WorldWideScience

Sample records for magnetically manipulated microsphere

  1. Microradiographic microsphere manipulator

    International Nuclear Information System (INIS)

    Singleton, R.M.

    1980-01-01

    A method and apparatus are provided for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated to relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres

  2. Synthesis of magnetic polymeric microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Gervald, A Yu; Gritskova, Inessa A; Prokopov, Nikolai I [M.V. Lomonosov Moscow State Academy of Fine Chemical Technology, Moscow (Russian Federation)

    2010-05-13

    The key types of magnetic polymeric microspheres are considered. Methods of synthesis of different types of magnetic nanoparticles and of preparation of stable magnetic fluids on their basis are outlined. The overview of the methods for the manufacture of magnetic polymeric microspheres is presented. The effect of the synthesis conditions on the characteristics of magnetic polymeric microspheres such as the diameter and the particle size distribution and the content of magnetic material is discussed by particular examples. The application fields of magnetic polymeric microspheres are briefly surveyed.

  3. Synthesis of magnetic polymeric microspheres

    International Nuclear Information System (INIS)

    Gervald, A Yu; Gritskova, Inessa A; Prokopov, Nikolai I

    2010-01-01

    The key types of magnetic polymeric microspheres are considered. Methods of synthesis of different types of magnetic nanoparticles and of preparation of stable magnetic fluids on their basis are outlined. The overview of the methods for the manufacture of magnetic polymeric microspheres is presented. The effect of the synthesis conditions on the characteristics of magnetic polymeric microspheres such as the diameter and the particle size distribution and the content of magnetic material is discussed by particular examples. The application fields of magnetic polymeric microspheres are briefly surveyed.

  4. Magnetic susceptibility characterisation of superparamagnetic microspheres

    Science.gov (United States)

    Grob, David Tim; Wise, Naomi; Oduwole, Olayinka; Sheard, Steve

    2018-04-01

    The separation of magnetic materials in microsystems using magnetophoresis has increased in popularity. The wide variety and availability of magnetic beads has fuelled this drive. It is important to know the magnetic characteristics of the microspheres in order to accurately use them in separation processes integrated on a lab-on-a-chip device. To investigate the magnetic susceptibility of magnetic microspheres, the magnetic responsiveness of three types of Dynabeads microspheres were tested using two different approaches. The magnetophoretic mobility of individual microspheres is studied using a particle tracking system and the magnetization of each type of Dynabeads microsphere is measured using SQUID relaxometry. The magnetic beads' susceptibility is obtained at four different applied magnetic fields in the range of 38-70 mT for both the mobility and SQUID measurements. The susceptibility values in both approaches show a consistent magnetic field dependence.

  5. Study on Magnetic Responsibility of Rare Earth Ferrite/Polyacrylamide Magnetic Microsphere

    Institute of Scientific and Technical Information of China (English)

    Zhang Ming; Wang Zhifeng; Zhang Hong; Dai Shaojun; Qiu Guanming; Okamoto Hiroshi

    2005-01-01

    In inverse microemulsion, rare earth ferrite/polyacrylamide magnetic microsphere were prepared and their magnetic responsibility were studied by magnetic balance. Results indicate that the magnetic responsibility of microsphere relates to magnetic moment of rare earth ion, and it can be improved by the addition of dysprosium ion of high magnetic moment. Dysprosium content has an effect on magnetic responsibility of dysprosium ferrite/polyacrylamide magnetic microsphere. The microsphere displays strong magnetic responsibility when the molar ratio of Dy3+/iron is 0.20.

  6. A review on target drug delivery: magnetic microspheres

    OpenAIRE

    Amit Chandna; Deepa Batra; Satinder Kakar; Ramandeep Singh

    2013-01-01

    Novel drug delivery system aims to deliver the drug at a rate directed by the needs of the body during the period of treatment, and target the active entity to the site of action. A number of novel drug delivery systems have emerged encompassing various routes of administration, to achieve controlled and targeted drug delivery, magnetic micro carriers being one of them. Magnetic microsphere is newer approach in pharmaceutical field. Magnetic microspheres as an alternative to traditional ra...

  7. Magnetic poly(glycidyl methacrylate) microspheres for protein capture.

    Science.gov (United States)

    Koubková, Jana; Müller, Petr; Hlídková, Helena; Plichta, Zdeněk; Proks, Vladimír; Vojtěšek, Bořivoj; Horák, Daniel

    2014-09-25

    The efficient isolation and concentration of protein antigens from complex biological samples is a critical step in several analytical methods, such as mass spectrometry, flow cytometry and immunochemistry. These techniques take advantage of magnetic microspheres as immunosorbents. The focus of this study was on the development of new superparamagnetic polymer microspheres for the specific isolation of the tumor suppressor protein p53. Monodisperse macroporous poly(glycidyl methacrylate) (PGMA) microspheres measuring approximately 5 μm and containing carboxyl groups were prepared by multistep swelling polymerization of glycidyl methacrylate (GMA), 2-[(methoxycarbonyl)methoxy]ethyl methacrylate (MCMEMA) and ethylene dimethylacrylate (EDMA) as a crosslinker in the presence of cyclohexyl acetate as a porogen. To render the microspheres magnetic, iron oxide was precipitated within their pores; the Fe content in the particles received ∼18 wt%. Nonspecific interactions between the magnetic particles and biological media were minimized by coating the microspheres with poly(ethylene glycol) (PEG) terminated by carboxyl groups. The carboxyl groups of the magnetic PGMA microspheres were conjugated with primary amino groups of mouse monoclonal DO-1 antibody using conventional carbodiimide chemistry. The efficiency of protein p53 capture and the degree of nonspecific adsorption on neat and PEG-coated magnetic microspheres were determined by western blot analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. A review on target drug delivery: magnetic microspheres

    Directory of Open Access Journals (Sweden)

    Amit Chandna

    2013-01-01

    Magnetic microsphere is newer approach in pharmaceutical field. Magnetic microspheres as an alternative to traditional radiation methods which use highly penetrating radiation that is absorbed throughout the body. Its use is limited by toxicity and side effects. The aim of the specific targeting is to enhance the efficiency of drug delivery & at the same time to reduce the toxicity & side effects. This kind of delivery system is very much important which localises the drug to the disease site. In this larger amount of freely circulating drug can be replaced by smaller amount of magnetically targeted drug. Magnetic carriers receive magnetic responses to a magnetic field from incorporated materials that are used for magnetic microspheres are chitosan, dextran etc. magnetic microspheres can be prepared from a variety of carrier material. One of the most utilized is serum albumin from human or other appropriate species. Drug release from albumin microspheres can be sustained or controlled by various stabilization procedures generally involving heat or chemical cross-linking of the protein carrier matrix.

  9. Magnetic propulsion of microspheres at liquid-glass interfaces

    Science.gov (United States)

    Helgesen, Geir

    2018-02-01

    Bio-coated, magnetic microspheres have many applications in biotechnology and medical technology as a tool to separate and extract cells or molecules in a water solution by applying external strong magnetic field gradients. However, magnetic microspheres with or without attached cargo can also be separated in the liquid solution if they are exposed to alternating or rotating, relatively weak magnetic fields. Microspheres that have a higher density than the liquid will approach the bottom surface of the sample cell, and then a combination of viscous and surface frictional forces can propel the magnetic microspheres along the surface in a direction perpendicular to the axis of field rotation. Experiments demonstrating this type of magnetic propulsion are shown, and the forces active in the process are discussed. The motion of particles inside sample cells that were tilted relative to the horizontal direction was studied, and the variation of propulsion velocity as a function of tilt angle was used to find the values of different viscous and mechanical parameters of motion. Propulsion speeds of up to 5 μm/s were observed and were found to be caused by a partly rolling and partly slipping motion of rotating microspheres with a slipping coefficient near 0.6.

  10. Magnetic microspheres as magical novel drug delivery system: A review

    Directory of Open Access Journals (Sweden)

    Satinder Kakar

    2013-01-01

    Full Text Available Magnetic microspheres hold great promise for reaching the goal of controlled and site specific drug delivery. Magnetic microspheres as an alternative to traditional radiation methods which uses highly penetrating radiations that is absorbed throughout the body. Its use is limited by toxicity and side effects. Now days, several targeted treatment systems including magnetic field, electric field, ultrasound, temperature, UV light and mechanical force are being used in many disease treatments (e.g. cancer, nerve damage, heart and artery, anti-diabetic, eye and other medical treatments. Among them, the magnetic targeted drug delivery system is one of the most attractive and promising strategy for delivering the drug to the specified site. Magnetically controlled drug targeting is one of the various possible ways of drug targeting. This technology is based on binding establish anticancer drug with ferrofluid that concentrate the drug in the area of interest (tumor site by means of magnetic fields. There has been keen interest in the development of a magnetically target drug delivery system. These drug delivery systems aim to deliver the drug at a rate directed by the needs of the body during the period of treatment, and target the activity entity to the site of action. Magnetic microspheres were developed to overcome two major problems encountered in drug targeting namely: RES clearance and target site specificity.

  11. Using magnetic nanoparticles to manipulate biological objects

    International Nuclear Information System (INIS)

    Liu Yi; Gao Yu; Xu Chenjie

    2013-01-01

    The use of magnetic nanoparticles (MNPs) for the manipulation of biological objects, including proteins, genes, cellular organelles, bacteria, cells, and organs, are reviewed. MNPs are popular candidates for controlling and probing biological objects with a magnetic force. In the past decade, progress in the synthesis and surface engineering of MNPs has further enhanced this popularity. (topical review - magnetism, magnetic materials, and interdisciplinary research)

  12. Chitosan magnetic microspheres for technological applications: Preparation and characterization

    International Nuclear Information System (INIS)

    Podzus, P.E.; Daraio, M.E.; Jacobo, S.E.

    2009-01-01

    One of the major applications of chitosan and its many derivatives are based on its ability to bind strongly heavy and toxic metal ions. In this study chitosan magnetic microspheres have been synthesized. Acetic acid (1%w/v) solution was used as solvent for the chitosan polymer solution (2%w/v) where magnetite nanoparticles were suspended in order to obtain a stable ferrofluid. Glutaraldehyde was used as cross-linker. The magnetic characteristic of these materials allows an easy removal after use if is necessary. The morphological characterization of the microspheres shows that they can be produced in the size range 800-1100 μm. The adsorption of Cu(II) onto chitosan-magnetite nanoparticles was studied in batch system. A second-order kinetic model was used to fit the kinetic data, leading to an equilibrium adsorption capacity of 19 mg Cu/g chitosan.

  13. Intracellular manipulation of chromatin using magnetic nanoparticles

    NARCIS (Netherlands)

    Kanger, Johannes S.; Subramaniam, Vinod; van Driel, Roel

    2008-01-01

    Magnetic tweezers are widely used for manipulating small magnetic beads inside the cell cytoplasm in order to gain insight into the structural and mechanical properties of the cytoskeleton. Here we discuss the use of magnetic tweezers for the study of nuclear architecture and the mechanical

  14. Preparation of magnetic nanoparticles embedded in polystyrene microspheres

    International Nuclear Information System (INIS)

    Nguyen Hoang Hai; Nguyen Hoang Luong; Nguyen Chau; Ngo Quy Tai

    2009-01-01

    Superparamagnetic particles are widely used for biological applications such as cell separation. The size of the particles is normally in the range of 10 - 20 nm which is much smaller than the size of a cell. Therefore small particles create small force which is not strong enough to separate the cells from solution. Superparamagnetic nanoparticles embedded in Polystyrene microspheres (magnetic beads) are very useful for cell separation. Magnetic beads have been prepared by solvent evaporation of an emulsion. The beads with size of 0.2 μm - 1.0 μm have a saturation magnetization of 10 - 25 emu/g. The change of the amount of surfactants, volatile solvent, magnetic particles resulted to the change of size, magnetic properties of the magnetic beads.

  15. TIPS to manipulate myogenesis: retention of myoblast differentiation capacity using microsphere culture

    Directory of Open Access Journals (Sweden)

    N Parmar

    2015-07-01

    Full Text Available Cell therapy is an emerging option for regenerating skeletal muscle. Improved delivery methods for anchorage-dependent myoblasts are likely to improve integration and function of transplanted muscle cells. Highly porous microspheres, produced using thermally induced phase separation (TIPS, have features ideally suited for minimally invasive cell delivery. The purpose of this study was to investigate, for the first time, the use of TIPS microspheres as highly porous microcarriers for manipulation of human skeletal muscle myoblasts (HSMM under defined culture conditions. HSMM cells readily attached to the surface of poly (DL-lactide-co-glycolide (PLGA TIPS microcarriers, where they were induced to continue proliferating or to be driven towards differentiation whilst under static-dynamic culture conditions for 7 days. Switching from proliferation medium to differentiation medium for 7 days, resulted in increased protein expression of skeletal muscle cell contractile apparatus components, MyoD and skeletal muscle myosin heavy chain, compared with cells cultured on conventional culture plasticware for the same duration (p < 0.001. Growth of myoblasts on the surface of the microcarriers and their migration following simulated delivery, caused no change to the proliferative capacity of cells over 7 days. Results from this study demonstrate that TIPS microspheres provide an ideal vehicle for the expansion and delivery of myoblasts for therapeutic applications. Transplantation of myoblasts anchored to a substrate, rather than in suspension, will reduce the amount of ex vivo manipulation required during preparation of the product and allows cells to be delivered in a more natural state. This will improve the ability to control cell dosage and increase the likelihood of efficacy.

  16. Preparation of magnetic polylactic acid microspheres and investigation of its releasing property for loading curcumin

    Energy Technology Data Exchange (ETDEWEB)

    Li Fengxia [Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Science, Northeast Forestry University, Harbin 150040 (China); Li Xiaoli, E-mail: lixiaoli0903@163.com [Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Science, Northeast Forestry University, Harbin 150040 (China); Li Bin, E-mail: libinzh62@163.com [Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Science, Northeast Forestry University, Harbin 150040 (China)

    2011-11-15

    In order to obtain a targeting drug carrier system, magnetic polylactic acid (PLA) microspheres loading curcumin were synthesized by the classical oil-in-water emulsion solvent-evaporation method. In the Fourier transform infrared spectra of microspheres, the present functional groups of PLA were all kept invariably. The morphology and size distribution of magnetic microspheres were observed with scanning electron microscopy and dynamic light scattering, respectively. The results showed that the microspheres were regularly spherical and the surface was smooth with a diameter of 0.55-0.75 {mu}m. Magnetic Fe{sub 3}O{sub 4} was loaded in PLA microspheres and the content of magnetic particles was 12 wt% through thermogravimetric analysis. The magnetic property of prepared microspheres was measured by vibrating sample magnetometer. The results showed that the magnetic microspheres exhibited typical superparamagnetic behavior and the saturated magnetization was 14.38 emu/g. Through analysis of differential scanning calorimetry, the curcumin was in an amorphous state in the magnetic microspheres. The drug loading, encapsulation efficiency and releasing properties of curcumin in vitro were also investigated by ultraviolet-visible spectrum analysis. The results showed that the drug loading and encapsulation efficiency were 8.0% and 24.2%, respectively. And curcumin was obviously slowly released because the cumulative release percentage of magnetic microspheres in the phosphate buffer (pH=7.4) solution was only 49.01% in 72 h, and the basic release of curcumin finished in 120 h. - Highlights: > We prepare magnetic polylactic acid microspheres loading curcumin. > The classical oil-in-water emulsion solvent-evaporation method is used. > The magnetic microspheres are regularly spherical with a diameter of 0.55-0.75 {mu}m. > They show a certain sustained release effect on in vitro drug releasing.

  17. Preparation of magnetic polylactic acid microspheres and investigation of its releasing property for loading curcumin

    International Nuclear Information System (INIS)

    Li Fengxia; Li Xiaoli; Li Bin

    2011-01-01

    In order to obtain a targeting drug carrier system, magnetic polylactic acid (PLA) microspheres loading curcumin were synthesized by the classical oil-in-water emulsion solvent-evaporation method. In the Fourier transform infrared spectra of microspheres, the present functional groups of PLA were all kept invariably. The morphology and size distribution of magnetic microspheres were observed with scanning electron microscopy and dynamic light scattering, respectively. The results showed that the microspheres were regularly spherical and the surface was smooth with a diameter of 0.55-0.75 μm. Magnetic Fe 3 O 4 was loaded in PLA microspheres and the content of magnetic particles was 12 wt% through thermogravimetric analysis. The magnetic property of prepared microspheres was measured by vibrating sample magnetometer. The results showed that the magnetic microspheres exhibited typical superparamagnetic behavior and the saturated magnetization was 14.38 emu/g. Through analysis of differential scanning calorimetry, the curcumin was in an amorphous state in the magnetic microspheres. The drug loading, encapsulation efficiency and releasing properties of curcumin in vitro were also investigated by ultraviolet-visible spectrum analysis. The results showed that the drug loading and encapsulation efficiency were 8.0% and 24.2%, respectively. And curcumin was obviously slowly released because the cumulative release percentage of magnetic microspheres in the phosphate buffer (pH=7.4) solution was only 49.01% in 72 h, and the basic release of curcumin finished in 120 h. - Highlights: → We prepare magnetic polylactic acid microspheres loading curcumin. → The classical oil-in-water emulsion solvent-evaporation method is used. → The magnetic microspheres are regularly spherical with a diameter of 0.55-0.75 μm. → They show a certain sustained release effect on in vitro drug releasing.

  18. Magnetic polymeric microspheres for protein adsorption

    International Nuclear Information System (INIS)

    Felinto, M.C.F.C.; Parra, D.F.; Lugao, A.B.; Batista, M.P.; Higa, O.Z.; Yamaura, M.; Camilo, R.L.; Ribela, M.T.C.P.; Sampaio, L.C.

    2005-01-01

    Magnetic beads consisting of polymer-coated manganese ferrite nanoparticles were prepared by the precipitation reaction of manganese ferrite into the channels of methyl methacrylate polymer beads by sodium hydroxide, resulting in MnMagBead. MnMagBead was characterized by infrared spectra (FTIR), thermogravimetric analysis of TGA/DTG and indicates the presence of -CO (carbonyl) groups and the MnFe 2 O 4 on the beads. Magnetization measurements were obtained at room temperature in magnetic fields up to 10 KOe using a vibrating sample magnetometer. Introductory Protein adsorption biological tests were processed using labeled I-125 albumin (BSA), and the activity was measured in a gamma counting spectrometer. These superparamagnetic beads exhibit the capacity to bind biological molecules such as proteins like albumin, with a good capability (5 x 10 -6 ) μg/100 mg of beads as compared with other magnetic resins studied in our group

  19. Manipulation of magnetic particles in microfluidic volumes

    NARCIS (Netherlands)

    Gao, Y.; Reenen, van A.; Hulsen, M.A.; Jong, de A.M.; Prins, M.W.J.; Toonder, den J.M.J.

    2013-01-01

    This paper reports various ways of field-based manipulation of magnetic colloidal particles to enhance biochemical reactions in lab-on-chip systems [1]. For one (I), we show the possibility to assemble the suspended magnetic micro-particles as tunable re-formable micro-stirrers capable of performing

  20. How to manipulate magnetic states of antiferromagnets

    Science.gov (United States)

    Song, Cheng; You, Yunfeng; Chen, Xianzhe; Zhou, Xiaofeng; Wang, Yuyan; Pan, Feng

    2018-03-01

    Antiferromagnetic materials, which have drawn considerable attention recently, have fascinating features: they are robust against perturbation, produce no stray fields, and exhibit ultrafast dynamics. Discerning how to efficiently manipulate the magnetic state of an antiferromagnet is key to the development of antiferromagnetic spintronics. In this review, we introduce four main methods (magnetic, strain, electrical, and optical) to mediate the magnetic states and elaborate on intrinsic origins of different antiferromagnetic materials. Magnetic control includes a strong magnetic field, exchange bias, and field cooling, which are traditional and basic. Strain control involves the magnetic anisotropy effect or metamagnetic transition. Electrical control can be divided into two parts, electric field and electric current, both of which are convenient for practical applications. Optical control includes thermal and electronic excitation, an inertia-driven mechanism, and terahertz laser control, with the potential for ultrafast antiferromagnetic manipulation. This review sheds light on effective usage of antiferromagnets and provides a new perspective on antiferromagnetic spintronics.

  1. Magnetization manipulation in multiferroic devices.

    Science.gov (United States)

    Gajek, Martin; Martin, Lane; Hao Chu, Ying; Huijben, Mark; Barry, Micky; Ramesh, Ramamoorthy

    2008-03-01

    Controlling magnetization by purely electrical means is a a central topic in spintronics. A very recent route towards this goal is to exploit the coupling between multiple ferroic orders which coexist in multiferroic materials. BiFeO3 (BFO) displays antiferromagnetic and ferroelectric orderings at room temperature and can thus be used as an electrically controllable pinning layer for a ferromagnetic electrode. Furthermore BFO remains ferroelectric down to 2nm and can therefore be integrated as a tunnel barrier in MTJ's. We will describe these two architecture schemes and report on our progresses towards the control of magnetization via the multiferroic layer in those structures.

  2. A novel approach to preparing magnetic protein microspheres with core-shell structure

    International Nuclear Information System (INIS)

    Jiang Wei; Sun Zhendong; Li Fengsheng; Chen Kai; Liu Tianyu; Liu Jialing; Zhou Tianle; Guo Rui

    2011-01-01

    Magnetic protein microspheres with core-shell structure were prepared through a novel approach based on the sonochemical method and the emulsion solvent evaporation method. The microspheres are composed of the oleic acid and undecylenic acid modified Fe 3 O 4 cores and coated with globular bovine serum albumin (BSA). Under an optimized condition, up to 57.8 wt% of approximately 10 nm superparamagnetic Fe 3 O 4 nanoparticles could be uniformly encapsulated into the BSA microspheres with the diameter of approximately 160 nm and the high saturation magnetization of 38.5 emu/g, besides of the abundant functional groups. The possible formation mechanism of magnetic microspheres was discussed in detail. - Research Highlights: → Magnetic protein microspheres with core-shell structure were prepared through a novel approach based on the sonochemical method and the emulsion solvent evaporation method.→ The microspheres are composed of the oleic acid and undecylenic acid modified Fe 3 O 4 cores and coated with globular bovine serum albumin (BSA).→ 57.8 wt% of approximately 10 nm superparamagnetic Fe 3 O 4 nanoparticles could be uniformly encapsulated into the BSA microspheres with the diameter of approximately 160 nm and the high saturation magnetization of 38.5 emu/g, besides the abundant functional groups.

  3. A novel approach to preparing magnetic protein microspheres with core-shell structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Wei, E-mail: climentjw@126.co [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094 (China); Sun Zhendong; Li Fengsheng [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094 (China); Chen Kai; Liu Tianyu; Liu Jialing [Department of Physics, Nanjing University of Science and Technology, Nanjing 210094 (China); Zhou Tianle [Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Guo Rui [Department of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2011-03-15

    Magnetic protein microspheres with core-shell structure were prepared through a novel approach based on the sonochemical method and the emulsion solvent evaporation method. The microspheres are composed of the oleic acid and undecylenic acid modified Fe{sub 3}O{sub 4} cores and coated with globular bovine serum albumin (BSA). Under an optimized condition, up to 57.8 wt% of approximately 10 nm superparamagnetic Fe{sub 3}O{sub 4} nanoparticles could be uniformly encapsulated into the BSA microspheres with the diameter of approximately 160 nm and the high saturation magnetization of 38.5 emu/g, besides of the abundant functional groups. The possible formation mechanism of magnetic microspheres was discussed in detail. - Research Highlights: Magnetic protein microspheres with core-shell structure were prepared through a novel approach based on the sonochemical method and the emulsion solvent evaporation method. The microspheres are composed of the oleic acid and undecylenic acid modified Fe{sub 3}O{sub 4} cores and coated with globular bovine serum albumin (BSA). 57.8 wt% of approximately 10 nm superparamagnetic Fe{sub 3}O{sub 4} nanoparticles could be uniformly encapsulated into the BSA microspheres with the diameter of approximately 160 nm and the high saturation magnetization of 38.5 emu/g, besides the abundant functional groups.

  4. Application of magnetic poly(styrene-glycidyl methacrylate) microspheres for immunomagnetic separation of bone marrow cells

    Energy Technology Data Exchange (ETDEWEB)

    Chung, T.-H.; Chang, J.-Y. [Department of Chemical Engineering, National Chung Cheng University, Chiayi 621, Taiwan (China); Lee, W.-C. [Department of Chemical Engineering, National Chung Cheng University, Chiayi 621, Taiwan (China)], E-mail: chmwcl@ccu.edu.tw

    2009-05-15

    Surface-functionalized magnetic poly(styrene-glycidyl methacrylate) (PS-GMA) microspheres were prepared and coupled with Sca-1 antibody for cell selection from murine bone marrow mononuclear cells (MNCs). Biotinylated Sca-1 antibody could be directly coupled to avidin-bound magnetic microspheres. Alternatively, oxidized goat anti-mouse antibody was covalently bound onto the amino group-containing magnetic microspheres in a site-directed manner, and the resultant conjugate was coupled with non-modified Sca-1 antibody. Using the indirect antibody-bound magnetic microspheres, the purity of isolated Sca-1{sup +} cells increased with bead-to-cell ratio. Using a bead-to-cell ratio of 10 beads/cell, a purity of 85% Sca-1{sup +} cells corresponding to a 17-fold enrichment was achieved.

  5. A novel approach to preparing magnetic protein microspheres with core-shell structure

    Science.gov (United States)

    Jiang, Wei; Sun, Zhendong; Li, Fengsheng; Chen, Kai; Liu, Tianyu; Liu, Jialing; Zhou, Tianle; Guo, Rui

    2011-03-01

    Magnetic protein microspheres with core-shell structure were prepared through a novel approach based on the sonochemical method and the emulsion solvent evaporation method. The microspheres are composed of the oleic acid and undecylenic acid modified Fe 3O 4 cores and coated with globular bovine serum albumin (BSA). Under an optimized condition, up to 57.8 wt% of approximately 10 nm superparamagnetic Fe 3O 4 nanoparticles could be uniformly encapsulated into the BSA microspheres with the diameter of approximately 160 nm and the high saturation magnetization of 38.5 emu/g, besides of the abundant functional groups. The possible formation mechanism of magnetic microspheres was discussed in detail.

  6. Magnetic Ganoderma lucidum spore microspheres: A novel material to immobilize CotA multicopper oxidase for dye decolorization

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Lili [School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Yan, E-mail: wangy_msn@hit.edu.cn [School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhao, Min [College of Life Science, Northeast Forestry University, Harbin 150040 (China); Song, Jinzhu [School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001 (China); Wang, Jueyu; Jin, Zijing [College of Life Science, Northeast Forestry University, Harbin 150040 (China)

    2016-08-05

    Highlights: • Hollow microspheres were obtained from Ganoderma lucidum spores. • Novel magnetic microspheres were prepared by load hollow spore microspheres with Fe{sub 3}O{sub 4} nanoparticles. • CotA multicopper oxidase was immobilized on the magnetic spore microspheres for indigo carmine decolorization. • The immobilized CotA displayed higher decolorization capability and reusability. - Abstract: In this study, hollow microspheres were obtained from Ganoderma lucidum spores. Then the hollow microspheres were loaded with Fe{sub 3}O{sub 4} nanoparticles to prepare novel magnetic spore microspheres. TEM images and X-ray diffractometry demonstrated that the Fe{sub 3}O{sub 4} nanoparticles were incorporated throughout the spore microsphere. CotA multicopper oxidase was chosen as biomacromolecule to study the loading ability of the magnetic spore microspheres. The combination of the CotA enzyme with the microsphere was observed by laser scanning confocal microscope. The loaded amount of CotA on the microspheres was 75 mg/g when the CotA concentration was 1.2 mg/mL and the activity recovery of the immobilized CotA was 81%. The magnetic microspheres loaded with CotA, which can be easily and quickly recovered by an external magnetic field, were used for dye decolorization. After 1 h decolorization, 99% of the indigo carmine has been removed by 10 mg microspheres. In addition, the immobilized CotA retained 75% of activity after 10 consecutive cycles, which indicated that the magnetic spore microspheres are good support material for immobilization of the enzyme.

  7. Magnetic Ganoderma lucidum spore microspheres: A novel material to immobilize CotA multicopper oxidase for dye decolorization

    International Nuclear Information System (INIS)

    Fan, Lili; Wang, Yan; Zhao, Min; Song, Jinzhu; Wang, Jueyu; Jin, Zijing

    2016-01-01

    Highlights: • Hollow microspheres were obtained from Ganoderma lucidum spores. • Novel magnetic microspheres were prepared by load hollow spore microspheres with Fe_3O_4 nanoparticles. • CotA multicopper oxidase was immobilized on the magnetic spore microspheres for indigo carmine decolorization. • The immobilized CotA displayed higher decolorization capability and reusability. - Abstract: In this study, hollow microspheres were obtained from Ganoderma lucidum spores. Then the hollow microspheres were loaded with Fe_3O_4 nanoparticles to prepare novel magnetic spore microspheres. TEM images and X-ray diffractometry demonstrated that the Fe_3O_4 nanoparticles were incorporated throughout the spore microsphere. CotA multicopper oxidase was chosen as biomacromolecule to study the loading ability of the magnetic spore microspheres. The combination of the CotA enzyme with the microsphere was observed by laser scanning confocal microscope. The loaded amount of CotA on the microspheres was 75 mg/g when the CotA concentration was 1.2 mg/mL and the activity recovery of the immobilized CotA was 81%. The magnetic microspheres loaded with CotA, which can be easily and quickly recovered by an external magnetic field, were used for dye decolorization. After 1 h decolorization, 99% of the indigo carmine has been removed by 10 mg microspheres. In addition, the immobilized CotA retained 75% of activity after 10 consecutive cycles, which indicated that the magnetic spore microspheres are good support material for immobilization of the enzyme.

  8. Reorientation response of magnetic microspheres attached to gold electrodes under an applied magnetic field

    International Nuclear Information System (INIS)

    De Los Santos Valladares, L.; Reeve, R.M.; Mitrelias, T.; Langford, R.M.; Barnes, C.H.W.; Bustamante Dominguez, A.; Aguiar, J. Albino; Majima, Y.

    2013-01-01

    In this work, we report the mechanical reorientation of thiolated ferromagnetic microspheres bridging a pair of gold electrodes under an external magnetic field. When an external magnetic field (7 kG) is applied during the measurement of the current-voltage characteristics of a carboxyl ferromagnetic microsphere (4 μm diameter) attached to two gold electrodes by self-assembled monolayers (SAMs) of octane dithiol (C 8 H 18 S 2 ), the current signal is distorted. Rather than due to magnetoresistance, this effect is caused by a mechanical reorientation of the ferromagnetic sphere, which alters the number of SAMs between the sphere and the electrodes and therefore affects conduction. To study the physical reorientation of the ferromagnetic particles, we measure their hysteresis loops while suspended in a liquid solution. (author)

  9. Reorientation response of magnetic microspheres attached to gold electrodes under an applied magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    De Los Santos Valladares, L.; Reeve, R.M.; Mitrelias, T.; Langford, R.M.; Barnes, C.H.W., E-mail: luis_d_v@hotmail.com [Cavendish Laboratory, Department of Physics, University of Cambridge Materials and Structures Laboratory (United Kingdom); Bustamante Dominguez, A. [Laboratorio de Ceramicos y Nanomateriales, Facultad de Ciencias Fisicas, Universidad Nacional Mayor de San Marcos, Lima (Peru); Aguiar, J. Albino [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Fisica; Azuma, Y. [Materials and Structures Laboratory, Tokyo Institute of Technology, Midori-ku, Yokohama (Japan); Majima, Y. [CREST, Japan Science and Technology Agency (JST), Midori-ku, Yokohama (Japan)

    2013-08-15

    In this work, we report the mechanical reorientation of thiolated ferromagnetic microspheres bridging a pair of gold electrodes under an external magnetic field. When an external magnetic field (7 kG) is applied during the measurement of the current-voltage characteristics of a carboxyl ferromagnetic microsphere (4 μm diameter) attached to two gold electrodes by self-assembled monolayers (SAMs) of octane dithiol (C{sub 8}H{sub 18}S{sub 2}), the current signal is distorted. Rather than due to magnetoresistance, this effect is caused by a mechanical reorientation of the ferromagnetic sphere, which alters the number of SAMs between the sphere and the electrodes and therefore affects conduction. To study the physical reorientation of the ferromagnetic particles, we measure their hysteresis loops while suspended in a liquid solution. (author)

  10. Facile Synthesis of Magnetic Mesoporous Hollow Carbon Microspheres for Rapid Capture of Low-Concentration Peptides

    OpenAIRE

    Cheng, Gong; Zhou, Ming-Da; Zheng, Si-Yang

    2014-01-01

    Mesoporous and hollow carbon microspheres embedded with magnetic nanoparticles (denoted as MHM) were prepared via a facile self-sacrificial method for rapid capture of low-abundant peptides from complex biological samples. The morphology, structure, surface property, and magnetism were well-characterized. The hollow magnetic carbon microspheres have a saturation magnetization value of 130.2 emu g?1 at room temperature and a Brunauer?Emmett?Teller specific surface area of 48.8 m2 g?1 with an a...

  11. A sonochemical route for the encapsulation of drug in magnetic microspheres

    International Nuclear Information System (INIS)

    Wu Shixi; Jiang Wei; Zhang Xiaojuan; Sun Huan; Zhang Wenyao; Dai Junjun; Liu Li; Chen Xiaolong; Li Fengsheng

    2012-01-01

    This study focused on the preparation and characterization of magnetic targeted antibiotic microspheres (MTAMs). MTAMs were prepared by a sonochemical method in the presence of hydrophobic Fe 3 O 4 nanoparticles and tetracycline. The properties of MTAMs were characterized by transmission electron microscopy, Fourier-transform infrared spectrum, thermogravimetric analysis, vibration sample magnetometry, and bacteriostatic experiment. The results indicated that the superparamagnetic microspheres have ultrafine size (below 230 nm), high saturation magnetization (80.90 emu/g), high biocompatibility, biodegradability, controlled-release, and antibiotic effect. It has been proved that MTAMs can carry out the function of magnetic targeted drugs delivery system by putting together magnetic materials and antibiotics. The possible formation mechanism of MTAMs was also discussed. In summary, MTAMs had potential in medical imaging, drug targeting, and catalysis. - Highlights: → Microspheres carry out the function of magnetic targeted drugs delivery system. → Microspheres exhibit high saturation magnetization and antibiotic effect. → Microspheres have a potential application in the biomedical field. → The sonochemical method is well controlled for the synthesis.

  12. Biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres for controlled drug release.

    Science.gov (United States)

    Du, Pengcheng; Zeng, Jin; Mu, Bin; Liu, Peng

    2013-05-06

    Well-defined biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres have been accomplished via the layer-by-layer (LbL) self-assembly technique. The hybrid shell was fabricated by the electrostatic interaction between the polyelectrolyte cation, chitosan (CS), and the hybrid anion, citrate modified ferroferric oxide nanoparticles (Fe3O4-CA), onto the uniform polystyrene sulfonate microsphere templates. Then the magnetic hybrid core/shell composite particles were modified with a linear, functional poly(ethylene glycol) (PEG) monoterminated with a biotargeting molecule (folic acid (FA)). Afterward the dual targeting hybrid hollow microspheres were obtained after etching the templates by dialysis. The dual targeting hybrid hollow microspheres exhibit exciting pH response and stability in high salt-concentration media. Their pH-dependent controlled release of the drug molecule (anticancer drug, doxorubicin (DOX)) was also investigated in different human body fluids. As expected, the cell viability of the HepG2 cells which decreased more rapidly was treated by the FA modified hybrid hollow microspheres rather than the unmodified one in the in vitro study. The dual-targeting hybrid hollow microspheres demonstrate selective killing of the tumor cells. The precise magnetic and molecular targeting properties and pH-dependent controlled release offers promise for cancer treatment.

  13. Selective manipulation of superparamagnetic beads by a magnetic microchip

    KAUST Repository

    Gooneratne, Chinthaka Pasan; Yassine, Omar; Giouroudi, Ioanna; Kosel, Jü rgen

    2013-01-01

    In this paper, a magnetic microchip (MMC) is presented, to first trap and then selectively manipulate individual, superparamagnetic beads (SPBs) to another trapping site. Trapping sites are realized through soft magnetic micro disks made of Ni80Fe20

  14. Magnetic restricted-access microspheres for extraction of adrenaline, dopamine and noradrenaline from biological samples

    International Nuclear Information System (INIS)

    Xiao, Deli; Liu, Shubo; Liang, Liyun; Bi, Yanping

    2016-01-01

    Epoxy propyl bonded magnetic microspheres were prepared by atomic layer deposition using Fe 3 O 4 -SiO 2 microspheres as a core support material. Then, a restricted-access magnetic sorbent was prepared that contains diol groups on the external surface and m-aminophenylboronic acid groups on the internal surface. This kind of microspheres achieved excellent specific adsorption of the ortho-dihydroxy compounds (dopamine, adrenaline and noradrenaline). Following desorption with sorbitol, the ortho-dihydroxy compounds were quantified by HPLC. The limits of detection for dopamine, adrenaline and noradrenaline were 0.074, 0.053 and 0.095 μg mL −1 , respectively. Recoveries from spiked mice serum samples range from 80.2 to 89.1 %. (author)

  15. Solid-phase DNA isolation from food matrices using hydrophilic magnetic microspheres

    Czech Academy of Sciences Publication Activity Database

    Trachtová, Š.; Španová, A.; Tóth, J.; Prettl, Z.; Horák, Daniel; Gyenis, J.; Rittich, B.

    2015-01-01

    Roč. 94, April (2015), s. 375-381 ISSN 0960-3085 R&D Projects: GA ČR GAP206/12/0381 Institutional support: RVO:61389013 Keywords : DNA compaction * magnetic microspheres * DNA isolation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.687, year: 2015

  16. Fractionation of Magnetic Microspheres in a Microfluidic Spiral: Interplay between Magnetic and Hydrodynamic Forces.

    Directory of Open Access Journals (Sweden)

    S Dutz

    Full Text Available Magnetic forces and curvature-induced hydrodynamic drag have both been studied and employed in continuous microfluidic particle separation and enrichment schemes. Here we combine the two. We investigate consequences of applying an outwardly directed magnetic force to a dilute suspension of magnetic microspheres circulating in a spiral microfluidic channel. This force is realized with an array of permanent magnets arranged to produce a magnetic field with octupolar symmetry about the spiral axis. At low flow rates particles cluster around an apparent streamline of the flow near the outer wall of the turn. At high flow rates this equilibrium is disrupted by the induced secondary (Dean flow and a new equilibrium is established near the inner wall of the turn. A model incorporating key forces involved in establishing these equilibria is described, and is used to extract quantitative information about the magnitude of local Dean drag forces from experimental data. Steady-state fractionation of suspensions by particle size under the combined influence of magnetic and hydrodynamic forces is demonstrated. Extensions of this work could lead to new continuous microscale particle sorting and enrichment processes with improved fidelity and specificity.

  17. Magnetic poly(glycidyl methacrylate) microspheres for protein capture

    Czech Academy of Sciences Publication Activity Database

    Koubková, Jana; Müller, P.; Hlídková, Helena; Plichta, Zdeněk; Proks, Vladimír; Vojtěšek, B.; Horák, Daniel

    2014-01-01

    Roč. 31, č. 5 (2014), s. 482-491 ISSN 1871-6784 R&D Projects: GA ČR GCP207/12/J013; GA MŠk 7E12053 EU Projects: European Commission(XE) 246513 - NADINE Institutional support: RVO:61389013 Keywords : glycidyl methacrylate * microspheres * protein p53 Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.898, year: 2014

  18. Synthesis of BSA/Fe{sub 3}O{sub 4} magnetic composite microspheres for adsorption of antibiotics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Baoliang; Zhang, Hepeng; Li, Xiangjie; Lei, Xingfeng; Li, Chunmei; Yin, Dezhong; Fan, Xinlong; Zhang, Qiuyu, E-mail: qyzhang@nwpu.edu.cn

    2013-10-01

    BSA/Fe{sub 3}O{sub 4} magnetic composite microspheres with high saturation magnetization and paramagnetic property were prepared via inverse emulsion technology at room temperature, bovine serum albumin (BSA, 60 KD), magnetic nanoparticles (Fe{sub 3}O{sub 4}) and glutaraldehyde as macromonomer, inorganic particles and cross-linking agent, respectively. Fourier transform infrared (FTIR), scanning electron microscope (SEM), metalloscope, and particle size analyzer were used to characterize morphology and structure of composite microspheres. Vibrating sample magnetometer (VSM) and thermogravimetric analysis (TGA) were used to test magnetic properties of the synthesized samples, adsorption capacity of microspheres was determined by ultraviolet spectrophotometer (UV). The results showed that BSA/Fe{sub 3}O{sub 4} microspheres were 43 μm with relatively narrow particle size distribution, perfect sphere-shaped morphologies, superparamagnetism with a saturation magnetization of 11 emu/g, and high magnetic content with a value of 57.29%. The main factors influencing properties of microspheres including raw material ratio, the amount of emulsifier and cross-linking agent, agitation speed were investigated and optimized. Furthermore, these microspheres accompanying with high separable and reusable efficient may have great potential application in the field of separation, in particular, removal of antibiotics. Adsorption capacities of the microspheres of four different kinds of antibiotics (erythromycin, streptomycin, tetracycline and chloramphenicol) ranging from 69.35 mg/g to 147.83 mg/g were obtained, and Langmuir isotherm model coincided with equilibrium data than that of the Freundlich model. - Highlights: • BSA/Fe{sub 3}O{sub 4} microspheres with high saturation magnetization were prepared. • BSA/Fe{sub 3}O{sub 4} microspheres for the removal of antibiotics are proposed. • The obtained results have significant importance in environmental processes.

  19. Selective manipulation of superparamagnetic beads by a magnetic microchip

    KAUST Repository

    Gooneratne, Chinthaka Pasan

    2013-07-01

    In this paper, a magnetic microchip (MMC) is presented, to first trap and then selectively manipulate individual, superparamagnetic beads (SPBs) to another trapping site. Trapping sites are realized through soft magnetic micro disks made of Ni80Fe20, and SPB motion is controlled by current-carrying, tapered, conducting lines made of Au. The MMC was realized using standard microfabrication techniques and provides a cheap and versatile platform for microfluidic systems for cell manipulation. © 2013 IEEE.

  20. Controllable manipulation of superconductivity using magnetic vortices

    International Nuclear Information System (INIS)

    Villegas, J E; Schuller, Ivan K

    2011-01-01

    The magneto-transport of a superconducting/ferromagnetic hybrid structure, consisting of a superconducting thin film in contact with an array of magnetic nanodots in the so-called 'magnetic vortex state', exhibits interesting properties. For certain magnetic states, the stray magnetic field from the vortex array is intense enough to drive the superconducting film into the normal state. In this fashion, the normal-to-superconducting phase transition can be controlled by the magnetic history. The strong coupling between superconducting and magnetic subsystems allows characteristically ferromagnetic properties, such as hysteresis and remanence, to be dramatically transferred into the transport properties of the superconductor.

  1. Design of a novel magnetic platform for cell manipulation

    Science.gov (United States)

    Lucarini, Gioia; Iacovacci, Veronica; Gouveia, Pedro J.; Ricotti, Leonardo; Menciassi, Arianna

    2018-02-01

    Cell manipulation tasks, especially in lab-on-a-chip applications for personalized medicine, could greatly benefit from mobile untethered microdevices able to wirelessly navigate in fluidic environments by means of magnetic fields. In this paper, the design, fabrication and testing of a magnetic platform enabling the controlled locomotion and immersion of microrobots placed at the air/liquid interface is proposed and exploited for cell manipulation. The proposed microrobot consists of a polymeric magnetic thin film that acts as cell transporter and a specific coating strategy, devised to enhance a safe cancer cell adhesion to the magnetic film. Experimental results demonstrated an overall cell viability and a fine control of magnetic microrobot locomotion. The proposed technologies are promising in view of future cell manipulation tasks for personalized medicine applications.

  2. Photocatalytic degradation of p-phenylenediamine with TiO2-coated magnetic PMMA microspheres in an aqueous solution

    International Nuclear Information System (INIS)

    Chen, Y.-H.; Liu, Y.-Y.; Lin, R.-H.; Yen, F.-S.

    2009-01-01

    This study investigates the photocatalytic degradation of p-phenylenediamine (PPD) with titanium dioxide-coated magnetic poly(methyl methacrylate) (TiO 2 /mPMMA) microspheres. The TiO 2 /mPMMA microspheres are employed as novel photocatalysts with the advantages of high photocatalytic activity, magnetic separability, and good durability. The scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and transmission electron microscopy (TEM) images of the TiO 2 /mPMMA microspheres are used to characterize the morphology, element content, and distribution patterns of magnetite and TiO 2 nanoparticles. The BET-specific surface area and saturation magnetization of the TiO 2 /mPMMA microspheres are observed as 2.21 m 2 /g and 4.81 emu/g, respectively. The photocatalytic degradation of PPD are performed under various experimental conditions to examine the effects of initial PPD concentration, TiO 2 /mPMMA microsphere dosage, and illumination condition on the eliminations of PPD and chemical oxygen demand (COD) concentrations. Good repeatability of photocatalytic performance with the use of the TiO 2 /mPMMA microspheres has been demonstrated in the multi-run experiments. The photocatalytic kinetics for the reductions of PPD and COD associated with the initial PPD concentration, UV radiation intensity, and TiO 2 /mPMMA microsphere dosage are proposed. The relationships between the reduction percentages of COD and PPD are clearly presented

  3. A facile method for preparing porous, optically active, magnetic Fe3 O4 @poly(N-acryloyl-leucine) inverse core/shell composite microspheres.

    Science.gov (United States)

    Liu, Dong; Deng, Jianping; Yang, Wantai

    2014-01-01

    The first synthesis of porous, optically active, magnetic Fe3 O4 @poly(N-acryloyl-leucine) inverse core/shell composite microspheres is reported, in which the core is constructed of chiral polymer and the shell is constructed of Fe3 O4 NPs. The microspheres integrate three significant concepts, "porosity", "chirality", and "magneticity", in one single microspheric entity. The microspheres consist of Fe3 O4 nanoparticles and porous optically active microspheres, and thus combine the advantages of both magnetic nanoparticles and porous optically active microspheres. The pore size and specific surface area of the microspheres are characterized by N2 adsorption, from which it is found that the composite microspheres possess a desirable porous structure. Circular dichroism and UV-vis absorption spectroscopy measurements demonstrate that the microspheres exhibit the expected optical activity. The microspheres also have high saturation magnetization of 14.7 emu g(-1) and rapid magnetic responsivity. After further optimization, these novel microspheres may potentially find applications in areas such as asymmetric catalysis, chiral adsorption, etc. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Nature-inspired microfluidic manipulation using magnetic actuators

    NARCIS (Netherlands)

    Khaderi, S. N.; Ioan, D.; den Toonder, J.M.J.; Onck, P. R.; LaVan, D.; Spearing, M.; Vengallatore, S.; DaSilva, M.

    2008-01-01

    Magnetically actuated micro-actuators are proposed to propel and manipulate fluid in micro-channels. As the fluid flows at low Reynolds number in such systems, the actuator should move in an asymmetric manner. The proposed actuators are polymer films with embedded magnetic particles, which are

  5. Microstructure and magnetic properties of yttrium alumina silicate glass microspheres containing iron oxide

    International Nuclear Information System (INIS)

    Sharma, K.; Basak, C.B.; Prajapat, C.L.; Singh, M.R.

    2015-01-01

    Yttrium alumino-silicate glass microspheres have been used for localized delivery of high radiation dose to tissues in the treatment of hepatocellular carcinoma (BCC) and synovitis. 90 Y is a pure beta emitter with beta emission energy of 0.9367 MeV, average penetration range in tissue 2.5 mm, physical half-life of 64.2 h, thus an effective radioisotope for delivering high radiation dose to the tumor. The efficacy of radiotherapy can further be improved if the glass microspheres are doped with magnetic particles for targeted delivery of high radiation dose. Magnetic glass microspheres can also be utilized for cancer treatment using the magnetic heating of tumor cell. The magnetic glass microspheres are obtained from the glasses with nominal composition (64-x) SiO 2 -17Y 2 O 3 -19 Al 2 O 3 -xFe 2 O 3 (x=4-16 mol %). Density of glasses increases from 3.5g/cc to 3.8g/cc as iron oxide content is increased from 4 to 16 mol %. The glass transition temperature and peak crystallization temperature decreases as the iron oxide content increases. T g values of glass samples decreases with increase of Fe 2 O 3 , while SiO 2 content is decreased. SiO 2 is a network forming oxide and a decrease in the network former in glass lead to decrease in thermo-physical properties like T g . The development of ferrimagnetic crystallites in glasses arise from the conversion of iron oxide into magnetite, magnemite and hematite, which is influenced by the structural and ordering of magnetic particles. The microstructure of glass-ceramic exhibited the formation of 50-100 nm size particles. The magnetite and hematite are formed as major crystalline phases. The magnetization values increased with an increase of iron oxide content and attributed to formation of magnetite phase. Results have shown that the glass microspheres with magnetic properties can be used as potential materials for cancer treatment. (author)

  6. Magnetic poly(glycidyl methacrylate) microspheres for Campylobacter jejuni detection in food

    Czech Academy of Sciences Publication Activity Database

    Horák, Daniel; Hochel, I.

    061, - (2005), s. 1-12 ISSN 1618-7229 R&D Projects: GA ČR(CZ) GA525/05/0311; GA ČR(CZ) GA525/02/0287 Institutional research plan: CEZ:AV0Z40500505 Keywords : magnetic * microspheres * glycidyl methacrylate Subject RIV: GM - Food Processing Impact factor: 0.926, year: 2005 http://www.e-polymers.org

  7. Magnetic poly(N-propargylacrylamide) microspheres: preparation by precipitation polymerization and use in model click reactions

    Czech Academy of Sciences Publication Activity Database

    Macková, Hana; Proks, Vladimír; Horák, Daniel; Kučka, Jan; Trchová, Miroslava

    2011-01-01

    Roč. 49, č. 22 (2011), s. 4820-4829 ISSN 0887-624X R&D Projects: GA AV ČR KJB400500904; GA AV ČR(CZ) KAN401220801; GA ČR GAP503/10/0664 Institutional research plan: CEZ:AV0Z40500505 Keywords : click chemistry * magnetic * microspheres Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.919, year: 2011

  8. Magnetic hydrophilic poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) microspheres for DNA isolation from faeces

    Czech Academy of Sciences Publication Activity Database

    Trachtová, Š.; Obermajer, T.; Španová, A.; Matijašić, B. B.; Rogelj, I.; Horák, Daniel; Rittich, B.

    2012-01-01

    Roč. 555, č. 1 (2012), s. 263-270 ISSN 1542-1406. [International Conference on Frontiers of Polymers and Advanced Materials /11./. Pretoria, 22.05.2011-27.05.2011] R&D Projects: GA MŠk 2B06053 Institutional research plan: CEZ:AV0Z40500505 Keywords : DNA isolation * magnetic microspheres * mouse faeces Subject RIV: EE - Microbiology, Virology Impact factor: 0.530, year: 2012

  9. Iminodiacetic acid-modified magnetic poly(2-hydroxyethyl methacrylate)-based microspheres for phosphopeptide enrichment

    Czech Academy of Sciences Publication Activity Database

    Novotná, L.; Emmerová, T.; Horák, Daniel; Kučerová, Z.; Tichá, M.

    2010-01-01

    Roč. 1217, č. 51 (2010), s. 8032-8040 ISSN 0021-9673 R&D Projects: GA AV ČR(CZ) KAN401220801; GA ČR GA203/09/0857; GA ČR GAP503/10/0664 Institutional research plan: CEZ:AV0Z40500505 Keywords : IMAC phosphopeptide separation * IDA-modified magnetic microspheres * Porcine pepsin A Subject RIV: EE - Microbiology, Virology Impact factor: 4.194, year: 2010

  10. Fabrication of Alkoxyamine-Functionalized Magnetic Core-Shell Microspheres via Reflux Precipitation Polymerization for Glycopeptide Enrichment

    Directory of Open Access Journals (Sweden)

    Meng Yu

    2016-03-01

    Full Text Available As a facile method to prepare hydrophilic polymeric microspheres, reflux precipitation polymerization has been widely used for preparation of polymer nanogels. In this article, we synthesized a phthalamide-protected N-aminooxy methyl acrylamide (NAMAm-p for preparation of alkoxyamine-functionalized polymer composite microspheres via reflux precipitation polymerization. The particle size and functional group density of the composite microspheres could be adjusted by copolymerization with the second monomers, N-isopropyl acrylamide, acrylic acid or 2-hydroxyethyl methacrylate. The resultant microspheres have been characterized by TEM, FT-IR, TGA and DLS. The experimental results showed that the alkoxyamine group density of the microspheres could reach as high as 1.49 mmol/g, and these groups showed a great reactivity with ketone/aldehyde compounds. With the aid of magnetic core, the hybrid microspheres could capture and magnetically isolate glycopeptides from the digested mixture of glycopeptides and non-glycopeptides at a 1:100 molar ratio. After that, we applied the composite microspheres to profile the glycol-proteome of a normal human serum sample, 95 unique glycopeptides and 64 glycoproteins were identified with these enrichment substrates in a 5 μL of serum sample.

  11. Flow-controlled magnetic particle manipulation

    Science.gov (United States)

    Grate, Jay W [West Richland, WA; Bruckner-Lea, Cynthia J [Richland, WA; Holman, David A [Las Vegas, NV

    2011-02-22

    Inventive methods and apparatus are useful for collecting magnetic materials in one or more magnetic fields and resuspending the particles into a dispersion medium, and optionally repeating collection/resuspension one or more times in the same or a different medium, by controlling the direction and rate of fluid flow through a fluid flow path. The methods provide for contacting derivatized particles with test samples and reagents, removal of excess reagent, washing of magnetic material, and resuspension for analysis, among other uses. The methods are applicable to a wide variety of chemical and biological materials that are susceptible to magnetic labeling, including, for example, cells, viruses, oligonucleotides, proteins, hormones, receptor-ligand complexes, environmental contaminants and the like.

  12. Removal of Strontium Ions by Immobilized Saccharomyces Cerevisiae in Magnetic Chitosan Microspheres

    Directory of Open Access Journals (Sweden)

    Yanan Yin

    2017-02-01

    Full Text Available A novel biosorbent, immobilized Saccharomyces cerevisiae in magnetic chitosan microspheres was prepared, characterized, and used for the removal of Sr2+ from aqueous solution. The structure and morphology of immobilized S. cerevisiae before and after Sr2+adsorption were observed using scanning electron microscopy with energy dispersive X-ray spectroscopy. The experimental results showed that the Langmuir and Freundlich isotherm models could be used to describe the Sr2+ adsorption onto immobilized S. cerevisiae microspheres. The maximal adsorption capacity (qm was calculated to be 81.96 mg/g by the Langmuir model. Immobilized S. cerevisiae was an effective adsorbent for the Sr2+ removal from aqueous solution.

  13. Removal of strontium ions by immobilized saccharomyces cerevisiae in magnetic chitosan microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yanan; Wang, Jian Long; Yang, Xiao Yong; Li, Weihua [Collaborative Innovation Center for Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China)

    2017-02-15

    A novel biosorbent, immobilized Saccharomyces cerevisiae in magnetic chitosan microspheres was prepared, characterized, and used for the removal of Sr{sup 2+} from aqueous solution. The structure and morphology of immobilized S. cerevisiae before and after Sr{sup 2+}adsorption were observed using scanning electron microscopy with energy dispersive X-ray spectroscopy. The experimental results showed that the Langmuir and Freundlich isotherm models could be used to describe the Sr{sup 2+} adsorption onto immobilized S. cerevisiae microspheres. The maximal adsorption capacity (q{sub m}) was calculated to be 81.96 mg/g by the Langmuir model. Immobilized S. cerevisiae was an effective adsorbent for the Sr{sup 2+} removal from aqueous solution.

  14. Magnetic SiO{sub 2} gel microspheres for arterial embolization hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhixia; Kawashita, Masakazu [Graduate School of Biomedical Engineering, Tohoku University, 6-6-11-1306-1, Aramaki-Aoba, Aoba-ku, Sendai 980-8579 (Japan); Araki, Norio [National Hospital Organization Kyoto Medical Center, Kyoto 612-8555 (Japan); Mitsumori, Michihide; Hiraoka, Masahiro [Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Doi, Masaaki, E-mail: zhixia@ecei.tohoku.ac.j, E-mail: zhixiali@hotmail.co [Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan)

    2010-12-15

    We have prepared magnetic SiO{sub 2} microspheres with a diameter of 20-30 {mu}m as thermoseeds for hyperthermia of cancer. These were prepared by directly introducing preformed magnetic iron oxide nanoparticles (IONPs) into microspheres of a SiO{sub 2} gel matrix derived from the hydrolysis of tetramethoxysilane (TMOS) in a water-in-oil (W/O) emulsion. Dimethylformamide (DMF) was used as a stabilizer, methanol (CH{sub 3}OH) as a dispersant and ammonia (NH{sub 4}OH) as the catalyst for the formation of the spherical particles in the aqueous phase of the W/O emulsion. The magnetic IONPs were synthesized hydrochemically in an aqueous system composed of ferrous chloride, sodium nitrate and sodium hydroxide. Mono-dispersed magnetic SiO{sub 2} gel microspheres with a diameter of approximately 20 {mu}m were successfully obtained by adding a determined amount of solution with a molar ratio of TMOS/DMF/CH{sub 3}OH/H{sub 2}O/NH{sub 4}OH = 1:1.4:9:20:0.03 to kerosene with a surfactant (sorbitan monooleate/sorbitan monostearate = 3:1 by weight ratio) that was 30 wt% of the total amount of the oil phase. These were estimated to contain up to 60 wt% of IONPs that consisted mainly of Fe{sub 3}O{sub 4} and showed a higher specific absorption rate (SAR = 27.9-43.8 W g{sup -1}) than that of the starting IONPs (SAR = 25.3 W g{sup -1}) under an alternating current magnetic field of 300 Oe and 100 kHz.

  15. Magnetic SiO2 gel microspheres for arterial embolization hyperthermia

    International Nuclear Information System (INIS)

    Li Zhixia; Kawashita, Masakazu; Araki, Norio; Mitsumori, Michihide; Hiraoka, Masahiro; Doi, Masaaki

    2010-01-01

    We have prepared magnetic SiO 2 microspheres with a diameter of 20-30 μm as thermoseeds for hyperthermia of cancer. These were prepared by directly introducing preformed magnetic iron oxide nanoparticles (IONPs) into microspheres of a SiO 2 gel matrix derived from the hydrolysis of tetramethoxysilane (TMOS) in a water-in-oil (W/O) emulsion. Dimethylformamide (DMF) was used as a stabilizer, methanol (CH 3 OH) as a dispersant and ammonia (NH 4 OH) as the catalyst for the formation of the spherical particles in the aqueous phase of the W/O emulsion. The magnetic IONPs were synthesized hydrochemically in an aqueous system composed of ferrous chloride, sodium nitrate and sodium hydroxide. Mono-dispersed magnetic SiO 2 gel microspheres with a diameter of approximately 20 μm were successfully obtained by adding a determined amount of solution with a molar ratio of TMOS/DMF/CH 3 OH/H 2 O/NH 4 OH = 1:1.4:9:20:0.03 to kerosene with a surfactant (sorbitan monooleate/sorbitan monostearate = 3:1 by weight ratio) that was 30 wt% of the total amount of the oil phase. These were estimated to contain up to 60 wt% of IONPs that consisted mainly of Fe 3 O 4 and showed a higher specific absorption rate (SAR = 27.9-43.8 W g -1 ) than that of the starting IONPs (SAR = 25.3 W g -1 ) under an alternating current magnetic field of 300 Oe and 100 kHz.

  16. Fabrication and manipulation of polymeric magnetic particles with magnetorheological fluid

    International Nuclear Information System (INIS)

    Rodríguez-López, Jaime; Shum, Ho Cheung; Elvira, Luis; Montero de Espinosa, Francisco; Weitz, David A.

    2013-01-01

    Polymeric magnetic microparticles have been created using a microfluidic device via ultraviolet (UV) polymerization of double emulsions, resulting in cores of magnetorheological (MR) fluids surrounded by polymeric shells. We demonstrate that the resultant particles can be manipulated magnetically to achieve triggered rupture of the capsules. This illustrates the great potential of our capsules for triggered release of active ingredients encapsulated in the polymeric magnetic microparticles. - Highlights: ► Polymeric microparticles encapsulating MR fluids have been fabricated. ► A double-emulsion-templated approach using microfluidic techniques has been used. ► The monodisperse microparticles obtained are easily manipulated under magnetic field. ► These microparticles have great potential for encapsulation-and-release applications.

  17. Immunocapture of CD133-positive cells from human cancer cell lines by using monodisperse magnetic poly(glycidyl methacrylate) microspheres containing amino groups

    Energy Technology Data Exchange (ETDEWEB)

    Kuan, Wei-Chih [Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Minhisung 621, Taiwan (China); Horák, Daniel, E-mail: horak@imc.cas.cz [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Plichta, Zdeněk [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Lee, Wen-Chien [Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Minhisung 621, Taiwan (China)

    2014-01-01

    Magnetic poly(glycidyl methacrylate)-based macroporous microspheres with an average particle size of 4.2 μm were prepared using a modified multi-step swelling polymerization method and by introducing amino functionality on their surfaces. Antibody molecules were oxidized on their carbohydrate moieties and bound to the amino-containing magnetic microspheres via a site-directed procedure. CD133-positive cells could be effectively captured from human cancer cell lines (HepG2, HCT116, MCF7, and IMR-32) by using magnetic microspheres conjugated to an anti-human CD133 antibody. After further culture, the immunocaptured CD133-expressing cells from IMR-32 proliferated and gradually detached from the magnetic microspheres. Flow-cytometric analysis confirmed the enrichment of CD133-expressing cells by using the antibody-bound magnetic microspheres. Such microspheres suitable for immunocapture are very promising for cancer diagnosis because the CD133-expressing cells in cancer cell lines have been suggested to be cancer stem cells. - Highlights: • Multi-step swelling polymerization produced poly(glycidyl methacrylate) microspheres. • Anti-human CD133 antibodies were bound to the amino-containing magnetic microspheres. • CD133-positive cells were effectively captured from human cancer cell lines. • Immunocaptured CD133-expressing cells proliferated and were detached from microspheres. • Enrichment of CD133-expressing cells was confirmed by flow-cytometric analysis.

  18. An integrated open-cavity system for magnetic bead manipulation.

    Science.gov (United States)

    Abu-Nimeh, F T; Salem, F M

    2013-02-01

    Superparamagnetic beads are increasingly used in biomedical assays to manipulate, transport, and maneuver biomaterials. We present a low-cost integrated system designed in bulk CMOS to manipulate and separate biomedical magnetic beads. The system consists of 8 × 8 coil-arrays suitable for single bead manipulation, or collaborative multi-bead manipulation, using pseudo-parallel executions. We demonstrate the flexibility of the design in terms of different coil sizes, DC current levels, and layout techniques. In one array module example, the size of a single coil is 30 μm × 30 μm and the full array occupies an area of 248 μm × 248 μm in 0.5 μm CMOS technology. The programmable DC current source supports 8 discrete levels up to 1.5 mA. The total power consumption of the entire module is 9 mW when running at full power.

  19. Microfabricated tools for manipulation and analysis of magnetic microcarriers

    International Nuclear Information System (INIS)

    Tondra, Mark; Popple, Anthony; Jander, Albrecht; Millen, Rachel L.; Pekas, Nikola; Porter, Marc D.

