Hrouda, F.; Chadima, Martin; Ježek, J.

    2016-01-01

    Roč. 18 (2016), EGU2016-6808 ISSN 1607-7962. [European Geosciences Union General Assembly 2016. 17.04.2016-22.04.2016, Vienna] Institutional support: RVO:67985831 Keywords : paleomagnetism * magnetic susceptibility * environmental magnetism Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://meetingorganizer.copernicus.org/EGU2016/EGU2016-6808.pdf

  17. Magnetic S-parameter

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2010-01-01

    We propose a direct test of the existence of gauge duals for nonsupersymmetric asymptotically free gauge theories developing an infrared fixed point by computing the S-parameter in the electric and dual magnetic description. In particular we show that at the lower bound of the conformal window...... the magnetic S-parameter, i.e. the one determined via the dual magnetic gauge theory, assumes a simple expression in terms of the elementary magnetic degrees of freedom. The results further support our recent conjecture of the existence of a universal lower bound on the S parameter and indicates...

  18. Self-assembled magnetic nanoparticle supported zeolitic imidazolate framework-8: An efficient adsorbent for the enrichment of triazine herbicides from fruit, vegetables, and water.

    Science.gov (United States)

    Zhou, Lian; Su, Ping; Deng, Yulan; Yang, Yi

    2017-02-01

    Zeolitic imidazolate frameworks have positive surface charges and high adsorption capabilities. In this work, zeolitic imidazolate frameworks-8 and negatively charged magnetic nanoparticles were self-assembled by electrostatic attraction under sonication. The extraction performance of the synthesized hybrid material was evaluated by using it as a magnetic adsorbent for the enrichment of triazine herbicides in various sample matrices prior to analysis using ultrafast liquid chromatography. The main parameters, that is, extraction time, adsorbent dosage, salt concentration, and desorption conditions, were evaluated. Under the optimum conditions, good linear responses from 2.5 to 200 ng/mL for atrazine (simazine) and 1 to 200 ng/mL for prometryn (ametryn), with correlation coefficients (R 2 ) higher than 0.9992 were obtained. The detection limits of the method (S/N = 3) were 0.18-0.72 ng/mL. The proposed method was successfully used to determine triazine herbicides in six samples, namely, apple, pear, strawberry, pakchoi, lettuce, and water. The amounts of simazine in all the fruit and vegetable samples were 10.8-25.2 ng/mL. The recoveries of all the analytes were 88.0-101.9%, with relative standard deviations of less than 8.8%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Temperature-dependent tensile strength, surface roughness diagnostics, and magnetic support and positioning of polymer ICF shells. Final report, April 17, 1995--July 31, 1996

    International Nuclear Information System (INIS)

    Honig, A.

    1997-01-01

    The research carried out under this grant is a continuation of some of the authors previous experimental work on ICF target shells which focused on emissivity properties over a large temperature range, and on magnetic properties which could lead to successful levitation of target shells. Former methods in which contact-less shell temperature determination was achieved by accurate measurements of shell permeation rate are not workable at temperatures below about 230K, since the permeation rate becomes too slow. A new method explored here for emissivity determination at lower temperatures than in the preceding studies utilizes visual observation of phase changes between the liquid and gaseous phases as the shell warms up under the influence of black-body radiation absorption. The apparatus for this method was modified from its previously form by using cold flowing gas as coolant rather than a liquid N 2 bath. Two gases, argon and methane, were principally employed. While the actual emissivities were not accurately measured here, proof of the method was established. CH 4 (methane) gives the best results, thus extending the temperature range of emissivity determination down to about 140K. For emissivity determinations at still lower temperatures, another method discussed in previous work provides contact-less temperature measurement via the Curie law through measurements of the magnetic susceptibility using electron spin resonance (ESR). Current work showed some interesting distinctions among variously doped shells, but otherwise the results of the preliminary work carried out at the end of the previous grant were confirmed

  20. 1H MAS NMR (magic-angle spinning nuclear magnetic resonance) techniques for the quantitative determination of hydrogen types in solid catalysts and supports.

    Science.gov (United States)

    Kennedy, Gordon J; Afeworki, Mobae; Calabro, David C; Chase, Clarence E; Smiley, Randolph J

    2004-06-01

    Distinct hydrogen species are present in important inorganic solids such as zeolites, silicoaluminophosphates (SAPOs), mesoporous materials, amorphous silicas, and aluminas. These H species include hydrogens associated with acidic sites such as Al(OH)Si, non-framework aluminum sites, silanols, and surface functionalities. Direct and quantitative methodology to identify, measure, and monitor these hydrogen species are key to monitoring catalyst activity, optimizing synthesis conditions, tracking post-synthesis structural modifications, and in the preparation of novel catalytic materials. Many workers have developed several techniques to address these issues, including 1H MAS NMR (magic-angle spinning nuclear magnetic resonance). 1H MAS NMR offers many potential advantages over other techniques, but care is needed in recognizing experimental limitations and developing sample handling and NMR methodology to obtain quantitatively reliable data. A simplified approach is described that permits vacuum dehydration of multiple samples simultaneously and directly in the MAS rotor without the need for epoxy, flame sealing, or extensive glovebox use. We have found that careful optimization of important NMR conditions, such as magnetic field homogeneity and magic angle setting are necessary to acquire quantitative, high-resolution spectra that accurately measure the concentrations of the different hydrogen species present. Details of this 1H MAS NMR methodology with representative applications to zeolites, SAPOs, M41S, and silicas as a function of synthesis conditions and post-synthesis treatments (i.e., steaming, thermal dehydroxylation, and functionalization) are presented.

  1. Specialty magnets

    International Nuclear Information System (INIS)

    Halbach, K.

    1986-07-01

    A number of basic conceptual designs are explained for magnet systems that use permanent magnet materials. Included are iron free multipoles and hybrid magnets. Also appended is a discussion of the manufacturing process and magnetic properties of some permanent magnet materials

  2. Magnetization states and magnetization processes in nanostructures: from a single layer to multilayers

    Czech Academy of Sciences Publication Activity Database

    Maziewski, A.; Fassbender, J.; Kisielewski, J.; Kisielewski, M.; Kurant, Z.; Mazalski, P.; Stobiecki, F.; Stupakiewicz, A.; Sveklo, I.; Tekielak, M.; Wawro, A.; Zablotskyy, Vitaliy A.

    2014-01-01

    Roč. 211, č. 5 (2014), s. 1005-1018 ISSN 1862-6300 R&D Projects: GA ČR GA13-18993S Institutional support: RVO:68378271 Keywords : light and ions irradiation effects * magnetic anisotropy * magnetic domains * magnetic ordering * magnetic ultrathin films and multilayers Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.616, year: 2014

  3. Superconducting accelerator magnet design

    International Nuclear Information System (INIS)

    Wolff, S.

    1994-01-01

    Superconducting dipoles, quadrupoles and correction magnets are necessary to achieve the high magnetic fields required for big accelerators presently in construction or in the design phase. Different designs of superconducting accelerator magnets are described and the designs chosen at the big accelerator laboratories are presented. The most frequently used cosθ coil configuration is discussed in detail. Approaches for calculating the magnetic field quality including coil end fields are presented. Design details of the cables, coils, mechanical structures, yokes, helium vessels and cryostats including thermal radiation shields and support structures used in superconducting magnets are given. Necessary material properties are mentioned. Finally, the main results of magnetic field measurements and quench statistics are presented. (orig.)

  4. Passive magnetic bearing system

    Science.gov (United States)

    Post, Richard F.

    2014-09-02

    An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.

  5. Method and apparatus for control of a magnetic structure

    Science.gov (United States)

    Challenger, Michael P.; Valla, Arthur S.

    1996-06-18

    A method and apparatus for independently adjusting the spacing between opposing magnet arrays in charged particle based light sources. Adjustment mechanisms between each of the magnet arrays and the supporting structure allow the gap between the two magnet arrays to be independently adjusted. In addition, spherical bearings in the linkages to the magnet arrays permit the transverse angular orientation of the magnet arrays to also be adjusted. The opposing magnet arrays can be supported above the ground by the structural support.

  6. COMPARISON OF TWO TEMPERATURE MEASUREMENT METHODS BY UPCONVERSION FLUORESCENCE SPECTRA OF ERBIUM-DOPED LEAD-FLUORIDE NANO-GLASS-CERAMICS

    Directory of Open Access Journals (Sweden)

    V. A. Aseev

    2015-05-01

    Full Text Available The study and compare of two temperature measurement methods is performed for the case of a lead-fluoride nano-glassceramics in the range from 317 to 423 K with a view to their application to temperature sensors. A method of temperature measurement by means of violet, green and red upconversion fluorescence spectra regression on latent structures and a method of temperature measurement by two fluorescence bands intensity ratio in green range are considered. It is shown that a four-dimensional space of latent structures is an optimum one in terms of temperature measurement accuracy. It made possible temperature determining with a relative error not larger than 0.15% at temperatures higher than 340 K by making use of fluorescence spectra training set with the step of 10 K. The method using two green bands fluorescence intensity ratio is inferior by the accuracy. Independence of pump power fluctuations is a significant advantage of the second method. To take advantage of the first method a stabilization of the pump power is necessary. The results of the work can be taken into account while developing optical temperature sensors with a better performance (in relation to accuracy and measurement range compared to existing ones which utilize temperature redistribution of fluorescence intensities in two closely-spaced bands or temperature dependence of fluorescence lifetime.

  7. Higher order nonlinear equations for the dust-acoustic waves in a dusty plasma with two temperature-ions and nonextensive electrons

    International Nuclear Information System (INIS)

    Emamuddin, M.; Yasmin, S.; Mamun, A. A.

    2013-01-01

    The nonlinear propagation of dust-acoustic waves in a dusty plasma whose constituents are negatively charged dust, Maxwellian ions with two distinct temperatures, and electrons following q-nonextensive distribution, is investigated by deriving a number of nonlinear equations, namely, the Korteweg-de-Vries (K-dV), the modified Korteweg-de-Vries (mK-dV), and the Gardner equations. The basic characteristics of the hump (positive potential) and dip (negative potential) shaped dust-acoustic (DA) Gardner solitons are found to exist beyond the K-dV limit. The effects of two temperature ions and electron nonextensivity on the basic features of DA K-dV, mK-dV, and Gardner solitons are also examined. It has been observed that the DA Gardner solitons exhibit negative (positive) solitons for q c (q>q c ) (where q c is the critical value of the nonextensive parameter q). The implications of our results in understanding the localized nonlinear electrostatic perturbations existing in stellar polytropes, quark-gluon plasma, protoneutron stars, etc. (where ions with different temperatures and nonextensive electrons exist) are also briefly addressed.

  8. Steady- and transient-state analysis of fully ceramic microencapsulated fuel with randomly dispersed tristructural isotropic particles via two-temperature homogenized model-I: Theory and method

    International Nuclear Information System (INIS)

    Lee, Yoon Hee; Cho, Bum Hee; Cho, Nam Zin

    2016-01-01

    As a type of accident-tolerant fuel, fully ceramic microencapsulated (FCM) fuel was proposed after the Fukushima accident in Japan. The FCM fuel consists of tristructural isotropic particles randomly dispersed in a silicon carbide (SiC) matrix. For a fuel element with such high heterogeneity, we have proposed a two-temperature homogenized model using the particle transport Monte Carlo method for the heat conduction problem. This model distinguishes between fuel-kernel and SiC matrix temperatures. Moreover, the obtained temperature profiles are more realistic than those of other models. In Part I of the paper, homogenized parameters for the FCM fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure are obtained by (1) matching steady-state analytic solutions of the model with the results of particle transport Monte Carlo method for heat conduction problems, and (2) preserving total enthalpies in fuel kernels and SiC matrix. The homogenized parameters have two desirable properties: (1) they are insensitive to boundary conditions such as coolant bulk temperatures and thickness of cladding, and (2) they are independent of operating power density. By performing the Monte Carlo calculations with the temperature-dependent thermal properties of the constituent materials of the FCM fuel, temperature-dependent homogenized parameters are obtained

  9. Time-dependent two-temperature chemically non-equilibrium modelling of high-power Ar-N2 pulse-modulated inductively coupled plasmas at atmospheric pressure

    International Nuclear Information System (INIS)

    Tanaka, Yasunori

    2006-01-01

    A time-dependent, two-dimensional, two-temperature and chemical non-equilibrium model was developed for high-power Ar-N 2 pulse-modulated inductively coupled plasmas (PMICPs) at atmospheric pressure. The high-power PMICP is a new technique for sustaining high-power induction plasmas. It can control the plasma temperature and radical densities in the time domain. The PMICP promotes non-equilibrium effects by a sudden application of electric field, even in the high-power density plasmas. The developed model accounts separately for the time-dependent energy conservation equations of electrons and heavy particles. This model also considers reaction heat effects and energy transfer between electrons and heavy particles as well as enthalpy flow resulting from diffusion caused by the particle density gradient. Chemical non-equilibrium effects are also taken into account by solving time-dependent mass conservation equations for each particle, considering diffusion, convection and net production terms resulting from 30 chemical reactions. Transport and thermodynamic properties of Ar-N 2 plasmas are calculated self-consistently using the first order approximation of the Chapman-Enskog method at each position and iteration using the local particle composition, heavy particle temperature and electron temperature. This model is useful to discuss time evolution in temperature, gas flow fields and distribution of chemical species

  10. Rotor dynamic behaviour of a high-speed oil-free motor compressor with a rigid coupling supported on four radial magnetic bearings

    Science.gov (United States)

    Schmied, J.; Pradetto, J. C.

    1994-01-01

    The combination of a high-speed motor, dry gas seals, and magnetic bearings realized in this unit facilitates the elimination of oil. The motor is coupled with a quill shaft to the compressor. This yields higher natural frequencies of the rotor than with the use of a diaphragm coupling and helps to maintain a sufficient margin of the maximum speed to the frequency of the second compressor bending mode. However, the controller of each bearing then has to take the combined modes of both machines into account. The requirements for the controller to ensure stability and sufficient damping of all critical speeds are designed and compared with the implemented controller. The calculated closed loop behavior was confirmed experimentally, except the stability of some higher modes due to slight frequency deviations of the rotor model to the actual rotor. The influence of a mechanical damper as a device to provide additional damping to high models is demonstrated theoretically. After all, it was not necessary to install the damper, since all modes cold be stabilized by the controller.

  11. Synthesis of Superparamagnetic Core-Shell Structure Supported Pd Nanocatalysts for Catalytic Nitrite Reduction with Enhanced Activity, No Detection of Undesirable Product of Ammonium, and Easy Magnetic Separation Capability.

    Science.gov (United States)

    Sun, Wuzhu; Yang, Weiyi; Xu, Zhengchao; Li, Qi; Shang, Jian Ku

    2016-01-27

    Superparamagnetic nanocatalysts could minimize both the external and internal mass transport limitations and neutralize OH(-) produced in the reaction more effectively to enhance the catalytic nitrite reduction efficiency with the depressed product selectivity to undesirable ammonium, while possess an easy magnetic separation capability. However, commonly used qusi-monodispersed superparamagnetic Fe3O4 nanosphere is not suitable as catalyst support for nitrite reduction because it could reduce the catalytic reaction efficiency and the product selectivity to N2, and the iron leakage could bring secondary contamination to the treated water. In this study, protective shells of SiO2, polymethylacrylic acid, and carbon were introduced to synthesize Fe3O4@SiO2/Pd, Fe3O4@PMAA/Pd, and Fe3O4@C/Pd catalysts for catalytic nitrite reduction. It was found that SiO2 shell could provide the complete protection to Fe3O4 nanosphere core among these shells. Because of its good dispersion, dense structure, and complete protection to Fe3O4, the Fe3O4@SiO2/Pd catalyst demonstrated the highest catalytic nitrite reduction activity without the detection of NH4(+) produced. Due to this unique structure, the activity of Fe3O4@SiO2/Pd catalysts for nitrite reduction was found to be independent of the Pd nanoparticle size or shape, and their product selectivity was independent of the Pd nanoparticle size, shape, and content. Furthermore, their superparamagnetic nature and high saturation magnetization allowed their easy magnetic separation from treated water, and they also demonstrated a good stability during the subsequent recycling experiment.

  12. Supporting ATLAS

    CERN Multimedia

    2003-01-01

    Eighteen feet made of stainless steel will support the barrel ATLAS detector in the cavern at Point 1. In total, the ATLAS feet system will carry approximately 6000 tons, and will give the same inclination to the detector as the LHC accelerator. The installation of the feet is scheduled to finish during January 2004 with an installation precision at the 1 mm level despite their height of 5.3 metres. The manufacture was carried out in Russia (Company Izhorskiye Zavody in St. Petersburg), as part of a Russian and JINR Dubna in-kind contribution to ATLAS. Involved in the installation is a team from IHEP-Protvino (Russia), the ATLAS technical co-ordination team at CERN, and the CERN survey team. In all, about 15 people are involved. After the feet are in place, the barrel toroid magnet and the barrel calorimeters will be installed. This will keep the ATLAS team busy for the entire year 2004.

  13. Magnetic Measurements of Storage Ring Magnets for the APS Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Doose, C.; Dejus, R.; Jaski, M.; Jansma, W.; Collins, J.; Donnelly, A.; Liu, J.; Cease, H.; Decker, G.; Jain, A.; DiMarco, J.

    2017-06-01

    Extensive prototyping of storage ring magnets is ongoing at the Advanced Photon Source (APS) in support of the APS Multi-Bend Achromat (MBA) upgrade project (APS-U) [1]. As part of the R&D activities four quadrupole magnets with slightly different geometries and pole tip materials, and one sextupole magnet with vanadium permendur (VP) pole tips were designed, built and tested. Magnets were measured individually using a rotating coil and a Hall probe for detailed mapping of the magnetic field. Magnets were then assembled and aligned relative to each other on a steel support plate and concrete plinth using precision machined surfaces to gain experience with the alignment method chosen for the APS-U storage ring magnets. The required alignment of magnets on a common support structure is 30 μm rms. Measurements of magnetic field quality, strength and magnet alignment after subjecting the magnets and assemblies to different tests are presented.

  14. Magnetic Spinner

    Science.gov (United States)

    Ouseph, P. J.

    2006-01-01

    A science toy sometimes called the "magnetic spinner" is an interesting class demonstration to illustrate the principles of magnetic levitation. It can also be used to demonstrate Faraday's law and a horizontally suspended physical pendulum. The levitated part contains two circular magnets encased in a plastic housing. Each magnet stays…

  15. TiO{sub 2} nanoparticles supported on the Fe{sub 3}O{sub 4}@SiO{sub 2} nanocomposites: a novel magnetic nanocatalyst for the synthesis of 2-aminothiazoles

    Energy Technology Data Exchange (ETDEWEB)

    Safari, Javad, E-mail: safari-jav@yahoo.com, E-mail: safari@kashanu.ac.ir; Abedi-Jazini, Zahra; Zarnegar, Zohre, E-mail: z-zarnegar@yahoo.com; Sadeghi, Masoud [University of Kashan, Laboratory of Organic Compound Research, Department of Organic Chemistry, College of Chemistry (Iran, Islamic Republic of)

    2015-12-15

    Nano TiO{sub 2} supported on the Fe{sub 3}O{sub 4}@SiO{sub 2} nanocomposites is introduced as a novel catalyst for the environmental synthesis of 2-aminothiazoles in PEG-200 as a green medium at room temperature. In this reaction, thiourea and N-bromosuccinimide were reacted with various ketones affording the desired 2-aminothiazole compounds. This green protocol has promising features for the reaction response such as simple procedure, high yields, and the ease of separation of pure product, short reaction time, and convenient manipulation. This catalyst was easily separated by an external magnet, and the recovered catalyst was reused several times without any significant loss of activity.Graphical abstract.

  16. Adjacent segment degeneration after lumbar spinal fusion: the impact of anterior column support: a randomized clinical trial with an eight- to thirteen-year magnetic resonance imaging follow-up.

    Science.gov (United States)

    Videbaek, Tina S; Egund, Niels; Christensen, Finn B; Grethe Jurik, Anne; Bünger, Cody E

    2010-10-15

    Randomized controlled trial. To analyze long-term adjacent segment degeneration (ASD) after lumbar fusion on magnetic resonance imaging and compare randomization groups with and without anterior column support. ASD can be a long-term complication after fusion. The prevalence and the cause of ASD are not well documented, but ASD are one of the main arguments for introducing the use of motion-preserving techniques as an alternative to fusion. Anterior lumbar interbody fusion combined with posterolateral lumbar fusion (ALIF+PLF) has been proved superior to posterolateral fusion alone regarding outcome and cost-effectiveness. Between 1996 and 1999, 148 patients with severe chronic low back pain were randomly selected for ALIF+PLF or for PLF alone. Ninety-five patients participated. ASD was examined on magnetic resonance imaging with regard to disc degeneration, disc herniation, stenosis, and endplate changes. Disc heights on radiographs taken at index surgery and at long-term follow-up were compared. Outcome was assessed by validated questionnaires. The follow-up rate was 76%. ASD was similar between randomization groups. In the total cohort, endplate changes were seen in 26% of the participants and correlated significantly with the presence of disc degeneration and disc herniation. Disc degeneration and dorsal disc herniation were the parameters registered most frequently and were significantly more pronounced at the first adjacent level than at the second and the third adjacent levels. Patients without disc height reduction over time were significantly younger than patients with disc height reduction. Disc degeneration and stenosis correlated significantly with outcome at the first adjacent level. The cause of the superior outcome in the group with anterior support is still unclear. Compared with the findings reported in the literature, the prevalence of ASD is likely to be in concordance with the expected changes in a nonoperated symptomatic population and therefore

  17. Geometrical protection of topological magnetic solitons in microprocessed chiral magnets

    Science.gov (United States)

    Mito, Masaki; Ohsumi, Hiroyuki; Tsuruta, Kazuki; Kotani, Yoshinori; Nakamura, Tetsuya; Togawa, Yoshihiko; Shinozaki, Misako; Kato, Yusuke; Kishine, Jun-ichiro; Ohe, Jun-ichiro; Kousaka, Yusuke; Akimitsu, Jun; Inoue, Katsuya

    2018-01-01

    A chiral soliton lattice stabilized in a monoaxial chiral magnet CrNb3S6 is a magnetic superlattice consisting of magnetic kinks with a ferromagnetic background. The magnetic kinks are considered to be topological magnetic solitons (TMSs). Changes in the TMS number yield discretized responses in magnetization and electrical conductivity, and this effect is more prominent in smaller crystals. We demonstrate that, in microprocessed CrNb3S6 crystals, TMSs are geometrically protected through element-selected micromagnetometry using soft x-ray magnetic circular dichroism (MCD). A series of x-ray MCD data is supported by mean-field and micromagnetic analyses. By designing the microcrystal geometry, TMS numbers can be successfully changed and fixed over a wide range of magnetic fields.

  18. Bat head contains soft magnetic particles: evidence from magnetism.

    Science.gov (United States)

    Tian, Lanxiang; Lin, Wei; Zhang, Shuyi; Pan, Yongxin

    2010-10-01

    Recent behavioral observations have indicated that bats can sense the Earth's magnetic field. To unravel the magnetoreception mechanism, the present study has utilized magnetic measurements on three migratory species (Miniopterus fuliginosus, Chaerephon plicata, and Nyctalus plancyi) and three non-migratory species (Hipposideros armiger, Myotis ricketti, and Rhinolophus ferrumequinum). Room temperature isothermal remanent magnetization acquisition and alternating-field demagnetization showed that the bats' heads contain soft magnetic particles. Statistical analyses indicated that the saturation isothermal remanent magnetization of brains (SIRM(1T_brain)) of migratory species is higher than those of non-migratory species. Furthermore, the SIRM(1T_brain) of migratory bats is greater than their SIRM(1T_skull). Low-temperature magnetic measurements suggested that the magnetic particles are likely magnetite (Fe3O4). This new evidence supports the assumption that some bats use magnetite particles for sensing and orientation in the Earth's magnetic field.

  19. Magnetic skyrmions

    Science.gov (United States)

    2018-06-01

    Welcome to the special issue of Journal of Magnetism and Magnetic Materials on magnetic skyrmions. We are proud to present, with great pleasure, a timely collection of 9 original research articles on the recent hot topic "magnetic skyrmions" which studies the static and dynamic properties of skyrmions and the methods to control them in a variety of ways, including magnetic field, electric current and applied strain.

  20. Hybrid Magnetic Shielding

    Science.gov (United States)

    Royal, Kevin; Crawford, Christopher; Mullins, Andrew; Porter, Greg; Blanton, Hunter; Johnstone, Connor; Kistler, Ben; Olivera, Daniela

    2017-09-01

    The search for the electric dipole moment of the neutron requires the ambient magnetic field to be on the pT scale which is accomplished with large magnetic shielding rooms. These rooms are fitted with large mu-metal sheets to allow for passive cancellation of background magnetic fields. Active shielding technology cannot uniformly cancel background magnetic fields. These issues can be remedied by combining the methods into a hybrid system. The design used is composed of panels that have an active layer of cancellation between two sheets of mu-metal. The panels form a cube and draw in magnetic fields perpendicular to the surface which can then be reduced using active shielding. This work is supported by the Department of Energy under Contract DE-SC0008107.

  1. Exploring the effect of oxygen coverage on the electronic, magnetic and chemical properties of Ni(111) supported h-BN sheet: A density functional study

    Science.gov (United States)

    Wasey, A. H. M. Abdul; Das, G. P.; Majumder, C.

    2017-05-01

    Traditionally, h-BN is used as coating material to prevent corrosion on the metal surface. In sharp contrast to this, here we show catalytic behavior of h-BN monolayer deposited on Ni(111) surface, clearly demonstrating the influence of the support in modulation of h-BN electronic structure. Using first principles density functional theory we have studied the interaction of O2 molecules with the h-BN/Ni(111) surface. The activation of Osbnd O bond, which is the most important step for oxidative catalysis, showed dependence on the O2 coverage. Thus this study is extremely important to predict the optimum O2 pressure in reaction chamber for efficient catalysis.

  2. The 2017 magnetism roadmap

    Czech Academy of Sciences Publication Activity Database

    Sander, D.; Valenzuela, S.O.; Makarov, D.; Marrows, C.H.; Fullerton, E.E.; Fischer, P.; McCord, J.; Vavassori, P.; Mangin, S.; Pirro, P.; Hillebrands, B.; Kent, A.D.; Jungwirth, Tomáš; Gutfleisch, O.; Kim, C.G.; Berger, A.

    2017-01-01

    Roč. 50, č. 36 (2017), s. 1-33, č. článku 363001. ISSN 0022-3727 R&D Projects: GA MŠk LM2015087; GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : magnetism * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.588, year: 2016

  3. Large magnetic coils-design accompanying calculation and optimization. Regarding orthotropic interlayers, temperature and elastic supports-derivation of a special finite element

    International Nuclear Information System (INIS)

    Stelzer, J.F.; Sievers, A.; Welzel, R.

    1976-10-01

    This paper deals with finite element calculations of large coils as they are used as main coils in Tokamaks. They consist of copper layers with glass fibre reinforced resin interlayers inbedded in a strong steel ring. In a first analysis model the several epoxy layers are condensed to only one the tickness of which is equal to the sum of the single sizes. This fictitious layer is assumed to lie in the middle of the copper and is treated as an orthotropic material. In a following changed model the epoxy layer is situated between the steel ring and the copper. In this location the epoxy was suspected to suffer from the highest shear stresses. Both models employ springy trusses as supporting features which simulate the real elastic behaviour of a sustaining vault. Special attentions are given a) to the shear stresses in the epoxy, b) to the hot and cold states of the coils, and c) to the forces transferred from the coils to the sustaining vault. An optimal structure design is carried out concerning the steel ring. (orig./GG) [de

  4. Preclinical Diagnosis of Magnetic Resonance (MR Brain Images via Discrete Wavelet Packet Transform with Tsallis Entropy and Generalized Eigenvalue Proximal Support Vector Machine (GEPSVM

    Directory of Open Access Journals (Sweden)

    Yudong Zhang

    2015-03-01

    Full Text Available Background: Developing an accurate computer-aided diagnosis (CAD system of MR brain images is essential for medical interpretation and analysis. In this study, we propose a novel automatic CAD system to distinguish abnormal brains from normal brains in MRI scanning. Methods: The proposed method simplifies the task to a binary classification problem. We used discrete wavelet packet transform (DWPT to extract wavelet packet coefficients from MR brain images. Next, Shannon entropy (SE and Tsallis entropy (TE were harnessed to obtain entropy features from DWPT coefficients. Finally, generalized eigenvalue proximate support vector machine (GEPSVM, and GEPSVM with radial basis function (RBF kernel, were employed as classifier. We tested the four proposed diagnosis methods (DWPT + SE + GEPSVM, DWPT + TE + GEPSVM, DWPT + SE + GEPSVM + RBF, and DWPT + TE + GEPSVM + RBF on three benchmark datasets of Dataset-66, Dataset-160, and Dataset-255. Results: The 10 repetition of K-fold stratified cross validation results showed the proposed DWPT + TE + GEPSVM + RBF method excelled not only other three proposed classifiers but also existing state-of-the-art methods in terms of classification accuracy. In addition, the DWPT + TE + GEPSVM + RBF method achieved accuracy of 100%, 100%, and 99.53% on Dataset-66, Dataset-160, and Dataset-255, respectively. For Dataset-255, the offline learning cost 8.4430s and online prediction cost merely 0.1059s. Conclusions: We have proved the effectiveness of the proposed method, which achieved nearly 100% accuracy over three benchmark datasets.

  5. Superconducting magnets for HERA

    International Nuclear Information System (INIS)

    Wolff, S.

    1987-01-01

    The Hadron-Electron-Ring Accelerator (HERA) presently under construction at DESY, Hamburg, consists of an electron storage ring of 30 GeV and a proton storage ring of 820 GeV. Superconducting magnets are used for the proton ring. There are 416 superconducting bending magnets of 4.698 T central field and 8.824 m magnetic length, 224 superconducting quadrupoles of 91.2 T/m central gradient and many superconducting correction dipoles, quadrupoles and sextupoles. The main dipoles and quadrupoles consist of two-layer coils of 75 mm inner diameter clammed with aluminium (for the dipoles) or stainless steel laminations (for the quadrupoles). The collared coils are surrounded by a laminated cold iron yoke and supported inside a low loss cryostat. The protection system uses cold diodes to bypass the current around a quenching magnet. The magnets are cooled with one phase helium supplied by a 3 block central refrigeration system of 20 kW refrigeration power at 4.3 K. Two helium is returned through the magnets in good thermal contact with the one phase helium in the dipoles for temperature control. This paper describes the magnet system and gives the results obtained for prototype magnets

  6. An ultrasensitive lysozyme chemiluminescence biosensor based on surface molecular imprinting using ionic liquid modified magnetic graphene oxide/β-cyclodextrin as supporting material.

    Science.gov (United States)

    Duan, Huimin; Wang, Xiaojiao; Wang, Yanhui; Sun, Yuanling; Li, Jianbo; Luo, Chuannan

    2016-04-28

    In this work, ionic liquid modified Fe3O4@dopamine/graphene oxide/β-cyclodextrin (ILs-Fe3O4@DA/GO/β-CD) was used as supporting material to synthesize surface molecularly imprinted polymer (SMIP) which then was introduced into chemiluminescence (CL) to achieve an ultrasensitive and selective biosensor for determination of lysozyme (Lys). ILs and β-CD was applied to provide multiple binding sites to prepare Lys SMIP and Fe3O4@DA was designed to make the product separate easily and prevent the aggregation of GO which could improve absorption capacity for its large specific surface area. The ILs-Fe3O4@DA/GO/β-CD-SMIP showed high adsorption capacity (Q = 101 mg/g) to Lys in the adsorption isotherm assays. The adsorption equilibrium was reached within 10 min for all the concentrations, attributing to the binding sites situated exclusively at the surface, and the adsorption model followed Langmuir isotherm. Under the suitable CL conditions, the proposed biosensor could response Lys linearly in the range of 1.0 × 10(-9)-8.0 × 10(-8) mg/mL with a detection limit of 3.0 × 10(-10) mg/mL. When used in practical samples in determination of Lys, the efficient biosensor exhibited excellent result with the recoveries ranging from 94% to 112%. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Superconducting Magnets

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Starting from the beam requirements for accelerator magnets, we will outline the main issues and the physical limitations for producing strong and pure magnetic fields with superconductors. The seminar will mainly focus on the magnets for the accelerator, and give some hints on the magnets for the experiments. Prerequisite knowledge: Basic knowledge of Maxwell equations, and linear optics for particle accelerators (FODO cell, beta functions).

  8. Magnetic strings

    International Nuclear Information System (INIS)

    Chaves, Max

    2006-01-01

    The conception of the magnetic string is presented as an infinitely thin bundle of magnetic flux lines. The magnetic strings are surrounded by a film of current that rotates around them, and are a solution of Maxwell's equations. The magnetic potential contains a line singularity, and its stability can be established topologically. A few comments are added on the possibility that they may exist at a cosmological scale as relics of the Big Bang. (author) [es

  9. Magnetic Materials

    Science.gov (United States)

    Spaldin, Nicola A.

    2003-04-01

    Magnetic materials are the foundation of multi-billion dollar industries and the focus of intensive research across many disciplines. This book covers the fundamentals, basic theories and applications of magnetism and conventional magnetic materials. Based on a lecture course given by Nicola Spaldin in the Materials Department at University of California, Santa Barbara, the book is ideal for a one- semester course in magnetic materials. It contains numerous homework problems and solutions.

  10. Superconducting magnets

    International Nuclear Information System (INIS)

    1994-08-01

    This report discusses the following topics on superconducting magnets: D19B and -C: The next steps for a record-setting magnet; D20: The push beyond 10 T: Beyond D20: Speculations on the 16-T regime; other advanced magnets for accelerators; spinoff applications; APC materials development; cable and cabling-machine development; and high-T c superconductor at low temperature

  11. Superconducting magnets

    International Nuclear Information System (INIS)

    Willen, E.

    1996-01-01

    Superconducting dipole magnets for high energy colliders are discussed. As an example, the magnets recently built for the Relativistic Heavy Ion Collider at Brookhaven are reviewed. Their technical performance and the cost for the industry-built production dipoles are given. The cost data is generalized in order to extrapolate the cost of magnets for a new machine

  12. Targeted drug delivery to magnetic implants for therapeutic applications

    International Nuclear Information System (INIS)

    Yellen, Benjamin B.; Forbes, Zachary G.; Halverson, Derek S.; Fridman, Gregory; Barbee, Kenneth A.; Chorny, Michael; Levy, Robert; Friedman, Gary

    2005-01-01

    A new method for locally targeted drug delivery is proposed that employs magnetic implants placed directly in the cardiovascular system to attract injected magnetic carriers. Theoretical simulations and experimental results support the assumption that using magnetic implants in combination with externally applied magnetic field will optimize the delivery of magnetic drug to selected sites within a subject

  13. TFTR magnetic field design analyses

    International Nuclear Information System (INIS)

    Davies, K.; Iwinski, E.; McWhirter, J.M.

    1975-11-01

    The three main magnetic field windings for the TFTR are the toroidal field (TF) windings, the ohmic heating (OH) winding, and the equilibrium field (EF) winding. The following information is provided for these windings: (1) descriptions, (2) functions, (3) magnetic designs, e.g., number and location of turns, (4) design methods, and (5) descriptions of resulting magnetic fields. This report does not deal with the thermal, mechanical support, or construction details of the windings

  14. ISABELLE magnets. A brief description

    International Nuclear Information System (INIS)

    Dahl, P.F.

    1982-01-01

    The modified ISABELLE dipole design, adopted in the fall of 1981, is briefly described, and the assembly procedure and performance of initial prototype magnets summarized. The new magnets incorporate a cabled superconductor wound in a two-layer coil configuration, supported by a laminated split iron yoke. In all cases the prototype magnets reach short sample performance on the first quench, and exhibit virtually no training; eddy current effects are negligible as well

  15. How the Performance of a Superconducting Magnet is affected by the Connection between a small cooler and the Magnet

    International Nuclear Information System (INIS)

    Green, Michael A.

    2005-01-01

    As low temperature cryocoolers become more frequently used to cool superconducting magnets, it becomes increasingly apparent that the connection between the cooler and the magnet has an effect on the design and performance of the magnet. In general, the use of small coolers can be considered in two different temperature ranges; (1) from 3.8 to 4.8 K for magnet fabricated with LTS conductor and (2) from 18 to 35 K for magnets fabricated using HTS conductor. In general, both temperature ranges call for the use of a two-stage cooler. The best method for connecting a cooler to the magnet depends on a number of factors. The factors include: (1) whether the cooler must be used to cool down the magnet from room temperature, (2) whether the magnet must have one or more reservoirs of liquid cryogen to keep the magnet cold during a loss of cooling, and (3) constraints on the distance from the cooler cold heads and the magnet and its shield. Two methods for connecting low temperature coolers to superconducting magnets have been studied. The first method uses a cold strap to connect the cold heads directly to the loads. This method is commonly used for cryogen-free magnets. The second method uses a thermal siphon and liquid cryogens to make the connection between the load being cooled and the cold head. The two methods of transferring heat from the magnet to the cooler low temperature cold head are compared for the two temperature ranges given above

  16. Spectroscopy of jet-cooled methane in the lower icosad region: Empirical assignments of low-J´´ spectral lines from two-temperature analysis

    Czech Academy of Sciences Publication Activity Database

    Mašát, Milan; Pracna, Petr; Mondelain, D.; Kassi, S.; Campargue, A.; Votava, Ondřej

    2013-01-01

    Roč. 291, SI (2013), s. 9-15 ISSN 0022-2852 R&D Projects: GA ČR GA13-11635S Institutional support: RVO:61388955 Keywords : methane * supersonic jet expansion * icosad Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.529, year: 2013

  17. Tribology of magnetic storage systems

    Science.gov (United States)

    Bhushan, Bharat

    1992-01-01

    The construction and the materials used in different magnetic storage devices are defined. The theories of friction and adhesion, interface temperatures, wear, and solid-liquid lubrication relevant to magnetic storage systems are presented. Experimental data are presented wherever possible to support the relevant theories advanced.

  18. Experimental test of magnetic photons

    International Nuclear Information System (INIS)

    Lakes, R.S.

    2004-01-01

    A 'magnetic' photon hypothesis associated with magnetic monopoles is tested experimentally. These photons are predicted to easily penetrate metal. Experimentally the optical transmittance T of a metal foil was less than 2x10-17. The hypothesis is not supported since it predicts T=2x10-12

  19. Support facilities

    International Nuclear Information System (INIS)

    Williamson, F.S.; Blomquist, J.A.; Fox, C.A.

    1977-01-01

    Computer support is centered on the Remote Access Data Station (RADS), which is equipped with a 1000 lpm printer, 1000 cpm reader, and a 300 cps paper tape reader with 500-foot spools. The RADS is located in a data preparation room with four 029 key punches (two of which interpret), a storage vault for archival magnetic tapes, card files, and a 30 cps interactive terminal principally used for job inquiry and routing. An adjacent room provides work space for users, with a documentation library and a consultant's office, plus file storage for programs and their documentations. The facility has approximately 2,600 square feet of working laboratory space, and includes two fully equipped photographic darkrooms, sectioning and autoradiographic facilities, six microscope cubicles, and five transmission electron microscopes and one Cambridge scanning electron microscope equipped with an x-ray energy dispersive analytical system. Ancillary specimen preparative equipment includes vacuum evaporators, freeze-drying and freeze-etching equipment, ultramicrotomes, and assorted photographic and light microscopic equipment. The extensive physical plant of the animal facilities includes provisions for holding all species of laboratory animals under controlled conditions of temperature, humidity, and lighting. More than forty rooms are available for studies of the smaller species. These have a potential capacity of more than 75,000 mice, or smaller numbers of larger species and those requiring special housing arrangements. There are also six dog kennels to accommodate approximately 750 dogs housed in runs that consist of heated indoor compartments and outdoor exercise areas

  20. Electromagnetic force support for thermonuclear device

    International Nuclear Information System (INIS)

    Sugimoto, Makoto; Yoshida, Kiyoshi; Tachikawa, Nobuo; Omori, Junji.

    1992-01-01

    The device of the present invention certainly supports electromagnetic force exerted on toroidal magnetic field coils. That is, a pair of support members are disposed being abutted against each other between toroidal magnetic field coils disposed radially in the torus direction of a vacuum vessel. Both of the support members are connected under an insulative state by way of an insulative structural portion having an insulation key. In addition, each of the support members and each of the toroidal magnetic field coils are connected by electromagnetic force support portions having a metal taper key and a metal spacer and supporting the electromagnetic force. With such a constitution, the electromagnetic force exerted on the toroidal magnetic field coils is supported by the electromagnetic force support portion having the metal taper key and the metal spacer. As a result, stable electromagnetic force support can be attained. Further, since the insulative structural portion has the insulation key, it can be assembled easily. (I.S.)

  1. Magnetic Hysteresis

    CERN Document Server

    Della Torre, Edward

    2000-01-01

    Understanding magnetic hysteresis is vitally important to the development of the science of magnetism as a whole and to the advancement of practical magnetic device applications. Magnetic Hysteresis, by acclaimed expert Edward Della Torre, presents a clear explanation of the connection between physical principles and phenomenological hysteresis. This comprehensive book offers a lucid analysis that enables the reader to save valuable time by reducing trial-and-error design. Dr. Della Torre uses physical principles to modify Preisach modeling and to describe the complex behavior of magnetic media. While Pretsach modeling is a useful mathematical tool, its congruency and deletion properties present limitations to accurate descriptions of magnetic materials. Step-by-step, this book describes the modifications that can overcome these limitations. Special attention is given to the use of feedback around a Preisach transducer to remove the congruency restriction, and to the use of accommodation and aftereffect model...

  2. Planetary Magnetism

    Science.gov (United States)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  3. Magnetic levitation

    OpenAIRE

    Štěpánek,B.; Paleček,M.

    2015-01-01

    The paper deals with magnetism and its influence on superconducting materials. We describe the discovery and development of superconductivity, superconducting levitation and its use in future technology - called. MAGLEV speed trains. We show the interaction of the magnetic field of a strong neodymium magnet and high-temperature superconductor, cooled with liquid nitrogen at about -200 ° C. Of superconductors at this temperature becomes perfect diamagnetic material. That is ejected from the ma...

  4. Magnet Systems

    Data.gov (United States)

    Federal Laboratory Consortium — Over the decades, Fermilab has been responsible for the design, construction, test and analysis of hundreds of conventional and superconducting accelerator magnets...

  5. Planetary Magnetism

    International Nuclear Information System (INIS)

    Russell, C.T.

    1980-01-01

    Planetary spacecraft have now probed the magnetic fields of all the terrestrial planets, the moon, Jupiter, and Saturn. These measurements reveal that dynamos are active in at least four of the planets, Mercury, the earth, Jupiter, and Saturn but that Venus and Mars appear to have at most only very weak planetary magnetic fields. The moon may have once possessed an internal dynamo, for the surface rocks are magnetized. The large satellites of the outer solar system are candidates for dynamo action in addition to the large planets themselves. Of these satellites the one most likely to generate its own internal magnetic field is Io

  6. Magnetics Processing

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetics Processing Lab equipped to perform testing of magnetometers, integrate them into aircraft systems, and perform data analysis, including noise reduction...

  7. Magnetic starspots

    International Nuclear Information System (INIS)

    Jahn, K.; Stepien, K.

    1984-01-01

    Models of large magnetic starspots with an axisymmetric untwisted magnetic field on late type stars are discussed. It is assumed that the magnetic field reduces the efficiency of convection inside the spot. A unique relation between the stellar mass and the difference of effective temperatures of the spot and the surrounding photosphere is adopted from observations. It is equivalent to the reduction of a s (the mixing length theory parameter) inside the spot to the value 0.15 independently of the stellar mass. The surface magnetic field of large spots covering a considerable part of the stellar surface is a decreasing function of the magnetic flux. Hence a coverage of a star by magnetic regions rapidly increases as a function of the magnetic flux in a narrow range of fluxes. This behaviour can explain the Vaughan-Preston gap. Recent observations of magnetic fields on G and K type stars are in a good agreement with our predictions. 35 refs., 3 figs., 4 tabs. (author)

  8. Magnetic superlattices

    International Nuclear Information System (INIS)

    Kwo, J.; Hong, M.; McWhan, D.B.; Yafet, Y.; Fleming, R.M.; DiSalvo, F.J.; Waszczak, J.V.; Majkrzak, C.F.; Gibbs, D.; Goldmann, A.I.; Boni, P.; Bohr, J.; Grimm, H.; Bohr, J.; Chien, C.L.; Grimm, H.; Cable, J.W.

    1988-01-01

    Single crystal magnetic rare earth superlattices were synthesized by molecular beam epitaxy. The studies include four rare earth systems: Gd-Y, Dy-Y, Ho-Y, and Gd-Dy. The magnetic properties and the long-range spin order are reviewed in terms of the interfacial behavior, and the interlayer exchange coupling across Y medium

  9. The Creation of a Strong Magnetic Field by Means of Large Magnetic Blocks from NdFeB Magnets in Opposing Linear Halbach Arrays

    Czech Academy of Sciences Publication Activity Database

    Žežulka, Václav; Straka, Pavel

    2016-01-01

    Roč. 21, č. 3 (2016), 364-373 ISSN 1226-1750 Institutional support: RVO:67985891 Keywords : magnetic field * permanent magnets * NdFeB magnets * Halbach Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.713, year: 2016 http://komag.org/journal/

  10. Magnetic Field

    DEFF Research Database (Denmark)

    Olsen, Nils

    2015-01-01

    he Earth has a large and complicated magnetic field, the major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. Magnetic field observations provide one of the few tools for remote sensing the Earth’s deep interior, especially regarding the dynamics...... of the fluid flow at the top of the core. However, what is measured at or near the surface of the Earth is the superposition of the core field and fields caused by magnetized rocks in the Earth’s crust, by electric currents flowing in the ionosphere, magnetosphere, and oceans, and by currents induced...... in the Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field...

  11. Steady- and transient-state analysis of fully ceramic microencapsulated fuel with randomly dispersed tristructural isotropic particles via two-temperature homogenized model-II: Applications by coupling with COREDAX

    International Nuclear Information System (INIS)

    Lee, Yoon Hee; Cho, Bum Hee; Cho, Nam Zin

    2016-01-01

    In Part I of this paper, the two-temperature homogenized model for the fully ceramic microencapsulated fuel, in which tristructural isotropic particles are randomly dispersed in a fine lattice stochastic structure, was discussed. In this model, the fuel-kernel and silicon carbide matrix temperatures are distinguished. Moreover, the obtained temperature profiles are more realistic than those obtained using other models. Using the temperature-dependent thermal conductivities of uranium nitride and the silicon carbide matrix, temperature-dependent homogenized parameters were obtained. In Part II of the paper, coupled with the COREDAX code, a reactor core loaded by fully ceramic microencapsulated fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure is analyzed via a two-temperature homogenized model at steady and transient states. The results are compared with those from harmonic- and volumetric-average thermal conductivity models; i.e., we compare keff eigenvalues, power distributions, and temperature profiles in the hottest single channel at a steady state. At transient states, we compare total power, average energy deposition, and maximum temperatures in the hottest single channel obtained by the different thermal analysis models. The different thermal analysis models and the availability of fuel-kernel temperatures in the two-temperature homogenized model for Doppler temperature feedback lead to significant differences

  12. Superconducting magnet for EHS

    International Nuclear Information System (INIS)

    Desportes, H.; Duthil, R.; Celebart, J.C.; Leschevin, C.; Lesmond, C.

    1980-10-01

    A 55 Mjoules Magnet has been installed and commissioned at CERN for the Rapid Cycling Bubble Chamber of the EHS experiment (European Hybrid Spectrometer). The magnet consists of two separate circular coils, assembled with their axis horizontal into a massive iron structure, and provides a central field of 3 T in a useful volume of 1.4 m in diameter and 0.82 m gap with a completely azimuthally free acceptance of +-18 deg from the central plane. Special features of the magnet, which is otherwise of a classical pancake-type, bath-cooled design, are a relatively high average current density (2500 Amp/cm 2 ) and an elaborate support structure required by the particular force configuration within the iron structure

  13. Lunar magnetism

    Science.gov (United States)

    Hood, L. L.; Sonett, C. P.; Srnka, L. J.

    1984-01-01

    Aspects of lunar paleomagnetic and electromagnetic sounding results which appear inconsistent with the hypothesis that an ancient core dynamo was the dominant source of the observed crustal magnetism are discussed. Evidence is summarized involving a correlation between observed magnetic anomalies and ejecta blankets from impact events which indicates the possible importance of local mechanisms involving meteoroid impact processes in generating strong magnetic fields at the lunar surface. A reply is given to the latter argument which also presents recent evidence of a lunar iron core.

  14. Investigation of Anisotropic Bonded Magnets in Permanent Magnet Machine Applications

    Science.gov (United States)

    Khazdozian, H. A.; McCall, S. K.; Kramer, M. J.; Paranthaman, M. P.; Nlebedim, I. C.

    Rare earth elements (REE) provide the high energy product necessary for permanent magnets, such as sintered Nd2Fe14B, in many applications like wind energy generators. However, REEs are considered critical materials due to risk in their supply. To reduce the use of critical materials in permanent magnet machines, the performance of anisotropic bonded NdFeB magnets, aligned under varying magnetic field strength, was simulated using 3D finite element analysis in a 3MW direct-drive permanent magnet generator (DDPMG), with sintered N42 magnets used as a baseline for comparison. For direct substitution of the anisotropic bonded magnets, approximately 85% of the efficiency of the baseline model was achieved, irrespective of the alignment field. The torque and power generation of the DDPMG was not found to vary significantly with increase in the alignment field. Finally, design changes were studied to allow for the achievement of rated torque and power with the use of anisotropic bonded magnets, demonstrating the potential for reduction of critical materials in permanent magnets for renewable energy applications. This work was supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office.

  15. Rare earth permanent magnet with easy magnetization

    International Nuclear Information System (INIS)

    Kim, A.S.; Camp, F.E.

    1998-01-01

    Rare earth permanent magnets have high energy products and coercivities, and thus the volume miniaturization of magnetic devices has been possible with improved magnetic performance. Although the high energy products of these rare earth permanent magnets provide substantial advantages for magnetic design and application, the strong magnetic force of the magnetized magnets makes assembly difficult. Therefore, a special device is needed to assemble the magnetized magnets. On the other hand, unmagnetized magnets are assembled and then they are magnetized. The assembled magnets are generally more difficult to magnetize than unassembled magnets because a much less effective magnetic field may be applied to them. This is particularly true for the rare earth permanent magnets because they usually need a much higher magnetic field to be fully magnetized than alnico or ferrite magnets. To obtain optimum magnetic properties, the required minimum magnetizing fields for SmCo 5 , Sm 2 TM 17 and Nd 2 Fe 14 B magnets were reported as 25-30 kOe, 45-60 kOe and 25-30 kOe, respectively. If the required magnetizing field for full saturation could be lowered, the effective utilization of magnetic properties would be maximized and the magnetic design option could be expanded with reduced restrictions. To meet this demand, we have sought to lower the field required for full magnetic saturation, and found that an increase in Dy content in R-(Fe,Co,Cu)-B type magnets lowers the field required for full saturation as well as improves the temperature stability. By increasing the H ci with Dy addition from 14 kOe to 24 and 34 kOe, the field required for full magnetic saturation decreases from about 20 to 15 and 10 kOe, respectively. This dual benefit will open up new application areas with more freedom for magnet design options. The mechanism for the lower magnetizing fields will be discussed. (orig.)