    2005-01-01

    Tools for manipulating and detecting magnetic microcarriers are being developed with microscale features. Microfabricated giant magnetoresistive (GMR) sensors and wires are used for detection, and for creating high local field gradients. Microfluidic structures are added to control flow, and positioning of samples and microcarriers. These tools are designed for work in analytical chemistry and biology

  20. Preparation of biodegradable magnetic microspheres with poly(lactic acid)-coated magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Hong; Saatchi, Katayoun [Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, BC, 6T 1Z3 (Canada); Haefeli, Urs O. [Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, BC, V6T 1Z3 (Canada)], E-mail: uhafeli@interchange.ubc.ca

    2009-05-15

    Poly(lactic acid) (PLA)-coated magnetic nanoparticles were made using uncapped PLA with free carboxylate groups. The physical properties of these particles were compared to those of oleate-coated or oleate/sulphonate bilayer (W40) coated magnetic particles. Magnetic microspheres (MMS) with the matrix material poly(lactide-co-glycolide) (PLGA) or PLA were then formed by the emulsion solvent extraction method with encapsulation efficiencies of 40%, 83% and 96% for oleate, PLA and oleate/sulfonate-coated magnetic particles, respectively. MMS made from PLA-coated magnetite were hemocompatible and produced no hemolysis, whereas the other MMS were hemolytic above 0.3 mg/mL of blood.

  1. Preparation of biodegradable magnetic microspheres with poly(lactic acid)-coated magnetite

    International Nuclear Information System (INIS)

    Zhao Hong; Saatchi, Katayoun; Haefeli, Urs O.

    2009-01-01

    Poly(lactic acid) (PLA)-coated magnetic nanoparticles were made using uncapped PLA with free carboxylate groups. The physical properties of these particles were compared to those of oleate-coated or oleate/sulphonate bilayer (W40) coated magnetic particles. Magnetic microspheres (MMS) with the matrix material poly(lactide-co-glycolide) (PLGA) or PLA were then formed by the emulsion solvent extraction method with encapsulation efficiencies of 40%, 83% and 96% for oleate, PLA and oleate/sulfonate-coated magnetic particles, respectively. MMS made from PLA-coated magnetite were hemocompatible and produced no hemolysis, whereas the other MMS were hemolytic above 0.3 mg/mL of blood.

  2. PEGylation controls attachment and engulfment of monodisperse magnetic poly(2-hydroxyethyl methacrylate) microspheres by murine J774.2 macrophages

    Science.gov (United States)

    Horák, Daniel; Hlidková, Helena; Klyuchivska, Olga; Grytsyna, Iryna; Stoika, Rostyslav

    2017-12-01

    The first objective of this work was to prepare biocompatible magnetic polymer microspheres with reactive functional groups that could withstand nonspecific protein adsorption from biological media. Carboxyl group-containing magnetic poly(2-hydroxyethyl methacrylate) (mgt.PHEMA) microspheres ∼4 μm in size were prepared by multistage swelling polymerization, precipitation of iron oxide inside their pores, and coating with an α-methoxy-ω-amino poly(ethylene glycol) (CH3O-PEG750-NH2 or CH3O-PEG5,000-NH2)/α-amino-ω-t-Boc-amino poly(ethylene glycol) (H2N-PEG5,000-NH-t-Boc) mixture. The mgt.PHEMA@PEG microspheres contained ∼10 μmol COOH per g. Biocompatibility of the particles was evaluated by their treatment with human embryonic kidney cells of the HEK293 line. The microspheres did not interfere with the growth of these cells, suggesting that the particles can be considered non-toxic. A second goal of this study was to address on the interaction of the developed microspheres with macrophages that commonly eliminate foreign microbodies appearing in organisms. Murine J774.2 macrophages (J774.2) were cultured in the presence of the neat and PEGylated microspheres for 2 h. Mgt.PHEMA@PEG5,000 microspheres significantly adhered to the surface of J774.2 macrophages but were minimally engulfed. Due to these properties, the mgt.PHEMA@PEG microspheres might be useful for application in drug delivery systems and monitoring of the efficiency of phagocytosis.

  3. Antifouling peptide dendrimer surface of monodisperse magnetic poly(glycidyl methacrylate) microspheres

    Czech Academy of Sciences Publication Activity Database

    Hlídková, Helena; Kotelnikov, Ilya; Pop-Georgievski, Ognen; Proks, Vladimír; Horák, Daniel

    2017-01-01

    Roč. 50, č. 4 (2017), s. 1302-1311 ISSN 0024-9297 R&D Projects: GA ČR(CZ) GC16-01128J; GA ČR(CZ) GA16-02702S; GA ČR(CZ) GJ15-09368Y Grant - others:OPPK(XE) CZ.2.16/3.1.00/21545 Program:OPPK Institutional support: RVO:61389013 Keywords : poly(glycidyl methacrylate) * magnetic microspheres * peptides Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 5.835, year: 2016

  4. Drug-loaded poly (ε-caprolactone)/Fe3O4 composite microspheres for magnetic resonance imaging and controlled drug delivery

    Science.gov (United States)

    Wang, Guangshuo; Zhao, Dexing; Li, Nannan; Wang, Xuehan; Ma, Yingying

    2018-06-01

    In this study, poly (ε-caprolactone) (PCL) microspheres loading magnetic Fe3O4 nanoparticles and anti-cancer drug of doxorubicin hydrochloride (DOX) were successfully prepared by a modified solvent-evaporation method. The obtained magnetic composite microspheres exhibited dual features of magnetic resonance imaging and controlled drug delivery. The morphology, structure, thermal behavior and magnetic properties of the drug-loaded magnetic microspheres were investigated in detail by SEM, XRD, DSC and SQUID. The obtained composite microspheres showed superparamagnetic behavior and T2-weighted enhancement effect. The drug loading, encapsulation efficiency, releasing behavior and in vitro cytotoxicity of the drug-loaded composite microspheres were systematically investigated. It was found that the values of drug loading and encapsulation efficiency were 36.7% and 25.8%, respectively. The composite microspheres were sensitive to pH and released in a sustained way, and both the release curves under various pH conditions (4.0 and 7.4) were well satisfied with the biphase kinetics function. In addition, the magnetic response of the drug-loaded microspheres was studied and the results showed that the composite microspheres had a good magnetic stability and strong targeting ability.

  5. Photocatalytic degradation of p-phenylenediamine with TiO{sub 2}-coated magnetic PMMA microspheres in an aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.-H. [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Chung-Hsiao E. Road, Taipei 106, Taiwan (China)], E-mail: yhchen1@ntu.edu.tw; Liu, Y.-Y.; Lin, R.-H.; Yen, F.-S. [Department of Chemical and Material Engineering, National Kaohsiung University of Applied Sciences, 415 Chien Kung Road, Kaohsiung 807, Taiwan (China)

    2009-04-30

    This study investigates the photocatalytic degradation of p-phenylenediamine (PPD) with titanium dioxide-coated magnetic poly(methyl methacrylate) (TiO{sub 2}/mPMMA) microspheres. The TiO{sub 2}/mPMMA microspheres are employed as novel photocatalysts with the advantages of high photocatalytic activity, magnetic separability, and good durability. The scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and transmission electron microscopy (TEM) images of the TiO{sub 2}/mPMMA microspheres are used to characterize the morphology, element content, and distribution patterns of magnetite and TiO{sub 2} nanoparticles. The BET-specific surface area and saturation magnetization of the TiO{sub 2}/mPMMA microspheres are observed as 2.21 m{sup 2}/g and 4.81 emu/g, respectively. The photocatalytic degradation of PPD are performed under various experimental conditions to examine the effects of initial PPD concentration, TiO{sub 2}/mPMMA microsphere dosage, and illumination condition on the eliminations of PPD and chemical oxygen demand (COD) concentrations. Good repeatability of photocatalytic performance with the use of the TiO{sub 2}/mPMMA microspheres has been demonstrated in the multi-run experiments. The photocatalytic kinetics for the reductions of PPD and COD associated with the initial PPD concentration, UV radiation intensity, and TiO{sub 2}/mPMMA microsphere dosage are proposed. The relationships between the reduction percentages of COD and PPD are clearly presented.

  6. Hydrophilic porous magnetic poly(GMA-MBAA-NVP) composite microspheres containing oxirane groups: An efficient carrier for immobilizing penicillin G acylase

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Ping; Su, Weiguang, E-mail: weiguangsu@nxu.edu.cn; Gu, Yaohua; Liu, Haifeng; Wang, Julan

    2015-03-15

    Magnetic hydrophilic polymeric microspheres containing oxirane groups were prepared by inverse suspension polymerization of glycidyl methacrylate (GMA), N, N′-methylene bisacrylamide (MBAA) and N-vinyl pyrrolidone (NVP) in the existence of formamide, which were denoted as magnetic poly(GMA-MBAA-NVP) microspheres. The magnetic poly(GMA-MBAA-NVP) microspheres were characterized by scanning electron microscopy (SEM), FT-IR spectroscopy, X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and so on. The results showed that poly(GMA-MBAA-NVP) microspheres possessed well spherical shape, narrow size distribution, abundant porous structure, reactive oxirane groups and superparamagnetic properties. Formamide used in the present work served as a modifier, a dispersant and a porogen to form final porous polymer microspheres. The penicillin G acylase (PGA) was covalently immobilized onto the magnetic microspheres through the reaction between the amino groups of enzyme and the oxirane groups on the microspheres for producing 6-aminopenicillanic acid (6-APA). The effects of GMA/NVP ratio and crosslink density on the activity of immobilized PGA were investigated. The highest apparent activity, enzyme loading and coupling yield of immobilized PGA were 821 IU/g, 65.3 mg/g and 42.3% respectively when the mass ratio of GMA/NVP was 1:1 and crosslink density was 60%. Compared with the free PGA, immobilized PGA showed a wider range of pH value and reaction temperature. The relative activity and reaction rate of immobilized PGA remained almost constant after 20 recycles. The magnetic poly(GMA-MBAA-NVP) microspheres would be very promising carriers for immobilizing enzymes in industrial application. - Highlights: • The magnetic poly(GMA-MBAA-NVP) microspheres were successfully synthesized. • Formamide served as a modifier, a dispersant and a porogen to form microspheres. • The magnetic microspheres were highly efficient carriers for immobilizing PGA. • Immobilized PGA

  7. A review of magnetic resonance imaging compatible manipulators in surgery.

    Science.gov (United States)

    Elhawary, H; Zivanovic, A; Davies, B; Lampérth, M

    2006-04-01

    Developments in magnetic resonance imaging (MRI), coupled with parallel progress in the field of computer-assisted surgery, mean that an ideal environment has been created for the development of MRI-compatible robotic systems and manipulators, capable of enhancing many types of surgical procedure. However, MRI does impose severe restrictions on mechatronic devices to be used in or around the scanners. In this article a review of the developments in the field of MRI-compatible surgical manipulators over the last decade is presented. The manipulators developed make use of different methods of actuation, but they can be reduced to four main groups: actuation transmitted through hydraulics, pneumatic actuators, ultrasonic motors based on the piezoceramic principle and remote manual actuation. Progress has been made concerning material selection, position sensing, and different actuation techniques, and design strategies have been implemented to overcome the multiple restrictions imposed by the MRI environment. Most systems lack the clinical validation needed to continue on to commercial products.

  8. From Single Microparticles to Microfluidic Emulsification: Fundamental Properties (Solubility, Density, Phase Separation from Micropipette Manipulation of Solvent, Drug and Polymer Microspheres

    Directory of Open Access Journals (Sweden)

    Koji Kinoshita

    2016-11-01

    Full Text Available The micropipette manipulation technique is capable of making fundamental single particle measurements and analyses. This information is critical for establishing processing parameters in systems such as microfluidics and homogenization. To demonstrate what can be achieved at the single particle level, the micropipette technique was used to form and characterize the encapsulation of Ibuprofen (Ibp into poly(lactic-co-glycolic acid (PLGA microspheres from dichloromethane (DCM solutions, measuring the loading capacity and solubility limits of Ibp in typical PLGA microspheres. Formed in phosphate buffered saline (PBS, pH 7.4, Ibp/PLGA/DCM microdroplets were uniformly solidified into Ibp/PLGA microparticles up to drug loadings (DL of 41%. However, at DL 50 wt% and above, microparticles showed a phase separated pattern. Working with single microparticles, we also estimated the dissolution time of pure Ibp microspheres in the buffer or in detergent micelle solutions, as a function of the microsphere size and compare that to calculated dissolution times using the Epstein-Plesset (EP model. Single, pure Ibp microparticles precipitated as liquid phase microdroplets that then gradually dissolved into the surrounding PBS medium. Analyzing the dissolution profiles of Ibp over time, a diffusion coefficient of 5.5 ± 0.2 × 10−6 cm2/s was obtained by using the EP model, which was in excellent agreement with the literature. Finally, solubilization of Ibp into sodium dodecyl sulfate (SDS micelles was directly visualized microscopically for the first time by the micropipette technique, showing that such micellization could increase the solubility of Ibp from 4 to 80 mM at 100 mM SDS. We also introduce a particular microfluidic device that has recently been used to make PLGA microspheres, showing the importance of optimizing the flow parameters. Using this device, perfectly smooth and size-homogeneous microparticles were formed for flow rates of 0.167 mL/h for

  9. Manipulation of magnetic Skyrmions with a Scanning Tunneling Microscope

    OpenAIRE

    Wieser, R.

    2016-01-01

    The dynamics of a single magnetic Skyrmion in an atomic spin system under the influence of Scanning Tunneling Microscope is investigated by computer simulations solving the Landau-Lifshitz-Gilbert equation. Two possible scenarios are described: manipulation with aid of a spin-polarized tunneling current and by an electric field created by the scanning tunneling microscope. The dynamics during the creation and annihilation process is studied and the possibility to move single Skyrmions is showed.

  10. Alzheimer's disease biomarkers detection in human samples by efficient capturing through porous magnetic microspheres and labelling with electrocatalytic gold nanoparticles

    Czech Academy of Sciences Publication Activity Database

    de la Escosura-Muniz, A.; Plichta, Zdeněk; Horák, Daniel; Merkoci, A.

    2015-01-01

    Roč. 67, 15 May (2015), s. 162-169 ISSN 0956-5663 R&D Projects: GA MŠk 7E12053 EU Projects: European Commission(XE) 246513 - NADINE Institutional support: RVO:61389013 Keywords : porous magnetic microspheres * gold nanoparticles * electrochemical immunoassay Subject RIV: CD - Macromolecular Chemistry Impact factor: 7.476, year: 2015

  11. Streptavidin-modified monodispersed magnetic poly(2-hydroxyethyl methacrylate) microspheres as solid support in DNA-based molecular protocols

    Czech Academy of Sciences Publication Activity Database

    Salih, T.; Ahlford, A.; Nilsson, M.; Plichta, Zdeněk; Horák, Daniel

    2016-01-01

    Roč. 61, 1 April (2016), s. 362-367 ISSN 0928-4931 R&D Projects: GA MŠk 7E12054 EU Projects: European Commission(XE) 259796 - DIATOOLS Institutional support: RVO:61389013 Keywords : rolling circle amplification * DNA * magnetic microspheres Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.164, year: 2016

  12. Magnetic Resonance Imaging-Based Radiation-Absorbed Dose Estimation of Ho-166 Microspheres in Liver Radioembolization

    NARCIS (Netherlands)

    Seevinck, Peter R.; van de Maat, Gerrit H.; de Wit, Tim C.; Vente, Maarten A. D.; Nijsen, Johannes F. W.; Bakker, Chris J. G.

    2012-01-01

    Purpose: To investigate the potential of magnetic resonance imaging (MRI) for accurate assessment of the three-dimensional Ho-166 activity distribution to estimate radiation-absorbed dose distributions in Ho-166-loaded poly (L-lactic acid) microsphere (Ho-166-PLLA-MS) liver radioembolization.

  13. RAFT polymerization of N,N-dimethylacrylamide from magnetic poly(2-hydroxyethyl methacrylate) microspheres to suppress nonspecific protein adsorption

    Czech Academy of Sciences Publication Activity Database

    Cao, X.; Horák, Daniel; An, Z.; Plichta, Zdeněk

    2016-01-01

    Roč. 54, č. 8 (2016), s. 1036-1043 ISSN 0887-624X R&D Projects: GA MŠk(CZ) LH14318 Institutional support: RVO:61389013 Keywords : magnetic polymers * microspheres * N,N-dimethylacrylamide Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.952, year: 2016

  14. Magnetic manipulation device for the optimization of cell processing conditions.

    Science.gov (United States)

    Ito, Hiroshi; Kato, Ryuji; Ino, Kosuke; Honda, Hiroyuki

    2010-02-01

    Variability in human cell phenotypes make it's advancements in optimized cell processing necessary for personalized cell therapy. Here we propose a strategy of palm-top sized device to assist physically manipulating cells for optimizing cell preparations. For the design of such a device, we combined two conventional approaches: multi-well plate formatting and magnetic cell handling using magnetite cationic liposomes (MCLs). From our previous works, we showed the labeling applications of MCL on adhesive cells for various tissue engineering approaches. To feasibly transfer cells in multi-well plate, we here evaluated the magnetic response of MCL-labeled suspension type cells. The cell handling performance of Jurkat cells proved to be faster and more robust compared to MACS (Magnetic Cell Sorting) bead methods. To further confirm our strategy, prototype palm-top sized device "magnetic manipulation device (MMD)" was designed. In the device, the actual cell transportation efficacy of Jurkat cells was satisfying. Moreover, as a model of the most distributed clinical cell processing, primary peripheral blood mononuclear cells (PBMCs) from different volunteers were evaluated. By MMD, individual PBMCs indicated to have optimum Interleukin-2 (IL-2) concentrations for the expansion. Such huge differences of individual cells indicated that MMD, our proposing efficient and self-contained support tool, could assist the feasible and cost-effective optimization of cell processing in clinical facilities. Copyright (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Zirconium-doped magnetic microspheres for the selective enrichment of cis-diol-containing ribonucleosides.

    Science.gov (United States)

    Fan, Hua; Chen, Peihong; Wang, Chaozhan; Wei, Yinmao

    2016-05-27

    Zirconium-doped magnetic microspheres (Zr-Fe3O4) for the selective enrichment of cis-diol-containing biomolecules were easily synthesized via a one-step hydrothermal method. Characterization of the microspheres revealed that zirconium was successfully doped into the lattice of Fe3O4 at a doping level of 4.0 at%. Zr-Fe3O4 possessed good magnetic properties and high specificity towards cis-diol molecules, as shown using 28 compounds. For ribonucleosides, the adsorbent not only has favorable anti-interferential abilities but also has a high adsorption capacity up to 159.4μmol/g. As an example of a real application, four ribonucleosides in urine were efficiently enriched and detected via magnetic solid-phase extraction coupled with high-performance liquid chromatography. Under the optimized extraction conditions, the detection limits were determined to be between 0.005 and 0.017μg/mL, and the linearities ranged from 0.02 to 5.00μg/mL (R≥0.996) for these analytes. The accuracy of the analytical method was examined by studying the relative recoveries of the analytes in real urine samples, with recoveries varying from 77.8% to 119.6% (RSDs<10.6%, n=6). The results indicate that Zr-Fe3O4 is a suitable adsorbent for the analysis of cis-diol-containing biomolecules in practical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Studies in the Use of Magnetic Microspheres for Immunoaffinity Extraction of Paralytic Shellfish Poisoning Toxins from Shellfish

    Directory of Open Access Journals (Sweden)

    Christopher Elliott

    2011-01-01

    Full Text Available Paralytic shellfish poisoning (PSP is a potentially fatal human health condition caused by the consumption of shellfish containing high levels of PSP toxins. Toxin extraction from shellfish and from algal cultures for use as standards and analysis by alternative analytical monitoring methods to the mouse bioassay is extensive and laborious. This study investigated whether a selected MAb antibody could be coupled to a novel form of magnetic microsphere (hollow glass magnetic microspheres, brand name Ferrospheres-N and whether these coated microspheres could be utilized in the extraction of low concentrations of the PSP toxin, STX, from potential extraction buffers and spiked mussel extracts. The feasibility of utilizing a mass of 25 mg of Ferrospheres-N, as a simple extraction procedure for STX from spiked sodium acetate buffer, spiked PBS buffer and spiked mussel extracts was determined. The effects of a range of toxin concentrations (20–300 ng/mL, incubation times and temperature on the capability of the immuno-capture of the STX from the spiked mussel extracts were investigated. Finally, the coated microspheres were tested to determine their efficiency at extracting PSP toxins from naturally contaminated mussel samples. Toxin recovery after each experiment was determined by HPLC analysis. This study on using a highly novel immunoaffinity based extraction procedure, using STX as a model, has indicated that it could be a convenient alternative to conventional extraction procedures used in toxin purification prior to sample analysis.

  17. Photochemical decoration of gold nanoparticles on polymer stabilized magnetic microspheres for determination of adenine by surface-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Alula, Melisew Tadele; Yang, Jyisy

    2015-01-01

    Magnetic microspheres decorated with gold nanoparticles (AuNPs) were prepared and used for the determination of adenine by surface-enhanced Raman scattering (SERS). Magnetic particles were first synthesized by coprecipitation of solutions containing iron(II) and iron(III) ions with ammonium hydroxide. Subsequently, the magnetic particles were suspended into a solution of poly(divinylbenzene-co-methyl methacrylate) to yield polymer-stabilized magnetic microspheres. These were further decorated with AuNPs via a new photochemical reduction method. The magnetic microspheres were characterized by XRD patterns and SEM images. They are shown to represent highly SERS-active substrates by giving an enhancement by almost 7 orders of magnitude compared to conventional Raman spectroscopy. Several factors that affect the photochemical reduction to form the AuNPs were examined. It is found that the concentration of gold ion, UV irradiation time, and citrate concentration have more impact on the reaction rate than on the morphologies of the AuNPs. The gold-decorated magnetic microspheres are highly stable in aqueous solution and capable of concentrating nucleobases. A linear response of the SERS signal to adenine in concentrations up to 10 μM is found, with a linear regression coefficient of 0.997. The detection limit is estimated to a few hundreds of nM (at an SNR of 3). Based on its specific Raman peak at 734 cm −1 , adenine can be selectively determined without interference by other nucleobases, and a recovery higher than 95 % could be obtained. (author)

  18. Manipulating Neutral Atoms in Chip-Based Magnetic Traps

    Science.gov (United States)

    Aveline, David; Thompson, Robert; Lundblad, Nathan; Maleki, Lute; Yu, Nan; Kohel, James

    2009-01-01

    Several techniques for manipulating neutral atoms (more precisely, ultracold clouds of neutral atoms) in chip-based magnetic traps and atomic waveguides have been demonstrated. Such traps and waveguides are promising components of future quantum sensors that would offer sensitivities much greater than those of conventional sensors. Potential applications include gyroscopy and basic research in physical phenomena that involve gravitational and/or electromagnetic fields. The developed techniques make it possible to control atoms with greater versatility and dexterity than were previously possible and, hence, can be expected to contribute to the value of chip-based magnetic traps and atomic waveguides. The basic principle of these techniques is to control gradient magnetic fields with suitable timing so as to alter a trap to exert position-, velocity-, and/or time-dependent forces on atoms in the trap to obtain desired effects. The trap magnetic fields are generated by controlled electric currents flowing in both macroscopic off-chip electromagnet coils and microscopic wires on the surface of the chip. The methods are best explained in terms of examples. Rather than simply allowing atoms to expand freely into an atomic waveguide, one can give them a controllable push by switching on an externally generated or a chip-based gradient magnetic field. This push can increase the speed of the atoms, typically from about 5 to about 20 cm/s. Applying a non-linear magnetic-field gradient exerts different forces on atoms in different positions a phenomenon that one can exploit by introducing a delay between releasing atoms into the waveguide and turning on the magnetic field.

  19. Highly reusability surface loaded metal particles magnetic catalyst microspheres (MCM-MPs) for treatment of dye-contaminated water

    International Nuclear Information System (INIS)

    Liu, Ying; Zhang, Kun; Yin, Xiaoshuang; Yang, Wenzhong; Zhu, Hongjun

    2016-01-01

    The metal-deposited magnetic catalyst microspheres (MCM-MPs) were successfully synthesized by one facile, high yield and controllable approach. Here, the bare magnetic microspheres were firstly synthesized according to the solvothermal method. Then silica shell were coated on the surface of the magnetic microspheres via sol–gel method, and subsequently with surface modifying with amino in the purpose to form SiO_2–NH_2 shell. Thus, metal particles were easily adsorbed into the SiO_2–NH_2 shell and in-situ reduced by NaBH_4 solution. All the obtained products (MCM-Cu, MCM-Ag, MCM-Pd) which were monodisperse and constitutionally stable were exhibited high magnetization and excellent catalytic activity towards dyes solution reduction. The catalytic rate ratio of MCM-Pd: MCM-Cu: MCM-Ag could be 10:3:1. Besides, some special coordination compound Cu_2(OH)_3Br had been generated in the in-situ reduced process of MCM-Cu, which produced superior cyclical stability (>20 times) than that of MCM-Ag and MCM-Pd. In all, those highly reusability and great catalytic efficiency of MCM-MPs show promising and great potential for treatment of dye-contaminated water. - Graphical abstract: Surface loaded metal particles magnetic catalyst microspheres MCM-MPs for rapid decolorizing dye-contaminated water: Synthesis, characterization and possible mechanisms. - Highlights: • A simple and high yield synthetic method for fabricate multi MCM-MPs is proposed with adequately optimize. • The highest reusability of MCM-Cu is attribute to the coordination compounds Cu_2(OH)_3Br. • MCM-MPs show excellent catalytic properties under different situations for various dyes • The catalytic mechanism of MCM-MPs is presented.

  20. Highly reusability surface loaded metal particles magnetic catalyst microspheres (MCM-MPs) for treatment of dye-contaminated water

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying; Zhang, Kun, E-mail: kun4219@njtech.edu.cn; Yin, Xiaoshuang; Yang, Wenzhong; Zhu, Hongjun

    2016-04-01

    The metal-deposited magnetic catalyst microspheres (MCM-MPs) were successfully synthesized by one facile, high yield and controllable approach. Here, the bare magnetic microspheres were firstly synthesized according to the solvothermal method. Then silica shell were coated on the surface of the magnetic microspheres via sol–gel method, and subsequently with surface modifying with amino in the purpose to form SiO{sub 2}–NH{sub 2} shell. Thus, metal particles were easily adsorbed into the SiO{sub 2}–NH{sub 2} shell and in-situ reduced by NaBH{sub 4} solution. All the obtained products (MCM-Cu, MCM-Ag, MCM-Pd) which were monodisperse and constitutionally stable were exhibited high magnetization and excellent catalytic activity towards dyes solution reduction. The catalytic rate ratio of MCM-Pd: MCM-Cu: MCM-Ag could be 10:3:1. Besides, some special coordination compound Cu{sub 2}(OH){sub 3}Br had been generated in the in-situ reduced process of MCM-Cu, which produced superior cyclical stability (>20 times) than that of MCM-Ag and MCM-Pd. In all, those highly reusability and great catalytic efficiency of MCM-MPs show promising and great potential for treatment of dye-contaminated water. - Graphical abstract: Surface loaded metal particles magnetic catalyst microspheres MCM-MPs for rapid decolorizing dye-contaminated water: Synthesis, characterization and possible mechanisms. - Highlights: • A simple and high yield synthetic method for fabricate multi MCM-MPs is proposed with adequately optimize. • The highest reusability of MCM-Cu is attribute to the coordination compounds Cu{sub 2}(OH){sub 3}Br. • MCM-MPs show excellent catalytic properties under different situations for various dyes • The catalytic mechanism of MCM-MPs is presented.

  1. Manipulators

    International Nuclear Information System (INIS)

    Wilcock, P.D.

    1984-01-01

    The patent concerns a manipulator, which enables operations to be carried out remotely from the operator. The device is suitable for use in handling of radioactive materials and other hazardous liquids or gases. The specifications are given, and the movements of the manipulator arm described. (U.K.)

  2. Manipulating the magnetic anisotropy and magnetization dynamics by stress: Numerical calculation and experiment

    Science.gov (United States)

    Correa, M. A.; Bohn, F.

    2018-05-01

    We perform a theoretical and experimental investigation of the magnetic properties and magnetization dynamics of a ferromagnetic magnetostrictive multilayer grown onto a flexible substrate and submitted to external stress. We calculate the magnetic behavior and magnetoimpedance effect for a trilayered system from an approach that considers a magnetic permeability model for planar geometry and a magnetic free energy density which takes into account induced uniaxial and magnetoelastic anisotropy contributions. We verify remarkable modifications of the magnetic anisotropy with external stress, as well as we show that the dynamic magnetic response is strongly affected by these changes. We discuss the magnetic features that lead to modifications of the frequency limits where distinct mechanisms are responsible by the magnetoimpedance variations, enabling us to manipulate the resonance fields. To test the robustness of the approach, we directly compare theoretical results with experimental data. Thus, we provide experimental evidence to confirm the validity of the theoretical approach, as well as to manipulate the resonance fields to tune the MI response according to real applications in devices.

  3. Hydrophilic porous magnetic poly(GMA-MBAA-NVP) composite microspheres containing oxirane groups: An efficient carrier for immobilizing penicillin G acylase

    Science.gov (United States)

    Xue, Ping; Su, Weiguang; Gu, Yaohua; Liu, Haifeng; Wang, Julan

    2015-03-01

    Magnetic hydrophilic polymeric microspheres containing oxirane groups were prepared by inverse suspension polymerization of glycidyl methacrylate (GMA), N, N‧-methylene bisacrylamide (MBAA) and N-vinyl pyrrolidone (NVP) in the existence of formamide, which were denoted as magnetic poly(GMA-MBAA-NVP) microspheres. The magnetic poly(GMA-MBAA-NVP) microspheres were characterized by scanning electron microscopy (SEM), FT-IR spectroscopy, X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and so on. The results showed that poly(GMA-MBAA-NVP) microspheres possessed well spherical shape, narrow size distribution, abundant porous structure, reactive oxirane groups and superparamagnetic properties. Formamide used in the present work served as a modifier, a dispersant and a porogen to form final porous polymer microspheres. The penicillin G acylase (PGA) was covalently immobilized onto the magnetic microspheres through the reaction between the amino groups of enzyme and the oxirane groups on the microspheres for producing 6-aminopenicillanic acid (6-APA). The effects of GMA/NVP ratio and crosslink density on the activity of immobilized PGA were investigated. The highest apparent activity, enzyme loading and coupling yield of immobilized PGA were 821 IU/g, 65.3 mg/g and 42.3% respectively when the mass ratio of GMA/NVP was 1:1 and crosslink density was 60%. Compared with the free PGA, immobilized PGA showed a wider range of pH value and reaction temperature. The relative activity and reaction rate of immobilized PGA remained almost constant after 20 recycles. The magnetic poly(GMA-MBAA-NVP) microspheres would be very promising carriers for immobilizing enzymes in industrial application.

  4. On-Chip Manipulation of Protein-Coated Magnetic Beads via Domain-Wall Conduits

    DEFF Research Database (Denmark)

    Donolato, Marco; Vavassori, Paolo; Gobbi, Marco

    2010-01-01

    Geometrically constrained magnetic domain walls (DWs) in magnetic nanowires can be manipulated at the nanometer scale. The inhomogeneous magnetic stray field generated by a DW can capture a magnetic nanoparticle in solution. On-chip nanomanipulation of individual magnetic beads coated with proteins...

  5. Facile Synthesis of Magnetic Copolymer Microspheres Based on Poly(glycidyl methacrylate-co-N-isopropylacrylamide/Fe3O4 by Suspension Photopolymerization

    Directory of Open Access Journals (Sweden)

    Siti Zulaikha Mazlan

    2014-01-01

    Full Text Available Magnetic copolymer based on poly(glycidyl methacrylate-co-N-isopropylacrylamide microspheres was prepared by 2,2-dimethoxy-2-phenylacetophenone- (DMPP- photo initiated and poly(vinyl alcohol- (PVA- stabilized single step suspension photopolymerization. The effect of chemical interaction, morphology, and thermal properties by adding 0.1% w/v Fe3O4 in the copolymer was investigated. Infrared analysis (FTIR showed that (C=C band disappeared after copolymerization, indicating that the magnetic copolymer microspheres were successfully synthesized and two important bands at 908 cm−1 and 1550 cm−1 appear. These are associated with the epoxy group stretching of GMA and secondary amide (N–H/C–H deformation vibration of NIPAAm in magnetic microspheres. The X-ray diffraction (XRD result proved the incorporation of Fe3O4 nanoparticles with copolymer microspheres as peak of Fe3O4 was observed. Morphology study revealed that magnetic copolymer exhibited uniform spheres and smoother appearance when entrapped with Fe3O4 nanoparticles. The lowest percentage of Fe3O4 nanoparticles leached from the copolymer microspheres was obtained at pH 7. Finally, thermal property of the copolymer microspheres was improved by adding a small amount of Fe3O4 nanoparticles that has been shown from the thermogram.

  6. Preparation of microspheres containing methyl methacrylate (MMA) with magnetic nanoparticles; Preparacao de microesferas contendo metacrilato de metila (PMMA) com nanoparticulas magneticas

    Energy Technology Data Exchange (ETDEWEB)

    Feuser, P.E.; Souza, M.N. de, E-mail: paulofeuser@hotmail.co, E-mail: nele@eq.ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Quimica

    2010-07-01

    Magnetic nanoparticles have found many technological applications and has been intensively studied due to its special magnetic properties. In most biomedical applications, microspheres containing magnetic nanoparticles is used as a vehicle for transporting drugs, presenting several advantages when compared to other conventional methods. PMMA is a polymer which has biocompatibility and can be used for the encapsulation of magnetic nanoparticles, showing a great degree of saturation magnetization. PMMA microparticles containing magnetic nanoparticles were prepared by suspension polymerization. Polymers containing magnetic nanoparticles were characterized by X-ray diffraction (XRD), vibrating sample magnetization, thermogravimetric analysis, optical microscopy, chromatography gel permeation, analysis of particle size - malversizer 2000 (Malvern Instruments). The average size of magnetic nanoparticles was approximately 150 {mu}m and depending on the amount of magnetic nanoparticles in the reaction medium Mw of microspheres can be altered. (author)

  7. Simple and efficient synthesis of copper(II)-modified uniform magnetic Fe3O4@SiO2 core/shell microspheres for immobilization of cellulase

    Science.gov (United States)

    Li, Shi-Kuo; Hou, Xiao-Cheng; Huang, Fang-Zhi; Li, Chuan-Hao; Kang, Wen-Juan; Xie, An-Jian; Shen, Yu-Hua

    2013-11-01

    In this paper, we reported a simple and efficient protocol for preparation of Cu2+-modified magnetic Fe3O4@SiO2 core/shell microspheres for immobilization of cellulase. The uniform magnetic Fe3O4@SiO2 core/shell microspheres with a thin shell of 20 nm were synthesized through a solvothermal method followed by a sol-gel process. An amino-terminated silane coupling agent of (3-aminopropyl)triethoxysilane (APTS) was then grafted on them for capturing Cu2+ ions. The reaction process is very simple, efficient, and economical. Noticeably, the content of Cu2+ ions on the magnetic core/shell microspheres can reach 4.6 Wt%, endowing them possess as high immobilization capacity as 225.5 mg/g for cellulase. And the immobilized cellulase can be retained over 90 % on the magnetic microspheres after six cycles. Meanwhile, the magnetic microspheres decorated with Cu2+ ions show a superparamagnetic character with a high magnetic saturation of 58.5 emu/g at room temperature, suggesting conveniently and rapidly recycle the enzyme from solution. This facile, recyclable, high immobilization capacity and activity strategy may find potential applications in enzyme catalytic reactions with low cost.

  8. Simple and efficient synthesis of copper(II)-modified uniform magnetic Fe3O4@SiO2 core/shell microspheres for immobilization of cellulase

    International Nuclear Information System (INIS)

    Li, Shi-Kuo; Hou, Xiao-Cheng; Huang, Fang-Zhi; Li, Chuan-Hao; Kang, Wen-Juan; Xie, An-Jian; Shen, Yu-Hua

    2013-01-01

    In this paper, we reported a simple and efficient protocol for preparation of Cu 2+ -modified magnetic Fe 3 O 4 @SiO 2 core/shell microspheres for immobilization of cellulase. The uniform magnetic Fe 3 O 4 @SiO 2 core/shell microspheres with a thin shell of 20 nm were synthesized through a solvothermal method followed by a sol–gel process. An amino-terminated silane coupling agent of (3-aminopropyl)triethoxysilane (APTS) was then grafted on them for capturing Cu 2+ ions. The reaction process is very simple, efficient, and economical. Noticeably, the content of Cu 2+ ions on the magnetic core/shell microspheres can reach 4.6 Wt%, endowing them possess as high immobilization capacity as 225.5 mg/g for cellulase. And the immobilized cellulase can be retained over 90 % on the magnetic microspheres after six cycles. Meanwhile, the magnetic microspheres decorated with Cu 2+ ions show a superparamagnetic character with a high magnetic saturation of 58.5 emu/g at room temperature, suggesting conveniently and rapidly recycle the enzyme from solution. This facile, recyclable, high immobilization capacity and activity strategy may find potential applications in enzyme catalytic reactions with low cost

  9. Magnetic manipulation of particles and cells in ferrofluid flow through straight microchannels using two magnets

    Science.gov (United States)

    Zeng, Jian

    Microfluidic devices have been increasingly used in the past two decades for particle and cell manipulations in many chemical and biomedical applications. A variety of force fields have been demonstrated to control particle and cell transport in these devices including electric, magnetic, acoustic, and optical forces etc. Among these particle handling techniques, the magnetic approach provides clear advantages over others such as low cost, noninvasive, and free of fluid heating issues. However, the current knowledge of magnetic control of particle transport is still very limited, especially lacking is the handling of diamagnetic particle. This thesis is focused on the magnetic manipulation of diamagnetic particles and cells in ferrofluid flow through the use of a pair of permanent magnets. By varying the configuration of the two magnets, diverse operations of particles and cells is implemented in a straight microchannel that can potentially be integrated into lab-on-a-chip devices for various applications. First, an approach for embedding two, symmetrically positioned, repulsive permanent magnets about a straight rectangular microchannel in a PDMS-based microfluidic device is developed for particle focusing. Focusing particles and cells into a tight stream is often required in order for continuous detection, counting, and sorting. The closest distance between the magnets is limited only by the size of the magnets involved in the fabrication process. The device is used to implement and investigate the three-dimensional magnetic focusing of polystyrene particles in ferrofluid microflow with both top-view and side-view visualizations. The effects of flow speed and particle size on the particle focusing effectiveness are studied. This device is also applied to magnetically focus yeast cells in ferrofluid, which proves to be biocompatible as verified by cell viability test. In addition, an analytical model is developed and found to be able to predict the experimentally

  10. Manipulators

    International Nuclear Information System (INIS)

    Andre, Y.; Routelous, F.; Spina, G.; Perpina, J.; Suquet, J.; Rossi, M.; Zanca, M.; Billiet, A.; Madec, L.; Lemoine, T.; Gaboriaud, G.; Aubert, B.; Rosenwald, J.C.; Neuenschwander, S.; Brisse, H.; Rehel, J.L.; Rebibo, G.; Bensimon, J.L.; Kulski, A.; Serhal, M.; Nguyen, K.V.; Lescure, R.; Cymbalista, M.

    2005-01-01

    Three articles have for purpose the radiation doses optimization in medical imaging. The first one concerns the radiation protection of manipulators working at a PET scan post, the second one concerns more particularly the optimization of doses delivered in pediatric computerized tomography, the third one is devoted to a comparison between radiation dose and image quality through scanners of adult temporal bone. (N.C.)

  11. Synthesis and adsorption properties of hierarchical Fe{sub 3}O{sub 4}@MgAl-LDH magnetic microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaoge; Li, Bo; Wen, Xiaogang, E-mail: wenxg@scu.edu.cn [Sichuan University, School of Materials Science and Engineering (China)

    2017-04-15

    In this study, Fe{sub 3}O{sub 4} microspheres were prepared by a hydrothermal method, and then the synthesized Fe{sub 3}O{sub 4} microspheres were used as template to prepare Fe{sub 3}O{sub 4}@MgAl-LDH composite microspheres by a coprecipitation process. Morphology, composition, and crystal structure of synthesized nanomaterials were characterized by X-ray powder diffractometry, scanning electron microscopy, and Fourier transform infrared spectroscopy technologies. The composite hierarchical microspheres are composed of inner Fe{sub 3}O{sub 4} core and outer MgAl-LDH-nanoflake layer, and the average thickness of MgAl-LDH-nanoflake is about 70 nm. The adsorption property of the products toward congo red was also measured using UV–vis spectrometer. The result demonstrated that the Fe{sub 3}O{sub 4}@MgAl-LDH composite adsorbent could remove 99.8% congo red in 30 min, and the maximum adsorption capacity is about 404.6 mg/g, while congo red removal rate of pure MgAl-LDH and Fe{sub 3}O{sub 4} are only 86.3 and 53.1% in 40 min, respectively, and their adsorption capacity are 345.72 and 220.56 mg/g, respectively. It indicates the composite Fe{sub 3}O{sub 4}@ MgAl-LDH nanomaterials have better adsorption performance than pure Fe{sub 3}O{sub 4} and MgAl-LDH nanomaterials. In addition, the magnetic nanocomposites could be separated easily, and it demonstrated good cycle performance.

  12. Removal of Chromium(VI from Aqueous Solutions Using Fe3O4 Magnetic Polymer Microspheres Functionalized with Amino Groups

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2015-12-01

    Full Text Available Magnetic polymer microspheres (MPMs using glycidylmethacrylate (GMA as a functional monomer were synthesized in the presence of Fe3O4 nanoparticles via dispersion polymerization. After polymerization, the magnetic polymer microbeads were modified with ethylenediamine (EDA. The obtained ethylenediamine-functionalized magnetic microspheres (EDA-MPMs were characterized by scanning electron microscope (SEM, X-ray diffraction (XRD, vibrating-sample magnetometer (VSM and Fourier transform infrared (FT-IR spectroscopy. Then the EDA-MPMs were applied as adsorbents for the removal of Cr(VI from aqueous solution. Langmuir equation was appropriate to describe the experimental data. The maximum adsorption capacities obtained from the Langmuir model were 236.9, 242.1 and 253.2 mg/g at 298, 308 and 318 K, respectively. The Cr(VI adsorption equilibrium was established within 120 min and the adsorption kinetics was compatibly described by the pseudo-second order equation. The thermodynamic parameters (ΔG°, ΔH°, ΔS° of the sorption process revealed that the adsorption was spontaneous and was an endothermic process. The regeneration study demonstrated that the EDA-MPMs could be repeatedly utilized with no significant loss of adsorption efficiency.

  13. Separation of PCR-ready DNA from dairy products using magnetic hydrophilic microspheres and poly(ethylene glycol)-NaCl water solutions

    Energy Technology Data Exchange (ETDEWEB)

    Rittich, Bohuslav [Masaryk University, Faculty of Science, Institute of Experimental Biology, Tvrdeho 14, CZ-611 37 Brno (Czech Republic); Brno University of Technology, Faculty of Chemistry, Institute of Food Science and Biotechnology, Purkynova 464/118, CZ-612 00 Brno (Czech Republic)], E-mail: rittich@sci.muni.cz; Spanova, Alena [Masaryk University, Faculty of Science, Institute of Experimental Biology, Tvrdeho 14, CZ-611 37 Brno (Czech Republic); Brno University of Technology, Faculty of Chemistry, Institute of Food Science and Biotechnology, Purkynova 464/118, CZ-612 00 Brno (Czech Republic); Salek, Petr [Brno University of Technology, Faculty of Chemistry, Institute of Food Science and Biotechnology, Purkynova 464/118, CZ-612 00 Brno (Czech Republic); Nemcova, Petra [Masaryk University, Faculty of Science, Institute of Experimental Biology, Tvrdeho 14, CZ-611 37 Brno (Czech Republic); Trachtova, Stepanka [Brno University of Technology, Faculty of Chemistry, Institute of Food Science and Biotechnology, Purkynova 464/118, CZ-612 00 Brno (Czech Republic); Horak, Daniel [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, CZ-162 06 Prague (Czech Republic)

    2009-05-15

    Carboxyl group-containing magnetic nonporous poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) (P(HEMA-co-GMA)) and magnetic glass microspheres were used for the isolation of bacterial DNA. P(HEMA-co-GMA) microspheres were prepared by the dispersion polymerization in toluene/2-methylpropan-1-ol mixture in the presence of magnetite nanoparticles obtained by coprecipitation of Fe(II) and Fe(III) salts with ammonium hydroxide. Carboxyl groups were then introduced by oxidation of the microspheres with potassium permanganate. The most extensive DNA recovery was achieved at PEG 6000 concentrations of 12% or 16% and 2 M NaCl. The method proposed was used for bacterial DNA isolation from different dairy products containing Bifidobacterium and Lactobacillus cells. The presence of target DNA and the quality of isolated DNA were checked by polymerase chain reaction (PCR) amplification with specific primers.

  14. Design of a Magnetic Resonance-Safe Haptic Wrist Manipulator for Movement Disorder Diagnostics

    NARCIS (Netherlands)

    Bode, Dyon; Mugge, Winfred; Schouten, Alfred C.; van Rootselaar, Anne-Fleur; Bour, Lo J.; van der Helm, Frans C. T.; Lammertse, Piet

    2017-01-01

    Tremor, characterized by involuntary and rhythmical movements, is the most common movement disorder. Tremor can have peripheral and central oscillatory components which properly assessed may improve diagnostics. A magnetic resonance (MR)-safe haptic wrist manipulator enables simultaneous measurement

  15. Fluorocarbon-bonded magnetic mesoporous microspheres for the analysis of perfluorinated compounds in human serum by high-performance liquid chromatography coupled to tandem mass spectrometry

    International Nuclear Information System (INIS)

    Liu, Xiaodan; Yu, Yingjia; Li, Yan; Zhang, Haiying; Ling, Jin; Sun, Xueni; Feng, Jianan; Duan, Gengli

    2014-01-01

    Highlights: • New SPE method was developed for analysis of PFCs in human serum. • Fluorocarbon-bonded magnetic mesoporous microspheres were used as SPE absorbents. • PFCs in serum were directly extracted without any other pretreatment procedure. • The PFCs-adsorbed microspheres were simply and rapidly isolated by using a magnet. - Abstract: We report herein an extraction method for the analysis of perfluorinated compounds in human serum based on magnetic core–mesoporous shell microspheres with decyl-perfluorinated interior pore-walls (Fe 3 O 4 @mSiO 2 -F 17 ). Thanks to the unique properties of the Fe 3 O 4 @mSiO 2 -F 17 microspheres, macromolecules like proteins could be easily excluded from the mesoporous channels due to size exclusion effect, and perfluorinated compounds (PFCs) in protein-rich biosamples such as serum could thus be directly extracted with the fluorocarbon modified on the channel wall without any other pretreatment procedure. The PFCs adsorbed Fe 3 O 4 @mSiO 2 -F 17 microspheres could then be simply and rapidly isolated by using a magnet, followed by being identified and quantified by LC–MS/MS (high-performance liquid chromatography coupled to tandem mass spectrometry). Five perfluorinatedcarboxylic acids (C6, C8–C11) and perfluorooctane sulfonate (PFOS) were selected as model analytes. In order to achieve the best extraction efficiency, some important factors including the amount of Fe 3 O 4 @mSiO 2 -F 17 microspheres added, adsorption time, type of elution solvent, eluting solvent volume and elution time were investigated. The ranges of the LOD were 0.02–0.05 ng mL −1 for the six PFCs. The recovery of the optimized method varies from 83.13% to 92.42% for human serum samples

  16. Hydrophilic Nb{sup 5+}-immobilized magnetic core–shell microsphere – A novel immobilized metal ion affinity chromatography material for highly selective enrichment of phosphopeptides

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xueni; Liu, Xiaodan; Feng, Jianan [Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203 (China); Li, Yan, E-mail: yanli@fudan.edu.cn [Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203 (China); Deng, Chunhui [Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433 (China); Duan, Gengli [Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203 (China)

    2015-06-23

    Highlights: • A new IMAC material (Fe{sub 3}O{sub 4}@PD-Nb{sup 5+}) was synthesized. • The strong magnetic behaviors of the microspheres ensure fast and easy separation. • The enrichment ability was tested by human serum and nonfat milk. • The results were compared with other IMAC materials including the commercial kits. • All results proved the good enrichment ability, especially for multiphosphopeptides. - Abstract: Rapid and selective enrichment of phosphopeptides from complex biological samples is essential and challenging in phosphorylated proteomics. In this work, for the first time, niobium ions were directly immobilized on the surface of polydopamine-coated magnetic microspheres through a facile and effective synthetic route. The Fe{sub 3}O{sub 4}@polydopamine-Nb{sup 5+} (denoted as Fe{sub 3}O{sub 4}@PD-Nb{sup 5+}) microspheres possess merits of high hydrophilicity and good biological compatibility, and demonstrated low limit of detection (2 fmol). The selectivity was also basically satisfactory (β-casein:BSA = 1:500) to capture phosphopeptides. They were also successfully applied for enrichment of phosphopeptides from real biological samples such as human serum and nonfat milk. Compared with Fe{sub 3}O{sub 4}@PD-Ti{sup 4+} microspheres, the Fe{sub 3}O{sub 4}@PD-Nb{sup 5+} microspheres exhibit superior selectivity to multi-phosphorylated peptides, and thus may be complementary to the conventional IMAC materials.

  17. Voltage manipulation of the magnetization reversal in Fe/n-GaAs/piezoelectric heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuanyuan; Luo, Wengang; Zhu, Lijun; Zhao, Jianhua; Wang, Kaiyou, E-mail: kywang@semi.ac.cn

    2015-02-01

    We carefully investigated the in-plane magnetization reversal and corresponding magnetic domain structures in Fe/n-GaAs/piezoelectric heterostructure using longitudinal magneto-optical Kerr microscopy. The coexistence of the in-plane <100> cubic and [11{sup ¯}0] uniaxial magnetic anisotropy was observed in this system at virgin state. The piezo voltages can effectively manipulate the magnetic properties of the Fe/n-GaAs/piezoelectric heterostructure, where the manipulation of two-jump to one-jump magnetization switching during the magnetic reversal was achieved with magnetic field applied in [100] direction. Our findings on manipulation of ferromagnetization in this heterostructure could be important for future metal-semiconductor spintronic applications. The additional uniaxial anisotropy induced by piezo voltages obtained at ±75 V is ±1.4×10{sup 3} J/m{sup 3}. - Highlights: • In this work, we use piezo voltages not only realize the significant change of coercivity but also effectively manipulate the magnetization transition from one step to two steps during magnetic reversal, indicating that the piezo-voltages can be used to effectively control the magnetization reversal. • The additional uniaxial anisotropy induced by piezo voltages at +/−75 V are +/−1.4×10{sup 3} J/m{sup 3}. This work could be very used for future metal-semiconductor spintronic devices.

  18. Voltage manipulation of the magnetization reversal in Fe/n-GaAs/piezoelectric heterostructure

    International Nuclear Information System (INIS)

    Li, Yuanyuan; Luo, Wengang; Zhu, Lijun; Zhao, Jianhua; Wang, Kaiyou

    2015-01-01

    We carefully investigated the in-plane magnetization reversal and corresponding magnetic domain structures in Fe/n-GaAs/piezoelectric heterostructure using longitudinal magneto-optical Kerr microscopy. The coexistence of the in-plane <100> cubic and [11 ¯ 0] uniaxial magnetic anisotropy was observed in this system at virgin state. The piezo voltages can effectively manipulate the magnetic properties of the Fe/n-GaAs/piezoelectric heterostructure, where the manipulation of two-jump to one-jump magnetization switching during the magnetic reversal was achieved with magnetic field applied in [100] direction. Our findings on manipulation of ferromagnetization in this heterostructure could be important for future metal-semiconductor spintronic applications. The additional uniaxial anisotropy induced by piezo voltages obtained at ±75 V is ±1.4×10 3 J/m 3 . - Highlights: • In this work, we use piezo voltages not only realize the significant change of coercivity but also effectively manipulate the magnetization transition from one step to two steps during magnetic reversal, indicating that the piezo-voltages can be used to effectively control the magnetization reversal. • The additional uniaxial anisotropy induced by piezo voltages at +/−75 V are +/−1.4×10 3 J/m 3 . This work could be very used for future metal-semiconductor spintronic devices

  19. Evaluation of poly(ethylene glycol)-coated monodispersed magnetic poly(2-hydroxyethyl methacrylate) and poly(glycidyl methacrylate) microspheres by PCR

    Czech Academy of Sciences Publication Activity Database

    Horák, Daniel; Hlídková, Helena; Trachtová, Š.; Šlouf, Miroslav; Rittich, B.; Španová, A.

    2015-01-01

    Roč. 68, July (2015), s. 687-696 ISSN 0014-3057 R&D Projects: GA ČR GAP206/12/0381; GA MŠk(CZ) LH14318 Institutional support: RVO:61389013 Keywords : magnetic microspheres * poly(ethylene glycol) * real-time PCR Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.485, year: 2015

  20. High adsorptive γ-AlOOH(boehmite)@SiO2/Fe3O4 porous magnetic microspheres for detection of toxic metal ions in drinking water.

    Science.gov (United States)

    Wei, Yan; Yang, Ran; Zhang, Yong-Xing; Wang, Lun; Liu, Jin-Huai; Huang, Xing-Jiu

    2011-10-21

    γ-AlOOH(boehmite)@SiO(2)/Fe(3)O(4) porous magnetic microspheres with high adsorption capacity toward heavy metal ions were found to be useful for the simultaneous and selective electrochemical detection of five metal ions, such as ultratrace zinc(II), cadmium(II), lead(II), copper(II), and mercury(II), in drinking water.

  1. Immunocapture of CD133-positive cells from human cancer cell lines by using monodisperse magnetic poly(glycidyl methacrylate) microspheres containing amino groups

    Czech Academy of Sciences Publication Activity Database

    Kuan, W.-C.; Horák, Daniel; Plichta, Zdeněk; Lee, W.-C.

    2014-01-01

    Roč. 34, 1 January (2014), s. 193-200 ISSN 0928-4931 R&D Projects: GA ČR GCP207/12/J013 Institutional support: RVO:61389013 Keywords : magnetic * poly(glycidyl methacrylate) * microspheres Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.088, year: 2014

  2. Real-time polymerase chain reaction as a tool for evaluation of magnetic poly(glycidyl methacrylate)-based microspheres in molecular diagnostics

    Czech Academy of Sciences Publication Activity Database

    Trachtová, S.; Španová, A.; Horák, Daniel; Kozáková, Hana; Rittich, B.

    2016-01-01

    Roč. 22, č. 5 (2016), s. 639-646 ISSN 1381-6128 R&D Projects: GA ČR GA15-07268S Institutional support: RVO:61389013 ; RVO:61388971 Keywords : magnetic microspheres * inhibitory effect * real-time polymerase chain Subject RIV: CD - Macromolecular Chemistry; CD - Macromolecular Chemistry (MBU-M) Impact factor: 2.611, year: 2016

  3. Preparation of magnetic core mesoporous shell microspheres with C18-modified interior pore-walls for fast extraction and analysis of phthalates in water samples.

    Science.gov (United States)

    Li, Zhongbo; Huang, Danni; Fu, Chinfai; Wei, Biwen; Yu, Wenjia; Deng, Chunhui; Zhang, Xiangmin

    2011-09-16

    In this study, core-shell magnetic mesoporous microspheres with C18-functionalized interior pore-walls were synthesized through coating Fe(3)O(4) microspheres with a mesoporous inorganic-organic hybrid layer with a n-octadecyltriethoxysilane (C18TES) and tetraethyl orthosilicate (TEOS) as the silica source and cetyltrimethylammonia bromide (CTAB) as a template. The obtained C18-functionalized Fe(3)O(4)@mSiO(2) microspheres possess numerous C18 groups anchored in the interior pore-walls, large surface area (274.7 m(2)/g, high magnetization (40.8 emu/g) and superparamagnetism, uniform mesopores (4.1 nm), which makes them ideal absorbents for simple, fast, and efficient extraction and enrichment of hydrophobic organic compounds in water samples. Several kinds of phthalates were used as the model hydrophobic organic compounds to systematically evaluate the performance of the C18-functionalized Fe(3)O(4)@mSiO(2) microspheres in extracting hydrophobic molecules by using a gas chromatography-mass spectrometry. Various parameters, including eluting solvent, the amounts of absorbents, extraction time and elution time were optimized. Hydrophobic extraction was performed in the interior pore of magnetic mesoporous microspheres, and the materials had the anti-interference ability to macromolecular proteins, which was also investigated in the work. Under the optimized conditions, C18-functionalized Fe(3)O(4)@mSiO(2) microspheres were successfully used to analyze the real water samples. The results indicated that this novel method was fast, convenient and efficient for the target compounds and could avoid being interfered by macromolecules. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Magnetic manipulation of topological states in p-wave superconductors

    DEFF Research Database (Denmark)

    Mercaldo, Maria Teresa; Cuoco, Mario; Kotetes, Panagiotis

    2018-01-01

    Substantial experimental investigation has provided evidence for spin-triplet pairing in diverse classes of materials and in a variety of artificial heterostructures. One of the fundamental challenges in this framework is how to manipulate the topological behavior of p-wave superconductors (PSC...

  5. Two-Dimensional Programmable Manipulation of Magnetic Nanoparticles on-Chip

    DEFF Research Database (Denmark)

    Sarella, Anandakumar; Torti, Andrea; Donolato, Marco

    2014-01-01

    A novel device is designed for on-chip selective trap and two-dimensional remote manipulation of single and multiple fluid-borne magnetic particles using field controlled magnetic domain walls in circular nanostructures. The combination of different ring-shaped nanostructures and field sequences ...

  6. Removal mechanism of selenite by Fe{sub 3}O{sub 4}-precipitated mesoporous magnetic carbon microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jianwei; Fu, Fenglian, E-mail: fufenglian2006@163.com; Ding, Zecong; Li, Na; Tang, Bing

    2017-05-15

    Highlights: • MCMSs were prepared via green hydrothermal carbonization and coprecipitation. • MCMSs displayed effective removal of Se(IV) from wastewater. • Se(IV) formed inner-sphere complexes with MCMSs and was reduced to insoluble Se{sup 0}. • MCMSs can be easily separated and recycled by an external magnetic field. - Abstract: A mesoporous composite of magnetic carbon microspheres (MCMSs) was synthesized via introducing Fe{sub 3}O{sub 4} nanoscale particles to the surface of carbon microspheres (CMSs) by coprecipitation. Scanning electron microscopy and transmission electron microscopy showed the Fe{sub 3}O{sub 4} nanoscale particles were dispersedly immobilized on the surface of CMSs. The MCMSs demonstrated effective removal of selenite (Se(IV)) from wastewater. MCMSs showed the regular pattern where the lower pH value, the lower residual Se(IV) concentration. The coexisting sulfate, nitrate, chloride, carbonate, and silicate had no significant effect on Se(IV) removal, whereas phosphate hindered the removal of Se(IV) by competing with Se(IV) and formed inner–sphere complexes with Fe{sub 3}O{sub 4} on the surface of MCMSs. Through X–ray photoelectron spectroscopy analysis, Se(IV) can not only form inner–sphere complexes with MCMSs, but also be reduced to insoluble elemental selenium (Se{sup 0}) by Fe{sub 3}O{sub 4} which was oxidized and formed γ–Fe{sub 2}O{sub 3}. Moreover, the superparamagnetic MCMSs can be easily separated from solution by means of an external magnetic field. The high removal efficiency for Se(IV) and rapid separability of MCMSs made them promising materials for the application in the practice.

  7. Folic acid-functionalized magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell composite particles: synthesis and application in drug release.

    Science.gov (United States)

    Yang, Dandan; Wei, Kaiwei; Liu, Qi; Yang, Yong; Guo, Xue; Rong, Hongren; Cheng, Mei-Ling; Wang, Guoxiu

    2013-07-01

    A drug delivery system was designed by deliberately combining the useful functions into one entity, which was composed of magnetic ZnFe2O4 hollow microsphere as the core, and mesoporous silica with folic acid molecules as the outer shell. Amine groups coated magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell (MZHM-MSS-NH2) composite particles were first synthesized by a one-pot direct co-condensation method. Subsequently a novel kind of folic acid-functionalized magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell (MZHM-MSS-NHFA) composite particles were synthesized by conjugating folic acid as targeted molecule to MZHM-MSS-NH2. Ibuprofen, a well-known antiphlogistic drug, was used as a model drug to assess the loading and releasing behavior of the composite microspheres. The results show that the MZHM-MSS-NHFA system has the higher capacity of drug storage and good sustained drug-release property. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Separation of PCR-ready DNA from dairy products using magnetic hydrophilic microspheres and poly(ethylene glycol)-NaCl water solutions

    Czech Academy of Sciences Publication Activity Database

    Rittich, B.; Španová, A.; Šálek, P.; Němcová, P.; Trachtová, Š.; Horák, Daniel

    2009-01-01

    Roč. 321, č. 10 (2009), s. 1667-1670 ISSN 0304-8853. [International Conference on Scientific and Clinical Applications of Magnetic Carriers /7./. Vancouver, 20.05.2008-24.05.2008] R&D Projects: GA ČR GA203/09/1242 Institutional research plan: CEZ:AV0Z40500505 Keywords : magnetic microsphere * P(HEMA-co-GMA) * DNA isolation Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.204, year: 2009

  9. Probing Active Nematic Films with Magnetically Manipulated Colloids

    Science.gov (United States)

    Rivas, David; Chen, Kui; Henry, Robert; Reich, Daniel; Leheny, Robert

    We study microtubule-based extensile active nematic films using rod-like and disk-shaped magnetic colloids to probe the mechanical and hydrodynamic properties of this quasi-two dimensional out-of-equilibrium system. The active nematics are driven by molecular motors that hydrolyze ATP and cause sliding motion between microtubular bundles. This motion produces a dynamic nematic director field, which continuously creates pairs of +1/2 and -1/2 defects. In the absence of externally applied forces or torques, we observe that the magnetic rods in contact with the films align with the local director, indicating the existence of mechanical coupling between the film and probe. By applying known magnetic torques to the rods and observing their rotation with respect to the director, we gain insight into this coupling. We also find that by rotating magnetic microdisks using magnetic fields, hydrodynamic flows are produced that compete with the films' intrinsic flow, leading to significant effects on the director field and the defect landscape. At certain rotation rates, the disks produce a vortex-like structure in the director field and cause the creation and shedding of defects from the disk boundary.

  10. Manipulation of positron orbits in a dipole magnetic field with fluctuating electric fields

    Science.gov (United States)

    Saitoh, H.; Horn-Stanja, J.; Nißl, S.; Stenson, E. V.; Hergenhahn, U.; Pedersen, T. Sunn; Singer, M.; Dickmann, M.; Hugenschmidt, C.; Stoneking, M. R.; Danielson, J. R.; Surko, C. M.

    2018-01-01

    We report the manipulation of positron orbits in a toroidal dipole magnetic field configuration realized with electric fields generated by segmented electrodes. When the toroidal circulation motion of positrons in the dipole field is coupled with time-varying electric fields generated by azimuthally segmented outer electrodes, positrons undergo oscillations of their radial positions. This enables quick manipulation of the spatial profiles of positrons in a dipole field trap by choosing appropriate frequency, amplitude, phase, and gating time of the electric fields. According to numerical orbit analysis, we applied these electric fields to positrons injected from the NEPOMUC slow positron facility into a prototype dipole field trap experiment with a permanent magnet. Measurements with annihilation γ-rays clearly demonstrated the efficient compression effects of positrons into the strong magnetic field region of the dipole field configuration. This positron manipulation technique can be used as one of essential tools for future experiments on the formation of electron-positron plasmas.

  11. On-Chip Magnetic Platform for Single-Particle Manipulation with Integrated Electrical Feedback.

    Science.gov (United States)

    Monticelli, Marco; Torti, Andrea; Cantoni, Matteo; Petti, Daniela; Albisetti, Edoardo; Manzin, Alessandra; Guerriero, Erica; Sordan, Roman; Gervasoni, Giacomo; Carminati, Marco; Ferrari, Giorgio; Sampietro, Marco; Bertacco, Riccardo

    2016-02-17

    Methods for the manipulation of single magnetic particles have become very interesting, in particular for in vitro biological studies. Most of these studies require an external microscope to provide the operator with feedback for controlling the particle motion, thus preventing the use of magnetic particles in high-throughput experiments. In this paper, a simple and compact system with integrated electrical feedback is presented, implementing in the very same device both the manipulation and detection of the transit of single particles. The proposed platform is based on zig-zag shaped magnetic nanostructures, where transverse magnetic domain walls are pinned at the corners and attract magnetic particles in suspension. By applying suitable external magnetic fields, the domain walls move to the nearest corner, thus causing the step by step displacement of the particles along the nanostructure. The very same structure is also employed for detecting the bead transit. Indeed, the presence of the magnetic particle in suspension over the domain wall affects the depinning field required for its displacement. This characteristic field can be monitored through anisotropic magnetoresistance measurements, thus implementing an integrated electrical feedback of the bead transit. In particular, the individual manipulation and detection of single 1-μm sized beads is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Manipulating the spin states in a double molecular magnets tunneling junction

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Liang; Liu, Xi [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Zhang, Zhengzhong, E-mail: zeikeezhang@126.com [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123 (China); Wang, Ruiqiang [Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006 (China)

    2014-01-17

    We theoretically explore the spin transport through nano-structures consisting of two serially coupled single-molecular magnets (SMM) sandwiched between two nonmagnetic electrodes. We find that the magnetization of SMM can be controlled by the spin transfer torque with respect to the bias voltage direction, and the electron current can be switched on/off in different magnetic structures. Such a manipulation is performed by full electrical manner, and needs neither external magnetic field nor ferromagnetic electrodes in the tunneling junction. The proposal device scheme can be realized with the use of the present technology and has potential applications in molecular spintronics or quantum information processing.

  13. Manipulating the spin states in a double molecular magnets tunneling junction

    Science.gov (United States)

    Jiang, Liang; Liu, Xi; Zhang, Zhengzhong; Wang, Ruiqiang

    2014-01-01

    We theoretically explore the spin transport through nano-structures consisting of two serially coupled single-molecular magnets (SMM) sandwiched between two nonmagnetic electrodes. We find that the magnetization of SMM can be controlled by the spin transfer torque with respect to the bias voltage direction, and the electron current can be switched on/off in different magnetic structures. Such a manipulation is performed by full electrical manner, and needs neither external magnetic field nor ferromagnetic electrodes in the tunneling junction. The proposal device scheme can be realized with the use of the present technology [6] and has potential applications in molecular spintronics or quantum information processing.

  14. Magnetic catheter manipulation in the interventional MR imaging environment.

    Science.gov (United States)

    Wilson, Mark W; Martin, Alastair B; Lillaney, Prasheel; Losey, Aaron D; Yee, Erin J; Bernhardt, Anthony; Malba, Vincent; Evans, Lee; Sincic, Ryan; Saeed, Maythem; Arenson, Ronald L; Hetts, Steven W

    2013-06-01

    To evaluate deflection capability of a prototype endovascular catheter, which is remotely magnetically steerable, for use in the interventional magnetic resonance (MR) imaging environment. Copper coils were mounted on the tips of commercially available 2.3-3.0-F microcatheters. The coils were fabricated in a novel manner by plasma vapor deposition of a copper layer followed by laser lithography of the layer into coils. Orthogonal helical (ie, solenoid) and saddle-shaped (ie, Helmholtz) coils were mounted on a single catheter tip. Microcatheters were tested in water bath phantoms in a 1.5-T clinical MR scanner, with variable simultaneous currents applied to the coils. Catheter tip deflection was imaged in the axial plane by using a "real-time" steady-state free precession MR imaging sequence. Degree of deflection and catheter tip orientation were measured for each current application. The catheter tip was clearly visible in the longitudinal and axial planes. Magnetic field artifacts were visible when the orthogonal coils at the catheter tip were energized. Variable amounts of current applied to a single coil demonstrated consistent catheter deflection in all water bath experiments. Changing current polarity reversed the observed direction of deflection, whereas current applied to two different coils resulted in deflection represented by the composite vector of individual coil activations. Microcatheter navigation through the vascular phantom was successful through control of applied current to one or more coils. Controlled catheter deflection is possible with laser lithographed multiaxis coil-tipped catheters in the MR imaging environment. Copyright © 2013 SIR. Published by Elsevier Inc. All rights reserved.

  15. A giant magnetoresistance ring-sensor based microsystem for magnetic bead manipulation and detection

    KAUST Repository

    Gooneratne, Chinthaka P.

    2011-03-28

    In this paper a novel spin valvegiant magnetoresistance(GMR) ring-sensor integrated with a microstructure is proposed for concentrating, trapping, and detecting superparamagnetic beads (SPBs). Taking advantage of the fact that SPBs can be manipulated by an external magnetic field, a unique arrangement of conducting microrings is utilized to manipulate the SPBs toward the GMR sensing area in order to increase the reliability of detection. The microrings are arranged and activated in such a manner so as to enable the detection of minute concentrations of SPBs in a sample. Precise manipulation is achieved by applying current sequentially to the microrings. The fabricated ring-shaped GMR element is located underneath the innermost ring and has a magnetoresistance of approximately 5.9%. By the performed experiments it was shown that SPBs could be successfully manipulated toward the GMR sensing zone.

  16. A giant magnetoresistance ring-sensor based microsystem for magnetic bead manipulation and detection

    KAUST Repository

    Gooneratne, Chinthaka P.; Giouroudi, Ioanna; Liang, Cai; Kosel, Jü rgen

    2011-01-01

    In this paper a novel spin valvegiant magnetoresistance(GMR) ring-sensor integrated with a microstructure is proposed for concentrating, trapping, and detecting superparamagnetic beads (SPBs). Taking advantage of the fact that SPBs can be manipulated by an external magnetic field, a unique arrangement of conducting microrings is utilized to manipulate the SPBs toward the GMR sensing area in order to increase the reliability of detection. The microrings are arranged and activated in such a manner so as to enable the detection of minute concentrations of SPBs in a sample. Precise manipulation is achieved by applying current sequentially to the microrings. The fabricated ring-shaped GMR element is located underneath the innermost ring and has a magnetoresistance of approximately 5.9%. By the performed experiments it was shown that SPBs could be successfully manipulated toward the GMR sensing zone.

  17. Manipulating Electromagnetic Waves in Magnetized Plasmas: Compression, Frequency Shifting, and Release

    International Nuclear Information System (INIS)

    Avitzour, Yoav; Shvets, Gennady

    2008-01-01

    A new approach to manipulating the duration and frequency of microwave pulses using magnetized plasmas is demonstrated. The plasma accomplishes two functions: (i) slowing down and spatially compressing the incident wave, and (ii) modifying the propagation properties (group velocity and frequency) of the wave in the plasma during a uniform in space adiabatic in time variation of the magnitude and/or direction of the magnetic field. The increase in the group velocity results in the shortening of the temporal pulse duration. Depending on the plasma parameters, the frequency of the outgoing compressed pulse can either change or remain unchanged. Such dynamic manipulation of radiation in plasma opens new avenues for manipulating high power microwave pulses

  18. Remote manipulation of posterior lamellar corneal grafts using a magnetic field.

    Science.gov (United States)

    Nahum, Yoav; Barliya, Tilda; Bahar, Irit; Livnat, Tami; Nisgav, Yael; Weinberger, Dov

    2013-06-01

    In posterior lamellar keratoplasty procedures such as Descemet stripping endothelial keratoplasty and Descemet membrane endothelial keratoplasty, the lamellar graft is manipulated directly or by injecting an air bubble. This preliminary study sought to evaluate the feasibility of guiding lamellar corneal grafts by generating a magnetic field. Rabbit and porcine Descemet stripping endothelial keratoplasty and Descemet membrane endothelial keratoplasty grafts were manually produced and immersed in a ferromagnetic solution containing nanomagnetic particles conjugated to streptavidin or in gadoteric acid. For the feasibility study, grafts were transferred to an artificial anterior chamber or plastic test tube and a magnetic field was generated with a handheld NdFeB disc magnet. The presence and the sustainability of graft motion were documented under various conditions. For the semiquantitative study, whole or partial grafts were transferred to a plastic test tube after immersion, and the amount of tissue retraction induced by the remote magnet was graded. The grafts were successfully manipulated in all directions by the magnet, from a distance of up to 7 mm. They remained ferromagnetic more than 24 hours after immersion in the ferromagnetic solutions. The degree of retraction was affected by graft size, immersion time, time from immersion, and immersion solution. Posterior lamellar corneal grafts may be made ferromagnetic and remotely manipulated by creation of a magnetic field. The ferromagnetic properties are adjustable. This technique holds promise in attaching and repositioning grafts during keratoplasty. Further research is needed to assess the possible effects of ferromagnetic solutions on corneal endothelial cells and on lamellar graft clarity.

  19. Albumin-coated monodisperse magnetic poly(glycidyl methacrylate) microspheres with immobilized antibodies: application to the capture of epithelial cancer cells

    Czech Academy of Sciences Publication Activity Database

    Horák, Daniel; Svobodová, Z.; Autebert, J.; Coudert, B.; Plichta, Zdeněk; Královec, K.; Bílková, Z.; Viovy, J.-L.

    101A, č. 1 (2013), s. 23-32 ISSN 1549-3296 R&D Projects: GA ČR GA203/09/0857; GA ČR GCP207/12/J013; GA MŠk 7E09109 EU Projects: European Commission(XE) 228980 - CAMINEMS Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : magnetism * microsphere * cells Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.841, year: 2013

  20. Highly controllable near-surface swimming of magnetic Janus nanorods: application to payload capture and manipulation

    International Nuclear Information System (INIS)

    Mair, Lamar O; Carpenter, Jerome; Evans, Benjamin; Hall, Adam R; Shields, Adam; Superfine, Richard; Ford, Kris; Millard, Michael

    2011-01-01

    Directed manipulation of nanomaterials has significant implications in the field of nanorobotics, nanobiotechnology, microfluidics and directed assembly. With the goal of highly controllable nanomaterial manipulation in mind, we present a technique for the near-surface manoeuvering of magnetic nanorod swimmers and its application to controlled micromanipulation. We fabricate magnetic Janus nanorods and show that the magnetic rotation of these nanorods near a floor results in predictable translational motion. The nanorod plane of rotation is nearly parallel to the floor, the angle between rod tilt and floor being expressed by θ, where 0 0 0 . Orthogonal magnetic fields control in-plane motion arbitrarily. Our model for translation incorporates symmetry breaking through increased drag at the no-slip surface boundary. Using this method we demonstrate considerable rod steerability. Additionally, we approach, capture, and manipulate a polystyrene microbead as proof of principle. We attach Janus nanorods to the surfaces of cells and utilize these rods to manipulate individual cells, proving the ability to manoeuver payloads with a wide range of sizes.

  1. Photonic Crystals: Two-Dimensional Programmable Manipulation of Magnetic Nanoparticles on-Chip (Adv. Mater. 15/2014)

    DEFF Research Database (Denmark)

    Sarella, Anandakumar; Torti, Andrea; Donolato, Marco

    2014-01-01

    P. Vavassori and co-workers demonstrate on page 2384 that field-controlled displacement of magnetic domain walls in ferromagnetic nano-ring structures allows for capture and 2-dimensional remote manipulation of fluidborne magnetic nanoparticles over a chip surface.......P. Vavassori and co-workers demonstrate on page 2384 that field-controlled displacement of magnetic domain walls in ferromagnetic nano-ring structures allows for capture and 2-dimensional remote manipulation of fluidborne magnetic nanoparticles over a chip surface....

  2. Manipulating Microrobots Using Balanced Magnetic and Buoyancy Forces

    Directory of Open Access Journals (Sweden)

    Lin Feng

    2018-01-01

    Full Text Available We present a novel method for the three-dimensional (3D control of microrobots within a microfluidic chip. The microrobot body contains a hollow space, producing buoyancy that allows it to float in a microfluidic environment. The robot moves in the z direction by balancing magnetic and buoyancy forces. In coordination with the motion of stages in the xy plane, we achieved 3D microrobot control. A microgripper designed to grasp micron-scale objects was attached to the front of the robot, allowing it to hold and deliver micro-objects in three dimensions. The microrobot had four degrees of freedom and generated micronewton-order forces. We demonstrate the microrobot’s utility in an experiment in which it grips a 200 μm particle and delivers it in a 3D space.

  3. Preparation and characterization of molecularly-imprinted magnetic microspheres for adsorption of 2,4,6-trichlorophenol from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ping; Pan, Jianming; Yan, Yongsheng [Jiangsu University, Zhenjiang (China); Sun, Qilong; Li, Jianfeng; Tan, Zhenjiang [Jilin Normal University, Siping (China)

    2015-04-15

    Magnetic molecularly imprinted microspheres (MMIS) were successfully prepared by suspension polymerization, and then as-prepared MMIS were used as adsorbents for selective recognition of 2,4,6-trichlorophenol (2,4,6-TCP) from aqueous solutions. The results composites were characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), thermo gravimetric analysis (TGA), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). The results demonstrated that MMIS possesses porous spherical morphology, and exhibits good thermal stability and magnetic property (Ms=10.14 emu g{sup -1}). Then batch mode of binding experiments was used to determine the equilibrium, kinetics and selectivity recognition. The Langmuir isotherm model fitted the equilibrium data better than did the Freundlich model, and the maximum adsorption capacity on MMIS was about 1.7 times higher than that of MNIS. Kinetics behaviors of MMIS were well described by the pseudo-second-order model. MMIS possessed outstanding selectivity recognition for 2,4,6-TCP in the presence of other competitive phenols (such as sesamol, 3-CP, thymol, 2,4-DCP). Furthermore, the reusability performance of MMIS showed about 17.53% loss after five repeated cycles. Finally, the MMIS were successfully applied to the selective extraction of 2,4,6-TCP from the vegetable samples.

  4. Hybrid magnet devices for molecule manipulation and small scale high gradient-field applications

    Science.gov (United States)

    Humphries, David E [El Cerrito, CA; Hong, Seok-Cheol [Seoul, KR; Cozzarelli, legal representative, Linda A.; Pollard, Martin J [El Cerrito, CA; Cozzarelli, Nicholas R [Berkeley, CA

    2009-01-06

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are hybrid magnetic tweezers able to exert approximately 1 nN of force to 4.5 .mu.m magnetic bead. The maximum force was experimentally measured to be .about.900 pN which is in good agreement with theoretical estimations and other measurements. In addition, a new analysis scheme that permits fast real-time position measurement in typical geometry of magnetic tweezers has been developed and described in detail.

  5. Fabrication of novel magnetically separable BiOBr/CoFe{sub 2}O{sub 4} microspheres and its application in the efficient removal of dye from aqueous phase by an environment-friendly and economical approach

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, R. [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000 (China); Environmental Engineering Program, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9 (Canada); Department of Environmental Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China); Zhu, H.-Y., E-mail: zhuhuayue@126.com [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000 (China); Environmental Engineering Program, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9 (Canada); Department of Environmental Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China); Li, J.-B. [Environmental Engineering Program, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9 (Canada); Fu, F.-Q. [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000 (China); Yao, J. [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000 (China); Department of Environmental Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China); Jiang, S.-T. [Department of Environmental Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China); Zeng, G.-M., E-mail: zgming@hnu.cn [Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2016-02-28

    Graphical abstract: Novel magnetically separable BiOBr/CoFe{sub 2}O{sub 4} microspheres were prepared and acted as a high-performance and recyclable material for efficient water purification. - Highlights: • Novel magnetically separable BiOBr/CoFe{sub 2}O{sub 4} microspheres have been fabricated. • BiOBr/CoFe{sub 2}O{sub 4} microsphere exhibited excellent photocatalytic activity. • BiOBr/CoFe{sub 2}O{sub 4} microsphere can be recovered easily from treated solution. - Abstract: Novel magnetically separable BiOBr/CoFe{sub 2}O{sub 4} microspheres assembled from nanoparticles were successfully fabricated by a facile solvothermal method at 160 °C for 12 h. Then, BiOBr/CoFe{sub 2}O{sub 4} microspheres were characterized via XRD, TEM, SEM, EDS and VSM. Congo red (CR) was selected as a pollutant model to evaluate the photocatalytic activities of BiOBr/CoFe{sub 2}O{sub 4} microspheres. The value of coercivity (232 Oe) and the saturation magnetization (33.79 emu g{sup −1}) were obtained, which indicated that BiOBr/CoFe{sub 2}O{sub 4} microspheres can be separated and recovered easily from the treated solution. What is more, by calculation, the initial rate constants of BiOBr/CoFe{sub 2}O{sub 4} microspheres is about 1.45 times higher than that of the pure BiOBr, which resulted from superior adsorption and transfer performance to organic contaminants in aqueous systems. Four consecutive regeneration cycles demonstrated that the BiOBr/CoFe{sub 2}O{sub 4} microspheres had high photostability under simulated solar light irradiation. According to the radical trapping experiments, the h{sup +} radicals and O{sub 2}·{sup −} radicals were the two main active species that drive the photocolorization of CR pollutant by BiOBr/CoFe{sub 2}O{sub 4} microspheres under simulated solar light irradiation. This work suggests that the BiOBr/CoFe{sub 2}O{sub 4} microspheres may be a promising photocatalyst for photodegrading organic pollutants and environmental remediation.

  6. Probe manipulators for Wendelstein 7-X and their interaction with the magnetic topology

    Science.gov (United States)

    M, RACK; D, HÖSCHEN; D, REITER; B, UNTERBERG; J, W. COENEN; S, BREZINSEK; O, NEUBAUER; S, BOZHENKOV; G, CZYMEK; Y, LIANG; M, HUBENY; Ch, LINSMEIER; the Wendelstein 7-X Team

    2018-05-01

    Probe manipulators are a versatile addition to typical plasma edge diagnostics. Equipped with material samples they allow for detailed investigation of plasma–wall interaction processes, such as material erosion, deposition or impurity transport pathways. When combined with electrical probes, a study of scrape-off layer and plasma edge density, temperature and flow profiles as well as magnetic topologies is possible. A mid-plane manipulator is already in operation on Wendelstein 7-X. A system in the divertor region is currently under development. In the present paper we discuss the critical issue of heat and power loads, power redistribution and experimental access to the complex magnetic topology of Wendelstein 7-X. All the aforementioned aspects are of relevance for the design and operation of a probe manipulator in a device like Wendelstein 7-X. A focus is put on the topological region that is accessible for the different coil current configurations at Wendelstein 7-X and the power load on the manipulator with respect to the resulting different magnetic configurations. Qualitative analysis of power loads on plasma-facing components is performed using a numerical tracer particle diffusion tool provided via the Wendelstein 7-X Webservices.

  7. Rapid Colorimetric Detection of Cartap Residues by AgNP Sensor with Magnetic Molecularly Imprinted Microspheres as Recognition Elements

    Directory of Open Access Journals (Sweden)

    Mao Wu

    2018-06-01

    Full Text Available The overuse of cartap in tea tree leads to hazardous residues threatening human health. A colorimetric determination was established to detect cartap residues in tea beverages by silver nanoparticles (AgNP sensor with magnetic molecularly imprinted polymeric microspheres (Fe3O4@mSiO2@MIPs as recognition elements. Using Fe3O4 as supporting core, mesoporous SiO2 as intermediate shell, methylacrylic acid as functional monomer, and cartap as template, Fe3O4@mSiO2@MIPs were prepared to selectively and magnetically separate cartap from tea solution before colorimetric determination by AgNP sensors. The core-shell Fe3O4@mSiO2@MIPs were also characterized by FT-IR, TEM, VSM, and experimental adsorption. The Fe3O4@mSiO2@MIPs could be rapidly separated by an external magnet in 10 s with good reusability (maintained 95.2% through 10 cycles. The adsorption process of cartap on Fe3O4@mSiO2@MIPs conformed to Langmuir adsorption isotherm with maximum adsorption capacity at 0.257 mmol/g and short equilibrium time of 30 min at 298 K. The AgNP colorimetric method semi-quantified cartap ≥5 mg/L by naked eye and quantified cartap 0.1–5 mg/L with LOD 0.01 mg/L by UV-vis spectroscopy. The AgNP colorimetric detection after pretreatment with Fe3O4@mSiO2@MIPs could be successfully utilized to recognize and detect cartap residues in tea beverages.

  8. Manipulation of magnetic vortex parameters in disk-on-disk nanostructures with various geometry

    Directory of Open Access Journals (Sweden)

    Maxim E. Stebliy

    2015-03-01

    Full Text Available Magnetic nanostructures in the form of a sandwich consisting of two permalloy (Py disks with diameters of 600 and 200 nm separated by a nonmagnetic interlayer are studied. Magnetization reversal of the disk-on-disk nanostructures depends on the distance between centers of the small and big disks and on orientation of an external magnetic field applied during measurements. It is found that manipulation of the magnetic vortex chirality and the trajectory of the vortex core in the big disk is only possible in asymmetric nanostructures. Experimentally studied peculiarities of a motion path of the vortex core and vortex parameters by the magneto-optical Kerr effect (MOKE magnetometer are supported by the magnetic force microscopy imaging and micromagnetic simulations.

  9. Structural, optical, and magnetic studies of manganese-doped zinc oxide hierarchical microspheres by self-assembly of nanoparticles.

    Science.gov (United States)

    Hao, Yao-Ming; Lou, Shi-Yun; Zhou, Shao-Min; Yuan, Rui-Jian; Zhu, Gong-Yu; Li, Ning

    2012-02-02

    In this study, a series of manganese [Mn]-doped zinc oxide [ZnO] hierarchical microspheres [HMSs] are prepared by hydrothermal method only using zinc acetate and manganese acetate as precursors and ethylene glycol as solvent. X-ray diffraction indicates that all of the as-obtained samples including the highest Mn (7 mol%) in the crystal lattice of ZnO have a pure phase (hexagonal wurtzite structure). A broad Raman spectrum from as-synthesized doping samples ranges from 500 to 600 cm-1, revealing the successful doping of paramagnetic Mn2+ ions in the host ZnO. Optical absorption analysis of the samples exhibits a blueshift in the absorption band edge with increasing dopant concentration, and corresponding photoluminescence spectra show that Mn doping suppresses both near-band edge UV emission and defect-related blue emission. In particular, magnetic measurements confirm robust room-temperature ferromagnetic behavior with a high Curie temperature exceeding 400 K, signifying that the as-formed Mn-doped ZnO HMSs will have immense potential in spintronic devices and spin-based electronic technologies.

  10. Effective Enrichment and Detection of Trace Polycyclic Aromatic Hydrocarbons in Food Samples based on Magnetic Covalent Organic Framework Hybrid Microspheres.

    Science.gov (United States)

    Li, Ning; Wu, Di; Hu, Na; Fan, Guangsen; Li, Xiuting; Sun, Jing; Chen, Xuefeng; Suo, Yourui; Li, Guoliang; Wu, Yongning

    2018-04-04

    The present study reported a facile, sensitive, and efficient method for enrichment and determination of trace polycyclic aromatic hydrocarbons (PAHs) in food samples by employing new core-shell nanostructure magnetic covalent organic framework hybrid microspheres (Fe 3 O 4 @COF-(TpBD)) as the sorbent followed by HPLC-DAD. Under mild synthetic conditions, the Fe 3 O 4 @COF-(TpBD) were prepared with the retention of colloidal nanosize, larger specific surface area, higher porosity, uniform morphology, and supermagnetism. The as-prepared materials showed an excellent adsorption ability for PAHs, and the enrichment efficiency of the Fe 3 O 4 @COF-(TpBD) could reach 99.95%. The obtained materials also had fast adsorption kinetics and realized adsorption equilibrium within 12 min. The eluent was further analyzed by HPLC-DAD, and good linearity was observed in the range of 1-100 ng/mL with the linear correlation being above 0.9990. The limits of detection (S/N = 3) and limits of quantitation (S/N = 10) for 15 PAHs were in the range of 0.83-11.7 ng/L and 2.76-39.0 ng/L, respectively. For the application, the obtained materials were employed for the enrichment of trace PAHs in food samples and exhibited superior enrichment capacity and excellent applicability.

  11. Resonant magnetic response of TiO.sub.2./sub. microspheres at terahertz frequencies

    Czech Academy of Sciences Publication Activity Database

    Němec, Hynek; Kadlec, Christelle; Kadlec, Filip; Kužel, Petr; Yahiaoui, R.; Chung, U.-C.; Elissalde, C.; Maglione, M.; Mounaix, P.

    2012-01-01

    Roč. 100, č. 6 (2012), "061107-1"-"014104-4" ISSN 0003-6951 R&D Projects: GA AV ČR(CZ) IAA100100907 Institutional research plan: CEZ:AV0Z10100520 Keywords : metamaterials * terahertz spectroscopy * effective magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.794, year: 2012

  12. Optical determination and magnetic manipulation of a single nitrogen-vacancy color center in diamond nanocrystal

    International Nuclear Information System (INIS)

    Diep Lai, Ngoc; Zheng, Dingwei; Treussart, François; Roch, Jean-François

    2010-01-01

    The controlled and coherent manipulation of individual quantum systems is fundamental for the development of quantum information processing. The nitrogen-vacancy (NV) color center in diamond is a promising system since its photoluminescence is perfectly stable at room temperature and its electron spin can be optically read out at the individual level. We review here the experiments currently realized in our laboratory concerning the use of a single NV color center as the single photon source and the coherent magnetic manipulation of the electron spin associated with a single NV color center. Furthermore, we demonstrate a nanoscopy experiment based on the saturation absorption effect, which allows to optically pin-point a single NV color center at sub-λ resolution. This offers the possibility to independently address two or multiple magnetically coupled single NV color centers, which is a necessary step towards the realization of a diamond-based quantum computer

  13. Manipulation of incoherent and coherent spin ensembles in diluted magnetic semiconductors via ferromagnetic fringe fields; Manipulation inkohaerenter und kohaerenter Spinensembles in verduennt-magnetischen Halbleitern mittels ferromagnetischer Streufelder

    Energy Technology Data Exchange (ETDEWEB)

    Halm, Simon

    2009-05-19

    In this thesis it is demonstrated that fringe fields of nanostructured ferromagnets provide the opportunity to manipulate both incoherent and coherent spin ensembles in a dilute magnetic semiconductor (DMS). Fringe fields of Fe/Tb ferromagnets with a remanent out-of-plane magnetization induce a local magnetization in a (Zn,Cd,Mn)Se DMS. Due to the sp-d exchange interaction, optically generated electron-hole pairs align their spin along the DMS magnetization. One obtains a local, remanent spin polarization which was probed by spatially resolved, polarization sensitive photoluminescence spectroscopy. Fringe fields from in-plane magnetized Co ferromagnets allow to locally modify the precession frequency of the Manganese magnetic moments of the DMS in an external magnetic field. This was probed by time-resolved Kerr rotation technique. The inhomogeneity of the fringe field leads to a shortening of the ensemble decoherence time and to the effect of a time-dependent ensemble precession frequency. (orig.)

  14. Magnetic field devices for neutron spin transport and manipulation in precise neutron spin rotation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado-Velázquez, M. [Posgrado en Ciencias Físicas, Universidad Nacional Autónoma de México, 04510 (Mexico); Barrón-Palos, L., E-mail: libertad@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 (Mexico); Crawford, C. [University of Kentucky, Lexington, KY 40506 (United States); Snow, W.M. [Indiana University, Bloomington, IN 47405 (United States)

    2017-05-11

    The neutron spin is a critical degree of freedom for many precision measurements using low-energy neutrons. Fundamental symmetries and interactions can be studied using polarized neutrons. Parity-violation (PV) in the hadronic weak interaction and the search for exotic forces that depend on the relative spin and velocity, are two questions of fundamental physics that can be studied via the neutron spin rotations that arise from the interaction of polarized cold neutrons and unpolarized matter. The Neutron Spin Rotation (NSR) collaboration developed a neutron polarimeter, capable of determining neutron spin rotations of the order of 10{sup −7} rad per meter of traversed material. This paper describes two key components of the NSR apparatus, responsible for the transport and manipulation of the spin of the neutrons before and after the target region, which is surrounded by magnetic shielding and where residual magnetic fields need to be below 100 μG. These magnetic field devices, called input and output coils, provide the magnetic field for adiabatic transport of the neutron spin in the regions outside the magnetic shielding while producing a sharp nonadiabatic transition of the neutron spin when entering/exiting the low-magnetic-field region. In addition, the coils are self contained, forcing the return magnetic flux into a compact region of space to minimize fringe fields outside. The design of the input and output coils is based on the magnetic scalar potential method.

  15. Inducing and manipulating magnetization in 2D zinc–oxide by strain and external voltage

    Science.gov (United States)

    Taivansaikhan, P.; Tsevelmaa, T.; Rhim, S. H.; Hong, S. C.; Odkhuu, D.

    2018-04-01

    Two-dimensional (2D) structures that exhibit intriguing magnetic phenomena such as perpendicular magnetic anisotropy and its switchable feature are of great interests in spintronics research. Herein, the density functional theory studies reveal the critical impacts of strain and external gating on vacancy-induced magnetism and its spin direction in a graphene-like single layer of zinc oxide (ZnO). In contrast to the pristine and defective ZnO with an O-vacancy, the presence of a Zn-vacancy induces significant magnetic moments to its first neighboring O and Zn atoms due to the charge deficit. We further predict that the direction of magnetization easy axis reverses from an in-plane to perpendicular orientation under a practically achievable biaxial compressive strain of only ~1–2% or applying an electric field by means of the charge density modulation. This magnetization reversal is mainly driven by the strain- and electric-field-induced changes in the spin–orbit coupled d states of the first-neighbor Zn atom to a Zn-vacancy. These findings open interesting prospects for exploiting strain and electric field engineering to manipulate magnetism and magnetization orientation of 2D materials.

  16. Splitting of magnetic dipole modes in anisotropic TiO2 micro-spheres

    Czech Academy of Sciences Publication Activity Database

    Khromova, I.; Kužel, Petr; Brener, I.; Reno, J.L.; Seu, U-Ch.Ch.; Elissalde, C.; Maglione, M.; Mounaix, P.; Mitrofanov, O.

    2016-01-01

    Roč. 10, č. 4 (2016), s. 681-687 ISSN 1863-8880 R&D Projects: GA ČR(CZ) GA14-25639S Institutional support: RVO:68378271 Keywords : metamaterial * terahertz * mie resonance * near-field spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 8.434, year: 2016

  17. Covalent immobilization of lipases on monodisperse magnetic microspheres modified with PAMAM-dendrimer

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Weiwei [Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology (China); Zhang, Yimei [Suzhou Research Academy of North China Electric Power University (China); Hou, Chen; Pan, Duo; He, Jianjun; Zhu, Hao, E-mail: zhuhao07@lzu.edu.cn [Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology (China)

    2016-02-15

    This paper reported an immobilization of Candida rugosa lipase (CRL) onto PAMAM-dendrimer-grafted magnetic nanoparticles synthesized by a modified solvothermal reduction method. The dendritic magnetic nanoparticles were amply characterized by several instrumental measurements, and the CRL was covalently anchored on the three generation supports with glutaraldehyde as coupling reagent. The amount of immobilized enzyme was up to 150 mg/g support and the factors related with the enzyme activity were investigated. The immobilization of lipase improved their performance in wider ranges of pH and temperature. The immobilized lipase exhibited excellent thermal stability and reusability in comparison with free enzyme and can be reused 10 cycles with the enzymatic activity remained above 90 %. The properties of lipase improved obviously after being immobilized on the dendritic supports. The inactive immobilized lipase could be regenerated with glutaraldehyde and Cu{sup 2+}, respectively. This synthetic strategy was facile and eco-friendly for applications in lipase immobilization.

  18. Hollow magnetic nano-CO3O4/polystyrene microspheres synthesized through radiation induced interfacial polymerization

    International Nuclear Information System (INIS)

    Zhang Wei; Wang Mozhen; Wang Shufeng; Zhang Zhicheng

    2010-01-01

    Co 3 O 4 nanoparticles (around 8 nm) were synthesized hydrothermally by dissolving Co 2+ in the mixture of ethanol and water, and then decorated with oleic acid to endow them with hydrophobic surface nature. After that, nano-particles were added into emulsion which consisted by sodium dodecyl sulfate, water, styrene and cetyl alcohol. Hollow magnetic composite spheres were prepared by irradiated the emulsion with γ-rays. The final products are thoroughly characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) techniques, which showed the formation of hollow magnetic composite spheres. The influence of addition dosage of nano-particles, sodium dodecyl sulfate and the types of nano-particles on the average size and shape of hollow composites were studied. The effects of nano-particles to the polymerization of styrene were studied by kinetics. Nano-particles are capsulated by polystyrene to form hollow composites, which confirmed by XPS results. Finally, magnetic property of hollow composites is compared with pure nano-Co 3 O 4 . (authors)

  19. In situ observation of magnetic vortex manipulation by external fields in amorphous CeFeB ribbon

    International Nuclear Information System (INIS)

    Zuo, Shulan; Zhang, Ming; Li, Rui; Zhang, Ying; Peng, Licong; Xiong, Jiefu; Liu, Dan; Zhao, Tongyun; Hu, Fengxia; Shen, Baogen; Sun, Jirong

    2017-01-01

    In this study, we show the real-space observation of the magnetic domain configuration in amorphous Ce 14 Fe 80 B 6 ribbon using Lorentz transmission electron microscopy. Cross-tie domain walls composed of magnetic vortices (Vs) and antivortices (AVs) are observed. The evolution of Vs/AVs manipulated by temperature, in-plane magnetic field, and electrical current is clearly demonstrated. Magnetic V nucleation and annihilation in pair are observed because of the stimulus of external fields.

  20. Application of Fe3O4@MIL-100 (Fe) core-shell magnetic microspheres for evaluating the sorption of organophosphate esters to dissolved organic matter (DOM).

    Science.gov (United States)

    Pang, Long; Yang, Peijie; Yang, Huiqiang; Ge, Liming; Xiao, Jingwen; Zhou, Yifan

    2018-06-01

    Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers in many products and materials. Because of the potential biologic toxicity on human beings, OPEs are regarded as a class of emerging pollutants. Dissolved organic matters (DOM) have significant effects on the bioavailability and toxicity of the pollutants in the environment. Negligible-depletion solid-phase microextraction (nd-SPME) is an efficient way for measuring the freely dissolved pollutants but suffers from long equilibrium time. Metal-organic frameworks (MOFs) are a class of porous crystalline materials with unique properties such as high pore volume, regular porosity, and tunable pore size, being widely used for the extraction of various organic compounds. Here we developed a novel method for quick determination the sorption coefficients of OPEs to DOM in aquatic phase using Fe 3 O 4 @MIL-100 (Fe) core-shell magnetic microspheres. The mesoporous structures of the as-synthesized microspheres hindered the extraction of OPEs which associated with humic acid due to the volume exclusion effect. However, the freely dissolved OPEs can access into the mesoporous and then were extracted by MIL-100 (Fe). Due to the small pore size (4.81 nm), large surface area (141 m 2  g -1 ), high pore volume (0.17 g 3  g -1 ), and ultra-thin MOFs layers, Fe 3 O 4 @MIL-100 (Fe) core-shell magnetic microspheres have large contact area for the analytes in aqueous phase and therefore the diffusion distance was largely shortened. Besides, the microspheres can be collected conveniently after the extraction process by applying a magnetic field. Compared to the nd-SPME method with 35 h equilibration time (t 90% ), the proposed method for these studied OPEs only need 24 min to achieve equilibration. The sorption coefficients (logK DOC ) of the OPEs to humic acid were ranged from 3.84-5.28, which were highly consistent with the results by using polyacrylate-coated fiber and polydimethylsiloxane

  1. Fabrication of a pen-shaped portable biochemical reaction system based on magnetic bead manipulation

    International Nuclear Information System (INIS)

    Shikida, Mitsuhiro; Inagaki, Noriyuki; Okochi, Mina; Honda, Hiroyuki; Sato, Kazuo

    2011-01-01

    A pen-shaped platform that is similar to a mechanical pencil is proposed for producing a portable reaction system. A reaction unit, as the key component in the system, was produced by using a heat shrinkable tube. A mechanical pencil supplied by Mitsubishi Pencil Co. Ltd was used as the pen-shaped platform for driving the reaction cylinder. It was actuated using an inchworm motion. We confirmed that the magnetic beads were successfully manipulated in the droplet in the cylinder-shaped reaction units. (technical note)

  2. Magnetic solid-phase extraction of tetracyclines using ferrous oxide coated magnetic silica microspheres from water samples.

    Science.gov (United States)

    Lian, Lili; Lv, Jinyi; Wang, Xiyue; Lou, Dawei

    2018-01-26

    A novel magnetic solid-phase extraction approach was proposed for extraction of potential residues of tetracyclines (TCs) in tap and river water samples, based on Fe 3 O 4 @SiO 2 @FeO magnetic nanocomposite. Characterized results showed that the received Fe 3 O 4 @SiO 2 @FeO had distinguished magnetism and core-shell structure. Modified FeO nanoparticles with an ∼5 nm size distribution were homogeneously dispersed on the surface of the silica shell. Owing to the strong surface affinity of Fe (II) toward TCs, the magnetic nanocomposite could be applied to efficiently extract three TCs antibiotics, namely, oxytetracycline, tetracycline and chlortetracycline from water samples. Several factors, such as sorbent amount, pH condition, adsorption and desorption time, desorption solvent, selectivity and sample volume, influencing the extraction performance of TCs were investigated and optimized. The developed method showed excellent linearity (R > 0.9992) in the range of 0.133-333 μg L -1 , under optimized conditions. The limits of detection were between 0.027 and 0.107 μg L -1 for oxytetracycline, tetracycline and chlortetracycline, respectively. The feasibility of this method was evaluated by analysis of tap and river water samples. The recoveries at the spiked concentration levels ranged from 91.0% to 104.6% with favorable reproducibility (RSD < 4%). Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS)

    OpenAIRE

    Fox, Michael D.; Halko, Mark A.; Eldaief, Mark C.; Pascual-Leone, Alvaro

    2012-01-01

    Both resting state functional magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS) are increasingly popular techniques that can be used to non-invasively measure brain connectivity in human subjects. TMS shows additional promise as a method to manipulate brain connectivity. In this review we discuss how these two complimentary tools can be combined to optimally study brain connectivity and manipulate distributed brain networks. Important clinical applications include...

  4. Manipulation of magnetic properties of glass-coated microwires by annealing

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, A., E-mail: arkadi.joukov@ehu.es [Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, 20009 San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain); Chichay, K. [Immanuel Kant Baltic Federal University, 236041 Kaliningrad (Russian Federation); Talaat, A. [Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, 20009 San Sebastian (Spain); Rodionova, V. [Immanuel Kant Baltic Federal University, 236041 Kaliningrad (Russian Federation); National University of Science and Technology (MISIS), 119049 Moscow (Russian Federation); Blanco, J.M. [Dpto. Física Aplicada, EUPDS Basque Country University UPV/EHU (Spain); Ipatov, M.; Zhukova, V. [Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, 20009 San Sebastian (Spain)

    2015-06-01

    We demonstrated that magnetic properties (hysteresis loops, domain wall propagation and giant magnetoimpedance effect) of Fe and Co-rich amorphous microwires can be tailored by stress and conventional annealing. Observed dependences discussed considering stress relaxation, back stresses and change of the magnetostriction after samples annealing. These considerations have been proved by experimental observation of the change of the magnetostriction coefficient sign induced by annealing. - Highlights: • Manipulation of hysteresis loop of amorphous Co–Fe- rich microwires by annealing. • Coexistence of Giant magnetoimpedance effect and fast domain wall propagation in the same sample. • Evidence of annealing dependence of the magnetostriction coefficient. • Effect of stress induced anisotropy on magnetic properties and GMI effect.

  5. Manipulation of magnetic properties of glass-coated microwires by annealing

    International Nuclear Information System (INIS)

    Zhukov, A.; Chichay, K.; Talaat, A.; Rodionova, V.; Blanco, J.M.; Ipatov, M.; Zhukova, V.

    2015-01-01

    We demonstrated that magnetic properties (hysteresis loops, domain wall propagation and giant magnetoimpedance effect) of Fe and Co-rich amorphous microwires can be tailored by stress and conventional annealing. Observed dependences discussed considering stress relaxation, back stresses and change of the magnetostriction after samples annealing. These considerations have been proved by experimental observation of the change of the magnetostriction coefficient sign induced by annealing. - Highlights: • Manipulation of hysteresis loop of amorphous Co–Fe- rich microwires by annealing. • Coexistence of Giant magnetoimpedance effect and fast domain wall propagation in the same sample. • Evidence of annealing dependence of the magnetostriction coefficient. • Effect of stress induced anisotropy on magnetic properties and GMI effect

  6. Electrical manipulation of dynamic magnetic impurity and spin texture of helical Dirac fermions

    Science.gov (United States)

    Wang, Rui-Qiang; Zhong, Min; Zheng, Shi-Han; Yang, Mou; Wang, Guang-Hui

    2016-05-01

    We have theoretically investigated the spin inelastic scattering of helical electrons off a high-spin nanomagnet absorbed on a topological surface. The nanomagnet is treated as a dynamic quantum spin and driven by the spin transfer torque effect. We proposed a mechanism to electrically manipulate the spin texture of helical Dirac fermions rather than by an external magnetic field. By tuning the bias voltage and the direction of impurity magnetization, we present rich patterns of spin texture, from which important fingerprints exclusively associated with the spin helical feature are obtained. Furthermore, it is found that the nonmagnetic potential can create the resonance state in the spin density with different physics as the previously reported resonance of charge density.

  7. Determination of performance characteristics of robotic manipulator's permanent magnet synchronous motor by learning its FEM model

    International Nuclear Information System (INIS)

    Bharadvaj, Bimmi; Saini, Surendra Singh; Swaroop, Teja Tumapala; Sarkar, Ushnish; Ray, Debashish Datta

    2016-01-01

    Permanent Magnet Synchronous Motors (PMSM) are widely used as actuators because of high torque density, high efficiency and reliability. Robotic Manipulator designed for specific task generally requires actuators with very high intermittent torque and speed for their operation in limited space. Hence accurate performance characteristics of PMSM must be known beforehand under these conditions as it may damage the motor. Therefore an advanced mathematical model of PMSM is required for its control synthesis and performance analysis over wide operating range. The existing mathematical models are developed considering ideal motor without including the geometrical deviations that occur during manufacturing process of the motor or its components. These manufacturing tolerance affect torque ripple, operating current range etc. thereby affecting motor performance. In this work, the magnetically non-linear dynamic model is further exploited to refine the FE model using a proposed algorithm to iteratively compensate for the experimentally observed deviations due to manufacturing. (author)

  8. Domain wall manipulation in magnetic nanotubes induced by electric current pulses

    International Nuclear Information System (INIS)

    Otálora, J A; López-López, J A; Landeros, P; Núñez, A S

    2012-01-01

    We propose that the injection of electric currents can be used to independently manipulate the position and chirality of vortex-like domain walls in metallic ferromagnetic nanotubes. We support this proposal upon theoretical and numerical assessment of the magnetization dynamics driven by such currents. We show that proper interplay between the tube geometry, magnitude of the electric current and the duration of a current pulse, can be used to manipulate the position, velocity and chirality of a vortex domain wall. Our calculations suggest that domain wall velocities greater than 1 km s -1 can be achieved for tube diameters of the order of 30 nm and increasing with it. We also find that the transition from steady to precessional domain wall motion occurs for very high electric current densities, of the order of 10 13 A m -2 . Furthermore, the great stability displayed by such chiral magnetic configurations, and the reduced Ohmic loses provided by the current pulses, lead to highly reproducible and efficient domain wall reversal mechanisms.

  9. Magnetic poly(2-hydroxyethyl methacrylate) microspheres for affinity purification of monospecific anti-p46 kDa/Myo1C antibodies for early diagnosis of multiple sclerosis patients

    Czech Academy of Sciences Publication Activity Database

    Horák, Daniel; Hlídková, Helena; Kit, Y.; Antonyuk, V.; Myronovsky, S.; Stoika, R.

    2017-01-01

    Roč. 37, č. 2 (2017), s. 1-10, č. článku BSR20160526. ISSN 0144-8463 R&D Projects: GA MŠk(CZ) LH14318 Institutional support: RVO:61389013 Keywords : poly(2-hydroxyethyl methacrylate) * magnetic microspheres * affinity purification Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 2.906, year: 2016

  10. Usnic acid-loaded biocompatible magnetic PLGA-PVA microsphere thin films fabricated by MAPLE with increased resistance to staphylococcal colonization

    International Nuclear Information System (INIS)

    Grumezescu, V; Grumezescu, A M; Ficai, A; Vasile, B S; Holban, A M; Lazar, V; Chifiriuc, C M; Socol, G; Truscă, R; Bleotu, C; Mogosanu, G D

    2014-01-01

    Due to their persistence and resistance to the current therapeutic approaches, Staphylococcus aureus biofilm-associated infections represent a major cause of morbidity and mortality in the hospital environment. Since (+)-usnic acid (UA), a secondary lichen metabolite, possesses antimicrobial activity against Gram-positive cocci, including S. aureus, the aim of this study was to load magnetic polylactic-co-glycolic acid-polyvinyl alcohol (PLGA-PVA) microspheres with UA, then to obtain thin coatings using matrix-assisted pulsed laser evaporation and to quantitatively assess the capacity of the bio-nano-active modified surface to control biofilm formation by S. aureus, using a culture-based assay. The UA-loaded microspheres inhibited both the initial attachment of S. aureus to the coated surfaces, as well as the development of mature biofilms. In vitro bioevalution tests performed on the fabricated thin films revealed great biocompatibility, which may endorse them as competitive candidates for the development of improved non-toxic surfaces resistant to S. aureus colonization and as scaffolds for stem cell cultivation and tissue engineering. (paper)

  11. Usnic acid-loaded biocompatible magnetic PLGA-PVA microsphere thin films fabricated by MAPLE with increased resistance to staphylococcal colonization.

    Science.gov (United States)

    Grumezescu, V; Holban, A M; Grumezescu, A M; Socol, G; Ficai, A; Vasile, B S; Truscă, R; Bleotu, C; Lazar, V; Chifiriuc, C M; Mogosanu, G D

    2014-09-01

    Due to their persistence and resistance to the current therapeutic approaches, Staphylococcus aureus biofilm-associated infections represent a major cause of morbidity and mortality in the hospital environment. Since (+)-usnic acid (UA), a secondary lichen metabolite, possesses antimicrobial activity against Gram-positive cocci, including S. aureus, the aim of this study was to load magnetic polylactic-co-glycolic acid-polyvinyl alcohol (PLGA-PVA) microspheres with UA, then to obtain thin coatings using matrix-assisted pulsed laser evaporation and to quantitatively assess the capacity of the bio-nano-active modified surface to control biofilm formation by S. aureus, using a culture-based assay. The UA-loaded microspheres inhibited both the initial attachment of S. aureus to the coated surfaces, as well as the development of mature biofilms. In vitro bioevalution tests performed on the fabricated thin films revealed great biocompatibility, which may endorse them as competitive candidates for the development of improved non-toxic surfaces resistant to S. aureus colonization and as scaffolds for stem cell cultivation and tissue engineering.

  12. Usnic acid-loaded biocompatible magnetic PLGA-PVA microsphere thin films fabricated by MAPLE with increased resistance to staphylococcal colonization

    Energy Technology Data Exchange (ETDEWEB)

    Grumezescu, V; Grumezescu, A M; Ficai, A; Vasile, B S [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu Street no 1-7, 011061 Bucharest (Romania); Holban, A M; Lazar, V; Chifiriuc, C M [Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Aleea Portocalelor 1-3, Sector 5, 77206-Bucharest (Romania); Socol, G [Lasers Department, Plasma and Radiation Physics, National Institute for Lasers, PO Box MG-36, Bucharest-Magurele (Romania); Truscă, R [Metav SA - CD SA, 31 Rosetti Str., 020015 Bucharest (Romania); Bleotu, C [Stefan S Nicolau Institute of Virology, Bucharest (Romania); Mogosanu, G D, E-mail: grumezescu@yahoo.com [Department of Pharmacognosy and Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 PetruRareş Street, 200349 Craiova (Romania)

    2014-09-01

    Due to their persistence and resistance to the current therapeutic approaches, Staphylococcus aureus biofilm-associated infections represent a major cause of morbidity and mortality in the hospital environment. Since (+)-usnic acid (UA), a secondary lichen metabolite, possesses antimicrobial activity against Gram-positive cocci, including S. aureus, the aim of this study was to load magnetic polylactic-co-glycolic acid-polyvinyl alcohol (PLGA-PVA) microspheres with UA, then to obtain thin coatings using matrix-assisted pulsed laser evaporation and to quantitatively assess the capacity of the bio-nano-active modified surface to control biofilm formation by S. aureus, using a culture-based assay. The UA-loaded microspheres inhibited both the initial attachment of S. aureus to the coated surfaces, as well as the development of mature biofilms. In vitro bioevalution tests performed on the fabricated thin films revealed great biocompatibility, which may endorse them as competitive candidates for the development of improved non-toxic surfaces resistant to S. aureus colonization and as scaffolds for stem cell cultivation and tissue engineering. (paper)

  13. Geometrically unrestricted, topologically constrained control of liquid crystal defects using simultaneous holonomic magnetic and holographic optical manipulation

    Science.gov (United States)

    Varney, Michael C. M.; Jenness, Nathan J.; Smalyukh, Ivan I.

    2014-02-01

    Despite the recent progress in physical control and manipulation of various condensed matter, atomic, and particle systems, including individual atoms and photons, our ability to control topological defects remains limited. Recently, controlled generation, spatial translation, and stretching of topological point and line defects have been achieved using laser tweezers and liquid crystals as model defect-hosting systems. However, many modes of manipulation remain hindered by limitations inherent to optical trapping. To overcome some of these limitations, we integrate holographic optical tweezers with a magnetic manipulation system, which enables fully holonomic manipulation of defects by means of optically and magnetically controllable colloids used as "handles" to transfer forces and torques to various liquid crystal defects. These colloidal handles are magnetically rotated around determined axes and are optically translated along three-dimensional pathways while mechanically attached to defects, which, combined with inducing spatially localized nematic-isotropic phase transitions, allow for geometrically unrestricted control of defects, including previously unrealized modes of noncontact manipulation, such as the twisting of disclination clusters. These manipulation capabilities may allow for probing topological constraints and the nature of defects in unprecedented ways, providing the foundation for a tabletop laboratory to expand our understanding of the role defects play in fields ranging from subatomic particle physics to early-universe cosmology.

  14. Manipulating the transparency and other optical properties of metamaterials by applying a magnetic field

    International Nuclear Information System (INIS)

    Strelniker, Yakov M.; Bergman, David J.; Fleger, Yafit; Rosenbluh, Michael; Voznesenskaya, Anna O.; Vinogradov, Alexey P.; Lagarkov, Andrey N.

    2010-01-01

    The light transmission through metallic films with different types of nano-structures was studied both theoretically and experimentally. It is shown that the positions of the surface plasmon resonances depend on nano-structural details. Those can be changed from sample to sample or in given sample by applying an external dc electric or magnetic field. The dependence of transmission spectrum on the shape of holes (inclusions) and external fields can be used for manipulation of the light transmission, as well as the polarization of the transmitted light and other optical properties, by external field. Two complementary situations are considered: a metal film with dielectric holes and a dielectric film with metallic islands. A new analytical asymptotic approach for calculation of the optical properties of such plasmonic systems is developed.

  15. Spin manipulation and spin-lattice interaction in magnetic colloidal quantum dots

    Science.gov (United States)

    Moro, Fabrizio; Turyanska, Lyudmila; Granwehr, Josef; Patanè, Amalia

    2014-11-01

    We report on the spin-lattice interaction and coherent manipulation of electron spins in Mn-doped colloidal PbS quantum dots (QDs) by electron spin resonance. We show that the phase memory time,TM , is limited by Mn-Mn dipolar interactions, hyperfine interactions of the protons (1H) on the QD capping ligands with Mn ions in their proximity (limit and at low temperature, we achieve a long phase memory time constant TM˜0.9 μ s , thus enabling the observation of Rabi oscillations. Our findings suggest routes to the rational design of magnetic colloidal QDs with phase memory times exceeding the current limits of relevance for the implementation of QDs as qubits in quantum information processing.

  16. Effect of immobilized amine density on cadmium(II) adsorption capacities for ethanediamine-modified magnetic poly-(glycidyl methacrylate) microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Tingting [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yang, Liangrong, E-mail: lryang@ipe.ac.cn [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Pan, Feng; Xing, Huifang; Wang, Li; Yu, Jiemiao [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Qu, Hongnan [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Rong, Meng [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Huizhou, E-mail: hzliu@ipe.ac.cn [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-04-01

    A series of ethanediamine (EDA) – modified magnetic poly-(glycidyl methacrylate) (m-PGMA-EDA)microspheres with different amine density were synthesized and their cadmium saturation adsorption capacities were examined. The results showed that the cadmium saturation adsorption capacity increased with the immobilized amine density. However, they did not show strong positive linear correlation in the whole range of amine density examined. The molar ratio of amine groups to the adsorbed cadmium decreased with the increase of amine density and eventually reached a minimum value about 4. It suggested that low immobilized amine density led to low coordination efficiency of the amine. It is hypothesized that the immobilized amine groups needed to be physically close enough to form stable amine-metal complex. When the amine density reached to a critical value 1.25 m mol m{sup −2}, stable amine-cadmium complex (4:1 N/Cd) was proposed to form. To illustrate the coordination mechanism (structure and number) of amine and Cd, FT-IR spectra of m-PGMA-EDA and m-PGMA-EDA-Cd , and X-ray photoelectron spectroscopy (XPS) of PGMA–EDA and PGMA-EDA-Cd were examined and analyzed. - Highlights: • A series of magnetic poly-(glycidyl methacrylate) (m-PGMA-EDA)microspheres with different amine density were synthesized and their cadmium saturation adsorption capacities were examined. • The molar ratio of amine groups to adsorbed cadmium decreased with the increase of amine density and eventually reached a minimum value about 4. • when the amine density reached high enough, 4:1 N/Cd complex was proposed to form, and the hydroxyl also participated in the chelating with Cd.

  17. Fermi Surface Manipulation by External Magnetic Field Demonstrated for a Prototypical Ferromagnet

    Directory of Open Access Journals (Sweden)

    E. Młyńczak

    2016-12-01

    Full Text Available We consider the details of the near-surface electronic band structure of a prototypical ferromagnet, Fe(001. Using high-resolution angle-resolved photoemission spectroscopy, we demonstrate openings of the spin-orbit-induced electronic band gaps near the Fermi level. The band gaps, and thus the Fermi surface, can be manipulated by changing the remanent magnetization direction. The effect is of the order of ΔE=100  meV and Δk=0.1  Å^{−1}. We show that the observed dispersions are dominated by the bulk band structure. First-principles calculations and one-step photoemission calculations suggest that the effect is related to changes in the electronic ground state and not caused by the photoemission process itself. The symmetry of the effect indicates that the observed electronic bulk states are influenced by the presence of the surface, which might be understood as related to a Rashba-type effect. By pinpointing the regions in the electronic band structure where the switchable band gaps occur, we demonstrate the significance of spin-orbit interaction even for elements as light as 3d ferromagnets. These results set a new paradigm for the investigations of spin-orbit effects in the spintronic materials. The same methodology could be used in the bottom-up design of the devices based on the switching of spin-orbit gaps such as electric-field control of magnetic anisotropy or tunneling anisotropic magnetoresistance.

  18. Optically Levitated Microspheres as a Probe for New Interactions

    Science.gov (United States)

    Rider, Alexander; Moore, David; Blakemore, Charles; Lu, Marie; Gratta, Giorgio

    2016-03-01

    We are developing novel techniques to probe new interactions at micron distances using optically levitated dielectric microspheres. Levitated microspheres are an ideal probe for short-range interactions because they are suspended using the radiation pressure at the focus of a laser beam, which means that the microspheres can be precisely manipulated and isolated from the surrounding environment at high vacuum. We have performed a search for unknown charged particles bound within the bulk of the microspheres. Currently, we are searching for the presence of a Chameleon field postulated to explain the presence of dark energy in the universe. In the future we plan to use optically levitated microspheres to search for micron length-scale gravity like interactions that could couple between a microsphere and another mass. We will present resent results from these experiments and plans for future searches for new interactions.

  19. Magnetic tagging of cell-derived microparticles: new prospects for imaging and manipulation of these mediators of biological information.

    Science.gov (United States)

    Vats, Nidhi; Wilhelm, Claire; Rautou, Pierre-Emmanuel; Poirier-Quinot, Marie; Péchoux, Christine; Devue, Cécile; Boulanger, Chantal M; Gazeau, Florence

    2010-07-01

    Submicron membrane fragments termed microparticles (MPs), which are released by apoptotic or activated cells, are newly considered as vectors of biological information and actors of pathology development. We propose the tagging of MPs with magnetic nanoparticles as a new approach allowing imaging, manipulation and targeting of cell-derived MPs. MPs generated in vitro from human endothelial cells or isolated from atherosclerotic plaques were labeled using citrate-coated 8 nm iron-oxide nanoparticles. MPs were tagged with magnetic nanoparticles on their surface and detected as Annexin-V positive by flow cytometry. Labeled MPs could be mobilized, isolated and manipulated at a distance in a magnetic field gradient. Magnetic mobility of labeled MPs was quantified by micromagnetophoresis. Interactions of labeled MPs with endothelial cells could be triggered and modulated by magnetic guidance. Nanoparticles served as tracers at different scales: at the subcellular level by electron microscopy, at the cellular level by histology and at the macroscopic level by MRI. Magnetic labeling of biogenic MPs opens new prospects for noninvasive monitoring and distal manipulations of these biological effectors.

  20. Engineered core-shell magnetic nanoparticle for MR dual-modal tracking and safe magnetic manipulation of ependymal cells in live rodents

    Science.gov (United States)

    Peng, Yung-Kang; Lui, Cathy N. P.; Chen, Yu-Wei; Chou, Shang-Wei; Chou, Pi-Tai; Yung, Ken K. L.; Edman Tsang, S. C.

    2018-01-01

    Tagging recognition group(s) on superparamagnetic iron oxide is known to aid localisation (imaging), stimulation and separation of biological entities using magnetic resonance imaging (MRI) and magnetic agitation/separation (MAS) techniques. Despite the wide applicability of iron oxide nanoparticles in T 2-weighted MRI and MAS, the quality of the images and safe manipulation of the exceptionally delicate neural cells in a live brain are currently the key challenges. Here, we demonstrate the engineered manganese oxide clusters-iron oxide core-shell nanoparticle as an MR dual-modal contrast agent for neural stem cells (NSCs) imaging and magnetic manipulation in live rodents. As a result, using this engineered nanoparticle and associated technologies, identification, stimulation and transportation of labelled potentially multipotent NSCs from a specific location of a live brain to another by magnetic means for self-healing therapy can therefore be made possible.

  1. Manufacture of electrical and magnetic graded and anisotropic materials for novel manipulations of microwaves.

    Science.gov (United States)

    Grant, P S; Castles, F; Lei, Q; Wang, Y; Janurudin, J M; Isakov, D; Speller, S; Dancer, C; Grovenor, C R M

    2015-08-28

    Spatial transformations (ST) provide a design framework to generate a required spatial distribution of electrical and magnetic properties of materials to effect manipulations of electromagnetic waves. To obtain the electromagnetic properties required by these designs, the most common materials approach has involved periodic arrays of metal-containing subwavelength elements. While aspects of ST theory have been confirmed using these structures, they are often disadvantaged by narrowband operation, high losses and difficulties in implementation. An all-dielectric approach involves weaker interactions with applied fields, but may offer more flexibility for practical implementation. This paper investigates manufacturing approaches to produce composite materials that may be conveniently arranged spatially, according to ST-based designs. A key aim is to highlight the limitations and possibilities of various manufacturing approaches, to constrain designs to those that may be achievable. The article focuses on polymer-based nano- and microcomposites in which interactions with microwaves are achieved by loading the polymers with high-permittivity and high-permeability particles, and manufacturing approaches based on spray deposition, extrusion, casting and additive manufacture.

  2. Magnetic micro-manipulations to probe the local physical properties of porous scaffolds and to confine stem cells.

    Science.gov (United States)

    Robert, Damien; Fayol, Delphine; Le Visage, Catherine; Frasca, Guillaume; Brulé, Séverine; Ménager, Christine; Gazeau, Florence; Letourneur, Didier; Wilhelm, Claire

    2010-03-01

    The in vitro generation of engineered tissue constructs involves the seeding of cells into porous scaffolds. Ongoing challenges are to design scaffolds to meet biochemical and mechanical requirements and to optimize cell seeding in the constructs. In this context, we have developed a simple method based on a magnetic tweezer set-up to manipulate, probe, and position magnetic objects inside a porous scaffold. The magnetic force acting on magnetic objects of various sizes serves as a control parameter to retrieve the local viscosity of the scaffolds internal channels as well as the stiffness of the scaffolds pores. Labeling of human stem cells with iron oxide magnetic nanoparticles makes it possible to perform the same type of measurement with cells as probes and evaluate their own microenvironment. For 18 microm diameter magnetic beads or magnetically labeled stem cells of similar diameter, the viscosity was equivalently equal to 20 mPa s in average. This apparent viscosity was then found to increase with the magnetic probes sizes. The stiffness probed with 100 microm magnetic beads was found in the 50 Pa range, and was lowered by a factor 5 when probed with cells aggregates. The magnetic forces were also successfully applied to the stem cells to enhance the cell seeding process and impose a well defined spatial organization into the scaffold. (c) 2009 Elsevier Ltd. All rights reserved.

  3. Manipulating femtosecond spin-orbit torques with laser pulse sequences to control magnetic memory states and ringing

    Science.gov (United States)

    Lingos, P. C.; Wang, J.; Perakis, I. E.

    2015-05-01

    Femtosecond (fs) coherent control of collective order parameters is important for nonequilibrium phase dynamics in correlated materials. Here, we propose such control of ferromagnetic order based on using nonadiabatic optical manipulation of electron-hole (e -h ) photoexcitations to create fs carrier-spin pulses with controllable direction and time profile. These spin pulses are generated due to the time-reversal symmetry breaking arising from nonperturbative spin-orbit and magnetic exchange couplings of coherent photocarriers. By tuning the nonthermal populations of exchange-split, spin-orbit-coupled semiconductor band states, we can excite fs spin-orbit torques that control complex magnetization pathways between multiple magnetic memory states. We calculate the laser-induced fs magnetic anisotropy in the time domain by using density matrix equations of motion rather than the quasiequilibrium free energy. By comparing to pump-probe experiments, we identify a "sudden" out-of-plane magnetization canting displaying fs magnetic hysteresis, which agrees with switchings measured by the static Hall magnetoresistivity. This fs transverse spin-canting switches direction with magnetic state and laser frequency, which distinguishes it from the longitudinal nonlinear optical and demagnetization effects. We propose that sequences of clockwise or counterclockwise fs spin-orbit torques, photoexcited by shaping two-color laser-pulse sequences analogous to multidimensional nuclear magnetic resonance (NMR) spectroscopy, can be used to timely suppress or enhance magnetic ringing and switching rotation in magnetic memories.

  4. Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres

    International Nuclear Information System (INIS)

    Zhou Limin; Wang Yiping; Liu Zhirong; Huang Qunwu

    2009-01-01

    Magnetic chitosan microspheres were prepared and chemically modified with thiourea (TMCS) for adsorption of metal ions. TMCS obtained were investigated by means of X-ray diffraction (XRD), IR, magnetic properties and thermogravimetric analysis (TGA). The adsorption properties of TMCS toward Hg 2+ , Cu 2+ , and Ni 2+ ions were evaluated. Various factors affecting the uptake behavior such as contact time, temperature, pH and initial concentration of the metal ions were investigated. The kinetics was evaluated utilizing the pseudo-first-order, pseudo-second-order, and the intra-particle diffusion models. The equilibrium data were analyzed using the Langmuir, Freundlich, and Tempkin isotherm models. The adsorption kinetics followed the mechanism of the pseudo-second-order equation for all systems studied, evidencing chemical sorption as the rate-limiting step of adsorption mechanism and not involving a mass transfer in solution. The best interpretation for the equilibrium data was given by Langmuir isotherm, and the maximum adsorption capacities were 625.2, 66.7, and 15.3 mg/g for Hg 2+ , Cu 2+ , and Ni 2+ ions, respectively. TMCS displayed higher adsorption capacity for Hg 2+ in all pH ranges studied. The adsorption capacity of the metal ions decreased with increasing temperature. The metal ion-loaded TMCS with were regenerated with an efficiency of greater than 88% using 0.01-0.1 M ethylendiamine tetraacetic acid (EDTA)

  5. Monodisperse magnetic poly(glycidyl methacrylate) microspheres for isolation of autoantibodies with affinity for the 46 kDa form of unconventional Myo1C present in autoimmune patients

    Czech Academy of Sciences Publication Activity Database

    Zasońska, Beata Anna; Hlídková, Helena; Petrovský, Eduard; Myronovskij, S.; Nehrych, T.; Negrych, N.; Shorobura, M.; Antonyuk, V.; Stoika, R.; Kit, Y.; Horák, Daniel

    2018-01-01

    Roč. 185, č. 5 (2018), s. 1-7, č. článku 262. ISSN 0026-3672 R&D Projects: GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 ; RVO:67985530 Keywords : magnetic microspheres * functionalization * affinity chromatography Subject RIV: CD - Macromolecular Chemistry; DE - Earth Magnetism, Geodesy, Geography (GFU-E) OBOR OECD: Polymer science; Physical geography (GFU-E) Impact factor: 4.580, year: 2016

  6. Zipper-like magnetic molecularly imprinted microspheres for on/off-switchable recognition and extraction of 17β-estradiol from food samples.