  16. Overdentures with magnetic attachments.

    Science.gov (United States)

    Gillings, B R; Samant, A

    1990-10-01

    Magnets were used only occasionally for dental purposes several decades ago. Since the advent of rare earth magnet alloys, however, intraoral magnets are shaping the course of aesthetics and retention for both complete and removable partial overdentures. Their benefits include simplicity, low cost, self-adjustment, inherent stress breaking, automatic reseating after denture displacement, comparative freedom of lateral denture movement, a low potential for trauma to the retained roots, and elimination of the need for adjustment in service. The clinical procedures involved in their application do not require any special skills, and the options offered by the various manufacturers give the dentist a wide variety of choices in selecting an appropriate treatment plan. Clinical experience has shown that magnetic retention offers an economical alternative for teeth that would otherwise require expensive or extensive restorative treatment, and can be used as an effective and often superior replacement for failed bridgework. Finally, it is clear that overdenture treatment per se is a valuable option for the dentist, and the use of magnets expands this option to the retention of tooth roots that might otherwise be scheduled for extraction. The natural tooth root, even if periodontally involved, can serve as a useful aid in denture support and retention, and should be regarded as at least as good as, and in most cases superior to, an implant. It is also much less expensive.

  17. Magnetic monopoles

    International Nuclear Information System (INIS)

    Fryberger, D.

    1984-12-01

    In this talk on magnetic monopoles, first the author briefly reviews some historical background; then, the author describes what several different types of monopoles might look like; and finally the author discusses the experimental situation. 81 references

  18. Quantum magnetism

    CERN Document Server

    Richter, Johannes; Farnell, Damian; Bishop, Raymod

    2004-01-01

    The investigation of magnetic systems where quantum effects play a dominant role has become a very active branch of solid-state-physics research in its own right. The first three chapters of the "Quantum Magnetism" survey conceptual problems and provide insights into the classes of systems considered, namely one-dimensional, two-dimensional and molecular magnets. The following chapters introduce the methods used in the field of quantum magnetism, including spin wave analysis, exact diagonalization, quantum field theory, coupled cluster methods and the Bethe ansatz. The book closes with a chapter on quantum phase transitions and a contribution that puts the wealth of phenomena into the context of experimental solid-state physics. Closing a gap in the literature, this volume is intended both as an introductory text at postgraduate level and as a modern, comprehensive reference for researchers in the field.

  19. Magnetic monopoles

    International Nuclear Information System (INIS)

    Preskill, J

    1984-01-01

    This article offers a review of the physics of the magnetic monopole, which, although as yet unseen, offers sound theoretical reasons to believe that it must exist. Several theories are presented and equations are given. The idea that magnetic monopoles, stable particles carrying magnetic charges, ought to exist has, according to the authors, proved to be very durable. One theory presented demonstrates the consistency of magnetic monopoles with quantum electrodynamics. Another theory demonstrates the necessity of monopoles in grand unified gauge theories. The authors believe it is reasonable to expect the monopole to be an extremely heavy stable elementary particle. The stability of the classical monopole solution given is ensured by a topological principle explained

  20. Magnetic Bacteria.

    Science.gov (United States)

    Nelson, Jane Bray; Nelson, Jim

    1992-01-01

    Describes the history of Richard Blakemore's discovery of magnetotaxic organisms. Discusses possible reasons why the magnetic response in bacteria developed. Proposes research experiments integrating biology and physics in which students investigate problems using cultures of magnetotaxic organisms. (MDH)

  1. Study of magnetization switching in coupled magnetic nanostructured systems

    Science.gov (United States)

    Radu, Cosmin

    A study of magnetization dynamics experiments in nanostructured materials using the rf susceptibility tunnel diode oscillator (TDO) method is presented along with a extensive theoretical analysis. An original, computer controlled experimental setup that measures the change in susceptibility with the variation in external magnetic field and sample temperature was constructed. The TDO-based experiment design and construction is explained in detail, showing all the elements of originality. This experimental technique has proven reliable for characterizing samples with uncoupled magnetic structure and various magnetic anisotropies like: CrO2, FeCo/IrMn and Co/SiO2 thin films. The TDO was subsequently used to explore the magnetization switching in coupled magnetic systems, like synthetic antiferromagnet (SAF) structures. Magnetoresistive random access memory (MRAM) is an important example of devices where the use of SAF structure is essential. To support the understanding of the SAF magnetic behavior, its configuration and application are reviewed and more details are provided in an appendix. Current problems in increasing the scalability and decreasing the error rate of MRAM devices are closely connected to the switching properties of the SAF structures. Several theoretical studies that were devoted to the understanding of the concepts of SAF critical curve are reviewed. As one can notice, there was no experimental determination of SAF critical curve, due to the difficulties in characterizing a magnetic coupled structure. Depending of the coupling strength between the two ferromagnetic layers, on the SAF critical curve one distinguishes several new features, inexistent in the case of uncoupled systems. Knowing the configuration of the SAF critical curve is of great importance in order to control its switching characteristics. For the first time a method of experimentally recording the critical curve for SAF is proposed in this work. In order to overcome technological

  2. Magnetic modification of diamagnetic agglomerate forming powder materials

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Baldíková, Eva; Pospíšková, K.; Šafaříková, Miroslava

    2016-01-01

    Roč. 29, December (2016), s. 169-171 ISSN 1674-2001 Institutional support: RVO:60077344 Keywords : magnetic modification * magnetic separation * powdered material * magnetic iron oxide * microwave assisted synthesis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.621, year: 2016

  3. LHC magnets

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Preparations for the LHC proton collider to be built in CERN's LEP tunnel continue to make good progress. In particular development work for the high field superconducting magnets to guide the almost 8 TeVproton beams through the 'tight' curve of the 27-kilometre ring are proceeding well, while the magnet designs and lattice configuration are evolving in the light of ongoing experience. At the Evian LHC Experiments meeting, this progress was covered by Giorgio Brianti

  4. Triode for magnetic flux quanta.

    Science.gov (United States)

    Vlasko-Vlasov, Vitalii; Colauto, Fabiano; Benseman, Timothy; Rosenmann, Daniel; Kwok, Wai-Kwong

    We designed a magnetic vortex triode using an array of closely spaced soft magnetic Py strips on top of a Nb superconducting film. The strips act similar to the grid electrode in an electronic triode, where the electron flow is regulated by the grid potential. In our case, we tune the vortex motion by the magnetic charge potential of the strip edges, using a small magnetic field rotating in the film plane. The magnetic charges emerging at the stripe edges and proportional to the magnetization component perpendicular to the edge direction, form linear potential barriers or valleys for vortex motion in the superconducting layer. We directly imaged the normal flux penetration into the Py/Nb films and observed retarded or accelerated entry of the normal vortices depending on the in-plane magnetization direction in the stripes. The observed flux behavior is explained by interactions between magnetically charged lines and magnetic monopoles of vortices similar to those between electrically charged strings and point charges. We discuss the possibility of using our design for manipulation of individual vortices in high-speed, low-power superconducting electronic circuits. This work was supported by the U.S. DOE, Office of Science, Materials Sciences and Engineering Division, and Office of BES (contract DE-AC02-06CH11357). F. Colauto thanks the Sao Paulo Research Foundation FAPESP (Grant No. 2015/06.085-3).

  5. Superconducting magnet

    Science.gov (United States)

    1985-01-01

    Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.

  6. Cryogenic magnet case and distributed structural materials for high-field superconducting magnets

    International Nuclear Information System (INIS)

    Summers, L.T.; Miller, J.R.; Kerns, J.A.; Myall, J.O.

    1987-01-01

    The superconducting magnets of the Tokamak Ignition/Burn Experimental Reactor (TIBER II) will generate high magnetic fields over large bores. The resulting electromagnetic forces require the use of large volumes of distributed steel and thick magnet case for structural support. Here we review the design allowables, calculated loads and forces, and structural materials selection for TIBER II. 7 refs., 2 figs., 3 tabs

  7. One-step preparation of magnetically responsive materials from non-magnetic powders

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Horská, Kateřina; Pospíšková, K.; Šafaříková, Miroslava

    2012-01-01

    Roč. 229, OCT 2012 (2012), s. 285-289 ISSN 0032-5910 R&D Projects: GA ČR(CZ) GAP503/11/2263; GA MŠk LH12190 Institutional support: RVO:67179843 Keywords : magnetic fluid * magnetic separations * magnetic modification * spent tea leaves * montmorillonite Subject RIV: BO - Biophysics Impact factor: 2.024, year: 2012

  8. Mechanochemical synthesis of magnetically responsive materials from non-magnetic precursors

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Horská, Kateřina; Pospíšková, K.; Filip, J.; Šafaříková, Miroslava

    2014-01-01

    Roč. 126, JUL 2014 (2014), s. 202-206 ISSN 0167-577X R&D Projects: GA MŠk LH12190 Institutional support: RVO:67179843 Keywords : mechanochemistry * magnetic materialm * magnetic adsorbents * magnetic carriers Subject RIV: CE - Biochemistry Impact factor: 2.489, year: 2014

  9. The Design of a Device for the Generation of a Strong Magnetic Field in an Air Gap Using Permanent Magnets

    Czech Academy of Sciences Publication Activity Database

    Žežulka, Václav; Straka, Pavel

    2017-01-01

    Roč. 22, č. 2 (2017), s. 250-256 ISSN 1226-1750 Institutional support: RVO:67985891 Keywords : magnet ic field * permanent magnet s * NdFeB magnet s * Halbach arrays Subject RIV: BM - Solid Matter Physics ; Magnet ism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.713, year: 2016

  10. Tech Support.

    Science.gov (United States)

    Beem, Kate

    2002-01-01

    Discusses technology-support issues, including staff training, cost, and outsourcing. Describes how various school districts manage technology-support services. Features the Technology Support Index, developed by the International Society for Technology in Education, to gauge the operation of school district technology-support programs. (PKP)

  11. Magnetic power piston fluid compressor

    Science.gov (United States)

    Gasser, Max G. (Inventor)

    1994-01-01

    A compressor with no moving parts in the traditional sense having a housing having an inlet end allowing a low pressure fluid to enter and an outlet end allowing a high pressure fluid to exit is described. Within the compressor housing is at least one compression stage to increase the pressure of the fluid within the housing. The compression stage has a quantity of magnetic powder within the housing, is supported by a screen that allows passage of the fluid, and a coil for selectively providing a magnetic field across the magnetic powder such that when the magnetic field is not present the individual particles of the powder are separated allowing the fluid to flow through the powder and when the magnetic field is present the individual particles of the powder pack together causing the powder mass to expand preventing the fluid from flowing through the powder and causing a pressure pulse to compress the fluid.

  12. Magnetic field effect on flow parameters of blood along with magnetic particles in a cylindrical tube

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shashi, E-mail: shashisharma1984@gmail.com; Singh, Uaday; Katiyar, V.K.

    2015-03-01

    In this paper, the effect of external uniform magnetic field on flow parameters of both blood and magnetic particles is reported through a mathematical model using magnetohydrodynamics (MHD) approach. The fluid is acted upon by a varying pressure gradient and an external uniform magnetic field is applied perpendicular to the cylindrical tube. The governing nonlinear partial differential equations were solved numerically and found that flow parameters are affected by the influence of magnetic field. Further, artificial blood (75% water+25% Glycerol) along with iron oxide magnetic particles were prepared and transported into a glass tube with help of a peristaltic pump. The velocity of artificial blood along with magnetic particles was experimentally measured at different magnetic fields ranging from 100 to 600 mT. The model results show that the velocity of blood and magnetic particles is appreciably reduced under the influence of magnetic field, which is supported by our experimental results. - Highlights: • Effect of magnetic field on flow parameters of blood and magnetic particles is studied. • The velocity of blood and magnetic particles is appreciably reduced under a magnetic field. • Experimental results of the velocity of magnetic particles within blood support the mathematical model results.

  13. [International Thermonuclear Experimental Reactor support

    International Nuclear Information System (INIS)

    Dean, S.O.

    1990-01-01

    This report summarizes the activities under LLNL Purchase Order B089367, the purpose of which is to ''support the University/Lawrence Livermore National Laboratory Magnetic Fusion Program by evaluating the status of research relative to other national and international programs and assist in long-range plans and development strategies for magnetic fusion in general and for ITER in particular.'' Two specific subtasks are included: ''to review the LLNL Magnet Technology Development Program in the context of the International Thermonuclear Experimental Reactor Design Study'' and to ''assist LLNL to organize and prepare materials for an International Thermonuclear Experimental Reactor Design Study information meeting.''

  14. High-Field Accelerator Magnets

    International Nuclear Information System (INIS)

    Rijk, G de

    2014-01-01

    In this lecture an overview is given of the present technology for high field accelerator magnets. We indicate how to get high fields and what are the most important parameters. The available conductors and their limitations are presented followed by the most relevant types of coils and support structures. We conclude by showing a number of recent examples of development magnets which are either pure R&D objects or models for the LHC luminosity upgrade

  15. Magnetizing of permanent magnet using HTS bulk magnet

    International Nuclear Information System (INIS)

    Oka, Tetsuo; Muraya, Tomoki; Kawasaki, Nobutaka; Fukui, Satoshi; Ogawa, Jun; Sato, Takao; Terasawa, Toshihisa

    2011-01-01

    A demagnetized Nd-Fe-B permanent magnet was scanned just above the magnetic pole containing the HTS bulk magnet, generating a magnetic field of 3.27 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. We examined the magnetic field distributions when the magnetic poles were scanned twice to activate the magnetic plates inversely with various overlap distances between the tracks of the HTS bulk magnet. The magnetic field of the 'rewritten' magnet reached the values of the magnetically saturated region of the material, showing steep gradients at the border of each magnetic pole. As a replacement for conventional pulse field magnetizing methods, this technique is proposed to expand the degree of freedom in the design of electromagnetic devices, and is proposed as a novel practical method for magnetizing rare-earth magnets, which have excellent magnetic performance and require intense fields of more than 3 T to be activated. (author)

  16. Magnetic spring based on two permanent magnets

    International Nuclear Information System (INIS)

    Tsivilitsin, V.Yu.; Mil'man, Yu.V.; Goncharuk, V.A.; Bondar, I.B.

    2011-01-01

    A new type of the magnetic spring construction 'two permanent magnets' has been considered. A mathematical expression for the estimation of a pulling-in force has been offered. This expression is verified experimentally on the produced operating magnetic spring. The theoretical and experimental data are in good accordance. A number of advantages of the magnetic spring over the construction 'permanent magnet - magnetic circuit' such as an insignificant friction force between two magnets and a higher pulling force are discussed.

  17. Supraconductor magnet for optical spectroscopy

    International Nuclear Information System (INIS)

    Levy, G.; Buhler, S.

    1985-01-01

    A superconductive magnet system for optic spectroscopy has been built. It includes an elaborate support structure, a LN2/LHe cryostat with its supplies and controls and a superconductive magnet of the split pole type equipped with a superconductive switch. A vertically introduced sample in the LHe bath, on request subcooled down to 2.2K is observed through two optical passages. Magnet characteristics are as follows : - clear bore 35mm - clear split 20mm - central field 6.33 Teslas - homogeneity over 10mm D.S.V.: 1% [fr

  18. Two-temperature PCR for Microfluidics

    KAUST Repository

    Kodzius, Rimantas

    2010-05-01

    Since its invention in 1983, polymerase chain reaction (PCR) has been the method of choice for DNA amplification. Successful PCR depends on the optimization of several parameters, which is a cumbersome task due to the many variables (conditions and compon

  19. Two-temperature PCR for Microfluidics

    KAUST Repository

    Kodzius, Rimantas; Chang, Donald Choy; Sheng, Ping; Wen, Weijia; Wu, Jinbo; Xiao, Kang; Yu, Vivian

    2010-01-01

    Since its invention in 1983, polymerase chain reaction (PCR) has been the method of choice for DNA amplification. Successful PCR depends on the optimization of several parameters, which is a cumbersome task due to the many variables (conditions and compon

  20. Magnetic reheating

    Science.gov (United States)

    Saga, Shohei; Tashiro, Hiroyuki; Yokoyama, Shuichiro

    2018-02-01

    We provide a new bound on the amplitude of primordial magnetic fields (PMFs) by using a novel mechanism, magnetic reheating. The damping of the magnetohydrodynamics fluid motions in a primordial plasma brings the dissipation of the PMFs. In the early Universe with z ≳ 2 × 106, cosmic microwave background (CMB) photons are quickly thermalized with the dissipated energy and shift to a different Planck distribution with a new temperature. In other words, the PMF dissipation changes the baryon-to-photon number ratio, and we name such a process magnetic reheating. From the current baryon-to-photon number ratio obtained from the big bang nucleosynthesis and CMB observations, we put the strongest constraint on the PMFs on small scales which CMB observations cannot access, B0 ≲ 1.0 μG at the scales 104 generation mechanisms of PMFs in the early Universe.

  1. Magnetic monopoles and dipoles

    CERN Multimedia

    Dominguez, Daniel

    2016-01-01

    Conventional bar magnets are also called ‘magnetic dipoles’ because they have two magnetic poles (a “North” and a “South” magnetic pole, like the Earth). In theory, “magnetic monopoles” could exist that act like an isolated “magnetic charge”, i.e. either a “North” or a “South” magnetic pole.

  2. Designing a magnet for magnetic refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerk, R

    2010-03-15

    This thesis investigates the design and optimization of a permanent magnet assembly for use in a magnetic refrigeration device. The heart of magnetic refrigeration is the adiabatic temperature change in the magnetocaloric material which is caused by the magnetic field. In order to design an ideal magnet assembly the magnetocaloric materials and the refrigeration process itself and their properties and performance as a function of magnetic field are investigated. For the magnetocaloric materials it is the magnetization, specific heat capacity and adiabatic temperature that are investigated as functions of the magnetic field. Following this the process utilized by a magnetic refrigerator to provide cooling is investigated using a publicly available one dimensional numerical model. This process is called active magnetic regeneration (AMR). The aim is to determine the performance of the AMR as a function of the magnetic field in order to learn the properties of the optimal magnet assembly. The performance of the AMR as a function of the synchronization and width of the magnetic field with respect to the AMR cycle, the ramp rate and maximum value of the magnetic field are investigated. Other published magnet designs used in magnetic refrigeration devices are also evaluated, using a figure of merit based on the properties of the investigated magnetocaloric materials, to learn the properties of the best magnet designs to date. Following this investigation the Halbach cylinder, which is a hollow permanent magnet cylinder with a rotating remanent flux density, is investigated in detail as it forms the basis of many magnet designs used in magnetic refrigeration. Here the optimal dimensions of a Halbach cylinder, as well as analytical calculations of the magnetic field for a Halbach cylinder of infinite length, are presented. Once it has been determined which properties are desirable for a magnet used in magnetic refrigeration the design of a new magnet is described. This is

  3. Magnetic collectors

    International Nuclear Information System (INIS)

    Frew, J.D.

    1980-01-01

    A collector for use in a magnetic separator is formed by isostatically pressing a metal which is resistant to attack by acid about ferromagnetic bodies whereby to encase the bodies in the metal. In one arrangement, as shown, the bodies are encapsulated between inner and outer cylinders. In other arrangements the encapsulating metal is in the form of a tube or planar sheets. The bodies are of Fe or an oxide thereof and the acid-resistant metal parts may be of stainless steel, Au, Pt, Pa or an alloy. The magnetic separator is intended for use in removing particles from liquids during the reprocessing of nuclear fuel materials. (author)

  4. Random magnetism

    International Nuclear Information System (INIS)

    Tsallis, C.

    1980-03-01

    The 'ingredients' which control a phase transition in well defined system as well as in random ones (e.g. random magnetic systems) are listed and discussed within a somehow unifying perspective. Among these 'ingredients' we find the couplings and elements responsible for the cooperative phenomenon, the topological connectivity as well as possible topological incompatibilities, the influence of new degrees of freedom, the order parameter dimensionality, the ground state degeneracy and finally the 'quanticity' of the system. The general trends, though illustrated in magnetic systems, essentially hold for all phase transitions, and give a basis for connection of this area with Field theory, Theory of dynamical systems, etc. (Author) [pt

  5. Random magnetism

    International Nuclear Information System (INIS)

    Tsallis, C.

    1981-01-01

    The 'ingredients' which control a phase transition in well defined systems as well as in random ones (e.q. random magnetic systems) are listed and discussed within a somehow unifying perspective. Among these 'ingredients' the couplings and elements responsible for the cooperative phenomenon, the topological connectivity as well as possible topological incompatibilities, the influence of new degrees of freedom, the order parameter dimensionality, the ground state degeneracy and finally the 'quanticity' of the system are found. The general trends, though illustrated in magnetic systems, essentially hold for all phase transitions, and give a basis for connection of this area with Field theory, Theory of dynamical systems, etc. (Author) [pt

  6. Magnetic particles

    Science.gov (United States)

    Chang, Manchium (Inventor); Colvin, Michael S. (Inventor)

    1989-01-01

    Magnetic polymer particles are formed by swelling porous, polymer particles and impregnating the particles with an aqueous solution of precursor magnetic metal salt such as an equimolar mixture of ferrous chloride and ferric chloride. On addition of a basic reagent such as dilute sodium hydroxide, the metal salts are converted to crystals of magnetite which are uniformly contained througout the pores of the polymer particle. The magnetite content can be increased and neutral buoyancy achieved by repetition of the impregnaton and neutralization steps to adjust the magnetite content to a desired level.

  7. Nutritional Support

    Science.gov (United States)

    Nutritional support is therapy for people who cannot get enough nourishment by eating or drinking. You may need ... absorb nutrients through your digestive system You receive nutritional support through a needle or catheter placed in your ...

  8. Magnetics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetics Research Facility houses three Helmholtz coils that generate magnetic fields in three perpendicular directions to balance the earth's magnetic field....

  9. Magnetic translator bearings

    Science.gov (United States)

    Hockney, Richard L. (Inventor); Downer, James R. (Inventor); Eisenhaure, David B. (Inventor); Hawkey, Timothy J. (Inventor); Johnson, Bruce G. (Inventor)

    1990-01-01

    A magnetic bearing system for enabling translational motion includes a carriage and a shaft for movably supporting the carriage; a first magnetic bearing fixed to one of the carriage and shaft and slidably received in a first channel of the other of the carriage and shaft. The first channel is generally U shaped with two side walls and a back wall. The magnetic bearing includes a pair of spaced magnetic pole pieces, each pole piece having a pair of electromagnetic coils mounted on poles on opposite ends of the pole piece proximate the side walls, and a third electromagnetic coil mounted on a pole of the pole piece proximate the backwall; a motion sensor for sensing translational motion along two axes and rotationally about three axes of the carriage and shaft relative to each other; and a correction circuit responsive to the sensor for generating a correction signal to drive the coils to compensate for any misalignment sensed between the carriage and the shaft.

  10. Superconducting energy storage magnet

    International Nuclear Information System (INIS)

    Eyssa, Y.M.; Boom, R.W.; Young, W.C.; McIntosh, G.E.; Abdelsalam, M.K.

    1986-01-01

    A superconducting magnet is described comprising: (a) a first, outer coil of one layer of conductor including at least a superconducting composite material; (b) a second, inner coil of one layer of conductor including at least a superconducting composite material. The second coil disposed adjacent to the first coil with each turn of the second inner coil at substantially the same level as a turn on the first coil; (c) an inner support structure between the first and second coils and engaged to the conductors thereof, including support rails associated with each turn of conductor in each coil and in contact therewith along its length at positions on the inwardly facing periphery of the conductor. The rail associated with each conductor is electrically isolated from other rails in the inner support structure. The magnetic field produced by a current flowing in the same direction through the conductors of the first and second coils produces a force on the conductors that are directed inwardly toward the inner support structure

  11. Random magnetism

    International Nuclear Information System (INIS)

    Tahir-Kheli, R.A.

    1975-01-01

    A few simple problems relating to random magnetic systems are presented. Translational symmetry, only on the macroscopic scale, is assumed for these systems. A random set of parameters, on the microscopic scale, for the various regions of these systems is also assumed. A probability distribution for randomness is obeyed. Knowledge of the form of these probability distributions, is assumed in all cases [pt

  12. Magnetic Design of Superconducting Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Todesco, E [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    In this paper we discuss the main principles of magnetic design for superconducting magnets (dipoles and quadrupoles) for particle accelerators. We give approximated equations that govern the relation between the field/gradient, the current density, the type of superconductor (Nb−Ti or Nb3Sn), the thickness of the coil, and the fraction of stabilizer. We also state the main principle controlling the field quality optimization, and discuss the role of iron. A few examples are given to show the application of the equations and their validity limits.

  13. Influence of Ti4+ on the magnetic state of CaRu1-xTixO3

    International Nuclear Information System (INIS)

    Zorkovska, A.; Baran, A.; Bradaric, I.; Savic, I.; Sebek, J.; Santava, E.; Svoboda, P.; Marincev, D.; Kohout, S.; Keller, H.; Feher, A.

    2007-01-01

    In order to shed more light on the character of magnetic correlations at low temperatures in CaRuO 3 , the delicate effect of substituting nonmagnetic Ti 4+ for Ru 4+ in low concentrations (0.5-15%) has been investigated by magnetization, AC-susceptibility and specific heat measurements. Despite the clear features in magnetic measurement data at 34K no specific heat anomaly has been observed, nevertheless, two temperature regions with different magnetic characters have been identified. In pure CaRuO 3 significant low-temperature upturn of C/T is visible below 15K. This feature is suppressed by Ti substitution

  14. Magnetic domain structure and magnetically-induced reorientation in Ni–Mn–Ga magnetic shape memory alloy

    Czech Academy of Sciences Publication Activity Database

    Heczko, Oleg; Bradshaw, V.

    2017-01-01

    Roč. 131, č. 4 (2017), s. 1063-1065 ISSN 0587-4246 R&D Projects: GA ČR GA15-00262S Institutional support: RVO:68378271 Keywords : magnetic shape memory effect * magnetic domain structure * 3D visualization * domain mirroring Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.469, year: 2016

  15. Neutron Scattering studies of magnetic molecular magnets

    International Nuclear Information System (INIS)

    Chaboussant, G.

    2009-01-01

    This work deals with inelastic neutron scattering studies of magnetic molecular magnets and focuses on their magnetic properties at low temperature and low energies. Several molecular magnets (Mn 12 , V 15 , Ni 12 , Mn 4 , etc.) are reviewed. Inelastic neutron scattering is shown to be a perfectly suited spectroscopy tool to -a) probe magnetic energy levels in such systems and -b) provide key information to understand the quantum tunnel effect of the magnetization in molecular spin clusters. (author)

  16. Enhancing the magnetic properties of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Ahlburg, Jakob; Saura-Múzquiz, Matilde; Stingaciu, Marian

    with a similar magnetic performance. There are several different ways of enhancing magnetic properties of 3d magnetic compounds. This includes, size control, core-shell particles or mixing hard and soft magnetic materials together to achieve an exchange coupling between the compounds and enhancing the magnetic...... energy product. In order to control the particle size, a hydrothermal synthesis is preferred. This followed by reduction or the oxides into either core shell particles, or a mixture of magnetic oxides and a metallic phase....

  17. Design and fabrication of the MFTF-B magnet system

    International Nuclear Information System (INIS)

    Tatro, R.E.; Kozman, T.A.

    1985-09-01

    The MFTF-B superconducting magnet system consists of 40 NbTi magnets and two Nb 3 Sn magnets. General Dynamics (GD) designed all magnets except for the small trim coils. GD then fabricated 20 NbTi magnets, while LLNL fabricated 20 NbTi magnets and two Nb 3 Sn magnets. The design phase was completed in February 1984 and included the competitive procurement of magnet structural fabrication, superconductor, G-10CR insulation, support struts and bearings, vapor-cooled leads, and thermal shields for all magnets. Fabrication of all magnets was completed in March 1985. At GD, dual assembly lines were necessary during fabrication in order to meet the aggressive LLNL schedule. The entire magnet system has been installed and aligned at LLNL, and Tech Demo tests will be performed during September-November 1985

  18. Supporting Families to Support Students

    Science.gov (United States)

    Kelly, John; Rossen, Eric; Cowan, Katherine C.

    2018-01-01

    Collaboration between students' families and the school is an essential component to promoting student mental and behavioral health. Many schools structure their mental health services using a Multi-Tiered System of Supports that offers three different tiers of support from universal supports to personalized help for students with serious…

  19. Magnetic scanning and interpretation of paleomagnetic data from Prague Synform’s volcanics

    Czech Academy of Sciences Publication Activity Database

    Kletetschka, Günther; Schnabl, Petr; Šifnerová, Kristýna; Tasáryová, Z.; Manda, Š.; Pruner, Petr

    2013-01-01

    Roč. 57, č. 1 (2013), s. 103-117 ISSN 0039-3169 R&D Projects: GA ČR GAP210/10/2351 Institutional support: RVO:67985831 Keywords : paleomagnetism * magnetic scanner * magnetic mineralogy * amygdales * magnetic anomalies * magnetic texture * Barrandian Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.752, year: 2013

  20. Magnetic Field Measurements In Magnetized Plasmas Using Zeeman Broadening Diagnostics

    Science.gov (United States)

    Haque, Showera; Wallace, Matthew; Presura, Radu; Neill, Paul

    2017-10-01

    The Zeeman effect has been used to measure the magnetic field in high energy density plasmas. This method is limited when plasma conditions are such that the line broadening due to the high plasma density and temperature surpasses the Zeeman splitting. We have measured magnetic fields in magnetized laser plasmas under conditions where the Zeeman splitting was not spectrally resolved. The magnetic field strength was determined from the difference in widths of two doublet components, using an idea proposed by Tessarin et al. (2011). Time-gated spectra with one-dimensional space-resolution were obtained at the Nevada Terawatt Facility for laser plasmas created by 20 J, 1 ns Leopard laser pulses, and expanding in the azimuthal magnetic field produced by the 0.6 MA Zebra pulsed power generator. We explore the response of the Al III 4s 2S1/2 - 4p 2P1 / 2 , 3 / 2 doublet components to the external magnetic field spatially along the plasma. Radial magnetic field and electron density profiles were measured within the plasma plume. This work was supported by the DOE/OFES Grant DE-SC0008829 and DOE/NNSA contract DE-FC52-06NA27616.

  1. Magnetically suspended railway

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, C

    1977-07-28

    The invention concerns the emergency support of a magnetically suspended railway. On failure of the magnetic suspension/tracking system, the vehicles touch down on the rail configuration by means of emergency gliding elements like sliding shoes, skids, or the like. In doing this, the touch-down shock of the emergency gliding elements has to be limited to a force maximum as small as possible. According to the invention a spring-attenuator combination is used for this purpose, the spring characteristic being linear while the attenuator has a square-law characteristic for the compressing and a linear characteristic for the yielding motion. The force maximum thus achieved is exactly half the size of the physically smallest possible force maximum for an emergency gliding element springed without damping.

  2. [Transcranial magnetic stimulation].

    Science.gov (United States)

    Tormos, J M; Catalá, M D; Pascual-Leone, A

    Transcranial magnetic stimulation (TMS) permits stimulation of the cerebral cortex in humans without requiring open access to the brain and is one of the newest tools available in neuroscience. There are two main types of application: single-pulse TMS and repetitive TMS. The magnetic stimulator is composed of a series of capacitors that store the voltage necessary to generate a stimulus of the sufficient intensity of generate an electric field in the stimulation coil. The safety of TMS is supported by the considerable experience derived from studies involving electrical stimulation of the cortex in animals and humans, and also specific studies on the safety of TMS in humans. In this article we review historical and technical aspects of TMS, describe its adverse effects and how to avoid them, summarize the applications of TMS in the investigation of different cerebral functions, and discuss the possibility of using TMS for the treatment of neuropsychiatric disorders.

  3. Magnetic resonance annual 1986

    International Nuclear Information System (INIS)

    Kressel, H.Y.

    1986-01-01

    This book contains papers written on magnetic resonance during 1986. Topics include: musculosketetal magnetic resonance imaging; imaging of the spine; magnetic resonance chemical shift imaging; magnetic resonance imaging in the central nervous system; comparison to computed tomography; high resolution magnetic resonance imaging using surface coils; magnetic resonance imaging of the chest; magnetic resonance imaging of the breast; magnetic resonance imaging of the liver; magnetic resonance spectroscopy of neoplasms; blood flow effects in magnetic resonance imaging; and current and potential applications of clinical sodium magnetic resonance imaging

  4. Roadway supports

    Energy Technology Data Exchange (ETDEWEB)

    Stassen, P

    1980-01-01

    Support systems in stone drifts and tunnels are discussed. Timber supports, steel arches, cold-bent sheet-metal arches, shotcrete and combined support arrangements are described. Brickwork and reinforced concrete are also covered. Supports in roadways leading to the face and in-seam roads are discussed including timber supports, steel arches, articulated arches on timber chocks, support accessories and the withdrawal and reshaping of arches. The subject of strata bolting, the aims of strata bolting, methods of strata bolting, systems of rock-bolting, end plates and wire mesh, and bolt and anchorage monitoring are also discussed. Injection techniques, injection parameters, injection methods, grouts, includes an example of the application of injection techniques are covered and combined injection/dowelling arrangements are examined. (55 refs.) (In French)

  5. Mechanical design of ISABELLE magnet cryostats

    International Nuclear Information System (INIS)

    Kassner, D.

    1977-01-01

    It has been proposed to construct an intersecting storage ring accelerator, ISABELLE, at BNL, consisting of two concentric rings of magnets containing counter-rotating beams of charged particles. Each ring contains 216 dipole magnets and 138 quadrupoles. All magnets are superconducting and operate at a temperature of 4.3 K. A description of the design of the cryostats, including the internal supports, heat shield superinsulation system and the vacuum vessel is given. Details of fabrication techniques are also included

  6. A linear magnetic motor and generator

    Science.gov (United States)

    Studer, P. A.

    1980-01-01

    In linear magnetic motor and generator suitable for remote and hostile environments, magnetic forces drive reciprocating shaft along its axis. Actuator shaft is located in center of cylindrical body and may be supported by either contacting or noncontacting bearings. When device operates as bidirectional motor, drive coil selectively adds and subtracts magnetic flux to and from flux paths, producing forces that drive actuator along axis. When actuator is driven by external reciprocating engine, device becomes ac generator.

  7. Magnetic Testing, and Modeling, Simulation and Analysis for Space Applications

    Science.gov (United States)

    Boghosian, Mary; Narvaez, Pablo; Herman, Ray

    2012-01-01

    The Aerospace Corporation (Aerospace) and Lockheed Martin Space Systems (LMSS) participated with Jet Propulsion Laboratory (JPL) in the implementation of a magnetic cleanliness program of the NASA/JPL JUNO mission. The magnetic cleanliness program was applied from early flight system development up through system level environmental testing. The JUNO magnetic cleanliness program required setting-up a specialized magnetic test facility at Lockheed Martin Space Systems for testing the flight system and a testing program with facility for testing system parts and subsystems at JPL. The magnetic modeling, simulation and analysis capability was set up and performed by Aerospace to provide qualitative and quantitative magnetic assessments of the magnetic parts, components, and subsystems prior to or in lieu of magnetic tests. Because of the sensitive nature of the fields and particles scientific measurements being conducted by the JUNO space mission to Jupiter, the imposition of stringent magnetic control specifications required a magnetic control program to ensure that the spacecraft's science magnetometers and plasma wave search coil were not magnetically contaminated by flight system magnetic interferences. With Aerospace's magnetic modeling, simulation and analysis and JPL's system modeling and testing approach, and LMSS's test support, the project achieved a cost effective approach to achieving a magnetically clean spacecraft. This paper presents lessons learned from the JUNO magnetic testing approach and Aerospace's modeling, simulation and analysis activities used to solve problems such as remnant magnetization, performance of hard and soft magnetic materials within the targeted space system in applied external magnetic fields.

  8. Magnetic resonance investigation of magnetic-labeled baker's yeast cells

    International Nuclear Information System (INIS)

    Godoy Morais, J.P.M.; Azevedo, R.B.; Silva, L.P.; Lacava, Z.G.M.; Bao, S.N.; Silva, O.; Pelegrini, F.; Gansau, C.; Buske, N.; Safarik, I.; Safarikova, M.; Morais, P.C.

    2004-01-01

    In this study, the interaction of DMSA-coated magnetite nanoparticles (5 and 10 nm core-size) with Saccharomyces cerevisae was investigated using magnetic resonance (MR) and transmission electron microscopy (TEM). The TEM micrographs revealed magnetite nanoparticles attached externally to the cell wall. The MR data support the strong interaction among the nanoparticles supported by the cells. A remarkable shift in the resonance field was used as signature of particle attachment to the cell wall

  9. Designing a magnet for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus

    This thesis investigates the design and optimization of a permanent magnet assembly for use in a magnetic refrigeration device. The heart of magnetic refrigeration is the adiabatic temperature change in the magnetocaloric material which is caused by the magnetic field. In order to design an ideal...... magnet assembly the magnetocaloric materials and the refrigeration process itself and their properties and performance as a function of magnetic field are investigated. For the magnetocaloric materials it is the magnetization, specific heat capacity and adiabatic temperature that are investigated...... as a function of the magnetic field in order to learn the properties of the optimal magnet assembly. The performance of the AMR as a function of the synchronization and width of the magnetic field with respect to the AMR cycle, the ramp rate and maximum value of the magnetic field are investigated. Other...

  10. Magnetic monopoles

    International Nuclear Information System (INIS)

    Shnir, Ya.M.

    2005-01-01

    This monograph addresses the field theoretical aspects of magnetic monopoles. Written for graduate students as well as researchers, the author demonstrates the interplay between mathematics and physics. He delves into details as necessary and develops many techniques that find applications in modern theoretical physics. This introduction to the basic ideas used for the description and construction of monopoles is also the first coherent presentation of the concept of magnetic monopoles. It arises in many different contexts in modern theoretical physics, from classical mechanics and electrodynamics to multidimensional branes. The book summarizes the present status of the theory and gives an extensive but carefully selected bibliography on the subject. The first part deals with the Dirac monopole, followed in part two by the monopole in non-abelian gauge theories. The third part is devoted to monopoles in supersymmetric Yang-Mills theories. (orig.)

  11. magnetic horn

    CERN Document Server

    Neutrinos and antineutrinos are ideal for probing the weak force because it is effectively the only force they feel. How were they made? Protons fired into a metal target produce a tangle of secondary particles. A magnetic horn like this one, invented by Simon Van der Meer, selected pions and focused them into a sharp beam. Pions decay into muons and neutrinos or antineutrinos. The muons were stopped in a wall of 3000 tons of iron and 1000 tons of concrete, leaving the neutrinos or antineutrinos to reach the Gargamelle bubble chamber. A simple change of magnetic field direction on the horn flipped between focusing positively- or negatively-charged pion beams, and so between neutrinos and antineutrinos.

  12. Magnetic Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Masaaki Yamada, Russell Kulsrud and Hantao Ji

    2009-09-17

    We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two- uid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also brie y discussed.

  13. Planetary magnetism

    International Nuclear Information System (INIS)

    Dolginov, Sh.Sh.

    1977-01-01

    Experimental data on magnetic fields of planets are surveyed. The magnetic fields of the Earth, Jupiter, Mars, Mercury, Venus, and the Moon are considered in detail. A similarity of the physical models of both the planets of the Earth group and the giant planets was revealed. The fields of the planets and of the Earth are compared in the scheme of the precession dynamo and in the kinematic scheme. Proceeding from the assumption that the Poincare forces and their ratio to other forces are model-similar in the cores of all the planets, the values of Hsub(i)/Hsub(E) are calculated, where Hsub(i) and Hsub(E) are the field strengths of the i-th planet and that of the Earth. The experimental data on the dynamic compression of the Mercury confirm the calculations made. It is concluded that the problem of the origin and moving forces of the terrestrial magnetic field may be resolved only within the framework of comparative planetology

  14. MAGNET / INFRASTRUCTURE

    CERN Multimedia

    D. Campi

    The final fast discharge of the Magnet took place on 3rd of November. The Coil reached a temperature of 70K by internal energy dissipation. By injecting a current of 200 A room temperature was reached on the 23rd November. During the heating of the coil un-connecting of the first magnet connectors on YBO was started to give the earliest possible access to the assembly groups and to continue the installation of the muon chambers. The removal of the pumping lines and the disconnection of the vacuum system was instead done as soon as the room temperature was reached: more precisely from the 4 to the 18 December. The disconnection of the transfer line from the cold box and the completion of the removal of the control cables of the vacuum system and cryogenics was done at last. In January 2007 the disconnection of MCS-MSS, CDS, vacuum racks and their cable trays was also achieved. After coil disconnection the effort of the magnet team has been mainly devoted in optimizing the lowering and reassembly of the a...

  15. Magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bihler, Christoph

    2009-04-15

    In this thesis we investigated in detail the properties of Ga{sub 1-x}Mn{sub x}As, Ga{sub 1-x}Mn{sub x}P, and Ga{sub 1-x}Mn{sub x}N dilute magnetic semiconductor thin films with a focus on the magnetic anisotropy and the changes of their properties upon hydrogenation. We applied two complementary spectroscopic techniques to address the position of H in magnetic semiconductors: (i) Electron paramagnetic resonance, which provides direct information on the symmetry of the crystal field of the Mn{sup 2+} atoms and (ii) x-ray absorption fine structure analysis which allows to probe the local crystallographic neighborhood of the absorbing Mn atom via analysing the fine structure at the Mn K absorption edge. Finally, we discussed the obstacles that have to be overcome to achieve Curie temperatures above the current maximum in Ga{sub 1-x}Mn{sub x}As of 185 K. Here, we outlined in detail the generic problem of the formation of precipitates at the example of Ge:MN. (orig.)

  16. Magnetic Reconnection

    International Nuclear Information System (INIS)

    Yamada, Masaaki; Kulsrud, Russell; Ji, Hantao

    2009-01-01

    We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two-fluid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also briefly discussed.

  17. Exploration of the validity of weak magnets as a suitable placebo in trials of magnetic therapy.

    Science.gov (United States)

    Greaves, C J; Harlow, T N

    2008-06-01

    To investigate whether 50 mT magnetic bracelets would be suitable as a placebo control condition for studying the pain relieving effects of higher strength magnetic bracelets in arthritis. Randomised controlled comparison between groups given either a weak 50 mT or a higher strength 180 mT magnetic bracelets to test. Four arthritis support groups in Devon, UK. One hundred sixteen people with osteoarthritis and rheumatoid arthritis. Beliefs about group allocation and expectation of benefit. There was no significant difference between groups in beliefs about allocation to the 'active magnet' group. Participants were however more likely to have an expectation of benefit (pain relief) with the higher strength magnetic bracelets. Asking about perceived group allocation is not sufficient to rule out placebo effects in trials of magnetic bracelets which use weak magnets as a control condition. There are differences in expectation of benefit between different magnet strengths.

  18. The last magnet on the bench

    CERN Multimedia

    2007-01-01

    A ceremony was held on Thursday, 1st March, to commemorate the end of the cryostat assembly and cryogenic testing on the LHC super-conducting magnets. The team, consisting of CERN staff, several industrial support teams and a hundred guest engineers from India, have tested 2000 magnets over the last four years.

  19. Magnetically modified biochar for organic xenobiotics removal

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Maděrová, Z.; Pospíšková, K.; Schmidt, H.-P.; Baldíková, E.; Filip, J.; Křížek, M.; Malina, O.; Šafaříková, Miroslava

    2016-01-01

    Roč. 74, č. 7 (2016), s. 1706-1715 ISSN 0273-1223 Institutional support: RVO:60077344 Keywords : adsorption * biochar * magnetic iron oxide particles * magnetic modification * organic dyes Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.197, year: 2016

  20. Tuning emergent magnetism in a Hund's impurity

    Czech Academy of Sciences Publication Activity Database

    Khajetoorians, A.A.; Valentyuk, M.; Steinbrecher, M.; Schlenk, T.; Shick, Alexander; Kolorenč, Jindřich; Lichtenstein, A.I.; Wehling, T.O.; Wiesendanger, R.; Wiebe, J.

    2015-01-01

    Roč. 10, č. 11 (2015), s. 958-U195 ISSN 1748-3387 R&D Projects: GA ČR GC15-05872J Institutional support: RVO:68378271 Keywords : magnetic anisotropy * Kondo effect * strong electron correlations * scanning tunnelling microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 35.267, year: 2015

  1. Magnetic elements for switching magnetization magnetic force microscopy tips

    International Nuclear Information System (INIS)

    Cambel, V.; Elias, P.; Gregusova, D.; Martaus, J.; Fedor, J.; Karapetrov, G.; Novosad, V.

    2010-01-01

    Using combination of micromagnetic calculations and magnetic force microscopy (MFM) imaging we find optimal parameters for novel magnetic tips suitable for switching magnetization MFM. Switching magnetization MFM is based on two-pass scanning atomic force microscopy with reversed tip magnetization between the scans. Within the technique the sum of the scanned data with reversed tip magnetization depicts local atomic forces, while their difference maps the local magnetic forces. Here we propose the design and calculate the magnetic properties of tips suitable for this scanning probe technique. We find that for best performance the spin-polarized tips must exhibit low magnetic moment, low switching fields, and single-domain state at remanence. The switching field of such tips is calculated and optimum shape of the Permalloy elements for the tips is found. We show excellent correspondence between calculated and experimental results for Py elements.

  2. Magnetically responsive biological materials and their applications

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Pospíšková, K.; Baldíková, E.; Šafaříková, Miroslava

    2016-01-01

    Roč. 7, č. 4 (2016), s. 254-261 ISSN 0976-3961 Institutional support: RVO:60077344 Keywords : adsorbents * biological materials * carriers * magnetic modification * whole-cell biocatalyst Subject RIV: EI - Biotechnology ; Bionics

  3. Magnetic Measurement and Magnet Tutorial, Part 3

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Jack

    2003-07-15

    Magnetic measurements, like magnet design, is a broad subject. It is the intention of this lecture to cover only a small part of the field, regarding the characterization of the line integral field quality of multipole magnets (dipoles, quadrupoles and sextupoles) using compensated rotating coils. Other areas which are not covered are magnet mapping, AC measurements and sweeping wire measurements.

  4. Surface magnetic field measurement with magnetic shielding

    Czech Academy of Sciences Publication Activity Database

    Perevertov, Oleksiy

    2010-01-01

    Roč. 61, č. 7 (2010), 66-68 ISSN 1335-3632 Grant - others:AVČR(CZ) M100100906 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic hysteresis * magnetic field measurement * magnetic shielding * extrapolation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.270, year: 2010

  5. Semiclassical bounds in magnetic bottles

    Czech Academy of Sciences Publication Activity Database

    Barseghyan, Diana; Exner, Pavel; Kovařík, H.; Weidl, T.

    2016-01-01

    Roč. 28, č. 1 (2016), s. 1650002 ISSN 0129-055X R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : magnetic Laplacian * discrete spectrum * eigenvalue bounds Subject RIV: BE - Theoretical Physics Impact factor: 1.426, year: 2016

  6. Magnetic interactions through fluoride

    DEFF Research Database (Denmark)

    Pedersen, Kasper Steen; Sigrist, Marc; Weihe, Høgni

    2014-01-01

    support the parameter values and resolve |E| ≈ 0.04 cm(-1). The exchange coupling constant (J) is 1 order of magnitude smaller than that found in comparable systems with linear oxide bridging but comparable to typical magnitudes through cyanide, thus underlining the potential of fluoride complexes......The nature of the magnetic interaction through fluoride in a simple, dinuclear manganese(III) complex (1), bridged by a single fluoride ion in a perfectly linear fashion, is established by experiment and density functional theory. The magnitude of the antiferromagnetic exchange interaction...

  7. An optimized magnet for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders

    2010-01-01

    A magnet designed for use in a magnetic refrigeration device is presented. The magnet is designed by applying two general schemes for improving a magnet design to a concentric Halbach cylinder magnet design and dimensioning and segmenting this design in an optimum way followed by the construction...... of the actual magnet. The final design generates a peak value of 1.24 T, an average flux density of 0.9 T in a volume of 2 L using only 7.3 L of magnet, and has an average low flux density of 0.08 T also in a 2 L volume. The working point of all the permanent magnet blocks in the design is very close...... to the maximum energy density. The final design is characterized in terms of a performance parameter, and it is shown that it is one of the best performing magnet designs published for magnetic refrigeration....

  8. An optimized magnet for magnetic refrigeration

    International Nuclear Information System (INIS)

    Bjork, R.; Bahl, C.R.H.; Smith, A.; Christensen, D.V.; Pryds, N.

    2010-01-01

    A magnet designed for use in a magnetic refrigeration device is presented. The magnet is designed by applying two general schemes for improving a magnet design to a concentric Halbach cylinder magnet design and dimensioning and segmenting this design in an optimum way followed by the construction of the actual magnet. The final design generates a peak value of 1.24 T, an average flux density of 0.9 T in a volume of 2 L using only 7.3 L of magnet, and has an average low flux density of 0.08 T also in a 2 L volume. The working point of all the permanent magnet blocks in the design is very close to the maximum energy density. The final design is characterized in terms of a performance parameter, and it is shown that it is one of the best performing magnet designs published for magnetic refrigeration.

  9. Supporting Information

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is the supporting information for the journal article. This dataset is associated with the following publication: Rankin, K., S. Mabury, T. Jenkins, and J....

  10. Supporting Info

    Data.gov (United States)

    U.S. Environmental Protection Agency — Supporting Info. This dataset is associated with the following publication: Washington , J., and T. Jenkins. Abiotic Hydrolysis of Fluorotelomer-Based Polymers as a...

  11. Supporting Info

    Data.gov (United States)

    U.S. Environmental Protection Agency — Supporting Information. This dataset is associated with the following publication: Washington , J., T. Jenkins, and E. Weber. Identification of Unsaturated and 2H...

  12. Superconducting magnet for MAGLEV

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Fumio; Miyairi,; Komei,; Goto, Fumihiko [Hitachi, Ltd., Tokyo, (Japan)

    1989-07-25

    In the superconducting magnet for MAGLEV , the magnet itself travels. It is, therefore, important to know the dynamic behavior which accompanies the traveling; and for the designing of a superconducting magnet, analysis of mechanical characteristics as well as electromagnetic characteristics is required. This is a report on the recent analyzing technology of mechanical characteristics by CAE(Computer Aided Engineering). The analysis is conducted by an on-line system of finite element method. Most important for the analysis are that the analysis model is appropriate and that basic data coincide with the actual condition. Recent analysis results are as follows. Equivalent rigidity of coils can be calculated by an analysis model and the calculated value agrees with the experiment value. Structure of the internal drum can be optimized with the parameter of deformation or stress. Analysis result of a load supporting material agrees with the experiment value when a correction coefficient (0.5) is introduced to the elastic modulus of FRP. 2 refs., 10 figs.