    Science.gov (United States)

    Zhu, Wenting; Peng, Hailong; Luo, Mei; Yu, Ningxiang; Xiong, Hua; Wang, Ronghui; Li, Yanbin

    2018-09-30

    Zipper-like on/off-switchable and magnetic molecularly imprinted microspheres (SM-MIMs) were constructed using acrylamide (AAm) and 2-acrylamide-2-methyl propanesulfonic acid (AMPS) as functional monomers for 17β-estradiol (17β-E 2 ) recognition and extraction. The imprinted polymer interactions between poly(AAm) (PAAm) and poly(AMPS) (PAMPS) with on/off-switchable property to temperature, exhibited dissociation at relatively higher temperatures (such as 30 °C) and helped 17β-E 2 enter into imprinted sites, leading to higher binding capability. Conversely, the interpolymer complexes between PAAm and PAMPS formed and blocked 17β-E 2 access to imprinted sites at lower temperature (such as 20 °C). SM-MIMs were used as dispersive solid phase extraction (SPE) adsorbent with HPLC for 17β-E 2 pretreatment and detection in food samples, and low limit detection (2.52 µg L -1 ) and quantification (10.76 µg L -1 ) with higher recovery were obtained. Therefore, SM-MIMs may be a promising adsorbent for 17β-E 2 pretreatment in food samples owing to its advantages of on/off-switchable recognition, eco-friendly elution, and efficient separation. Copyright © 2018. Published by Elsevier Ltd.

  7. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS).

    Science.gov (United States)

    Fox, Michael D; Halko, Mark A; Eldaief, Mark C; Pascual-Leone, Alvaro

    2012-10-01

    Both resting state functional magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS) are increasingly popular techniques that can be used to non-invasively measure brain connectivity in human subjects. TMS shows additional promise as a method to manipulate brain connectivity. In this review we discuss how these two complimentary tools can be combined to optimally study brain connectivity and manipulate distributed brain networks. Important clinical applications include using resting state fcMRI to guide target selection for TMS and using TMS to modulate pathological network interactions identified with resting state fcMRI. The combination of TMS and resting state fcMRI has the potential to accelerate the translation of both techniques into the clinical realm and promises a new approach to the diagnosis and treatment of neurological and psychiatric diseases that demonstrate network pathology. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Magnetic manipulation of superparamagnetic nanoparticles in a microfluidic system for drug delivery applications

    International Nuclear Information System (INIS)

    Agiotis, L.; Theodorakos, I.; Samothrakitis, S.; Papazoglou, S.; Zergioti, I.; Raptis, Y.S.

    2016-01-01

    Magnetic nanoparticles (MNPs), such as superparamagnetic iron oxide nanoparticles (SPIONS), have attracted major interest, due to their small size and unique magnetic properties, for drug delivery applications. In this context, iron oxide nanoparticles of magnetite (Fe 3 O 4 ) (150 nm magnetic core diameter), were used as drug carriers, aiming to form a magnetically controlled nano-platform. The navigation capabilities of the iron oxide nanoparticles in a microfluidic channel were investigated by simulating the magnetic field and the magnetic force applied on the magnetic nanoparticles inside a microfluidic chip. The simulations have been performed using finite element method (ANSY’S software). The optimum setup which intends to simulate the magnetic navigation of the nanoparticles, by the use of MRI-type fields, in the human circulatory system, consists of two parallel permanent magnets to produce a homogeneous magnetic field, in order to ensure the maximum magnetization of the magnetic nanoparticles, an electromagnet for the induction of the magnetic gradients and the creation of the magnetic force and a microfluidic setup so as to simulate the blood flow inside the human blood vessels. The magnetization of the superparamagnetic nanoparticles and the consequent magnetic torque developed by the two permanent magnets, together with the mutual interactions between the magnetized nanoparticles lead to the creation of rhabdoid aggregates in the direction of the homogeneous field. Additionally, the magnetic gradients introduced by the operation of the electromagnet are capable of directing the aggregates, as a whole, to the desired direction. By removing the magnetic fields, the aggregates are disrupted, due to the super paramagnetic nature of the nanoparticles, avoiding thus the formation of undesired thrombosis. - Highlights: • Homogeneous field yields an aggregation of particles along the lines of the field. • Additional electromagnet field rotates the

  9. Magnetic manipulation of superparamagnetic nanoparticles in a microfluidic system for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Agiotis, L.; Theodorakos, I.; Samothrakitis, S.; Papazoglou, S.; Zergioti, I.; Raptis, Y.S.

    2016-03-01

    Magnetic nanoparticles (MNPs), such as superparamagnetic iron oxide nanoparticles (SPIONS), have attracted major interest, due to their small size and unique magnetic properties, for drug delivery applications. In this context, iron oxide nanoparticles of magnetite (Fe{sub 3}O{sub 4}) (150 nm magnetic core diameter), were used as drug carriers, aiming to form a magnetically controlled nano-platform. The navigation capabilities of the iron oxide nanoparticles in a microfluidic channel were investigated by simulating the magnetic field and the magnetic force applied on the magnetic nanoparticles inside a microfluidic chip. The simulations have been performed using finite element method (ANSY’S software). The optimum setup which intends to simulate the magnetic navigation of the nanoparticles, by the use of MRI-type fields, in the human circulatory system, consists of two parallel permanent magnets to produce a homogeneous magnetic field, in order to ensure the maximum magnetization of the magnetic nanoparticles, an electromagnet for the induction of the magnetic gradients and the creation of the magnetic force and a microfluidic setup so as to simulate the blood flow inside the human blood vessels. The magnetization of the superparamagnetic nanoparticles and the consequent magnetic torque developed by the two permanent magnets, together with the mutual interactions between the magnetized nanoparticles lead to the creation of rhabdoid aggregates in the direction of the homogeneous field. Additionally, the magnetic gradients introduced by the operation of the electromagnet are capable of directing the aggregates, as a whole, to the desired direction. By removing the magnetic fields, the aggregates are disrupted, due to the super paramagnetic nature of the nanoparticles, avoiding thus the formation of undesired thrombosis. - Highlights: • Homogeneous field yields an aggregation of particles along the lines of the field. • Additional electromagnet field rotates the

  10. Magnetic microsphere-confined graphene for the extraction of polycyclic aromatic hydrocarbons from environmental water samples coupled with high performance liquid chromatography-fluorescence analysis.

    Science.gov (United States)

    Wang, Weina; Ma, Ruiyang; Wu, Qiuhua; Wang, Chun; Wang, Zhi

    2013-06-07

    In this paper, a magnetic microsphere-confined graphene adsorbent (Fe3O4@SiO2-G) was fabricated and used for the extraction of five polycyclic aromatic hydrocarbons (fluorene, anthracene, phenanthrene, fluoranthene and pyrene) from environmental water samples prior to high performance liquid chromatography with fluorescence detection. The Fe3O4@SiO2-G was characterized by various instrumental methods. Various experimental parameters that could affect the extraction efficiencies, such as the amount of Fe3O4@SiO2-G, the pH and ionic strength of sample solution, the extraction time and the desorption conditions, were investigated. Due to the high surface area and excellent adsorption capacity of the Fe3O4@SiO2-G, satisfactory extraction can be achieved with only 15mg of the adsorbent per 250mL solution and 5min extraction. Under the optimum conditions, a linear response was observed in the concentration range of 5-1500ngL(-1) for fluorene, 2.5-1500ngL(-1) for anthracene and 15-1500ngL(-1) for phenanthrene, fluoranthene and pyrene, with the correlation coefficients (r) ranging from 0.9897 to 0.9961. The limits of detection (S/N=3) of the method were between 0.5 and 5.0ngL(-1). The relative standard deviations (RSDs) were less than 5.6%. The recoveries of the method were in the range between 83.2% and 108.2%. The results indicated that this graphene-based magnetic nanocomposite had a great adsorptive ability toward the five polycyclic aromatic hydrocarbons from environmental water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. 3D cellular structures and co-cultures formed through the contactless magnetic manipulation of cells on adherent surfaces.

    Science.gov (United States)

    Abdel Fattah, Abdel Rahman; Mishriki, Sarah; Kammann, Tobias; Sahu, Rakesh P; Geng, Fei; Puri, Ishwar K

    2018-02-27

    A magnet array is employed to manipulate diamagnetic cells that are contained in paramagnetic medium to demonstrate for the first time the contactless bioprinting of three-dimensional (3D) cellular structures and co-cultures of breast cancer MCF-7 and endothelial HUVEC at prescribed locations on tissue culture treated well plates. Sequential seeding of different cell lines and the spatial displacement of the magnet array creates co-cultured cellular structures within a well without using physically intrusive well inserts. Both monotypic and co-culture experiments produce morphologically rich 3D cell structures that are otherwise absent in regular monolayer cell cultures. The magnetic contactless bioprinting of cells provides further insight into cell behaviour, invasion strategies and transformations that are useful for potential applications in drug screening, 3D cell culture formation and tissue engineering.

  12. Metallic coating of microspheres

    International Nuclear Information System (INIS)

    Meyer, S.F.

    1980-01-01

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates

  13. User's guide to program MAD: a computer program for the organization and manipulation of magnetic tape directories

    International Nuclear Information System (INIS)

    Gray, W.H.

    1979-05-01

    MAD is a computer program for the organization and manipulation of the information contained in magnetic tape directories. Program MAD creates, updates, and interrogates a set of four random access files collectively called the MAD unified data base. Although program MAD was originally intended as an information compression mechanism, it has evolved into an organization system with the added feature of an approximately 60% reduction in the space required to store the data. This program is easy to use, relatively fast, efficient in its use of disk space, and available to all users of the Fusion Energy Division DECsystem-10

  14. Spin manipulation and spin-lattice interaction in magnetic colloidal quantum dots

    OpenAIRE

    Moro, F.; Turyanska, L.; Granwehr, J.; Patane, A.

    2014-01-01

    We report on the spin-lattice interaction and coherent manipulation of electron spins in Mn-doped colloidal PbS quantum dots (QDs) by electron spin resonance. We show that the phase memory time,TM, is limited by Mn-Mn dipolar interactions, hyperfine interactions of the protons (H1) on the QD capping ligands with Mn ions in their proximity (

  15. Magnetic poly(glycidyl methacrylate) microspheres prepared by dispersion polymerization in the presence of electrostatically-stabilized ferrofluids

    Czech Academy of Sciences Publication Activity Database

    Horák, Daniel; Benedyk, N.

    2004-01-01

    Roč. 42, č. 22 (2004), s. 5827-5837 ISSN 0887-624X R&D Projects: GA ČR GA525/02/0287 Institutional research plan: CEZ:AV0Z4050913 Keywords : magnetic * glycidyl methacrylate * dispersion polymerization Subject RIV: CE - Biochemistry Impact factor: 2.773, year: 2004

  16. Structuring of diamond films using microsphere lithography

    Czech Academy of Sciences Publication Activity Database

    Domonkos, Mária; Ižák, Tibor; Štolcová, L.; Proška, J.; Demo, Pavel; Kromka, Alexander

    2014-01-01

    Roč. 54, č. 5 (2014), s. 320-324 ISSN 1210-2709 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : nanostructuring * diamond thin films * polystyrene microspheres * reactive ion etching * scanning electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism

  17. Manipulation of the spin in single molecule magnets via Landau-Zener transitions

    Science.gov (United States)

    Palii, Andrew; Tsukerblat, Boris; Clemente-Juan, Juan M.; Gaita-Ariño, Alejandro; Coronado, Eugenio

    2011-11-01

    We theoretically investigate the effects of a magnetic pulse on a single-molecule magnet (SMM) initially magnetized by a dc field along the easy axis of magnetization. In the Landau-Zener (LZ) scheme, it is shown that the final spin state is a function of the shape and duration of the pulse, conditioned by the decoherence time of the SMM. In the case of coherent tunneling, the asymmetric pulses are shown to reverse the direction of the magnetization, while the symmetric pulses can only decrease the value of the initial magnetization. It is also demonstrated that the application of an external variable dc field in the hard plane of magnetization provides the possibility to tune the resulting magnetization due to quantum interference effects. The results and the conditions for the observation of the pulse-triggered LZ transitions are illustrated by the application of the proposed scheme to the well-studied single-molecule magnet Fe8. To put the results into perspective, some potential applications of SMMs experiencing pulse-induced LZ transitions, such as switching devices and qubits, are discussed.

  18. The use of magnetic poly(N-isopropylacrylamide) microspheres for separation of DNA from probiotic dairy products

    Czech Academy of Sciences Publication Activity Database

    Macková, Hana; Horák, Daniel; Trachtová, Š.; Rittich, B.; Španová, A.

    2012-01-01

    Roč. 1, č. 2 (2012), s. 235-240 ISSN 2164-9634 R&D Projects: GA AV ČR(CZ) KAN401220801; GA MŠk 2B06053; GA MŠk 7E12054 EU Projects: European Commission(XE) 259796 - DIATOOLS Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : magnetic particles * thermosensitive * poly(N-isopropylacrylamide) Subject RIV: EE - Microbiology, Virology

  19. Removal of Congo Red by magnetic mesoporous titanium dioxide-graphene oxide core-shell microspheres for water purification.

    Science.gov (United States)

    Li, Leilei; Li, Xiangjun; Duan, Huimin; Wang, Xiaojiao; Luo, Chuannan

    2014-06-14

    Magnetic mesoporous titanium dioxide-graphene oxide (Fe3O4@mTiO2@GO) with a large surface area and a good magnetic responsiveness was synthesized by immobilizing a mesoporous titanium dioxide (mTiO2) shell on the surface of magnetic Fe3O4 nanoparticles prior to binding with graphene oxide (GO). It showed a tunable pore structure and surface properties, and was mechanically strong. The characteristic results of a Fourier transform infrared spectrometer (FTIR), a scanning electron microscope (SEM), a vibrating sample magnetometer (VSM) and X-ray diffraction (XRD) indicated that Fe3O4@mTiO2@GO has been prepared. Fe3O4@mTiO2@GO was used as an adsorbent for the removal of Congo Red (CR) from simulated wastewater with a fast solid-liquid separation in the presence of an external magnetic field. Batch adsorption experiments were performed to evaluate the adsorption conditions and reusability. The results showed that the maximum adsorption capacity was 89.95 mg g(-1), which is much higher than the previously reported values of other absorbent materials. Moreover, the Fe3O4@mTiO2@GO could be repeatedly used via simple treatment without any obvious structure and performance degradation. The adsorption kinetic data were best described by a pseudo-second-order model and the equilibrium adsorptions were well-described by the Freundlich isotherm model. The Fe3O4@mTiO2@GO may be suitable materials for use in CR pollution cleanup if synthesized on a large scale and at a low price in the near future.

  20. TiO{sub 2} microsphere-based metamaterials exhibiting effective magnetic response in the terahertz regime

    Energy Technology Data Exchange (ETDEWEB)

    Yahiaoui, R.; Mounaix, P. [Universite Bordeaux 1, CNRS, UMR 5798, LOMA, Talence (France); Nemec, H.; Kadlec, C.; Kadlec, F.; Kuzel, P. [Academy of Sciences of the Czech Republic, Institute of Physics, Prague (Czech Republic); Chung, U.C. [Universite Bordeaux, CNRS - UPR 9048, ICMCB, Pessac (France); CRPP, CNRS - UPR 8641, Pessac (France); Elissalde, C.; Maglione, M. [Universite Bordeaux, CNRS - UPR 9048, ICMCB, Pessac (France)

    2012-12-15

    Thin layers of all-dielectric metamaterials based on TiO{sub 2} spherical particle resonators are investigated. A new method based on spray drying of dissolved nanoparticles is used in the fabrication process. Spectral footprints of electric and magnetic dipoles are reported numerically and through experimental tests. It is a promising step for the construction of novel three-dimensional isotropic metamaterials exhibiting desired electromagnetic properties for terahertz applications. (orig.)

  1. PEGylation controls attachment and engulfment of monodisperse magnetic poly(2-hydroxyethyl methacrylate) microspheres by murine J774.2 macrophages

    Czech Academy of Sciences Publication Activity Database

    Horák, Daniel; Hlídková, Helena; Klyuchivska, O.; Grytsyna, I.; Stoika, R.

    2017-01-01

    Roč. 426, 31 December (2017), s. 315-324 ISSN 0169-4332 R&D Projects: GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : poly(ethylene glycol) * poly(2-hydroxyethyl methacrylate) * magnetic Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.387, year: 2016

  2. Fundamentals of magnet-actuated droplet manipulation on an open hydrophobic surface†

    Science.gov (United States)

    Long, Zhicheng; Shetty, Abhishek M.; Solomon, Michael J.; Larson, Ronald G.

    2010-01-01

    We systematically investigate droplet movement, coalescence, and splitting on an open hydrophobic surface. These processes are actuated by magnetic beads internalized in an oil-coated aqueous droplet using an external magnet. Results are organized into an ‘operating diagram’ that describes regions of droplet stable motion, breakage, and release from the magnet. The results are explained theoretically with a simple model that balances magnetic, friction, and capillary-induced drag forces and includes the effects of particle type, droplet size, surrounding oil layer, surface tension, and viscosity. Finally, we discuss the implications of the results for the design of magnet-actuated droplet systems for applications such as nucleic acid purification, immunoassay and drug delivery. PMID:19458864

  3. Manipulating beams of ultra-cold atoms with a static magnetic field

    International Nuclear Information System (INIS)

    Rowlands, W.J.; Lau, D.C.; Opat, G.I.; Sidorov, A.I.; McLean, R.J.; Hannaford, P.

    1996-01-01

    The preliminary results on the deflection of a beam of ultra-cold atoms by a static magnetic field are presented. Caesium atoms trapped in a magneto-optical trap (MOT) are cooled using optical molasses, and then fall freely under gravity to form a beam of ultra-cold atoms. The atoms pass through a static inhomogeneous magnetic field produced by a single current-carrying wire, and are deflected by a force dependent on the magnetic substate of the atom. A schematical diagram of the experimental layout for laser trapping and cooling of cesium atom is given. The population of atoms in various magnetic substates can be altered by using resonant laser radiation to optically pump the atoms. The single-wire deflection experiment described can be considered as atomic reflexion from a cylindrical magnetic mirror; the underlying principles and techniques being relevant to the production of atomic mirrors and diffraction gratings. 16 refs., 10 figs

  4. Magnetic field manipulation of spin current in a single-molecule magnet tunnel junction with two-electron Coulomb interaction

    Science.gov (United States)

    Zhang, Chao; Yao, Hui; Nie, Yi-Hang; Liang, Jiu-Qing; Niu, Peng-Bin

    2018-04-01

    In this work, we study the generation of spin-current in a single-molecule magnet (SMM) tunnel junction with Coulomb interaction of transport electrons and external magnetic field. In the absence of field the spin-up and -down currents are symmetric with respect to the initial polarizations of molecule. The existence of magnetic field breaks the time-reversal symmetry, which leads to unsymmetrical spin currents of parallel and antiparallel polarizations. Both the amplitude and polarization direction of spin current can be controlled by the applied magnetic field. Particularly when the magnetic field increases to a certain value the spin-current with antiparallel polarization is reversed along with the magnetization reversal of the SMM. The two-electron occupation indeed enhances the transport current compared with the single-electron process. However the increase of Coulomb interaction results in the suppression of spin-current amplitude at the electron-hole symmetry point. We propose a scheme to compensate the suppression with the magnetic field.

  5. Manipulation of magnetic and magneto-transport properties of amorphous CoO1–v films

    International Nuclear Information System (INIS)

    Cao, Yan-ling; Zhang, Kun; Li, Huan-huan; Tian, Yu-feng; Yan, Shi-shen; Xiao, Shu-qin; Chen, Yan-xue; Kang, Shi-shou; Liu, Guo-lei; Mei, Liang-mo

    2015-01-01

    The magnetic and magneto-transport properties of amorphous CoO 1−v films have been systematically studied and manipulated by changing the concentration of oxygen vacancies. A giant exchange bias field H E ≈4380 Oe and a large coercivity H C ≈8500 Oe are observed at 5 K for the composite films. And, a metal to insulator transition has been demonstrated in CoO 1−v films by decreasing the concentration of oxygen vacancies. Moreover, a remarkable decrease of the exchange bias and a slight increase of the saturation magnetization can be obtained by modifying the microstructures through post-thermal annealing. - Highlights: • Magnetic and magneto-transport properties of amorphous CoO 1−v are studied. • A giant exchange bias effect with H E ≈4380 Oe and H C ≈8500 Oe is observed at 5 K. • A metal–insulator transition is observed in CoO 1−v by changing the oxygen pressure. • The exchange bias decreases while saturation magnetization increases with annealing

  6. Observation and manipulation of magnetic domains in sol gel derived thin films of spinel ferrites

    Science.gov (United States)

    Datar, Ashwini A.; Mathe, Vikas L.

    2017-12-01

    Thin films of spinel ferrites, namely zinc substituted nickel, cobalt ferrite, and manganese substituted cobalt ferrite, were synthesized using sol-gel derived spin-coating techniques. The films were characterized using x-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy techniques for the analysis of structural, morphological and vibrational band transition properties, which confirm the spinel phase formation of the films. The magnetic force microscopy (MFM) technique was used to observe the magnetic domain structure present in the synthesized films. Further, the films were subjected to an external DC magnetic field of 2 kG to orient the magnetic domains and analyzed using an ex situ MFM technique.

  7. Microelectromagnet for magnetic manipulation in lab-on-a-chip systems

    DEFF Research Database (Denmark)

    Smistrup, Kristian; Tang, P.T.; Hansen, Ole

    2006-01-01

    We demonstrate a simple scheme for fabrication of microelectromagnets consisting of planar spiral coils semi-encapsulated in soft magnetic yokes using conventional microfabrication techniques. The microelectromagnets are suitable for applications operating at frequencies below 250 kHz. Conventional...

  8. Efficacy of magnetically controlled ethamsylate microspheres in targeting normal and bleeding rabbit stomach%止血敏磁控缓释微球对兔胃的靶向和止血功效

    Institute of Scientific and Technical Information of China (English)

    刘安重; 张兆林; 卢琦萍; 冯毓灵; 吴金生; 许自超

    2001-01-01

    Objective To demonstrate the efficacy of magnetically controlled ethamsylate microspheres in targeting normal and bleeding rabbit stomach. Methods X-ray photo was used to detect ethamsylate microspheres in targeting site tissue and spectrophotometry to test ethamsylate concentration in treatment of rabbit stomach bleeding. Results Ethamsylate microspheres accurately located in targeting site of the stomach.Microsphere,at magnet field intensity 0.49 T,gradinet 0.23 T/cm,produced 28 cm water column pressure.Ethamsylate concentration of the membrane layer in the site showed:magnetically controlled group,non magnetically controlled group and vein group (1 869±150) μg/g,(108±22) μg/g,(30±5) μg/g. Magnetically controlled group had demonstrated 17 fold increase over controlled group,62 fold increase over the injection group(P<0.01). The ethamsylate microshperes controlled by magnet could completely curb the active hemorrhage in rabbit stomach within 10 min,while the control within 30 min. Conclusion Ethamsylate microsphere is apparently superior to injection or oral administration of ethamsylate in treatment of upper gastrointestinal hemorrhage.%目的 对止血敏磁控缓释微球(止血敏微球)进行兔胃靶向试验,观察其靶向和止血效力。方法 用X线摄影观察止血敏微球在兔胃的分布情况,用分光光度测量法检测靶区的止血敏含量,观察其在兔胃的止血功效。结果 止血敏微球能有效地准确定位于胃靶区,微球在磁场强度0.49 T,梯度0.23 T/cm状态下可产生28 cm水柱的压力;胃靶区粘摸层止血敏含量检测结果:磁控组、非磁控组和静脉组的平均含量分别为(1 869±150)μg/g,(108±22)μg/g,(30±5)μg/g;磁控组是非磁控组的17倍,是静脉组的62倍。经统计学分析,P<0.01。可在10 min内明显控制兔胃小动脉活动性出血,对照组则需30 min以上。结论 止血敏磁控缓释微球有可能成为治疗

  9. Fano coil-type resonances: a plasmonic tool for the magnetic field manipulation (Conference Presentation)

    Science.gov (United States)

    Panaro, Simone; Proietti Zaccaria, Remo; Toma, Andrea

    2017-02-01

    Spintronics and spin-based technology rely on the ultra-fast unbalance of the electronic spin population in quite localized spatial regions. However, as a matter of fact, the low susceptibility of conventional materials at high frequencies strongly limits these phenomena, rendering the efficiency of magnetically active devices insufficient for application purposes. Among the possible strategies which can be envisaged, plasmonics offers a direct approach to increase the effect of local electronic unbalancing processes. By confining and enhancing free radiation in nm-size spatial regions, plasmonic nano-assemblies have demonstrated to support very intense electric and magnetic hot-spots. In particular, very recent studies have proven the fine control of magnetic fields in Fano resonance condition. The near-field-induced out-of-phase oscillation of localized surface plasmons has manifested itself with the arising of magnetic sub-diffractive hot-spots. Here, we show how this effect can be further boosted in the mid-infrared regime via the introduction of higher order plasmonic modes. The investigated system, namely Moon Trimer Resonator (MTR), combines the high efficiency of a strongly coupled nano-assembly in Fano interferential condition with the elevated tunability of the quadrupolar resonance supported by a moon-like geometry. The fine control of the apical gap in this unique nanostructure, characterizes a plasmonic device able to tune its resonance without any consequence on the magnetic hot-spot size, thus enabling an efficient squeezing in the infrared.

  10. Motion control of a large gap magnetic suspension system for microrobotic manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Craig, David; Khamesee, Mir Behrad [Department of Mechanical and Mechatronics Engineering, University of Waterloo, Ontario, N2L 3G1 (Canada)

    2007-06-07

    Magnetic suspension systems have shown a great deal of promise in the field of microrobotics. This paper discusses the performance of a new large gap magnetic suspension system developed by the researchers. The magnetic drive unit consists of six electromagnets attached to a soft iron pole piece and yoke. Levitation of an 11.19 g microrobot prototype is demonstrated for step, ramp and periodic input trajectories using PID control. The working envelope of the microrobot is 30 x 22 x 20 mm{sup 3}, with an RMS error on the order of 18 {mu}m in the vertical direction and 8 {mu}m in the horizontal direction. It is demonstrated that the levitated microrobot is able to track the desired trajectory precisely and that the system has potential application for micromanipulation.

  11. Motion control of a large gap magnetic suspension system for microrobotic manipulation

    International Nuclear Information System (INIS)

    Craig, David; Khamesee, Mir Behrad

    2007-01-01

    Magnetic suspension systems have shown a great deal of promise in the field of microrobotics. This paper discusses the performance of a new large gap magnetic suspension system developed by the researchers. The magnetic drive unit consists of six electromagnets attached to a soft iron pole piece and yoke. Levitation of an 11.19 g microrobot prototype is demonstrated for step, ramp and periodic input trajectories using PID control. The working envelope of the microrobot is 30 x 22 x 20 mm 3 , with an RMS error on the order of 18 μm in the vertical direction and 8 μm in the horizontal direction. It is demonstrated that the levitated microrobot is able to track the desired trajectory precisely and that the system has potential application for micromanipulation

  12. Synthesis and characterization of Supeparamagnetics Microspheres (PMMA via suspension polymerization

    Directory of Open Access Journals (Sweden)

    Paulo Emilio Feuser

    2014-02-01

    Full Text Available Magnetics nanoparticles (NPMs has found many applications in biomedical and technological areas. The objective of this work is the preparation and characterization of PMMA microspheres containing NPMs coated with oleic acid (NPMs-AO. For the preparation of MNPs-AO was used the coprecipitation method in an aqueous medium. For the preparation of the superparamagnetic microspheres used in suspension polymerization technique. The microspheres showed a size distribution particles of approximately 150um and a spherical morphology. From the analysis of gel permeation chromatography (GPC determined the number average molecular weight (Mw of the magnetics microspheres and there was a variation in the Mw depending on the concentration of MNPs-AO in this reaction. To analyze the magnetic properties used the vibrating sample magnetometer (MAV. The microspheres showed superparamagnetic properties and a value of saturation magnetization (Ms of about 8 emu/g MNPs. Therefore you can conclude that it is possible to obtain superparamagnetics microspheres for a particular application, either, biomedical or technological.

  13. Magnetic bead manipulation in a sub-microliter fluid volume applicable for biosensing

    NARCIS (Netherlands)

    Derks, R.J.S.; Wimberger-Friedl, R.; Prins, M.W.J.; Dietzel, A.H.

    2007-01-01

    Magnetic actuation principles using superparamagnetic beads suspended in a fluid are studied in this paper. An exptl. setup contg. a submicroliter fluid vol. surrounded by four miniaturized electromagnets was designed and fabricated. On the basis of optical velocity measurements, the induced

  14. Manipulating antiferromagnets with magnetic fields: ratchet motion of multiple domain walls induced by asymmetric field pulses

    Czech Academy of Sciences Publication Activity Database

    Gomonay, O.; Kläui, M.; Sinova, Jairo

    2016-01-01

    Roč. 109, č. 14 (2016), 1-4, č. článku 142404. ISSN 0003-6951 R&D Projects: GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : spintronics * solitons * Mn 2 Au Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.411, year: 2016

  15. Gone in a Flash: Manipulation of Audiovisual Temporal Integration Using Transcranial Magnetic Stimulation

    Directory of Open Access Journals (Sweden)

    Roy eHamilton

    2013-09-01

    Full Text Available While converging evidence implicates the right inferior parietal lobule in audiovisual integration, its role has not been fully elucidated by direct manipulation of cortical activity. Replicating and extending an experiment initially reported by Kamke, Vieth, Cottrell, and Mattingley (2012, we employed the sound-induced flash illusion, in which a single visual flash, when accompanied by two auditory tones, is misperceived as multiple flashes (Wilson, 1987; Shams, et al., 2000. Slow repetitive (1Hz TMS administered to the right angular gyrus, but not the right supramarginal gyrus, induced a transient decrease in the Peak Perceived Flashes (PPF, reflecting reduced susceptibility to the illusion. This finding independently confirms that perturbation of networks involved in multisensory integration can result in a more veridical representation of asynchronous auditory and visual events and that cross-modal integration is an active process in which the objective is the identification of a meaningful constellation of inputs, at times at the expense of accuracy.

  16. Glass microspheres for brachytherapy

    International Nuclear Information System (INIS)

    Prado, Miguel O.; Prastalo, Simon; Blaumann, Herman; Longhino, Juan M.; Repetto Llamazares, A.H.V.

    2007-01-01

    We developed the capacity to produce glass microspheres containing in their structure one or more radioactive isotopes useful for brachytherapy. We studied the various facts related with their production: (Rare earth) alumino silicate glass making, glass characterization, microspheres production, nuclear activation through (n,γ) nuclear reactions, mechanical characterization before and after irradiation. Corrosion tests in simulated human plasma and mechanical properties characterization were done before and after irradiation. (author) [es

  17. Near-Infrared-Light-Responsive Magnetic DNA Microgels for Photon- and Magneto-Manipulated Cancer Therapy.

    Science.gov (United States)

    Wang, Yitong; Wang, Ling; Yan, Miaomiao; Dong, Shuli; Hao, Jingcheng

    2017-08-30

    Functional DNA molecules have been introduced into polymer-based nanocarrier systems to incorporate chemotherapy drugs for cancer therapy. Here is the first report of dual-responsive microgels composed of a core of Au nanorods and a shell of magnetic ionic liquid and DNA moieties in the cross-linking network simultaneously, as effective drug delivery vectors. TEM images indicated a magnetic polymer shell has an analogous "doughnut" shape which loosely surround the AuNRs core. When irradiated with a near-infrared-light (near-IR) laser, Au nanorods are the motors which convert the light to heat, leading to the release of the encapsulated payloads with high controllability. DNA acts not only as a cross-linker agent, but also as a gatekeeper to regulate the release of drugs. The internalization study and MTT assay confirm that these core-shell DNA microgels are excellent candidates which can enhance the cytotoxicity of cancer cells controlled by near-IR laser and shield the high toxicity of chemotherapeutic agents to improve the killing efficacy of chemotherapeutic agents efficiently in due course.

  18. Fabrication and magnetic control of alginate-based rolling microrobots

    Directory of Open Access Journals (Sweden)

    Jamel Ali

    2016-12-01

    Full Text Available Advances in microrobotics for biological applications are often limited due to their complex manufacturing processes, which often utilize cytotoxic materials, as well as limitations in the ability to manipulate these small devices wirelessly. In an effort to overcome these challenges, we investigated a facile method for generating biocompatible hydrogel based robots that are capable of being manipulated using an externally generated magnetic field. Here, we experimentally demonstrate the fabrication and autonomous control of loaded-alginate microspheres, which we term artificial cells. In order to generate these microparticles, we employed a centrifuge-based method in which microspheres were rapidly ejected from a nozzle tip. Specifically, we used two mixtures of sodium alginate; one containing iron oxide nanoparticles and the other containing mammalian cells. This mixture was loaded into a needle that was fixed on top of a microtube containing calcium chloride, and then briefly centrifuged to generate hundreds of Janus microspheres. The fabricated microparticles were then magnetically actuated with a rotating magnetic field, generated using electromagnetic coils, prompting the particles to roll across a glass substrate. Also, using vision-based feedback control, a single artificial cell was manipulated to autonomously move in a programmed pattern.

  19. Method for sizing hollow microspheres

    Science.gov (United States)

    Farnum, E.H.; Fries, R.J.

    1975-10-29

    Hollow Microspheres may be effectively sized by placing them beneath a screen stack completely immersed in an ultrasonic bath containing a liquid having a density at which the microspheres float and ultrasonically agitating the bath.

  20. Manipulation of the magnetic properties in Er{sub 1−x}Co{sub 2} compounds by atomic vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Jun-Ding, E-mail: zoujd@zju.edu.cn [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Key Laboratory of Novel Materials for Information Technology of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Yan, Mi, E-mail: mse_yanmi@zju.edu.cn [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Key Laboratory of Novel Materials for Information Technology of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Yao, Jin-Lei [Research Center for Solid State Physics and Materials, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009 (China)

    2015-05-25

    Highlights: • The nonstoichiometric Er{sub 1−x}Co{sub 2} compounds are identified. • Er atomic vacancies lead to the volume contracting by 0.37% and enhance T{sub C} by 44%. • The anomalous susceptibility behavior is not exact the same with the Griffiths phase. • The refrigerant capacity of Er{sub 0.97}Co{sub 2} increases from 152 J/kg to 158 J/kg. - Abstract: ErCo{sub 2} compound is a well-known magnetocaloric material which shows giant magnetocaloric effect in the vicinity of first-order phase transition. We demonstrate a new way of fine tuning its crystal structure and magnetic properties. Er atomic vacancies are introduced in order to manipulate the local atomic environment, the phase transition characteristics, and the magnetocaloric effect as well. Er{sub 1−x}Co{sub 2} can be stable over a narrow homogenous range, and maintain the cubic structure. The Bragg peaks shift upward to higher angles, and the unit cell volume contracts with reduction of the Er content. The Curie temperatures in low magnetic field increase from 32 K (ErCo{sub 2}) to 46 K (Er{sub 0.97}Co{sub 2}), and linearly change with the magnetic field in nearly same slope. Er{sub 1−x}Co{sub 2} compounds exhibit anomalous susceptibility behaviors in the paramagnetic state, and deviate from the Curie–Weiss law at around 100 K. The temperature range of anomalous susceptibility behaviors also move upward to higher temperature with reduction of Er content. Er{sub 1−x}Co{sub 2} compounds also show anomalous coercivity behavior in the vicinity of phase transition. Er{sub 1−x}Co{sub 2} compounds exhibit large magnetocaloric effect and good refrigerant capacity in the vicinity of ferrimagnetic–paramagnetic phase transition.

  1. Ceramic microspheres for cementing applications

    NARCIS (Netherlands)

    2011-01-01

    A method and apparatus for manufacturing ceramic microspheres from industrial slag. The microspheres have a particle size of about 38 microns to about 150 microns. The microspheres are used to create a cement slurry having a density of at least about 11 lbs/g. The resultant cement slurry may then be

  2. Ceramic microspheres for cementing applications

    NARCIS (Netherlands)

    2010-01-01

    A method and apparatus for manufacturing ceramic microspheres from industrial slag. The microspheres have a particle size of about 38 microns to about 150 microns. The microspheres are used to create a cement slurry having a density of at least about 11 lbs/g. The resultant cement slurry may then be

  3. Ceramic microspheres for cementing applications

    NARCIS (Netherlands)

    2012-01-01

    A method and apparatus for manufacturing ceramic microspheres from industrial slag. The microspheres have a particle size of about 38 microns to about 150 microns. The microspheres are used to create a cement slurry having a density of at least about 11 lbs/g. The resultant cement slurry may then be

  4. Manipulating the magnetism and resistance state of Mn:ZnO/Pb(Zr0.52Ti0.48)O3 heterostructured films through electric fields

    Science.gov (United States)

    Li, Yong-Chao; Wu, Jun; Pan, Hai-Yang; Wang, Jue; Wang, Guang-Hou; Liu, Jun-Ming; Wan, Jian-Guo

    2018-05-01

    Mn:ZnO/Pb(Zr0.52Ti0.48)O3 (PZT) heterostructured films have been prepared on Pt/Ti/SiO2/Si wafers by a sol-gel process. Nonvolatile and reversible manipulation of the magnetism and resistance by electric fields has been realized. Compared with the saturation magnetic moment (Ms) in the +3.0 V case, the modulation gain of Ms can reach 270% in the -3.0 V case at room temperature. The resistance change is attributed to the interfacial potential barrier height variation and the formation of an accumulation (or depletion) layer at the Mn:ZnO/PZT interface, which can be regulated by the ferroelectric polarization direction. The magnetism of Mn:ZnO originates from bound magnetic polarons. The mobile carrier variation in Mn:ZnO, owing to interfacial polarization coupling and the ferroelectric field effect, enables the electric manipulation of the magnetism in the Mn:ZnO/PZT heterostructured films. This work presents an effective method for modulating the magnetism of magnetic semiconductors and provides a promising avenue for multifunctional devices with both electric and magnetic functionalities.

  5. Preparation and characterization of composite microspheres for brachytherapy and hyperthermia treatment of cancer

    International Nuclear Information System (INIS)

    Zhao Di; Huang Wenhai; Rahaman, Mohamed N.; Day, Delbert E.; Wang Deping; Gu Yifei

    2012-01-01

    Composite microspheres were prepared by coating yttrium–aluminum–silicate (YAS) glass microspheres (20–30 μm) with a layer of Fe 3 O 4 nanoparticles and evaluated for potential use in brachytherapy and hyperthermia treatment of cancer. After neutron activation to form the β-emitting 90 Y radionuclide, the composite microspheres can be injected into a patient to destroy cancerous tumors; at the same time, the composite microspheres can generate heat upon application of a magnetic field to also destroy the tumors. The results showed that the composite microspheres were chemically durable when immersed in a simulated body fluid (SBF), with ∼ 0.25% weight loss and ∼ 3.2% yttrium dissolved into the SBF after 30 days at 37 °C. The composite microspheres also showed ferromagnetic properties as a result of the Fe 3 O 4 coating; when immersed in water at 20 °C (20 mg in 1 mL of water), the application of an alternating magnetic field produced a temperature increase from 20 °C to 38−46 °C depending on the thickness of the Fe 3 O 4 coating. The results indicate that these composite microspheres have promising potential in combined brachytherapy and hyperthermia treatment of cancerous tumors. - Highlights: ► Composite microspheres for brachytherapy and hyperthermia treatment of cancer. ► Fe 3 O 4 nanoparticles coated on the yttrium–aluminum–silicate glass microspheres. ► Microspheres are chemically stable in SBF. ► Microspheres can generate heat for hyperthermia under an alternating magnetic field. ► Microspheres can emit β-rays for brachytherapy after neutron activation.

  6. Controllable growth and photocatalytic activity of Cu{sub 2}O solid microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hong; Zhang, Junying, E-mail: zjy@buaa.edu.cn; Wang, Mei

    2013-09-01

    Graphical abstract: - Highlights: • 3 μm uniform Cu{sub 2}O solid microspheres with abundant nanopores are achieved. • NH{sub 2}OH·HCl and SDS are main factors that manipulate morphologies of Cu{sub 2}O particles. • Surface features of microspheres influenced the photocatalytic activity of Cu{sub 2}O. • Microspheres are transforming to polyhedrons with extended holding time. - Abstract: A series of Cu{sub 2}O solid microspheres with different surface features were prepared and their photocatalytic activities were studied. The experiment conditions were investigated and the formation mechanism was explored systematically. It was found that varying the amounts of NH{sub 2}OH·HCl reductant in alkaline solutions changed the reaction process and thus altered the surface features of Cu{sub 2}O microspheres. Sodium dodecyl sulfate (SDS) surfactant, introduced as a morphology directing agent, caused the nuclei aggregation and growth process of Cu{sub 2}O solid microspheres by precisely realizing the opposite charges’ directional attraction. This SDS-mediated method can be readily extended to synthesizing solid microspheres of other metal oxides. Meanwhile, it was found that Cu{sub 2}O solid microspheres with abundant nanopores on the surface showed much higher efficient catalytic activity for decoloring methyl orange (MO) aqueous solution than with other surface features under visible light irradiation. Furthermore, we found that prolonging the holding time made Cu{sub 2}O microspheres transform to polyhedrons.

  7. Silicon microspheres for near-IR communication applications

    International Nuclear Information System (INIS)

    Serpengüzel, Ali; Demir, Abdullah

    2008-01-01

    We have performed transverse electric and transverse magnetic polarized elastic light scattering calculations at 90° and 0° in the o-band at 1.3 µm for a 15 µm radius silicon microsphere with a refractive index of 3.5. The quality factors are on the order of 10 7 and the mode/channel spacing is 7 nm, which correlate well with the refractive index and the optical size of the microsphere. The 90° elastic light scattering can be used to monitor a dropped channel (drop port), whereas the 0° elastic scattering can be used to monitor the transmission channel (through port). The optical resonances of the silicon microspheres provide the necessary narrow linewidths that are needed for high-resolution optical communication applications. Potential telecommunication applications include filters, modulators, switches, wavelength converters, detectors, amplifiers and light sources. Silicon microspheres show promise as potential building blocks for silicon-based electrophotonic integration

  8. Preparation of alumina microspheres

    International Nuclear Information System (INIS)

    Santos, W.R. dos; Abrao, A.

    1980-01-01

    Inorganic exchangers are widely used for adsorption and column partition chromatography. The main difficulty of using commercial alumina (in powder) for column chromatography is related to its packing, and the operations through the column become diffcult and time-consuming; also it turns to be virtually impossible to use large dimension columns. In order to eliminate these problems, a process for the preparation of alumina micro-spheres was developed as an adaptation of a similar process used to prepare nuclear fuel microspheres (UO 2 , ThO 2 ). The flowsheet of this process is presented together with the analytical results of sphericity after calcination, granulometry, density and characterization by X-ray diffractometry. Solubility tests showed that the so-prepared microspheres are well resistant to strong acids and bases; retention tests showed their efficiency, mainly to copper. (C.L.B.) [pt

  9. Silicon Microspheres Photonics

    International Nuclear Information System (INIS)

    Serpenguzel, A.

    2008-01-01

    Electrophotonic integrated circuits (EPICs), or alternatively, optoelectronic integrated circuit (OEICs) are the natural evolution of the microelectronic integrated circuit (IC) with the addition of photonic capabilities. Traditionally, the IC industry has been based on group IV silicon, whereas the photonics industry on group III-V semiconductors. However, silicon based photonic microdevices have been making strands in siliconizing photonics. Silicon microspheres with their high quality factor whispering gallery modes (WGMs), are ideal candidates for wavelength division multiplexing (WDM) applications in the standard near-infrared communication bands. In this work, we will discuss the possibility of using silicon microspheres for photonics applications in the near-infrared

  10. Manipulation of Schwann cell migration across the astrocyte boundary by polysialyltransferase-loaded superparamagnetic nanoparticles under magnetic field

    Directory of Open Access Journals (Sweden)

    Xia B

    2016-12-01

    Full Text Available Bing Xia,* Liangliang Huang,* Lei Zhu, Zhongyang Liu, Teng Ma, Shu Zhu, Jinghui Huang, Zhuojing Luo Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China *These authors contributed equally to this work Abstract: Schwann cell (SC transplantation is an attractive strategy for spinal cord injury (SCI. However, the efficacy of SC transplantation has been limited by the poor migratory ability of SCs in the astrocyte-rich central nervous system (CNS environment and the inability to intermingle with the host astrocyte. In this study, we first magnetofected SCs by polysialyltransferase-functionalized superparamagnetic iron oxide nanoparticles (PST/SPIONs to induce overexpression of polysialylation of neural cell adhesion molecule (PSA-NCAM to enhance SC migration ability, before manipulating the direction of SC migration with the assistance of an applied magnetic field (MF. It was found that magnetofection with PST/SPIONs significantly upregulated the expression of PSA-NCAM in SCs, which significantly enhanced the migration ability of SCs, but without preferential direction in the absence of MF. The number and averaged maximum distance of SCs with PST/SPIONs migrating into the astrocyte domain were significantly enhanced by an applied MF. In a 300 µm row along the astrocyte boundary, the number of SCs with PST/SPIONs migrating into the astrocyte domain under an MF was 2.95 and 6.71 times higher than that in the absence of MF and the intact control SCs, respectively. More interestingly, a confrontation assay demonstrated that SCs with PST/SPIONs were in close contact with astrocytes and no longer formed boundaries in the presence of MF. In conclusion, SCs with PST/SPIONs showed enhanced preferential migration along the axis of a magnetic force, which might be beneficial for the formation of Büngner bands in the CNS. These findings raise the possibilities of enhancing the

  11. Application of superparamagnetic microspheres for affinity adsorption and purification of glutathione

    International Nuclear Information System (INIS)

    Wang Qiang; Guan Yueping; Yang Mingzhu

    2012-01-01

    The superparamagnetic poly-(MA–DVB) microspheres with micron size were synthesized by the modified suspension polymerization method. Adsorption of glutathione by magnetic poly-(MA–DVB) microspheres with IDA-copper was investigated. The effect of solution pH value, affinity adsorption and desorption of glutathione was studied. The results showed that the optimum pH value for glutathione adsorption was found at pH=3.5, the maximum capacity for glutathione of magnetic poly-(MA–DVB) microspheres was estimated at 42.4 mg/g by fitting the experimental data to the Langmuir equation. The adsorption equilibrium of glutathione was obtained in about 10 min and the adsorbed glutathione was desorbed from the magnetic microspheres in about 30 min using NaCl buffer solution. The magnetic microspheres could be repeatedly utilized for the affinity adsorption of glutathione. - Highlights: ► The magnetic microsphere with surface IDA–Cu groups was synthesized. ► The magnetic microspheres were applied for adsorption of GSH. ► The adsorption–desorption of glutathione was investigated. ► The maximum adsorption capacity of GSH was fitted at 42.4 mg/g.

  12. Synthesis of Fe3O4 poly(styrene-glycidyl methacrylate) magnetic porous microspheres and application in the immobilization of Klebsiella sp. FD-3 to reduce Fe(III)EDTA in a NO(x) scrubbing solution.

    Science.gov (United States)

    Wang, Xiaoyan; Zhou, Zuoming; Jing, Guohua

    2013-02-01

    Magnetic poly(styrene-glycidyl methacrylate) porous microspheres (MPPM) with high magnetic contents were prepared by surfactant reverse micelles and emulsion polymerization of monomers, in which the well-dispersed Fe(3)O(4) nanoparticles were modified by polyethylene glycol (PEG) and oleic acid (OA) respectively. The characterizations showed that both of the OA-MPPM and the PEG-MPPM were ferromagnetic, however, the OA-MPPM was used to immobilize the bacteria for more advantages. Therefore, the effects of monomer ratio, surfactant, crosslinker and amount of Fe(3)O(4) on the structure, morphology and magnetic contents of the OA-MPPM were investigated. Then, the OA-MPPM was utilized to immobilize Klebsiella sp. FD-3, an iron-reducing bacterium for Fe(III)EDTA reduction applied in NO(x) removal. Compared with free bacteria, the immobilized FD-3 showed a better tolerance to the unbeneficial pH and temperature conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Iron Nanoparticles-Encapsulating Silica Microspheres for Arterial Embolization Hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z; Kawashita, M, E-mail: zhixia@ecei.tohoku.ac.jp [Graduate School of Biomedical Engineering, Tohoku University (Japan)

    2011-10-29

    We attempted to prepare {alpha}-Fe-encapsulating silica ({alpha}FeSi) microspheres by a sol-gel process using tetramethoxysilane (TMOS) in water-in-oil emulsion. The effect of preparation conditions on the structure, magnetic and heating properties of resultant products were investigated. Oil phase consisted of kerosene with 32 wt% of surfactants (sorbitan monooleate / sorbitan monostearate in 3:1 weight ratio). Water phase consisted of TMOS, ethanol (CH{sub 2}CH{sub 3}OH), water and iron nitrate (Fe(NO{sub 3}){sub 3{center_dot}}9H{sub 2}O) with TMOS / CH{sub 2}CH{sub 3}OH/H{sub 2}O/Fe{sup 3+} in 1:7.4:16.2:0.4{approx}1.2 molar ratio. Fe{sup 3+}-containing silica gel (FeSiG) microspheres 5 to 30 {mu}m in size were successfully obtained by adding the water phase into the oil phase at 60 deg. C under stirring of 1500 rpm for 100 min. {alpha}FeSi microspheres was obtained by heating the FeSiG microspheres at 850deg. C in argon atmosphere. The obtained {alpha}FeSi microspheres have a saturation magnetization (Ms) up to 21 emu g{sup -1} and a coercive force (Hc) of 133 Oe. The in vitro heating generation was evaluated under an alternating current (AC) magnetic field of 300 Oe and 100 kHz.

  14. Manipulation of perpendicular magnetic anisotropy of single Fe atom adsorbed graphene via MgO(1 1 1) substrate

    Science.gov (United States)

    Fu, Mingming; Tang, Weiqing; Wu, Yaping; Ke, Congming; Guo, Fei; Zhang, Chunmiao; Yang, Weihuang; Wu, Zhiming; Kang, Junyong

    2018-05-01

    Perpendicular magnetic anisotropy is significantly important for realizing a long-term retention of information for spintronics devices. Inspired by 2D graphene with its high charge carrier mobility and long spin diffusion length, we report a first-principles design framework on perpendicular magnetic anisotropy engineering of a Fe atom adsorbed graphene by employing a O-terminated MgO (1 1 1) substrate. Determined by the adsorption sites of the Fe atom, a tunable magnetic anisotropy is realized in Fe/graphene/MgO (1 1 1) structure, with the magnetic anisotropy energy of  ‑0.48 meV and 0.23 meV, respectively, corresponding to the in-plane and out of plane easy magnetizations. Total density of states suggest a half-metallicity with a 100% spin polarization in the system. Decomposed densities of Fe-3d states reveal the orbital contributions to the magnetic anisotropy for different Fe adsorption sites. Bonding interaction and charge redistribution regulated by MgO substrate are found responsible for the novel perpendicular magnetic anisotropy engineering in the system. The effective manipulation of perpendicular magnetic anisotropy in present work offers some references for the design and construction of 2D spintronics devices.

  15. Rapid and effective sample cleanup based on graphene oxide-encapsulated core–shell magnetic microspheres for determination of fifteen trace environmental phenols in seafood by liquid chromatography–tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Sheng-Dong; Chen, Xiao-Hong [Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010 (China); Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010 (China); Shen, Hao-Yu [Ningbo Institute of Technology, Zhejiang University, Ningbo, Zhejiang 315100 (China); Li, Xiao-Ping [Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010 (China); Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010 (China); Cai, Mei-Qiang [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018 (China); Zhao, Yong-Gang [Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010 (China); Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010 (China); Jin, Mi-Cong, E-mail: jmcjc@163.com [Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010 (China); Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010 (China)

    2016-05-05

    In this study, graphene oxide-encapsulated core–shell magnetic microspheres (GOE-CS-MM) were fabricated by a self-assemble approach between positive charged poly(diallyldimethylammonium) chloride (PDDA)-modified Fe{sub 3}O{sub 4}@SiO{sub 2} and negative charged GO sheets via electrostatic interaction. The as-prepared GOE-CS-MM was carefully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometer analysis (VSM), and X-ray photoelectron spectroscopy (XPS), and was used as a cleanup adsorbent in magnetic solid-phase extraction (MSPE) for determination of 15 trace-level environmental phenols in seafood coupled to liquid chromatography–tandem mass spectrometry (LC–MS/MS). The obtained results showed that the GOE-CS-MM exhibited excellent cleanup efficiency and could availably reduce the matrix effect. The cleanup mechanisms were investigated and referred to π–π stacking interaction and hydrogen bond between GOE-CS-MM and impurities in the extracts. Moreover, the extraction and cleanup conditions of GOE-CS-MM toward phenols were optimized in detail. Under the optimized conditions, the limits of detection (LODs) were found to be 0.003–0.06 μg kg{sup −1}, and satisfactory recovery values of 84.8–103.1% were obtained for the tested seafood samples. It was confirmed that the developed method is simple, fast, sensitive, and accurate for the determination of 15 trace environmental phenols in seafood samples. - Highlights: • Novel graphene oxide-encapsulated core-shell magnetic microspheres (GOE-CS-MM) were fabricated by a self-assemble approach. • The as-prepared material GOE-CS-MM exhibited excellent cleanup efficiency and could availably reduce the matrix effect. • The cleanup mechanisms refer to π–π stacking interaction and hydrogen bond. • The developed MSPE–LC–MS/MS method was simple, fast, sensitive and accurate.

  16. Microesferas poliméricas magnéticas à base de estireno e divinilbenzeno com morfologia casca e núcleo Magnetic polymeric microspheres based on styrene and divinylbenzene with core-shell morphology

    Directory of Open Access Journals (Sweden)

    Washington J. F. Formiga

    2013-01-01

    Full Text Available Microesferas poliméricas com propriedades magnéticas à base de estireno (STY e divinilbenzeno (DVB foram sintetizadas usando a técnica de polimerização em suspensão em duas etapas. Na primeira, foram preparados os núcleos poliméricos à base de STY e DVB e magnetita. Na segunda, os núcleos foram previamente inchados em uma emulsão de STY e DVB e novamente polimerizados para a formação da casca. Foram variados o método de adição da emulsão e o tempo de inchamento. Os materiais obtidos foram caracterizados quanto ao tamanho de partícula por peneiramento, análise termogravimétrica (TGA, microscopia eletrônica de varredura (SEM e magnetometria de amostra vibrante (VSM. Os métodos avaliados na formação da casca de poli(estireno-co-divinilbenzeno produziram partículas com diâmetro médio maior do que o núcleo. Este resultado indica a formação de morfologia casca e núcleo. O controle morfológico só foi obtido com as resinas RR48/1 e RR48/3. O método onde a emulsão de estireno e divinilbenzeno foi adicionada em etapa única, seguida de 48 horas de inchamento do núcleo a 10 °C (RR48/1, forneceu o maior rendimento (64%. Além disso, todas as resinas casca-núcleo foram sensíveis ao estímulo magnético realizado por um ímã, atestando assim que foram produzidas resinas com propriedades magnéticas.Magnetic polymeric microspheres based on styrene (STY and divinylbenzene (DVB were synthesized in two steps. Firstly, the polymeric core, constituted by STY, DVB and magnetite, was prepared by suspension polymerization. Then, the core was swollen in a STY and DVB emulsion. Subsequently, a second suspension polymerization was carried out in order to form a shell. The emulsion addition method and the swelling time were varied. The particle size, morphology, thermal stability and magnetic properties of the microspheres were studied by sieving, thermogravimetric analysis (TGA, scanning electron microscopy (SEM and vibrating

  17. Fabrication of periodically ordered diamond nanostructures by microsphere lithography

    Czech Academy of Sciences Publication Activity Database

    Domonkos, Mária; Ižák, Tibor; Štolcová, L.; Proška, J.; Kromka, Alexander

    2014-01-01

    Roč. 251, č. 12 (2014), s. 2587-2592 ISSN 0370-1972 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : CVD growth * diamond * microsphere lithography * selective area deposition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.489, year: 2014

  18. Fabrication of polystyrene hollow microspheres as laser fusion ...

    Indian Academy of Sciences (India)

    free from preheating problems and have emerged as good alternative to .... carry a system over the energy barrier comes from the Brownian motion of the ... This increase implies an increase in the electrical contribution to the free energy of the .... microsphere is mainly determined by rotational speed of the magnetic stirrer.

  19. On-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization

    KAUST Repository

    Gooneratne, Chinthaka Pasan; Kodzius, Rimantas; Li, Fuquan; Foulds, Ian G.; Kosel, Jü rgen

    2016-01-01

    The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA) for the manipulation of superparamagnetic beads (SPBs), and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads® demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead® SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 μm Dynabeads® travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 μm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device

  20. On-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization

    KAUST Repository

    Gooneratne, Chinthaka Pasan

    2016-08-26

    The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA) for the manipulation of superparamagnetic beads (SPBs), and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads® demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead® SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 μm Dynabeads® travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 μm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device

  1. On-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization

    Directory of Open Access Journals (Sweden)

    Chinthaka P. Gooneratne

    2016-08-01

    Full Text Available The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA for the manipulation of superparamagnetic beads (SPBs, and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads® demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead® SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 μm Dynabeads® travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 μm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device.

  2. Manipulating cluster size of polyanion-stabilized Fe3O4 magnetic nanoparticle clusters via electrostatic-mediated assembly for tunable magnetophoresis behavior

    International Nuclear Information System (INIS)

    Yeap, Swee Pin; Ahmad, Abdul Latif; Ooi, Boon Seng; Lim, JitKang

    2015-01-01

    We report in this article an approach for manipulating the size of magnetic nanoparticle clusters (MNCs) via electrostatic-mediated assembly technique using an electrolyte as a clustering agent. The clusters were surface-tethered with poly(sodium 4-styrenesulfonate) (PSS) through electrostatic compensation to enhance their colloidal stability. Dynamic light scattering was employed to trace the evolution of cluster size. Simultaneously, electrophoretic mobility and Fourier transform infrared spectroscopy analyses were conducted to investigate the possible schemes involved in both cluster formation and PSS grafting. Results showed that the average hydrodynamic cluster size of the PSS/MNCs and their corresponding size distributions were successfully shifted by means of manipulating the suspension pH, the ionic nature of the electrolyte, and the electrolyte concentration. More specifically, the electrokinetic behavior of the particles upon interaction with the electrolyte plays a profound role in the formation of the PSS/MNCs. Nonetheless, the solubility of the polymer in electrolyte solution and the purification of the particles from residual ions should not be omitted in determining the effectiveness of this clustering approach. The PSS adlayer makes the resultant entities highly water-dispersible and provides electrosteric stabilization to shield the PSS/MNCs from aggregation. In this study, the experimental observations were analyzed and discussed on the basis of existing fundamental colloidal theories. The strategy of cluster size manipulation proposed here is simple and convenient to implement. Furthermore, manipulating the size of the MNCs also facilitates the tuning of magnetophoresis kinetics on exposure to low magnetic field gradient, which makes this nano-entity useful for engineering applications, specifically in separation processes.

  3. Manipulating cluster size of polyanion-stabilized Fe{sub 3}O{sub 4} magnetic nanoparticle clusters via electrostatic-mediated assembly for tunable magnetophoresis behavior

    Energy Technology Data Exchange (ETDEWEB)

    Yeap, Swee Pin, E-mail: sweepin0727@hotmail.com; Ahmad, Abdul Latif; Ooi, Boon Seng; Lim, JitKang, E-mail: chjitkangl@usm.my [Universiti Sains Malaysia, School of Chemical Engineering (Malaysia)

    2015-10-15

    We report in this article an approach for manipulating the size of magnetic nanoparticle clusters (MNCs) via electrostatic-mediated assembly technique using an electrolyte as a clustering agent. The clusters were surface-tethered with poly(sodium 4-styrenesulfonate) (PSS) through electrostatic compensation to enhance their colloidal stability. Dynamic light scattering was employed to trace the evolution of cluster size. Simultaneously, electrophoretic mobility and Fourier transform infrared spectroscopy analyses were conducted to investigate the possible schemes involved in both cluster formation and PSS grafting. Results showed that the average hydrodynamic cluster size of the PSS/MNCs and their corresponding size distributions were successfully shifted by means of manipulating the suspension pH, the ionic nature of the electrolyte, and the electrolyte concentration. More specifically, the electrokinetic behavior of the particles upon interaction with the electrolyte plays a profound role in the formation of the PSS/MNCs. Nonetheless, the solubility of the polymer in electrolyte solution and the purification of the particles from residual ions should not be omitted in determining the effectiveness of this clustering approach. The PSS adlayer makes the resultant entities highly water-dispersible and provides electrosteric stabilization to shield the PSS/MNCs from aggregation. In this study, the experimental observations were analyzed and discussed on the basis of existing fundamental colloidal theories. The strategy of cluster size manipulation proposed here is simple and convenient to implement. Furthermore, manipulating the size of the MNCs also facilitates the tuning of magnetophoresis kinetics on exposure to low magnetic field gradient, which makes this nano-entity useful for engineering applications, specifically in separation processes.

  4. High-resolution small field-of-view magnetic resonance image acquisition system using a small planar coil and a pneumatic manipulator in an open MRI scanner.

    Science.gov (United States)

    Miki, Kohei; Masamune, Ken

    2015-10-01

    Low-field open magnetic resonance imaging (MRI) is frequently used for performing image-guided neurosurgical procedures. Intraoperative magnetic resonance (MR) images are useful for tracking brain shifts and verifying residual tumors. However, it is difficult to precisely determine the boundary of the brain tumors and normal brain tissues because the MR image resolution is low, especially when using a low-field open MRI scanner. To overcome this problem, a high-resolution MR image acquisition system was developed and tested. An MR-compatible manipulator with pneumatic actuators containing an MR signal receiver with a small radiofrequency (RF) coil was developed. The manipulator had five degrees of freedom for position and orientation control of the RF coil. An 8-mm planar RF coil with resistance and inductance of 2.04 [Formula: see text] and 1.00 [Formula: see text] was attached to the MR signal receiver at the distal end of the probe. MR images of phantom test devices were acquired using the MR signal receiver and normal head coil for signal-to-noise ratio (SNR) testing. The SNR of MR images acquired using the MR signal receiver was 8.0 times greater than that of MR images acquired using the normal head coil. The RF coil was moved by the manipulator, and local MR images of a phantom with a 2-mm grid were acquired using the MR signal receiver. A wide field-of-view MR image was generated from a montage of local MR images. A small field-of-view RF system with a pneumatic manipulator was integrated in a low-field MRI scanner to allow acquisition of both wide field-of-view and high-resolution MR images. This system is promising for image-guided neurosurgery as it may allow brain tumors to be observed more clearly and removed precisely.