  13. Compact magnetic fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Linford, R.K.

    1983-12-01

    If the core (first wall, blanket, shield, and magnet coils) of fusion reactor systems could be made smaller in mass and volume for a given net electric power output than is usually predicted for the mainline tokamak/sup 1/ and mirror concepts, the cost of the technological development of the core and the construction of power plants might be significantly reduced. Although progress in plasma physics and engineering approaches should continue to yield improvements in reactor designs, certain physics features of the mainline concepts may prevent major reductions in the size of the core without straining the limits of technology. However, more than a factor of ten reduction in volume and mass of the core, at constant output power, may be possible for a class of toroidal confinement concepts in which the confining magnetic fields are supported more by currents flowing in the plasma than those in the external coils. In spite of this dramatic increase in power density (ratio of total thermal output power to the volume of the core), the design of compact systems need not rely on any materials requirements that are qualitatively more difficult than those proposed for the lower-power-density mainline fusion concepts. In some respects compact systems require less of an extension of existing technology, e.g. magnetics.

  14. Compact magnetic fusion systems

    International Nuclear Information System (INIS)

    Linford, R.K.

    1983-01-01

    If the core (first wall, blanket, shield, and magnet coils) of fusion reactor systems could be made smaller in mass and volume for a given net electric power output than is usually predicted for the mainline tokamak 1 and mirror concepts, the cost of the technological development of the core and the construction of power plants might be significantly reduced. Although progress in plasma physics and engineering approaches should continue to yield improvements in reactor designs, certain physics features of the mainline concepts may prevent major reductions in the size of the core without straining the limits of technology. However, more than a factor of ten reduction in volume and mass of the core, at constant output power, may be possible for a class of toroidal confinement concepts in which the confining magnetic fields are supported more by currents flowing in the plasma than those in the external coils. In spite of this dramatic increase in power density (ratio of total thermal output power to the volume of the core), the design of compact systems need not rely on any materials requirements that are qualitatively more difficult than those proposed for the lower-power-density mainline fusion concepts. In some respects compact systems require less of an extension of existing technology, e.g. magnetics

  15. Magnetically recoverable catalyst for the asymmetric Henry reaction based on a substituted imidazolidine-4-one copper(II) complex supported by Fe3O4 center dot SiO2 nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Bhosale, D. S.; Drabina, P.; Kincl, Miloslav; Vlček, Milan; Sedlák, M.

    2015-01-01

    Roč. 26, 21-22 (2015), s. 1300-1306 ISSN 0957-4166 Institutional support: RVO:61389013 Keywords : transition - metal - complexes * nanoparticle * adsorption Subject RIV: CC - Organic Chemistry Impact factor: 2.108, year: 2015

  16. Flake graphite cast iron investigated by a magnetic method

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Takagi, T.; Tomáš, Ivan

    2014-01-01

    Roč. 50, č. 4 (2014), s. 6200404 ISSN 0018-9464 Institutional support: RVO:68378271 Keywords : cast iron * magnetic adaptive testing (MAT) * magnetic nondestructive evaluation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.386, year: 2014

  17. Design of a magnetic lead screw for wave energy conversion

    DEFF Research Database (Denmark)

    Holm, Rasmus Koldborg; Berg, Nick Ilsø; Rasmussen, Peter Omand

    2012-01-01

    on the bearing supports used to compensate for the magnetic attraction forces and the resulting deflection of the rotor. Also, in order to avoid some of the production related disadvantages of using surface mounted magnets, an embedded magnet topology is proposed. To demonstrate the technology a scaled 17 kN MLS...

  18. Fundamental relations of mineral specific magnetic carriers for paleointensity determination

    Czech Academy of Sciences Publication Activity Database

    Kletetschka, Günther; Wieczorek, M. A.

    2017-01-01

    Roč. 272, November 2017 (2017), s. 44-49 ISSN 0031-9201 Institutional support: RVO:67985831 Keywords : Paleofield determination * TRM * Planetary magnetic anomalies * Néel’s theory of magnetism * Magnetic acquisition * Moon * Mars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Particles and field physics Impact factor: 2.075, year: 2016

  19. Microwave assisted synthesis of Magnetically responsive composite materials

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Horská, Kateřina; Pospíšková, K.; Maděrová, Zdeňka; Šafaříková, Miroslava

    2013-01-01

    Roč. 49, č. 1 (2013), s. 213-218 ISSN 0018-9464 R&D Projects: GA ČR(CZ) GAP503/11/2263; GA MŠk LH12190 Institutional support: RVO:67179843 Keywords : magnetic materials * magnetic modification * magnetic separation * microwaves Subject RIV: EH - Ecology, Behaviour Impact factor: 1.213, year: 2013

  20. Magnetic anisotropy of YFe.sub.3./sub. compound

    Czech Academy of Sciences Publication Activity Database

    Bolyachkin, A.S.; Neznakhin, D.S.; Garaeva, T.V.; Andreev, Alexander V.; Bartashevich, M. I.

    2017-01-01

    Roč. 426, Mar (2017), s. 740-743 ISSN 0304-8853 R&D Projects: GA ČR GA16-03593S Institutional support: RVO:68378271 Keywords : magnetic anisotropy * magnetization anisotropy * single crystal Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.630, year: 2016

  1. Enhancing the magnetic properties of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Ahlburg, Jakob; Saura-Múzquiz, Matilde; Stingaciu, Marian

    with a similar magnetic performance. There are several different ways of enhancing magnetic properties of 3d magnetic compounds. This includes, size control, core-shell particles or mixing hard and soft magnetic materials together to achieve an exchange coupling between the compounds and enhancing the magnetic...... energy product. In order to control the particle size, a hydrothermal synthesis is preferred. This followed by reduction or the oxides into either core shell particles, or a mixture of magnetic oxides and a metallic phase.......Strong magnets with a high energy product are vital when optimizing the efficiency in the electric industry. But since the rare earth metals, normally used for making strong permanent magnets, are both expensive and difficult to mine, a great demand has come to cheaper types of magnets...

  2. Magnetic properties of partially oxidized Fe films

    Science.gov (United States)

    Garcia, Miguel Angel; Lopez-Dominguez, Victor; Hernando, Antonio

    Hybrid magnetic nanostructures exhibit appealing properties due to interface and proximity effects. A simple and interesting system of hybrid magnetic nanomaterials are partially oxidized ferromagnetic films. We have fabricated Fe films by thermal evaporation and performed a partial oxidation to magnetite (Fe3O4) by annealing in air at different times and temperatures. The magnetic properties of the films evolve from those of pure metallic iron to pure magnetite, showing intermediate states where the proximity effects control the magnetic behavior. At some stages, the magnetization curves obtained by SQUID and MOKE magnetometry exhibit important differences due to the dissimilar contribution of both phases to the magneto-optical response of the system This work has been supported by the Ministerio Español de Economia y Competitividad (MINECO) MAT2013-48009-C4-1. V.L.D and M.A.G. acknowledges financial support from BBVA foundation.

  3. Magnetization reversal in ultrashort magnetic field pulses

    International Nuclear Information System (INIS)

    Bauer, M.; Lopusnik, R.; Fassbender, J.; Hillebrands, B.

    2000-01-01

    We report the switching properties of a thin magnetic film subject to an ultrashort, laterally localized magnetic field pulse, obtained by numerical investigations. The magnetization distribution in the film is calculated on a grid assuming Stoner-like coherent rotation within the grid square size. Perpendicularly and in-plane magnetized films exhibit a magnetization reversal due to a 4 ps magnetic field pulse. Outside the central region the pulse duration is short compared to the precession period. In this area the evolution of the magnetization during the field pulse does not depend strongly on magnetic damping and/or pulse shape. However, the final magnetization distribution is affected by the magnetic damping. Although the pulse duration is short compared to the precession period, the time needed for the relaxation of the magnetization to the equilibrium state is rather large. The influence of the different magnetic anisotropy contributions and the magnetic damping parameter enters into the magnetization reversal process. Comparing the case of perpendicular anisotropy with different kinds of in-plane anisotropies, a principal difference is found due to the symmetry of the shape anisotropy with respect to the anisotropy in question

  4. MAGNETIC WOVEN FABRICS - PHYSICAL AND MAGNETIC PROPERTIES

    Directory of Open Access Journals (Sweden)

    GROSU Marian C

    2015-05-01

    Full Text Available A coated material is a composite structure that consists of at least two components: base material and coating layer. The purpose of coating is to provide special properties to base material, with potential to be applied in EMI shielding and diverse smart technical fields. This paper reports the results of a study about some physical and magnetic properties of coated woven fabrics made from cotton yarns with fineness of 17 metric count. For this aim, a plain woven fabric was coated with a solution hard magnetic polymer based. As hard magnetic powder, barium hexaferrite (BaFe12O19 was selected. The plain woven fabric used as base has been coated with five solutions having different amounts of hard magnetic powder (15% - 45% in order to obtain five different magnetic woven fabrics. A comparison of physical properties regarding weight (g/m2, thickness (mm, degree of charging (% and magnetic properties of magnetic woven samples were presented. Saturation magnetizing (emu/g, residual magnetizing (emu/g and coercive force (kA/m of pure hard magnetic powder and woven fabrics have been studied as hysteresis characteristics. The magnetic properties of the woven fabrics depend on the mass percentage of magnetic powder from coating solution. Also, the residual magnetism and coercive field of woven fabrics represents only a part of bulk barium hexafferite residual magnetism and coercive field.

  5. New vision of magnetic tunnelling

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Jonathan R. [Amherst College, Amhurst, MA (United States)

    2002-01-01

    Recent experiments support the idea that crystal defects may be responsible for the quantum tunnelling of magnetic moments in molecular magnets at low temperatures. The magnetic moment of a typical bar magnet will never spontaneously reverse direction. However, thermal fluctuations can flip the moment of a magnetic particle just a few nanometres across. The particle can be cooled to nearly absolute zero to suppress this process, but the moment may still find a way to reverse via quantum tunnelling. Quantum tunnelling of magnetization has been the subject of decades of research. Until a few years ago, however, there had only been circumstantial evidence for the phenomenon. This is because most systems of small magnetic particles are hard to characterize - the particles have a variety of shapes, sizes and other properties, making it difficult to compare data with theory. Some real progress was made a few years ago through research into high-spin single-molecule magnets. With dimensions of about a nanometre, these magnets are usually composed of a magnetic core that is surrounded by organic complexes. When they crystallize into a regular lattice, the organic ions keep neighbouring magnets well separated so that they interact only weakly. Ideally all the molecules are identical because they have been built chemically, which means that they can be characterized precisely and that any data can be analysed quantitatively. The most studied of these molecules is manganese-12 acetate (Mn{sub 12}). Within each molecule, the spins of the eight Mn{sup 3+} ions (each with S=2) are antiparallel to the spins of the four Mn{sup 4+} ions (each with S=3/2), giving Mn{sub 12} a total spin of S=10. Or, to put it another way, the magnetic moment of Mn{sub 12} is 20 times larger than that of the electron. Now Eugene Chudnovsky of Lehman College in New York and Dmitry Garanin of the University of Mainz in Germany have suggested a new mechanism for producing tunnelling in Mn{sub 12

  6. Isolation of technogenic magnetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Catinon, Mickaël, E-mail: mickael.catinon@gmail.com [Laboratoire LECA, UMR 5553, Equipe Pollution, Environnement, Ecotoxicologie et Ecoremédiation, Univ. J. Fourier, 38041 Grenoble (France); Ayrault, Sophie, E-mail: sophie.ayrault@lsce.ispl.fr [Laboratoire des Sciences du Climat et de l' Environnement, UMR 8212, CEA-CNRS-UVSQ/IPSL, 91198 Gif-sur-Yvette (France); Boudouma, Omar, E-mail: boudouma@ccr.jussieu.fr [Service du MEB, UFR928, Université Pierre et Marie Curie, 75252 Paris VI (France); Bordier, Louise, E-mail: Louise.Bordier@lsce.ipsl.fr [Laboratoire des Sciences du Climat et de l' Environnement, UMR 8212, CEA-CNRS-UVSQ/IPSL, 91198 Gif-sur-Yvette (France); Agnello, Gregory, E-mail: contact@evinrude.fr [Evinrude, Espace St Germain, 38200 Vienne (France); Reynaud, Stéphane, E-mail: stephane.reynaud@ujf-grenoble.fr [Laboratoire LECA, UMR 5553, Equipe Pollution, Environnement, Ecotoxicologie et Ecoremédiation, Univ. J. Fourier, 38041 Grenoble (France); Tissut, Michel, E-mail: michel.tissut@ujf-grenoble.fr [Laboratoire LECA, UMR 5553, Equipe Pollution, Environnement, Ecotoxicologie et Ecoremédiation, Univ. J. Fourier, 38041 Grenoble (France)

    2014-03-01

    Technogenic magnetic particles (TMPs) emitted by various industrial sources, such as smelting plants, end up after atmospheric transfer on the soil surface. In the present study, we characterised the origin and composition of such particles emitted by a large iron smelting plant and deposited on particular substrates, namely tombstones, which act as a very interesting and appropriate matrix when compared to soil, tree bark, lichens or attic dust. The isolation and subsequent description of TMPs require a critical step of separation between different components of the sample and the magnetic particles; here, we described an efficient protocol that fulfils such a requirement: it resorts to water suspension, sonication, repeated magnetic extraction, sedimentation, sieving and organic matter destruction at 550 °C in some instances. The isolated TMPs displayed a noticeable crystalline shape with variable compositions: a) pure iron oxides, b) iron + Cr, Ni or Zn, and c) a complex structure containing Ca, Si, Mg, and Mn. Using Scanning Electron Microscope Energy Dispersive X-ray (SEM–EDX), we obtained profiles of various and distinct magnetic particles, which allowed us to identify the source of the TMPs. - Highlights: • The developed method offers a low-cost approach of large-scale dry deposition. • Tombstones are excellent supports for sampling these atmospheric deposits. • Smelted elements crystallise after cooling, giving typical technogenic magnetic particles (TMPs). • Coupling microscopic and bulk analyses allows identifying TMP origin. • Magnetic TMPs issued from steel industry were separated by a new technique.

  7. Magnet innovations for linacs

    International Nuclear Information System (INIS)

    Halbach, K.

    1986-01-01

    It is possible to produce large magnetic fields at the aperture of permanent magnet quadrupoles, even when the magnetic aperture is very small. That, combined with their compactness, makes permanent magnet quadrupoles very powerful components of small aperture linacs. Results of past and present work on both fixed and variable strength permanent magnets suitable for use in and around linacs are presented

  8. Magnet innovations for linacs

    International Nuclear Information System (INIS)

    Halbach, K.

    1986-06-01

    It is possible to produce large magnetic fields at the aperture of permanent magnet quadrupoles, even when the magnetic aperture is very small. That, combined with their compactness, makes permanent magnet quadrupoles very powerful components of small aperture linacs. Results will be presented about past and present work on both fixed and variable strength permanent magnets suitable for use in and around linacs

  9. Dynamical quenching of tunneling in molecular magnets

    Energy Technology Data Exchange (ETDEWEB)

    José Santander, María, E-mail: maria.jose.noemi@gmail.com [Recursos Educativos Quántica, Santiago (Chile); Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Nunez, Alvaro S., E-mail: alnunez@dfi.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago (Chile); Roldán-Molina, A. [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Curauma, Valparaíso (Chile); Troncoso, Roberto E., E-mail: r.troncoso.c@gmail.com [Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124 (Chile); Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso (Chile)

    2015-12-15

    It is shown that a single molecular magnet placed in a rapidly oscillating magnetic field displays the phenomenon of quenching of tunneling processes. The results open a way to manipulate the quantum states of molecular magnets by means of radiation in the terahertz range. Our analysis separates the time evolution into slow and fast components thereby obtaining an effective theory for the slow dynamics. This effective theory presents quenching of the tunnel effect, in particular, stands out its difference with the so-called coherent destruction of tunneling. We support our prediction with numerical evidence based on an exact solution of Schrödinger's equation. - Highlights: • Single molecular magnets under rapidly oscillating magnetic fields is studied. • It is shown that this system displays the quenching of tunneling processes. • Our findings provide a control of quantum molecular magnets via terahertz radiation.

  10. Dynamical quenching of tunneling in molecular magnets

    International Nuclear Information System (INIS)

    José Santander, María; Nunez, Alvaro S.; Roldán-Molina, A.; Troncoso, Roberto E.

    2015-01-01

    It is shown that a single molecular magnet placed in a rapidly oscillating magnetic field displays the phenomenon of quenching of tunneling processes. The results open a way to manipulate the quantum states of molecular magnets by means of radiation in the terahertz range. Our analysis separates the time evolution into slow and fast components thereby obtaining an effective theory for the slow dynamics. This effective theory presents quenching of the tunnel effect, in particular, stands out its difference with the so-called coherent destruction of tunneling. We support our prediction with numerical evidence based on an exact solution of Schrödinger's equation. - Highlights: • Single molecular magnets under rapidly oscillating magnetic fields is studied. • It is shown that this system displays the quenching of tunneling processes. • Our findings provide a control of quantum molecular magnets via terahertz radiation

  11. Structural design of DEALS magnet

    International Nuclear Information System (INIS)

    Bezler, P.; Hsieh, S.Y.; Balderes, T.; Brown, T.; Bundy, J.

    1979-01-01

    A design for the extraneous magnet structure to support all the magnet loads was developed. The structure consists of two demountable structural systems designed to support the in-plane and out-of-plane loads, respectively. The in-plane loads are resisted by a cold central bucking cylinder and pin connected, plate-beam structural members following the outer periphery of each coil. The out-of-plane, torsional loads are resisted by the concerted action of the central bucking column and a continuous plate structure interconnecting all the coils. The adequacy of the structures were assessed by application of finite element analysis methods. The design study proved the feasibility of resisting the magnetic loadings with a demountable support structure extraneous to the superconducting coil. The resulting magnet system, although estimated to be higher in cost than a continuous coil, incorporates a means for complete coil replacement in a time scale commensurate with conventional nuclear power plant repairs and without the dismantling of the toroidal blanket and plasma shell systems

  12. Anisotropy of out-of-phase magnetic susceptibility of rocks as a tool for direct determination of magnetic subfabrics of some minerals: an introductory study

    Czech Academy of Sciences Publication Activity Database

    Hrouda, F.; Chadima, Martin; Ježek, J.; Pokorný, J.

    2017-01-01

    Roč. 208, č. 1 (2017), s. 385-402 ISSN 0956-540X R&D Projects: GA AV ČR IAAX00130801 Institutional support: RVO:67985831 Keywords : magnetic and electrical properties * magnetic fabrics and anisotropy * magnetic mineralogy and petrology * rock and mineral magnetism Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 2.414, year: 2016

  13. Magnetic guns with cylindrical permanent magnets

    DEFF Research Database (Denmark)

    Vokoun, David; Beleggia, Marco; Heller, Luděk

    2012-01-01

    The motion of a cylindrical permanent magnet (projectile) inside a tubular permanent magnet, with both magnets magnetized axially, illustrates nicely the physical principles behind the operation of magnetic guns. The force acting upon the projectile is expressed semi-analytically as derivative...... of the magnetostatic interaction energy. For comparison, the forces involved are also calculated numerically using finite elements methods. Based on the conservation of the magnetostatic and kinetic energies, the exit and asymptotic velocities are determined. The derived formulas can be used to optimize the generated...... forces and motion of the inner cylindrical magnet....

  14. Pipe support

    International Nuclear Information System (INIS)

    Pollono, L.P.

    1979-01-01

    A pipe support for high temperature, thin-walled piping runs such as those used in nuclear systems is described. A section of the pipe to be suppported is encircled by a tubular inner member comprised of two walls with an annular space therebetween. Compacted load-bearing thermal insulation is encapsulated within the annular space, and the inner member is clamped to the pipe by a constant clamping force split-ring clamp. The clamp may be connected to pipe hangers which provide desired support for the pipe

  15. Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies.

    Science.gov (United States)

    Danieli, E; Perlo, J; Blümich, B; Casanova, F

    2013-05-03

    Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays.

  16. Steady- and Transient-State Analyses of Fully Ceramic Microencapsulated Fuel with Randomly Dispersed Tristructural Isotropic Particles via Two-Temperature Homogenized Model—I: Theory and Method

    Directory of Open Access Journals (Sweden)

    Yoonhee Lee

    2016-06-01

    Full Text Available As a type of accident-tolerant fuel, fully ceramic microencapsulated (FCM fuel was proposed after the Fukushima accident in Japan. The FCM fuel consists of tristructural isotropic particles randomly dispersed in a silicon carbide (SiC matrix. For a fuel element with such high heterogeneity, we have proposed a two-temperature homogenized model using the particle transport Monte Carlo method for the heat conduction problem. This model distinguishes between fuel-kernel and SiC matrix temperatures. Moreover, the obtained temperature profiles are more realistic than those of other models. In Part I of the paper, homogenized parameters for the FCM fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure are obtained by (1 matching steady-state analytic solutions of the model with the results of particle transport Monte Carlo method for heat conduction problems, and (2 preserving total enthalpies in fuel kernels and SiC matrix. The homogenized parameters have two desirable properties: (1 they are insensitive to boundary conditions such as coolant bulk temperatures and thickness of cladding, and (2 they are independent of operating power density. By performing the Monte Carlo calculations with the temperature-dependent thermal properties of the constituent materials of the FCM fuel, temperature-dependent homogenized parameters are obtained.

  17. Supporting ATLAS

    CERN Multimedia

    maximilien brice

    2003-01-01

    Eighteen feet made of stainless steel will support the barrel ATLAS detector in the cavern at Point 1. In total, the ATLAS feet system will carry approximately 6000 tons, and will give the same inclination to the detector as the LHC accelerator.

  18. Supporting Transition

    Science.gov (United States)

    Qureshi, Asima; Petrucco, James

    2018-01-01

    Meadowbrook Primary School has explored the use of The Teacher Assessment in Primary Science (TAPS) to support transition, initially for transfer to secondary school and now for transition from Early Years Foundation Stage (EYFS) into Key Stage 1 (ages 5-7). This article will consider an example of a secondary transition project and discuss the…

  19. MRI (Magnetic Resonance Imaging)

    Science.gov (United States)

    ... Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Magnetic Resonance Imaging (MRI) is a medical imaging procedure for ...

  20. Magnetic nanocomposite sensor

    KAUST Repository

    Alfadhel, Ahmed; Li, Bodong; Kosel, Jü rgen

    2016-01-01

    A magnetic nanocomposite device is described herein for a wide range of sensing applications. The device utilizes the permanent magnetic behavior of the nanowires to allow operation without the application of an additional magnetic field

  1. Magnetism of Carbonados

    Science.gov (United States)

    Kletetschka, G.; Taylor, P. T.; Wasilewski, P. J.

    2000-01-01

    Origin of Carbonado is not clear. Magnetism of Carbonado comes from the surface, indicating contemporary formation of both the surface and magnetic carriers. The interior of carbonado is relatively free of magnetic phases.

  2. Magnetic field dynamos and magnetically triggered flow instabilities

    Science.gov (United States)

    Stefani, F.; Albrecht, T.; Arlt, R.; Christen, M.; Gailitis, A.; Gellert, M.; Giesecke, A.; Goepfert, O.; Herault, J.; Kirillov, O. N.; Mamatsashvili, G.; Priede, J.; Rüdiger, G.; Seilmayer, M.; Tilgner, A.; Vogt, T.

    2017-07-01

    The project A2 of the LIMTECH Alliance aimed at a better understanding of those magnetohydrodynamic instabilities that are relevant for the generation and the action of cosmic magnetic fields. These comprise the hydromagnetic dynamo effect and various magnetically triggered flow instabilities, such as the magnetorotational instability and the Tayler instability. The project was intended to support the experimental capabilities to become available in the framework of the DREsden Sodium facility for DYNamo and thermohydraulic studies (DRESDYN). An associated starting grant was focused on the dimensioning of a liquid metal experiment on the newly found magnetic destabilization of rotating flows with positive shear. In this survey paper, the main results of these two projects are summarized.

  3. Magnetic field strength distribution of magnetic bright points inferred from filtergrams and spectro-polarimetric data

    Czech Academy of Sciences Publication Activity Database

    Utz, D.; Jurčák, Jan; Hanslmeier, A.; Muller, R.; Veronig, A.; Kühner, O.

    2013-01-01

    Roč. 554, June (2013), A65/1-A65/12 ISSN 0004-6361 R&D Projects: GA ČR GAP209/12/0287; GA MŠk(CZ) MEB061109 Institutional support: RVO:67985815 Keywords : Sun * magnetic topology * surface magnetism Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.479, year: 2013

  4. Magnetic propulsion for magnetically levitated trains

    Energy Technology Data Exchange (ETDEWEB)

    Melville, P H

    1973-12-01

    One of the main problems associated with magnetically levitated trains is the means of propulsion. A system is described whereby the repulsion from the superconducting magnets, in addition to levitating the train, can also be used to propel it.

  5. Nuclear magnetic resonance and earth magnetic field

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Nuclear magnetic resonance concerns nuclei whose spin is different from 0. These nuclei exposed to a magnetic field is comparable to a peg top spinning around its axis while being moved by a precession movement called Larmor precession. This article presents an experiment whose aim is to reveal nuclear magnetism of nuclei by observing Larmor precession phenomena due to the earth magnetic field. The earth magnetic field being too weak, it is necessary to increase the magnetization of the sample during a polarization phase. First the sample is submitted to a magnetic field B perpendicular to the earth magnetic field B 0 , then B is cut off and the nuclei move back to their equilibrium position by executing a precession movement due to B 0 field. (A.C.)

  6. Magnetic guns with cylindrical permanent magnets

    Czech Academy of Sciences Publication Activity Database

    Vokoun, David; Beleggia, M.; Heller, Luděk

    2012-01-01

    Roč. 324, č. 9 (2012), s. 1715-1719 ISSN 0304-8853 R&D Projects: GA ČR(CZ) GAP107/11/0391; GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520 Keywords : permanent magnet * cylindrical magnet * Earnshaw's theorem * magnetic gun * magnetostatic interaction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.826, year: 2012 http://www.sciencedirect.com/science/article/pii/S0304885311008997

  7. Properties of a magnetic superconductor with weak magnetization-application to ErNi2B2C

    International Nuclear Information System (INIS)

    Ng, T.K.; Leung, W.T.

    2001-01-01

    Using a Ginsburg-Landau free-energy functional, we study the H-T phase diagram of a weak magnetic superconductor, where the magnetization from the magnetic component is marginal in supporting a spontaneous vortex phase. In particular, the competition between the spiral state and spontaneous vortex phase is analysed. Our theory is applied to understand the magnetic properties of ErNi 2 B 2 C. (orig.)

  8. Imaging of Magnetic Domains and Domain Walls in Spherical Fe-Si Powder Using Magnetic Force Microscopy

    Czech Academy of Sciences Publication Activity Database

    Strečková, M.; Baťková, M.; Baťko, I.; Hadraba, Hynek; Bureš, R.

    2014-01-01

    Roč. 126, č. 1 (2014), s. 92-93 ISSN 0587-4246. [CSMAG Czech and Slovak Conference on Magnetism /15./. Košice, 17.06.2013-21.06.2013] R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : soft magnetic material * Fe-Si * magnetic force microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.530, year: 2014

  9. Relaxation of a coherent, magnetic s–p model system coupled to one and two thermal baths and a laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Lefkidis, G. [Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Box 3049, 67653 Kaiserslautern (Germany); School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072 (China); Sold, S.; Hübner, W. [Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Box 3049, 67653 Kaiserslautern (Germany)

    2017-06-15

    We study an s–p model magnetic system with a triplet ground state coupled to two temperature baths. By varying the temperatures we both generate non-thermal electronic distributions and create additional coherences in the density matrix of the system. Thus the thermally-induced magnetic response goes beyond the simple picture of majority-minority population dynamics. Furthermore, we discuss the influence of temperature induced relaxation effects on the dynamics induced by an optical perturbation for this quantum system.

  10. Magnetic Field Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...

  11. Developing bulk exchange spring magnets

    Science.gov (United States)

    Mccall, Scott K.; Kuntz, Joshua D.

    2017-06-27

    A method of making a bulk exchange spring magnet by providing a magnetically soft material, providing a hard magnetic material, and producing a composite of said magnetically soft material and said hard magnetic material to make the bulk exchange spring magnet. The step of producing a composite of magnetically soft material and hard magnetic material is accomplished by electrophoretic deposition of the magnetically soft material and the hard magnetic material to make the bulk exchange spring magnet.

  12. Magnetic resonance of low dimensional magnetic solids

    Energy Technology Data Exchange (ETDEWEB)

    Gatteschi, D.; Ferraro, F.; Sessoli, R. (Florence Univ. (Italy))

    1994-06-01

    The utility of EPR and NMR in the study of low-dimensional magnetic solids is shown. A short summary of the basis of magnetic resonance in these systems is reported, and the importance of spin-diffusion and magnetic anisotropy evidenced. Some results from experiments on metal-radical chains and clusters are presented. (authors). 37 refs., 7 figs.

  13. Magnetic resonance of low dimensional magnetic solids

    International Nuclear Information System (INIS)

    Gatteschi, D.; Ferraro, F.; Sessoli, R.

    1994-01-01

    The utility of EPR and NMR in the study of low-dimensional magnetic solids is shown. A short summary of the basis of magnetic resonance in these systems is reported, and the importance of spin-diffusion and magnetic anisotropy evidenced. Some results from experiments on metal-radical chains and clusters are presented. (authors). 37 refs., 7 figs

  14. Superconducting cyclotron magnet coil short

    International Nuclear Information System (INIS)

    Mallory, M.L.; Blosser, H.G.; Clark, D.J.; Launer, H.; Lawton, D.; Miller, P.; Resmini, F.

    1982-01-01

    In February 1981, a short circuit appeared in the superconducting coil of the K500 cyclotron. The short is resistive in character and therefore has no effect on steady state operation of the magnet. The resistance of the short varies, sometimes being below threshold of detection as a heat load on the cooling system and sometimes being significant. The resistance under certain conditions shows approximately cyclic phenomena with time constants in the range of seconds and other approximately cyclic phenomena which correlate with gross operating parameters of the magnet (shifting current from one coil to another at high field and lowering and raising the liquid helium level). A number of diagnostic studies of the short have been made, using 1) an array of flux sensing loops to sense the magnetic effect of the short, 2) voltage comparisons between upper and lower sections of the coil, 3) comparisons of forces in the nine member coil support system and 4) the effect of the short on the thermal charactersitics of the coil. Insulation failure or a metal chip shorting out turns have been explored in some detail but a convincing determination of the exact cause of the short may never be available, (even the extreme step of unwinding the coil having a significant probability that an imperfection with the observed characteristics would pass unnoticed). Analysis of the characteristics of the short indicated that the most serious consequence would be failure of the coils mechanical support system in the event that the magnet was quickly discharged, as in a dump or quench. To deal with this hazard, the support system has been modified by installing solid supports which prevent the coil from moving by an amount sufficient to damage the support system. We have also reexamined the data and calculations used in the original coil design and have made some additional measurements of the properties of the materials (yield strength, friction coefficient, Young's modulus) used in the

  15. Magnetic anisotropies and magnetic switching in Co films

    Science.gov (United States)

    Bland, J. A. C.; Baird, M. J.; Leung, H. T.; Ives, A. J. R.; Mackay, K. D.; Hughes, H. P.

    1992-07-01

    We have used the magneto-optical Kerr effect to investigate the role of the substrate and growth conditions in determining the magnetic switching behaviour of Co films in the thickness range 100-200 Å supported by GaAs(001) and Si(111) substrates. We discuss the anisotropic magnetic hysteresis behaviour observed for Co/GaAs and Co/Si films in terms of coherent rotation of the magnetisation vector during magnetic switching. Equivalent films supported by glass substrates are found to be almost isotropic in-plane. The in-plane coercive and saturation fields are observed to lie in the range 20-80 Oe but perpendicular saturation fields of 25 and 19 kOe are found for the Co/Si and Co/GaAs systems respectively which substantially exceed the demagnetising field in each case. The measured perpendicular anisotropy fields differ strongly from the values for hcp and bcc Co and are attributed to the details of the interface and film structure. We also report strongly frequency dependent magnetic switching behaviour in these Co films.

  16. Magnetic Diagnostics on the Magnetized Shock Experiment (MSX)

    Science.gov (United States)

    Hutchinson, T. M.; Weber, T. E.; Boguski, J. C.; Intrator, T. P.; Smith, R. J.; Dunn, J. P.

    2013-10-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory was built to investigate the physics of high-Alfvénic, supercritical, magnetized shocks through the acceleration and subsequent stagnation of a Field Reversed Configuration (FRC) plasmoid against a magnetic mirror and/or plasma target. An array of high-bandwidth, multi-axis, robust, internal magnetic probes has been constructed to characterize flux compression ratios, instability formation, and turbulent macro-scale features of the post-shock plasma. The mirror magnet is mounted on a linear translation stage, providing a capability to axially move the shock layer through the probe field of view. An independent, external probe array also provides conventional information on the FRC shape, velocity, and total pressure during the formation and acceleration phases. Probe design, characterization, configuration, and initial results are presented. This work is supported by the DOE OFES and NNSA under LANS contract DE-AC52-06NA25369. LA-UR-13-25189.

  17. Integrated magnetic transformer assembly

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to an integrated magnetics transformer assembly comprising a first magnetically permeable core forming a first substantially closed magnetic flux path and a second magnetically permeable core forming a second substantially closed magnetic flux path. A first input...... inductor winding is wound around a first predetermined segment of the first magnetically permeable core and a second input inductor winding is wound around a first predetermined segment of the second magnetically permeable core. The integrated magnetics transformer assembly further comprises a first output......-winding of the first output inductor winding and the first half-winding of the second output inductor winding are configured to produce aligned, i.e. in the same direction, magnetic fluxes through the first substantially closed magnetic flux path. The integrated magnetics transformer assembly is well- suited for use...

  18. MAGNETIC DENSITOMETER

    Science.gov (United States)

    McCann, J.A.; Jones, R.H.

    1961-08-15

    A magnetic densitometer for locating defects and metallic inclusions in materials is described. The apparatus consists of two primary coils connected in series opposition and adapted te be placed in inductive relation to the material under test, a source of constant frequency alternating current coupled across the primary coil combination, a pick-up coil disposed in symmetrical inductive relationship with said primary coils, a phase-shifter coupled to the output of the energizing source. The output of the phase-shifter is coupled in series with the pick-up coil. An amplifier is provided selective to the third harmonic of the energizing source frequency. The series combination of the pick-up coil and the phase-shifter output are connected across the input of the amplifier, and an amplitude comparitor is coupled to the output of the amplifier and the energizing source for comparing the instantaneous amplitude of the amplifier output and the instantaneous output of the energizing source and producing an output proportional to the difference in amplitude. A recorder is coupled to the output of the amplitude comparison means to give an indication of the amplitude difference, thereby providing a permanent presentation of the character of the changes in characteristics exhibited by the material under test. (AEC)

  19. Hoosier Magnetics

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-09-30

    Hoosier Magnetics proposes to replace the indirect clinker water cooling system with a cooling system that recycles heat from the hot ferrite to preheat the combustion air. This innovative process would significantly reduce the amount of natural gas required to heat the combustion air while eliminating Hoosier’s largest source of downtime. According to the Department of Energy’s Industrial Technologies Program for Energy Efficiency and Renewable Energy, process temperature is customarily used as a rough indication of where preheating air will be cost effective. Previous studies have concluded that processes operating above 1,600° F are ideal candidates for the utilization of pre-heated combustion air. Hoosier Magnetics’ operating temperatures run between 1800-2200° F making Hoosier the perfect candidate. Using preheated air at 1200° F will result in 35% fuel savings, or $298,935 annually. Additionally, the new system would have improved process reliability and result in both production efficiency increases and cost savings. This technology is NOT practiced or utilized on a wide-spread basis but could have a significant energy reduction impact in many different high heat utilizing industries in the country. While the energy savings is apparent with this theory the application and design of such a process has not been studied.

  20. Environmental magnetism

    CERN Document Server

    Thompson, Roy

    1986-01-01

    The scientist will be forced, in the unenthusiastic words of one of my scientific colleagues, 'to slosh about in the primordial ooze known as inter-disciplinary studies'. John Passmore Man's responsibility for nature The present text has arisen from some thirteen years advances in our perception, appraisal and creative use of collaboration between the two authors. During that of order in natural systems. Out of this can come period, upwards of a dozen postgraduates in enhanced insight into processes, structures and Edinburgh, the New University of Ulster and Liver­ systems interactions on all temporal and spatial scales pool have been closely involved in exploring many of and at all integrative levels from subatomic to cosmic. the applications of magnetic measurements described In the environment, elements of order are often in the second half of the book. Much of the text is difficult to appraise and analyse, not only because of based on their work, both published and unpublished. intrinsic complexity, but ...

  1. Magnetic domains the analysis of magnetic microstructures

    CERN Document Server

    Hubert, Alex

    1998-01-01

    The book gives a systematic and comprehensive survey of the complete area of magnetic microstructures. It reaches from micromagnetism of nanoparticles to complex structures of extended magnetic materials. The book starts with a comprehensive evaluation of traditional and modern experimental methods for the observation of magnetic domains and continues with the treatment of important methods for the theoretical analysis of magnetic microcstructures. A survey of the necessary techniques in materials characterization is given. The book offers an observation and analysis of magnetic domains in all

  2. Transient anisotropic magnetic field calculation

    International Nuclear Information System (INIS)

    Jesenik, Marko; Gorican, Viktor; Trlep, Mladen; Hamler, Anton; Stumberger, Bojan

    2006-01-01

    For anisotropic magnetic material, nonlinear magnetic characteristics of the material are described with magnetization curves for different magnetization directions. The paper presents transient finite element calculation of the magnetic field in the anisotropic magnetic material based on the measured magnetization curves for different magnetization directions. For the verification of the calculation method some results of the calculation are compared with the measurement

  3. Laced permanent magnet quadrupole drift tube magnets

    International Nuclear Information System (INIS)

    Feinberg, B.; Behrsing, G.U.; Halbach, K.; Marks, J.S.; Morrison, M.E.; Nelson, D.H.

    1988-10-01

    A laced permanent magnet quadrupole drift tube magnet has been constructed for a proof-of-principle test. The magnet is a conventional tape-wound quadrupole electromagnet, using iron pole- pieces, with the addition of permanent magnet material (neodymium iron) between the poles to reduce the effects of saturation. The iron is preloaded with magnetic flux generated by the permanent magnet material, resulting in an asymmetrical saturation curve. Since the polarity of the quadrupole magnets in a drift tube linac is not reversed we can take advantage of this asymmetrical saturation to provide greater focusing strength. The magnet configuration has been optimized and the vanadium permendur poles needed in a conventional quadrupole have been replaced with iron poles. The use of permanent magnet material has allowed us to increase the focusing strength of the magnet by about 20% over that of a conventional tape-wound quadrupole. Comparisons will be made between this magnet and the conventional tape-wound quadrupole. 3 refs., 5 figs

  4. The internal structure of magnetic nanoparticles determines the magnetic response

    Czech Academy of Sciences Publication Activity Database

    Pacáková, Barbara; Kubíčková, Simona; Salas, G.; Mantlíková, Alice; Marciello, M.; Morales, M.P.; Nižňanský, D.; Vejpravová, Jana

    2017-01-01

    Roč. 9, č. 16 (2017), s. 5129-5140 ISSN 2040-3364 R&D Projects: GA ČR(CZ) GA15-01953S Institutional support: RVO:68378271 Keywords : nanoparticles * single-domain * internal structure Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 7.367, year: 2016

  5. Electrical detection of magnetization reversal without auxiliary magnets

    Czech Academy of Sciences Publication Activity Database

    Olejník, Kamil; Novák, Vít; Wunderlich, Joerg; Jungwirth, Tomáš

    2015-01-01

    Roč. 91, č. 18 (2015), , "180402-1"-"180402-5" ISSN 1098-0121 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : spin Hall effect * magnetoresistance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  6. Designing magnets with prescribed magnetic fields

    International Nuclear Information System (INIS)

    Liu Liping

    2011-01-01

    We present a novel design method capable of finding the magnetization densities that generate prescribed magnetic fields. The method is based on the solution to a simple variational inequality and the resulting designs have simple piecewise-constant magnetization densities. By this method, we obtain new designs of magnets that generate commonly used magnetic fields: uniform magnetic fields, self-shielding fields, quadrupole fields and sextupole fields. Further, it is worth noting that this method is not limited to the presented examples, and in particular, three-dimensional designs can be constructed in a similar manner. In conclusion, this novel design method is anticipated to have broad applications where specific magnetic fields are important for the performance of the devices.

  7. Recent advances in anisotropy of magnetic remanence: New software and practical examples

    Czech Academy of Sciences Publication Activity Database

    Chadima, Martin

    -, special issue (2012), s. 59-60 ISSN 1335-2806. [Castle meeting New Trends in Geomagnetism : Paleo, rock and environmental magnetism/13./. 17.06.2012-23.06.2012, Zvolen] Institutional support: RVO:67985831 Keywords : magnetic susceptibility * anisotropy * anisotropy of magnetic susceptibility Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://gauss.savba.sk/GPIweb/conferences/Castle2012/abstrCastle.pdf

  8. Rapid determination of iron oxide content in magnetically modified particulate materials

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Nýdlová, L.; Pospíšková, K.; Baldíková, E.; Maděrová, Z.; Šafaříková, Miroslava

    2016-01-01

    Roč. 26, June (2016), s. 114-117 ISSN 1674-2001 Institutional support: RVO:60077344 Keywords : magnetic iron oxide s * magnetic permeability meter * magnetically modified materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.621, year: 2016

  9. Magnetic Fields in the Massive Dense Cores of the DR21 Filament: Weakly Magnetized Cores in a Strongly Magnetized Filament

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Tao-Chung; Lai, Shih-Ping [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Zhang, Qizhou; Girart, Josep M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 (United States); Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 163 Xianlin Avenue, Nanjing 210023 (China); Liu, Hauyu B., E-mail: chingtaochung@gmail.com [European Southern Observatory (ESO), Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany)

    2017-04-01

    We present Submillimeter Array 880 μ m dust polarization observations of six massive dense cores in the DR21 filament. The dust polarization shows complex magnetic field structures in the massive dense cores with sizes of 0.1 pc, in contrast to the ordered magnetic fields of the parsec-scale filament. The major axes of the massive dense cores appear to be aligned either parallel or perpendicular to the magnetic fields of the filament, indicating that the parsec-scale magnetic fields play an important role in the formation of the massive dense cores. However, the correlation between the major axes of the cores and the magnetic fields of the cores is less significant, suggesting that during the core formation, the magnetic fields below 0.1 pc scales become less important than the magnetic fields above 0.1 pc scales in supporting a core against gravity. Our analysis of the angular dispersion functions of the observed polarization segments yields a plane-of-sky magnetic field strength of 0.4–1.7 mG for the massive dense cores. We estimate the kinematic, magnetic, and gravitational virial parameters of the filament and the cores. The virial parameters show that the gravitational energy in the filament dominates magnetic and kinematic energies, while the kinematic energy dominates in the cores. Our work suggests that although magnetic fields may play an important role in a collapsing filament, the kinematics arising from gravitational collapse must become more important than magnetic fields during the evolution from filaments to massive dense cores.

  10. MAST magnetic diagnostics

    Science.gov (United States)

    Edlington, T.; Martin, R.; Pinfold, T.

    2001-01-01

    The mega-ampere spherical tokamak (MAST) experiment is a new, large, low aspect ratio device (R=0.7-0.8 m, a=0.5-0.65 m, maximum BT˜0.63 T at R=0.7 m) operating its first experimental physics campaign. Designed to study a wide variety of plasma shapes with up to 2 MA of plasma current with an aspect ratio down to 1.3, the poloidal field (PF) coils used for plasma formation, equilibrium and shaping are inside the main vacuum vessel. For plasma control and to investigate a wide range of plasma phenomena, an extensive set of magnetic diagnostics have been installed inside the vacuum vessel. More than 600 vacuum compatible, bakeable diagnostic coils are configured in a number of discrete arrays close to the plasma edge with about half the coils installed behind the graphite armour tiles covering the center column. The coil arrays measure the toroidal and poloidal variation in the equilibrium field and its high frequency fluctuating components. Internal coils also measure currents in the PF coils, plasma current, stored energy and induced currents in the mechanical support structures of the coils and graphite armour tiles. The latter measurements are particularly important when halo currents are induced following a plasma termination, for example, when the plasma becomes vertically unstable. The article describes the MAST magnetic diagnostic coil set and their calibration. The way in which coil signals are used to control the plasma equilibrium is described and data from the first MAST experimental campaign presented. These coil data are used as input to the code EFIT [L. Lao et al., Nucl. Fusion 25, 1611 (1985)], for measurement of halo currents in the vacuum vessel structure and for measurements of the structure of magnetic field fluctuations near the plasma edge.

  11. Bifurcation magnetic resonance in films magnetized along hard magnetization axis

    Energy Technology Data Exchange (ETDEWEB)

    Vasilevskaya, Tatiana M., E-mail: t_vasilevs@mail.ru [Ulyanovsk State University, Leo Tolstoy 42, 432017 Ulyanovsk (Russian Federation); Sementsov, Dmitriy I.; Shutyi, Anatoliy M. [Ulyanovsk State University, Leo Tolstoy 42, 432017 Ulyanovsk (Russian Federation)

    2012-09-15

    We study low-frequency ferromagnetic resonance in a thin film magnetized along the hard magnetization axis performing an analysis of magnetization precession dynamics equations and numerical simulation. Two types of films are considered: polycrystalline uniaxial films and single-crystal films with cubic magnetic anisotropy. An additional (bifurcation) resonance initiated by the bistability, i.e. appearance of two closely spaced equilibrium magnetization states is registered. The modification of dynamic modes provoked by variation of the frequency, amplitude, and magnetic bias value of the ac field is studied. Both steady and chaotic magnetization precession modes are registered in the bifurcation resonance range. - Highlights: Black-Right-Pointing-Pointer An additional bifurcation resonance arises in a case of a thin film magnetized along HMA. Black-Right-Pointing-Pointer Bifurcation resonance occurs due to the presence of two closely spaced equilibrium magnetization states. Black-Right-Pointing-Pointer Both regular and chaotic precession modes are realized within bifurcation resonance range. Black-Right-Pointing-Pointer Appearance of dynamic bistability is typical for bifurcation resonance.

  12. Bifurcation magnetic resonance in films magnetized along hard magnetization axis

    International Nuclear Information System (INIS)

    Vasilevskaya, Tatiana M.; Sementsov, Dmitriy I.; Shutyi, Anatoliy M.

    2012-01-01

    We study low-frequency ferromagnetic resonance in a thin film magnetized along the hard magnetization axis performing an analysis of magnetization precession dynamics equations and numerical simulation. Two types of films are considered: polycrystalline uniaxial films and single-crystal films with cubic magnetic anisotropy. An additional (bifurcation) resonance initiated by the bistability, i.e. appearance of two closely spaced equilibrium magnetization states is registered. The modification of dynamic modes provoked by variation of the frequency, amplitude, and magnetic bias value of the ac field is studied. Both steady and chaotic magnetization precession modes are registered in the bifurcation resonance range. - Highlights: ► An additional bifurcation resonance arises in a case of a thin film magnetized along HMA. ► Bifurcation resonance occurs due to the presence of two closely spaced equilibrium magnetization states. ► Both regular and chaotic precession modes are realized within bifurcation resonance range. ► Appearance of dynamic bistability is typical for bifurcation resonance.

  13. Micro magnetic modeling of magnetization reversal in permanent magnets

    International Nuclear Information System (INIS)

    Toussaint, J.C.; Kevorkian, B.; Givord, D.; Rossignol, M.F.

    1996-01-01

    Micro magnetic numerical 3 D calculation is presented in this paper to investigate the effect of a soft magnetic heterogeneity on the magnetization reversal of a single hard magnetic grain. Both equilibrium and transient magnetization configurations are obtained by solving the dynamic Landau-Lifshitz-Gilbert (L.L.G.) equation. A modified forward difference method is used to integrate the time dependent L.L.G. equation without conflicting with the constraint of constant magnetic moment. A continuum view of the material medium is adopted and the spatial finite difference method is used to describe the system as a set of cubic elements. In each element the magnetization is interpolated with quadratic polynomial functions and constrained to follow the Brown condition at the surface. A multigrid approach is developed to calculate the magnetic potential and the resulting stray field associated with a given microstructure. The calculated properties are compared to actual properties of Nd Fe B sintered magnets. Assuming a soft nucleus of 160 angstrom diameter and 80 angstrom depth, the calculated coercive field is about 1.45 T, close to experimental values and the calculated angular dependence of H c resembles experimental behaviours. (author)

  14. Five years of magnetic field management

    International Nuclear Information System (INIS)

    Durkin, C.J.; Fogarty, R.P.; Halleran, T.M.; Mark, Dr. D.A.; Mukhopadhyay, A.

    1995-01-01

    The extensive publicity of epidemiological studies inferring correlation between 60 Hz magnetic fields and childhood leukemia prompted world wide research programs that have as a goal to determine if low frequency magnetic fields represent any risk for the general population, children or utility workers. While supporting this research effort through EPRI, Con Edison embarked on a technical research program aimed to: characterize magnetic fields as to intensity and variation in time; and investigate practical means to manage these magnetic fields through currently known methods. The final goal of these research projects is to establish viable methods to reduce magnetic field intensity to desired values at reasonable distances from the sources. This goal was pursued step by step, starting with an inventory of the main sources of magnetic fields in substations, distribution and transmission facilities and generating plants. The characterization of the sources helped to identify typical cases and select specific cases, far practical applications. The next step was to analyze the specific cases and develop design criteria for managing the magnetic fields in new installations. These criteria included physical arrangement of equipment based oil calculation of magnetic fields, cancellation effect, desired maximum field intensity at specific points and shielding with high magnetic permeability metals (mu-metal and steel). This paper summarizes the authors' experiences and shows the results of the specific projects completed in recent years

  15. Magnetic correlates in electromagnetic consciousness.

    Science.gov (United States)

    Liboff, A R

    2016-01-01

    We examine the hypothesis that consciousness is a manifestation of the electromagnetic field, finding supportive factors not previously considered. It is not likely that traditional electrophysiological signaling modes can be readily transmitted throughout the brain to properly enable this field because of electric field screening arising from the ubiquitous distribution of high dielectric lipid membranes, a problem that vanishes for low-frequency magnetic fields. Many reports over the last few decades have provided evidence that living tissue is robustly sensitive to ultrasmall (1-100 nT) ELF magnetic fields overlapping the γ-frequency range often associated with awareness. An example taken from animal behavior (coherent bird flocking) lends support to the possibility of a disembodied electromagnetic consciousness. In contrast to quantum consciousness hypotheses, the present approach is open to experimental trial.

  16. Magnetic confinement

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo (ed.)