  5. Strain and electric field mediated manipulation of magnetism in La_(_1_-_x_)Sr_xMnO_3/BaTiO_3 heterostructures

    International Nuclear Information System (INIS)

    Schmitz, Markus

    2016-01-01

    Heterostructures of ferromagnetic La_1_-_xSr_xMnO_3 (LSMO) and ferroelectric BaTiO_3 (BTO) were produced and investigated for their structural and magnetic properties. The combination of these ferroic properties can lead to an artificial multiferroic. Special emphasis was given to the manipulation of magnetic properties by applying electric fields. A magneto-electric coupling could be observed in the heterostructures under investigation. Epitaxial LSMO thin films were grown on BTO substrates using a state-of-the-art oxide molecular beam epitaxy (OMBE) and a high oxygen sputtering system (HOPSS). Stoichiometric La_1_-_xSr_xMnO_3 films with doping levels of x=0.5 and x=0.3 were produced. The film quality in terms of roughness and crystalline structure was confirmed by X-ray scattering methods. The presence of structural domains in the BaTiO_3 single crystal substrate, whose proportion could be altered due to the application of electric fields, was shown by X-ray diffraction. Tensile strain is induced into the epitaxial La_1_-_xSr_xMnO_3 films in the whole temperature range under investigation. The magnetization of LSMO alteres by the variation of strain induced into the film, generated by the different structural phases of single crystal BaTiO_3 substrates. The magnetization shows sharp steps at the structural phase transition temperatures of BTO. The evaluation of magnetic hysteresis loops reveals a change of the magnetic anisotropy of LSMO for each structural phase of BTO, but also within the orthorhombic phase. Special focus was given to the manipulation of magnetic properties by the application of electric fields. A newly established measurement option was used to determine the magnetic response to an applied electric field as a function of temperature and magnetic field. The electrically induced modification of the magnetization is profound near the structural phase transition temperatures. Electrical hysteresis loops give a detailed view on the influence of the

  6. Cell manipulation in microfluidics

    International Nuclear Information System (INIS)

    Yun, Hoyoung; Kim, Kisoo; Lee, Won Gu

    2013-01-01

    Recent advances in the lab-on-a-chip field in association with nano/microfluidics have been made for new applications and functionalities to the fields of molecular biology, genetic analysis and proteomics, enabling the expansion of the cell biology field. Specifically, microfluidics has provided promising tools for enhancing cell biological research, since it has the ability to precisely control the cellular environment, to easily mimic heterogeneous cellular environment by multiplexing, and to analyze sub-cellular information by high-contents screening assays at the single-cell level. Various cell manipulation techniques in microfluidics have been developed in accordance with specific objectives and applications. In this review, we examine the latest achievements of cell manipulation techniques in microfluidics by categorizing externally applied forces for manipulation: (i) optical, (ii) magnetic, (iii) electrical, (iv) mechanical and (v) other manipulations. We furthermore focus on history where the manipulation techniques originate and also discuss future perspectives with key examples where available. (topical review)

  7. David Adler Lectureship Award in the Field of Materials Physics: Racetrack Memory - a high-performance, storage class memory using magnetic domain-walls manipulated by current

    Science.gov (United States)

    Parkin, Stuart

    2012-02-01

    Racetrack Memory is a novel high-performance, non-volatile storage-class memory in which magnetic domains are used to store information in a ``magnetic racetrack'' [1]. The magnetic racetrack promises a solid state memory with storage capacities and cost rivaling that of magnetic disk drives but with much improved performance and reliability: a ``hard disk on a chip''. The magnetic racetrack is comprised of a magnetic nanowire in which a series of magnetic domain walls are shifted to and fro along the wire using nanosecond-long pulses of spin polarized current [2]. We have demonstrated the underlying physics that makes Racetrack Memory possible [3,4] and all the basic functions - creation, and manipulation of a train of domain walls and their detection. The physics underlying the current induced dynamics of domain walls will also be discussed. In particular, we show that the domain walls respond as if they have mass, leading to significant inertial driven motion of the domain walls over long times after the current pulses are switched off [3]. We also demonstrate that in perpendicularly magnetized nanowires there are two independent current driving mechanisms: one derived from bulk spin-dependent scattering that drives the domain walls in the direction of electron flow, and a second interfacial mechanism that can drive the domain walls either along or against the electron flow, depending on subtle changes in the nanowire structure. Finally, we demonstrate thermally induced spin currents are large enough that they can be used to manipulate domain walls. [4pt] [1] S.S.P. Parkin, US Patent 6,834,005 (2004); S.S.P. Parkin et al., Science 320, 190 (2008); S.S.P. Parkin, Scientific American (June 2009). [0pt] [2] M. Hayashi, L. Thomas, R. Moriya, C. Rettner and S.S.P. Parkin, Science 320, 209 (2008). [0pt] [3] L. Thomas, R. Moriya, C. Rettner and S.S.P. Parkin, Science 330, 1810 (2010). [0pt] [4] X. Jiang et al. Nat. Comm. 1:25 (2010) and Nano Lett. 11, 96 (2011).

  8. Review: microspheres for radioembolization therapy

    International Nuclear Information System (INIS)

    Zhao Mingqiang; Xu Shuhe

    2007-12-01

    Radioembolization of liver cancer has been proven to be an effective therapy in nuclear medicine. The yttrium-90 glass microspheres has been used to treat both primary and metastatic liver tumors in clinic which shown encouraging results. The preparation, stability, degradation and application for medical purpose of radioactive microspheres are reviewed. At first, the theory of radioem- bolization treating cancer is discussed; and then three major radiolabled micro- sphere materials are expounded: viz. glass, resin-based and polymer-based; Future improvements in the preparation and use of radioactive microspheres are prospected at last. (authors)

  9. Review: microspheres for radioembolization therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mingqiang, Zhao; Shuhe, Xu [China Inst. of Atomic Energy, Beijing (China)

    2007-12-15

    Radioembolization of liver cancer has been proven to be an effective therapy in nuclear medicine. The yttrium-90 glass microspheres has been used to treat both primary and metastatic liver tumors in clinic which shown encouraging results. The preparation, stability, degradation and application for medical purpose of radioactive microspheres are reviewed. At first, the theory of radioem- bolization treating cancer is discussed; and then three major radiolabled micro- sphere materials are expounded: viz. glass, resin-based and polymer-based; Future improvements in the preparation and use of radioactive microspheres are prospected at last. (authors)

  10. Manipulating magnetism and conductance of an adatom-molecule junction on a metal surface: An ab initio study

    DEFF Research Database (Denmark)

    Tao, Kun; Stepanyuk, V.S.; Bruno, P.

    2008-01-01

    The state of the art ab initio calculations reveal the effect of a scanning tunneling microscopy tip on magnetic properties and conductance of a benzene-adatom sandwich on Cu(001). We concentrate on a benzene-Co system interacting with a Cr tip. Our studies give a clear evidence that magnetism...

  11. Manipulation of quantum evolution

    Science.gov (United States)

    Cabera, David Jose Fernandez; Mielnik, Bogdan

    1994-01-01

    The free evolution of a non-relativistic charged particle is manipulated using time-dependent magnetic fields. It is shown that the application of a programmed sequence of magnetic pulses can invert the free evolution process, forcing an arbitrary wave packet to 'go back in time' to recover its past shape. The possibility of more general operations upon the Schrodinger wave packet is discussed.

  12. A manipulator

    International Nuclear Information System (INIS)

    Cole, G.V.; Hofmann, D.A.; Ashby, R.

    1984-01-01

    A manipulator is described, for remote handling of objects within an enclosure, by an operator outside the enclosure. The manipulator consists of a telescopically extensible arm member, the action of which is controlled by a motor-driven lead screw. (U.K.)

  13. Design and synthesis of core-shell Fe3O4@PTMT composite magnetic microspheres for adsorption of heavy metals from high salinity wastewater.

    Science.gov (United States)

    Huang, Xin; Yang, Jinyue; Wang, Jingkang; Bi, Jingtao; Xie, Chuang; Hao, Hongxun

    2018-05-10

    In this study, a novel magnetic nanoparticles (MNP) modified by an organodisulfide polymer (PTMT) was designed for adsorption of heavy metals (Hg(II), Pb(II) and Cd(II)) from simulated coal chemical high salinity wastewater. The MNP-PTMT nano-composite was synthesize and characterized by SEM, TEM, FTIR, BET, VSM, TGA and XRD. The results indicate that the wanted MNP-PTMT magnetic nanoparticles were successfully obtained by modification. Adsorption experiments were systematically carried out to evaluate the performance of the obtained nanoparticles and to build up the adsorption models. The results demonstrate that the adsorption kinetic and isotherms thermodynamic followed the pseudo-second-order model and the Freundlich equation, respectively. In the presence of the inorganic salt in high salinity wastewater, the adsorption efficiency of MNP-PTMT for heavy metals was still excellent. The magnetic adsorbent could be recovered from aqueous solution by an external magnetic field in 20s and the subsequent regeneration of Hg(II)/Pb(II) loaded MNP-PTMT can be efficiently achieved by using EDTA-2Na solution as desorbent. The novel MNP-PTMT nanoparticles could be used reproductively for five times without apparent decrease in sorption capacity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Magnetic and optical holonomic manipulation of colloids, structures and topological defects in liquid crystals for characterization of mesoscale self-assembly and dynamics

    Science.gov (United States)

    Varney, Michael C. M.

    Colloidal systems find important applications ranging from fabrication of photonic crystals to direct probing of phenomena encountered in atomic crystals and glasses; topics of great interest for physicists exploring a broad range of scientific, industrial and biomedical fields. The ability to accurately control particles of mesoscale size in various liquid host media is usually accomplished through optical trapping methods, which suffer limitations intrinsic to trap laser intensity and force generation. Other limitations are due to colloid properties, such as optical absorptivity, and host properties, such as viscosity, opacity and structure. Therefore, alternative and/or novel methods of colloidal manipulation are of utmost importance in order to advance the state of the art in technical applications and fundamental science. In this thesis, I demonstrate a magnetic-optical holonomic control system to manipulate magnetic and optical colloids in liquid crystals and show that the elastic structure inherent to nematic and cholesteric liquid crystals may be used to assist in tweezing of particles in a manner impossible in other media. Furthermore, I demonstrate the utility of this manipulation in characterizing the structure and microrheology of liquid crystals, and elucidating the energetics and dynamics of colloids interacting with these structures. I also demonstrate the utility of liquid crystal systems as a table top model system to probe topological defects in a manner that may lead to insights into topologically related phenomena in other fields, such as early universe cosmology, sub-atomic and high energy systems, or Skrymionic structures. I explore the interaction of colloid surface anchoring with the structure inherent in cholesteric liquid crystals, and how this affects the periodic dynamics and localization metastability of spherical colloids undergoing a "falling" motion within the sample. These so called "metastable states" cause colloidal dynamics to

  15. Tunable magnetic properties by interfacial manipulation of L1(0)-FePt perpendicular ultrathin film with island-like structures.

    Science.gov (United States)

    Feng, C; Wang, S G; Yang, M Y; Zhang, E; Zhan, Q; Jiang, Y; Li, B H; Yu, G H

    2012-02-01

    Based on interfacial manipulation of the MgO single crystal substrate and non-magnetic AIN compound, a L1(0)-FePt perpendicular ultrathin film with the structure of MgO/FePt-AIN/Ta was designed, prepared, and investigated. The film is comprised of L1(0)-FePt "magnetic islands," which exhibits a perpendicular magnetic anisotropy (PMA), tunable coercivity (Hc), and interparticle exchange coupling (IEC). The MgO substrate promotes PMA of the film because of interfacial control of the FePt lattice orientation. The AIN compound is doped to increase the difference of surface energy between FePt layer and MgO substrate and to suppress the growth of FePt grains, which takes control of island growth mode of FePt atoms. The AIN compound also acts as isolator of L1(0)-FePt islands to pin the sites of FePt domains, resulting in the tunability of Hc and IEC of the films.

  16. Giant voltage manipulation of MgO-based magnetic tunnel junctions via localized anisotropic strain: A potential pathway to ultra-energy-efficient memory technology

    Science.gov (United States)

    Zhao, Zhengyang; Jamali, Mahdi; D'Souza, Noel; Zhang, Delin; Bandyopadhyay, Supriyo; Atulasimha, Jayasimha; Wang, Jian-Ping

    2016-08-01

    Voltage control of magnetization via strain in piezoelectric/magnetostrictive systems is a promising mechanism to implement energy-efficient straintronic memory devices. Here, we demonstrate giant voltage manipulation of MgO magnetic tunnel junctions (MTJ) on a Pb(Mg1/3Nb2/3)0.7Ti0.3O3 piezoelectric substrate with (001) orientation. It is found that the magnetic easy axis, switching field, and the tunnel magnetoresistance (TMR) of the MTJ can be efficiently controlled by strain from the underlying piezoelectric layer upon the application of a gate voltage. Repeatable voltage controlled MTJ toggling between high/low-resistance states is demonstrated. More importantly, instead of relying on the intrinsic anisotropy of the piezoelectric substrate to generate the required strain, we utilize anisotropic strain produced using a local gating scheme, which is scalable and amenable to practical memory applications. Additionally, the adoption of crystalline MgO-based MTJ on piezoelectric layer lends itself to high TMR in the strain-mediated MRAM devices.

  17. Biodegradable microsphere-mediated cell perforation in microfluidic channel using femtosecond laser

    Science.gov (United States)

    Ishii, Atsuhiro; Ariyasu, Kazumasa; Mitsuhashi, Tatsuki; Heinemann, Dag; Heisterkamp, Alexander; Terakawa, Mitsuhiro

    2016-05-01

    The use of small particles has expanded the capability of ultrashort pulsed laser optoinjection technology toward simultaneous treatment of multiple cells. The microfluidic platform is one of the attractive systems that has obtained synergy with laser-based technology for cell manipulation, including optoinjection. We have demonstrated the delivery of molecules into suspended-flowing cells in a microfluidic channel by using biodegradable polymer microspheres and a near-infrared femtosecond laser pulse. The use of polylactic-co-glycolic acid microspheres realized not only a higher optoinjection ratio compared to that with polylactic acid microspheres but also avoids optical damage to the microfluidic chip, which is attributable to its higher optical intensity enhancement at the localized spot under a microsphere. Interestingly, optoinjection ratios to nucleus showed a difference for adhered cells and suspended cells. The use of biodegradable polymer microspheres provides high throughput optoinjection; i.e., multiple cells can be treated in a short time, which is promising for various applications in cell analysis, drug delivery, and ex vivo gene transfection to bone marrow cells and stem cells without concerns about residual microspheres.

  18. Creation and manipulation of topological states in chiral nematic microspheres

    Science.gov (United States)

    Orlova, Tetiana; Aßhoff, Sarah Jane; Yamaguchi, Tadatsugu; Katsonis, Nathalie; Brasselet, Etienne

    2015-07-01

    Topology is a universal concept that is encountered in daily life and is known to determine many static and dynamical properties of matter. Taming and controlling the topology of materials therefore constitutes a contemporary interdisciplinary challenge. Building on the controllable spatial properties of soft matter appears as a relevant strategy to address the challenge, in particular, because it may lead to paradigmatic model systems that allow checking theories experimentally. Here we report experimentally on a wealth of complex free-standing metastable topological architectures at the micron scale, in frustrated chiral nematic droplets. These results support recent works predicting the formation of free-standing knotted and linked disclination structures in confined chiral nematic fluids. We also demonstrate that various kinds of external fields (thermal, electrical and optical) can be used to achieve topological remote control. All this may foster the development of new devices based on topologically structured soft media.

  19. Gastroretentive Floating Microspheres of Silymarin: Preparation and ...

    African Journals Online (AJOL)

    Methods: Cellulose microspheres – formulated with hydroxylpropyl methylcellulose (HPMC) and ethyl cellulose (EC) – and Eudragit microspheres – formulated with Eudragit® S 100 (ES) and Eudragit® RL (ERL) - were prepared by an emulsion-solvent evaporation method. The floating microspheres were evaluated for flow ...

  20. Copper adsorption on magnetite-loaded chitosan microspheres: A kinetic and equilibrium study

    Energy Technology Data Exchange (ETDEWEB)

    Podzus, P.E., E-mail: ppodzus@gmail.com [Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, C1063ACV Buenos Aires (Argentina); Debandi, M.V. [Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, C1063ACV Buenos Aires (Argentina); Daraio, M.E., E-mail: medit@fi.uba.ar [Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, C1063ACV Buenos Aires (Argentina)

    2012-08-15

    A composite of Fe{sub 3}O{sub 4} nanoparticles and the biopolymer chitosan, chemically crosslinked, was prepared as microspheres and used to adsorb copper ions, which were chosen as a model of contaminant metal in water. The adsorption of copper on the magnetic microspheres was studied in a batch process, with different aqueous solutions of Cu (II) at concentrations ranging from 40 to 1100 ppm. Kinetic and equilibrium aspects of the adsorption process were studied. The time-dependent Cu (II) adsorption data were well described by a pseudo-second-order kinetic model. It was found that the equilibrium data follow the Langmuir isotherm, with a maximum adsorption capacity of around 500 mg Cu/g chitosan. The used microspheres were removed and after desorption the material was able to be reused as an adsorbent. The prepared microspheres proved efficient in the removal of copper ions through an adsorption process whose kinetic and equilibrium characteristics were analyzed.

  1. Copper adsorption on magnetite-loaded chitosan microspheres: A kinetic and equilibrium study

    International Nuclear Information System (INIS)

    Podzus, P.E.; Debandi, M.V.; Daraio, M.E.

    2012-01-01

    A composite of Fe 3 O 4 nanoparticles and the biopolymer chitosan, chemically crosslinked, was prepared as microspheres and used to adsorb copper ions, which were chosen as a model of contaminant metal in water. The adsorption of copper on the magnetic microspheres was studied in a batch process, with different aqueous solutions of Cu (II) at concentrations ranging from 40 to 1100 ppm. Kinetic and equilibrium aspects of the adsorption process were studied. The time-dependent Cu (II) adsorption data were well described by a pseudo-second-order kinetic model. It was found that the equilibrium data follow the Langmuir isotherm, with a maximum adsorption capacity of around 500 mg Cu/g chitosan. The used microspheres were removed and after desorption the material was able to be reused as an adsorbent. The prepared microspheres proved efficient in the removal of copper ions through an adsorption process whose kinetic and equilibrium characteristics were analyzed.

  2. Fabrication of core-shell Fe{sub 3}O{sub 4}@MIL-100(Fe) magnetic microspheres for the removal of Cr(VI) in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qingxiang, E-mail: qxyangzz@163.com; Zhao, Qianqian; Ren, ShuangShuang; Lu, Qiongqiong; Guo, Xinmeng; Chen, Zhijun, E-mail: chenzj@zzuli.edu.cn

    2016-12-15

    Facile regeneration of an adsorbent is very important for commercial feasibility. One typical highly porous metal-organic framework (MOF) materials based on MIL-100(Fe) and magnetic iron oxide particles (denoted as MMCs) with diameter about of 350 nm were successfully synthesized. The growth of MIL-100(Fe) shell on the surface of Fe{sub 3}O{sub 4} was utilized precursor as crystal seed via in-situ step hydrothermal reaction. It is a simple way to obtain well organized core-shell MOF composites, compared to the step-by-step method. MMCs were firstly used to uptake of Cr(VI) anions in aqueous solution. Adsorption experiments were carried out in batch sorption mode investigating with the factors of contact time (0–1000 min), pH (from 2 to 12), dose of adsorbent (4–25 mg), and initial Cr(VI) concentration (range from 10 to 100 ppm). - Graphical abstract: One typical highly porous metal-organic framework (MOF) materials based on MIL-100(Fe) and magnetic iron oxide particles (denoted as MMCs) were successfully synthesized. Utilizing Fe{sub 3}O{sub 4} precursor as crystal seed to grow MIL-100(Fe) shell by in-situ step hydrothermal reaction. It is a simple way to obtain core-shell MOF composites. MMCs could effectively uptake of Cr(VI) anions in aqueous solution. - Highlights: • Fe{sub 3}O{sub 4}@MIL-100(Fe) composites with core-shell structure were successfully prepared through a simple method. • The influence factors on Cr(VI) adsorption by Fe{sub 3}O{sub 4}@MIL-100(Fe) were investigated. • Cr(VI) can efficiently adsorbed by Fe{sub 3}O{sub 4}@MIL-100(Fe) composites from aqueous solution.

  3. Temperature influence in crystallinity of polymer microspheres

    International Nuclear Information System (INIS)

    Rezende, Cristiane de P.; Novack, Katia M.

    2011-01-01

    Drug delivery technology is evolving through the creation of new techniques of drug delivery effectively. The new methods used in drugs administration are based in microencapsulation process. Microsphere encapsulation modifies drug delivery bringing benefits and efficiency. In this work has been evaluated the influence of temperature in microspheres preparation. Microspheres were obtained by PMMA-co-PEG (COP) copolymer with indomethacin inserted in polymer matrix. Samples were characterized by SEM, DSC and XRD. SEM micrographs confirmed the formation of different sizes of microspheres and it was verified that higher temperatures make more crystalline microspheres. (author)

  4. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  5. Magnetic resonance imaging zygapophyseal joint space changes (gapping) in low back pain patients following spinal manipulation and side-posture positioning: a randomized controlled mechanisms trial with blinding.

    Science.gov (United States)

    Cramer, Gregory D; Cambron, Jerrilyn; Cantu, Joe A; Dexheimer, Jennifer M; Pocius, Judith D; Gregerson, Douglas; Fergus, Michael; McKinnis, Ray; Grieve, Thomas J

    2013-05-01

    The purpose of this study was to quantify lumbar zygapophyseal (Z) joint space separation (gapping) in low back pain (LBP) subjects after spinal manipulative therapy (SMT) or side-posture positioning (SPP). This was a controlled mechanisms trial with randomization and blinding. Acute LBP subjects (N = 112; four n = 28 magnetic resonance imaging [MRI] protocol groups) had 2 MRI appointments (initial enrollment and after 2 weeks of chiropractic treatment, receiving 2 MRI scans of the L4/L5 and L5/S1 Z joints at each MRI appointment. After the first MRI scan of each appointment, subjects were randomized (initial enrollment appointment) or assigned (after 2 weeks of chiropractic treatment appointment) into SPP (nonmanipulation), SMT (manipulation), or control MRI protocol groups. After SPP or SMT, a second MRI was taken. The central anterior-posterior joint space was measured. Difference between most painful side anterior-posterior measurements taken postintervention and preintervention was the Z joint "gapping difference." Gapping differences were compared (analysis of variance) among protocol groups. Secondary measures of pain (visual analog scale, verbal numeric pain rating scale) and function (Bournemouth questionnaire) were assessed. Gapping differences were significant at the first (adjusted, P = .009; SPP, 0.66 ± 0.48 mm; SMT, 0.23 ± 0.86; control, 0.18 ± 0.71) and second (adjusted, P = .0005; SPP, 0.65 ± 0.92 mm; SMT, 0.89 ± 0.71; control, 0.35 ± 0.32) MRI appointments. Verbal numeric pain rating scale differences were significant at first MRI appointment (P = .04) with SMT showing the greatest improvement. Visual analog scale and Bournemouth questionnaire improved after 2 weeks of care in all groups (both P posture positioning showed greatest gapping at baseline. After 2 weeks, SMT resulted in greatest gapping. Side-posture positioning appeared to have additive therapeutic benefit to SMT. Copyright © 2013 National University of Health Sciences

  6. Manipulatives Work!

    Science.gov (United States)

    Moch, Peggy L.

    2001-01-01

    Fifth graders (n=16) engaged in manipulative activities to improve their grasp of math concepts; one-third were identified as exceptional children. Posttest results after 12 lessons showed the overall class average increased from 49% to 59% and all areas improved compared to pretest scores. Attitude changes were also apparent. (Contains 24…

  7. Development of Risperidone PLGA Microspheres

    Directory of Open Access Journals (Sweden)

    Susan D’Souza

    2014-01-01

    Full Text Available The aim of this study was to design and evaluate biodegradable PLGA microspheres for sustained delivery of Risperidone, with an eventual goal of avoiding combination therapy for the treatment of schizophrenia. Two PLGA copolymers (50 : 50 and 75 : 25 were used to prepare four microsphere formulations of Risperidone. The microspheres were characterized by several in vitro techniques. In vivo studies in male Sprague-Dawley rats at 20 and 40 mg/kg doses revealed that all formulations exhibited an initial burst followed by sustained release of the active moiety. Additionally, formulations prepared with 50 : 50 PLGA had a shorter duration of action and lower cumulative AUC levels than the 75 : 25 PLGA microspheres. A simulation of multiple dosing at weekly or 15-day regimen revealed pulsatile behavior for all formulations with steady state being achieved by the second dose. Overall, the clinical use of Formulations A, B, C, or D will eliminate the need for combination oral therapy and reduce time to achieve steady state, with a smaller washout period upon cessation of therapy. Results of this study prove the suitability of using PLGA copolymers of varying composition and molecular weight to develop sustained release formulations that can tailor in vivo behavior and enhance pharmacological effectiveness of the drug.

  8. Observing dynamics of chromatin fibers in Xenopus egg extracts by single DNA manipulation using a transverse magnetic tweezer setup

    Science.gov (United States)

    Yan, Jie; Skoko, Dunja; Marko, John; Maresca, Tom; Heald, Rebecca

    2005-03-01

    We have studied assembly of chromatin on single DNAs using Xenopus egg extracts and a specially designed magnetic tweezer setup which generates controlled force in the focal plane of the objective, allowing us to visualize and measure DNA extension under a wide range of constant tensions. We found, in the absence of ATP, interphase extracts assembled nucleosomes against DNA tensions of up to 3.5 piconewtons (pN). We observed force-induced disassembly and opening-closing fluctuations indicating our experiments were in mechano-chemical equilibrium. We found that the ATP-depleted reaction can do mechanical work of 27 kcal/mol per nucleosome, providing a measurement of the free energy difference between core histone octamers on and off DNA. Addition of ATP leads to highly dynamic behavior: time courses show processive runs of assembly and disassembly of not observed in the -ATP case, with forces of 2 pN leading to nearly complete fiber disassembly. Our study shows that ATP hydrolysis plays a major role in nucleosome rearrangement and removal, and suggests that chromatin in vivo may be subject to continual assembly and disassembly.

  9. Coherent inflation for large quantum superpositions of levitated microspheres

    Science.gov (United States)

    Romero-Isart, Oriol

    2017-12-01

    We show that coherent inflation (CI), namely quantum dynamics generated by inverted conservative potentials acting on the center of mass of a massive object, is an enabling tool to prepare large spatial quantum superpositions in a double-slit experiment. Combined with cryogenic, extreme high vacuum, and low-vibration environments, we argue that it is experimentally feasible to exploit CI to prepare the center of mass of a micrometer-sized object in a spatial quantum superposition comparable to its size. In such a hitherto unexplored parameter regime gravitationally-induced decoherence could be unambiguously falsified. We present a protocol to implement CI in a double-slit experiment by letting a levitated microsphere traverse a static potential landscape. Such a protocol could be experimentally implemented with an all-magnetic scheme using superconducting microspheres.

  10. Preparing microspheres of actinide nitrides from carbon containing oxide sols

    International Nuclear Information System (INIS)

    Triggiani, L.V.

    1975-01-01

    A process is given for preparing uranium nitride, uranium oxynitride, and uranium carboxynitride microspheres and the microspheres as compositions of matter. The microspheres are prepared from carbide sols by reduction and nitriding steps. (Official Gazette)

  11. Currency Manipulation

    OpenAIRE

    Weithing Zhang; Thomas Mertens; Tarek Hassan

    2014-01-01

    Many central banks manage the stochastic behavior of their currencies' exchange rates by imposing pegs relative to a target currency. We study the effects of such currency manipulation in a multi-country model of exchange rate determination with endogenous capital accumulation. We find that the imposition of an exchange rate peg relative to a given target currency increases the volatility of consumption in the target country and decreases the volatility of the target currency's exchange rate ...

  12. Hydraulic manipulator

    International Nuclear Information System (INIS)

    Sinha, A.K.; Srikrishnamurty, G.

    1990-01-01

    Successful operation of nuclear plant is largely dependent on safe handling of radio-active material. In order to reduce this handling problem and minimise the exposure of radiation, various handling equipment and manipulators have been developed according to the requirements. Manufacture of nuclear fuel, which is the most important part of the nuclear industry, involves handling of uranium ingots weighing approximately 250 kg. This paper describes a specially designed hydraulic manipulator for handling of the ingots in a limited space. It was designed to grab and handle the ingots in any position. This has following drive motions: (1)gripping and releasing, (2)lifting and lowering (z-motion), (3)rotation about the horizontal axis (azimuth drive), (4)rotation about the job axis, and (5)rotation about the vertical axis. For horizontal motion (X and Y axis motion) this equipment is mounted on a motorised trolley, so that it can move inside the workshop. For all drives except the rotation about the job axis, hydraulic cylinders have been used with a battery operated power pack. Trolley drive is also given power from same battery. This paper describes the design aspects of this manipulator. (author). 4 figs

  13. A facile approach to fabricate of photothermal functional Fe{sub 3}O{sub 4}@CuS microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Baolong; Shan, Yan, E-mail: shanyan@qust.edu.cn; Chen, Kezheng, E-mail: kchen@qust.edu.cn

    2017-06-01

    Photothermal functional Fe{sub 3}O{sub 4}@CuS microspheres have been prepared successfully by a simple chemical deposition method. The adsorption of cetyltrimethyl-ammonium bromide (CTAB) on the magnetic microspheres plays an important role in forming the structure of the composites. The present materials are characterized with XRD, TEM, SEM, FTIR, and UV-VIS-NIR spectrophotometer. The results show that Fe{sub 3}O{sub 4} microspheres are coated by CuS layer with thickness of 10 nm. The saturation magnetization value of Fe{sub 3}O{sub 4}@CuS core-shell microspheres is 27 emu/g at room temperature and the sample possesses excellent magnetic response in the presence of applied magnetic field. Moreover, these microspheres exhibit good dispersion, suitable size and significant photothermal conversion efficiency up to 20.7% at 808 nm laser irradiation. Fluctuation value of the highest temperature of Fe{sub 3}O{sub 4}@CuS dispersion over four times LASER ON/OFF indicates that photothermal stability of Fe{sub 3}O{sub 4}@CuS microspheres is good. - Highlights: • The Fe{sub 3}O{sub 4} microspheres have been coated with CuS and the thickness of CuS layer is about 10 nm. • The Fe{sub 3}O{sub 4}@CuS microspheres are ferromagnetism, and possess good photothermal conversion efficiency and photostability. • The materials have great potential application for photothermal therapy.

  14. Chitosan Microspheres as Radiolabeled Delivery Devices

    International Nuclear Information System (INIS)

    Permtermsin, Chalermsin; Ngamprayad, Tippanan; Phumkhem, Sudkanung; Srinuttrakul, Wannee; Kewsuwan, Prartana

    2007-08-01

    Full text: This study optimized conditions for preparing, characterizing, radiolabeled of chitosan microspheres and the biodistribution of 99mTc-Chitosan microspheres after intravenous administration. Particle size distribution of the microspheres was determined by light scattering. Zeta potential was studied by dynamic light scattering and electrophoresis technique. Biodistribution studies were performed by radiolabeling using 99mTc. The results shown that geometric mean diameter of the microspheres was found to be 77.26?1.96 ?m. Microsphere surface charge of chitosan microspheres was positive charge and zeta potential was 25.80 ? 0.46 mV. The labeling efficiency for this condition was more than 95% and under this condition was stable for at least 6 h. Radioactivity

  15. In vitro Evaluation of Nateglinide-Loaded Microspheres Formulated ...

    African Journals Online (AJOL)

    Keywords: Nateglinide, Microspheres, Micromeritics, Drug release, Ionic ... Oral drug delivery systems (DDS) are commonly divided into immediate release and modified release systems. ..... Albumin Microspheres for Potential Intramuscular.

  16. Evaluation of radiolabelled microspheres as digesta markers

    International Nuclear Information System (INIS)

    Young, B.A.; Turner, B.V.; Dixon, A.E.; Exley, D.M.; Young, S.B.; Abidin, Z.

    1991-01-01

    The suitability of microspheres as markers for measuring digesta kinetics in sheep was examined. Microspheres offer advantages of uniformity of size and density, and stability during passage through the gastrointestinal tract. They are commercially available labelled with the choice of one of eleven different radionuclides and can be easily measured in digesta and faecal material. Tests comparing several types of digesta markers gave different measures of kinetic parameters when the measurements were made concurrently in the same sheep. However, concurrent measurements derived from use of microspheres were consistent. Microspheres offer a new alternative for digestive studies. (author). 19 refs, 4 tabs

  17. Multiplex detection of plant pathogens using a microsphere immunoassay technology.

    Directory of Open Access Journals (Sweden)

    Ratthaphol Charlermroj

    Full Text Available Plant pathogens are a serious problem for seed export, plant disease control and plant quarantine. Rapid and accurate screening tests are urgently required to protect and prevent plant diseases spreading worldwide. A novel multiplex detection method was developed based on microsphere immunoassays to simultaneously detect four important plant pathogens: a fruit blotch bacterium Acidovorax avenae subsp. citrulli (Aac, chilli vein-banding mottle virus (CVbMV, potyvirus, watermelon silver mottle virus (WSMoV, tospovirus serogroup IV and melon yellow spot virus (MYSV, tospovirus. An antibody for each plant pathogen was linked on a fluorescence-coded magnetic microsphere set which was used to capture corresponding pathogen. The presence of pathogens was detected by R-phycoerythrin (RPE-labeled antibodies specific to the pathogens. The assay conditions were optimized by identifying appropriate antibody pairs, blocking buffer, concentration of RPE-labeled antibodies and assay time. Once conditions were optimized, the assay was able to detect all four plant pathogens precisely and accurately with substantially higher sensitivity than enzyme-linked immunosorbent assay (ELISA when spiked in buffer and in healthy watermelon leaf extract. The assay time of the microsphere immunoassay (1 hour was much shorter than that of ELISA (4 hours. This system was also shown to be capable of detecting the pathogens in naturally infected plant samples and is a major advancement in plant pathogen detection.

  18. Multiplex detection of plant pathogens using a microsphere immunoassay technology.

    Science.gov (United States)

    Charlermroj, Ratthaphol; Himananto, Orawan; Seepiban, Channarong; Kumpoosiri, Mallika; Warin, Nuchnard; Oplatowska, Michalina; Gajanandana, Oraprapai; Grant, Irene R; Karoonuthaisiri, Nitsara; Elliott, Christopher T

    2013-01-01

    Plant pathogens are a serious problem for seed export, plant disease control and plant quarantine. Rapid and accurate screening tests are urgently required to protect and prevent plant diseases spreading worldwide. A novel multiplex detection method was developed based on microsphere immunoassays to simultaneously detect four important plant pathogens: a fruit blotch bacterium Acidovorax avenae subsp. citrulli (Aac), chilli vein-banding mottle virus (CVbMV, potyvirus), watermelon silver mottle virus (WSMoV, tospovirus serogroup IV) and melon yellow spot virus (MYSV, tospovirus). An antibody for each plant pathogen was linked on a fluorescence-coded magnetic microsphere set which was used to capture corresponding pathogen. The presence of pathogens was detected by R-phycoerythrin (RPE)-labeled antibodies specific to the pathogens. The assay conditions were optimized by identifying appropriate antibody pairs, blocking buffer, concentration of RPE-labeled antibodies and assay time. Once conditions were optimized, the assay was able to detect all four plant pathogens precisely and accurately with substantially higher sensitivity than enzyme-linked immunosorbent assay (ELISA) when spiked in buffer and in healthy watermelon leaf extract. The assay time of the microsphere immunoassay (1 hour) was much shorter than that of ELISA (4 hours). This system was also shown to be capable of detecting the pathogens in naturally infected plant samples and is a major advancement in plant pathogen detection.

  19. Glass microspheres for medical applications

    Science.gov (United States)

    Conzone, Samuel David

    Radioactive dysprosium lithium borate glass microspheres have been developed as biodegradable radiation delivery vehicles for the radiation synovectomy treatment of rheumatoid arthritis. Once injected into a diseased joint, the microspheres deliver a potent dose of radiation to the diseased tissue, while a non-uniform chemical reaction converts the glass into an amorphous, porous, hydrated dysprosium phosphate reaction product. The non-radioactive, lithium-borate component is dissolved from the glass (up to 94% weight loss), while the radioactive 165Dy reacts with phosphate anions in the body fluids, and becomes "chemically" trapped in a solid, dysprosium phosphate reaction product that has the same size as the un-reacted glass microsphere. Ethylene diamine tetraacetate (EDTA) chelation therapy can be used to dissolve the dysprosium phosphate reaction product after the radiation delivery has subsided. The dysprosium phosphate reaction product, which formed in vivo in the joint of a Sprague-Dawley rat, was dissolved by EDTA chelation therapy in 100 Gy) of localized beta radiation to a treatment site within the body, followed by complete biodegradability. The non-uniform reaction process is a desirable characteristic for a biodegradable radiation delivery vehicle, but it is also a novel material synthesis technique that can convert a glass to a highly porous materials with widely varying chemical composition by simple, low-temperature, glass/solution reaction. The reaction product formed by nonuniform reaction occupies the same volume as the un-reacted glass, and after drying for 1 h at 300°C, has a specific surface area of ≈200 m2/g, a pore size of ≈30 nm, and a nominal crushing strength of ≈10 MPa. Finally, rhenium glass microspheres, composed of micron-sized, metallic rhenium particles dispersed within a magnesium alumino borate glass matrix were produced by sintering ReO2 powder and glass frit at 1050°C. A 50 mg injection of radioactive rhenium glass

  20. Microsphere estimates of blood flow: Methodological considerations

    International Nuclear Information System (INIS)

    von Ritter, C.; Hinder, R.A.; Womack, W.; Bauerfeind, P.; Fimmel, C.J.; Kvietys, P.R.; Granger, D.N.; Blum, A.L.

    1988-01-01

    The microsphere technique is a standard method for measuring blood flow in experimental animals. Sporadic reports have appeared outlining the limitations of this method. In this study the authors have systematically assessed the effect of blood withdrawals for reference sampling, microsphere numbers, and anesthesia on blood flow estimates using radioactive microspheres in dogs. Experiments were performed on 18 conscious and 12 anesthetized dogs. Four blood flow estimates were performed over 120 min using 1 x 10 6 microspheres each time. The effects of excessive numbers of microspheres pentobarbital sodium anesthesia, and replacement of volume loss for reference samples with dextran 70 were assessed. In both conscious and anesthetized dogs a progressive decrease in gastric mucosal blood flow and cardiac output was observed over 120 min. This was also observed in the pancreas in conscious dogs. The major factor responsible for these changes was the volume loss due to the reference sample withdrawals. Replacement of the withdrawn blood with dextran 70 led to stable blood flows to all organs. The injection of excessive numbers of microspheres did not modify hemodynamics to a greater extent than did the injection of 4 million microspheres. Anesthesia exerted no influence on blood flow other than raising coronary flow. The authors conclude that although blood flow to the gastric mucosa and the pancreas is sensitive to the minor hemodynamic changes associated with the microsphere technique, replacement of volume loss for reference samples ensures stable blood flow to all organs over a 120-min period

  1. Thermal analysis of iron hydroxide microspheres

    International Nuclear Information System (INIS)

    Turcanu, C.N.; Cornescu, M.

    1979-03-01

    The thermal treatment is an important step in the preparative technology of the iron oxids microspheres with well established mechanical, physical and chemical characteristics. The first indications on the heating procedure have been obtained from the thermal analysis on iron hydroxide microspheres prepared by the support precipitation and internal gelification methods. (author)

  2. Encapsulated PDMS microspheres with reactive handles

    DEFF Research Database (Denmark)

    Gonzalez, Lidia; Ma, Baoguang; Li, Li

    2014-01-01

    , cured PDMS microspheres are coated with poly(methyl methacrylate) using a chemical process (solvent evaporation technique). Three solvents are used in three different experiments: dichloromethane, tetrahydrofuran, and acetone. The composition and morphology of the cured PDMS microspheres and PMMA coated...

  3. Microencapsulation and microspheres for food applications

    NARCIS (Netherlands)

    Sagis, L.M.C.

    2015-01-01

    This book provides an update on the latest developments, challenges, and opportunities in the highly expanding field of microencapsulation and microspheres for food applications, examining the various types of microspheres and microcapsules essential to those who need to develop stable and

  4. U3O8 microspheres sintering kinetics

    International Nuclear Information System (INIS)

    Godoy, A.L.E.

    1986-01-01

    U 3 O 8 microspheres sintering kinetics was determined using a hot-stage optical microscopy apparatus, able to reach temperature up to 1350 0 C in controlled atmospheres. The sintered material had its microstructure analysed by optical and electron microscopy. The microspheres were characterized initialy utilizing X-ray diffractometry and thermogravimetry. The equation which describes the microspheres shrinkage in function of the time was obtained using finite difference analysis X-ray diffractometry indicated hexagonal structure for the microspheres main starting material, ammonium diuranate thermogravimetric analysis showed reduction of this material to U 3 O 8 at 600 0 C. Ceramography results showed 5 hours sintered microspheres grain sizes G vary with the temperature. Sintered U 3 O 8 micrographs compared with published results for UO 2 , indicate similar homogeneity microstructural characteristics and suggest the processed micorspheres to be potentially useful as nuclear fuels. (Author) [pt

  5. Preparation of hydroxypropyl cyclosophoraose/dextran microspheres for the controlled release of ciprofloxacin

    International Nuclear Information System (INIS)

    Lee, Benel; Jeong, Da Ham; Joo, Sang Woo; Choi, Jae Min; Jung, Seung Ho; Cho, Eun Na; Lee, Jae Yung; Park, Se Yeon

    2016-01-01

    Hydroxypropyl cyclosophoraose/dextran (HPCys/dextran) microspheres were prepared using an emulsion polymerization method for use as drug carriers to achieve the controlled release of a poorly water-soluble antibacterial drug, ciprofloxacin (CFX). Cyclosophoraoses are cyclic (1 → 2)-β-d-glucans isolated from the Rhizobium species. Characteristics of HPCys/dextran microspheres were investigated using Fourier transform infrared analysis, solid-state 13C nuclear magnetic resonance spectroscopy, and field emission scanning electron microscopy. The amount of CFX released from these microspheres at pH 7.4 (intestinal phase pH) was about two times higher than that released at pH 1.2 (gastric phase pH). Furthermore, HPCys/dextran microspheres did not show any toxicity in human embryonic kidney cells. We propose that HPCys/dextran microspheres could be used as an effective pH-dependent release system for poorly water-soluble drugs such as CFX

  6. Preparation of hydroxypropyl cyclosophoraose/dextran microspheres for the controlled release of ciprofloxacin

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Benel; Jeong, Da Ham; Joo, Sang Woo; Choi, Jae Min; Jung, Seung Ho; Cho, Eun Na [Center for Biotechnology Research in UBITA (CBRU), Konkuk University, Seoul (Korea, Republic of); Lee, Jae Yung [Dept. Biological Science, Mokpo National University, Mokpo (Korea, Republic of); Park, Se Yeon [Dept. Applied Chemistry, Dongduk Women' s University, Seoul (Korea, Republic of)

    2016-12-15

    Hydroxypropyl cyclosophoraose/dextran (HPCys/dextran) microspheres were prepared using an emulsion polymerization method for use as drug carriers to achieve the controlled release of a poorly water-soluble antibacterial drug, ciprofloxacin (CFX). Cyclosophoraoses are cyclic (1 → 2)-β-d-glucans isolated from the Rhizobium species. Characteristics of HPCys/dextran microspheres were investigated using Fourier transform infrared analysis, solid-state 13C nuclear magnetic resonance spectroscopy, and field emission scanning electron microscopy. The amount of CFX released from these microspheres at pH 7.4 (intestinal phase pH) was about two times higher than that released at pH 1.2 (gastric phase pH). Furthermore, HPCys/dextran microspheres did not show any toxicity in human embryonic kidney cells. We propose that HPCys/dextran microspheres could be used as an effective pH-dependent release system for poorly water-soluble drugs such as CFX.

  7. Progress in Preparation of Monodisperse Polymer Microspheres

    Science.gov (United States)

    Zhang, Hongyan

    2017-12-01

    The monodisperse crosslinked polymer microspheres have attracted much attention because of their superior thermal and solvent resistance, mechanical strength, surface activity and adsorption properties. They are of wide prospects for using in many fields such as biomedicine, electronic science, information technology, analytical chemistry, standard measurement and environment protection etc. Functional polymer microspheres prepared by different methods have the outstanding surface property, quantum size effect and good potential future in applications with its designable structure, controlled size and large ratio of surface to volume. Scholars of all over the world have focused on this hot topic. The preparation method and research progress in functional polymer microspheres are addressed in the paper.

  8. Strain and electric field mediated manipulation of magnetism in La{sub (1-x)}Sr{sub x}MnO{sub 3}/BaTiO{sub 3} heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Markus

    2016-07-01

    Heterostructures of ferromagnetic La{sub 1-x}Sr{sub x}MnO{sub 3} (LSMO) and ferroelectric BaTiO{sub 3} (BTO) were produced and investigated for their structural and magnetic properties. The combination of these ferroic properties can lead to an artificial multiferroic. Special emphasis was given to the manipulation of magnetic properties by applying electric fields. A magneto-electric coupling could be observed in the heterostructures under investigation. Epitaxial LSMO thin films were grown on BTO substrates using a state-of-the-art oxide molecular beam epitaxy (OMBE) and a high oxygen sputtering system (HOPSS). Stoichiometric La{sub 1-x}Sr{sub x}MnO{sub 3} films with doping levels of x=0.5 and x=0.3 were produced. The film quality in terms of roughness and crystalline structure was confirmed by X-ray scattering methods. The presence of structural domains in the BaTiO{sub 3} single crystal substrate, whose proportion could be altered due to the application of electric fields, was shown by X-ray diffraction. Tensile strain is induced into the epitaxial La{sub 1-x}Sr{sub x}MnO{sub 3} films in the whole temperature range under investigation. The magnetization of LSMO alteres by the variation of strain induced into the film, generated by the different structural phases of single crystal BaTiO{sub 3} substrates. The magnetization shows sharp steps at the structural phase transition temperatures of BTO. The evaluation of magnetic hysteresis loops reveals a change of the magnetic anisotropy of LSMO for each structural phase of BTO, but also within the orthorhombic phase. Special focus was given to the manipulation of magnetic properties by the application of electric fields. A newly established measurement option was used to determine the magnetic response to an applied electric field as a function of temperature and magnetic field. The electrically induced modification of the magnetization is profound near the structural phase transition temperatures. Electrical

  9. Applications of optical manipulation in plant biology

    Science.gov (United States)

    Buer, Charles S.

    Measuring small forces in biology is important for determining basic physiological parameters of a cell. The plant cell wall provides a primary defense and presents a barrier to research. Magnitudes of small forces are impossible to measure with mechanical transducers, glass needles, atomic force microscopy, or micropipet-based force transduction due to the cell wall. Therefore, a noninvasive method of breaching the plant cell wall to access the symplastic region of the cell is required. Laser light provides sub-micrometer positioning, particle manipulation without mechanical contact, and piconewton force determination. Consequently, the extension of laser microsurgery to expand an experimental tool for plant biology encompassed the overall objective. A protocol was developed for precisely inserting microscopic objects into the periplasmic region of plant callus cells using laser microsurgery. Ginkgo biloba and Agrobacterium rhizogenes were used as the model system for developing the optical tweezers and scalpel techniques. Better than 95% survival was achieved after plasmolyzing G. biloba cells, ablating a 2-4 μm hole through the cell wall using a pulsed UV laser beam, trapping and manipulating bacteria into the periplasmic region, and deplasmolyzing the cells. Optical trapping experiments implied a difference existed between the bacteria models. Determining the optical trapping efficiency of Agrobacterium rhizogenes and A. tumefaciens strains indicated the A. rhizogenes strain, ATCC 11325, was significantly less efficiently trapped than strains A4 and ATCC 15834 and the A. tumefaciens strain LBA4404. Differences were also found in capsule generation, growth media viscosity, and transmission electron microscopy negative staining implying that a difference in surface structure exists. Calcofluor fluorescence suggests the difference involves an exopolysaccharide. Callus cell plasmolysis revealed Hechtian strands interconnecting the plasma membrane and the cell wall

  10. Evaluation of Controlled Release Theophylline Microspheres ...

    African Journals Online (AJOL)

    Erah

    High drug/polymer ratio, low processing temperature and low HLB value of ... Keywords: Microsphere, Emulsion solvent evaporation, Theophylline, Temperature, ... evaporation, stirring rate, viscosity of ... organic solvent is removed from the.

  11. PLGA/alginate composite microspheres for hydrophilic protein delivery

    International Nuclear Information System (INIS)

    Zhai, Peng; Chen, X.B.; Schreyer, David J.

    2015-01-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate. - Highlights: • A double emulsion technique is used to prepare protein-loaded PLGA or PLGA/alginate microspheres. • PLGA, alginate and protein are distributed evenly within microsphere structure. • Addition of alginate improves loading efficiency and slows degradation and protein release. • PLGA/alginate microspheres have favorable biocompatibility

  12. PLGA/alginate composite microspheres for hydrophilic protein delivery

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Peng [Department of Anatomy and Cell Biology, University of Saskatchewan, S7N5E5 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada); Chen, X.B. [Department of Mechanical Engineering, University of Saskatchewan, S7N5A9 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada); Schreyer, David J., E-mail: david.schreyer@usask.ca [Department of Anatomy and Cell Biology, University of Saskatchewan, S7N5E5 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada)

    2015-11-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate. - Highlights: • A double emulsion technique is used to prepare protein-loaded PLGA or PLGA/alginate microspheres. • PLGA, alginate and protein are distributed evenly within microsphere structure. • Addition of alginate improves loading efficiency and slows degradation and protein release. • PLGA/alginate microspheres have favorable biocompatibility.

  13. Generation and manipulation of monodispersed ferrofluid emulsions: the effect of a uniform magnetic field in flow-focusing and T-junction configurations.

    Science.gov (United States)

    Tan, Say Hwa; Nguyen, Nam-Trung

    2011-09-01

    This paper demonstrates the use of magnetically controlled microfluidic devices to produce monodispersed ferrofluid emulsions. By applying a uniform magnetic field on flow-focusing and T-junction configurations, the size of the ferrofluid emulsions can be actively controlled. The influences of the flow rates, the orientation, and the polarity of the magnetic field on the size of ferrofluid emulsions produced in both flow-focusing and T-junction configurations are compared and discussed.

  14. DEGRADATION AND INTRAHEPATIC COMPATIBILITY OF ALBUMIN-HEPARIN CONJUGATE MICROSPHERES

    NARCIS (Netherlands)

    CREMERS, HFM; WOLF, RFE; BLAAUW, EH; SCHAKENRAAD, JM; LAM, KH; NIEUWENHUIS, P; VERRIJK, R; KWON, G; BAE, YH; KIM, SW; FEIJEN, J

    The in vitro degradation properties of glutaraldehyde cross-linked albumin and albumin-heparin conjugate microspheres (AMS and AHCMS respectively) were evaluated using light microscopy, turbidity measurements and heparin release determinations, showing that the microspheres are degraded by

  15. Mapping of the Underlying Neural Mechanisms of Maintenance and Manipulation in Visuo-Spatial Working Memory Using An n-back Mental Rotation Task: A Functional Magnetic Resonance Imaging Study.

    Science.gov (United States)

    Lamp, Gemma; Alexander, Bonnie; Laycock, Robin; Crewther, David P; Crewther, Sheila G

    2016-01-01

    Mapping of the underlying neural mechanisms of visuo-spatial working memory (WM) has been shown to consistently elicit activity in right hemisphere dominant fronto-parietal networks. However to date, the bulk of neuroimaging literature has focused largely on the maintenance aspect of visuo-spatial WM, with a scarcity of research into the aspects of WM involving manipulation of information. Thus, this study aimed to compare maintenance-only with maintenance and manipulation of visuo-spatial stimuli (3D cube shapes) utilizing a 1-back task while functional magnetic resonance imaging (fMRI) scans were acquired. Sixteen healthy participants (9 women, M = 23.94 years, SD = 2.49) were required to perform the 1-back task with or without mentally rotating the shapes 90° on a vertical axis. When no rotation was required (maintenance-only condition), a right hemispheric lateralization was revealed across fronto-parietal areas. However, when the task involved maintaining and manipulating the same stimuli through 90° rotation, activation was primarily seen in the bilateral parietal lobe and left fusiform gyrus. The findings confirm that the well-established right lateralized fronto-parietal networks are likely to underlie simple maintenance of visuo-spatial stimuli. The results also suggest that the added demand of manipulation of information maintained online appears to require further neural recruitment of functionally related areas. In particular mental rotation of visuospatial stimuli required bilateral parietal areas, and the left fusiform gyrus potentially to maintain a categorical or object representation. It can be concluded that WM is a complex neural process involving the interaction of an increasingly large network.

  16. Biocompatibility of Polyhydroxybutyrate Microspheres: in vitro and in vivo Evaluation

    OpenAIRE

    Shishatskaya, Ekaterina I.; Voinova, Olga N.; Goreva, Anastasya V.; Mogilnaya, Olga A.; Volova, Tatiana G.

    2008-01-01

    Microspheres have been prepared from the resorbable linear polyester of β-hydroxybutyric acid (polyhydroxybutyrate, PHB) by the solvent evaporation technique and investigated in vitro and in vivo. Biocompatibility of the microspheres has been proved in tests in the culture of mouse fibroblast cell line NIH 3Т3 and in experiments on intramuscular implantation of the microspheres to Wistar rats for 3 months. Tissue response to the implantation of polymeric microspheres has been found to consist...

  17. Preparation and Characterization of Sugar Cane Wax Microspheres ...

    African Journals Online (AJOL)

    ... and characterize indomethacin (IM) microspheres prepared with sugar cane wax microsperes. Methods: Microspheres were prepared by melt-emulsified dispersion and cooling-induced solidification method. The microspheres were characterized by scanning electron microscopy (SEM) and differntial scanning calorimetry ...

  18. Preparation of polymer microspheres by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Naka, Y.; Yamamoto, Y.; Yoshida, Y.; Tagawa, S.

    1995-01-01

    Cross-liking monomer, diethylene glycol dimethacrylate gives microspheres from organic solution by radiation-induced polymerization. /One of the remarkable result is that the number of the microspheres is not changing during the polymerization. Ethyl methacrylate, maleic anhydride, styrene and acrylamide are used as comonomers. These comonomers give the microspheres in the range of 0 to 0.4 as mol fractions. (author)

  19. Manipulation of isolated brain nerve terminals by an external magnetic field using D-mannose-coated γ-Fe2O3 nano-sized particles and assessment of their effects on glutamate transport.

    Science.gov (United States)

    Borisova, Tatiana; Krisanova, Natalia; Borуsov, Arsenii; Sivko, Roman; Ostapchenko, Ludmila; Babic, Michal; Horak, Daniel

    2014-01-01

    The manipulation of brain nerve terminals by an external magnetic field promises breakthroughs in nano-neurotechnology. D-Mannose-coated superparamagnetic nanoparticles were synthesized by coprecipitation of Fe(II) and Fe(III) salts followed by oxidation with sodium hypochlorite and addition of D-mannose. Effects of D-mannose-coated superparamagnetic maghemite (γ-Fe2O3) nanoparticles on key characteristics of the glutamatergic neurotransmission were analysed. Using radiolabeled L-[(14)C]glutamate, it was shown that D-mannose-coated γ-Fe2O3 nanoparticles did not affect high-affinity Na(+)-dependent uptake, tonic release and the extracellular level of L-[(14)C]glutamate in isolated rat brain nerve terminals (synaptosomes). Also, the membrane potential of synaptosomes and acidification of synaptic vesicles was not changed as a result of the application of D-mannose-coated γ-Fe2O3 nanoparticles. This was demonstrated with the potential-sensitive fluorescent dye rhodamine 6G and the pH-sensitive dye acridine orange. The study also focused on the analysis of the potential use of these nanoparticles for manipulation of nerve terminals by an external magnetic field. It was shown that more than 84.3 ± 5.0% of L-[(14)C]glutamate-loaded synaptosomes (1 mg of protein/mL) incubated for 5 min with D-mannose-coated γ-Fe2O3 nanoparticles (250 µg/mL) moved to an area, in which the magnet (250 mT, gradient 5.5 Т/m) was applied compared to 33.5 ± 3.0% of the control and 48.6 ± 3.0% of samples that were treated with uncoated nanoparticles. Therefore, isolated brain nerve terminals can be easily manipulated by an external magnetic field using D-mannose-coated γ-Fe2O3 nanoparticles, while the key characteristics of glutamatergic neurotransmission are not affected. In other words, functionally active synaptosomes labeled with D-mannose-coated γ-Fe2O3 nanoparticles were obtained.

  20. Flexible Microsphere-Embedded Film for Microsphere-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Xing, Cheng; Yan, Yinzhou; Feng, Chao; Xu, Jiayu; Dong, Peng; Guan, Wei; Zeng, Yong; Zhao, Yan; Jiang, Yijian

    2017-09-27

    Dielectric microspheres with extraordinary microscale optical properties, such as photonic nanojets, optical whispering-gallery modes (WGMs), and directional antennas, have drawn interest in many research fields. Microsphere-enhanced Raman spectroscopy (MERS) is an alternative approach for enhanced Raman detection by dielectric microstructures. Unfortunately, fabrication of microsphere monolayer arrays is the major challenge of MERS for practical applications on various specimen surfaces. Here we report a microsphere-embedded film (MF) by immersing a highly refractive microsphere monolayer array in the poly(dimethylsiloxane) (PDMS) film as a flexible MERS sensing platform for one- to three-dimensional (1D to 3D) specimen surfaces. The directional antennas and wave-guided whispering-gallery modes (WG-WGMs) contribute to the majority of Raman enhancement by the MFs. Moreover, the MF can be coupled with surface-enhanced Raman spectroscopy (SERS) to provide an extra >10-fold enhancement. The limit of detection is therefore improved for sensing of crystal violet (CV) and Sudan I molecules in aqueous solutions at concentrations down to 10 -7 M. A hybrid dual-layer microsphere enhancer, constructed by depositing a MF onto a microsphere monolayer array, is also demonstrated, wherein the WG-WGMs become dominant and boost the enhancement ratio >50-fold. The present work opens up new opportunities for design of cost-effective and flexible MERS sensing platforms as individual or associated techniques toward practical applications in ultrasensitive Raman detection.

  1. Enhanced microwave absorption properties of MnO{sub 2} hollow microspheres consisted of MnO{sub 2} nanoribbons synthesized by a facile hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan; Han, Bingqian; Chen, Nan; Deng, Dongyang; Guan, Hongtao [Department of Materials Science and Engineering, Yunnan University, 650091, Kunming (China); Wang, Yude, E-mail: ydwang@ynu.edu.cn [Department of Materials Science and Engineering, Yunnan University, 650091, Kunming (China); Yunnan Province Key Lab of Micro-Nano Materials and Technology, Yunnan University, 650091, Kunming (China)

    2016-08-15

    MnO{sub 2} hollow microspheres consisted of nanoribbons were successfully fabricated via a facile hydrothermal method with SiO{sub 2} sphere templates. The crystal structure, morphology and microwave absorption properties in X and Ku band of the as-synthesized samples were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and a vector network analyzer. The results show that the three-dimensional (3D) hollow microspheres are assembled by ultra thin and narrow one-dimensional (1D) nanoribbons. A rational process for the formation of hollow microspheres is proposed. The 3D MnO{sub 2} hollow microspheres possess improved dielectric and magnetic properties than the 1D nanoribbons prepared by the same procedures with the absence of SiO{sub 2} hard templates, which are closely related to their special nanostructures. The MnO{sub 2} microspheres also show much better microwave absorption properties in X (8–12 GHz) and Ku (12–18 GHz) microwave band compared with 1D MnO{sub 2} nanoribbons. The minimum reflection loss of −40 dB for hollow microsphere can be observed at 14.2 GHz and reflection loss below −10 dB is 3.5 GHz with a thickness of only 4 mm. The possible mechanism for the enhanced microwave absorption properties is also discussed. - Graphical abstract: MnO{sub 2} hollow microspheres composed of nanoribbons show the excellent microwave absorption properties in X and Ku band. - Highlights: • MnO{sub 2} hollow microspheres consisted of MnO{sub 2} nanoribbons were successfully prepared. • MnO{sub 2} hollow microspheres possess good microwave absorption performances. • The excellent microwave absorption properties are in X and Ku microwave band. • Electromagnetic impedance matching is great contribution to absorption properties.

  2. Biosensing by WGM Microspherical Resonators

    Directory of Open Access Journals (Sweden)

    Giancarlo C. Righini

    2016-06-01

    Full Text Available Whispering gallery mode (WGM microresonators, thanks to their unique properties, have allowed researchers to achieve important results in both fundamental research and engineering applications. Among the various geometries, microspheres are the simplest 3D WGM resonators; the total optical loss in such resonators can be extremely low, and the resulting extraordinarily high Q values of 108–109 lead to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. They can also be coated in order to better control their properties or to increase their functionality. Their very high sensitivity to changes in the surrounding medium has been exploited for several sensing applications: protein adsorption, trace gas detection, impurity detection in liquids, structural health monitoring of composite materials, detection of electric fields, pressure sensing, and so on. In the present paper, after a general introduction to WGM resonators, attention is focused on spherical microresonators, either in bulk or in bubble format, to their fabrication, characterization and functionalization. The state of the art in the area of biosensing is presented, and the perspectives of further developments are discussed.

  3. Multifunctional PMMA@Fe3O4@DR Magnetic Materials for Efficient Adsorption of Dyes

    Directory of Open Access Journals (Sweden)

    Bing Yu

    2017-10-01

    Full Text Available Magnetic porous microspheres are widely used in modern wastewater treatment technology due to their simple and quick dye adsorption and separation functions. In this article, we prepared porous polymethylmethacrylate (PMMA microspheres by the seed-swelling method, followed by in situ formation of iron oxide (Fe3O4 nanoparticles within the pore. Then, we used diazo-resin (DR to encapsulate the porous magnetic microspheres and achieve PMMA@Fe3O4@DR magnetic material. We studied the different properties of magnetic microspheres by different dye adsorption experiments before and after the encapsulation and demonstrated that the PMMA@Fe3O4@DR microspheres can be successfully used as a reusable absorbent for fast and easy removal of anionic and aromatic dyes from wastewater and can maintain excellent magnetic and adsorption properties in harsh environments.

  4. Hydrogen transport and storage in engineered glass microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Rambach, G.D.

    1995-04-18

    New, high strength glass microspheres filled with pressurized hydrogen exhibit densities which make them attractive for bulk hydrogen storage and transport. The membrane tensile stress at failure for our engineered glass microspheres is about 150,000 psi, permitting a threefold increase in pressure limit and storage capacity above commercial microspheres, which have been studied a decade ago and have been shown to fail at membrane stresses of 50,000 psi. Our analysis relating glass microspheres for hydrogen transport with infrastructure and economics, indicate that pressurized microspheres can be economically competitive with other forms of bulk rail and truck transport such as pressurized tube transports and liquid hydrogen trailers.

  5. A microsphere suspension model of metamaterial fluids

    Directory of Open Access Journals (Sweden)

    Qian Duan

    2017-05-01

    Full Text Available Drawing an analogy to the liquid phase of natural materials, we theoretically propose a microsphere suspension model to realize a metamaterial fluid with artificial electromagnetic indexes. By immersing high-ε, micrometer-sized dielectric spheres in a low-ε insulating oil, the structured fluid exhibits liquid-like properties from dispersing phase as well as the isotropic negative electromagnetic parameters caused by Mie resonances from dispersed microspheres. The work presented here will benefit the development of structured fluids toward metamaterials.

  6. Fabrication and wireless micromanipulation of magnetic-biocompatible microrobots using microencapsulation for microrobotics and microfluidics applications.

    Science.gov (United States)

    Li, Hui; Zhang, Jinyong; Zhang, Nannan; Kershaw, Joe; Wang, Lei

    2016-12-01

    It is important to fabricate biocompatible and chemical-resistant microstructures that can be powered and controlled without a tether in fluid environment for applications when contamination must be avoided, like cell manipulation, and applications where connecting the power source to the actuator would be cumbersome, like targeted delivery of chemicals. In this work, a novel fabrication method was described to encapsulate magnetic composite into pure SU-8 structures, enabling the truly microscale ferromagnetic microrobots biocompatible and chemical resistant. The microrobots were developed using the simple multilayer photolithography that allows us to mass produce and were actuated contact-free by external magnetic field to complete micromanipulations of micro-objects. The microrobots were actuated moving along a preplanned path to transport a glass microsphere object at an approximately average speed of 1.1 mm/sec and can be operated to rotate, aim at targets and collect objects.

  7. Multi-Valued Planar Hall Resistance Manipulated by Current Induced Magnetic Field in Fe Films Grown on GaAs(001) Substrates

    Science.gov (United States)

    Khym, Sungwon; Yoo, Taehee; Lee, Hakjoon; Lee, Sangyeop; Lee, Sanghoon; Liu, Xinyu; Furdyna, Jacek K.; Lee, Dong Uk; Kim, Eun Kyu

    2012-09-01

    A Hall device was fabricated from single-crystal Fe film having two in-plane magnetic easy axes. Planar Hall resistance measured by sequential application of current pulses to the metal strip that was deposited on the top of a Hall bar showed a hysteresis similar to that observed by scanning an external magnetic field. It was shown that discrete Hall resistance values in the hysteresis, which correspond to specific multidomain structures in Fe film, can be created by the application of appropriate sequences of current pulses to the metal strip, and can thus be used for read/write logic applications.

  8. Optimal Control of Objects on the Micro- and Nano-Scale by Electrokinetic and Electromagnetic Manipulation: for Bio-Sample Preparation, Quantum Information Devices and Magnetic Drug Delivery

    Science.gov (United States)

    2010-01-01

    frequencies) thus the magneto - static equations are appropriate. These are H j∇ × =   (31) 0B∇ ⋅ =  (32) ( ) ( ) ,o oB H M H Hµ µ χ...degree rotations of 1H  . Let 1u , 2u , 3u and 4u be the applied voltage of each of the four magnets. Then, by the linearity of the magneto -static...Hepatocellular Carcinoma: Regional Therapy with a Magnetic Targeted Carrier Bound to Doxorubicin in a Dual MR Imaging/ Conventional Angiography Suite

  9. Albumin microspheres labeled with Ga-67 by chelation: concise communication

    International Nuclear Information System (INIS)

    Hnatowich, D.J.; Schlegel, P.

    1981-01-01

    Albumin microspheres have been synthesized with EDTA and DTPA chelating groups covalently bound to their surface. The microspheres may be labeled with Ga-67 at high yield (97 +- 2%) by transcomplexation from a 0.1 M Ga-67 acetate solution. With EDTA microspheres the resulting label dissociates only slightly after 24 hr in 50% plasma at 37 0 C, whereas with DTPA microspheres the label shows no detectable dissociation over this period. By contrast, microspheres without chelating groups lose their label virtually completely under these conditions. Following intravenous administration of sized Ga-67 DTPA microspheres in mice, about (84 +- 16)% of the activity localizes in the lungs at 5 min, with (60 +- 7)% remaining after 2 h. Since labeling is by chelation, the microspheres may also be tagged with other metallic radionuclides

  10. Manipulating magnetic anisotropy of the ultrathin Co{sub 2}FeAl full-Heusler alloy film via growth orientation of the Pt buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Wen, F.S., E-mail: wenfsh03@126.com [State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Xiang, J.Y.; Hao, C.X.; Zhang, F.; Lv, Y.F. [State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Wang, W.H. [Institute of Physics, Chinese Academy of Science, Beijing 100080 (China); Hu, W.T.; Liu, Z.Y. [State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2013-12-15

    The ultrathin films of Co{sub 2}FeAl (CFA) full-Heusler alloy were prepared between two Pt layers on MgO single crystals by magnetron sputtering. By controlling the substrate temperature, different growth orientations of the Pt underlayers were realized, and their effects were investigated on the magnetic anisotropy of the ultrathin CFA film. It was revealed that different Pt orientations lead to distinctly different magnetic anisotropy for the sandwiched ultrathin CFA films. The Pt (111) orientation favors the perpendicular anisotropy, while the appearance of partial Pt (001) orientation leads to the quick decrease of perpendicular anisotropy and the complete Pt (001) orientation gives rise to the in-plane anisotropy. With the Pt (111) orientation, the temperature and thickness-induced spin reorientation transitions were investigated in the sandwiched ultrathin CFA films. - Highlights: • Different Pt orientations lead to different magnetic anisotropy for sandwiched ultrathin CFA films. • The Pt (111) orientation favors the perpendicular anisotropy for CFA layer. • Temperature and thickness-induced spin reorientation transitions were investigated in sandwiched ultrathin CFA films. • 0.8 nm CFA film is good candidate as electrode in magnetic tunnel junctions.

  11. Manipulating magnetic anisotropy of the ultrathin Co2FeAl full-Heusler alloy film via growth orientation of the Pt buffer layer

    International Nuclear Information System (INIS)

    Wen, F.S.; Xiang, J.Y.; Hao, C.X.; Zhang, F.; Lv, Y.F.; Wang, W.H.; Hu, W.T.; Liu, Z.Y.

    2013-01-01

    The ultrathin films of Co 2 FeAl (CFA) full-Heusler alloy were prepared between two Pt layers on MgO single crystals by magnetron sputtering. By controlling the substrate temperature, different growth orientations of the Pt underlayers were realized, and their effects were investigated on the magnetic anisotropy of the ultrathin CFA film. It was revealed that different Pt orientations lead to distinctly different magnetic anisotropy for the sandwiched ultrathin CFA films. The Pt (111) orientation favors the perpendicular anisotropy, while the appearance of partial Pt (001) orientation leads to the quick decrease of perpendicular anisotropy and the complete Pt (001) orientation gives rise to the in-plane anisotropy. With the Pt (111) orientation, the temperature and thickness-induced spin reorientation transitions were investigated in the sandwiched ultrathin CFA films. - Highlights: • Different Pt orientations lead to different magnetic anisotropy for sandwiched ultrathin CFA films. • The Pt (111) orientation favors the perpendicular anisotropy for CFA layer. • Temperature and thickness-induced spin reorientation transitions were investigated in sandwiched ultrathin CFA films. • 0.8 nm CFA film is good candidate as electrode in magnetic tunnel junctions

  12. Interactive Micromanipulation of Picking and Placement of Nonconductive Microsphere in Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Ning Cao

    2017-08-01

    Full Text Available In this paper, classified theoretical models, consisting of contact with and placement of microsphere and picking operations, are simplified and established to depict the interactive behaviors of external and internal forces in pushing manipulations, respectively. Sliding and/or rolling cases, resulting in the acceleration of micromanipulations, are discussed in detail. Effective contact detection is achieved by combining alterations of light-shadow and relative movement displacement between the tip-sphere. Picking operations are investigated by typical interactive positions and different end tilt angles. Placements are realized by adjusting the proper end tilt angles. These were separately conducted to explore the interactive operations of nonconductive glass microspheres in a scanning electron microscope. The experimental results demonstrate that the proposed contact detection method can efficiently protect the end-tip from damage, regardless of operator skills in initial positioning operations. E-beam irradiation onto different interactive positions with end tilt angles can be utilized to pick up microspheres without bending the end-tip. In addition, the results of releasing deviations away from the pre-setting point were utilized to verify the effectiveness of the placement tilt angles.

  13. Currency Manipulation versus Current Account Manipulation

    OpenAIRE

    Junning Cai

    2005-01-01

    It is said that a country’s currency peg can become currency manipulation representing protracted government intervention in the foreign exchange market that gives it unfair competitive advantage in international trade yet prevents effective balance of payments in its trade partners. Regarding this widespread fallacy, this paper explains why currency peg is not currency manipulation even when it keeps a country’s currency undervalued. We clarify that 1) government is inherently a major player...

  14. Preparation and Application of Hollow Silica/magnetic Nanocomposite Particle

    Science.gov (United States)

    Wang, Cheng-Chien; Lin, Jing-Mo; Lin, Chun-Rong; Wang, Sheng-Chang

    The hollow silica/cobalt ferrite (CoFe2O4) magnetic microsphere with amino-groups were successfully prepared via several steps, including preparing the chelating copolymer microparticles as template by soap-free emulsion polymerization, manufacturing the hollow cobalt ferrite magnetic microsphere by in-situ chemical co-precipitation following calcinations, and surface modifying of the hollow magnetic microsphere by 3-aminopropyltrime- thoxysilane via the sol-gel method. The average diameter of polymer microspheres was ca. 200 nm from transmission electron microscope (TEM) measurement. The structure of the hollow magnetic microsphere was characterized by using TEM and scanning electron microscope (SEM). The spinel-type lattice of CoFe2O4 shell layer was identified by using XRD measurement. The diameter of CoFe2O4 crystalline grains ranged from 54.1 nm to 8.5 nm which was estimated by Scherrer's equation. Additionally, the hollow silica/cobalt ferrite microsphere possesses superparamagnetic property after VSM measurement. The result of BET measurement reveals the hollow magnetic microsphere which has large surface areas (123.4m2/g). After glutaraldehyde modified, the maximum value of BSA immobilization capacity of the hollow magnetic microsphere was 33.8 mg/g at pH 5.0 buffer solution. For microwave absorption, when the hollow magnetic microsphere was compounded within epoxy resin, the maximum reflection loss of epoxy resins could reach -35dB at 5.4 GHz with 1.9 mm thickness.

  15. Magnets

    International Nuclear Information System (INIS)

    Young, I.R.

    1984-01-01

    A magnet pole piece for an NMR imaging magnet is made of a plurality of magnetic wires with one end of each wire held in a non-magnetic spacer, the other ends of the wires being brought to a pinch, and connected to a magnetic core. The wires may be embedded in a synthetic resin and the magnetisation and uniformity thereof can be varied by adjusting the density of the wires at the spacer which forms the pole piece. (author)

  16. Gastroretentive Floating Microspheres of Silymarin: Preparation and ...

    African Journals Online (AJOL)

    Erah

    simulated gastric fluid for at least 12 h, and, therefore, could potentially ... systems (GRFDDS) have a bulk density ... The objective of this work was to develop and characterise gastroretentive floating microspheres of silymarin which, following oral administration, would exhibit .... hydrochloric acid to maintain sink conditions.

  17. Method and apparatus for producing microspherical particles

    International Nuclear Information System (INIS)

    Egli, W.; Bailey, W.H.; Leary, D.F.; Lansley, R.J.

    1979-01-01

    This invention relates generally to a method and apparatus for producing microspherical particles and more particularly to a method and apparatus which are particularly useful in connection with the sol-gel process for the production of nuclear fuel kernels. (U.K.)

  18. MICROSPHERE SIZE INFLUENCES THE FOREIGN BODY REACTION

    NARCIS (Netherlands)

    Zandstra, J.; Hiemstra, C.; Petersen, A. H.; Zuidema, J.; van Beuge, M. M.; Rodriguez, S.; Lathuile, A. A. R.; Veldhuis, G. J.; Steendam, R.; Bank, R. A.; Popa, E. R.

    2014-01-01

    Biodegradable poly-(DL-lactide-co-glycolide) (PLGA) microspheres (MSP) are attractive candidate vehicles for site-specific or systemic sustained release of therapeutic compounds. This release may be altered by the host's foreign body reaction (FBR), which is dependent on the characteristics of the

  19. Beat-Frequency/Microsphere Medical Ultrasonic Imaging

    Science.gov (United States)

    Yost, William T.; Cantrell, John H.; Pretlow, Robert A., III

    1995-01-01

    Medical ultrasonic imaging system designed to provide quantitative data on various flows of blood in chambers, blood vessels, muscles, and tissues of heart. Sensitive enough to yield readings on flows of blood in heart even when microspheres used as ultrasonic contrast agents injected far from heart and diluted by circulation of blood elsewhere in body.

  20. Ultrasonic assisted rapid synthesis of high uniform super-paramagnetic microspheres with core-shell structure and robust magneto-chromatic ability

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenyan, E-mail: wiseyanyan@jit.edu.cn [College of Material Engineering, Jinling Institute of technology, Nanjing (China); Chen, Jiahua [College of Material Engineering, Jinling Institute of technology, Nanjing (China); Wang, Wei [Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing (China); School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing (China); Lu, GongXuan [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000 (China); Hao, Lingyun [College of Material Engineering, Jinling Institute of technology, Nanjing (China); Ni, Yaru; Lu, Chunhua; Xu, Zhongzi [Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing (China); State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing (China)

    2017-03-15

    Super-paramagnetic core-shell microspheres were synthesized by ultrasonic assisted routine under low ultrasonic irradiation powers. Compared with conventional routine, ultrasonic effect could not only improve the uniformity of the core-shell structure of Fe{sub 3}O{sub 4}@SiO{sub 2}, but shorten the synthesis time in large scale. Owing to their hydrophilicity and high surface charge, the Fe{sub 3}O{sub 4}@SiO{sub 2} microspheres could be dispersed well in distilled water to form homogeneous colloidal suspension. The suspensions have favorable magneto-chromatic ability that they sensitively exhibit brilliant colorful ribbons by magnetic attraction. The colorful ribbons, which distributed along the magnetic lines, make morphology of the magnetic fields become “visible” to naked eyed. Those colorful ribbons originate from strong magnetic interaction between the microspheres and magnetic fields. Furthermore, the magneto-chromatic performance is reversible as the colorful ribbons vanished rapidly with the removing of magnetic fields. The silica layer effectively enhanced the acid resistance and surface-oxidation resistance of theFe{sub 3}O{sub 4}@SiO{sub 2} microspheres, so they could exhibit stable magnetic nature and robust magneto-chromatic property in acid environment. - Graphical abstract: The Graphical abstract shows the sensitive magneto-chromatic ability, the acid resistance ability as well as the magneto-chromatic mechanism of the Fe{sub 3}O{sub 4} and Fe{sub 3}O{sub 4}@SiO{sub 2} suspension. - Highlights: • Sensitive and reversible robust magneto-chromatic property under magnetic attraction. • Morphology of magnetic field “visible” to naked eyes. • Enhance acid resistance and surface-oxidation resistance. • Ultrasonic effect largely shorten the synthesis time of high uniform microspheres.

  1. Ultrasonic assisted rapid synthesis of high uniform super-paramagnetic microspheres with core-shell structure and robust magneto-chromatic ability

    International Nuclear Information System (INIS)

    Zhang, Wenyan; Chen, Jiahua; Wang, Wei; Lu, GongXuan; Hao, Lingyun; Ni, Yaru; Lu, Chunhua; Xu, Zhongzi

    2017-01-01

    Super-paramagnetic core-shell microspheres were synthesized by ultrasonic assisted routine under low ultrasonic irradiation powers. Compared with conventional routine, ultrasonic effect could not only improve the uniformity of the core-shell structure of Fe_3O_4@SiO_2, but shorten the synthesis time in large scale. Owing to their hydrophilicity and high surface charge, the Fe_3O_4@SiO_2 microspheres could be dispersed well in distilled water to form homogeneous colloidal suspension. The suspensions have favorable magneto-chromatic ability that they sensitively exhibit brilliant colorful ribbons by magnetic attraction. The colorful ribbons, which distributed along the magnetic lines, make morphology of the magnetic fields become “visible” to naked eyed. Those colorful ribbons originate from strong magnetic interaction between the microspheres and magnetic fields. Furthermore, the magneto-chromatic performance is reversible as the colorful ribbons vanished rapidly with the removing of magnetic fields. The silica layer effectively enhanced the acid resistance and surface-oxidation resistance of theFe_3O_4@SiO_2 microspheres, so they could exhibit stable magnetic nature and robust magneto-chromatic property in acid environment. - Graphical abstract: The Graphical abstract shows the sensitive magneto-chromatic ability, the acid resistance ability as well as the magneto-chromatic mechanism of the Fe_3O_4 and Fe_3O_4@SiO_2 suspension. - Highlights: • Sensitive and reversible robust magneto-chromatic property under magnetic attraction. • Morphology of magnetic field “visible” to naked eyes. • Enhance acid resistance and surface-oxidation resistance. • Ultrasonic effect largely shorten the synthesis time of high uniform microspheres.

  2. Hydrogen transport and storage in engineered glass microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Rambach, G.D.

    1994-04-20

    New, high-strength, hollow, glass microspheres filled with pressurized hydrogen exhibit storage densities which make them attractive for bulk hydrogen storage and transport. The hoop stress at failure of our engineered glass microspheres is about 150,000 psi, permitting a three-fold increase in pressure limit and storage capacity above commercial microspheres, which fail at wall stresses of 50,000 psi. For this project, microsphere material and structure will be optimized for storage capacity and charge/discharge kinetics to improve their commercial practicality. Microsphere production scale up will be performed, directed towards large-scale commercial use. Our analysis relating glass microspheres for hydrogen transport with infrastructure and economics` indicate that pressurized microspheres can be economically competitive with other forms of bulk rail and truck transport such as hydride beds, cryocarbons and pressurized tube transports. For microspheres made from advanced materials and processes, analysis will also be performed to identify the appropriate applications of the microspheres considering property variables, and different hydrogen infrastructure, end use, production and market scenarios. This report presents some of the recent modelling results for large beds of glass microspheres in hydrogen storage applications. It includes plans for experiments to identify the properties relevant to large-bed hydrogen transport and storage applications, of the best, currently producible, glass microspheres. This work began in March, 1994. Project successes will be manifest in the matching of cur-rent glass microspheres with a useful application in hydrogen bulk transport and storage, and in developing microsphere materials and processes that increase the storage density and reduce the storage energy requirement.

  3. In vitro evaluation of biodegradable microspheres with surface-bound ligands.

    Science.gov (United States)

    Keegan, Mark E; Royce, Sara M; Fahmy, Tarek; Saltzman, W Mark

    2006-02-21

    Protein ligands were conjugated to the surface of biodegradable microspheres. These microsphere-ligand conjugates were then used in two in vitro model systems to evaluate the effect of conjugated ligands on microsphere behavior. Microsphere retention in agarose columns was increased by ligands on the microsphere surface specific for receptors on the agarose matrix. In another experiment, conjugating the lectin Ulex europaeus agglutinin 1 to the microsphere surface increased microsphere adhesion to Caco-2 monolayers compared to control microspheres. This increase in microsphere adhesion was negated by co-administration of l-fucose, indicating that the increase in adhesion is due to specific interaction of the ligand with carbohydrate receptors on the cell surface. These results demonstrate that the ligands conjugated to the microspheres maintain their receptor binding activity and are present on the microsphere surface at a density sufficient to target the microspheres to both monolayers and three-dimensional matrices bearing complementary receptors.

  4. Calf thymus histone-conjugated magnetic poly(2-oxoethyl methacrylate) microspheres for affinity isolation of anti-histone IgGs from the blood serum of patients with systemic lupus erythematosus

    Czech Academy of Sciences Publication Activity Database

    Horák, Daniel; Plichta, Zdeněk; Starykovych, M.; Myronovskij, S.; Kit, Y.; Chopyak, V.; Stoika, R.

    2015-01-01

    Roč. 5, č. 77 (2015), s. 63050-63055 ISSN 2046-2069 R&D Projects: GA MŠk(CZ) 7E12053 EU Projects: European Commission(XE) 246513 - NADINE Institutional support: RVO:61389013 Keywords : magnetic * systemic lupus erythematosis * histone Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.289, year: 2015

  5. Hydrogen transport and storage in engineered glass microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Rambach, G.D.

    1995-02-28

    New, high strength glass microspheres filled with pressurized hydrogen exhibit densities which make them attractive for bulk hydrogen storage and transport. The membrane tensile stress at failure for engineered glass microspheres is about 150,000 psi, permitting a three-fold increase in pressure limit and storage capacity above commercial microspheres, which have been studied a decade ago and have been shown to fail at membrane stresses of 50,000 psi. This analysis relating glass microspheres for hydrogen transport with infrastructure and economics, indicate that pressurized microspheres can be economically competitive with other forms of bulk rail and truck transport such as pressurized tube transports and liquid hydrogen trailers. This paper will describe the matching of current glass microspheres with the useful application in commercial hydrogen bulk transport and storage.

  6. Magnetic poly(glycidyl methacrylate)-based microspheres prepared by suspension polymerization in the presence of modified La0.75Sr0.25MnO3 nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Horák, Daniel; Pollert, Emil; Trchová, Miroslava; Kovářová, Jana

    2009-01-01

    Roč. 45, č. 4 (2009), s. 1009-1016 ISSN 0014-3057 R&D Projects: GA AV ČR 1QS100100553; GA AV ČR KAN200200651 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z10100521; CEZ:AV0Z1010921 Keywords : glycidyl methacrylate * perovskite * magnetic Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.310, year: 2009

  7. Getting Manipulative about Math.

    Science.gov (United States)

    Scheer, Janet K.; And Others

    1984-01-01

    Math manipulatives that are made from inexpensive, common items help students understand basic mathematics concepts. Learning activities using Cheerios, jellybeans, and clay as teaching materials are suggested. (DF)

  8. Manipulators in teleoperation

    International Nuclear Information System (INIS)

    Hamel, W.R.

    1985-01-01

    Teleoperated manipulators represent a mature technology which has evolved over nearly 40 years of applications experience. The wide range of manipulator concepts developed thus far reflect differing applications, priorities, and philosophies. The technology of teleoperated manipulators is in a rapid state of change (just as are industrial robotics) fueled by microelectronics and materials advances. Large strides in performance and dexterity are now practical and advantageous. Even though improved controls and sensory feedback will increase functionality, overall costs should be reduced as manipulator fabrication and assembly labor costs are reduced through improved manufacturing technology. As these advances begin to materialize, broader applications in nonnuclear areas should occur

  9. Beat frequency ultrasonic microsphere contrast agent detection system

    Science.gov (United States)

    Pretlow, III, Robert A. (Inventor); Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)

    1997-01-01

    A system for and method of detecting and measuring concentrations of an ultrasonically-reflective microsphere contrast agent involving detecting non-linear sum and difference beat frequencies produced by the microspheres when two impinging signals with non-identical frequencies are combined by mixing. These beat frequencies can be used for a variety of applications such as detecting the presence of and measuring the flow rates of biological fluids and industrial liquids, including determining the concentration level of microspheres in the myocardium.

  10. Microsphere formation in droplets using antisolvent vapour precipitation technique

    OpenAIRE

    Chew, Sean Jun Liang

    2017-01-01

    In previous studies, the antisolvent vapour precipitation method has been proven to produce uniformly sized lactose microspheres (1.0 µm) from a single droplet (1.2 mm diameter) at atmospheric pressure. These types of particles have potential applications in the pharmaceutical industry, especially due to their high dissolution rate. This project looked into the possibility of using antisolvent vapour precipitation to produce microspheres from finely atomised droplets. Microspheres in the sub-...

  11. Preparation of polystyrene microsphere with emulsion microencapsulation method

    International Nuclear Information System (INIS)

    Li Bo Zhang Lin; Zhang Zhganwen; You Dan; Wei Yun; Wang Chaoyang; Lin Bo; Shi Tao; Chu Qiaomei

    2003-01-01

    The preparation of hollow polystyrene microspheres that are used as inner shell of multi-shell plastic microspheres in the ICF experiments is focused on. The effects of surfactants, water-soluble polymer and electrolyte on the properties of resultant microspheres are studied. Based on these experiments, a fabricating procedure was established with which hollow microspheres were prepared with diameter about 150-3000 μm, wall thickness 0.8-15 μm and toughness Ra less than 4 nm. (authors)

  12. Intestinal absorption of PLAGA microspheres in the rat.

    Science.gov (United States)

    Damgé, C; Aprahamian, M; Marchais, H; Benoit, J P; Pinget, M

    1996-12-01

    Rhodamine B-labelled poly (DL-lactide-co-glycolide) (PLAGA) microspheres of 2 different sizes, 1-5 microns and 5-10 microns, were administered as a single dose (1.44 x 10(9) and 1.83 x 10(8) particles, respectively) into the ileal lumen of adult rats. The content of rhodamine in the mesenteric vein and ileal lumen was analysed periodically from 10 min to 48 h as well as the distribution of microspheres in the intestinal mucosa and various other tissues. The concentration of rhodamine decreased progressively in the intestinal lumen and was negligible after 24 h. The number of microspheres in the mesenteric vein increased rapidly and reached a maximum after 4 h whatever the size of the particles. It then decreased progressively, but more rapidly with microspheres > 5 microns than with microspheres PLAGA microspheres mainly crossed the intestinal mucosa at the site of Peyer's patches where microspheres of 5 microns were retained in the ileal lumen. A few small microspheres were occasionally observed in the epithelial cells. Only the smallest particles were recovered in the liver, lymph nodes and spleen while basement membranes were always labelled. It is concluded that PLAGA microspheres could be useful for the oral delivery of antigens if their size is between 1 and 5 microns.

  13. Preparation of porous zirconia microspheres by internal gelation method

    International Nuclear Information System (INIS)

    Pathak, Sachin S.; Pius, I.C.; Bhanushali, R.D.; Rao, T.V. Vittal; Mukerjee, S.K.

    2008-01-01

    A modified internal gelation process for the preparation of porous zirconia microspheres has been developed. The conventional method has been modified by adding a surfactant in the feed broth. The effects of variation of surfactant concentration, washing techniques and temperature of calcination on the pore volume and the surface area of the microspheres have been studied. The conditions were optimized to obtain porous stable microspheres suitable for various applications. The microspheres were characterized by surface area analysis, pore volume analysis, thermogravimetric analysis and X-ray diffraction. The ion exchange behavior was studied using pH titration

  14. Photoluminescence and lasing in whispering gallery mode glass microspherical resonators

    Energy Technology Data Exchange (ETDEWEB)

    Ristić, D. [Ruđer Bošković Institute, Division of Materials Physics, Laboratory for Molecular Physics, Bijenička c. 54, Zagreb (Croatia); Center of Excellence for Advanced Materials and Sensing Devices, Research unit New Functional Materials, Bijenička c. 54, Zagreb (Croatia); Berneschi, S.; Camerini, M. [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Farnesi, D.; Pelli, S. [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Centro Studi e Ricerche ' E. Fermi' , Piazza del Viminale 2, 00184 Roma (Italy); Trono, C. [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Chiappini, A.; Chiasera, A.; Ferrari, M. [CSMFO Group, Istituto di Fotonica e Nanotecnologie, IFN-CNR, Via alla Cascata 56/C, 38050 Povo-Trento (Italy); Lukowiak, A. [Institute of Low Temperature and Structure Research, PAS, ul. Okolna 2, Wroclaw 50-950 (Poland); Dumeige, Y.; Féron, P. [Laboratoire d' Optronique, (CNRS-UMR 6082-Foton), ENSSAT, 6 rue de Kérampont, 22300 Lannion (France); Righini, G.C. [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Centro Studi e Ricerche ' E. Fermi' , Piazza del Viminale 2, 00184 Roma (Italy); Soria, S., E-mail: s.soria@ifac.cnr.it [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Conti, G. Nunzi [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Centro Studi e Ricerche ' E. Fermi' , Piazza del Viminale 2, 00184 Roma (Italy)

    2016-02-15

    We report experimental results regarding the development of Er{sup 3+}-doped glass microspherical cavities for the fabrication of compact sources at 1.55 μm. We investigate several different approaches in order to fabricate the microspheres including direct melting of Er{sup 3+}-doped glass powders, synthesis of Er{sup 3+}-doped monolithic microspheres by drawing Er{sup 3+}-doped glass, and coating of silica microspheres with an Er{sup 3+}-doped sol–gel layer. Details of the different fabrication processes are presented together with the photoluminescence characterization in free space configuration of the microspheres and of the glass precursor. We have analyzed the photoluminescence spectra of the whispering gallery modes of the microspheres excited using evanescent coupling and we demonstrate tunable laser action in a wide range of wavelengths around 1.55 μm. As much as 90 μW of laser output power was measured in Er{sup 3+}-doped glass microspheres. - Highlights: • Different approaches in microsphere fabrication and various types of post-processing. • Trimming of photorefractive glass microsphere lasers with UV light. • Peak power record of 90 μW by pumping at 1480 nm.

  15. Microsphere based improved sunscreen formulation of ethylhexyl methoxycinnamate.

    Science.gov (United States)

    Gogna, Deepak; Jain, Sunil K; Yadav, Awesh K; Agrawal, G P

    2007-04-01

    Polymethylmethacrylate (PMMA) microspheres of ethylhexyl methoxycinnamate (EHM) were prepared by emulsion solvent evaporation method to improve its photostability and effectiveness as sunscreening agent. Process parameters like stirring speed and aqueous polyvinyl alcohol (PVA) concentration were analyzed in order to optimize the formulations. Shape and surface morphology of the microspheres were examined using scanning electron microscopy. Particle size of the microspheres was determined using laser diffraction particle size analyzer. The PMMA microspheres of EHM were incorporated in water-removable cream base. The in vitro drug release of EHM in pH 7.4 was performed using dialysis membrane. Thin layer chromatography was performed to determine photostability of EHM inside the microspheres. The formulations were evaluated for sun protection factor (SPF) and minimum erythema dose (MED) in albino rats. Cream base formulation containing microspheres prepared using EHM:PMMA in ratio of 1:3 (C(3)) showed slowest drug (EHM) release and those prepared with EHM: PMMA in ratio of 1:1 showed fastest release. The cream base formulations containing EHM loaded microspheres had shown better SPF (more than 16.0) as compared to formulation C(d) that contained 3% free EHM as sunscreen agent and showed SPF 4.66. These studies revealed that the incorporation of EHM loaded PMMA microspheres into cream base had greatly increased the efficacy of sunscreen formulation approximately four times. Further, photostability was also shown to be improved in PMMA microspheres.

  16. Low pressure gas filling of laser fusion microspheres

    International Nuclear Information System (INIS)

    Koo, J.C.; Dressler, J.L.; Hendricks, C.D.

    1979-01-01

    In our laser fusion microsphere production, large, thin gel-microspheres are formed before the chemicals are fused into glass. In this transient stage,, the gel-microspheres are found to be highly permeable to argon and many other inert gases. When the gel transforms to glass, the argon gas, for example, is trapped within to form argon filled, fusion target quality, glass microspheres. On the average, the partial pressure of the argon fills attained in this process is around 2 x 10 4 Pa at room temperature

  17. Histological Comparison of Kidney Tissue Following Radioembolization with Yttrium-90 Resin Microspheres and Embolization with Bland Microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Suresh de, E-mail: suresh.desilva@unsw.edu.au [Southern Radiology Group, Radiology Department Sutherland Hospital (Australia); Mackie, Simon [Western General Hospital, Department of Urology (United Kingdom); Aslan, Peter [St George Hospital, Department of Urology (Australia); Cade, David [Sirtex Technology Pty Ltd (Australia); Delprado, Warick [Douglass Hanly Moir Pathology (Australia)

    2016-12-15

    BackgroundIntra-arterial brachytherapy with yttrium-90 ({sup 90}Y) resin microspheres (radioembolization) is a procedure to selectively deliver high-dose radiation to tumors. The purpose of this research was to compare the radioembolic effect of {sup 90}Y-radioembolization versus the embolic effect of bland microspheres in the porcine kidney model.MethodsIn each of six pigs, ~25–33 % of the kidney volume was embolized with {sup 90}Y resin microspheres and an equivalent number of bland microspheres in the contralateral kidney. Kidney volume was estimated visually from contrast-enhanced fluoroscopy imaging. Morphologic and histologic analysis was performed 8–9 weeks after the procedure to assess the locations of the microspheres and extent of tissue necrosis from {sup 90}Y-radioembolization and bland embolization. A semi-quantified evaluation of the non-acute peri-particle and perivascular tissue reaction was conducted. All guidelines for the care and use of animals were followed.ResultsKidneys embolized with {sup 90}Y-radioembolization decreased in mass by 30–70 % versus the contralateral kidney embolized with bland microspheres. These kidneys showed significant necrosis/fibrosis, avascularization, and glomerular atrophy in the immediate vicinity of the {sup 90}Y resin microspheres. By contrast, glomerular changes were not observed, even with clusters of bland microspheres in afferent arterioles. Evidence of a foreign body reaction was recorded in some kidneys with bland microspheres, and subcapsular scarring/infarction only with the highest load (4.96 × 10{sup 6}) of bland microspheres.ConclusionThis study showed that radioembolization with {sup 90}Y resin microspheres produces localized necrosis/fibrosis and loss of kidney mass in a porcine kidney model. This result supports the study of {sup 90}Y resin microspheres for the localized treatment of kidney tumors.

  18. A novel route for synthesis and growth formation of metal oxides microspheres: Insights from V_2O_3 microspheres

    International Nuclear Information System (INIS)

    Zhang, Yifu; Huang, Chi; Meng, Changgong; Hu, Tao

    2016-01-01

    Highly polydisperse V_2O_3 solid microspheres with large specific surface area were successfully synthesized via a facile hydrothermal decomposition of VOC_2O_4 solution. The morphology and composition were characterized by scanning electron microscopy (SEM), Energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). V_2O_3 microspheres display an obvious Mott phase transition at −128.5 °C (cooling curve) and −114.5 °C (heating curve). Some parameters including the reaction temperature, concentration of VOC_2O_4, reaction time, surfactant, H_2C_2O_4 and precursor were briefly discussed to reveal the formation of V_2O_3 microspheres. It was found that the precursor is crucial for the fabrication of microsphere. A self-assembly growth mechanism was suggested to explain the growth process of microspheres and the autogenic CO and CO_2 gas served as the soft templates. Furthermore, this route was developed to synthesize different metal oxides microspheres, and it was found that AlO(OH), Fe_3O_4, Fe_2O_3, Co_3O_4, Cr_2O_3, MoO_2 and WO_3 microspheres were obtained. All the results showed this process was successfully explored as a methodology to synthesize different metal oxides microspheres using the gas as the templates by this facile hydrothermal route. - Highlights: • Highly uniform V_2O_3 solid microspheres were synthesized. • V_2O_3 microspheres display an obvious Mott phase transition. • The autogenic CO and CO_2 gas served as the soft templates for designed synthesis. • AlO(OH), Fe_3O_4, Fe_2O_3, Co_3O_4, Cr_2O_3, MoO_2 and WO_3 microspheres were obtained. • A methodology to synthesize different metal oxides microspheres was developed.

  19. Histological Comparison of Kidney Tissue Following Radioembolization with Yttrium-90 Resin Microspheres and Embolization with Bland Microspheres

    International Nuclear Information System (INIS)

    Silva, Suresh de; Mackie, Simon; Aslan, Peter; Cade, David; Delprado, Warick

    2016-01-01

    BackgroundIntra-arterial brachytherapy with yttrium-90 ("9"0Y) resin microspheres (radioembolization) is a procedure to selectively deliver high-dose radiation to tumors. The purpose of this research was to compare the radioembolic effect of "9"0Y-radioembolization versus the embolic effect of bland microspheres in the porcine kidney model.MethodsIn each of six pigs, ~25–33 % of the kidney volume was embolized with "9"0Y resin microspheres and an equivalent number of bland microspheres in the contralateral kidney. Kidney volume was estimated visually from contrast-enhanced fluoroscopy imaging. Morphologic and histologic analysis was performed 8–9 weeks after the procedure to assess the locations of the microspheres and extent of tissue necrosis from "9"0Y-radioembolization and bland embolization. A semi-quantified evaluation of the non-acute peri-particle and perivascular tissue reaction was conducted. All guidelines for the care and use of animals were followed.ResultsKidneys embolized with "9"0Y-radioembolization decreased in mass by 30–70 % versus the contralateral kidney embolized with bland microspheres. These kidneys showed significant necrosis/fibrosis, avascularization, and glomerular atrophy in the immediate vicinity of the "9"0Y resin microspheres. By contrast, glomerular changes were not observed, even with clusters of bland microspheres in afferent arterioles. Evidence of a foreign body reaction was recorded in some kidneys with bland microspheres, and subcapsular scarring/infarction only with the highest load (4.96 × 10"6) of bland microspheres.ConclusionThis study showed that radioembolization with "9"0Y resin microspheres produces localized necrosis/fibrosis and loss of kidney mass in a porcine kidney model. This result supports the study of "9"0Y resin microspheres for the localized treatment of kidney tumors.

  20. Neutron transmission measurements on hydrogen filled microspheres

    International Nuclear Information System (INIS)

    Dyrnjaja, Eva; Hummel, Stefan; Keding, Marcus; Smolle, Marie-Theres; Gerger, Joachim; Zawisky, Michael

    2014-01-01

    Hollow microspheres are promising candidates for future hydrogen storage technologies. Although the physical process for hydrogen diffusion through glass is well understood, measurements of static quantities (e.q. hydrogen pressure inside the spheres) as well as dynamic properties (e.g. diffusion rate of hydrogen through glass) are still difficult to handle due to the small size of the spheres (d≈15μm). For diffusion rate measurements, the long-term stability of the experiment is also mandatory due to the relatively slow diffusion rate. In this work, we present an accurate and long-term stable measurement technique for static and dynamic properties, using neutron radiography. Furthermore, possible applications for hydrogen filled microspheres within the scope of radiation issues are discussed

  1. Optical Microspherical Resonators for Biomedical Sensing

    Directory of Open Access Journals (Sweden)

    Giancarlo C. Righini

    2011-01-01

    Full Text Available Optical resonators play an ubiquitous role in modern optics. A particular class of optical resonators is constituted by spherical dielectric structures, where optical rays are total internal reflected. Due to minimal reflection losses and to potentially very low material absorption, these guided modes, known as whispering gallery modes, can confer the resonator an exceptionally high quality factor Q, leading to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. These attractive characteristics make these miniaturized optical resonators especially suited as laser cavities and resonant filters, but also as very sensitive sensors. First, a brief analysis is presented of the characteristics of microspherical resonators, of their fabrication methods, and of the light coupling techniques. Then, we attempt to overview some of the recent advances in the development of microspherical biosensors, underlining a number of important applications in the biomedical field.

  2. Aptamer Based Microsphere Biosensor for Thrombin Detection

    Directory of Open Access Journals (Sweden)

    Xudong Fan

    2006-08-01

    Full Text Available We have developed an optical microsphere resonator biosensor using aptamer asreceptor for the measurement of the important biomolecule thrombin. The sphere surface ismodified with anti-thrombin aptamer, which has excellent binding affinity and selectivityfor thrombin. Binding of the thrombin at the sphere surface is monitored by the spectralposition of the microsphere’s whispering gallery mode resonances. A detection limit on theorder of 1 NIH Unit/mL is demonstrated. Control experiments with non-aptameroligonucleotide and BSA are also carried out to confirm the specific binding betweenaptamer and thrombin. We expect that this demonstration will lead to the development ofhighly sensitive biomarker sensors based on aptamer with lower cost and higher throughputthan current technology.

  3. Master-slave manipulator

    International Nuclear Information System (INIS)

    Haaker, L.W.; Jelatis, D.G.

    1981-01-01

    A remote control master-slave manipulator for performing work on the opposite side of a barrier wall, is described. The manipulator consists of a rotatable horizontal support adapted to extend through the wall and two longitudinally extensible arms, a master and a slave, pivotally connected one to each end of the support. (U.K.)

  4. In Praise of Manipulation

    NARCIS (Netherlands)

    Dowding, Keith; Van Hees, Martin

    Many theorists believe that the manipulation of voting procedures is a serious problem. Accordingly, much of social choice theory examines the conditions under which strategy-proofness can be ensured, and what kind of procedures do a better job of preventing manipulation. This article argues that

  5. Sputter coating of microspherical substrates by levitation

    Science.gov (United States)

    Lowe, A.T.; Hosford, C.D.

    Microspheres are substantially uniformly coated with metals or nonmetals by simltaneously levitating them and sputter coating them at total chamber pressures less than 1 torr. A collimated hole structure comprising a parallel array of upwardly projecting individual gas outlets is machined out to form a dimple. Glass microballoons,, which are particularly useful in laser fusion applications, can be substantially uniformly coated using the coating method and apparatus.

  6. In situ one-pot preparation of superparamagnetic hydrophilic porous microspheres for covalently immobilizing penicillin G acylase to synthesize amoxicillin

    Science.gov (United States)

    Xue, Ping; Gu, Yaohua; Su, Weiguang; Shuai, Huihui; Wang, Julan

    2016-01-01

    Magnetic hydrophilic porous microspheres were successfully one-pot synthesized for the first time via in situ inverse suspension polymerization of glycidyl methacrylate, N,N‧-methylene bisacrylamide and 2-hydroxyethyl methacrylate in the presence of Fe3+ and Fe2+ dispersed in formamide, which were denoted as magnetic Fe3O4-GMH microspheres. The morphology and properties of magnetic Fe3O4-GMH microspheres were characterized by SEM, VSM, XRD, FTIR, and so on. The formamide content had an important influence on the morphology of Fe3O4-GMH, and nearly perfectly spherical Fe3O4-GMH particles were formed when the amount of formamide was 15 ml. The diameters of the microspheres were in the range of 100-200 μm and Fe3O4-GMH exhibited superparamagnetic behavior with the saturation magnetization of 5.44 emu/g. The specific surface area of microspheres was 138.7 m2/g, the average pore diameter and pore volume were 15.1 nm and 0.60 cm3/g, respectively. The content of oxirane groups on Fe3O4-GMH was 0.40 mmol/g. After penicillin G acylase (PGA) was covalently immobilized on Fe3O4-GMH microspheres, the catalytic performance for amoxicillin synthesis by 6-aminopenicillanic acid and D-hydroxyphenylglycine methyl ester was largely improved. As a result, 90.1% amoxicillin yield and 1.18 of the synthesis/hydrolysis (S/H) ratio were achieved on PGA/Fe3O4-GMH with ethylene glycol as solvent, but only 62.6% amoxicillin yield and 0.37 of the S/H ratio were obtained on free PGA under the same reaction conditions. Furthermore, the amoxicillin yield and S/H ratio were still kept at 88.2% and 1.06, respectively after the immobilized PGA was magnetically separated and recycled for 10 times, indicating that PGA/Fe3O4-GMH had a very good reusability.

  7. Manipulator comparative testing program

    International Nuclear Information System (INIS)

    Draper, J.V.; Handel, S.J.; Sundstrom, E.; Herndon, J.N.; Fujita, Y.; Maeda, M.

    1986-01-01

    The Manipulator Comparative Testing Program examined differences among manipulator systems from the United States and Japan. The manipulator systems included the Meidensha BILARM 83A, the Model M-2 of Central Research Laboratories Division of Sargent Industries (CRL), and the GCA Corporation PaR Systems Model 6000. The site of testing was the Remote Operations Maintenance Demonstration (ROMD) facility, operated by the Fuel Recycle Division in the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory (ORNL). In all stages of testing, operators using the CRL Model M-2 manipulator had consistently lower times to completion and error rates than they did using other machines. Performance was second best with the Meidensha BILARM 83A in master-slave mode. Performance with the BILARM in switchbox mode and the PaR 6000 manipulator was approximately equivalent in terms of criteria recorded in testing. These data show no impact of force reflection on task performance

  8. Atomic and Molecular Manipulation of Chemical Interactions

    National Research Council Canada - National Science Library

    Ho, Wilson

    2007-01-01

    .... In effect, the goal is to carry out chemical changes by manipulating individual atoms and molecules to induce different bonding geometry and to create new interactions with their environment. These studies provide the scientific basis for the advancement of technology in catalysis, molecular electronics, optics, chemical and biological sensing, and magnetic storage.

  9. Glass microspheres covering film: first field evaluations

    International Nuclear Information System (INIS)

    Magnani, G.; Filippi, F.

    2006-01-01

    A trial was carried out to evaluate, in the North-Centre of Italy, the behaviour in field of a new plastic covering film, prepared with the inclusion of empty glass microspheres (Solex). The trial was conducted on tomato (Lycopersicon esculentum L.) and eggplant (Solanum melongena L.). The new film was compared to a covering film with the same optical (diffuse light) and constitutional (co-extruded three layers EVA-WPE) characteristics. Since the first results, the innovative film showed a better behaviour than the control one. It presented light and thermal conditions (lower temperature during the day and slightly higher temperature in the night, compared to the control film) that allowed a better growth and yield than the control film. The growth analysis of tomato showed that plants grown under glass microsphere film had an higher growth rate (dry weight/days) and thickness of leaves compared to the control one. The yield of tomato and eggplant presented an increase in plants cultivated under the innovative film, especially for number and weight of fruits. The commercial quality did not show any differences between the films, except for the flesh hardness of tomato: this could be explained with the fact that the glass microspheres film provides environmental conditions avoiding plant stress during some stages of its cycle [it

  10. STRUCTURING OF DIAMOND FILMS USING MICROSPHERE LITHOGRAPHY

    Directory of Open Access Journals (Sweden)

    Mária Domonkos

    2014-10-01

    Full Text Available In this study, the structuring of micro- and nanocrystalline diamond thin films is demonstrated. The structuring of the diamond films is performed using the technique of microsphere lithography followed by reactive ion etching. Specifically, this paper presents a four-step fabrication process: diamond deposition (microwave plasma assisted chemical vapor deposition, mask preparation (by the standard Langmuir-Blodgett method, mask modification and diamond etching. A self-assembled monolayer of monodisperse polystyrene (PS microspheres with close-packed ordering is used as the primary template. Then the PS microspheres and the diamond films are processed in capacitively coupled radiofrequency plasma  using different plasma chemistries. This fabrication method illustrates the preparation of large arrays of periodic and homogeneous hillock-like structures. The surface morphology of processed diamond films is characterized by scanning electron microscopy and atomic force microscope. The potential applications of such diamond structures in various fields of nanotechnology are also briefly discussed.

  11. Yttrium-90 microsphere induced gastrointestinal tract ulceration

    Directory of Open Access Journals (Sweden)

    Rikabi Ali A

    2008-09-01

    Full Text Available Abstract Background Radiomicrosphere therapy (RT utilizing yttrium-90 (90Y microspheres has been shown to be an effective regional treatment for primary and secondary hepatic malignancies. We sought to determine a large academic institution's experience regarding the extent and frequency of gastrointestinal complications. Methods Between 2004 and 2007, 27 patients underwent RT for primary or secondary hepatic malignancies. Charts were subsequently reviewed to determine the incidence and severity of GI ulceration. Results Three patients presented with gastrointestinal bleeding and underwent upper endoscopy. Review of the pretreatment angiograms showed normal vascular anatomy in one patient, sclerosed hepatic vasculature in a patient who had undergone prior chemoembolization in a second, and an aberrant left hepatic artery in a third. None had undergone prophylactic gastroduodenal artery embolization. Endoscopic findings included erythema, mucosal erosions, and large gastric ulcers. Microspheres were visible on endoscopic biopsy. In two patients, gastric ulcers were persistent at the time of repeat endoscopy 1–4 months later despite proton pump inhibitor therapy. One elderly patient who refused surgical intervention died from recurrent hemorrhage. Conclusion Gastrointestinal ulceration is a known yet rarely reported complication of 90Y microsphere embolization with potentially life-threatening consequences. Once diagnosed, refractory ulcers should be considered for aggressive surgical management.

  12. Adsorption behavior of protein onto siloxane microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Liu Bailing [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China)]. E-mail: Blliuchem@hotmail.com; Cao Shunsheng [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Deng Xiaobo [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Li Songjun [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Luo Rong [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China)

    2006-09-15

    The siloxane microspheres with core-shell structure (PMMA/PMPS) (MMA, methyl methacrylate; MPS, 3-methacryloxypropyl-trimethoxysilane) have been prepared by dispersion polymerization as described in our previous work. In this paper, the developed poly(MMA-MPS) microspheres, as a carrier, are used to investigate the adsorption behavior of bovine serum albumin (BSA) on them. The Langmuir and Freundlich models have been applied to describe the adsorption behavior. The experimental results indicated that the presence of PMPS evidently increases the adsorption rate and the amount of protein, and it also influences the interaction of BSA molecules. The adsorption of BSA on the poly(MMA-MPS) microspheres seems to be sensitive to pH and ionic strength. The fittings curves from Langmuir and Freundlich models showed that the adsorption was actually more complicated than ideal situation because one or more interactions were involved in the process. For understanding the electronic contribution, the Zeta potential was used to measure the reactive system before and after protein adsorption.

  13. Adsorption behavior of protein onto siloxane microspheres

    International Nuclear Information System (INIS)

    Liu Bailing; Cao Shunsheng; Deng Xiaobo; Li Songjun; Luo Rong

    2006-01-01

    The siloxane microspheres with core-shell structure (PMMA/PMPS) (MMA, methyl methacrylate; MPS, 3-methacryloxypropyl-trimethoxysilane) have been prepared by dispersion polymerization as described in our previous work. In this paper, the developed poly(MMA-MPS) microspheres, as a carrier, are used to investigate the adsorption behavior of bovine serum albumin (BSA) on them. The Langmuir and Freundlich models have been applied to describe the adsorption behavior. The experimental results indicated that the presence of PMPS evidently increases the adsorption rate and the amount of protein, and it also influences the interaction of BSA molecules. The adsorption of BSA on the poly(MMA-MPS) microspheres seems to be sensitive to pH and ionic strength. The fittings curves from Langmuir and Freundlich models showed that the adsorption was actually more complicated than ideal situation because one or more interactions were involved in the process. For understanding the electronic contribution, the Zeta potential was used to measure the reactive system before and after protein adsorption

  14. Subcritical CO{sub 2} sintering of microspheres of different polymeric materials to fabricate scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Bhamidipati, Manjari; Sridharan, BanuPriya [Bioengineering Graduate Program, University of Kansas, Lawrence, KS (United States); Scurto, Aaron M. [Bioengineering Graduate Program, University of Kansas, Lawrence, KS (United States); Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS (United States); Detamore, Michael S., E-mail: detamore@ku.edu [Bioengineering Graduate Program, University of Kansas, Lawrence, KS (United States); Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS (United States)

    2013-12-01

    The aim of this study was to use CO{sub 2} at sub-critical pressures as a tool to sinter 3D, macroporous, microsphere-based scaffolds for bone and cartilage tissue engineering. Porous scaffolds composed of ∼ 200 μm microspheres of either poly(lactic-co-glycolic acid) (PLGA) or polycaprolactone (PCL) were prepared using dense phase CO{sub 2} sintering, which were seeded with rat bone marrow mesenchymal stromal cells (rBMSCs), and exposed to either osteogenic (PLGA, PCL) or chondrogenic (PLGA) conditions for 6 weeks. Under osteogenic conditions, the PLGA constructs produced over an order of magnitude more calcium than the PCL constructs, whereas the PCL constructs had far superior mechanical and structural integrity (125 times stiffer than PLGA constructs) at week 6, along with twice the cell content of the PLGA constructs. Chondrogenic cell performance was limited in PLGA constructs, perhaps as a result of the polymer degradation rate being too high. The current study represents the first long-term culture of CO{sub 2}-sintered microsphere-based scaffolds, and has established important thermodynamic differences in sintering between the selected formulations of PLGA and PCL, with the former requiring adjustment of pressure only, and the latter requiring the adjustment of both pressure and temperature. Based on more straightforward sintering conditions and more favorable cell performance, PLGA may be the material of choice for microspheres in a CO{sub 2} sintering application, although a different PLGA formulation with the encapsulation of growth factors, extracellular matrix-derived nanoparticles, and/or buffers in the microspheres may be advantageous for achieving a more superior cell performance than observed here. - Highlights: • The first long-term culture of CO{sub 2}-sintered microsphere-based scaffolds. • Established important thermodynamic differences between sintering PLGA and PCL. • PCL sintering with CO{sub 2} required manipulation of both

  15. Manipulation, salience, and nudges.

    Science.gov (United States)

    Noggle, Robert

    2018-03-01

    Cass Sunstein and Richard Thaler recommend helping people make better decisions by employing 'nudges', which they define as noncoercive methods of influencing choice for the better. Not surprisingly, healthcare practitioners and public policy professionals have become interested in whether nudges might be a promising method of improving health-related behaviors without resorting to heavy-handed methods such as coercion, deception, or government regulation. Many nudges seem unobjectionable as they merely improve the quality and quantity available for the decision-maker. However, other nudges influence decision-making in ways that do not involve providing more and better information. Nudges of this sort raise concerns about manipulation. This paper will focus on noninformational nudges that operate by changing the salience of various options. It will survey two approaches to understanding manipulation, one which sees manipulation as a kind of pressure, and one that sees it as a kind of trickery. On the pressure view, salience nudges do not appear to be manipulative. However, on the trickery view (which the author favors), salience nudges will be manipulative if they increase the salience so that it is disproportionate to that fact's true relevance and importance for the decision at hand. By contrast, salience nudges will not be manipulative if they merely highlight some fact that is true and important for the decision at hand. The paper concludes by providing examples of both manipulative and nonmanipulative salience nudges. © 2017 John Wiley & Sons Ltd.

  16. MAGNET

    CERN Multimedia

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  17. Magnetic SiO2/Fe3O4 colloidal crystals

    International Nuclear Information System (INIS)

    Huang, C-K; Hou, C-H; Chen, C-C; Tsai, Y-L; Chang, L-M; Wei, H-S; Hsieh, K-H; Chan, C-H

    2008-01-01

    We proposed a novel technique to fabricate colloidal crystals by using monodisperse SiO 2 coated magnetic Fe 3 O 4 (SiO 2 /Fe 3 O 4 ) microspheres. The magnetic SiO 2 /Fe 3 O 4 microspheres with a diameter of 700 nm were synthesized in the basic condition with ferric sulfate, ferrous sulfate, tartaric acid and tetraethyl orthosilicate (TEOS) in the reaction system. Monodisperse SiO 2 /Fe 3 O 4 superparamagnetic microspheres have been successfully used to fabricate colloidal crystals under the existing magnetic field

  18. Manipulators for production and research

    International Nuclear Information System (INIS)

    Munro, Ian

    1987-01-01

    The development of caves or cells and master-slave manipulators to handle radioactive materials is discussed. Some of the most recent advances are described. A manipulator arm, a master-slave manipulator and a servomanipulator mounted on a manipulator are illustrated. Future developments are discussed - these include resolved tip control for the manipulator. (UK)

  19. Powered manipulator control arm

    International Nuclear Information System (INIS)

    Le Mouee, Theodore; Vertut, Jean; Marchal, Paul; Germon, J.C.; Petit, Michel

    1975-01-01

    A remote operated control arm for powered manipulators is described. It includes an assembly allowing several movements with position sensors for each movement. The number of possible arm movements equals the number of possible manipulator movements. The control systems may be interrupted as required. One part of the arm is fitted with a system to lock it with respect to another part of the arm without affecting the other movements, so long as the positions of the manipulator and the arm have not been brought into complete coincidence. With this system the locking can be ended when complete concordance is achieved [fr

  20. Simulation of robot manipulators

    International Nuclear Information System (INIS)

    Kress, R.L.; Babcock, S.M.; Bills, K.C.; Kwon, D.S.; Schoenwald, D.A.

    1995-01-01

    This paper describes Oak Ridge National Laboratory's development of an environment for the simulation of robotic manipulators. Simulation includes the modeling of kinematics, dynamics, sensors, actuators, control systems, operators, and environments. Models will be used for manipulator design, proposal evaluation, control system design and analysis, graphical preview of proposed motions, safety system development, and training. Of particular interest is the development of models for robotic manipulators having at least one flexible link. As a first application, models have been developed for the Pacific Northwest Laboratories' Flexible Beam Testbed which is a one-Degree-Of-Freedom, flexible arm with a hydraulic base actuator. Initial results show good agreement between model and experiment

  1. The direct manipulation shell

    International Nuclear Information System (INIS)

    Allen, M.E.; Christiansen, M.

    1992-01-01

    Accelerator controls systems provide parameter display pages which allow the operator to monitor and manipulate selected control points in the system. Display pages are generally implemented as either hand-crafted, purpose-built programs; or by using a specialized display page layout tool. These two methods of display page development exhibit the classic trade-off between functionality vs. ease of implementation. In the Direct Manipulation Shell we approach the process of developing a display page in a manifestly object-oriented manner. This is done by providing a general framework for interactively instantiating and manipulating display objects. (author)

  2. Controlling silk fibroin microspheres via molecular weight distribution

    International Nuclear Information System (INIS)

    Zeng, Dong-Mei; Pan, Jue-Jing; Wang, Qun; Liu, Xin-Fang; Wang, Hui; Zhang, Ke-Qin

    2015-01-01

    Silk fibroin (SF) microspheres were produced by salting out SF solution via the addition of potassium phosphate buffer solution (K 2 HPO 4 –KH 2 PO 4 ). The morphology, size and polydispersity of SF microspheres were adjusted by changing the molecular weight (MW) distribution and concentration of SF, as well as the ionic strength and pH of the buffer solution. Changing the conditions under which the SF fiber dissolved in the Lithium Boride (LiBr) solution resulted in altering the MW distribution of SF solution. Under optimal salting-out conditions (ionic strength > 0.7 M and pH > 7) and using a smaller and narrower SF MW distribution, SF microspheres with smoother shapes and more uniform sizes were produced. Meanwhile, the size and polydispersity of the microspheres increased when the SF concentration was increased from 0.25 mg/mL to 20 mg/mL. The improved SF microspheres, obtained by altering the distribution of molecular weight, have potential in drug and gene delivery applications. - Highlights: • MW distribution was changed by applying different dissolving methods of SF fiber. • Smaller and narrower MW distribution improves the quality of SF microspheres. • Size and polydispersity of microspheres increase as SF concentration increases. • Improved SF microspheres have potential in drug and gene delivery applications

  3. Toward quantum-limited position measurements using optically levitated microspheres

    International Nuclear Information System (INIS)

    Libbrecht, Kenneth G.; Black, Eric D.

    2004-01-01

    We propose the use of optically levitated microspheres as test masses in experiments aimed at reaching and potentially exceeding the standard quantum limit for position measurements. Optically levitated microspheres have low mass and are essentially free of suspension thermal noise, making them well suited for experimentally testing our understanding of quantum-limited measurements

  4. Toward quantum-limited position measurements using optically levitated microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Libbrecht, Kenneth G.; Black, Eric D

    2004-01-26

    We propose the use of optically levitated microspheres as test masses in experiments aimed at reaching and potentially exceeding the standard quantum limit for position measurements. Optically levitated microspheres have low mass and are essentially free of suspension thermal noise, making them well suited for experimentally testing our understanding of quantum-limited measurements.

  5. Development and evaluation of floating microspheres of curcumin in ...

    African Journals Online (AJOL)

    Purpose: To prepare and evaluate floating microspheres of curcumin for prolonged gastric residence and to study their effect on alloxan-induced diabetic rats. Methods: Floating microsphere were prepared by emulsion-solvent diffusion method, using hydroxylpropyl methylcellulose, chitosan and Eudragit S 100 polymer in ...

  6. Development and Evaluation of Floating Microspheres of Curcumin ...

    African Journals Online (AJOL)

    Purpose: To prepare and evaluate floating microspheres of curcumin for prolonged gastric residence time and increased drug bioavailability. Methods: Floating microsphere were prepared by emulsion solvent diffusion method, using hydroxylpropyl methylcellulose (HPMC), ethyl cellulose (EC), Eudragit S 100 polymer in ...

  7. PLGA and PHBV Microsphere Formulations and Solid-State Characterization

    DEFF Research Database (Denmark)

    Yang, Chiming; Plackett, David; Needham, David

    2009-01-01

    To develop and characterize the solid-state properties of poly(DL-lactic-co-glycolic acid) (PLGA) and poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) microspheres for the localized and controlled release of fusidic acid (FA). The effects of FA loading and polymer composition on the me...... of a DCM-FA-rich phase in the forming microsphere....

  8. Preparation of mesoporous zirconia microspheres as inert matrix

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Ting [State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China); Wang, Chen; Lv, Jinlong [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China); Liang, Tongxiang, E-mail: txliang@tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China)

    2016-12-01

    Mesoporous zirconia microspheres, with a diameter of 900 μm, were prepared as an inert accelerator driven system (ADS) transmutation element matrix by the sol-gel method. The purpose of mesopores is to improve the adsorption capacity of inert matrix fuel (IMF) for minor actinides. The study indicated that the mesoporous zirconia performance was improved after the microspheres were hydrothermally treated at 150 °C, the specific surface area increased from 28.29 m{sup 2}/g to 61.28 m{sup 2}/g, and hydrothermal treatment avoided the cracking of the microspheres. Pre-decomposition of the organics during the hydrothermal process stabilized the mesoporous structure. The average pore diameter of mesoporous microsphere was 14.3 nm. - Highlights: • Mesoporous zirconia microspheres with a diameter of 900 μm were prepared as ADS transmutation element inert matrix. • The mesoporous performance was improved after the microspheres were hydrothermally treated at 150 °C. • The specific surface area increased from 28.29 m{sup 2}/g to 61.28 m{sup 2}/g. • The hydrothermal treatment could avoid the cracking of the microspheres. • The specific surface area of mesoporous microsphere was 61.28 m{sup 2}/g and the average pore diameter was 14.3 nm.

  9. Antibacterial activity of ciprofloxacin-loaded zein microsphere films

    International Nuclear Information System (INIS)

    Fu Jianxi; Wang Huajie; Zhou Yanqing; Wang Jinye

    2009-01-01

    Our aim was to produce an antibiotic-emitting coating composed of zein microspheres for the prevention of bacterial infection on implanted devices. Ciprofloxacin-loaded zein microspheres were prepared using a phase separation procedure, with particle sizes between 0.5 and 2 μm. Drug encapsulation and drug loading varied with the amount of both zein and ciprofloxacin, and the highest encapsulation efficiency was 8.27% (2 mg/ml ciprofloxacin and 20 mg/ml zein; n = 3). A ciprofloxacin-loaded zein microsphere film (CF-MS film) was generated via solvent evaporation. Continuous drug release from a trypsin-degraded microsphere film was observed for up to 28 days. The liberation of ciprofloxacin from the trypsin-degraded film and the biodegradation of the microsphere film were highly correlated. Proliferation assay of the growth of human umbilical vein endothelial cells (HUVECs) by the MTT method showed that the microsphere film had no toxicity when compared with cells grown on Corning culture plates alone and plates with a zein film alone. Quantification of bacteria adhesion showed that adhesion on the microsphere film is significantly suppressed. In addition, according to the results of bacterial growth tests, ciprofloxacin-loaded microsphere films maintained antibacterial activity for more than 6 days. In contrast, a control medium containing a zein film allowed constant bacterial growth. These results indicate that CF-MS films might be useful as antibacterial films on implanted devices.

  10. Apparatus for manufacturing ceramics microspheres for cementing applications

    NARCIS (Netherlands)

    2012-01-01

    A method and apparatus for manufacturing ceramic microspheres from industrial slag. The micro spheres have a particle size of about 38 microns to about 150 microns. The microspheres are used to create a cement slurry having a density of at least about Illbs/g. The resultant cement slurry may then be

  11. Controlling silk fibroin microspheres via molecular weight distribution

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Dong-Mei; Pan, Jue-Jing; Wang, Qun; Liu, Xin-Fang; Wang, Hui [National Engineering Laboratory for Modern Silk, College for Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123 (China); Zhang, Ke-Qin, E-mail: kqzhang@suda.edu.cn [National Engineering Laboratory for Modern Silk, College for Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123 (China); Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Soochow University, Suzhou, Jiangsu 215123 (China)

    2015-05-01

    Silk fibroin (SF) microspheres were produced by salting out SF solution via the addition of potassium phosphate buffer solution (K{sub 2}HPO{sub 4}–KH{sub 2}PO{sub 4}). The morphology, size and polydispersity of SF microspheres were adjusted by changing the molecular weight (MW) distribution and concentration of SF, as well as the ionic strength and pH of the buffer solution. Changing the conditions under which the SF fiber dissolved in the Lithium Boride (LiBr) solution resulted in altering the MW distribution of SF solution. Under optimal salting-out conditions (ionic strength > 0.7 M and pH > 7) and using a smaller and narrower SF MW distribution, SF microspheres with smoother shapes and more uniform sizes were produced. Meanwhile, the size and polydispersity of the microspheres increased when the SF concentration was increased from 0.25 mg/mL to 20 mg/mL. The improved SF microspheres, obtained by altering the distribution of molecular weight, have potential in drug and gene delivery applications. - Highlights: • MW distribution was changed by applying different dissolving methods of SF fiber. • Smaller and narrower MW distribution improves the quality of SF microspheres. • Size and polydispersity of microspheres increase as SF concentration increases. • Improved SF microspheres have potential in drug and gene delivery applications.