    2005-07-01

    The Frascati Tokamak Upgrade (FTU) is a compact, high-magnetic-field tokamak capable of operating at density and magnetic field values similar to, or even encompassing, those of International Thermonuclear Experimental Reactor (ITER) and therefore provides a unique opportunity to explore physics issues that are directly relevant to ITER. During 2004 the experimental activities were focussed on fully exploiting the lower hybrid system (for generating and controlling the plasma current) and the electron cyclotron heating system (joint experiment with the Institute of Plasma Physics of the National Research Council, Milan). With all four gyrotrons in operation, full electron cyclotron power was achieved up to a record level of 1.5 MW. By simultaneously injecting lower hybrid waves, to tailor the plasma current radial profile, and electron cyclotron waves, to heat the plasma centre, good confinement regimes with internal transport barriers were obtained at the highest plasma density values ever achieved for this operation regime (n {approx}1.5X10{sup 20}m{sup -3}). Specific studies were devoted to optimising the coupling of lower hybrid waves to the plasma (by real-time control of the plasma position) and to generating current by electron cyclotron current drive. The new scanning CO{sub 2} interferometer (developed by the Reversed Field Experiment Consortium) for high spatial and time resolution (1 cm/50 {mu}s) density profile measurements was extensively used. The Thomson scattering diagnostic was upgraded and enabled observation of scattered signals associated with the Confinement background plasma dynamics. As for theoretical studies on the dynamics of turbulence in plasmas, the transition from Bohm-like scaling to gyro-Bohm scaling of the local plasma diffusivity was demonstrated on the basis of a generalised four wave model (joint collaboration with Princeton Plasma Physics Laboratory and the University of California at Irvine). The transition from weak to strong

  17. Magnetic confinement

    International Nuclear Information System (INIS)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo

    2005-01-01

    The Frascati Tokamak Upgrade (FTU) is a compact, high-magnetic-field tokamak capable of operating at density and magnetic field values similar to, or even encompassing, those of International Thermonuclear Experimental Reactor (ITER) and therefore provides a unique opportunity to explore physics issues that are directly relevant to ITER. During 2004 the experimental activities were focussed on fully exploiting the lower hybrid system (for generating and controlling the plasma current) and the electron cyclotron heating system (joint experiment with the Institute of Plasma Physics of the National Research Council, Milan). With all four gyrotrons in operation, full electron cyclotron power was achieved up to a record level of 1.5 MW. By simultaneously injecting lower hybrid waves, to tailor the plasma current radial profile, and electron cyclotron waves, to heat the plasma centre, good confinement regimes with internal transport barriers were obtained at the highest plasma density values ever achieved for this operation regime (n ∼1.5X10 20 m -3 ). Specific studies were devoted to optimising the coupling of lower hybrid waves to the plasma (by real-time control of the plasma position) and to generating current by electron cyclotron current drive. The new scanning CO 2 interferometer (developed by the Reversed Field Experiment Consortium) for high spatial and time resolution (1 cm/50 μs) density profile measurements was extensively used. The Thomson scattering diagnostic was upgraded and enabled observation of scattered signals associated with the Confinement background plasma dynamics. As for theoretical studies on the dynamics of turbulence in plasmas, the transition from Bohm-like scaling to gyro-Bohm scaling of the local plasma diffusivity was demonstrated on the basis of a generalised four wave model (joint collaboration with Princeton Plasma Physics Laboratory and the University of California at Irvine). The transition from weak to strong energetic particle

  18. Magnetic-flux pump

    Science.gov (United States)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.

  19. Superconducting magnets 1992

    International Nuclear Information System (INIS)

    1993-06-01

    This report discusses the following topics on Superconducting Magnets; SSC Magnet Industrialization; Collider Quadrupole Development; A Record-Setting Magnet; D20: The Push Beyond 10T; Nonaccelerator Applications; APC Materials Development; High-T c at Low Temperature; Cable and Cabling-Machine Development; and Analytical Magnet Design

  20. Magnetic multilayer structure

    Science.gov (United States)

    Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.

    2016-07-05

    A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.

  1. Magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1985-02-01

    The basic properties of the Hamiltonian representation of magnetic fields in canonical form are reviewed. The theory of canonical magnetic perturbation theory is then developed and applied to the time evolution of a magnetic field embedded in a toroidal plasma. Finally, the extension of the energy principle to tearing modes, utilizing the magnetic field line Hamiltonian, is outlined

  2. Magnetic effects in electrochemistry

    Directory of Open Access Journals (Sweden)

    NEBOJSA D. NIKOLIC

    2005-05-01

    Full Text Available The effect of imposed magnetic fields onto the electrodeposition of magnetic (nickel and non – magnetic (copper metals was analysed. Also, magnetic properties of electrochemically obtained nanocontacts were examined. An effort to establish a possible correlation between the morphologies of the nanocontacts and the effect of the very large ballistic magnetoresistance (BMR effect was made.

  3. SSC string test facility for superconducting magnets: Testing capabilities and program for collider magnets

    International Nuclear Information System (INIS)

    Kraushaar, P.; Burgett, W.; Dombeck, T.; McInturff, A.; Robinson, W.; Saladin, V.

    1993-05-01

    The Accelerator Systems String Test (ASST) R ampersand D Testing Facility has been established at the SSC Laboratory to test Collider and High Energy Booster (HEB) superconducting magnet strings. The facility is operational and has had two testing periods utilizing a half cell of collider prototypical magnets with the associated spool pieces and support systems. This paper presents a description of the testing capabilities of the facility with respect to components and supporting subsystems (cryogenic, power, quench protection, controls and instrumentation), the planned testing program for the collider magnets

  4. Fiscal year 1986, Department of Energy authorization (magnetic fusion energy and departmental administration and supporting services activities). Volume V. Hearings before the Subcommittee on Energy Research and Production of the Committee on Science and Technology, House of Representatives, Ninety-Ninth Congress, First Session, March 8, 18, 1985

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Volume V of the hearing record covers testimony given over two days on budgets for research on magnetic fusion energy and on the administration and support services of the DOE. The principal witness on the first day was Dr. Alvin Trivelpiece of DOE, who described adjustments in fusion funding that resulted from federal budget cuts. These led to delay and deferments in the program, and raised the issue of how to maintain balance in the program and still meet program goals. Trivelpiece emphasized that cuts for fusion research were consistent with other DOE reductions. Testimony on the second day came from representatives of fusion laboratories and the nuclear industry. Two appendices with additional questions and answers submitted for the record follow the testimony of the 16 witnesses

  5. Introduction to permanent magnets

    International Nuclear Information System (INIS)

    Zijlstra, H.

    1985-01-01

    Some general considerations concerning the application of permanent magnets are developed. The relevant magnet properties are discussed, with particular reference to Nd-Fe-B alloy. The author comes to the following conclusions; the air gap field B should be high, for high electrical efficiency; the magnet should face the air gap, for efficient use of the magnet material; the magnet material should therefore have a high remanence; and the new Nd-Fe-B magnet fits in nicely, having (potentially) the highest remanence ever reported in permanent magnets, combined with sufficient coercivity to sustain it

  6. SLC kicker magnet limitations

    International Nuclear Information System (INIS)

    Cassel, R.; Donaldson, A.; Mattison, T.; Bowden, G.; Weaver, J.; Bulos, F.; Fiander, D.

    1991-01-01

    The SLC Damping Ring kicker magnets requires a fast magnetic field rise time of 58 nsec, a peak field of 800 gauss, a pulse amplitude stability of 0.01%, and a reasonable operational lifetime. The original kicker magnets designed by SLAC and at Fermi were not able to fulfill the SLC kicker requirements. Extensive studies were conducted to determine the limitation in the magnets, response of the ferrite in kicker magnet, and the modifications needed to improve the kicker magnet performance. The paper details the SLAC and Fermi kicker magnets limitation of performance

  7. Magnetic Fields of Neutron Stars

    Indian Academy of Sciences (India)

    Sushan Konar

    2017-09-12

    Sep 12, 2017 ... the material properties of the region where currents supporting the .... 1The evolution of magnetic field in neutron stars, in particular, the question of .... −10, 10. −9, 10. −8. M⊙/yr respec- tively. See Konar & Bhattacharya (1997) for details. Peq ≃ 1.9 ms ..... ported by a grant (SR/WOS-A/PM-1038/2014) from.

  8. Modeling of magnetic cloud expansion

    Czech Academy of Sciences Publication Activity Database

    Vandas, Marek; Romashets, E.; Geranios, A.

    2015-01-01

    Roč. 583, November (2015), A78/1-A78/10 ISSN 0004-6361 R&D Projects: GA ČR GA205/09/0170; GA ČR(CZ) GA14-19376S Institutional support: RVO:67985815 Keywords : solar wind * magnetic fields * magnetohydrodynamics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  9. Hybrid superconducting magnetic suspensions

    International Nuclear Information System (INIS)

    Tixador, P.; Hiebel, P.; Brunet, Y.; Chaud, X.; Gautier-Picard, P.

    1996-01-01

    Superconductors, especially high T c ones, are the most attractive materials to design stable and fully passive magnetic suspensions which have to control five degrees of freedom. The hybrid superconducting magnetic suspensions present high performances and a simple cooling mode. They consist of a permanent magnet bearing, stabilized by a suitable magnet-superconductor structure. Several designs are given and compared in terms of forces and stiffnesses. The design of the magnet bearing plays an important part. The superconducting magnetic bearing participates less in levitation but must provide a high stabilizing stiffness. This is achieved by the magnet configuration, a good material in term of critical current density and field cooling. A hybrid superconducting suspension for a flywheel is presented. This system consists of a magnet thrust bearing stabilized by superconductors interacting with an alternating polarity magnet structure. First tests and results are reported. Superconducting materials are magnetically melt-textured YBaCuO

  10. High gradient magnetic separation

    International Nuclear Information System (INIS)

    Prothero, D.H.

    1982-01-01

    In a process in which magnetic material is trapped in a filter disposed in a magnetic field, and is unloaded by passing a fluid through the filter in the absence of the initial magnetic field, the magnetic field is first reduced to an intermediate value to allow unloading of the more weakly magnetic particles, the more strongly magnetic particles being retained and subsequently unloaded by further reduction of the magnetic field. Stage by stage reduction of the magnetic field during unloading allows separation of different species from the mixture. As an example the method can be applied to the separation of uranium compounds from mine ores. The uranium compounds are magnetic, while most of the other constituents of the ore are non-magnetic. The starting material is a suspension of the ore. Water is used for unloading. The filter material in this case is stainless steel balls. (author)

  11. Magnetic fusion energy

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The efforts of the Chemical Technology Division in the area of fusion energy include fuel handling, processing, and containment. These studies are closely coordinated with the ORNL Fusion Energy Division. Current experimental studies are concerned with the development of vacuum pumps for fusion reactors, the evaluation and development of techniques for recovering tritium (fuel) from either solid or liquid lithium containing blankets, and the use of deep beds of sorbents as roughing pumps and/or transfer operations. In addition, a small effort is devoted to the support of the ORNL design of The Next Step (TNS) in tokamak reactor development. The more applied studies--vacuum pump development and TNS design--are funded by the DOE/Magnetic Fusion Energy, and the more fundamental studies--blanket recovery and sorption in deep beds--are funded by the DOE/Basic Energy Sciences

  12. Neutron scattering and magnetism

    International Nuclear Information System (INIS)

    Mackintosh, A.R.

    1983-01-01

    Those properties of the neutron which make it a unique tool for the study of magnetism are described. The scattering of neutrons by magnetic solids is briefly reviewed, with emphasis on the information on the magnetic structure and dynamics which is inherent in the scattering cross-section. The contribution of neutron scattering to our understanding of magnetic ordering, excitations and phase transitions is illustrated by experimental results on a variety of magnetic crystals. (author)

  13. Ultrafast magnetization dynamics

    OpenAIRE

    Woodford, Simon

    2008-01-01

    This thesis addresses ultrafast magnetization dynamics from a theoretical perspective. The manipulation of magnetization using the inverse Faraday effect has been studied, as well as magnetic relaxation processes in quantum dots. The inverse Faraday effect – the generation of a magnetic field by nonresonant, circularly polarized light – offers the possibility to control and reverse magnetization on a timescale of a few hundred femtoseconds. This is important both for the technological advant...

  14. Stacked magnet superconducting bearing

    International Nuclear Information System (INIS)

    Rigney, T.K. II; Saville, M.P.

    1993-01-01

    A superconducting bearing is described, comprising: a plurality of permanent magnets magnetized end-to-end and stacked side-by-side in alternating polarity, such that flux lines flow between ends of adjacent magnets; isolating means, disposed between said adjacent magnets, for reducing flux leakage between opposing sides of said adjacent magnets; and a member made of superconducting material having at least one surface in communication with said flux lines

  15. Magnetic Damping For Maglev

    Directory of Open Access Journals (Sweden)

    S. Zhu

    1998-01-01

    Full Text Available Magnetic damping is one of the important parameters that control the response and stability of maglev systems. An experimental study to measure magnetic damping directly is presented. A plate attached to a permanent magnet levitated on a rotating drum was tested to investigate the effect of various parameters, such as conductivity, gap, excitation frequency, and oscillation amplitude, on magnetic damping. The experimental technique is capable of measuring all of the magnetic damping coefficients, some of which cannot be measured indirectly.

  16. Magnetically operated check valve

    Science.gov (United States)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-06-01

    A magnetically operated check valve is disclosed. The valve is comprised of a valve body and a movable poppet disposed therein. A magnet attracts the poppet to hold the valve shut until the force of fluid flow through the valve overcomes the magnetic attraction and moves the poppet to an unseated, open position. The poppet and magnet are configured and disposed to trap a magnetically attracted particulate and prevent it from flowing to a valve seating region.

  17. Modular transportable superconducting magnetic energy systems

    Science.gov (United States)

    Lieurance, Dennis; Kimball, Foster; Rix, Craig

    1995-04-01

    Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given application should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.

  18. Modular transportable superconducting magnetic Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lieurance, D.; Kimball, F.; Rix, C. [Martin Marietta Space Magnetics, San Diego, CA (United States)

    1994-12-31

    Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given application should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.

  19. Effect of magnetic field on noncollinear magnetism in classical bilinear-biquadratic Heisenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Pasrija, Kanika, E-mail: kanikapasrija@iisermohali.ac.in; Kumar, Sanjeev, E-mail: sanjeev@iisermohali.ac.in [Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Manauli PO 140306 (India)

    2016-05-06

    We present a Monte Carlo simulation study of a bilinear-biquadratic Heisenberg model on a two-dimensional square lattice in the presence of an external magnetic field. The study is motivated by the relevance of this simple model to the non-collinear magnetism and the consequent ferroelectric behavior in the recently discovered high-temperature multiferroic, cupric oxide (CuO). We show that an external magnetic field stabilizes a non-coplanar magnetic phase, which is characterized by a finite ferromagnetic moment along the direction of the applied magnetic field and a spiral spin texture if projected in the plane perpendicular to the magnetic field. Real-space analysis highlights a coexistence of non-collinear regions with ferromagnetic clusters. The results are also supported by simple variational calculations.

  20. Magnetic novae

    Science.gov (United States)

    Zemko, Polina; Orio, Marina

    2016-07-01

    We present the results of optical and X-ray observations of two quiescent novae, V2491 Cyg and V4743 Sgr. Our observations suggest the intriguing possibility of localization of hydrogen burning in magnetic novae, in which accretion is streamed to the polar caps. V2491 Cyg was observed with Suzaku more than 2 years after the outburst and V4743 Sgr was observed with XMM Newton 2 and 3.5 years after maximum. In the framework of a monitoring program of novae previously observed as super soft X-ray sources we also obtained optical spectra of V4743 Sgr with the SALT telescope 11.5 years after the eruption and of V2491 Cyg with the 6m Big Azimutal Telescope 4 and 7 years post-outburst. In order to confirm the possible white dwarf spin period of V2491 Cyg measured in the Suzaku observations we obtained photometric data using the 90cm WIYN telescope at Kitt Peak and the 1.2 m telescope in Crimea. We found that V4743 Sgr is an intermediate polar (IP) and V2491 Cyg is a strong IP candidate. Both novae show modulation of their X-ray light curves and have X-ray spectra typical of IPs. The Suzaku and XMM Newton exposures revealed that the spectra of both novae have a very soft blackbody-like component with a temperature close to that of the hydrogen burning white dwarfs in their SSS phases, but with flux by at least two orders of magnitude lower, implying a possible shrinking of emitting regions in the thin atmosphere that is heated by nuclear burning underneath it. In quiescent IPs, independently of the burning, an ultrasoft X-ray flux component originates at times in the polar regions irradiated by the accretion column, but the soft component of V4743 Sgr disappeared in 2006, indicating that the origin may be different from accretion. We suggest it may have been due to an atmospheric temperature gradient on the white dwarf surface, or to continuing localized thermonuclear burning at the bottom of the envelope, before complete turn-off. The optical spectra of V2491 Cyg and V

  1. Design of a Geothermal Downhole Magnetic Flowmeter

    Energy Technology Data Exchange (ETDEWEB)

    Glowka, Dave A.; Normann, Randy A.

    2015-06-15

    This paper covers the development of a 300°C geothermal solid-state magnetic flowmeter (or magmeter) to support in situ monitoring of future EGS (enhanced geothermal system) production wells. Existing flowmeters are simple mechanical spinner sensors. These mechanical sensors fail within as little as 10 hrs, while a solid-state magmeter has the potential for months/years of operation. The design and testing of a magnetic flow sensor for use with existing high-temperature electronics is presented.

  2. Cantor spectra of magnetic chain graphs

    Czech Academy of Sciences Publication Activity Database

    Exner, Pavel; Vašata, D.

    2017-01-01

    Roč. 50, č. 16 (2017), č. článku 165201. ISSN 1751-8113 R&D Projects: GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : quantum chain graph * magnetic field * almost Mathieu operator * Cantor spectrum Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.857, year: 2016

  3. Magnetization dynamics of imprinted non-collinear spin textures

    Energy Technology Data Exchange (ETDEWEB)

    Streubel, Robert, E-mail: r.streubel@ifw-dresden.de; Kopte, Martin; Makarov, Denys, E-mail: d.makarov@ifw-dresden.de [Institute for Integrative Nanosciences, IFW Dresden, 01069 Dresden (Germany); Fischer, Peter [Center for X-Ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Physics Department, UC Santa Cruz, Santa Cruz, California 95064 (United States); Schmidt, Oliver G. [Institute for Integrative Nanosciences, IFW Dresden, 01069 Dresden (Germany); Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107 Chemnitz (Germany)

    2015-09-14

    We study the magnetization dynamics of non-collinear spin textures realized via imprint of the magnetic vortex state in soft permalloy into magnetically hard out-of-plane magnetized Co/Pd nanopatterned heterostructures. Tuning the interlayer exchange coupling between soft- and hard-magnetic subsystems provides means to tailor the magnetic state in the Co/Pd stack from being vortex- to donut-like with different core sizes. While the imprinted vortex spin texture leads to the dynamics similar to the one observed for vortices in permalloy disks, the donut-like state causes the appearance of two gyrofrequencies characteristic of the early and later stages of the magnetization dynamics. The dynamics are described using the Thiele equation supported by the full scale micromagnetic simulations by taking into account an enlarged core size of the donut states compared to magnetic vortices.

  4. Magnetic field calculation of the Na-4 muon spectrometer

    International Nuclear Information System (INIS)

    Cvach, J.; Il'yushchenko, V.I.; Savin, I.A.; Vorozhtsov, S.B.

    1980-01-01

    A NA-4 muon spectrometer is described. Preliminary results of calculating a magnetic field in a toroidal magnetic detector are given. The spectrometer includes 10 similar supermodules each of which consists of 32 iron discs with 275 cm outer diameter magnetized up to saturation. Each module is an independent detector. The POISSON program is used for calculating magnetic field distribution in a toroidal spectrometer magnet. The results obtained show that a magnetic field of iron is a toroidal one and drops approximately according to the logarithmic law from 21.1 kGs on an inner magnet rig to 17.7 kGs on an outer. Magnet support gives approximately 2 % error

  5. Superconducting magnetic shields for neutral beam injectors. Final report

    International Nuclear Information System (INIS)

    1985-04-01

    Large high energy deuterium neutral beams which must be made from negative ions require extensive magnetic shielding against the intense fringe fields surrounding a magnetic fusion power plant. The feasibility of shielding by multilayer sheets of copper-superconducting laminated material was investigated. It was found that, if necessary fabrication techniques are developed, intrinsically stable type II superconductors will be able to shield against the magnetic fields of the fusion reactors. Among the immediate benefits of this research is better magnetic shields for neutral beam injectors in support of DOE's fusion program. Another application may be in the space vehicles, where difficulties in transporting heavy μ-metal sections may make a comparatively light superconducting shield attractive. Also, as high-field superconducting magnets find widespread applications, the need for high-intensity magnetic shielding will increase. As a result, the commercial market for the magnetic shields should expand along with the market for superconducting magnets

  6. Intrinsic magnetic torque at low magnetic induction

    International Nuclear Information System (INIS)

    Doria, M.M.; Oliveira, I.G. de.

    1993-01-01

    Using anisotropic London theory the intrinsic magnetic torque for extreme type II uniaxial superconductors for any value of the magnetic induction is obtained. It is considered the vortex lines straight and take into account the contribution of the supercurrents flowing inside the vortex core within the London theory. It is shown that the interline and intra line free energies give opposite torque contributions, the first drives the magnetic induction parallel to the superconductor's axis of symmetry and the second orthogonal to it. At high magnetic induction torque expression obtained generalizes V. Kogan's formula since it has no free parameters other than the anisotropy γ = m 1 /m 3 and the Ginzburg-Landau parameter κ. At low magnetic induction it is proposed a way to observe vortex chains effects in the total torque based on the fact that London theory is linear and the energy to make a single vortex line in space is independent of the magnetic induction. (author)

  7. Magnetization of Paraffin-Based Magnetic Nanocolloids

    Science.gov (United States)

    Dikanskii, Yu. I.; Ispiryan, A. G.; Kunikin, S. A.; Radionov, A. V.

    2018-01-01

    Using paraffin-based magnetic nanocolloids as an example, the reasons for maxima in the temperature dependence of the magnetic susceptibility of magnetic colloids have been discussed. The behavior of these dependences in a wide temperature interval has been analyzed for colloids in solid and liquid states. It has been concluded that the maximum observed at the melting point of paraffin can be attributed to freezing Brownian degrees of freedom in magnetite coarse particles, the magnetic moment of which is intimately related to the solid matrix. The second main maximum, which arises in the solid state, is explained by the superparamagnetic-magnetically hard transition of most fine particles at lower temperatures. It has been noted that the flatness of this maximum results from the polydispersity of the magnetic nanoparticle ensemble.

  8. Magnon heat capacity and magnetic susceptibility of the spin Lieb lattice

    Energy Technology Data Exchange (ETDEWEB)

    Yarmohammadi, Mohsen, E-mail: m.yarmohammadi69@gamil.com

    2016-11-01

    Using linear response theory, Heisenberg model Hamiltonian and Green's function technique, the influences of Dzyaloshinskii–Moriya interaction (DMI), external magnetic field and next-nearest-neighbor (NNN) coupling on the density of magnon modes (DMM), the magnetic susceptibility (MS) and the magnon heat capacity (MHC) of a spin Lieb lattice, a face-centered square lattice, are investigated. The results reveal a band gap in the DMM and we witness an extension in the bandwidth and an increase in the number of van-Hove singularities as well. As a notable point, besides the magnetic nature which includes ferromagnetism in spin Lieb-based nanosystems, MS is investigated. Further, we report a Schottky anomaly in the MHC. The results show that the effects of the magnetic field on the MHC and MS have different behaviors in two temperature regions. In the low temperature region, MHC and MS increase when the magnetic field strength increases. On the other hand, the MHC and MS reduce with increasing the magnetic field strength in the high temperature region. Also comprehensive numerical modelling of the DMM, the MS and the MHC of a spin Lieb lattice yields excellent qualitative agreement with the experimental data. - Highlights: • Theoretical calculation of density of states of the spin Lieb lattice. • The investigation of the effect of external magnetic field on the magnon heat capacity and magnetic susceptibility. • The investigation of the effect of NNN coupling and the DMI strength on the magnon heat capacity and magnetic susceptibility.

  9. Magnetically modified microalgae and their applications

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Procházková, G.; Pospíšková, K.; Brányik, T.

    2016-01-01

    Roč. 36, č. 5 (2016), s. 931-941 ISSN 0738-8551 R&D Projects: GA ČR GA13-13709S; GA MŠk(CZ) LD13021 Institutional support: RVO:67179843 Keywords : oleaginous chlorella sp * fresh-water microalgae * magnetophoretic separation * high-gradient * harvesting microalgae * alexandrium-fundyense * polymer binder * algal blooms * cells * removal * Harvesting algal cells * magnetic labeling * magnetic modification * magnetic separation * microalgae Subject RIV: EI - Biotechnology ; Bionics Impact factor: 6.542, year: 2016

  10. Manufacturing methods and magnetic characteristics of magnetic wood

    International Nuclear Information System (INIS)

    Oka, H.; Hojo, A.; Osada, H.; Namizaki, Y.; Taniuchi, H.

    2004-01-01

    The relationship between wood construction and DC magnetic characteristics for three types of magnetic wood was experimentally investigated. The results show that the magnetic characteristics of each type of magnetic wood are dependent on the magnetic materials, the density of the magnetic material and the construction of the wood. Furthermore, it was determined that the relationship between the fiber direction and the magnetic path direction of the magnetic wood influenced the wood's magnetic characteristics

  11. Magnetic field modification of optical magnetic dipoles.

    Science.gov (United States)

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate.

  12. Magnetic design of a FFAG superconducting magnet

    International Nuclear Information System (INIS)

    Obana, T.; Ogitsu, T.; Nakamoto, T.; Sasaki, K.; Yamamoto, A.; Yoshimoto, M.; Mori, Y.; Orikasa, T.

    2005-01-01

    A superconducting magnet for a Fixed Field Alternating Gradient (FFAG) accelerator has been proposed. The required magnetic field is static and proportional to the k-th power of the orbit radius where k is the geometrical field index of the accelerator. In 2D, the required magnetic field can be generated with the optimized cross section of the coil. The cross section of the coils is a left-right asymmetry to simplify the cross section and ellipse to downsize the magnet. Local and integral 3D fields along the beam trajectory are evaluated with using new type of 3D coil configuration

  13. Magnetization reversal in single molecule magnets

    Science.gov (United States)

    Bokacheva, Louisa

    2002-09-01

    I have studied the magnetization reversal in single molecule magnets (SMMs). SMMs are Van der Waals crystals, consisting of identical molecules containing transition metal ions, with high spin and large uniaxial magnetic anisotropy. They can be considered as ensembles of identical, iso-oriented nanomagnets. At high temperature, these materials behave as superparamagnets and their magnetization reversal occurs by thermal activation. At low temperature they become blocked, and their magnetic relaxation occurs via thermally assisted tunneling or pure quantum tunneling through the anisotropy barrier. We have conducted detailed experimental studies of the magnetization reversal in SMM material Mn12-acetate (Mn12) with S = 10. Low temperature measurements were conducted using micro-Hall effect magnetometry. We performed hysteresis and relaxation studies as a function of temperature, transverse field, and magnetization state of the sample. We identified magnetic sublevels that dominate the tunneling at a given field, temperature and magnetization. We observed a crossover between thermally assisted and pure quantum tunneling. The form of this crossover depends on the magnitude and direction of the applied field. This crossover is abrupt (first-order) and occurs in a narrow temperature interval (tunneling mechanisms in Mn12.

  14. Computational quantum magnetism: Role of noncollinear magnetism

    International Nuclear Information System (INIS)

    Freeman, Arthur J.; Nakamura, Kohji

    2009-01-01

    We are witnessing today a golden age of innovation with novel magnetic materials and with discoveries important for both basic science and device applications. Computation and simulation have played a key role in the dramatic advances of the past and those we are witnessing today. A goal-driving computational science-simulations of every-increasing complexity of more and more realistic models has been brought into greater focus with greater computing power to run sophisticated and powerful software codes like our highly precise full-potential linearized augmented plane wave (FLAPW) method. Indeed, significant progress has been achieved from advanced first-principles FLAPW calculations for the predictions of surface/interface magnetism. One recently resolved challenging issue is the role of noncollinear magnetism (NCM) that arises not only through the SOC, but also from the breaking of symmetry at surfaces and interfaces. For this, we will further review some specific advances we are witnessing today, including complex magnetic phenomena from noncollinear magnetism with no shape approximation for the magnetization (perpendicular MCA in transition-metal overlayers and superlattices; unidirectional anisotropy and exchange bias in FM and AFM bilayers; constricted domain walls important in quantum spin interfaces; and curling magnetic nano-scale dots as new candidates for non-volatile memory applications) and most recently providing new predictions and understanding of magnetism in novel materials such as magnetic semiconductors and multi-ferroic systems

  15. Magnetic holes in the dipolarized magnetotail: ion and electron anisotropies

    Science.gov (United States)

    Shustov, P.; Artemyev, A.; Zhang, X. J.; Yushkov, E.; Petrukovich, A. A.

    2017-12-01

    We conduct statistics on magnetic holes observed by THEMIS spacecraft in the near-Earth magnetotail. Groups of holes are detected after dipolarizations in the quiet, equatorial plasma sheet. Magnetic holes are characterized by significant magnetic field depressions (up to 50%) and strong electron currents ( 10-50 nA/m2), with spatial scales much smaller than the ion gyroradius. These magnetic holes are populated by hot (>10 keV), transversely anisotropic electrons supporting the pressure balance. We present statistical properties of these sub-ion scale magnetic holes and discuss possible mechanisms on the hole formation.

  16. Power supply control units for APS ring magnets

    International Nuclear Information System (INIS)

    Despe, O.D.

    1990-01-01

    The APS storage ring (1104 meters) is divided into 40 sectors. Each sector has 38 magnet coils in five magnet bases. Every alternate sector has an additional quadrupole magnet for skew correction. AR the main dipole magnets, two in each sector are connected in series and fed from one power supply unit. A base is controlled by one power supply control unit (PSCU). Each PSCU is connected to the host computer via a local area network (LAN). This note discusses the hardware configuration of the typical power supply control system used by the APS magnets and the software commands supported by the PSCU

  17. Advanced Magnetic Nanostructures

    CERN Document Server

    Sellmyer, David

    2006-01-01

    Advanced Magnetic Nanostructures is devoted to the fabrication, characterization, experimental investigation, theoretical understanding, and utilization of advanced magnetic nanostructures. Focus is on various types of 'bottom-up' and 'top-down' artificial nanostructures, as contrasted to naturally occurring magnetic nanostructures, such as iron-oxide inclusions in magnetic rocks, and to structures such as perfect thin films. Chapter 1 is an introduction into some basic concepts, such as the definitions of basic magnetic quantities. Chapters 2-4 are devoted to the theory of magnetic nanostructures, Chapter 5 deals with the characterization of the structures, and Chapters 6-10 are devoted to specific systems. Applications of advanced magnetic nanostructures are discussed in Chapters11-15 and, finally, the appendix lists and briefly discusses magnetic properties of typical starting materials. Industrial and academic researchers in magnetism and related areas such as nanotechnology, materials science, and theore...

  18. Magnet News

    CERN Multimedia

    Miele, P

    Production of TB Components The production of the eight coils of the Barrel Toroid is progressing well in industry. The main components of more than three coils are piled up in Building 180 (Fig. 1). Twelve double pancakes have been completed at ANSALDO, Italy: four are standing in Building 180 and another eight will be delivered to CERN in September 2002. Four coil casings were dispatched to CERN by ALSTOM Power Switzerland. Four vacuum vessels have been completed at Felguera Construcciones Mecanicas, Spain, of which three are standing in Building 180 and one is expected in September 2002 (Fig. 2). The two first batches of superinsulation will be delivered to CERN by Protvino, Russia, in September 2002. Among the cold mass supports, the first batch of cryogenic stops was dispatched by HTS, Switzerland and the tie rods produced and proof tested in Russia are expected in September 2002. The contract for the thermal shield production was the last to be signed: the first batch is currently under manufacturin...

  19. Magnetic porous corn starch for the affinity purifi cation of cyclodextrin glucanotransferase produced by Bacillus circulans

    Czech Academy of Sciences Publication Activity Database

    Šafaříková, Miroslava; Horská, Kateřina; Maděrová, Zdeňka; Tonkova, A.; Ivanova-Pashkoulova, V.; Šafařík, Ivo

    2012-01-01

    Roč. 30, č. 1 (2012), s. 96-101 ISSN 1024-2422 Institutional support: RVO:67179843 Keywords : Bacillus circulans * cyclodextrin glucanotransferase * magnetic starch * magnetic separation Subject RIV: EH - Ecology, Behaviour Impact factor: 0.895, year: 2012

  20. Magnetic and magnetocaloric properties of partially disordered RFeAl (R = Gd, Tb) intermetallic

    Czech Academy of Sciences Publication Activity Database

    Kaštil, Jiří; Javorský, P.; Kamarád, Jiří; Diop, L.V.B.; Isnard, O.; Arnold, Zdeněk

    2014-01-01

    Roč. 54, Nov (2014), s. 15-19 ISSN 0966-9795 Institutional support: RVO:68378271 Keywords : magnetic properties * thermodynamic properties * energy systems Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.131, year: 2014

  1. A comparison between clinical assessment and magnetic resonance imaging of acute hamstring injuries

    NARCIS (Netherlands)

    Schneider-Kolsky, Michal E.; Hoving, Jan Lucas; Warren, Price; Connell, David A.

    2006-01-01

    BACKGROUND: Physicians evaluating hamstring strains in professional football players are increasingly turning to magnetic resonance imaging to support the clinical diagnosis and management of the injury. However, little information is available to assess how magnetic resonance imaging compares with

  2. MAGNETIC FLUX EXPULSION IN STAR FORMATION

    International Nuclear Information System (INIS)

    Zhao Bo; Li Zhiyun; Nakamura, Fumitaka; Krasnopolsky, Ruben; Shang, Hsien

    2011-01-01

    Stars form in dense cores of magnetized molecular clouds. If the magnetic flux threading the cores is dragged into the stars, the stellar field would be orders of magnitude stronger than observed. This well-known 'magnetic flux problem' demands that most of the core magnetic flux be decoupled from the matter that enters the star. We carry out the first exploration of what happens to the decoupled magnetic flux in three dimensions, using a magnetohydrodynamic (MHD) version of the ENZO adaptive mesh refinement code. The field-matter decoupling is achieved through a sink particle treatment, which is needed to follow the protostellar accretion phase of star formation. We find that the accumulation of the decoupled flux near the accreting protostar leads to a magnetic pressure buildup. The high pressure is released anisotropically along the path of least resistance. It drives a low-density expanding region in which the decoupled magnetic flux is expelled. This decoupling-enabled magnetic structure has never been seen before in three-dimensional MHD simulations of star formation. It generates a strong asymmetry in the protostellar accretion flow, potentially giving a kick to the star. In the presence of an initial core rotation, the structure presents an obstacle to the formation of a rotationally supported disk, in addition to magnetic braking, by acting as a rigid magnetic wall that prevents the rotating gas from completing a full orbit around the central object. We conclude that the decoupled magnetic flux from the stellar matter can strongly affect the protostellar collapse dynamics.

  3. Magnetic Polarons in Anisotropic Quantum Dots

    Science.gov (United States)

    Oszwaldowski, Rafal; Petukhov, Andre; Zutic, Igor

    2010-03-01

    Tunability of confinement in magnetically-doped quantum dots (QDs) allows to tailor magnetism to an extent not available in bulk semiconductors. Versatile control of magnetic ordering, along with piezomagnetism, has been predicted even at a fixed number of carriers [1]. Recent experiments on colloidal QDs revealed strongly bound magnetic polarons (MPs) [2]. Previous studies of MPs in bulk semiconductors showed that the mean-field theory predicts a spurious magnetic phase transition, which is removed by taking into account spin fluctuations [3]. Here we present our theoretical results for MPs forming in QDs with pronounced magnetic anisotropy, which influences the spin fluctuations. We apply our findings to explain some peculiarities of the magnetic behavior of type-II ZnSe/(Zn,Mn)Te QDs, where magnetic polarons are found to persist to at least 200K [4]. Supported by ONR, AFOSR, and NSF-ECCS CAREER. [4pt] [1] R. M. Abolfath, A. G. Petukhov, and I. Zutic, Phys. Rev. Lett. 101, 207202 (2008); I. Zutic and A. G. Petukhov, Nature Mater.4, 623 (2009). [0pt] [2] R. Beaulac et al., Science 325, 973 (2009). [0pt] [3] T. Dietl and J. Spalek, Phys. Rev. Lett. 48, 355 (1982). [0pt] [4] I. R. Sellers, R. Oszwaldowski, et al., preprint; I. R. Sellers et al., Phys. Rev. Lett. 100, 136405 (2008).

  4. Flexible magnetic thin films and devices

    Science.gov (United States)

    Sheng, Ping; Wang, Baomin; Li, Runwei

    2018-01-01

    Flexible electronic devices are highly attractive for a variety of applications such as flexible circuit boards, solar cells, paper-like displays, and sensitive skin, due to their stretchable, biocompatible, light-weight, portable, and low cost properties. Due to magnetic devices being important parts of electronic devices, it is essential to study the magnetic properties of magnetic thin films and devices fabricated on flexible substrates. In this review, we mainly introduce the recent progress in flexible magnetic thin films and devices, including the study on the stress-dependent magnetic properties of magnetic thin films and devices, and controlling the properties of flexible magnetic films by stress-related multi-fields, and the design and fabrication of flexible magnetic devices. Project supported by the National Key R&D Program of China (No. 2016YFA0201102), the National Natural Science Foundation of China (Nos. 51571208, 51301191, 51525103, 11274321, 11474295, 51401230), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2016270), the Key Research Program of the Chinese Academy of Sciences (No. KJZD-EW-M05), the Ningbo Major Project for Science and Technology (No. 2014B11011), the Ningbo Science and Technology Innovation Team (No. 2015B11001), and the Ningbo Natural Science Foundation (No. 2015A610110).

  5. Optical magnetism in planar metamaterial heterostructures.

    Science.gov (United States)

    Papadakis, Georgia T; Fleischman, Dagny; Davoyan, Artur; Yeh, Pochi; Atwater, Harry A

    2018-01-18

    Harnessing artificial optical magnetism has previously required complex two- and three-dimensional structures, such as nanoparticle arrays and split-ring metamaterials. By contrast, planar structures, and in particular dielectric/metal multilayer metamaterials, have been generally considered non-magnetic. Although the hyperbolic and plasmonic properties of these systems have been extensively investigated, their assumed non-magnetic response limits their performance to transverse magnetic (TM) polarization. We propose and experimentally validate a mechanism for artificial magnetism in planar multilayer metamaterials. We also demonstrate that the magnetic properties of high-index dielectric/metal hyperbolic metamaterials can be anisotropic, leading to magnetic hyperbolic dispersion in certain frequency regimes. We show that such systems can support transverse electric polarized interface-bound waves, analogous to their TM counterparts, surface plasmon polaritons. Our results open a route for tailoring optical artificial magnetism in lithography-free layered systems and enable us to generalize the plasmonic and hyperbolic properties to encompass both linear polarizations.

  6. SOLAR ENERGETIC PARTICLE MODULATIONS ASSOCIATED WITH COHERENT MAGNETIC STRUCTURES

    International Nuclear Information System (INIS)

    Trenchi, L.; Bruno, R.; D'amicis, R.; Marcucci, M. F.; Telloni, D.; Zurbuchen, T. H.; Weberg, M.

    2013-01-01

    In situ observations of solar energetic particles (SEPs) often show rapid variations of their intensity profile, affecting all energies simultaneously, without time dispersion. A previously proposed interpretation suggests that these modulations are directly related to the presence of magnetic structures with a different magnetic topology. However, no compelling evidence of local changes in magnetic field or in plasma parameters during SEP modulations has been reported. In this paper, we performed a detailed analysis of SEP events and we found several signatures in the local magnetic field and/or plasma parameters associated with SEP modulations. The study of magnetic helicity allowed us to identify magnetic boundaries, associated with variations of plasma parameters, which are thought to represent the borders between adjacent magnetic flux tubes. It is found that SEP dispersionless modulations are generally associated with such magnetic boundaries. Consequently, we support the idea that SEP modulations are observed when the spacecraft passes through magnetic flux tubes, filled or devoid of SEPs, which are alternatively connected and not connected with the flare site. In other cases, we found SEP dropouts associated with large-scale magnetic holes. A possible generation mechanism suggests that these holes are formed in the high solar corona as a consequence of magnetic reconnection. This reconnection process modifies the magnetic field topology, and therefore, these holes can be magnetically isolated from the surrounding plasma and could also explain their association with SEP dropouts.

  7. The magnet database system

    International Nuclear Information System (INIS)

    Baggett, P.; Delagi, N.; Leedy, R.; Marshall, W.; Robinson, S.L.; Tompkins, J.C.

    1991-01-01

    This paper describes the current status of MagCom, a central database of SSC magnet information that is available to all magnet scientists via network connections. The database has been designed to contain the specifications and measured values of important properties for major materials, plus configuration information (specifying which individual items were used in each cable, coil, and magnet) and the test results on completed magnets. These data will help magnet scientists to track and control the production process and to correlate the performance of magnets with the properties of their constituents

  8. AGS superconducting bending magnets

    International Nuclear Information System (INIS)

    Robins, K.E.; Sampson, W.B.; McInturff, A.D.; Dahl, P.F.; Abbatiello, F.; Aggus, J.; Bamberger, J.; Brown, D.; Damm, R.; Kassner, D.; Lasky, C.; Schlafke, A.

    1976-01-01

    Four large aperture superconducting bending magnets are being built for use in the experimental beams at the AGS. Each of these magnets is 2.5 m long and has a room temperature aperture of 20 cm. The magnets are similar in design to the dipoles being developed for ISABELLE and employ a low temperature iron core. Results are presented on the ''training'' behavior of the magnets and a comparison will be made with the smaller aperture versions of this design. The magnet field measurements include end fields and leakage fields as well as the harmonic components of the straight section of the magnet

  9. Frequency Mixing Magnetic Detection Scanner for Imaging Magnetic Particles in Planar Samples.

    Science.gov (United States)

    Hong, Hyobong; Lim, Eul-Gyoon; Jeong, Jae-Chan; Chang, Jiho; Shin, Sung-Woong; Krause, Hans-Joachim

    2016-06-09

    The setup of a planar Frequency Mixing Magnetic Detection (p-FMMD) scanner for performing Magnetic Particles Imaging (MPI) of flat samples is presented. It consists of two magnetic measurement heads on both sides of the sample mounted on the legs of a u-shaped support. The sample is locally exposed to a magnetic excitation field consisting of two distinct frequencies, a stronger component at about 77 kHz and a weaker field at 61 Hz. The nonlinear magnetization characteristics of superparamagnetic particles give rise to the generation of intermodulation products. A selected sum-frequency component of the high and low frequency magnetic field incident on the magnetically nonlinear particles is recorded by a demodulation electronics. In contrast to a conventional MPI scanner, p-FMMD does not require the application of a strong magnetic field to the whole sample because mixing of the two frequencies occurs locally. Thus, the lateral dimensions of the sample are just limited by the scanning range and the supports. However, the sample height determines the spatial resolution. In the current setup it is limited to 2 mm. As examples, we present two 20 mm × 25 mm p-FMMD images acquired from samples with 1 µm diameter maghemite particles in silanol matrix and with 50 nm magnetite particles in aminosilane matrix. The results show that the novel MPI scanner can be applied for analysis of thin biological samples and for medical diagnostic purposes.

  10. Dynamic Characteristics of Magneto-Fluid Supports

    Directory of Open Access Journals (Sweden)

    V. A. Chernobai

    2008-01-01

    Full Text Available The paper considers a vibro-protective magneto-fluid support that uses elastic properties of magnetic fluid with a free surface in magnetic field.The paper has experimentally revealed that the analyzed structure is characterized by better noise absorbing characteristics.The conducted experiments have made it possible to conclude that there is a possibility to use vibro-protective magneto-fluid supports within the frequency range from 0 to 300 Hz, amplitudes up to 2 mm and unit load up to 2,5 · 10 4 Н/м².

  11. Theory of Advanced Magnetic Divertors

    Science.gov (United States)

    Kotschenreuther, Michael; Valanju, Prashant; Mahajan, Swadesh; Covele, Brent

    2013-10-01

    The magnetic field structure in the SOL is the most important determinant of divertor physics. A comprehensive analytical and numerical methodology is developed to investigate SOL magnetic fields in the backdrop of two advanced divertor geometries- the X-divertor (XD) proposed and discussed in 2004, and the snowflake divertor (SFD) of 2007-2010. The analysis shows that XD and SFD represent very distinct and readily distinguishable magnetic geometries, epitomized through a differentiating metric, the Divertor Index (DI). In terms of this simple metric, the XD (DI > 1) and the SFD (DI XD flux surfaces are less convergent, in fact, divergent (flaring). These different SOL magnetics imply different physics, particularly with respect to detachment dynamics. It is also shown that some experiments on NSTX and DIII-D match both the prescription and the predictions of the 2004 XD paper. Work supported under US-DOE projects DE-FG02-04ER54742 and DE-FG02-04ER54754.

  12. Magnet and device for magnetic density separation

    NARCIS (Netherlands)

    Polinder, H.; Rem, P.C.

    2014-01-01

    A planar magnet for magnetic density separation, comprising an array of pole pieces succeeding in longitudinal direction of a mounting plane, each pole piece having a body extending transversely along the mounting plane with a substantially constant cross section that includes a top segment that is

  13. Magnetic properties of diluted magnetic semiconductors

    NARCIS (Netherlands)

    Jonge, de W.J.M.; Swagten, H.J.M.

    1991-01-01

    A review will be given of the magnetic characteristics of diluted magnetic semiconductors and the relation with the driving exchange mechanisms. II–VI as well as IV–VI compounds will be considered. The relevance of the long-range interaction and the role of the carrier concentration will be

  14. Magnetically modified biocells in constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, E.G.; Panina, L.K. [Saint Petersburg State University, St. Petersburg (Russian Federation); Kolikov, V.A., E-mail: kolikov1@yandex.ru [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Bogomolova, E.V. [Botanical Institute of the RAS after V.L.Komarov, St. Petersburg (Russian Federation); Snetov, V.N. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Cherepkova, I.A. [Saint Petersburg State Institute of Technology, St. Petersburg (Russian Federation); Kiselev, A.A. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation)

    2017-02-01

    Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell’ size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae. - Highlights: • The inverse problem was solved for finding zero velocity isolines of magnetically modified biological cells. • Solution of the inverse problem depends on the size of cells and the number of nanoparticles attached to the single cell. • The experimental data are in agreement with theoretical solution.

  15. Solid-state nuclear magnetic resonance measurements of HIV fusion peptide 13CO to lipid 31P proximities support similar partially inserted membrane locations of the α helical and β sheet peptide structures.

    Science.gov (United States)

    Gabrys, Charles M; Qiang, Wei; Sun, Yan; Xie, Li; Schmick, Scott D; Weliky, David P

    2013-10-03

    infection. The present study shows that HFPmn_V2E induces much less vesicle fusion than HFPmn. "HFPtr" contained three strands with HFPmn sequence that were chemically cross-linked near their C-termini. HFPtr mimics the trimeric topology of gp41 and induces much more rapid and extensive vesicle fusion than HFPmn. For HFPmn and HFPtr, well-resolved α and β peaks were observed for A6-, L9-, and L12-labeled samples. For each of these samples, there were similar HFP (13)CO to lipid (31)P proximities in the α and β structures, which evidenced comparable membrane locations of the HFP in either structure including insertion into a single membrane leaflet. The data were also consistent with deeper insertion of HFPtr relative to HFPmn in both the α and β structures. The results supported a strong correlation between the membrane insertion depth of the HFP and its fusogenicity. More generally, the results supported membrane location of the HFP as an important determinant of its fusogenicity. The deep insertion of HFPtr in both the α and β structures provides the most relevant membrane location of the FP for HIV gp41-catalyzed membrane fusion because HIV gp41 is natively trimeric. Well-resolved α and β signals were observed in the HFPmn_V2E samples with L9- and L12- but not A6-labeling. The α signals were much more dominant for L9- and L12-labeled HFPmn_V2E than the corresponding HFPmn or HFPtr. The structural model for the less fusogenic HFPmn_V2E includes a shorter helix and less membrane insertion than either HFPmn or HFPtr. This greater helical population and different helical structure and membrane location could result in less membrane perturbation and lower fusogenicity of HFPmn_V2E and suggest that the β sheet fusion peptide is the most functionally relevant structure of HFPmn, HFPtr, and gp41.

  16. Structure and Magnetic Properties of Lanthanide Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Dickerson, James Henry [Vanderbilt Univ., Nashville, TN (United States)

    2014-06-01

    We have had considerable success on this project, particularly in the understanding of the relationship between nanostructure and magnetic properties in lanthanide nanocrystals. We also have successfully facilitated the doctoral degrees of Dr. Suseela Somarajan, in the Department of Physics and Astronomy, and Dr. Melissa Harrison, in the Materials Science Program. The following passages summarize the various accomplishments that were featured in 9 publications that were generated based on support from this grant. We thank the Department of Energy for their generous support of our research efforts in this area of materials science, magnetism, and electron microscopy.

  17. Magnetization reversal mechanisms under oblique magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Ntallis, N.; Efthimiadis, K.G., E-mail: kge@auth.gr

    2017-03-01

    In this work finite element micromagnetic simulations were performed in order to study the reversal mechanisms of spherical ferromagnetic particles with uniaxial magnetocrystalline anisotropy, when they are magnetized along an oblique direction with respect to the anisotropy axis. Magnetization loops are taken in different directions of external magnetic field, at different anisotropy constants and particle sizes. In the simulation results, the three reversal mechanisms (coherent, curling and domains) are observed and new phenomena arise due to the action of oblique magnetic fields. Moreover, the dependence of the critical fields with respect to the angle of the external field is presented. - Highlights: • Finite element micromagnetic simulation of the three different reversal mechanisms. • For the curling mechanism, the new phenomenon is the rotation of the vortex. • In the domain reversal mechanism, the formed domain wall is smaller than 180°. • In soft ferromagnetic particles a rearrangement of the magnetic domains is observed.

  18. Single molecule magnets from magnetic building blocks

    Science.gov (United States)

    Kroener, W.; Paretzki, A.; Cervetti, C.; Hohloch, S.; Rauschenbach, S.; Kern, K.; Dressel, M.; Bogani, L.; M&üLler, P.

    2013-03-01

    We provide a basic set of magnetic building blocks that can be rationally assembled, similar to magnetic LEGO bricks, in order to create a huge variety of magnetic behavior. Using rare-earth centers and multipyridine ligands, fine-tuning of intra and intermolecular exchange interaction is demonstrated. We have investigated a series of molecules with monomeric, dimeric and trimeric lanthanide centers using SQUID susceptometry and Hall bar magnetometry. A home-made micro-Hall-probe magnetometer was used to measure magnetic hysteresis loops at mK temperatures and fields up to 17 T. All compounds show hysteresis below blocking temperatures of 3 to 4 K. The correlation of the assembly of the building blocks with the magnetic properties will be discussed.

  19. Magnetic shielding for MRI superconducting magnets

    International Nuclear Information System (INIS)

    Ishiyama, A.; Hirooka, H.

    1991-01-01

    This paper describes an optimal design of a highly homogeneous superconducting coil system with magnetic shielding for Magnetic Resonance Imaging (MRI). The presented optimal design method; which is originally proposed in our earlier papers, is a combination of the hybrid finite element and boundary element method for analysis of an axially symmetric nonlinear open boundary magnetic field problem, and the mathematical programming method for solving the corresponding optimization problem. In this paper, the multi-objective goal programming method and the nonlinear least squares method have been adopted. The optimal design results of 1.5- and 4.7-Tesla-magnet systems with different types of magnetic shielding for whole-body imaging are compared and the advantages of a combination of active and yoke shields are shown

  20. Magnetic Resonance Imaging

    Science.gov (United States)

    ... Permanent cosmetics or tattoos Dentures/teeth with magnetic keepers Other implants that involve magnets Medication patch (i. ... or longer. You’ll be told ahead of time just how long your scan is expected to ...