  12. Porous-wall hollow glass microspheres as carriers for biomolecules

    Science.gov (United States)

    Li, Shuyi; Dynan, William S; Wicks, George; Serkiz, Steven

    2013-09-17

    The present invention includes compositions of porous-wall hollow glass microspheres and one or more biomolecules, wherein the one or more biomolecules are positioned within a void location within the hollow glass microsphere, and the use of such compositions for the diagnostic and/or therapeutic delivery of biomolecules.

  13. Antibacterial activity of ciprofloxacin-loaded zein microsphere films

    Energy Technology Data Exchange (ETDEWEB)

    Fu Jianxi [Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032 (China); Henan Normal University, 46 East Construction Road, Xinxiang, Henan 453007 (China); Wang Huajie [College of Life Science and Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China); Zhou Yanqing [Henan Normal University, 46 East Construction Road, Xinxiang, Henan 453007 (China); Wang Jinye, E-mail: jywang@mail.sioc.ac.cn [Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032 (China); College of Life Science and Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China)

    2009-05-05

    Our aim was to produce an antibiotic-emitting coating composed of zein microspheres for the prevention of bacterial infection on implanted devices. Ciprofloxacin-loaded zein microspheres were prepared using a phase separation procedure, with particle sizes between 0.5 and 2 {mu}m. Drug encapsulation and drug loading varied with the amount of both zein and ciprofloxacin, and the highest encapsulation efficiency was 8.27% (2 mg/ml ciprofloxacin and 20 mg/ml zein; n = 3). A ciprofloxacin-loaded zein microsphere film (CF-MS film) was generated via solvent evaporation. Continuous drug release from a trypsin-degraded microsphere film was observed for up to 28 days. The liberation of ciprofloxacin from the trypsin-degraded film and the biodegradation of the microsphere film were highly correlated. Proliferation assay of the growth of human umbilical vein endothelial cells (HUVECs) by the MTT method showed that the microsphere film had no toxicity when compared with cells grown on Corning culture plates alone and plates with a zein film alone. Quantification of bacteria adhesion showed that adhesion on the microsphere film is significantly suppressed. In addition, according to the results of bacterial growth tests, ciprofloxacin-loaded microsphere films maintained antibacterial activity for more than 6 days. In contrast, a control medium containing a zein film allowed constant bacterial growth. These results indicate that CF-MS films might be useful as antibacterial films on implanted devices.

  14. Formulation and Evaluation of Microspheres Based on Gelatin ...

    African Journals Online (AJOL)

    Formulation and Evaluation of Microspheres Based on Gelatin-Mucin Admixtures for the Rectal Delivery of Cefuroxime Sodium. K C Ofokansi, M U Adikwu. Abstract. Purpose: Swellable microspheres based on polymers or their admixtures are frequently employed as drug delivery systems to achieve a controlled release ...

  15. Microspheres with Ultrahigh Holmium Content for Radioablation of Malignancies

    NARCIS (Netherlands)

    Bult, W.; Seevinck, P.R.; Krijger, G.C.; Visser, T.; Kroon-Batenburg, L.M.J.; Bakker, C.J.G.; Hennink, W.E.; van het Schip, A.D.; Nijsen, J.F.W.

    2009-01-01

    The aim of this study was to develop microspheres with an ultra high holmium content which can be neutron activated for radioablation of malignancies. These microspheres are proposed to be delivered selectively through either intratumoral injections into solid tumors or administered via an

  16. Microspheres with ultrahigh holmium content for radioablation of malignancies

    NARCIS (Netherlands)

    Bult, W; Seevinck, P R; Krijger, G C; Visser, T; Kroon-Batenburg, L M J; Bakker, C J G; Hennink, W E; van het Schip, A D; Nijsen, J F W

    PURPOSE: The aim of this study was to develop microspheres with an ultra high holmium content which can be neutron activated for radioablation of malignancies. These microspheres are proposed to be delivered selectively through either intratumoral injections into solid tumors or administered via an

  17. Microspheres with Ultrahigh Holmium Content for Radioablation of Malignancies

    NARCIS (Netherlands)

    Bult, W.; Seevinck, P.R.; Krijger, G.C.; Visser, T.; Kroon-Batenburg, L.M.J.; Bakker, C.J.G.; Hennink, W.E.; Van het Schip, A.D.; Nijsen, J.F.W.

    Purpose The aim of this study was to develop microspheres with an ultra high holmium content which can be neutron activated for radioablation of malignancies. These microspheres are proposed to be delivered selectively through either intratumoral injections into solid tumors or administered via an

  18. Optimization of sustained release aceclofenac microspheres using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, Rameshwar K.; Naik, Jitendra B., E-mail: jitunaik@gmail.com

    2015-03-01

    Polymeric microspheres containing aceclofenac were prepared by single emulsion (oil-in-water) solvent evaporation method using response surface methodology (RSM). Microspheres were prepared by changing formulation variables such as the amount of Eudragit® RS100 and the amount of polyvinyl alcohol (PVA) by statistical experimental design in order to enhance the encapsulation efficiency (E.E.) of the microspheres. The resultant microspheres were evaluated for their size, morphology, E.E., and in vitro drug release. The amount of Eudragit® RS100 and the amount of PVA were found to be significant factors respectively for determining the E.E. of the microspheres. A linear mathematical model equation fitted to the data was used to predict the E.E. in the optimal region. Optimized formulation of microspheres was prepared using optimal process variables setting in order to evaluate the optimization capability of the models generated according to IV-optimal design. The microspheres showed high E.E. (74.14 ± 0.015% to 85.34 ± 0.011%) and suitably sustained drug release (minimum; 40% to 60%; maximum) over a period of 12 h. The optimized microspheres formulation showed E.E. of 84.87 ± 0.005 with small error value (1.39). The low magnitudes of error and the significant value of R{sup 2} in the present investigation prove the high prognostic ability of the design. The absence of interactions between drug and polymers was confirmed by Fourier transform infrared (FTIR) spectroscopy. Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) revealed the dispersion of drug within microspheres formulation. The microspheres were found to be discrete, spherical with smooth surface. The results demonstrate that these microspheres could be promising delivery system to sustain the drug release and improve the E.E. thus prolong drug action and achieve the highest healing effect with minimal gastrointestinal side effects. - Highlights: • Aceclofenac microspheres

  19. Preparation and Characterization of Fluorescent SiO2 Microspheres

    Science.gov (United States)

    Xu, Cui; Zhang, Hao; Guan, Ruifang

    2018-01-01

    Fluorescent compound without typical fluorophores was synthesized with citric acid (CA) and aminopropyltriethoxysilane (APTS) firstly, and then it was grafted to the surface of the prepared SiO2 microspheres by chemical reaction. The fluorescent SiO2 microspheres with good fluorescent properties were obtained by optimizing the reaction conditions. And the morphology and structure of the fluorescent SiO2 microspheres have been characterized by scanning electron microscopy (SEM) and fourier transform infrared (FTIR) spectroscopy. The results showed that the preparation of fluorescent SiO2 microspheres have good monodispersity and narrow particle size distribution. Moreover, the fluorescent SiO2 microspheres can be applied to detect Fe3+ in aqueous solution, prepare fluorescent SiO2 rubber, and have potential to be applied in the fluorescent labeling and fingerprint appearing technique fields.

  20. Study on the Degradation of Polylactide Microsphere In Vitro

    Institute of Scientific and Technical Information of China (English)

    HeYing; WeiShuli

    2001-01-01

    This report concentrated on the rules and mechanism of the degradation of polylactide and the microspheres. The rate of degradation was assessed with five methods: observation of microsphere surface morphology by SEM, determination of the weight loss of the microspheres, determination of the molecular mass of the polymers by GPC, determination of pH and determination of the contents of lactic acid by UV spectrophotometry. The degradation of polylactide microspheres showed two-phase characteristics. At the early stage of the degradation, the high molecular mass polymers were cleaved into lower molecular mass fractions and at the late stage, there was a period of erosion and weight loss of the microspheres. The degradation was much slower for polymers with a higher molecular mass. The polylactide degradation showed good regularity.

  1. Hollow porous-wall glass microspheres for hydrogen storage

    Science.gov (United States)

    Heung, Leung K.; Schumacher, Ray F.; Wicks, George G.

    2010-02-23

    A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

  2. Geometric control of manipulators

    International Nuclear Information System (INIS)

    Thiruarooran, C.

    1996-01-01

    Resolved motion control enables the end effector to be moved as a rigid body in space without having to work out manually the joint combinations needed. Since a rigid body in space has three independent translational and three independent rotational movements, a manipulator with at least six joints can be controlled in this way. Normally the manipulator has more than six joints providing an infinite number of ways of moving the tip in the desired direction and this redundancy can be exploited in a variety of ways. Resolved motion tests performed on a hydraulically operated heavy duty manipulator at the Dungeness nuclear power plant are described. The results have shown that manipulators with as many as ten joints can be controlled under resolved tip motion and the areas which are critical to the performance of this type of control have been identified. (UK)

  3. MATHEMATICAL MODEL MANIPULATOR ROBOTS

    Directory of Open Access Journals (Sweden)

    O. N. Krakhmalev

    2015-12-01

    Full Text Available A mathematical model to describe the dynamics of manipulator robots. Mathematical model are the implementation of the method based on the Lagrange equation and using the transformation matrices of elastic coordinates. Mathematical model make it possible to determine the elastic deviations of manipulator robots from programmed motion trajectories caused by elastic deformations in hinges, which are taken into account in directions of change of the corresponding generalized coordinates. Mathematical model is approximated and makes it possible to determine small elastic quasi-static deviations and elastic vibrations. The results of modeling the dynamics by model are compared to the example of a two-link manipulator system. The considered model can be used when performing investigations of the mathematical accuracy of the manipulator robots.

  4. Compliant Aerial Manipulators

    DEFF Research Database (Denmark)

    Bartelds, T.; Capra, A.; Hamaza, S.

    2016-01-01

    joints. The approach aims at limiting the influence of impacts on the controlled attitude dynamics in order to allow the aerial manipulator to remain stable during and after impact. The developed concept is intended to convert kinetic energy into potential energy, which is permanently stored into elastic...... elements by means of directional locking mechanisms. The proposed approach has been tested on a 2 d.o.f. manipulator mounted on a quadrotor UAV. The manipulation system has one active rotational d.o.f. compensating for pitch movements of the UAV and one passive linear joint which is in charge of absorbing...... the impact energy. The device has been used to validate the method through experiments, in comparison with a rigid manipulator. The results show that the proposed approach and the developed mechanical system achieve stable impact absorption without bouncing away from the interacting environment. Our work has...

  5. Manipulating Strings in Python

    Directory of Open Access Journals (Sweden)

    William J. Turkel

    2012-07-01

    Full Text Available This lesson is a brief introduction to string manipulation techniques in Python. Knowing how to manipulate strings plays a crucial role in most text processing tasks. If you’d like to experiment with the following lessons, you can write and execute short programs as we’ve been doing, or you can open up a Python shell / Terminal to try them out on the command line.

  6. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...

  7. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...

  8. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...

  9. Modeling the efficiency of a magnetic needle for collecting magnetic cells

    International Nuclear Information System (INIS)

    Butler, Kimberly S; Lovato, Debbie M; Larson, Richard S; Adolphi, Natalie L; Bryant, H C; Flynn, Edward R

    2014-01-01

    As new magnetic nanoparticle-based technologies are developed and new target cells are identified, there is a critical need to understand the features important for magnetic isolation of specific cells in fluids, an increasingly important tool in disease research and diagnosis. To investigate magnetic cell collection, cell-sized spherical microparticles, coated with superparamagnetic nanoparticles, were suspended in (1) glycerine–water solutions, chosen to approximate the range of viscosities of bone marrow, and (2) water in which 3, 5, 10 and 100% of the total suspended microspheres are coated with magnetic nanoparticles, to model collection of rare magnetic nanoparticle-coated cells from a mixture of cells in a fluid. The magnetic microspheres were collected on a magnetic needle, and we demonstrate that the collection efficiency versus time can be modeled using a simple, heuristically-derived function, with three physically-significant parameters. The function enables experimentally-obtained collection efficiencies to be scaled to extract the effective drag of the suspending medium. The results of this analysis demonstrate that the effective drag scales linearly with fluid viscosity, as expected. Surprisingly, increasing the number of non-magnetic microspheres in the suspending fluid results increases the collection of magnetic microspheres, corresponding to a decrease in the effective drag of the medium. (paper)

  10. Modeling the efficiency of a magnetic needle for collecting magnetic cells

    Science.gov (United States)

    Butler, Kimberly S.; Adolphi, Natalie L.; Bryant, H. C.; Lovato, Debbie M.; Larson, Richard S.; Flynn, Edward R.

    2014-07-01

    As new magnetic nanoparticle-based technologies are developed and new target cells are identified, there is a critical need to understand the features important for magnetic isolation of specific cells in fluids, an increasingly important tool in disease research and diagnosis. To investigate magnetic cell collection, cell-sized spherical microparticles, coated with superparamagnetic nanoparticles, were suspended in (1) glycerine-water solutions, chosen to approximate the range of viscosities of bone marrow, and (2) water in which 3, 5, 10 and 100% of the total suspended microspheres are coated with magnetic nanoparticles, to model collection of rare magnetic nanoparticle-coated cells from a mixture of cells in a fluid. The magnetic microspheres were collected on a magnetic needle, and we demonstrate that the collection efficiency versus time can be modeled using a simple, heuristically-derived function, with three physically-significant parameters. The function enables experimentally-obtained collection efficiencies to be scaled to extract the effective drag of the suspending medium. The results of this analysis demonstrate that the effective drag scales linearly with fluid viscosity, as expected. Surprisingly, increasing the number of non-magnetic microspheres in the suspending fluid results increases the collection of magnetic microspheres, corresponding to a decrease in the effective drag of the medium.

  11. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    Science.gov (United States)

    Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A.; Brown, Gilbert M.

    2017-04-11

    Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions include microspheres with an average diameter between about 200 nanometers and about 10 micrometers and mesopores on the surface and interior of the microspheres. The methods of making include forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least annealing in a reducing atmosphere, doping with an aliovalent element, and coating with a coating composition.

  12. Popcorn balls-like ZnFe{sub 2}O{sub 4}-ZrO{sub 2} microsphere for photocatalytic degradation of 2,4-dinitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Liu, Yutang [Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Xia, Xinnian, E-mail: xnxia@hnu.edu.cn [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Wang, Longlu [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China)

    2017-06-15

    Highlights: • Popcorn balls-like microsphere photocatalyst. • High photocatalytic activity toward 2,4-DNP degradation. • Degradation kinetics, mechanism, active species were analyzed. • Excellent stable recycling performance. - Abstract: In this paper, novel popcorn balls-like ZnFe{sub 2}O{sub 4}-ZrO{sub 2} composite microspheres were successfully fabricated by a simple hydrothermal method. The morphology, structure and optical property of the microspheres were characterized. The microspheres were used as the photocatalysts to degrade 2,4-dinitrophenol, and exhibited superior photocatalytic performance. Under simulated solar visible light irradiation, the degradation rate of ZnFe{sub 2}O{sub 4}-ZrO{sub 2} photocatalyst (mass ratio of ZnFe{sub 2}O{sub 4}/ZrO{sub 2} = 2:1) was almost 7.4 and 2.4 times higher than those of pure ZnFe{sub 2}O{sub 4} and ZrO{sub 2}. The enhancement could attribute to stronger light absorption, lower carrier recombination and multi-porous structure of the microspheres. Moreover, the popcorn balls-like photocatalysts can be easily separated, because of the magnetism of the samples. After five times runs, the photocatalyst still showed 90% of its photocatalytic degradation efficiency. This work demonstrated a good prospect for removing organic pollutants in water.

  13. Long pulse microsphere experiments at 3 TW

    International Nuclear Information System (INIS)

    Boyle, M.J.; Attwood, D.T.; Brooks, K.M.

    1977-01-01

    Previous 1.06 μm laser implosion experiments have explored the parameter space associated with microsphere targets of typically less than 100 psec. Exploding pusher experiments have now been performed using long pulses (100 to 200 psec FWHM), and large diameter (100 to 150 μm) targets on the 3 TW Argus laser facility. Absorption, transport, implosion and neutron and α yield characteristics are discussed and compared with earlier short pulse results. The observed neutron yields are discussed in light of the temporal mismatch between the absorption and implosion time scales imposed by the large diameter, long pulse conditions

  14. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  15. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  16. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...

  17. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...

  18. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering.

    Science.gov (United States)

    Jiang, Tao; Abdel-Fattah, Wafa I; Laurencin, Cato T

    2006-10-01

    A three-dimensional (3-D) scaffold is one of the major components in many tissue engineering approaches. We developed novel 3-D chitosan/poly(lactic acid-glycolic acid) (PLAGA) composite porous scaffolds by sintering together composite chitosan/PLAGA microspheres for bone tissue engineering applications. Pore sizes, pore volume, and mechanical properties of the scaffolds can be manipulated by controlling fabrication parameters, including sintering temperature and sintering time. The sintered microsphere scaffolds had a total pore volume between 28% and 37% with median pore size in the range 170-200microm. The compressive modulus and compressive strength of the scaffolds are in the range of trabecular bone making them suitable as scaffolds for load-bearing bone tissue engineering. In addition, MC3T3-E1 osteoblast-like cells proliferated well on the composite scaffolds as compared to PLAGA scaffolds. It was also shown that the presence of chitosan on microsphere surfaces increased the alkaline phosphatase activity of the cells cultured on the composite scaffolds and up-regulated gene expression of alkaline phosphatase, osteopontin, and bone sialoprotein.

  19. Insulin delivery through nasal route using thiolated microspheres.

    Science.gov (United States)

    Nema, Tarang; Jain, Ashish; Jain, Aviral; Shilpi, Satish; Gulbake, Arvind; Hurkat, Pooja; Jain, Sanjay K

    2013-01-01

    The aim of the present study was to investigate the potential of developed thiolated microspheres for insulin delivery through nasal route. In the present study, cysteine was immobilized on carbopol using EDAC. A total of 269.93 µmol free thiol groups per gram polymer were determined. The prepared nonthiolated and thiolated microspheres were studied for particle shape, size, drug content, swellability, mucoadhesion and in vitro insulin release. The thiolated microspheres exhibited higher mucoadhesion due to formation of covalent bonds via disulfide bridges with the mucus gel layer. Drug permeation through goat nasal mucosa of nonthiolated and thiolated microspheres were found as 52.62 ± 2.4% and 78.85 ± 3.1% in 6 h, respectively. Thiolated microspheres bearing insulin showed better reduction in blood glucose level (BGL) in comparison to nonthiolated microspheres as 31.23 ± 2.12% and 75.25 ± 0.93% blood glucose of initial BGL were observed at 6 h after nasal delivery of thiolated and nonthiolated microspheres in streptozotocin-induced diabetic rabbits.

  20. Measurement of thermal diffusivity of depleted uranium metal microspheres

    Science.gov (United States)

    Humrickhouse-Helmreich, Carissa J.; Corbin, Rob; McDeavitt, Sean M.

    2014-03-01

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time-temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal.

  1. Measurement of thermal diffusivity of depleted uranium metal microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Humrickhouse-Helmreich, Carissa J., E-mail: carissahelmreich@tamu.edu [Texas A and M University, Department of Nuclear Engineering, 337 Zachry Engineering Center, 3133 TAMU, College Station, TX 77843 (United States); Corbin, Rob, E-mail: rcorbin@terrapower.com [TerraPower, LLC, 330 120th Ave NE, Suite 100, Bellevue, WA 98005 (United States); McDeavitt, Sean M., E-mail: mcdeavitt@tamu.edu [Texas A and M University, Department of Nuclear Engineering, 337 Zachry Engineering Center, 3133 TAMU, College Station, TX 77843 (United States)

    2014-03-15

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time–temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal.

  2. Preparation of nano-hydroxyapatite/poly(l-lactide) biocomposite microspheres

    International Nuclear Information System (INIS)

    Qiu Xueyu; Han Yadong; Zhuang Xiuli; Chen Xuesi; Li Yuesheng; Jing Xiabin

    2007-01-01

    Nano-hydroxyapatite (HA)/poly(l-lactide) (PLLA) composite microspheres with relatively uniform size distribution were prepared by a solid-in-oil-in-water (s/o/w) emusion solvent evaporation method. The encapsulation of the HA nanopaticles in microshperes was significantly improved by grafting PLLA on the surface of the HA nanoparticles (p-HA) during emulsion process. This procedure gave a possibility to obtain p-HA/PLLA composite microspheres with uniform morphology and the encapsulated p-HA nanoparticle loading reached up to 40 wt% (33 wt% of pure HA) in the p-HA/PLLA composite microspheres. The microstructure of composite microspheres from core-shell to single phase changed with the variation of p-HA to PLLA ratios. p-HA/PLLA composite microspheres with the diameter range of 2-3 μm were obtained. The entrapment efficiency of p-HA in microspheres could high up to 90 wt% and that of HA was only 13 wt%. Surface and bulk characterizations of the composite microspheres were performed by measurements such as wide angle X-ray diffraction (WAXD), thermal gravimetric analysis (TGA), environmental scanning electron microscope (ESEM) and transmission electron microscopy (TEM)

  3. Current knowledge on biodegradable microspheres in drug delivery.

    Science.gov (United States)

    Prajapati, Vipul D; Jani, Girish K; Kapadia, Jinita R

    2015-08-01

    Biodegradable microspheres have gained popularity for delivering a wide variety of molecules via various routes. These types of products have been prepared using various natural and synthetic biodegradable polymers through suitable techniques for desired delivery of various challenging molecules. Selection of biodegradable polymers and technique play a key role in desired drug delivery. This review describes an overview of the fundamental knowledge and status of biodegradable microspheres in effective delivery of various molecules via desired routes with consideration of outlines of various compendial and non-compendial biodegradable polymers, formulation techniques and release mechanism of microspheres, patents and commercial biodegradable microspheres. There are various advantages of using biodegradable polymers including promise of development with different types of molecules. Biocompatibility, low dosage and reduced side effects are some reasons why usage biodegradable microspheres have gained in popularity. Selection of biodegradable polymers and formulation techniques to create microspheres is the biggest challenge in research. In the near future, biodegradable microspheres will become the eco-friendly product for drug delivery of various genes, hormones, proteins and peptides at specific site of body for desired periods of time.

  4. Measurement of thermal diffusivity of depleted uranium metal microspheres

    International Nuclear Information System (INIS)

    Humrickhouse-Helmreich, Carissa J.; Corbin, Rob; McDeavitt, Sean M.

    2014-01-01

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time–temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal

  5. Nanomechanics of biocompatible hollow thin-shell polymer microspheres.

    Science.gov (United States)

    Glynos, Emmanouil; Koutsos, Vasileios; McDicken, W Norman; Moran, Carmel M; Pye, Stephen D; Ross, James A; Sboros, Vassilis

    2009-07-07

    The nanomechanical properties of biocompatible thin-shell hollow polymer microspheres with approximately constant ratio of shell thickness to microsphere diameter were measured by nanocompression tests in aqueous conditions. These microspheres encapsulate an inert gas and are used as ultrasound contrast agents by releasing free microbubbles in the presence of an ultrasound field as a result of free gas leakage from the shell. The tests were performed using an atomic force microscope (AFM) employing the force-distance curve technique. An optical microscope, on which the AFM was mounted, was used to guide the positioning of tipless cantilevers on top of individual microspheres. We performed a systematic study using several cantilevers with spring constants varying from 0.08 to 2.3 N/m on a population of microspheres with diameters from about 2 to 6 microm. The use of several cantilevers with various spring constants allowed a systematic study of the mechanical properties of the microsphere thin shell at different regimes of force and deformation. Using thin-shell mechanics theory for small deformations, the Young's modulus of the thin wall material was estimated and was shown to exhibit a strong size effect: it increased as the shell became thinner. The Young's modulus of thicker microsphere shells converged to the expected value for the macroscopic bulk material. For high applied forces, the force-deformation profiles showed a reversible and/or irreversible nonlinear behavior including "steps" and "jumps" which were attributed to mechanical instabilities such as buckling events.

  6. Interface colloidal robotic manipulator

    Science.gov (United States)

    Aronson, Igor; Snezhko, Oleksiy

    2015-08-04

    A magnetic colloidal system confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters. The colloidal system exhibits locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, structures can capture, transport, and position target particles.

  7. Uniform Pore Structure of Mesoporous Silica Microspheres by Using Di(2-ethylhexyl)phosphoric Acid

    International Nuclear Information System (INIS)

    Kim, Jong Yun; Yoon, Suk Bon; Park, Yong Joon; Jee, Kwang Yong

    2007-01-01

    Spherical morphology has been quite attractive in many special applications, such as display materials offering higher packing densities and lower light scattering for better performances in terms of both brightness and resolution, biosensors utilizing microspheres as an ideal dielectric cavities with high quality factors in optical domain, and standard reference particles for nuclear track analysis utilizing their simple well-defined geometry. There are tremendously a wide variety of studies focused on colloidal spheres of 1 nm - 1,000 nm in diameter although the colloidal dimension can be extended further to 100 μm. Some reports have described the sol-gel surfactant template synthesis of mesoporous silica spheres larger than 100 μm. It is necessary for us to prepare the intermediate 10 - 100 μm-sized silica microspheres for the single particle manipulation by using optical microscope, rather than electron microscope, in a microanalytical technique such as thermal ionization mass spectrometry, secondary ionization mass spectrometry, and laser ionization mass spectrometry

  8. Balanced articulated manipulator

    International Nuclear Information System (INIS)

    Francois, Daniel; Germond, J.-C.; Marchal, Paul; Vertut, Jean.

    1976-01-01

    The description is given of a manipulator of the type comprising a master arm and a slave arm, capable of working in a containment restricted by a wall fitted with an aperture to introduce the slave arm into the containment. According to the invention this manipulator is permanently balanced irrespective of its distortions when it is secured to the wall of the containment in which it is desired to work. The entire manipulator is also balanced when being set up and when moved outside the containment, in relation to a supporting axle. This result is achieved in a simplified manner by giving homothetic shapes to the various component parts of the slave and master arms, the master arm having at least one balancing weight [fr

  9. Stainless steel decontamination manipulators

    International Nuclear Information System (INIS)

    Sullivan, R.J.

    1986-01-01

    Three, large-volume coverage manipulator systems were designed and built for the Defense Water Processing Facility at the Savannah River Laboratory. These stainless steel systems will be used for high-pressure spray decontamination of waste containers and large process equipment modules. Each system has a manipulator arm, folding boom, and vertical drive and guide structure. Handling capacity is 45 kg, horizontal reach is 4.6 m with a 180-deg swing motion, and the vertical travel is 6 m. The system is remotely removable and replaceable in modules using an overhead crane and an impact wrench. The manipulator arm has seven motions: Shoulder rotation and pivot, elbow pivot, wrist pivot and rotation, and grip open-close. All motions are variable speed and are slip-clutch protected to prevent overloading from external forces (collisions)

  10. Brownian dynamics simulations of insulin microspheres formation

    Science.gov (United States)

    Li, Wei; Chakrabarti, Amit; Gunton, James

    2010-03-01

    Recent experiments have indicated a novel, aqueous process of microsphere insulin fabrication based on controlled phase separation of protein from water-soluble polymers. We investigate the insulin microsphere crystal formation from insulin-PEG-water systems via 3D Brownian Dynamics simulations. We use the two component Asakura-Oosawa model to simulate the kinetics of this colloid polymer mixture. We first perform a deep quench below the liquid-crystal boundary that leads to fractal formation. We next heat the system to obtain a break-up of the fractal clusters and subsequently cool the system to obtain a spherical aggregation of droplets with a relatively narrow size distribution. We analyze the structure factor S(q) to identify the cluster dimension. S(q) crosses over from a power law q dependence of 1.8 (in agreement with DLCA) to 4 as q increases, which shows the evolution from fractal to spherical clusters. By studying the bond-order parameters, we find the phase transition from liquid-like droplets to crystals which exhibit local HCP and FCC order. This work is supported by grants from the NSF and Mathers Foundation.

  11. Thyroid artery embolization with microspheres for hyperthyroidism

    International Nuclear Information System (INIS)

    Du Yahui; Zhong Chenfu; Chen Weijun; Zhang Ying; Luo Jun; Li Xiaoguang; Cao Junjie; Gan Changli; Cao Junjie; Gan Changli

    2006-01-01

    Objective: To evaluate the method and efficacy of thyroid artery embolization as a new therapy for hyperthyroidism. Methods: Thirteen patients with hyperthyroidism underwent selective thyroid artery embolization. Totally 25 thyroid arteries were embolized with microspheres. The indications for this therapy were as followings: 1) To give hyperthyroid patients having an alternative for surgical and 131 I treatment, and 2) To provide a new method for those clinically being difficult to get control with medicine. Results: Serum level of thyroid hormones dropped significantly[T3 from 2.84-9.0 ng/ml to 0.8-2.2 ng/ml, T4 from 162.9-277.2 ng/ml to 50-126 ng/ml] and symptoms of hyperthyroidism were under control in 12 patients within 1 month after the embolization. One patient remained no change 1 month later and refused to be embolized again. The symptoms of twelve patients were effectively controlled through low dose antithyroid medication for more than 6 months follow up with no serious complications. Conclusion: Thyroid artery embolization with microspheres is an effective alternative for surgical and 131 I treatment of hyperthyroidism. (authors)

  12. Preparation and properties of polyvinyl alcohol microspheres

    International Nuclear Information System (INIS)

    Campbell, J.H.; Grens, J.Z.; Poco, J.F.; Ives, B.H.

    1986-06-01

    Polyvinyl alcohol (PVA) microspheres, having a size range of ∼150- to 250-μm diameter with 1- to 5-μm wall thickness, have been fabricated using a solution droplet technique. The spheres were developed for possible use on the Lawrence Livermore National Laboratory (LLNL) Inertial Confinement Fusion (ICF) Program. PVA, a polymer chosen based on earlier survey work carried out at KMS Fusion, Inc., has good strength, low hydrogen permeability, is optically transparent, and water soluble. The latter property makes it safe and easy to use in our droplet generator system. A unique dual-orifice droplet generator was used to prepare the spheres. The droplet generator operating conditions and the column processing parameters were chosen using results from our 1-D model calculations as a guide. The polymer microsphere model is an extension of the model we developed to support the glass sphere production. After preparation, the spheres were physically characterized for surface quality, sphericity, wall thickness (and uniformity), and size. We also determined the buckling pressure for both uncoated and CH-coated spheres. Radiation stability to beta decay (from tritium) was evaluated by exposing the spheres to a 7-keV electron beam. The results from these and other physical property measurements are presented in this report

  13. Storage stability of biodegradable polyethylene glycol microspheres

    Science.gov (United States)

    Jain, Era; Sheth, Saahil; Polito, Kristen; Sell, Scott A.; Zustiak, Silviya P.

    2017-10-01

    Degradable hydrogel microspheres are popular choices for multiple biomedical applications, including drug, protein, or cell carriers for minimally invasive delivery. Clinical transitioning of such new, sensitive pharmaceutical preparations requires investigation of storage methods that retain key properties for extended time. In this study, we sought to determine the influence of seven common storage conditions on the physical and mechanical properties of degradable polyethylene glycol (PEG) hydrogel microspheres: 25 °C, 4 °C, -80 °C, lyophilization/-20 °C, dimethyl sulfoxide/-80 °C, dimethyl sulfoxide/lyophilization/-20 °C, vacuum/-20 °C. We have outlined the storage conditions in detail and explained their effect on swelling ratio, stiffness and degradation rate post-storage. Additionally, we have implemented protein-loaded hydrogels to evaluate the effect of storage conditions on diffusivity as well as protein stability post-storage. We found that hydrogels could be stored short-term (1-4 d) under moist conditions (i.e. storage without drying) without a substantial loss of properties. For extended storage (7-28 d), they could be stored either at  -80 °C (moist condition) or vacuum drying (dry condition).

  14. Data manipulation with R

    CERN Document Server

    Abedin, Jaynal

    2014-01-01

    This book is a step-by step, example-oriented tutorial that will show both intermediate and advanced users how data manipulation is facilitated smoothly using R.This book is aimed at intermediate to advanced level users of R who want to perform data manipulation with R, and those who want to clean and aggregate data effectively. Readers are expected to have at least an introductory knowledge of R and some basic administration work in R, such as installing packages and calling them when required.

  15. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....

  16. Development of nuclear fuel microsphere handling techniques and equipment

    International Nuclear Information System (INIS)

    Mack, J.E.; Suchomel, R.R.; Angelini, P.

    1979-01-01

    Considerable progress has been made in the development of microsphere handling techniques and equipment for nuclear applications. Work at Oak Ridge National Laboratory with microspherical fuel forms dates back to the early sixties with the development of the sol-gel process. Since that time a number of equipment items and systems specifically related to microsphere handling and characterization have been identified and developed for eventual application in a remote recycle facility. These include positive and negative pressure transfer systems, samplers, weighers, a blender-dispenser, and automated devices for particle size distribution and crushing strength analysis. The current status of these and other components and systems is discussed

  17. MANIPULATING CONSUMERS THROUGH ADVERTISING

    Directory of Open Access Journals (Sweden)

    Nicoleta -Andreea Neacşu

    2012-12-01

    Full Text Available Marketing communication has evolved steadily in the direction of increasing complexity and increasing volume of funds needed to run their own actions. More than ever, consumers are exposed to an overwhelming variety of sources and communication tehniques, the information received being numerous, diverse and polyvalent. The desire to make more efficient the marketing communication activity urges the broadcasters to encode messages, to use effective means of propagation in order to obtain a high degree of control on receptors and to influence the consumption attitudes. Between the means used for this purpose, manipulation tehniques are well known. This paper highlights the main conclusions drawn as a result of a quantitative marketing research on the adult population from Braşov in order to identify the attitudes and opinions of consumers from Braşov regarding the manipulation techniques used by commercial practices and advertising.The results of the research have shown that 82% of the respondents buy products in promotional offers, and 18% choose not to buy these products and 61% of the respondents consider that they have not been manipulated not even once, while only 39% believe that they have been manipulated at least once through advertising or commercial practices. Advertisements on TV have a strong influence on consumers, 81% of the respondents considering that at least once they have bought a product because of a TV commercial.

  18. Manipulating the Gradient

    Science.gov (United States)

    Gaze, Eric C.

    2005-01-01

    We introduce a cooperative learning, group lab for a Calculus III course to facilitate comprehension of the gradient vector and directional derivative concepts. The lab is a hands-on experience allowing students to manipulate a tangent plane and empirically measure the effect of partial derivatives on the direction of optimal ascent. (Contains 7…

  19. Microrobots to Manipulate Cells

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    At DTU Fotonik we developed and harnessed the new and emerging research area of so-called Light Robotics including the 3D-printed micro-tools coined Wave-guided Optical Waveguides that can be real-time laser-manipulated in a 3D-volume with six-degrees-of-freedom. To be exploring the full potentia...

  20. Automated visual attention manipulation

    NARCIS (Netherlands)

    Bosse, T.; Lambalgen, R. van; Maanen, P.P. van; Treur, J.

    2009-01-01

    In this paper a system for visual attention manipulation is introduced and formally described. This system is part of the design of a software agent that supports naval crew in her task to compile a tactical picture of the situation in the field. A case study is described in hich the system is used

  1. Data manipulation with R

    CERN Document Server

    Abedin, Jaynal

    2015-01-01

    This book is for all those who wish to learn about data manipulation from scratch and excel at aggregating data effectively. It is expected that you have basic knowledge of R and have previously done some basic administration work with R.

  2. The TFTR maintenance manipulator

    International Nuclear Information System (INIS)

    Kungl, D.; Loesser, D.; Heitzenroeder, P.; Cerdan, G.

    1989-01-01

    TFTR plans to begin D-T experiments in mid 1990. The D-T experimental program will produce approximately one hundred shots, with a neutron generation rate of 10 19 neutrons per shot. This will result in high levels of activation in TFTR, especially in the vacuum vessel. The primary purpose of the Maintenance Manipulator is to provide a means of remotely performing certain defined maintenance and inspection tasks inside the vacuum torus so as to minimize personnel exposure to radiation. The manipulator consists of a six-link folding boom connected to a fixed boom on a movable carriage. The entire manipulator is housed in a vacuum antechamber connected to the vacuum torus, through a port formerly used for a vacuum pumping duct. The configuration extends 180 0 in either direction to provide complete coverage of the torus. The four 3500 l/s turbopumps which were formerly used in the pumping duct will be mounted on the antechamber. The manipulator will utilize two end effectors. The first, called a General Inspection Arm (GIA) provides a movable platform to an inspection camera and an in-vacuum leak detector. The second is a bilateral, force-reflecting pair of slave arms which utilize specially developed tools to perform several maintenance functions. All components except the slave arms are capable of operating in TFTR's vacuum environment and during 150 0 C bakeout of the torus. (orig.)

  3. Manipulating Combinatorial Structures.

    Science.gov (United States)

    Labelle, Gilbert

    This set of transparencies shows how the manipulation of combinatorial structures in the context of modern combinatorics can easily lead to interesting teaching and learning activities at every level of education from elementary school to university. The transparencies describe: (1) the importance and relations of combinatorics to science and…

  4. Development of a maintenance manipulator for TFTR

    International Nuclear Information System (INIS)

    Holloway, C.

    1986-01-01

    The maintenance manipulator is a device permanently connected to the Tokamak Fusion Test Reactor (TFTR) vacuum vessel and is located in close proximity to the tokamak. It is used for the inspection and maintenance of in-vessel components whilst the machine remains under vacuum. The total system comprises a vacuum vessel ante-chamber that houses the manipulator, an articulated boom and carriage that transports and positions a dexterous end-effector, and end-effector that supports maintenance tooling, and an inspection system. Because of the maintenance manipulator's operating environment, there are many challenging engineering features, i.e., temperatures up to 150 0 C, changing magnetic fields in space and time that act on the manipulator whilst it is at rest, neutron neutron fluxes of up to 10/sup 11/cm/sup -2/s/sup -1/, and, last but not least, UHV conditions. This paper describes the development of the vacuum system, the maintenance manipulator, and inspective devices. It includes the methods employed to overcome the engineering difficulties and the application of information gained from other advanced technology programs, such as space and nuclear fission

  5. Investigation Into Accessible Surface Vinyl Concentrations of Nonstoichiometric PDMS Microspheres from Hydrosilylation Reactions and Their Further Crosslinking Reactions

    DEFF Research Database (Denmark)

    Ma, Baoguang; Hansen, Jens Henrik; Hvilsted, Søren

    2015-01-01

    The introduction of surface vinyl groups to PDMS microspheres broadens the latter's applicability range since the microspheres can be further functionalized or crosslinked into elastomers. Quantification of the surface vinyl concentration of PDMS microspheres is therefore essential. Here, a novel...

  6. Nucleotide Manipulatives to Illustrate the Central Dogma

    OpenAIRE

    Sonja B. Yung; Todd P. Primm

    2015-01-01

    The central dogma is a core concept that is critical for introductory biology and microbiology students to master. However, students often struggle to conceptualize the processes involved, and fail to move beyond simply memorizing the basic facts. To encourage critical thinking, we have designed a set of magnetic nucleotide manipulatives that allow students to model DNA structure, along with the processes of replication, transcription, and translation.

  7. Nucleotide Manipulatives to Illustrate the Central Dogma

    Directory of Open Access Journals (Sweden)

    Sonja B. Yung

    2015-08-01

    Full Text Available The central dogma is a core concept that is critical for introductory biology and microbiology students to master. However, students often struggle to conceptualize the processes involved, and fail to move beyond simply memorizing the basic facts. To encourage critical thinking, we have designed a set of magnetic nucleotide manipulatives that allow students to model DNA structure, along with the processes of replication, transcription, and translation.

  8. How Verbal and Spatial Manipulation Networks Contribute to Calculation: An fMRI Study

    Science.gov (United States)

    Zago, Laure; Petit, Laurent; Turbelin, Marie-Renee; Andersson, Frederic; Vigneau, Mathieu; Tzourio-Mazoyer, Nathalie

    2008-01-01

    The manipulation of numbers required during calculation is known to rely on working memory (WM) resources. Here, we investigated the respective contributions of verbal and/or spatial WM manipulation brain networks during the addition of four numbers performed by adults, using functional magnetic resonance imaging (fMRI). Both manipulation and…

  9. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...

  10. MAGNET

    CERN Multimedia

    B. Curé

    MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...

  11. MAGNET

    CERN Multimedia

    Benoit Curé.

    The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...

  12. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

    The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...

  13. Synthesis of double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres and their catalytic applications

    International Nuclear Information System (INIS)

    Li, Jie; Tan, Li; Wang, Ge; Yang, Mu

    2015-01-01

    Double-shelled sea urchin-like yolk-shell Fe 3 O 4 /TiO 2 /Au microspheres were successfully synthesized through loading Au nanoparticles on the Fe 3 O 4 /TiO 2 support by a in situ reduction of HAuCl 4 with NaBH 4 aqueous solution. These microspheres possess tunable cavity size, adjustable shell layers, high structural stability and large specific surface area. The Au nanoparticles of approximately 5 nm in diameter were loaded both on the TiO 2 nanofibers and inside the cavities of sea urchin-like yolk-shell Fe 3 O 4 /TiO 2 microspheres. The sea urchin-like structure composed of TiO 2 nanofibers ensure the good distribution of the Au nanoparticles, while the novel double-shelled yolk-shell structure guarantees the high stability of the Au nanoparticles. Furthermore, the Fe 3 O 4 magnetic core facilitates the convenient recovery of the catalyst by applying an external magnetic field. The Fe 3 O 4 /TiO 2 /Au microspheres display excellent activities and recycling properties in the catalytic reduction of 4-nitrophenol (4-NP): the rate constant is 1.84 min −1 and turnover frequency is 5457 h −1 . (paper)

  14. Optical diffraction by ordered 2D arrays of silica microspheres

    International Nuclear Information System (INIS)

    Shcherbakov, A.A.; Shavdina, O.; Tishchenko, A.V.; Veillas, C.; Verrier, I.; Dellea, O.; Jourlin, Y.

    2017-01-01

    The article presents experimental and theoretical studies of angular dependent diffraction properties of 2D monolayer arrays of silica microspheres. High-quality large area defect-free monolayers of 1 μm diameter silica microspheres were deposited by the Langmuir-Blodgett technique under an accurate optical control. Measured angular dependencies of zeroth and one of the first order diffraction efficiencies produced by deposited samples were simulated by the rigorous Generalized Source Method taking into account particle size dispersion and lattice nonideality. - Highlights: • High quality silica microsphere monolayer was fabricated. • Accurate measurements of diffraction efficiency angular dependencies. • Rigorous diffraction simulation of both ideal hexagonal and realistic microsphere arrangements. • Qualitative rationalization of the obtained results and the observed differences between the experiment and the theory.

  15. BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Farquar, G; Leif, R

    2009-07-15

    Biocompatible polymers with hydrolyzable chemical bonds have been used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres were produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

  16. Preparation of UN microspheres by internal gelation process

    Energy Technology Data Exchange (ETDEWEB)

    Shirasu, Yoshiro; Yamagishi, Shigeru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-07-01

    UN microspheres were prepared from (UO{sub 3}+C) microspheres internally gelled in a hot silicone oil column. The gel microspheres were calcined at 480degC in nitrogen, after washing and drying. The calcined ones were carbothermically nitrided at 1400-1800degC in a nitrogen-based atmosphere in two ways: one in N{sub 2} followed by N{sub 2}-8%H{sub 2}, and the other in N{sub 2}-8%H{sub 2} only. In both cases, highly pure UN microspheres around 500 ppm of both oxygen and carbon impurities were obtained, although their densities were still low. (author)

  17. XPS analysis of aluminosilicate microspheres bioactivity tested in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Todea, M.; Vanea, E. [Faculty of Physics and Institute of Interdisciplinary Research on Bio-Nano-Sciences, Babes Bolyai University, Cluj-Napoca 400084 (Romania); Bran, S. [University of Medicine and Pharmacy “Iuliu Haţieganu”, Department of Cranio-Maxillofacial Surgery, 400029 Cluj-Napoca (Romania); Berce, P. [Technical University of Cluj-Napoca, Faculty of Machine Building and National Centre of Rapid Prototyping, 400641 Cluj-Napoca (Romania); Simon, S., E-mail: simons@phys.ubbcluj.ro [Faculty of Physics and Institute of Interdisciplinary Research on Bio-Nano-Sciences, Babes Bolyai University, Cluj-Napoca 400084 (Romania)

    2013-04-01

    The study aims to characterize surface properties of aluminosilicate microspheres incorporating yttrium, with potential biomedical applications. Micrometric particles of spherical shape were obtained by spray drying method. The behavior of aluminosilicate microspheres without yttrium and with yttrium was investigated under in vitro conditions, by seven days incubation in simulated body fluid (SBF). The surface elemental composition and the atomic environments on outermost layer of the microspheres, prior to and after incubation in SBF were evaluated by X-ray photoelectron spectroscopy (XPS) in order to investigate their bioactivity. The results were analyzed to underline the effect of yttrium addition on surface properties of the aluminosilicate microspheres and implicitly on the behavior of the samples in simulated body environments.

  18. Investigation of defects on PAMS microspheres fabricated with microencapsulation method

    International Nuclear Information System (INIS)

    Chen Sufen; Li Bo; Liu Yiyang; Zhang Zhanwen; Qi Xiaobo

    2012-01-01

    Poly-(α-methylstyrene) (PAMS) microspheres were fabricated with W1/O/W2 double emulsion microencapsulation method, and the effects of polyvinylalcohol (PVA) and CaCl 2 weight concentrations and the O/W2 phase ratio on the percentages of defected PAMS microspheres were studied. The weight concentrations of PVA and CaCl 2 and the O/W2 phase ratio in the fabrication process of PAMS microspheres were optimized. The results show that, for the three parameters being 1.0%, 1.5%, and 0.01, respectively, the percentage of the defect-free PAMS microspheres without vacuoles in the shell wall can be up to 60%. (authors)

  19. Preparation and In-vitro Evaluation of Metformin Microspheres Using ...

    African Journals Online (AJOL)

    . Methods: Metformin microspheres were prepared by non-aqueous solvent evaporation method using various polymers, including ethylcellulose (EC), hydroxypropyl methylcellulose (HPMC), carbopol 934P (CA) and chitosan (CH). The effect ...

  20. Investigation of concrete mixtures incorporating hollow plastic microspheres.

    Science.gov (United States)

    1981-01-01

    This study investigated the potential of hollow plastic microspheres, HPM, for providing non-air-entrained portland cement concrete resistance to damage from cycles of freezing and thawing. In the study, a mixture with an air-entraining agent (vinsol...

  1. Resonant microsphere gyroscope based on a double Faraday rotator system.

    Science.gov (United States)

    Xie, Chengfeng; Tang, Jun; Cui, Danfeng; Wu, Dajin; Zhang, Chengfei; Li, Chunming; Zhen, Yongqiu; Xue, Chenyang; Liu, Jun

    2016-10-15

    The resonant microsphere gyroscope is proposed based on a double Faraday rotator system for the resonant microsphere gyroscope (RMSG) that is characterized by low insertion losses and does not destroy the reciprocity of the gyroscope system. Use of the echo suppression structure and the orthogonal polarization method can effectively inhibit both the backscattering noise and the polarization error, and reduce them below the system sensitivity limit. The resonance asymmetry rate dropped from 34.2% to 2.9% after optimization of the backscattering noise and the polarization noise, which greatly improved the bias stability and the scale factor linearity of the proposed system. Additionally, based on the optimum parameters for the double Faraday rotator system, a bias stability of 0.04°/s has been established for an integration time of 10 s in 1000 s in a resonator microsphere gyroscope using a microsphere resonator with a diameter of 1 mm and a Q of 7.2×106.

  2. Facile preparation of hierarchically porous polymer microspheres for superhydrophobic coating

    Science.gov (United States)

    Gao, Jiefeng; Wong, Julia Shuk-Ping; Hu, Mingjun; Li, Wan; Li, Robert. K. Y.

    2013-12-01

    A facile method, i.e., nonsolvent assisted electrospraying, is proposed to fabricate hierarchically porous microspheres. The pore size on the microsphere surface ranges from a few tens to several hundred nanometers. Thermally and nonsolvent induced phase separation as well as breath figure is responsible for the formation of the hierarchical structures with different nano-sized pores. The nonsolvent could not only induce phase separation, but also stabilize the interface between the droplet and air, which can prevent the droplet from strong deformation, and is therefore beneficial to the formation of regular and uniform microspheres. On the other hand, solvent evaporation, polymer diffusion and Coulomb fission during electrospraying influence the morphology of finally obtained products. In this paper, the influence of polymer concentration, the weight ratio between nonsolvent and polymer and the flowing rate on the morphology of the porous microsphere is carefully studied. The hierarchically porous microsphere significantly increases the surface roughness and thus the hydrophobicity, and the contact angle can reach as high as 152.2 +/- 1.2°. This nonsolvent assisted electrospraying opens a new way to fabricate superhydrophobic coating materials.A facile method, i.e., nonsolvent assisted electrospraying, is proposed to fabricate hierarchically porous microspheres. The pore size on the microsphere surface ranges from a few tens to several hundred nanometers. Thermally and nonsolvent induced phase separation as well as breath figure is responsible for the formation of the hierarchical structures with different nano-sized pores. The nonsolvent could not only induce phase separation, but also stabilize the interface between the droplet and air, which can prevent the droplet from strong deformation, and is therefore beneficial to the formation of regular and uniform microspheres. On the other hand, solvent evaporation, polymer diffusion and Coulomb fission during

  3. Preparation and characterization of immobilized lipase on magnetic hydrophobic microspheres

    DEFF Research Database (Denmark)

    Guo, Zheng; Bai, Shu; Sun, Yan

    2003-01-01

    H for the immobilized CCL were determined. Activity amelioration of the immobilized CCL for the hydrolysis of olive oil was observed, indicating an interfacial activation of the enzyme after immobilization. Moreover, the immobilized CCL showed enhanced thermal stability and good durability in the repeated use after...

  4. Magnetic characteristics of ferrimagnetic microspheres prepared by dispersion polymerization

    Czech Academy of Sciences Publication Activity Database

    Horák, Daniel; Lednický, František; Petrovský, Eduard; Kapička, Aleš

    2004-01-01

    Roč. 289, č. 4 (2004), s. 341-348 ISSN 1438-7492 Institutional research plan: CEZ:AV0Z4050913 Keywords : colloids * core-shell polymers * hydrophilic polymers Subject RIV: CE - Biochemistry Impact factor: 1.452, year: 2004

  5. [Optimization of riboflavin sodium phosphate loading to calcium alginate floating microspheres by response surface methodology].

    Science.gov (United States)

    Zhang, An-yang; Fan, Tian-yuan

    2009-12-18

    To investigate the preparation, optimization and in vitro properties of riboflavin sodium phosphate floating microspheres. The floating microspheres composed of riboflavin sodium phosphate and calcium alginate were prepared using ion gelatin-oven drying method. The properties of the microspheres were investigated, including the buoyancy, release, appearance and entrapment efficiency. The formulation was optimized by response surface methodology (RSM). The optimized microspheres were round. The entrapment efficiency was 57.49%. All the microspheres could float on the artificial gastric juice over 8 hours. The release of the drug from the microspheres complied with Fick's diffusion.

  6. Development and Evaluation of Isoniazid Loaded Silk Fibroin Microsphere

    Directory of Open Access Journals (Sweden)

    Narinder Singh

    Full Text Available Aim: Current experimental investigation is dedicated to prepare microspheres with small size and good sphericity by Phase Separation method using Isoniazid (INH as model drug. Silk fibroin has unique intrinsic qualities like biodegradability, biocompatibility or release properties and their tunable drug loading capacity. The delivery loading proficiency of the drug molecules in silk spheres be contingent on their charge, and hydrophobicity or subsequent in altered drug release profiles. Methods: In the present work Isoniazid loaded silk fibroin microsphere was prepared by using phase separation method. Microsphere was evaluated for Ultraviolet-visible spectroscopy, Fourier Transform infrared spectroscopy, Entrapment efficiency, Scanning electron microscopy Studies. Results: Scanning electron microscopy studies revealed that Isoniazid Loaded Silk Fibroin Microspheres were spherical. Entrapment Efficiency of Isoniazid loaded Microspheres of different Formulation from F1 to F5 was in range of 53 to 68 %. F3 showed 68.47 % entrapment Efficiency and the optimized formulation drug release was 93.56 % at 24 hours. Conclusion: Experimental report disclosed a new aqueous based formulation method for silk spheres with controllable shape or size and sphere. Isoniazid loaded silk microspheres may act as ideal nano formulation with elaborated studies.

  7. Innovative hydrogen storage in hollow glass-microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Keding, M.; Schmid, G.; Tajmar, M. [Austrian Research Centers, Vienna (Austria)

    2009-07-01

    Hydrogen storage technologies are becoming increasingly important for a number of future applications. The Austrian Research Centers (ARC) are developing a unique hydrogen storage system that combines the advantages of both hollow glass microsphere and chemical compound hydrogen storage, but eliminates their respective drawbacks. Water is utilized as a functional liquid to carry the hollow glass microspheres that are loaded with up to 700 bar of hydrogen gas. Sodium borohydride (NaBH{sub 4}) is then injected together with the glass microspheres into a reaction chamber where the water reacts catalytically with the NaBH{sub 4} producing hydrogen and heat. The heat is then utilized to release the hydrogen from the hollow glass microspheres providing a double hydrogen generation process without any external energy or heat during storage or gas release. The paper described this hydrogen storage system with particular reference to microspheres, the coating process, the experimental facility and NaBH{sub 4} test results. It was concluded that hydrogen storage and production on demand is possible with microspheres and sodium borohydride solution. 9 refs., 16 figs.

  8. Microspheres and Nanotechnology for Drug Delivery.

    Science.gov (United States)

    Jóhannesson, Gauti; Stefánsson, Einar; Loftsson, Thorsteinn

    2016-01-01

    Ocular drug delivery to the posterior segment of the eye can be accomplished by invasive drug injections into different tissues of the eye and noninvasive topical treatment. Invasive treatment involves the risks of surgical trauma and infection, and conventional topical treatments are ineffective in delivering drugs to the posterior segment of the eye. In recent years, nanotechnology has become an ever-increasing part of ocular drug delivery. In the following, we briefly review microspheres and nanotechnology for drug delivery to the eye, including different forms of nanotechnology such as nanoparticles, microparticles, liposomes, microemulsions and micromachines. The permeation barriers and anatomical considerations linked to ocular drug delivery are discussed and a theoretical overview on drug delivery through biological membranes is given. Finally, in vitro, in vivo and human studies of x03B3;-cyclodextrin nanoparticle eyedrop suspensions are discussed as an example of nanotechnology used for drug delivery to the eye. © 2016 S. Karger AG, Basel.

  9. Chitosan microspheres in novel drug delivery systems.

    Science.gov (United States)

    Mitra, Analava; Dey, Baishakhi

    2011-07-01

    The main aim in the drug therapy of any disease is to attain the desired therapeutic concentration of the drug in plasma or at the site of action and maintain it for the entire duration of treatment. A drug on being used in conventional dosage forms leads to unavoidable fluctuations in the drug concentration leading to under medication or overmedication and increased frequency of dose administration as well as poor patient compliance. To minimize drug degradation and loss, to prevent harmful side effects and to increase drug bioavailability various drug delivery and drug targeting systems are currently under development. Handling the treatment of severe disease conditions has necessitated the development of innovative ideas to modify drug delivery techniques. Drug targeting means delivery of the drug-loaded system to the site of interest. Drug carrier systems include polymers, micelles, microcapsules, liposomes and lipoproteins to name some. Different polymer carriers exert different effects on drug delivery. Synthetic polymers are usually non-biocompatible, non-biodegradable and expensive. Natural polymers such as chitin and chitosan are devoid of such problems. Chitosan comes from the deacetylation of chitin, a natural biopolymer originating from crustacean shells. Chitosan is a biocompatible, biodegradable, and nontoxic natural polymer with excellent film-forming ability. Being of cationic character, chitosan is able to react with polyanions giving rise to polyelectrolyte complexes. Hence chitosan has become a promising natural polymer for the preparation of microspheres/nanospheres and microcapsules. The techniques employed to microencapsulate with chitosan include ionotropic gelation, spray drying, emulsion phase separation, simple and complex coacervation. This review focuses on the preparation, characterization of chitosan microspheres and their role in novel drug delivery systems.

  10. A universal microscope manipulator

    Directory of Open Access Journals (Sweden)

    Peter S. Boyadzhiev

    2012-03-01

    Full Text Available A modified and improved model of a mechanical manipulator for observation of pinned and mounted insects is described. This device allows movement of the observed object around three perpendicular axes in the field of vision at all magnifications of stereomicroscopes. The main improvement of this new model is positioning of the guiding knobs for rotating around two of the axes next to each other, allowing faster and easier manipulation of the studied object. Thus, one of the main advantages of this device is the possibility to rotate the specimen without the need to refocus. The device enables easily reaching a precession deviation in the intersection point of axes up to 0.5 mm in the process of assembling.

  11. Manipulating atoms with photons

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, C.N.

    1998-01-01

    The article is a translation of the lecture delivered on the occasion of the 1997 Nobel Prize awarding ceremony. The physical mechanisms which allow manipulating of neutral atoms with laser photons are described. A remark is also made concerning several possible applications of ultra-cool atoms and streams of future research. The article is completed by Prof. Cohen-Tannoudji's autobiography. (Z.J.)

  12. MAGNET

    CERN Multimedia

    Benoit Curé

    The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...

  13. MAGNET

    CERN Multimedia

    B. Curé

    During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...

  14. Protozoa manipulation by ultrasound

    Directory of Open Access Journals (Sweden)

    Yancy Milena Porras Rodríguez

    2004-01-01

    Full Text Available Microorganism manipulation, considered as controlled motion and positioning, is one of the most important activities in microbiology and medicine. To achieve this goal there are some techniques such as those which and optical forces, among others. These techniques are usually sophisticated, and some of them can induce irreversible alterations on the microorganisms which prevents their use in another tests. Thus, there is justified the study of technological alternatives to manipulate microorganisms in an easy and cost-effective way. This work shows the interaction between protozoa and air microbubbles when they are under the influence of an ultrasonic field of 5.8 mW. At the microbubbles resonant frequencies, microorganisms were attracted toward the bubbles' frontier remaining there while the ultrasonic field was applied. Once the ultrasound disappears, protozoa recover their freedom of movement. The observed effects could be used as the actuation principle of devices capable to trap, hold and release microorganisms of high mobility without any apparent damage. Microbubbles are generated by electrolysis which take place on the surface of an electrode array, while the ultrasound is originated by means of a piezoelectric transducer. As microorganisms there were employed those present in stagnated water, and were observed through an stereomicroscope. Key words: manipulator; protozoa; ultrasonic; transducer; piezoelectric.

  15. Pose Space Surface Manipulation

    Directory of Open Access Journals (Sweden)

    Yusuke Yoshiyasu

    2012-01-01

    Full Text Available Example-based mesh deformation techniques produce natural and realistic shapes by learning the space of deformations from examples. However, skeleton-based methods cannot manipulate a global mesh structure naturally, whereas the mesh-based approaches based on a translational control do not allow the user to edit a local mesh structure intuitively. This paper presents an example-driven mesh editing framework that achieves both global and local pose manipulations. The proposed system is built with a surface deformation method based on a two-step linear optimization technique and achieves direct manipulations of a model surface using translational and rotational controls. With the translational control, the user can create a model in natural poses easily. The rotational control can adjust the local pose intuitively by bending and twisting. We encode example deformations with a rotation-invariant mesh representation which handles large rotations in examples. To incorporate example deformations, we infer a pose from the handle translations/rotations and perform pose space interpolation, thereby avoiding involved nonlinear optimization. With the two-step linear approach combined with the proposed multiresolution deformation method, we can edit models at interactive rates without losing important deformation effects such as muscle bulging.

  16. Using Manipulatives in Math Instruction.

    Science.gov (United States)

    Marzola, Eileen S.

    1987-01-01

    Guidelines for teachers to better use manipulatives in the teaching of mathematics to learning disabled learners are offered including a rationale for manipulatives, selection crteria, principles underlying productive use of manipulatives, and making the transition from the concrete to the symbolic. Suggested materials and distributors are listed.…

  17. The synthesis and photocatalytic activity of ZnSe microspheres

    International Nuclear Information System (INIS)

    Cao Huaqiang; Xiao Yujiang; Zhang Sichun

    2011-01-01

    This paper reports the synthesis of semiconductor ZnSe microspheres composed of nanoparticles via a solvothermal route between the organic molecule selenophene (C 4 H 4 Se) and ZnCl 2 without adding any surfactant. The ZnSe microspheres were characterized by x-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), specific surface area measurement, and photoluminescence (PL) spectra. A strong and broad blue PL emission at 443 nm in wavelength (∼2.79 eV in photon energy) is attributed to the near-band-edge (NBE) emission of ZnSe, while the 530 nm peak is a defect-related (DL) emission. The photocatalytic activity of the as-prepared ZnSe microspheres was evaluated by photodegradation of methyl orange (MO) dye under ultraviolet (UV) light and visible light irradiation. The degradations of MO reach 94% or 95.1%, close to 100%, in the presence of the as-synthesized ZnSe microspheres or commercial ZnSe powder after 7 or 10 h under UV irradiation, respectively. Meanwhile the degradations of MO reach 94.3% or 60.6% in the presence of the as-synthesized ZnSe microspheres or commercial ZnSe powder after 12 h, respectively. The degradation rate of ZnSe microspheres is twice that of ZnSe commercial powder under UV light irradiation, and three times under visible light irradiation. The degradation process of MO dye on ZnSe microspheres under UV or visible light is also discussed.

  18. Microsphere-based super-resolution scanning optical microscope.

    Science.gov (United States)

    Huszka, Gergely; Yang, Hui; Gijs, Martin A M

    2017-06-26

    High-refractive index dielectric microspheres positioned within the field of view of a microscope objective in a dielectric medium can focus the light into a so-called photonic nanojet. A sample placed in such nanojet can be imaged by the objective with super-resolution, i.e. with a resolution beyond the classical diffraction limit. However, when imaging nanostructures on a substrate, the propagation distance of a light wave in the dielectric medium in between the substrate and the microsphere must be small enough to reveal the sample's nanometric features. Therefore, only the central part of an image obtained through a microsphere shows super-resolution details, which are typically ∼100 nm using white light (peak at λ = 600 nm). We have performed finite element simulations of the role of this critical distance in the super-resolution effect. Super-resolution imaging of a sample placed beneath the microsphere is only possible within a very restricted central area of ∼10 μm 2 , where the separation distance between the substrate and the microsphere surface is very small (∼1 μm). To generate super-resolution images over larger areas of the sample, we have fixed a microsphere on a frame attached to the microscope objective, which is automatically scanned over the sample in a step-by-step fashion. This generates a set of image tiles, which are subsequently stitched into a single super-resolution image (with resolution of λ/4-λ/5) of a sample area of up to ∼10 4 μm 2 . Scanning a standard optical microscope objective with microsphere therefore enables super-resolution microscopy over the complete field-of-view of the objective.

  19. Preparation of open porous polycaprolactone microspheres and their applications as effective cell carriers in hydrogel system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qingchun [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering (China); Tan, Ke; Ye, Zhaoyang [State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, 200237 China (China); Zhang, Yan, E-mail: zhang_yan@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering (China); Tan, Wensong [State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, 200237 China (China); Lang, Meidong, E-mail: mdlang@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering (China)

    2012-12-01

    Common hydrogel, composed of synthetic polymers or natural polysaccharides could not support the adhesion of anchorage-dependent cells due to the lack of cell affinitive interface and high cell constraint. The use of porous polyester microspheres as cell-carriers and introduction of cell-loaded microspheres into the hydrogel system might overcome the problem. However, the preparation of the open porous microsphere especially using polycaprolactone (PCL) has been rarely reported. Here, the open porous PCL microspheres were fabricated via the combined emulsion/solvent evaporation and particle leaching method. The microspheres exhibited porous surface and inter-connective pore structure. Additionally, the pore structure could be easily controlled by adjusting the processing parameters. The surface pore size could be altered from 20 {mu}m to 80 {mu}m and the internal porosities were varied from 30% to 70%. The obtained microspheres were evaluated to delivery mesenchymal stem cells (MSCs) and showed the improved cell adhesion and growth when compared with the non-porous microspheres. Then, the MSCs loaded microspheres were introduced into agarose hydrogel. MSCs remained alive and sustained proliferation in microsphere/agarose composite in 5-day incubation while a decrement of MSCs viabilities was found in agarose hydrogel without microspheres. The results indicated that the microsphere/hydrogel composite had a great potential in cell therapy and injectable system for tissue regeneration. Highlights: Black-Right-Pointing-Pointer The open porous polycaprolactone microspheres were fabricated using paraffin as a porogen. Black-Right-Pointing-Pointer The microspheres exhibited porous surface and inter-connective pore structure. Black-Right-Pointing-Pointer The surface and internal pore size and porosity of microsphere could be controlled. Black-Right-Pointing-Pointer The porous microspheres exhibited an improved cell adhesion and proliferation. Black

  20. Burkholderia thailandensis: Genetic Manipulation.

    Science.gov (United States)

    Garcia, Erin C

    2017-05-16

    Burkholderia thailandensis is a Gram-negative bacterium endemic to Southeast Asian and northern Australian soils. It is non-pathogenic; therefore, it is commonly used as a model organism for the related human pathogens Burkholderia mallei and Burkholderia pseudomallei. B. thailandensis is relatively easily genetically manipulated and a variety of robust genetic tools can be used in this organism. This unit describes protocols for conjugation, natural transformation, mini-Tn7 insertion, and allelic exchange in B. thailandensis. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  1. Spatial manipulation with microfluidics

    Directory of Open Access Journals (Sweden)

    Benjamin eLin

    2015-04-01

    Full Text Available Biochemical gradients convey information through space, time, and concentration, and are ultimately capable of spatially resolving distinct cellular phenotypes, such as differentiation, proliferation, and migration. How these gradients develop, evolve, and function during development, homeostasis, and various disease states is a subject of intense interest across a variety of disciplines. Microfluidic technologies have become essential tools for investigating gradient sensing in vitro due to their ability to precisely manipulate fluids on demand in well controlled environments at cellular length scales. This minireview will highlight their utility for studying gradient sensing along with relevant applications to biology.

  2. Magnetic

    Science.gov (United States)

    Aboud, Essam; El-Masry, Nabil; Qaddah, Atef; Alqahtani, Faisal; Moufti, Mohammed R. H.

    2015-06-01

    The Rahat volcanic field represents one of the widely distributed Cenozoic volcanic fields across the western regions of the Arabian Peninsula. Its human significance stems from the fact that its northern fringes, where the historical eruption of 1256 A.D. took place, are very close to the holy city of Al-Madinah Al-Monawarah. In the present work, we analyzed aeromagnetic data from the northern part of Rahat volcanic field as well as carried out a ground gravity survey. A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth to basement using various geophysical methods, such as Tilt Derivative, Euler Deconvolution and 2D modeling inversion. Results indicated that the thickness of the lava flows in the study area ranges between 100 m (above Sea Level) at the eastern and western boundaries of Rahat Volcanic field and getting deeper at the middle as 300-500 m. It also showed that, major structural trend is in the NW direction (Red Sea trend) with some minor trends in EW direction.

  3. MAGNET

    CERN Multimedia

    Benoit Curé

    The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...

  4. MAGNET

    CERN Document Server

    B. Curé

    The first phase of the commissioning ended in August by a triggered fast dump at 3T. All parameters were nominal, and the temperature recovery down to 4.5K was carried out in two days by the cryogenics. In September, series of ramps were achieved up to 3 and finally 3.8T, while checking thoroughly the detectors in the forward region, measuring any movement of and around the HF. After the incident of the LHC accelerator on September 19th, corrective actions could be undertaken in the forward region. When all these displacements were fully characterized and repetitive, with no sign of increments in displacement at each field ramp, it was possible to start the CRAFT, Cosmic Run at Four Tesla (which was in fact at 3.8T). The magnet was ramped up to 18.16kA and the 3 week run went smoothly, with only 4 interruptions: due to the VIP visits on 21st October during the LHC inauguration day; a water leak on the cooling demineralized water circuit, about 1 l/min, that triggered a stop of the cooling pumps, and resulte...

  5. MAGNET

    CERN Multimedia

    Benoit Curé

    2013-01-01

    Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...

  6. Microfluidic Fabrication of Porous Polymer Microspheres: Dual Reactions in Single Droplets

    KAUST Repository

    Gong, Xiuqing

    2009-06-16

    We report the microfluidic fabrication of macroporous polymer microspheres via the simultaneous reactions within single droplets, induced by LTV irradiation. The aqueous phase of the reaction is the decomposition of H 2O2 to yield oxygen, whereas the organic phase is the polymerization of NO A 61, ethylene glycol dimethacrylate (EGDMA), and tri (propylene glycol) diacrylate (TPGDA) precursors. We first used a liquid polymer precursor to encapsulate a multiple number of magnetic Fe3O 4 colloidal suspension (MCS) droplets in a core-shell structure, for the purpose of studying the number of such encapsulated droplets that can be reliably controlled through the variation of flow rates. It was found that the formation of one shell with one, two, three, or more encapsulated droplets is possible. Subsequently, the H2O2 solution was encapsulated in the same way, after which we investigated its decomposition under UV irradiation, which simultaneously induces the polymerization of the encapsulating shell. Because the H2O2 decomposition leads to the release of oxygen, porous microspheres were obtained from a combined H2O2 decomposition/polymer precursor polymerization reaction. The multiplicity of the initially encapsulated H2O 2 droplets ensures the homogeneous distribution of the pores. The pores inside the micrometer-sized spheres range from several micrometers to tens of micrometers, and the maximum internal void volume fraction can attain 70%, similar to that of high polymerized high internal phase emulsion (polyHIPE). © 2009 American Chemical Society.

  7. Ulex europaeus 1 lectin targets microspheres to mouse Peyer's patch M-cells in vivo.

    Science.gov (United States)

    Foster, N; Clark, M A; Jepson, M A; Hirst, B H

    1998-03-01

    The interaction of latex microspheres with mouse Peyer's patch membranous M-cells was studied in a mouse gut loop model after the microspheres were coated with a variety of agents. Carboxylated microspheres (diameter 0.5 micron) were covalently coated with lectins Ulex europaeus 1, Concanavalin A, Euonymus europaeus and Bandeiraea simplicifolia 1 isolectin-B4, human immunoglobulin A or bovine serum albumin. Of the treatments examined, only Ulex europaeus (UEA1) resulted in significant selective binding of microspheres to M-cells. UEA1-coated microspheres bound to M-cells at a level 100-fold greater than BSA-coated microspheres, but binding to enterocytes was unaffected. Incubation of UEA1-coated microspheres with alpha-L-fucose reduced M-cell binding to a level comparable with BSA-coated microspheres. This indicated that targeting by UEA1 was via a carbohydrate receptor on the M-cell surface. Adherence of UEA1-coated microspheres to M-cells occurred within 10 min of inoculation into mouse gut loops and UEA1-coated microspheres were transported to 10 microns below the apical surface of M-cells within 60 min of inoculation. UEA1-coated microspheres also targeted mouse Peyer's patch M-cells after intragastric administration. These results demonstrated that altering the surface chemistry of carboxylated polystyrene microspheres increased M-cell targeting, suggesting a strategy to enhance delivery of vaccine antigens to the mucosal immune system.

  8. A reproducible accelerated in vitro release testing method for PLGA microspheres.

    Science.gov (United States)

    Shen, Jie; Lee, Kyulim; Choi, Stephanie; Qu, Wen; Wang, Yan; Burgess, Diane J

    2016-02-10

    The objective of the present study was to develop a discriminatory and reproducible accelerated in vitro release method for long-acting PLGA microspheres with inner structure/porosity differences. Risperidone was chosen as a model drug. Qualitatively and quantitatively equivalent PLGA microspheres with different inner structure/porosity were obtained using different manufacturing processes. Physicochemical properties as well as degradation profiles of the prepared microspheres were investigated. Furthermore, in vitro release testing of the prepared risperidone microspheres was performed using the most common in vitro release methods (i.e., sample-and-separate and flow through) for this type of product. The obtained compositionally equivalent risperidone microspheres had similar drug loading but different inner structure/porosity. When microsphere particle size appeared similar, porous risperidone microspheres showed faster microsphere degradation and drug release compared with less porous microspheres. Both in vitro release methods investigated were able to differentiate risperidone microsphere formulations with differences in porosity under real-time (37 °C) and accelerated (45 °C) testing conditions. Notably, only the accelerated USP apparatus 4 method showed good reproducibility for highly porous risperidone microspheres. These results indicated that the accelerated USP apparatus 4 method is an appropriate fast quality control tool for long-acting PLGA microspheres (even with porous structures). Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Remote control manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, T

    1970-02-28

    A prior-art remote control manipulator comprises a horizontal suspension section, a master arm and a slave arm which are coupled to ends of the suspension section in a manner to pivotally move relative to the suspension section, and a connecting device which includes a tape and which joins both the arms. When the connecting device malfunctions, the slave arm can neither be extended nor contracted. Means to keep the tension of the tape is required which restricts the extension length of the slave arm. Further, the slave arm can be moved only in the axial direction. The invention described provides an improved remote control manipulator of the specified type. A moving device which moves the slave arm relative to the master arm without the intervention of the connecting device is mounted on a movable part of the slave arm, while pulleys which maintain the joining relationship of the connecting device are mounted on the movable part and fixed part of the slave arm. Owing to this construction, movement of the slave arm is assured despite troubles which may arise in the connecting device. In addition, no slack arises in the tape. By applying a similar construction to the horizontal suspension section, the suspension section can be stretched, and hence, the slave arm can be moved in a direction orthogonal to its axis.

  10. Pharmacodynamics of diclofenac from novel Eudragit entrapped microspheres.

    Science.gov (United States)

    Momoh, M A; Kenechukwu, F C; Adedokun, M O; Odo, C E; Attama, A A

    2014-05-01

    Effective clinical utilization of non-steroidal anti-inflammatory drugs such as diclofenac sodium (DS) is significantly limited by their ulcerogenic potential and poor bioavailability after oral administration, thus necessitating the need for a better carrier to minimize these obvious limitations. The objective of this study was to evaluate Eudragit® RS100/RL100 microspheres formulated by the solvent-evaporation technique for improved delivery of diclofenac. Three batches of (DF1, DF2 and DF3) microspheres were prepared using different ratios of Eudragit RS-100 and RL-100 polymers based on the solvent-evaporation method. The microspheres were characterized based on morphological properties, particle size analysis and encapsulation efficiency (EE%). In vitro release of DS was investigated in both 0.1 N HCl (pH 1.2) and phosphate-buffered saline (pH 7.4), while anti-inflammatory studies were evaluated in the rat model. Maximum EE% of 86.61 ± 0.11, 88.14 ± 0.16 and 85.50 ± 0.21 was obtained for DF1, DF2 and DF3, respectively. Discrete, smooth and brownish microspheres of size range 437 ± 0.01-479 ± 0.21 µm were obtained. Release of DS from the formulation depends on the polymer ratio. All the batches exhibited good anti-inflammatory activities. Microsphere formulations based on Eudragit® polymers would likely offer a reliable and alternative means of delivering DS orally.

  11. Solvent/Non-Solvent Sintering To Make Microsphere Scaffolds

    Science.gov (United States)

    Laurencin, Cato T.; Brown, Justin L.; Nair, Lakshmi

    2011-01-01

    A solvent/non-solvent sintering technique has been devised for joining polymeric microspheres to make porous matrices for use as drug-delivery devices or scaffolds that could be seeded with cells for growing tissues. Unlike traditional sintering at elevated temperature and pressure, this technique is practiced at room temperature and pressure and, therefore, does not cause thermal degradation of any drug, protein, or other biochemical with which the microspheres might be loaded to impart properties desired in a specific application. Also, properties of scaffolds made by this technique are more reproducible than are properties of comparable scaffolds made by traditional sintering. The technique involves the use of two miscible organic liquids: one that is and one that is not a solvent for the affected polymer. The polymeric microspheres are placed in a mold having the size and shape of the desired scaffold, then the solvent/non-solvent mixture is poured into the mold to fill the void volume between the microspheres, then the liquid mixture is allowed to evaporate. Some of the properties of the resulting scaffold can be tailored through choice of the proportions of the liquids and the diameter of the microspheres.

  12. Research progress of fabricating polyvinyl alcohol coating on plastic microsphere

    International Nuclear Information System (INIS)

    Su Lin; Chen Sufen; Liu Meifang; Zhang Zhanwen; Yao Hong; Li Bo; Liu Yiyang

    2012-01-01

    In the procedures of designing polystyrene-polyvinyl alcohol-CH (carbon and hydrogen elements) (PS-PVA-CH) triple-layer microspheres, there are many methods such as drop-tower technique, emulsion micro-encapsulation, dip (spin) coating, interfacial polycondensation, and spraying technique to prepare the PVA coating. Drop-tower technique, emulsion micro-encapsulation and dip (spin) coating are most-commonly used. The advantages, disadvantages and the research progress of the three methods are summarized in this paper. Emulsion micro-encapsulation is suitable for preparing double-layer microspheres of sizes smaller then 500 μm, with high survival ratio and good quality. However, the preparation process is easily influenced by artificial factors. Small-sized double-layer microspheres can also be prepared by the drop-tower technique, and the preparation period is short. But there are still some problems such as the difficulty in designing the droplet generator, uneven PVA coating and the difficulty in preparing large-sized microspheres. Dip (spin) coating technique can be used to prepare PS-PVA microspheres with sizes larger than 1000 μm, but the spread of PVA coating is affected by many factors in this method, and the prepared PVA coating is too thin and not uniform. (authors)

  13. Dielectric nanoresonators for light manipulation

    Science.gov (United States)

    Yang, Zhong-Jian; Jiang, Ruibin; Zhuo, Xiaolu; Xie, Ya-Ming; Wang, Jianfang; Lin, Hai-Qing

    2017-07-01

    Nanostructures made of dielectric materials with high or moderate refractive indexes can support strong electric and magnetic resonances in the optical region. They can therefore function as nanoresonators. In addition to plasmonic metal nanostructures that have been widely investigated, dielectric nanoresonators provide a new type of building blocks for realizing powerful and versatile nanoscale light manipulation. In contrast to plasmonic metal nanostructures, nanoresonators made of appropriate dielectric materials are low-cost, earth-abundant and have very small or even negligible light energy losses. As a result, they will find potential applications in a number of photonic devices, especially those that require low energy losses. In this review, we describe the recent progress on the experimental and theoretical studies of dielectric nanoresonators. We start from the basic theory of the electromagnetic responses of dielectric nanoresonators and their fabrication methods. The optical properties of individual dielectric nanoresonators are then elaborated, followed by the coupling behaviors between dielectric nanoresonators, between dielectric nanoresonators and substrates, and between dielectric nanoresonators and plasmonic metal nanostructures. The applications of dielectric nanoresonators are further described. Finally, the challenges and opportunities in this field are discussed.

  14. Ultrafast magnetization dynamics

    OpenAIRE

    Woodford, Simon

    2008-01-01

    This thesis addresses ultrafast magnetization dynamics from a theoretical perspective. The manipulation of magnetization using the inverse Faraday effect has been studied, as well as magnetic relaxation processes in quantum dots. The inverse Faraday effect – the generation of a magnetic field by nonresonant, circularly polarized light – offers the possibility to control and reverse magnetization on a timescale of a few hundred femtoseconds. This is important both for the technological advant...

  15. Microtechnology for cell manipulation and sorting

    CERN Document Server

    Tseng, Peter; Carlo, Dino

    2017-01-01

    This book delves into the recent developments in the microscale and microfluidic technologies that allow manipulation at the single and cell aggregate level. Expert authors review the dominant mechanisms that manipulate and sort biological structures, making this a state-of-the-art overview of conventional cell sorting techniques, the principles of microfluidics, and of microfluidic devices. All chapters highlight the benefits and drawbacks of each technique they discuss, which include magnetic, electrical, optical, acoustic, gravity/sedimentation, inertial, deformability, and aqueous two-phase systems as the dominant mechanisms utilized by microfluidic devices to handle biological samples. Each chapter explains the physics of the mechanism at work, and reviews common geometries and devices to help readers decide the type of style of device required for various applications. This book is appropriate for graduate-level biomedical engineering and analytical chemistry students, as well as engineers and scientist...

  16. PEGylation of magnetic poly(glycidyl methacrylate) microparticles for microfluidic bioassays

    International Nuclear Information System (INIS)

    Kucerova, Jana; Svobodova, Zuzana; Knotek, Petr; Palarcik, Jiri; Vlcek, Milan; Kincl, Miloslav; Horak, Daniel; Autebert, Julien; Viovy, Jean-Louis; Bilkova, Zuzana

    2014-01-01

    In this study, magnetic poly(glycidyl methacrylate) microparticles containing carboxyl groups (PGMA-COOH) were coated using highly hydrophilic polymer poly(ethylene glycol) (PEG). PEG was used to reduce nonspecific interactions with proteins and cells while decreasing adhesion of particles to the walls of a microfluidic devices from poly(dimethylsiloxane) (PDMS) and cyclic olefin copolymer (COC). Zeta potential measurement, infrared spectroscopy, scanning electron microscopy, anti-PEG ELISA assay, and bioaffinity interactions between biotin and streptavidin-HRP successfully proved the presence of PEG on the surface of microspheres. Both neat and PEGylated microspheres were then incubated with the inert protein bovine serum albumin or cells to evaluate the rate of nonspecific adsorption (NSA). PEG with Mr of 30,000 Da was responsible for 45% reduction in NSA of proteins and 74% for cells compared to neat particles. The microspheres' behavior in PDMS and COC microchannels was then evaluated. Aggregation and adhesion of PEGylated microspheres significantly decreased compared to neat particles. Finally, the model enzyme horseradish peroxidase was immobilized on the microspheres through the heterobifunctional PEG chain. The possibility for subsequent covalent coupling of the ligand of interest was confirmed. Such PEGylated microparticles can be efficiently used in PDMS microchips as a carrier for bioaffinity separation or of enzyme for catalysis. - Highlights: • Magnetic polymer microspheres with highly hydrophilic PEG coating were prepared. • PEG reduced microsphere adhesion in microchannels versus neat particles. • Suitability of methods for detecting PEG on magnetic microspheres was investigated. • PEG on microsphere surfaces decreased nonspecific adsorption of proteins and cells

  17. PEGylation of magnetic poly(glycidyl methacrylate) microparticles for microfluidic bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Kucerova, Jana; Svobodova, Zuzana [Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Knotek, Petr [Joint Laboratory of Solid State Chemistry of IMC and University of Pardubice, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Palarcik, Jiri [Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Vlcek, Milan; Kincl, Miloslav; Horak, Daniel [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 16206 Prague 6 (Czech Republic); Autebert, Julien; Viovy, Jean-Louis [Macromolecules and Microsystems in Biology and Medicine, Institute Curie, UMR 168, 26 Rue d' Ulm, 75005 Paris (France); Bilkova, Zuzana, E-mail: zuzana.bilkova@upce.cz [Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic)

    2014-07-01

    In this study, magnetic poly(glycidyl methacrylate) microparticles containing carboxyl groups (PGMA-COOH) were coated using highly hydrophilic polymer poly(ethylene glycol) (PEG). PEG was used to reduce nonspecific interactions with proteins and cells while decreasing adhesion of particles to the walls of a microfluidic devices from poly(dimethylsiloxane) (PDMS) and cyclic olefin copolymer (COC). Zeta potential measurement, infrared spectroscopy, scanning electron microscopy, anti-PEG ELISA assay, and bioaffinity interactions between biotin and streptavidin-HRP successfully proved the presence of PEG on the surface of microspheres. Both neat and PEGylated microspheres were then incubated with the inert protein bovine serum albumin or cells to evaluate the rate of nonspecific adsorption (NSA). PEG with Mr of 30,000 Da was responsible for 45% reduction in NSA of proteins and 74% for cells compared to neat particles. The microspheres' behavior in PDMS and COC microchannels was then evaluated. Aggregation and adhesion of PEGylated microspheres significantly decreased compared to neat particles. Finally, the model enzyme horseradish peroxidase was immobilized on the microspheres through the heterobifunctional PEG chain. The possibility for subsequent covalent coupling of the ligand of interest was confirmed. Such PEGylated microparticles can be efficiently used in PDMS microchips as a carrier for bioaffinity separation or of enzyme for catalysis. - Highlights: • Magnetic polymer microspheres with highly hydrophilic PEG coating were prepared. • PEG reduced microsphere adhesion in microchannels versus neat particles. • Suitability of methods for detecting PEG on magnetic microspheres was investigated. • PEG on microsphere surfaces decreased nonspecific adsorption of proteins and cells.

  18. IVIVC from Long Acting Olanzapine Microspheres

    Directory of Open Access Journals (Sweden)

    Susan D'Souza

    2014-01-01

    Full Text Available In this study, four PLGA microsphere formulations of Olanzapine were characterized on the basis of their in vitro behavior at 37°C, using a dialysis based method, with the goal of obtaining an IVIVC. In vivo profiles were determined by deconvolution (Nelson-Wagner method and using fractional AUC. The in vitro and in vivo release profiles exhibited the same rank order of drug release. Further, in vivo profiles obtained with both approaches were nearly superimposable, suggesting that fractional AUC could be used as an alternative to the Nelson-Wagner method. A comparison of drug release profiles for the four formulations revealed that the in vitro profile lagged slightly behind in vivo release, but the results were not statistically significant (P0.96 between in vitro release and in vivo measurements confirmed the excellent relationship between in vitro drug release and the amount of drug absorbed in vivo. The results of this study suggest that proper selection of an in vitro method will greatly aid in establishing a Level A IVIVC for long acting injectables.

  19. Hydraulic manipulator research at ORNL

    International Nuclear Information System (INIS)

    Kress, R.L.; Jansen, J.F.; Love, L.J.

    1997-01-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL's flexible/prismatic test stand

  20. Hydraulic manipulator research at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States); Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States)

    1997-03-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL`s flexible/prismatic test stand.

  1. Automated characterization of glass microspheres used for laser fusion experiments

    International Nuclear Information System (INIS)

    Tajima, Tsuyoshi; Norimatsu, Takayoshi; Izawa, Yasukazu; Yamanaka, Chiyoe.

    1985-01-01

    In laser fusion experiments glass microspheres of 100 to 1000 μm in diameter and 1 to 20 μm in wall thickness are most commonly used as fuel containers. The glass microspheres should be characterized precisely to meet stringent experimental requirements. Much time is consumed to characterize and select good quality spheres among thousands of spheres. We have developed an automated system to characterize and select glass microspheres. The system consists of charger, quadrupole rail, image processing and X-Y stage control with micro-computer. Total processing time primarily depends on the time required for image analysis, which should be compromised with the accuracy of characterization. The time for simple characterization requires about 10 sec. at present. (author)

  2. Preparation of alumina microspheres. Its application as in inorganic exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Santos, W.R. dos; Abrao, A [Instituto de Pesquisas Energeticas e Nucleares, Sao Paulo (Brazil). Centro de Engenharia Quimica

    1980-01-01

    Inorganic exchangers are widely used for adsorption and column partition chromatography. The main difficulty of using commercial alumina (in powder) for column chromatography is related to its packing, and the operations through the column become diffcult and time-consuming; also it turns to be virtually impossible to use large dimension columns. In order to eliminate these problems, a process for the preparation of alumina microspheres was developed as an adaptation of a similar process used to prepare nuclear fuel microspheres (UO/sub 2/, ThO/sub 2/). The flowsheet of this process is presented together with the analytical results of sphericity after calcination, granulometry, density and characterization by X-ray diffractometry. Solubility tests showed that the so-prepared microspheres are well resistant to strong acids and bases; retention tests showed their efficiency, mainly to copper.

  3. Electrodepositing of Au on hollow PS micro-spheres

    International Nuclear Information System (INIS)

    Sun Jingyuan; Zhang Yunwang; Du Kai; Wan Xiaobo; Xiao Jiang; Zhang Wei; Zhang Lin; Chen Jing

    2010-01-01

    Using the self-regulating new micro-sphere electrodepositing device, the techniques of electrodepositing gold on hollow PS micro-spheres were established. The experiment was carried out under the following conditions: voltage was about 0.7 ∼ 0.8 V, current density was 2.0 mA · cm -2 , the temperature was 45 degree C, cathode rotating rate was 250 r · min -1 , flow rate of the solution was 7 mL · min -1 · cm -2 . Hollow gold-plated micro-spheres were prepared with well spherical symmetry, uniform thickness and surface smoothness under 500 nm. The speed of the gold depositing was 6 μm · h -1 . (authors)

  4. Radiolabeled microsphere measurements of alveolar bone blood flow in dogs

    International Nuclear Information System (INIS)

    Kaplan, M.L.; Jeffcoat, M.K.; Goldhaber, P.

    1978-01-01

    Radiolabeled microspheres were injected into the left cardiac ventricle in healthy adult dogs to quantify blood in maxillary and mandibular alveolar bone. Heart rate, arterial blood pressure and pulse contour were monitored throughout each experiment. Blood flow in maxillary alveolar bone was more than 30 % greater (p<.001) than in mandibular alveolar bone. Alveolar bone blood flow (mean +- S.D.) measured as ml/min per gram was 0.12 +- .02 in the maxilla compared to 0.09 +- .02 in the mandible. The cardiovascular parameters monitored were constant immediately prior to the injection of microspheres and remained unchanged during and following injection. It is possible that radiolabeled microspheres can be used to quantify the circulatory changes in alveolar bone during the development of destructive periodontal disease in dogs. (author)

  5. [Language Manipulation, Surrogacy, Altruism].

    Science.gov (United States)

    Serrano Ruiz-Calderón, José Miguel

    2017-01-01

    The Newspeak propitiates a change of the sense of the words and next to the double thinking forms the picture of totalitarianism described by Orwell in 1984. The purpose of the Newspeak is to make all other forms of thought impossible. In bioethics the Newspeak is applied, not because Bioethics is a new science but by the manipulative intention. The twentieth-century political language has, according to Orwell, the intention to remove the ″mental image ″ of what really happens. This is clear in the terms ″surrogacy ″. On the one hand, the mother is deprived of her child. On the other, there is no legal subrogation. As has been said the technique reduces a woman to the condition of a vessel. The excuse of gratuity does not change the exploitative relationship, since gratuitousness in the provision of women is not the altruism of all those involved in surrogacy.

  6. Media and manipulation

    Directory of Open Access Journals (Sweden)

    Kovačević Braco

    2013-01-01

    Full Text Available The role and importance of the media are huge, both in everyday life and in cultural, spiritual and political life of modern man. Their power in the sense of political shaping of people and shaping of public opinion is very distinctive. In the process of propaganda to influence public opinion, they use various manipulative procedures in order to accomplish certain interests and objectives. Through the media, politics realizes its economic, ideological, political and even military activities. The war in the former Yugoslavia and former Bosnia and Herzegovina was also waged through the media. This media war still is spreading the hate speech, thus still causing conflicts and disintegration processes in the Balkans.

  7. Interactive protein manipulation

    Energy Technology Data Exchange (ETDEWEB)

    SNCrivelli@lbl.gov

    2003-07-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures.

  8. Interactive protein manipulation

    International Nuclear Information System (INIS)

    2003-01-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures

  9. Fracture properties and heat resistance of ceramics consisting of microspheres of stabilized zirconium dioxide

    International Nuclear Information System (INIS)

    Krasulin, Yu.L.; Barinov, S.M.; Ivanov, A.B.; Timofeev, V.N.; Grevtsev, S.N.; Ivanov, D.A.

    1980-01-01

    Determined were effective specific fracture work, critical coefficient of stress intensity in the upper point of the fracture, strength and heat resistance during heat changes (20-1300 deg C) of the material produced by sintering stabilized zirconium dioxide microspheres. Dependence of these characteristics on granulometric composition of microspheres was determined. It was ascertained that the additional introduction of large microspheres into the bulk of small microspheres increased the metal fracture work. Specific work of material fracture progress exceeded specific work of fracture motion initiation. High value of fracture work together with high strength permits to use the material formed of microspheres as structural ceramics

  10. Temperature influence in crystallinity of polymer microspheres; Influencia da temperatura na cristalinidade de microesferas polimericas

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, Cristiane de P.; Novack, Katia M., E-mail: knovack@iceb.ufop.br [Universidade Federal de Ouro Preto - UFOP, ICEB, DEQUI, Ouro Preto, MG (Brazil)

    2011-07-01

    Drug delivery technology is evolving through the creation of new techniques of drug delivery effectively. The new methods used in drugs administration are based in microencapsulation process. Microsphere encapsulation modifies drug delivery bringing benefits and efficiency. In this work has been evaluated the influence of temperature in microspheres preparation. Microspheres were obtained by PMMA-co-PEG (COP) copolymer with indomethacin inserted in polymer matrix. Samples were characterized by SEM, DSC and XRD. SEM micrographs confirmed the formation of different sizes of microspheres and it was verified that higher temperatures make more crystalline microspheres. (author)

  11. Characteristics of manipulative in mathematics laboratory

    Science.gov (United States)

    Istiandaru, A.; Istihapsari, V.; Prahmana, R. C. I.; Setyawan, F.; Hendroanto, A.

    2017-12-01

    A manipulative is a teaching aid designed such that students could understand mathematical concepts by manipulating it. This article aims to provide an insight to the characteristics of manipulatives produced in the mathematics laboratory of Universitas Ahmad Dahlan, Indonesia. A case study was conducted to observe the existing manipulatives produced during the latest three years and classified the manipulatives based on the characteristics found. There are four kinds of manipulatives: constructivism manipulative, virtual manipulative, informative manipulative, and game-based manipulative. Each kinds of manipulative has different characteristics and impact towards the mathematics learning.

  12. Magnetically responsive calcium carbonate microcrystals.

    Science.gov (United States)

    Fakhrullin, Rawil F; Bikmullin, Aidar G; Nurgaliev, Danis K

    2009-09-01

    Here we report the fabrication of magnetically responsive calcium carbonate microcrystals produced by coprecipitation of calcium carbonate in the presence of citrate-stabilized iron oxide nanoparticles. We demonstrate that the calcite microcrystals obtained possess superparamagnetic properties due to incorporated magnetite nanoparticles and can be manipulated by an external magnetic field. The microcrystals doped with magnetic nanoparticles were utilized as templates for the fabrication of hollow polyelectrolyte microcapsules, which retain the magnetic properties of the sacrificial cores and might be spatially manipulated using a permanent magnet, thus providing the magnetic-field-facilitated delivery and separation of materials templated on magnetically responsive calcite microcrystals.

  13. Cephradin-plaga microspheres for sustained delivery to cattle.

    Science.gov (United States)

    Ustariz-Peyret, C; Coudane, J; Vert, M; Kaltsatos, V; Boisramé, B

    1999-01-01

    In the field of controlled drug delivery, most of the reported work is aimed at introducing new systems, or at providing basic information on the critical parameters which affect release profiles in vitro and occasionally in vivo. The situation is totally different when one wants to fulfil the specific requirements imposed by the marketing of a sustained release device to be used in humans or in animals eaten by human beings. The control of the release characteristics is then a difficult challenge. In this work, attempts were made to combine cephradin, a hydrophilic beta-lactam antibiotic, and bioresorbable polymeric matrices of a poly(alpha-hydroxy acid) in the form of microspheres with the aim of delivering the antibiotic to cattle at a dose rate of 4-5 mg/kg/day over a 3-4 days period after i.m. injection. PLAGA aliphatic polyesters were selected because they are already FDA approved as matrices. The solvent evaporation technique using PVA as the emulsion stabilizer was selected because it is efficient and can be extended to an industrial scale. Various experimental conditions were used in order to obtain the highest encapsulation yields compatible with the desired specifications. Decreasing the volume of the aqueous phase and adding a water-miscible organic solvent/non-solvent of cephradin failed. In contrast, microspheres containing up to 30% cephradin were prepared after addition of sodium chloride to the aqueous dispersing phase. The amount of entrapped drug was raised to 40% by decreasing the temperature and the pressure. Preliminary investigations using dogs showed that 20% cephradin microspheres prepared under these conditions extended the presence of cephradin in the blood circulation up to 48 h. Increasing the load led to higher blood concentrations but shorter sustained release. The fact that the microspheres were for cattle limited the volume of the injection and thus the amount of microspheres to be administered. The other limiting factors were

  14. Adaptive control of robotic manipulators

    Science.gov (United States)

    Seraji, H.

    1987-01-01

    The author presents a novel approach to adaptive control of manipulators to achieve trajectory tracking by the joint angles. The central concept in this approach is the utilization of the manipulator inverse as a feedforward controller. The desired trajectory is applied as an input to the feedforward controller which behaves as the inverse of the manipulator at any operating point; the controller output is used as the driving torque for the manipulator. The controller gains are then updated by an adaptation algorithm derived from MRAC (model reference adaptive control) theory to cope with variations in the manipulator inverse due to changes of the operating point. An adaptive feedback controller and an auxiliary signal are also used to enhance closed-loop stability and to achieve faster adaptation. The proposed control scheme is computationally fast and does not require a priori knowledge of the complex dynamic model or the parameter values of the manipulator or the payload.

  15. Use of molecular beams to support microspheres during plasma coating

    International Nuclear Information System (INIS)

    Crane, J.K.; Smith, R.D.; Johnson, W.L.; Letts, S.A.; Korbel, G.R.; Krenick, R.M.

    1980-01-01

    Spherical laser fusion targets can be levitated on beams of Ar or other gas atoms. This is an especially useful and reliable technique for supporting microspheres during plasma coating or plasma etching. The reliability of this technique is principally the result of two things: the success of a special centering device which provides a lateral, stabilizing force on the levitated microspheres; and a gas handling system which is capable of controlling levitation gas flow in the microtorr liter/sec range. We have determined that the operational regime of this device is that of Knudsen's flow. This knowledge of the flow characteristics has been important in developing this device

  16. Oxaliplatin loaded PLAGA microspheres: design of specific release profiles.

    Science.gov (United States)

    Lagarce, F; Cruaud, O; Deuschel, C; Bayssas, M; Griffon-Etienne, G; Benoit, J

    2002-08-21

    Oxaliplatin loaded PLAGA microspheres have been prepared by solvent extraction process. Parameters affecting the release kinetics in vitro have been studied in order to design specific release profiles suitable for direct intra-tumoral injection. By varying the nature and the relative proportions of different polymers we managed to prepare microspheres with good encapsulation efficiency (75-90%) and four different release profiles: zero order kinetics (type II) and the classical sigmoïd release profile with three different sizes of plateau and burst. These results, if correlated with in vivo activity, are promising to enhance effectiveness of local tumor treatment.

  17. UO2 microspheres obtainment through the internal gelation methods

    International Nuclear Information System (INIS)

    Sterba, M.E.; Gomez Constenla, A.

    1987-01-01

    UO 2 microspheres obtainment process through the internal gelation method which allows the spheres' obtainment of uniform size is detailed herein, varying the same among 0.3 and 1.7 mm of diameter. The sintered density reaches 10.78 g/cm 3 , permitting the fuels fabrication dispersed and vibro-compacted fuels. The trichloroethylene use implementation as gelation agent is described, thus reducing the number of stages in the microspheres fabrication. At the same time, the uranium sun composition has been modified so as to be compatible with the use solvent. (Author)

  18. Optical diffraction by ordered 2D arrays of silica microspheres

    Science.gov (United States)

    Shcherbakov, A. A.; Shavdina, O.; Tishchenko, A. V.; Veillas, C.; Verrier, I.; Dellea, O.; Jourlin, Y.

    2017-03-01

    The article presents experimental and theoretical studies of angular dependent diffraction properties of 2D monolayer arrays of silica microspheres. High-quality large area defect-free monolayers of 1 μm diameter silica microspheres were deposited by the Langmuir-Blodgett technique under an accurate optical control. Measured angular dependencies of zeroth and one of the first order diffraction efficiencies produced by deposited samples were simulated by the rigorous Generalized Source Method taking into account particle size dispersion and lattice nonideality.

  19. Excitation of resonances of microspheres on an optical fiber

    Science.gov (United States)

    Serpengüzel, A.; Arnold, S.; Griffel, G.

    1995-04-01

    Morphology-dependent resonances (MDR's) of solid microspheres are excited by using an optical fiber coupler. The narrowest measured MDR linewidths are limited by the excitation laser linewidth ( < 0.025 nm). Only MDR's, with an on-resonance to off-resonance intensity ratio of 104, contribute to scattering. The intensity of various resonance orders is understood by the localization principle and the recently developed generalized Lorentz-Mie theory. The microsphere fiber system has potential for becoming a building block in dispersive microphotonics. The basic physics underlying our approach may be considered a harbinger for the coupling of active photonic microstructures such as microdisk lasers.

  20. Controlled Synthesis of Hierarchically Assembled Porous ZnO Microspheres with Enhanced Gas-Sensing Properties

    Directory of Open Access Journals (Sweden)

    Shengsheng You

    2015-01-01

    Full Text Available The ZnO microspheres constructed by porous nanosheets were successfully synthesized by calcinating zinc hydroxide carbonate (ZHC microspheres obtained by a sample hydrothermal method. The samples were characterized in detail with scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, and thermogravimetric and differential scanning calorimetry (TG-DSC. The results indicated that the prepared ZnO microspheres were well crystalline with wurtzite hexagonal phase. The effects of reaction time, temperature, the amount of trisodium citrate, and urea on the morphology of ZnO microspheres were studied. The formation mechanism of porous ZnO microspheres was discussed. Furthermore, the gas-sensing properties for detection of organic gas of the prepared porous ZnO microspheres were investigated. The results indicated that the prepared porous ZnO microspheres exhibited high gas-sensing properties for detection of ethanol gas.

  1. Modified composite microspheres of hydroxyapatite and poly(lactide-co-glycolide) as an injectable scaffold

    International Nuclear Information System (INIS)

    Hu, Xixue; Shen, Hong; Yang, Fei; Liang, Xinjie; Wang, Shenguo; Wu, Decheng

    2014-01-01

    The compound of hydroxyapatite-poly(lactide-co-glycolide) (HA-PLGA) was prepared by ionic bond between HA and PLGA. HA-PLGA was more stable than the simple physical blend of hydroxyapatite and poly(lactide-co-glycolide) (HA/PLGA). The surface of HA-PLGA microsphere fabricated by an emulsion–solvent evaporation method was rougher than that of HA/PLGA microspheres. Moreover, surface HA content of HA-PLGA microspheres was more than that of HA/PLGA microspheres. In vitro mouse OCT-1 osteoblast-like cell culture results showed that the HA-PLGA microspheres clearly promoted osteoblast attachment, proliferation and alkaline phosphatase activity. It was considered that surface rich HA component and rough surface of HA-PLGA microsphere enhanced cell growth and differentiation. The good cell affinity of the HA-PLGA microspheres indicated that they could be used as an injectable scaffold for bone tissue engineering.

  2. Modified composite microspheres of hydroxyapatite and poly(lactide-co-glycolide) as an injectable scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xixue [BNLMS, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190 (China); Shen, Hong, E-mail: shenhong516@iccas.ac.cn [BNLMS, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Fei [BNLMS, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liang, Xinjie [CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190 (China); Wang, Shenguo, E-mail: wangsg@iccas.ac.cn [BNLMS, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Wu, Decheng, E-mail: dcwu@iccas.ac.cn [BNLMS, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-02-15

    The compound of hydroxyapatite-poly(lactide-co-glycolide) (HA-PLGA) was prepared by ionic bond between HA and PLGA. HA-PLGA was more stable than the simple physical blend of hydroxyapatite and poly(lactide-co-glycolide) (HA/PLGA). The surface of HA-PLGA microsphere fabricated by an emulsion–solvent evaporation method was rougher than that of HA/PLGA microspheres. Moreover, surface HA content of HA-PLGA microspheres was more than that of HA/PLGA microspheres. In vitro mouse OCT-1 osteoblast-like cell culture results showed that the HA-PLGA microspheres clearly promoted osteoblast attachment, proliferation and alkaline phosphatase activity. It was considered that surface rich HA component and rough surface of HA-PLGA microsphere enhanced cell growth and differentiation. The good cell affinity of the HA-PLGA microspheres indicated that they could be used as an injectable scaffold for bone tissue engineering.

  3. Preparation and characterization of biodegradable magnetic carriers by single emulsion-solvent evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xianqiao [Departments of Neurology and Surgery (Neurosurgery), University of Chicago Pritzker School of Medicine, Chicago, IL (United States); Kaminski, Michael D. [Chemical Engineering Division, Argonne National Laboratory, Argonne, IL (United States); Riffle, Judy S. [Department of Chemistry, Virginia Tech, Blacksburg, VA (United States); Chen Haitao [Departments of Neurology and Surgery (Neurosurgery), University of Chicago Pritzker School of Medicine, Chicago, IL (United States); Torno, Michael [Departments of Neurology and Surgery (Neurosurgery), University of Chicago Pritzker School of Medicine, Chicago, IL (United States); Finck, Martha R. [Chemical Engineering Division, Argonne National Laboratory, Argonne, IL (United States); Taylor, LaToyia [Departments of Neurology and Surgery (Neurosurgery), University of Chicago Pritzker School of Medicine, Chicago, IL (United States); Rosengart, Axel J. [Departments of Neurology and Surgery (Neurosurgery), University of Chicago Pritzker School of Medicine, Chicago, IL (United States)]. E-mail: arosenga@uchicago.edu

    2007-04-15

    This paper describes a single emulsion-solvent evaporation protocol to prepare PEGylated biodegradable/biocompatible magnetic carriers by utilizing hydrophobic magnetite and a mixture of poly(D,L lactide-co-glycolide) (PLGA) and poly(lactic acid-block-polyethylene glycol) (PLA-PEG) (26:1 by mass) polymers. We characterized the magnetic microspheres in terms of morphology, composite microstructure, size and size distribution, and magnetic properties. Results show that the preparation produces magnetic microspheres with a good spherical morphology, small size (mean diameter of 1.2-1.5 {mu}m) by means of large size distributions, and magnetizations up to 20-30 emu/g of microspheres.

  4. Preparation and characterization of biodegradable magnetic carriers by single emulsion-solvent evaporation

    International Nuclear Information System (INIS)

    Liu Xianqiao; Kaminski, Michael D.; Riffle, Judy S.; Chen Haitao; Torno, Michael; Finck, Martha R.; Taylor, LaToyia; Rosengart, Axel J.

    2007-01-01

    This paper describes a single emulsion-solvent evaporation protocol to prepare PEGylated biodegradable/biocompatible magnetic carriers by utilizing hydrophobic magnetite and a mixture of poly(D,L lactide-co-glycolide) (PLGA) and poly(lactic acid-block-polyethylene glycol) (PLA-PEG) (26:1 by mass) polymers. We characterized the magnetic microspheres in terms of morphology, composite microstructure, size and size distribution, and magnetic properties. Results show that the preparation produces magnetic microspheres with a good spherical morphology, small size (mean diameter of 1.2-1.5 μm) by means of large size distributions, and magnetizations up to 20-30 emu/g of microspheres

  5. Image manipulation as research misconduct.

    Science.gov (United States)

    Parrish, Debra; Noonan, Bridget

    2009-06-01

    A growing number of research misconduct cases handled by the Office of Research Integrity involve image manipulations. Manipulations may include simple image enhancements, misrepresenting an image as something different from what it is, and altering specific features of an image. Through a study of specific cases, the misconduct findings associated with image manipulation, detection methods and those likely to identify such manipulations, are discussed. This article explores sanctions imposed against guilty researchers and the factors that resulted in no misconduct finding although relevant images clearly were flawed. Although new detection tools are available for universities and journals to detect questionable images, this article explores why these tools have not been embraced.

  6. The Manipulative Discourse of Gandalf

    Directory of Open Access Journals (Sweden)

    Farid Mohammadi

    2014-07-01

    Full Text Available The aim of this essay is to investigate discursive, cognitive and social aspects of manipulation in regard to the dialogues of the literary fictional character of Gandalf in the trilogy of The Lord of the Rings. Accordingly, the researcher has taken a multidisciplinary approach to an account of discursive manipulation, and focuses on the cognitive dimensions of manipulation. As a result, the researcher demonstrates meticulously how manipulation involves intensifying the power, moral superiority and the credibility of the speaker(s, while abusing the others (recipients, along with an emotional and attractive way of expression, and supplemented by reasonable facts and documents in regard to a specific issue.

  7. Evaluation of nonradioactive, colored microspheres for measurement of regional myocardial blood flow in dogs

    International Nuclear Information System (INIS)

    Hale, S.L.; Alker, K.J.; Kloner, R.A.

    1988-01-01

    Measurement of regional myocardial blood flow (RMBF) is crucial in experimental studies of myocardial ischemia and reperfusion in dogs. The standard measurement technique uses radioactive microspheres; however, not all institutions are able to dispose of radioactive waste and therefore cannot make use of this method. We tested a new, nonradioactive microsphere, labeled with colors instead of nuclides. Simultaneous blood flow measurements with two nuclide-labeled and two colored microspheres were performed after coronary occlusion in dogs. Both techniques show a within-method correlation of r greater than 0.98. Duplicate variability for paired RMBF values in 80 samples was 8.7 +/- 0.1% when computed with radioactive microspheres and 13.2 +/- 1.8% when computed with colored microspheres. There was a good correlation in the measurement of RMBF between the radioactive- and colored-microsphere methods (r = 0.98). The best-fitting linear regression line was expressed by the formula: Colored-microsphere RMBF = 1.11 (radioactive-microsphere RMBF)-0.02. When measured by colored microspheres, RMBF was approximately 8% higher than when computed with radioactive microspheres for blood flow values of 0-2 ml/min/g. When blood flow was increased pharmacologically to levels of 2-7.5 ml/min/g, colored microspheres yielded blood flow values 39% higher than the values computed by radioactive microspheres. We conclude that the nonradioactive, colored-microsphere method correlates with the radioactive technique, but at high flows, it yields values greater than those obtained with radioactive microspheres

  8. Surface modification of cyclomatrix polyphosphazene microsphere by thiol-ene chemistry and lectin recognition

    International Nuclear Information System (INIS)

    Chen, Chen; Zhu, Xue-yan; Gao, Qiao-ling; Fang, Fei; Huang, Xiao-jun

    2016-01-01

    Graphical abstract: A new synthetic route leading to polyphosphazene cyclomatrix microsphere with various functional groups has achieved via thiol-ene click modification. Herein, hexacholorocyclophosphazene (HCCP) crosslinked with bisphenol-S and 4,4′-diallyl bisphenol-S to generate broadly dispersed microspheres. Thiol-ene modification under UV irradiation not only presented high efficiency and flexibility for post-functionalization, but also imposed no harm on global morphology and crosslinked skeleton of such microspheres. - Highlights: • Functional polyphosphazene microspheres with high chemical flexibility were synthesized by thiol-ene modification. • Polyphosphazene microspheres possessed high thermal stability. • Glycosylated polyphosphazene microspheres showed affinity to lectin Con-A, which inferred potential application in biomedicine. - Abstract: A new synthetic route leading to functional polyphosphazene cyclomatrix microsphere has been developed via thiol-ene click modification. Hexacholorocyclophosphazene (HCCP) was crosslinked with both bisphenol-S and 4,4′-diallyl bisphenol-S to obtain vinyl polyphosphazene microspheres (VPZM) in order to ensure high crosslinking degree and introduce vinyl moieties. Compared to the microspheres obtained by HCCP and bisphenol-S, the size of VPZM was broadly dispersed from 400 nm to 1.40 μm. Thiol-ene click reactions were carried out to attach functional groups, such as glucosyl, carboxyl, ester and dodecyl groups onto polyphosphazene microspheres, which demonstrated no change in morphology and size after modification. Solid state NMR (SSNMR) and Fourier transform infrared spectoscopy (FT-IR) results showed that the vinyl moieties were introduced in the period of crosslinking and functionalization was also successful via click reactions. Moreover, the microspheres presented a little difference in thermal properties after modification. Concanavalin A (Con-A) fluorescent adsorption was also observed for

  9. Polymer based microspheres of aceclofenac as sustained release parenterals for prolonged anti-inflammatory effect

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manpreet; Sharma, Sumit; Sinha, VR, E-mail: sinha_vr@rediffmail.com

    2017-03-01

    Poly(lactic-co-glycolic acid) (PLGA) (75:25) and polycaprolactone (PCL) microspheres were fabricated for prolonged release of aceclofenac by parenteral administration. Microspheres encapsulating aceclofenac were designed to release the drug at controlled rate for around one month. Biodegradable microspheres were prepared by solvent emulsification evaporation method in different polymer:drug ratios (1:1, 2:1 and 3:1). After drug loading, PLGA and PCL microspheres showed a controlled size distribution with an average size of 11.75 μm and 3.81 μm respectively and entrapment efficiency in the range of 90 ± 0.72% to 91.06 ± 4.01% with PLGA and 83.01 ± 2.13% to 90.4 ± 2.11% with PCL. Scanning electron microscopy has confirmed good spherical structures of microspheres. The percent yield of biodegradable polymeric microspheres ranged between 30.95 ± 10.14% to 92.84 ± 3.15% and 47.33 ± 4.72% to 80 ± 3.60% for PLGA and PCL microspheres respectively. PLGA microspheres followed Higuchi release pattern while Korsmeyer-Peppas explained the release pattern of PCL microspheres. Stability studies of microspheres were also carried out by storing the preparations at 2-8 °C for 30, 60 and 90 days and evaluating them for entrapment efficiency, residual drug content and polymer drug compatability. In-vivo studies showed significant anti-inflammatory activity of microspheres upto 48 hours using the carrageenan induced rat paw oedema model. - Highlights: • PLGA and PCL polymeric microspheres for parenteral prolonged drug delivery system were formulated. • Polymeric microspheres were characterized physically and drug excipient incompatability. • Three months accelerated stability studies were carried for drug loaded polymeric microspheres. • Pharmacodynamic studies prove the rationality of sustained therapeutic effect of designed drug delivery system.

  10. Surface modification of cyclomatrix polyphosphazene microsphere by thiol-ene chemistry and lectin recognition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chen; Zhu, Xue-yan; Gao, Qiao-ling; Fang, Fei; Huang, Xiao-jun, E-mail: hxjzxh@zju.edu.cn

    2016-11-30

    Graphical abstract: A new synthetic route leading to polyphosphazene cyclomatrix microsphere with various functional groups has achieved via thiol-ene click modification. Herein, hexacholorocyclophosphazene (HCCP) crosslinked with bisphenol-S and 4,4′-diallyl bisphenol-S to generate broadly dispersed microspheres. Thiol-ene modification under UV irradiation not only presented high efficiency and flexibility for post-functionalization, but also imposed no harm on global morphology and crosslinked skeleton of such microspheres. - Highlights: • Functional polyphosphazene microspheres with high chemical flexibility were synthesized by thiol-ene modification. • Polyphosphazene microspheres possessed high thermal stability. • Glycosylated polyphosphazene microspheres showed affinity to lectin Con-A, which inferred potential application in biomedicine. - Abstract: A new synthetic route leading to functional polyphosphazene cyclomatrix microsphere has been developed via thiol-ene click modification. Hexacholorocyclophosphazene (HCCP) was crosslinked with both bisphenol-S and 4,4′-diallyl bisphenol-S to obtain vinyl polyphosphazene microspheres (VPZM) in order to ensure high crosslinking degree and introduce vinyl moieties. Compared to the microspheres obtained by HCCP and bisphenol-S, the size of VPZM was broadly dispersed from 400 nm to 1.40 μm. Thiol-ene click reactions were carried out to attach functional groups, such as glucosyl, carboxyl, ester and dodecyl groups onto polyphosphazene microspheres, which demonstrated no change in morphology and size after modification. Solid state NMR (SSNMR) and Fourier transform infrared spectoscopy (FT-IR) results showed that the vinyl moieties were introduced in the period of crosslinking and functionalization was also successful via click reactions. Moreover, the microspheres presented a little difference in thermal properties after modification. Concanavalin A (Con-A) fluorescent adsorption was also observed for

  11. Perfusion measurements with radioactively labelled microspheres

    International Nuclear Information System (INIS)

    Schosser, R.

    1980-01-01

    The technique and the evaluation of the microsphere-method are comprehensively represented in theory and practice. Some changes and new concepts are discussed, besides the known foundations and techniques, that assure an essential methodic improvement resp. practical simplifications. Two new formulas are derived within the frame of the theoretical principles, by which the absolute flux of shorts can be calculated, i.e. on the one hand in the case of known and on the other hand in the case of unknown applied amount of indicator. The determination of the optimal indicator dose is defined and formulated mathematically with respect to the experimental conditions to be expected. The matrix method was designed for the analysis of complex gamma spectra. Hereby there is no selective error accumulation in the case of low energy radio nuclids contrary to the so far exclusively used stripping technique. The number of possible error quantities was reduced by one resp. two variables. The error of particular radio nuclid components is quantitatively computed as standard deviation by means of the theory of approximated systems of linear equations. The external measurement of distance was developed. This technique is less susceptible for errors as the aliquota i.e. whole body measurement technique. Additionally less measurement time is needed. A flexible computer program for a desk top computer was developped for the evaluation. The data from the gamma spectrometer are recorded on tipe and automatically read in by the computer. The manual input are limited to the weights of the organs and some control parameter. The output is made by a clearly arranged table by means of a lineprinter. (orig./MG) [de

  12. Preoperative Y-90 microsphere selective internal radiation treatment for tumor downsizing and future liver remnant recruitment: a novel approach to improving the safety of major hepatic resections.

    Science.gov (United States)

    Gulec, Seza A; Pennington, Kenneth; Hall, Michael; Fong, Yuman

    2009-01-08

    Extended liver resections are being performed more liberally than ever. The extent of resection of liver metastases, however, is restricted by the volume of the future liver remnant (FLR). An intervention that would both accomplish tumor control and induce compensatory hypertrophy, with good patient tolerability, could improve clinical outcomes. A 53-year-old woman with a history of cervical cancer presented with a large liver mass. Subsequent biopsy indicated poorly differentiated carcinoma with necrosis suggestive of squamous cell origin. A decision was made to proceed with pre-operative chemotherapy and Y-90 microsphere SIRT with the intent to obtain systemic control over the disease, downsize the hepatic lesion, and improve the FLR. A surgical exploration was performed six months after the first SIRT (three months after the second). There was no extrahepatic disease. The tumor was found to be significantly decreased in size with central and peripheral scarring. The left lobe was satisfactorily hypertrophied. A formal right hepatic lobectomy was performed with macroscopic negative margins. Selective internal radiation treatment (SIRT) with yttrium-90 (Y-90) microspheres has emerged as an effective liver-directed therapy with a favorable therapeutic ratio. We present this case report to suggest that the portal vein radiation dose can be substantially increased with the intent of inducing portal/periportal fibrosis. Such a therapeutic manipulation in lobar Y-90 microsphere treatment could accomplish the end points of PVE with avoidance of the concern regarding tumor progression.

  13. Tree manipulation experiment

    Science.gov (United States)

    Nishina, K.; Takenaka, C.; Ishizuka, S.; Hashimoto, S.; Yagai, Y.

    2012-12-01

    Some forest operations such as thinning and harvesting management could cause changes in N cycling and N2O emission from soils, since thinning and harvesting managements are accompanied with changes in aboveground environments such as an increase of slash falling and solar radiation on the forest floor. However, a considerable uncertainty exists in effects of thinning and harvesting on N2O fluxes regarding changes in belowground environments by cutting trees. To focus on the effect of changes in belowground environments on the N2O emissions from soils, we conducted a tree manipulation experiment in Japanese cedar (Cryptomeria japonica) stand without soil compaction and slash falling near the chambers and measured N2O flux at 50 cm and 150 cm distances from the tree trunk (stump) before and after cutting. We targeted 5 trees for the manipulation and established the measurement chambers to the 4 directions around each targeted tree relative to upper slope (upper, left, right, lower positions). We evaluated the effect of logging on the emission by using hierarchical Bayesian model. HB model can evaluate the variability in observed data and their uncertainties in the estimation with various probability distributions. Moreover, the HB model can easily accommodate the non-linear relationship among the N2O emissions and the environmental factors, and explicitly take non-independent data (nested structure of data) for the estimation into account by using random effects in the model. Our results showed tree cutting stimulated N2O emission from soils, and also that the increase of N2O flux depended on the distance from the trunk (stump): the increase of N2O flux at 50 cm from the trunk (stump) was greater than that of 150 cm from the trunk. The posterior simulation of the HB model indicated that the stimulation of N2O emission by tree cut- ting could reach up to 200 cm in our experimental plot. By tree cutting, the estimated N2O emission at 0-40 cm from the trunk doubled

  14. Remote inspection manipulators for AGR II: Babcock Power's interstitial manipulator

    International Nuclear Information System (INIS)

    Whyley, S.R.

    1985-01-01

    The interstitial manipulator has been designed and built by Babcock Power for the remote visual inspection of AGR II reactors at Heysham and Torness. Its five drives are operated from a console local to the manipulator on the pile cap, or from a similar console located remotely. The need to operate from an interstitial ISI standpipe has restricted the size of the components entering the reactor, and this has consequently provided the major design constraint. A detailed structural assessment of the manipulator was carried out to demonstrate the ability to operate with payloads in excess of the largest camera weight of 13.6 kg. The manipulator finite element model was also used to determine static deflections, and, as a consequence, has provided data from which the control system is able to predict accurately the camera's position. Other computer aided design techniques have enabled the step by step sequences of manipulator deployment, in the restricted space available, to be successfully demonstrated. (author)

  15. Burst-mode manipulation of magnonic vortex crystals

    Science.gov (United States)

    Hänze, Max; Adolff, Christian F.; Weigand, Markus; Meier, Guido

    2015-03-01

    The manipulation of polarization states in 4 ×4 vortex crystals using sinusoidal magnetic field bursts is investigated by means of a broadband ferromagnetic-resonance setup. Magnetic field excitation with the proper amplitude and frequency allows tuning different polarization states, which are observed in the measured absorption spectra. The variation of the sinusoidal burst width consecutively identifies the time scale of the underlying process. A memorylike polarization state writing process is demonstrated on the submicrosecond time scale.

  16. Preparation of hollow microspheres of Ce{sup 3+} doped NiCo ferrite with high microwave absorbing performance

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hong-zhen, E-mail: duanhz2000@163.com; Zhou, Fang-ling; Cheng, Xia; Chen, Guo-hong; Li, Qiao-ling

    2017-02-15

    Hollow microspheres of Ce{sup 3+} doped NiCo-ferrites were synthesized by template-based-deposition and surface reaction method with carbon sphere as the template. The phase structure, morphology, magnetic properties and wave absorbing properties of the sample were characterized by X-ray powder diffraction(XRD), Scanning electronic microscopy(SEM), Vibration sample magnetometer (VSM) and a network vector analyzer (NVA), respectively. The results indicated that the particle size of the carbon sphere sample prepared by hydrothermal method was about 0.5 µm and the particle size of the Ni{sub 0.5}Co{sub 0.5}Fe{sub 2}O{sub 4} sample prepared by template-based method was about 300 nm. The influence of the amount of rare earth element on the magnetic and absorbing properties of sample was studied. The saturation magnetization and coercivity decreased gradually with the increase of the content of Ce. When the content of Ce was 0.02, the maximal saturation magnetization value and coercivity was 75.72 emu• g{sup −1} and 789.88 Oe, respectively. The associated ferrite hollow spheres have good absorbing performance, and the return loss value was −18.8 dB at 5500 MHz. - Highlights: • Hollow microspheres of Ce{sup 3+} doped NiCo-ferrites were synthesized by template-based-deposition and surface reaction method. • The influence of rare earth Ce{sup 3+} on the magnetic and absorbing properties of sample was studied. • When the content of Ce was 0.02, the maximal saturation magnetization value and coercivity was 75.72 emu• g{sup −1} and 789.88 Oe, respectively.

  17. Stereoscopically Observing Manipulative Actions.

    Science.gov (United States)

    Ferri, S; Pauwels, K; Rizzolatti, G; Orban, G A

    2016-08-01

    The purpose of this study was to investigate the contribution of stereopsis to the processing of observed manipulative actions. To this end, we first combined the factors "stimulus type" (action, static control, and dynamic control), "stereopsis" (present, absent) and "viewpoint" (frontal, lateral) into a single design. Four sites in premotor, retro-insular (2) and parietal cortex operated specifically when actions were viewed stereoscopically and frontally. A second experiment clarified that the stereo-action-specific regions were driven by actions moving out of the frontoparallel plane, an effect amplified by frontal viewing in premotor cortex. Analysis of single voxels and their discriminatory power showed that the representation of action in the stereo-action-specific areas was more accurate when stereopsis was active. Further analyses showed that the 4 stereo-action-specific sites form a closed network converging onto the premotor node, which connects to parietal and occipitotemporal regions outside the network. Several of the specific sites are known to process vestibular signals, suggesting that the network combines observed actions in peripersonal space with gravitational signals. These findings have wider implications for the function of premotor cortex and the role of stereopsis in human behavior. © The Author 2016. Published by Oxford University Press.

  18. ADVERTISING AND LANGUAGE MANIPULATION

    Directory of Open Access Journals (Sweden)

    Cristina-Maria PRELIPCEANU

    2013-11-01

    Full Text Available Research has revealed that much of what happens in our minds as a result of language use is still hidden from our conscious awareness. Advertisers know this phenomenon better. They use the manipulation of language to suggest something about their products without directly claiming it to be true. Although the advertisers use colours, symbols, and imagery in advertisements, “the most direct way to study ads is through an analysis of the language employed” as all the other aspects are meant to reinforce the language message. Ads are designed to have an effect on consumers while being laughed at, belittle and all but ignored. Some modern advertisements appear to be almost dissuading consumers from the product – but this is just a modern technique. This paper is going to analyze a series of language techniques used by advertisers to arrest our attention, to arouse our interest, to stimulate desire for a product and ultimately to motivate us to buy it. Once we become familiar with the language strategies used in advertising messages we will be more able to make our own buying decisions.

  19. Stud manipulating device

    International Nuclear Information System (INIS)

    Bunyan, T.W.

    1980-01-01

    A device for inserting and removing studs from bores in a workpiece, for example a nuclear reactor vessel, comprises manipulating devices for operating on individual studs, each capable of tensioning a stud slackening a working nut on the stud, and subsequently removing the stud from the bore. A ring has dogs which can engage working nut recesses to interlock with the nut against relative rotation. Motors coupled to the ring rotate the working nut. A top nut is coupled to the motors to rotate the nut and screw it onto the stud. The top nut with other device parts can be raised and lowered on a tube by a hydraulic actuator. A hydraulic load cell between the top nut and a stool on the workpiece is pressurised to tension the stud by means of the top nut and thus facilitate rotation of the working nut when tightening or slackening. A dog clutch mechanism engages a stud end fitting against relative axial and rotational movement. The mechanism is raised and lowered on a guide member by an actuator. The mechanism has a tubular member and the drive coupling for the motors to the top nut includes a tubular member. Tubular members carry teeth which are engaged when the top nut is raised and the clutch mechanism is lowered, to provide a coupling between the motors and the mechanism for rotating the stud. (U.K.)

  20. Synthesis and characterization of magnetic poly(divinyl benzene)/Fe3O4, C/Fe3O4/Fe, and C/Fe onionlike fullerene micrometer-sized particles with a narrow size distribution.

    Science.gov (United States)

    Snovski, Ron; Grinblat, Judith; Margel, Shlomo

    2011-09-06

    Magnetic poly(divinyl benzene)/Fe(3)O(4) microspheres with a narrow size distribution were produced by entrapping the iron pentacarbonyl precursor within the pores of uniform porous poly(divinyl benzene) microspheres prepared in our laboratory, followed by the decomposition in a sealed cell of the entrapped Fe(CO)(5) particles at 300 °C under an inert atmosphere. Magnetic onionlike fullerene microspheres with a narrow size distribution were produced by annealing the obtained PDVB/Fe(3)O(4) particles at 500, 600, 800, and 1100 °C, respectively, under an inert atmosphere. The formation of carbon graphitic layers at low temperatures such as 500 °C is unique and probably obtained because of the presence of the magnetic iron nanoparticles. The annealing temperature allowed control of the composition, size, size distribution, crystallinity, porosity, and magnetic properties of the produced magnetic microspheres. © 2011 American Chemical Society